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Foreword

Metamaterials have seen a huge growth in research activity over the past decade
with no sign of letting up. The realisation that new and exotic electromagnetic
properties can be achieved by structuring materials on a subwavelength scale has
opened new fields in electromagnetic studies, ranging over the entire frequency
spectrum from zero to far optical. Indeed the metamaterial concept has been
extended beyond electromagnetism to acoustics and other wave phenomena. The
latest aspects to be exploited are their nonlinear properties and the introduction of
gain, an account of which is the subject matter of this book.

In some ways metamaterials parallel the development of photonic crystals
which also rely on structure for their properties. However, the major difference lies
in the subwavelength nature of metamaterial structure. This enables us to sum-
marise their properties in terms of permeability and permittivity just as we would
for a conventional material. This is an enormous simplification for the design
process. Metamaterial design is split into two parts: first define the macroscopic
structure of your device in terms of local permeability and permittivity, then
locally structure your metamaterial to achieve these properties. In contrast, pho-
tonic crystals usually require that the whole structure is designed in one step with
changes in one part of the device influencing what happens in another place. The
design process is non-local and therefore complex. This underlying simplicity is I
think the basis of the success of metamaterials.

Nonlinearity adds greatly to the usefulness of a material but unfortunately in
optics it is too often a very weak phenomenon and requires either intensely
powerful sources or interaction over a long time period. It has long been realised
that metamaterials have the potential to enhance nonlinearity. It is often the case
that the sub-wavelength structures deployed in metamaterials concentrate elec-
tromagnetic energy into a specific location in the structure. Locating a modestly
nonlinear material at this point can give rise to very strong effects. Not only that,
the amount of nonlinear material required is greatly reduced.
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In this book we find a collection of articles by leading researchers in the field. It
will be an invaluable reference for students and researchers alike who are part of
this rapidly growing enterprise.

London J.B. Pendry
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Preface

The twenty-first century belongs to photonics and harnessing light is the key to life
changing technologies, from energy to security, from biotechnology to low-cost
precision manufacturing, from high-speed Internet to quantum-level information
processing. Many important industries, ranging from integrated-circuit manufac-
turing, lighting, health care and life sciences, to the space, defence and automotive
sectors, rely on the same fundamental mastery of light. Future technologies will
demand a steep increase in photonic integration and energy efficiency, far
surpassing that of bulk optical components, current silicon photonics, and even
innovative plasmonic circuits. Such level of integration can be achieved by
embedding the data processing and waveguiding functionalities at the level of the
material rather than the chip, and the only possible solution to meet these chal-
lenges is to employ the recently emerged concept of metamaterials.

Metamaterials are artificial electromagnetic media structured on the subwave-
length scale; they were initially suggested for negative refractive index and sup-
erlensing applications, but very soon they became a paradigm for engineering
electromagnetic space and controlling the propagation of waves by means of
transformation optics. The research agenda is now focusing on the realization of a
new generation of metadevices, defined as metamaterial-based devices and
structures with novel and useful functionalities achieved by structuring of func-
tional matter on the subwavelength scale.

The fields of metamaterials and metadevices opened technologically important
capabilities ranging from subwavelength focusing to unique abilities for control-
ling electromagnetic waves, by engineering subwavelength structured materials.
Research on metamaterials emerged as a new area of physics and engineering, and
it is now attracting rapidly growing interest worldwide. Metamaterials not only
offer novel possibilities for practical applications and devices but also display
unexplored and intriguing properties that challenge fundamental physical con-
cepts. The main hindrance to the use of metamaterials in real-life applications is
their absorption of electromagnetic waves and narrow frequency band of opera-
tion. The creation of nonlinear, tunable and active metamaterials will solve these
problems and will lead to applications.
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In particular, nonlinear phenomena are essential for almost all the areas of
modern physics, ranging from quantum optics to electronic engineering, and they
address a span of questions from fundamental theoretical research to practical
engineering applications. Electronics utilizes the nonlinear effects offered by
semiconductors through numerous devices. In optics, where nonlinearity originates
from the weakly nonlinear atomic response, the key concerns were always related
to the relatively high power required to observe useful effects; while electronics,
capable of handling strongly nonlinear responses, is limited in speed.

Not surprisingly, the study of nonlinear effects attracted significant attention
within the metamaterials research, which has flourished over the past decade.
Metamaterials are artificial structures where specific engineered elements play the
role of atoms on a macroscopic scale. By offering tremendous opportunities in
designing and combining material properties, often reaching phenomena not
available in nature, metamaterials are particularly suited to the introduction of
nonlinearity. The advantages of the metamaterial paradigm will ensure a
remarkable impact on the whole field of nonlinear optics: providing novel solu-
tions to classical problems, on the one hand, and offering new phenomena and
applications, on the other.

The aim of this book is to present theoretical, numerical, and experimental
expertise in the physics of advanced tunable, nonlinear and active metamaterials
and metadevices in different frequency ranges, including microwaves, terahertz
and optics, and thereby to unite the fundamental concepts of these different
growing fields. More specifically, the book addresses the major methods for cre-
ating metamaterials and enabling their tunability, and it presents the latest results
on nonlinear, tunable and active metamaterials which are expected to create the
background for future optical metadevices with useful applications such as effi-
cient frequency converters, power limiters and parametric amplifiers. In particular,
the authors discuss approaches to dynamically manipulate electromagnetic
metamaterials in all frequency ranges.

The authors of the chapters are leading experts in the field of metamaterials,
they advance the fundamental physics of structured materials and facilitate key
experimental observations of many effects predicted theoretically.

The book is aimed at an audience already familiar with the basics of electro-
magnetic wave propagation. Especially, we address young, advanced scientists as
well as scientists in research groups with experimental as well as theoretical
expertise. It will offer insights into the basic principles of metamaterial design,
homogenization procedures, wave propagation, nonlinear phenomena as well as
computational aspects and—most importantly—work out the common ground of
these apparently different physical situations where the apparatus is to be applied.

In particular, the chapters collected in this book discuss the fundamental
properties and demonstrate control of nonlinear waves and localized excitations,
including nonlinear effects in left-handed transmission lines, magnetoelastic
interactions, superconducting quantum metamaterials, tunable liquid-crystal-based
structures and the possibility of novel nonlinear effects in metamaterial structures
that exhibit an optically induced nonlinear magnetic response. Special attention is
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paid to the interplay between nonlinear and linear modes, which result in a number
of interesting resonant scattering and trapping effects, and active control of the
metamaterial parameters. We are confident that the joint gathering of independent
contributions of experimentalists and theorists from each sub-field will boost the
implementation of ideas and experimental techniques in all fields of research.

A book like this that compiles contributions of different authors is as good as
the authors’ contributions. Therefore, we thank all authors for their excellent
articles as well as their support to the editorial process.

Canberra, Sydney Ilya V. Shadrivov
Mikhail Lapine
Yuri S. Kivshar
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Chapter 1
A Constitutive Description of Nonlinear
Metamaterials Through Electric, Magnetic,
and Magnetoelectric Nonlinearities

Stéphane Larouche, Alec Rose and David R. Smith

Abstract Nonlinear metamaterials provide a host of interesting phenomena which,
like for their linear counterpart, can be described using homogenized, effective prop-
erties. Following the convention used in nonlinear optics, the response of nonlinear
metamaterials can be expressed as a power series of the incident fields. However,
contrarily to most materials used in nonlinear optics that only possess an electric non-
linear response, nonlinear metamaterials often show electric, magnetic, and magneto-
electric nonlinear responses within a single unit cell. In this chapter, we present two
complementary approaches to determine all the effective nonlinear susceptibilities
of nonlinear metamaterials. First we present a coupled-mode theory that provides
insight into the origin of the various nonlinear susceptibilities that arise in nonlinear
metamaterials according to the symmetry of the unit cell. This approach also leads
to a description of the effect of the finite size of the unit cells, often called spatial dis-
persion. Second, we present a retrieval approach based on transfer matrices that can
be used to determine the effective nonlinear susceptibilities from either simulated or
experimental results. We finally demonstrate how to use this approach by applying
it to the case of dual-gap varactor-loaded split ring resonators.

1.1 Introduction

Nonlinear metamaterials offer promising opportunities for enhancing and control-
ling nonlinear response. As discussed in the other chapters of this book, many
interesting and unique nonlinear phenomena have been demonstrated using meta-
materials, illustrating the potential for structured metamaterials to support novel
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nonlinear response not easily realizable in conventional materials. The design of
nonlinear metamaterials, as has been the case for their linear counterparts, is greatly
facilitated by the introduction of a homogenization scheme, wherein effective nonlin-
ear susceptibilities for a composite are determined, in addition to the linear permittiv-
ity and permeability. The homogenization approach allows the anticipated properties
of the nonlinear metamaterial to be determined efficiently from simulations of the
repeated metamaterial element.

One of the advantages that has propelled the field of linear metamaterials is the
expanded palette of available material response, including the capability of imple-
menting electric, magnetic and magnetoelectric properties, even in the absence of
inherently magnetic materials. The addition of magnetic response in metamateri-
als leads to a considerably rich and complex collection of phenomena, especially
when magnetic nonlinearity is included. The issue of magnetoelectric coupling, in
fact, arises naturally for nonlinear metamaterials, and thus nonlinear homogenization
schemes must include and quantify a significantly larger set of nonlinear suscepti-
bilities, the majority of which are negligible for conventional materials.

In this chapter, we present two complementary approaches to determine the
homogenized, effective nonlinear susceptibilities of nonlinear metamaterials. First,
we present a coupled mode theory that can be used to determine the effective nonlin-
ear susceptibilities of simulated, lossless metamaterials. This method is particularly
useful in deriving analytical formulas that provide insight into the origins of the var-
ious nonlinear susceptibilities that arise from the metamaterial elements and leads
quite naturally to several important symmetry considerations. Second, we present a
retrieval approach based on transfer matrices that can be applied to either simulation
or experimental results, and is relevant for all scenarios that satisfy the non-depleted
pump approximation. The insight provided by the coupled mode theory approach
provides a basis for understanding the role that the symmetry of a metamaterial
unit cell plays in determining which effective nonlinear susceptibilities can be sup-
ported by the homogenized metamaterial. This analysis also incorporates the effects
of spatial dispersion due to the finite metamaterial element on the retrieved non-
linear susceptibilities. We illustrate the retrieval approaches using simulations on
symmetric and antisymmetric dual-gap varactor-loaded split ring resonators, which
have been used over the past several years to form analog nonlinear metamaterials
at microwave frequencies.

Following the convention used in nonlinear optics, the nonlinear response of
metamaterials can be expressed as a power series in the incident fields. To keep the
number of terms tractable, we consider here only second order processes: 3-wave
mixing where a field at ω3 is generated by applying two fields at ω1 and ω2. The
methods presented here can trivially be expanded to include higher order processes.
For the case of 3-wave mixing, the nonlinear polarization and magnetization at ω3
can depend on either the electric or the magnetic field at ω1 and ω2, which we
indicate by dividing the nonlinear response in a series of nonlinear susceptibilities
χ

(2)
i jk where i , j , and k can be either e or m. The first subscript indicates if the nonlinear

susceptibility generates a nonlinear polarization or magnetization at ω3, while the
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two other subscripts indicate whether this nonlinear polarization or magnetization
is created by the electric or the magnetic field at ω1 and ω2. Various nonlinearities
generally coexist in a single metamaterial unit cell and it is necessary to devise a
method to separate their effects.

It will be seen that for 3-wave mixing there are eight different nonlinear suscepti-
bilities. In general, for an nth order process there are (n + 1)2 nonlinearities present.
Furthermore, each of these nonlinearities is a rank-3 tensor. By carefully applying
the fields at ω1 and ω2 in various axes and polarizations, and determining the fields
generated at ω3, it is possible to separately determine each element of these tensors,
providing a full description of the nonlinear properties of the metamaterial.

1.2 Effective Nonlinear Susceptibilities: Coupled Mode Theory

In the most general case, the nonlinear properties of a material must take into account
not only electric-dipole contributions, but also magnetic-dipole, quadrupole, and
so-on. If we assume only dipolar contributions, we can write the second-order
polarization through a series of nonlinear susceptibilities,

P(2)(ω3) = ¯̄χ(2)
eee(ω3;ω1, ω2) : E(ω1)E(ω2) + ¯̄χ(2)

emm(ω3;ω1, ω2) : H(ω1)H(ω2)

+ ¯̄χ(2)
eem(ω3;ω1, ω2) : E(ω1)H(ω2)

+ ¯̄χ(2)
eme(ω3;ω1, ω2) : H(ω1)E(ω2), (1.1)

and the second-order magnetization,

μ0M(2)(ω3) = ¯̄χ(2)
mmm(ω3;ω1, ω2) : H(ω1)H(ω2) + ¯̄χ(2)

mee(ω3;ω1, ω2) : E(ω1)E(ω2)

+ ¯̄χ(2)
mme(ω3;ω1, ω2) : H(ω1)E(ω2)

+ ¯̄χ(2)
mem(ω3;ω1, ω2) : E(ω1)H(ω2), (1.2)

where ‘:’ implies a tensor inner product between the rank-3 second-order suscepti-
bility tensors and the field vectors, and ω3 = ω1 + ω2. While the nature of optical
magnetism in natural materials usually suppresses all terms except χ

(2)
eee, this is not

the case in metamaterials, whose structurally-induced magnetic moments can be
equal in strength, or even stronger, than their electric counterparts. However, relating
such a complex series of effective second-order susceptibilities to the microscopic
metamaterial structure is not a trivial exercise. Thus, the goal of this section is to find
a set of intuitive and general expressions to give insight into this relationship.

Let us consider a typical metamaterial, composed of dielectric and metallic
inclusions arranged periodically on a cubic lattice, as conceptually illustrated in
Fig. 1.1. The metamaterial itself is thus completely described by a dielectric function
ε(r), periodic along all three cartesian axes with lattice constant a. For the following
analysis, it is instructive to take ε(r) to be purely real, i.e. lossless. While this is
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Fig. 1.1 Schematic of a cubic metamaterial lattice, indicating the microscopic position vector r and
macroscopic lattice vector R. By equating coupled mode expressions on the discrete metamaterial
lattice to that in a continuous, homogenized medium, we can arrive at a set of eight expressions for
the eight effective second-order susceptibilities

clearly a poor approximation for most metamaterials of interest, the expressions that
follow are still highly useful for yielding an intuitive understanding of the effective
metamaterial properties, as well as probing some typical symmetries. In this limit
we are free to decompose the total fields inside the metamaterial into a summation
of Bloch modes, such that

E =
∑

μ

Aμeμ(r)eikμ·r−iωμt and H =
∑

μ

Aμhμ(r)eikμ·r−iωμt , (1.3)

where the μ label includes mode number, frequency, direction, and polarization.
Since the repeat distance for elements forming a metamaterial is generally assumed
to be much smaller than the wavelengths of interest, propagation is usually dominated
by the Bloch mode with the smallest wavevector, often called the fundamental Bloch
mode. This situation can be understood conceptually by imagining transmission
and reflection from a single plane of the metamaterial, for which all higher order
modes beyond the fundamental cannot propagate in free-space; that is, all of the
diffractive beams are evanescent. So long as the coupling between adjacent meta-
material elements is relatively weak and is mostly dipolar, only the forward and
backward propagating fundamental Bloch modes along a particular axis will con-
tribute significantly to our analysis.
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By describing our metamaterial in terms of these fundamental Bloch modes, we
can quite naturally describe the perturbative effect of a nonlinear polarization via
coupled mode theory, in perfect analogy to nonlinear waveguides [17]. For example,
we can describe three waves with frequencies ω1, ω2, and ω3 = ω1 +ω2 propagating
along the z-axis in the unperturbed case according to

E(ωn) = Anen(r)eikn z + A−ne∗
n(r)e−ikn z, (1.4)

H(ωn) = Anhn(r)eikn z − A−nh∗
n(r)e−ikn z, (1.5)

for n = 1, 2, 3, where we have used Bloch mode symmetries and our freedom in
selecting the relative phase of the Bloch functions to impose en(r) = e−n(r)∗ and
hn(r) = −h−n(r)∗. Now, assume that the metamaterial possesses a local second-
order electric nonlinearity described by ¯̄χ(2)

loc (r) with the same cubic periodicity. As a
first step, consider the nonlinear polarization arising from the product of the forward
propagating fields at ω1 and ω2 and allow the mode amplitude A3 to vary in space.
We can treat the nonlinearity as a perturbation to the fundamental Bloch modes. In
the formalism of coupled mode theory, we can expect to find expressions relating the
spatial rate of change of one amplitude over one lattice vector R to the set of driving
amplitudes, as in

∂ A3

∂z
(R) = iΓ A1(R)A2(R)ei(k1+k2−k3)ẑ·R, (1.6)

through a proportionality constant Γ , called the coupling coefficient. While the for-
mal derivation of this coupling coefficient, given by

Γ = ω3

a3

∫∫∫

V0

( ¯̄χ(2)
loc (r) : e1(r)e2(r) · e∗

3(r)e
i(k1+k2−k3)z

)
dV, (1.7)

can be found in [8], it can be simply understood as a volume average over the
interacting fields within the nonlinear medium, and is very reminiscent of the cou-
pling coefficients derived for standard nonlinear waveguides. Clearly, for a complete
description, we must consider all possible products of forward and backward fields,
generating in turn both forward and backward waves at ω3. However, each contribu-
tion will share a similar form to (1.6), and so they are suppressed for brevity.

Analogous expressions can be derived for a homogeneous medium, as a contin-
uous function of position vector r. However, for the sake of generality, the homo-
geneous medium must take into account all eight nonlinear susceptibilities in (1.1)
and (1.2). By equating the discrete and continuous descriptions, three-wave mixing
in a metamaterial can be homogenized, yielding expressions for the eight effective
nonlinear susceptibility tensors. If we neglect spatial dispersion, i.e. |kna| � 1, then
these expressions can be written in closed form, [8]
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χ(2)
eee(ω3;ω1, ω2) = 1

a3

∫∫∫
dV

[ ¯̄χ(2)
loc (r) : θ1(r)θ2(r) · θ3(r)

]
, (1.8)

χ(2)
emm(ω3;ω1, ω2) = −1

a3

∫∫∫
dV

[ ¯̄χ(2)
loc (r) : φ1(r)φ2(r) · θ3(r)

]
, (1.9)

χ(2)
eem(ω3;ω1, ω2) = i

a3

∫ ∫ ∫
dV

[ ¯̄χ(2)
loc (r) : θ1(r)φ2(r) · θ3(r)

]
, (1.10)

χ(2)
eme(ω3;ω1, ω2) = i

a3

∫ ∫ ∫
dV

[ ¯̄χ(2)
loc (r) : φ1(r)θ2(r) · θ3(r)

]
, (1.11)

χ(2)
mmm(ω3;ω1, ω2) = i

a3

∫ ∫ ∫
dV

[ ¯̄χ(2)
loc (r) : φ1(r)φ2(r) · φ3(r)

]
, (1.12)

χ(2)
mee(ω3;ω1, ω2) = −i

a3

∫∫∫
dV

[ ¯̄χ(2)
loc (r) : θ1(r)θ2(r) · φ3(r)

]
, (1.13)

χ(2)
mme(ω3;ω1, ω2) = 1

a3

∫∫∫
dV

[ ¯̄χ(2)
loc (r) : φ1(r)θ2(r) · φ3(r)

]
, (1.14)

χ(2)
mem(ω3;ω1, ω2) = 1

a3

∫∫∫
dV

[ ¯̄χ(2)
loc (r) : θ1(r)φ2(r) · φ3(r)

]
, (1.15)

where the volume integrals are taken over a single unit-cell. The quantities

θn(r) = Re

[
en(r)

ẽn
eikn z

]
and φn(r) = Im

[
en(r)

h̃n
eikn z

]

represent the inhomogeneous local electric fields induced in response to macroscopic,
or ‘homogeneous’, electric fields ẽn and magnetic fields h̃n , respectively. Qualita-
tively, these expressions imply that any of the eight fundamentally distinct nonlinear
tensors, and any of the tensors’ individual elements, can be supported in metamater-
ial composites with no intrinsic magnetic properties, provided that the metamaterial
supports sufficient overlap of the induced fields in the nonlinear element. An anal-
ogous set of expressions can be derived for the different tensor elements, or for the
third-order susceptibilities [8].

1.3 Effective Nonlinear Susceptibilities: Transfer Matrix Method

The previous section presents a method to determine the effective nonlinear sus-
ceptibilities of lossless metamaterials by averaging the fields over a simulated unit
cell, arriving at closed form solutions that can provide insight for nonlinear meta-
material design. The field averaging approach, however, requires knowledge of the
fundamental and harmonic fields at all points throughout the volume of a unit cell
of an infinitely periodic medium. An alternative approach uses the waves scat-
tered from a sample of finite thickness to infer the effective linear and nonlinear
susceptibilities. The advantage of this scattering (or S-) parameter retrieval is that
the wave reflected and transmitted from a finite-thickness sample can be measured
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Fig. 1.2 Schematic
representation of the
calculation of 3 wave mixing
in a slab of homogeneous
nonlinear material between
two semi-infinite linear
media: (1) the distribution of
waves at ω1 and ω2 is
calculated using a linear
transfer matrix approach; (2)
the nonlinear polarization is
calculated; and (3) the wave
generated at ω3 is calculated
using a linear transfer matrix
approach

ε1(ω),μ1(ω) ε2(ω),μ2(ω)
χ(2)(ω3,ω1,ω2)

ε3(ω),μ3(ω)

ω1

ω2

⎫
⎪⎪⎬

⎪⎪⎭

TM
(linear)

P(2), M(2)

ES, HSω3

⎫
⎬

⎭

TM
(linear)

experimentally, rendering S-parameters retrieval applicable to simulation and exper-
iment alike. Moreover, no restrictions on the geometry or composition of the meta-
material elements are required in the S-parameters method, allowing lossy samples
to be investigated.

For linear retrievals, only two complex parameters—the effective permittivity
and permeability—need be determined. They can be determined using two inde-
pendent simulation or experimental complex results, usually the reflection and the
transmission of the metamaterial. In the nonlinear case, a larger number of effec-
tive parameters must be determined and, therefore, a larger number of independent
simulations or experiments must be performed. However, as we will see, the nonlin-
ear retrieval is simpler in some aspects, ultimately involving the solution of a linear
system of equations. In this section, we will first summarize how to calculate the
nonlinear wave generated by the mixing of two or more waves in a homogeneous
nonlinear slab and then we will show how to solve the inverse problem.

We first consider the case of waves normally incident on a slab of homogeneous
material with known linear and nonlinear properties, situated between two semi-
infinite linear media, as illustrated in Fig. 1.2. In the non-depleted pump approxi-
mation, the nonlinear process is sufficiently weak that the generated fields do not
significantly impact the incident waves. Therefore, we can first calculate the field
distribution of the incident waves by solving the wave equation assuming only the
linear properties of the slab. We then calculate the nonlinear polarization, and finally
calculate the generated waves [1].

For the transfer matrix formalism, it is useful to form two-element vectors from
the complex coefficients of the forward and backward plane waves, which in region
i are E±

i (ωn, z) = E±
i (ωn) exp −i(ωnt ∓ kz), where the positive and negative

superscripts indicate waves propagating in the forward and backward directions,
respectively. In region i , the electric and magnetic fields at frequency ωn can thus be
decomposed into the vectors
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Ei (ωn) =
[

E+
i (ωn)

E−
i (ωn)

]
, or Hi (ωn) =

[
H+

i (ωn)

H−
i (ωn)

]
. (1.16)

In the linear case, the plane wave coefficients for any of the dependent waves can be
calculated from the incident waves (E+

1 (ωn) and E−
3 (ωn), or H+

1 (ωn) and H−
3 (ωn))

by applying the well-established transfer matrix formalism [5]. With all coefficients
known, the fields can then be calculated at any position in the system. In particular, we
can calculate E2(ω1,2) and H2(ω1,2), the fields inside the slab, necessary to compute
wave-mixing processes.

To keep the number of terms tractable, we will consider the case of a second order
nonlinearity, but the approach presented here can easily be extended to arbitrary order
nonlinearities. In the present case, the nonlinear polarization and magnetization are
representable as a sum of contributions from eight different terms associated with
eight nonlinear susceptibilities. Since the fields are decomposed into forward and
backward propagating waves, we can seperate the nonlinear polarization and mag-
netization into two different sums corresponding to the product of waves propagating
in the same or in opposite directions and associated with wavevectors ksum = k1 +k2
and kdiff = k1 −k2, respectively. Thus, in the vector notation of (1.16), the nonlinear
polarization is the sum of

Psum = 1

2
χ(2)

eeeE2(ω1)ET
2 (ω2) + 1

2
χ(2)

eemE2(ω1)HT
2 (ω2)

+ 1

2
χ(2)

emeH2(ω1)ET
2 (ω2) + 1

2
χ(2)

emmH2(ω1)HT
2 (ω2) (1.17)

and

Pdiff = 1

2
χ(2)

eeeE2(ω1)(FE2(ω2))
T + 1

2
χ(2)

eemE2(ω1)(FH2(ω2))
T

+ 1

2
χ(2)

emeH2(ω1)(FE2(ω2))
T + 1

2
χ(2)

emmH2(ω1)(FH2(ω2))
T (1.18)

while the nonlinear magnetization is the sum of

μ0Msum = 1

2
χ(2)

meeE2(ω1)ET
2 (ω2) + 1

2
χ(2)

memE2(ω1)HT
2 (ω2)

+ 1

2
χ(2)

mmeH2(ω1)ET
2 (ω2) + 1

2
χ(2)

mmmH2(ω1)HT
2 (ω2) (1.19)

and

μ0Mdiff = 1

2
χ(2)

meeE2(ω1)(FE2(ω2))
T + 1

2
χ(2)

memE2(ω1)(FH2(ω2))
T

+ 1

2
χ(2)

mmeH2(ω1)(FE2(ω2))
T + 1

2
χ(2)

mmmH2(ω1)(FH2(ω2))
T,

(1.20)
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where

F =
[

0 1
1 0

]
, (1.21)

effectively flipping the vector it multiplies upside down.
In the non depleted pump approximation, the nonlinear polarizations and magne-

tizations can be treated as source terms at ω3 = ω1 + ω2. These are associated with
source electric and magnetic fields

Es,sum = Psumμr,2(ω3)

n2
s,sum − n2

2(ω3)
, Es,diff = Pdiffμr,2(ω3)

n2
s,diff − n2

2(ω3)
, (1.22)

Hs,sum = Msumεr,2(ω3)

n2
s,sum − n2

2(ω3)
, and Hs,diff = Mdiffεr,2(ω3)

n2
s,diff − n2

2(ω3)
. (1.23)

Using the method developed by Bethune [1], a series of boundary conditions can
be used to derive transfer matrices relating these source fields to the fields at
ω3 generated on both sides of the slab, E−

1 (ω3) and E+
3 (ω3), or H−

1 (ω3) and
H+

3 (ω3).
At this point, it is important to note that the nonlinear polarizations—and therefore

the waves generated at ω3—depend nonlinearly on the applied fields, but linearly
on the nonlinear susceptibilities. Using this to our advantage, we can build a linear
system of equations to retrieve the effective nonlinear susceptibilities of a metama-
terial. For example, if only one nonlinear susceptibility is present, one can determine
it by calculating what would be any of E−

1 (ω3), E+
3 (ω3), H−

1 (ω3), or H+
3 (ω3) if the

nonlinear susceptibility were unity, and comparing that result with the actual gen-
eration from simulation or experiment [4, 7]. When many nonlinear susceptibilities
are present, the situation is just slightly more complex [9], leading to a system of
linear equations.

To retrieve the effective nonlinear susceptibilities, one must:

1. Determine the effective linear properties of the matematerial at all frequencies
involved using the standard retrieval approach.

2. Choose a series of independant simulation or experiment conditions giving as
many results as there are effective nonlinear susceptibilities. For 3-wave mixing,
if the waves generated in media 1 and 3 are both measured, 4 simulations or
experiments are necessary for a total of 8 complex results—Table 1.1 shows two
possible series of conditions.

3. Calculate the amplitude of the wave generated at ω3 in media 1 and 3 using the
predetermined linear effective properties and the transfer matrix approach for
every susceptibility being separately unity and for all conditions.

4. Simulate or experimentally determine the amplitude of the nonlinearly generated
wave in media 1 and 3 for the same series of conditions.

5. Solve the linear system of equations
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Table 1.1 Two possible choices of 4 independant simulation or experiment conditions to determine
all effective nonlinear susceptibilities for 3-wave mixing

Choice 1 Choice 2

Condition E+
1 (ω1) E−

3 (ω1) E+
1 (ω2) E−

3 (ω2) E+
1 (ω1) E−

3 (ω1) E+
1 (ω2) E−

3 (ω2)

(V/m) (V/m) (V/m) (V/m) (V/m) (V/m) (V/m) (V/m)

A 1 0 1 0 +1 +1 +1 +1

B 1 0 0 1 +1 +1 +1 −1

C 0 1 1 0 +1 −1 +1 +1

D 0 1 0 1 +1 −1 +1 −1

The first choice might be easier to implement experimentally. The second choice has the advantage
of creating standing waves with zeros or maxima in the electric and magnetic fields favoring selected
nonlinearities. For experiments the amplitude of the fields should be scaled such that the nonlinear
effect produces a good signal to noise ratio, without violating the non-depleted pump approximation

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E−
1,A

∣∣∣
χ

(2)
eee=1

E−
1,A

∣∣∣
χ

(2)
eem=1

E−
1,A

∣∣∣
χ

(2)
eme=1

E−
1,A

∣∣∣
χ

(2)
emm=1

. . .

E+
3,A

∣∣∣
χ

(2)
eee=1

E+
3,A

∣∣∣
χ

(2)
eem=1

E+
3,A

∣∣∣
χ

(2)
eme=1

E+
3,A

∣∣∣
χ

(2)
emm=1

. . .

E−
1,B

∣∣∣
χ

(2)
eee=1

E−
1,B

∣∣∣
χ

(2)
eem=1

E−
1,B

∣∣∣
χ

(2)
eme=1

E−
1,B

∣∣∣
χ

(2)
emm=1

. . .

E+
3,B

∣∣∣
χ

(2)
eee=1

E+
3,B

∣∣∣
χ

(2)
eem=1

E+
3,B

∣∣∣
χ

(2)
eme=1

E+
3,B

∣∣∣
χ

(2)
emm=1

. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ
(2)
eee

χ
(2)
eem

χ
(2)
eme

χ
(2)
emm

χ
(2)
mee

χ
(2)
mem

χ
(2)
mme

χ
(2)
mmm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E−
1,A

E+
3,A

E−
1,B

E+
3,B

E−
1,C

E+
3,C

E−
1,D

E+
3,D

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(1.24)

where the frequency dependence has been omitted for brevity. The matrix contains
the results of the transfer matrix calculations for homogeneous slabs with a single
nonlinearity for all conditions, the vector on the right hand side contains the results
of the simulations or experiments on the metamaterial in the same conditions, and the
vector on the left hand side contains the effective susceptibilities to be determined.

1.4 Symmetries and Spatial Dispersion

At this point, it is useful to consider the effective nonlinear properties from a symme-
try standpoint. First, simply by considering the polar and axial natures of the electric
and magnetic field vectors, we see that the eight nonlinearities separate naturally
into polar and axial tensors. Specifically, the tensors ¯̄χ(2)

eee, ¯̄χ(2)
mme, ¯̄χ(2)

emm , and ¯̄χ(2)
mem ,

involving an even number of magnetic fields, are polar, whereas the other four are
axial. We would thus expect that certain internal symmetries of a given metamaterial,
then, would favor one group of tensors over another.

For example, consider a metamaterial whose linear properties are centrosymmet-
ric, that is, for some choice of origin ε(r) = ε(−r) for all r within the unit-cell. Such



1 A Constitutive Description of Nonlinear Metamaterials … 11

symmetry is a good approximation for regular arrangements of symmetric nanopar-
ticles and many circuit-based metamaterials like dual-split SRRs and ELCs. It is
worth noting that we are not referring to the crystal symmetry of the local materials,
at least some of which must be non-centrosymmetric to support a χ

(2)
loc , but rather

the structural symmetry of the metamaterial unit-cell, which depends on the relative
arrangement of the constituent materials and inclusions. As such, even though the
anisotropy of the nonlinear elements, as well as the presence of substrates will, strictly
speaking, break the inversion symmetry, it is instructive to consider the structural
symmetry of the inclusion as the dominant force influencing the effective properties.
In any case, for a centrosymmetric unit-cell, we know from Bloch theory that a simi-
lar symmetry is enforced in the local fields, or en(r) = en(−r)∗. From the definitions
of θ and φ, we see that this in turn implies that θ(r) is an even function of r, while
φ(r) is odd. Clearly, these symmetry properties will have a strong impact on which
of the effective nonlinearities are dominant. If the nonlinear properties are similarly
centrosymmetric, i.e. χ(2)

loc (r) = χ
(2)
loc (−r), then the integrands in the expressions for

the axial nonlinear tensors are odd functions of r and therefore the axial nonlinear
tensors vanish identically. If, on the other hand, the material is poled in such a way
that the local nonlinear properties are anti-symmetric, χ

(2)
loc (r) = −χ

(2)
loc (−r), then

the polar nonlinear tensors vanish. These cases are illustrated in Fig. 1.3a and b,
respectively.

At microwave frequencies, where circuit elements such as varactor diodes are
often used as the nonlinear inclusions, it is simple to create metamaterial structures
possessing selected symmetries in the nonlinear properties, giving access to any
of the eight nonlinear susceptibilities. At optical frequencies, however, local elec-
tric nonlinearities are often introduced by using a nonlinear crystal as a substrate

(a) (b) (c)
Nonlinear substrate

Gold SRR

C
ry

st
al

 o
ri

en
ta

tio
n

Fig. 1.3 Illustration of symmetries in nonlinear metamaterials. a A centrosymmetric inclusion,
the double-gap SRR, placed over a uniform nonlinear substrate for maximizing the polar second-
order susceptibility tensors. b A centrosymmetric inclusion placed over an anti-symmetric nonlinear
substrate for maximizing the axial second-order susceptibility tensors. c A non-centrosymmetric
inclusion placed over a uniform substrate excludes neither polar nor axial second-order susceptibility
tensors
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or embedding matrix. While a nonlinear crystal as a whole can be aligned along a
particular axis, enforcing local directionality in a bulk medium or substrate can be
very difficult, especially on the length scales that would be required in a metama-
terial. This implies that, at optical frequencies, the class of nonlinear metamaterials
composed of centrosymmetric inclusions will tend to support nonlinear processes
through effectively polar nonlinear tensors. Accessing the axial tensors requires non-
centrosymmetric inclusions, such as the single-gap SRR shown in Fig. 1.3c, which
is known to support nonlinearites of the type χ

(2)
mmm [3].

Related to these symmetry considerations is the phenomena of spatial dispersion.
In the linear properties of metamaterials, it is often the case that spatial dispersion,
resulting from the non-negligible lattice dimensions, will lead to artifacts in the
effective linear properties other than the principal resonance [13]. Similar effects
show up in the nonlinear properties when the lattice constant-to-wavelength ratio
is sufficiently large. As an example, let us consider the simple case of a thin slab
of nonlinear material possessing only a χ

(2)
eee nonlinear susceptibility periodically

embedded in dielectric, as in Fig. 1.4. In the long wavelength limit, all nonlinearities
vanish with the exception of χ

(2)
eee(ω3;ω1, ω2) = d

a χ
(2)
loc , in agreement with previous

studies of composite nonlinear media [12]. Since the linear and nonlinear properties
possess inversion symmetry, the four axial nonlinear susceptibilities are identically
zero for all wavelengths. This leaves us with a system of four equations and four
unknown polar nonlinear susceptibilities. In the limit d � a, these expressions can
be solved to leading order in ki a,

χ(2)
eee =

[
1 − 1

8
a2

(
k2

1 + k2
2 + k2

3

)]
d

a
χ

(2)
loc (1.25)

χ(2)
emm = +Z1 Z2

(
1

12
a2k1k2

)
d

a
χ

(2)
loc = +Z2

0

(
π2

3

a2

λ1λ2

)
d

a
χ

(2)
loc (1.26)

Fig. 1.4 A simple unit cell
that can be used to
demonstrate the effect of
spatial dispersion on the
effective nonlinear
susceptibilities. This unit cell
consists of a slab of thickness
d containing an intrinsic
nonlinearity centered inside
the unit cell of thickness a.
For simplicity, all linear
properties are considered to
be those of vacuum

χ(2)
loc

ω1

ω2

ω3

d

a
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Fig. 1.5 The effective nonlinear susceptibilities, χ
(2)
eee (black), χ

(2)
emm/Z2

0 (red), χ
(2)
mem/Z2

0 (green),

and χ
(2)
mme/Z2

0 (blue) for the unit cell presented in Fig. 1.4, f1 = 9 GHz, f2 = 6 GHz, and f3 =
f1 + f2 = 15 GHz determined using the transfer matrix approach. Arrows indicate the wavelengths
λn = c/ fn involved in 3-wave mixing. The dashed lines correspond to the prediction of approximate
(1.25–1.28)

χ(2)
mme = −Z1 Z3

(
1

12
a2k1k3

)
d

a
χ

(2)
loc = −Z2

0

(
π2

3

a2

λ1λ3

)
d

a
χ

(2)
loc (1.27)

χ(2)
mem = −Z2 Z3

(
1

12
a2k2k3

)
d

a
χ

(2)
loc = −Z2

0

(
π2

3

a2

λ2λ3

)
d

a
χ

(2)
loc (1.28)

where λn = 2πc/ωn is the wavelength in free-space, Zn is the effective impedance of
the metamaterial at wavelength λn , and Z0 is the impedance of vacuum. Thus, spatial
dispersion manifests itself in the nonlinear susceptibilities of the same polar/axial
nature, proportional to the square of the lattice constant-to-wavelength ratio.

Figure 1.5 shows the effect of spatial dispersion on the retrieved parameters as
calculated using the transfer matrix approach as well as using the approximate for-
mula just derived. When the unit cell thickness is much smaller than all wavelengths
involved, the intrinsic nonlinearity dominates. Nonlinearities of the same polar/axial
nature are also present, but tend toward 0 when a → 0 while nonlinearities of the
other polar/axial nature are identically 0. Following the same rule of thumb used
when determining the linear effective properties, the effect of spatial dispersion can
be neglected when the unit cell size is smaller than approximately a tenth of all
wavelengths involved.

The unit cell considered here is obviously much simpler than would be expected
for any practical metamaterial, but cleanly illustrates the effects of symmetry and
spatial dispersion, which will generally impact all nonlinear metamaterial constructs.
Moreover, analogous selection rules can be derived for metamaterials belonging to
a variety of symmetry classes; for example, the circular polarization selection rules
for four-wave mixing in certain chiral metamaterials have been investigated both
analytically and experimentally along similar lines of reasoning [10].
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1.5 Application to Varactor-Loaded Split-Ring Resonators

The methods developed above can be applied in nonlinear metamaterial design. As an
example, in this section we will apply them to varactor-loaded split-ring resonators
(VLSRRs), which have been used as nonlinear metamaterials in the microwave
range [11, 16]. They are obtained by adding a varactor diode, which has intrin-
sically large nonlinear response, inside the gap(s) of a SRR. Here, we will consider a
SRR with two gaps, like that of Fig. 1.3, but instead of assuming the SRR is patterned
on a nonlinear substrate, two varactors are used to introduce the desired nonlinearity.
As shown in Fig. 1.6, the varactors can be inserted in the same direction (symmet-
ric case), or in opposite directions (antisymmetric case), to favor different kinds of
nonlinear susceptibilities.

Here, we consider the case of second harmonic generation. This is a particular
case of 3-wave mixing where ω1 and ω2 are degenerate. Because of that, χ

(2)
eem and

χ
(2)
eme, as well as χ

(2)
mem and χ

(2)
mme, are also degenerate. The VLSRR has been designed

to have a resonance frequency of about 1 GHz. The pump wave is applied around the
resonance frequency, while the harmonic is generated at twice that frequency. All
simulations were performed using Comsol.

In the previous section, we gained some insight into determining which nonlinear
susceptibilities should be favored in such a system using the coupled mode approach.
However, for real materials with finite absorption, the assumptions of the coupled
mode theory are violated and it cannot be used to provide quantitative evaluations.
In this section, we therefore use the transfer matrix approach to obtain quantitative
results and compare them to the predictions intuitively obtained from the coupled
mode theory.

varactor 
diode

Symmetric VLSRR Antisymmetric VLSRR

Fig. 1.6 Symmetric and antisymmetric VLSRRs
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Fig. 1.7 S parameters of a dual gap VLSRR: amplitude (continuous line) and phase (dashed line)
of S11 (blue) and S21 (red)

1.5.1 Linear Properties

The first step in the transfer matrix approach is to determine the effective linear
properties of the metamaterial unit cell. The only difference between the symmetric
and the antisymmetric unit cells is in the nonlinear response, and both therefore
have the same linear properties. Figure 1.7 shows the amplitude and phase of the S
parameters of the VLSRR determined over a range of frequencies covering both the
pump and the harmonic frequencies.

Using the well-established retrieval method [2, 14, 15], the effective linear para-
meters of this structures were determined, and are shown in Fig. 1.8. It should be
observed that this material shows a strong magnetic resonance while the electric
response is essentially flat. The small anti-resonance in the permittivity is an artifact
of spatial dispersion [13]. As shown in Fig. 1.9, it is also interesting to note that
applied magnetic fields generate concentration of the electric field inside the gaps of
the VLSRR and, therefore, important charges on the varactors. On the contrary, the
coupling of the electric field mainly generates field concentration on the sides of the
VLSRR, where no nonlinear material is present.

1.5.2 Nonlinear Properties

To determine the nonlinear properties of the VLSRR medium, a series of nonlinear
simulations must be performed for various combinations of incident fields. For both
the symmetric and antisymmetric VLSRR unit cells, the pump was applied either on
the left (condition A), on the right (condition B), or on both sides (condition C) of the
unit cell at once. Because of the degeneracy of some of the nonlinear susceptibilities,
only three conditions are necessary to determine all six independant susceptibilities.
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Fig. 1.9 Electric field pattern around the VLSRR for mainly electric (left) or magnetic (right)
stimulation. In both cases, incident fields are applied at the resonance frequency from both sides
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the y axis. To stimulate the VLSRR mainly with an electric (magnetic) field, the incident fields on
both sides are applied in (anti-)phase creating a maximum (zero) of the electric field and a zero
(maximum) of the magnetic field at the center of the unit cell

The applied fields are always 1 V/m. Figure 1.10 shows the amplitude and the phase
of the second harmonic generated on the left and the right of the metamaterial.

Many observations can be made directly from these plots, the most obvious being
that the symmetric unit cell generates a second harmonic that is almost perfectly in
phase on both sides, while the antisymmetric unit cell generates a second harmonic
that is approximately π out of phase on both sides of the metamaterial. If the magnetic
field were plotted instead of the electric field, the inverse effect would be observed.
This symmetry can be explained by the fact that the symmetric unit cell acts as an
electric dipole source at the harmonic frequency, while the antisymmetric unit cell
acts as a magnetic dipole source [6].

It can also be seen that conditions A and B give identical results, but with the
amplitude and phase in the left and right media reversed. This behavior is to be
expected for symmetric or antisymmetric unit cells since those two conditions are in
fact totally equivalent.
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Finally, it can be seen that when the pump is applied in condition C, the sec-
ond harmonic generation is suppressed. Since the pump is applied symmetrically in
condition C, it creates a standing wave with node in the electric field and a zero in
the magnetic field at the center of the unit cell. As shown above in Fig. 1.9, such a
combination of incident fields does not generate a concentration of the electric field
inside the gaps of the VLSRR, and we expect a weak nonlinear response.

The amplitude and phase of the generated second harmonic can be compared
to how much would be generated if the nonlinear susceptibilities were individually
unity. Using the transfer matrix approach of Bethune, all the elements of the matrix
of (1.24) were calculated and the linear system of equation was solved to obtain the
effective nonlinear susceptibilities shown in Fig. 1.11.

The dominant nonlinearity in the symmetric VLSRR is χ
(2)
emm while that of the

antisymmetric VLSRR is χ
(2)
mmm . In both cases, it is mainly the applied magnetic field

that generates the second harmonic. This is related to the fact that field concentration
in the gaps of the VLSRR is mainly generated by the applied magnetic field. When
the varactors are in the symmetric orientation the unit cell acts as an electric dipole
source at the harmonic frequency, while when the varactors are in the antisymmetric
orientation the unit cell acts as a magnetic dipole source. The next two nonlinear
susceptibilities in importance for both cases are those of the same symmetry group
as the dominant nonlinearity. Their presence is probably for the most part an arti-
fact of spatial dispersion. The three remaining nonlinearities belong to the opposite
symmetry group, and are suppressed by several orders of magnitude, in agreement
with the conclusions drawn earlier from the coupled mode theory.
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1.6 Conclusion

Metamaterials offer an enormously expanded set of tools for the design of novel non-
linear optical media. With the inclusion of artificial magnetic response, which can
readily be realized in artificially structured media, the number of potential nonlinear
susceptibilities dramatically increases, allowing much more control over harmonic
generation or wave mixing processes, as well as many other nonlinear phenomena. In
this chapter, we have presented methods to design and evaluate general magnetoelec-
tric nonlinear metamaterials, and have shown how the various nonlinear susceptibility
terms can be understood in terms of symmetry arguments. The simple illustrations
we have presented represent only a modest introduction to the subject of nonlinear
magnetoelectric metamaterials, which hold great potential for new nonlinear physics
and nonlinear device optimization.
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Chapter 2
Active and Applied Functional RF
Metamaterials

Steven A. Cummer

Abstract The concept of electromagnetic metamaterials, defined here as artificial
materials that are designed to obtain specific effective electromagnetic material prop-
erties, has revolutionized thinking about wave behavior in materials and the design of
complex electromagnetic devices. Although originally conceived in passive form, the
concept of electromagnetic metamaterials is applicable to more complicated struc-
tures. Why not embed into metamaterials circuit behavior that is more complicated
than what one can obtain from linear, time-invariant, passive circuit elements? What
kinds of new and interesting and potentially useful behavior can one obtain? These
are the fundamental questions that havemotivated the research described in this chap-
ter. Our focus here is on the integration of complex functionality into metamaterials
using powered and/or nonlinear elements.

2.1 Introduction

The concept of electromagnetic metamaterials, defined here as artificial materials
that are designed to obtain specific effective electromagnetic material properties, has
revolutionized thinking about wave behavior in materials and the design of com-
plex electromagnetic devices. Instead of being limited to the material properties
that nature provides, devices and device concepts are being designed using the full
range of electromagnetic material properties, electric and magnetic, positive and
negative.

This revolution in thinking and materials research has led to many novel prop-
erties and device concepts that were simply not possible before metamaterials were
conceived, including negative refractive index materials [1], the perfect lens [2],
electromagnetic cloaking [3], to name just a few. There remain major challenges in
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designing and fabricating metamaterials that exhibit the properties needed for these
devices, and there are fundamental physical limits (such as the need for group veloc-
ity to remain below the speed of light in a low-loss medium) that may make certain
combinations impossible. But the path forward is reasonably well-defined and being
aggressively pursued.

Although originally conceived in passive form, the concept of electromagnetic
metamaterials is applicable to more complicated structures. The behavior of most
passive metamaterial structures, for example the split ring resonator [4], can be de-
rived or estimated from simple circuit analysis. This is because the structures are
fundamentally subwavelength in size and thus the lumped circuit element approxi-
mation is at least partly valid. But if one now considers a metamaterial unit cell as a
circuit, why not embed into metamaterials circuit behavior that is more complicated
than what one can obtain from linear, time-invariant, passive circuit elements? What
kinds of new and interesting and potentially useful behavior can one obtain?

These are the fundamental questions that havemotivated the research described in
this chapter. More specifically, our focus here is on the integration of different forms
of circuit functionality into metamaterials. Circuits often have adjustable elements
like potentiometers, so can adjustable effective material properties be created by
integrating adjustable circuit elements into metamaterial cells? Circuits also can
have gain so that the output signal is larger than the input signal, so can effective
material gain be created by integrating gain into metamaterial cells. Circuits also can
exhibit much more complicated behavior, so where are the limits of the complexity
of the behavior that can be integrated into metamaterial cells?

The first efforts to embed some sort of functionality into metamaterials focused
on dynamically tunable metamaterials. Most passive resonant metamaterial particles
can be thought of as lumped electric circuits, at least to first order. By integrating
externally tunable circuit elements, one can shift the resonant frequency and thus
change the effectivematerial parameters at a fixed frequency.Thefirst demonstrations
of this used varactors [5–7], which are diodes designed to behave as voltage tunable
capacitors. Other demonstrations of electrically tunable metamaterials include using
switchable schottky diodes [8],MEMS switches [9], liquid crystals [10], ferrites [11],
and ferroelectric films [12]. And totally different approaches, such as temperature
dependence [13] and optical tuning [14], have also been used to realize dynamically
tunable metamaterials. These early efforts showed that there were few limits to how
one could achieve dynamic tuning of metamaterials.

These broad concepts, and the more specific ones described in this chapter, are
examples of trying to integrate specific forms of behavior into metamaterials in order
to make them do something useful. As such these can all be considered examples
of what we call applied functional metamaterials. The goal of this chapter is to
describe some of the different techniques and approaches that have been employed
in designing applied functional metamaterials into which circuit-like behavior is
integrated. Some of the concepts and research described here overlaps partlywith that
described by other chapters in this book. However, the circuit-oriented perspective
is distinct. We focus herein on two broad classes of functional radio frequency (RF)
metamaterials:
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• Externally powered active metamaterials, in which external gain is incorporated
into unit cells to access effective properties that cannot be obtained with passive
structures,

• Applied functional metamaterials, in which complex circuit-inspired behavior,
such as nonvolatile memory or amplitude-dependent transmission, is designed
into the metamaterial to give it the same application-oriented behavior.

Although these topics span a range of metamaterial concepts, they are linked by
the common thread of integrating complex, functional behavior into electromagnetic
metamaterials.

2.2 Powered Active RF Metamaterials

It was recognized very early in the modern surge of metamaterials research that
passive electromagnetic metamaterials have limitations in the range of achievable
effective material parameters. Resonant metamaterial inclusions are unavoidably
highly dispersive and lossy. One approach around these limitations is the concept of
powered active electromagnetic metamaterials [15] that contain elements that accept
outside power and thus can behave internally in ways that are not constrained by
passivity.

Although it is straightforward to show theoretically that powered active metama-
terials can provide much more extreme material parameters than is possible with
passive approaches, such materials are difficult to demonstrate experimentally. Sta-
bility is the main hurdle, as adding power and gain to field-sensing elements makes
them prone to oscillation [16, 17]. Directly powered active metamaterials have been
experimentally demonstrated in several different forms [18–22] and the field is mov-
ing forward steadily despite the technical challenges.

We describe here research that builds on the powered active metamaterial
architecture first described in [18]. This is by no means the only way one can
make powered active metamaterials, but it has some attractive qualities and has been
experimentally demonstrated in several different forms. It follows from considering
how passive metamaterial structures work, for example an SRR. In an SRR, the loop
creates a voltage proportional to the local magnetic field (and to frequency). Then,
because of the very small impedance of the loop-gap combination near resonance,
this induced voltage drives a large current through the same loop and thereby creates
a strongmagnetic dipolemoment. It is this creation of amagnetic dipolemoment pro-
portional to the local magnetic field that mimics the response of naturally magnetic
materials.

There are two basic parts to this passivemetamaterial response. First is the sensing
of a local field, and second is the generation of a strong dipole moment in proportion
to that local field.Although inmost passive structures these two parts are taken care of
by the same structure, there is no reasonwhy they have to be.And this further suggests
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amplifier
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element

driven
element

Fig. 2.1 Schematic illustration of one possible powered active metamaterial unit cell architecture.
A sensing element produces a voltage signal proportional to some local electromagnetic field com-
ponent. An active amplifier boosts and perhaps modifies that signal, and the driven element uses that
amplified signal to create a large dipole moment proportional to the original local field. Adapted
from [18]

a general powered active metamaterial unit cell architecture shown in Fig. 2.1. Let
there be one element that senses a local electromagnetic field component—this is the
sensing element. This could be a loop, as shown, for sensing the magnetic field, but it
could also be awire or a conducting gap for sensing the electric field. Then let there be
a powered amplifier that boosts and perhaps filters or phase-shifts the sensed signal.
Finally, let the amplifier drive another element that creates the large dipole moment
needed for the metamaterial response—this is the driven element. In this way, the
basic physics of a passive metamaterial particle are directly powered controlled by
the amplifier. This, in principle, removes some of the constraints imposed by passivity
on the possible effective material parameters. That these constraints can be removed
through a powered active approach is shown by the examples below.

2.2.1 Zero Loss Active Metamaterials

One clear target for powered active metamaterials is zero-loss metamaterials. Passive
metamaterials are unavoidably lossy because of the losses in the materials used
to make them (usually due to the resistance of metal traces). These losses can be
substantial and are a significant hurdle for realizing some interesting metamaterial
applications. The injection of external power into active metamaterials can solve this
problem. The critical issue is controlling the phase of the particle dipole response
relative to the local field. If this phase is not exactly zero or 180◦, then there is an
imaginary component to the polarizability of the particle. For passive particles, this
always means loss. But in active particles this phase can be manipulated to give zero
loss and even gain.

This conceptwas explored and demonstrated experimentally in [20]. The designed
and fabricated unit cell is shown in annotated form in Fig. 2.2a. This is an active
magnetic metamaterial unit cell, and thus employs loops for the sensing and driven
elements. Passive split ring resonators are placed next to both of these loops to
amplify the local fields and increase the strength of the cell response. In between the
sensing and driven loops is an amplifier, as in Fig. 2.1, connected to an adjustable
phase shifter. The adjustable phase gives an important degree of freedom in tuning
the material response, as indicated in the discussion above.
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Fig. 2.2 Demonstration of an active magnetic metamaterial unit cell. a Annotated photograph
showing the fabricated unit cell and its internal components. b Experimentally measured real (top)
and imaginary (bottom) parts of the effective magnetic permeability as a function of phase shifter
bias. With an appropriate bias and in a narrow range of frequencies, we obtain a response that has
a negative magnetic susceptibility and zero loss. Adapted from [20]

The effective magnetic properties of this active unit cell were experimentally
measured, and the results are shown in Fig. 2.2b for three different phase shifter bias
levels. The frequency dependence of permeability for each bias are all dramatically
different. The 12V bias gives a response that is quite similar to a passive material,
with a real part that increases and then decreases, and an imaginary part that is
predominantly negative (corresponding to loss for our assumed exp(+ jωt) sign
convention).

The most interesting results are observed for the 6V bias level. Here, the effec-
tive material properties are completely unlike those in passive materials. The real
part of the permeability is essentially at or below unity for all frequencies, and
the imaginary part crosses from below zero (loss) to above zero (gain). Therefore
there is a frequency at which the real part of the magnetic susceptibility is negative,
and the imaginary part is zero implying zero loss. In [20], it was further shown that
an array of 3 identical active magnetic unit cells unambiguously result in a negative
magnetic permeability and zero loss in a narrow frequency range.
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2.2.2 Nonreciprocal Active Metamaterials

The basic powered active unit cell architecture described in Sect. 2.2 presents some
interesting possibilities. There is no reason, for example, why the sensing and driven
elements need to the same kind of dipole. This means that one could create a meta-
material unit cell that senses the local electric field and thus generates a proportional
magnetic dipole response. With such a cell one is not controlling permittivity or per-
meability but instead actively creating and controlling a magneto-electric material
response. Some natural media exhibit a magneto-electric material response, but this
is uncommon and not usually very strong. Passive metamaterial structures can ex-
hibit magneto-electric coupling [23], but such coupling is always symmetric so that
a magnetic field creates an electric response and an electric field creates a magnetic
response.

In contrast, an active magneto-electric element easily gives us the ability to make
this coupling non-symmetric. With an one-directional amplifier between the sensing
and driven elements, only one form of magneto-electric coupling occurs. This has
the interesting and unusual effect of making wave propagation highly nonreciprocal,
or different in opposite directions [22]. Figure2.3a shows a schematic layout of such
a unit cell, which contains a magnetic field sensing loop, an embedded amplifier, and
a driven electric monopole (all with appropriate lumped elements for narrowband
matching). This cell produces an electric dipole moment that is proportional to the
applied magnetic field, but does not produce the reverse because of the unidirectional
nature of the amplifier. An advantage of this mixed-field cell is that the coupling
between the driven electric monopole and the sensing loop is small and thus does
not contribute much stability-influencing feedback.

Figure2.3b shows an assembled array of these metamaterial particles of one ele-
ment thickness.When illuminated at normal incidencewith the polarization shown in
the figure, this array was designed to be essentially transparent in one direction (S12)
while opaque in the other (S21), and thus highly nonreciprocal. The measurements
shown in Fig. 2.3c confirm this behavior, with a >25dB difference in transmission
magnitude at the 600 MHz target frequency between these two normal-incidence
directions. That such strong nonreciprocity can be created with a metamaterial that
is only a small fraction of a wavelength thick speaks to the extreme material prop-
erties that can be obtained using powered active metamaterials. To be sure, adding
active elements adds complexity to the design and operation, but it enables material
properties that cannot be obtained with a passive approach.

2.3 Applied Functional Metamaterials

The final class of metamaterials wewill discuss in this chapter is what we call applied
functional metamaterials. The term functional metamaterials has been applied very
broadly to metamaterials that exhibit complex engineered behavior and properties.
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Fig. 2.3 Illustration and demonstration of a nonreciprocal active metamaterial based on magneto-
electric coupling. a Schematic illustration of the cell and its internal components. b Photograph of
the fabricated and assembled array of five identical elements. c Measurements of transmission with
power off, and in the two opposite directions with power on. When powered, this array is nearly
transparent in the S12 direction but essentially opaque in the S21 direction at the target 600MHz
frequency. Adapted from [22]

This includes metamaterials that are designed to mimic general complex properties
found in natural materials, such as second- and third-order electromagnetic nonlin-
earities [24, 25]. Careful analysis of such particles can lead to a complete theoretical
description of the nonlinear susceptibilities of a bulk metamaterial from the known
properties of the components of a single cell [26].

But the concept of functionalmetamaterials also includes those designed to exhibit
specific, rather than general, engineered properties and behavior. This latter class of
metamaterials we call applied functional metamaterials to distinguish it within the
broader context of functional metamaterials. These applied functional metamaterials
are the focus of this section of this chapter.

A representative example of an applied functional metamaterial is one that is
transparent (or close to it) for low incident power density but becomes less and less
transmissive as the incident power density increases [27]. Although this is clearly
nonlinear behavior, it is a specific form of nonlinear behavior that is directly tied to
an application, namely preventing high power signals from passing through while
allowing low power signals to pass (for example, to protect sensitive components
from transient high power signals).
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In the more detailed descriptions of several examples to follow, the reader will
note that the inspiration for many of these application-functional metamaterials is
to translate practical electric circuit behavior, which operates on local voltages and
currents, to electromagnetic metamaterial behavior, which operates on electromag-
netic waves. A circuit-based device that transmits low power signals but blocks
high power signals (the example mentioned above) is called a limiter. As described
below in Sect. 2.3.2, a way of implementing a circuit limiter guided the strategy for
designing that behavior into an electromagnetic metamaterial limiter. In the opinion
of the author, this basic idea of translating application-specific circuit behavior to
electromagnetic metamaterials is one with substantial future promise.

2.3.1 Individually Addressable and Nonvolatile Tunable
Metamaterials

The concept of tunable metamaterials, in which externally controllable elements
integrated into metamaterials enable one to change the effective electromagnetic
properties, was briefly described above in Sect. 2.1. Most realizations of tunable
metamaterials incorporate voltage-tunable elements that are straightforward to con-
trol. However, when one removes the control signal, the materials revert to their
untuned state, and must be retuned when turned back on. And while tuning a large
array of metamaterial particles with a single control signal is straightforward, one
might wish to tune each element individually to dramatically increase the recon-
figurability of the array. But tuning separately each element in an array of tens or
hundreds of elements with a different control signal is a challenge.

One solution to these issues, which we describe in this section and which is based
on [28], comes from practical circuit concepts. Electric circuits often incorporate
tunable elements, such as potentiometers, so that their behavior can be precisely
tuned for a specific application. These elements are usually nonvolatile in that they
maintain their tuned state even when power is removed from the system. There are
also families of chips that can be individually controlled on a shared bus wire. This
means that metamaterial elements can all be connected to a small number of shared
wires, and yet be individually tunable.

Individually addressed tuning of elements in a metamaterial array was demon-
strated in [28]. The basic design is straightforward. Each split ring resonator element
contains a varactor (a voltage-tunable capacitor). Varying the bias voltage on the var-
actor tunes the resonant frequency of the element and thus tunes its effectivemagnetic
properties as described in Sect. 2.1. The addressable control of each element came
through a Maxim DS-2890 digital potentiometer with 1-wire interface. The ends of
the potentiometer were connected to 0 and 10V so that moving the wiper varies the
bias voltage on the varactor between these limits (with 256 step resolution).

The individual addressability comes through the Maxim chips’ 1-wire interface,
which enables each chip to be communicated with individually. Thus the varactor
voltage can be set separately on each element through a simple computer-controlled
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Fig. 2.4 Illustration and demonstration of a tunable metamaterial with individually addressable
elements. a Photograph of a unit cell and its internal components. b Photograph of the fabricated
and assembled array of eight identical elements. c Measurements of effectivemagnetic permeability
of the 8-element array without individual tuning, for two tuned states. The responses exhibit two
distinct resonances because of small variations in the elements, while the goal was for a single
resonance. d Measurements of effective magnetic permeability after each addressable element was
tuned while in the array, showing the desired single tunable resonance. Adapted from [28]

interface between the serial port and the 1-wire bus. As shown by the photo in
Fig. 2.4a, each metamaterial element was fabricated with pins that enabled them to
be stacked together in a 1D array of arbitrary length with the 1-wire and power con-
nections reaching each one. An annotated photo of an assembled 8-element array
is shown in Fig. 2.4b. Unfortunately, the 1-wire chips from Maxim have been dis-
continued at the time of this writing. But the concept remains valid and the work
shows how individual metamaterial element addressability can be implemented in
an efficient way.

To experimentally confirm the improvements that come with individual address-
ability, we performed reflection/transmission measurements of the 8-element array
in a waveguide and extracted the effective magnetic permeability of the metamaterial
array [28]. Figure2.4c, d shows the effective magnetic permeability for two different
frequency tunings without addressability (c) and with addressability (d). Without
addressability and the individual element tuning that comes with it, the variabil-
ity in the individual varactors means that the particles do not have the same
untuned resonant frequency. Thematerial array response contains at least two distinct
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resonances, and the resulting effective material parameters are lower in magnitude
and more lossy than they need to be. In contrast, the measurements show that with
individual element addressing and tuning, each element can be tuned to a give a
single, sharp resonance, and this resonance can be shifted without changing shape
by more than 10% in frequency [28]. This provides maximum positive and nega-
tive permeabilities that are 2 times larger than without individual addressability, and
lower losses at most frequencies as well.

Additional functionality can be added to this addressablematerial concept through
a bit of additional circuitry per unit cell.When themetamaterial array described above
is powered down, it reverts back to its untuned state and requires a computer connec-
tion to regain the tuned state. One could imagine a scenario in which, after tuning,
the array should remain in its tuned state, even when unconnected to the driving
computer. This would require a nonvolatile memory chip into each metamaterial
element to store the tuned state. A chip that combines a digital potentiometer with a
nonvolatile memory, so that the potentiometer reverts to its tuned state simply when
power is applied, exists in a commercial product (Intersil X9317). We combined
this chip with a 1-wire chip to enable communication to each metamaterial element
separately, and confirmed that individual addressability and nonvolatile memory of
the tuned state could be implemented in a metamaterial array.

This same addressable metamaterial concept has been extended into a more spe-
cific applied functional metamaterial [29]. A reflectarray is an engineered surface
designed to have specific electromagnetic reflection properties. By tuning the local
reflection phase of individual elements on the surface, one can engineer a surface that
reflects signals in non-specular directions. And further, by integrating addressable
tunability into the elements of reflectarray, one can reconfigure the surface to change
the reflection direction dynamically. In [29] it was shown that this approach can be
used to create a thin surface capable of steering the reflection of a normally incident
signal continuously by more than 25◦.

2.3.2 A Metamaterial Limiter

A final example of integrating application-specific functionality into metamaterials
is the metamaterial limiter [27]. RF circuits routinely employ a type of circuit called
a limiter that, above a certain threshold input amplitude, begins to clip (or limit)
the output amplitude to prevent large input signals from being transmitted through
to sensitive components that could be damaged by large signals. A simple circuit
implementation of a limiter is shown in Fig. 2.5a. The circuit is based on a PIN
diode, which is a nonlinear element that acts as a voltage tunable resistor. At low
input power, the PIN diode is a large impedance which does not modify the signal.
But at high input power, it becomes a small impedance that shorts some of the
signal energy to ground and thus limits the amplitude of the transmitted signal. It is
interesting to note that there are also optical limiters that perform the same operation
on light-based signals (typically lasers) for the protection of devices or eyes [30].
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Fig. 2.5 Demonstration of an RF limiter metamaterial. a Circuit diagram of a simple limiter.
b Implementation of CELC surface with PIN diodes integrated into each cell. c Simulation of
power-dependent transmission through the CELC surface. d Measurements of power-dependent
transmission through the CELC surface. Adapted from [27]

These optical limiters are usually based on photosensitive chemicals that increase
their absorption for higher input power.

One can imagine the need for a thin sheet of material that behaves the same way
for incident electromagnetic waves: small input signals are transmitted through, but
large signals are attenuated. Integrating this nonlinear circuit functionality into a
metamaterial is one way to achieve this goal. The design begins with a baseline
passive metamaterial structure that is thin (preferably planar), transmits a relatively
broad frequency range, but has a physical structure that can easily be manipulated
through the placement of circuit elements. The complementary electric LC resonator
(CELC), described in detail in [31] and shown in the photo of Fig. 2.5b, meets these
goals with a planar geometry, a relatively broad (in frequency) transmission window,
and a physical structure that can be altered by electrical shorting across the two
separate conducting regions.

The limiter circuit works by allowing the power-dependent resistance of the PIN
diode to short the output when the input power is high. The same behavior can be
integrated into the CELC structure by placing a PIN diode across the two conductors
that form the metamaterial structure. The transmission through the CELC occurs due
to a resonance between these two conductors. A PIN diode placed across them acts
as a power-dependent electrical short that weakens the resonance and thus reduces
the transmission at higher powers. There are some degrees of freedom in this design,
namely the precise placement of the PIN diode tomaximally damp the resonance, and
the diode characteristics to ensure that the threshold power for the limiter behavior
occurs at the desired input power level.
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With these parameters chosen, Fig. 2.5c shows simulated transmission versus fre-
quency curves for different PINdiode resistance levels. These indicate that theCELC-
PINstructure shouldbehave as ametamaterial limiter,with nearly 100%transmission
near 3GHz for low incident power (high diode resistance), but with transmission that
drops more than 10dB for higher incident power (low diode resistance). For exper-
imental demonstration, the 2 by 4 CELC array was placed inside a closed metallic
waveguide, and the relative transmitted power was measured as a function of input
power. As shown in Fig. 2.5d, the relative transmission does not change with power
for low incident powers (0 and 10dBm) and peaks with high relative transmission
(−2dB). But as the incident power increases, the limiter behavior takes over, and
the relative transmitted power drops by more than 10dB for an incident power of
30dBm.

This example effectively demonstrates both the design approach and the future
possibilities for applied functional metamaterials. The desired nonlinear behavior is
well-defined and potentially useful in applications, and it is known how to achieve
that behavior in lumped circuit form.Metamaterial elements based on that circuit that
exhibit that same behavior were designed, and measurements of a fabricated meta-
material surface array confirm the desired behavior. More complex and more useful
behaviors can certainly be engineered into metamaterials using the same approach.

2.4 Summary

In this chapter we have reviewed several of the different technical approaches being
used to realize active electromagnetic metamaterials. This is a very broad topic, and
the term active metamaterials means different things to different people. Our focus
has been on two of these approaches. The first is powered active RF metamaterials,
in which externally powered elements are used to achieve electromagnetic material
parameters not possible in strictly passive materials. The amplifier-based architec-
ture described here has already been used to achieve zero-loss negative permeability
materials and also highly non-reciprocal materials that are transparent to waves trav-
eling in one direction but opaque to those traveling in in the opposite direction. There
is no question it is challenging to design powered active unit cells that are both robust
and stable, but there is no other approach for realizing some of the extreme material
parameters needed for some interesting and useful applications.

The second approach is what we call applied functional metamaterials. These are
metamaterials into which a specific functionality has been embedded so that a bulk
material exhibits a desired appliation-oriented behavior. The examples of addressable
tuning of individual elements, nonvolatile memory of that tuned state, and nonlinear
power-dependent transmission have shown that complex circuit-inspired behavior
can be embedded inside metamaterial elements, resulting in a bulk metamaterial
or metasurface that exhibits that same behavior. The surface has just begun to be
scratched in all of these aspects of metamaterials, and the coming years should yield
significantly more.
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Chapter 3
Parametric Amplification of Magneto-Inductive
Waves

Richard R.A. Syms, Timmy Floume, Laszlo Solymar and Ian R. Young

Abstract Parametric amplification is a method of low-noise signal amplification
of that operates by mixing the signal with a high-frequency, high power pump in a
single non-linear reactive component, a varactor diode. Here its application to the
amplification of magneto-inductive (MI) waves is demonstrated. MI waves are slow
waves that propagate in linear chains of magnetically coupled L-C resonators known
as MI waveguides. Such waveguides can be formed into ring resonant structures,
and used for signal detection in magnetic resonance imaging (MRI). MI waves and
waveguides are first reviewed. The theory of parametric amplification in single reso-
nant elements is then described, and extended to travelling wave structures and ring
resonators. Experimental verification is presented for systems designed to operate at
63.85MHz, the frequency for 1H MRI in a 1.5T magnetic field.

3.1 Introduction

Magneto-inductive (MI) waves are slow waves of circulating current that, together
with their associated magnetic fields, can propagate in arrays of magnetically cou-
pled electrical resonators [1, 2]. The arrays can be constructed in one, two or three
dimensions [3], and represent a particularly simple form of metamaterial. Here we
will mainly be concerned with the one-dimensional variant, known as a magneto-
inductive waveguide. The resonators may be arranged in a plane (the so-called
‘planar’ configuration) or stacked one behind another (the ‘axial’ configuration)
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and waveguides can be configured as a wide variety of 2-, 3- and 4-port MI devices
[4, 5].

Many electrical structures support MI waves. All that is required is resonance and
magnetic coupling. At low frequencies, the resonators can be lumped-element cir-
cuits based on inductors and capacitors (L-C circuits) [2], which in two dimensions
may easily be fabricated on printed circuit boards (PCBs) [6, 7]. Alternatively, they
may be three-dimensional structures such as spirals [8] or spiral wound sheets of
metal-coated dielectric known as ‘Swiss-rolls’ [9]. At higher frequencies, com-
ponents with distributed inductance and capacitance such as split-ring resonators
(SRRs) [10–13] may be used. Magneto-inductive waves have even been observed
in metamaterials designed for operation at photonic frequencies that simply contain
open loops [14].

Because of their ability to confine internal magnetic fields to a defined path, there
are obvious applications for MI waveguides in wireless power transfer [15–17] and
wireless communications [18, 19]. However, owing to their sensitivity to nearby
electrical structures, there are also applications in sensing [20]. Finally, through
their ability to couple to external magnetic fields, there is a significant potential
for detection of signals in magnetic resonance imaging (MRI). Magneto-inductive
devices have been developed to concentrate [21–24] and detect [25, 26]MRI signals,
and also to transmit them safely out of the body during internal imaging [27, 28].

MI waveguides must satisfy many conditions before practical systems can be
built. To transfer energy at a single frequency over a useful distance, the propaga-
tion loss must be inherently low, and bends should have minimal effect. To transfer
signals—which are inherently broadband—dispersion should also be low. Efficient
transducers are required to inject and recover signals, and components such as split-
ters to define more complicated paths. Switches, modulators and filters may also be
required. Low-cost manufacturing methods must also be developed. Many of these
aspects have received attention, and in some cases solutions have already been found.
A particularly useful variant is magneto-inductive cable, which can be printed in long
lengths on flexible substrates, has the lowest propagation loss of all MI waveguides
to date, and can be bent into arbitrary paths [29, 30]. It can easily be connected to a
conventional RF system [31], and formed into a range of components [32, 33]. As a
result, entire MI systems can be printed on a single flexible substrate.

BecauseMIwaves are slow, the current spends a relatively long time circulating in
each loop as it propagates. Unfortunately, the ability to construct a low-loss metallic
resonator has improved very little over the last century. At room temperature, the
most easily available material with high conductivity is still copper, and its ability
to carry current at radio frequency is limited by the skin effect. Compared with
dielectric resonators, metallic resonators are therefore relatively lossy, with quality
factors typically in the range 100–1,000. As a result, the propagation loss of MI
waveguides remains stubbornly high. One solution is distributed amplification, and
elements containing conventional amplifiers have already been developed [34, 35].
However, because of their resonant arrangement, parametric amplifiers are strong
candidates for gain elements.
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Before the advent of metamaterials, the parametric amplifier was largely con-
signed to history. It was developed in the late 1950s, just after the development of
the PN junction diode but before the widespread introduction of the transistor [36].
Its particular virtue is low noise amplification, which is achieved by mixing signals
in a set of resonators that are coupled by a single non-linear reactance, a variable
capacitor (or varactor). Because voltage-dependent capacitance is inherent to the
reverse-biased diode, a high-performance amplifier can be constructed using a sin-
gle diode, a significant advantage in the early days of microelectronics when active
components were scarce.

Many configurations were investigated, including circuits involving mixing of
two, three and four different frequencies (see e.g., [37, 38]). The simplest—the
two-frequency or degenerate amplifier—is often an explanatory example in text-
books. Unfortunately, it is not useful, since it provides gain only when the two
frequencies are phase-locked together, and this cannot be the case for realistic sig-
nals [39, 40]. The four-frequency amplifier is the most versatile. However, because
of its complexity, attention has concentrated on the three-frequency amplifier, which
can provide phase-independent amplification using a simple circuit [41].

Three-frequency amplification is a two-step process. First, the weak signal (at
angular frequency ωS) is mixed with a strong pump (at a higher frequency ωP ) to
create a so-called ‘idler’ (at an intermediate frequency ωI ), which is larger than the
original signal. The three signals are kept separate by circulating them in appro-
priately resonant loops, which share the non-linear element. The idler is then mixed
with the pump, to create an additional (and now very much larger) signal term, which
adds in-phase to the original signal to give the same effect as amplification. In fact,
the net effect of the pump is equivalent to insertion of a negative resistance into the
signal resonator.

Unfortunately, the three-frequency amplifier suffers from easily identifiable lim-
itations. Firstly, its gain-bandwidth product is fixed, and it cannot provide high gain
over a wide bandwidth, an essential feature for a communications amplifier. Sec-
ondly, it provides low-noise amplification at room temperature only if ωI � ωS .
Both aspects posed problems as signal bandwidths rose in the 1970s. Although fre-
quencies were successfully raised using waveguide components [42, 43], it became
increasingly difficult to obtain low noise without cryogenic cooling [44], making
it hard for parametric amplifiers to compete with a device with inherently large
gain-bandwidth and very high power: the travelling wave tube [45, 46]. The para-
metric amplifier was therefore subsequently confined to instrument applications,
typically in radio astronomy [47, 48].

The efforts made to increase gain-bandwidth largely involved more compli-
cated filters, often arranged as ladder networks and supporting travelling waves
[49–51]. Structures of this type should rightly be regarded as the precursors of
amplified metamaterials, and may provide the solution to the problem of high
propagation loss. A number of attempts have been made to introduce the princi-
ples of both two- and three-frequency parametric amplification to metamaterials
[52–54]. The aim of this Chapter is to describe the use of parametric amplification of
magneto-inductive systems designed for MRI signal detection [55–57].
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3.2 Magneto-Inductive Waves and Ring Resonators

We begin by describing simple passive magneto-inductive systems. Figure3.1a
shows a one-dimensional MI waveguide, which consists of a set of capacitively
loaded loops, each coupled magnetically to its nearest neighbours. The array has
lattice spacing ‘a’ and is infinitely long.

Figure3.1b shows the equivalent circuit. The elements are modelled as resonant
circuits consisting of a capacitor C , an inductor L and a resistor R (which accounts
for loss). Magnetic coupling is modelled as a mutual inductance M . The current In in
the nth element can be related to the currents In−1 and In+1 in the n −1th and n +1th
elements at angular frequency ω using Kirchhoff’s voltage law. In the absence of
sources, the result is the recurrence relation [1]:

(R + jωL + 1/jωC) In + jωM(In−1 + In+1) = 0 (3.1)

Equation (3.1)may be solved by assuming travellingwave solutions, in the form In =
I0exp(− jnka), where k is the propagation constant. These are magneto-inductive
current waves. Substitution into 3.1 and cancellation of exponential terms then leads
to the MI dispersion equation [2]:

{1 − ω2
0/ω

2 − j/Q} + κ cos(ka) = 0 (3.2)

Here ω0 = 1/
√

LC is the angular resonant frequency of the isolated loops, and
Q = ωQ0/ω where Q0 = ω0L/R is their quality factor. The constant κ = 2M/L
is the coupling coefficient, and may be positive or negative, depending on whether
the loops are arranged in the axial or the planar configuration. In the former case,

Fig. 3.1 a Linear magneto-inductive waveguide, and b its equivalent circuit
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a forward wave is obtained, and in the latter a backward wave. The propagation
constant is generally complex, and can be written as k = k′ − jk′′, where k′a and
k′′a are the phase shift and attenuation per element, respectively. Equation (3.2) may
of course be solved exactly. However when losses are low, we may write:

(1 − ω2
0/ω

2) + κ cos(k′a) ≈ 0

k′′a ≈ 1/{κ Q sin(k′a)} (3.3)

The upper equation implies that MI waves can exists over the frequency band 1/(1+
|κ|) ≤ (ω/ω0)

2 ≤ 1/(1 − |κ|) whose extent depends on the value of κ , and hence
on M . The lower equation implies that low losses require Q0 and κ both to be high.
However, the losses are only low near the resonant frequency ω0 (when k′a ≈ π/2),
and they rise rapidly as the band edges (k′a = 0 or π) are approached. Higher losses,
which require full solution of (3.2), result in lossy propagation outside the band. For
backward waves, k′′a is negative, and k′′a is the attenuation per element.

In practice, the assumption of nearest-neighbour coupling is obeyed only weakly,
and non-nearest neighbour coupling is often significant [7]. Such effectsmay bemod-
elled by introducing additional coupling terms κm into (3.2) to obtain the modified
dispersion relation

{1 − ω2
0/ω

2 − j/Q} +
∑

m

κm cos(mka) = 0 (3.4)

Here κm is the coupling coefficient between mth nearest neighbours. The primary
effect of non-nearest neighbour coupling is clearly to change the dispersion charac-
teristic, although a secondary effect is to introduce higher-order modes. In addition,
it significantly complicates design.

In practice, MI waveguides cannot be infinite. However, guides of finite length
may be terminated with signal sources and receivers, or connected together to form
device structures. One of the simplest MI devices is the ring resonator, shown in
Fig. 3.2 [25]. Here a set of N resonant elements (here, 8) is arranged in a polygon.
The elements are rectangular, and have their edges placed close together to maximise
the magnetic coupling. The ring again supports travelling magneto-inductive waves,
which can clearly run around it in either direction. If the phase accumulated in a round
trip is a whole number of multiples of 2π , the wave will arrive back at its starting
point with its original phase, and the ring will resonate. Under these circumstances
we would expect the current to become large if energy is continually injected from
an external source.

A suitable source is a magnetic dipole that rotates at the same rate, so that its
excitation remains in phase with the MI wave as it propagates around the ring.
Precessing nuclear magnetic dipoles inMRI provide exactly suitable sources, and the
magneto-inductive ring is clearly analogous to the ‘birdcage’ body or head coil [58].
The main advantage of the magneto-inductive ring is the lack of rigid connections,
which allows it to be flexed to accommodate different imaging subjects [26].
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Fig. 3.2 Magneto-inductive ring resonator coupled to a rotating dipole source

Resonant operation requires the wave to satisfy the phase condition:

k′Na = 2μπ (3.5)

Hereμ is an integer known as themode number. The total number ofmodes in system
of N coupled resonators is nominally also N . However, in a ring, some modes are
degenerate and the observable total is therefore lower [59, 60]. For an even number
of elements, there are N/2+ 1 distinct resonances, whose propagation constants k′

μ

are given by:
k′
μa = 2μπ/N (μ = 0, 1...N/2) (3.6)

Once these values of k′
μa are known, the corresponding angular frequencies ωμ may

be obtained from the dispersion equation. For low losses, the resonant frequencies
may be estimated as:

ωμ = ω0/

√√√√
{
1 +

∑

m

κm cos(mk′
μa)

}
(3.7)

In a ring configuration, there will be non-nearest neighbour coupling to the extent
that each element is actually coupled to all the others. Furthermore, the signs of the
coupling coefficients will alter, depending on the relative orientation and position
of the elements concerned. However, the largest coefficient will be between nearest
neighbours, and the resonances may therefore be estimated to a reasonable approxi-
mation by neglecting all terms except κ1. For an eight-element ring (for example), the
primary resonance (μ = 1) is at k′

1a = π/4, and hence has the normalised resonant
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frequency ω1 = ω0/

√{
1 + κ1/

√
2
}
. Because the configuration is quasi-planar, κ1

must be negative and ω1 therefore lies slightly above ω0. This resonance may be
coupled to a magnetic dipole rotating at the same angular frequency, and hence can
be used for detection in MRI. Higher-order resonances require excitation by rotating
quadrupoles, hexapoles and so on.

3.3 Parametric Amplification

We now consider how the signal may be amplified, starting with a single resonant
element. Figure3.3 shows a lumped-element three-frequency circuit. Here three L-C
resonators operating at signal, idler and pump angular frequencies ωS , ωI and ωP

are linked by a non-linear capacitor C . The signal varies harmonically at ωS , and is
assumed to come from a source with output impedance RSO . The pump voltage VP

varies at ωP and is taken from a source with output impedance RP0. The idler fre-
quency ωI is assumed to satisfy the mixing law ωP = ωS +ωI . The signal resonator
contains a capacitor CS and an inductor L S with a resistance RS . The idler and pump
resonators are similar L-C-R circuits and their components are subscripted ‘I’ and
‘P’. The varactor capacitance is assumed to follow the first order approximation to
a Taylor series expansion of its true C-V characteristic, namely C = C1(1 + βVC ).

Fig. 3.3 Equivalent circuit of a three-frequency parametric amplifier
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Here C1 and β are constants and VC is the voltage across C , which has a series
resistance RC . The output signal is measured across a load RL .

The current in each resonator is assumed only to contain terms oscillating near its
resonance while the varactor voltage contains all three frequencies. It is convenient
to write the time variation of the signal in the form VS = {vSexp( jωSt) + c.c.}/2,
where ‘c.c.’ denotes complex conjugate. Writing the other voltages and currents in
the same form, we have:

IS = {iSexp( jωSt) + c.c.}/2
II = {i I exp( jωI t) + c.c.}/2
IP = {iPexp( jωP t) + c.c.}/2
VC = {vC Sexp( jωSt) + c.c.}/2 + {vC I exp( jωI t) + c.c.}/2

+ {vC Pexp( jωP t) + c.c.}/2 (3.8)

Applying Kirchhoff’s voltage law around each of the loops containing the non-linear
capacitor and neglecting signals at any other frequencies yields:

{1 − ω2
S0/ω

2
s − j/QS}iS + vC S/jωS L S = vS/jωS L S

{1 − ω2
I0/ω

2
I − j/QI }i I + vC I /jωI L I = 0

{1 − ω2
P0/ω

2
P − j/Q P }iP + vC P/jωP L P = vP/jωP L P (3.9)

Here ω2
S0 = 1/L SCS , ω2

I0 = 1/L I CI and ω2
P0 = 1/L PCP are nominal resonant

frequencies for the signal, idler and pump resonators. Similarly, QS = ωS L S/R′
S ,

QI = ωI L I /R′
I and Q P = ωP L P/R′

P are the corresponding Q-factors, where
R′

S = RS + RC + RSO + RL , R′
I = RI + RC and R′

P = RP + RC + RP O are
resistances around the three loops. The current through the varactor must obey the
relation:

ISn + II n + IPn = d(CVC )/dt = C1(1 + 2βVC )dVC/dt (3.10)

Equating coefficients of exponential terms at frequencies ωS , ωI and ωP separately,
making use of the mixing law, and ignoring signals at other frequencies, we obtain:

iS = jωSC1{vC S + βv∗
C I vC P }

i I = jωI C1{vC I + βv∗
C SvC P }

iP = jωPC1{vC P + βvC SvC I } (3.11)

If the signal and idler are weak, the product vC SvC I in the lowest equation may be
neglected, so that vC P ≈ iP/jωPC1. Substituting into the lower of (3.9), we obtain:

{1 − ω′2
P0/ω

2
P − j/Q′

P }iP = vP/ωP L P (3.12)
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Here ω′2
P0 = (1/L P ){1/CP + 1/C1} is a modified pump resonant frequency, effec-

tively derived from the inductor L P and the series combination of CP and C1.
If the pump frequency is such that ωP = ω′

P0, we obtain iP = vP/R′
P and

vC P ≈ vP/jωPC1R′
P .

Considering now the signal and idler, the upper pair of (3.11) can be re-arranged
as:

vC S = iSα/jωSC1 − i∗I αβvP/ωI ωPC2
1 R′

P

vC I = −i∗SαβvP/ωSωPC2
1 R′

P + i I α/jωI C1 (3.13)

Here α = 1/[1−β2vC P v∗
C P ] is of order unity. The upper pair of (3.9) then becomes:

{1 − ω′2
S0/ω

2
s − j/QS}iS − i∗I αβvP/jωSωI ωP L SC2

1 R′
P = vS/jωS L S

{1 − ω′2
I0/ω

2
I − j/QI }i I − i∗SβvP/jωSωI ωP L I C2

1 R′
P = 0 (3.14)

Here ω′2
S0 = (1/L S){1/CS + α/C1} is a modified signal resonant frequency, and

ω′2
I0 = (1/L I ){1/CI + α/C1} is a similar term for the idler. If the signal and idler

frequencies are correctly chosen we can have ωS = ω′
S0 and ωI = ω′

I0 and hence

i I = i∗SαβvP/ω′
S0ω

′
P0C2

1 R′
I R′

P and iS = vS/(R′
S − RA) (3.15)

where RA is an effective negative resistance, given by:

RA = α2β2vP v∗
P/ω′

S0ω
′
I0ω

′2
P0C4

1 R′
I R′2

P (3.16)

The circuit is therefore a negative resistance amplifier, which uses the power of the
pump to decrease the effective resistance of the signal circuit. Since the load voltage
is iS RL , the voltage gain is

G = 1/(1 − RA/R′
S) (3.17)

Because RA contains vP v∗
P , there is no dependence on pump phase. However, low

idler and pump resistances are required to achieve useful gain at low pump power.
A reduction in the effective signal resistance will clearly increase the Q-factor of

the signal loop. The circuit then becomes extremely sensitive to variations in signal
frequency so parametric amplifiers are essentially narrow-band. This is unimportant
inMRI. However, because the gain becomes infinite when RA = R′

S , self-oscillation
will occur if the device is pumped hard enough. Care must therefore be taken to
operate below the oscillation threshold. Pumping may also be viewed as a way to
overcome losses in the signal loop. In practice, there are other ways to lose signal
than resistive heating. For example, if the component values in the idler and pump
loops are poorly chosen, a non-zero current will flow round these loops at the signal
frequency. Similarly, some of the pump and idler currents may be diverted from their
respective loops. The net effect is to make the previous estimate of RA inaccurate.
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As a result, the gain is often rewritten in terms of the pump power P (which is
proportional to vP v∗

P ), as:
G = 1/(1 − P/Posc) (3.18)

Here Posc is the oscillation threshold, which must be determined experimentally.

3.4 Amplification of Magneto-Inductive Waves

We now consider how three-frequency amplification may be introduced into a MI
waveguide [55]. All that is required is to alter the circuit of Fig. 3.3 to allowmagnetic
coupling between elements in a linear array. Figure3.4a shows one possible unit cell.
Here the signal, idler and pump loops have mutual inductances MS , MI and MP to
nearest neighbours. This arrangement will clearly allow propagation of signal, idler
and pump as separate MI waves, which can mix in varactors. Note that the signal and
pump sources have been omitted, together with the load and the varactor resistance.

Analysis can proceed as before. If the signal, pump and idler currents in the nth
section are labelled ISn , II n and IPn and the voltages across the varactor at the three
frequencies are labeled vC Sn , vC I n and vC Pn , Kirchhoff’s law gives:

{1 − ω2
S0/ω

2
s − j/QS}iSn + (κs/2){iSn−1 + iSn+1} + vC Sn/jωS L S = 0

{1 − ω2
I0/ω

2
I − j/QI }i I n + (κI /2){i I n−1 + i I n+1} + vC I n/jωI L I = 0

{1 − ω2
P0/ω

2
P − j/Q P }iPn + (κP/2){iPn−1 + iPn+1} + vC Pn/jωP L P = 0

(3.19)

Here κS = 2MS/L S , κI = 2MI /L I and κP = 2MP/L P are the magnetic coupling
coefficients for the signal, idler and pump. Similarly, for the varactor we now have:

Fig. 3.4 Unit cells for magneto-inductive parametric amplifiers a with and bwithout idler coupling
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iSn = jωSC1{vC Sn + βvC I n ∗ vC Pn}
i I n = jωI C1{vC I n + βvC Sn ∗ vC Pn}
iPn = jωPC1{vC Pn + βvC SnvC I n} (3.20)

If the signal and idler waves are weak, the voltage product in the lowest equation
may be neglected as before, so that vC Pn ≈ iPn/jωPC1. Substituting into the lowest
of 3.19, we obtain a recurrence equation for the pump currents:

{1 − ω′2
P0/ω

2
P − j/Q P }iPn + (κP/2){iPn−1 + iPn+1} = 0 (3.21)

Equation (3.21) simply implies that the pump will propagate as a MI wave. Consid-
ering now the signal and idler, the upper pair of 3.20 reduces to:

vC Sn = iSnα/jωSC1 − i∗I nαβiPn/ωI ωPC2
1

vC I n = −i∗SnαβiPn/ωSωPC2
1 + i I nα/jωI C1 (3.22)

Substituting into the upper pair of 3.19 we then get:

{1 − ω′2
S0/ω

2
s − j/QS}iSn + (κs/2){iSn−1 + iSn+1}

− i∗I nαβiPn/jωSωI ωP L SC2
1 = 0

{1 − ω′2
I0/ω

2
I − j/QI }i I n + (κI /2){i I n−1 + i I n+1}

− i∗SnαβiPn/jωSωI ωP L I C2
1 = 0 (3.23)

If we now assume the signal, idler and pump currents are all MI waves, and can be
written as iSn = iSexp(− jkSna), i I n = i I exp(− jkI na) and iPn = iPexp(− jkP na)

where iS , i I and iP are amplitudes and kS , kI and kP are propagation constants, we
obtain:

[
{1 − ω′2

S0/ω
2
s − j/QS} + κs cos(kSa)

]
iS

− i∗I αβiP exp{ j (kS + kI − kP )na}/jωSωI ωP L SC2
1 = 0

[
{1 − ω′2

I0/ω
2
I + j/QI } + κI cos(kI a)

]
i I

− i∗SαβiPexp{ j (kS + kI − kP )na}/jωSωI ωP L I C2
1 = 0 (3.24)

The exponentials above clearly vanish if kP = kS + kI . This relation is a phase
matching condition, which always occurs in travelling wave parametric interactions
[49]. If the system can be designed so that it holds—by nomeans an easymatter—and
there is also no loss, we get:

[
{1 − ω′2

S0/ω
2
s } + κs cos(kSa)

]
iS − i∗I αβiP /jωSωI ωP L SC2

1 = 0

[{1 − ω′2
I0/ω

2
I } + κI cos(kI a)]i I − i∗SαβiP/jωSωI ωP L I C2

1 = 0 (3.25)
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Uncoupling 3.25 we then get

[
{1 − ω′2

S0/ω
2
s } + κs cos(kSa)

] [
{1 − ω′2

I0/ω
2
I } + κI cos(kI a)

]
− γ 2 = 0 (3.26)

Here γ 2 = α2β2iP i∗P/ω2
Sω2

I ω
2
I L I L PC4

1 . To solve this equation, we assume that
kS = kS0 + �kS and kI = kI0 − �kS , where kS0 and kI0 are the propagation
constants obtained in the absence of pumping (γ = 0). Assuming that �kS is small,
and eliminating terms using the dispersion equations of the signal and idler waves,
we get:

�kS = jγ /{κsκI sin(kS0a)sin(kI0a)}1/2 (3.27)

Because�kS is imaginary, (3.27) describes a gain coefficient for exponential growth
of the signal and idler, the conventional result. Here we have implicitly assumed that
κS and κI have the same sign, so that the group velocities of the two waves are in the
same direction. Loss and lack of phase matching both complicate the analysis. For
simplicity we omit the details, and simply point out that the results above are typical
of standard travelling wave parametric amplifiers.

Instead, we note that the conditions ωP = ωS+ ωI and kP = kS + kI will be
difficult to satisfy simultaneously, and even more so in a ring when the three waves
must be simultaneously resonant. To relax these constraints, we return to (3.23), and
consider the case when the idler resonators are uncoupled as shown in Fig. 3.4b, so
that κI = 0. Now, the lower equation becomes:

i I n = i∗SnαβiPn/[ jωSωI ωP L I C2
1 {1 − ω′2

I0/ω
2
I − j/QI }] (3.28)

Assuming now that the idler matches its resonance, so that ω2
I = ω′2

I0, the idler
currents are simply given by i I n = i∗SnαβiPn/ωSωP R′

I C2
1 and the upper equation in

(3.23) reduces to:

{1 − ω′2
S0/ω

2
s − j/QSef f }iSn + (κs/2){iSn−1 + iSn+1} = 0 (3.29)

Here the effective Q-factor of the signal resonators is now QSef f = ωS L S/

(R′
S − RB), where RB is again an effective negative resistance, given by:

RB = α2β2iPni∗Pn/ω
′
Sω′

I0ω
′2
P C4

1 R′
I (3.30)

Equation (3.29) is again a recurrence equation for a MI wave, while (3.30) implies
that the result of pumping is to decrease the loop resistance, so propagation losses
must reduce. The overall system therefore again corresponds to a travelling-wave
negative resistance amplifier.

The requirement that ωI = ω′
I0 clearly renders the Fig. 3.4b less versatile than

Fig. 3.4a, in which the idler can exist over a band. However, for a ring detector of
MRI signals (whose bandwidths are small) it offers many advantages. The signal and
pump need merely be resonant on the lowest ring mode, and the idler operating on
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its resonant frequency. Because the amplification is determined by iPni∗Pn , there is
again no dependence on pump phase. There is no need for phase matching, and the
group velocities of the pump and signal waves need not even have the same sign.

3.5 Experimental Verification

The theory above has been verified experimentally, using non-magnetic eight-
element rings approximately two-thirds the size of a conventional head-coil and
designed for detection of 1H MRI signals in a 1.5T field (at a signal frequency
of f0 = 63.85MHz) [26, 56]. For passive rings, each element is a separate PCB
carrying a single-turn rectangular loop inductor measuring 60mm × 180mm and
formed using 1mm wide Cu tracks on a FR-4 substrate. The elements are made
resonant using surface mount capacitors and mounted in a Perspex frame. Capaci-
tor values (16.5pF) are established by iteration, to place the individual resonances
at f0 = ω0/2π = 53MHz and the primary ring resonance at 63.85MHz. The Q-
factor of isolated elements was 130. Mounts are provided for inductive transducers
(similar non-resonant loops) to inject and recover signals using an Agilent E50601A
electronic network analyser (ENA).

Two transducer arrangements are used, as shown in Fig. 3.5. Using transducers
on either side of the ring, as shown in Fig. 3.5a, standing waves may be excited and
detected. Here, all modes are probed approximately equally, allowing the spectrumof
ring resonances to be identified. Using a rotating dipole source and quadrature taps,
as shown in Fig. 3.5b, the important primary travelling mode may be preferentially
excited and detected, mimicking signal detection in MRI.

The source is centrallymounted, and constructed from two small inductors at right
angles to each other, fed with signals of equal amplitude but 90◦ phase difference
using a quadrature hybrid coupler. The taps are a pair of non-resonant elements,
mounted on the ring at right angles with their signals combined using a second
quadrature hybrid. In each case, adjustment of the tap spacing allows impedance

Fig. 3.5 Arrangements for a standing-wave and b travelling-wave excitation, for an eight-element
ring
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Fig. 3.6 Experimental eight-element ring with quadrature taps and an internal rotating dipole
source

Fig. 3.7 Frequency spectrum of transmission in an eight-element ring, obtained using
standing-wave excitation

matching. Figure3.6 shows the experimental ring, with the rotating dipole source
fitted.

Figure3.7 shows the frequency variation of transmission across the ring using
standing-wave excitation. Five sharp resonances may be identified, corresponding to
modes with μ = 0,1…4, and the mode with μ = 1 lies at 63.85MHz as required.

Since the value of k′a for the μth mode is 2μπ/N , the dispersion diagram may
be constructed from the frequency values as shown in Fig. 3.8. Here the discrete



3 Parametric Amplification of Magneto-Inductive Waves 49

Fig. 3.8 Dispersion characteristic of an eight-element ring. Points are experimental; lines are
theoretical, based on 1st neighbour (thin line) and 1st and 2nd neighbour (thick line) interaction

data points are experimental, while the two lines are theoretical predictions made
by inserting the values of f0 and a set of coupling coefficients κm into (3.7). The
coefficients may be measured experimentally, by measuring the splitting of reso-
nant frequencies obtained when two elements are mounted together at the correct
angle and separation and probed with inductive transducers. In this case nearest- and
second-nearest-neighbour coupling coefficients were established as κ1 = −0.4 and
κ2 = −0.07. The thin line (which only takes κ1 into account) is a poor fit to the data.
However the thick line (derived from κ1 and κ2) is clearly a more accurate model.

Figure3.9 shows the corresponding frequency variationwith travelling-wave exci-
tation and detection. Now only a single resonance (the primary mode) has significant
amplitude, highlighting the modal discrimination inherent in this arrangement.

However, the other modes may still be seen in the frequency variation of reflec-
tion, as shown in Fig. 3.10. Thus, a variety of methods may be used to identify the
different resonantmodes and adjust the circuit parameters to place them in the correct
frequency bands.

1H magnetic resonance imaging was demonstrated at 1.5T using a GE Signa
Excite clinical scanner at St Mary’s Hospital, Paddington, London. The system body
coil was used for excitation, and the MI ring for detection, with quadrature taps.
However, modifications were first carried out to de-couple the ring from the large
RF magnetic field used for excitation. Firstly, the inductive taps were replaced with
capacitive taps. Impedance matching was then carried out, by splitting the capacitors
into three components (two for tuning and one for matching). Finally, passive decou-
pling was introduced by placing an inductor and a pair of crossed diodes across one
of the tuning capacitors, to form a diode-switched tank filter designed to block large
currents at a set threshold.

One imaging subject was a pomelo (citrus maximus, a sweet grapefruit with a
thick pith layer native to South-East Asia) mounted at the centre of the ring, as
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Fig. 3.9 Frequency spectrum of transmission in an eight-element ring obtained using travelling-
wave excitation

Fig. 3.10 Frequency spectrum of reflection in an eight-element ring obtained using travelling-wave
excitation

shown in Fig. 3.11. Imaging was carried out using a fast spin echo sequence, with a
repetition time TR = 800ms, an echo time TE = 90ms, an echo train length ETL =
15 and a flip angle ϕ = 90◦. A slice thickness of 4mm and a slice spacing of 5mm
were used, and the field-of-view was FOV = 200mm. The number of excitations
used to improve signal-to-noise-ratio was NEX= 2. Slice images were obtained with
a signal-to-noise ratio of around 30, demonstrating that the MI ring can offer good
imaging performance.

Figure3.12 shows a three-dimensional image of the pomelo reconstructed from
a set of axial slices. The outer skin and the inner segmented structure may both be
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Fig. 3.11 Eight-element MI ring with a pomelo imaging subject in a clinical MRI scanner

Fig. 3.12 Three-dimensional MR image of a pomelo, reconstructed from two-dimensional slices

clearly seen, while the thick pith (which is largely dry and devoid of signal) appears
as a transparent spacer layer between.

The passive MI ring was then converted into a parametrically amplified detector
based on the unit cell of Fig. 3.4b. Several major modifications were required. Firstly,
the PCBs were modified to add a second inductor measuring 90mm × 60mm and
an associated tuning capacitor for the pump resonator, so that a pump could also
propagate as aMIwavewhen the ringwas assembled.A separate circuit was provided
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Fig. 3.13 Arrangements for a travelling-wave signal excitation and detection and b travelling-wave
pump excitation, for an eight-element parametrically amplified MI ring

for the idler loop, which used a very small spiral inductor to avoid magnetic coupling
between neighbouring elements. The signal, idler and pump loops were arranged to
share a varactor (ZC832C, a silicon diode from Zetex Semiconductors), and circuits
were provided to reverse-bias each varactor. Separate inductive taps were provided
for the signal and pump loops. Figure3.13a shows the arrangement for insertion and
detection of travelling waves into the signal loop and Fig. 3.13b the arrangement for
injection of a travelling pump wave using an Agilent N5181A signal generator and
a power amplifier.

Figure3.14 shows the prototype parametrically amplified MI ring. The signal
ring is on the left, the pump ring on the right, and the idler and varactor bias circuits
lie between. Technical difficulties (parasitic capacitance of individual inductors and
unwanted mutual inductance between inductors) made it difficult to adjust the circuit
so that the signal, idler and pumpwere all resonant at appropriate frequencies,without
the signal and pump bands overlapping. Compromises were therefore required to
obtain a functioning circuit. Particularly, the idler frequency fI was actually smaller
than the signal frequency fS (a sub-optimal choice for a low noise system). With
f I ≈ 36MHz, the pump frequency was fP = 36 + 63.85 ≈ 100MHz.
Figure3.15 shows the frequency variation of transmission across the ring, mea-

sured using standing-wave excitation. Two sets of data are shown. The thick line
shows transmission across the signal ring.Here the signal band resonances previously
shown in Fig. 3.7 can again be seen, together with an additional single low-frequency
resonance for the idler. Additional features can be seen at high frequency. From the
thin line, which shows transmission across the pump ring, it is clear that these are
pump band resonances. The nature of these resonances implies that the signal and
pump are MI waves, while the idler is not a propagating wave.

Figure3.16 shows the frequency variation of signal transmission with travelling
wave excitation and detection. Two sets of data are shown. The thick line (without
pumping) is clearly similar to the passive ring response of Fig. 3.9. The thin line
(with a pump signal applied) shows a significant increase in transmission near the
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Fig. 3.14 Experimental eight-element parametrically amplified MI ring with quadrature taps

Fig. 3.15 Frequency spectrum of transmission in an eight-element parametrically amplified ring,
obtained using standing-wave excitation across the signal (S-S) and pump rings (P-P)

important primary resonance. To obtain this data without also detecting the powerful
pump, the signal was passed through a band-pass filter centred on the MRI detection
frequency. Despite this, some breakthrough of the pump signal can be seen. Crosstalk
of this type is a characteristic problem of parametric amplifiers, and some effort must
be made to prevent broadcasting of both the pump and idler in a practical system.

Figure3.17 showsmore detailed frequency variations near the primary resonance,
at different pump powers. The effect of increasing pump power is clearly to raise the
Q-factor of this mode, amplifying the detected signal but reducing the bandwidth
in the process. This inherent linkage implies a fixed gain-bandwidth product, a key
limitation for parametric amplifiers that was largely responsible for their eventual
demise.

Figure3.18 shows the variation of signal gain with pump power, which shows a
rapid rise in power gain from 0 to around 28dB (corresponding to a linear gain of
G = 25) near an oscillation threshold of 26.5mW.These data clearly imply high-gain
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Fig. 3.16 Frequency spectrum of transmission in an eight-element parametrically amplified ring,
obtained using travelling-wave excitation, with filtering to suppress the pump

Fig. 3.17 Frequency dependence of signal transmission in eight-element parametrically amplified
MI ring, at different pump powers

parametric amplification of a travelling MI signal wave by a similar MI pump wave.
The system requires modification to allow decoupling before it can be evaluated in
a scanner; however, MR images have already been amplified using single amplifier
cells [57] and the necessary work is in progress.
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Fig. 3.18 Variation of signal gain with pump power, for an eight-element parametrically amplified
ring

3.6 Conclusions

Magneto-inductive waves are slow waves of current that propagate in magnetically
coupled L-C resonators. The open structure of MI waveguides makes them particu-
larly suitable for detection of RF magnetic signals in magnetic resonance imaging.
However, the lowQ-factors ofmetallic resonators at room temperature limit propaga-
tion loss and detection sensitivity. Parametric amplification may provide one answer,
and preliminary demonstrations of amplification of MI waves have been carried out
using a ring resonator configuration.

The results point the way to more general application of parametric amplification
in metamaterials. The main limitations are the design complexity of parametrically
amplified networks, the difficulty of obtaining suitable performance from passive
components such as inductors at high frequency, the need for very high frequency
pumping to obtain low noise, and coupling of the powerful pump into the signal
circuit. The last aspect is especially important, since it effectively broadcasts the
pump signal. Many of these limitations may be overcome by replacing the sim-
ple lumped-element circuits used here with equivalent waveguide components, the
solution adopted in the 1960s.
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Chapter 4
Coupled Electromagnetic and Elastic Dynamics
in Metamaterials

David A. Powell, Mingkai Liu and Mikhail Lapine

Abstract Metamaterials arewell established in the field of electromagnetism,where
they have demonstrated a wide variety of exotic material properties. More recently,
mechanical metamaterials have also been shown to be quite promising in achieving
exotic properties for acoustic waves. Here we discuss an emerging class of metama-
terials with both electromagnetic and elastic properties, which are coupled to each
other, giving rise to a new range of metamaterial properties. In particular, this can
yield a very strong nonlinear response, including bistable states and self-oscillations.
We present several structures which exhibit these properties, and experimentally
demonstrate their feasibility.

4.1 Introduction

It is now well established that metamaterials can be engineered to provide a wide
variety of linear electromagnetic properties, as well as to demonstrate an impressive
range of nonlinear effects [1]. Additionally, the idea of metamaterials has also been
implemented successfully in acoustic waves [2–10], exploiting the universal physics
common to many types of wave propagation. Furthermore, metamaterial concepts
have been applied in mechanics, also allowing static mechanical properties to be
engineered in new ways [11].
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Here we consider a class of metamaterials which encompasses both electromag-
netic and mechanical functionalities. More importantly, these degrees of freedom
are coupled to each other, such that the electromagnetic response is sensitive to the
mechanical conformation of the structure, and the electromagnetic field also induces
significant forces on the structure. This coupling can give rise to two distinct effects.
First, manipulation of micro or nano scaled devices by electromagnetic waves can
be greatly enhanced. Second, by incorporating some elastic restoring force into the
structure, the conformation of the device changes, and this changed conformation
modifies the electromagnetic response.

To clarify this, consider the block diagram shown in Fig. 4.1, which compares
three different classes of metamaterials. Ordinary materials and the vast majority of
electromagnetic metamaterials reported to date fall into the first category (Fig. 4.1a),
as they have a response which can be described using only electromagnetic degrees
of freedom. This category also includes many nonlinear and tunable metamaterials,
where the polarisabilitymaybenonlinear, but canultimately be reduced to aparticular
form of material constitutive relations.

The simplest form of coupled electromagnetic and mechanical dynamics is where
the electromagnetic forces induce some motion on the structure, Fig. 4.1b. This case
is represented by optical tweezers [12], optical motors [13] and wrenches [14];
applications where the ultimate aim is to manipulate mechanical degrees of free-
dom. In most examples, the external fields dominate the electromagnetically induced
forces, althoughmodification of the trapping potential through interactionwith a sub-
strate has been reported [15].We note that in such systems themotion of the structure
does effect the electromagnetic response, however the resultant scattered field is not
normally considered. While these systems can show a time-varying electromagnetic
response due to the mechanical motion, typically the response does not have any of
the interesting stationary points which will be shown here.

For the fully coupled case, Fig. 4.1c, an elastic restoring force is introduced into
the system. This force opposes the electromagnetic force, allowing the system to
reach an equilibrium position. This equilibrium position is determined by the fre-
quency, polarisation and power of the incident field. It also has a strong influence
on the electromagnetic response of the structure, with the result that the electromag-
netic response of the structure depends on the incident field. Thus the system does not
obey superposition with respect to the incident field, and is clearly nonlinear.

Such a nonlinearity arising from coupled dynamics presents an alternative tomore
conventional methods of introducing nonlinearity through a lumped circuit element
or nonlinear optical material. See [16–18] for reviews and other chapters of this book
for detailed descriptions of such approaches.

This chapter will give an overview of several metamaterial systems which allow
such coupled nonlinear dynamics to occur. Such systems share several similarities
with the field of opto-mechanics [19, 20], particularly the interaction between the
optical and mechanical degrees of freedom. However the metamaterial approach
allows this interaction to be controlled at wavelengths much longer than in optics,
and allows the stored energy in near-fields to be manipulated through geometric
structuring [21].
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(a)

(b)

(c)

Fig. 4.1 Aschematic representation of different physical processes inmetamaterials:aThosewhich
have a purely electromagnetic response; b those which undergo motion due to optical forces and
c structures where electromagnetic forces are balanced by elastic restoring forces to yield nonlinear
coupled dynamics. The quantities in blue are representative of those which could be involved in
these processes

4.2 Magneto-Elastic Metamaterials

The first conceptual demonstration of coupled electromagnetic and mechanical
interactions inmetamaterials waswithmagneto-elastic metamaterials [22], as shown
in Fig. 4.2. In this configuration, a dense uniaxial array of split ring resonators is
immersed into an elastic supporting material. The structure is designed to be excited
with an incident plane wave having its magnetic field H0 perpendicular to the plane
of the rings.
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Fig. 4.2 Schematic of anisotropic magnetic metamaterial combined with an elastic medium
(reproduced from [22]). Two layers of the bulk sample are shown. Left metamaterial before the
electromagnetic field is applied. Right metamaterial is compressed by the electromagnetic forces
acting between the elements. Dimensionless lattice parameters a and b are normalized to the res-
onator radius r

It is well known that in such a system a substantial fraction of the electromagnetic
energy is stored in the fields between the rings, and the response has an essentially
collective nature [23] imposed via mutual inductance. The mutual interaction leads
to a remarkable shift of the resonance towards lower frequencies, depending on the
lattice constants in the array. In addition, there are Ampère forces between the rings,
being attractive if they are excited in phase. This attractive force is opposed by the
stiffness of the material between the rings.

For reasonable levels of input power, the elastic response of the structure must be
quite weak in order to observe nonlinear effects. However by utilising metamaterial
concepts, not only the electromagnetic, but also the elastic properties of the meta-
atoms may be controlled by using an appropriate geometry. Structures such as small
springs, wires and filaments can give the necessary compliance. On the basis of
theoretical estimates, it seems likely that the required stiffness is not reduced as
the structure is scaled to smaller wavelengths, thus leaving open the possibility of
observing the effects in THz and optical frequencies.

Since the mechanical response time is many orders of magnitude longer than
the electromagnetic response time, it is appropriate to model the electromagnetic
response for a slow-varying separation between the rings, without needing to account
for themechanical dynamics. Themagnetic interaction force is calculated exactly the
same way as for DC currents, and the electric interaction can be suppressed by either
the use of small gaps in the rings, utilising a pair of broadside coupled resonators,
or by orienting the rings with their gaps perpendicular. To describe the system in
metamaterial terms, it is also desirable to have the operating wavelength as large as
possible compared to the unit cell size.

An alternative implementation of such a structure has also been demonstrated
using a gravitational restoring force [24], where a fine tuning of the mechanical
balance of the resonators can provide very high sensitivity. The theoretical basics of
the operation of that system are, generally, the same.
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(a) (b)

Fig. 4.3 General explanation of magnetoelastic behaviour (reproduced from [22]). a Schematic
of the forces acting on a ring within a metamaterial, where the total compressing force resulting
from current attraction, FI, is countered by the elastic force FS, both being dependent on the lattice
distance b which varies with the current amplitude; b An example of force magnitudes depending
on the lattice distance, where attraction forces FI for several current amplitudes are shown with
coloured peaks and the counter-acting spring force FS with a black straight line. Stable equilibrium
points are shown with circles while unstable ones with crosses

4.2.1 Theory

The mechanism for the self action is the mutual interaction between the rings, which
depends on the normalised lattice constants a and b. In the quasi-static limit, mutual
inductance between all rings in an array can be taken into account via the lattice
sum �, which depends on the lattice parameters [23]. We then seek the steady-
state solution for b which satisfies the balance between the Ampère’s force (FI) and
the restoring Hooke force (FS), with the direction conventions for each force being
shown in Fig. 4.3a.

The axially-oriented interaction force between two isolated rings on the same axis
can be calculated as [25, 26]

Fi = μ0 I 2

2
√
4 + b2

(
E(κ)

2 + b2

b2
− K(κ)

)
, (4.1)

where E and K are the complete elliptic integrals of first and second kind with
parameter κ2 = 4/(4 + b2) and I is the current amplitude. If the inter-layer lattice
constant b is small compared to the lateral lattice constant a, then only rings stacked
directly above or below each other need to be taken into account when calculating
the total compression force. This greatly simplifies the calculation for any two rings
in bulk media, leading to:

FI(b) ≈
N∑

n=1

n · Fi(nb) ≈ π

2

1

b
Fi. (4.2)
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In the absence of the external field, the lattice constant will have some initial value
b0. The elastic force will oppose any deviation from this configuration, according to
Hooke’s law

FS(b) = kr(b − b0), (4.3)

with stiffness constant k and radius r . In practice the force will be linear only over
a certain range of positions. For simplicity, we represent this effect in the model by
imposing a threshold value bmin which sets a lower limit on the value of b.

The electromagnetic response of the system is determined by the following im-
pedance equation, which includes the electromagnetic interaction between rings, and
depends on the lattice constant b and self impedance Z :

[
Z + jωμ0r�(a, b)

] · I = −jωπr2μ0H0. (4.4)

This must be combined with the balance condition FI(b, I ) = FS(b), substituting
the expressions for the forces given by (4.2) and (4.3). The solution of these equations
yields the lattice constant b and current in the rings I as a function of the amplitude
H0 and frequency ω of the incident magnetic field.

Figure4.3b gives a graphical picture of the forces as a function of the lattice con-
stant b, with the different curves for FI corresponding to different levels of excitation
current. Clearly, the balance condition of the forces corresponds to intersections of
FI and FS. However, not all such equilibrium points b0 are stable. In particular, if
there is some perturbation in position δb, we required that the resultant total force is
directed towards b0 in order to have stability. This is equivalent to requiring

dFI

db
>

dFS

db
. (4.5)

From (4.4), we see the resonant behaviour of FI and its dependence on b, which is
clearly reflected in Fig. 4.3b.

It is clear that there can either be a single stable state, or three states, one of
which will be unstable. Once the current amplitude exceeds a threshold level (shown
by cross “2” in Fig. 4.3b), the initial “right-side” equilibrium (such as at circle “1”)
cannot be achieved, so the lattice constant b will reduce. This changes the mutual
interaction dramatically, leading to a significant shift of the resonance frequency, so
the current magnitude drops, enabling the system to enter the other equilibrium state
(Fig. 4.3, circle “4”), corresponding to the same force curve.

However, if the current amplitude is decreasing, the balance at circle “4” remains
stable as long as the peak attractive force is sufficient to counter the elastic force
(down to a threshold point, cross “3”), from where the system jumps back to the
corresponding “right-side” solution (circle “1”).

The magnetisation of the entire metamaterial M(H0, ω) can be then calculated as

M = Iνπr2 = π

ra2

I

b
, (4.6)
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(a) (b)

Fig. 4.4 Examples of power dependence of the metamaterial response (reproduced from [22]).
Magnetization M(H0, ω) in the metamaterial vs. incident amplitude H0, observed at ω = 0.55ω0
(a) and ω = 0.60ω0 (b), for increasing (blue circles) and decreasing (red bullets) amplitudes.
The rings have radius r = 5mm, individual resonant frequency of 1GHz and quality factor of
100. Metamaterial parameters are a = 4, b0 = 0.3, bmin = 0.1, with a stiffness coefficient
k = 0.44mN/m

and shows a stronger dependence on the lattice constant b compared to that of the
current I , thanks to the explicit effect of the volumetric density ν = 1/(r30a2b).

Thus, the nonlinear magnetisation can be characterised as a function of the ampli-
tude and frequency of the incident field (Fig. 4.4). Here the case of fixed frequency is
discussed, noting that even more exotic regimes can be found, including inaccessible
regimes of bistability, if the incident field amplitude is fixed while the frequency is
varied [27].

At frequencies lower than the eigenfrequency of the initial state, a slightly non-
linear M(H0) dependence is observed as the amplitude grows, until the metamate-
rial abruptly switches to a stronger compression. However, when the amplitude is
decreased, the metamaterial remains in the compressed state until much lower mag-
nitudes, exhibiting a hysteresis-like behaviour (Fig. 4.4a). But close to the original
resonance, the hysteresis disappears while the nonlinearity is quite strong (Fig. 4.4b).

4.2.2 Experimental Demonstration

To demonstrate that these nonlinear effects are realistic, experiments were conducted
for three pairs of elastically coupled resonators, where there is coupling within pairs
but not between them. The governing equations for such a system are the similar
to those for the bulk, except that the lattice sum � is replaced with the mutual
coupling over the finite-sized sample, and the volumetric enhancement as in (4.2) is
not available.

Each ring is attached to a thin layer of cellulose acetate to ensure mechanical
stability and to prevent thermal expansion. A control experiment with a single ring
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B
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(a) (b) (c)

Fig. 4.5 Experimental observation of the magnetoelastic nonlinearity in a system of three elas-
tic pairs within a WR229 rectangular waveguide (reproduced from [22]). a experimental layout;
b measured transmission spectra at low (−12.3dBm) and high (29dBm) power; c dependence of
the resonance frequency on the incident power, showing the experimental (circles with error bars)
and theoretical (solid line) results. The rings are made from 0.18mm-thick copper wire and have
3mm radius and ∼1mm gap

(not shown) detected no noticeable change in response with incident power. Thus it
is safe to assume that the measured response is entirely due to interaction between
the rings.

The rings are suspended from a dielectric rod with grooves to control their initial
spacing with b0 = 0.3r , Fig. 4.5a. When the attractive Ampère force is induced, the
rings are able to swing towards each other. The opposing Hooke’s force is created
by thin keratin filaments placed between the rings within each pair.

Figure4.5b shows the spectra measured in the linear regime (−12.3dBm incident
power), and near themaximum (29dBm incident power). It is seen that the resonance
experiences a shift which is comparable to the width of the resonance. Figure4.5c
shows the shift of the resonant frequency as a function of the applied power, achieving
a maximum frequency shift of 13MHz. For comparison purposes the theoretical
curve is also shown, obtained with the corresponding parameters and assuming a
stiffness coefficient of 0.13± 0.01N/m. The contribution of gravity to the restoring
force (due to the inclination of the rings) is also taken into account, amounting to
around 20% at the maximum power level.

4.3 Torsional System

While the magneto-elastic system is very promising for showing strong nonlinear-
ity due to coupled electromagnetic and mechanical degrees of freedom, achieving a
sufficiently compliant mechanical restoring force is a significant challenge. To over-
come this disadvantage, it was proposed that instead of utilising compressional forces
between rings, rotational forces are utilised. We denote these torsional structures as
nonlinear metamaterials with intrinsic rotation [28].
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Fig. 4.6 Conceptual layout of a new metamaterial and its rotational “meta-atom” (reproduced
from [28]). The incident wave propagates along the y direction, having a linear polarisation with
the electric field along x and magnetic field along z. The induced electromagnetic torque between
the resonators changes the mutual twist angle θ between the rings, connected by an elastic wire

The idea here is to employ a rotational degree of freedom, having two or more
non-symmetric resonators free to rotate around a common axis against an elastic
feedback. Such rotation will affect the electromagnetic modes of the system and
therefore change the distribution and amplitudes of the induced charges and currents,
altering the electromagnetic forces which drive the mutual rotation.

An example of experimental realisation is shown in Fig. 4.6: a pair of split rings is
arranged coaxially and allowed to rotate about a common axis. The elastic feedback is
provided by a thin elastic wire connecting the two rings. The electromagnetic torque
is used to drive the meta-atom, modulating the resonant frequencies by changing
the internal rotation of the system. The major advantage of this system is that the
effective lever arm of the electromagnetic force can be much stronger than that of
the restoring force. Compared to collinear forces, this can lead to deformation which
is enhanced by several orders of magnitude.

For simplicity, it is assumed that one of the rings is fixed to a substrate, and the
other is suspended from above by a wire. This ring is connected to the wire by three
shorter wires, arranged to provide a stable orientation of the suspended ring and
prevent it from tilting. The result is that only rotation of the ring about its axis is
permitted, and all other motional degrees of freedom can be neglected.

As we see from Fig. 4.6, the rings start out with some angle between their slits,
which is a design parameter of the system. An incoming electromagnetic wave then
induces charges and currents on the rings, and the angle between the rings and the
spacing between them will determine the hybridised resonant frequencies of the
meta-atom [29]. For fixed excitation strength, the energy stored in this system varies
with the angle of twist, and the rings will tend to seek the equilibrium angles with
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minimum energy. At any non-equilibrium angle, the rings will experience a torque,
with magnitude and direction dependent on the angle, the mode(s) excited in the ring
and the incident field strength [30].

The addition of the elastic wire introduces a restoring torque which opposes the
electromagnetic torque, and the equilibrium twist angle then depends on the balance
between the two. The design has an additional degree of freedom in choosing the
initial angle between the rings of the unexcited system. This will determine which
electromagnetic mode dominates the response of the system, which then determines
the strength and direction of the torque.

This torsional design therefore offers a tunable approach to achieving strong
nonlinearity in metamaterials, with a response much stronger than that provided by
lumped nonlinear circuit elements. We will show that this leads to a very strong
bistable response which can be observed experimentally.

4.3.1 Theoretical Treatment

For a single isolated meta-atom a semi-analytical model is utilised. Figure4.6 shows
the two coaxial SRRs, separated by a distance s in the z direction, with angle θ

between the gaps. The incident wave propagates along y, with the electric field
polarised along x . The angle 	 describes the orientation of the gap of the bottom
ring relative to the electric field.

The currents on each ring are approximated by a single mode, and the near-field
interaction between them is calculated by integrating the Green’s function over both
rings to find the mutual impedance between them [29]. This model gives quite good
accuracy for the electromagnetic properties of such meta-atoms [30]. For simplicity,
the simulation is done with perfect electric conductor as the material for the SRRs,
so only the radiative component of the electromagnetic force is taken into account.

The current J and charge ρ on a meta-atom can be represented by a spatial distrib-
ution j(r), the magnitude and phase of which is described by a frequency dependent
scalar Q(ω), with an assumed exp(−iωt) time dependence [31]

J(r, ω) = −iωQ(ω)j(r), ρ(r, ω) = Q(ω)q(r), q(r) = −∇ · j(r). (4.7)

For a pair of rings this leads to coupled equations for the mode amplitudes Q1,2:

Q1 = (E2Zm − E1Zs)/(Z2
s − Z2

m), Q2 = (E1Zm − E2Zs)/(Z2
s − Z2

m), (4.8)

where E1 and E2 represent the overlap of the incident electric field with the mode of
each ring, which for plane-wave incidence can be quite accurately calculated as
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E1 = −Eext · le · eik0aE cos	 + jωBext · ue · eik0aM cos	, (4.9)

E2 = −Eext · le · eik0aE cos(	+θ) + jωBext · ue · eik0aM cos(	+θ), (4.10)

where a dipole approximation is used with the normalised electric le(θ,	) =∫
V q(r)rdV , and magnetic ue(θ,	) = 1

2

∫
V r × j(r)dV dipole moments.

The effective central positions of the electric and magnetic dipoles are

aE =
∫

V [q(r1)r1 · x̂](r1 · ŷ)dV1∣∣∫
V q(r1)r1dV1

∣∣ , aM =
∫

V [r1 × j(r1) · ẑ](r1 · ŷ)dV1∣∣∫
V r1 × j(r1)dV1

∣∣ , (4.11)

similar to the definition of centre of mass, and they are calculated based on the charge
and current distributions of the lower SRR when 	 = 0.

The phase term in coupling to the external field is due to the retardation expe-
rienced by the wave before reaching the SRRs. The self impedance Zs and mutual
impedance Zm are given by

Zs = i/ωCs − iωLs, Zm = i/ωCm − iωLm, (4.12)

where the effective capacitances C and inductances L can be calculated from the
modal current j(r) and charge q(r) distributions (see [31]).

After the mode amplitudes Q are found, the torque between the meta-atoms can
be calculated. Since the bottom ring is fixed, while the top ring is allowed to rotate
about the z axis, the torque on the top ring is of interest:

MEM =
∫

V2

ρ(r2)r2 × E + r2 × [J(r2) × B]dV2, (4.13)

where the integration is performed over the volume V2 of the top SRR.
It is convenient to split the torque into two physically distinct components, being

the external torque Mext due to the impinging field [30] and the internal torque
Mint which the excited rings exert upon each other. When the ring rotates about the
geometry centre, the magnetic part of the torque does not contribute to the torque in
the z direction. The explicit expressions for the external and internal torque are:

Mext,2 = 1

2
Re

[∫

V2

ρ∗(r2)r2 × EextdV2

]

= −1

2
Re

[
Q∗

2(ω,	)e jk0aE cos(	+θ)
]

Eext · le sin(	 + θ) · ẑ, (4.14)

Mint,2 = 1

2
Re

[∫

V2

ρ∗(r2)r2 × Eint(r2)dV2

]
, (4.15)
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with the internal field component given by

Eint(r2) = −∇φ(r2) − ∂

∂t
A(r2)

= −
∫

V1

∇ ρ(r1)eik|r2−r1|

4πε0|r2 − r1| + ∂

∂t

J(r1)eik|r2−r1|

4πc2ε0|r2 − r1|dV1. (4.16)

This yields the following expression for the internal torque

Mint,2 = 1

2
Re

{
Q1(ω)Q∗

2(ω)

4πε0

∫ ∫
q∗(r2)eik|r1−r2|

|r1 − r2|
×

[
1 − ik|r1 − r2|

|r1 − r2|2 q(r1)r1 × r2 + k2r2 × j(r1)
]
dV1dV2

}
.

(4.17)

The elastic wire on which the SRR is suspended provides a restoring torque

MR = −πa4G(θ − θ0)/(2d), (4.18)

where a and d are the radius and the length of the wire, respectively, G is the shear
modulus and θ0 is the initial twist angle of the structure. The system will be at
equilibrium when the total torque is zero

MEM(θ, PI) + MR(θ, θ0) = 0. (4.19)

4.3.2 Numerical Results

To illustrate the rotational nonlinearity, the above model was applied to a specific
pair of twisted SRRs, with radius r = 6mm and vertical spacing s = 2mm. The
gap in each ring is expressed in angular form as α0 = 10◦. The elastic coupling is
provided with a wire of radius a = 50µm and of length d = 100mm, made from
rubber with a shear modulus of G = 0.6MPa.

The resulting mode amplitude Q2 and the total electromagnetic torque MEM =
Mext + Mint experienced by the top SRR as functions of frequency and twist angle
θ , are plotted in Fig. 4.7a, b respectively. A complication is that the angle 	 between
the bottom ring and the external field polarisation changes the strength of excitation
of the meta-atoms. However, physically important quantities such as the direction
of the electromagnetic torque are independent of 	, since they depend only on the
mode profile and symmetry, thus we only consider the case 	 = 0.

The model takes into account radiation losses [31], thus the line shapes of the
mode amplitudes and their resonances are well described. This structure supports
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(a) (b)

(c) (d)

Fig. 4.7 Nonlinear response in rotatablemeta-atoms (reproduced from [28]). aThemode amplitude
Q2 and b the electromagnetic torque MEM of the top rotatable ring. c The electromagnetic torque at
3.5GHz for different pump powers from 0 to 1mW/mm2 in 0.2mW/mm2 steps, and the restoring
torque for different initial twist angle θ0; d the corresponding paths of power-dependent twist angles
under different θ0

two hybridised resonances, which are denoted the symmetric Q1 = Q2 and anti-
symmetric Q1 = −Q2 modes [29] (in terms of fields we can consider this to be the
symmetry of the magnetic dipole moments). The phase difference between these two
modal excitations results in opposite directions of the electromagnetic torque.

If the rings are excited symmetrically, the configuration θ = 0◦ corresponds to
the electric dipole moments being parallel to each other, thus they tend to repel,
with the lowest energy state being θ = 180◦ in the absence of mechanical restoring
torque. For the anti-symmetric mode, the opposite orientations of the currents mean
that θ = 180◦ becomes unstable and θ = 0◦ is stable. The evaluated external torque
is about one order of magnitude smaller than the internal torque, and the total torque
is of the order of 10−10 Nm when the structure is pumped with a power density
PI = 1mW/mm2. These modelling results are validated by numerical solution of
Maxwell’s equations (using CST Microwave Studio), followed by a surface integral
of the Maxwell stress tensor to find the induced torque.
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Figure4.7c shows the electromagnetic andmechanical torqueswhich oppose each
other to yield the equilibrium. The chosen pump frequency of 3.5GHz (denoted by
the black dashed line in Fig. 4.7b) corresponds to excitation of the symmetric mode.

Analogous to the balance of forces within the magneto-elastic system, shown
in Fig. 4.3a, MEM is a Lorentz-like function of the twist angle, while the restoring
torques MR under different initial twist angles θ0 are approximated by linear func-
tions. The intersections of these two functions given by (4.19) correspond to the
equilibrium angles θe. However, stable solutions for the angles must satisfy

∂

∂θ
[MEM(θ) + MR(θ)]

∣∣∣∣
θ=θe

< 0. (4.20)

The twist angle as a function of pump power is depicted in Fig. 4.7d, where the
power is increased then decreased to reveal bistable behaviour. We see the evolution
from smooth nonlinear to bistable response as θ0 departs from the angle of maximum
electromagnetic torque. In principle, as θ0 moves further away from the resonance,
more noticeable rotation and hysteresis effects are expected, but higher pump power
is required (see the case for θ0 = 45◦). Such evolution of the power-dependent
nonlinear response can also be observed by fixing the initial twist angle but changing
the pump frequency, as will be demonstrated by experiments.

4.3.3 Experimental Verification

The nonlinear response of these torsional structures is verified by performing pump-
probe experiments at microwave frequencies. The critical parameter to allow a strong
response to be observed is the restoring torque provided by the wire, which must be
small enough to allow strong rotation of the structure for a reasonable level of input
power.

The experimental confirmation was performed with the split rings having inner
radius r = 3.2mm, track width 1mm, copper thickness 0.035µm and slit width
g = 0.2mm and are printed on Rogers R4003 substrates with εr = 3.5, loss tangent
0.0027, substrate thickness 0.5mm. The pair of SRRs is placed within WR229 rec-
tangular waveguide, with the lower SRR in the centre, fixed at the angle 	 = 0◦,
and the upper SRR suspended 0.75mm above the lower by the rubber wire (radius
a = 50µm, length d = 20mm) such that it is free to rotate. Care is taken to ensure
that the SRRs are aligned with each other, and the twist angle of the unexcited struc-
ture is fixed at approximately 70◦. The shear modulus of the material G ≈ 0.69MPa
was assessed by measuring the Young’s modulus, estimated as 2.06MPa through the
elongation of the wire due to loading by the sample.

The difference between the pump frequency and the linear resonance is a critical
parameter in determining thenonlinear behaviour observed.Thepumppower is swept
in 1dB steps, with the system allowed to reach steady state beforemeasurement. This
takes approximately 30 s due to the lowmechanical damping of the system, and if the
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.8 Experimental transmission coefficients |S21| for different pump frequencies and powers
(reproduced from [28]). The initial resonance locates around 3.256GHz and the pump power is
swept in 1dB steps. a and b pump at 3.18GHz, power changes from 15.2 to 27.2dBm; c and d
pump at 3.21GHz, power changes from 12.2 to 27.2dBm; d and e pump at 3.23GHz, power changes
from 15.2 to 27.2dBm

system is opened it is possible to observe the oscillating rotation of the structure due
to the change in incident power. This rules out other mechanisms for the observed
nonlinear behaviour, such as thermal expansion.

Figure4.8 shows the transmission spectra found in experiment, with the extracted
resonant frequencies shown in Fig. 4.9a, c and e. It can be clearly seen that the sys-
tem changes from bistable behaviour to a smooth nonlinearity. The initial resonance
(symmetric mode) without the pump is located around 3.256GHz, and it red-shifts
as the pump power increases, which indicates that the twist angle is increased. When
the pump frequency is at the red tail of the resonance, a large spectral “jump” (about
three times the resonance linewidth) is observed when the pump power passes a cer-
tain threshold (Fig. 4.9a). The thresholds are different for increasing and decreasing
pump powers. As the pump frequency approaches the initial resonance, the spectral
“jump” becomes smaller (Fig. 4.9c) and finally disappears (Fig. 4.9e). Similar effects
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.9 Comparison of experimentally measured (a), (c), (e) and numerically calculated (b), (d),
(f) resonant frequency sweeps for identical geometry (adapted from [28]). The corresponding stable
twist angles are shown on the right axes. a and b pump at 3.18GHz; c and d pump at 3.21GHz; e
and f pump at 3.23GHz

were also observed (not shown) when the pump frequency is at the red tail of the
antisymmetric mode, in which case the two resonances approach each other due to
the opposite direction of the electromagnetic torque.

Although these simulations and experiments are conducted for a single element in
a waveguide, it should be noted that the mirror images on the waveguide walls make
this system qualitatively similar to an array. This has been verified numerically, and
it has been shown that the dynamics in a dilute array are qualitatively similar to those
shown in the waveguide system [28].
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4.4 Dynamic Response

Nonlinear dynamic phenomena, such as self-oscillations and chaos, have beenwidely
studied in different types of systems [32, 33]. Recent research in optomechanics also
demonstrated exotic coupling effects between optical resonance and mechanical vi-
bration [34, 35]. In optomechanical systems, the excitation of self-oscillation requires
a phase lag between the optical force and mechanical vibration. This phase lag can
be introduced by either retarded radiation pressure or bolometric force [36, 37];
the former mechanism requires the spectral linewidth of the optical resonance to be
comparable with the mechanical oscillation frequency; while the latter arises from
the photo-thermal effect, with a typical response time at the sub-millisecond scale,
which can be significant for micro-nano mechanical oscillators [37, 38].

With regards to torsional metamaterials, it was demonstrated [39] that the system
of three elastically coupled rings supports self-oscillations, and in contrast to most
previously studied optomechanical systems this oscillation can be supported even
with very strong damping.

4.4.1 Model of the System

Figure4.10 shows the torsional structure, consisting of three coaxial split-ring res-
onators connected by wires. The twist angles with respect to the y axis are θm , m ∈
{1, 2, 3}. We fix the first ring at θ1 = 0◦ so that the structure as a whole cannot ro-
tate, only the second and third rings. Since this system has an additional mechanical
degree of freedom introduced, we can consider it as a “meta-molecule” made from
elastically and electromagnetically coupled meta-atoms.

In contrast to a pair of rings, the eigenmodes of the three ring system have a more
complicated distribution. However, these hybridised modes can be found using our
semi-analytical method [31], which we extend to account for higher order eigen-
modes of the individual rings. The frequencies of these hybrid modes are shown in
Fig. 4.10 as a function of the two twist angles θ2 and θ3. The radius of each SRR
is 6mm, the slit width is 1mm, and the inter-ring distance is 3mm. The incident
wave propagates along the z direction, and excites some combination of the resonant
modes which depends on their overlap with the incoming field.

The SRRs are connected with cylindrical thin elastic wires, and the restoring
torques are approximated by Hooke’s law:

MR,2 = −κ[2(θ2 − θ̆2) − (θ3 − θ̆3)], MR,3 = −κ[(θ3 − θ̆3) − (θ2 − θ̆2)], (4.21)

with κ = πa4G/(2d); a and d are the radius and the length of the wires,
respectively; G is the shear modulus and θ̆ are the initial twist angles. The dynamic
equation of the m-th SRR (m ε {2, 3}) can then be expressed as
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Fig. 4.10 a Schematic of the torsional metamaterials and b the three eigenfrequencies supported
by the hybridised meta-molecule (reproduced from [39]). Each meta-molecule consists of three
coaxial split-ring resonators connected elastically. The first ring is fixed, while the second and the
third rings are free to rotate about the common axis z. The twist angles θ strongly modify the
eigenfrequencies and are defined as the angle between the slit and the y axis

θ̈m + �θ̇m = Mm

I
, where Mm = (MEM,m + MR,m) · ẑ. (4.22)

Here, I is the moment of inertia, � is the damping coefficient, and Mm is the total
torque experienced by the m-th SRR.

As with the two ring system, the mechanical response time is many orders of
magnitude slower than the lifetime of the electromagnetic resonant modes. Therefore
the electromagnetic torque can be considered as a function of the ring angles without
the need to account for their angular velocities. For a pair of rings with one angle
fixed, there is only a single mechanical degree of freedom, and the total work done by
the external field over each period of oscillation is zero. This means that the system
will undergo damped oscillations, and will eventually become stable. In contrast,
the three ring system has two mechanical degrees of freedom, and in particular it is
possible for the oscillations of the two free rings to have some phase delay between
them. This can enable the electromagnetic field to do non-zero work on the system
over an oscillation cycle, which can compensate for the mechanical losses and can
also lead to dynamic steady-state solutions.

In Fig. 4.11we show the torque on each ring for the angles θ2 = −θ3 = 30◦. These
results were also confirmed by comparison with full wave simulation. For the pair of
rings studied in Sect. 4.3, the direction of the torque on the rings is related directly
to the symmetry of the mode which is excited. However, for the meta-molecule with
three or more resonators, the torque must be summed over the contributions from
each ring, whose direction also depends on the relative strength of the modes of the
hybridised system. This creates a complex frequency-dependence of the torque in
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Fig. 4.11 Electromagnetic torques MEM experienced by the three rings with configuration θ2 =
−θ3 = 30◦ (reproduced from [39]). The incident wave propagates along the z direction, with its
electric field component in the x direction (	 = 0◦). The torques are normalised to a power density
of 1mW/mm2. The inset on the right magnifies the details within the dashed rectangle, and the
green shading shows the regime where self-oscillations can exist

the system, including the highly asymmetric Fano type resonance shapes, such as
that shown in the inset of Fig. 4.11.

It is assumed that each ring is placed within a polyurethane foam package which
enables connection of the elastic wires, but which has a permittivity near unity and
is thus transparent to electromagnetic waves. This results in a calculated moment of
inertia for each ring as I ≈ 3.755 × 10−10 kg · m2, and the elastic wire is assumed
to have radius 50µm and shear modulus 1MPa.

4.4.2 Self-Oscillations

The system of coupled equations can be solved to find the dynamics of the meta-
molecule as a function of pump frequency and power. The pump frequency is
assumed fixed, and the incident wave intensity is swept from zero to a maximum of
60mW/mm2 in 1mW/mm2 steps, then swept along the reverse path to reveal any
regimes of bistable behaviour.

The twist angles θ2 and θ3 undergo damped oscillations as the power is changed,
and in most cases they converge to a stable angle. Near the resonances a very strong
nonlinear response can be found, which can show bistability similar to that in a
pair of rings, and can even exhibit tristability. But the most interesting behaviour,
which occurs for a limited range of input power and frequency, is that the system
becomes unstable, and the rings continue to oscillate indefinitely, with the energy
lost to mechanical damping being compensated by energy from the pump.

Due to its role in balancing the energy gain from the pump, the mechanical damp-
ing plays a critical role in the dynamics of the system. In Fig. 4.12 a and bwe show the
nonlinear response of this meta-molecule for two different values of damping, using
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(a) (b)

Fig. 4.12 Nonlinear behaviour as a function of pump frequency and power density (reproduced
from [39]). Regime and amplitude of self-oscillations are denoted with colour scale. A3 is defined
as the peak amplitude of the oscillations of θ3. The arrows denote the direction of power change,
which increases from zero to 60mW/mm2 and then decreases back to zero. The orange circles show
the threshold power densities of bistable hopping. Results with different damping coefficients are
compared, a � = 0.71Hz and b � = 1.42Hz

the same initial twist angles as in Fig. 4.11. On the vertical axis we plot the incident
power, with the lower part of the scale showing the results for increasing power,
and the upper part showing the results as power is decreased. The coloured regions
correspond to the regimes of self-oscillation, with the colour corresponding to the
magnitude of the oscillation in degrees. This self oscillation region corresponds to
the green shaded area of Fig. 4.11, which is on the red side of the resonance denoted
(↑↓↑) in Fig. 4.10.

In Fig. 4.12b the mechanical damping has been increased drastically to � =
1.42Hz, which corresponds to the viscous damping which would occur in water.
This high level of damping eliminates the self oscillatory behaviour for many pump
frequencies, with the system instead reverting to a bistable stationary response. The
orange circles plotted in Fig. 4.12 show the threshold power levels for bistable hop-
ping. However, it is interesting to note that the regime of self-oscillation from 4.14
to 4.16GHz is preserved.

4.4.3 Stability Analysis

We now investigate further why some regimes of self oscillation are highly robust
even to very strong damping, while other regimes are quenched quite easily. This
difference can be understood by analysing the local stability about the equilibrium
points. The equilibrium positions of the structure clearly require the total torques
M2,3 to be zero. These points can be found from the intersection of the curves
M2(θ2, θ3, fP, PI) = 0 and M3(θ2, θ3, fP, PI) = 0. Fixing the pump frequency, we
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can calculate these torques as a function of θ2, θ3 and study how the equilibrium
points change with increasing input power PI. Since at equilibrium θ̇2 = θ̇3 = 0,
we need only consider the projection of the full phase diagram onto (θ2, θ3) to show
the dynamic trajectory. The key to understanding this trajectory is to study the local
stability of the equilibria.

The local stability of the system around equilibria is estimated by analysing the
eigenvalues of its linear variational dynamic equations [33], where the coefficients
can be written in a compact matrix form:

⎡

⎢⎢⎢⎢⎢⎣

∂ F2
∂θ2

∂ F2
∂�2

∂ F2
∂θ3

∂ F2
∂�3

∂G2
∂θ2

∂G2
∂�2

∂G2
∂θ3

∂G2
∂�3

∂ F3
∂θ2

∂ F3
∂�2

∂ F3
∂θ3

∂ F3
∂�3

∂G3
∂θ2

∂G3
∂�2

∂G3
∂θ3

∂G3
∂�3

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎣

0 1 0 0
C1 −� C2 0
0 0 0 1

C3 0 C4 −�

⎤

⎥⎥⎦, (4.23)

with F2,3 = �2,3 = θ̇2,3, and G2,3 = �̇2,3 = θ̈2,3 = M2,3/I−��2,3, and Cn being
determined by numerical differentiation of the total torque terms. The eigenvalues
of the matrix have explicit expressions

λ1,2,3,4 = −�

2
±

{
(C1 + C4)

2
+ �2

4
± 1

2

[
(C1 − C4)

2 + 4C2C3

]1/2}1/2

, (4.24)

For an equilibrium point to be stable, all four eigenvalues must have negative real
parts, otherwise it is unstable. For any finitemechanical damping, all four eigenvalues
have finite real parts. This makes the equilibria hyperbolic, and allows the variational
equations to model the local behaviour of the nonlinear system [33]. From this
analysis, we can show that the difference in robustness of the self-oscillation to
damping seen in Fig. 4.12 is due to the difference in stability of the equilibria.

By analysing the evolution of the equilibria, we found that the distinct behav-
iour of self-oscillations shown above corresponds to two different mechanisms. The
difference between these two regimes is demonstrated in Fig. 4.13a, b for pump
frequencies of 4.134 and 4.15GHz. θ3 is plotted as a function of power, with red
indicating increasing and blue indicating decreasing power. The dashed lines show
the amplitude of the oscillation when � = 0.71Hz, while the circles show the stable
positions.

4.4.3.1 Self-Oscillations Resulting from Limited Local Stability

The case shown in Fig. 4.13a, with the 4.134GHz pump, corresponds to self oscil-
lations induced by the limited local stability of the equilibria. Once the input power
exceeds ∼25mW/mm2, the stable equilibrium terminates and the system enters a
regionof unstable oscillation,which continues until the power reaches∼55mW/mm2.
However, strongdamping can change this dynamic behaviour, and cause the system to
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(a) (b)

(c) (d)

(e)

U

Fig. 4.13 Evolution of the system at two different pump frequencies: a 4.134GHz and b 4.15GHz
(reproduced from [39]). The red solid circles and blue empty circles denote the stable equilibria
during the process of increasing and decreasing power density, respectively. Green squares are the
unstable equilibria. The red dashed curves and blue dotted curves show the boundaries of self-
oscillation under the damping factor � = 0.71Hz. The trajectories at the threshold power density
of transition: c 4.134GHz, PI = 25mW/mm2 and d 4.15GHz, PI = 9mW/mm2. Damping factor
� = 1.42Hz is calculated based on the viscosity of water. SA, SB and U correspond to the equilibria
denoted in (a) and (b). e The diagram of torque M = M2 êθ2+ M3 êθ3 near the equilibriumU shown
in (d). The vectors show the direction of M
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be attracted to another stable equilibrium point. This is exactly the case in Fig. 4.12b,
and is further illustrated by the dashed line in Fig. 4.13c, showing the trajectory from
stable equilibrium SA to SB, which are the points labelled in Fig. 4.13a.

For sufficiently low damping, instead of terminating at SB, the trajectory is able
to create a limit cycle, show by the black curve in Fig. 4.13c. This occurs because
the system has sufficient kinetic energy to overcome the attraction to the equilibrium
point, which is only locally stable. The limit cycle occurs when the mechanical
damping exactly compensates the energy coupled into the system from the torque
induced by the electromagnetic wave.

As the power further increases, the equilibria become more strongly attracting,
until the trajectory is no longer able to escape and falls into a stable state. If the power
is subsequently decreased, the state remains stable, as sufficient kinetic energy is not
developed to enable self oscillations. The trajectory follows a stable branch, until a
power of∼18mW/mm2, where it undergoes a bistable jump back to the original state
shown by the blue circles. This gives rise to the the features observed in Fig. 4.12
which depend on whether the power is increasing or decreasing.

4.4.3.2 Self-Oscillations Resulting from Local Instability

For the pump frequency of 4.15GHz, in Fig. 4.13b we also see two branches of
the stable nonlinear response. However, when the first branch ends at input power of
∼9mW/mm2, it is replaced by a series of locally unstable equilibria, which are shown
by the green squares. This results in a different mechanism of self-oscillations, with
the amplitudes again shown by the lines. At an input power of ∼17mW/mm2 the
equilibria again become stable. The key difference is that the local instability means
that additional kinetic energy is not required, thus when reducing the input power, a
very similar regime of self-oscillations occurs. Note that the equilibrium point and
its local stability remain the same if MEM and MR are increased by the same factor;
this indicates that self-oscillations due to local instability are still observable at the
same regime of pump frequency and power density, and the speed of oscillation will
increase accordingly.

In Fig. 4.13d the projected phase diagram is shown as a function of the damp-
ing coefficient. It can be seen that the oscillations remains extremely robust against
very high values of damping, as shown in the dotted lines. The blue dotted line
indicates the trajectory which the system approaches as damping is increased,
although the increasing damping does change the frequency of oscillation. To
understand this, we visualise the torques M2 and M3 in a two dimensional vector
form: M = M2 êθ2 + M3 êθ3, where êθ2 and êθ3 denote the unit vectors in the θ2
and θ3 directions. Figure4.13e shows this distribution of torques about the unstable
equilibrium point (marked by the green square). It can be seen that the torque always
pushes the systemaway from this equilibriumpoint, andwill develop into a limit cycle
if there is no stable equilibrium point which will attract the system. This feature
is distinct from many previously studied optomechanical systems, in which self-
oscillations can not survive strong damping. Although the regime of self-oscillations
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Fig. 4.14 Conceptual schematic and geometrical parameters of nonlinear flexible helices. (Adapted
from [40])

varies when the configuration changes, the two mechanisms shown above are gen-
eral. For meta-molecules with more than three rings, self-oscillations can also be
observed.

4.5 Nonlinear Chirality of Helical Resonators

An alternative approachwhich exploitsmechanical compression for elastic feedback,
is implemented with metallic helices [40, 41]. The idea is that the helix is at once a
chiral electromagnetic resonator and amechanical spring. The currents induced in the
windings by an incident electromagnetic wave, will impose attractive forces between
them, so mechanical compression occurs until the Ampère forces are balanced by
the spring forces. However, this compression changes the pitch of the helix, altering
the effective capacitance and shifting the resonant frequency. Furthermore, as the
helix is a chiral electromagnetic resonator [42, 43] and its chirality is related to the
pitch, the response of the helix manifests itself with nonlinear chirality.

The arising nonlinear feedback is qualitatively similar to that observed in mag-
netoelastic metamaterials, but the difference is that in the magnetoelastic system
the mutual interaction between different elements is affected, whereas in helices
the effect occurs within each resonator individually, providing an intrinsic structural
nonlinearity. We note that, similar to magnetoelastic behaviour, the acting electro-
magnetic forces in flexible helices are time-averaged with respect to electromagnetic
oscillations, and that any mechanical dynamics occurs at a time scale incomparably
slow with respect to that of electromagnetic response.

The resonant frequency of a helix is determined by its geometry (Fig. 4.14). Con-
sider a helix with winding radius r , and dimensionless parameters ξ for the ratio of
the pitch to r , and w for the ratio of the wire radius to r . For two turns, electromag-
netic resonance can be described with a simple circuit model [44], with the same
inductance L and resistance R as that of a single turn, and the capacitance C taken
as a sum of the parallel capacitances between the cylindrical wire turns:

ω2 = 1√
LC

with L = μ0r
(
ln

8

w
− 2

)
, C = 2πε0 · πr

cosh−1(ξ/2w)
. (4.25)
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The resulting resonance frequency ω2 was confirmed to be an exact match to the
results of numerical simulations for a wide range of 0.022 < ξ < 0.1 [40].

For multi-turn (N > 2) helices, this simple circuit model is not applicable, how-
ever the same functional form for the resonant frequency can be extrapolated:

ωs = c

πr

(
cosh−1(ξ/2w)

2(N − 1)ψ
(
ln(8/w) − 2

)
)1/2

, (4.26)

where it is assumed that with the increase in the number of windings either
capacitance or inductance must be multiplied with (N − 1), and an additional factor
ψ stands for the discrepancy with the exact results. Indeed, a comparison of the an-
alytical expression (4.26) with the results of full-wave numerical simulations (CST
Microwave Studio) for various ξ and N up to 9, demonstrated good agreement [41];
the correction factor ψ slightly increases from ψ ≈ 1 at N = 2 to ψ ≈ 1.36 at
N = 9. This said, it is important to emphasise that a multi-turn helix cannot be
directly described with the localised L and C circuit parameters, and the (4.26) fails
to describe long helices.

The mechanical properties of the helix are described by the stiffness coefficient,
which equals to k = Grw4

/
4 for one turn, where G is the shear modulus of the

material which makes the wire of the helix. Note that the characteristic frequency of
mechanical oscillations, ωM = w

√
3G/2ρ

/
(2πr N ) is many orders of magnitude

smaller than the electromagnetic frequencies involved, so the analysis of the spiral
geometrical reconfiguration is essentially static and is determined by time-averaged
amplitudes of the current. The spring response is then described with the Hooke’s
law, so the compression force linearly increases with the deviation from the initial
pitch value ξ0: Fs = kr(ξ − ξ0). This compression balances the attractive force Fc,
induced by the current excited in the helix.

For small ξ , the Ampère force acting between the windings of the helix can
be calculated as that between the two parallel wires of the corresponding length.
Generally, it is Fc = μ0 I 2

/
2ξ between two windings. For multiple turns, it is

reasonable to neglect the effect on the edges, and write the force balance in each
turn as

Gr2w4(ξ − ξ0)ξ + 2�μ0 I 2 = 0, (4.27)

where an additional enhancement factor� is due to the interaction of multiple wind-
ings; for 9 turns, for instance, � ≈ 2 [41]. However, for a helix with two turns, the
actual current distribution [44] results in a smaller net total force, F2 = μ0 I 2

/
12ξ ,

so for a short helix the (4.27) is modified by letting � = 1/3. Thus, a 9-turn helix
experiences a 6 times stronger compression for a given current magnitude.

Equation (4.27) may seem to be a quadratic equation for ξ , however it is in fact
more complicated as the current I also depends on ξ and r through the impedance
equation. The latter depends on the type of experiment to be conducted. In a pump-
probe experiment, as in [40], a complete impedance equation should be used, which
in the case of two-turn helix can be explicitly written as
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(
R + iωL − i

ωC

)
· I = −iωμ0πr2H0. (4.28)

As in (4.4), H0 is the amplitude of the magnetic field of the incident wave (we imply
that the incident polarizationwithH0 is parallel to the spiral axis), but the difference is
that the dependence on geometric parameters manifests itself in the self-capacitance
rather than in mutual inductance as in (4.4).

When, instead, a frequency scan at variable power is adopted, and sufficient time
is allowed for the frequency sweep, the helix should be at the equilibrium position
while at resonance (whereas the frequency of the resonance changes depending on
the power), in which case the impedance is reduced to the resistance and the equation
takes the form

1

w

√
ωsμ0

2σ
I = E(ω, P), (4.29)

where E(ω, P) is the effective electro-motive force acting per turn of the helix
depending on the frequency and power of the incident wave.

Taken together, the (4.25) [or (4.26)], (4.27), and (4.28) [or (4.29)], form a system
of coupled equations, which can be numerically solved for ξ and I for a given
frequency ω and amplitude H0 of the incident field.

Note that an additional effect on the nonlinear response of the helices is pro-
vided by its thermal expansion (so that r depends on temperature, affecting the
self-inductance and resistance) as well as by the temperature dependence of metal
conductivity. The thermal effect also shifts the resonant frequency, leading to even
more complicated nonlinear feedback (see [40] for details).

In accordance with this analysis, nonlinear self-action has been predicted to occur
in a way, similar to magnetoelastic metamaterials, with nonlinear or even bistable
response in the power-dependence of the resonance frequency and chirality [40].

The first experimental attempt to observe the intrinsic structural nonlinearity [40]
was performed with two-turn helices and revealed a thermal contribution dominating
over the mechanical response. To overcome this problem, an improved fabrication
approach was employed with multi-turn helices [41], manufactured with high geo-
metrical precision and thermal annealing of the helices to improve their stability. As
a result, a remarkable power-dependent shift of the resonant frequency was observed
in the arrays of multi-turn helices, whichwasmostly due tomechanical compression:
it is estimated that the thermal contribution did not exceed 12%.

The outcome of the measurements on the multi-turn helices [41] are presented in
Fig. 4.15, where the change in the helix pitch is recalculated from the experimental
data based on the measured resonant frequencies, and compared with the theoretical
fit in accordance with the above analysis. Chiral properties of the helix are directly
proportional to its pitch, and can be characterised [45] with the normalised (dimen-
sionless) ratio between the electric p and magnetic m dipole moments along its
axis,
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Fig. 4.15 Change of the relative helix pitch ξ with power, recalculated from the experimental data
on the resonance shift with power (adapted from [41]). Blue circles represent the data obtained for
a single resonator, and red squares for the lattice; the size of the symbols commensurate with the
measurement errors. Black solid curve shows the theoretical fit to the presented data The axis on
the right indicates γ as a measure of chirality

γ = |p|
|m| · c = cξ

ωπr
= ξ

π
· λ

2πr
, (4.30)

where λ is the wavelength and c is the light velocity. The auxiliary axis on the right of
Fig. 4.15 indicates the magnitude of γ for the data presented in the figure, calculated
at the initial frequency of the resonance in the array.

By choosing an appropriate arrangements of helices, either anisotropic or isotropic
lattices can be assembled, and also non-chiral (but still nonlinear) arrays be realised
using a racemic mixture of helices with opposite chirality. At the same time, a more
rigorous analysis should be developed to account for the effects of non-uniform
compression and thermal expansion, taking actual current distribution into account.
Such calculations however are not likely to be analytically plausible andmust involve
numerical simulations. It would be particularly interesting to studywave propagation
in large chiral arrays, where polarisation rotation over the course of wave propagation
through the samplewill eventually impose a kind of dynamic grating of domains with
different chirality, resulting in weird patterns of wave dynamics.

4.6 Conclusion and Outlook

Wehave presented severalmetamaterial structureswhich couple electromagnetic and
elastic dynamics within the elements. The magnetoelastic metamaterial undergoes
compression in response to an electromagnetic force, which results in strong non-
linear behaviour including a bistable response. This is a rare example of nonlinear
mutual interaction of the elements with linear self-response.
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Alternatively, it is possible to combine the functionality of electromagnetic
resonator andmechanical spring into a single structure, by utilising self-compressing
helices. This approach has been also demonstrated experimentally, whereby the
undesirable thermal side effects can be overcome by using compact multi-turn
helices.

The meta-atoms with intrinsic rotation utilise an alternative degree of freedom.
They rely on electromagnetic torque,which can be balanced by a very softmechanical
restoring torque, leading to a much stronger nonlinear response. The system exhibits
similar qualitative features to the magneto-elastic structure, and has a strong bistable
response which was demonstrated experimentally.

Extending the rotational system to a three-ring meta-molecule leads to the possi-
bility of self-oscillations. Furthermore, it turned out that these self-oscillations occur
due to two distinct physical mechanisms. The system with local instability has the
remarkable property of being extremely insensitive to damping, with mechanical
self-oscillations being undisturbed even for strong damping.

The structures outlined here rely on the dynamics of an individual meta-atom or
meta-molecule to achieve their physical properties. This means that the analysis and
experimental results presented here are directly applicable to dilute arrays, whereby
neighbouring elements do not exert significant electromagnetic forces on each other.
The densely packed array regime is expected to show further complexity of behaviour,
and thus a bulk metamaterial based on these principals is an intriguing possibility.
Another direction of great interest is to extend such structures to shorter wavelength
regimes. The optical regime is naturally promising due to the high power density
available in lasers, however the fabrication of analogous structures at these length
scales would be a significant challenge.
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Chapter 5
Nonlinear and Tunable Left-Handed
Transmission Lines

Alexander B. Kozyrev and Daniel W. van der Weide

5.1 Introduction

Metamaterials are artificial structures that are designed to exhibit specific
electromagnetic properties required for different applications but not commonly
found in nature. The methodology of synthesizing materials composed of micro-
and nano-structured components that mimic the electromagnetic response of indi-
vidual atoms and molecules (meta-atoms and meta-molecules) has proven to be
very productive and resulted in the development of metamaterials exhibiting strong
magnetic response at microwave and optical frequencies and so-called left-handed
metamaterials (LHMs) (both impossible in conventional real-world materials).

LHMs are designed to exhibit simultaneously negative permittivity and perme-
ability [1, 2]. In 2000, Smith et al. developed the first experimental left-handed
(LH) structure, which was composed of metallic split-ring resonators and thin metal
wires [3, 4]. An alternative transmission line approach for left-handed materials was
proposed, almost simultaneously, by several different groups [5–7]. This approach,
based on nonresonant components, allows for low-loss left-handed structures with
broad bandwidth. The unique electrodynamic properties of these materials, first pos-
tulated by Veselago in 1968, include the reversal of Snell’s law, the Doppler effect,
Vavilov-Cherenkov radiation, and negative refractive index, making these materials
attractive for new types of RF and microwave components [1, 2, 8]. The range of
applications for LHMs is extensive, and opportunities abound for development of
new and powerful imaging and communication techniques.

Most studies of LHMs have been concerned with linear wave propagation, and
have inspired many applications that were unthinkable in the past [1, 9] such as
LH phase shifters [10], LH directional couplers [11, 12], and leaky-wave antennas
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[13–15] to name just a few. Materials that combine nonlinearity with the anomalous
dispersion exhibited by LH media [16–19], however, give rise to a new class of
phenomena and promising applications [20–22]. Here we present a review of the ba-
sic nonlinear wave propagation phenomena in LH media. We consider left-handed
nonlinear transmission lines (LH NLTL) as the simplest systems that would allow
us to combine anomalous dispersion with nonlinearity in a controlled fashion. Un-
derstanding the nonlinear phenomena in LH NLTL media is important for both the
development of new devices and improvement of the performance of recent devices
based on LH NLTLs like harmonic generators, phase shifters [23], tunable leaky-
wave antennas [9, 24] and notch filters [25].

5.2 Comparison of Conventional Right-Handed
and Left-Handed Nonlinear Transmission Lines

The transmission line approach proves to be a useful description of LH media. It
provides insight into the physical phenomena of LH media and is an efficient design
tool for LH applications [9]. A LH NLTL is the dual of a conventional right-handed
nonlinear transmission line (RH NLTL) shown in Fig. 5.1b, where inductors are
replaced with capacitors and capacitors with inductors. The effective permeability
and permittivity of one-dimensional transmission line metamaterials in the lossless
case are expressed as follows:

μe f f = − 2d

ω2CL
; εe f f = − d

ω2L L
, (5.1)

where d is the period of the LH NLTL and ω is the radian frequency. In con-
trast with RH NLTL where capacitance gives rise to electric nonlinearity, nonlinear
capacitances CL introduce magnetic-type nonlinearity into the LH NLTL (i.e. effec-
tive magnetic permeability becomes nonlinear).

Although both the RH and LH NLTLs use the same components arranged in
a similar way, the performance of this two circuits is dramatically different. This
difference primarily comes from the difference in their dispersion characteristics
(see Fig. 5.1c).

A conventional (right-handed) nonlinear transmission line has normal dispersion
and frequency increases with the wavenumber. In contrast to the RH NLTL, the LH
transmission line exhibits anomalous dispersion and frequency decreases with the
wave number (see Fig. 5.1c). The waves propagating in such media are also known
as backward waves because the direction of group velocity vg is opposite to phase
velocity ( vp · vg < 0 ).

Nonlinear transmission lines first drew attention in connection with the idea of
distributed parametric amplification. It had been predicted that a distributed para-
metric amplifier or oscillator circuit could exhibit superior stability of operation and
efficiency over lumped parametric circuits [26, 27]. Lumped parametric amplifiers
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Fig. 5.1 a Equivalent circuit
of a LH NLTL; b Equivalent
circuit of a dual RH NLTL;
c Typical dispersion curves of
LH NLTL (solid line) and RH
NLTL (dashed line)

were popular as very low-noise alternatives to vacuum tubes prior to the widespread
use of semiconductor amplifiers [28]. (Parametric resonance responsible for ampli-
fication in lumped circuits is similar to the physical mechanism playing on a swing
which allows large amplitudes by alternately raising and lowering the center of mass
at a certain relation between the frequency of the swing and the frequency of external
force.) Their complexity (they require external resonators and matching circuits) and
low efficiencies however made them less attractive for widespread use. Conventional
NLTLs were thought to be very promising candidates for use in distributed ampli-
fiers because they do not require external resonant circuits and conversion efficiency
was claimed to be very high due to accumulative effect of parametrically interacting
waves propagating along NLTLs.

It turned out that parametric interactions (such as three- and four-wave mixing
of phase matched waves) in RH NLTLs typically compete with shock wave for-
mation [29, 30] and generation of temporal solitons [31]. For instance, parametric
generation and amplification in dispersionless RH transmission lines is entirely sup-
pressed by shock wave formation [32, 33]. In contrast to conventional NLTLs, both
nonlinearity and dispersion present in LH NLTLs (see Fig. 5.1) lead to waveform
spreading [34], consequently making shock wave and electronic soliton formation
impossible. Anomalous dispersion makes sharp field transients in left-handed NLTL
unstable.Once created, they decompose very quickly during propagation of thewave-
form due to substantial difference in the phase velocities of the propagating waves.
This inability to form shock waves enables a variety of parametric processes to occur
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instead [35, 36]. Furthermore, since the parametric interactions no longer compete
with shock wave formation, it is possible to use stronger nonlinearities, consequently
achieving considerable gain in shorter transmission lines [37].

Both theoretical [36, 38] and experimental [35, 37] investigations demonstrate
that nonlinear wave form evolution in a LH NLTL can be understood in terms of
competition between harmonic generation, subharmonic generation, frequency down
conversion and parametric instabilities.

5.3 Parametric Generation and Amplification

5.3.1 Theory

Effective parametric interaction in medium exhibiting a second-order nonlinearity
generally requires phase matching of three waves. The anomalous dispersion of a
LH NLTL system enables effective parametric interactions of the type:

f1 + f2 = f3, β1 − β2 = β3. (5.2)

In the “parametric oscillator configuration”, a high-frequency backward pump
wave having a frequency f3 and wavenumber β3 is excited by the voltage source
connected at the input port of a LH NLTL. It generates two other waves having
frequencies f1 and f2, such that f1 < f2 and f1 + f2 = f3. The wave having
frequency f2 propagates in the opposite direction relative to the pump wave and
the wave having frequency f1 (this is emphasized in the (5.2) with the minus sign).
We therefore have a similar situation to backward wave parametric generation [38,
39]. The backward-propagating parametrically generated wave f2 enables internal
feedback that results in a considerable energy transfer from the pump wave to the
parametrically excited waves.

If the amplitude of a high-frequency pumpwave exceeds a certain threshold value,
it may parametrically generate two other waves. This threshold value depends on the
loss present in the LH NLTL, its length and the boundary conditions (matching) at
the input and output. No parametric generation occurs when the amplitude of the
voltage source is below this value. However, when a weak signal wave is fed into
the LH NLTL together with a pump wave having an amplitude below the threshold
value, a parametric amplification is observed. In this case, we have two input waves:
an intense pump wave and a weak signal wave [40]. The power from the pump wave
is transferred to the signal wave, thus amplifying it. A third parasitic idler wave is
generated which provides phase matching. From a previous analysis [38], for the
lossless case, the frequencies and powers of these waves also obey the nonlinear
Manley-Rowe relations.
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Fig. 5.2 a Fabricated 7-section LH NLTL; b equivalent circuit of one stage

Fig. 5.3 Measured (solid)
and simulated (dashed)
magnitudes of S21 parameter
for 7-section LH NLTLs for
the reverse bias voltage
VB = 3.823V. Inset shows
dispersion curve of the LH
NLTL (dependence of the
frequency versus relative
wave number β)

5.3.2 Experiment

We observed efficient parametric amplification in 7-section LH NLTL having iden-
tical sections [37] shown in Fig. 5.2a.

The circuit was realized on a Rogers RT/Duroid 3010 board with ε = 10.2 and
thickness h = 1.27mm. The entire circuit has been implemented using a microstrip
geometry. Series nonlinear capacitance in each section is formed by two back-
to-back Skyworks Inc. SMV1233 silicon hyperabrupt junction varactors with DC
bias applied between them. Shunt inductanceswere implemented using high-Q10 nH
chip inductors (Murata LQW18A_00). The pads on the board surface, together with
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(a) (b)

(c)

Fig. 5.4 Spectra of the output waveforms generated by a 7-section LH NLTL fed by: a only weak
signal source 864.252MHz, −28dBm; b only pump source 1.7279GHz, 13.96dBm; c simultane-
ously signal and pump sources specified in a and b. Reverse bias voltage is 3.87V

inherent parasitics introduce unavoidable series inductance and shunt capacitance,
making the whole circuit a composite right/left-handed transmission line having the
equivalent circuit shown in Fig. 5.2b. Figure5.3 shows measured and simulated mag-
nitude of the linear wave transmission (S21) of this 7-section LH NLTL. The circuit
model of Fig. 5.2bwith component values extracted frommeasured S-parameters has
also been used to calculate the dispersion curve of the LH transmission line as shown
in the inset in Fig. 5.3. The dispersion characteristic of a composite right/left-handed
transmission line has two passbands divided by the stop band. The low frequency
passband exhibits anomalous dispersion (left-handed passband from 800MHz to 1.9
GHz) while the high-frequency one is right-handed.

Figure5.4 demonstrates the effect of the intensive pump wave, having frequency
f p = f3, on a weak signal wave ( fs = f2). Figure5.4b shows the spectrum at the
output of the 7-section LH NLTL when only a 1.7279GHz, 13.96dBm intensive
pump wave is applied at the input. The magnitude of the pump wave was chosen so
as to be 0.1dB below the threshold value required for the occurrence of parametric
generation, which manifests itself in distinct, narrow peaks corresponding to the
parametrically generated frequencies.

Figure5.4a shows the spectrum at the output when only the 864.252MHz,
−28dBm signal wave is applied at the LH NLTL input (no pump wave). The graph
shows 11.7dB attenuation of the weak signal wave at the output due loss in the NLTL
and power conversion to higher harmonics. And finally, Fig. 5.4c shows the spectrum
at the output when the signal and the pump wave are both applied concurrently at the
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Fig. 5.5 Measured gain
versus power of the signal at
the input of LH NLTL for
different values of the power
of the pump wave at the input
Pp,in : squares –
Pp,in = 13.96dBm; circles –
Pp,in = 13.86dBm;
up triangles –
Pp,in = 13.76dBm;
down triangles –
Pp,in = 13.66dBm;
left triangles –
Pp,in = 13.56dBm

input of the 7-section LH NLTL. In this spectrum, the components corresponding
to the signal wave ( fs = f2), idler wave ( f1), as well as many difference frequen-
cies generated due to the strong nonlinearity in LH NLTL, are evident. Thus, the
application of the intensive pump wave results in amplification of the weak signal
by 9dB.

Figure5.5 represents the measured gain of a weak 864.252MHz signal stimulated
by an intense 1.7279 GHz pump wave versus the power of the signal at the input, for
fixed values of the pump power. The gainwas calculated as the difference between the
power of the signal at the output and the power at the input when both are expressed
in dBm. Thus, we measured a greater than 10 dB amplification of the signal with
power of −32 dBm and below for the power of the pump wave at the input of 13.96
dBm. The measured dependencies of gain versus input signal power becomes flatter
with decreasing pump power, thus revealing the potential for amplification in a broad
band of the signal power. The results of our measurements in Fig. 5.5 are in a good
agreement with the results of simulations reported in [41].

5.3.3 Motivation for Considering Parametric Generation
and Amplification

Parametric amplification can be of interest for building “active” or “amplifying”
metamaterials and for providing a means to compensate for inherent LH media loss,
as suggested in [37, 41, 42]. The primary drawback of current negative-index meta-
materials (NIMs) (for example those composed of the arrays of metallic wires and
split-ring resonators) is their considerable loss, which renders the results ambigu-
ous and the materials all but useless for practical applications. These losses have
been overcome to some extent by careful fabrication and assembly techniques [43],
but still remain the primary obstacle to using NIMs in imaging applications. It was
shown [44] that due to causality requirements, the use of conventional composite
NIMs (based on arrays of metallic wires and arrays of split-ring resonators) does not
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allow for the realization of low-loss NIMs without the incorporation of some active
components (transistor amplifiers, etc.) in a composite NIM. The idea of using para-
metric amplification to compensate for inherent loss in optical left-handed systems
has been also discussed in [45].

5.4 Higher Harmonic Generation

In short LH NLTLs, harmonic generation dominates over parametric instabili-
ties [36]. We observed very efficient 2nd harmonic generation in a 4-section LH
NLTL. The design of this transmission line is similar to the design of 7-section
LH NLTL described in the previous section. However, this time, the nonlinear
capacitance in each section is formed by two back-to-back M/A-COM hyperabrupt
junction GaAs flip-chip varactor diodes (MA46H120) and shunt inductances were
implemented with 0.12 mm diameter copper wires connecting the pads to the ground
plane on the back side of the board.

The measured value for the second harmonic conversion efficiency in this
4-section LH NLTL was 19% at 2.875 GHz, using a +17.9dBm input signal and a
reverse bias voltage of 6.4V (Fig. 5.6). The second harmonic power delivered into a
50� load was +10.72dBm. The fundamental wave is close to the Bragg cutoff fre-
quencywhile the second harmonicwave is close to the transmissionmaximum,which
is located in the middle of the left-handed passband. A fundamental of 2.875GHz
generates numerous higher harmonics, with the second harmonic dominating over
the fundamental and the other harmonics. Thus, the LH NLTL combines the proper-
ties of both a harmonic generator and a bandpass filter, and under certain conditions
may provide an almost pure higher harmonic at its output.

The conversion efficiency observed in the LH NLTL is comparable with the per-
stage efficiency of a hybrid Schottky-diode RH NLTL operated in a lower frequency
range [46]. The fundamental wave propagating in the left-handed media is badly
mismatched with its higher harmonics due to inherent anomalous dispersion, yet
the generation of higher harmonics can still be very effective in LH NLTLs and the
discrete nature of the NLTL plays a crucial role in it. The detailed analysis indicates
that, within the range of parameters of the pump wave where the 2nd harmonic con-
version efficiency has maximum, the amplitude of the voltage oscillations across the
nonlinear capacitors varies periodically with the period equal to 2 sections. This self-
induced periodicity of the voltage amplitude across the nonlinear capacitors leads to a
periodic variation of the capacitance along the line. Due to strong nonlinearity (large
capacitance ratio), this periodicity results in a considerable change of the dispersion
characteristics and enables quasi-phase matching of the fundamental wave and its
second harmonics. Simulations have also shown that, under certain conditions, the
self-induced periodicity may provide quasi-phase matching of the fundamental wave
with some other higher harmonics in such a way that a particular higher harmonic
will dominate over other higher harmonics in the spectrum of the waveform at the
LH NLTL output.
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Fig. 5.6 Spectrum of the
output waveform generated
by a -section LH NLTL fed
by 2.875GHz, +17.9dBm
input signal at reverse bias
voltage of 6.4V

Efficient 2nd harmonic generation can be also achieved in dual band LH NLTLs
that allowphase-matching between two zero phase velocitywaves, aswell as between
two backward propagating modes [47].

5.5 Envelope Solitons in LH NLTLs

Besides the nonlinear evolution of a waveform itself, another class of phenomena
involving evolution of amplitude and phase of continuous waves is also possible.
This type of nonlinear wave propagation phenomena arise in NLTLs having strong
frequency dispersion with respect to the average amplitude for amplitude-modulated
wave containing a carrier of relatively high frequency. This dispersion may lead
to amplitude instability as well as to formation of envelope solitons and periodic
modulation of a carrier wave propagating in a stationary manner. The observation of
amplitude instability and envelope soliton generation in conventional (RH) NLTLs
has already been the subject of many publications [48–50]. The experimental obser-
vation of the generation of the trains of envelope solitons in LH NLTLs arising from
the self-modulational instability was first reported in [51].

The analysis of LH NLTLs is straightforward when the equations governing
envelope evolution can be reduced to the one-dimensional cubic nonlinear
Schrödinger equation (NSE), which provides a canonical description for the en-
velope dynamics of a quasi-monochromatic plane wave (the carrier) propagating in
a weakly nonlinear dispersive medium when dissipative processes (including non-
linear damping due to higher harmonic generation and nonlinear wave mixing) are
negligible [52, 53]. However, in most of the practical situations the parametric decay
instabilities and higher harmonic generation can be very significant [35, 37, 38, 54].
The threshold for parametric generation is known to be very low (lower then in con-
ventional RH NLTLs). In order to realize the scenario described by the NSE, the LH
NLTL should be operated below this threshold so that the nonlinearity should be very
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(a)

(b)

(c)

(d)

(e)

Fig. 5.7 Measured trains of envelope solitons for different power Pinp and the frequency finp of the
input signal. a finp = 1.3723GHz, Pinp = 24.66dBm; b finp = 1.3125GHz, Pinp = 21.60dBm;
c finp = 1.321596GHz, Pinp = 19.34dBm; d finp = 1.2974GHz, Pinp = 24.64dBm; e finp =
1.102GHz, Pinp = 23.62dBm

weak and the NLTL impractically long. In contrast, we performed an experimental
study of nonlinear envelope evolution and envelope soliton generation in relatively
short LH NLTLs and when nonlinear damping is very strong. We are also taking
advantage of a fast nonlinearity introduced by Schottky diodes when nonlinear ca-
pacitance is a function of the instantaneous value of voltage along the line rather then
its amplitude, a type of nonlinearity not described in the framework of the NSE and
its modifications developed for slow (retarding) nonlinearity.

Depending on the amplitude and frequency of the input signal, trains of envelope
solitons of different shape and types can be generated. Figure5.7 shows envelopes
of the measured waveforms at the output of 7-section LH NLTL. These envelopes’
functions have been obtained by applying the Hilbert transform to the original volt-
age waveforms. Traces (a), (b) and (c) in Fig. 5.7 show trains of bright envelope
solitons of different shapes while traces (d) and (e) show periodic trains of dark-like
solitons (dips in the cw background). The envelope shape is not smooth since strong
nonlinearity gives rise to numerous higher harmonics and subharmonics of carrier
frequency. In the spectral domain, generation of envelope solitons manifests itself in
the appearance of spectral regions with numerous closely spaced spectral harmon-
ics. The interval between adjacent spectral components is � f = 1/τ , where τ is the
period of the train of solitons.

A small variation of the parameters of the input signal leads to switching between
the generation of bright and dark solitons [compare traces (a) and (b)] in contrast
to the scenario described by the NSE. The observed switching is enabled by the
counterplay of the significant nonlinear damping (due to strong and fast nonlinearity)
and strong spatial dispersion exhibited by the periodic LH NLTLs. Neither is taken
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into account by standard NSE yet both are known to lead to co-existence of bright
and dark solitons in other physical systems [54, 55]. For example, somewhat similar
processes have recently been observed in the system of an in-planemagnetized single
crystal yttrium-iron-garnet (YIG) film in the magnetostatic backward volume wave
configuration [55]. In contrast to this work, we applied non-modulated sine wave at
the input.

Furthermore, efficient envelope soliton generation has been observed in active res-
onant rings based on LHNLTLs. Stable regimes corresponding to one, two and three
solitons circulating in the ring has been enabled without any special mode selection
arrangements and has been explained as the interplay of anomalous dispersion and
discreteness resulting in formation of spatially localized structures [56].

5.6 Pulse Formation in LH NLTL Media

Here we discuss another type of envelope evolution resulting in generation of RF
pulses of limited duration with stable amplitude and very short rise/fall times (sharp
transients). This type of envelope evolution is primarily enabled by the amplitude-
dependent higher harmonic generation rather than self-modulation instability leading
to generation of the envelope solitons [57].

Figure5.8 shows a typical dependence of the magnitude of the second harmon-
ics at the output of 7-section LH NLTL shown in Fig. 5.2 versus magnitude of the
input sinusoidal signal. This dependence has three distinct regions. In the first region
the power of the generated second harmonic follows a square law as predicted by
the small signal analysis. When the power of the fundamental wave reaches certain
threshold level the second harmonic power jumps by almost 5dB indicating a bifurca-
tion (multistability region) followed by the saturation region where second harmonic
amplitude changes insignificantly with the input power. Step-like dependence of the
second harmonic power indicates a bifurcation-type change in the field distribution
along the line and formation of field patterns that change dispersion properties of
the line (quasi-phase matching) resulting in significant increase of the generation
efficiency.

The step-like dependence of the second harmonic power on the power of the
fundamental signal may impact significantly the output waveform if the ampli-
tude in the fundamental wave is modulated around the threshold value. Figure5.9
shows voltage waveforms at the input and output port and spectrum at the output of
7-section LH NLTL. The voltage waveform at the input is a sinusoidal wave modu-
lated by another sinusoidal signal at 100MHz. The envelope of the output waveform
is dramatically different from the one of the input wave. It represents itself a series of
pulses with the shape approaching a rectangular. Furthermore, the carrier frequency
of the output signal is the second harmonic of the fundamental signal as revealed
by the spectrum presented in Fig. 5.9c. Modulated signal switches second harmonic
generation on and off thus enabling generation of a train of RF pulses at the output.
Since the fundamental frequency is chosen below the cut-off frequency, it is heavily
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Fig. 5.8 Dependence of the
power of the 2nd harmonic at
the output on the power of the
fundamental signal at the
input in 7-section LH NLTL
shown in Fig. 5.2 and
measured at 783MHz and the
reverse bias voltage
VB = −4.1V

attenuated in transmission line and only second harmonic is present at the output.
Some asymmetry of the shape of the RF pulses at the output is related to the existence
of hysteresis and narrow multistability region. The experimental results presented

Fig. 5.9 Voltage waveforms at the input (a) and output (b) port and spectrum at the output (c) of
7-section LH NLTL. Voltage was measured at the coupled output of directional couplers connected
at the input and output ports of NLTL
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in Fig. 5.9 clearly demonstrate that a small modulation signal can be used to control
the shape, duration and repetition rate of the RF pulses at the output which is very
promising to numerous applications.

Our experimental results correlate very well with speculations in [58] where
authors predicted that the shape of pulses at the output of LHmedia can be drastically
different from those expected from an ordinary nonlinear medium.

5.7 Conclusion

We have reviewed several nonlinear wave phenomena in LH NLTL media, in-
cluding harmonic generation, parametric amplification as well as generation of the
trains of envelope solitons and their competition. Furthermore, LH NLTLs which
were considered as a model system in this paper, can be also of interest from the
design perspective for development of various compact and robust applications for
wireless communications and imaging. LH NLTLs have already been used as the
key counterparts of recently designed and implemented tunable phase-shifters, tun-
able band-pass filters, and the arbitrary waveform generator [23, 59–61]. Moreover,
extending the results for 1-D LH NLTL to higher dimensions would enable combin-
ing harmonic generation in LH NLTL media with focusing [15], due to the negative
refractive index of 2-D or 3-D LH transmission line media. This may lead to the
development of highly efficient and powerful frequency multipliers, as well as to
building “active” or “amplifying” super lenses. Furthermore, our approach can be
also scaled from its current microwave form into terahertz, infrared, and, ultimately,
visible form [62, 63]. Potential applications may include pulse forming circuits,
optical comb generators (in optical metrology systems), amplifiers of digital signals
as well as very efficient modulators at power levels or in frequency ranges not at-
tainable by conventional semiconductor devices.

This workwas supported under theAir Force Office of Scientific Research,MURI
Grant No F49620-03-1-0420, ‘Nanoprobe Tools for Molecular Spectroscopy and
Control’.
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Chapter 6
Optimization Strategies for Second-Order
Nonlinear Metamaterials

Robert Czaplicki, Hannu Husu, Janne Laukkanen, Markku Kuittinen
and Martti Kauranen

Abstract We summarize our recent results regarding the control and optimization
of the second-order nonlinear response of plasmonic metamaterials. Such materials
consist of arrays of metal nanoparticles, where the plasmonic resonances of individ-
ual particles depend on the size, shape, and dielectric environment of the particles.
The resonances are further influenced by the coupling of the particles through the
array. We first show that the second-order response, as determined by second-
harmonic generation is significantly enhanced by the state-of-the-art sample quality
and the resulting narrow plasmonic resonance lines. We then show that the response
can depend on subtle details of the ordering of the particles in the array, with
apparently similar orderings resulting in second-harmonic generation responses that
differ by a factor of 50. Finally, we show that the response can be enhanced by
complementing the second-harmonic active particles with passive elements that have
no nonlinear response as such. Our results are important in developing metamaterials
with tailorable nonlinear properties.
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6.1 Introduction

The collective oscillations of electrons, known as plasmons, play an important role in
the optical response of metal nanoparticles. The properties of the particle plasmons
are determined by the particle dimensions and shape, and are further influenced by
the surrounding medium [1]. Individual particles are often arranged in arrays, as is
the case for metamaterials. As a result, the plasmons are affected by the coupling
between particles.

The plasmon resonances are associated with “hot spots”, which are strong elec-
tromagnetic fields in the proximity of the particles [2]. The hot spots can significantly
enhance nonlinear optical interactions, which scale with high powers of the funda-
mental field [3]. For example, second-harmonic generation (SHG) scales with the
second power of the local field. SHG was observed in metal nanostructures already
a few decades ago [4]. Since then a lot of SHG studies have been performed on dif-
ferent kinds of nanostructures, such as hole arrays [5–7], sharp metallic tips [8–10],
split-ring resonators [11–13], L-shaped [14–19] and G-shaped [20, 21] nanoparti-
cles, nanoprisms [22], spherical nanoparticles [9, 23, 24], T-nanodimers [25, 26],
nanoantennas [27–29] and nanocups [30].

Second-order nonlinear effects are particular because of their symmetry rules,
which forbid such effects in centrosymmetric materials. This property, on the other
hand, can be used to probe symmetry breaking in the material structure. In the early
studies of the nonlinear properties of metal nanoparticles, the symmetry breaking
due to defects and shape distortions played a significant role in the responses of real
fabricated structures [31].

In this chapter, we focus on summarizing our recent results regarding the various
factors that need to be considered when one attempts to optimize the second-order
nonlinear response of plasmonicmetamaterials consisting of arrays ofmetal nanopar-
ticles. In order to achieve the necessary noncentrosymmetry, our basic building unit
(metamolecule) is an anisotropic, L-shaped gold nanoparticle. The SHG response of
the samples is shown to depend sensitively on the sample quality, detailed particle
ordering in the array, as well as the presence of centrosymmetric passive elements
in the array.

6.2 Samples and Techniques

Our samples are fabricated by standard electron-beam lithography and lift-off tech-
niques.All samples are fabricated on fused silica substrates. The 20nm thick nanopar-
ticles are separated from the substrate by a chromium adhesion layer (3–5nm) and
are also covered by 20nm protective layer of fused silica. The dimensional parame-
ters (l—length of arm, w—width of arm and d—array period) vary between different
samples (Table6.1 and Fig. 6.1).
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Table 6.1 The dimensional parameters of L-shaped nanoparticles from studied samples

Arm length (l)[nm] Arm width (w)[nm] Array period (d)[nm]

Low-quality sample [18] 200 100 400

High-quality sample [32] 250 100 500

Samples A and B [33] 250 100 500

Nanoantenna [34] 175, 275 100 1,000

20 nm

w

d

l

l

(a)

100 nm 200 nm

(b) (c)

200 nm

(d)

200 nm

(e)
y

x

Fig. 6.1 a The geometry and coordinate system of L-shaped nanoparticles in standard array
(l—length of arm, w—width of arm, d—spacing between particles, thickness 20nm). The scan-
ning electron microscope images of b low-quality L-shaped nanoparticles, c high-quality L-shaped
nanoparticles (standard array), d high-quality L-shaped nanoparticles with different orientations in
array and e high-quality active L-shaped nanoparticles and passive bars

The L-shape is strongly dichroic with plasmon resonances at distinct wavelengths
for x- and y-polarized light, where y is along the symmetry axis and x orthogonal
to that. This was confirmed by measuring the extinction spectra of the samples. The
measurements were performed at normal incidence with a fiber-coupled halogen
light source and two spectrometers as detectors, which cover a total range from 400
to 1,700nm.

In order to address the nonlinear properties of the samples, polarization-dependent
SHG measurements are performed (Fig. 6.2). Infrared radiation from a pulsed
Nd:glass laser (Time-Bandwidth Products GLX-200; 200 fs, 1,060nm, 150mW,
82MHz) is the source of fundamental light. The polarization state of fundamen-
tal beam is cleaned with a high-quality Glan polarizer and further modulated by
rotating a half- (HWP) or quarter-wave plate (QWP). The polarization of the SHG
signal is selected by another Glan polarizer as an analyzer before the detector. A long
pass filter before the sample blocks the SHG radiation from optical components. The
SHG light is isolated from the laser beam with a short pass filter and is measured
with a photomultiplier tube combined with a photon counting system.

6.3 Tailoring Nonlinear Optical Response

We have been working on the nonlinear properties of the arrays of metal nanoparti-
cles for several years. The work has been based on systematic testing of the various
concepts, and has recently been facilitated by significant improvements in nanofab-
rication, which gives rise to samples of very high quality.
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Fig. 6.2 Experimental setup
for second-harmonic
generation measurements.
L—lens, P—polarizer,
HWP—half-wave plate,
QWP—quarter-wave plate,
F—filter, A—analyzer,
PMT—photomultiplier tube

Laser

L
P

HWP/QWP
F

Sample

F
A

PMT

6.3.1 Sample Quality

All even-order nonlinear processes, including SHG, are extremely sensitive to sym-
metry and consequently to the details of the local-field distribution in the sample.
Fabrication-related defects can give rise to additional hot spots that attract strong
local fields. Small deviations of the actual sample from the design as well as the
defects also break the structural symmetry of the sample. This can lead to SHG
responses that can be interpreted in terms of multipolar contributions to the nonlinear
response [16–18]. The imperfections in the fabrication process lead also to varia-
tions in the dimensions of the particles in the array. As a consequence the resonance
peaks are inhomogeneously broadened, which also reduces the nonlinear response
[14, 32]. All the above factors make it difficult to design nanostructures with con-
trolled nonlinear responses. The recent vast improvement in fabrication methods
overcomes these problems. Such improvement is evident in the case of our samples
(cf. Fig. 6.1b, c). This improvement in sample quality is already visible in linear
extinction spectra of the samples, where the plasmonic peaks are greatly enhanced
and linewidths narrowed compared to the low quality samples (cf. Fig. 6.3a, b) [32].
The resonances with less inhomogeneous broadening also allow high-order reso-
nances to be observed [35, 36].

Our experimental technique allows the samples to be characterized for
polarization-dependent SHG. In order to address the variousmultipolar contributions
to the response, it is necessary to detect SHG radiation in transmission and reflection
and for particle- and substrate-side incidence of the fundamental beam [18, 32]. In
essence, the four signals should behave in the same way when the response has dipo-
lar origin, whereas higher-multipole contributions lead to differences in the signals.
The results for low-quality (l = 200nm, w = 100nm, d = 400nm) and high-
quality (l = 250nm, w = 100nm, d = 500nm) L-shaped gold nanoparticles are
shown in Fig. 6.3c, d, respectively. The symmetry breaking of the low-quality sample
due to defects results in strong differences in second-harmonic signals (Fig. 6.3c),
which is interpreted as a multipolar character of the SHG response [16–18]. The
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(a) (c)

(b) (d)

Fig. 6.3 Extinction spectra of a low-quality (cf. Fig. 6.1b) and b high-quality nanoparticles (cf.
Fig. 6.1c). SHG signals from an array of L-shaped gold nanoparticles as a function of rotation angle
of QWP for c low-quality and d high-quality nanoparticles. Adapted with permission from [18],
Copyright Institute of Physics 2011 and [32], Copyright Optical Society of America 2011

respective SHG signals for the high-quality sample, on the other hand, overlap very
well (Fig. 6.3d). Furthermore, a detailed tensor analysis of these signals suggests that
multipolar tensor components for SHG are suppressed to below 2% of the dominant
dipolar component. In addition to that, the sample with improved quality gives rise
to the enhancement of SHG by a factor of ten compared to the low-quality sample.

6.3.2 Particle Ordering

When the shape and dimensions of the nanoparticles are optimized to the desired
parameters, the next natural step is to play with the ordering of the particles in the
array. At the same time, the changes in the ordering lead to changes in the dimensions
of the unit cells of the arrays. The unit cell size in turn determines whether the unit
cells can or cannot be coupled to each other through diffractive effects. Such coupling
occurs in the resonance domain where the array period is close to the wavelength of
incident light outside the sample or in the substrate. It has been shown earlier that
such effects can lead to spectral narrowing and enhancement of plasmonic resonances
[27, 37–42].

For our samples, the size of the unit cell is controlled by the orientation of the
L-shaped particles (l = 250nm,w = 100nm, d = 500nm) in the array [33, 43]. The
modifications in the sample layout from the standard (Fig. 6.3) lead to the doubling
of the period of the array in one (sample A) or two (sample B) directions (cf. insets
in Fig. 6.4a, b). Note that such modifications in the sample structure also lead to
changes in their proper eigenpolarizations, which are denoted as u and v (Fig. 6.4).
The first observation is that the linear properties of the samples aremodified resulting
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(a) (c)

(b) (d)

Fig. 6.4 The linear spectra of a Sample A and b Sample B (Fig. 6.1d). Insets show the layouts of
the samples and coordinate systems. Second-harmonic intensity from c Sample A and d Sample B
as a function of the linear input polarization state for u- and v-polarized outputs. The polarization
rotation starts from u polarization reaching the v-polarized input at 90°. Adapted with permission
from [33]. Copyright American Chemical Society 2012

in narrower (Fig. 6.4b) or broader (Fig. 6.4a) plasmon resonances compared to the
resonances for reference sample (Fig. 6.3b).

This approach thus opens new directions in the design of plasmonic arrays, in
general, but also influences their nonlinear properties. Sample B with very narrow
resonances enhances SHG (Fig. 6.4d) whereas sample A with broad resonances,
decreases SHG (Fig. 6.4c). The SHG signals from the two modified samples differ
from each other by a factor of 50. This is mostly due to the fact that the efficiency of
SHG depends on the location and the width of resonances close to the fundamental
wavelength (in our case 1,060 nm) [33]. In addition to that, the modification of the
particle orientations modifies the tensorial properties of SHG radiation.

These results show that minor changes in the sample layout can be used to tai-
lor both linear and nonlinear properties of the samples. Such approaches therefore
provide additional degrees of freedom in tailoring the optical properties of meta-
materials.

6.3.3 Passive Elements

So far we used only one type of particles in our sample arrays. However, combining
particles of different shapes in the same array will provide additional opportuni-
ties where each particle is designed for a particular purpose. Our concept is based
on the combination of SHG active L-shaped particles with centrosymmetric pas-
sive nanobars (cf. Fig. 6.1e) [34]. The bars are passive in the sense that they are
centrosymmetric and thus do not produce SHG as such. However, when the nano-
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(a)

(b) (f)

(c)

(d) (g)

(e)

Fig. 6.5 a–e Polarized extinction spectra of studied samples (layouts shown as insets). f and g
SHG signals from the samples normalized to the strongest signals of the reference L sample (yxx
for small L’s and yyy for big L’s). Adapted with permission from [34]. Copyright (2013) by The
American Physical Society

bars are placed in the same array as SHG active L’s, they modify linear responses
and subsequently the local electromagnetic fields.

We prepared two series of samples: reference samples consisting of an array of
SHG active L-shaped nanoparticles (l = 175nm, w = 100nm, d = 1, 000nm, inset
in Fig. 6.5b and l = 275nm, w = 100nm, d = 1000nm, inset in Fig. 6.5d), array of
passive bars (l = 300nm, w = 50nm, d = 500nm, inset in Fig. 6.5a) and samples
combining active and passive elements (insets in Fig. 6.4c, e). In the latter case, the
bars are oriented in x or y directions. The resonant polarizations of the L particles
were also chosen to be x or y for smaller or bigger L’s, respectively.
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For the samples combining the two types of particles, the bars modify the reso-
nances of the L’s in a way that the entire spectrum is more than simple superposition
of spectra of the L’s and bars (Fig. 6.4c, e). As previously mentioned, the SHG effi-
ciency depends on position of the plasmon peak with respect to the laser wavelength
and also on the magnitude of the resonance. In the samples combining active and
passive particles, the plasmon peaks close to the laser wavelength are enhanced by
about a factor of two when the long axis of the bars is oriented along the polariza-
tion of the corresponding resonance. This enhancement is due to coupling between
two types of particles although their resonances occur at different wavelengths. In
contrast, for the samples containing bars oriented orthogonally, the plasmon peaks
at the laser wavelength remain almost unchanged [34].

Such modification of the linear properties has strong influence on the nonlinear
response of the samples. Compared to the respective reference samples, the SHG
signals of the samples combining the two types of particles are enhanced by about
a factor of two when the bars are oriented along the resonant polarization of the
L’s (Fig. 6.5f, g). In the case of small L’s the tensor component yxx is enhanced,
whereas the component yyy is enhanced in the case of large L’s. Note also that,
due to centrosymmetry, SHG from the bars is very close to the background noise.
Furthermore, similarly to linear results, when the bars are oriented orthogonally to
the resonant polarization of L’s, the SHG signals are modified only little [34].

The results, particularly the strong correlation between linear data and SHG
response, suggest that the enhancement of second-order nonlinear radiation arises
from the modification by passive elements of the plasmon resonances and associated
local-field distributions at the fundamental wavelength.

The results can be explained by using coupled-dipole model [44]. In terms of this
model we treat each particle as a point dipole with anisotropic polarizability, where
the total field acting on an individual particle includes the incident field and the sum
of the retarded fields scattered by the other particles. The effective polarizability of
the L’s is thus modified by their coupling to the bars [34].

6.4 Towards Optimized Response

The optimization of the nonlinear optical responses of metal nanostructures and
metamaterials has been gathering more and more attention during the last decade
[3, 29, 45–49]. In order to enhance SHG from plasmonic surfaces, a variety of
structures and ideas have been studied.

The resonance enhancement of SHG from split-ring resonators has been addressed
and interpreted through a favorable effect from resonances at the fundamental wave-
length but a detrimental loss mechanism at the harmonic frequency [13]. Losses are
thus an obstacle for further enhancement of the second-order response. One way to
overcome such problems is to use diffractive coupling between particles,which leads
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to narrow resonances [41, 42]. Another approach to enhance the nonlinear response
without increasing losses may be to use high-order resonances.

Using multiple resonances at the fundamental and second-harmonic wavelengths
is another idea to boost the SHG response from nanostructures [28]. The latter was
presented for double-resonant plasmonic antennas, which already use the idea of
combining several particles into a more complex structure.

Typical examples of structures consisting of several particles are dimers which
involve two nanoparticles placed closely to each other. Such adjacent location results
in nanogap where the local-field is enhanced. We have shown this for T-shaped
nanodimers formed from two bars, vertical and horizontal, separated by a few nm
gap [25]. Our results suggested that the local-field distribution is affected by the
coupling between the bars. Also, even very small differences in the structure of
dimer significantly affect the local-field distribution and thus the SHG response [25].

More complicated oligomers show also strong coupling between particles
[50, 51]. Recently, such oligomeric system has been studied in terms of enhanc-
ing second-harmonic response through Fano resonances [49].

6.5 Conclusions

We have addressed several issues that need to be considered in order to tailor and
enhance the second-order nonlinear response from structured plasmonic surfaces.
Although we have already obtained very promising results and demonstrated several
new concepts, most of the presented ideas are not optimized yet. Furthermore, we
have not yet combined these approaches into one in order to obtain the most efficient
SHG plasmonic structure.

There are still many open questions concerning the nonlinearity frommetal nanos-
tructures. For example the role of surface and bulk effects in origin of the local SHG
response is not clear yet. Some theoretical results emphasize the bulk contribution
[52], while experimental results on flat metal films suggest the dominance of the
surface effects [53]. Other ideas connect the importance of surface and bulk effects
with experimental details [54] or emphasize the role of particle shape [55, 56].

We believe that our work is only the beginning of designing metamaterials with
fully controllable nonlinear optical properties what will lead to various plasmonic
applications.

Acknowledgments We thank B. K. Canfield, G. Genty, J. Lehtolahti, K. Koskinen, S. Kujala,
J. Mäkitalo, H. Pietarinen, R. Siikanen, S. Suuriniemi, Y. Svirko, J. Turunen and M. Zdanowicz
for fruitful discussions and/or help in measurements. This work was supported by the Academy of
Finland (132438 and 134980) and by the Graduate School of the Tampere University of Technology.



114 R. Czaplicki et al.

References

1. K. Kelly, E. Coronado, L. Zhao, G. Schatz, The optical properties of metal nanoparticles: the
influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003)

2. M. Stockman, D. Bergman, C. Anceau, S. Brasselet, J. Zyss, Enhanced second-harmonic gen-
eration by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and
correlations. Phys. Rev. Lett. 92, 057402 (2004)

3. M. Kauranen, A.V. Zayats, Nonlinear plasmonics. Nat. Photon. 6, 737–748 (2012)
4. A. Wokaun, J.G. Bergman, J.P. Heritage, A.M. Glass, P.F. Liao, D.H. Olson, Surface second-

harmonic generation from metal island films and microlithographic structures. Phys. Rev. B
24, 849–856 (1981)

5. J.A.H. van Nieuwstadt, M. Sandtke, R.H. Harmsen, F.B. Segerink, J.C. Prangsma, S. Enoch,
L. Kuipers, Strong modification of the nonlinear optical response of metallic subwavelength
hole arrays. Phys. Rev. Lett. 97, 146102 (2006)

6. T. Xu, X. Jiao, G.-P. Zhang, S. Blair, Second-harmonic emission from sub-wavelength aper-
tures: effects of aperture symmetry and lattice arrangement. Opt. Express 15, 13894–13906
(2007)

7. F. Eftekhari, R. Gordon, Enhanced second harmonic generation from noncentrosymmetric
nanohole arrays in a gold film. IEEE J. Sel. Top. Quant. Electron. 14, 1552–1558 (2008)

8. S. Takahashi, A.V. Zayats, Near-field second-harmonic generation at a metal tip apex. Appl.
Phys. Lett. 80, 3479–3481 (2002)

9. A. Bouhelier,M. Beversluis, A.Hartschuh, L. Novotny, Near-field second-harmonic generation
induced by local field enhancement. Phys. Rev. Lett. 90, 013903 (2003)

10. J.M.Kontio,H.Husu, J. Simonen,M.J.Huttunen, J. Tommila,M. Pessa,M.Kauranen,Nanoim-
print fabrication of gold nanocones with 10 nm tips for enhanced optical interactions. Opt. Lett.
34, 1979–1981 (2009)

11. M. Klein, C. Enkrich, M. Wegener, S. Linden, Second-harmonic generation from magnetic
metamaterials. Science 313, 502–504 (2006)

12. N. Feth, S. Linden, M. Klein, M. Decker, F. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. Koch, J.
Moloney,M.Wegener, Second-harmonic generation fromcomplementary split-ring resonators.
Opt. Lett. 33, 1975–1977 (2008)

13. F.B.P. Niesler, N. Feth, S. Linden, M. Wegener, Second-harmonic optical spectroscopy on
split-ring-resonator arrays. Opt. Lett. 36, 1533–1535 (2011)

14. H. Tuovinen, M. Kauranen, K. Jefimovs, P. Vahimaa, T. Vallius, J. Turunen, N.-V. Tkachenko,
H. Lemmetyinen, Linear and second-order nonlinear optical properties of arrays of noncen-
trosymmetric gold nanoparticles. J. Nonlinear Opt. Phys. Mater. 11, 421–432 (2002)

15. B. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, M. Kauranen, Polarization effects in
the linear and nonlinear optical responses of gold nanoparticle arrays. J. Opt. A 7, S110–S117
(2005)

16. S. Kujala, B. Canfield, M. Kauranen, Y. Svirko, T. Turunen, Multipole interference in the
second-harmonic optical radiation from gold nanoparticles. Phys. Rev. Lett. 98, 167403 (2007)

17. S. Kujala, B. Canfield, M. Kauranen, Y. Svirko, J. Turunen, Multipolar analysis of second-
harmonic radiation from gold nanoparticles. Opt. Express 16, 17196–17208 (2008)

18. M. Zdanowicz, S. Kujala, H. Husu, M. Kauranen, Effective mediummultipolar tensor analysis
of second-harmonic generation from metal nanoparticles. New J. Phys. 13, 023025 (2011)

19. M. Gentile, M. Hentschel, R. Taubert, H. Guo, H. Giessen, M. Fiebig, Investigation of the
nonlinear optical properties of metamaterials by second harmonic generation. Appl. Phys. B
105, 149–162 (2011)

20. V.K. Valev, N. Smisdom, A.V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V.V.
Moshchalkov, T. Verbiest, Plasmonic ratchet wheels: switching circular dichroism by arranging
chiral nanostructures. Nano Lett. 9, 3945–3948 (2009)

21. V.K. Valev, A.V. Silhanek, N. Verellen, W. Gillijns, P. Van Dorpe, O.A. Aktsipetrov, G.A.E.
Vandenbosch, V.V.Moshchalkov, T. Verbiest, Asymmetric optical second-harmonic generation
from chiral G-shaped gold nanostructures. Phys. Rev. Lett. 104, 127401 (2010)



6 Optimization Strategies for Second-Order Nonlinear Metamaterials 115

22. G. Hajisalem, A. Ahmed, Y. Pang, R. Gordon, Plasmon hybridization for enhanced nonlinear
optical response. Opt. Express 20, 29923–29930 (2012)

23. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, P.-F. Brevet,
Optical second harmonic generation of single metallic nanoparticles embedded in a homoge-
neous medium. Nano Lett. 10, 1717–1721 (2010)

24. J. Butet, G. Bachelier, I. Russier-Antoine, C. Jonin, E. Benichou, P.-F. Brevet, Interference
between selected dipoles and octupoles in the optical second-harmonic generation from spher-
ical gold nanoparticles. Phys. Rev. Lett. 105, 077401 (2010)

25. B. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, M. Kauranen, Local
field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers. Nano
Lett. 7, 1251–1255 (2007)

26. H. Husu, B. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, M. Kauranen, Chiral
coupling in gold nanodimers. Appl. Phys. Lett. 93, 183115 (2008)

27. K.D. Ko, A. Kumar, K.H. Fung, R. Ambekar, G.L. Liu, N.X. Fang, K.C. Toussaint, Nonlinear
optical response from arrays of Au bowtie nanoantennas. Nano Lett. 11, 61–65 (2011)

28. K. Thyagarajan, S. Rivier, A. Lovera, O.J.F. Martin, Enhanced second-harmonic generation
from double resonant plasmonic antennae. Opt. Express 20, 12860–12865 (2012)

29. J. Butet, K. Thyagarajan, O.J.F. Martin, Ultrasensitive optical shape characterization of gold
nanoantennas using second harmonic generation. Nano Lett. 13, 1787–1792 (2013)

30. Y. Zhang, N.K. Grady, C. Ayala-Orozco, N.J. Halas, Three-dimensional nanostructures as
highly efficient generators of second harmonic light. Nano Lett. 11, 5519–5523 (2011)

31. B. Canfield, S. Kujala, K. Laiho, K. Jefimovs, J. Turunen, M. Kauranen, Chirality arising from
small defects in gold nanoparticle arrays. Opt. Express 14, 950–955 (2006)

32. R. Czaplicki, M. Zdanowicz, K. Koskinen, J. Laukkanen, M. Kuittinen, M. Kauranen, Dipole
limit in second-harmonic generation fromarrays of gold nanoparticles.Opt. Express 19, 26866–
26871 (2011)

33. H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, M. Kauranen,
Metamaterials with tailored nonlinear optical response. Nano Lett. 12, 673–677 (2012)

34. R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, J. Laukkanen, J. Lehtolahti, M. Kuittinen, M.
Kauranen, Enhancement of second-harmonic generation from metal nanoparticles by passive
elements. Phys. Rev. Lett. 110, 093902 (2013)

35. H. Husu, J. Mäkitalo, J. Laukkanen, M. Kuittinen, M. Kauranen, Particle plasmon resonances
in L-shaped gold nanoparticles. Opt. Express 18, 16601–16606 (2010)

36. R. Czaplicki, M. Zdanowicz, K. Koskinen, H. Husu, J. Laukkanen,M. Kuittinen,M. Kauranen,
Linear and nonlinear properties of high-quality L-shaped gold nanoparticles. Nonl. Opt. Quant.
Opt. 45, 71–83 (2012)

37. S. Linden, J. Kuhl, H.Giessen, Controlling the interaction between light and gold nanoparticles:
selective suppression of extinction. Phys. Rev. Lett. 86, 4688–4691 (2001)

38. L. Zhao, K.L. Kelly, G.C. Schatz, The extinction spectra of silver nanoparticle arrays: influence
of array structure on plasmon resonance wavelength and width. J. Phys. Chem. B 107, 7343–
7350 (2003)

39. A. Christ, S.G. Tikhodeev, N.A. Gippius, J. Kuhl, H. Giessen, Waveguide-plasmon polaritons:
strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys.
Rev. Lett. 91, 183901 (2003)

40. A. Christ, T. Zentgraf, J. Kuhl, S.G. Tikhodeev, N.A. Gippius, H. Giessen, Optical properties
of planar metallic photonic crystal structures: experiment and theory. Phys. Rev. B 70, 125113
(2004)

41. Y. Chu, E. Schonbrun, T. Yang, K.B. Crozier, Experimental observation of narrow surface
plasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett. 93, 181108 (2008)

42. B. Auguié, W.L. Barnes, Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett.
101, 143902 (2008)

43. H. Husu, J. Mäkitalo, R. Siikanen, G. Genty, H. Pietarinen, J. Lehtolahti, J. Laukkanen, M.
Kuittinen, M. Kauranen, Spectral control in anisotropic resonance-domain metamaterials. Opt.
Lett. 36, 2375–2377 (2011)



116 R. Czaplicki et al.

44. García de Abajo, F.J. Colloquium, Light scattering by particle and hole arrays. Rev.Mod. Phys.
79, 1267–1290 (2007)

45. C.M. Soukoulis, M. Wegener, Past achievements and future challenges in the development of
three-dimensional photonic metamaterials. Nat. Photon. 5, 523–530 (2011)

46. N.J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander, Plasmons in strongly coupled metallic
nanostructures. Chem. Rev. 111, 3913–3961 (2011)

47. M. Navarro-Cia, S.A. Maier, Broad-band near-infrared plasmonic nanoantennas for higher
harmonic generation. ACS Nano 6, 3537–3544 (2012)

48. H. Aouani, M. Navarro-Cia, M. Rahmani, T.P.H. Sidiropoulos, M. Hong, R.F. Oulton, S.A.
Maier, Multiresonant broadband optical antennas as efficient tunable nanosources of second
harmonic light. Nano Lett. 12, 4997–5002 (2012)

49. K. Thyagarajan, J. Butet, O.J.F. Martin, Augmenting second harmonic generation using Fano
resonances in plasmonic systems. Nano Lett. 13, 1847–1851 (2013)

50. J. Ye, F. Wen, H. Sobhani, J.B. Lassiter, P. Van Dorpe, P. Nordlander, N.J. Halas, Plasmonic
nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett.
12, 1660–1667 (2012)

51. J.A. Fan, K. Bao, L. Sun, J. Bao, V.N. Manoharan, P. Nordlander, F. Capasso, Plasmonic mode
engineering with templated self-assembled nanoclusters. Nano Lett. 12, 5318–5324 (2012)

52. Y. Zeng, W. Hoyer, J. Liu, S.W. Koch, J.V. Moloney, Classical theory for second-harmonic
generation from metallic nanoparticles. Phys. Rev. B 79, 235109 (2009)

53. F. Wang, F. Rodríguez, W. Albers, R. Ahorinta, J. Sipe, M. Kauranen, Surface and bulk contri-
butions to the second-order nonlinear optical response of a gold film. Phys. Rev. B 80, 233402
(2009)

54. A. Benedetti, M. Centini, M. Bertolotti, C. Sibilia, Second harmonic generation from 3D
nanoantennas: on the surface and bulk contributions by far-field pattern analysis. Opt. Express
19, 26752–26767 (2011)

55. C. Cirací, E. Poutrina, M. Scalora, D.R. Smith, Second-harmonic generation in metallic
nanoparticles: clarification of the role of the surface. Phys. Rev. B 86, 115451 (2012)

56. C. Cirací, E. Poutrina,M. Scalora, D.R. Smith, Origin of second-harmonic generation enhance-
ment in optical split-ring resonators. Phys. Rev. B 85, 201403 (2012)



Chapter 7
Nonlinear Optical Interactions in ε-Near-Zero
Materials: Second and Third Harmonic
Generation

Maria Antonietta Vincenti, Domenico de Ceglia, Vito Roppo
and Michael Scalora

Abstract Second and third harmonic generation in materials that display near-zero
permittivity values are discussed. The enormous field enhancement due to the con-
tinuity of the longitudinal component of the displacement field enhances the non-
linear response drastically. Nonlinear surface terms due to symmetry breaking and
phase-locked harmonic components should not be neglected in such extreme envi-
ronments.

7.1 Introduction

Although the first demonstration of artificial media exhibiting near-zero
permittivity values occurred more than 50years ago [1, 2], in more recent years the
study of the linear properties of these media has enjoyed renewed interest: near-zero-
permittivity (NZP) or ε-near-zero (ENZ) materials may be used to control antenna
directivity [3, 4], or to realize perfect coupling through electromagnetic tunneling
in sub-wavelength low-permittivity regions [5, 6]. Moreover, since the component
of the (TM-polarized) electric field normal to the interface becomes singular when
a material exhibits permittivity values close to zero [7], these materials may also be
exploited to boost nonlinear processes such as harmonic generation [8–10], optical
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bistability [11], and soliton excitation [12]. Zero permittivity values may be obtained
either naturally or artificially: all natural materials exhibit electronic resonances at
wavelengths that vary from the far infrared (LiF, CaF2, MgF2 or SiO2) to the visible
(Au, Ag, Cu) and ultraviolet (GaAs, GaP) frequency range [13]. However, in most
cases absorption plays amajor role by abating local field enhancement and frustrating
both linear and nonlinear optical properties. In contrast, artificial media may provide
a more effective path to overcome nature’s limitations. For example, active materials
may be introduced into metal-based composites by tailoring the electric properties
of metamaterials to decrease losses [14–16]. Similarly, losses may be reduced for
materials having both electric andmagnetic resonances [17]. An alternative approach
to achieve effective zero permittivity is to exploit waveguides operating near their
cut-off. The introduction of nonlinear media inside such waveguides has been shown
to help attain tunneling control [18] and switching [19].

The inclusion of metals in artificial structures with effective ENZ properties can
have additional implications thanks to nonlinear processes that arise directly from
the metal [10]. In fact, although metals are centrosymmetric and do not possess
intrinsic, quadratic nonlinear terms, they display an effective second-order response
that arises from symmetry breaking at the surface, magnetic dipoles (Lorentz force),
inner-core electrons, convective nonlinear sources, and electron gas pressure [20].
In addition, metals also display an unusually large third-order nonlinearity that,
together with effective second-order nonlinear sources, may significantly contribute
to the generated signals especially under circumstances where the electric field is
dramatically enhanced [21–27], including ENZ materials.

Inwhat followswe present a brief overviewof the key linear properties thatmay be
exploited to enhance second (SH) and third harmonic (TH) generation in materials
with permittivity values close to zero, and show how losses influence their linear
and nonlinear optical properties. Then we will compare the efficiency of nonlinear
processes arising from bulk and surface contributions and evaluate the importance of
phase-locked harmonic components in scenarios where absorption at the harmonic
frequency is not negligible.

7.2 Nonlinear Processes in ε-Near-Zero Materials

When a monochromatic plane wave impinges on an interface between a generic
medium and amaterial with relative permittivity that tends to zero (Re(ε(ω)) → 0+),
the continuity requirement for the displacement field component normal to the inter-
face implies that the normal component of the electric field inside the ENZ material
is singular. This occurs at Brewster or critical angle conditions [7]. In finite slabs (see
Fig. 7.1a) singular behavior of the normal electric field component may be achieved
by reducing the thickness d of the slab; approaching normal incidence (ϑi → 0), or
both [7]. If on the other hand one fixes Re(ε(ω)) to a near-zero value, it suffices to
reduce slab thickness to exploit tunneling of evanescent waves and multiple reflec-
tions to enhance the local field [28]. Any natural material displays regions where the
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Fig. 7.1 a Sketch of the system under investigation: a TM-polarized pump with electric field
Eω and wavevector kω impinges on a slab of thickness d with angle of incidence ϑi . b Material
dispersion of the slab in a, modeled with a single species of Lorentz oscillators; (inset) Detail of
the short-wavelength zero-crossing region

permittivity value crosses zero. For example, the permittivity of a medium may be
described as a superposition of Lorentz oscillators:

ε(ω) = 1 −
∑

j

ω2
p j

ω2 − ω2
0 j + iωγ j

. (7.1)

The plasma frequencies are denoted byωp j , γ j are damping coefficients,ω0 j are res-
onance frequencies, and i = √−1. From (7.1) one may infer that for each resonance
Re(ε(ω))crosses zero twice. The spectral positions of the crossing points depend on
ωpj andω0 j . However, the values of Im(ε(ω)) at the crossing points are substantially
different from each other, as absorption tends to diminish at the short-wavelength
tail (Fig. 7.1b).

For simplicity we now assume the slab in Fig. 7.1a is modeled by a single species
of Lorentz oscillators. As an example, choosing Lorentz oscillator parameters as
follows: ωp1 = 0.91ωr , ω01 = 0.25ωr , and γ1 = 0.010ωr, where the reference
frequency is ωr = 2πc/(1µm) and c is the speed of light in vacuo, ensures an ENZ
condition in the vicinity of λω = 1064nm (Fig. 7.1b). The same parameters also yield
small values for the imaginary part of the permittivity at the second (λ2ω = 532nm)
and third (λ3ω = 354.6nm) harmonic wavelengths. We note that this choice of
parameters is by no means unique, and other parameters may be used to obtain
similar values for the permittivities at the same frequencies. We set slab thickness
to d = 200nm. In the vicinity of the pump wavelength the linear properties of the
slab are strongly related to both Re(ε(ω)) and Im(ε(ω)). For example, on the one
hand transmission and reflection (Fig. 7.2a, b) frequency selectivity and asymmetry
are dictated by the slope and change in sign of Re(ε(ω)), respectively. On the other
hand, both angular and spectral selectivity of the slab’s absorption (Fig. 7.2c) are
strongly related to the oscillator’s damping coefficient γ1 and, as a consequence, to
the value of Im(ε(ω)).
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Fig. 7.2 a Transmission, b reflection and c absorption versus wavelength and incident angle ϑi
for a slab d = 200nm thick and a singly-resonant oscillator species. Fundamental (red, dashed
line marked λω), second (green, dashed line marked λ2ω) and third (blue, dashed line marked λ3ω)
harmonic wavelengths are shown on the maps

Noother relevant spectral and angular featuresmaybe identified far from the pump
wavelength, i.e., where Re(ε(ω)) = 0. Absorption is practically zero at both second
(green, dashed lines marked λ2ω in Fig. 7.2) and third harmonic wavelengths (blue,
dashed lines marked λ3ω in Fig. 7.2). This implies that the homogeneous solution of
the nonlinear wave equation [29] is generated and propagates freely inside the slab.
The influence of absorption at the harmonic wavelengths is discussed in Sect. 2.3.

In order to understand the potential of this system for nonlinear applications one
can evaluate the electric field enhancement, max

(|Ez |
/|Eω|), inside the slab. Indeed

electric field enhancement (Fig. 7.3a) is related to the absorption profile (Fig. 7.2c)
and thus linked to the choice of the damping coefficient of the oscillator γ1.

Maximumabsorption values in the slab dependweakly on Im(ε(ω)): since absorp-
tion is proportional to the product Im(ε(ω))|E|2, a decreasing Im(ε(ω)) is associated
with an increase of the electric field enhancement. For this reason nonlinear optical
interactions are expected to increase by decreasing γ1 [30]. The electric field en-
hancement maps for different values of γ1 as a function of wavelength and angle of
incidence are shown in Fig. 7.3: although electric field enhancement may increase by

http://dx.doi.org/10.1007/978-3-319-08386-5_2
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Fig. 7.3 Electric field enhancement, max
(|Ez |

/|Eω|), as a function of wavelength and angle of
incidence for a slab d = 200nm thick, modeled with one species of Lorentz oscillators, with
ωp1 = 0.91ωr , ω01 = 0.25ωr and a γ1 = 0.01ωr , b γ1 = 0.001ωr and c γ1 = 0.0001ωr

reducing Im(ε(ω)), we emphasize that similar results may be achieved by reducing
slab thickness, thus favoring the buildup of the electric field by increased tunneling
of evanescent waves. This condition may be achieved only for incident angles ϑi

greater than the critical angle ϑC (ϑC = sin−1 √
ε(ω)) [7].

7.2.1 Second and Third Harmonic Generation Arising
from Bulk Nonlinearities

In a scenario where the pump intensity may be dramatically enhanced thanks to a
vanishing Re(ε(ω)), nonlinear processes become exceptionally favored even in sub-
wavelength structures and for relatively low pump irradiance values. To account for
second and third order nonlinear effects we express the leading contributions of the
nonlinear polarization densities in the k direction at the second (P2ω,k) and third
(P3ω,k) harmonic frequencies as [31]:



122 M.A. Vincenti et al.

P2ω,k = ε0

3∑

l,m=1

χ
(2)
klm(2ω,ω,ω)Eω,l Eω,m, (7.2)

P3ω,k = ε0

3∑

l,m,n=1

χ
(3)
klmn(3ω,ω,ω, ω)Eω,l Eω,m Eω,n, (7.3)

where k, l, m, n are Cartesian coordinates, ε0 is the vacuum electric permittivity,
χ

(2)
klm and χ

(3)
klmn are the instantaneous second, and third order susceptibility tensor

components, respectively. Since the efficiency of the nonlinear processes depend on
the values of χ(2)

klm and χ
(3)
klmn , one can expect significantly different results depending

on the materials used to achieve the ENZ condition. For example, in metamaterials
composed of core-shell nanoparticles [10, 32] high effective χ

(3)
klmn that derivemostly

from the metal are expected, whereas the values of the effective χ
(2)
klm will vary

according to the dielectrics present.
In what follows we assume χ

(2)
xxx = χ

(2)
yyy = χ

(2)
zzz = 10 pm/V, χ(3)

xxxx = χ
(3)
yyyy =

χ
(3)
zzzz = 10−20 m2/V2, typical for dielectric materials [31]. Slab thickness and

Lorentz oscillator parameters are as in Sect. 2. The resulting material dispersion
is shown in Fig. 7.1b.

In the undepleted pump approximation the total (forward plus backward) SH and
TH conversion efficiencies, I2ω/Iω and I3ω/Iω, are of the order of 10−5 and 10−7,
respectively, and are shown inFig. 7.4a, b. The input irradiance is Iω = 100MW/cm2.
Harmonic efficiency maps are similar to the field enhancement map (Fig. 7.3b) in
both spectral and angular features. The results in Fig. 7.4 were acquired assuming a
continuous wave pump. Similar results may be obtained by using incident pulses at
least 200 fs in duration, because of the non-resonant nature of thefield enhancement in
ENZ slabs [32].We note that although forward and backward conversion efficiencies
have almost identical spectral and angular shapes for homogeneous sub-wavelength
slabs and homogeneous bulk nonlinearities, they may exhibit different spectral and
angular features whenever resonant modes are excited, or if nonlinear contributions
are not uniformly distributed inside the slab [10].

7.2.2 Harmonic Generation from Surface and Volume Sources

In Sect. 2.1 we saw that under circumstances where electric field enhancement is
limited by either the finite thickness of the slab or losses, the nonlinear response in
the presence of bulk nonlinearities can be significant even for relatively low input
irradiance values. In that case surface sources, magnetic dipoles [20], and electric
quadrupole contributions may be neglected. If, on the other hand, χ(2) = χ(3) = 0,
these sources become the sole contributors to harmonic generation. It is generally
not possible to separate surface from volume contributions, as their relative weights
depend on a number of factors, such asmaterial dispersion, thickness and geometrical

http://dx.doi.org/10.1007/978-3-319-08386-5_2
http://dx.doi.org/10.1007/978-3-319-08386-5_2
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Fig. 7.4 Total (forward plus backward) a SH and b TH conversion efficiencies for a slab of ENZ
d = 200nm thick as a function of incident angle and pump wavelength

features like corrugations and/or presence of slits, and should be evaluated on a case-
by-case basis.

We consider a classical, local oscillator model in order to provide physical in-
sight into how second and third harmonic generation may come about in a medium
where dipolar nonlinearities are absent, i.e., χ(2) = χ(3) = 0. One may argue that
an incident field tends to distort the electronic cloud of an atom, consisting mostly
of outermost, more loosely bound electrons. While this picture suffices to explain
most linear optical phenomena, the explanation of nonlinear optical phenomena like
harmonic generation from centrosymmetric materials requires us to look more in-
timately at the details of the atom. As the outer electronic cloud becomes slightly
distorted, inner core electrons that occupy lower orbitals interact just a little more
strongly with the nucleus, giving way to small imbalances in the charge distribu-
tion which in turn interacts weakly with the externally applied fields in the form of
quadrupolar transitions. One may then begin with an equation of motion for a multi-
polar charge distribution assumed to be under the action of internal forces (damping,
harmonic and anharmonic restoring forces) and external forces due to the applied
electromagnetic fields. With reference to Fig. 7.5, a possible, quite simplistic way to
describe nonlinear optical processes is then to modify the Lorentz model of the atom
by introducing external electric and magnetic forces on a charge e as follows [33,
34]:

F(r0 + r, t) = eE(r0 + r, t) + eṙ × B(r0 + r, t). (7.4)

The fields at the electron position r0 + r may be expanded about the origin r0,
so that:

E(r0 + r, t) = E(r0, t) + (r · ∇r) E(r0, t) + 1

2
∇r (r r · ∇rE(r0, t) ) + · · · (7.5)
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Fig. 7.5 Lorentz model of
the atom. A charge e is
attached to a spring of
constant k, subject to external
electric and magnetic forces,
and to internal linear and
nonlinear restoring forces.
The origin is at r0; r is the
displacement from
equilibrium

and

B(r0 + r, t) = B(r0, t) + (r · ∇r) B(r0, t) + 1

2
∇r (r r · ∇rB(r0, t) ) + · · · (7.6)

Collecting lowest order terms, the force in (7.4) becomes:

m∗r̈(t) + γ m∗ṙ(t) + kr(t) = eE(r0, t) + e (r · ∇r) E(r0, t) + e

4
∇r (rr:∇rE(r0, t))

+ eṙ × (B(r0, t) + (r · ∇r) B(r0, t) + · · · ) (7.7)

where one may recognize p = er and Q = e
2rr as the electric dipole and (intrinsi-

cally nonlinear) quadrupole contributions, respectively; m∗is the effective mass of
the oscillator (we assume m∗ = me); k is the spring constant; γ is the damping coef-
ficient. The magnetic field expansion is truncated at its dipole term. Equation (7.7) is
a nonlinear equation capable of generating harmonics even in the absence of dipolar
nonlinearities. Then, assuming a solution of the type

r = rω e−iωt + r2ωe−2iωt + r3ωe−3iωt + c.c., (7.8)

the equation for the polarizations at the pump, SH and TH frequencies read as
follows [35]:

P̈ω + γ Ṗω + ω2
0Pω = e

m∗

{
n0eEω − 1

2
(∇ · P2ω) E∗

ω + 2
(∇ · P∗

ω

)
E2ω

+ (
Ṗ∗

ω + iωP∗
ω

) × H2ω + (
Ṗ2ω − 2iωP2ω

) × H∗
ω + 1

4
Fω

}

(7.9)
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Fig. 7.6 Total SH (blue, solid line—with quadrupoles; blue dashed line—without quadrupoles)
and TH (green, solid line—with quadrupoles; green dashed line—without quadrupoles) efficiencies
versus angle for a slab d = 200nm thick modeled with a Lorentz oscillators with parameters in
Sect. 2. Pump irradiance is Iω = 100MW/cm2 and second and third order bulk susceptibilities are
zero

P̈2ω + γ Ṗ2ω + ω2
0P2ω = e

m∗
{

n0eE2ω + (∇ · Pω) Eω − 1

3
(∇ · P3ω) E∗

ω

− 3
(∇ · P∗

ω

)
E3ω + (

Ṗω − iωPω

) × Hω + 1

4
F2ω

}

(7.10)

P̈3ω + γ Ṗ3ω + ω2
0P3ω = e

m∗
{

n0eE3ω + 1

2
(∇ · P2ω) Eω + 2 (∇ · Pω) E2ω

+ (
Ṗ2ω − iωP2ω

) × Hω + (
Ṗω − iωPω

) × H2ω + 1

4
F3ω

}
,

(7.11)

where n0 is the electron density and ω0 = √
k/m∗. Eω, E2ω, E3ω, Hω, H2ω and H3ω

are the electric and magnetic field envelope functions at each harmonic, and Fω, F2ω
and F3ω are the lowest-order, quadrupolar contributions at the pump, SH and TH
frequencies [35]. Only lowest-order magnetic contributions have been retained.

We solve (7.9), (7.10) and (7.11) in the time domain together with Maxwell’s
equations assuming n0 = 5.8 × 1028 m−3, γ = γ1 and ω0 = ω01 as in Sect. 2.
With these parameters one obtains total SH conversion efficiency maximum of
approximately 10−10, and a TH efficiencymaximum of approximately 10−18, shown
in Fig. 7.6 as a function of incident angle for Iω = 100MW/cm2 and pulses ∼200 fs
in duration. In the figure, blue and green dashed curves show SH and TH responses
without quadrupolar contributions, thus revealing their importance for the SH gen-
eration process, in contrast to TH generation. Even if the SH efficiency appears to be

http://dx.doi.org/10.1007/978-3-319-08386-5_2
http://dx.doi.org/10.1007/978-3-319-08386-5_2
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small, one should compare the efficiency shown in Fig. 7.6 with other systems where
bulk second order contributions are absent. For example, the SH response from the
ENZ slab is still ∼100 times more efficient than the SH response of a silver grating
where surface plasmons or resonant cavity modes are excited [20, 22].

7.2.3 Phase-Locked Second Harmonic Generation
in ε-Near-Zero Media

In a situation where pump electric field enhancement is maximized, harmonic effi-
ciencies may be penalized by either a reduction of the nonlinear susceptibility values
or by the presence of absorption. The case of vanishing bulk χ(2) and χ(3) has been
analyzed in Sect. 2.2, while the presence of absorption losses and the dynamics of
phase-locking in the ENZ medium is discussed in this section.

Evidence of a phase-locking process, which is produced by the inhomogeneous
solutions of the wave equation [36–39], may be found in experimental works, where
large phase and group velocity mismatches between the fundamental frequency (FF)
and the SHwaves allow the observation of twodistinct SHpulses traveling at different
phase and group velocities [40–42]. The homogeneous solution propagates with
the phase and group velocity dictated by material dispersion, and walks off from
the pump. The inhomogeneous solution is trapped by the pump and propagates with
the pump’s phase and group velocity. This peculiar behavior occurs in negative
index [42, 43] and absorbing materials [44, 45] alike, thus allowing the generation
and propagation of harmonic signals in materials or structures where propagation is
ordinarily forbidden [22].

In order to obtain ENZ at λω = 1064nm and significant absorption losses at the
SHwavelength one may consider a different set of Lorentz oscillator parameters that
describe the medium. For example, an ENZ condition at the pump with absorption at
the SH wavelength may be obtained using two species of Lorentz oscillators having
the following parameters: ωp1 = 0.95ωr , ω01 = 0.25ωr , γ1 = 10−4ωr, ωp2 =
0.50ωr, ω02 = 1.92ωr , γ2 = 0.05ωr . Figure7.7a shows the dispersion of a medium
modeled with this particular set of parameters. Differently from the case shown in
Sect. 2.1, the medium is now strongly absorptive at the SH wavelength. This implies
that the homogeneous solution of the nonlinear wave equation is absorbed in the
medium. In contrast, the phase-locked (PL) SH component, i.e., the inhomogeneous
solution of the nonlinear wave equation, will experience the same dispersion as the
pump.

This suggests that in this case SH generation strongly depends on slab thick-
ness, as the amount of the homogeneous SH signal that is eventually absorbed
is greater for thicker slabs. For example, assuming a slab d = 200nm thick, an
input irradiance of Iω = 100MW/cm2, and bulk second order susceptibilities
χ

(2)
xxx = χ

(2)
yyy = χ

(2)
zzz = 10 pm/V, SH efficiency decreases by about one order of

http://dx.doi.org/10.1007/978-3-319-08386-5_2
http://dx.doi.org/10.1007/978-3-319-08386-5_2
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Fig. 7.7 aDispersion of amaterialmodeledwith two species ofLorentz oscillators.bTotal (forward
plus backward) SH efficiency from a slab d = 200nm thick of material with the dispersion in a,
Iω = 100MW/cm2 and χ

(2)
xxx = χ

(2)
yyy = χ

(2)
zzz = 10 pm/V

magnitude (∼10−6) when compared to the case shown in Sect. 2.1. For this thick-
ness (d = 200nm) absorption limits harmonic generation only partially since the
homogeneous component of the SH is not completely absorbed. Figure7.7b shows
total (forward plus backward) SH efficiency as a function of the angle of incidence
for λω = 1064nm. If the thickness of the slab increases, total second harmonic gen-
eration suffers because more of the homogeneous signal is absorbed. However, while
the total conversion efficiency decreases when compared to the absorption-less case,
the phase-locked componentmanages to survive and still contribute to the conversion
process. For example, SH conversion efficiency for a slab d = 2µm thick slab is
still a respectable ∼10−7.

Another interesting aspect of the nonlinear dynamics is the possibility to monitor
the refraction of the two harmonic components as they propagate in the medium
[44, 46]. In order to immediately visualize the decay of the homogeneous SH signal
and the refraction angles of all the fields during propagation, we illuminate a semi-
infinite slab of ENZ medium with a spatio-temporal, Gaussian shaped pulse. This
scenario helps us avoid interference effects that arise in the presence of multiple
reflections caused by a second interface. The fundamental frequency (FF) pulse is
∼20 f s in duration, has a beam waist ∼4 λω, and it is incident at an angle ϑi =
1.6◦. In the limit of monochromatic, homogeneous, plane-wave pump signal, the
angle of refraction for the FF and phase-locked SH components is ϑω = ϑ2ω,P L =
30.48◦ + i 38.45◦, while the homogeneous SH component refracts at ϑ2ω = 1.1◦ +
i 0.19◦. The imaginary part of the refraction angle is associated with attenuation of
the inhomogeneous, refracted, plane-wave signals in the ENZmedium. However, the
use of a finite, broad-band beam modifies the angles of refraction of all components
because of chromatic dispersion around the FF. In fact, since the FF is tuned at
the plasma frequency, the red-side of the pulse tends to refract negatively, while the
blue-side of the pulse tends to refract positively (see material dispersion in Fig. 7.7a).
We distinguish between refraction of the phase front and refraction of energy, as

http://dx.doi.org/10.1007/978-3-319-08386-5_2
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Fig. 7.8 a Temporal snapshots of the FF Gaussian beam, incident at 1.6◦, and propagating in an
ENZ medium. b Same temporal snapshots in a showing the SH components generated in the ENZ
medium. c Two-dimensional Fourier transform of panels t1 and t2 in a showing the effective phase
refraction angle of the FF in the ENZ medium d Two-dimensional Fourier transform of panels t1
and t2 in b showing the effective phase refraction angles of the homogeneous and phase-locked SH
components in the ENZ medium

the two directions can be quite different. Figure7.8a shows two different temporal
snapshots (t1 and t2) of the pump pulse, as it enters the ENZ medium (panel labeled
t1 in Fig. 7.8a) and after it has propagated ∼5µm inside the medium (panel labeled
t2 in Fig. 7.8a). Figure7.8c shows the pump pulse in the ENZ medium at instants
t1 and t2 (same as in Fig. 7.8a) in the spatial frequency domain. The pump pulse is
centered at kω/k0 = (0.027, 0.32), which indicates a phase-front refraction angle of
∼5◦. The momentum refraction angle [47, 48], which indicates the actual direction
of energy flow, is approximately 7◦. Propagation of the SH signal is visualized in
Fig. 7.8b. Snapshots are taken for the same instants t1 and t2 of Fig. 7.8a.Visualization
of the SH signals in the spatial frequency domain (Fig. 7.8d) clearly reveals both
homogeneous and PL components, which are centered at k2ω/k0 = (0.056, 2.159)
and 2kω/k0, respectively. For these components effective phase refraction angles
∼1.5◦ (homogeneous) and ∼5◦ (PL SH component) are calculated.
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7.3 Conclusions

The unique properties of ENZ or NZP materials may be exploited to enhance SH
and TH generation. Although absorption losses limit electric field enhancement and
frustrate both linear and nonlinear optical processes, either the introduction of active
materials or the exploitation of tunneling of evanescent waves that occurs above the
critical angle of incidence reveal a path to overcome such limits.

Nonlinear optical processes can be significant both in the presence of bulk non-
linearities and in regimes where only surface sources, magnetic dipoles, and electric
quadrupole contributions are present.

Finally, high absorption losses at the harmonic frequencies limit only partially the
efficiency of nonlinear processes thanks to the relevance of phase-locked harmonic
components and strong field enhancement at the pump frequency.
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Chapter 8
Nonlinear Optical Effects in Positive-Negative
Refractive Index Materials

Andrei I. Maimistov and Ildar R. Gabitov

Abstract The parametric interaction of electromagnetic waves in a medium with
a negative index of refraction is considered. Two cases of Kerr and quadratic non-
linearities are investigated. The properties of nonlinear coupler, channels of which
made of material with opposing signs of refraction index, are studied. Dynamics of
extremely short pulses in the homogeneous doubly-resonant medium is analyzed in
the framework of Maxwell-Duffing-Lorentz model. The new type of quasi-solitons
is presented.

8.1 Introduction

In recent years the new materials with unusual properties have evolved. Among
such materials refereed as metamaterials special attention is given to “left-handed
material” [1–3]. These media are characterized by a negative refraction index (NRI)
when the real parts of the dielectric permittivity and the magnetic permeability are
simultaneously negative in a certain frequency range. Negative sign of the index
of refraction leads to the left-hand orientation of the fundamental triplet E, H, k.
For the current state of technology the losses in the NRI materials are consider-
able. Therefore problem of loss reduction and compensation is the focus of inten-
sive research worldwide [4–8]. Most impressive experiential achievement of loss
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compensation was reported in [9]. These results offer hope that the low-loss mate-
rials with a negative index of refraction will be fabricated in the foreseeable future.
A linear electrodynamics of metamaterials is well described in a number of review
papers both in the specialized journals [10–13], and in the books [14–17].

It is well known that the unusual properties of negative refractive index materi-
als manifest themselves when the wave passes through the interface between such
medium and a conventional dielectric. On the other hand, the refractive index for the
same medium can be positive in one spectral region and negative in another. This
media can be referred to as negative-positive refractive index materials. The new
features of the wave propagation phenomena in negative-positive refractive index
materials where considered in [18, 19].

Second harmonic generation is one of the first examples of the nonlinear phe-
nomena where unusual property of a negative-positive refractive index material was
identified [18, 20–22]. It should be noted that the effect of second- and third-harmonic
generation inmetamaterialswas observed experimentally [23, 24] (see also [25, 26]).

Hereafter we will discuss several kinds of the nonlinear phenomena in negative-
positive refractive index materials.

The parametric interaction of the waves under the slowly varying envelope pulses
approximation in a quadratic or cubic nonlinear medium that is characterized by NRI
is considered. Second and third harmonic generation is discussed comprehensively
in [27] and in [28, 29].

The novel kind of nonlinear interaction of the forward and backward waves can
be realized in a nonlinear oppositely-directional coupler. This coupler consist of two
tightly spaced nonlinear/linear waveguides. The sign of the index of refraction of
one of these waveguides is positive and the index of refraction of other waveguide
is negative. The opposite directionality of the phase velocity and the energy flow in
the NRI waveguide facilitates an effective feedback mechanism that leads to optical
bistability [30] and gap soliton formation [31–33]. Steady state solitary waves (i.e.,
gap solitons) in the nonlinear oppositely-directional coupler is considered in detail.

The combination of the metal nano-rods and split ring resonators can be viewed
as a model for doubly-resonant medium [34]. The linear electrodynamics of the
metamaterials is based on the Maxwell equations and the Lorentz models for the
magnetic and electric resonances. We take into account nonlinearity in the leading
order of polarization using the Duffing oscillator model. It results in the Maxwell-
Duffing-Lorentz model [35]. Here we consider extremely short steady state pulse
propagation in doubly-resonant medium. New type of solitons are presented.

8.2 Parametric Interaction of the Backward and Forward Waves

Parametric processes are well known examples of nonlinear optics. In general
case of the parametric processes one multi-frequency wave transforms to another
multi-frequency wave: ω1 + ω2 + · · · → ω′

1 + ω′
2 + · · · . The three waves and four

waves parametric interactions are the most studied cases.
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Second harmonic generation (SHG) is a special case of three wave interaction
(ω1 + ω1 = ω2) in a χ(2)-medium. Third harmonic generation (THG) is a special
case of four wave interaction (ω1+ω1+ω1 = ω3) in aχ(3)-medium. In both casesω1
denotes the fundamental (pump) wave frequency. The ω2,3 are named as harmonic
wave frequency.

8.2.1 Second Harmonic Generation

Original system of the equation describing the SHG in nonlinear metamaterials has
been considered in [18–22].

−E1,z + v−1
1 E1,t + i(D1/2)E1,t t = ig1E2E∗

1 exp(−iΔkz), (8.1)

E2,z + v−1
2 E2,t + i(D2/2)E2,t t = ig2E2

1 exp(+iΔkz), (8.2)

where E1 and E2 are slowly varying envelopes of the electric field for fundamental
and second harmonic waves. Δk = 2k1 − k2 is phase mismatch. The coupling
constants g1 and g2 are proportional to the non-linear susceptibility of second order
χ(2). The group-velocity dispersion is taken into account by the coefficients D1
and D2.

The normalized form of the equations describing the SHG is as follows

iq1,ζ + (σ/2)q1,ττ − q2q∗
1 = 0, (8.3)

iq2,ζ + iδq2,τ − (β/2)q2,ττ − Δq2 + q2
1/2 = 0. (8.4)

Here q1 and q2 represent the normalized fundamental and harmonic waves
envelopes. δ is normalized group velocity mismatch, Δ is normalized phase mis-
match, σ and β are parameters of the group-velocity dispersion. The all functions
q1,2(ζ, τ ), independent variables ζ, τ and otherwise parameters are expressed in
terms of the physical values are represented in [19].

It should be pointed out that in contrast to the case of positive refractive index
medium, parameter δ here can not be zero. This parameter takes into account the
walk-off effect for pump and harmonic pulses that is due to the difference of the
group velocities’ directions for the interacting waves.

8.2.1.1 Continuous Wave Limit for SHG

It is convenient to start study of SHGby representing (8.3)–(8.4) in terms of real func-
tions (amplitudes and phases). The real variables for interacting waves are defined by
formulae q1,2 = e1,2 exp(iϕ1,2). For continuous waves, (8.3)–(8.4) can be reduced
to following equations
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e1,ζ = e1e2 sin�, e2,ζ = (1/2)e21 sin�, (8.5)

�,ζ = (e21/2e2 + 2e2) cos� + Δ, (8.6)

where � = ϕ2 − 2ϕ1.
There are two integrals of motion for the system of equations (8.5) and (8.6):

e21/2 − e22 = c20, (8.7)

e21e2 cos� + Δe22 = c1. (8.8)

The boundary conditions for a nonlinear plate of a finite width l are as follows:
e1(0) = e10, e2(l) = 0. Hence, the constant c1 is zero, and constant

√
2c0 is the

fundamental wave amplitude at ζ = l. In this case the (8.7) and (8.8) lead to

cos� = − Δe2
2(e22 + c20)

. (8.9)

Substitution of the (8.9) into second equation of (8.5) results in equation for e2:

(e2,ζ )
2 = (e22 + c20)

2 + (Δ/2)2e22.

The solution of this equation can be represented in terms of elliptic functions,
either ℘-function by Weierstrass, or Jacobi sine function [27]. We use the following
expression

e2(ζ ) = c0(s1 + is2)sn[c0(s1 − is2)(l − ζ ); m0], (8.10)

where s1 = Δ/4c0, s22 = 1 − s21 and modulus of the Jacobi function m0 is

m0 = Δ + i
√

(4c0)2 − Δ2

Δ − i
√

(4c0)2 − Δ2
.

If the phase mismatch is zero, then (8.10) results in expression [20, 21]

e2(ζ ) =
√
2c0

cos[c0(l − ζ )] .

WhenΔ �= 0 (8.9) defines the function F(e2) = cos� depending on e2. The function
F(e2) has extremum at e∗ = c0 and F(e∗) = −Δ/4c0. Since | cos�| ≤ 1 then there
is critical value of mismatch |Δcr | = 4c0 such that cos� is defined for arbitrary
values of e2 if |Δ| ≤ Δcr . If |Δ| ≥ Δcr , then there is prohibited gap for values of e2:

0 ≤ e2 ≤ em = 1

4

(
|Δ| −

√
Δ2 − Δ2

cr

)
, e2 ≥ 1

4

(
|Δ| +

√
Δ2 − Δ2

cr

)
,

(8.11)
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As value of e2(ζ ) is fixed on the right side of the sample (ζ = l) to be zero, the
conversion efficiencyof fundamentalwave to secondharmonic |e2(0)/e10|2 is limited
by the value |em/e10|2. At Δ = Δcr the spatial distribution of the second harmonic
amplitude follows from (8.10):

e2(ζ ) = (Δcr/4) tanh[s1(ζ − l)].

AtΔ > Δcr the parameter s2 in (8.10) is equal to i[(Δ/4c0)2−1]1/2 and themodulus
of elliptic function in (8.10) is

m0 = Δ − √
Δ2 − Δ2

cr

Δ + √
Δ2 − Δ2

cr

< 1,

Expression (8.10) results in following one

e2(ζ ) = −1

4

(
Δ −

√
Δ2 − Δ2

cr

)
sn

[
1

4

(
Δ +

√
Δ2 − Δ2

cr

)
(l − ζ ); m0

]
.

(8.12)

The Jacobi sine function oscillates with period 4K(m0), where K—the complete
elliptic integral of the first kind. According to (8.12) normalized electric field of
second harmonic is the periodic function. The distance between neighbor zeros of
harmonic wave amplitude Δζ is defined by following formula

Δζ = 8K(m0)

Δ + √
Δ2 − Δ2

cr

.

At some value of Δ the size of the interval Δζ can be equal to l. Thus, under this
conditions second harmonic wave is totally confined inside nonlinear material and
does not escape outside. In this case material is transparent for fundamental wave.

The solutions describing SHG contain parameterΔcr . This parameter depends on
the initial value of the fundamental wave amplitude e10. The first integral of motion
(8.7) represents transcendental equation for Δcr as an implicit function of e10 and l:

e210 = 2e22(0) + Δ2
cr/8,

where e22(0) is determined by expression (8.12) at ζ = 0.
The behavior of the second harmonic wave amplitude for different values of phase

mismatch Δ is shown in Fig. 8.1. It has been shown that increase of phase mismatch
leads to reduction of the energy transfer from the first to second harmonic. When
Δ reaches critical value Δ = Δcr the energy transfer becoming zero in some point
inside the sample. In this case the conversion efficiency sharply drops up to some
value. If Δ ≥ Δcr then energy transfer is changing direction at some points inside
the sample. Inside the interval, where transfer of energy becoming negative, energy
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Fig. 8.1 The dependence of second harmonic’s amplitude e2(ζ ) on the ζ with different values of
phase mismatch (the solid blue curve: Δ = 0, dashed red curve: Δcr = 4, dashed black curve:
Δ = 10, dot-dashed brown curve: Δ = 25)

“flow” from second harmonic wave to fundamental harmonic. In this case monotonic
decay of both amplitudes with growth of ζ switches to periodic fields oscillations
along the sample.

It is important to emphasize that in the case of conventional harmonic generation
the critical value ofmismatchΔcr is equal to zero. In the case under consideration the
monotonic regime of harmonic generation is robust relative to variations of phase
mismatch. The influence of losses on the second harmonic generation process in
negative index materials in presence of phase mismatch Δk was considered in [27].
It was shown that in the presence of losses there is Δcr �= 0. Therefore, monotonic
regime persists within the interval of phase mismatch values −Δcr ≤ Δ ≤ Δcr .

8.2.1.2 Solitary Wave Solutions

The propagation of the fundamental and second harmonic solitary waves under the
slowly varying envelope pulses approximation in a quadratic nonlinear medium that
characterized by negative refraction index at the frequency of fundamental wave and
by positive refractive index at the second harmonic frequency is governed by the sys-
tem of equations (8.3)–(8.4). Dynamics of the interacting wave packets propagating
in negative index materials in this case was considered in [36]. It was shown that in
contrast to a weak intensity of fundamental wave, at high intensities pulse of second
harmonics can be trapped by the fundamental wave pulse and forced to propagate in
the same direction. This kind of coupled waves is refereed as simulton. The cnoidal
waves, the bright and dark simultons and two-hump simulton are represented in [36]
as examples of the coupled steady state waves.

To do comparison of the solitons in quadratic NRI material with solitons in PRI
material it is suitable to represent the appropriate expressions for second case. If one
sets the dispersion parameters as follows σ = β = −1 in the case of PRI medium,
the solution for bright simulton reads as
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e1(ξ) = 3
√
2(Δ + δ2)

2 cosh2[√(Δ + δ2)/2ξ ] , e2(ξ) = 3(Δ + δ2)

2 cosh2[√(Δ + δ2)/2ξ ] ,

where ξ = τ − ζ/vs − τ0, vs—simulton group velocity, τ0—position of the simulton
amplitude maximum. This simulton exists under condition Δ + δ2 > 0. In the case
of NRI medium bright simulton reads as

e1(ξ) =
√
2(3Δ − δ2)

6 cosh2[√(3Δ − δ2)/2ξ/3] , e2(ξ) = (3Δ − δ2)

6 cosh2[√(3Δ − δ2)/2ξ/3] .

This solution exists under condition Δ > δ2/3 . Thus the NRI simultons and PRI
simultons exist in different regions of parameters plane (δ,Δ).

The numerical simulation of the SHG and simulton propagation in the negative
refractive materials with quadratic nonlinearity was done in [37–39]. It was found
that under certain conditions the second-harmonic pulse can be trapped and dragged
along by the fundamental wave pulse. The case that a fundamental beam is tuned in a
positive index region and generates second and/or third harmonics in a negative index
region was considered in [40]. Phase matching condition, phase locking, inhibition
of absorption at the harmonic wavelengths, and second and third harmonic lenses
are investigated.

8.2.1.3 Second Harmonic Amplification

An important case of three wave interaction broadly used for practical applications
is parametric amplification. We consider particular degenerated case of three wave
interaction which involves interaction of fundamental and second harmonic. System
of equations describing spatial distribution of interacting fields is reads as follows

e1,ζ = e1e2 sin� − α1e1, e2,ζ = (1/2)e21 sin� + α2e2, (8.13)

�,ζ = (e21/2e2 + 2e2) cos� + Δ, (8.14)

Boundary conditions corresponding to secondharmonic amplificationhave following
form:

e1(0) = e10, e2(l) = e2l exp(iϕ0). (8.15)

Here e10 is the amplitude of incident pump field at the point ζ = 0; e2l and ϕ0 are
the amplitude and initial phase of the second harmonic field (signal) launched at the
opposite end of the sample ζ = l; α1,2 are coefficients describing material losses.

Output amplitude of the second harmonic e2(0) depends on both values of e2l and
ϕ0. Optimization of the amplification efficiency is equivalent to maximization of the
output value of e2(0) at the fixed values of e10 and e2l . This maximization can be
achieved by varying of the value of ϕ0.
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Fig. 8.2 The output intensity of the second harmonic field as function of the phase of the incident
second harmonic field e2(L) = 0.5 × exp(iϕ0), here Δ = α1 = α2 = 0 and incident pump field is
e10 = 1
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Fig. 8.3 Field intensities as functions of ζ , here e2(L) = 0.5 × exp(−iπ/2), e10 = 1, Δ = α1 =
α2 = 0

Results of numerical simulations illustrating dependence of intensity of
I2(0) = e22(0) on ϕ0 are shown in Fig. 8.2. In this case incident fields amplitudes are
chosen to be e10 = 1 and e2l = √

0.1. The length of the sample is l = 1. Output
field intensity I2(0) has maximum, corresponding to the maximum of energy conver-
sion efficiency from fundamental harmonic to second harmonic, when input phase
ϕ = −π/2 (seeFig. 8.2). Figure8.3 illustrates corresponding spatial intensity profiles
I1(ζ ) and I2(ζ ). Both intensities are monotonically decreasing with ζ . Dependance
of output intensity I2(0) as function of I2(l) for optimal value of ϕ0 = −π/2 is
shown on Fig. 8.4. On the interval 0 ≤ I2(l) ≤∼ 0.2 output field intensity is rapidly
growing. Growth of the output field outside of this interval is almost linear. Pres-
ence of losses α1,2 and phase mismatch Δ are changing the value of optimal phase
ϕ0 and other characteristics of second harmonic amplification. Results of numerical
simulations for α1 = 0.2, α2 = 0.3 and Δ = 3 are shown on Figs. 8.5, 8.6, 8.7, and
8.8. Note that if Δ = 0, then the most intensive energy transfer from fundamental
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Fig. 8.4 Output intensity I2(0) as function of I2(l) for optimal value of ϕ0 = −π/2, here e2(L) =
0.5 × exp(−iπ/2), e10 = 1, Δ = α1 = α2 = 0
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Fig. 8.5 Output intensity I2(0) as function of ϕ0 for α1 = 0.3, α2 = 0.5 here e2(L) = 0.5 ×
exp(−iπ/2), e10 = 1, Δ = 0. The optimal value of ϕ0 is found to be ϕ0 = −π/2

to second harmonics takes place when � = −π/2 in (8.5), (8.6). This conclusion is
in an excellent agreement with numerical simulations portrayed in Fig. 8.3. Optimal
value of ϕ0, calculated for α1 = 0.3, α2 = 0.5 and Δ = 0 with high accuracy
is found to be ϕ0 = −π/2. Corresponding dependence of output intensity versus
input value of input phase is plotted in Fig. 8.5. Group of the numerical simulations
illustrating second harmonic generation, when value of parameters are chosen as
α1 = 0.3, α2 = 0.5 and Δ = 3 are presented in Fig. 8.6, 8.7 and 8.8. Figure8.6
shows an impact of incident phase ϕ0 on output intensity of second harmonic. The
optimal value of ϕ0 for energy transfer in this case is ϕ0/π ≈ 0.922496.

Intensity profiles is this case are shown in Fig. 8.7. Intensity of pump field in this
case is insufficient for amplification of second harmonic field.

Figure 8.8 demonstrates how intensity of output field I2(0) is changing with
increase of the intensity of pump field. In this case amplification takes place only
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Fig. 8.6 An impact of incident phase ϕ0 on output intensity of second harmonic I2(0). The optimal
value of ϕ0 for energy transfer in this case is ϕ0/π ≈ 0.922496. Here α1 = 0.3, α2 = 0.5, Δ = 3

0.2 0.4 0.6 0.8 1.0
z

0.2

0.6

0.8

1.0

I1 z , I2 z

Fig. 8.7 Intensity profiles I1(ζ ) and I2(ζ ) for optimal value of ϕ0/π ≈ 0.922496. Here α1 = 0.3,
α2 = 0.5, Δ = 3, e2(L) = 0.5 × exp(−iπ/2), e10 = 1

inside the interval 0 ≤ I2(l) ≤ ∼ 0.2. There is no amplification outside of this
interval.

Problem of second harmonic amplification, in contrast to second harmonic gen-
eration, requires optimization with respect to relative phase of incident pump and
second harmonic fields. The value of incident field amplitude is zero (e2 (l) = 0)
in case of second harmonic generation. To eliminate singularity in the right-hand
side of the (8.6), the value of �(l) must be �(l) = −π/2. Therefore in case of SHG
phase value at the point ζ = 0 is the result of self-selecting process. In case of second
harmonic amplification both entry phases of the fundamental and second harmonics
are fixed by the external sources. In presence of losses, when phase mismatch is
zero, this relative phase is also equal to −π/2 and does not depends on loss values.
Presence of phase mismatch changes the value of optimal relative phase.



8 Nonlinear Optical Effects in Positive-Negative Refractive Index Materials 143

0.2 0.4 0.6 0.8 1.0
I2 L

0.2

0.3

0.4

0.5

0.6

0.7

0.8
I2 0

Fig. 8.8 Output intensity I2(0) as function of input intensity I2(L). Here optimal value of ϕ0/π ≈
0.922496, α1 = 0.3, α2 = 0.5, e10 = 1, Δ = 3

8.2.2 Third Harmonic Generation

Now we will consider the third harmonic generation (THG). The TGH is due
to χ(3)-nonlinearity of material. Contrary to the SHG the self-modulation and
cross-modulation take place in this case in addition to the transfer of energy from
one wave to another. The normalized form of the basic equations is following one
[19, 28, 29]

iq1,ζ + (σ/2)q1,ττ − q3q∗2
1 − α11|q1|2q1 − α13|q3|2q1 = 0, (8.16)

iq3,ζ + iδq3,τ − (β/2)q3,ττ − Δq3 + q3
1 + α31|q1|2q3 + α33|q3|2q3 = 0. (8.17)

Here α jl is the self-modulation and cross-modulation coefficients.

8.2.2.1 Continuous Wave Limit for THG

As above let us consider THG in the case of continuous waves. Equations (8.16) and
(8.17) can be reduced to following equations

e1,ζ = e21e2 sin�, e3,ζ = e31 sin�, (8.18)

�,ζ = (e31/e3 + 3e1e3) cos� + Δ + a0e21 + b0e23, (8.19)

where� = ϕ3−3ϕ1. Parameters a0 = α31+3α11 and b0 = α33+3α31 take account
self-modulation and cross-modulation effects.

As in the case of SHG we can find two integrals of motion
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e21 − e23 = c20, (8.20)

e31e3 cos� + 1

2

(
Δ + a0c20

)
e21 + 1

4
(a0 + b0)e

2
3 = C1. (8.21)

We will consider nonlinear plate of a finite width l. With allowance for the
boundary condition e3(l) = 0, one can see that the constant C1 is zero. Substituting
y = e3/c0 and using expression (8.20), we will rewrite (8.21) as follows:

cos� = −κ1y + κ3y3

(1 + y2)3/2
,

where κ1 = (Δ + a0c20)/2c20 and κ3 = (a0 + b0)/4.
Condition | cos�| ≤ 1 is restriction on permissible variation of the harmonic

wave amplitude. However, total analysis of that is very cumbersome. This analysis
was done in [29] by means of the numerical calculation. It was shown that regions
of monotonic transformation of the fundamental wave to third harmonic wave in
parametric space (κ1, κ3) are akin to islands. The main part of parametric space
corresponds to a periodic regime of transformation.

8.2.2.2 Steady State Pulse Propagation

Steady state solitary bounded waves can be found by solving system of equations
(8.16) and (8.17) under several assumptions: (1) there is no chirp; (2) there are no
self- and cross interaction, i.e., α jl = 0; (3) the real envelopes and phases of the
coupled waves are dependant on ξ = τ − ζ/vs , where vs is simulton group velocity;
(4) � = ϕ3 − 3ϕ1 = 0 for any ξ ; (5) the steady state waves for both frequencies
must be propagating as single one. These assumptions allow us to reduce the (8.16)
and (8.17) to a single equation for the real envelope e1 [19]. If we put dispersion
parameters as follows σ = β = −1, the bright simulton reads as

e1(ξ) = e3(ξ) =
√
4Δ − 3δ2

4 cosh[√4Δ − 3δ2ξ ] . (8.22)

Steady state cnoidal waves solutions for system of equations (8.16) and (8.17)
have been found in [28], by taking into account all above-listed assumptions.

It is interesting to remark that walk-off effect, which is accounted by parameter δ

in (8.17), is liable to frustrate coupling between fundamental and harmonic waves. In
this case the waves will propagate independently according to following equations

iq1,ζ + (σ/2)q1,ττ − α11|q1|2q1 = 0,

iq3,ζ + iδq3,τ − (β/2)q3,ττ − Δq3 + α33|q3|2q3 = 0.
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Either of the two equations is the Nonlinear Schrödinger-type equation. Hence, the
fundamental wave pulse and/or third harmonic wave pulse can be transformed into
soliton (or solitons), propagating with own velocity. That was observed in numerical
simulation of the THG in [28].

8.3 Oppositely Directional Nonlinear Coupler

Adirectional coupler that is widely used in integral optics consists of twowaveguides
so closely spaced that the radiation from one waveguide can leak into the other;
the direction of the energy flow in this case is preserved. However, if one of the
waveguides is made of PRI material, while the other is made of NRI material, the
directions of the phase velocities must be the same, whereas the Poynting vectors will
have opposite directions. Because of this coupler can be referred as the oppositely
directional coupler. In what follows the nonlinear oppositely directional coupler will
be considered.

8.3.1 Nonlinear Waveguide Array

Let us suppose that waveguides marked by J = 2n (J = 2n + 1) are produced
from PRI (NRI) medium. The system of equations describing the electromagnetic
wave propagation in this structure have been represented in [19]. The slowly varying
complex envelopes obey the following equations

i
(

E2n,z + v−1
g2n E2n,t

)
+ K12(E2n+1 + E2n−1)e

iΔβz

+R2n|E2n|2E2n = 0, (8.23)

i
(
−E2n+1,z + v−1

g2n+1E2n+1,t

)
+ K21(E2n + E2n+2)e

−iΔβz

+R2n+1|E2n+1|2E2n+1 = 0, (8.24)

where K12 and K21 are coupling constants, E J is a slowly varying envelope of the
electric field in J th waveguide. Linear properties of the waveguides is defined by
dielectric permittivity εJ (ω0) and magnetic permeability μJ (ω0). These values are
assumed to be real, that corresponds to lossless materials. Nonlinear properties of
the J th waveguide are determined by parameters

RJ = 2πω2
0μ(ω0)χ

(J )
e f f

c2β(J )
.
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Here parameters β(J ) are propagation constant, χ(J )
e f f is the effective nonlinear sus-

ceptibility for J th waveguide.
Introduce the normalized variables for envelopes

q2n = √
K21A0E2ne−iΔβz/2, q2n+1 = √

K12A0E2n+1e+iΔβz/2,

and the parameters

ζ = z/Lc, τ = t−1
0 (t − z/V0), Lc = (K12K21)

−1/2,

t0 = vg2 + vg1

2vg1vg2
Lc, V0 = vg2 − vg1

2vg2vg1
.

Here we assumed that wave group velocity doesn’t depend on number of the PRI
and NRI waveguides, i.e., vg2n = vg1, vg2n+1 = vg2. The system of equations
(8.23)–(8.24) takes the form

i

(
∂q2n

∂ζ
+ ∂q2n

∂τ

)
− δq2n + (q2n+1 + q2n−1) + r1|q2n|2q2n = 0, (8.25)

i

(
∂q2n+1

∂ζ
− ∂q2n+1

∂τ

)
+ δq2n+1 − (q2n + q2n+2) − r2|q2n+1|2q2n+1 = 0,

(8.26)

where δ = ΔβLc/2 is the phase mismatch. Nonlinearity parameters are defined by
the expressions

r1 = 2πω2
0μ(ω0)A2

0χ
(1)
e f f

c2β(1)K21
√

K21K12
, r2 = 2πω2

0μ(ω0)A2
0χ

(2)
e f f

c2β(2)K12
√

K21K12
.

If we introduce the “block” variables q2n = A j , q2n+1 = B j , this system of
equations becomes

i

(
∂

∂ζ
+ ∂

∂τ

)
A j − δA j + (B j + B j−1) + r1|A j |2A j = 0, (8.27)

i

(
∂

∂ζ
− ∂

∂τ

)
B j + δB j − (A j + A j+1) − r2|B j |2B j = 0, (8.28)

The linear waves in oppositely directional waveguides array are governed by these
equations, where r1 = r2 = 0. It follows
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i

(
∂

∂ζ
+ ∂

∂τ

)
A j − δA j + (B j + B j−1) = 0, (8.29)

i

(
∂

∂ζ
− ∂

∂τ

)
B j + δB j − (A j + A j+1) = 0, (8.30)

To find the spectrum of the permissible waves for this waveguides array we can
substitute the following Ansatz: A j = a j exp(−iωτ + iκζ + iκ⊥ j), B j =
b j exp(−iωτ + iκζ + iκ⊥ j) in (8.29) and (8.30). The resulting linear system of
algebraic equations has the nonzero solution only if the corresponding determinant
is equal to zero. That leads to the dispersion relation

[ω(κ, κ⊥) − δ]2 = κ2 + 4 cos2(κ⊥/2) = 0. (8.31)

Thus the spectrum of the linear waves has the gap Δω(κ⊥) = 2| cos(κ⊥/2|.
Maximum of the gap correspond to κ⊥ = 2πs, where s is integer. That is the
Bragg resonant condition for transverse waves. The lump like solitary waves in the
oppositely directional nonlinear waveguides array would be expected.

8.3.2 Two Tunnel Coupled Waveguides

The oppositely directional nonlinear coupler corresponds to the arrangement con-
sisting of only two coupled waveguides. This particular case of the general model
(8.25)–(8.26) has been studied in [30–33, 42, 46]. Evolution of the electromagnetic
solitary wave in the coupled waveguides is described by the equations

i

(
∂

∂ζ
+ ∂

∂τ

)
q1 − δq1 + q2 + r1|q1|2q1 = 0, (8.32)

i

(
∂

∂ζ
− ∂

∂τ

)
q2 + δq2 − q1 − r2|q1|2q1 = 0, (8.33)

In the linear regime, r1 = r2 = 0, we can find solutions of the resulting equations
in following form

q1,2(ζ, τ ) = (2π)−2

+∞∫

−∞
q̃1,2(κ, ν)e−iντ+iκζ dκdν.

The existence condition of this solution leads to the dispersion relation ν(κ) =
δ ± √

1 + κ2. Thus the spectrum of the linear waves has the gap Δνg = 2. This gap
is a characteristic feature of a distributed mirror [43]. Hence, in the linear wave limit
the oppositely directional coupler acts as a mirror. Formation of the gap in a uniform
structure considered here is one of the unique properties of the oppositely directional
coupler arising from introduction of the NIM into the nonlinear coupler.
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If the real amplitudes and phases are introduced according to the formula
q1,2 = a1,2 exp(iϕ1,2) (8.32)–(8.33) can be reduced to following system of real
equations

(
∂

∂ζ
+ ∂

∂τ

)
a1 = a2 sin�,

(
∂

∂ζ
− ∂

∂τ

)
a2 = a1 sin�, (8.34)

(
∂

∂ζ
+ ∂

∂τ

)
ϕ1 = −δ + a2

a1
cos� + r1a2

1, (8.35)

(
∂

∂ζ
− ∂

∂τ

)
ϕ2 = δ − a1

a2
cos� − r2a2

2, (8.36)

where � = ϕ1 − ϕ2. There is the conservation law

∂

∂τ

(
a2
1 + a2

2

)
+ ∂

∂ζ

(
a2
1 − a2

2

)
= 0. (8.37)

If the first term can be considered as total energy density, then the second term
is the divergence of total flux density. In the case of solitary waves, for which the
electromagnetic fields vanish at infinity, (8.37) leads to the modified Manley-Rowe
relation

∂

∂ζ

+∞∫

−∞

(
a2
1 − a2

2

)
dτ = 0.

To consider the solitary steady-state waves in the oppositely directional cou-
pler we suppose that solutions of these equations depend only on single variable
η = (ζ + βτ)(1 − β2)−1/2, where β is parameter and |β| < 1.

Let us define new variables u1 = √
1 + βa1 and u2 = √

1 − βa2. The equations
(8.34) take the following form

u1,η = u2 sin�, u2,η = u1 sin�, (8.38)

The first integral of motion u2
1 − u2

2 = C1 is evident from (8.38).
The (8.35) and (8.36) are reduced to following ones

ϕ1,η = −δ + u2

u1
cos� + ϑ1u2

1, ϕ2,η = δ − u1

u2
cos� − ϑ2u2

2,

where

ϑ1 = r1
(1 + β)

√
1 − β

1 + β
, ϑ2 = r2

(1 − β)

√
1 + β

1 − β
.
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These equations are used to obtain the equation for �:

�,η = −2δ +
(

u1

u2
+ u2

u1

)
cos� + ϑ1u2

1 + ϑ2u2
2. (8.39)

This equation allows to find the second integral of motion

u1u2 cos� + ϑ1u4
1 + ϑ2u4

2

4
− δ

2
(u2

1 + u2
2) = C2. (8.40)

The values of C1 and C2 are determined by the boundary conditions at η → ±∞.
Here we consider a solitary wave with the amplitudes vanishing at infinity. That
leads to C1 = C2 = 0, thus we have u1 = εu2, ε = ±1. Solution of the system of
equations (8.38) and (8.39) for boundary conditions under consideration was found
in [31, 32].

If the synchronism condition is satisfied, δ = 0, the real envelopes a1,2(η) and
phases φ1,2(η) are written

a2
1(η) = 4

|ϑ |(1 + β) cosh 2(η − ηc)
, (8.41)

a2
2(η) = 4

|ϑ |(1 − β) cosh 2(η − ηc)
, (8.42)

φ1(η) = 3ϑ1 − ϑ2

|ϑ1 + ϑ2| arctan e2(η−ηc), (8.43)

φ2(η) = ϑ1 − 3ϑ2

|ϑ1 + ϑ2| arctan e2(η−ηc) − π/2, (8.44)

where ϑ = ϑ1 + ϑ2, and ηc is a new integration constant (position of gap soliton
maximum). These solutions correspond with solitary steady-state wave propagation
in both waveguides of the oppositely directional coupler.

In the general case there is the phase mismatch, i.e., δ �= 0. The expressions for
real envelopes a1,2(η) and phases φ1,2(η) are too cumbersome. For example,

(1 + β)a2
1(η) = (1 − β)a2

2(η) = 4Δ2/|θ |
cosh[2Δ(η − ηc)] − sgn(θ)δ(1 − β2)−1/2 ,

whereΔ2 = 1−δ2/(1−β2). SinceΔ2 > 0 it is evident the phase velocity mismatch
is restricted by the values δ± = ±(1−β2)1/2, else the solitary waves are unavailable.
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Fig. 8.9 Crossing collision between two solitary waves with β = −0.5 and β = −0.9. Panel a is
for the solitary wave in the PRI waveguide; Panel b is for the solitary wave in the NRI waveguide

8.3.3 Interaction of the Gap Solitons in Oppositely
Directional Coupler

In our opinion the system of equations (8.32)–(8.33) does not belong to the class of
completely integrable equations.Hence the solutionof these equations does not repre-
sent true soliton.However,we name themas gap solitons by analogywith gap solitons
in nonlinear periodic structures [44, 45]. To investigate interactions between the gap
solitons (8.41)–(8.44) the numerical simulation has been pursued in [32]. Due to the
fact that soliton velocity is controlled by parameter β, the velocities of the pulses are
different for different β. As a result, the faster pulse attains the slower pulse and col-
lideswith it.AsFig. 8.9 illustrate, the gap soliton sheds someamount of radiation after
collision, also a weak radiating wave arises as a result of their interaction. The veloc-
ities and the amplitudes of the gap solitons after collision are slightly different from
their correspondingvalues before the collision.Thus inelastic interaction takes place.

To demonstrate the robustness of the gap soliton the collision between two gap
soliton with the same absolute values of the velocity β = 0.7 and β = −0.7.



8 Nonlinear Optical Effects in Positive-Negative Refractive Index Materials 151

Fig. 8.10 Collision between
two solitary waves with
β = 0.7 and β = −0.7. Panel
a is for the solitary wave in
the PRI waveguide; Panel b is
for the solitary wave in the
NRI waveguide
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Solitary waves in this case are propagating as Fig. 8.10 shows, a more energetic gap
soliton with β = 0.7 remains unchanged after collision and the less energetic gap
soliton with β = −0.7 drops some radiation, this results in change of its trajectory.

Thus, the collision of two steady state pulses with different velocities has shown
significant robustness of powerful gap solitons. Small amplitude radiation appearing
after collision attests that the small amplitude gap soliton eventually will disappear.

8.3.4 Influence of Dissipation on Threshold of Gap
Soliton Formation

For the current state of fabrication technology the losses in the real NRI materials are
considerable. The influence of the linear losses in theNRIwaveguide on the existence
of the solitary waves was studied in [32, 33]. The numerical simulation demonstrates
that even small losses affect considerably the propagation properties of the solitary
waves. By passing some distance the gap soliton transform into linear-like wave
packet. This wave stops in the waveguide and changes direction of its propagation,
i.e., the oppositely directional coupler now acts as a distributed mirror.



152 A.I. Maimistov and I.R. Gabitov

The gap soliton formation in an extended nonsymmetric (i.e., only an ordinary
waveguide has nonlinear optical properties, r2 = 0, r1 = r ) oppositely directional
coupler was considered in [33]. It has been shown that a small amplitude electromag-
netic pulse, introduced into one of thewaveguides, is emitted in the opposite direction
from the other waveguide. The coupler acts as a mirror. If the amplitude of the input
pulse exceeds a certain threshold, then the pair of coupled pulses propagating in
both waveguides is formed. Thus, the formation of a gap soliton in the oppositely
directional coupler has a threshold character. The numerical simulation of the soli-
ton formation from initially Gaussian envelope pulse a(ζ = 0, τ ) = a0 exp(−τ 2)

allows one to estimate dependence of the amplitude threshold ath versus nonlinearity
parameter r : ath = 2.1 r−1/2.

In the case of the symmetric (i.e., both waveguide has the same nonlinear optical
properties, r1 = r2 = r ) oppositely directional coupler there is analytical approxi-
mate formula for the amplitude threshold [41]:

a2
thr = 4

√
(π/2)2 − 1 ≈ 4.85.

It should be remarked that this expression provides the good estimation for numerical
results of [33], even thought the nonlinear properties of couplers are different.

8.3.5 A Selection of Nonlinear Phenomena in Oppositely
Directional Coupler

8.3.5.1 Modulation Instability

Modulation instability (MI) in nonlinear oppositely directed couplerwas investigated
in [46]. It was shown that the ratio of the forward- to backward-propagating wave
power and the nonlinear parameters have a profound effect on MI. In the normal
dispersion regime the threshold value of this forward/backward ratio and the input
power threshold exist. MI occurs only for finite values of input power when the
NRI waveguide is manufactured from self-defocusing nonlinear material and PRI
waveguide is produced from self-focusing nonlinear material in the anomalous dis-
persion regime. It was found that increasing input power may suppress theMI, which
is quite different from the MI in the conventional couplers. For the conventional one,
the increase of input power generally promotes the occurrence of MI.

8.3.5.2 Spatial Discrete Solitons

Existence and properties of discrete solitons in arrays of alternating waveguides
with positive and negative refractive indices was studied in [47]. The stationary (i.e.,
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continuous wave) field distribution in the array (A j , B j ) has been described by the
modified version of the (8.27) and (8.28)

i A j,ζ + δA j + (B j + B j−1) + r1|A j |2A j = 0, (8.45)

i B j,ζ − δB j − (A j + A j+1) − r2|B j |2B j − iγ B j = 0, (8.46)

where γ is absorption index. In the case of γ = 0 spectrum of the linear waves has
the gap.

It was supposed that a discrete soliton has the form A j (ζ ) = a j exp(iκζ ) and
B j (ζ ) = b j exp(iκζ )where a j and b j are real and vanish as | j | → ∞. Furthermore,
soliton propagates along waveguides without distortion.

Spectrum of the linear continues waves arises from (8.31)

κ2 = δ2 − 4 cos2(κ⊥/2).

If |δ| > 2, then the gap Δκ = 2
√

δ2 − 4 exists. As is shown in [47] the gap solitons
exist for waveguides having nonlinearities of different types.When the nonlinearities
of all waveguides are focusing, solitons exist if the propagation constant κ lies outside
of the gap.

Numerical simulation [47] shown that there exist soliton families bifurcating from
the gap edges of the linear spectrum. The field distribution in the oppositely direc-
tional nonlinear waveguides array reveals nonexponential decay and nonmonotonic
dependence of the energy growth in the positive index waveguides on the absorption
index.

8.3.5.3 Bistability

Bistability of an optical system results from the multi-valued dependence of the
transmission (or refraction) coefficient on the input wave power. Transmission and
reflection coefficients for the nonlinear oppositely directional coupler of a finitewidth
in the case of continuum wave radiation was found [30]. It was demonstrated that
the transmission (and reflection) coefficient is multivalued function of input power.
It leads to hysteresis behavior of the transmission and reflection coefficients.

The transmission characteristics of the nonlinear oppositely directional coupler
are very similar to those of the distributed feedback structures with an important
fundamental difference that bistability in the coupler is facilitated by the effective
feedbackmechanism originating from the forbidden zone in a linear waves spectrum.

In [48, 49], the nonlinear transmission properties of oppositely directional coupler
is considered. One waveguide was assigned to be of positive index material and the
otherwaveguide of negative indexmaterial. Only one of thewaveguides is considered
to be nonlinear. The phase mismatch affect was taking into account. The effect of
nonlinearity and mismatch on the multistable behavior for this coupler was studied.
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8.4 Extremely Short Steady State Pulses

Commonly electromagnetic pulse propagation in resonant media is considered in
the slowly varying envelope approximation. However, there are number of nonlinear
optical phenomena takingplace in the limit of extremely short pulses,when the slowly
varying envelope approximation is not valid. For example, the spectrum of extremely
short electromagnetic pulse can be covering the frequency range with both PRI and
NRI features of the resonant material. In this case different frequency components
of electromagnetic pulses can be localized in the different spectral regions.

8.4.1 The Model Formulation

In [35] the Maxwell-Duffing-Lorentz model has been used to account for simul-
taneous magnetic and electric resonances, with the magnetic susceptibility being
linear, while the electric polarization being nonlinear. For simplicity, the transverse
electromagnetic plane waves propagating along the z-axis with the electric field
E = (E(z, t), 0, 0) and the magnetic field B = (0, B(z, t), 0) were considered. The
Maxwell equations take the following scalar form:

E,z + c−1H,t + 4πc−1M,t = 0, H,z + c−1E,t + 4πc−1P,t = 0, (8.47)

where electric polarization P and magnetization M are governed by the equations

P,t t + ω2
D P + κ P3 − ω2

p E = 0, (8.48)

M,t t + ω2
T M + βH,t t = 0, (8.49)

where κ is a constant of anharmonisity,ωD andωT are the resonant frequency, which
are intrinsic tomodel under consideration.Constantβ is characterizingmagnetization
[34].

The system of equations (8.47), (8.48) and (8.49) can be represented in the nor-
malized form

e,τ + h,η + m,τ = 0, h,τ + e,η + q,τ = 0, (8.50)

q,ττ + ω2
1q + γ q3 − e = 0, m,ττ + ω2

2m + βh,ττ = 0, (8.51)

where e = E/P0 and h = H/P0 are normalized fields, q = P/P0 and m =
M/P0 are normalized polarization and magnetization (P0 = ωp/

√
κ is the maximal

achievable medium polarization), τ = t/τ0 (τ0 = 1/ωp is the characteristic time),
η = z/z0 (z0 = cτ0 is the characteristic distance). The parameters of the model are

γ = κ/
(
|κ|ω2

p

)
, ω1 = ωD/ωp, and ω2 = ωT /ωp.
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A natural question arises is whether the system of equations (8.50) and (8.51)
possesses any solitary-wave solutions.

8.4.2 Extremely Short Solitary Waves

If we assume that both an electric and magnetic fields and a polarization and mag-
netization are functions of the variable ξ = τ − η/V , Then the (8.50) and (8.51)
become a system of ordinary differential equation. Integrating of these equations un-
der zero conditions for all fields, polarization and magnetization at ξ → ±∞ yields
the following expressions for h and e

h = a1m + a2q, e = a2m + a1q,

where

a1 = V 2
(
1 − V 2

)−1
, a2 = V

(
1 − V 2

)−1
.

These formulae allow to obtain the following system of second order equations: for
q and m

q,ξξ +
(
ω2
1 − a1

)
q − a2m + γ q3 = 0,

βa2q,ξξ + (1 + βa1) m,ξξ + ω2
2m = 0.

This system of equations was base of investigation for qualitative properties of the
solitary-wave solutions for original equations. The details are represented in [35].

The analytical solutions of the system of equations (8.50)–(8.51) have not been
found. However, numerical simulations of the solitary waves evolution demonstrated
existence of steady state solitary waves [35]. Only at certain velocities the steady
state solitary waves exist.

Different types of solitary wave solutions are classified by the number of the
electromagnetic field spikes that are referred to as humps. Figures8.11 and 8.13
show the two examples of the multi-hump pulses.

The issue of stability can be addressed analytically by studying the linearization of
the system of partial differential equations (8.50)–(8.51) about arbitrary steady state
solitary wave solutions and analyzing the corresponding linear evolution operator.
Analysis showed that this operator is skew-Hermitian in L2 with the appropriate
norm. Therefore the spectrum of the evolution operator is purely imaginary and the
traveling wave solutions are neutrally linearly stable [51].
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Fig. 8.12 Collision of the two-hump steady state solitary waves

8.4.3 Interaction of the Steady State Solitary Waves

The formation of the steady state solitarywave from arbitrary initial-boundary condi-
tion, stability of travelling waves under small perturbations and stability under strong
perturbations due to wave collisions have been considered.

The numerical simulation have shown that both one-hump pulse and multi-hump
(number of the hump is variety up to eight ones) pulses are stable. Furthermore, the
collision of the steady state solitary waves doesn’t perturb initial waves. Some exam-
ples of the two steady state solitary waves collisions are shown in Figs. 8.12 and 8.13.

These results allow us to take reference for the described steady state solitary
waves as the new kind of quasi-solitons. The collision between these multi-hump
pulses are not elastic, but multi-hump pulses are robust.
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Fig. 8.13 Solitarywave collisions: an eight-hump soliton and a phase-inverted solitonwith negative
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8.5 Conclusion

The unusual properties of negative refractive index materials reveal themselves most
prominently when a wave passes through, or is localized near, an interface between
such a material and a conventional dielectric. New wave propagation phenomena
can also be expected when the refractive index of the same medium can be posi-
tive in one spectral region and negative in another. We are referring to these cases as
positive-negative refractive index materials. As the significant examples of nonlinear
phenomena in the positive-negative refractive index materials we consider the para-
metric interaction of the electromagnetic waves, the solitary waves propagating in
the nonlinear oppositely directional coupler and the propagation of extremely short
electromagnetic pulses in a homogeneous doubly-resonant medium.

Study on the second and third harmonic generation shows that there is some
critical value of themismatchΔcr . IfΔ ≤ Δcr the transformation of the fundamental
wave into harmonic wave goes monotonically. If Δ = Δcr the conversion efficiency
sharply drops up to some value. If Δ > Δcr amplitudes of the interacting waves
are varying periodically. In the case of conventional harmonic generation the critical
value of mismatch is zero.

Efficiency of second harmonic amplification depends on the phase difference of
the incident fundamental and second harmonic fields. If phase of the fundamental
field arg E1(0) = 0 and Δ = 0, then optimal conversion takes place when
arg E2(L) = −π/2, which is consistent with SHG case. This is also true in presence
of losses. The optimal angle is different from −π/2 when Δ �= 0. In this case the
value of the optimal angle changes with Δ.

In linear regime the oppositely directional coupler acts as a mirror. The radiation
entering one waveguide leaves the device through the other waveguide at the same
end but in the opposite direction. However, if the input pulse power exceeds certain
threshold, the steady state solitary wave can be appeared.
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An investigationof ultra-short electromagnetic pulses in thehomogeneousdoubly-
resonant medium in the framework of the total Maxwell-Duffing-Lorentz model
results in revelation of the new kind of nonlinear waves. It is the one-parameter
family of traveling-wave solutions with the structure of single or multiple humps.
Solutions are parameterized by the velocity of propagation. The waves are found
to be stable with respect to weak perturbations. Numerical simulations demonstrate
that these multi-hump pulses collide in a nearly elastic fashion.
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Chapter 9
From ‘Trapped Rainbow’ Slow Light
to Spatial Solitons

Allan D. Boardman, Kosmas L. Tsakmakidis, Rhiannon C. Mitchell-Thomas,
Neil J. King, Yuri G. Rapoport and Ortwin Hess

9.1 Introduction

The metamaterial global revolution, stimulated by the pioneering work of Pendry [1],
in the year 2000, raises all kinds of questions as to what they can be used for. This
chapter addresses two globally recognised, important, desires. One concerns the
deployment of metamaterials to slow down light. The other embraces the question of
how nonlinearity, manifested as spatial solitons [2], can be controlled in a metama-
terial environment. Both of these activities will have a very positive influence upon
device design, especially in the optical domain.

Metamaterial (MM) investigations [3–5] and ‘slow light’ (SL) [6, 7] behaviour
have, in the last decade, matured into two of the largest and most exciting realms
of contemporary science, opening up a view of a wealth of useful applications.
These include sub-diffraction-limited lenses, ultra-compact photonic devices and,
very dramatically, invisibility cloaks. The theoretical demonstration [8] that two
highly technologically important areas of research, such as metamaterials and slow

A.D. Boardman (B) · N.J. King
Joule Physics Laboratory, Materials and Physics Research Centre, University of Salford,
Greater Manchester M5 4WT, UK
e-mail: A.D.Boardman@salford.ac.uk

K.L. Tsakmakidis · O. Hess
The Blackett Laboratory, Department of Physics, South Kensington Campus,
Imperial College London, London SW7 2AZ, UK

R.C. Mitchell-Thomas
School of Electronic Engineering and Computer Science, Queen Mary University of London,
London E1 4NS, UK

Y.G. Rapoport
Faculty of physics, Taras Shevchenko National University,
Prospect Glushkov 6,
22, Kiev, Ukraine
e-mail: yuriy.rapoport@gmail.com

© Springer International Publishing Switzerland 2015
I.V. Shadrivov et al. (eds.), Nonlinear, Tunable and Active Metamaterials,
Springer Series in Materials Science 200, DOI 10.1007/978-3-319-08386-5_9

161



162 A.D. Boardman et al.

Fig. 9.1 The ‘trapped rainbow’ principle [8]. Owing to negative Goos-Hänchen shifts, light is
slowed and eventually stopped in an adiabatically tapered negative-refractive-index waveguide—
with each frequency ‘stopping’ at a different point in space—forming a ‘trapped rainbow’

light, which were following separate/parallel tracks, could, in fact, be combined,
exposed the potential of novel metamaterial-enabled slow-light structures. The latter
can dramatically improve on existing slow-light designs and structures in terms of
the degree to which light can be decelerated, as well as of performance, nanoscale
functionality and efficiency; see Fig. 9.1. Indeed, some of the most successful slow-
light designs at present, based on photonic-crystals (PhCs) [9], or coupled-resonator
optical waveguides (CROWs) [10], can, so far, efficiently slow down light by a factor
of around 50—otherwise, large group-velocity-dispersion and attenuation-dispersion
occur, i.e. the guided light pulses broaden and the attainable bandwidth is severely
restricted. Such a drawback directly imposes an upper limit on the degree to which one
can shrink the area of the corresponding slow-light devices (compactness), as well as
reducing the driving electrical power. Additionally, it has by now also been realised
that such positive-index slow-light structures are, unfortunately, extremely sensitive
to the presence of (even weak) fabrication disorder [11]—to the point that disorder
on the scale of only 2–5 nm (at a wavelength of 1,550 nm) leads to group velocities
that cannot, even in the presence of dispersion, be smaller than approximately c/300
[6, 12].

By contrast, it has been theoretically and experimentally established that meta-
materials are highly insensitive to the presence of (even a high degree of) fabrication
disorder [13, 14], since their properties arise from an averaged/effective response
of their constituent ‘meta-molecules’, without necessarily requiring a ‘perfect’
lattice crystal—a situation which is similar to, e.g., crystalline or amorphous
silicon, where the presence, or not, of a periodic atomic lattice does not, of course,
preclude the attainment of an effective refractive index. This ability of metamaterial-
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based heterostructures to dramatically decelerate, or even completely stop light,
under realistic experimental conditions, has recently led to a series of experi-
mental works [15, 16] for the observation of ‘trapped rainbow’ light-stopping
in metamaterial waveguides. In the following sections we shall show, based on
analytic theory and computational simulations, that negative-refraction (or negative-
refractive-index) metamaterial-enabled slow-light structures enable efficient decel-
eration of light by factors of, at least, tens of thousands without suffering from the
aforementioned group-velocity- and attenuation-dispersion limitations.

Moving on now from a discussion of how to control slow light in active meta-
materials, to beam propagation in nonlinear metamaterial environments, it should
first of all be acknowledged that the history of solitons [2, 17–20] is fascinating in
its own right, and the theory of them is usually based upon a weakly guiding non-
linear foundation. This soliton family can be managed within an externally applied
magnetooptic environment, so it is not surprising that it can also be managed by meta-
materials. Very important members of the soliton family are called spatial solitons
and are well-known in the literature as optical beams in which diffraction is bal-
anced by the presence of self-focussing nonlinearity [2]. They will be discussed here
in terms of how such beams change their behaviour when they are created within a
metamaterial guiding system. It is pointed out that spatial solitons have a lot of appli-
cation possibilities, especially when placed into the context of materials being used
in a light-controlling-light environment that is suitable for the optical chips of the
future. Metamaterials, being artificially controlled, open up a completely new range
of devices so the possibility of additionally operating these devices through magne-
tooptic control is really exciting. This is largely because magnetooptics, developed
over many years, now points to readily available materials, in nanostructured form,
that can be easily embedded into plasmonic and photonic metamaterials. Indeed,
sophisticated downstream magnetooptic devices are now entirely accessible. In addi-
tion, it is becoming clear that isotropic metamaterials, with loss-free frequency win-
dows, are within reach through composites containing certain types of nanospheres,
especially since it is possible to make such composites using magnetooptic spheres.
New portals are emerging, implying new frontiers that need to be addressed in a
lot more detail. Nonlinear systems are a vital part of this development. Hence, the
interest in solitons, especially when coupled to tunability. The very special properties
that emerge when dealing with negative index metamaterials may well be the way
forward when addressing potentially devastating loss windows.

In hydrodynamics and electromagnetism, solitons [21] have been studied for a
long time and have found particular importance in the optical domain, especially in
connection with optical fibres [22]. It is, therefore, very important to investigate the
extent to which new materials are capable of sustaining various types of solitons.
Since any soliton is drawn from a very large family, it is necessary to restrict atten-
tion to particular members of this family and very important ones are bright spatial
solitons. The balance mentioned earlier is actually between the chirps associated
with beam diffraction and nonlinear self-focussing. This property is in contrast to
temporal solitons that are pulses which rely upon balancing phase changes across
their width and arise from material dispersion and nonlinearity. Both spatial solitons
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and slow light trapping will now be discussed in detail, beginning with an account
of what has become known as the “trapped rainbow”.

9.2 The “Trapped-Rainbow” Principle: Light Stopping
in Metamaterial and Plasmonic Waveguides

Slow-light nanoguides are expected to lead to substantial reductions in the size of
and power consumption in photonic devices and systems. For instance, recent the-
oretical studies and computational simulations (see also below) suggest that disper-
sionless slow group velocities of light pulses in multilayer negative-refraction MM
waveguides can dramatically increase the induced phase shifts in Mach-Zehnder
modulators, to the point of reducing the length of the modulator’s arms from a
typical present-day value of a few mm down to only a few tens of microns (see,
e.g., [23]). Similarly promising results can also be achieved for a number of other
photonic components, such as switches, buffers, filters, dispersion compensators, and
so forth. Furthermore, by deploying suitably designed all-semiconductor based [24,
25] (i.e. not metallic) metamaterial waveguides that include active/gain layers, we
can engineer practical slow-light structures wherein the optical (dissipative) losses
of the guided slow-light pulses are reduced by orders of magnitude—or completely
eliminated—compared to their metallic counterparts; a further key requirement for
any useful slow-light structure.

A variety of physical effects have recently been exploited in order to dramati-
cally decelerate or ‘store’ light. These include electromagnetically induced trans-
parency (EIT), coherent population oscillations (CPO), stimulated Brillouin scat-
tering (SBS), photonic-crystal (PhC) line-defect waveguides and coupled-resonator
optical waveguides (CROWs). However, (atomic) EIT uses ultracold or hot gases
and not solid-state materials, CPO and SBS are very narrowband (typically, sev-
eral kHz or MHz) owing to the narrow transparency window of the former and the
narrow Brillouin gain bandwidth of the latter, while PhCs are prone to tiny fab-
rication imperfections (nm-scale disorder) [26, 27] that can considerably modify
(shift) the photonic bandgaps. In an effort to provide an alternative that would allow
to overcome the above intrinsic limitations of positive-index slow-light schemes,
a fundamentally new approach has been proposed [8, 28, 29] that relies on the
use of negative-electromagnetic-parameters (refractive index and/or permittivity)
waveguides. In such waveguide the power-flow direction inside the negative-index/-
permittivity regions is opposite to the one in the positive-index regions, resulting in
a pronounced deceleration of the guided electromagnetic energy (see Fig. 9.2).

We now first describe the basic premises of (dispersionless) slow/stopped light in
negative-constitutive-parameters metamaterial and plasmonic waveguides (‘trapped
rainbow’ principle). We proceed by studying the waveguide dispersion equations
in the presence of disorder and/or dissipative losses, and show that the zero-group-
and zero-energy-velocity points are preserved; hence, a guided light pulse can still
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Fig. 9.2 Slow and stopped light in negative-refractive-index hetero-structures. a Slow zigzag ray
propagation along a NRI hetero- structure. b Here, the ray returns exactly to its original point; the
ray, thus, becomes permanently trapped (zero group velocity, vg = 0) and an ‘optical clepsydra’ is
formed. In both figures, β is the longitudinal propagation constant, P+z the (total) time-averaged
power flow, and te f f the effective guide thickness

be dramatically decelerated and stopped inside these lossy structures. Finally, we
show how the incorporation of thin layers made of an active/gain medium placed
adjacently to the core of a negative-index metamaterial waveguide can lead to a
complete elimination of the dissipative losses experienced by a guided, slow-light
pulse.

The ‘trapped rainbow’ scheme uses efficiently excitable waveguide oscillatory
modes and is remarkably simple, since the slowing of the guided modes is performed
solely by adiabatic decrease of the core thickness. The scheme is, also, resilient to
fabrication disorder/imperfections because it does not rely on the use of stringent
conditions (such as a ‘perfect’ photonic-crystal lattice or attainment of ultralow tem-
peratures, etc.) for decelerating and stopping light, but rather on the deployment of
negative bulk/effective electromagnetic parameters (such as, e.g., negative refractive
index or, simply, negative permittivity) that can readily be realised by even amor-
phous and highly disordered metamaterials [13, 14]. Furthermore, these metamaterial
heterostructures can be designed in such a way that they exhibit zero group-velocity-
dispersion and attenuation-dispersion, even in the ‘stopped-light’ regime [30].
Utilizing a non-resonant scheme, we are able to allow for extremely large band-
widths over which the slowing [31] or stopping [32] of the incoming optical signals
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can be achieved, as well as for ultrashort device lengths. This approach also has the
important advantage that it can facilitate very efficient butt-coupling, directly to a
slow mode alone because: (i) It can support single-mode operation in the slow-light
regime [29]; (ii) The characteristic impedance of the NRI waveguide can be appro-
priately adjusted by varying the core thickness [8]; and (iii) The spatial distribution
of the slow mode closely matches that of a single-mode dielectric waveguide [8].
These conclusions have been drawn following exact manipulations of Maxwell’s
equations, without invoking paraxial, heuristic or other approximations.

It is interesting to point out that, in addition to metallic (metallodielectric) meta-
material or plasmonic slow-light structures, we can also deploy all-semiconductor
based, negative-refraction, heterostructures to realise ‘trapped rainbow’ slowing or
stopping of light. Such semiconductor-heterostructure designs have recently been
experimentally shown [24, 25] to enable negative refraction at infrared wavelengths
(8.4µm to 13.3µm), and (upon heavy doping) they can indeed be extended to the
telecommunication—or even the ultraviolet [32]—regime. Owing to their negative-
refraction property, these structures can facilitate slow-light propagation, and would
be particularly well-suited for the compensation of optical losses by means of active
semiconductor cladding layers, as well as for a variety of slow-light devices, such
as, e.g., (ultra-compact) modulators [23].

9.2.1 Light Stopping in the Presence of Disorder
and Plasmonic Losses

An important consideration in assessing the potential of metamaterial heterostruc-
tures for ‘stopping’ light pulses (υg = 0) is the degree to which such a feat can
be achieved in the presence of realistic (residual) losses and/or fabrication disor-
der. Already theoretical studies [8, 29, 33] have shown (see also Figs. 9.1 and 9.2)
that very large light-decelerations can be achieved in metamaterial waveguides—
even when dissipative (Ohmic) losses are present [34]. More recently, it has been
ascertained [35] that complete ‘stopping’ of light inside negative-index metamater-
ial waveguides is also possible when decoherence mechanisms, such as dissipative
losses, remain in the structure. This realisation stems from the fact that light pulses
(i.e. not sinusoidal, single-frequency, waves) with a well-defined transverse enve-
lope are, in the presence of losses, characterised by a complex frequency and a
realwavenumber [34] (see also Fig. 9.3)—in contrast to sinusoidal waves, which are
characterised by a complex wavevector when dissipative losses remain in the struc-
ture. This feature becomes even more prominent in the stopped-light regime, where
(owing to the fact that light does not propagate any more) a consideration of spatial
losses (complex wavenumber) lacks any appreciable physical meaning [22, 30], and
one should instead consider temporal losses (complex frequency).

Our studies have revealed that a zero group velocity (Re{dω/dβ}= 0), i.e. com-
plete adiabatic stopping of light pulses, can be achieved even when residual dissipa-
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Fig. 9.3 Direct comparison between calculations based on finite-difference time-domain (FDTD,
symbols) and the transfer-matrix method (TMM, lines) methods showing the dependence of the
group velocity (υg) of the complex-ω solutions (solid black), the group velocity of the complex-k
solutions (red dashed line), the imaginary part of the complex-ω solutions (solid blue) and the
imaginary part of the complex-k solutions multiplied by υg (green dashed) on the thickness of the
core waveguide [35]. The inset shows the rate of energy loss (or gain) for the whole wavepacket
(purple symbols) with varying core thickness as calculated by the discrete Poynting’s theorem within
the FDTD method

tive losses (or gain) remain in the metamaterial waveguides. In Fig. 9.3 we examine
how the spatial and temporal losses (or gain) experienced by, both, the central fre-
quency of a pulse and the pulse as a whole (guided along the active slow-light
metamaterial heterostructure of Fig. 9.4) vary with core thickness. The complex-ω
solutions can be calculated with the finite-difference time-domain (FDTD) method
by recording the spatial variation of the field amplitude along the central axis of the
heterostructure at two different time points, and then dividing the spatial Fourier
transforms of the two longitudinal spatial profiles. The rate of energy change for
the whole wavepacket (total loss or gain) is calculated using the discrete Poynting’s
theorem integrated over a spatial region sufficiently wide to contain the pulse.

Figure 9.3 shows that for core thicknesses above 262 nm the central frequency
of the pulse experiences loss. For smaller thicknesses, for which the amplitude
of the field increases inside the gain region, we find that the gain supplied by
the cladding strips overcompensates the loss induced by the core layer. At a core
thickness of 262 nm the central frequency experiences neither gain nor loss, while
the wavepacket as a whole experiences gain (inset in Fig. 9.3). In all cases we
have verified that Re{nef f }< 0 (data not shown here). Overall, we find excellent
agreement and consistency between five distinct sets of results: the spatial losses/gain
(multiplied by the group velocity [22]) for the central frequency as calculated
by the FDTD (green dots) and the transfer-matrix method (TMM) (green dashed
line), the temporal losses/gain for the central frequency as calculated by the FDTD
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(blue squares) and TMM (blue dashed line), and the temporal losses of the whole
wavepacket as calculated by the FDTD method (triangular symbols in the inset of
Fig. 9.3). This fact provides further evidence that loss-compensation is in principle
possible in the slow-light NRI regime, including the light-stopping point at around
137 nm. Note that for core thicknesses smaller than around 140 nm the group velocity
of the complex-k mode characteristically differs from that of the complex-ω mode
(red dashed and black solid lines in Fig. 9.4). As with the case of SPPs in plasmonic
films [34], the group velocity of the complex-k solutions exhibits a “back-bending”,
never becoming zero, while that associated with the complex-ω solutions may reduce
to zero even in the presence of excessive gain (or losses).

Finally, it is to be noted that series of recent works [13, 14, 36] have conclusively
shown that metamaterials can, when judiciously designed, be completely insensitive
to even high degrees of fabrication disorder. This is simply because metamaterials
owe their effective properties to an averaged electromagnetic response of their con-
stituent meta-molecules, without necessarily requiring a ‘perfect’ lattice to achieve
negative electromagnetic responses. Semiconductor-based metamaterial heterostruc-
tures are, also, expected to exhibit minimal sensitivity to fabrication disorder, since
therein we do not make use of plasmonic meta-molecules, but planar semiconduc-
tor layers—one or more of which exhibit a negative electric permittivity below its
plasma frequency. Current molecular beam epitaxy (MBE) facilities are indeed capa-
ble of growing high-quality semiconductor superlattices owing to mature, optimised
growth-temperature, composition and doping-profile techniques.

9.2.2 From Loss-Compensation to Amplification
by Cladding Gain

Recently it has been shown that metamaterial losses can be compensated on the
materials level by gain [37]. Here we discuss how in a suitably designed metamater-
ial heterostructure, the losses that a slow-light pulse experiences can be completely
removed macroscopically by using evanescent gain (stimulated emission). An exam-
ple of such a structure is schematically illustrated in Fig. 9.4, where we note that two
gain layers are placed adjacently to the negative-refractive-index core layer. Simi-
lar loss-compensation configurations have recently been shown to work remarkably
well [37], to the point of even allowing for lasing [38] in hybrid plasmonic-dielectric
configurations. It turns out that by properly adjusting the ‘pump’ laser intensity, the
(negative) imaginary part of the refractive index of the gain medium can become
equal (in magnitude) to the (positive) imaginary part of the effective refractive index
of the metamaterial heterostructure, so that losses can be altogether eliminated.

Indeed, in Fig. 9.5 we are presenting numerical results (confirming the afore-
mentioned conclusions) that were obtained using full-wave FDTD simulations and
analytical TMM calculations of pulse propagation in the metamaterial waveguide
structures of the type shown in Fig. 9.4. Four simulations were run, and in each sim-
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Fig. 9.4 Schematic illustration of the metamaterial-waveguide configuration for the (complete)
compensation of the dissipative losses arising from the negative-index core layer

ulation an oscillatory mode pulse was injected into the waveguide. The simulations
examined the effect on the pulse when: only gain is present (the metamaterial is
modelled as being lossless); only losses are present (the gain material is removed);
neither losses nor gain are present; and both gain and losses are present. A NRI
material was used for the core layer, which had a width of 0.4λ0 (λ0 being the
free-space wavelength of the pulse’s central frequency). The gain layers were posi-
tioned immediately adjacent to the core layer, and extended outwards into the
cladding for a distance of 0.25λ0. The rest of the cladding (see Fig. 9.4) was assumed
to be a non-dispersive material with a refractive index of 1 (air).

For simplicity, both the permittivity and permeability response of the NRI material
are simulated using the same Drude model. Thus, the refractive index of the NRI mate-
rial is given by: nD(ω) = 1−ω2

p/(ω
2 +iω�D), where ωp = 2π ×893.8×1012 rad/s

is the plasma frequency and �D = 0.27 × 1012 s−1 is the collision frequency. The
frequency response of the permittivity of the gain layer obeys a Lorentzian disper-
sion: ε(ω) = ε∞ + 	εω2

L /(ω2
L − i2δω – ω2), with ε∞ = 1.001, 	ε = −0.0053,

ωL = 2π × 370 × 1012 rad/s, and �L = 1014 s−1, resulting in a line-shape that is
similar to that produced by, e.g., an electronic transition in a quantum dot.

The effective refractive index of the waveguide is extracted from the simulation
by recording over time the Hz-field amplitude of the pulse at two points along the
waveguide’s central axis. Using the Fourier transforms of these results, the change
in phase and amplitude undergone by each frequency between the two points can
be calculated, from where the real and imaginary parts of the effective refractive
index can then be obtained. Exemplary plots of the so-extracted imaginary part of
the effective index (related to the absorption coefficient α = 2ωIm{nef f }/c) of the
guided light pulses are shown in Fig. 9.5. We note that when gain layers are placed
adjacently to the negative-index core layer, the loss experienced by the guided light
pulse is (at a frequency around 400 THz) completely removed (green squares in



170 A.D. Boardman et al.

Fig. 9.5 Comparison between FDTD (symbols) and TMM (lines) calculations of the absorption
coefficient α (spatial losses) versus frequency for the T Mb

2 mode in the cases where the NRI core
layer is: lossless (red vertical triangles); lossy (blue horizontal triangles); lossy and gain cladding
layers are used (green squares); lossless and gain cladding layers are used (orange circles) [35].
The inset depicts the frequency dispersion of Re{nef f }in all four cases

Fig. 9.6 Snapshots of slow-light pulse propagation along the central axis of the considered
waveguides for the cases where use is made of: a neither loss nor gain b loss but no gain c both,
loss and gain and d gain but no loss [28]. In all cases propagation is from left to right

Fig. 9.5). For lower frequencies, this slow-light, negative-phase-velocity pulse is
amplified while propagating inside the negative-index waveguide. Further evidence
for the removal of losses is shown in Fig. 9.6, from where it can be directly seen that
the incorporation of gain layers completely restores the amplitude of the slow-light
negative-phase-velocity pulse.
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9.3 Spatial Solitons in Controlled Metamaterials

Spatial solitons are stable if they are solutions of what is known as the
one-dimensional cubic nonlinear Schrödinger equation. Even though a beam of
electromagnetic energy in a bulk medium has two transverse-dimensional degrees
of freedom, perpendicular to its propagation direction, it can, in principle, balance
diffraction with nonlinearity, but the balance is azimuthally unstable. It was shown,
some time ago [39], that placing an electromagnetic beam in a planar waveguide
produces stability in an elegant fashion and this is the basic model adopted here.
Within a planar waveguide, a stable soliton can be created by permitting the beam
to diffract in the plane of the guide so the role of any diffraction-management that is
present, naturally, or artificially, will be important. In fact, for positive phase materi-
als, diffraction-management has been investigated [40], already, for spatial solitons
[39], especially through the utilization of waveguide arrays.

Spatial solitons will be discussed in detail, here, using the basic nonlinear cubic
Schrödinger equation. The latter is usually an adequate, initial, model for the behav-
iour of such electromagnetic beams but it is often the case that important additions to
this core equation have to be included. One well-known example is the appearance of
non-paraxial terms, when the slowly varying amplitude approximation is, partially,
relaxed. In this chapter, it will be shown that nonlinearly-induced diffraction is a vital
addition [41, 42] to the nonlinear Schrödinger equation. It is a phenomenon that is
not often discussed but it interesting that it can dominate over non-paraxiality and
plays a really vital role as the beams become very narrow, preventing beam collapse
at high powers. Even though the core nonlinear Schrödinger equation is modified to
take into account other effects the solutions will still be referred to as ‘solitons’, as
is common practice.

The study of solitons in a nonlinear negative metamaterial results in an elegant
formulation of a generalised nonlinear Schrödinger equation in which it is empha-
sised that a lot of new possibilities can be anticipated. The metamaterial properties,
therefore, appear now as an influence upon the nonlinearly-induced diffraction.

The fundamental derivation of the nonlinear Schrödinger equation, now to be pre-
sented, includes diffraction-management [43] and nonlinear diffraction. It will not
include loss, however, because, as recent literature shows, it is possible to diminish
the loss [44, 45] to a very small quantitative impact, whilst retaining all the quali-
tative double negative behaviour that is such an attractive feature of negative phase
metamaterials.

9.3.1 The Schrödinger Equation Description
of Propagating Beams

A spatial soliton that is established in a dielectric planar guide is stable because
diffraction along the y-axis is frozen, and replaced by guiding. Figure 9.7 shows a
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Fig. 9.7 Sketch of a TE-polarised electromagnetic beam trapped in a planar dielectric waveguide
of infinite extent in the x-direction and in the absence of any magnetooptic influence. This is an
illustration of a (1+1) spatial soliton with diffraction in the x-direction and propagation in the
z-direction. In this example the beam carries the electromagnetic field components (Ex , Hy)

typical example of stable electromagnetic beam in a planar waveguide, suffering
diffraction only in the x-direction.

If E is the electric field vector of an electromagnetic beam travelling through a
polarisable, normal, dielectric medium, like glass, for example, then, from Maxwell’s
equations,

∇2E − ∇ (∇ · E) = μ0
∂2D
∂t2 + μ0

∂2PN L

∂t2 (9.1)

where D is the linear displacement vector, PN L is the nonlinear electric polarisation
of the dielectric, μ0 is the permeability of free-space and the medium is assumed to
be non-magnetic. The standard assumption in the literature is to set div (E) = 0, but
this action will not be taken here because it will eliminate any nonlinear diffraction.
As will be seen later on, eliminating such diffraction removes a very important
metamaterial influence, whenever the latter material is deployed to diminish any
linear diffraction.

In order to establish the basic principle of nonlinear diffraction, in a non-
metamaterial dielectric, consider, the TE-polarised beam shown in Fig. 9.7 that has
only an electric field component Ex , so there is no electric field component along
the z-axis. Such beams can be monochromatic with an angular frequency ω = ω0,
defined through the transformations E ⇒ 1/2{E (r, ω0) e−iω0t + c.c.}, PN L ⇒
1/2{PN L (r, ω0) e−iω0t + c.c.}, D ⇒ 1/2{D (r,ω0) e−iω0t + c.c.}, where c.c. means
the complex conjugate and r is the vector (x, y, z). The propagation of the beam is
along the z-axis, and a weakly nonlinear guide, exhibiting the classic Kerr nonlin-
earity, is being used for which the modal field of the waveguide is both linear and
stationary. It will determine an effective guide-width. This sort of nonlinearity is a
safe assumption for the vast majority of optically nonlinear materials. Equation (9.1)
has an x-component equal to
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∂2 Ex

∂z2 − ε (ω0)

c2 Ex = − ω2
0μ0 P N L

x − ∂2 Ex

∂x2 − 1

ε0ε (ω0)

∂2 P N L
x

∂x2

− 1

ε0ε (ω0)

∂2 P N L
z

∂x∂z
(9.2)

In which ε (ω0) is the dielectric, frequency-dependent, permittivity of the pla-
nar dielectric waveguide, ε0 is the permittivity of free-space, c is the velocity of
light in free-space and the magnetic permeability is μ (ω0) = 1. Now, a conven-
tional slowly-varying approximation can be introduced in the following way. All
the variables in (9.2) can be defined as having a slow variation associated with
propagation down the z-axis, a transverse x-dependence to take account of the
diffraction, and a fast variation associated with the plane wave eikz , where k is a
wave number, i.e. the variables can be transformed as follows

(
Ex , P N L

x , P N L
z

) ⇒
(Ex (x, z, ω0), P N L

x (x, z, ω0), P N L
z (x, z, ω0))eikz , where the explicit dependence

upon the x and z coordinates, and the frequency are shown here, for clarity, but
will not be explicitly shown in the development below. Since the longitudinal field
component Ez is an order of magnitude smaller than the transverse component Ex ,
only P N L

x needs to be used, so in this ‘scalar model’ the x-component of the nonlinear
polarisation has, for a Kerr medium, the standard form

P N L
x = 3

4
χ(3)ε0 |Ex |2 Ex (9.3)

where χ(3) is the third-order nonlinear coefficient. Hence, the ‘modified’ nonlinear
Schrödinger equation, in which the final term models nonlinear diffraction, is [46]

2ik
∂ Ex

∂z
+ ∂2 Ex

∂x2 +3ω2χ(3)

4c2
|Ex |2 Ex + ∂2 Ex

∂z2 + 3χ(3)

4ε (ω0)

∂2

∂x2

(
|Ex |2 Ex

)
= 0 (9.4)

In arriving at (9.4), the possibility of quintic nonlinearity has not been included,
that only the role of the third-order nonlinear diffraction has been identified. This
action is taken to demonstrate the form and appearance of the nonlinear diffraction
term. Its effectiveness in competition with quintic nonlinearity, non-paraxiality and
higher-order diffraction is such that it is a very competitive and dominant term when
narrow beams are being propagated. Naturally, this dominance of such a third-order
term can be quantitatively modified by the inclusion of quintic nonlinearity and
higher-order diffraction in a straightforward way but this chapter will focus upon a
choice of materials for which nonlinear diffraction can interact dramatically with a
metamaterial environment.

What can be said at this stage is that if only the nonlinear diffraction appears
in the modified nonlinear Schrödinger equation then its influence upon the control
and formation of narrow beams will be strong, and this point will be checked in the
simulations given below. For low power beams, the nonlinear diffraction is not going
to compete with the main diffraction term. As the beams become narrower, the effect
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of the ∂2

∂x2 operator becomes stronger, and if the power in the beam becomes greater,
then it should be expected that the nonlinear diffraction will begin to have an impact.

Up to now the discussion has centred upon electric nonlinearity, but metamate-
rials may also display a magnetic nonlinearity. This type of nonlinearity will cause
div (H) �= 0, where H is the magnetic field carried by the propagating electromag-
netic field. This creates a nonlinear diffraction contribution determined now by the
nonlinear magnetic properties.

For an isotropic, double negative, metamaterial capable of sustaining both nonlin-
ear electric and magnetic polarizations, the constitutive relations of the metamaterial
are

D (r, ω) = ε0ε (ω) E (r, ω) + PN L (r, ω) (9.5)

B (r, ω) = μ0μ (ω) H (r, ω) + μ0MN L (r, ω) (9.6)

where ω is an angular frequency, μ (ω) and ε (ω) are, respectively, the frequency-
dependent permeability and permittivity of the metamaterial, and the Fourier trans-
forms D, B, E, H, PN L , MN L are of the displacement vector, the magnetic flux density
vector, the electric field, the magnetic field, the dielectric nonlinear polarization and
the nonlinear magnetization. Any possible bianisotropy, anisotropy, or spatial dis-
persion, is neglected. All the nonlinearity is accounted for in the polarisations that
are defined.

For spatial solitons, a monochromatic beam, with a frequency ω0, can be launched
into the kind of planar guide sketched in Fig. 9.7. Maxwell’s equations then yield the
following fundamental equations governing its behaviour

∇2E − ∇ (∇ · E) + k2
0 (ω0) E + ω2

0

c2 μ (ω0)
PN L

ε0
+ iω0μ0∇ × MN L = 0 (9.7)

∇2H − ∇ (∇ · H) + k2
0 (ω0) H + ω2

0

c2 ε (ω0) MN L − iω0∇ × PN L = 0 (9.8)

where k2
0 (ω0) = ω2

0
c2 ε (ω0) μ (ω0).

Equations (9.7) and (9.8) appear to be coupled and, indeed, it has been asserted in
the literature that they are, being a dramatic aspect arising from using a metamaterial.
The short answer is that asserting that these equations are coupled is an incorrect
conclusion. The point will now be addressed but, because the the nonlinear diffraction
involves either ∇ · E, or ∇ · H, and neither term contributes to any coupling, of this
kind, they will be dropped from the argument for the time being.

The notation can be simplified by adopting the definitions k ≡ k0 (ω0), ε ≡ ε (ω0),
μ ≡ μ (ω0). Also, the development can be made more specific, at this stage, by
considering a TE-polarized beam which is defined by the field vectors E = x̂Ex

and H = ŷHy , where x̂ and ŷ are unit vectors. If the nonlinear polarizations are
generated by Kerr-like responses of the metamaterial, either from the meta-atoms
themselves, or the background medium suitably prepared with nonlinear inclusions,
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then PN L = ε0ε
(3)
N L |Ex |2 Ex and MN L = μ

(3)
N L

∣∣Hy
∣∣2

Hy where ε
(3)
N L and μ

(3)
N L

are, respectively, the electric and magnetic cubic nonlinearity coefficients. A Kerr
assumption is not a serious restriction because a saturable medium can easily be
modelled by adding quintic terms to enhance the |Ex |2 and

∣∣Hy
∣∣2 assumptions, or

by using suitably descriptive functions.
The transverse Laplacian ∇2⊥ = ∂2

∂x2 + ∂2

∂y2 , could now be simply introduced, in
order to create more generality, but, more importantly, the fast spatial variation can
be extracted, in the manner outlined earlier, by setting Ex ⇒ Ex (x, z)eikz , Hy ⇒
Hy(x, z)eikz , where k is a wave number. In this procedure, Ex and Hy are replaced
by the slowly varying functions Ex (x, z) and Hy(x, z). The x-component of (9.7),
after adopting a well-known vector identity, is

2ik
∂ Ex

∂z
+ ∇2⊥Ex + ω2

0

c2 με
(3)
N L |Ex |2 Ex + iω0μ0μ

(3)
N L

[∣∣Hy
∣∣2 (∇ × Hy ŷ

)] · x̂

+ iω0μ0μ
(3)
N L

[
∇ ∣∣Hy

∣∣2 × (
Hy ŷ

)] · x̂ = 0 (9.9)

Since the envelopes are slowly varying only the nonlinear term involving ∇ ×
(Hy ŷ) = −iωε0ε(ω0)Ex x̂ needs to be retained. It is interesting that the nonlin-
ear Schrödinger equation also emerges from a multiple-scale analysis that retains all
the third-order terms. These third-order terms are presented here. Other terms are of
higher than third-order. The equations for the TE mode components of E and H are,
therefore

2ik
∂ Ex

∂z
+ ∇2⊥Ex + ω2

0

c2

[
με

(3)
N L |Ex |2 + εμ

(3)
N L

∣∣Hy
∣∣2

]
Ex = 0 (9.10)

2ik
∂ Hy

∂z
+ ∇2⊥ Hy + ω2

0

c2

[
με

(3)
N L |Ex |2 + εμ

(3)
N L

∣∣Hy
∣∣2

]
Hy = 0 (9.11)

The nonlinear coefficients ε
(3)
N L and μ

(3)
N L can be positive, or negative, and a sign has

not been attached to the wave number k.
As indicated earlier, whenever a multiple-scale method is used, each of the terms

in (9.10) and (9.11) can be associated with a given order and all the higher-order cor-
rections have been omitted. The

∣∣Hy
∣∣2 term in (9.11), for example, is not of a single

order. If
∣∣Hy

∣∣2 is retained explicitly in (9.10) and |Ex |2 explicitly in (9.11), and an
assertion is made that the equations are coupled, it would be effectively including cor-
rections from an order that has already been neglected. In other words, to assert that
coupling of this kind takes place because we are dealing with a metamaterial is incor-
rect. In fact, the following simple relationship for a plane wave should be deployed

∣∣Hy
∣∣2 = ε0 |ε|

μ0 |μ| |Ex |2 (9.12)
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Even if the modal fields of the guides, like the one displayed in Fig. 9.7, are explicitly
included this will only result in a modification of the effective width of the guide
and will still leave the reducibility implied by (9.12) in place. This point has been
also recently acknowledged in a different discussion about slow temporal solitons,
but without making contact with the original assertion of irreducibility. To the cor-
rect order, then, the basic equations for the slowly-varying electric and magnetic
field components under discussion are, after restoring the non-paraxial terms and
returning back to diffraction only along the x-axis,

2ik
∂ Ex

∂z
+ ∂2 Ex

∂z2 + ∂2 Ex

∂x2 + ω2
0

c2

[
με

(3)
N L + εμ

(3)
N L

ε0 |ε|
μ0 |μ|

]
|Ex |2 Ex = 0 (9.13)

2ik
∂ Hy

∂z
+ ∂2 Hy

∂z2 + ∂2 Hy

∂x2 + ω2
0

c2

[
με

(3)
N L

μ0 |μ|
ε0 |ε| + εμ

(3)
N L

] ∣∣Hy
∣∣2

Hy = 0 (9.14)

These equations, include non-paraxiality, but are not coupled and can be used to
model beam formation in a metamaterial. They can be readily generalized to arbi-

trary nonlinearities by introducing functions f1
(|Ex |2

)
and f2

(∣∣Hy
∣∣2

)
to include

the saturations associated with the dielectric and magnetic behaviour respectively.
In their un-normalised form, (9.13) and (9.14) show that the nonlinear coefficients
depend upon the choice of operating frequency and could change quite rapidly if a
monochromatic beam is launched close to a resonance in the permittivity, or perme-
ability. Equations (9.13) and (9.14) can now be modified by including higher-order
diffraction and nonlinear diffraction and non-paraxiality. As shown in previous publi-
cations, however, nonlinear diffraction dominates over non-paraxiality, longitudinal
field component (vector) effects and also over quintic nonlinearity. In the examples
to be given below, therefore, the quintic nonlinear contributions to the electric or
magnetic nonlinearity will be taken as negligible. The final form of the nonlinear
Schrödinger equations to be used in the numerical simulations will always assume
that narrow beam formation requires the dominance of nonlinear diffraction over
non-paraxial terms, so the latter will be omitted from now on. Higher-order linear
diffraction is retained at this stage, however, because diffraction-management is to
be discussed later and it remains to be seen whether a managed reduction of the main
linear diffraction, for example, will bring the higher-order diffraction into play, or
not. The magnetooptic influence that will be used later on to control beam behaviour
will exploit the Voigt effect and, as will be shown, it requires the use of an asym-
metric waveguide structure only and TM modes. The specific nature of the term to
be added to the nonlinear Schrödinger equation to account for the Voigt effect will
be addressed in the next section but, at this point, the next set of equations recog-
nises that the nonlinear diffraction of the TE-polarised beam equation depends upon
the condition ∇ · E �= 0 and that the TM-polarised beam equation depends upon
the condition ∇ · H �= 0. Hence, before the addition of the term that creates the
magnetooptic Voigt influence, the final form of the modified nonlinear Schrödinger
equation needed for TE-polarised beam simulations is
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TE-polarised beams

i
∂ Ex

∂z
+ 1

2k

∂2 Ex

∂x2 − 1

8k3

∂4 Ex

∂x4 + 1

2k

ω2
0

c2

[
με

(3)
N L + εμ

(3)
N L

ε0 |ε|
μ0 |μ|

]
|Ex |2 Ex

+ 1

2εk
ε
(3)
N L

∂2

∂x2

(
|Ex |2 Ex

)
= 0 (9.15)

in which it can be seen that only the dielectric nonlinear polarisation can produce
the nonlinear diffraction. Note, that for a double-negative metamaterial μ = − |μ|
and ε = − |ε|. For this type of metamaterial, backward waves would exist for
which k = − |k| and bright spatial solitons would only be possible for NT E =(
|μ| ε(3)

N L + |ε| μ(3)
N L

ε0|ε|
μ0|μ|

)
< 0. It is interesting, now, that a sufficient condition to

make N < 0 is to make ε
(3)
N L < 0 and μ

(3)
N L < 0 but this is not a necessary condition

and it is possible to have either ε
(3)
N L > 0 or μ

(3)
N L > 0 depending on their magnitude,

but not simultaneously. As a consequence, the coefficient in front of the nonlinear
diffraction term can, in principle, be positive or negative.

For TM-polarised beams the final form of the nonlinear Schrödinger equation, in
the absence of any magnetooptical effects, is

TM-polarised beams

i
∂ Hx

∂z
+ 1

2k

∂2 Hx

∂x2 − 1

8k3

∂4 Hx

∂x4 + 1

2k

ω2
0

c2

[
εμ

(3)
N L + με

(3)
N L

μ0 |μ|
ε0 |ε|

]
|Hx |2 Hx

+ 1

2μk
μ

(3)
N L

∂2

∂x2

(
|Hx |2 Hx

)
= 0 (9.16)

in which it can be seen that only the magnetic polarisation can produce the nonlinear
diffraction and that the vector H = (Hx , 0 , 0) has been adopted to characterise the
TM beam. The same arguments concerning the signs of k, ε

(3)
N L and μ

(3)
N L also apply

to this equation, but in this case NT M =
(
|ε| μ(3)

N L + |μ| ε(3)
N L

μ0|μ|
ε0|ε|

)
< 0.

Equations (9.15) and (9.16) model the propagation of bright spatial solitons in
a double-negative metamaterial. For each polarisation, the fast spatial variation is
a backward plane phase wave, with wave number k = − |k|. The energy flow is
manifested as beam propagation, in the positive z direction, and the beam coordinates
can be scaled by the transformations z = |k| w2 Z and x = wX , in which w is the
effective width of the beam. If no diffraction-management is anticipated at this stage,
through which the lowest-order, linear, diffraction can be reduced, the higher-order
diffraction term can be neglected. It will be reintroduced later. Proceeding on this
basis, both the nonlinear Schrödinger equations, produced above, assume the same
generic form

i
∂ψ

∂ Z
− 1

2

∂2ψ

∂ X2 − |ψ |2 ψ − κ
∂2

∂ X2

(
|ψ |2 ψ

)
= 0 (9.17)
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This is the complex conjugate of the standard modified nonlinear Schrödinger
equation. Observing the roles played by the electric nonlinearity and the magnetic
nonlinearity in bringing nonlinear diffraction into play for TE and TM polarised
beams, respectively, it has been assumed that the nonlinear coefficient in the TE-

polarised case is ε
(3)
N L = −

∣∣∣ε(3)
N L

∣∣∣ and that μ
(3)
N L is negligible, whilst in the TM-

polarised case, it has been assumed that the nonlinear coefficient is μ
(3)
N L = −

∣∣∣μ(3)
N L

∣∣∣,

with, ε
(3)
N L set as negligible. The reasons, emphasised again, for these choices are

because for TE beams the nonlinear diffraction is controlled by ε
(3)
N L and for TM

beams, it is controlled by μ
(3)
N L . For both polarisations, κ = 1

k2w2 , which for a par-
ticular metamaterial that can be varied by changing the operating frequency of the
beams and/or the beam width. ψ has been normalised to the following:

TE : ψ =
⎛

⎝

√
w2ω2

0

2c2
|μ|

∣∣∣ε(3)
N L

∣∣∣

⎞

⎠ Ex , TM : ψ =
⎛

⎝

√
w2ω2

0

2c2
|ε|

∣∣∣μ(3)
N L

∣∣∣

⎞

⎠ Hx .

(9.18)

Equation (9.17) can be used to show how the frequency bands offered up by a
particular metamaterial can control the behavior of narrow beams and it can also be
readily incorporated into a discussion of a special kind of diffraction-management
to be defined below.

Given that applications for metamaterials will be very important within the vis-
ible optical range, and the existence of the highly developed downstream magne-
tooptics sector of the world of magnetism, a combination of homogeneous negative
phase metamaterial and a magnetooptical material will be assessed here. This can
be achieved using the magnetooptic Voigt configuration, as opposed to the Fara-
day effect, through the use of the kind of asymmetric waveguide structure shown in
Fig. 9.8. For a symmetric structure, the Voigt configuration has no influence upon
the guided waves and, even for an asymmetric guide, it is only the TM modes that
are affected by the applied magnetic field. Spatial solitons must be TM-polarised,
therefore, to engage in any magnetooptic control and for narrow beams it will be the
nonlinear magnetic polarisation that determines the nonlinear diffraction.

9.3.2 Introduction of a Magnetooptic Environment

The magnetooptical influence manifests itself as a perturbation to the nonlinear
Schrödinger equation is defined here asv (x) Hx , which is a term that can be sim-
ply added to the envelope equation. In order to justify this, first of all, consider the
magnetooptic tensor describing the substrate, which has the form



9 From ‘Trapped Rainbow’ Slow Light to Spatial Solitons 179

Fig. 9.8 An asymmetric planar waveguide structure with a magnetooptic substrate. Wave propa-
gation is across the externally applied magnetic flux density B0 , producing the Voigt effect

εm =
⎛

⎝

(
n2

m

)
0 0

0
(
n2

m

) (−i Qn2
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)

0
(
i Qn2

m

) (
n2

m

)

⎞

⎠ =
⎛

⎝
ε 0 0
0 ε εyz

0 − εyz ε

⎞

⎠ (9.19)

where nm is the refractive index of the substrate, and typically Q could be as small as
O(10−4). All of the diagonal elements are set equal to each other. This is not exactly
true, but it is a common practical assumption, based upon the actual values of the
physical parameters. In the bulk, the Voigt effect is of O(Q2) and is negligible [46],
but it is an interesting possibility that a deliberately created asymmetric guide permits
access to an O(Q) Voigt effect provided that TM-polarised spatial solitons are used.
For polarised beams, using the tensor shown in (9.19), the magnetooptic perturbations
to the Schrödinger equation are

TE-polarisation : i
∂ Ex

∂z
= 0, TM-polarisation : i

∂ Hx

∂z
= −ω

c
n2

m Q Hx (9.20)

where Q is now an average along the y-axis over the whole waveguide structure.
It is very clear that such an integration along y would be zero if the structure in
Fig. 9.8 was symmetric, with both the substrate and cladding being magnetooptic.
This makes the point, very nicely, about now being able to access the Voigt effect to
O(Q), as opposed to it being only accessible to O(Q2) in the bulk.

The right-hand side of the TM-polarised part of (9.20) can now be added to the
general Schrödinger equation in order to account for any magnetooptic control. Using
the transformations given above that put the nonlinear Schrödinger equation into
dimensionless form means that the appropriate form of (9.20), for a TM-polarised
beam is

i
∂ψ

∂ Z
= −ω0

c
|k| w2n2

m Qψ = −vψ (9.21)
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In which the dimensionless Z, introduced earlier, in terms of the beam width, is used.
An important point to note here, however, is that if Q is a constant, it will do nothing
but add an additional phase shift to the solitary wave solution of (9.17). This can be
appreciated by redefining ψ to be ψeivz and then noticing that the derivative with
respect to Z immediately eliminates the magnetooptic term from the Schrödinger
equation. It is necessary, therefore, to make the magnetooptic parameter some func-
tion of the transverse coordinate, x, of the nonlinear guiding structure. Using the
dimensionless coordinate X, where x= wX, and = w is the beam width, an exam-
ple, is to set the magnetooptic parameter to be the function v (X) = vmaxsech

(
X
X0

)
,

where it is anticipated that the magnetooptic parameter defined in (9.21) is the kind
of function of X that has a maximum value vmax, and then spreads over the X-axis
under the control of a dimensionless half-width, X0. The maximum value, vmax, is
associated with the saturation of the magnetization. In fact, it is necessary to adopt a
spatial form that causes the magnetization to decline away, in both directions, from
X = 0.

If the spatial soliton is imagined to be like a particle in a well, then the X-dependent
magnetooptic term is in a position to influence the bright spatial soliton by creating
deeper wells, or spatial barriers depending upon the direction the applied magnetic
field assumes along the X-axis. A full scale, non-reciprocal effect should be expected
with one sign of the applied magnetic field permitting bright spatial soliton formation,
whilst the other sign can be expected to destroy any soliton creation.

9.3.3 Controlling the Beam Diffraction

Managing the dispersion, or diffraction, of electromagnetic waves in waveguide
structures is a valuable tool in any downstream application. Indeed, dispersion-
management is now a very important technique in optical fibre communications sys-
tems, and diffraction-management is an important feature of waveguide arrays [47].
A negative phase metamaterial [NPM] can be used to compensate any phase accu-
mulation in normal positive phase medium [PPM], such as glass, for example. For
beams this form of diffraction-management has been investigated for ring-cavities,
for which it has been deployed in a manner that encourages impedance-matching
[43, 48] in order to avoid unwanted reflections. It will also be assumed, here, for the
simulations to be described later on, that the periodic system illustrated in Fig. 9.9,
is also impedance-matched. From a practical device point of view this should be
too difficult to achieve, especially when graded-indices are used. The positive phase
accumulated in the PPM slabs could be compensated, completely, or partially, by
negative phase accumulation in the NPM slabs. Given this type of propagation, the
unit cell, of length L, shown in Fig. 9.9, can be used to develop an averaging process
that will then lead to the final form of a dimensionless generic form the slowly-
varying envelope equation, applicable to both TE and TM polarised beams and will
model spatial solitons propagating under the linear diffraction-management environ-
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Fig. 9.9 A planar periodic waveguide structure constructed from alternating layers of positive
phase media (PPM) and negative phase media (NPM). Propagation of the guided waves is along z
and diffraction takes place along the X-axis

ments given below. If the first-order linear diffraction is to be reduced by this kind
of management then, in principle, higher-order diffraction could take over so this
possibility also needs to be quickly identified.

The unit cell, shown in Fig. 9.9, is divided up into the lengths, l1L and l2L, where
l1 and l2 are simply fractions of L, i.e. 0 ≤ l1,2 ≤ 1, containing a PPM and an
NPM material, respectively. For a TE-polarised beam the forms of the nonlinear
Schrödinger equations, in each part of the unit cell, are

PPM:

2i
∂ Ex

∂z
+ 1

k1

∂2 Ex

∂x2 + ω2

c2k1
ε
(3)
N L1 |Ex |2 Ex − 1

4k3
1

∂4 Ex

∂x4 + ε
(3)
N L1

ε1k1

∂2

∂x2

(
|Ex |2 Ex

)
= 0

(9.22)

NPM:

2i
∂ Ex

∂z
− 1

|k2|
∂2 Ex

∂x2 − ω2
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c2 |k2| |NT E | |Ex |2 Ex + 1

4
∣∣k3
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∣∣
∂4 Ex

∂x4

+ ε
(3)
N L2

|ε2| |k2|
∂2

∂x2

(
|Ex |2 Ex

)
= 0 (9.23)

where NT E =
(
|μ| ε(3)

N L + |ε| μ(3)
N L

ε0|ε|
μ0|μ|

)
and, as defined earlier, the subscripts 1

and 2 are used to label the regions of the unit cell. For a TM polarised beam NT E

is simply substituted by NT M but for this polarisation, the final term in (9.22) is
absent since, in a PPM, there is no nonlinear magnetic polarisation. In the NPM,
however, the TM-polarisation does permit a nonlinear diffraction term, for which
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the coefficient is μ
(3)
N L2

/
(|μ2| |k2|). In order to be more general, both nonlinear dif-

fraction and higher-order diffraction are included for the time being. Nevertheless,
as discussed earlier, the nonlinear diffraction dominates over possible contributions
from non-paraxiality and the role of quintic nonlinearity in any nonlinear saturation
that prevents beam collapse. The average over the unit cell can be effected by con-
sidering the types of terms in the Schrödinger equations one at a time and adjusting
the coefficients according to whether they refer to the PPM or the NPM part of the
cell. In other words, the averages are going to be integrations with respect to z over
L and it must be assumed that the unit cell is smaller in scale than a diffraction
length measured as k1w

2or|k2| w2, where w is the width of the spatial soliton. For
TE-polarised beams, the outcomes for the averaging are, labelling each term in the
nonlinear Schrödinger equation by its physical role:

Propagation

1

L

L∫

0

∂ Ex

∂z
dz ≈ ∂ Ex
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(9.24)

Diffraction

1

L

L∫

0

1

k

∂2 Ex

∂x2 dz ≈ 1

k1

(
l1 − k1

|k2| l2
)

∂2 Ex

∂x2 (9.25)

Nonlinearity
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Nonlinear diffraction
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Higher-order diffraction
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Hence, the taking of a spatial average over the unit cell, shown in Fig. 9.3, leads to
the dimensional equations
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TM:
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in which

D = l1 −
√

ε1μ1∣∣√ε2μ2
∣∣ l2 F = l1 −

(
ε1μ1

|ε2μ2|
) 3

2

l2 (9.31)

where εi , μi are the respective relative permittivities and permeabilities of the parts
of the unit cell shown in Fig. 9.9a. The strategy for using this equation is to reduce
the value of D, so that the linear diffraction can be minimised, thus permitting
an influence from the nonlinear diffraction to appear. If the first-order diffraction
is reduced in this way, however, it is possible in principle that the higher-order
diffraction term, controlled by the parameter F, is not minimised.

Nevertheless, k1|k2| does not have to be unity, and higher-order linear diffraction
can be changed by adjusting the structure. In fact, the kind of compensation to be
discussed here, can be targeted at D or F . Indeed, for any choice of D it is possible
to arrange for the ratio k1|k2| to make the contribution of higher-order linear diffraction
negligible. This is a fascinating possibility that means that the reduction of D does not
necessarily mean that higher-order diffraction has to be introduced. Because of this
conclusion, it will not be regarded as a critical contribution to the envelope equation
and the emphasis will be directed towards first-order diffraction-management. In
addition, it should be noted that the non-paraxiality is also reduced as D tends to
zero, but in any case, it is emphasised, once again, that nonlinear diffraction is going
to be the dominant influence as beams become narrower and, as shown earlier, takes
over the role of preventing beam collapse. Clearly if a nonlinear material is selected
that has a large quintic contribution then the latter will compete with the nonlinear
diffraction. The latter will still present a limit to beam narrowing, even if the small
z-component of the electric field is restored to the argument, it only has a small impact
on the role of the nonlinear diffraction. In summary, there are two broad scenarios. In
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one, there is no diffraction-management but the nonlinear diffraction becomes a very
important influence as the beams narrow. The second scenario involves manipulating
D, to engage in some form of linear diffraction-management that can be arranged in
a number of ways to make D → D(z) through the agency of a metamaterial.

As stated earlier, the scales z = (
kw2

)
Z and x = (w) X can be used, where w is

actually an arbitrary unit but can be physically interpreted as the beam width. These
steps towards dimensionless equations results in the following generic equation that
describes both polarisations in terms of the useful dimensionless parameters D, which
measures the control of the linear diffraction and κ , which measures the nonlinear
diffraction

i
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∂ Z
+ D

2

∂2ψ

∂ X2 + |ψ |2 ψ + κ
∂2

∂ X2

(
|ψ |2 ψ

)
= 0 (9.32)

where
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TM:
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and for each polarisation κT E = GT E
2

w2GT E
1

and κT M = GT M
2

w2GT M
1

.

Equations (9.32)–(9.34) show that there are a number of possibilities for choosing
the kind of metamaterial that will support bright spatial solitons. For TE beams, it
will be assumed that the PPM is contributing the major part of the nonlinearity, to
such an extent, that in practice, ε

(3)
N L2 = 0 and μ

(3)
N L2 = 0 and, of course, μ

(3)
N L1 = 0.

Without nonlinear diffraction, it is not necessary for TM beams to use only magnetic
nonlinearity. However, if κT M is required, then it will be assumed that this applies
to the case when the nonlinearity is located within the NPM, and that ε

(3)
N L2 = 0,

ε
(3)
N L1 = 0 and μ

(3)
N L2 �= 0. For the diffraction-managed cases to be presented below,

therefore, κT E and κT M reduce to the simple forms

κT E = 1

k2
1w2

, κT M = 1

k2
2w2

(9.35)
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9.3.4 Simulation Outcomes

Equation (9.32) is a generic equation that controls linear diffraction through D and the
nonlinear diffraction through the frequency dependent parameter κ . Nonlinear dif-
fraction will prevent beam collapse as the power carried by a spatial soliton increases
and results in a limit on how narrow the beams can be. It is a process that domi-
nates over non-paraxiality and even quintic nonlinearity, provided the latter is not
too large. Nonlinear diffraction is still, nevertheless, a diffraction process so that as
beams become narrow, and the power goes up, it will still have to compete with the
linear diffraction, unless the latter is managed to be a small influence.

The soliton literature for metamaterials contains a number of examples involving
classic cases of modulation instability, self-steepening, self-induced transparency,
and dark solitons. The question of soliton control has been addressed, as have the
properties of gap solitons [49]. The latter, however deals with quadratic nonlinear
material that does not feature here, since all of the issues addressed involve only
bright spatial solitons driven by third-order nonlinearity.

If there is no linear diffraction-management then the planar waveguide is filled
with PPM and the nonlinear diffraction coefficient will be practically non-dispersive
over an operational frequency range and can be taken as a constant. On the other hand,
for an NPM planar guide the nonlinear diffraction coefficient is c2

ω2
0w2(ε(ω0)μ(ω0))

≡ κ ,

where c is the velocity of light in vacuo and Drude models have been assigned
to ε (ω0) and μ (ω0). If the beam width is set to w = mλ, where λ is the free-
space wavelength, and m is an integer then, for a typical ratio of ωpm/ωpe, where
ωpm and ωpe are the effective plasma frequencies, it is seen in Fig. 9.10 that κ

varies quite rapidly with frequency, and rises and falls with respect to the, practically

Fig. 9.10 Uses Drude models for permittivity and permeability. Red PPM and blue NPM.

ωpm/ωpe = 0.6, κ = (
4π2m2

)−1
(

1 − 1
�2

)−1 (
1 − 0.6

�2

)−1
, where � = ω

ωpe
. Left-hand scale,

m =3, right-hand scale, m =1. The data for the PPM curve is for typical glass with ε ≈ 2.25
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Fig. 9.11 Initial inputs: sech(X), m =1 a κ = 0 b κ = 0.17

Fig. 9.12 D = 0.1. Inputs: ψ = sech(X). a κ = 0 b κ = 0.00168 c κ = 0.005

dispersion-free PPM line, created for a substance like ordinary glass, for example. The
example given in Fig. 9.3 shows that the nonlinear diffraction coefficient rises rapidly
as the narrow beam regime is approached. Note that here the beam width is a function
of the wavelength and, therefore, a function of frequency to ensure that a narrow beam
is being considered. It should also be recalled that the type of nonlinearity changes
as TE-polarised beams are exchanged with TM-polarised beams. In addition to the
variation of κ with the beam width, Fig. 9.3b also shows a significant variation with
operational frequency, especially as the resonance frequency is approached.

Figure 9.11 shows how strongly a typical metamaterial, such as the double negative
one used here, can influence a typical waveguide structure. As an initial illustration,
Fig. 9.11a, using arbitrary scales, since the envelope equation has been made dimen-
sionless, shows, first of all, a standard first-order bright spatial soliton beam, without
any diffraction-management [D=1], magnetooptics or the influence of nonlinear
diffraction. Figure 9.11b illustrates how to bring nonlinear diffraction into play for a
D=1 environment, a beam width of the order of a wavelength, and κ = 0.17. The
beam intensity is lowered and some broadening occurs. It is not a necessary condi-
tion to reduce the beam width dramatically, to access greater nonlinear diffraction
influence, because larger κ can be obtained with frequency tuning, because of the
dispersive metamaterial properties.

Figure 9.12 reveals the outcomes of reducing linear diffraction to 10 %. If a first-
order soliton is launched at Z = 0, then the act of decreasing the linear diffraction
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Fig. 9.13 D = 0.1, κ = 0.00168, m = 3, v (X) = vmaxsech
(

X
X0

)
Input: ψ = sech(X),

a v (X) = 0, b v (X) > 0, c v (X) < 0. νmax = ±1.8

to 10 % means that there is now too much power available for the propagation of
a first-order (N = 1) soliton. By analogy with optical fibre work, this act of dif-
fraction reduction should lead to a breathing soliton, of order approximately

√
10.

Figure 9.12a shows that this is exactly what happens, and a third-order breathing soli-
ton is created. Nonlinear diffraction is introduced to achieve Fig. 9.12b. The outcome
is that the nonlinear diffraction acts as a perturbation to split the breather. Three low-
power, pseudo-solitons, are produced, where the power contained within each is not
enough for it to retain its soliton status if it is entered into a normal, 100 % diffraction
medium. It would then simply radiate. In Fig. 9.12c, a higher value of the nonlinear-
diffraction coefficient is used to create a larger perturbation. As a consequence, the
breather is split after approximately 15 Rayleigh propagation lengths.

Magnetooptic control is enabled through the function v (X) = vmaxsech
(

X
X0

)

and a straightforward addition to the nonlinear Schrödinger equation. vmax is propor-
tional to Q, which is the magnetooptic saturation parameter introduced in (9.19).
Typically [50], Q is the order of 10−4–10−3, and this means that for available
magnetooptic materials, vmax would be in the range 0.6–6. An intermediate value
vmax = ±1.8 is used, where the ± indicates the direction of the applied magnetic
field along ±Xdirections . Briefly, switching the field direction produces an impres-
sive, non-reciprocal, behaviour. The physical explanation of this is that the applied
magnetic field raises, or lowers, the effective potential well in which the bright spatial
soliton [viewed for this purpose as a “particle”] is located. The same effects would
appear in the behaviour of a narrow-beam as well, when nonlinear diffraction is in
operation.

Figure 9.13 shows the degree of magnetooptic influence in diffraction-managed
metamaterial structure, for which D = 0.1. The result of applying an external mag-
netic field effectively changes the depth of the potential well in which the soliton
appears to find itself. It is emphasized that in order to achieve the well-known Voigt
effect, the magnetic field must be directed along the x-direction, and the waveguide
must be asymmetric. Figure 9.13a shows that the input has become a third-order
breathing soliton, but it is soon perturbed by the nonlinear diffraction. The applica-
tion of an applied magnetic field, Fig. 9.13b, however, deepens the “well” in which
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Fig. 9.14 ψ = sech(X), κ = 0.00168, D = 0.1 for 0 < Z < 100, D = 1 for Z > 100. a Sketch of a
diffraction-managed waveguide with a magnetooptic control end-section b vmax = 0, c vmax = +1.8

the spatial soliton finds itself. As a result, the third-order breathing soliton is fully
captured. In Fig. 9.13c the magnetic field is completely reversed and this means that
the floor of the well is “lifted”, with the consequence that, not only can a breather
not be formed, but a single narrow beam is created with excess energy being rapidly
ejected to the left and to the right. All of this shows that the magnetooptics is a
very important control mechanism, many interesting applications now appear on the
horizon.

A device that could be very useful in data processing and other integrated optics
applications, is sketched in Fig. 9.14. Suppose that a beam produced from the
diffraction-management system does not contain enough power to sustain its shape
when it is finally projected into a 100 % diffraction medium. Figure 9.14b, shows
such a case, in which the first 100 Rayleigh lengths is a 10 % diffraction-managed
medium, but then the linear diffraction is increased to 100 %. This causes the beam
emerging from the diffraction-managed region to diffract away and become lost.
Figure 9.14c shows that when this emerging beam is fired into a magnetooptic region
it now captured in a deep well, and could be used in an application for further process-
ing. It is assumed that the magnetooptic control region is the asymmetric waveguide
configuration considered earlier on, and that, in a downstream application, some form
of impedance matching can be put into place, in order to enable free transmission of
the beam across all the boundaries.
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9.4 Conclusions

Two globally important deployments of metamaterial control are investigated. One
involves the slowing down of light and the other the behaviour of spatial solitons. Both
will have a strong positive impact upon device design. It is shown that metamater-
ial waveguides with negative electromagnetic parameters (permittivity, permeability,
refractive index) can enable complete stopping of light, under realistic, experimental,
conditions [8, 15, 16]. This attribute is underpinned by the resilience of the decel-
eration mechanism in these structures to fabrication imperfections (e.g., disorder)
and dissipative losses. By nature, these schemes invoke solid-state materials and,
as such, are not subject to low-temperature or atomic coherence limitations. The
NRI-based scheme, in particular, inherently allows for high in-coupling efficiencies,
polarization-independent operation, and broadband function, since the deceleration
of light does not rely on refractive index resonances. This versatile method for stop-
ping photons opens the way to a multitude of hybrid, optoelectronic devices to be used
in ‘quantum information’ processing, communication networks and signal proces-
sors, and conceivably heralds a new realm of combined metamaterials and slow light
research.

The spatial soliton study also adds, immensely, to the promise of a range of new
devices and anticipates the use of planar metamaterial waveguides in integrated opti-
cal circuits of the future. They will be nanostructured and function within visible
to near infra-red frequency windows. It is here that magnetooptic controls can also
be readily introduced. In the light of recent work addressing losses in metamateri-
als [44, 45, 50], loss has not been added into the nonlinear Schrödinger equation,
but, as has been pointed out recently [51], practical soliton applications, using meta-
materials, will not be impossible to achieve. There is a growing interest in soliton
phenomena in metamaterials so the basic methodology for studying polarised soli-
ton beams is presented in some detail and the novel idea that nonlinear diffraction
is a major player is discussed extensively. The concepts are made relevant to homo-
geneous planar waveguides, containing stable spatial solitons, and these are then
extended to investigate the role of a form of diffraction-management. To all of this
can be added magnetooptic control that relies upon the famous Voigt, or Cotton-
Mouton, effect that requires an asymmetric guiding structure. It is clear from the
outset that a beautiful degree of magnetic control can be achieved and that metama-
terial environments are going to be the foundation of very important and life-changing
applications.

Finally, the work presented here on slow light offers a vast improvement on current
devices and, similarly, the outcomes associated with spatial solitons offer high quality
opportunities for beam control in the optical chips of the future, especially when
modern metamaterials are mapped onto the results given here.
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Chapter 10
Nonlinear Optics with Backward Waves

Alexander K. Popov

Abstract Extraordinary properties of nonlinear optical propagation processes in
double-domain positive/negative index metamaterials are reviewed. These processes
enable coherent energy exchange between ordinary and backward electromagnetic
waves, which allows huge increase of frequency-conversion efficiency at second har-
monic generation, three-wave mixing and optical parametric amplification. Striking
contrastswith properties of the counterparts in ordinarymaterials are outlined. Partic-
ularly, exotic features arise for amplification and generation of counter-propagating
short pulses. Novel class of materials, which enable such processes through elec-
tromagnetic waves with negative group velocity, are proposed. The possibility to
mimic such processes in readily available crystals that support elastic backward
waves (optical phonons) is shown. The concepts of unique photonic devices such as
data processing chips, tunable nonlinear-optical mirrors, filters, switches and sensors
are discussed.

10.1 Introduction

Optical negative-index materials (NIMs) form a class of electromagnetic media
that promise revolutionary breakthroughs in photonics. The possibilities of such
breakthroughs originate from backwardness, the exotic property that electromag-
netic waves (EMWs) acquire in NIMs. Unlike ordinary positive-index materials, the
energy flow, S, and the wave-vector, k, become counter-directed in NIMs that de-
termines their unique linear and nonlinear optical (NLO) propagation properties.
The appearance of backward electromagnetic waves (BEMW) can be explained
as follows. The direction of the wave-vector k with respect to the energy flow S
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(Poynting vector) depends on the signs of electrical permittivity ε and magnetic
permeability μ:

S = (c/4π)[E × H] = (c2k/4πωε)H2 = (c2k/4πωμ)E2.

If ε < 0 and μ < 0, refractive index becomes negative, n = −√
με, and vectors

S and k become counter-directed, which is in striking contrast with the electro-
dynamics of ordinary, positive index (PI) media (PIM). Hence, magnetic response
at optical frequencies, including magnetic nonlinear polarization, opens new av-
enues in electromagnetics and for its numerous revolutionary breakthrough appli-
cations. Such property does not exist in naturally occurring materials but becomes
achievable in the plasmonic metamaterials. Extraordinary features of coherent NLO
energy conversion processes in NIMs that stem from wave-mixing of ordinary and
BEMWand the possibilities to apply them for compensating optical losses have been
investigated in [1–11]. Essentially different properties of three-wave mixing (TWM)
and four-wave mixing processes as opposite to second harmonic and third harmonic
generation have been revealed in [1, 12–19]. Ultimately, it was shown that NLO
propagation processes that involve backward waves (BWs) enable a great enhance-
ment of energy-conversion rate at otherwise equal nonlinearities and intensities of
input waves. Coherent NLO energy exchange between ordinary and BWs acquires
particularly extraordinary properties in short pulse regime. A review can be found
in [12, 13] and in the references therein. Outlined features have the potential of un-
precedented applications, such as compensation of optical losses [2, 3] and remote
optical sensing [20]. A family of unique photonic devices such as data processing
chips, tunable NLO mirrors, filters, switches and sensors can be created making use
of indicated unparallel processes.

Usually, NIMs are nanostructured metal-insulator composites with a special de-
sign of their building blocks at the nanoscale that enables negative opticalmagnetism.
Metal component imposes strong absorption of optical radiation in NIMs, which
presents a major obstacle towards their numerous prospective exciting applications.
However, different approaches are possible to engineer the materials that can support
coexistence and coherent NLO coupling of ordinary and BWs [21]. Two different
classes of materials have been proposed: metamaterials with specially engineered
spatial dispersion of the nanoscopic building blocks and crystals that support optical
phonons with negative group velocity. Both do not rely on nanoresonators which
provide negative optical magnetism and constitute current mainstream in fabricating
NIMs. In the second case, the possibility to exploit ordinary crystals instead of plas-
monic NLO metamaterials that are very challenging to engineer is demonstrated.
It appears that extraordinary NLO frequency-conversion propagation processes
attributed to NIMs can be mimicked in such fully dielectric materials. It is proved
through numerical simulations that the detrimental effects of strong incoherent losses
can be mitigated in the short-pulse regimes, which acquire exotic properties when
ordinaryEMWsand elasticBWs (optical phonons) are involved in theNLOcoupling.



10 Nonlinear Optics with Backward Waves 195

This chapter describes physical principles underlying the possibilities of greatly
enhanced nonlinear-optical frequency-converting processes in negative-index meta-
materials, their applications to tailoring transparency and reflectivity of such mate-
rials with control laser and novel approaches to engineering materials with negative
phase velocity and to simulating some of the similar nonlinear optical processes in
available crystals.

10.2 Huge Enhancement of Nonlinear Optical Energy
Conversion, Reflectivity and Amplification Through
Three-Wave Mixing of Ordinary and Backward
Electromagnetic Waves

Most remarkable feature pertinent to NLO propagation processes in NIMs is appear-
ance of huge, resonance type enhancement of the NLO coupling of EMWs. This
section describes the physical principles underlying such extraordinary behavior and
applications to all-optical tailoring of transparency and reflectivity of the metaslabs
and to optical sensing.

10.2.1 “Geometrical” Resonances

Figure10.1a depicts a slab of thickness L , strong control field E3 at ω3 and weak
wave E2 at ω2, both are assumed as PI. Third, weak wave E1 at ω1 falls in the NI
frequency domain and, therefore, possesses backward wave properties. The frequen-
cies are related as ω1 + ω2 = ω3. The coupled waves experience strong dissipation
represented by respective absorption indices α1,2. The slowly-varying effective am-
plitudes of the waves, ae,m, j , (j = {1, 2}) and nonlinear coupling parameters, ge,m ,

for the electric χ
(2)
ej and magnetic types of quadratic nonlinearity [14] χ

(2)
mj can be

conveniently introduced as

aej = √|ε j/k j |E j , ge = √|k1k2/ε1ε2|2πχ
(2)
ej E3;

amj = √|μ j/k j |Hj , gm = √|k1k2/μ1μ2|2πχ
(2)
mj H3.

The quantities |a j |2 are proportional to the photon numbers in the energy fluxes.
Equation sets for the amplitudes a j are identical for the both types of the nonlinear-
ities:

da1/dz = −iga∗
2 exp(iΔkz) + (α1/2)a1, (10.1)

da2/dz = iga∗
1 exp(iΔkz) − (α2/2)a2, (10.2)
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Fig. 10.1 Three-wave mixing and tailored transparency for negative-index signal. a Coupling
geometry. S1—negative index signal, S3—positive-index control field, S2—positive-index idler. b
Solid the dependence of the output signal T1(z = 0) on the slab thickness and on intensity of the
control field (on factor gL). Here, the metamaterial is absorptive at the frequency of the signal and
assumed amplifying for the idler, �k = 0. Dashed the same dependence for the ordinary, PI media
with the same other medium parameters. c Transmission T1(z = 0) of the signal at α1L = 2.3 and
different values of α2L . �kL = 0. d Effect of phase-mismatch on the output signal. α1L = 2.3,
α2L = 3, �kL = π . Diminished detrimental effect of phase mismatch on the transmission with
the increase of intensity of the control field and/or the slab thickness is seen

where �k = k3 − k2 − k1. Here, the model is simplified. The equations account
for absorption of the incident and reflected coupled fields, whereas depletion of the
control field is neglected.
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Three fundamental differences in (10.1) and (10.2) distinguish them from their
counterpart in ordinary, PI materials. First, the sign with g in (10.1) is opposite to
that in (10.2) because ε1 < 0 and μ1 < 0. Second, the opposite sign appears with
α1 because the energy flow S1 is against the z-axis. Third, the boundary conditions
for the incident and generated waves must be defined at the opposite sides of the
sample (z = 0 and z = L) because the energy flows S1 and S2 are counter-directed.
Consequently, the equations for a1 and a2 cease to be identical as they are in ordinary
PI NLO materials. As will be shown below, this leads to dramatic changes in the
solutions to the equations and in the general behavior of the generated wave.

10.2.1.1 Tailored Transparency and Compensating Optical Losses
of Negative-Index Signal

If a1(z = L) = a1L , a2(z = 0) = 0, the slab serves as optical parametric amplifier
at ω1. Transparency/amplification factor T10 is given by the equation

T10 =
∣∣∣∣
a1(0)

a1L

∣∣∣∣
2

=
∣∣∣∣
exp {− [(α1/2) − s] L}
cos RL + (s/R) sin RL

∣∣∣∣
2

. (10.3)

It predicts the behavior, which is totally different from that in ordinary media. Most
explicitly, it is seen at α j = �k = 0. Then, the equation for transparency reduces to

T10 = 1/[cos(gL)]2, (10.4)

where R = √
g2 − s2, s = [(α1 + α2)/4][−i�k/2]. The equation shows that the

output signal experiences a sequence of “geometrical” resonances at
gL → (2 j + 1)π/2, (j = 0, 1, 2, . . .), as functions of the slab thickness L and
of the intensity of the control field (factor g). Such behavior is in drastic contrast
with that in an ordinary, PI medium, where, at α j = �k = 0, the signal would grow
exponentially

T1 ∝ exp(2gL). (10.5)

The possibility of such extraordinary resonances was pointed in textbook [22], and
predicted for an exotic TWMphase-matching scheme, which has never been realized
[23, 24]. All frequencieswere suggested to fall in the positive-index domain, whereas
one beamwith far infrared wavelength was proposed to be directed opposite to others
so that anomalous dispersion could be used for phase matching.

Crucial importance of the outlined geometrical resonances and striking difference
of NLO propagation processes in the double domain NI/PI metamaterials compared
with their counterparts in ordinary materials are illustrated in Fig. 10.1b–d. Besides
the factor g ∝ χ

(2)
m H3, the local NLO energy conversion rate for the signal is

proportional to the amplitude of the idler (and vice versa) and depends on the phase
mismatch�k. Hence, the fact that the waves decay in opposite directions (absorption
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indices α1,2) causes a specific, strong dependence of the entire propagation process
and, consequently, of the transmission properties of the slab on the ratio of the signal
and the idler decay rates. Such extraordinary resonance behavior, which occurs due
to the backwardness of the light waves in NIMs, is explicitly seen when compared
with the corresponding dependencies in ordinary, PI materials depicted in Fig. 10.1b
(dashed line). Here, the centers amplifying the idler atω2 due to population inversion
are assumed embedded in the slab. Basically, such induced transparency resonances
are narrow, like those depicted in Fig. 10.1b and by the plot in Fig. 10.1c correspond-
ing to α2L = 1. This indicates that the sample remains opaque anywhere beyond
the resonance values of the control field and of the sample thickness. Any sharp fre-
quency dependence of nonlinear susceptibility or absorption indices translates into
frequency narrow-band filtering.

The slab becomes transparent within the broad range of the slab thickness and
the control field intensity if the transmission in all of the minimums is about or more
than one. Figure10.1c, d show the feasibility of achieving robust transparency and
amplification in a NIM slab at the signal frequency through a wide range of the
control field intensities and slab thicknesses by the appropriate adjustment of the
absorption indices α2 ≥ α1. Field amplitudes grow sharply near the resonances,
which indicates the possibility of cavity-less self-oscillations. The distribution of the
signal and the idler inside the slab would also dramatically change. Particularly, the
simulations show that, unless optimized, the signal maximum inside the slab may
appear much greater than its output value at z = 0 [1, 2, 4].

10.2.1.2 Tailored Reflectivity and Nonlinear Optical Metamirror

At a1L = 0, a2(z = 0) = a20, the slab serves as an NLO mirror, which emits back
the wave atω1. For the case of spatially homogeneous control field and real nonlinear
susceptibility, the analytical solution to the (10.1, 10.2) can be found, and then the
reflectivity, r1 = |a1(0)/a∗

20|2, is given by the equation

r1 =
∣∣∣∣

(g/R) sin RL

cos RL + (s/R) sin RL

∣∣∣∣
2

. (10.6)

It is seen that the reflectivity also presents a set of “geometrical” resonances. For
example, at s = 0, reflectivity is given by r10 = tan2(gL) and tends to infinity as
gL → (2 j + 1)π/2, (j = 0, 1, 2, . . .), which indicates the possibility of mirrorless
self-oscillations. Basically, the reflected wave has a different frequency, and the
reflectivity may significantly exceed 100%.

Ultimately, the simulations show the possibility to tailor and switch the trans-
parency and reflectivity of the metachip over the wide range by changing intensity of
the control field. Giant enhancement of the NLO coupling in the resonances indicates
that strong absorption of the left-handed, negative-phase wave and of the idler can
be turned into transparency, amplification and even into cavity-free self-oscillation.
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Fig. 10.2 Three different options of the proposed NLO sensors. a S1,2 and k1,2 are energy fluxes
and wavevectors for the ordinary, positive index, signal and generated idler; S3 and k3—for the
negative index control field. b, c Alternative prospective schemes. b The NLO sensor amplifies the
signal S1 traveling agains the control beam (n(ω1) < 0) and frequency up-converts it to the beam
S2 directed along the control one. c The NLO sensor shifts the frequency of the signal S1 traveling
along the control field and sends it back in the direction against the control beam (n(ω2) < 0)

Self-oscillations would provide for the generation of entangled counter-propagating
left-handed, �ω1, and right-handed, �ω2, photons without a cavity. Energy is taken
from the control field. Here, distributed NLO feedback greatly increases the effec-
tive coupling length. It is similar to weakly amplifying medium placed inside a
high-quality cavity which leads to lasing. The outlined features can be employed
for design of ultracompact optical sensors, selective filters, amplifiers and oscillators
generating beams of counter-propagating entangled photons.

10.2.2 Three Alternative Coupling Schemes: Three Sensing
Options

This subsection describes application to all-optical sensing and the concepts of the
prospective sensors. Figure10.2 depicts three possible options for the phase matched
NLO coupling of the ordinary and backward waves. Consider the example depicted
in panel (a). Assume that the wave at ω1 with the wave-vector k1 directed along the
z-axis is a PI (n1 > 0) signal. Usually it experiences strong absorption caused by
metal inclusions. The medium is supposed to possess a quadratic nonlinearity χ(2)

and is illuminated by the strong higher frequency control field at ω3, which falls into
the NI domain. Due to the three-wave mixing (TWM) interaction, the control and
the signal fields generate a difference-frequency idler at ω2 = ω3−ω1, which is also
assumed to be a PI wave (n2 > 0). The idler, in cooperation with the control field,
contributes back into the wave at ω1 through the same type of TWM interaction and
thus enables optical parametric amplification (OPA) at ω1 by converting the energy
of the control fields into the signal. In order to ensure effective energy conversion,
the induced traveling wave of nonlinear polarization of the medium and the coupled
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electromagnetic wave at the same frequency must be phase matched, i.e., must meet
the requirement of �k = k3 − k2 − k1 = 0. Hence, all phase velocities (wave
vectors) must be co-directed. Since n(ω3) < 0, the control field is a BW, i.e., its
energy flow S3 = (c/4π)[E3 × H3] appears directed against the z-axis. This allows
to conveniently remotely interrogate the NLO microchip and to actuate frequency
up-conversion and amplification of signal directed towards the remote detector by
such a metamirror [11]. The signal can be, e.g., incoming far-infrared thermal ra-
diation emitted by the object of interest, or signal that carries important spectral
information about the chemical composition of the environment. The research chal-
lenge is that such unprecedented NLO coupling scheme leads to changes in the set of
coupled nonlinear propagation equations and boundary conditions compared to the
standard ones known from the literature. This, in turn, results in dramatic changes
in their solutions and in multiparameter dependencies of the operational properties
of the proposed sensor. Two other schemes depicted in Fig. 10.2b, c offer different
advantages and operational properties for nonlinear-optical sensing [20].

10.3 Coherent Nonlinear Optical Coupling of Ordinary and
Backward Electromagnetic Waves in Spatially
Dispersive Metamaterials

This section describes exciting unparallel avenues for nonlinear electromagnetics
which can be open by the metamaterials where formation of BWs becomes possi-
ble due to specific spatial dispersion of their structural elements. Basic idea is as
follows. As outlined above, according to currently commonly adopted concept, neg-
ative refractive index and associated backwardness of optical waves require negative
permeability and therefore magnetism at optical frequencies. However, a different
approach is possible [25, 26]. In a loss-free isotropic medium, energy flux S is di-
rected along the group velocity vg: S = vgU , vg = gradkω(k). Here, U is energy
density attributed to EMW. It is seen that the group velocity may become directed
against the wavevector depending on sign of dispersion ∂ω/∂k. Basically, negative
dispersion can appear in fully dielectric materials with particular dispersion of its
structural elements. This opens an entirely novel research and application avenue.
In the next subsection, we show the possibility to engineer such dispersive medium
that supports coexistence of both ordinary and BEMWs. An example of enhanced
coherent energy exchange between ordinary fundamental EMW and its BW second
harmonic is considered in a lossless NLO slab [13] in Sect. 10.3.2.
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Fig. 10.3 a Geometry of free-standing CNTs. b Dispersion—the frequency versus slow-wave
factor for the slab of CNTs with open ends. c Group delay factor versus the phase velocity slow-
wave factor for the samemodes as in panel (b). Black (flat) curve corresponds to the high-frequency
mode, blue curve to the low-frequency mode. The tip of blue curve is cut. Its maximum corresponds
to the stop-light regime

10.3.1 Carbon “Nanoforest” and Phase Matching of Ordinary
Fundamental and Backward Second Harmonic
Electromagnetic Waves

Appearance of BEM modes in nanoarrays and layered structures has been predicted
recently in [27–29]. Obviously, many other options should have existed. Below, we
propose such an option that seems promising in the context of nonlinear propagation
and coherent energy conversion processes [21]. Namely, the possibility of conversion
of ordinaryEMWto the counter-propagatingBEMWat its doubled frequency.Hence,
such metaslab can be viewed as a frequency-doubling NLOmetamirror [12, 16] that
sends generated frequency towards the source of pump.

Figure10.3a depicts a periodic array of carbon nanotubes (CNT) vertically stand-
ing on the surface of a perfect electric conductor (PEC) with the CNT ends open to
air. As shown in [29], EM waves traveling through such CNT “nanoforest,” along x
or y directions, posses a hyperbolic dispersion and relatively low losses in the THz
and mid-IR ranges. One of the most important consequences from the hyperbolic-
type dispersion law is the possibility for propagation of both forward and backward
EM waves. Consider EMW propagating along the x-axis. We also introduce group
ngr = c/vg and phase n ph = c/vph slow-wave factors. The latter one is refractive
index. For the given case of surface waves propagating in the slab of CNTs with open
ends, whose fields attenuate in air, the dispersion is given by [30]:

tan (kzh) =
√

k2x − k2/kz . (10.7)

Such a dependence can be understood from considering a planar waveguide
formed by metal plate and air which is tampered by a CNT array. The array axis
is orthogonal to the walls of the waveguide. Then, the propagation constant along
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the waveguide is found as k⊥ =
√

εzz
[
k2 − (mπ/2h)2

]
, where m is a positive inte-

ger, h is the height of the waveguide (CNT) and k is the wavenumber in free space
[31]. If εzz < 0, BW propagation is allowed when k < mπ/2h and forbidden for
k > mπ/2h. The relation between the wavevector component kx and wavenumber
k is: k2x = [(k2 − k2p)(k

2 − k2z )]/k2, where kz = mπ/(2h), m is the integer deter-
mining a number of field variations along CNT, kp is plasma wavevector. One can
show that dk2⊥/dk2 < 0, if kz/k > 1 and kp/k > 1.

Numerical analysis of (10.7) is depicted in Fig. 10.3b for the case of CNT radius
r = 0.82nm, the lattice period d = 15nm and EM modes with m = 1 and m=3.
Slow-wave factor is proportional to the wave vector: c/vph = k(ω)/k0, where k0
is the wave vector in the vacuum. The appearance of positive dispersion for small
slow-wave factors is caused by interaction of BW in the CNT slab with the plane
wave in air. Indeed, coexistence of the positive (ascending dependence) and nega-
tive (descending dependence) dispersion for different frequencies proves that such a
metamaterial supports both ordinary and backward EMWs. It also proves that reso-
nant plasmonic structures, like split-ring resonators, exhibiting negative ε and μ are
not the necessary requirement for the realization of BW regime in the given mid-IR
range. The possibility of considerably increased bandwidth of BEMW compared to
most plasmonic MM made of nanoscopic resonators is seen that gives the ground
to consider CNT arrays as a promising perfect backward-wave metamaterial. The
slow-wave factor for both modes is shown in Fig. 10.3c. The magnitude of ngr goes
to infinity at n ph ≈ 1.85, which indicates the stop-light regime for the low-frequency
mode. Particularly, Fig. 10.3b shows the possibility of phase matching of ordinary
fundamental and backward second harmonic EMWs.

10.3.2 Coherent Energy Exchange Between Short
Counter-Propagating Pulses of Fundamental
Radiation and Its Second Harmonic

Here, we demonstrate unusual dependence of pulse shape and overall efficiency of
SHG on the ratio of input fundamental pulse length and metamaterial slab thick-
ness [13, 21]. This allows for shaping of the transmitted and generated counter-
propagating pulses. Consider a frequency double-domain positive/negative index
slab of thickness L that supports ordinary EMW at fundamental frequency (FF) and
BEMW at SH frequency. To ensure phase matching, wavevectors of FF radiation
and its SH must be co-directed and, hence, their energy fluxes - counter-directed.
The slab operates as a frequency up-converting nonlinear-optical mirror with con-
trollable reflectivity [1, 11]. The equations for amplitudes at FF, a1, and of SH, a2,
can be written as
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1

v1

∂a1
∂t

+ ∂a1
∂z

= −i2ga∗
1a2 exp (i�kz) − α1

2
a1, (10.8)

− 1

v2

∂a2
∂t

+ ∂a2
∂z

= iga2
1 exp (−i�kz) + α2

2
a2. (10.9)

Here, |a1,2|2 are slowly varying amplitudes proportional to the instant photon num-
bers in the energy fluxes, α1,2 are absorption indices, �k = k2 − 2k1 is phase mis-
match, and vi are the group velocities for the corresponding pulses. Note opposite
signs in the equations and the requirement of the boundary conditions to be set at the
opposite edges of the slab for the FF wave and SH. These lead to cardinal changes in
the solutions to the equations as compared to those in the ordinary nonlinear optical
material. We have chosen the input pulse shape as being close to a rectangular form

F(τ ) = 0.5

(
tanh

τ0 + 1 − τ

δτ
− tanh

τ0 − τ

δτ

)
, (10.10)

where δτ is the duration of the front and tail, and τ0 is the shift of the front relative
to t = 0. All quantities are reduced by the pulse duration �τ . The magnitudes
δτ = 0.01 and τ0 = 0.5 have been selected for numerical simulations.

Unusual properties of BWSHG in NIMs in the pulsed regime stem from the fact
that it occurs only inside the traveling pulse at FF. SHG begins on its leading edge,
grows towards the back edge, and then exits the pulse with no further changes. Since
the FF pulse propagates across the slab, the duration of the SH pulse is longer than
the fundamental one. Depletion of the FF radiation along the pulse length and the
conversion efficiency depend on its initial maximum intensity and phase matching.
Ultimately, the overall properties of SHG, such as the pulse length, and the photon
conversion efficiency, appear dependent on the ratio of the FF pulse and slab lengths.
Such an extraordinary behavior is illustrated in Fig. 10.4a–d for an ultimate case of
loss-free material. Here, d is the slab thickness reduced by the input pulse length,
d = L/v1�τ , g is proportional to product of nonlinear susceptibility χ(2) and the
input amplitude of the fundamental radiation. A rectangular shape of the input FF
pulse T1 = |a1(z)|2/|a10|2 is depicted at z = 0 when its leading front enters the
medium. The results of numerical simulations for the output FF pulse, when its tail
passes the slab’s edge at z = L , as well as for the shape and conversion efficiency
of the output SH pulse, η2 = |a2(z)|2/|a10|2, when its tail passes the slab’s edge at
z = 0, are shown. For clarity, here, themedium is assumed loss-free, group velocities
of the fundamental and SH pulses assumed equal, �k = 0.

Panels (a) and (b) correspond to the fundamental pulse four time shorter than the
slab thickness. Increase of the conversion efficiency with increase of the intensity of
the input pulse is seen. It is followed by shortening of the SH pulse. The outlined
properties satisfy the conservation law: the number of annihilated pairs of photons
of FF radiation (S10 − S1L)/2 is equal to the number of output SH photons S20.
Panels (c) and (d) display corresponding changes for a longer input pulse with the
length equal to the slab thickness. Here, larger conversion efficiency can be achieved
at a lower input intensity compared with the preceding case because of the longer
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Fig. 10.4 Input, T1(z = 0), and output, T1(z = L), pulses of fundamental and negative-index SH
radiation, η2(z = 0). a and b—short pulse: d = 4. c and d: longer pulse: d = 1. b and d—input
power is 25 times larger than in (a) and (c). a Input pulse area (energy) S10 = 0.9750; output
pulse areas (energy) S1L = 0.5031, S20 = 0.2392. b Input pulse energy S10 = 0.9750; output
pulse energy S1L = 0.0396, S20 = 0.4742. c Input pulse energy S10 = 0.9900; output pulse
energy S1L = 0.2516, S20 = 0.3692. d Input pulse energy S10 = 0.9900; output pulse energy
S1L = 0.0161, S20 = 0.4870. Notations are defined in the text

conversion length. The changes in the SH pulse length and conversion efficiencywith
increase of input intensity appear less significant. Figure10.4a–d display remarkable
changes in the widths and shapes of counter-propagating pulses and corresponding
possibilities to tailor their properties.
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10.4 Mimicking Nonlinear Optics of Backward-Waves in Fully
Dielectric Materials: Enhancing Coherent Energy Transfer
Between Electromagnetic Waves in Ordinary Crystals by
Coupling with Optical Phonons with Negative Phase
Velocity

As described, NLO with backward electromagnetic waves enables a great enhance-
ment of energy-conversion rate at the otherwise equal nonlinearities and intensities
of input waves. Herein, we propose fundamentally different scheme of TWM of
ordinary and BWs. It builds on the stimulated Raman scattering (SRS) where two
ordinary EM waves excite backward elastic vibrational wave in a crystal, which re-
sults in TWM. The possibility of such BWs was predicted by L.I. Mandelstam in
1945 [32], who also had pointed out that negative refraction is a general property
of the BWs. The idea underlying the proposed concept and its basic justification is
described below. The goal is to show the possibility to replace the NI plasmonic com-
posites, which are challenging to fabricate, with readily available ordinary crystals.
Raman nonlinearities in some of such crystals have been already extensively studied.
Thus the proposed approach allows to mimic the unparallel properties of coherent
NLO energy exchange between the ordinary and BW. In [33], SRS on optical phonon
was investigated in continuous wave regime. The possibility of distributed-feedback
type resonance enhancement of amplification has been shown that stem from neg-
ative dispersion of elastic waves. The effect appeared similar to that in TWM of
ordinary and BEMWs in NIMs, provided that special requirements are met. Yet,
the required intensity of the fundamental field was found to be close to the optical
breakdown threshold due to the high phonon damping rate. Here, we show that the
indicated fundamental formidable obstacle can be removed by making use of short
pulses, which opens the possibility to mimic TWM processes attributed to NIMs in
readily available crystals. Besides that, we show that such mixing exhibits unparallel
properties that allow for tailoring the shapes of the generated and transmitted pulses
and for huge enhancement of the frequency conversion efficiency.

Typical dispersion curve ω(k) for optical phonons, which exist in crystals con-
taining more than one atom per unit cell, is depicted in Fig. 10.5. The dispersion is
negative in the range from zero to the boundary of the first Brillouin’s zone. Hence,
the group velocity of such phonons vv is antiparallel with respect to its wave-vector
kv. Such dispersion, which is determined by the spatial distribution of atoms at the

nanoscale, can be approximated as [38] ωv =
√

ω2
0 − βk2v . Then, in the vicinity of

kv = 0, velocity vgr
v is given by vgr

v = −βkv/ωv = −β/vph
v , where vph

v is the projec-
tion of the phase velocity of the vibrational wave on the z-axis and β is the dispersion
parameter for the given crystal. Optical elastic vibrations can be excited by the light
waves through the Raman scattering. The latter gives the ground to consider such
a crystal as the analog of the medium with negative refractive index at the phonon
frequency and to employ the processes of parametric interaction of three waves, two
of which are ordinary EM waves and the third one is the backward wave of elastic
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Fig. 10.5 Negative dispersion of optical phonons and two phase matching options for long- short-
wave vibrations: a—co-propagating, b—counter-propagating fundamental (control) and Stokes
(signal) waves. Insets: relative directions of the energy flows and the wave-vectors

vibrations. The coupled waves are described by the equations

El,s = (1/2)El,s(z, t)eikl,s z−iωl,s t + c.c., (10.11)

Qv = (1/2)Q(z, t)eikvz−iωvt + c.c. (10.12)

Here, El,s , Q,ωl,s,v and kl,s,v are the amplitudes, frequencies andwave-vectors of the
fundamental, Stokes and vibrational waves; Qv(z, t) = √

ρx(z, t); x is displacement
of the vibrating particles, ρ is the medium density and the requirements ωl = ωs +
ωv (kv), kl = ks + kv are supposed to be met. Partial differential equations for
the slowly varying amplitudes in the approximation of the first order of Q in the
polarization expansion are:

∂El

∂z
+ 1

vl

∂El

∂t
= i

πω2
l

klc2
N

∂α

∂ Q
Es Q (10.13)

∂Es

∂z
+ 1

vs

∂Es

∂t
= i

πω2
s

ksc2
N

∂α

∂ Q
El Q∗ (10.14)

∂ Q

∂z
− 1

vv

∂ Q

∂t
− Q

vvτv
= −i

1

4ωvvv
N

∂α

∂ Q
ElE

∗
s . (10.15)

Here, vl,s and −vv are projections of the group velocities of the fundamental, Stokes
and vibrationwaves on the z-axis, N is the number density of the vibratingmolecules,
α is the molecule polarizability, τv is phonon lifetime. Equations (10.13)–(10.15) are
similar to those describing TWM of counter-propagating waves in NIMs for the
phase-matching sch eme of co-propagating fundamental and Stokes waves, where
vibration wave counter-directed to the Stokes wave, which is depicted in Fig. 10.5a.
In the case of continuous waves and neglected depletion of the fundamental wave,
resonance enhancement becomes possible, similar to that, depicted in Fig. 10.1.
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Fig. 10.6 a Transmission (amplification) of the Stokes wave T �
s (z = L) versus intensity of the

fundamental control field in the vicinity of first “geometrical” resonance (co-propagating El and Es
geometry, Fig. 10.5a). g = √

g∗
v gs , L is thickness of the slab. Such extraordinary resonance appears

because of backwardness of the coupled vibration wave and opposite direction of propagation for
the Stokes and phonon waves. b Comparison of the output intensities of the Stokes wave versus
intensity of the control field for co- (the blue, solid line) and counter-propagating (the red, dashed
line) fundamental (control) and signal (Stokes) waves (coupling geometries depicted in Fig. 10.5a,
b respectively)

On the contrary, only standard exponential behavior is possible in the case of
Fig. 10.5b. Corresponding transmission factors in the vicinity of first “geometri-
cal” resonance are shown in Fig. 10.6. In the resonance, T �

s → ∞, which is due
to the approximation of constant control field. Conversion of the control field to the
Stokes one and to excited molecule vibrations would lead to saturation of the control
field which limits the maximum achievable amplification. Strong amplification in the
maximums indicates the possibility of unidirectional amplification self-oscillations
and thus creation of mirrorless optical parametrical Raman oscillator with unparal-
leled properties. Figure10.6a, b indicate the possibility to fit the effective conversion
length within the crystal of a given thickness and to concentrate the generated Stokes
field nearby its output facet. Such atypical extraordinary behavior in readily avail-
able crystals may find exciting applications. However, the estimates have shown that
intensity of the fundamental field which is to attain such extraordinary amplification
appears close to the optical breakdown threshold [33]. It is because of fast phonon
damping and corresponding high rate of energy conversion of the fundamental beam
in heat.

Below, we show that such seemingly unavoidable obstacles can be overcome in
short pulse regime. For the sake of simplicity, we consider model of a rectangular
pulse of input fundamental radiation with the pulse duration τp 
 τv. A seeding
Stokes wave is assumed a weak continuous wave. In the moving coordinate frame
associatedwith this pulse andwithin its range, complex amplitudes of two other inter-
acting fields become time independent. Then the analytical solution to the equations
can be found for amplification corresponding to negligible depletion of the pump
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due to the conversion. Numerical solution is found for the opposite case. Inside the
crystal, the boundary conditionsmust be fulfilled not at the boundaries of themedium
but at the boundaries of the fundamental pulse. The latter is correct for the period
of time after the instant when the generated Stokes and vibration pulses reach the
boundaries of the fundamental pulse. Such approximation becomes true after trav-
elling a distance l > Lmax, where Lmax = max{Ls, Lv}, Ls = l pvl/|vs − vl | and
Ls,v = l pvl/(vl + vv), l p = τpvl is length of the fundamental pulse. Hereinafter, the
waves are referred to as co-propagating if the Poynting vector of the Stokes wave is
co-directed with that of fundamental wave (Fig. 10.5a), and as counter-propagating
in the opposite case (Fig. 10.5b). Note, that vs is negative for counter-propagating
Stokes wave.

In the approximation of constant pump amplitude and in the coordinate frame
locked to the pump pulse, equations for the generated Stokes and backward vibration
waves inside the pulse take the form:

d Q/dξ = −igvE
∗
s + QKv/ lv, dEs/dξ = igs Q∗. (10.16)

Here, ξ = z − vgr
l t , gv = Kv N (dα/d Q)El/(4ωvvv), lv = τvvv is the phonon mean

free path, Kv = vv/(vl + vv), gs = Ks N (dα/d Q)Elπω2
s /(ksc2), Ks = vs/(vs − vl);

vs, ks > 0 for co-propagating and vs, ks < 0 for counter-propagating beams. Since
the Stokes frequency is less than that of the fundamental one, vs > vl and vl � vv.
Equation (10.16) are similar to those describing CW TWM [33] except the boundary
conditions. They correctly describe possible huge amplification of the Stokes signal
until relatively small part of the strong input laser beam is converted. For co-directed
laser and Stokes waves, the boundary conditions are:

Es(ξ = 0) = E 0
s , Q(ξ = l p) = 0. (10.17)

In the opposite case, they are written as

Es(ξ = l p) = E
l p
s , Q(ξ = l p) = 0. (10.18)

The analysis of solution to (10.16) shows that, in the given approximationof neglected
depletion of the fundamental wave, amplification of co-directed signal tends to
infinity, when the pulse energy approaches the resonance value corresponding to
glp = π/2, where g = √

g∗
v gs . This indicates the possibility of huge enhancement

of the conversion efficiency. Respective intensity of the fundamental field I p
min is

given by the equation

I p
min = Kv

Ks

cnsλs0ωv

16π3vvτ 2v

∣∣∣∣N
∂α

∂ Q

∣∣∣∣
−2

, (10.19)

where, ns is refractive index at ωv and λs0 is the wavelength in vacuum. From
comparisonwith the corresponding value Imin for the CW regime [33], one concludes
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I p
min

Imin
= Kv

Ks
≈ vv

vl

vs − vl

vs
. (10.20)

For the crystal parameters, which are characteristic for calcite [34] and diamond
[35–37], (10.20) yields I p

min/Imin ≈ 10−11 and, hence, suggests a decreases of

I p
min down to I p

min ∼ 107 W/cm2. The latter is achievable with commercial fem-
tosecond lasers and falls below the optical breakdown threshold for most transparent
crystals.

Equation (10.20) displays two factors that determine substantial decrease of I p
min

in pulsed regime compared to that in CW one. First factor is the ratio of phonon
to fundamental group velocity vv/vl , which is on the order of ∼10−8. This factor
is attributed to the fact that phonons generated on the front edge of the laser pulse
propagate in the opposite direction and, hence, exit very fast from the fundamental
pulse zone, practically with the optical group velocity. Hence, effective phononmean
free pass becomes commensurable with the fundamental pulse length. This mitigates
the detrimental effect of phonon damping. The second factor in (10.20) determines
further decrease of I p

min due to small optical dispersion in the transparency region
of the crystals. Hence, Stokes pulse surpasses the fundamental one slowly, which
significantly increases the effective NLO coupling length.

To investigate the regimes of significant energy conversion, a set of partial differ-
ential (10.13)–(10.15) was solved numerically in three steps: TWM in the vicinity
of the entrance, inside and in the vicinity of the exit from the Raman slab. Simu-
lations for the first and third intervals were made in the laboratory reference frame
with the boundary conditions applied to the corresponding edges of the slab. The
propagation process inside the slab was simulated in the moving frame of reference
with the boundary conditions applied to the pulse edges. Such an approach allowed
for significant reduction of the computation time because, for each given instant,
the integration was required only through the space interval inside the fundamental
pulse and not through the entire medium. Shape of the fundamental pulse was chosen
nearly rectangular and symmetric with respect to its center

El = 1

2
E 0

l {tanh[(t0 + tp − t)/t f ] − tanh[(t0 − t)/t f ]}.

The slope t f = 0.1, the pulse duration at half-maximum tp = 1 and its delay
t0 = 0.6 were scaled to the fundamental pulse width τp. The amplitude of input CW
Stokes signal was chosen E 0

s = 10−5E 0
l . Numerical investigations were done for

the model with parameters typical for calcite [34] and diamond [35–37]: carrying
wavelength λl = 800nm, pulse duration τp = 60 fs, ωv = 1332cm−1, τv = 7 ps,
vl = 1.228 ·1010 cm/s, vs = 1.234 ·1010 cm/s, vv = 100cm/s for co-propagating and
vv = 2000cm/s for counter-propagating waves, Ndα/d Q = 3.78 · 107 (g/cm)1/2,
the crystal length L = 1cm.

Figure10.7a displays the output quantum conversion efficiency ηq = (ωl/ωs) ·∫
t Is(z, t)dt/

∫
t Il(z = 0, t)dt versus input pulse intensity, both for co-propagating

(z = L) and counter-propagating (z = 0) geometries. Many orders increase of
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Fig. 10.7 a Conversion efficiency versus intensity of the input pump for co-propagating (solid
line) and counter-propagating (dash line) geometries. b Output Stokes (solid line) and fundamental
(dash line) pulses for co-propagating coupling

the conversion efficiency due to BW effect in the case of co-propagating waves is
explicitly seen. Saturation at I 0l /I p

min > 7 · 104 is due to depletion of fundamental
radiation caused by conversion to Stokes radiation. Figure10.7b displays a shortened
Stokes output pulse that has surpassed the inhomogeneously depleted and broadened
fundamental pulse (zoomed in the inset). The simulations also show that shapes of
the output Stokes and fundamental pulses differ and vary significantly depending on
the intensity of the input fundamental wave. Figure10.8a depicts amplified output
pulse Ts = ∣∣Es(L , t)/E 0

s

∣∣2 of Stokes radiation for relatively small depletion due
to conversion of the fundamental beam. Here, shape of the fundamental pulse is
unchanged. The shape of the amplified Stokes pulse is different and determined by the
fact that vs > vl and Stokes pulse has surpassed the fundamental one. In contrast, the
quantum conversion becomes significant in Fig. 10.8b–d. Corresponding depletion
of the output fundamental pulse and changes in its shape are explicitly seen. Note that
in the case depicted in Fig. 10.8d, the output Stokes pulse significantly overtakes the
pump pulse. In the latter case, major conversion occurred inside, far from the crystal
edges, and then both pulses propagated without interaction. It is seen that output
Stokes pulse narrows with the increase of energy of the fundamental pulse. Here,
crystal length of 1cm fits L/lp = 1357 input pulse lengths. The threshold intensity
I p
min = 6 · 106W/cm2 corresponds to 60 fs pulse of about 5µJ energy focused to
the spot of diameter D = 100µm. Intensity of the seeding Stokes signal was chosen
I 0s /I 0l = 10−10.

Note, that the described NLO propagation process is in a striking contrast with its
positive group velocity counterparts [38, 39], including acoustic waves with energy
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Fig. 10.8 Changes in the shapes of generated Stokes (solid line) and transmitted fundamental (dash
line) output co-propagating pulses with the increase of energy of the input fundamental pulse. ηq
is corresponding conversion efficiency. a small, b–d significant depletion of the fundamental pulse

fluxes directed against that of EM waves [40]. The proposed here concept is also
different from the one earlier proposed in [23] and does not require periodic poling
of quadratic nonlinear susceptibility of crystals at the nanoscale as proposed in [41]
(and the references therein). The described possibility could supplement and extend
the recent breakthrough in modeling NLO processes with BWs in the microwave
range [42, 43].
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10.5 Conclusions

Extraordinary nonlinear optical propagation processes in frequency double-domain
materials with co- and counter-directed phase and group velocities are described.
Exciting possibilities of manipulating light through controllable resonantly en-
hanced transparency, amplification, reflectivity and frequency conversion are shown.
Unusual resonance dependence on the product of intensity of the fundamental
(control) radiation, nonlinear susceptibility and the material slab thickness is demon-
strated. Unparallel properties of frequency conversion and energy exchange between
counter-propagating short pulses are described.

Twodifferent classes of novel photonicmaterials are proposed:metamaterialswith
deliberately engineered spatial dispersion of its structural elements at the nanoscale
and crystals that support optical phonons with negative phase velocity. Both options
do not rely on crafting the nanoresonators that provide negative optical magnetism
and thus constitute current mainstream in fabricating negative index metamaterials.
Extraordinary properties of coherent frequency conversion processes in the proposed
materials are numerically simulated both in continuous wave and in short pulse
regimes.

As an example of dispersion engineering, a metamaterial made of standing car-
bon nanotubes is described which supports coexistence of ordinary fundamental
and backward second harmonic electromagnetic waves that can be phase matched.
Unparallel properties of such frequency-doubling metamirror operating in short-
pulse regime appear in striking contrastswith secondharmonic generation in ordinary
materials.

The possibility to mimic plasmonic negative-index metamaterials with readily
available Raman active crystals is described. In addition, such approach allows to
circumvent the challenge of engineering of a strong fast quadratic NLO response by
the plasmonic mesoatoms. Here, optical phonons, the elastic waves with negative
group velocity, replace the negative index electromagnetic waves in the process of
three-wave mixing through stimulated Raman scattering. The possibility to remove
a severe detrimental factor imposed by fast phonon damping in short pulse regime
is demonstrated. Consequently, significant decrease of the required minimum inten-
sity of fundamental radiation, as compared with that in the continuous-wave regime,
is predicted down to commercial lasers. Unparallel properties of the unidirectional
short-pulse process are numerically simulated and the possibility of huge enhance-
ment of quantum conversion efficiency as well as of tailoring the durations and the
shapes of the generated and transmitted fundamental pulses is shown.

Further elaboration of the proposed paradigms offers the potential for creation
of a family of unique photonic devices with advanced functional properties such as
nonlinear-optical mirrors with frequency-dependent controllable reflectivity, unidi-
rectional optical amplifiers, frequency narrow band filters, switches and cavity-free
optical parametric oscillators, which can be exploited for optical sensing. There exist
many dispersive materials and readily available Raman-active transparent crystals
that support electromagnetic and elastic waves with negative group velocity and,
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hence, hold promise to be exploited for the given purpose. Some of them may offer
the opportunities for further optimization of unparallel operational characteristics of
the proposed photonic devices.
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Chapter 11
Tailoring Nonlinear Interactions
in Metamaterials

Jinwei Zeng, Xi Wang, Mikhail I. Shalaev, Alexander N. Cartwright
and Natalia M. Litchinitser

Abstract Recent progress in the field ofmetamaterials is likely to revolutionize both
of the linear and nonlinear optics. The unique properties of metamaterials, including
negative index of refraction,magnetism at optical frequencies, and anti-parallel phase
and energy velocities were shown to fundamentally change many nonlinear light-
matter interactions. In this chapter we discuss a number of unique nonlinear optical
properties and novel applications such as backward phase-matched second-harmonic
generation and four-wave mixing, entirely new classes of solitons such as plasmon
polariton solitons and knotted solitons, reconfigurable nonlinear structures, including
nonlinear cloaking devices, light concentrators, and light-tunable metamateria-based
lenses, reflectors and beam-shapers.

11.1 Introduction

Metamaterials represent a group of synthetic materials where desirable material
properties are engineered through the structure using meta-atoms. They have been
the focus of significant research effort during the past decade that has resulted in
the observation of a number of unique material properties that are not available in
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naturally occurring materials [1, 2]. Much of the ability to realize these novel prop-
erties is due to the flexibility in design that is afforded by recent developments in
nanofabrication. The impact of nanofabrication techniques onmetamaterials research
was clearly demonstrated through the first experimental realizations of negative index
of refraction [3], a phenomena that was predicted over thirty years earlier byVeselago
[4]. Moreover,there has been amazing progress in the development of optical meta-
materials where a number of additional novel optical properties that do not occur
in natural materials have been demonstrated. For example, the ability of a hyper-
lens to focus light beyond the diffraction limit has been explored by a number of
groups [5–19] since they were first predicted by Narimanov [20]. Similarly, invisi-
bility cloaking has received much attention since the initial demonstrations [21, 22].
In the context of nonlinear optics, the emergence of metamaterials necessitates the
consideration of many, if not all, fundamental processes, including second harmonic
generation (SHG), soliton propagation, four-wave mixing, modulation instability,
and optical bistability to name a few [2, 23, 24]. The reason for this is that many of
these nonlinear effects rely of phase matching conditions that turn out to be modified
significantly in metamaterials, and especially in negative index materials (NIMs).
Indeed, one of the most important and interesting properties of NIMs, is the opposite
directionality of the Poynting vector and the wave vector, thus, enabling the back-
ward phasematchingmechanism. Backward phasematching in combinationwith the
strong frequency dependency of these materials has been demonstrated to facilitate
new regimes of SHG and parametric amplification. Before we discuss these prop-
erties, it is necessary to briefly review the key physics behind the nonlinear optical
material response and resulting nonlinear light-matter interactions.

Any material can be considered as a collection of charged particles, electrons and
ions. In conductors, when an external electric field is applied, positive and negative
charges move in opposite directions. In dielectrics, the charged particles are bound
together so that the charge cannot move freely under the influence of the externally
applied field, instead they are displaced from their original positions and with respect
to each other. This leads to the formation of induced dipole moments. In the regime
of linear optics, the oscillation of an electron is proportional to the strength of the
electric field of light. However the nonlinear response is related to the anharmonic
motion of bound electrons in the presence of an electric field.

The position of an electron is governed by the oscillator equation:

eE = m

(
d2x

dt

)
+ 2Γ

(
dx

dt

)
+ Ω2x −

(
ξ (3)x2 + ξ (3)x3 + · · ·

)
(11.1)

Here x is the displacement from the mean position, Ω is the resonance frequency,
andΓ is the damping constant. The term from the right hand side represents the force
on the electron due to applied field, which leads to the driven oscillations.

Considering just the harmonic term we can thereby get an equivalent equation for
x as follows:

E (t) = E0cos (ωt) = 1

2
E0[e−iωt + eiωt ] (11.2)



11 Tailoring Nonlinear Interactions in Metamaterials 219

Fig. 11.1 Configuration of the unit cell (a). Equivalent effective circuit model (b) [26]

x = − eE

2m

e−iωt

Ω2 − 2iΓ ω − ω2 + c.c (11.3)

If N is the number of electric dipoles per unit volume, the polarization induced in
the medium is given by P = −Nex . Thus based on x, we can find the polarization
P for this system as:

P = −χε0E

2
e−iωt + c.c (11.4)

where χ is the susceptibility.
The motion of charged particles in a dielectric medium is linear in a limited

range of values of E. However, as the intensity increases, then the response becomes
nonlinear, and this nonlinearity can be accounted for with the anharmonic terms in
the oscillator equation [25]. The polarization P (or magnetization M) in such a case
will be expressed based on anharmonic term as:

P = ε0(χ
(1)E + χ(2)E2 + χ(3)E3 + · · · ) (11.5)

where χ(1) represents a linear susceptibility and the higher order terms are the non-
linear susceptibilities of the medium.

Recently, an analytical description of a nonlinear metamaterial in terms of effec-
tive nonlinear susceptibilities based on a perturbative solution to the nonlinear
oscillator model was proposed in [26, 27]. An application of this approach for a
varactor-loaded split ring resonator (VLSRR) medium can be summarized as fol-
lows. Figure11.1 shows the orientation of the VLSRR-based unit cell with respect to
the incident field and its equivalent representation as an effective RLC-circuit. The
response of the SRR can be expressed in terms of the charge across the capacitive
gap, which is described by the following nonlinear oscillator equation:
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q̈ + γ q̇ + ω2
0VD (q) = −ω2

0 Aμ0 Ḣy (11.6)

where q(t) is the normalized charge, VD(q) is the voltage across the effective capac-
itance, ω0 is linear resonant frequency of the unit cell, g is the damping factor, A is
the area of the circuit, μ0 is the permeability of vacuum, and Hy(t) is the incident
magnetic field.

The voltage VD can be expanded in a Taylor series in terms of the normalized
charge according to VD(q) = q + aq2 + bq3, where the Taylor coefficients a and
b depend on the particular mechanism of nonlinearity. The perturbation solution to
(11.6) leads to the following expressions [26] for the linear and the second order
effective susceptibilities

χ(1)
y (ω) = Fω2

D (ω)
(11.7)

χ(2)
yyy (ωr ;ωn, ωm) = −ia

ω4
0 (ωn + ωm) ωnωmμ0AF

D (ωn) D (ωm) D (ωn + ωm)
(11.8)

where ωr ≡ ωn + ωm , indices n and m take values between ±Λ, and L is the total
number of distinct waves incident on the medium. The denominator is defined as
D (ω) ≡ ω2

0−ω2−iγω, F ≡ ω2
0N A2C0μ0 is the amplitude factor in the expression

for the linear susceptibility, and the arguments of the nonlinear susceptibility are
written in conventional notations signifying that the first term is the sum of the
subsequent arguments.

Next, the microscopic equation of motion (11.6) for a single inclusion can be
converted into the macroscopic one for the effective medium polarization that in
combination with Maxwell’s equations provides a complete description of the meta-
materials. For a dilute medium, the magnetization can be written as M (t) = Nm (t),
where N is the volume density of moments, and m(t) is the magnetic dipole moment
of the effective circuit enclosing the effective area S. Then, the equation for the
magnetization can be written as

M̈y + γ Ṁy + ω2
0My = −F Ḧy − αMy

∫
Mydt (11.9)

where α ≡ 2ω2
0a

N AC0
and assuming only second order nonlinear response in the expan-

sion of VD was included.
In general, it should be noted that χ(1) in (11.5) is a tensor element, and the

terms χ(2) and χ(3) are relatively small so the overall impact of these terms on
the optical response of the material to light is insignificant. Thus, these terms were
mostly ignored until the advent of ultrafast lasers that could produce optical pulses
where the electric fields could be generated with sufficiently large intensity so that
these terms become important. In fact, these terms have remarkable consequences in
optical systems. χ(2), the second order nonlinear susceptibility, only occurs in non-
centrosymmetric crystals and gives rise to a number of nonlinear effects including
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SHG, optical rectification, sum and difference frequency generation, and parametric
amplification.χ(3), the third order nonlinear susceptibility, gives rise to suchphenom-
ena as self-phase modulation, spatial solitons, cross phase modulation, optical phase
conjugation, self-focusing through the optical Kerr effect, third harmonic generation
and temporal solitons. Thus, remarkable optical properties have been demonstrated
through nonlinear optics through the use of ultrafast pulsed lasers. Moreover, these
nonlinear optical processes, once a subject of scientific curiosity, are prevalent in
everyday devices such as solid state green and blue lasers, multiphoton microscopes,
supercontinuum light sources used in metrology applications, and others.

However, to date, the observation of nonlinear optical processes in naturally occur-
ringmaterials has relied onhigh intensity laser beams.There have been some attempts
at tailoring the response in these materials by manipulating the structure of the
material. For example, quasi-phase matching in SHG [28] used layered structures
that effectively increased the interaction lengths by correcting the relative phase.
In an analogous manner, nanostructured optical metamaterials have the potential
to increase the nonlinear response by modifying the material structure to enhance
the interaction between light and matter. Specifically, it may be possible to design
structures that can trap and concentrate light to produce exceptionally large electric
fields—even with relatively low intensity excitation. In fact, the promise of these
materials for nonlinear optics has already begun to be realized [29].

Specifically, there have been a number of reports related to wave-mixing in meta-
materials using the second order nonlinearity. Enhancement of second-harmonic
generation has been demonstrated by several groups [30–35]. Husu et al. recently
demonstrated that the second order nonlinear response can be tailored by controlling
the interactions between metal nanoparticles [36]. Wegener’s group used nonlinear
optical spectroscopy to demonstrate that the fundamental split-ring resonance in split-
rings serves as the nonlinear source [37]. In addition, novel propagation dynamics
have also been realized. Second-harmonic generation in negative index metamateri-
als has been demonstrated to result in interesting propagation of the second-harmonic
light back towards the source [38–42]. Smith’s group has demonstrated a nonlinear-
optical mirror in which the SHG in NIM is generated in the backward direction, i.e.
toward the source [43]. In addition, there has been an interest in coherent optical
amplification [44].

In addition to second-order nonlinearities, there has been continued interest in
third-order nonlinearities. Four-wavemixing in left-handedmaterials has been inves-
tigated [45]. Soliton propagation in nonlinear and left-handed metamaterials has
demonstrated new propagation dynamics [46–55]. Katko et al. have demonstrate
phase conjugation using split-ring resonators [56]. Modulation instability in struc-
tures with a saturable nonlinearity has also been demonstrated [57, 58].

In this chapter, we will present an overview of recent efforts to exploit this ability
to design metamaterials that can enhance the nonlinear optical response by either
increasing the effective nonlinear coefficient of the material or by enhancing the field
localization and thus increasing the field magnitude. We will demonstrate that the
potential of metamaterials is beginning to be realized in nonlinear optical metamate-
rials that have increased the efficiencies of nonlinear processes and further enabled
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their integration within optical devices systems. Specifically, in Sect. 11.2, we will
consider a generalized theoretical approach to nonlinear wave mixing processes in
metamaterials and pulse propagation in these structures. Sect. 11.3 will focus on non-
linearmagneticmetamaterials. Finally, Sect. 11.4will discuss solitons, bistability and
modulational instability in nonlinear metamaterials.

11.2 Nonlinear Wave-Mixing and Pulse Propagation

The nonlinear properties of naturally existing conventional materials are limited by
the properties of their constituent components—atoms and molecules. The rapidly
growing field ofmetamaterials opens unprecedented opportunities to overcome those
limitations. It was previously shown that the unique optical properties of metama-
terials, such as magnetism at optical frequencies, negative index of refraction and
its associated backward propagating waves, strong anisotropy, or chirality, enabled a
number of new regimes of light-matter interaction in the linear optical regime. How-
ever, in recent years, it has become clear that nonlinear properties of metamaterials
can be engineered as well, opening new perspectives for modern nonlinear optics
and enabling devices with entirely novel functionalities [59].

The development of nonlinear metamaterials is likely to impact both nonlinear
optics and metamaterials fields enabling entirely new phenomena [60]. In particular,
novel optical properties facilitated by metamaterials field prompt us to reconsider
many nonlinear light-matter interactions, including SHG [39, 41, 61, 62], paramet-
rical amplification [63], ultra-short pulse dynamics [64–66] and soliton propagation
[67]. From applications viewpoint, nonlinear metamaterials make possible the cre-
ation of dynamically-tunable materials, optical switches, filters, beam deflectors,
focusing/defocusing reflectors, and reconfigurable structures with controlled trans-
parency, refractive index and nonlinear response.

Conventionally, in natural materials nonlinear optical response depends on the
intensity of electric field and is described only by nonlinear properties of dielectric
permittivity while the nonlinear magnetic response is neglected. The metamaterials
can “turn on” the interaction with magnetic component of the electromagnetic wave
using carefully engineered linear and nonlinear components of magnetic permeabil-
ity [68]. It was recently shown that metamaterials containing split-ring resonators
(SRR) loaded with varactor possess nonlinear magnetic response and can be used
as building-blocks for nonlinear metamaterials with light—controllable properties.
This approach provides a range of new functionalities, such as focusing, defocus-
ing, and deflection of light and most importantly, the possibility of controlling and
manipulating the properties of materials with unprecedented speed, enabling new
approaches to all-optical processing, tunable lenses and waveguides, and reconfig-
urable cloaking devices.

Nonlinear wave-mixing is one of the best studied nonlinear processes in metama-
terials [39, 41, 61–63, 69–71]. In particular, many new regimes of nonlinear interac-
tions were predicted in NIMs, including backward phase-matching, unconventional
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Manley-Rowe relations, spatially-distributed nonlinear feedback and cavity-less
optical parametrical oscillations. These unusual properties potentially enable such
novel functionalities as quadratic nonlinear mirror and SHG-based lenses. Here we
consider the SHG, as one of the most fundamental parametric nonlinear process. The
material is assumed to possess a negative refractive index at the fundamental field
(FF) frequency ω1 and positive refractive index at second harmonic (SH) frequency
ω2 = 2ω1. Electric fields of the FF and that of the SH waves are taken in the fol-
lowing form Ē1,2 = E1,2 exp(ik1,2z − iω1,2t) + c.c., respectively. Following [72],
comprehensive studies of the SHG process for continuous wave and pulse propa-
gation, as well as the propagation of complex light beams such as optical vortices
or solitons with transverse field distribution can be performed using the following
model:

∇2⊥E1 + 2ik1
∂ E1
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where ∇2⊥ is the transverse Laplace operator; χ (11.2) is the effective second-

order nonlinear susceptibility; α1,2 = ∂[ω1,2ε(ω1,2)]
∂ω

; α
′
1,2 = ∂2[ω1,2ε(ω1,2)]

∂ω2 ; γ1,2 =
∂[ω1,2μ(ω1,2)]

∂ω
; γ

′
1,2 = ∂2[ω1,2μ(ω1,2)]

∂ω2 ; ε1,2 and μ1,2 are dielectric permittivity and

magnetic permeability for fundamental and SH waves, respectively; v
g
1,2 are group

velocities of pump and SH waves; �k = k2 − 2k1 is phase mismatch; A is the
speed of light in free space. Note that (11.6)–(11.7) describe SHG for both posi-
tive and negative index materials, but the signs for the wave vectors k1,2, magnetic
permeabilities μ1,2, dielectric permittivities ε1,2 and group velocities v

g
1,2 should be

chosen according to the phase-0 matching geometry and material properties at the
corresponding frequency.

Here, for simplicity we consider the steady-state process with perfect phase-
matching for a plane wave assuming that dispersion for permeability and permittivity
are negligible. For the SHG process in NIM slab with a finite length L , decomposing
the complex amplitudes into real amplitudes and phases as E1,2 = E1,2eiφ1,2 and
using the boundary conditions E1 (z = 0) = E0

1, E2 (z = L) = 0 the solution can be
written in the following form:
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Fig. 11.2 TheSHGprocess: phase-matching geometry (a). Fundamental field and second harmonic
intensity distribution (b). Photo of experimental setup for observing SHG in NIM [43] (c)

E1 (z) = C

cos [Cg (L − z)]
(11.12)

E2 (z) = C tan [Cg (L − z)] (11.13)

here CgL = cos−1
[
C

/
E0
1

]
, g = 4πω2μ2

c2k2
χ(2).

Figure11.2a illustrates the directions of wavevectors and Poyning vectors for the
FF and SH in a metamaterials that possesses NIM characteristics at the FF frequency
and PIM characteristics at the SH frequency. This is due to the backward phase-
matching in a PIM-NIM system, signifying that the energy flows of FF and SH
waves are counter-directional with respect to each other. Figure11.2b shows the field
distributions of the FF and SH waves. Importantly, the difference between energy
flows is constant at each point of such metamaterial slab, while in conventional
materials, the sum of the energy flows is unchanged with propagating distance.
Furthermore, as it could be seen from (11.4), the intensity of the SHG is a function
of the slab thickness such that long enough lossless metamaterials slab would act as
100% nonlinear mirror.

Experimental realization of a propagating SHG at microwave wavelengths was
demonstrated using the experimental setup shown in Fig. 11.2c [43]. The nonlinear
metamaterial was realized using the varactor-loaded split-ring resonators placed in
an aluminum waveguide. Second harmonic generation was studied in three config-
urations including reflected SH phase matching in a negative-index spectral range,
transmitted SH quasi-phase matching, and simultaneous quasi-phase-matching of
both the reflected and transmitted SH waves near a zero-index spectral range. Also,
experimental measurements of three- and four-wave mixing phenomena in an artifi-
cially structured nonlinear magnetic metacrystal at microwave frequencies have been
reported [73].

Observation of second and third harmonic generation at optical wavelengths was
inspired by the theoretical work by Pendry, who predicted that SRRs would provide
artificial magnetism up to optical frequencies [74]. Essentially, the light field can
induce a circulating current in the ring leading to a large magnetic-dipole moment
close to the magnetic-resonance frequency. In addition, it was predicted that meta-
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materials composed of SRRs would enable enhanced nonlinear-optical effects due
to the combination of resonance effects and local-field enhancements. First experi-
ments on second- and third-harmonic generation at a surface of a nonlinear magnetic
metamaterial composed of nanoscale gold split-ring resonators were performed by
Wegener’s group and demonstrated that much larger signals are detected when the
magnetic-dipole resonances are excited, as compared with purely electric-dipole
resonances [37, 75–78].

Until now we considered continuous wave effects in NIMs. However, several
fascinating phenomena have been discovered by Scalora’s group in the pulsed
second-harmonic generation regime [64–66]. In particular, in agreement with previ-
ous reports, they predicted the presence of a double-peaked second harmonic signal
in nonmetallic PIMs, which comprises a pulse that walks off and propagates at the
group velocity expected at the second-harmonic frequency, and a second pulse that
is “captured” and propagates under the pump pulse. The origin of the double-peaked
structure was explained by a phase-locking mechanism that characterizes not only
second-harmonic generation, but also χ(3) processes and third-harmonic genera-
tion. The phase-locking occurs for arbitrarily small pump intensities, and therefore,
in second harmonic generation a phase-matched component is always generated,
even under conditions of material phase mismatch. However, if the material is phase
matched, phase locking and phasematching are indistinguishable, and the conversion
process becomes efficient. A similar phase-locking phenomenon was also predicted
in NIMs. A spectral analysis of the pump and the generated signals reveals that
the phase-locking phenomenon causes the forward moving, phase-locked second-
harmonic pulse to experience the same negative index as the pump pulse, even though
the index of refraction at the second-harmonic frequency is positive. Our analysis
further shows that the reflected second-harmonic pulse generated at the interface and
the forward-moving, phase-locked pulse appear to be part of the same pulse initially
generated at the surface, part of which is immediately back-reflected, while the rest
becomes trapped and dragged along by the pump pulse. These pulses thus constitute
twin pulses generated at the interface, having the same negative wave vector, but
propagating in opposite directions. These structures may provide an alternative to
the experimental realization of nonlinear optical and plasmonic phenomena in bulk
optical negative index materials which is particularly challenging due to absorption
losses. In the case of phase-locking, the pump impresses its dispersive properties
on its harmonics, which in turn experience no absorption as long as the material is
somewhat transparent to the pump.

Another nonlinear wave mixing process, optical parametric amplification (OPA),
becomes of significant importance in metamaterials. As is well-known, one of the
main obstacles delaying practical applications of optical metamaterials is the signifi-
cant losses prevalent in practical implementations. The losses originate from a num-
ber of sources, including the resonant nature of themetamaterial’smagnetic response,
intrinsic absorption of the metallic constitutive components, and losses from sur-
face roughness. Therefore, developing efficient loss-compensating techniques is of
paramount importance. One of the promising approaches to loss compensation is
the technique based on a three-wave mixing process that takes place in nonlinear
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media exhibiting second-order susceptibility and induces OPA. Optical parametric
amplification refers to a process of amplification of a light signal through mixing
with a pump light in a nonlinear material, in which the photon flux in the signal wave
grows through coherent energy transfer from a higher frequency intense pump wave.
A photon from an incident pump laser is divided into two separated photons: the
stronger one of which is the signal, and the other is the idler. The pump field with
different angular frequency and wavenumber will generate a difference signal and
idler frequency. The OPA process requires bothmomentum and energy conservation.
While most OPA devices to date have been realized in conventional PIMs, an OPA
process in NIMs was predicted to have several advantages, including the possibility
of optical parametric oscillations without a cavity, compactness and simplicity in
both design and alignment. Just like in the case of the SHG process, the difference
between PIM-based and NIM-based OPAs is that the wave vector and the Poynting
vector are antiparallel, that is, in opposing directions. Thus, an OPA with counter-
directed energy flows can be realized with all three waves having co-directed wave
vectors. Therefore, if the pump and idler frequencies correspond to the PIM, and the
signal wave frequency belongs to the NIM, the energy flow of the signal wave will
be antiparallel to that of the pump and the idler, resulting in an effective feedback
mechanism without any external mirrors or gratings. Such an OPA enables compen-
sation of the metamaterial’s absorption by the parametric amplification process and
energy transfer to the strongly absorbing wave from the pump wave [62, 63].

In addition, properly engineered optical metamaterial structures can be used to
realize strong localization of light and, as a result, the enhancement of nonlinear inter-
actions. Various approaches to field localization and enhancement were investigated,
including graded and near-zero refractive index metamaterials, periodic structures
consisting of alternating layers of PIM and NIM [79–81]. For instance, D’Aguanno
et al. predicted a possibility of significantly improved conversion efficiencies of SHG,
owing to the presence of NIM layers [80]. Furthermore the efficiency stays relatively
high even in the case of strongly absorbing structures.

11.3 Magnetic and Reconfigurable Metamaterials

One of the unique properties that became possible only with the emergence of meta-
materials is magnetism at optical frequencies. Indeed, relativemagnetic permeability
that is equal to one in ordinary materials can be designed to be positive, negative or
even zero at certain frequencies in metamaterials.

Nonlinear magnetic metamaterials in microwave frequency range were demon-
strated by several methods. In one implementation, the characteristics of split-ring
resonators have been altered by introducing nonlinear current-voltage device such
as varactor diodes within the gap of the resonator in each unit cell, as shown in
Fig. 11.2a [60]. Inside each double split-ring resonator, a varactor diode, which
introduces nonlinear current-voltage dependence and results in nonlinear magnetic
dipole moment, is added so the magnetic resonance is dependent on the input power.
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Fig. 11.3 Photograph of the nonlinear magnetic metamaterial created by a square lattice of SRRs
with a varactor in each SRR (a); measured transmission parameter S21 under different input
powers (b) [60]

The transmission of this metamaterial is measured under various input power.
Figure11.2b shows a significant power-dependent shift in such a structure.

Recently, several novel types of nonlinear metamaterials based on the geometric
conformation changes have been proposed and demonstrated. In one implementation,
the nonlinear metamaterial performance based on the interplay between electromag-
netic attraction and elastic repulsion was proposed [77]. Figure11.3 shows such
magnetoelastic metamaterial, in which magnetic metamaterial is combined with an
elastic medium. The metamaterial is compressed by the electromagnetic forces (FI ),
which come from current attraction and are balanced by elastic forces (FS). Both
electromagnetic forces and elastic forces depend on the lattice distance b. In this case,
the effective magnetization is changing along with the lattice distance and induced
current (Fig. 11.4).

The overall structure is built from a lattice of resonant elements, such as split-ring
resonators or capacitively-loaded rings. In response to electromagnetic waves with
magnetic field H0 along the axial direction, such a metamaterials shows resonant
magnetic behavior. The currents induced in the resonators not only affect each other
through mutual inductance, but also result in an attractive force between the res-
onators when the neighboring currents are in phase. So if the resonators are allowed
to move along the axial direction, they will shift from their original positions. Their
displacement results in changing their mutual impedance that in turn alters the cur-
rent amplitudes, and interaction forces. The balance is kept with a restoring force,
which originates from the elastic properties of the host medium. Measured magnetic
resonance shift is shown in Fig. 11.5a, b [82].

Another implementation of a reconfigurable nonlinear magnetic metamaterial
structure based on the geometric conformation changes was based on the interplay
of electromagnetic forces, elastic forces and thermal expansions. Figure11.5c shows
a structure consisting of spirals forming the resonators with chiral properties. The
origin of the nonlinearity in this case can be understood by noticing that the resonant
frequency of the spiral resonator depends on the spiral pitch ξ as well as on the radius
of the spiral r. Therefore, the resonance shifts when the spiral compresses in response
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Fig. 11.4 An anisotropic magnetic metamaterial combined with an elastic medium: without the
electromagnetic field applied (a); with the electromagnetic field applied (b); lattice dimensions a,
b0 and b are normalized to the resonator radius r0; schematic of the forces acting on a ring within
a metamaterial (c) [82]

to attraction between the turns as well as when a thermal expansion occurs due to
heating. Both of the effects caused by the induced currents. As a result intensity-
dependent phenomena are enabled, leading to nonlinear behavior, for example, in
dependence of the inducedmagnetization on the incidentmagnetic field. Figure11.5d
shows experimentally measured and theoretically predicted a magnetic resonance
shift as a function of input power [83].

Recently, a number of nonlinearly controlled devices were proposed, including
nonlinear cloaking devices [84], reconfigurable nonlinear light concentrators [85],
and light-tunable reflection, shaping, and focusing of electromagnetic waves inmeta-
materials [86], as shown in Fig. 11.3. Let’s consider light tunablemetamaterial shown
in Fig. 11.3 in more detail. The microwave light-tunable metamaterials mirror con-
sists of an array of broadside-coupled SRRs, such that each SRR contains a pair
of varactors, one in each ring, and the biasing of the varactors is achieved by pho-
todiodes. This device enables reconfigurable mirror or lenses in which switching
between focusing or defocusing can be achieved by adjusting the light illumina-
tion profile. The advantages of this approach include fast and remote control of the
device performance, a possibility of extension to higher dimensions, and a possibility
of realization of such devices at higher frequencies, at least up to terahertz range.

In summary, nonlinear magnetic metamaterials in microwave and optical wave-
length are discussed. The electrical parameters and geometric conformation can be
modified to generate a nonlinearmagnetic response inmicrowave. Kerr-typemedium
was studied in optical magnetic metamaterials, where SHG/THG can be also gener-
ated at magnetic resonance (Figs. 11.6, 11.7).

11.4 Optical Solitons, Bistability and Modulation Instability

Soliton or a solitary wave is a remarkable nonlinear phenomenon that relies on
the balance of nonlinear and dispersive (or diffractive) effects and was observed in
optics, quantummechanics, particle physics andmany other fields. In optics, the term
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Fig. 11.5 Experimental observation of the magnetoelastic nonlinearity: measured transmission
spectra at low and high power (a); experimental and theoretical results of the resonance frequency
vs. incident power (b) [85]; schematic of magnetic metamaterial composed of spirals resonators
(c); the frequency shift as a function of input power, including a comparison between the theory
and experiment (d) [83]

soliton refers to a localized pulse or beam that travels without changing its shape.
Metamaterials provide a new environment for soliton-like phenomena. There have
been a lot of theoretical and recently experimental studies of soliton propagation in
various metamaterials systems [87–100]. Here we consider only several examples
of such phenomena. For instance, Liu et al. considered subwavelength discrete soli-
tons in nonlinear metamaterials consisting of nanoscale periodic metal and nonlinear
dielectric slabs as shown in Fig. 11.3a [87–89]. The subwavelength surface plasmon
polariton solitons in these structures result from a balance between tunneling of sur-
face plasmon modes and nonlinear self-trapping. An interplay between periodicity,
nonlinearity, and surface plasmon polaritons leads to substantially different soliton
dynamics as compared to that in conventional uniform nonlinear media and non-
linear dielectric waveguide arrays. Figure11.3b, c show the propagation in linear
and nonlinear metal-dielectric multilayers, respectively. At low intensities, surface
plasmon polaritons tunnel between neighboring slabs, resulting in linear diffraction
of the initial wave packet. At higher intensity,the wave packet maintains its original
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Fig. 11.6 Light-tunable metamaterials that reflects incident electromagnetic wave at different
angles depending on the control light illumination using an array of LEDs (a); image of the
microwave light-tunable metamaterials mirror made of an array of broadside-coupled SRRs (each
SRR containing a pair of varactors, one in each ring, and the biasing of the varactors is achieved by
photodiodes). The schematics of focusing (c) and defocusing (d) reflector and their corresponding
performance, (e) and (f), respectively [68]

shape during propagation. Figure11.3c clearly demonstrates the self-focusing effect
and the formation of the lattice solitons.

One of the remarkable examples of entirely new class of solitons that can be
supported in metamaterials was recently predicted by Rosanov et al. [90]. Nonlinear
magneticmetamaterials comprised of a lattice ofweakly coupled split-ring resonators
driven by an external electromagnetic field were predicted to support so-called knot-
ted solitons,which are stable self-localized dissipative structures in the formof closed
knotted chains. Such knotted structures have been discovered in many branches of
science, from biology to statistical mechanics and multi-component superconduc-
tors. In nonlinear fields, knotted solitons were introduced by Faddeev and Niemi
[91, 92] as knotted lines without self-crossings embedded into a three-dimensional
space. The existence of knot solitons as stationary solutions of non-linear models
was confirmed in numerical experiments [93].
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Fig. 11.7 Schematic of metal-dielectric multilayers (a), linear (b) and nonlinear (c) propagation
of the mode over 4µm distance in lossless metal-dielectric multilayers [55]

Fig. 11.8 Three-dimensional geometry of a cubic lattice of split-ring-resonators (a); the examples
of higher-order knotted solitons with 4 and 5 crossings: figure-eight (b), and cinquefoil (c) knots
[90, 94]

A nonlinearmagneticmetamaterial comprised of a cubic lattice ofweakly coupled
SRRs (Fig. 11.4a) was previously shown to exhibit a variety of nonlinear dissipative
phenomena, including bistability and modulational instability, and one-dimensional
dissipative solitons [94, 95]. The possibility of building rather complex stable knotted
solitons in such system is illustrated in Fig. 11.4b, c.

In summary, solitons, bistability and modulation instability, well-understood phe-
nomenal nonlinear optics, were predicted to reveal themselves in entirely new way
in nonlinear metamaterials. These new features are expected to be observed with
the continued development of metamaterials and lead to a new plethora of novel
applications (Fig. 11.8).
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Chapter 12
Metamaterials Tunable with Liquid Crystals

Maxim V. Gorkunov, Andrey E. Miroshnichenko and Yuri S. Kivshar

Abstract One of the efficient approaches to create tunable metamaterials is to
infiltrate them with nematic liquid crystals taking advantages of a variety of
tuning strategies employing temperature, external voltage, magnetic field, and power
tunability of the parameters of liquid crystals. After infiltration, a hybrid metama-
terial composite possesses tunable electromagnetic properties, which can be effi-
ciently controlled by external fields and electromagnetic irradiation. In this chapter,
we review different designs of liquid-crystal-infiltrated metamaterial structures for
a new generation of tunable microwave, THz, and optical metadevices combining
the advantages of metamaterials with the flexibility and large nonlinear response of
liquid crystals.

12.1 Introduction

The great advantage of metamaterials is the possibility to control and design their
electromagnetic properties by adjusting the assembly process. Upon the final arrange-
ment, however, the metamaterial structures are robust and their response cannot
be easily altered by external physical factors (e.g., irradiation or electric/magnetic
fields). Prospects of tuning, spatially modulating or even switching on and off the
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functional metamaterial properties are extremely advantageous for photonic applica-
tions, near-field microscopy and imaging. Many important applications of photonic
structures require also all-optical tunability provided by a nonlinear change of the
optical response.

Liquid crystals (LCs) combine properties of crystalline solids and fluids in many
unique and unexpected ways, giving rise to an increasingly broad range of techno-
logical and biomedical applications. LCs can be found in different phases, featuring
different properties and order degrees, depending on their chemical composition and
such external conditions as temperature, pressure, magnetic and electric fields. One
of the most common phases of LCs is the so-called nematic phase, where the mole-
cules exhibit a uniaxial orientational and no positional order. The average molecular
orientation can be effectively described by a director pointing along the preferred
orientation of molecules in the neighborhood of a certain point. In the absence of
external fields or illumination, the director’s spatial distribution is determined by
the boundary conditions, i.e., the anchoring of the LC molecules at the interfaces.
Importantly, LC molecules respond to applied electric and magnetic fields and suf-
ficient illumination by changing their average orientation and thus modifying the
director distribution and optical characteristics of the material. A general feature of
the both voltage-driven and all-optical reordering of LCs is their strong dependence
on the LC-cell geometry, positioning of the electrodes, the director field distribution,
polarization and intensity of the incident light, etc.

A very natural way of attaining the metamaterial tunability is to combine the
advantages of solid metal-dielectric structures with the flexibility of LC media. Gen-
erally, the feasibility of such approach is affirmed by several basic preconditions:
(i) unusual properties of metal-dielectric structures are characterized by strong fre-
quency dispersion and relatively small properly placed modifications of the struc-
ture may result in a substantial change of its response at a given signal frequency;
(ii) optical properties of LCs can be easily switched by moderate temperature or
electric fields, and by optical or UV irradiation; (iii) metal constituents of metamate-
rial structures can be readily used as electrodes, and they also significantly enhance
the local electromagnetic fields. Another attractive opportunity is the possibility of
self-assembly of metallic nanoparticles immersed into liquid crystals, which align-
ment can be further tuned by external fields. While in materials occurring in nature a
sizable optical nonlinearity requires ultra-high light intensities and external voltages,
the significant field concentration and subwavelength confinement in plasmonic and
metamaterial structures allows achieving tunable linear or strongly nonlinear LC
response with much more moderate powers.

Liquid crystals allow for unique realization of tunability of metamaterials by a
variety of approaches: changing the temperature, applying external voltage or mag-
netic field, and also all-optically by employing strong nonlinear response. Impor-
tantly, these approaches are useful for microwave, THz and optical metamaterials
and important ’proof of concept’ first results have been obtained recently in all those
frequency ranges.

In this chapter, we review the recent advances in the field of tunable and reconfig-
urable LC-metamaterials. In Sect. 12.2, we discuss a particular example of electrically
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tunable wire metamaterial, where we describe all key mechanisms of liquid-crystal-
induced tunability. Section 12.3 summarizes successful experimental realizations of
liquid-crystal-tunability of microwave and THz metamaterials. Nanoscale-patterned
metamaterials with tunable optical response are considered in the final Sect. 12.4.

12.2 Liquid-Crystal Tunability of Metamaterials

Liquid crystals are used in many practical devices which affect our lives, from sim-
ple displays for watches and calculators to fast colour displays for mobile phones,
computer monitors and TVs. The industrial growth of diverse applications of liq-
uid crystals is based on their remarkable electrical sensitivity. The vast experience
accumulated in synthesis, processing and manipulation of LC substances has been
primarily aimed at the LC display applications in the flat electro-optic cell geome-
try. Nevertheless, there are many gaps in the understanding of how liquid crystals
behave in complex non-standard (e.g. metamaterial) environments. Thus, the devel-
opment of hybrid LC-metamaterials has required to bridge these gaps and develop
full understanding of LCs the behavior under new conditions.

To illustrate how the nematic LC behaves within a metamaterial and provides it
with tunability, we analyze in this Section variation of the plasma frequency of wire-
grid metamaterial as has been proposed in [1]. Applying voltage to the wire-grid
structure immersed into a nematic LC induces the reorientation of the LC above a
certain threshold. This rather simple metamaterial geometry allows semi-analytical
description and provides a clear physical picture. Notably, the effect is present and
qualitatively similar in a wide frequency range from microwaves to visible.

Regular arrays of parallel wires with subwavelength periodicity exhibit plasma-
like permittivity for electromagnetic waves traveling normally to the wires and
polarized along them (xy-plane of incidence and z-polarization of electric field in
Fig. 12.1). The relevant component of the effective permittivity equals

εzz(ω) = ε(h)
zz (ω) − Ω2

ω2 , (12.1)

where ε
(h)
zz is the zz-component of the permittivity tensor of host medium surrounding

the wires, while the characteristic frequency Ω is determined by the wire material,
its diameter d and the lattice period a.

Since the wire grid permittivity (12.1) changes its sign at the so-called plasma-

frequency ω0 = Ω/(ε
(h)
zz )1/2, the grid on its own is transparent at frequencies higher

than ω0 and reflecting at lower frequencies.

The presence of ε
(h)
zz in (12.1) suggests an easy way of tuning the metamaterial by

varying the host medium permittivity. Nematic LCs provide a natural opportunity to
realize this.
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Fig. 12.1 Wire-grid metamaterial immersed into nematic LC: a LC-molecules oriented along
wires (left) and across the wires (right). Note: the size of LC molecules is extremely exaggerated.
b Field lines of alternatingly charged wires (for wire diameter set to 0.1 of the lattice period) with
superimposed LC molecules orientations

Nematic LCs exhibit anisotropic tensorial permittivity, which axes follow the
orientation of the nematic director n:

ε
(h)
i j (ω) = ε⊥(ω) δi j + εa(ω) ni n j . (12.2)

On appropriately prepared surfaces, elongated LC molecules typically tend to ori-
ent along them. The corresponding LC alignment by this so-called surface anchoring
at the wires is shown in Fig. 12.1a on the left. Applying voltage across the neighbor-
ing wires, one can load the wires with charges of different signs, which give rise to
static electric field in the xy-plane. The latter reorients the LC molecules perpendic-
ularly to the wires as shown in Fig. 12.1a on the right. As a result, ε(h)

zz switches from
(ε⊥ + εa) to ε⊥ shifting ω0 relatively by

Δω0

ω0
� εa

2ε⊥
. (12.3)

The dielectric anisotropy of LC is known to be at least of the order of several dozens
of percent for both microwaves and light [5, 6]. Therefore, the proposed design
provides a possibility of shifting the plasma-frequency by 10–20 %.

A single wire stretched along the line x = 0, y = 0 and loaded with the charge
Q per unit length produces the electric field potential ϕ1(ρ) = −Q/(2πε0εst)

log(2ρ/d), where ρ = √
x2 + y2, εst = ε⊥(0) is the static permittivity of the

LC, and the zero of the potential is assigned to the wire surface. In the infinite 2D
lattice of alternatingly charged wires, the total potential outside of the wires is
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ϕ(r) =
n,m=∞∑

n,m=−∞
(−1)n+mϕ1 (ρnm), (12.4)

where ρnm = √
(x − na)2 + (y − ma)2 and the coordinate origin lies on the axis

of a positively charged wire. Typical calculated electric field pattern is shown in
Fig. 12.1b.

Analyzing the effect of the electric field on the nematic LC one can start with
totally neglecting the LC elasticity, when the anisotropic molecules align along the
field lines. The director n then lies strictly in the xy-plane and the switching is perfect
(see Fig. 12.1b). The finite elasticity of LC disturbs this ideal picture and the bending
pattern of the director differs from the field lines pattern. However, this is of minor
importance for the component ε

(h)
zz involved in (12.1) since the director still stays in

the xy-plane.
To ensure the LC orientation along the wires when the voltage is switched off, the

anchoring of LC molecules at the wires must be strong. When the voltage is switched
on, the surface anchoring still forces the adjacent molecules to point along the z-axis
and the director has to rotate by an angle of π/2 within a transient layer. Efficient
switching occurs when this layer is thin compared to the scale of the structure (lattice
constant), i.e., the limit of strong electric field and thin transient layer is practically
important. In this limit, we can neglect the contributions from other wires to the field
near a wire surface. In the cylindrical coordinates, the only present ρ-component
of the electric field equals Eρ(ρ) = Q

2πε0εst
ρ−1 while the nematic director has two

components nρ(ρ) and nz(ρ). At the wire surface nρ(d/2) = 0. The free energy of
the LC can be presented as the sum F = FK + FE of the elastic deformation energy
and the dielectric energy [5], where the latter reads

FE = −πε0ε
st
a

R∫

d/2

ρ dρ (Eρnρ)2. (12.5)

Here the upper limit R is large enough to assure nz(R) = 0 and can be extended
to infinity. The simplest form of the LC elastic energy is given by the so-called one
constant approximation:

FK = K

2

∫
dV

[
(∇ · n)2 + (∇ × n)2

]
. (12.6)

Introducing the director polar angle θ as nρ = sin θ , nz = cos θ we obtain the
compact form of the total energy

F = π K

∞∫

d/2

ρ dρ

[
(θ ′)2 + (1 − v2)

sin2 θ

ρ2

]
, (12.7)
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where the parameter v2 = V 2c2
1ε

st
a /(4π2 K ε0) characterizes relative contribution of

the voltage-driven term, where c1 is the capacitance per pair of wires in vacuum per
length.

Minimizing the functional (12.7) yields the differential equation for θ(ρ):

θ ′′ + 1

ρ
θ ′ + (v2 − 1)

sin 2θ

2ρ2 = 0 (12.8)

with the boundary conditions θ(d/2) = 0 and θ(∞) = π/2. For v2 > 1 the exact
solution reads:

θ(ρ) = π

2
− 2 arctan

[
(d/2ρ)

√
v2−1

]
. (12.9)

The spatial variation of the zz-component of dielectric tensor (12.2), is controlled
by the factor n2

z (ρ) = cos2 θ(ρ). For v2 � 2 the layer thickness becomes compa-
rable with the wire diameter. For estimates, we take a nematic LC elastic modulus
K � 10−11N, static permittivity εst � 10 and static dielectric anisotropy εst

a � 1.
We also set the wire diameter to be ten times smaller than the lattice constant, which
yields c1 � 10−11F/m. Then appropriate voltage is estimated as

V = 2π

c1

√
2K ε0

εst
a

� 8.4 V. (12.10)

Remarkably, this moderate voltage is independent of the scale of the grid and is
equally appropriate for the estimates of switching of microwave and optical wire-
grid metamaterial.

12.3 Tunable Microwave and THz Metamaterials

Although for many decades the research on LCs has been primarily focused on visible
and near-infrared frequency ranges, LCs have been known to possess low losses
and reasonably high dielectric anisotropy at lower THz and microwave frequencies.
Their straightforward implementation for microwave manipulation by analogy with
optics, however, requires fabrication of planar LC-cells of thickness larger than the
operational wavelength, i.e., up to several millimeters and even more. Within the
conventional technological approach to align LC by specially treated surfaces, there
exists a rather strict limit on the LC thickness that cannot be extended to more than
few hundred microns, and already then the LC switching slows down drastically and
becomes unreliable [8]. Therefore, from the 1990s the moderate progress in LCs
for microwaves was restricted to designs employing small volumes of LCs, such as
LC-filled resonator cavities [9] or more complex stack-layered structures composed
of many thin LC layers [10].
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Fig. 12.2 Magnetically tunable broadside coupled SRR metamaterial based on anisotropic LC [12]:
a Schematic diagrams of basic unit cell and the reorientation of LC molecule, b schematic dia-
gram of the assembly process, c photograph of the SRR sample, d experimental demonstration
of the magnetically tunable transmittance, e calculated tunable transmittance. See [12] for further
details

In the past decade, the emergence of metamaterials (or, more generally, subwave-
length structures with metallic components) has demonstrated the vast prospects
of controlling wave propagation by structures of deeply subwavelength scale and
thickness. This opened new prospects for LCs in the microwave range and from the
middle of 2000s new designs involving subwavelength metal structures have started
to emerge [6, 7].

Naturally, a direct immersion of multilayered microwave metamaterial into LC
environment requires large volumes of LC to be controlled. A straightforward scal-
ing up of the optical geometries is accompanied by the necessity to use rather high
external power to achieve a noticeable effect. Indeed, since the electric field ampli-
tudes necessary for LC reorientation are typically of the order of several Volts per
micron, for a microwave metamaterial sample of the size of several centimeters this
can easily sum up to the voltage drop of several kV. Only upon such voltages, the LC
reorientation appears to be sufficient to cause a noticeable variation of the metamate-
rial electromagnetic properties. As has been shown in [11], where such an approach
was used for realigning the LC-environment of a conventional microwave metamate-
rial made of millimeter-sized split rings, the corresponding shift of the metamaterial
10 GHz resonance by up to 200 MHz is feasible. One may expect, however, that the
characteristic switching times in such geometry exceed by orders of magnitude those
required for microwave device applications.

Alternatively, one can employ dc magnetic fields, which have been known to
produce sufficient orientation of the LC-director in comparably large volumes. In this
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approach, the amount of efficiently controlled LC is limited only by the technological
capabilities of creating a volume with sufficiently strong homogeneous magnetic
field. It is due to the very small anisotropy of the LC magnetic susceptibility, however,
that one has to use rather extreme magnetic fields of 1 kG and more in order to
orient a conventional LC properly, and the practical value remains diminished by the
necessity to use strong magnets. Having said that, one still acknowledges the role
of such designs in demonstrating the general value of LC-metamaterial systems as a
tool for microwave manipulation.

It is the magnetic reorientation of LC molecules that has allowed the authors of
[12] to demonstrate that realigning the LC environment of a metamaterial made of
mm-sized split rings one can indeed produce noticeable changes to the microwave
transmittance (see Fig. 12.2). Although the observed tuning of the transmittance
was somehow weaker than predicted by modeling, the distinct shift of the sharp
transmittance dip related to the magnetic resonance of the metamaterial has confirmed
the feasibility of the promising phenomenon and some of its valuable details. Quite
naturally, the LC in the absence of magnetic field appeared to be not in a fully
ordered state. Applying magnetic field along and perpendicular to the metamaterial
split ring elements has aligned the LC director macroscopically and the resonance
shift from the initial position at 10.9–11 and 10.7 GHz respectively has been clearly
seen. The same effect has been obtained later on with a microwave metamaterial
made of omega-shaped elements [13]. Such an element shape gave rise to a definite
negative index pass band of the metamaterial, which has been successfully tuned
by about 0.5 GHz when dc magnetic field of 0.5 kG along and perpendicular to the
metamaterial planes has been applied. Notably, here also a strong dependence of the
phase retardation of the microwave signal on the LC orientation has been reported.
At frequencies close to the lower edge of the pass band, the LC environment has
been able to tune the output signal phase by up to 180 ◦.

More prospective from the practical point of view type of LC-metamaterial
arrangement for microwaves comprises a pair of planar patterned metal planes sep-
arated by a relatively thin (hundreds of microns) inter-layer of nematic LC. The
reduced LC thickness here critically decreases the driving voltage to several tens of
Volts and the tuning response time to the sub-second range. The role of patterned
metal layers in this case is to provide distinct frequency dispersion of the transmit-
tance due to intrinsic resonances and narrow pass-bands as well as to deliver the
driving voltage across the LC layer.

A simple realization of this strategy has been reported in 2007 [14] where the
sub-THz transmittance of a pair of frequency-selective surfaces (arrays of rectan-
gular slots in copper planes as shown in Fig. 12.3a has been continuously tuned via
reorientation of 130µm thin nematic LC inter-layer (see Fig. 12.3b, c). The trans-
mittance spectrum of such patterned planes possesses a rather sharp Rayleigh-Wood
diffraction grating anomaly for 45 ◦ obliquely incident TM wave. By applying a
moderate bias voltage of 10 V (5 kHz with triangular pulse shape) across the LC
inter-layer the authors have been able to move continuously the spectral anomaly
around 130 GHz by about 3 % as illustrated by Fig. 12.3d. The physical mechanism
of this becomes clear when one notices that the spectral position of the diffraction
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Fig. 12.3 Electrically tunable microwave frequency selective surface [14]: a Schematic plot of dual
layer tunable frequency selective surface, b LC orientation in the unbiased state, c LC orientation
upon external voltage, d measured and predicted tunable spectral response. See [14]

anomaly is fully determined by the frequency at which a certain order of diffraction
disappears (transforms from propagating into evanescent wave). For a grating clad
with a dielectric, this diffraction cut off condition directly depends on the wavelength
of radiation in the dielectric, or, more precisely, on the refractive index of waves trav-
eling parallel to the grating plane. Voltage applied across the LC causes rotation of its
main dielectric axes, which modifies the relevant refractive index and continuously
shifts the diffraction anomaly.

As has been demonstrated in [15], this geometry can be employed also at lower
frequencies around 10 GHz. In order to achieve a noticeable tunability, one has to
employ here thicker LC layers (up to half a millimeter). This increases the necessary
driving voltage to 60 V, which provides a 340 MHz shift of the pass-band although
the relative changes in the transmission spectrum are still weaker than those reported
for the 130 GHz structure [14]. At the same time, the effect of the LC reorientation
on the transmitted wave phase shift by about 30◦ is quite remarkable. The origin of
such a high sensitivity is the very sharp frequency dispersion of the phase around
the resonant spectral anomalies of the slot grating. Therefore, in prospective one can
employ such metamaterial-LC structures in tunable microwave phase shifters.

More efficient tuning at frequencies around 10 GHz has been achieved by employ-
ing more complex patterning of metal planes. Thus two surfaces with rectangular
metal patches being brought close enough arrange effectively a layer of the short
wire-pair metamaterial with a pronounced sharp magnetic resonance. Filling the
complimenter void between the planes with a nematic LC and controlling its align-
ment by the voltage applied to the patches across the LC the authors of [16] have been
able to tune the resonant frequency by up to 5 % . Remarkably, here the sharpness of
the resonance enables a substantial variation of the transmitted energy by up to an
order of magnitude in the vicinity of the resonance. The variation of the transmitted
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Fig. 12.4 Grating structure with electrically tunable resonant absorption of THz radiation [17]:
a Schematic of the structure filled with homogeneously aligned E7 nematic LC, b measured reflected
intensity (arbitrary units) versus frequency for a THz pulse polarized perpendicular to the slits with
0 and 20 V peak-to-peak voltage at frequency of 10 kHz applied. See [17] for further details

wave phase shift can be made here as high as 90◦ with the voltage around 100 V
applied. Quite notable also is the low response time of 300 ms reported in [16] for
the 0.6 mm thick LC inter-layer.

By replacing one of the patterned metal planes with a metal mirror one can natu-
rally obtain very similar effects for microwaves in the reflection geometry. Thus the
feasibility of LC-assisted switching of reflectivity of a subwavelength metal grat-
ing at frequencies from 100 GHz to 3 THz has been demonstrated experimentally
[17]. In this work a 200 nm thin 300µm-periodic 1D grating was placed at 100µm
above a metal mirror while the space between the grating and the mirror was filled
with homogeneously aligned nematic LC (See Fig. 12.4a). Such a structure on its
own possesses pronounced reflectivity resonances related to the formation of stand-
ing waves in the cavities effectively formed by the grating stripes and the mirror
plane. Applying voltage across the LC layer, causes the LC reorientation sufficient
to produce a noticeable modification of the reflectivity spectrum. At certain sub-THz
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frequencies a substantial drop of the reflectivity from about 30 % to almost zero has
been observed, while at other frequencies a moderate 5–10 % variation of reflectivity
close to unity has been reported. The bias voltage of 20 V was sufficient here to
achieve such an efficient switching (See Fig. 12.4b).

In order to decrease further the size and driving voltage, more complex reflecting
structures are to be used. As shown in [18], it is not really necessary to create a full
LC inter-layer between the patterned metal and the mirror planes. It appears that the
substantial part of this volume underneath the metal strips of the pattern can be filled
with a solid transparent dielectric (e.q. a polymer), and the tuning can take place only
due to reorientation of the nematic LC filling the structural gaps of the scale of tens
of microns. This has allowed increasing the tuning sensitivity and enabled switching
of the reflectivity by voltages of just few Volts, i.e., common for optical LC cells.
The absorption resonance has been continuously shifted down from 2.62 to 2.5 THz,
which, due to the sharpness of the resonance, appeared to be enough to decrease the
absorbance from 0.85 to 0.55 % at the 2.62 THz frequency.

To summarize, the concept of LC-assisted tunability has opened wide prospects
for designing tunable and adjustable metamaterials and has resulted in new types
of various devices for microwave and THz applications: tunable phase shifters and
modulators, adjustable absorbers and mirrors, etc. While the simple scaling of optical
geometries can provide noticeable switching, the large amount of LC to be controlled
increases the necessary driving powers substantially, decreases the reliability and
slows down the switching. At the same time, specific arrangements comprising two
parallel patterned metal planes or a single patterned plane above a mirror are able to
provide efficient and fast control of the microwave and THz wave propagation.

12.4 Tunable Optical Metamaterials

The reorientation of nematic molecules, responsible, e.g., for modulation of the
refractive index, can be induced by the electric field of a laser beam, similar to the
externally applied voltage, as in the majority of current applications. The optical
feedback provided by the variation of the refractive index beyond the transition
results in the so-called giant optical nonlinear response. The strength of the nonlinear
response depends on the degree of the reorientation. It is known that such orientational
nonlinearity is several orders of magnitudes stronger than conventional Kerr-type
nonlinearity [19]. Local variation of the molecular orientation results in changes to
polarization of light, as it passes through the reoriented liquid crystal beyond the
transition.

Realization of the liquid-crystal tunability of metamaterials in the near infrared
and optical regime is a hard task, however, thermal and UV-irradiation-induced tun-
ability of optical metamaterials have been were performed experimentally [20, 21].
In the former case, the magnetic response wavelength of the metamaterial was effec-
tively tuned through control of the ambient temperature, changing the refractive
index of liquid crystal via phase transitions. By increasing the ambient temperature
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Fig. 12.5 a The cross-sectional schematic of arrays of coupled nanostrips. b Demonstration of a
thermally tunable magnetic response in a metamaterial. Solid lines show the experimental data, and
dashed lines represent simulated results without LCs (blue lines), with LCs on top at 20 ◦C (black
lines) and at 50 ◦C (red lines)

Fig. 12.6 a Schematic of the LC infiltrated fishnet metamaterial. b Scanning electron microscope
image (top view) of the fabricated fishnet metamaterials. c Side view of the LC cell: S is 100µm
thick plastic spacers. Parameters for the fabricated Au-MgF2-Au fishnet are hd = hm = 50,
a = 190, b = 350, and c = 600 nm. d Measured transmission at 1550 nm versus input power for
two bias voltages 0 and 40 V. Dashed curve—linear dependence. Inset: Normalized transmission
versus incident laser power

from 20 to 50◦C, the magnetic response wavelength was shown to shift from 650
to 632 nm (see Fig. 12.5). As the phase transition of liquid crystals can affect the
refractive index over the whole optical wavelength spectrum and even into the
microwave range, it is therefore possible to tune the magnetic response of meta-
materials through the whole optical range [22, 23].

All-optical control of fishnet metamaterials infiltrated with liquid crystals was
studied experimentally only recently [24]. In their experiments, the authors fabricate
fishnet structure using gold and MgF2 as metal and dielectric layers deposited on
a glass substrate (see Fig. 12.6a). For nanostructuring of the metal-dielectric layers,
they use focused ion beam milling, fabricating a typical fishnet structure as shown in
the scanning electron microscope in Fig. 12.6b. This sample is then infiltrated with
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E7 nematic LC (from Merck) making sure that the LC completely fills the holes of
the fishnet. The presence of the LC inside the structure is verified by transmission
measurements where the shift of the hole mode manifesting the infiltration is
observed. Furthermore, bias electric field can be applied between the top ITO elec-
trode and the gold film for electrical control of the LC molecular alignment (see
Fig. 12.6c).

In order to test the dependence of the optical transmission on light intensity,
they illuminate the infiltrated structures from the substrate side by a laser beam at a
telecom wavelength of 1550 nm. If the fishnet structure is placed into the laser beam,
a substantial drop in the transmission is observed with increasing of the incident
laser power. As the power is increased, the transmission is reduced by approximately
30 % (see Fig. 12.6d). Minovich et al [24] also observed that the transmission drop is
strongly dependent on the application of a bias electric field, indicating again strong
molecular reorientation of the liquid crystals inside the holes of the fishnet structure.
This interplay between the optical and the bias electric field induced liquid crystal
reorientation demonstrates an important mechanism of electrically controlled optical
non-linearity in metamaterials.

Another interesting study was focused on the optical response of a metamaterial
surface created by a lattice of split-ring resonators (SRRs) covered with a nematic
liquid crystal [25]. The LC-metamaterial cell is shown in Fig. 12.7 and consist of
an array of gold SRRs with a lattice spacing of 300 nm on a glass substrate covered
with 5 nm of Indium-Tin-Oxide (ITO) fabricated by a standard electron-beam litho-
graphy (EBL) process. The lateral dimensions of the individual SRR meta-atoms are
lx ≈ 138 nm, ly ≈ 124 nm and the line width is w ≈ 45 nm. The SRR thickness
is 25 nm. The transparent conductive ITO layer prevents charge accumulation dur-
ing EBL and also serves as one of the two electrodes needed to apply the electric
potential to the LC cell. The second ITO-covered glass substrate serves as the top
electrode of the LC cell. To allow for a defined pre-alignment of the LC at the top
electrode we additionally spin-coat a 200 nm-thin layer of polyvinyl alcohol (PVA)
on top of the ITO layer and mechanically brush the PVA to obtain a preferred direc-
tion for LC pre-alignment (yellow arrow in Fig. 12.7a). No LC pre-alignment layer
has been used on the metasurface. Finally, the LC cell is assembled by placing a
31µm-thick spacer between the metamaterial substrate and the second PVA-coated
electrode. After infiltration with the liquid crystal E7 from Merck at T = 90 ◦C, the
LC cell is mounted in a home-built white-light transmittance setup and connected to
an adjustable function generator that provides a sinusoidal AC voltage with 1 kHz
frequency.

Figure 12.7b shows experimental rests for the x-polarized incident light with and
without bias voltage V. In this configuration the electric resonance at λe0 ≈ 900 nm
is excited in the “OFF” state. When changing from “OFF” to “ON” a clear change
in the transmittance spectrum occurs and the magnetic resonances at λm1 ≈ 800 nm
and λm2 ≈ 600 nm are observed. By changing the voltage from “ON” to “OFF”
the original spectrum is restored. Remarkably, the dynamical switching between
the electric and magnetic resonances of the SRR metamaterial is be achieved on a
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Fig. 12.7 a Artistic view of the LC cell. The SRR metamaterial is processed on top of the bottom
electrode while the upper electrode is covered with an alignment layer of mechanically brushed
PVA. An AC power supply is connected to the conductive ITO films (plotted in dark gray).
b Experimental transmittance spectra of the LC cell with no voltage applied (OFF state, black)
and for V = 6 V (“ON” state, red). Insets: CCD images of the metamaterial area in the OFF and ON
state. c Threshold behavior of the switching process for increasing (blue) and consecutive decreas-
ing (red) voltages. The left inset depicts the (helical) LC distribution in the “OFF” state, the right
inset shows the situation in the ON state (no helical distribution). The incident and output light
polarizations are indicated as green and red/black arrows, respectively

millisecond timescale. This effect is a result of the reorientation of LC molecules in
the presence of a bias electric field.

Opposite effect is observed for y-polarized incident light. In this configuration,
the emerging light is x-polarized in the “OFF” state, and no transmittance is observed
in y-polarization, while in the “ON” state the full spectrum is detected. The voltage
dependent transmittance is then averaged over the whole spectral range. Clearly, the
switching process for increasing (blue line) and decreasing (red dashed line) values
of the applied voltage reproducibly takes place in the voltage range of 2–3 V showing
no hysteresis (see Fig. 12.7c). Above V = 5 V the transmittance saturates, hence, for
this case the LC molecules are completely reoriented by the electric field.

These results have important implications for LC tuning of optical metamaterials
since those experiments crucially rely on the ability to reorient the LC molecules
within the near-fields of the metallic structure in the negative-index spectral range.
Moreover, this scheme opens up new opportunities for fast switching between electric
and magnetic metasurfaces, which also allows for dynamic control of light reflection.

When more than one particle is immersed in the LC the particles interact with
each other via a unique type of interaction that arises from the anisotropic orienta-
tional elasticity of LCs [26, 27]. Depending on the interactions between the particles,
colloidal structures can be dramatically modified and modulated by applying an addi-
tional external field [28, 29]. In multi-particle structures the orientational elasticity
of liquid crystals gives rise to long-range anisotropic interactions between particles
with both repulsive and attractive components. Altering the shapes of particles can
lead to remarkable changes in the symmetry of their elastic interactions [30]. This
concept was suggested for the creation of reconfigurable optical metamaterials, for
example by aggregation-free elastic self-alignment of gold nanorods dispersed in liq-
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Fig. 12.8 a Schematic depiction of a linearly polarized light incident as an extraordinary wave on
a planar aligned nematic liquid crystal containing core- shell nanoparticles. Figure on right-hand
side shows an exploded view of the core-shell nanospheres. b Real and c imaginary parts of the
refractive index of nano-dispersed dye-doped nematic liquid crystals showing enhanced negative
index behavior and a lowered loss (smaller imaginary refractive index)

uid crystals [31]. These recent developments in the robust control over positioning,
orientation and assembly of colloidal particles of various forms permit new types of
structured composite materials to be created [32, 33].

In particular, recently it was suggested to use the special case of core-shell
nanoparticles immersed in dye-doped nematic liquid crystals that could also pro-
vide with optical gain [34]. There are several dyes that provide sufficient optical gain
which have been used in laser generations in nematic and cholesteric liquid crystalline
media. Thus, they maybe effectively use to suppress the metamaterials’ loss, while
achieving the desired tunable birefringence. Figure 12.8 shows the real and imaginary
part of the effective refractive index of the core-shell nanoparticles embedded into
dye-doped nematic LCs for three representative values of the imaginary part of the
susceptibility of dye molecules transition at the resonant frequencyχmax = 0,−0.13,
and −0.26. It clearly demonstrates that one could maintain negative refractive index
Re[nef f ] while reducing the loss I m[nef f ] considerably. It is also interesting to note
that the real part of the refractive index Re[nef f ] could also be decreased even further
with the incorporation of the gain medium (for χmax = −0.26). This also allows to
achieve relatively fast sub-microsecond response of LCs [35].
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One of the most promising applications of tunable optical metamaterials is a
light-driven reconfigurable near perfect plasmonic absorber. Recently, there were
suggested two design based on LC-coated arrays of asymmetric nanodisks [36]
and metamaterial cells [37]. In the former case, nanodisks of different sizes were
employed in certain arrangement allowing for near perfect absorption of incident
electromagnetic waves. It was demonstrated that optically induced changes in the
dielectric constant of the adjacent LC layer can be used as an effective mechanism
to tune the absorption bands of an asymmetric gold nanodisk array with a tunable
range of 25 nm [36]. In the second case the ability to modify the absorption of the
specifically designed optical metamaterial by 30 % at 2.62 THz was experimentally
demonstrated, as well as tunability of the resonant absorption over 4 % in band-
width [37].
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Chapter 13
Superconducting Quantum Metamaterials

Alexandre M. Zagoskin

Abstract Quantum metamaterials is a concept bridging the fields of conventional
metamaterials and quantum processing in solid state. These are artificial media
comprised of quantum coherent, specifically designed unit elements (e.g., qubits),
such that the quantum state of these elements can be externally controlled, and that
the system maintains quantum coherence on the characteristic times and scales of
electromagnetic signal propagation through it. This chapter focuses on quantum
metamaterials based on superconducting qubits, which—due to the developments in
theory and experimental and fabrication techniques over the last decade—currently
provide the most feasible implementation of the concept.

13.1 Introduction

The term “quantum metamaterial” was first introduced as a logical extension of a
conventional metamaterial in [1, 2], independently and in somewhat different con-
texts. In [1] it was applied to the plasmonic properties of a stack of 2D layers, each of
them thin enough for the motion of electrons in the normal direction to be completely
quantized. Therefore “the wavelike nature of matter” had to be taken into account at
a single-electron level, but the question of quantum coherence in the system did not
arise. On the contrary, in [2] the requirement that their system comprised of artificial
atoms (qubits) maintains quantum coherence on the time scale of the electromagnetic
pulse propagation across it was made explicit, along with the direct control of the
quantum state of at least some qubits, for the reason that it was the coherent quantum
dynamics of qubits, that determined the “optical” properties of the system. Currently
the term “quantum metamaterial” is being used in both senses (see, e.g., [3–8]).
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We will here follow the more restrictive usage and call quantum metamaterials only
such artificial optical (in the broad sense) media that [6]

(i) are comprised of quantum coherent unit elements with desired (engineered)
parameters;

(ii) have quantum states of these elements that can be directly controlled; and
(iii) have a structure that can maintain global coherence for the duration of time,

exceeding the traversal time of a relevant electromagnetic signal.

(The requirement that the size of a unit cell of the system be much less—in
practice at least twice less—than the wavelength of the relevant electromagnetic
signal, is implied in the definition of a quantum metamaterial as a “medium”.) It
is the totality of (i)–(iii) (in short: controlled macroscopic quantum coherence) that
makes a quantum metamaterial a qualitatively different system, with a number of
unusual properties and applications.

A conventional metamaterial can be described by effective macroscopic parame-
ters, such as the refractive index. From the microscopic point of view, these parame-
ters are functions of the appropriately averaged quantum states of individual building
blocks. In a quantum metamaterial, these states can be directly controlled and main-
tain phase coherence on the relevant spatial and temporal scale. This allows, e.g.,
to put a quantum metamaterial into a superposition of states with different refrac-
tive indices. The observation of such quantum birefringence would be a direct look
at a Schrödinger’s cat. One could thus invert the classic double-slit experiment:
instead of scattering a quantum particle off a classical screen we would scatter a
classical electromagnetic wave packet off a screen, where the slits are in a super-
position of “open” and “closed” states. This kind of experiments would be useful
for a direct investigation of the quantum-classical transition. There will be as well
interesting opportunities for new technologies (e.g., bifocal superlens [4], quantum
phase-sensitive antennas [9]).

So far, these tantalizing possibilities largely remain the matter of theoretical pre-
dictions. Nevertheless, there is good circumstantial evidence in support of these
predictions. The progress achieved over the last decade in the development of super-
conducting qubits for the purpose of quantum computing (see, e.g., [10, 11]) led to
the realization of quite large (in excess of a hundred units) qubit arrays with at least
partial quantum coherence and quantum state control [12]. A series of experiments
with a superconducting qubit placed in a transmission line [13–16], motivated by
the proposal for a 1D quantum metamaterial [2, 24], confirmed that such an artifi-
cial atom interacts with the electromagnetic wave in a quantitative agreement with
theory. We are therefore confident that the experimental realization of a supercon-
ducting quantum metamaterial will be achieved in the near future.
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13.2 Superconducting Quantum Circuits

Before proceeding, we will briefly recapitulate here the physics of superconducting
quantum circuits and their mathematical description.1

The key component of such circuits is a Josephson junction [17], which is the only
known nonlinear and nondissipative electrical circuit element. Josephson junctions
are formed by two superconductors separated by a “weak link”, which suppresses the
probability amplitude for an electron to pass between them (e.g., a tunneling barrier,
a constriction, a region with suppressed superconductivity).

The nondissipative, equilibrium superconducting current (supercurrent) is carried
by the Bose-condensate of Cooper pairs of electrons. This condensate is characterized
by the superconducting order parameter,

�(r, t) ≡ |�(r, t)| exp[iφ(r, t)], (13.1)

where the square of the amplitude, |�|2, is proportional to the average density of
electrons in the condensate, ns , and the superconducting phase φ is relate to the
superfluid velocity, vs , and the supercurrent density, js , via (me is the electron mass)

vs = �

2me
∇φ; js = nsevs . (13.2)

The qubits are operated at much lower temperatures (∼10–50 mK) than the crit-
ical temperature of superconductors routinely used for fabricating qubits (Al and
Nb), ∼1 K and ∼10 K respectively. This is done in order to suppress the effects of
decoherence due to thermal fluctuations.

In a Josephson junction, due to the weakness of the link, the order parameter
can be taken as constant in either superconductor, and the supercurrent (Josephson
current) is determined by the superconducting phase difference between them:

IJ = Ic sin(φ1 − φ2). (13.3)

Here Ic is the critical current, determined by the properties of the superconductors
and of the weak link (it will thus depend on, e.g., temperature and the magnetic
field).2 (13.3) describes the dc Josephson effect: the equilibrium (i.e., zero-voltage),
nondissipative current flow through the weak link between two superconductors.
If the current through the junction is made to exceed its critical value, Ic, then in
addition to the Josephson current there appears the quasiparticle current, Iqp. This is
a usual, nonequilibrium current, accompanied by the voltage drop and dissipation. To
a good approximation, it can be expressed through the resistance RN of the Josephson
junction in normal state (i.e., above the critical temperature Tc of superconducting
phase transition):

1 For a more detailed presentation see [10] and references therein.
2 The sine in (13.3) is characteristic for a tunneling junction. Generally, it can be replaced by a
different odd function, depending on the properties of the weak link [17].
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Fig. 13.1 A tunneling
Josephson junction (a) and its
RSJ (resistively shunted
junction) model (b)
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Iqp = V/RN , (13.4)

leading to the widely used RSJ (resistively shunted junction) model of the Josephson
junction (Fig. 13.1). The voltage on the Josephson junction is related to the super-
conducting phase difference across it via

V = �

2e

d(φ1 − φ2)

dt
(13.5)

(the ac Josephson effect).
Together, the fundamental relations (13.3) and (13.5) and a good approximation

(13.4) allow to describe all the properties of a Josephson junction we will be needing
in the following.

Note that as a circuit element, a Josephson junction can be considered a tunable
nonlinear inductance. Indeed, from (13.5) and the definition of inductance, V =
L İ/c, we see, that3

L J (φ) = c2V (φ)

İ (φ)
= �c2

2eIc cos φ
. (13.6)

The equilibrium current can be obtained directly by differentiating the appropriate
thermodynamic potential by the corresponding state variable,

IJ = c
∂U

∂�
, (13.7)

where the variable � = �0(φ/2π) has the dimensionality of the magnetic flux, and
�0 = hc/2e is the superconducting magnetic flux quantum. The Josephson energy
is then

U = 1

c

∫
d� IJ = − Ic�0

2πc
cos φ ≡ −E J cos φ ≡ −E J cos

(
2π

�

�0

)
. (13.8)

If the junction is current-biased, i.e., if a constant supercurrent Ib flows through it,
then (13.8) must be modified,

3 We will be using the Gaussian units throughout, as more convenient for our formalism.
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U (φ; Ib) = −E J cos φ − Ib� ≡ − Ic�0

2πc
cos φ − Ib�0

2πc
φ, (13.9)

to yield the equilibrium value IJ (φ) = Ib (when ∂U/∂φ = 0).
Adding to U (φ; Ib) the electrostatic energy of the Josephson junction with capac-

itance C ,

K (V ) = CV 2

2
= C

2

(
�

2e

)2 (
dφ

dt

)2

, (13.10)

which looks like a kinetic energy term, if φ were a coordinate, we find the energy of
the system

E(φ, φ̇; Ib) = C

2

(
�

2e

)2

φ̇2 + U (φ; Ib). (13.11)

It is formally equivalent to the energy of a particle in a washboard potential. We can
now consider one of the local minima of U (φ; Ib), approximate it by a cubic potential
and quantize the system (as in [18], Sect. 38). The ground and first excited states of
this nonlinear oscillator can be used as the two states of a qubit (so called phase
qubit; see, e.g., [10]). We will postpone this operation in favour of first presenting
the standard approach, which allows to deal with an arbitrary circuit in both classical
and quantum case.

An electric circuit can always be represented by an equivalent lumped-element
circuit, to which then the Lagrange formalism can be directly applied (see, e.g.,
[19]), followed by switching to the Hamiltonian picture and canonical quantization
[20, 21]. As coordinates we choose the “node fluxes” (or proportional to them “node
phases”), which are related to the voltages at the given circuit nodes by the relations
formally equivalent to (13.5):

� j (t) ≡ �0
φ j (t)

2π
= c

t∫
dt ′ Vj (t

′) dt ′. (13.12)

In case that the corresponding part of the circuit happens to be superconducting, the
phase φ j (t) is the superconducting phase. Otherwise it is just a formal dimensionless
variable.

The current between the nodes j and k is determined from

d

dt
I jk(t) = −c(Vj − Vk)

L jk
, (13.13)

if they are connected by an inductor, and from

I jk(t) = C jk
d(Vj − Vk)

dt
, (13.14)
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if they are connected by a capacitor.4 Comparing these equations with (13.12), we
see that, respectively,

I jk = c(� j − �k)

L jk
or I jk = C jk(�̈ j − �̈k)

c
. (13.15)

The corresponding “potential” and “kinetic” energies5 are

U jk = L jk I 2
jk

2c2 = (� j − �k)
2

2L jk
; (13.16)

T jk = C jk(Vj − Vk)
2

2
= C jk(�̇ j − �̇k)

2

2
, (13.17)

and the Lagrangian of the system

L =
∑

jk

[
T jk − U jk

]
. (13.18)

The external fluxes �̃ through the closed loops formed by inductors are taken
into account by replacing for one of these inductors its contribution (13.16) to the
Lagrangian by

Ũ jk = (� j − �k + �̃)2

2L jk
. (13.19)

The external bias currents, Ĩ , and gate voltages, Ṽ , are included by adding to the
corresponding nodes’ contributions the terms

� j Ĩ

c
and

C j (�̇ j − cṼ )2

2c2 . (13.20)

Finally, a Josephson junction connecting two nodes will contribute to the Lagrangian
the term

CJ, jk(�̇ j − �̇k)
2

2c2 + E J, jk cos

[
2π

� j − �k

�0

]
. (13.21)

The behaviour of a circuit in the classical limit is described by the Lagrange
equations,

d

dt

∂L

∂�̇ j
− ∂L

∂�
= 0. (13.22)

4 The circuits we will be dealing with here do not contain resistive elements. In a general case, they
can be taken care of through the so called dissipative function (see [10] and references therein).
5 The distinction is here purely notional—if instead of node fluxes, which are essentially currents,
as follows from (13.15), we chose as coordinates the node charges, proportional to the voltages Vj ,
the roles would have been reversed.



13 Superconducting Quantum Metamaterials 261

Its quantization is straightforward. First we introduce the canonical momenta and
the Hamiltonian function,

� j = ∂L

∂�̇
, H (�,�) =

∑

j

� j �̇ j − L (�, �̇), (13.23)

and then replace � j and � j with operators such that [�̂ j , �̂k] = i�δ jk . It is conve-
nient to express these directly through Bose creation/annihilation operators:

�̂ j = a j + a†
j

2
�, �̂ j = a j − a†

j

i�
, [a j , a†

k ] = δ jk, (13.24)

where � is a real constant.
Let us apply the formalism to the biased Josephson junction. We find

L = C�̇2

2c2 + E J cos

[
2π

�

�0

]
+ Ib�

c
, (13.25)

the canonical momentum is � = C�̇/c2 ≡ (�/2e)Q, where Q = CV is the charge
on the junction, and the Hamiltonian function

H = c2�2

2C
− E J cos

[
2π

�

�0

]
− Ib�

c
, (13.26)

which, of course, coincides with the expression (13.11). Neglecting the anharmonic-
ity, we find near a local minimum

Ĥ = �ωJ (a†a + 1/2), (13.27)

where the bias-dependent Josephson plasma frequency

ωJ =
[

E J

C(�/2e)2

]1/2
[

1 −
(

Ib

Ic

)2
]1/4

. (13.28)

The potential barrier �U , which separates the local minimum from the continuum,
is

�U = 2

3
E J

[
1 −

(
Ib
Ic

)2
]3/2

(Ib/Ic)2 , (13.29)

and the anharmonicity, κ = (ω01−ω12)/ω01, is of order 0.1·(�ωJ /�U ). It is usually
strong enough to allow us to work only in the subspace spanned by the ground and
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first excited state of this system (i.e., using it as a qubit). In a typical phase qubit [22]
�ωJ /�U ≈ 0.25, the anharmonicity κ ≈ 0.03, and ωJ /2π ≈ 9 GHz.

Sometimes it is convenient to quantize only some of the � j ’s, namely, those
describing the qubits. This may be the case when a (quasi) classical electromagnetic
wave propagates through the system. Then we can instead of fully switching to the
Hamiltonian picture (13.23) perform only partial Legendre transform, with respect
to the variables later to be quantized [10]. In this way we obtain the Routh function,

R(� j ,� j ;�k, �̇k) =
∑

j

� j �̇ j − L (� j , �̇ j ;�k, �̇k), (13.30)

which satisfies the Lagrangian equations for the set {�k, �̇k} and the Hamiltonian
ones for {�k,�k}. After quantization, the latter become the Heisenberg equations
of motion for the operators {�̂k, �̂k}, while of the former we take the expectation
value over the quantum state of the system:

〈
ψ

∣∣∣∣∣
d

dt

∂R̂

∂�̇ j

∣∣∣∣∣ ψ

〉
−

〈
ψ

∣∣∣∣∣
∂R̂

∂� j

∣∣∣∣∣ ψ

〉
= 0; (13.31)

i�
d

dt
�̂k = [�̂k, R̂]; i�

d

dt
�̂k = [�̂k, R̂]. (13.32)

13.3 1D Quantum Metamaterials

The simplest example of a superconducting quantum metamaterial is a 1D array of
qubits placed along a transmission line (Fig. 13.2). The transmission line is modelled
by a lumped-element circuit, with the unit self-inductance �L and capacitance �C
(assuming for simplicity that they are all the same). In the absence of qubits, the
phase velocity in the line is

s = � d, � = c√
�L �C

, (13.33)

where d is the length of a unit section.

13.3.1 Flux Qubit Quantum Metamaterial

Consider first the case of flux qubits. A flux qubit is a superconducting loop (typically
about 10µm across) interrupted by three or more Josephson junctions and threaded
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by an external magnetic flux close to �0/2 [10, 23]. Its ground and excited state
are close to (|0〉 + |1〉)/√2 and (|0〉 − |1〉)/√2 respectively, where |0〉(|1〉) is the
state with the superconducting current flowing (counter)clockwise around the loop.
The operator of magnetic flux produced by the flux qubit number m in the adjacent
section of the line is

ˆ̃
�m = 1

c
Mm Ĵm, (13.34)

where Mm is the mutual inductance, and Ĵm is the circulating current operator.
This operator is eventually expressed in terms of the nodal flux operators in the
superconducting loop, but for most cases it is sufficient to write it as a constant times
the Pauli matrix, Ĵm = Jmσz

m , thus explicitly making use of the standard “spin-1/2”
approximate description of a qubit.

Introducing the node fluxes �m as shown in Fig. 13.2b and using the formalism
of the previous section, we obtain (13.31) in the form

�̈m − �2(�m+1 − 2�m + �m−1) = �2 M

c

〈
ψ

∣∣∣ Ĵm − Ĵm−1

∣∣∣ ψ
〉
. (13.35)

The matrix element on the right hand side, of course, does not depend on whether we
will use the Heisenberg or the Schrödinger representation. Its time evolution will be
determined by the Hamiltonian of the flux qubits. In the absence of direct qubit-qubit
coupling it can be written as

Ĥm = −1

2

[
εmσz

m + �mσx
m

] + M Jm

�L
(�m − �m−1)σ

z
m . (13.36)

Here the bias εm and the tunneling splitiing �m are the parameters, which characterize
the mth flux qubit.

Now we can make certain simplifications. Assume that the quantum state of the
system of qubits is factorized, i.e., that at any moment (in Schrödinger representation)

|ψ(t)〉 = · · · ⊗ |ψm−1(t)〉 ⊗ |ψm(t)〉 ⊗ |ψm+1(t)〉 ⊗ . . . (13.37)

Then the quantum state of the system can be described by a position-dependent “wave
function” �(x) = a(x)|0〉 + b(x)|1〉, not unlike the “macroscopic wave function”
of a superconductor. Here x = md is the coordinate of the mth unit cell, and |0〉, |1〉
are the eigenstates of the operator σz . The difference equation (13.35) now reduces
to a partial differential equation

�̈(x, t) − s2 ∂2

∂x2 �(x, t) = s�
M

c

∂

∂x

〈
�(x)

∣∣∣ Ĵ (x)

∣∣∣ �(x)
〉
. (13.38)

This approximation is justified as long as the wavelength of the electromagnetic
signal in the system greatly exceeds the unit size d (of order of the qubit size).
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Fig. 13.2 One-dimensional quantum metamaterial: a set of qubits in a transmission line. a Charge
(top) and flux (bottom) qubits (after [2, 24]). b The lumped-element circuit for a flux-qubit-based 1D
quantum metamaterial. c An experimental prototype of a flux-qubit-based 1D quantum metamaterial
(courtesy of E. Il’ichev, IPHT-Jena) [25]

Solving (13.36) and (13.38) will determine the propagation of a (quasi)classical
electromagnetic wave through the 1D quantum metamaterial.6

In the first experimental investigation of a quantum metamaterial prototype com-
prising 20 flux qubits in a microwave resonator [25] their collective coupling to
the electromagnetic field was clearly seen in the appearance of disctinct collective
modes, despite the expected relatively large dispersion of the parameters of individ-
ual flux qubits. This shows that the behaviour of quantum metamaterials is relatively
insensitive to the imperfections of unit elements, and post factum justifies our current
assumption of identical qubits as the first approximation.

13.3.2 Charge Qubit Quantum Metamaterial

Now consider a 1D quantum metamaterial comprising a chain of charge qubits
inside a superconducting transmission line (Fig. 13.2a). These are superconducting
islands of so small capacitance, that the states differing by a single Cooper pair have
distinguishable electrostatic energies [10, 26]. In a similar fashion we can derive [2]

∂2

∂τ2 α(ξ, τ ) − β2 ∂2

∂ξ2 α(ξ, τ ) + 〈�(ξ, τ )| cos φ(ξ, τ )|�(ξ, τ )〉 = 0. (13.39)

6 The approximation of a factorized wave function, (13.37), is quite a drastic simplification, since
it excludes such macroscopic quantum superposition states as (· · ·⊗ |0〉⊗ |0〉⊗ |0〉⊗ . . . )± (· · ·⊗
|1〉 ⊗ |1〉 ⊗ |1〉 ⊗ . . . ). Such GHz-like states are necessary for the realization of, e.g., quantum
birefringence. Nevertheless even factorized states should give rise to interesting quantum effects
[2], while both their theoretical treatment and experimental realization are significantly simpler.
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Here ξ is a dimensionless position along the line; τ = ωJ t is the dimensionless time;
ωJ = [eIc/�C]1/2 is the Josephson plasma frequency for either of the Josephson
junctions of the charge qubit; E J = Ic�0/2πc; α(ξ, τ ) is the dimensionless vector
potential of the electromagnetic field in the line:

α(ξ = m) = 2π
D Az(ξ = m)

�0
(13.40)

(in our approximation the vector potential Az is constant inside each (d × D)-unit
cell); and the parameter β = (�0/2π)[8πd DE J ]−1/2 is the dimensionless phase
velocity of signal in the line (the number of unit cells travelled by the wave during a
period of oscillations). The superconducting phase on the qubit island at the point ξ
at the time τ is φ(ξ, τ ).

For a typical charge qubit in a strip-line resonator [27] (an arrangement close to
the one we are considering) the Josephson energy E J /h ∼ 6 GHz, much greater than
the qubit decoherence rate, ∼5 MHz, and the resonator leakage rate, ∼0.5 MHz. This
justifies our neglecting the decoherence and dissipation in the system. Moreover, for
the unit cell size d × D ∼ 100µm2, the parameter β ∼ 30 � 1, which validates
the treatment of quantum metamaterials as effective optical media (in the microwave
range) in (13.38) and (13.39).

The dimensionless Hamiltonian the charge qubit at the point ξ in the limit of a
weak classical electromagnetic field propagating in the line, |α| � 1, is given by
[2, 10]

Ĥ(ξ) = − ∂2

∂φ(ξ)2 + α(ξ)2 cos[φ(ξ)]. (13.41)

This is the Hamiltonian of an anharmonic oscillator with the field-modulated poten-
tial, as one could expect from our discussion in Sect. 13.2. Now we can solve (13.39)
and (13.41) perturbatively. Expanding the “wave function”

|�(ξ, τ )〉 = Cg(ξ, τ )eiετ/2|gξ〉 + Ce(ξ, τ )e−iετ/2|eξ〉, (13.42)

where ε is the interlevel distance (in units of �ωJ ) between the ground and excited
states of the qubit at the point ξ, |gξ〉 and |eξ〉, we find in the lowest approximation
[2]:

∂2

∂τ2 α(0) − ∂2

∂ξ2 α(0) + V (0)α(0) = 0. (13.43)

The coefficient V (0) is determined by the initial quantum state of the qubits:

V (0)(ξ, τ ) = |C (0)
g (ξ)|2Vgg(ξ, τ ) + |C (0)

e (ξ)|2Vee(ξ, τ )

+
[
C (0)

g (ξ)C (0)∗
e (ξ)eiετ Vge(ξ, τ ) + Hermitian conjugate

]
; (13.44)

Veg(ξ, τ ) ≡ 〈eξ| cos φ(ξ, τ )|gξ〉 etc. (13.45)
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Fig. 13.3 “Breathing” quantum photonic crystal: time-dependent bandgap structure in a 1D
quantum metamaterial with the spatially periodic qubit quantum state: |�A〉 = |g〉, |�B〉 =
(|g〉+|g〉)/√2. Reprinted with permission from Rakhmanov et al. [2]. (C) 2008 American Physical
Society

Therefore the dispersion law following from (13.43) depends on the initial state of
the qubits. For example, if the qubits are initially in the ground (excited) state or in
their symmetric superposition, we find

kg(ω) = 1

β

√
ω2 − Vgg; ke(ω) = 1

β

√
ω2 − Vee;

ks(ω) = 1

β

√
ω2 − {Vee + Vgg + 2|Veg| cos[ε(τ − τ0)]}/4. (13.46)

In the latter case we see that the dispersion law undergoes quantum beats with the
frequency εωJ .

If the initial quantum state of the system is spatially periodic (e.g., with |�(ξ)〉
equal either |�A〉 or |�B〉), then bandgaps will open in its transmission spectrum,
as in a conventional photonic crystal. If this state is a quantum superposition, like in
(13.46), we will obtain a “breathing” photonic crystal (see Fig. 13.3).

13.3.3 Tuneable, Quantum Birefringent and Ambidextrous
Quantum Metamaterials

Another interesting possibility is provided by the fact that a biased Josephson junction
can function both as a tunable inductance (13.6) and a (phase) qubit (13.11) and
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(13.29). Consider a standard (“right-handed”) transmission line and the “left-handed”
one (Fig. 13.4) (the meaning will become clear in a moment). Using the standard
formalism, it is straightforward to obtain for the node fluxes the equations of motion

�̈n − �2(�n+1 + �n−1 − 2�n) = 0 and �n − 1

�2 (�̈n+1 + �̈n−1 − 2�̈n) = 0,

(13.47)
respectively. Substituting here �n(t) = F exp[ikdn − iωt], we find the dispersion
relations

ω(R)(k) = 2�

∣∣∣∣sin

(
kd

2

)∣∣∣∣ and ω(L)(k) = �

∣∣∣∣2 sin

(
kd

2

)∣∣∣∣
−1

. (13.48)

Now we see that our “right-” and “left-handed” labels were justified: in the latter
case the group velocity is negative, i.e., antiparallel to the wave vector, as it should
be in a left-handed medium [28].

If replace all inductors and capacitors by the Josephson junctions (which can be
treated as a nonlinear inductance in parallel with a capacitance, see Fig. 13.1b), we
obtain the dispersion relation ([10], Chap. 6)

ω2(k) = 2L−1
x (1 − cos kd) + L−1

y

2(Cx/c2)(1 − cos kd) + Cy/c2 , (13.49)

which interpolates between those of (13.48). If (L y/Lx ) < (Cx/Cy), the system will
be left-handed, otherwise right-handed. By tuning the “horizontal” and “vertical”
Josephson junctions we could thus switch our transmission line between these two
regimes at will.7

A more interesting possibility follows from the fact that such a biased Josephson
junction can be placed in a superposition of its ground and excited states [10, 22].
The expectation value of the superconducting phase drop across it is different [6],

〈φ〉e − 〈φ〉g = Ib

2Ic

[
2e2

C E J

]1/2

, (13.50)

producing different effective inductances (13.6), and therefore different dispersion
relations, (13.49). If we place our set of qubits in a GHz-type macroscopic quantum
superposition state, |gggggg...〉+ |eeeeee...〉, then the system will be quantum bire-
fringent, i.e., it will be in a superposition of states with different optical properties.
Choosing the parameters of the junctions in such a way that switching between the
ground and excited states of the “horizontal” and “vertical” sets of qubits would
shift it from right-handed to left-handed dispersion law, we obtain the ambidextrous

7 A tunable classical transmission-line metamaterial was considered in [29], while a tunable classical
left-handed transmission-line metamaterial was recently realized on experiment [30]. Both designs
incorporate Josephson junctions.
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Fig. 13.4 Ambidextrous quantum metamaterial. a Right- and left-handed and ambidextrous trans-
mission lines. b Schematic right- and left-handed dispersion relations

quantum metamaterial. If the corresponding shifts in the effective inductances are
respectively L−1

x → L−1
x + δL−1

x , L−1
y → L−1

y + δL−1
y , then a wave with the wave

vector kc, such that [10]

2(1 − cos kcd)δL−1
x = −L−1

y , (13.51)

could be made to propagate in both right- and left-handed way simultaneously.

13.3.4 Initializing a Quantum Photonic Crystal

Controlling the quantum state of each qubit in a quantum metamaterial (item (ii) on
our list of Sect. 13.1) could be difficult task: each additional circuit makes it harder
to insulate the system from the environment and to keep it at the required 10–50 mK,
and it may increase the noise level by itself. Fortunately, there can be a way around
this requirement, allowing us to limit the amount of access by what is actually needed
to realize a particular property of a quantum metamaterial.

A simple example is a spatially periodic modulation of the absolute value of
qubits’ quantum state in a 1D quantum metamaterial, which can be achieved without
a direct local access to the qubits [31]. Instead, it is enough to send two properly
shaped electromagnetic pulses through the system in the opposite directions: their
interference produces the desired spatial pattern.

To see how it works, consider a finite section of a quantum metamaterial inserted
in a transmission line (Fig. 13.5). The case considered is the same as in Sect. 13.3.2,
the charge-qubit based quantum metamaterial, but the results can be applied to the
general case, mutatis mutandis. For the dimensionless field amplitude we obtain,
similar to (13.39),
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∂2

∂τ2 α(ξ, τ )−β2 ∂2

∂ξ2 α(ξ, τ )+〈�(ξ, τ )| cos φ(ξ, τ )|�(ξ, τ )〉α(ξ, τ ) = 0 (13.52)

inside the metamaterial and

∂2

∂τ2 α(ξ, τ ) − β̃2 ∂2

∂ξ2 α(ξ, τ ) = 0 (13.53)

in the transmission line without qubits. The difference between the signal propaga-
tion speed in these two sections, β and β̃, can be eliminated by choosing different
parameters for the “active” and “passive” parts of the transmission line.

As before, we assume that the wave function of the system is factorized and the
electromagnetic field in the system is weak. We will solve the equations for the field
(13.52) and (13.53) and for the “metamaterial wave function” (13.42),

i
∂

∂τ
Ca = α2(ξ, τ )

∑

b

dabCbei(ωa−ωb)τ , {a, b} = {g, e}, (13.54)

perturbatively in the resonance approximation (ω = ε/2). We find

α(1)(ξ, τ ) = e−[
(ξ−ωτ/k)2

]
(Aei(kξ−ωτ ) + c.c); (13.55)

α(2)(ξ, τ ) = e−[
(ξ+ωτ/k)2

]
(Aei(kξ−ωτ+ζ0) + c.c) (13.56)

for the “priming pulses” incident from the left and from the right. If the qubits were
initially in their ground state, Cg(ξ, 0) = 1, Ce(ξ, 0) = 0, then

|Ce(ξ, τ )| = |�R(ξ)| sin
[
τ (|�R(ξ)|2 + (1/4)γ(ξ)2)1/2

]

(|�R(ξ)|2 + (1/4)γ(ξ)2)1/2 . (13.57)

Here
γ(ξ) = � + 4A2(dgg − dee) [cos(2kξ + ζ0) + 1] , (13.58)

� = 2ω−ε is the detuning from the resonance, and �R(ξ) is the local Rabi frequency:

|�R(ξ)| = 2dge A2 [cos(2kξ + ζ0) + 1] . (13.59)

The periodic modulation of |Ce(ξ)| was thus achieved without separately addressing
the quantum state of each qubit. This approach can be useful in simplifying the design
for certain quantum metamaterial prototypes (e.g., shown in Fig. 13.2c).

The results of numerical simulations, which confirm this conclusion, are shown
in Fig. 13.5b. Here, instead of (13.52) and (13.53), we solved directly the difference
equations (similar to (13.35), which reduce to the former in the continuous limit [31].
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Fig. 13.5 Forming a spatially periodic pattern in a 1D quantum metamaterial. a The initial ampli-
tudes (in arb. units) of the “priming” pulses in the transmission line to the right and to the left of
the quantum metamaterial section, as a function of the site number. The quantum metamaterial (see
inset) occupies the position in the middle, indicated by the parallel dotted lines. In the simulations,
the length of the metamaterial section is 68d, and the total length of the system L̃ = 2048 d. The
pulse parameters are β̃ = β, ω = ε/2, � = 0.18ε, kd = 2π/25; the pulse width l = 240 d, and
amplitude A = 0.18 a.u. The matrix elements dgg = 0.4ε, dee = 3.6ε, and dge = 0.2ε. b Peri-
odically modulated average population of the excited levels of qubits after passing of the priming
pulses. After Shvetsov et al. [31] with permission

13.4 Initial Data: Single Superconducting Artificial Atom
in a Transmission Line

While the first superconducting metamaterials prototypes are already being tested, the
detailed experimental data are currently available for a simpler, “proof-of-principle”
system. It comprises of a single “artificial atom” placed in a 1D transmission line;
the role of this atom was played by either a flux qubit (Fig. 13.6) [13–15] or a so
called transmon (another type of superconducting qubit) [16].

Since there is only one qubit in the transmission line, and its size (∼10µm)
is negligible compared to the signal wavelength (millimeters), we can somewhat
simplify our approach. Following [13], we place the qubit at the origin and write the
telegraph equations for the current and voltage in the transmission line for x �= 0 as

⎧
⎪⎨

⎪⎩

∂V (x,t)
∂x = L̃

c2
∂ I (x,t)

∂t

∂ I (x,t)
∂t = C̃ ∂V (x,t)

∂t ,

(13.60)

where L̃, C̃ are the inductance and capacitance per unit length of the transmission
line. The qubit’s influence is incorporated through matching the solutions at x = 0.
Namely,
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Fig. 13.6 a A flux qubit coupled to a transmission line. b Reflection amplitude: experimental data
(top) and theory (13.68) (bottom). Different curves correspond to the driving power changing from
−132 to −102 dBm in steps of 2 dBm. From Astafiev et al. [13], with permission from AAAS

{
V (+0, t) = V (−0, t) − M

c
∂
∂t 〈 Ĵq(t)〉

I (+0, t) = I (−0, t).
(13.61)

These equations simply account for the voltage drop due to the time-dependent
magnetic flux, induced in the line by the qubit current operator Ĵq . Looking for the
stationary solution, we introduce the transition and reflection amplitudes, t and t,
and write the current in the line and the expectation value of the qubit current as

I (x < 0, t) = Re
[

I0eikx−iωt − rI0e−ikx−iωt
]
; (13.62)

I (x > 0, t) = Re
[
tI0eikx−iωt

]
; (13.63)

〈 Ĵq(t)〉 ≡ Re[Jq,ω] cos ωt + Im[Jq,ω] sin ωt. (13.64)
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Then we find from (13.60) and (13.61)

t+ r = 1; r = iωM Jq,ω

2c2 Z I0
, (13.65)

where Z = [L̃/C̃c2]1/2 is the impedance of the transmission line.
The stationary value of the average qubit current, 〈 Ĵq(t)〉, is found by solving

the master equation for the qubit density matrix in the presence of the relaxation
and dephasing rates, �1 and �2 (see, e.g., [10], Chap. 6). Let us tune the qubit to its
degeneracy point, so that its Hamiltonian in the energy basis is

Ĥ = −��

2
σz − M Ip I0

c2 σx cos ωt ≡ −��

2
σz − �ησx cos ωt, (13.66)

where Ip is the supercurrent amplitude in the qubit loop. Then in the rotating wave
approximation we find

〈 Ĵq(t)〉 = Ipη/�2

1 + η2/�1�2 + (ω − �)2/�2
2

[
ω − �

�2
cos ωt − sin ωt

]
(13.67)

and, finally [13] (see Fig. 13.6b),

r = �1

2�2

1 + i(ω − �)/�2

1 + (ω − �)2/�2
2 + η2/�1�2

. (13.68)

The experimental data are remarkably well described by (13.68). Note that a naïve
“self-consistent” solution, i.e., with the incident current, I0(x = 0), replaced in the
expression for η by tI0, is in a complete disagreement with the experiment. This
is to be expected, since the qubit in this situation does behave as a single point-like
quantum scatterer.

A qubit in transmission line demonstrates such standard quantum-optical effects
as the Mollow triplet [13]—the appearance in the spectrum of scattered light of
the side peaks at frequencies ω ± �R , where �R is the Rabi frequency of the
atom’s dipole moment in the field of the scattered wave (see, e.g., [32], Chap. 10).
Its advantage over natural atoms is in its huge dipole moment and therefore coupling
strength, as well as the greater field concentration in 1D line compared to the 3D
space. The coupling strength, g/ω, is 3 × 10−7 for a 3D cavity QED in the optical
and 10−7 in the microwave range, while it is 5 × 10−3 for a charge qubit in 1D line,
0.012 for a flux qubit, and 0.022 for a transmon (all microwave; see [10], Table 4.1,
and references therein). This provides additional opportunities for using the devices
based on such artificial atoms, e.g., as efficient quantum switches—even with a small
number of qubits. To be more precise, for such an application one needs to use the
three, not two, lowest energy levels of a superconducting qubit (i.e., operate it as a
“qutrit”). Illuminating the device with a control signal at a frequency ω12 and with
the amplitude ηc (cf. 13.66) allows to control the transmission amplitude of the weak

http://dx.doi.org/10.1007/978-3-319-08386-5_4
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Fig. 13.7 A possible realization of a 2D and 3D superconducting quantum metamaterial based on
phase qubits (a) and its lumped-element scheme (b). After [6] with permission

probe signal at a frequency ω01:

t(ηc) = 1 − �10

2γ10 + η2
c /2γ20

. (13.69)

Here γ jk are the dephasing rates, and � jk the relaxation rates between the corre-
sponding levels (the ground state being |0〉) [15]. In the experiments with a flux
qubit the extinction of the probe signal by changing the amplitude of the control
signal was 96 % [15], while for two different transmon qubit samples it was 90 and
99.6 % respectively [16].

13.5 Further Perspectives

A 1D superconducting quantum metamaterial based around a transmission line is
the closest, but not the only realization of such a system. Another, and possibly
more flexible, design disposes of the transmission lines (Fig. 13.7). The metamaterial
would be formed of 1D chains of current-biased Josephson junctions (acting as phase
qubits), capacitively coupled to each other. 2D layers of such chains could be used
to form a 3D quantum metamaterial.

As in the 1D case, a periodic pattern of the qubit state would form a photonic
crystal with state-dependent bandgaps. Putting such a device with properly chosen
parameters in a GHz-type state, |gggg...〉 + |eeee...〉, would realize a macroscopic
“screen” with the slits in a superposition of “open” and “closed” states, and thus
provide the means for inverting the standard double-slit experiment—a different
way of investigating the quantum-classical transition.
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Another possible use of a 2D or 3D quantum metamaterial is as a quantum-limited
sensor array. Consider the situation, when a weak remote signal must be resolved
against a local noise at the same frequency. This can be done by sensing the wave
front of the signal: the signal arriving at different elements of the sensor array will
have fixed phase differences, while the local noises will be spatially uncorrelated.
The simplest example of this approach is the coincidence counter. Nevertheless if the
signal is so weak that on average only a single photon at a time reaches the sensor,
the scheme seems to be in jeopardy: a photon can only be detected once!

Nevertheless, it was suggested that a combination of a quantum metamaterial
sensor and its quantum non-demolition readout allows to sidestep this obstacle [9].
The idea of the approach is to pass the incoming photon through the quantum coherent
set of qubits, and then to measure their total magnetic moment (or a related variable).
The photon itself will not be absorbed by any of the qubits, but the interaction with its
electromagnetic field will produce coherent phase shifts in their quantum states, and
therefore to the readout. The effects of noise, due to their being local, would instead
tend to cancel each other, with the naïve expectation of ∼√

N gain in the signal-to-
noise ratio as the number of qubits in the array is increased. A convenient method
of quantum non-demolition readout of a system of qubits—so called impedance
measurement technique, IMT [10, 33]—is based on inductively coupling the qubits
to a high-quality LC curcuit (tank circuit) and measuring the response of the tank to
a weak resonant signal. It turns out to be sensitive enough to observe the shift in the
resonance frequency of the tank, induced by the quantum state-dependent magnetic
flux produced by the qubits.

To be more specific, let us consider a quantum metamaterial array comprised
of N qubits, which are all coupled to two LC circuits: the one (A) represents the
input mode, and the other (B) the readout (Fig. 13.8). The system is described by the
Hamiltonian

H = Ha + Va + Hqb + Vb + Hb + Hnoise, (13.70)

where
Ha = ωa(a†a + 1/2) + f (t)(a† + a) (13.71)

describes the input circuit, excited by the incoming field;

Hqb =
(

−1

2

) N∑

j=1

(
� jσ

x
j + ε jσ

z
j

)
(13.72)

is the Hamiltonian of the qubits;

Hb = ωb(b
†b + 1/2) + h(t)(b† + b) (13.73)

is the Hamiltonian of the output circuit with the probing field, used for a quantum
non-demolition readout;
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Fig. 13.8 Observing a single photon’s wave front. a A quantum metamaterial sensor array under-
goes a spatially phase coherent quantum evolution due to the interaction with a photon. Local noise
effects are spatially uncorrelated. b Schematic for the photon detector system. Photons are incident
on to the quantum metamaterial sensor array, which is comprised of N qubits. The quantum meta-
material array is also coupled to the readout tank circuit in order to perform quantum non-demolition
measurement of its collective variable. From [9] with permission

Va =
∑

j

ga
j (a

† + a)σx
j , Vb =

∑

j

gb
j (b

† + b)σx
j (13.74)

describe the coupling between the quantum metamaterial array and the input and
output circuits; and finally,

Hnoise =
∑

j

(
ξ j (t)σ

x
j + η j (t)σ

z
j

)
(13.75)

takes care of the ambient noise sources, 〈ξ j (t)ξk(t ′)〉 ∝ δ jk; 〈ξ j (t)δηk(t ′)〉 = 0.
In order to minimize chances that the signal photon will be absorbed by one of

the qubits and lost for our scheme, we will use the dispersive regime, i.e., when the
mismatch between the qubits’ and incoming photon’s resonant frequencies, δ� j =
|ωa −

√
�2

j + ε2
j | � ga

j . This allows us to use the Schrieffer-Wolff transformation:

if � = 0, the interaction term Va in (13.70) is reduced to [10, 34]

Ṽa =
⎛

⎝
∑

j

(ga
j )

2

δ� j
σz

j

⎞

⎠ a†a. (13.76)

Now the effect of the input field on the detector qubits is the additional phase gain
proportional to the number of incoming photons, which can be read out using a
quantum non-demolition technique.

In addition to (13.76) we also obtain the effective coupling between qubits through
the vacuum mode of the oscillator, which in case of identical qubits and coupling
parameters is
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Fig. 13.9 Numerical calculations for a quantum sensor array. a Simulated readout power spectra
for a tank circuit coupled to two noisy qubits in the presence of zero (bottom curve), one (middle) and
five (top curve) signal photons. The panels show the power spectra for the readout field’s position〈
x2

b

〉
ω

and momentum
〈
p2

b

〉
ω

quadratures for the case where ωa/ε = ωb/ε = 0.5. b (Top panel)
Spectral density of total detector “spin” Sz in a qubit in the presence of noise and drive. The signal
due to drive is a small thin peak on the left of the resonant noise response. Inset: Signal to noise
ratio as the function of number of qubits. (Center panel) Same in case of 8 qubits. Inset: A close
up of the signal-induced feature. The noise is suppressed in case of 8 qubits (blue) compared to the
case of a single qubit (red). (Bottom panel) The spectral density of Sz in case of two coupled qubits.
Note that the significant shift of the resonant frequency of the system (position of the noise-induced
feature). Inset: Signal response amplitude (left) and signal to noise ratio (right) as functions of the
coupling strength. From [9] with permission

H̃eff = (ga)2

2δ�

∑

jk

σx
j σ

x
k . (13.77)

If N � 1, this term can be approximated by an effective tunneling term for each
qubit, �eff(t)σx

j = 〈∑k σx
k 〉σx

j .

Exciting the input circuit with a resonant field, f (t) = fe(t) exp[−iωat] + c.c.,
with slow real envelope function fe(t), we can write for its wave function

i
d

dt
|ψa(t)〉 ≈ fe(t)(a + a†)|ψa(t)〉, (13.78)
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and

|ψa(t)〉 ≈ e
−i

[
t∫

0
dt ′ fe(t ′)

]
(a+a†)

|ψa(0)〉. (13.79)

This is a coherent state with the average number of photons

〈a†a〉t ≈ 〈ψa(t)|a†a|ψa(t)〉 ≈ 〈α(t)|a†a|α(t)〉 = |α(t)|2 =
⎡

⎣
t∫

0

dt ′ fe(t
′)

⎤

⎦
2

.

(13.80)

Replacing Ha and Va in the Hamiltonian (13.70) with

h(t) =
⎛

⎝
∑

j

(ga
j )

2

δ� j
σz

j

⎞

⎠ |α(t)|2 ≡
⎛

⎝
∑

j

γ jσ
z
j

⎞

⎠ |α(t)|2, (13.81)

and solving for the expectation value of the total magnetic moment of the qubit array,
Sz(t) = 〈∑N

j=1 σz
j (t)〉, (if initialized in an eigenstate of σx at t = 0) the plausible

expression

Sz(t) ≡
N∑

j=1

sz
j (t) ≈ −2γ�eff sx (0)N

⎡

⎢⎣
t∫

0

t ′∫

0

|α(t ′′)|2dt ′dt ′′ +
t∫

0

t ′∫

0

1

N

N∑

j=1

η j (t
′′)dt ′dt ′′

⎤

⎥⎦ ,

(13.82)

which indeed predicts the standard ∼√
N -suppression of the noise compared to the

coherent signal.
These heuristic considerations are supported by more solid numerical calcula-

tions presented in Fig. 13.9. They were obtained using (a) quantum state diffusion
formalism [35] and (b) master equation for the density matrix. As we see, the signal
is expected to be discernible even at a single-photon level, and increasing the num-
ber of qubits and introducing coupling between them (i.e., making the system more
rigid and less responsiove to local fluctuations) increases the signal-to-noise ratio. It
remains to be seen whether these expectations are carried out by experiments.

Whatever promise of novel technological applications the quantum metamateri-
als may hold, one should not lose from sight the main prize: the possibility of using
quantum metamaterials to investigate the limits of applicability of quantum mechan-
ics. There is no accepted theoretical limit on how big a physical system can become
before it can no longer maintain quantum coherence. Moreover, the experimental
results in the field of solid state quantum computing so far encourage the belief that
such a limit may not exist at all, and the system may remain coherent as long as
its interactions with the environment are kept under control. A quantum metamate-
rial is by definition a quantum coherent, controllable, scalable, macroscopic system
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designed to interact with the electromagnetic signal, and would be therefore a nat-
ural testing ground for investigating the quantum-classical transition (and literally
“watching a Shrödinger’s cat jump”).
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Chapter 14
Nonlinear Localization in Metamaterials

Nikos Lazarides and George P. Tsironis

Abstract Metamaterials, i.e., artificially structured (“synthetic”) media comprising
weakly coupled discrete elements, exhibit extraordinary properties and they hold a
great promise for novel applications including Super-Resolution imaging, cloaking,
hyperlensing, and optical transformation. Nonlinearity adds a new degree of freedom
for metamaterial design that allows for tunability and multistability, properties that
may offer altogether new functionalities and electromagnetic characteristics. The
combination of discreteness and nonlinearity may lead to intrinsic localization of the
type of discrete breather in metallic, SQUID-Based, and PT -symmetric metama-
terials. We review recent results demonstrating the generic appearance of breather
excitations in these systems resulting from power-balance between intrinsic losses
and input power, either by proper initialization or by purely dynamical procedures.
Breather properties peculiar to each particular system are identified and discussed.
Recent progress in the fabrication of Low-Loss, active and superconducting meta-
materials, makes the experimental observation of breathers in principle possible
with the proposed dynamical procedures. Recent experimental results on dynami-
cal phenomena due to intrinsic nonlinearities in SQUID metamaterials are briefly
summarized.
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14.1 Introduction

Advances in theory and nanofabrication techniques have opened new unprecedented
opportunities for researchers to create artificially structured media with extraordinary
properties that rely on particular geometric arrangements. A well-known paradigm
is that of metamaterials that provide access to all quadrants of the real Permittivity-
permeability plane, exhibiting negative refraction index, optical magnetism, and
other fascinating properties [1–4]. Their unique properties are particularly well suited
for novel devices like hyperlenses [5] and optical cloaks of invisibility [6], while they
may form a material base for other functional devices with tuning and switching
capabilities [7, 8]. The key element for the construction of metamaterials has cus-
tomarily been the split-ring resonator (SRR), a subwavelength resonant “particle”
which is effectively a kind of an artificial “magnetic atom” [9]. A periodic arrange-
ment of SRRs in space forms a magnetic metamaterial that exhibits high frequency
magnetism and negative permeability [10]. In several applications, real-time tunabil-
ity of the effective parameters of a metamaterial is a desired property, that can be
achieved by nonlinearity [11–13].

Metamaterials comprising metallic elements suffer from high losses at frequencies
close to those in their operating region, that place a strict limit on their performance
and hamper their use in devices. The quest for loss compensation is currently follow-
ing two different pathways: a “passive” one, where the metallic elements are replaced
by superconducting ones [14], and an “active” one, where appropriate constituents are
added to metallic metamaterials that provide gain through external energy sources.
The latter has been recently recognized as a very promising technique for compen-
sating losses [15]. Superconducting metamaterials exhibit both significantly reduced
losses and intrinsic nonlinearities due to the extreme sensitivity of the superconduct-
ing state to externally applied fields [16–20]. The fabrication of superconducting
SRRs with narrow slits filled with a dielectric oxide brings the Josephson effect into
play [21]. For a thin enough dielectric barrier a Josephson junction (JJ) is formed,
and the currents in the ring are then determined by the Josephson relations [21]. The
Josephson element thus turns the superconducting ring into an rf SQUID (Super-
conducting QUantum Interference Device) [22, 23], a long known device in the
Josephson community. The replacement of metallic and/or superconducting SRRs
with rf SQUIDs, suggested a few years ago [24, 25], results in (SQUID-Based) meta-
materials with both reduced losses and yet another source of nonlinearity due to the
Josephson element. The feasibility of constructing SQUID metamaterials has been
recently demonstrated, and their tunability and dynamic multistability properties
were explored [26–29].

Nonlinear metallic metamaterials can be constructed by appropriate combinations
of highly conducting SRRs with nonlinear electronic components; several types of
diodes have been successfully employed for this purpose [11–13]. In order to con-
struct nonlinear and active metamaterials, however, Gain-Providing electronic com-
ponents such as tunnel (Esaki) diodes [30], have to be employed. The latter feature
a negative resistance part in their current-voltage characteristics, and therefore can
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provide both gain and nonlinearity in an otherwise conventional metamaterial. Tunnel
diodes may also be employed for the construction of PT –symmetric metamateri-
als, that rely on balanced gain and loss, in a way similar to that used in electronic
circuits [31]. PT –symmetric systems do not obey separately the parity (P) and
time (T ) symmetries, but instead they do exhibit a combined PT symmetry. The
notions of PT –symmetric systems originate for Non-Hermitian quantum mechan-
ics [32], but they have been recently extended to dynamical lattices, particularly in
optics [33, 34]. Spontaneous PT –symmetry breaking and power oscillations have
been actually observed recently in a PT coupled optical system [35]. Following
these ideas, a PT metamaterial with elements having alternatingly gain and equal
amount of loss has been suggested [36, 37].

Conventional (metallic), SQUID-Based, and PT -metamaterials share a num-
ber of common features. They can all be constructed by discrete elements which
are weakly coupled through magnetic and/or electric forces [38–41], while in most
cases the inter-element coupling may be limited to nearest-neighbors. SQUIDs are
coupled magnetically; also, for particular mutual orientations of the SRR slits in
conventional metamaterials, either active or not, the magnetic coupling is dominant.
These magnetoinductive systems support a new kind of waves with frequencies in a
relatively narrow band of the optical type. In the presence of nonlinearity, intrinsic
localization in the form of discrete breathers (DBs) may occur generically by purely
deterministic dynamics. DBs are spatially localized and Time-Periodic excitations
whose properties have been extensively explored in the past [42]; rigorous mathemat-
ical proofs of existence have been given for both energy conserved and dissipative
lattices [43, 44]. Moreover, they have been observed in a variety of physical systems
including superconducting ones [45, 46]. Dissipative DBs, in particular, may exist
as a result of a power balance between input power and internal loss [47]. The input
power comes either from an applied alternating magnetic field or, in the case of
PT metamaterials, from an external source through the gain mechanism. Although
the existence of dissipative DBs has been numerically demonstrated in both metallic
SRR-Based [48–52] and SQUID-Based metamaterials [25, 53, 54], their experimen-
tal observation is still lacking. In metallic metamaterials, losses constitute a major
problem that prevents breather formation; DB frequencies lie outside but close to
the linear frequency bands where high losses destroy Self-Focusing. However, DBs
could be in principle observed in SQUID-Based metamaterials, or in metamaterials
where losses have been compensated by a gain mechanism. In PT metamaterials
with alternating gain and loss, the net loss can become in principle very low. Then,
novel Gain-Driven DBs, whose existence has been also demonstrated numerically
[36, 37], could be also observed.

The present chapter focuses on the generation of stable or at least Long-Lived DBs
in Dissipative-Driven metallic and SQUID-Based metamaterials, and novel Gain-
Driven DBs in PT metamaterials that rely on balanced gain and loss. For the sake
of clarity in presentation we present only One-Dimensional (1D) DBs, since their
temporal and spatial dependences are visible in a single figure. However, calculations
with the corresponding Two-Dimensional (2D) models reveal that these DBs are not
destroyed by dimensionality, and moreover they may exist in the case of moderate
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Fig. 14.1 Schematic view of a one-dimensional array of split-rings in (upper) the planar geometry;
(lower) the axial geometry. The magnetic field is perpendicular to the planes of the rings

anisotropy in the coupling coefficients [25, 49]. In Sects. 14.2 and 14.3, the discrete
model equations and dissipative DBs for metallic metamaterials and SQUID-Based
metamaterials, respectively, are presented along with the corresponding frequency
dispersions of the linearized systems. Furthermore, recent experimental results on
SQUID metamaterials [26–29, 55] are briefly reviewd in a separate subsection of
Sect. 14.3. In Sect. 14.4, the model equations for a PT metamaterial with alter-
natingly gain and loss are presented in 1D, along with the corresponding frequency
dispersion. In this case, a condition for the metamaterial being in the exact PT
phase is also obtained. Gain-Driven DBs by either proper initialization or a purely
dynamical mechanism are presented as well. In Sect. 14.5 we conclude with a brief
summary of the findings.

14.2 Metalic SRR-Based Metamaterial

Consider a periodic arrangement of N nonlinear, identical, metallic SRRs in 1D
(Fig. 14.1), in two distinct configurations depending on the mutual orientation of the
SRRs in the array; the planar and the axial. Assuming that an SRR can be regarded
as a resistive-inductive-capacitive (RLC) oscillator featuring an Ohmic resistance
R, self-inductance L , and capacitance C , its state can be described by the charge
Q in its capacitor and the current I induced by an alternating magnetic field with
appropriate polarization. Assuming that the mutual orientations of the SRR slits are
such that the magnetic interaction dominates over the electric one, the latter can be
neglected. The magnetic coupling strength λ can be quantified as the ratio of the
mutual inductance M between neighboring SRRs and the self-inductance of a single
SRR, L , i.e., λ = M/L . Note that λ is negative (positive) between SRRs in the planar
(axial) configuration. The most common configurations in 2D (not shown) are the
planar, where all SRR loops are in the same plane, or the planar-axial configuration
where the SRRs have the planar configuration in one direction while they have the
axial configuration in the other direction [49, 51]. In 2D metamaterials on a square
lattice there are two coupling coefficients λx = Mx/L and λy = My/L , for coupling
along the x- and y-direction, respectively, with Mx and My being the corresponding
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mutual inductances. The (normalized) dynamic equations for the state variables of
each SRR in a 2D metamaterial read [48, 56]

q̈n,m + λx
(
q̈n−1,m + q̈n+1,m

) + λy
(
q̈n,m−1 + q̈n,m+1

)

+ γ q̇n,m + f (qn,m) = ε(τ ), (14.1)

where qn,m is the charge in the capacitor of the (n.m)-th SRR, τ is the normalized
temporal variable, ε(τ ) = ε0 sin(�τ) is the induced electromotive force, and γ =
RC�ω� is the loss coefficient, with C� and ω� = 1/

√
LC� being the linear capacitance

and resonance frequency, respectively, and � is the normalized driving frequency.
The overdots denote differentiation with respect to τ , while the induced current in the
(n, m)-th SRR, in,m , is in,m = dqn,m/dτ ≡ q̇n,m . The function f (qn,m) that provides
the on-site nonlinearity, that may result from filling the SRR slits with a Kerr-type
dielectric [57] or by mounting a diode into each SRR slit [58], is approximated by
f (qn,m) � qn,m −χq3

n,m , where χ is a nonlinearity coefficient. The natural variables
can be recovered from the normalized ones through the relations t = τ/ω�, ω = ω��,
Qn,m = Qcqn,m , E = Ucε, In,m = Icin,m , with Ic = Ucω�C�, Qc = C�Uc and Uc

a characteristic voltage. The frequency spectrum of linear excitations is obtained by
substitution of qn,m = A cos(κx n + κym − �τ) into (14.1) where we also set χ = 0
and ε0 = 0. We thus obtain

�κ = [1 + 2 λx cos(κx ) + 2 λy cos(κy)]−1/2, (14.2)

where κ = (κx , κy) is the normalized wavevector in 2D.
Equation (14.1) support dissipative DBs for relatively low losses, that can be gen-

erated with standard algorithms [47, 59]. The Key-Point here is the identification
of two different, simultaneously stable solutions of a single SRR oscillator. Let us
denote the high (low) amplitude solution with qh (q�). Then, a trivial dissipative DB
can be constructed by fixing the amplitude of a particular SRR oscillator of the meta-
material to qh while the amplitude of all the others is fixed to q�. The corresponding
currents dqn,m/dτ ≡ in,m , are all set to zero. Using this trivial DB configuration
as initial condition, the dynamic equations are integrated while the coupling coeffi-
cients are switched on adiabatically. It turns out that the trivial DB can be continued
to nonzero couplings leading to dissipative DB formation [48, 49, 51, 52]. The
spatiotemporal evolution of a typical, single-site dissipative DB in 1D is shown in
Fig. 14.2 during approximately two periods of oscillation. Both the central DB site
and the background are oscillating with different amplitudes but same frequency
�b = 2π/Tb, equal to that of the driver (�b = �). Importantly, high and low ampli-
tude current oscillations occur in anti-phase, which indicates differences in response
to the applied field that modify locally the magnetization [48]. Depending on the fre-
quency, DBs modify not only the magnitude but also the nature of the metamaterial
response from paramagnetic to diamagnetic or even extreme diamagnetic, the latter
corresponding to negative magnetic permeability μ. Different types of DBs can be
constructed using appropriate trivial breathers as initial conditions. A dissipative DB
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Fig. 14.2 Spatiotemporal evolution of a single-site, dissipative current breather, for Tb = 6.82,
λ = −0.02, γ = 0.01, ε0 = 0.04, χ = 0.16, and N = 50. Both the background and the central
breather site are oscillating with frequency �b = 2π/Tb. The phase-difference of high and low
current oscillations is almost π

Fig. 14.3 Spatiotemporal evolution of a domain-wall dissipative breather for Tb = 6.82,
λ = −0.02, γ = 0.01, ε0 = 0.04, χ = 0.16, and N = 50. This peculiar type of breather
separates regions of the metamaterial with different magnetizations

in the form of an oscillating domain-wall that separates regions of a 1D metamaterial
with different magnetizations, is illustrated in Fig. 14.3. Dissipative DBs may also
be generated spontaneously in magnetic metamaterials with a binary configuration
[60–62], through a purely dynamical proccess that relies on the developement of
modulational instability by a frequency-chirped driving field. This procedure is par-
ticularly well suited for DB generation in experimental situations, and has been
applied successfully in micromechanical cantilever oscillator arrays [63].
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Fig. 14.4 a Schematic drawing of the unit cell of a SQUID metamaterial with one SQUID per
cell. The applied magnetic field H(t) is perpendicular to the SQUID plane. b The equivalent circuit
model for an rf SQUID driven by a flux source �ext

14.3 rf SQUID Metamaterial

14.3.1 Dynamic Equations and Dissipative Breathers

A SQUID metamaterial may be formed as a conventional one, where the metal-
lic elements are replaced by rf SQUIDs [24, 25]. The simplest rf SQUID, shown
schematically in Fig. 14.4a, consists of a superconducting path interrupted by a sin-
gle JJ; it constitutes the direct superconducting analogue of a nonlinear metallic
SRR, that plays the role of the ‘magnetic atom’ in SQUID-Based metamaterials.
For a realistic description of a SQUID, the Resistively and Capacitively Shunted
Junction (RCSJ) model for the JJ is adopted [22, 23]. According to this model, the
real JJ results from shunting the ideal JJ, with critical current Ic, with a resistance
R and a capacitance C . The equivalent lumped circuit model for an rf SQUID in
a magnetic field results from a series connection of the real JJ with an inductance
L and a flux source �ext (Fig. 14.4b). The dynamic equation for a single SQUID
is then obtained by direct application of Kirkhhoff laws. SQUID metamaterials in
1D and 2D may be formed by repetition of the unit cell shown in Fig. 14.4a [64].
Nonlinearity and discreteness, combined with weak coupling between neighboring
SQUIDs may lead in breather generation in this system as well [25, 53, 54]. The
relevant dynamical variables in SQUID metamaterials are the magnetic fluxes, φn,m ,
threading the SQUIDs, whose temporal evolution is described by the (normalized)
equations

φ̈n,m + γ φ̇n,m + φn,m + β sin(2πφn,m) − λx (φn−1,m + φn+1,m)

− λy(φn,m−1 + φn,m+1) = φe f f , (14.3)

where λx = Mx/L and λy = My/L are the magnetic coupling coefficients
between neighboring SQUIDs in the x- and y- direction, respectively, with Mx and
My being the mutual inductances (negative in the planar geometry). The overdots
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Fig. 14.5 The frequency dispersion �κ plotted as a function of κx and κy for a two-dimensional
SQUID metamaterial with λx = λy = −0.014 and β = 0.15. The band extends from �min = 1.374
to �min = 1.414

denote differentiation with respect to the normalized time τ , β = L Ic/�0 =
βL/(2π) is the SQUID parameter, and γ = √

L/C /R is the loss coefficient of
each individual SQUID, with �0 being the magnetic flux quantum. The rf SQUID
exhibits strong resonant response to an alternating magnetic field at a particular
frequency ωSQ = ωLC

√
1 + βL , with ωLC = 1/

√
LC being its corresponding

inductive-capacitive frequency. In (14.3), the fluxes are normalized to �0, while τ is
normalized to ω−1

LC . The term on the right-hand-side of (14.3) is the effective external
flux φe f f = [1 − 2(λx + λy)]φext , where φext = φdc + φac cos(�τ) is the flux due
to the spacially uniform, applied magnetic field. The latter may have both constant
(dc) and alternating (ac) terms, resulting from a constant and an alternating magnetic
field with normalized frequency �, respectively.

By linearization of the free (i.e., γ = 0, φext = 0) (14.3) and substitution of the
trial solution φn,m = A exp[i(κx n + κym − �κτ)], we obtain

�κ =
√

1 + βL − 2(λx cos κx + λy cos κy), (14.4)

where �κ is the eigenfrequency at wavevector κ = (κx , κy), which components are
normalized to the center-to-center distance between neighboring SQUIDs in the x-
and y-direction, respectively. Equation (14.4) provides the frequency dispersion of
magnetoinductive flux-waves whose typical form is shown in Fig. 14.5 [25], that is
very similar to that of metallic metamaterials in 2D [65]. In the absence of losses
(γ = 0) and ac flux φac = 0, (14.3) can be obtained from the Hamiltonian

H

E J
=

∑

n,m

{
π

β
φ̇2

n,m + un,m

}
− 2π

β

∑

n,m

{
λx (φn,m − φdc)(φn−1,m − φdc)

+ λy(φn,m − φdc)(φn,m−1 − φdc)
}
, (14.5)
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where E j = Ic�0/(2π) is the Josephson energy, and

un,m = π

β
(φn,m − φdc)

2 − cos(2πφn,m), (14.6)

is the on-site potential. The Flux-Balance relation for the 2D SQUID metamater-
ial, expressed in the same order of approximation as the dynamic equations, reads
φloc

n,m = φe f f + β in,m , where φloc
n,m = φn,m − λx (φn−1,m + φn+1,m) − λx (φn,m−1

+ φn,m+1) and in,m is the local flux and the current (normalized to Ic), respectively,
at the lattice site (n, m).

For generating dissipative DBs in SQUID metamaterials we use two approaches;
first, we employ the same algorithm as in the previous Section, and second, by intro-
ducing weak disorder in the SQUID parameter β. Estimates for the coupling strength
between SQUIDs, obtained from available data [64] give |λx,y | � 0.014, which is
consistent with a weak coupling approximation. This value is also consistent with
the corresponding ones obtained for metallic metamaterials. However, we sometimes
use higher values of the coupling coefficients in order to demonstrate that breather
generation is not just a marginal effect. The SQUID potential un,m given in (14.6)
allows for the generation of several breather types.

The number and the location of minima of un,m can be controlled either by the
parameter β or in Real-Time by a dc applied flux φdc. While for βL < 1 there is only
one minimum, multiple minima appear for βL > 1 with their number increasing with
further increasing βL . The dc flux, on the other hand, may both create new minima
and move their positions to different flux values. For example, for φdc = 0.5 (βL < 1)
the potential takes the form of a symmetric Double-Well. Then, the construction of
trivial DBs is a rather obvious task; one may choose flux states with high and low flux
amplitude corresponding to the minima of the potential. Then, one of the SQUIDs is
set to the high amplitude state and the other ones to the low amplitude state. A typical
DB of this type is shown in Fig. 14.6; it cannot appear in metallic metamaterials, for
which the on-site potential has a single minimum. The temporal evolution of the
DB diverges significantly from a sinusoidal, due to strong nonlinearities even at low
powers; this is another peculiarity resulting from the form of un,m . In this case, all
SQUIDs oscillate almost in phase, while they differ only in their current oscillation
amplitude.

The strong nonlinearity in the SQUIDs manifests itself also with the existence of
several simultaneously stable solutions. The multistability of SQUID states implies
multistability for possible DB configurations; indeed, by combination of two or more
simultaneously stable single SQUID states for the construction of ‘trivial breathers’,
we may generate simultaneously stable DBs [25]. Typical DBs of this type look like
that in Fig. 14.7, which exhibits features similar to those of the DBs in metallic meta-
materials (see e.g. Fig. 14.2), and change locally the nature of the magnetic response
in SQUID metamaterials. In most cases the DB frequency equals to that of the driver.
However, there is also the possibility for multiperiodic DBs to appear, whose period
Tb is an integer multiple of that of the driver T = 2π/�. A period-3 dissipative DB,
with Tb = 3T , is shown in Fig. 14.8 [25]. Poincaré diagrams for the trajectories of
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Fig. 14.6 Spatiotemporal evolution of a single-site dissipative breather during one period of oscil-
lation, for a SQUID metamaterial with β = 1.27, γ = 0.001, N = 30, λ = −0.1, and Tb = 6.6,
φdc = 0.5, and φac = 0.2. Note the phase-coherence and the non-sinusoidal time-dependence of
the oscillations

Fig. 14.7 Spatiotemporal evolution of single-site dissipative breather during one period of oscil-
lation, for a SQUID metamaterial with β = 1.27, γ = 0.001, N = 30, λ = 0.1, and Tb = 6.6,
φdc = 0, and φac = 0.6

the central DB site against those for the sites in the background (not shown) confirm
the observed multiperiodicity. Although we have presented mostly single-site and
“bright” DBs, multi-site as well as ‘dark’ DBs can be also generated by appropriate
choice of a trivial breather [49, 52, 54]. The linear stability of dissipative DBs can
be addressed through the eigenvalues of the Floquet matrix (Floquet multipliers).
A dissipative DB is linearly stable when all its Floquet multipliers lie on a circle of
radius Re = exp(−γ Tb/2) in the complex plane [47]. The breathers presented here
are all linearly stable. Moreover, they were let to evolve for long times t (> 105 Tb)
without any observable change in their shapes.
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Fig. 14.8 Spatiotemporal evolution of a dissipative, period-3 breather during three driver periods,
for a SQUID metamaterial with N = 30, φdc = 0, φac = 1.2, γ = 0.001, β = 1.27, and Tb = 12.57

The algorithm used above requires initialization of the system with a ‘trivial
breather’ configuration, which may not be always convenient in experimental situ-
ations. However, in SQUID metamaterials spontaneous DB generation is facilitated
by the existence of weak disorder due to limited accuracy during fabrication. In a par-
ticular realization of an rf SQUID metamaterial, the elements cannot be completely
identical but the values of their parameters fluctuate around a mean. The critical cur-
rent Ic of the JJs seems to be more sensitive to misperfections in fabrication, since
it depends exponentially on the thickness of the insulating dielectric. Then, fluctua-
tions of Ic result in fluctuating β. We have performed numerical calculations for a
SQUID metamaterial in 1D with β allowed to vary randomly within ±1 % around
its mean value. Then, by integrating (14.3) for a number different configurations of
disorder, we obtained in most cases spontaneously generated dissipative DBs. For
this approach to work, it is required that the coupling between SQUIDs is very weak.
Typical results for the spatiotemporal evolution of spontaneously generated DBs in
disordered SQUID metamaterials are shown in Fig. 14.9, where the instantaneous
voltage vn = dφn/dt is plotted on the n − τ plane. The left and right panels corre-
spond to two different configurations of disorder, while all the other parameters are
fixed. The number of generated DBs is different for the two different configurations
(one and three, respectively), with the DB central sites located at different positions.
In the left panel, the period of voltage oscillation in the central DB sites is twice that
of the driver, so that it is actually a period-2 breather.

14.3.2 Recent Experimental Results on SQUID Metamaterials

SQUIDs are extremely sensitive to applied magnetic fields, either dc or ac (i.e., rf);
a dc field, in particular, is capable of tuning the SQUID resonance periodically over
a wide frequency band [26, 27, 29, 66]. Those resonance shifts due to an applied dc
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Fig. 14.9 Spatiotemporal evolution of dissipative breathers excited spontaneously in weakly dis-
ordered rf SQUID metamaterials in 1D during six periods. The voltage amplitude in the Josephson
junction of the nth SQUID vn = dφ/dτ is plotted on the τ − n plane for φdc = 0, φac = 0.03,
β = 1.27, γ = 0.001, λ = −0.0014, ω = 3.11, and N = 50. The left and right panels correspond
to different configurations of disorder

and/or ac field may also reproduced numerically from the SQUID model equation
[25, 54]. The remarkable property of wide-band tunability is tranfered to the SQUID
metamaterial as a whole; thus, in a SQUID metamaterial, the linear flux-wave band
(14.4) can be tuned over a wide frequency range by an applied dc field. Recent
experiments on quasi-2D and 2D SQUID metamaterials constructed from low critical
temperature superconductors (e.g. Niobium, Nb) clearly reveal the tunability of the
linear band by measuring the frequency dependent, complex microwave transmission
|S21|(ω) as a function of the dc applied flux [27–29]. The shifts turn out to be periodic
with the dc flux, while their period equals to one flux quantum�0. With a transmission
line model for the SQUID metamaterial, effective electromagnetic parameters such
as the effective magnetic permeability μe f f were retrieved from the measured data,
both as a function of the frequency and the applied dc flux. Remarkably, the real part
of μe f f becomes negative in particular frequency intervals that may vary as a function
of the dc flux [27]. Note that in these experiments, special care should be taken for
the minimization of stray fields that may otherwise spoil the tunability patterns [28].
These fields may arise due to magnetic components of the measurement setup as
well as Abrikosov vortices that are trapped in the superconducting film. Moreover,
tunability with temperature for both single SQUIDs and SQUID metamaterials has
been demonstrated [29]. The rf SQUID meta-atoms exhibit, however, an unusual
response to temperature variations; the resonance frequency can either increase or
decrease, depending on the dc flux applied to it. The rf power may also tune the
resonance frequency of rf SQUIDs [29]. In this case, the strength of the resonant
response varies with the rf power, while it remains constant with temperature tuning.
Tuning with the rf power can also either increase or decrease the resonance frequency,
depending on the applied dc flux.

Although the remarkable tunability properties of SQUID metamaterials described
above are due to the Josephson nonlinearity, the excitation powers were low enough
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for treating the Josephson junction as a quasi-linear inductive element. With increas-
ing power, however, SQUID metamaterials start to exhibit more complex behavior
that has also been explored experimentally [55]. A manifestation of that behavior
is the dynamic multistability which occurs in SQUID metamaterials that consist
of non-hysteretic (βL < 1), single junction rf SQUIDs, at intermediate power levels
[26]. The observed multistability, which has been also investigated numerically [67],
is a purely dynamical phenomenon that is not related to the multistability known
from hysteretic SQUIDs. For a particular choice of parameters, the multistability is
manifested with a small number of simultaneously stable states, each of which corre-
sponds to a different value of magnetic flux susceptibility χφ . As a result, depending
on the current state of the metamaterial, it can be either almost magnetically transpar-
ent, or in a state of significantly reduced transmission. For a SQUID metamaterial
in this regime, the magnitude of the transmission |S21| as a function of the input
power exhibits large loops of hysteresis; a typical example is illustrated in figure 3
of [55], where nanosecond-long microwave pulses have been used to excite a 1D
SQUID metamaterial in different branches of the hysteresis loop. The switching
process, unlike other switchable metamaterial implementations, takes advantage of
the intrinsic nonlinearities due to the Josephson element in each rf SQUID, which
makes each of them a very fast-switching meta-atom.

14.4 PT -Symmetric Metamaterial

Consider a 1D array of dimers, each comprising two nonlinear SRRs; one with loss
and the other with equal amount of gain. The dimers can be arranged in the array
either with all the SRRs being equidistant (Fig. 14.10, upper panel), or with the
distance between them being modulated according to a binary pattern (Fig. 14.10,
lower panel). Due to balanced gain and loss in each dimer, these configurations obey

E Eλ λ

λE λE

Mλ, Mλ,

Mλ, Mλ,

SRR with Loss SRR with Gain

Fig. 14.10 Schematic of a PT metamaterial. Upper panel all the SRRs are equidistant. Lower
panel the separation between SRRs is modulated according to a binary pattern (PT dimer chain)
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a combined PT -symmetry. Building PT -symmetric metamaterials may provide
a way to overcome losses and moreover to reveal new extraordinary properties. These
systems undergo spontaneous symmetry breaking from the exact PT phase, where
all eigenfrequencies are real, to the broken PT phase, where at least one pair of
eigenfrequencies are complex, with the variation of a control (gain/loss) parameter.
For low values of the gain/loss parameter, PT -symmetric systems are usually in
the exact phase; however, when that parameter exceeds a critical value, the system
goes into the broken phase. For linear PT -symmetric systems, stable solutions
exist only in the exact phase.

In the equivalent circuit model picture [41, 48, 56, 60, 68], extended for the
PT dimer chain, the dynamics of the charge qn in the capacitor of the nth SRR is
governed by

λ′
Mq̈2n + q̈2n+1 + λMq̈2n+2 + λ′

E q2n + q2n+1 + λE q2n+2 + γ q̇2n+1

+ αq2
2n+1 + βq3

2n+1 = ε0 sin(�τ) (14.7)

λMq̈2n−1 + q̈2n + λ′
Mq̈2n+1 + λE q2n−1 + q2n + λ′

E q2n+1 − γ q̇2n

+ alphaq2
2n + βq3

2n = ε0 sin(�τ), (14.8)

where λM , λ′
M and λE , λ′

E are the magnetic and electric interaction coefficients,
respectively, between nearest neighbors, α and β are nonlinear coefficients, γ is the
gain/loss coefficient (γ > 0), ε0 is the amplitude of the external driving voltage, while
� and τ are the driving frequency and temporal variable, respectively, normalized
to ω0 = 1/

√
LC0 and ω−1

0 , with C0 being the linear capacitance. The total number
of SRRs is an even integer N , so that there are N/2 PT symmetric dimers. In the
following, we consider that the relative orientation of the SRRs in the chain is such
that the magnetic coupling dominates, while the electric coupling can be neglected
(λE = λ′

E = 0) [39].
In the linear regime, without external driving, we set α = β = 0 and ε0 = 0 in

(14.7) and (14.8). We keep however the gain/loss terms that are proportional to ±γ

and provide PT -symmetry. We then substitute q2n = A exp[i(2nκ − �κτ)] and
q2n+1 = B exp[i((2n + 1)κ − �κτ)], where κ is the normalized wavevector, and
request nontrivial solutions for the resulting stationary problem. We thus obtain the
frequency dispersion

�2
κ =

2 − γ 2 ±
√

γ 4 − 2γ 2 + (λM − λ′
M )2 + μκμ′

κ

2(1 − (λM − λ′
M )2 − μκμ′

κ)
, (14.9)

where μκ = 2λM cos(κ), μ′
κ = 2λ′

M cos(κ). The condition for having real �κ for
any κ in the earlier equation then reads

cos2(κ) ≥ γ 2(2 − γ 2) − (λM − λ′
M )2

4λMλ′
M

, (14.10)
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Fig. 14.11 Frequency bands for a PT -symmetric dimer chain with balanced gain and loss for
λM = −0.17, λ′

M = −0.10, and γ = 0.05 (black solid curves); γ = 0 (red dotted curves). The
forbidden frequency regions are indicated in green(dark) color. Note that the gain/loss coefficient
γ has a minor effect on the dispersion curves

From (14.10) it is easy to see that for λM = λ′
M , corresponding to the equidistant

SRR configuration, the condition for real �κ for all κ cannot be satisfied for any
positive value of the gain/loss coefficient γ . This result implies that a large PT -
symmetric SRR array cannot be in the exact phase and therefore stable, stationary
solutions cannot exist. To the contrary, for λM �= λ′

M , i.e., for a PT dimer chain,
the condition (14.10) is satisfied for all κ’s for γ ≤ γc � |λM − λ′

M |, (γ 4 � 0). In
the exact phase (γ < γc), the PT -symmetric dimer array has a gapped spectrum
with two frequency bands (Fig. 14.11).

Equations (14.7) and (14.8), implemented with the boundary conditions q0(τ ) =
qN+1(τ ) = 0, are integrated numerically with qm(0) = (−1)m−1sech(m/2),
q̇m(0) = 0, and ε0 = 0. The nonlinear coefficients are fixed to α = −0.4 and
β = 0.08, values that are typical for a diode [68], while γ is chosen so that the
PT metamaterial is well into the exact phase. The coupling coefficients are chosen
relatively large in comparison with the values reported in the literature. However,
breathers appear generically even for much lower coupling values. In order to prevent
instabilities that would result in divergence of the energy at particular sites in finite
time scales, we embbed the PT -symmetric dimer chain into a lossy dimer chain.
In practice, we consider a longer dimer chain with total number of SRRs N + 2N�;
then we replace the gain with equivalent amount of loss at exactly N� SRRs at each
end of the extended chain. That helps the excess energy to go smoothly away during
the long transient phase of integration, living behind stable (or at least very long-
lived, for more than ∼ 108 time units) DBs [36, 37]. Typical energy density, En ,
plots in the n − τ plane are shown in Fig. 14.12. A large amount of the total energy
Etot = ∑

n En is concentrated into two neighboring sites (SRRs) that belong to the
same dimer. Thus, the fundamental breather excitation in the PT metamaterial is
actually a two-site DB, and not a single-site DB like those presented in the previous
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Fig. 14.12 Spatiotemporal evolution of the energy density En on the n − τ plane during two
periods of oscillation for a PT metamaterial with N = 70, N� = 10, γ = 0.002, λ′

M = −0.10,
λE = λ′

E = 0, and (upper) λM = −0.17; (lower) λM = −0.21. Energy localization at two
neighboring sites, one with gain and one with loss, is clearly observed

Sections. The energy densities also exhibit regular oscillations, as it is expected for
PT -symmetric systems. Inspection of the corresponding instantaneous current pro-
files (Fig. 14.13) in as a function of n, reveal that these DBs are neither symmetric
nor antisymmetric at the single SRR level.

For a gapped linear spectrum, large amplitude linear modes become unstable in
the presence of driving and nonlinearity. If the curvature of the dispersion curve in
the region of such a mode is positive and the lattice potential is soft, large amplitude
modes become unstable with respect to formation of DBs in the gap below the
linear spectrum [63]. For the parameters in Fig. 14.11, the bottom of the lower band
is located at �0 = 2π/T0 � 0.887, where the curvature is positive. Moreover, the
SRRs are subjected to soft on-site potentials for the selected values of α and β. Then,
DBs can be generated spontaneously by a frequency chirped alternating driver; after
the driver is turned off, the breathers are driven solely by gain. A similar procedure
has been applied succesfuly to lossy nonlinear metamaterials with a binary structure
[60–62]. Gain-driven DBs that are spontaneously generated by a frequency chirped
driver can be visualized on an energy density map on the n − τ plane (Fig. 14.14).
We use the following procedure:
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• At time τ = 0, we start integrating (14.7) and (14.8) with zero initial state with-
out external driving for 500 T0 � 3500 time units (t.u.), to allow for significant
development of large amplitude modes.

• At time τ � 3,500 t.u. (point A on Fig. 14.14), the driver is switched-on with low-
amplitude and frequency slightly above �0 (1.01 �0 � 0.894). The frequency is
then chirped downwards with time to induce instability for the next 10,600 t.u.
(∼ 1,500 T0), until it is well below �0 (0.997 �0 � 0.882). During that phase, a
large number of excitations are generated that move and strongly interact to each
other, eventually merging into a small number of high amplitude multi-breathers.

• At time τ � 14,100 t.u. (point B on Fig. 14.14), the driver is switched off and the
DBs are solely driven by the gain (gain-driven phase). They continue to interact
to each other until they reach an apparently stationary state. The high density
horizontal segments between points B and C in Fig. 14.14 present precisely those
stationary gain-driven (multi-)breathers generated through the dynamics.

• At time τ ∼ 85,150 t.u. (point C on Fig. 14.14), the gain is replaced by equal
amount of loss, and the breathers die out rapidly.

The above procedure is very sensitive to parameter variations of the external
fields; the number of DBs as well as their locations in the lattice may change with
slight parameter variation (Fig. 14.14). The DBs formed during the chirping phase
continue to interact with each other for longer times, showing a tendency to merge
together into wide multi-site structures that occupy an even number of sites. The
frequency �b of these DBs lies slightly below the lower band of the linear spectrum.
Gain-driven DBs may still be generated by the above procedure when there is a
slight imbalance between gain and loss [37]. The gain/loss imbalance is manifested
either as a decay or growth of the total energy, in a timescale that depends on the
amount of imbalance. When loss exceeds gain, a multibreather gradually looses its
energy, since its excited sites at its end-points fall the one after the other in a low
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Between the points B and C, the breathers indicated by the blue-green(dark) horizontal segments
are solely driven by the gain. They show a clear tendency to merge together forming wide multi-site
structures

amplitude state. In the opposite case, where gain exceeds loss, a multibreather slowly
gains energy and becomes wider. Thus, in a realistic experimental situation where
gain/loss balance is only approximate, it would be still possible for breathers to be
observed at relatively short Time-Scales.

14.5 Summary

Breather excitations appear generically in nonlinear metallic, SQUID-Based, and
PT metamaterials in the presence of dissipation that is always present in practice.
These dissipative breathers can be accurately constructed either by using standard
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algorithms that require a proper initialization of the system or by dynamic effects
that are more suitable in real experimental situations. Low losses, a prerequisite for
DB observation, can be achieved either by inserting electronic elements that provide
gain, or by replacing the metallic SRRs with superconducting ones. In conventional,
metallic metamaterials and PT metamaterials, which expose their unusual proper-
ties when driven by an alternating field, DB generation by frequency chirping seems
to be a convenient approach well suited for experiments. Also, as it is demonstrated
for SQUID-Based metamaterials, weak disorder may trigger localization leading to
breather formation through self-focusing. Dissipative breathers are certainly closer
to reality than their energy-conserving counterparts (i.e., Hamiltonian breathers) and
result from a Power-Balance of intrinsic losses and input power. The latter may
either come from an externally applied alternating field, as in the case of metallic
and SQUID-Based metamaterials, or by a particular gain mechanism, as in the case
of the proposed PT metamaterials [36, 37]. Dissipative DBs are very robust since
they correspond to attractors of the “motion” in a high-dimensional phase space, and
relatively weak perturbations disappear in short time-scales. Moreover, they exhibit
features not seen in Hamiltonian DBs; e.g., current oscillations appear in all the
elements of a metamaterial in a dissipative breather configuration. High and low
current oscillations are almost in anti-phase and, as a result, the magnetization of the
metamaterial is locally modified [48, 49]. Breathers exhibiting in-phase oscillations
may be however generated in SQUID metamaterials for which the on-site potential
has multiple minima. Fundamental dissipative DBs in metallic and SQUID metama-
terials are single-sited that however cannot exist in PT metamaterials, due to the
PT symmetry. In the latter, the fundamental breather occupies at least two sites,
i.e., a dimer, which isPT -symmetric by itself. Although experimental observations
of DBs in metamaterials are still lacking, the advances in fabrication of active and
superconducting metamaterials may provide structures with significantly reduced
losses. Then, breather observation would be in principle possible with the dynamic
approaches presented above. Note that the field of SQUID metamaterials has been
recently explode and their complex behavior due to intrinsic nonlinearities is cur-
rently explored. Purely dynamic phenomena observed in experiments are briefly
discussed in Sect. 14.3.2.

Acknowledgments This work was partially supported by the European Union’s Seventh Frame-
work Programme (FP7-REGPOT-2012-2013-1) under grant agreement no 316165, and by the
Thales Projects ANEMOS and MACOMSYS, cofinanced by the European Union (European Social
Fund ESF) and Greek national funds through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund.

References

1. V.M. Shalaev, Nat. Photonics 1, 41 (2007)
2. C.M. Soukoulis, S. Linden, M. Wegener, Science 315, 47 (2007)



300 N. Lazarides and G.P. Tsironis

3. C.M. Soukoulis, M. Wegener, Nat. Photonics 5, 523 (2011)
4. N.I. Zheludev, Y.S. Kivshar, Nat. Mater. 11, 917 (2012)
5. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)
6. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Science

314, 977 (2006)
7. N.I. Zheludev, Science 328, 582 (2010)
8. N.I. Zheludev, Opt. Photonics News 22, 31 (2011)
9. J.G. Caputo, I. Gabitov, A.I. Maimistov, Phys. Rev. B 85, 205446 (2012)

10. S. Linden, C. Enkrich, G. Dolling, M.W. Klein, J. Zhou, T. Koschny, C.M. Soukoulis, S. Burger,
F. Schmidt, M. Wegener, IEEE J. Selec. Top. Quant. Electron. 12, 1097 (2006)

11. D.A. Powell, I.V. Shadrivov, Y.S. Kivshar, M.V. Gorkunov, Appl. Phys. Lett. 91, 144107 (2007)
12. I.V. Shadrivov, A.B. Kozyrev, D.W. van der Weide, Y.S. Kivshar, Appl. Phys. Lett. 93, 161903

(2008)
13. B. Wang, J. Zhou, T. Koschny, C.M. Soukoulis, Opt. Express 16, 16058 (2008)
14. S.M. Anlage, J. Opt. 13, 024001 (2011)
15. A.D. Boardman, V.V. Grimalsky, Y.S. Kivshar, S.V. Koshevaya, M. Lapine, N.M. Litchinitser,

V.N. Malnev, M. Noginov, Y.G. Rapoport, V.M. Shalaev, Laser Photonics Rev. 5(2), 287 (2010)
16. M.C. Ricci, N. Orloff, S.M. Anlage, Appl. Phys. Lett. 87, 034102 (2005)
17. M.C. Ricci, H. Xu, R. Prozorov, A.P. Zhuravel, A.V. Ustinov, S.M. Anlage, IEEE Trans. Appl.

Supercond. 17, 918 (2007)
18. J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M.X. He, J.W. Zhang, J. Han, H. Chen, W. Zhang,

Appl. Phys. Lett. 97, 071102 (2010)
19. V.A. Fedotov, A. Tsiatmas, J.H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, N.I.

Zheludev, Opt. Express 18, 9015 (2010)
20. H.T. Chen, H. Yang, R. Singh, J.F. OHara, A.K. Azad, A. Stuart, S.A. Trugman, Q.X. Jia, A.J.

Taylor, Phys. Rev. Lett. 105, 247402 (2010)
21. B. Josephson, Phys. Lett. A 1, 251 (1962)
22. A. Barone, G. Patternó, Physics Applications of the Josephson Effect (Wiley, New York, 1982)
23. K.K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon and Breach, Philadel-

phia, 1986)
24. N. Lazarides, G.P. Tsironis, Appl. Phys. Lett. 16, 163501 (2007)
25. N. Lazarides, G.P. Tsironis, M. Eleftheriou, Nonlinear Phenom. Complex Syst. 11, 250 (2008)
26. P. Jung, S. Butz, S.V. Shitov, A.V. Ustinov, Appl. Phys. Lett. 102, 062601 (2013)
27. S. Butz, P. Jung, L.V. Filippenko, V.P. Koshelets, A.V. Ustinov, Opt. Express 29(19), 22540

(2013)
28. S. Butz, P. Jung, L.V. Filippenko, V.P. Koshelets, A.V. Ustinov, Supercond. Sci. Technol. 26,

094003 (2013)
29. M. Trepanier, D. Zhang, O. Mukhanov, S.M. Anlage, Phys. Rev. X 3, 041029 (2013)
30. L. Esaki, Phys. Rep. 109, 603 (1958)
31. J. Schindler, A. Li, M.C. Zheng, F.M. Ellis, T. Kottos, Phys. Rev. A 84, 040101(R) (2011)
32. D.W. Hook, Ann. Phys. (Berlin) 524(6–7), A106 (2012)
33. R. El-Ganainy, K.G. Makris, D.N. Christodoulides, Z.H. Musslimani, Opt. Lett. 32, 2632

(2007)
34. K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Z.H. Musslimani, Phys. Rev. Lett. 100,

103904 (2008)
35. C.E. Rüter, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, M.Segev, D. Kip, Nat. Phys.

6, 192–195 (2010)
36. N. Lazarides, G.P. Tsironis, Phys. Rev. Lett. 110, 053901 (2013)
37. G.P. Tsironis, N. Lazarides, Appl. Phys. A 115, 449 (2014)
38. O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. Stevens, G.

Faulkner, D. Edwards, L. Solymar, Phys. Rev. B 73, 224406 (2006)
39. F. Hesmer, E. Tatartschuk, O. Zhuromskyy, A.A. Radkovskaya, M. Shamonin, T. Hao, C.J.

Stevens, G. Faulkner, D.J. Edwardds, E. Shamonina, Phys. Stat. Sol. (b) 244, 1170 (2007)
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Chapter 15
Field Enhancement with Classical
Electromagnetically Induced Transparency

Philippe Tassin, Thomas Koschny and Costas M. Soukoulis

Abstract A key challenge in the design of tunable and nonlinear metamaterials is
creating large local electromagnetic fields to enhance the nonlinear interaction. An
attractive way to achieve local field enhancement is the use of metamaterials with
dark resonators, i.e., with meta-atoms that do not directly couple to the external
field. Such metamaterials exhibit a scattering response that is similar to what is
observed for electromagnetically induced transparency (EIT): they combine large
group delay with low absorption at the same frequency. Classical EIT metamaterials
are interesting for nonlinear metamaterials because of the large field enhancement
due to the lack of radiation loss in the dark element and for tunable metamaterials
because of the high sensitivity of the resonance to the environment or a control signal.
We discuss the design and modeling of EIT metamaterials and some early work on
their applications to media with nonlinear/tunable response.

15.1 Introduction

Electromagnetically induced transparency (EIT) is originally a quantum-mechanical
effect that renders an otherwise opaque medium transparent in a narrow trans-
mission window with low absorption [1]. It occurs in certain three-level atomic
systems—e.g., alkali metal vapors, doped solid-state materials, or quantum-dot-
based systems—where destructive interference between two radiative transitions
creates a dark dressed superposition state with no electric dipole moment [2–4]. In
the simplest case, these atomic systems have two ground states and one common
excited state (as in Fig. 15.1a), and transitions between the two ground states are
forbidden. A laser beam (the probe) couples one of the ground states to the excited
state, resulting in a typical Lorentzian absorption spectrum. When a second beam
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(a)

(b) (c)

Fig. 15.1 a Energy diagram of atomic EIT media b Absorption spectrum of an EIT medium
showing the transparency window (dashed) inside the Lorentzian background (solid) c Index of
refraction of an EIT medium showing steep dispersion at the same frequency of the absorption
minimum (From [2])

couples the other ground state to the excited state, a peculiar phenomenon is observed:
destructive interference between both excitation pathways results in vanishing prob-
ability for the atomic system to be found in the excited state. The material decouples
from the external field of the probe beam and behaves at this frequency almost like
vacuum. The result is an incision (the transmission window) in the Lorentzian absorp-
tion spectrum of the probe, as shown in Fig. 15.1b. At the same frequency, there is
very strong normal dispersion (Fig. 15.1c), which can lead to a remarkable increase
in the group delay of the sample.

Quantum-mechanical EIT has the potential for dramatic slowdown of light to a
group velocity of about 17 m/s [5] and even for the storage of light [6, 7]. However,
the rather short coherence time of the dark superposition state necessitates compli-
cated experimental handling, often requiring cryogenic temperatures and/or strong
magnetic fields. However, it was realized recently that the characteristic features of
EIT—simultaneously low absorption and strong dispersion—can also be realized in
purely classical systems such as coupled mechanical or electrical resonators [8], i.e.,
no quantum-mechanical superposition states are necessary. Although the physics
of such classical EIT systems is very different from the quantum-mechanical EIT
in atomic systems, the underlying idea is similar—there are two resonances that
interfere destructively in a narrow transmission band causing decoupling from the
external field. Many classical analogues have since been demonstrated in optical
microresonators [9] or coupled acoustic resonators [10].
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Fig. 15.2 a Metamaterial implementing the classical analogue of electromagnetically induced
transparency using two coupled split-ring resonators. b Transmission and absorption spectra
(Adapted from [11])

A few years ago, three groups of scientists independently proposed to create meta-
atoms consisting of coupled electrical or plasmonic resonators to achieve effective
metamaterials with an EIT response [11–13].1 A very illustrative example is the
meta-atom in Fig. 15.2a, which consists of two perpendicular split-ring resonators.
An incident plane electromagnetic wave, propagating from bottom to top, can couple
to the leftmost split-ring resonator, which has the magnetic dipole of its magnetic
resonance parallel to the magnetic field. This resonator is commonly called the radia-
tive or the bright resonator. However, the wave cannot couple directly to the other
split ring, which has the magnetic dipole oriented perpendicularly—designated as the
dark resonator. Of course, there is a capacitive (and inductive) interaction between
the two split-ring elements, so when the magnetic dipole mode of the first ring is
excited, energy will be exchanged between the two rings through the quasistatic inter-
action. The transmittance and absorbance of the resulting metamaterial are shown in
Fig. 15.2b. One can observe the characteristic features of EIT: a transmission window
with low absorption and strong dispersion. Note that the capacitive interaction can be
straightforwardly altered by changing the distance between the two split rings. There
is also no need for a pump beam to achieve the interaction between the two resonators
as opposed to the quantum-mechanical version. In the past few years, classical EIT
metamaterials have been demonstrated experimentally by many scientists around the
world.2

1 Some authors have described this phenomenon as a classical analogue of Fano resonances rather
than electromagnetically induced transparency. The difference originates in whether the radiative
resonator is considered a single resonance (it is indeed a single electromagnetic resonance) or a
continuum of resonances (the electromagnetic resonance is broadened by dissipative loss or radiation
loss). It is merely a matter of terminology.
2 See, for example, [11–23].
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Fig. 15.3 a A planar EIT metamaterial. b Absorption spectrum showing the transmission window
with low absorption. c Effective permittivity of the EIT metamaterial showing the strong dispersion
(From [14])

15.2 Design of EIT Metamaterials

The double split-ring meta-atom discussed above is very instructive in explaining
the physics, but its three-dimensional geometry makes it impractical for fabrication.
Planar metamaterials are indeed often preferred since they are much easier to make
than three-dimensional structures, e.g., with lithographic techniques. Figure 15.3a
shows an example of a planar EIT metamaterial. The meta-atom contains a double-
gap split-ring resonator and a cut wire. The incident wave propagates normal to the
substrate and with the electric field polarized along the cut wire, so it can directly
couple to the electric dipole resonance of the cut wire. The two-gap split-ring res-
onator is designed to have a magnetic resonance at the same frequency, but since it
has a symmetry plane parallel with the electric field, the incident field cannot directly
couple to it. The magnetic dipole resonance of the split ring is thus the dark reso-
nance. Figure 15.3b plots the absorption spectrum. At f = 9.75 GHz, we observe
the transmission window with minimal absorption. In Fig. 15.3c, we observe strong
dispersion in the effective permittivity of the metamaterial (this metamaterial has
a group delay that is 100 times larger than in vacuum). It is instructive to look at
the electric currents in the wire and the ring, because they confirm the physics of
destructive interference in the electric dipole moment. Figure 15.4a shows the elec-
tric current distribution at an absorption peak, i.e., away from the dark resonance
frequency. We observe that the electric current flows predominantly in the cut wire.
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Fig. 15.4 Current distribution in the EIT metamaterial depicted in Fig. 15.3a, a at the absorption
peak, b at the transparency frequency (From [14])

At the EIT frequency, a large current is flowing in the split-ring resonator, i.e., the
dark resonator is strongly excited, while there is almost no current in the wire. This
is because the current directly induced by the external field in the wire cancels the
current induced by the interaction with the split-ring resonator. As a consequence, the
material decouples from the external field at this point and the effective permittivity
is close to unity (like vacuum). The result is the excitation of a mode with very small
electric dipole moment—hence the large transmission.

An important aspect of classical electromagnetically induced transparency is the
quality factor of the dark resonator. In Sect. 15.3, we will see that EIT can only be
achieved if the quality factor of the dark resonator is much larger than the quality
factor of the radiative resonator. Special care must therefore be taken in the design
of the dark resonator to reduce energy loss as much as possible. In general, there are
two mechanisms that contribute to the finite quality factor of the dark resonator:

• Dissipative loss; and
• Radiation loss.

Radiation loss occurs because the meta-atoms act as small antennae that reradiate
electromagnetic waves. For the radiative resonator, this is desired, since its radiated
fields combine to form the transmitted and reflected waves of the metamaterial.
We do not need radiation loss in the dark resonator, of course, but reradiation by
the split-ring resonator of Fig. 15.3a into a mode that is orthogonal to the incident
wave can still happen. The quality factor of the dark resonator can be increased by
reducing the radiation loss. This is achieved in the metamaterial pictured in Fig. 15.5a.
The unit cell contains a double planar split-ring resonator symmetrically located
around a metal wire. Similar as above, the cut wire has an electrical dipole moment
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Fig. 15.5 a Meta-atom with a dark element that has no dipole moment to reduce radiation loss.
b Transmittance spectrum of this EIT metamaterial (From [24])

providing for the radiative resonator. The transmitted waves (Fig. 15.5b) indicate that
this metamaterial does not have just one, but three dark modes.

The current distributions at the maximum-transmission frequencies illustrate what
is happening. In Fig 15.6a, displaying the current distribution at f = 10.62 GHz (the
feature labeled a in Fig. 15.5b), there is a large current density in the wire only;
this is the radiative electric dipole resonance of the wire. At the EIT feature at
f = 10.30 GHz (b in Fig. 15.5b), we see large currents in the split rings and only
a small current in the wire commensurate with a dark mode excitation (Fig. 15.6b).
The current distribution reveals that this dark mode is one of the hybridizations
of the electric dipole resonances of the split-ring resonators. We see that the cur-
rents in the two different split rings flow in opposite directions. The EIT feature at
f = 10.41 GHz (c in Fig. 15.5b) has the main currents circling around the split
rings—one in a clockwise direction, the other in a counterclockwise direction
(Fig. 15.6c); this is the symmetric hybridization of the magnetic dipole resonances
of the split-ring resonators. At the frequencies of the EIT feature at f = 10.49 GHz
(d in Fig. 15.5b), the current density is again circling the split-ring resonators, but
now in the same direction for both split rings (Fig. 15.6d). This is the antisymmetric
hybridization of the magnetic dipole resonances of the split-ring resonators.

The resonances in Figs. 15.6b, c are especially attractive, because they elim-
inate the electric (magnetic) dipole moment—i.e., they are quadrupole modes.



15 Field Enhancement with Classical Electromagnetically Induced Transparency 309

Fig. 15.6 Current distributions in an EIT metamaterial with a dark resonator with vanishing dipole
radiation. The labels a–d correspond to the spectral features marked with the same label in Fig. 15.5b
(From [24])

This eliminates any dipole radiation from the dark resonator, increasing its quality
factor. In other words, a good geometrical design of the dark resonator can improve
EIT metamaterials significantly. It is important to note that the dark “resonator” does
not need to be a distinct physical structure, but can rather be just another electro-
magnetic eigenmode of the meta-atom. The electric quadrupole mode has another
advantage here: when the wire is placed exactly in the symmetry plane of the double
ring structure, there is no interaction between the dark and bright resonators. This
enables us to create very small coupling strength by moving the wire slightly away
from the symmetry plane.

At microwave frequencies, a very effective way to address dissipative loss in the
dark resonator is to fabricate it out of a superconductor and using high-quality sub-
strates [24]. This strategy was actually used in the metamaterial depicted in Fig. 15.5a,
where the wire is made from a superconducting niobium (Nb) film. When cooled
down sufficiently below the critical temperature, Nb has a resistivity that is five
orders of magnitude smaller than the resistivity of silver at room temperature (at
10 GHz). With the use of a superconductor, we have achieved group delays of 300 ns
in the X band from a subwavelength-thin metamaterial (see group delay measure-
ments in Fig. 15.7). For this 250µm-thick metamaterial, the measured delay corre-
sponds to a group velocity of roughly 1000 m/s—or slowdown of light by a factor of
250,000—and may find application as compact delay lines in microwave photonics.
The delay-bandwidth product (DBP) of the metamaterial pictured in Fig. 15.5a is 0.3,
which approaches the DBPs in resonant cavities (DBP ≈ 1), but is still smaller than
media containing atomic vapors (DBP ≈ 10) and some photonic crystal waveguides
(DBP ≈ 100), but we should keep in mind that the latter systems are much longer
than a single wavelength.
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Fig. 15.7 Experimentally measured group delay of an EIT metamaterial with a dark resonator
made from the superconductor niobium to minimize dissipative loss (From [24])

15.3 A Simple Model for EIT Metamaterials

To further our understanding of EIT metamaterials and to aid in their design, it is
desirable to have a simple model describing their main properties.

15.3.1 The Two-Oscillator Model

The simplest model to describe classical EIT systems is a set of two coupled mass-
spring oscillators or two RLC circuits coupled by a shunt capacitor (see Fig. 15.8)—
i.e., two coupled harmonic oscillators with a linear interaction term:

ω−2
r p̈(t) + γrω

−1
r ṗ(t) + p(t) = f (t) − κq(t),

ω−2
d q̈(t) + γdω−1

d q̇(t) + q(t) = −κp(t). (15.1)

The radiative resonator with resonance frequency ωr and damping factor γr is
described by the excitation p(t) and is driven by the external force f (t). The
dark resonator with resonance frequency ωd and damping factor γd is described
by the excitation q(t). Both resonators are linearly coupled with coupling strength κ .
The individual oscillators are electromagnetic resonators or electromagnetic reso-
nances of the meta-atoms.

The equations of model (15.1) reflect the essential ingredients of EIT systems:
they contain two coupled resonances that are asymmetrically driven by the external
force. They can be solved in the frequency domain to obtain:

p(ω) = Dd(ω) f (ω)

Dd(ω)Dr (ω) − κ2 ,

q(ω) = κ f (ω)

Dd(ω)Dr (ω) − κ2 , (15.2)
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(a) (c)

(b)

Fig. 15.8 Two-oscillator models a Mechanical analogue b Electrical circuit analogue c Absorbed
power spectrum in a system of two linearly coupled harmonic oscillators

where Dr (ω) = 1 − (ω/ωr )
2 − iγr (ω/ωr ) and Dd = 1 − (ω/ωd)2 − iγd(ω/ωd).

The dissipated power per unit cell, shown in Fig. 15.8c and obtained from

Q = 1

2
Re [ f · ṗ] = ω2

2

(
γr |p(ω)|2 + γd |q(ω)|2

)
, (15.3)

has a Lorentzian shape with a sharp incision at the resonance frequency if ωr ≈ ωd ,
γd � γr (i.e., the quality factor of the dark resonator must be larger than the quality
factor of the radiative resonator), and γd γr � κ2 � 1. Based on the two-resonator
model, we can derive a few rules of thumb by expanding (15.3) in the vicinity of
the EIT resonance frequency. These rules of thumb are depicted in Fig. 15.9. It is
important to note that the bandwidth of the EIT resonance is related to the coupling
strength κ , and not to the quality factor as would be the case for a simple Lorentzian
resonance.

Even though the two-resonator model can qualitatively describe the absorption of
classical EIT analogues, it fails to model the scattering parameters of metamaterials
exhibiting a classical EIT response, i.e., there is no information about the transmission
and reflection spectra. This is especially troublesome since it makes it impossible to
determine the group delay, quite an essential parameter for slow-light media.
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Fig. 15.9 Rules of thumb for the bandwidth of the transmission window and the absorption mini-
mum of the EIT spectrum

15.3.2 The Radiating Two-Oscillator Model

To obtain a model that rigorously describes both the microscopic and the macroscopic
response in terms of the radiated field (i.e., the incident, reflected, and transmitted
waves), we have to include the actual coupling of the bright resonator to the exter-
nal world [25]. Most of the EIT metamaterials fabricated to date are essentially
single-layer structures rather than bulk media. Hence, their effective response can be
described by an electric current sheet with surface conductivity σse. The scattering
parameters of an electric current sheet are

R = − ζσse

2 + ζσse
,

T = 2

2 + ζσse
, (15.4)

where ζ is the wave impedance of the external waves. Equations (15.4) serve as
the world model, i.e., they describe the interaction of the medium with the external
electromagnetic field. The local microscopic behavior of the EIT medium can still
be described by the two-resonator model as given by (15.1).

In order to complete the radiating two-oscillator model, we have to find a connec-
tion between the external behavior of the system (the surface field Es = R Ein =
(1 + T )Ein) and the surface conductivity (σs) and the microscopic behavior (the
excitations p and q and the driving force f ). First, we observe that each of the con-
stituent meta-atoms contributes a dipole moment p to the metamaterial and, if there
are ns atoms per unit of surface area, the average polarization current thus equals

〈 js(t)〉 = ns ṗ(t) ⇒ 〈 js(ω)〉 = −iωns p(ω). (15.5)
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The dark resonator does not contribute to the surface current since it has no dipole
moment commensurate with the external field. Secondly, we need to find a connec-
tion between the surface field Es , which drives the dipole oscillation in the world
model, and the driving force f in the microscopic model, i.e., we seek the propor-
tionality constant C in f (t) = C Es . (Note that the surface field Es is different
from the incident field because of the scattering from the meta-atoms.) This can be
done by recalling that for our linear meta-atom the average dipole moment must be
proportional to the electric field at the surface:

ns p(ω) = ε0χse(ω)Es(ω), (15.6)

where χse is the surface susceptibility. In the static limit, this yields

ε0χ
(static)
se Es(0) = ns p(0) = ns

(
1 − κ2

)−1
f (0) ≈ ns f (0), (15.7)

where we used the fact thatκ2 � 1 under EIT conditions. Using (15.5, 15.6 and 15.7),
we can now determine the surface conductivity:

σse ≈ ε0χ
(static)
se

−iωp(ω)

f (ω)
= −iωβDd(ω)

Dd(ω)Dr (ω) − κ2 , (15.8)

where β ≡ ε0χ
(static)
se . Once we have determined the surface conductivity, we can

calculate the scattering parameters from (15.4) and other derived quantities, in par-
ticular the absorbance and the group delay:

A = 1 − |T |2 − |R|2 = |T |2 Re (ζσse) ,

τg = I m

(
d ln T

dω

)
= −1

2
I m

(
T

dζσse

dω

)
. (15.9)

In Fig. 15.10 we compare results of the radiating two-oscillator model with exper-
imental data for a copper-on-alumina EIT metamaterial that takes advantages of the
quadrupole dark mode described in Sect. 15.2. The model describes the experimen-
tal results very well. It is a very useful tool to decide what parameters need to
be changed in order to achieve a certain dispersion and absorption spectrum. For
example, in Fig. 15.10, we see that larger coupling strength results in an EIT res-
onance with larger bandwidth, in agreement with the rule of thumb derived in
Sect. 15.3.1.
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(a) (b)

Fig. 15.10 Comparison between absorption spectra obtained from a the radiating two-oscillator
model and b from experimental results of an EIT metamaterial for several values of the coupling
strength (From [25])

15.4 Electromagnetically Induced Absorption

One of the spectra in Fig. 15.10 (κ = 0.009) has a curious feature—it has an absorp-
tion peak instead of an absorption dip at the EIT resonance frequency. It can therefore
be considered as the classical analogue of electromagnetically induced absorption
(EIA) first studied by Akulshin, Barreiro and Lezama in atomic systems [26]. This
classical analogue was recently predicted and observed by several groups [22, 25,
27]. Let us use the radiating two-oscillator model to study this phenomenon in more
detail.

In Fig. 15.11a, we show how the absorption, transmission, and group delay spectra
evolve if we decrease the dissipative loss factor γr of the radiative resonator. There
is still a frequency window with high transmission, but the incision in the absorption
spectrum becomes smaller and finally disappears. This does not mean, however, that
the dark resonance has disappeared, as we can clearly see from the enhanced group
delay. Rather, the background absorption of the radiative resonance is decreased, but
the radiative resonance is still sufficiently broadened by radiation damping, while the
excitation of the dark resonance is barely changed. At a certain point, the absorption
reduction in the radiative resonator due to the destructive interference mechanism is
exactly cancelled by the absorption in the dark resonator. When we further decrease
the dissipative loss of the radiative resonator, the absorption spectrum turns into a
very shallow and weak background with a narrow peak at the resonance frequency
ωd . The transition between EIT and EIA can also be observed when we increase the
dissipative loss of the dark resonator [see Fig. 15.11b]. When γd is increased, the
radiative resonance remains unaltered, but the absorption in the center of the trans-
parency window goes up. Eventually, the loss in the dark resonator overcomes the loss
reduction due to the destructive interference in the radiative resonator. Finally, EIA
can also be achieved by decreasing the coupling strength κ . Weaker coupling creates
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(a)

(b)

Fig. 15.11 Study of the radiating two-oscillator model and appearance of electromagnetically
induced absorption when a the dissipative loss of the bright resonance is decreased b the dissipative
loss of the dark resonance is increased (From [25])

a narrower transparency window with larger excitation in the dark resonator. This
in turn increases the absorption at the resonance frequency, resulting in EIA when
the dissipation in the dark resonance overcomes the loss reduction in the radiative
resonance.

We believe the classical analogue of electromagnetically induced absorption may
be interesting for applications in spectroscopy and sensing, since it produces a spec-
tral feature with a narrow bandwidth. The width of the peak is reduced by the lack of
radiation damping in the dark resonator and the additional narrowing due to the cou-
pling mechanism. Note that the EIA effect could only be described by the radiating
two-oscillator model, since the bare two-resonator model lacks radiative broaden-
ing of the radiative resonator. Alternatively, electromagnetically induced absorption
can be achieved by introducing a retardation-induced phase shift in the interaction
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between the dark and bright resonators [27] or by coupling both the dark and bright
resonator to the external wave but with different phase advance [22].

15.5 EIT Metamaterials for Nonlinear and Tunable Operation

15.5.1 At Microwave Frequencies

As we have discussed above, large fields (see, for example, Fig. 15.4b) can be
generated at the EIT frequency. The large field enhancement can be taken advantage
of for nonlinear and tunable metamaterials by introducing a nonlinear medium in the
vicinity of the dark resonator. One possibility is fabricating the dark resonator out
of a superconducting material. The meta-atom shown in Fig. 15.12a is the same as
the one discussed in Sect. 15.2, but now we have deliberately introduced very sharp
corners in the split-ring resonators [28]. At low input power (P < 10 dBm), the EIT
metamaterial works as usual and we observe the resonance with high transmittance
and large group delay (see Fig. 15.12b). However, if we increase the power of the
incident beam, we observe that the EIT transmission window disappears, i.e., we can
switch the transmission window through the input beam without need for an external
signal. The disappearance of the EIT window is related to local field hotspots at
the corners of the split rings, which we observe in numerical simulations and local
field measurements (Fig. 15.12c). The localized spots of highly enhanced current
density can reach the critical current density of the superconductor. In that state,
there is magnetic flux generated by the microwave currents that enters the Nb film and
causes dissipation. As the critical state extends further into the material (see measured
current distributions in Fig. 15.12d), the dissipation leads to thermal runaway and
eventually to quenching of the superconductivity at 22 dBm. This in turn leads to a
decrease in the resonator’s quality factor and switching off of the EIT features.

15.5.2 At Terahertz Frequencies

The idea of damping the dark resonance was subsequently transposed to the terahertz
domain by Jianqiang Gu et al. [29]. They created an EIT metamaterial made from
an aluminium double SRR (dark resonance) and an aluminium cut wire (bright
resonance), deposited on undoped silicon islands. Due to much smaller radiation
loss in the magnetic quadrupole resonance in the double SRR (see also Sect. 15.2),
sufficient contrast in quality factor is achieved to enable the EIT phenomenon. This
is reflected in the transmission peak at 0.74 THz (Fig. 15.13, top row).

To decrease the quality factor of the dark resonance, an optical pump beam is
used to illuminate the Si islands under the SRRs. The pump excites photocarriers
in the silicon, creating a resistive path for the carriers participating in the SRR res-



15 Field Enhancement with Classical Electromagnetically Induced Transparency 317

(a) (b)

(d)

(c)

Fig. 15.12 a EIT metamaterial with nonlinear response. b Transmittance and group delay spectra
as a function of input power. c Field hotspots at the corners of the split-ring resonators. d Thermal
runaway and quenching of the superconducting state (From [28])

onance. The result is a gradual disappearance of the EIT spectral feature when the
power of the pump beam is increased from 0 to 1350 mW. The structure is thus a
tunable metamaterial with the optical pump beam as the external control signal. The
control of the quality factor can also be exercised through thermal heating of the
semiconductor [30].

All these examples amount essentially to changing the quality factor of the dark
resonance to take advantage of strong field enhancement in the dark resonator of the
EIT metamaterial.
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(a)

(b)

(c)

Fig. 15.13 a An EIT metamaterial with tunable response. b Schematic showing the optical pump
beam as external control signal. c Transmission spectra showing the gradual destruction of the EIT
response when the optical pump power is increased (From [29])
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Mutual coupling, 65
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Mutual inductance, 284

N
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Near-zero permittivity, 117
Nearest-neighbour coupling, 39, 49
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Nematic liquid crystal, 249
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Phase transition, 248
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Pulse propagation, 222
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Quantum coherence, 255, 277
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Qubit decoherence rate, 265
Quintic nonlinearity, 173

R
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Refraction of energy, 127
Refraction of phase front, 127
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Stimulated Raman scattering, 205
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Third order nonlinear susceptibility, 221
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Tunability, 238
Tunable metamaterials, 242
Tunable nonlinear inductance, 258

U
Undepleted pump approximation, 122

V
Varactor-loaded split-ring resonators, 14, 224
Voigt configuration, 178
Voigt effect, 179
Volumetric enhancement, 65

W
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Wave mixing, 222
Wire-grid metamaterial, 239, 242

Z
Zero group velocity, 166
Zero group velocity dispersion, 165
Zero phase velocity wave, 97
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