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Preface

This book is a collection of papers devoted to modeling of inelastic material behavior
related to structures under normal and advanced conditions. At the moment there
exist various approaches, among them phenomenological, mechanism-based,
physically motivated, and others. In this sense this book is some kind of a state
of the art.

Accurate and realistic modeling of inelastic behavior of advanced materials is
essential for the solution of a numerous boundary-value problems occurring in
different engineering fields. For example, various microscopic defects cause
reduction in strength of materials and shorten the lifetime of engineering structures.
Therefore, a main issue in engineering applications is to provide realistic infor-
mation on the stress distribution within elements of such materials or assessment of
safety factor against failure.

During the last years important progress has been observed in the testing practice
for monotonic and cyclic behavior delivering important information on deformation
patterns and damage evolution in interaction with material microstructure. Great
efforts have been made in the attempt to develop more physically based constitutive
models for predicting the occurrence of damage and failure in materials and
structures under general loading conditions. At the same time, different research
fields in solid mechanics and, especially, modeling of advanced materials have
evolved due to development of multi-scale approaches. Although some progress
has been made in theoretical fields, the application of multi-scale models to
numerically analyze real components subjected to monotonic and cyclic loading
conditions is still at an early stage. Different research groups around the world have
proposed promising approaches and part of them are discussed in the present book.

The aim of the book is not only to consolidate the advances in inelastic material
research but also to provide a forum to discuss new trends in damage and fracture
mechanics proposing models that are either phenomenological ones or micro-
mechanically motivated. Discussion of new multi-scale approaches at several length
scales applied to nonlinear and heterogeneous materials have been emphasized from
different related disciplines including metal physics, micro-mechanics, as well as
mathematical and computational mechanics.
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The editors wish to thank all authors for their contribution and the reviewers for
their valuable comments and recommendations. After the peer review process, 12
papers are finally presented in this book aiming to become a helpful and valuable
reference in the field of mechanics for scientists as well as for engineers.

Magdeburg, October 2014 Holm Altenbach
Neubiberg Michael Brünig
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Creep Behavior Modeling
of Polyoxymethylene (POM)
Applying Rheological Models

Holm Altenbach, Anna Girchenko, Andreas Kutschke
and Konstantin Naumenko

Abstract Polyoxymethylene (POM) is a semi-crystalline thermoplastic polymer
with broad technical application. Microstructure after solidifying is strongly depen-
dent on the thermodynamical conditions. As an outcome macroscopic observable
time dependent behavior is complex and significantly non-linear. To describe creep
behavior of POM a rheological model with five elements is utilized. Creep behavior of
POM under monotonic loading and constant temperature conditions can be described
in a satisfying manner according to experimental results. A three-dimensional gener-
alization with a comparable backstress formulation will be given. Finally, influence
of data scattering will be estimated applying statistical analysis.

Keywords Creep · Polyoxymethylene · Rheological models · Backstress

1 Introduction

POM is widely used in technical application especially for high performance engi-
neering components, because compared to other widely used thermoplastics, e.g.
Polyethylene and Polypropylene, POM posses higher stiffness, ultimate strength as
well as better long term properties, see Bonnet (2014) among others. A reliable mate-
rial model in the design process of high performance components is of essential use
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2 H. Altenbach et al.

to avoid or at least reduce expensive prototype tests during shape or construction
optimization.

Description of material response under mechanical loadings, temperature changes,
etc., can be performed applying various approaches (Altenbach 2012). Two general
main directions exist: the deductive approach (top-down modeling) and the induc-
tive approach (bottom-up modeling). The first one is presented in monographs of
Haupt (2002), Palmov (1998), among others, and as usual this approach is applied
for materials with very complex behavior, see for example Altenbach et al. (2003),
Vilchevskaya et al. (2014). The starting point are mathematical forms of constitu-
tive equations, application of constitutive axioms, etc. The second approach is usual
in most of engineering applications. Simple experimental observations are trans-
ferred in equations, which are generalized step by step. At each level correctness, for
example, w.r.t. the second law of thermodynamics should be proved. The method of
using rheological models is somehow a combination of both ways. Basic rheological
elements, for which thermodynamical consistency is proved, see Krawietz (1986),
Palmov (1998), are combined (series or parallel connections) in a bottom up way
for description of complex behavior (Längler et al. 2014; Naumenko and Altenbach
2005; Naumenko et al. 2011; Naumenko and Gariboldi 2014).

2 POM—Microstructure and Macroscopic Behavior

After solidifying POM shows a significant microstructure, see Fig. 1, crystalline
lamellae are radially arranged, separated by amorphous phase, and form so called
spherulitic crystal volumes. Although some typical dimensions are indicated in the
schematic sketch of Fig. 1. The resulting dimensions are strongly dependent on the

Fig. 1 Microstructure of partially crystalline polymers (SEM-pictures from Plummer and Kausch
1995, the schematic sketch after Katti and Schultz 1982)
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conditions during solidification mainly cooling rate, shear rate and pressure, see
Mileva et al. (2012).

This complex microstructure leads to a number of deformation mechanism under
mechanical and thermal load, like formation, growth and coalescence of crazes,
reorientation of broken crystalline lamellae, see Kim and Michler (1998). It is obvious
that a description on the micro scale directly based on these mechanism resulting in
an applicable material model is not only a challenging task but with the current state
of computational methods as well as mechanical models is impossible.

Therefore, in this paper the phenomenological approach is utilized. To this end
phenomena to describe have to be taken from experimental results like Fig. 2. A typ-
ical creep strain rate versus creep strain curve is shown with two main stages primary
creep, reduction of creep rate to a minimum, and tertiary creep, increase of creep strain
rate after minimum creep rate. During the first stage, usually addressed as hardening,
several deformation mechanism may take place, e.g. polymer chain stretching and
sliding in the amorphous phase and stress accumulation in bad, in the sense of defor-
mation, orientated crystalline lamellae. Usually the tertiary creep stage is accompa-
nied by damage and/or micro-mechanical changes and thus a consequently reduced
area to withstand mechanical load. However, for this paper only the macroscopic test
data was available, so a mechanism based material model can not be derived.

Nonetheless, a material model according to experimental results should reflect
primary creep, a non-linear stress dependent minimum creep rate and tertiary creep.

ε = ln 1+
Δ l
l0

, ε̇ =
Δε
Δt

strain

st
ra

in
ra

te

primary tertiary

Fig. 2 Typical example of creep test data for POM, in this plot as well as the following axes of the
diagram are normalized: strain rate ε̇cr/ε̇cr

min and strain εcr/εcr
min, where ε̇cr

min and εcr
min are minimum

creep rate and the strain at minimum creep rate, respectively. Δε = εn − εn−1,Δt = tn − tn−1 are
the strain and time increment, n denotes the data point in experiment
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3 One-Dimensional (1D) Material Model

The method of rheological modeling is widely used for describing viscoelastic and
viscoplastic behavior of plastics. Basics are given in the pioneering monograph
Reiner (1960). Later developments are given, for example, in Palmov (1998), Gisekus
(1994). Starting point of any rheological models are the basic elements: elasticity,
viscosity and plasticity. For creep behavior of POM it is sufficient to use springs
(mechanical elastic elements) and dashpots (viscous or more general time dependent
elements), Figs. 3 and 4. Both elements can be, as shown in the figures, utilized to
show linear and non-linear response.

Let us develop a complex rheological model for creep behavior of POM. The
Maxwell model (Fig. 5) does not fit the experimental data even in the simplest case
of applied constant stress σ0, where σ0 is related to the initial cross section. Because
with such an arrangement creep rate will be obviously constant if the applied stress
is constant. Hardening will be incorporated into the model by arranging a spring
parallel to the dashpot. In this case the spring will try to pull back the dashpot
with increasing creep strain. Primary creep can be modeled with such an approach
presented by two elements. But with this arrangement no minimum creep rate will
be reached, refer Fig. 6. To reach a minimum creep rate a second dashpot in series
to the last introduced spring is necessary and thus hardening and stress dependent
minimum creep rate behavior can be described, Fig. 7.

To describe the tertiary creep stage we will only take geometric non linearity into
account. On one hand this is a strong limitation in the sense of mechanism based
phenomenological modeling and intuitively not realistic according to the briefly men-
tioned damage mechanism, but on the other hand no appropriate experimental data
was accessible to differentiate between damage and geometric effects. Concluding
from this we decided that there is no benefit from an additional damage equation of
unknown influence whereas geometric effects have to be taken into account accord-
ing to the conducted creep tests with constant initial load. Influence of the geometric
non-linearity can be visualized as shown in Fig. 8.

For numerical implementation it is necessary to express creep rate in terms of
actual stress, the stress active in the current configuration of any time t . This can be
obtained by assuming incompressible material during inelastic deformation which
means that there is no change of volume during the deformation process. In the case
of incompressibility geometric considerations will lead to an equation where initial

Fig. 3 Elastic rheological
element

Spring

σ = Eε -linear elastic response
σ = Φ(ε)-nonlinear elastic response

Fig. 4 Viscose rheological
element

Dashpot

σ = ηε̇ -linear viscose response
σ =Ψ(ε̇)-nonlinear viscose response
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σσ

ε

ε̇

Fig. 5 Maxwell element

σσ

ε

ε̇

Fig. 6 Influence of the second elastic element

σσ

ε

ε̇

Fig. 7 Influence of the second viscose rheological element

stress and actual stress are linked by cross section shrinkage, among others derived
in Besseling and Giessen (1994).

Finally one can write in the one-dimensional case

σCauchy = f

A
= f

A0
(1 + ε) = P(1 + ε),

where l0 is the initial length, �l = l − l0 is the current change of length, f is the
normal force to A0, A respectively,

ε = ln(1 + �l

l0
)

is the Hencky strain. With this formulation it is clear that a constant initial stress as
argument of a viscosity function will lead to increasing strain rates with increasing
creep strain.

With these basic remarks it is possible to analyze the following proposed
rheological model for creep behavior of POM. The arrangement of our model is
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Fig. 8 Visualization of the
geometrical non-linearity.
a Undeformed and deformed
state, b orthogonal
cross-section under
consideration, c significant
cross-section reduction:
A0—reference cross-section,
A1—current cross-section
(indicate to distinguish
between engineering and
true stresses)

A0 A1

A0 = A1

(a)

(b)

(c)

shown in Fig. 9 and is similar to the one in Fig. 7 but contains an additional dashpot
parallel to our hardening spring. The additional introduced dashpot was found to be
necessary to describe the hardening behavior accurately.

In what follows we present a straight forward derivation of our model to obtain a
formulation in which the creep rate is only dependent on known quantities. Hence-
forth, we assume that the

• engineering stress is constant: σ0 = const
• and creep strain can be presented as

ε̇cr = f
[
(σ0 − β0)

(
1 + εcr)] ,

where σ0 is the applied stress and β0 is the backstress

σ02,σ2,ε2, ε̇2

σ03,σ3,ε3, ε̇3

σ04,σ4,ε4, ε̇4

σ05,σ5,ε5, ε̇5

σ0σ0

ε

ε̇

Fig. 9 Proposed four-element rheological model
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Here and later the index 0 is related to quantities of initial configuration. It is now
necessary to provide a proper formulation for the backstress β0 as well as to define
response functions.

• the creep strain εcr is equal to the nonlinear strain part of the rheological
arrangement

εcr = ε5 (1)

that leads consequently to

ε̇cr = ε̇5 (2)

• for the strain rate of the dashpot the following stress response function was chosen

ε̇5 = A sinh(Bσ5), (3)

where A and B are constants that need to be calibrated and σ5 is the active Cauchy
stress in the dashpot

• σ5 has to be replaced in terms of the known σ0
• considering nonlinear geometric effects we know the relation for the 1D case

σ5 = σ05(1 + ε5), (4)

where σ05 is the initial stress and ε5 is the strain of the dashpot (for sake of
simplicity we assume volume constant deformation for all rheological elements)

• the sum of the stresses in the two branches is equal to σ0, i.e.

σ0 = σ05 + β0, (5)

where β0 is the stress in the branch with the spring and the two dashpots and will
be termed as backstress

• the expression σ05 = σ0−β0 derived from (5) inserted in the statement (4) yields to

σ5 = (σ0 − β0)(1 + ε5) (6)

• the remaining task is to find an expression for β0
• similar to statement (5) β0 can be represented as

β0 = σ02 + σ03, (7)

where σ02 is the initial stress load of the spring and σ03 the initial stress load of
the dashpot

• referring to the relation (4) the initial stress loads σ02 and σ03 can be expressed in
terms of the active Cauchy stress

σ02 = σ2

1 + ε2
and σ03 = σ3

1 + ε3
(8)
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• from the isostrain condition it is plain to see that

ε2 = ε3 (9)

• using (9) ε3 can be replaced in the second Eq. (8)

σ03 = σ3

1 + ε2
(10)

• The first Eq. (8) and (10) are inserted in (7)

β0 = σ2 + σ3

1 + ε2
(11)

• for the spring one can write
σ2 = E2ε2, (12)

where E2 is the Young’s modulus of the spring and a model parameter to be
calibrated

• a hyperbolic sine law was chosen as response function for the dashpot, so we can
express

σ3 = 1

D
sinh−1

(
1

C
ε̇3

)
, (13)

where C and D are model parameters to calibrate
• now we insert (12) and (13) in (11),

β0 =
E2ε2 + 1

D
sinh−1

(
1

C
ε̇3

)

1 + ε2
(14)

• the sum of the strains and the rates respectively of the elements in the back stress
branch are equal to strain and the rate of the creep branch

ε5 = ε2 + ε4 (15)

and

ε̇5 = ε̇3 + ε̇4 (16)

• with the help of (15) and (16) we can replace ε2 and ε̇3 in (14)

β0 =
E2(ε5 − ε4) + 1

D
sinh−1

[
1

C

(
ε̇cr − ε̇4

)]

1 + ε5 − ε4
(17)
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• finally we have to define the response function for the second dashpot in the back
stress branch,

ε̇4 = F sinh[Gβ0(1 + ε5)], (18)

where F and G are model parameters to calibrate

Finally, we obtain the following set of equations

• a set of ordinary differential equations which has to be solved:

ε̇cr = A sinh [B(σ0 − β0)(1 + ε5)] , (19)

received after putting (7) in (3)

ε̇4 = F sinh (Gβ0 [1 + ε5]) (20)

• for each integration step the equation for β0 needs to be computed:

β0 =
E2(ε5 − ε4) + 1

D
sinh−1

[
1

C

(
ε̇cr − ε̇4

)]

1 + ε5 − ε4
(21)

4 Results of the One-Dimensional Material Model

Parameters of the rheological model where identified by a minimizing procedure,
where the minimizing statement is “experimental data”-“model prediction”. The
minimizing method is of gradient type and available as a ready-to-use package in
the programming language Python. During the minimizing procedure Eqs. (19)–(21)
were solved also with a ready-to-use package from Python for integrating ordinary
differential equation as well as root finding. Diagrams a–f in Fig. 10 show the com-
parison of experimental data with model predictions for different stress levels in the
1D case. Our investigation results from an industrial cooperation and therefore the
parameter set is confidential.

One can see a good agreement of model prediction and uniaxial tension creep
test. Especially the primary creep stage is for all stress levels well described as well
as the stress dependency of the minimum creep rate. For the tertiary creep stage it is
observable that only for higher stresses, diagram a and b, the deviation is small. At
lower stress levels the tendency of the tertiary creep is correct but the characteristic
shape is not well predicted. This is a strong indication that our decision to consider
only geometric non linear effects is not completely justified. For higher stresses and
short lifetime specimen failure due to deformation is observable, so one can argue that
in this case geometric effects are more dominant than damage processes. Whereas
for lower stresses and longer lifetime damage processes have time to evolve, get
more and more dominant so that a description with only geometric effects fails to
reproduce the characteristic shape of tertiary creep.
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(a) (b)

2

(c) (d)

(e) (f)

2

Fig. 10 Comparison of averaged uniaxial creep tension experimental data, circle symbols, and
model prediction, solid line. Applied load: a 55 MPa, b 53 MPa, c 47 MPa, d 44 MPa, e 40 MPa,
f 38.5 MPa

5 Statistical Analysis

Another reason to consider only geometric effects and to set a damage evolution
equation aside is scatter of experimental data. For each stress level a set of three creep
curves was available and geometric mean curves were computed to compare with the
model prediction. Moreover with help of mean deviation and the formula displayed in
Fig. 11 the confidence interval was calculated. The confidence interval is interpreted
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Fig. 11 Creep strain rate versus creep rate (confidence interval 75 %)

as an area around the mean curve in which our prediction should lie according to
mean deviation and significance level. So the higher the confidence interval is and
our model prediction still lies inside the confidence interval there is no need to change
the model. This procedure should ensure that only material model behavior is fitted
and no additional parameter is introduced to fit some special characteristic of a single
curve. This method helps to keep the number of material model parameters minimal.

Let us assume at first the confidence interval (75 %) for the mean curve (Fig. 11).
δ is width of the confidence interval, n is the sample quantity, σ̆ is the standard
deviation, α is the significance level and t is argument of Laplace function Φ(t).

The second example is related to the confidence interval (95 %) for the mean curve
(Fig. 12). The third example is performed with the confidence interval (99 %) for the
mean curve (Fig. 13).

confidence interval
mean curve

fit. curve

a 1tad.pxe
exp. data 2

a 3tad.pxe

δ = t
σ̆√
n
, t : Φ(t)=

α
2

εcr

ε̇cr

Fig. 12 Creep strain rate versus creep rate (confidence interval 95 %)
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σ̆√
n
, t : Φ(t)=

α
2

εcr

ε̇cr

Fig. 13 Creep strain rate versus creep rate (confidence interval 99 %)

From evaluation of Figs. 11–13 one can conclude that even for the confidence
interval of 99 % our model prediction lies inside the bounds of the confidence inter-
val. This is a satisfying result and a posteriori justifies to take only geometric effects
into account.

6 Extension to Three-Dimensional Equations

Usually, for technical components it is sufficient to simulate deformation up 5 % of
strain, because often 2 % of inelastic strain is a failure limit. The component itself may
not fail in the sense of rupture but it loses functionality due to exceeded dimensional
limits.

That is the reason our formulation of 3D state deformation is based on the so
called small strain assumption. Furthermore if only the first part of the creep curve
needs to be taken into account it is fair to use a less complex model. To this end we
will use the following equations

ε̇cr = f [(σ − β)] , β̇ = E

ch

[
ε̇cr − ε̇cr β

β∗(σ )

]
, (22)

where f is a viscosity function and of hyperbolic sine type, β is the backstress with
ch and β∗(σ ) as parameters.

These equations will now be generalized to 3D deformation states assuming
isotropic and incompressible inelastic flow

ε̇εεcr = 3

2
f (σ̄vM)

s̄ss

σ̄vM
, (23)
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s̄ss = sss − βββ, sss = σσσ − 1
3 tr(σσσ)III ,

σ̄vM =
√

3
2 tr(s̄ss)2, ε̇vM =

√
2
3 tr(ε̇εεcr)2, σvM =

√
3
2 tr(sss)2

(24)

β̇ββ = E

ch

[
ε̇εεcr − 3

2
ε̇vM

βββ

β∗(σvM)

]
(25)

where sss is the stress deviator, III is the second rank unit tensor and E is the Young’s
modulus. For further information see Naumenko et al. (2011).

If one gives a closer look to the backstress formulation it can be identified of
Frederick-Armstrong type. Moreover, it is very close, refer to Eq. (17), to the back-
stress formulation which is found by using our rheological arrangement. Backstress
tends toward a saturation value, is driven by inelastic strain and the non linearity
is controlled by exponential functions. Only the backstress formulation derived by
our rheological model contains a viscoelastic part which is necessary to simulate the
whole creep curve.

7 Results of Three-Dimensional Simulation

The above set of Eqs. (23)–(25) will be implemented as UMAT-subroutine in the com-
mercial FE-Code Abaqus. Two types of specimen will be analyzed. At first a smooth
specimen, Fig. 14a, in which will be a one dimensional stress state if unidirectional
loaded. Secondly a specimen slightly notched, Fig. 14b, which is dimensionally equal
to the real specimen used in the unidirectional tension creep tests. The first specimen
will be used to test if the numerical implementation was successful. In that case it is
expected that the simulation of the smooth specimen unidirectional with a constant
stress loaded gives the same result as the integration of Eqs. (19)–(21) with the same
stress. After that formal implementation check the second specimen is simulated
to verify the calibration and the 3D formulation. A successful result will be if the

(a)
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symx

symy
symysymz

symz

h

l

(b)
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symy
symysymz

symz

h
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Fig. 14 Investigated specimen types to verify implementation and to compare reduced model with
experimental results: a Smooth specimen; b Non-smooth specimen
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Fig. 15 Results of implementation as user subroutine in Abaqus: a One-dimensional solution
versus three-dimensional solution for uniaxial loading; b Experiment versus simulation

simulation leads to the same Δl versus t curve that was recorded during the test for
the according stress level. The obtained results can be taken from Fig. 15a and b.

The investigated specimens are shown in Fig. 14.
It can be attested that for both numerical simulations aimed results were achieved.

The result of the numerical implementation check is as it should be. There is no
significant deviation of 3D simulation from 1D directly integrated solution. For the
compared Δl versus t curves it is fair to state that one can observe a satisfying
agreement of simulation and experimental results.

8 Summary and Outlook

Modeling the whole creep curve with a rheological approach was successfully done.
Even the strict assumption to consider only non linear geometric effects could be jus-
tified with help of a statistical analysis of experimental scatter. A comparable reduced
model to simulate only hardening was suggested, implemented in the commercial
FE-code Abaqus and verified against experimental data.

Our current output can be summarized as follows:

• Deformation processes on the microstructure level are briefly proposed,
• Model parameters for the whole creep curve behavior are determined with the help

of macroscopic creep tests,
• Complex creep curves: primary creep stage, stress level dependent minimum creep

rate and tertiary creep stage are well predicted by our model,
• If only primary creep stage is of interest a reduced model is proposed,
• Numerical implementation of the reduced model is verified,
• Experimental results were reproduced by a FE-simulation with a very good

agreement.
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Several open questions are:

• So far a temperature dependence is not incorporated in the material model.
• If appropriate experimental data is accessible a damage evolution equation should

enter the material model.
• A proper 3D formulation for finite deformation of our model needs to be derived.
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Experiments and Numerical Simulations
on Stress-State-Dependence of Ductile
Damage Criteria

Michael Brünig, Steffen Gerke and Daniel Brenner

Abstract The paper deals with a series of new experiments and corresponding
numerical simulations to be able to study the effect of stress state on damage behav-
ior of ductile metals. In this context, a thermodynamically consistent anisotropic
continuum damage model is presented. It takes into account the effect of stress state
on damage and failure conditions as well as on evolution equations of damage strains.
Different branches of the respective criteria are considered corresponding to various
damage and failure mechanisms depending on stress intensity, stress triaxiality and
the Lode parameter. Since it is not possible to propose and to validate stress-state-
dependent criteria only based on tests with uniaxially loaded specimens for a wide
range of stress states, new experiments with two-dimensionally loaded specimens
have been developed. Corresponding numerical simulations of these experiments
show that they cover a wide range of stress triaxialities and Lode parameters in the
tension, shear and compression domains. The new series of experiments allow val-
idation of stress-state-dependent functions for the damage criteria and are used to
identify parameters of the continuum model.

Keywords Ductile damage · Stress state dependence · Experiments · Numerical
simulations

1 Introduction

Modeling of inelastic behavior and fracture of materials employed in various engi-
neering applications is an important topic in solidmechanics, for example, in numeri-
cal analyses of complex structural components, in assessment of structural reliability,
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or in optimization of structural design. Based on many experiments it is well known
that finite or large inelastic deformations caused by loading of ductile metals and
metal alloys are accompanied by damage and local failure mechanisms acting on
different scales which lead to macro-failure of structural elements. In particular,
under tension dominated loading conditions (high positive stress triaxialities) dam-
age in ductile metals is mainly caused by nucleation, growth and coalescence of
voids whereas under shear and compression dominated conditions (small positive or
negative stress triaxialities) evolution of micro-shear-cracks is the predominant dam-
age mechanism. Therefore, to be able to develop a realistic, accurate and efficient
phenomenological model it is important to analyze and to understand the complex
stress-state-dependent processes of damage and fracture as well as its respective
mechanisms acting on different scales. In this context, in the last years various dam-
age models have been published based on experimental observations as well as
on multi-scale approaches (Brünig 2003a; Gurson 1977; Lemaitre 1996; Voyiadjis
and Kattan 1999). In this context, Brünig et al. (2008, 2011b), Brünig and Gerke
(2011) have proposed a generalized and thermodynamically consistent, phenom-
enological continuum damage model which has been implemented as user-defined
material subroutines in commercial finite element programs allowing analyses of
static and dynamic problems in differently loaded metal specimens. To be able to
detect stress triaxiality dependence of the constitutive equations tension tests with
carefully designed specimens have been developed. For example, differently pre-
notched specimens and corresponding numerical simulations have been used by Bai
andWierzbicki (2008), Bao andWierzbicki (2004), Becker et al. (1988), Bonora et al.
(2005), Brünig et al. (2008, 2011b), Dunand and Mohr (2011), Gao et al. (2010).
However, these experiments with unnotched and differently notched flat specimens
showed stress triaxialities only in a small region of positive values. Larger triaxi-
alities appear in tension tests with cylindrical (axi-symmetric) specimens but they
cannot be manufactured when the behavior of thin sheets is investigated. Therefore,
it is necessary to develop new series of experiments with flat specimens where a
larger range of stress triaxialities will occur.

Thus, specimens with new geometries have been designed to be able to analyze
stress states with small hydrostatic parts. Tension tests with these specimens have
been performed (Bao and Wierzbicki 2004; Gao et al. 2010) leading to shear mech-
anisms in their centers. Similar specimens have been developed and tested (Brünig
et al. 2008; Driemeier et al. 2010). Furthermore, to be able to take into account
other regions of stress triaxialities butterfly specimens have been manufactured (Bai
and Wierzbicki 2008; Dunand and Mohr 2011; Mohr and Henn 2007) which can
be tested in different directions using special experimental equipment. Alternatively,
in the present paper series of new tests with biaxially loaded new flat specimens
taken from thin sheets will be developed leading to experimental results on inelastic
behavior, damage and fracture of ductile metals for a wide range of stress triaxialities
not obtained by the experiments discussed above.

Further information on damage and failure mechanisms can be obtained by per-
forming numerical simulations on the micro-level (Brocks et al. 1995; Brünig et al.
2011a, 2013, 2014; Chew et al. 2006; Kuna and Sun 1996; Needleman and Kushner
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1990; Zhang et al. 2001) considering individual behavior of growth and coalescence
of voids and micro-shear-cracks as well as their accumulation to macro-cracks. The
numerical results elucidatedwhich parameters had remarkable effect onmacroscopic
stress-strain relations and on evolution equations for the damage variables and which
ones only had marginal influence. With these numerical studies taking into account
a large range of stress states it was possible to detect different damage mechanisms
which have not been exposed by experiments. The equations for damage criteria and
damage evolution equations proposed by analyzing in detail the numerical results
of the micro-mechanical studies considering differently loaded micro-defect con-
taining representative volume elements showed remarkable dependence on stress
triaxiality and—especially in regions with small or negative triaxialites—additional
dependence on the Lode parameter or third deviatoric stress invariant. However, the
proposed functions are only based on numerical simulations on the micro-level with
void-containing unit-cells and, therefore, further experimentswith carefully designed
specimens are necessary for their validation.

In the present paper fundamental governing equations of the phenomenologi-
cal continuum damage model proposed by Brünig (2003a) are briefly discussed.
Experiments on inelastic and damage behavior of an aluminum alloy are performed.
Uniaxial tension tests are used to identify basic elastic-plastic material parameters.
Furthermore, newly developed biaxial experiments with 2D-specimens up to final
fracture will be presented. These combined shear-tension and shear-compression
tests cover a wide range of stress states. Corresponding numerical simulations of
these biaxial experiments will reveal various stress measures in critical regions.
Experimental and numerical data are used to propose and to validate damage criteria
as well as to identify corresponding constitutive parameters.

2 Continuum Damage Model

Irreversible material behavior and anisotropic damage of ductile metals are pre-
dicted by Brünig’s continuum model (Brünig 2003a). It is based on series of exper-
imental results and observations and, additionally, takes into account information
of microscopic mechanisms due to individual micro-defects and their interactions.
The phenomenological approach is based on the introduction of damaged and corre-
sponding fictitious undamaged configurations and has been implemented into finite
element programs. An extended version of this model takes into account a stress-
state-dependent damage criterion based on experimental results of different tension
and shear tests with smooth and pre-notched specimens as well as on data from cor-
responding numerical simulations (Brünig et al. 2008, 2011b). Furthermore, numer-
ical analyses using unit cell models have been performed (Brünig et al. 2011a, 2013,
2014).Based on their numerical results covering awide range of stress states they pro-
posed damage equations as functions of the stress intensity, the stress triaxiality and
the Lode parameter and estimated micro-mechanically based material parameters.
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The kinematic approach of the continuum model is based on the introduction of
initial, current and elastically unloaded configurations each defined as damaged and
fictitious undamaged configurations, respectively. This leads to the additive decom-

position of the strain rate tensor into an elastic (Ḣ
el
), a plastic (Ḣ

pl
) and a damage

part (Ḣda) (see Brünig 2003a for further details).
The undamaged configurations are considered to describe the constitutive behav-

ior of the undamaged matrix material. This leads to the effective Kirchhoff stress
tensor T. In addition, plastic behavior of ductile metals is governed by the yield
condition

f pl
(
I 1, J 2, c

) =
√

J 2 − c
(
1 − a

c
I 1

)
= 0, (1)

where I 1 = trT and J 2 = 1
2 devT · devT are invariants of the effective stress tensor

T, c denotes the yield stress of the matrix material and a represents the hydrostatic
stress coefficient where a/c is a constant material parameter.

Since only isochoric plastic deformations have been observed in ductile metals
the plastic potential function

gpl(T) =
√

J 2 (2)

depends only on the second invariant of the effective stress deviator which leads to
the non-associated isochoric effective plastic strain rate

Ḣ
pl = λ̇

∂gpl

∂T
= λ̇

1

2
√

J 2

devT = γ̇ N. (3)

In Eq. (3) λ̇ is a non-negative scalar-valued factor,

N = 1
√
2 J 2

devT

represents the effective normalized deviatoric stress tensor and

γ̇ = N · Ḣ
pl = 1√

2
λ̇

characterizes the equivalent plastic strain rate measure used in the present continuum
model.

Moreover, the damaged configurations are considered to describe the constitutive
behavior of the damaged material (material sample including micro-defects). It is
well known that damage remarkably affects the elastic behavior and leads to deteri-
oration of elastic material properties. The corresponding elastic law of the damaged
material leads to the Kirchhoff stress tensor T (see Brünig 2003a for further details).
In addition, constitutive equations for damage evolution are required and the deter-
mination of onset and continuation of damage is based on the concept of damage
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surface formulated in stress space at the macroscopic damaged continuum level. The
damage condition

f da = α I1 + β
√

J2 − σ = 0 (4)

is expressed in terms of the stress invariants of the Kirchhoff stress tensor, I1 = trT
and J2 = 1

2 devT · devT, and the damage threshold σ . In Eq. (4) the variables α and
β denote damage mode parameters depending on the stress intensity σeq = √

3J2,
the stress triaxiality

η = σm

σeq
= I1

3
√
3J2

(5)

defined as the ratio of the mean stress σm and the von Mises equivalent stress σeq as
well as on the Lode parameter

ω = 2T2 − T1 − T3
T1 − T3

with T1 ≥ T2 ≥ T3, (6)

expressed in terms of the principalKirchhoff stress components T1, T2 and T3 (Brünig
et al. 2013).

Furthermore, increase in macroscopic irreversible strains caused by the simulta-
neous nucleation, growth and coalescence of micro-defects is modeled by a stress-
state-dependent damage rule. In this context, the damage potential function

gda(T̃) = gda(I1, J2, J3), (7)

is introduced where T̃ represents the stress tensor formulated in the damaged con-
figuration which is work-conjugate to the damage strain rate tensor Ḣda (see Brünig
2003a for further details) and I1, J2 and J3 are corresponding invariants which coin-
cide with those of the Kirchhoff stress tensor. This leads to the damage strain rate
tensor

Ḣda = μ̇
∂gda

∂T̃
= μ̇

(
∂gda

∂ I1
1 + ∂gda

∂ J2
devT̃ + ∂gda

∂ J3
devS̃

)
(8)

where μ̇ is a non-negative scalar-valued factor and

S̃ = devT̃ devT̃ − 2

3
J2 1 (9)

represents the second order deviatoric stress tensor. Alternatively, the damage strain
rate tensor (8) can be written in the form

Ḣda = μ̇

(
α

1√
3

1 + β N + δ M
)

(10)
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where the normalized tensors

N = 1

2
√

J2
devT̃

and

M = 1

‖ devS̃ ‖ devS̃

have been used. In Eq. (10) the parameters α, β and δ are kinematic variables describ-
ing the respective portion of volumetric and isochoric damage-based deformations.
The damage rule (10) takes into account isotropic and anisotropic parts corresponding
to isotropic growth of voids and anisotropic evolution of micro-shear-cracks, respec-
tively. The inclusion of the isochoric terms in Eq. (10) rests on the notion that the
volume of micro-defects undergoing shear dominated loadings may not significantly
increase but deformation of micro-defects and their reorientation also constitute an
effective increase in damage and will, therefore, contribute to softening of mater-
ial behavior. Thus, the damage rule (10) is able to model the stress-state-dependent
mechanisms discussed above.

Stress-state-dependence of the parameters in the damage condition (4) and in the
damage rule (8) has been investigated in detail performing numerical simulations on
the micro-level (Brünig et al. 2013). Based on various unit-cell calculations taking
into account a wide range of stress triaxiality coefficients η and Lode parameters ω

the damage mode parameter α in the damage criterion (4) has been proposed to be

α(η) =
{
0 for −1

3 ≤ η ≤ 0
1
3 for η > 0

(11)

whereas β is taken to be the non-negative function

β(η, ω) = β0(η, ω = 0) + βω(ω) ≥ 0, (12)

see Fig. 1, with

β0(η) =
{

−0.45 η + 0.85 for −1
3 ≤ η ≤ 0

−1.28 η + 0.85 for η > 0
(13)

and
βω(ω) = −0.017ω3 − 0.065ω2 − 0.078ω. (14)

Figure1 clearly shows that in the negative stress triaxiality regime−1/3 ≤ η ≤ 0
the damage mode parameter β is large signifying remarkable influence of the second
deviatoric stress invariant J2 on onset of damagewhereas the influence of the negative
hydrostatic stress is small and does not remarkably affect the damage behavior. This
corresponds to dominant shear mechanisms and marginal volume changes caused by
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Fig. 1 Parameter β versus
stress triaxiality η and Lode
parameter ω (Brünig et al.
2013)

damage. On the other hand, for high stress triaxialities the damage mode parameter
is taken to be β = 0 and, thus, only the first stress invariant I1 is taken to determine the
onset of damage caused by predominant, nearly isotropic void growth mechanisms.
However, this stress-state-dependent damage criterion is only based on numerical
unit-cell calculations and, therefore, it will be validated in the present paper by
various experiments and corresponding numerical simulations on the macro-level
covering a wide range of stress triaxialities and Lode parameters.

3 Identification of Material Parameters

Elastic-plasticmaterial parameters are identified using experimental results fromuni-
axial tension tests with unnotched specimens. Equivalent stress–equivalent plastic
strain curves are easily obtained from load-displacement curves as long as the uniax-
ial stress field remains homogeneous between the clip gauges fixed on the specimens
during the tests. It is worthy to note that equivalent stress–equivalent strain curves
especially at large inelastic deformations have to be modeled accurately because
material response for multi-axial loading conditions as well as localization phenom-
ena are very sensitive to the identified parameters, especially to the current plastic
hardening modulus.

For the aluminum alloy of the series 2017 investigated in the present paper, fitting
of numerical curves and experimental data leads toYoung’smodulus E =65,000MPa
and Poisson’s ratio is taken to be ν = 0.3. For the plastic material behavior, the power
law function for the equivalent stress–equivalent plastic strain function appearing in
the yield criterion (1)

c = c0

(
H γ

n c0
+ 1

)n

(15)

is used to model the work-hardening behavior. Good agreement of experimental data
and numerical results is achieved for the initial yield strength c0 = 175 MPa, the
hardening modulus H = 2,100 MPa and the hardening exponent n = 0.22.
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In addition, experimental results of notched uniaxial specimens are used to
determine the hydrostatic stress dependence of the yield condition (1). Perform-
ing elastic-plastic numerical calculations leads to the hydrostatic stress coefficient
a/c = 0.000055.

Furthermore, onset of damage is determined by comparison of experimental
results of tension tests with corresponding elastic-plastic numerical analyses (Brünig
et al. 2011b). For the aluminum alloy under investigation the damage threshold
appearing in the damage criterion (4) is identified to be σ = 300MPa.

4 Experiments with Biaxially Loaded Specimens

The main purpose of the experimental program is to develop and to propose a set of
new tests revealing the effect of stress state on damage and failure in ductile metals.
The experiments are performed using the biaxial test machine (Type LFM-BIAX
20 kN from Walter and Bai, Switzerland) shown in Fig. 2. It is composed of four
electro-mechanically, individually driven cylinders with load maxima and minima
of ± 20 kN (tension and compression loading is possible). The specimens are fixed
in the four heads of the cylinders where clamped or hinged boundary conditions are
possible. The geometry of the newly designed flat specimens and the loading condi-
tions are shown in Fig. 3. The geometry is similar to that one of specimens recently

Fig. 2 Biaxial test machine
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Fig. 3 Specimen and
loading conditions

tested firstly in tension and subsequently in shear tests or vice versa (Driemeier et al.
2010), but here the specimens are biaxially strained. The load F1 will lead to shear
mechanisms in the center of the specimen whereas the simultaneous loading with
F2 leads to superimposed tension or compression modes leading to shear-tension
or shear-compression deformation and failure modes. Therefore, this extension of
experimental work covers the full range of stress states corresponding to the damage
and failure mechanisms discussed above with focus on high positive as well as low
positive, nearly zero and negative stress triaxialities where the Lode parameter also
plays an important role.

In particular, the load ratios F1 : F2 remain constant during the entire experi-
ments up to final fracture, see Fig. 4. This leads to load-displacement curves shown
in Fig. 5 for four different load ratios. Figure5 clearly shows that the amount of the
vertical load F1 (leading to shear modes) is only marginally affected by the differ-
ent superimposed horizontal loads F2. However, different load ratios F1 : F2 have

Fig. 4 Vertical load F1
versus horizontal load F2
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Fig. 5 Load-displacement curves

Fig. 6 Fracture modes of differently loaded specimens: a F1 : F2 = 0 : 1, b F1 : F2 = 1 : 0,
c F1 : F2 = 1 : 0.5, d F1 : F2 = 1 : −0.5

remarkable influence on the damage and final fracture modes, see Fig. 6. For exam-
ple, for the tension test without shear loading, F1 : F2 = 0 : 1, a nearly vertical
fracture line is obtained. Under this loading condition, damage is mainly caused by
growth and coalescence of voids with small influence of micro-shear-cracks lead-
ing to the macroscopic tensile fracture mode with small cup-cone fracture effect
(Fig. 6a). On the other hand, for pure shear loading, F1 : F2 = 1 : 0, shear frac-
ture is observed where the fracture line has an angle of about 25◦ with respect to
the vertical line. Under this loading condition, damage is mainly caused by forma-
tion of micro-shear-cracks leading to the macro-shear-crack shown in Fig. 6b. For
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shear-tension loading, F1 : F2 = 1 : 0.5, shear-tension fracture is obtained and the
fracture line has an angle of only about 10◦ with respect to the vertical line. Under
this loading condition, damage is caused by the simultaneous growth of voids and
formation of micro-shear-cracks leading to the macroscopic fracture mode shown in
Fig. 6cwhich is between tensile fracture (Fig. 6a) and shear fracture (Fig. 6b). And for
shear-compression loading, F1 : F2 = 1 : −0.5, again shear fracture is observed
and the fracture line again has an angle of about 25◦ with respect to the vertical
line. Under this loading condition damage seems to be caused only by formation of
micro-shear-cracks leading to the macro-shear-crack shown in Fig. 6d. It is worthy
to note that the damage and failure mechanisms for F1 : F2 = 1 : 0 (Fig. 6b) and
F1 : F2 = 1 : −0.5 (Fig. 6d) seem to be very similar and damage modes char-
acteristic for shear loading will not be remarkably affected by superimposed small
compression loads.

5 Numerical Simulations of the 2D Experiments

In the experiments with biaxially loaded specimens discussed above the stress and
strain fields are not homogeneous and only quantities in an average sense can be eval-
uated from these tests. Therefore, corresponding numerical simulations have been
performed to be able to get detailed information on amounts and distributions of
different stress and strain measures as well as further parameters of interest espe-
cially in critical regions. The numerical calculations have been carried out using
the finite element program ANSYS enhanced by a user-defined material subroutine.
This subroutine takes into account numerical integration of the constitutive equa-
tions by an extended version of the inelastic predictor–elastic corrector technique
and corresponding consistent tangent moduli (Brünig 2003b).

The finite element mesh of the discretized biaxially loaded specimen is shown
in Fig. 7. The three-dimensional finite element mesh is based on 42,248 eight-node-
elements of the type Solid185. Remarkable refinement of the finite element mesh
can be seen in the central part of the specimen where high gradients of the stress and
strain related quantities are expected.

Figure8 shows comparison of experimental and numerically predicted load-
displacement curves for the load ratio F1 : F2 = 1 : 1. The numerical results are
based only on an elastic-plastic analysis to be able to identify the onset of damage
(Brünig et al. 2011b). In particular, good agreement of experimental and correspond-
ing numerical curve is shown in Fig. 8 for the first part of the biaxial test and only
deviation in the last part is observed. This deviation is caused by the occurrence of
damage in the experiment which was not taken into account by the elastic-plastic
analysis. Thus, this loading stage characterizes onset of damage in the specimen
during this test and at this point the stress and strain states in the critical specimen’s
center will be analyzed in detail. The numerically predicted data for this calculation
and also for other loading ratios F1 : F2 will give information on the effect of stress
state on the damage criterion.
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Fig. 7 Finite element mesh of the 2D specimen

Fig. 8 Load-displacement curves for F1 : F2 = 1 : 1

For the load ratio F1 : F2 = 1 : 1, Fig. 9 shows the distribution of the first
and second deviatoric stress invariants I1 and

√
J2 in the center of the biaxially

loaded specimen. In particular, maximum of the first stress invariant I1 is seen on the
boundaries of the notched part near the center of the specimen. In this part, also very
high values of the second deviatoric stress invariant

√
J2 are numerically predicted.

Thus, damage will start here caused by growth of voids and micro-shear-cracks.
Furthermore, maximum of

√
J2 can be seen in the center of the specimen and in this

region the first stress invariant I1 is moderate. This means that after onset of damage
on the boundaries further damagewill also occur heremainly caused by the formation
of micro-shear-cracks with small effect of isotropic growth of micro-voids.
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Fig. 9 Distribution of the stress invariants I1 and
√

J2 for F1 : F2 = 1 : 1

The stress state in critical regions of the specimen is remarkably influenced by
loading conditions. In this context, numerically predicted distributions of the stress
triaxiality η at the onset of damage are shown in Fig. 10 for different load ratios.
In particular, for uniaxial tension loading F1 : F2 = 0 : 1 remarkable high stress
triaxialities up to η = 0.84 are numerically predicted in the center of the specimen.
These high values are caused by the notches in horizontal and thickness direction
leading to high hydrostatic stress during elongation of the specimen. This will lead
to damage and failure mainly due to growth of voids. In addition, when the specimen
is only loaded by F1 : F2 = 1 : 0 (shear loading condition) the stress triaxiality η is
numerically predicted to be nearly zero in the whole vertical section shown in Fig. 10.
Thus, damage will start in the specimen’s center and will be caused by formation
and growth of micro-shear-cracks. Furthermore, combined loading in vertical and
horizontal direction, F1 and F2, will lead to combination of these basic damage
modes. For example, for the load ratio F1 : F2 = 1 : 1 the stress triaxiality is again
nearly constant in the vertical section with η = 0.25, and very similar distribution is
numerically predicted for F1 : F2 = 1 : 0.5 with η = 0.14. On the other hand, the
load ratio F1 : F2 = 1 : −0.5 represents combined shear-compression loading with
the stress triaxiality η = −0.14 which is nearly constant in the vertical section shown
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Fig. 10 Distribution of the stress triaxiality η for different load ratios

in Fig. 10. For this negative stress triaxiality damage and failure will be caused by
formation and growth of micro-shear-cracks only.

Moreover, the distribution of the Lode parameter ω at onset of damage in the
specimen’s center depending on loading conditions is shown in Fig. 11. In particular,
for tensile loading with F1 : F2 = 0 : 1 the Lode parameter is nearly constant in the
vertical section withω = −1 which is characteristic for uniaxial tension. In addition,
for shear loading with F1 : F2 = 1 : 0 also nearly constant Lode parameter in the
vertical section is numerically predicted with ω = 0 and small zones with negative
values can be seen at the boundaries. However, combined shear-tension loading will
lead tomore inhomogeneous distribution of the Lode parameter in the vertical section
of the specimen at the onset of damage. For example, for F1 : F2 = 1 : 1 different
Lode parameters between ω = 0.0 and ω = −0.5 are numerically predicted. The
effect of superimposed tension force is much smaller for F1 : F2 = 1 : 0.5 and
the distribution of the Lode parameter at onset of damage becomes again more
homogeneous with maximum ω = −0.1 in the specimens center. In addition, also
small inhomogenity in distribution of the Lode parameter is numerically predicted
for shear-compression loading (F1 : F2 = 1 : −0.5) with maximum ω = 0.2.

The stress triaxialities η covered by experiments with different flat specimens
manufactured from thin sheets are shown in Fig. 12. In particular, for unnotched
dog-bone-shape specimens (green) nearly homogeneous stress states occur in the
small part during uniaxial tension tests with stress triaxiality η = 1/3. Higher stress
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Fig. 11 Distribution of the Lode parameter ω for different load ratios

triaxialities can be obtained in uniaxial tension tests when notches with different
radii are added in the middle part of the specimens (red). Decrease in notch radius
will lead to an increase in stress triaxiality in the specimen’s center up to η = 1/

√
3.

In addition, shear specimens (blue) elongated in uniaxial tension test will lead to
stress triaxialities of about η = 0.1 when notches in thickness direction are added in
the central part (Brünig et al. 2008, 2011b; Driemeier et al. 2010) whereas without
additional notch they will also lead to onset of damage at nearly η = 1/3. However,
with these flat specimens taken from thin sheets elongated in uniaxial tension tests
only the stress triaxialities shown in Fig. 12 (green, red and blue points) can be taken
into account whereas no information is obtained for high positive (η > 1/

√
3), low

positive (between 0.1< η < 1/3) or negative stress triaxialities. However, further
experiments with new specimens (grey) tested under biaxial loading conditions dis-
cussed in the present paperwill lead to stress triaxialities in the requested regimes.The
grey points shown in Fig. 12 correspond to the loading conditions discussed above
but variation of the load ratios F1 : F2 may lead to stress triaxialities marked by the
grey zone shown in Fig. 12. Therefore, biaxial tests with 2D specimens presented in
this paper cover a wide range of stress triaxialities and Lode parameters. Comparison
of the experimental results and the corresponding numerical data are used to validate
the stress-state-dependent damage criterion (4) and the corresponding parameters
(11)–(14) for the aluminum alloy under investigation.
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Fig. 12 Stress triaxialities
covered by different
specimens

6 Conclusions

A continuum model taking into account stress-state-dependent damage criteria and
damage evolution laws has been discussed. Parameters depending on stress triaxiality
and Lode parameter have been proposed based on numerical results from unit-cell
calculations on the micro-level. Since the functions are only based on numerical
analyses validation of the stress-state-dependent model was required. In this context,
a series of new experiments with biaxially loaded specimens has been proposed.
Different load ratios led to shear-tension and shear-compression mechanisms with
different fracture modes. Corresponding finite element simulations of the experi-
ments revealed a wide range of stress triaxialities and Lode parameters covered by
the tests depending on biaxial loading conditions and allowed validation of the pro-
posed stress-state-dependent functions of the continuum model.
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Constitutive Modeling of Dissipative
Phenomena in Austenitic Metastable
Steels at Cryogenic Temperatures

Halina Egner, Błażej Skoczeń and Maciej Ryś

Abstract In the present paper the constitutive model of dissipative material at
cryogenic temperature is presented. Three coupled dissipative phenomena: plas-
tic flow, plastic strain induced phase transformation and evolution of damage are
considered using a thermodynamically consistent framework. The theory relies on
notion of local state, and involves one state potential for the writing of the state laws,
and dissipation potential for the description of the irreversible part of the model.
The kinetic laws for state variables are derived from the generalized normality rule
applied to the plastic potential, while the consistency multiplier is obtained from the
consistency condition applied to the yield function. The model is applied for simu-
lation of two distinct dissipative phenomena taking place in FCC metals and alloys
at low temperatures: plastic strain induced transformation from the parent austenitic
phase to the secondary martensitic phase, and evolution of micro-damage.

Keywords Constitutive behaviour · Dissipative material · Phase transformation ·
Damage · Cryogenic temperature

1 Introduction

There is a large variety of materials suitable for applications at extremely low tem-
peratures. The choice of the material for a given application depends on a num-
ber of required features and parameters, like yield and ultimate strength, moduli of
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e-mail: Maciej_Rys@o2.pl

© Springer International Publishing Switzerland 2015
H. Altenbach and M. Brünig (eds.), Inelastic Behavior of Materials
and Structures Under Monotonic and Cyclic Loading, Advanced
Structured Materials 57, DOI 10.1007/978-3-319-14660-7_3

35



36 H. Egner et al.

elasticity at room and low temperatures, thermal properties like conductivity and
surface emissivity, physical properties like magnetic permeability, etc.

Among metallic materials we can often find austenitic stainless steels, since they
preserve ductility practically down to 0 K. They are applied for components of
superconducting magnets and cryogenic transfer lines, tubes, cylinders, braiding
wires, thin walled shells (like bellows expansion joints) or massive parts like vacuum
barriers.

The constitutive description presented here addresses the main phenomena driven
by plastic strains at low temperatures: strain induced γ → α′ phase transformation,
and evolution of micro-damage. Both γ → α′ phase transformation and damage are
of dissipative nature and lead to irreversible rearrangements in the material lattice.
Although the metastable stainless steels have been chosen in the present paper as a
field of application of the constitutive description, the model presented in the course
of the paper can easily be adopted to describe other materials used at cryogenic
temperatures.

The γ → α′ phase transformation yields the initially homogeneous material
strongly heterogeneous, as a result of the presence of α′-martensite platelets embed-
ded in the γ -austenite matrix. Since the α′-martensite behaves in the flow range of
austenite-martensite composite mostly in elastic way (yield point of α′-martensite
is much higher than the yield point of γ -austenite (Sun et al. 2009)) its presence
in the lattice affects the plastic flow and the process of hardening. The evolution
of micro-damage at cryogenic temperatures represents a dissipative and irreversible
process that leads to creation of micro-cracks andmicro-voids (micro-damage fields)
and results in material softening (decrease of effective elasticity modulus).

The evolution of damage fields has been postulated both in the matrix and in
the inclusions (Stolarz et al. 2001), and separate variables representing the state
of damage were introduced. Moreover, as the austenite behaves in a ductile way
practically over the whole range of cryogenic temperatures, whereas the martensite
shows—for the same range of stress—brittle behavior, the kinetics of micro-damage
evolution is different in each case. This assumption makes the model more general.

2 Constitutive Description of Elastic-Plastic-Damage-Two
Phase Material

2.1 Basic Assumptions

We consider a material that is susceptible to several coupled dissipative phenomena:
plasticity, damage, and phase transformation, that are formalized on the macroscopic
level by the use of a proper set of state variables. The motions within the consid-
ered thermodynamic system obey the fundamental laws of continuum mechanics
(conservation of mass, conservation of linear momentum, conservation of angular
momentum) and two laws of thermodynamics written here in the local form:
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1. Conservation of energy
ρu̇ − ε̇ijσij − r + qi,i = 0 (1)

2. Clausius-Duhem inequality

π = −ρ(ψ̇ + sθ̇ ) + ε̇ijσij − qi
θ,i

θ
≥ 0 (2)

where π denotes the rate of dissipation per unit volume, ρ is the mass density per
unit volume; σij are the components of the stress tensor; u stands for the internal
energy per unit mass; εij denote the components of the total strain tensor; r is the
distributed heat source per unit volume; qi is the outward heat flux; s denotes the
internal entropy production per unit mass, ψ stands for Helmholtz’ free energy
and θ is the absolute temperature.
Classical dissipation inequality (2) is replaced here with stronger condition,
requiring that both mechanical and thermal dissipations, πmech and πθ , are
non-negative (Clausius-Planck inequality and heat conduction inequality, respec-
tively):

πmech = −ρ(ψ̇ + sθ̇ ) + σij ε̇ij ≥ 0, πθ = −qi
θ,i

θ
≥ 0 ⇔ −qiθ,i ≥ 0; θ > 0

(3)

The constitutivemodel presented here is based on themethods of continuummechan-
ics: instead of a real, discontinuous and heterogeneousmaterial a concept of the effec-
tive quasi-continuum is applied by the use of the concept of representative volume
element. We consider here a two-phase material, composed of austenitic matrix and
martensitic platelets, randomly distributed and randomly oriented in the matrix (see
Fig. 1). The current state of phase transformation will be therefore described by the
scalar variable ξ , being the volume fraction of martensite dVξ in the representative
volume dV :

ξ = dVξ

dV
(4)

The austenitic matrix is subjected to plastic deformation and ductile damage
development, whereas the martensitic inclusions show purely brittle response. For
the description of the current state of damage we therefore introduce two second
order damage tensors: for ductile damage in austenitic phase, Dγ

ij , and for brittle

damage in martensitic inclusions, Dα′
ij :

DDDγ =
3∑

i=1

Dγ

i nγ

i ⊗ nγ

i , DDDα′ =
3∑

i=1

Dα′
i nα′

i ⊗ nα′
i (5)

The total material degradation in the RVE is described by the damage tensor DDDavg,
being a superposition of the ductile and brittle part. For this reason one can introduce
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Fig. 1 RVE with
α′-martensite inclusions and
micro-damage fields, after
Egner and Skoczeń (2010)

dSnnn

RVE
α martensite inclusion

(parameter ξ )

microvoids and
microcracks
(tensor DDD)

a scalar function m of the argument ξ to define the general mixture rule:

Davg
ij = [1 − m(ξ)]Dγ

ij + m(ξ)Dα′
ij (6)

The composition factor m has to fulfill two constraints: m(0) = 0 and m(1) = 1.
The simplest, linear rule of mixture involves m(ξ) = ξ .

The current state of the material in isothermal conditions is described by the set of
state variables, which contains: the total strain tensor εij as the observable variable,
the second order tensors Dγ

ij and Dα′
ij describing the current state of ductile damage

in austenitic matrix and brittle damage in martensitic inclusions, respectively, scalar
variable ξ reflecting the current state of phase transformation, and plastic hardening

internal variables α
p
ij and rp.

In the case of infinitesimal deformation the total strain εij can be expressed as a
sum of the elastic (reversible) strain εEij , inelastic (irreversible) strain εIij and thermal

strain εθ
ij:

εij = εEij + εIij + εθ
ij (7)

Other assumptions are as follows:

1. rate independent plasticity is applied: it is assumed that the influence of the strain
rate ε̇

p
ij is small for the considered range of temperatures (2–77 K),

2. we confine our modeling to isothermal conditions,
3. mixed isotropic/kinematic plastic hardening affected by the presence of marten-

site fraction is included,
4. the two-phase material obeys the associated flow rule (volume fraction of new

phase not exceeding 0.5).
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2.2 Coupled Damage/Plasticity/Phase Transformation
Thermodynamic Formulation

2.2.1 State Potential and State Equations

In generalised thermodynamics one of the main hypotheses is that the constitutive
behaviour is entirely defined by the specification of two potentials: an energy poten-
tial, and a dissipation potential. In our modeling we adopt Helmholtz free energy
as a state potential. By the use of state variables the Helmholtz free energy of the
material can be written as a sum of elastic, inelastic and chemical terms:

ρψ = 1

2
εEij Eijklε

E
kl + 1

3
Cpα

p
ijα

p
ij + Rp∞

[
rp + 1

bp
exp

(−bprp
)]

+ (1 − n) ρψCH
γ + nρψCH

α′ (8)

The terms ρψCH
γ and ρψCH

α′ are the chemical energies of the respective phases
(Hallberg et al. 2010; Mahnken and Schneidt 2010; Fischer and Reisner 1998). This
internally stored energy is different for the two phases and it will affect the generation
of heat during phase transformation, as well as the transformation itself. Symbol n
denotes a function of argument ξ , similar to m(ξ) in expression (6).

Since the γ → α′ phase transformation does not affect the elastic properties of
the material, in the Eq. (8) Eijkl(Davg

pq ) stands for the current elastic stiffness tensor
affected only by damage.

On the other hand, it is assumed here that damage does not affect plastic hardening
properties, therefore, in the expression (8) the material parameters: Rp∞(ξ), Cp(ξ),
and bp(ξ) depend on the current state of phase transformation only.

By eliminating all the reversible processes from the Clausius-Duhem inequality
(2), the state equation which expresses the thermodynamic force conjugated to the
observable state variable is obtained (see Table1):

σij = ∂(ρψ)

∂εEij
= Eijkl

(
εkl − ε

p
kl − ξεbskl

)
(9)

where ε
p
ij is the plastic strain tensor, and εbsij = 1

3Δυδij denotes the free deformation
called Bain strain, expressed in terms of the relative volume change Δυ. In addition,
the forces conjugated to other state variables are postulated in a similar form to (9),
see Table1 (Chaboche 1988; Saanouni 2012). The simplest, linear functions of ξ

were assumed here for material hardening parameters C(ξ), Rp∞(ξ) and bp(ξ):

C(ξ) = C0(1 + hCξ), Rp∞(ξ) = Rp
∞,0(1 + h Rξ), bp(ξ) = bp0(1 + hbξ) (10)
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Table 1 State variables and corresponding thermodynamic forces

Phenomenon Pairs of variables and forces State equation

Mechanical variables:
total strain, Cauchy
stress

Observablevariables εij, σij σij = Eijkl(εkl − εIkl )

Internal variables:

Kinematic plastic
hardening

α
p
ij , Xp

ij Xp
ij = 2

3
C(ξ)α

p
ij

Isotropic plastic
hardening

rp, Rp Rp = Rp
∞(ξ){1 − exp[−bp(ξ)rp]}

Phase transformation ξ , Z Z = ∂
(
ρψ I

)

∂ξ
+ dn

dξ

(
ρψC H

α′ − ρψC H
γ

)

Ductile damage
(austenite)

Dγ
ij , −Y γ

ij −Y γ
ij = ∂ (ρψ)

∂ Dγ
ij

= − (1 − m) Y
avg

ij

Brittle damage
(martensite)

Dα′
ij , −Y α′

ij −Y α′
ij = ∂ (ρψ)

∂ Dα′
ij

= −m(ξ)Y avg
ij

The Clausius-Planck inequality (3) takes therefore the following form:

πmech = σij

(
ε̇
p
ij + ε̇id

ij + ξ̇ εbs
ij

)
+ Y γ

ij Ḋγ
ij + Y α′

ij Ḋα′
ij − Z ξ̇ − Xp

ijα̇
p
ij − Rpṙp

= σij ε̇
p
ij − Xp

ijα̇
p
ij − Rpṙp

︸ ︷︷ ︸
πp

+
(
σijε

bs
ij − Z

)
ξ̇

︸ ︷︷ ︸
π tr

+ Y γ
ij Ḋγ

ij + Y α′
ij Ḋα′

ij︸ ︷︷ ︸
πd

≥ 0 (11)

It can be seen from (11) that the mechanical dissipation πmech can be subdivided into
plastic πp, transformational π tr , and damage πd parts. The quantity Q = σijε

bs
ij − Z

is conjugated to the transformation rate ξ̇ and can be treated as a thermodynamic
force that drives the phase front through thematerial, cf. Hallberg et al. (2007, 2010);
Fischer and Reisner (1998); Levitas (1997a, b).

3 Evolution of State Variables: Mechanisms Governed
by Plasticity

It is assumed here that ductile damage and phase transformation mechanisms are
governed by plasticity with a single dissipation potential F :

F = Fp
(
σij, Xp

ij, Rp, D
avg

ij , ξ
)

+ Fdγ
(

Y γ
ij , Dγ

ij

)
+ F tr

(
Q, ξ, Dγ

ij

)
(12)
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and normality rule involving only one plastic multiplier, determined by the consis-
tency condition. In such approach the ductile damage and the phase transforma-
tion progress only when there is plastic flow. Similarly, beyond damage threshold
there is no plasticity without a corresponding increase in damage, and beyond phase
transformation threshold there is no plasticity without a corresponding increase in
martensite content.

Plastic potential Fp is here equal to von Mises type yield surface:

Fp = f p = J2
(
σ̃ij − X̃p

ij

)
− σy − R̃p = 0 (13)

where

σ̃ij = M
avg

ikjlσkl , X̃p
ij = M

avg

ikjl X
p
kl , R̃p = Rp/

(
1 − D

avg

eq

)
, (14)

D
avg

eq =
√

D
avg

ij Davg
ij , J2

(
σ̃ij − X̃p

ij

)
=

√
3

2

(
s̃ij − X̃p

ij

) (
s̃ij − X̃p

ij

)

In the above equations M
avg

ijkl denotes the fourth-order damage effect tensor expressed

in terms of damage tensor D
avg

ij . The relevant potential of damage dissipation reads
(Garion and Skoczen 2003):

Fdγ = 1

2
CikY γ

kl CljY
γ
ij

√√√√
√

(
s̃mn − X̃p

mn

)
Lavg

mnpq

(
s̃ pq − X̃p

pq

)

(
s̃rs − X̃p

rs

) (
s̃rs − X̃p

rs

) − Bdγ = 0, (15)

where
Lavg

ijkl = Mavg
imjn Mavg

mknl (16)

Cij is a tensor that defines the material properties related to texture, and Bdγ denotes
the barrier force for damage. Symbols s̃ij and X̃p

ij stand for effective stress and effec-
tive back stress deviators, respectively.

The phase transformation dissipation potential is assumed here in a simple form:

F tr = AQ

√√√
√√

(
s̃mn − X̃p

mn

)
Lavg

mnpq

(
s̃ pq − X̃p

pq

)

(
s̃rs − X̃p

rs

) (
s̃rs − X̃p

rs

) − Btr = 0 (17)

where A(θ, σij, ε̇
p
ij), in general, is a function of temperature, stress state and strain

rate, and Btr is the barrier force for phase transformation (Mahnken and Schneidt
2010; Fischer et al. 2000). For rate independent plasticity, isothermal process and
small stress variations function A may be treated as a constant value.
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On the basis of normality rule applied to plastic dissipation potential (13), the
following plastic flow rule is obtained:

ε̇
p
ij = λ̇p

∂ f p
(
σ̃pq , X̃p

pq , R̃
)

∂σ̃kl

∂σ̃kl

∂σij
(18)

Plastic hardening variables evolve according to the following expressions:

α̇
p
ij = ε̇

p
ij, ṙp = λ̇p

1 − Davg
eq

(19)

Kinetics of phase transformation, developed by Olson and Cohen (1975), is reflected
by a typical sigmoidal curve defining the evolution of the martensite content as a
function of plastic strain (see Fig. 2). At very low temperatures the phase transfor-
mation process can be subdivided into three stages: low rate transformation below
the threshold pξ (stage I), fast transformation with a high and nearly constant trans-
formation rate (stage II) and asymptotically vanishing transformation with the rate
decreasing to 0 and the volume fraction of martensite reaching a maximum ξL (stage
III). If the plastic strain induced phase transformation occurs at very low tempera-
tures (typically liquid helium 4.2K or liquid nitrogen 77 K) then the steep part of the
transformation curve is close to linear (stage II) and remains in the domain of rela-
tively small strains. By taking into account the normality rule and (17) the evolution
of phase transformation variable takes a simple linear form:

ξ̇ = A ṗH
[(

p − pξ

)
(ξL − ξ)

]
(20)

Symbol H denotes the Heaviside step function. Relation (20) introduces a simplified
evolution law for the martensite content, with respect to the linear part (region II) of
the sigmoidal curve, Fig. 2 (Garion and Skoczen 2003).

The evolution of damage versus plastic strain can be experimentally obtained
from themeasured unloadingmodules. Therefore uniaxial tension tests with frequent

Fig. 2 Volume fraction of
α′-martensite versus
accumulated plastic strain p
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Fig. 3 Evolution of damage and martensite content versus plastic strains for 316L stainless steel
subjected to uniaxial tension at 4.2 K, after Egner and Skoczeń (2010)

unloadingwere performed, and changes of unloadingmoduluswere transformed into
the changes of damage state. Three stages of damage development can be detected:
no damage until a threshold value pD is reached, then accelerated damage until
pξ , and above that damage hardening is observed. It seems justified to correlate the
hardening effect with the phase transformation, that starts from the equivalent plastic
strain close to pξ (see Fig. 3).

It is therefore assumed here that as soon as the ductile damage threshold pD is
reached, damage starts developing, driven by the increase in the accumulated plastic
strain p:

ṗ =
√
2

3
ε̇
p
ij ε̇

p
ij = λ̇p

√√√
√√

(
s̃mn − X̃ ,p

mn

)
Lavg

mnpq

(
s̃ pq − X̃ ,p

pq

)

(
s̃rs − X̃ ,p

rs

) (
s̃rs − X̃ ,p

rs

) (21)

However, damage evolution is different along the principal directions. Ductile dam-
age rate is governed by the relation resulting from normality rule applied to potential
function (15):

Ḋγ
ij = CikY γ

kl Clj ṗH (p − pD) (22)

The consistency multiplier λ̇p is obtained from the consistency condition:

ḟ p = ∂ f p

∂σij

(
σ̇ij − Ẋp

ij

)
+ ∂ f p

∂ Rp Ṙp + ∂ f p

∂ D
avg

ij

Ḋ
avg

ij + ∂ f p

∂ξ
ξ̇ = 0 (23)
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4 Brittle Damage in Martensitic Inclusions

Martensite inclusions are subjected to brittle damage described by the second order
damage tensor Dα′

ij . According to Litewka and Debinski (2003) the deterioration of
brittle material structure due to applied load can be described by damage evolution
equation expressed in the form of tensorial function:

Dα′
ij = B1skl skl

(
1 + P det σij

)F
δij + B2

√
σklσkl

(
1 + P det σij

)F
σij

= f1δij + f2σij (24)

The first term of Eq. (24) represents the isotropic damage, while the second one
accounts for the oriented damage due to different effects of the stress tensor. Symbol
skl is the stress deviator and B1, B2, P and Fare unknown material parameters to be
determined experimentally.

It should be pointed out here, that the fact that brittle damage tensor depends
directly on the stresses applied is very convenient in the cases where the composition
factorm(ξ) between ductile and brittle component of total damage (6) is not constant
but subjected to evolution. More advanced models of damage in rock-like materials,
where damage rate is derived from the generalized normality rule applied to the
damage potential were derived for example by Cicekli et al. (2007); Voyiadjis et al.
(2008); Kintzel et al. (2010); Murakami (2012); Skrzypek and Kuna-Ciskal (2003).

5 Numerical Implementation

In the present work the Newton-Raphson scheme is adopted to solve all nonlinear
equations and the fully implicit (backward Euler) scheme is applied. The resid-
ual vector can be defined as: R = [R(σ )ij, R(X)ij, RR, R f , Rξ , R(Davg)ij]T and the

vector of unknowns is U = [σij, Xp
i j , Rp,Δλp, ξ, Davg

ij ]T. The numerical algorithm

is shown in Fig. 4. The uniaxial tension test for 316L stainless steel at temperature
4.2K was used to determine all the unknown parameters of the model (see Table2).

Accounting for three dissipative phenomena: plasticity, damage and phase trans-
formation in the present constitutive model allows to obtain a satisfactory repro-
duction of the experimental stress-strain curve for 316L stainless steel subjected to
uniaxial tension at cryogenic temperatures (see Fig. 5). Hardening effect due to phase
transformation combined with softening effect due to damage evolution enables to
model the initially linear plastic hardening, followed by plastic plateau and nonlinear
hardening in the final stage of plastic flow.

The proposed model was also applied to numerical simulations of cyclic loading.
The results are shown in Figs. 6 and 7, and they are consistent with the results of
monotonic loading simulations.
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Fig. 4 Numerical algorithm

Table 2 Material data for
316L stainless steel at the
temperature of 4.2 K

E (MPa) 176818 C0 (MPa) 950

σy (MPa) 470 hC 0.5

A 4.37 Rp
∞,0 (MPa) 440

C11 (MPa−1/2) 1.2 h R 2.2

bp0 129 hb 0.7

pD 0.05 pξ 0.0886

ξL 0.9 Δυ 0.05



46 H. Egner et al.

Fig. 5 Numerical
simulations of uniaxial
tension

Fig. 6 Numerical
simulations of cyclic loading

Fig. 7 Maximal stress on
cycle versus accumulated
plastic strain

6 Conclusions

The constitutive model presented in the paper results from identification of funda-
mental dissipative phenomena that occur at cryogenic temperatures in the materials
characterized by low stacking fault energy:
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1. Plastic strain induced transformation from the parent phase (γ ) to the secondary
phase (α′), characteristic of meta-stable materials.

2. Evolution of micro-damage (micro-voids and micro-cracks) reflected by decreas-
ing unloading modulus in the course of deformation.

A consistent thermodynamic framework has been built in order to describe all dissi-
pative phenomena (plasticity, phase transformation and damage) as well as coupling
between them in a unified way.

The totalmaterial degradationwas assumed to be a superposition of the ductile and
the brittle parts, with the use of phase transformation variable as a composition factor
(weight function). In the Clausius-Planck inequality, the mechanical dissipation has
been decomposed into the plastic, the transformational and the damage components.
In the same way the dissipation potential has been built. The kinetics of evolution of:
plastic strain fields, volume fraction of secondary phase and micro-damage has been
defined by means of the relevant dissipation potentials. In the coupled formulation,
presented in the paper, both monotonic and cyclic loads are included. The results
were discussed in such a way, so as to decouple and illustrate the effect of strain
hardening and the effect of softening due to damage evolution. The combined result
fits well to the available experimental data.
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Modeling of Continuous Damage
Deactivation Accompanying Low Cycle
Fatigue of Al-2024
Under Complex Loading

Artur Ganczarski and Maciej Oleksy

Abstract Present paper deals with numerical modeling of the damage deactivation
accompanying low cycle fatigue under complex loading. Based on kinetic theory of
damage evolution by Lemaitre and Chaboche (Mécanique des Matériaux Solides,
1985) the continuous function of the crack closure parameter is proposed. Results
of numerical simulation are verified with experimental tests for aluminum alloy
Al-2024byAbdul-Latif andChadli (Int JDamageMech16:133–158, 2007).Detailed
quantitative and qualitative analysis of solutions obtained for uniaxial and biaxial
cyclic tests confirms the necessity and correctness of an application of proposed
continuous damage deactivation effect.

Keywords Continuous damage deactivation · Low cycle fatigue
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F Dissipation potential
h, hc Crack closure parameter and its critical value
H Heaviside’s function
n Number of cycles
p, pD Accumulated plastic strain, damage threshold
r,αij Isotropic and kinematic strain hardening variables
R, Xij, X ′

ij Isotropic hardening parameter, back stress tensor and
back stress deviator

sij, S Stress deviator and damage strength
Y Strain energy density release rate
ε, εij, εeq, γ Axial strain, strain tensor, maximum von Mises

equivalent total strain, shear strain
λ Plastic multiplier
ρ Mass density
σ,σij,σy, τ Axial stress, stress tensor, yield stress and shear stress
ψ State potential
χ Hayhurst’s function
δij Kronecker’s symbol

1 Introduction

In the case of cycle fatigue, when the stress level is larger than the yield stress,
damage develops together with the cyclic plastic strain, after the incubation period
that precedes the nucleation and growth of micro-defects is met. In the most frequent
approach to the cycle fatigue, in case when a loading is the periodic strain-controlled
of constant amplitude, the following assumptions are made: the material becomes
perfectly plastic during first cycle, the variation of damage is neglected for the inte-
gration over one cycle and the strain-damage relations are identical both for tension
and compression. These allow to simplify calculations of damage cumulation per one
cycle and give linear dependency of damage with n, finally leading to the Manson-
Coffin law of low cycle fatigue, see Lemaitre and Chaboche (1985), Skrzypek and
Ganczarski (1999).

On the other hand, the more refined approaches to cycle fatigue presented by
Lemaitre (1992) and also by Brocks and Steglich (2003), based on the kinetic theory
of damage evolution and the Gurson-Tvergaard-Needleman model of damage incor-
porating isotropic hardening, respectively, are able to predict some qualitative phe-
nomena of damage accumulation, crack initiation and fracture only approximately,
since they do not account for the unilateral damage.

The phenomenon of the unilateral damage, also called the damage deactivation
or the crack closure/opening effect is typical for materials subjected to reverse
tension-compression cycles. In the simplest one-dimensional case, if the load-
ing is reversed from tension to compression, the cracks will completely close
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such that the material behaves as uncracked, or in other words, its initial stiff-
ness is recovered. The mathematical description of unilateral damage is based on
the decomposition of the stress or strain into the positive and negative projec-
tions, see Ladeveze (1992), Litewka (1991), Mazars (1986), Krajcinovic (1996),
Saanouni and Forster (1994) and Saanouni and Abdul-Latif (1996). In the sim-
plest case the damage modified stress or strain are used, based on the concept
of the Heaviside function, where the negative principal components are ruled
out. This means that the negative principal strain or stress components become

Table 1 Loss of symmetry or lack of continuity of two first components of effective stiffness tensor
in classical vector or second-order tensor formulations in comparison to consistent formulation (after
Chaboche (2006); Welemane and Cormery (2002))
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completely inactive in further damage process as long as the loading condition
can again render them active, see Litewka (1991). A more general approach,
where both positive and weighted negative eigenvalues of strain or stress ten-
sors influence damage evolution is due to Murakami and Kamiya (1997) and
Hayakawa and Murakami (1997). The positive parts of the strain or stress can also
be expressed by the use of the fourth-order positive projection operators written in
terms of their eigenvectors, see Krajcinovic (1996) and Hansen and Schreyer (1995).
The limitations of the consistent unilateral damage condition applied to the contin-
uum damage theories have been discussed by Chaboche (1992, 1993) and Chaboche
et al. (1995). These authors showed that in the existing theories developed byRamtani
(1990) and Ju (1989) or Krajcinovic and Fonseka (1981a, b) either non-symmetries
of the elastic stiffness or non-realistic discontinuities of the stress-strain response
may occur for general multiaxial non-proportional loading conditions (see Table1).
It is easy to show that if the unilateral condition does affect both the diagonal and the
off-diagonal terms of the stiffness or compliance tensor, a stress discontinuity takes
place when one of principal strains changes sign and the other remain unchanged, see
Skrzypek and Kuna-Ciskał (2003). In the model proposed by Chaboche (1993) only
the diagonal components corresponding to negative normal strains are replaced by
the initial (undamaged) values. The consistent description of the unilateral effect was
recently developed by Halm and Dragon (1996, 1998). These authors introduced a
new fourth-rank damage parameter built upon the eigenvectors of second-order dam-
age tensor that controls the crack closure effect with the continuity requirement of
the stress-strain response fulfilled.

2 Experiments of Low Cycle Fatigue of Aluminum Alloy
Al-2024 by Abdul-Latif and Chadli (2007)

Detailed description of a low cycle fatigue for specimens made of aluminum alloy
done by Abdul-Latif and Chadli (2007) whereas later work by Abdul-Latif and
Mounounga (2009) contains results of numerical modeling in case of several biaxial
loading paths. In experiment the aluminum alloy Al-2024 of chemical composition
shown in Table2 was used. The tests were carried out at room temperature om a
servo-hydraulic INSTRON machine type 1,340 using thin-walled tubes of internal
diameter 15mm, external diameter 18mm. The specimens were machined from a
circular bar with an outer diameter of 42mm in the longitudinal direction. After
the machining process all the specimens undergone an over-aging heat treatment
consisting of setting them in solution at 495 ◦C followed by a water quench.

Different uniaxial and biaxial loading pathswere conducted up to the final fracture
of the specimen, see Fig. 1. Several cyclic tests of constant strain amplitude were
carried out. The maximum von-Mises equivalent total strain corresponding to them
was defined as follows:
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Table 2 Chemical composition of aluminum alloy Al-2024 (% in weight)

Al Si Fe Cu Mn Mg Cr Ni Zn Ti Zr Pb

Balance 0.11 0.28 4.33 0.75 1.31 0.01 0.01 0.10 0.03 0.14 0.0021

Fig. 1 General view of a
specimen after fracture, after
Abdul-Latif and Chadli
(2007)

εeq =
⎧
⎨

⎩

εmax − εmin

2
for uniaxial-compression test

max(
√

ε2 + γ2/3) for biaxial tension-torsion test
(1)

where ε stands for normal strain and γ denotes shear strain. Authors tested following
loading paths: uniaxial tension-compression (TC), alternative torsion-torsion (AT),
biaxial loading of tension-torsion with 90◦ out-of-phase angle (TT90) called also
diamond test, and butterfly test (Bfly) all represented schematically in Fig. 2. The
most interesting and representative results were obtained in case of the uniaxial
tension-compression test (TC) and the diamond test (TT-90) at the constant strain
amplitude corresponding to the maximum von-Mises equivalent total strain equal to
εeq = 1% and to εeq = 0.85%, respectively (see Fig. 3). The tests were interrupted
at the instant when the specimen failure was achieved after 291 or 81 cycles. Detailed
analysis of the subsequent strain-stress loops confirms an elasto-plastic behavior of
the material and strong influence of the unilateral damage effect. During the initial
cycles thematerial exhibits plastic hardening leading to the stabilized cycle and, then,
asymmetric drop of both the stress amplitude and the modulus of elasticity reveals
following damage growth. This process is accompanied by a gradual decrease of the
hysteresis area and a change of shape of subsequent hysteresis loops, associated with
a formation of the characteristic inflection point on their lower branches.
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Fig. 2 Loading paths tested by Abdul-Latif and Chadli (2007)

Fig. 3 Experimental tests of aluminum alloy Al-2024: a uniaxial tension-compression (TC),
b biaxial tension-torsion (TT-90), after Abdul-Latif and Chadli (2007)
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3 Kinetic Theory of Damage Evolution

The kinetic theory of damage evolution by Lemaitre and Chaboche (1985) and
Lemaitre (1992) being extension of the nonlinear Armstrong-Frederick model is
based on the dissipation potential

F =
√
3

2
(̃sij − X ′

ij)(̃sij − X ′
ij) − R− σy + 3

4X∞
X ′

ij X ′
ij + Y 2

2S(1 − Dh)
H(p − pD)

(2)
definition of the elastic strain energy release rate

Y = 1

2
E−1

ijkl σ̃ijσ̃kl (3)

and the state potential

ψ = 1

ρ

{
1

2
Eijklε

e
ijε

e
kl(1 − Dh) + R∞

[
r + 1

b
exp(−br)

]
+ X∞a

3
αijαij

}
(4)

By use of the formalism of classical associated plasticity applied to Eq. (2) we find
increments of plastic strain, accumulated plastic strain, isotropic strain hardening,
kinematic strain hardening and damage variable

dεpij = ∂F

∂σij
dλ = 3

2

s̃ij − X ′
ij√

3

2
(̃skl − X ′

kl)(̃skl − X ′
kl)

dλ

1 − Dh

dp =
√
2

3
dεpijdε

p
ij = dλ

1 − Dh

dr = −∂F

∂R
dλ = (1 − Dh)dp

dαij = − ∂F

∂X ′
ij
dλ = 3

2

⎛

⎜⎜
⎝

s̃ij − X ′
ij√

3

2
(̃skl − X ′

kl)(̃skl − X ′
kl)

− X ′
ij

X∞

⎞

⎟⎟
⎠ dλ

dD = ∂F

∂Y
dλ = Y

S(1 − Dh)
H(p − pD)dp

(5)

In next step following inner variables of stress type associated to εeij, r,αij and D are
calculated from the state potential (4):

σij = ρ
∂ψ

∂εeij
= Eijklε

e
kl(1 − Dh) R = ρ

∂ψ

∂r
= R∞[1 − exp(−br)]
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Xij = ρ
∂ψ

∂αij
= 2

3
X∞aαij Y = −ρ

∂ψ

∂D
= 1

2
Eijklε

e
ijε

e
klh (6)

Introducing Eqs. (5) and (6) we reduce the inner variables of strain type and arrive
at incremental form of the Lemaitre and Chaboche equations

σij = Ẽijkl(εkl − ε
p
kl)

dεpij = 3

2

s̃ij − X ′
ij√

3

2
(̃skl − X ′

kl)(̃skl − X ′
kl)

dλ

1 − Dh

dR = b(R∞ − R)dλ (7)

dX ′
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2

3
X∞dεpij(1 − Dh) − X ′

ij

]

dD = E−1
ijklσijσkl

2S(1 − Dh)2
H(p − pD)dp

in which the plastic multiplier derived from the consistency condition is equal to
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3
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(̃sij − X ′

ij)σij

(1 − Dh)

√
3
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(̃skl − X ′
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kl)
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· · ·
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(̃smn − X ′
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(
smn

1 − Dh

E pqrsε
e
pqεersh

2S(1 − Dh)
H(p − pD) + aX ′

mn

)] (8)

4 Continuous Damage Deactivation Effect

In case of uniaxial tensile stress and scalar damage the effective stress the appropriate
effective modulus of elasticity are defined as follows

σ̃ = σ

1 − D
, Ẽ = E(1 − D) (9)

Above relations are valid also in case when micro-cracks remain open under uniaxial
compression. For certain class of materials and certain conditions of loading the
micro-defects may close in compression. This is often case for very brittle materials.
If the micro-defects close completely two separate set of conditions must be defined,
one for tension and another for compression
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σ̃± =
{

σ+/(1 − D)

σ− Ẽ± =
{

E+(1 − D)

E− (10)

In the real material, however, the micro-defects have complicated shapes and do not
close completely. In order to take into account this effect, so called crack closure
parameter h (0 ≤ h ≤ 1) is introduced. The crack closure parameter h depends on a
material and loading, however, in practice it is considered to be constant hc = 0.2
and appropriate conditions for tension and compression are given by the following
formulas (see Lemaitre 1992)

σ̃± =
{

σ+/(1 − D)

σ−/(1 − Dhc)
Ẽ± =

{
E+(1 − D)

E−(1 − Dhc)
(11)

Application of this model for description of unloading path leads to linear rela-
tion between the stress decrease and the strain decrease given by E+. Entering the
compression range the material switches to the path characterized by the modulus
of elasticity which is equal to E−. The real materials do not exhibit such bilinear
unloading paths therefore the concept of continuous crack closure that allows to
eliminate mentioned switch between E+ and E− is introduced. It consists in the
replacement of parameter h by a function h(σ), being linear in the simplest case,
such that (see Ganczarski and Cegielski 2010)

h(σ) = hc + (1 − hc)
σ − σe

σb − σe
(12)

According to above relation function h(σ) is equal to 1 when σ = σb and hc when
σ = σc, see Fig. 4. Three-dimensional generalization of the continuous damage
deactivation requires distinction between tension and compression. When the stress
tensor is given by its eigenvalues the following decomposition is applied

σij = σ+
ij + σ−

ij = 〈σij〉 − 〈−σij〉 (13)

Fig. 4 Concept
of the continuous
damage deactivation,
after Ganczarski and
Cegielski (2010)
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When the isotropic damage occurs, in accordance with the concept of effective stress,
the unilateral conditions are written by means of (1 − D) for the positive part and
(1 − Dh) for the negative term, respectively

εij = E−1
ijkl

1 − D
[(1 + ν)〈σkl〉 − ν〈σmmδkl〉]

− E−1
ijkl

1 − Dh
[(1 + ν)〈−σkl〉 − ν〈−σmmδkl〉] (14)

Application of the principle of strain equivalence imposes certain conditions on the
effective stress in the general form of the law of elasticity

εij = E−1
ijkl [(1 + ν )̃σkl − νσ̃mmδkl ] (15)

and one may find out (Lemaitre 1992)

σ̃+
ij = 〈σij〉

1 − D
+ ν

1 − 2ν

〈σkk〉δij − 〈σkkδij〉
1 − D

(16)

and

σ̃−
ij = − 〈−σij〉

1 − Dh
− ν

1 − 2ν

〈σkk〉δij − 〈−σkkδij〉
1 − Dh

(17)

Terms associated to the factor ν/(1 − 2ν) introducing coupling disappear if all
eigenvalues of stress are of the same sign and in such case simplified effective stresses
and the corresponding elastic modules take the form

σ̃±
ij =

{ 〈σij〉/(1 − D)

〈−σij〉/(1 − Dh)
Ẽ±

ijkl =
{

Eijkl(1 − D)

Eijkl(1 − Dh)
(18)

Application of the concept of continuous crack closure in the case of three-
dimensional state of stress turns out a little more sophisticated when compare to
the case of uniaxial stress (12) and needs additional hypothesis that introduces the
relation between the crack closuremagnitude and a scalar function of the stress tensor

h(σij) = hc + (1 + hc)
χ(σij) − χ(σ(e)ij)

χ(σ(b)ij) − χ(σ(e)ij)
(19)

here the known Hayhurst function (Hayhurst 1998) dependent on first and second
invariants of stress tensor

χ(σij) = cσkkδij/3 + (1 − c)
√
3skl skl/2 (20)
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Form tensor algebra point of view the Hayhurst function allows for replacement of
the general 3D state of stress by its scalar equivalent which remains in accordance
with scalar nature of damage. Original physical meaning of the function (20) refers
to the traditional classification of polycristalline metallic materials with respect to
their damage sensitivity: c = 0 represents class of aluminium-like materials damage
of which is controlled by second invariant of stress tensor, c = 1 represents class of
copper-like materials damage of which is controlled by first invariant of stress tensor,
whereas c ∈ (0, 1) represents other materials.

5 Examples of Numerical Modeling of LCF Tests

5.1 Uniaxial Tension-Compression (TC)

In case of uniaxial stress simplified forms of the dissipation potential (2)

F = |̃σ − X | − R − σy + 0.75X2/X∞ + Y 2

2S(1 − Dh)
H(p − pD) (21)

which together with the elastic strain energy release rate (3)

Y = σ̃h/2E (22)

and the state potential (4)

ψ = 1

ρ

{
1

2
E(εe)2(1 − Dh) + R∞

[
r + 1

b
exp(−br)

]
+ X∞a

3
α2

}
(23)

lead to the following form of the Lemaitre and Chaboche equations (7)

dσ/dε = E(1 − Dh) elastic range

dσ/dp = (1 − Dh)2 {[X∞a + b(R − R∞)] sign(̃σ − X) − aX} plastic range

− σ̃3

2E S
H(p − pD)

dR/dp = b(R∞ − R)(1 − Dh) (24)

dX/dp = a
[
X∞sign(εp) − X

]
(1 − Dh)

dD/dp = σ2

2E S(1 − Dh)2
H(p − pD)

Above system of four ordinary differential equations is numerically integrated for
constant strain range Δε = ±1% by use of the fourth-order Runge-Kutta technique
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with the adaptive stepsize control, see Press et al. (1993). Identification of material
constants is done partly on the basis of experiments and partly on numerical way.
Magnitudes of the Young modulus E and the yield stress σy are taken form paper by
Abdul-Latif andChadli (2007)whereasmagnitudes ofmaterial constants of isotropic
and kinematic plastic hardening b, R∞, a, X∞ are chosen in order to minimize dis-
crepancies between initial hysteresis loops corresponding to experiment and numeri-
cal simulation. Identification of material parameters kinetic law of damage evolution
hc, S, pD is based on a procedure by Lemaitre (1992). Magnitude of the stress refer-
ring to the end of damage deactivation process σe is assumed to be equal to the actual
compressive yield stress. Full set of material constants is shown in Table3. Results
of numerical simulation with samplig model of discontinuous damage deactivation
(11) are presented in Fig. 5b. Model gives only quantitatively good agreement with
experimental data (see Fig. 5d) since it properly maps unilateral damage softening
in this sense that ordinates of subsequent hysteresis loops correspond to appropri-

Table 3 Material constants of aluminum alloy Al-2024 in TC test

E (GPa) σy (MPa) b R∞ (MPa) a X∞ (MPa) hc S (MPa) pD

70 230 0.1 120 4.0 60 0.2 3,500 0.248

(a) (b)

(c) (d)

Fig. 5 Results of numerical simulation of uniaxial tension-compression: a loading history, evo-
lution of axial stress versus axial strain in case of b discontinuous (11), c continuous damage
deactivation effect (12) and d experimental test by Abdul-Latif and Chadli (2007)
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ate points at experimental curves. However, the model under consideration exhibits
∂σ/∂ε discontinuity for σ = 0 leading to drastic disagreement with experiment in
case of final cycles (n ≥ 160). In contrast to above model, the numerical simulation
with model of continuous damage deactivation effect included (12) exhibits not only
quantitative but also qualitative proper correctness in comparison with experimental
results (Fig. 5c, d). Essential defect of non-smooth and bilinear characteristics that
separates ranges of tension and compression is successively eliminated. Addition-
ally effects of a gradual decrease of area bounded by subsequent hysteresis loops
and corresponding change of convexity at lower branch of hysteresis are perfectly
mapped.

5.2 Alternative Torsion (AT)

In case of simple shear stress state when its principal directions stay materially
constant and equal ±45◦ the dissipation potential (2) is assumed in simplified form

F = √
3|̃τ − X | − R − σy + 0.75X2/X∞ + Y 2

2S(1 − Dh)
H(p − pD), (25)

whereas corresponding elastic strain energy density release rate (3) is equal to

Y = τ̃h/2
√
3G (26)

The Lemaitre and Chaboche equations (7) take therefore following form

dτ/dγ = G(1 − Di h) elastic range

dτ/dp = (1 − Di h)2 {2 [X∞a + b(R − R∞)] plastic range

× sign(̃τ − X)/
√
3 − aX

}
− τ̃3

2
√
3GS

H(p − pD)

dR/dp = b(R∞ − R)(1 − Di h) (27)

dX/dp = a
[

X∞sign(γp)/3 − X/
√
3
]
(1 − Di h)

dDi/dp = τ2

2
√
3GS(1 − Di h)2

H(p − pD)

in which D1, D2 refer to two damage variables corresponding to two eigendirections
inclined ±45◦ to global co-ordinate axis. Above system of five ordinary differential
equations is numerically integrated for shear strainΔγ = ±1.47%byodeint.for
routine previously applied in case of TC test, see Press et al. (1993). Magnitudes of
material constants are the same as in Table3 except for theYoungmodulus is replaced
by the shear modulus G = 26.92 GPa. In order to emphasize influence of unidirec-
tional character of damage the following initial damage advance D1 = 0.3, D2 = 0.0
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Fig. 6 Results of numerical simulation of alternative torsion: a loading history, evolution of shear
stress versus shear strain in case of b discontinuous and c continuous damage deactivation effect

is assumed. Results of numerical simulation with models of discontinuous and con-
tinuous damage deactivation are shown in Fig. 6b, c however there is no comparison
to experiment since the paper by Abdul-Latif and Chadli (2007) does not comprise
it. Although initial hysteresis loops in both cases are identical two essential differ-
ences are clearly visible in case of final cycles. Namely, number of cycles to failure
for model of continuous damage deactivation (n = 211) is greater than analogous
number for model of discontinuous damage deactivation (n = 161). This effect is
strictly associated with the shape of final hysteresis loops which are narrower in case
model of continuous damage deactivation. In other words smaller dissipation leads
to longer life-time of material. Finally, it is worth to notice that alternative torsion is
the last of elementary tests which can be solved by the use of simple algorithm of
numerical integration with out necessity of the use any of FEM routines.

5.3 Biaxial Tension-Torsion (TT-90)

The biaxial tension-torsion is the first of non-elementary cases. This means that
neither the dissipation potential (2), the elastic strain energy release rate (3) nor
system of Eqs. (7), (8) can be reduced to a simplified form and one of FEM routines
has to be applied in order to get a solution. A simple finite element code used in
this example is a combination of the return mapping algorithm routine proposed by
Owen and Hinton (1980) also by Ganczarski and Skrzypek (2009) on one hand and



Modeling of Continuous Damage Deactivation … 63

Fig. 7 Results of numerical simulation of biaxial tension-torsion: a loading history, b evolution of
axial stress versus axial strain in case of continuous damage deactivation effect and c experimental
test by Abdul-Latif and Chadli (2007)

the postprocessor DAMAGE90 proposed by Doghri (1990). It is written in fortran
and limited to one finite element which contains only one integration point. Running
this code for the biaxial tension-torsion loading history (see Fig. 7a) characterized
by Δε = ±0.85%,Δγ = ±0.91% (the maximum von Mises equivalent total strain
equal to εeq = 1%) and material constants presented in Table3 the results shown
in Fig. 7b are obtained and compared with experimental tests by Abdul-Latif and
Chadli (2007) (Fig. 7c). Detailed analysis of subsequent hysteresis loops exhibits
that both stabilized cycle and cycles preceding failure are attained faster than in case
of previously discussed loading pathsTCandAT.This is effect of simultaneous acting
two independent strains the axial and the shearwhich are additionally shifted in phase
(see points 2, 4 etc. in Fig. 7a). Shifting effect explains existence of characteristic
inflection points (see Fig. 7b) corresponding to ε = 0 but maximum of absolute
value of γ.

5.4 Butterfly Test (Bfly)

Simulation of Butterfly test is done by use of the same code like in case of TT-90 for
the loading history (see Fig. 8a) characterized by Δε = Δγ = ±0.866% (the max-
imum von Mises equivalent total strain equal to εeq = 1%) and material constants
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Fig. 8 Results of numerical simulation of Butterfly test: a loading history, b evolution of axial
stress versus axial strain in case of continuous damage deactivation effect

presented in Table3. Results are shown in Fig. 8b however there is no comparison
to experiment because the paper by Abdul-Latif and Chadli (2007) does not contain
it. In example under consideration all hysteresis loops exhibit characteristic verti-
cal segments referring to constant value of axial strain (see points 1–2 and 3–4 in
Fig. 8a). Number of cycles to failure very low (n = 9) in comparison to the pre-
vious tests. This is a consequence of relatively broad subsequent hysteresis loops,
which means that dissipation of energy is high, in one hand and the fall of numerical
routine, when damage advance is equal 0.58, on the other hand. The reason of such
a falling is fundamental assumption of return mapping algorithm that actual yield
surface always expands during plastic hardening. However, accounting for damage
introduces another mechanism associated with material softening. As consequence
a combined process of simultaneous hardening and softening may be traced by rou-
tine until first effect of is dominant. Obviously, there is in the literature (Casey and
Naghdi 1983; Chen and Han 1995; Khan and Huang 1995) the strain-space plasticity
formulation however it is not applied in the present work.

6 Conclusions

Modeling of low cycle fatigue by use of sampling model of discontinuous damage
deactivation leads to physically unjustified discontinuities of loading-unloading path.

Model of continuous damage deactivation being free from defects of classical
models is useful in modeling of low cycle fatigue of alloy Al-2024 for both uniaxial
TC, AT and biaxial TT-90, Butterfly tests.
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Comparing number of cycles to failure referring to subsequent loading paths TC,
AT, TT-90 and Bfly the following decreasing series is observed: 291, 211, 87 and ?,
this shows that biaxial tests are more important than uniaxial tests.
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Computational Multiscale Modeling
of Nickel-Based Superalloys Containing
Gamma-Gamma’ Precipitates

Somnath Ghosh, Shahriyar Keshavarz and George Weber

Abstract A hierarchical crystal plasticity constitutive model, comprising three
different scales for polycrystalline microstructures of Ni-based superalloys, is devel-
oped. Three scales, dominant in models of polycrystalline Ni-based superalloys,
are: (i) the sub-grain scale of γ –γ ′ microstructure, characterized by γ ′ precipitate
size and their spacing; (ii) grain-scale characterized by the size of single crystals;
and (iii) the scale of polycrystalline representative volume elements. A homoge-
nized activation energy-based crystal plasticity (AE-CP) FEM model is developed
for the grain-scale, accounting for characteristic parameters of the sub-grain scale
γ –γ ′ morphology. A significant advantage of this AE-CP model is that its high effi-
ciency enables it to be effectively incorporated in polycrystalline crystal plasticity FE
simulations, while retaining the accuracy of detailed sub-grain level representative
volume element (SG-RVE) models. The SG-RVE models are created for variable
morphology, e.g. volume fraction, precipitate shape and channel-widths. The sub-
grain crystal plasticity model incorporates a dislocation density-based crystal plas-
ticity model augmented with mechanisms of anti-phase boundary (APB) shearing
of precipitates. The sub-grain model is homogenized for developing parametric
functions of morphological variables in evolution laws of the AE-CP model. Micro-
twinning initiation and evolution models are incorporated in the single crystal AE-
CP finite element models for manifesting tension-compression asymmetry. In the
next ascending scale, a polycrystalline microstructure of Ni-based superalloys is
simulated using an augmented AE-CP FE model with micro-twinning. Statistically
equivalent virtual polycrystals of the alloy CMSX-4 are created for simulations with
the homogenized model. The results of simulations at each scale are compared with
experimental data with good agreement.
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Keywords Ni-based superalloys · Homogenized crystal plasticity · Sub-grain
gamma-gamma’ · Homogenization · Microtwinning

1 Introduction

Ni-based superalloys are widely used in propulsion components of the aerospace
industry such as turbine engine blades, disks, casings and liners. These alloys possess
a desirable combination of high temperature strength and toughness, oxidation and
creep resistance, and high temperature stability (McLean and Cahn 1996; Sugui
et al. 2011), attributed to a sub-grain scale two-phase γ –γ ′ microstructure as shown
in Fig. 1. The continuous γ -matrix phase has a face centered cubic (fcc) lattice
structure, and is an alloy of Ni and Crwith a small fraction of other alloying elements.
The precipitate phase γ ′ is a coherent ordered inter-metallic reinforcing phase of
L12 crystal structure of Ni3Al type, which appears as a distribution of cuboidal
precipitates in a solid solution as shown in Fig. 1b.

The shape and size the γ ′-phase depend largely on the cooling rate and internal
stress gradients during the casting and heat treatment processes (Epishin et al. 2001;
Pollock and Sammy 2006; Ignat et al. 1993). Slower cooling rates lead to the for-
mation of bimodal populations of large (>500nm) secondary and small (<50nm)
tertiary γ ′ precipitates, while higher cooling rates yield predominantly unimodal dis-
tribution of secondary precipitates (300–500nm) (Pollock and Sammy 2006). The
precipitates act as effective obstacles to the motion of dislocations by virtue of their
shape and ordered structure. Depending on the temperature range and stress levels,
dislocations either bypass or shear precipitates. The volume fraction of γ ′ precipi-
tates, their mean size and spacing have a major effect on the mechanical properties of
these superalloys (Viswanathan et al. 2005; van Sluytman and Pollock 2012). Micro-
mechanisms controlling creep in polycrystalline Ni-based superalloys are quite com-
plex (Viswanathan et al. 2005; Kovarik et al. 2009). At intermediate temperatures
650 ◦C ≤ θ ≤ 800 ◦C and moderate stress levels ∼650 MPa, dominant deforma-
tion mechanisms include anti-phase boundary (APB) shearing and micro-twinning.
The probability of occurrence of a given mechanism depends on the load, crystal
orientation and microstructural morphology. At lower temperatures (θ < 650 ◦C)
and higher stresses, creep is governed by different types of dislocation-based shear-
ing processes, while at higher temperatures (θ > 800 ◦C), the creep deformation is
controlled by Orowan looping and cross-slip mechanisms (Unocic et al. 2011).

Deformation behavior under various loading and temperature conditions has been
analyzed both for single crystal (Chatterjee et al. 2010; Cormier et al. 2011) and poly-
crystalline (Torster et al. 1997; Hong et al. 2009) Ni-based superalloys. Meso-scale
modeling of the γ –γ ′ phases in single crystal Ni-base superalloys with unimodal
precipitate sizes and periodic distributions has been conducted in Pollock and Argon
(1992), Nouailhas and Cailletaud (1996), Ohashi et al. (1997), Busso et al. (2000)
using phenomenological viscoplastic constitutive laws. Crystal plasticity finite ele-
ment models (CPFEM) have been implemented to model creep and deformation
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Fig. 1 Schematic representation of multiple scales in the development of a crystal plasticity finite
element model for Ni-based superalloys: a polycrystalline microstructure showing the CPFEM
mesh, b subgrain γ –γ ′ microstructure in a single grain, c discretized subgrain γ –γ ′ microstructural
RVE, and d homogenized crystal plasticity FE model for a grain

response of single crystal and polycrystalline Ni-based super alloys in Dimiduk et al.
(2005), Zambaldi et al. (2007), Roters et al. (2010). In these models, the behavior
of single-crystal superalloys with high volume fraction of cuboidal precipitates has
been simulated using a gradient-dependent plasticity model. Polycrystalline CPFEM
simulations incorporate information on the orientation of grains obtained fromEBSD
images of the material microstructure. Phenomenological crystal plasticity models
are based on the power law description (Asaro and Needleman 1985), or the ther-
mally activated theory of plastic law (Kocks et al. 1975), which accounts for the
rate and temperature sensitivity of plastic flow. The latter model has been shown to
accurately model a large range of strain rates and temperatures. A limitation of these
models is their lack of incorporation of the underlyingmicrostructural characteristics
at the sub-grain scale, e.g. γ –γ ′ volume fraction, shape of the γ ′ precipitates and the
channel-width, which affect single crystal and polycrystalline behavior. Three scales
are dominant when modeling polycrystalline behavior of Ni-based superalloys using
CPFEM. They are:
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(i) Sub-grain scale, characterized by size of γ precipitates and their spacing or γ

channel-width;
(ii) Grain-scale of single crystals characterized by grain-boundary distance;
(iii) Scale corresponding to representative volume elements of polycrystalline

aggregates.

Crystal plasticity models should hierarchically incorporate information at each
scale for generating constitutive models that can be implemented for microstructure-
property relations, as well as microstructure design. It is computationally intractable
to simulate the behavior of polycrystalline microstructures with explicit represen-
tation of the γ –γ ′ microstructure. In Busso et al. (2000) hardening parameters are
expressed as functions of the average size of precipitates. Crystal plasticity mod-
els with implicit dependencies on grain and precipitate sizes and volume fraction,
have been proposed in Fedelich (2002) by assuming random distribution of precip-
itate phases. Computational models involving hierarchical approaches for Ni-based
superalloys have been proposed in Shenoy (2006), Shenoy et al. (2007). In Shenoy
(2006), Shenoy et al. (2007) dislocation-density based crystal plasticity models for
creep and fatigue have been developed using artificial neural network algorithm for
rate-dependent internal state variable constitutive models, implicitly incorporating
effects of averaged grain size, γ ′ volume fraction and size distribution. The depen-
dence of strength and hardness on microstructural parameters is accommodated by
fitting with experimental data.

It is evident that efficient, hierarchical crystal plasticity models with explicit
relations to microstructural features are necessary for unraveling the dependence
of mechanical behavior and properties on microstructure. The hierarchical frame-
work may be accomplished for Ni-based superalloys through the homogenization
of lower (sub-grain) scale response to develop higher (grain) scale constitutive
relations. This is achieved by incorporating parametric forms of subgrain-scale mor-
phological characteristics in grain-level constitutive relations. Ghosh and Anahid
(2013) have implemented computational homogenization approaches using
asymptotic expansion methods to develop reduced order homogenized constitutive
models for continuum lasticity of polycrystalline metals, ductile fracture in hetero-
geneous metals (Ghosh et al. 2009; Ghosh 2011) and damage in composites (Ghosh
2011). These reduced order models with parametric forms, representing microstruc-
tural morphologies, have a huge efficiency advantage over explicit micromechanics
models. In recent paper (Keshavarz and Ghosh 2013, 2014), the authors have
developed a hierarchical model for Ni-based superalloys, where the subgrain-scale
model response is homogenized to obtain a grain-scale crystal plasticity constitutive
model.

In this chapter a sequence of steps is pursued to systematically create a hierar-
chical framework for realizing a homogenized crystal plasticity constitutive model
for polycrystalline Ni-based superalloys. The crystal plasticity models account for
monotonic loading only. A schematic view of the multi-scale problem, ranging
from the sub-grain γ –γ ′ microstructure to the meso-scale polycrystalline ensem-
ble is shown in Fig. 1. The first step involves development of crystal plasticity finite
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element (CPFE) model of a sub-grain scale representative volume element or RVE,
delineating explicit morphologies of the γ –γ ′ microstructure shown in Fig. 1c. The
CPFE model incorporates a size-dependent dislocation density-based crystal plas-
ticity model together with the mechanism considered in this study of anti-phase
boundary (APB) shearing of γ ′ precipitates. Experimental studies have shown that
mechanisms such as APB andmicro-twinning are important at the temperature range
(650 ◦C < θ < 800 ◦C). In this temperature range, dislocation glide on the primary
octahedral plane (111) are responsible for plastic deformation and hence cube slip
systems on (001) plane are ignored in this study. Section2 introduces the sub-grain
scale dislocation density crystal plasticity constitutive laws with APB shearing of γ ′
precipitates. The next step involves the development of an activation energy-based
crystal plasticity (AE-CP) model at the scale of single crystals, by homogenizing
the sub-grain model response. The homogenized model incorporates the sub-grain
morphology through critical morphological parameters (Keshavarz and Ghosh 2013,
2014). Section3 provides a framework for the AE-CP model and homogenization.
This section also introduces nucleation and evolution models for micro-twins in
the grain. The final step involves augmentation of the homogenized AE-CP model,
accounting for the effects of geometrically necessary dislocations or GND’s, for
analyzing polycrystalline microstructures. This is developed in Sect. 4.

2 Sub-Grain Scale Model γ –γ ′ for the Microstructural RVE

The two-phase binary Ni-based superalloy consists of a primary matrix γ phase
(pure Ni) and a secondary intermetallic γ ′ (Ni3Al) phase as shown in Fig. 1b.
The primary phase is a solid solution with a face-centered cubic or fcc crystal
structure, with four planes of inelastic slip corresponding to the {111} family, i.e.
{111}[(111), (111), (111), (111)] in Miller indices. The secondary phase has an
ordered crystalline lattice of type L12. Atoms of aluminum are placed at the vertices
of the cubic cell, while atoms of Ni are located at centers of the faces as shown
in Fig. 1b. For each of slip plane, there are three slip directions of 〈110〉 family
along the Burgers vectors. Dislocations dissociate in the γ ′-phase, leading to for-
mation of an anti-phase boundary (APB). Ni-based superalloys exhibit anisotropic
behavior in the plastic regime due to slip system interactions in the γ –γ ′ sub-grain
microstructure. Plastic deformation is accommodated through crystallographic slip
on discrete slip systems and by APB shearing of the γ ′ phase. A signed dislo-
cation density-based crystal plasticity model proposed in Ma and Roters (2004),
Ma et al. (2006) is implemented to model rate-dependent plastic behavior. These
models incorporate evolution of statistically stored (SSD) and geometrically neces-
sary dislocations (GND) due to the plastic deformation. Plastic strain gradient at the
γ –γ ′ phase interface and grain boundaries lead to generation of GNDs. The micro-
mechanical crystal plasticity model accommodates multiplication and annihilation
of SSDs in the γ -channel and also accounts for APB shearing of γ ′ precipitates by
matrix dislocations.
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2.1 Dislocation Density-Based Crystal Plasticity Model

Crystal deformation results from a combination of the elastic stretching and rotation
of the crystal lattice and plastic slip on different slip systems. Large-strain kinematics
is accommodated through a multiplicative decomposition of the total deformation
gradient FFF into an incompressible, inelastic component FFFp associated with pure
slip, and an elastic component FFFe that accounts for elastic stretching and rigid body
rotations, expressed as:

FFF = FFFeFFFp, s.t. det FFFe > 1 and det FFFp = 1 (1)

Evolution os plastic deformation is expressed in terms of the plastic velocity gradient
LLLp, the plastic shear rate on γ̇ α the slip system α, Schmid tensor sssα

0 ≡ mmmα
0 ⊗ nnnα

0
(in terms of the slip direction mmmα

0 and slip plane normal nnnα
0 in the reference configu-

ration) as:

LLLp = ḞFF
p
FFF−p =

N∑

α=1

γ̇ αmmmα
0 ⊗ nnnα

0 =
N∑

α=1

γ̇ αsssα
0 (2)

The stress-strain relation invokes the second Piola-Kirchhoff stress SSS and its work-
conjugate Lagrange-Green strain tensor EEEe in the intermediate configuration as:

SSS = det(FFFe)FFFe−1
σσσ FFFe−T = CCC ::: EEEe and EEEe ≡ 1

2

(
FFFeTFFFe − III

)
(3)

III is the identity tensor, CCC is a fourth order anisotropic elasticity tensor and σσσ is the
Cauchy stress tensor. The plastic shearing rate on a slip system is expressed using the
Orowan equation as γ̇ α = ρα

mbνα , where ρα
m is the density of mobile dislocations,

b is the Burgers vector and να is the velocity of dislocations on the slip system α.
The velocity of dislocations, which is a function of the applied shear stress τα , the
passing stress τα

pass in the slip system and other slip system resistances, is written as:

να = λν exp

[
− Qact

kBθ

(
1 − 〈|τα| − τα

pass〉
τα
cut

)]
sgn(τα), (4)

where λ is the distance traversed by dislocations subject to the probability of over-
coming barriers, ν is the oscillation frequency of dislocations, Qact the activation
free energy required to overcome the obstacles to slip without the aid of an applied
shear stress, kB is the Boltzmann’s constant, θ is the absolute temperature and 〈•〉 is
the Macaulay bracket. Slip system resistances are represented in terms of the pass-
ing stress τα

pass due to the interaction of mobile dislocations with other dislocations
and their networks in the slip plane, and the cutting stress τα

cut due to the mobile
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dislocations cutting the forest dislocations with density perpendicular to the slip
plane. The stresses are expressed in Keshavarz and Ghosh (2013, 2014) as:

τα
pass = c1Gb

√
ρα
p + ρα

m, and τα
cut = Q

√
ρα
F

c2b2
, (5)

where c1 and c2 are material constants and G is the shear modulus and Q is the
activation energy. Contributions to the overall slip resistance are assumed to be
due to both the density of immobile, statistically stored dislocations, and the vector
field of geometrically necessary dislocation density ρα

GND. The rate of evolution of
statistically stored dislocation density ρ̇α

SSD has been identified in Ma et al. (2006)
as the net effect of components due to lock formation, dipole formation, athermal
annihilation and thermal annihilation as:

ρ̇α
SSD = ρ̇α+

SSDif
+ ρ̇α+

SSDdf
+ ρ̇α−

SSDaa
+ ρ̇α−

SSDta
(6)

Superscripts +/− correspond to multiplication and annihilation respectively. The
rate increase due to lock formation, dipole formation, and decrease due to mecha-
nisms of dislocation annihilation due to thermal and athermal annihilation are respec-
tively given as (Ma and Roters 2004):

ρ̇α
SSDif

= c3
b

√
ρα
F γ̇ α and ρ̇α

SSDdf
= c4

b

√
3Gb

16π(1 − ν)
(|τα − τα

pass|)−1ρα
m γ̇ α,

ρ̇α
SSDaa

= −c5ρ
α
SSDγ̇ α and ρ̇α

SSDta
= −c6

D0b3

kBθ
exp

(−Qbulk

kBθ

)
(ρ̇α

SSD)2|τα |
(

γ̇ α

γ̇ref

)c7
,

(7)

where c3, c4, c5, c6 and c7 are material constants, D0 is the diffusion co-efficient,
Qbulk is the activation energy for dislocation climb and γ̇ α

ref is a reference shear rate.
Each of the contributing components in Eq. (7) are functions of the slip rate γ̇ α , forest
dislocation density, density of statistically stored dislocations, component of applied
shear stress τα and the absolute temperature θ . Thus, a general form is proposed
as ρ̇α

SSD = ρ̇α
SSD(γ̇ α, ρ̇α

SSD, ρF, τ
α, θ). The vector GND density rates depend on

the gradient of plastic strain, written in terms of the Nye’s dislocation tensor ΛΛΛ.
The three scalar components, viz. screw, edge and normal components of the GND
density have been derived in Ma et al. (2006). The material time derivative of the
Nye’s dislocation tensor is decomposed for individual slip systems, i.e.

Λ̇ΛΛ =
N∑

α=1

Λ̇ΛΛ
α
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to derive the GND density components as:

ρ̇α
GNDs

= 1

b
[∇∇∇xxx × (γ̇ αFFFT

Pnnnα)] · mmmα,

ρ̇α
GNDet

= 1

b
[∇∇∇xxx × (γ̇ αFFFT

Pnnnα)] · tttα,

ρ̇α
GNDen

= 1

b
[∇∇∇xxx × (γ̇ αFFFT

Pnnnα)] · nnnα,

(8)

where mmmα,nnnα and tttα = nnnα × mmmα , are unit vectors in the slip direction of the Burg-
ers vector, normal to the slip plane α, and tangent to the edge dislocation direction
respectively. Correspondingly, ρ̇α

GNDs
, ρ̇α

GNDet
and ρ̇α

GNDen
are the screw component

and two edge components parallel to nnnα and tttα respectively.∇∇∇xxx is the gradient oper-
ator in the material coordinate system. The forest and parallel dislocation densities
are now written as functions of the SSDs and GNDs (Ma and Roters 2004) with an
interaction strength coefficient between different slip systems (Arsenlis and Parks
2002) as:

ρα
F =

N∑

β=1

χαβ
[
ρ

β
SSD| cos(nnnα, tttβ)| + ρ

β
GNDs

| cos(nnnα,mmmβ)|

+ ρ
β
GNDet

| cos(nnnα, tttβ)| + ρ
β
GNDen

| cos(nnnα,nnnβ)|
]
,

ρα
P =

N∑

β=1

χαβ
[
ρ

β
SSD| sin(nnnα, tttβ)| + ρ

β
GNDs

| sin(nnnα,mmmβ)|

+ ρ
β
GNDet

| sin(nnnα, tttβ)| + ρ
β
GNDen

| sin(nnnα,nnnβ)|
]
,

(9)

which evolve with the SSDs and GNDs due to plastic deformation and hardening
mechanisms. The density of mobile dislocations ρα

m is computed as a function of
forest and parallel dislocation density and the temperature as (Ma and Roters 2004):

ρα
m = 2kBθ

√
ρα
Fρα

P

c1c2Gb3
(10)

2.2 Criteria for γ ′ Phase Anti-phase Boundary (APB)
Shearing

Matrix dislocations in the disordered fcc matrix γ phase cannot enter the ordered γ ′
phase, characterized by crystalline lattice structure L12, initially. However, thematrix
dislocations can form super-dislocations at the γ –γ ′ interface and enter the γ ′ phase
through the mechanism of anti-phase boundary or APB shearing upon reaching a
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critical condition, as shown by TEM analysis in Viswanathan et al. (2005). The γ ′
phase APB shearing is assumed to take place when the following conditions are met
at the interface:

(i) τα > τc (resolved shear stress on a slip system exceeds a critical value),
(ii) ρα

m > ρc (dislocation density exceeds a critical value)
(11)

The corresponding flow rule for the γ ′ phase is expressed as:

γ̇ α = H(ρα
m − ρc)ρ

α
mbνα, (12)

where

να = λν exp

[
− Q

KBθ

(
1 − 〈τα − τα

pass〉H(τα − τc)

τα
cut

)]
sgn(τα)

with H(ρα
m − ρc) and H(τα

m − τc) are Heaviside functions, τc is the critical resolved
shear stress and τc is the critical density at the interface. Implementation of the
constitutive model in a CPFEM code is given in Keshavarz and Ghosh (2013, 2014).

2.3 Parameter Calibration and Validation
of the Constitutive Law

Selected constitutive parameters in the crystal plasticity model for γ –γ ′ phase Ni-
based superalloys withAPB shearing have been calibrated for the alloy CMSX-4 (Ni,
Cr-6.4, Co-9.3, Al-5.45, Ta-6.3, W-6.2, Ti-0.9, Mo-0.5, Re-2.8 in wt%) in Keshavarz
and Ghosh (2013, 2014). Calibration of constants c1 and c2 in Eq. (5) and constants
c3, c4, c5, c6, c7 in Eq. (7) are done using experimental data from tensile constant
strain-rate tests in Knowles and Gunturi (2002). The critical shear stress τc and the
threshold dislocation density ρc in Eq. (11) are calibrated from the tension creep
experimental data in Fleury et al. (1996). These are listed in Table1. The symmetric,
elastic stiffness tensor Cαβ = Cβα, (α = 1, . . . , 6, β = 1, . . . , 6) is considered to
be isotropic for both phases, for which the non-zero components are obtained from
Kayser and Stassis (1981). In addition, the Burgers vector b and the activation energy
Q are handbook values, given in Table2.

Table 1 Experimentally calibrated parameters for the sub-grain scale crystal plasticity model

Constant c1 c2 c3 c4 c5 c6 c7 τc ρc

Value 4.0 0.8 1×10−3 1×10−4 10.0 10.0 0.3 110 MPa 1×1011
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Table 2 Stiffness and crystal plasticity parameters for the sub-grain model

Phase C11 = C22 = C33 C44 = C55 = C66 C12 = C13 = C23 b (nm) Q (J)

γ 201.7 GPa 104.5 GPa 134.4 GPa 2.49 6.5×10−19

γ ′ 229.7 GPa 110.1 GPa 153.2 GPa 2.49 6.5×10−19

Fig. 2 Comparing CPFEM results with those for tension experiments under a constant strain rate
0.0001s−1: a FEM mesh for cubic precipitates with the volume fraction of 70% and edge length
x = 0.5µm, b volume-averaged Cauchy stress-true (logarithmic) strain response

To validate the crystal plasticity constitutive relations with APB shearing, the
CPFEM analyses results are compared with experimental data in Knowles and
Gunturi (2002), Fleury et al. (1996). The RVE is for a regular array of cubic
precipitates with a 70% volume fraction, as shown in Fig. 2a. Its dimensions
are 0.5µm × 0.5µm × 0.5µm. The edge length of cubic γ ′ particles, allocated
symmetrically at the eight corners, is 0.45µm. The CPFE model of the microstruc-
tural RVE is discretized into 2,200, 8-noded brick elements using selective reduced
integration. CPFEM simulations are conducted with an applied strain-rate of
0.0001 s−1 in the y-direction at a temperature of 800 ◦C.A tensile constant strain-rate
is applied to the top y-surface in Fig. 2a, while rigid body modes are suppressed by
applying boundary conditions on the bottom y-surface as: uy = 0 on all nodes ux = 0
on nodes on the line x = 0.25µm and uz = 0 on nodes on the line z = 0.25µm.

The volume-averaged Cauchy stresses

σσσ = 1

ΩRVE

∫

ΩRVE

σσσ(xxx, t)dV
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Fig. 3 a RVE with non-symmetric diagonal channel widths, and b comparison of Cauchy stress-
true strain response under tension constant strain rate for cubic precipitates with the same volume
fraction (35%) and RVE size (0.24 µm)

over the RVE ΩRVE and the averaged true (logarithmic) strain expressed as:

εεε = ln

(
ly

l0y

)
= ln

(
l0y + uy

l0y

)

are computed for the RVEwhere l0y and uy are respectively the initial dimension and
the y-direction displacement of the top surface of the RVE. The volume-averaged
stress-strain response is compared with experimental data from Fleury et al. (1996)
in Fig. 2b. In general there is a good agreement between the experimental and model
predictions. The γ -channel-width lc and shapes can vary significantly in the actual
alloy. To explore the effect of γ channel-width, two microstructures are constructed
for comparison as shown in Fig. 3a; onewith non-symmetrical (lc1 �= lc2 ) γ

′ channel-
width lc1 = 0.069µm and lc2 = 0.139µm, and the other with symmetric channel-
width, i.e. lc1 = lc2 = 0.122µm. The volume fraction of cubic γ ′ precipitates in both
the microstructures is 35%. Simulations are conducted for a constant tensile strain-
rate of 5×10−5s−1 in the y-direction, corresponding to the [010] slip direction. The
stress-strain response in Fig. 3b exhibits some difference in plastic response, with
higher hardness for the non-symmetrical RVE.

2.4 Effect of γ ′ APB Shearing and Precipitate
Shape on the Overall Response

Figure4 plots the volume-averaged stress-strain response by CPFEM simulations
for the RVE in the previous section, with and without the activation of APB shearing
of γ ′ precipitates. The figure also shows the response for only the γ ′ phase. In the
absence of the phase, the overall yield strength as well the hardening are considerably
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Fig. 4 The effect of activation of APB shearing on stress strain curve under tension constant strain
rate at 800 ◦C

low. The alloy gets its high yield stress and hardening behavior from the γ ′ phase in
the matrix. The stress-strain response is rather stiff if the APB shearing mechanism
is not activated in the high volume fraction (∼70%) γ ′ phase that has zero initial
dislocation density. Accumulation of dislocation density at the γ –γ ′ phase inter-
face with high stresses leads to APB shearing, with super-dislocations entering the
γ -phase and softening the overall response. Accurate representation of the stress-
strain response requires incorporation of APB shearing criteria and associated rela-
tions for γ ′-phase plastic flow.

Three different stages of deformation are marked by points in the stress-strain
response of Fig. 5a. For deformation up to state-point 1, both γ and γ ′ phases behave
elastically and there is noplastic deformation in the domain. Fromstate 1 to state 2, the
γ -phase experiences plastic deformation and SSDs start to evolve, with plastic strain
gradient building especially near the γ –γ ′ interfaces. To preserve lattice continuity,
the GNDs must evolve causing an increase in mobile dislocation density ρm. The
distribution of ρm along the x-axis at state 2 is plotted in Fig. 5b. There is little
difference in ρm for the states 1 and 2 in the γ ′ phase. However this difference is
significant in theγ -channel due to evolution ofGNDs. In the postAPBshearing stage,
the γ ′-phase experiences plastic deformation with considerable rise in ρm. Figure5c,
d shows theρm distribution at states 2 and 3.At state 2, corresponding to the activation
of APB shearing, the initial value of ρm does not change in the γ ′ phase. Beyond
this state, ρm starts to evolve and reaches the distribution in Fig. 5d at 5% strain.

The effect of precipitate shape is explored through another RVE containing a 40%
volume fraction of spherical precipitates as shown in Fig. 6a. The channel-width for
spherical precipitates is the same as for cubic at the boundary. This corresponds to
a precipitate radial edge-length of 0.45µm. All other conditions are the same as in
the constant strain-rate problem of the previous example. The microstructural RVE
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Fig. 5 Effect of APB shearing for RVE with cubic γ ′ precipitates: a stress-strain response with
three state-markers, b distribution of mobile dislocation density along x-axis for the three states,
c, d mobile dislocation density contour plots at states 2 and 3 respectively

model is discretized into 1,512, 8-noded brick elements. The same state-markers
are inserted in stress-strain response plot of Fig. 6b. The distributions of the mobile
dislocation density at states 1, 2 and 3 along the x-axis are plotted in Fig. 6c, while
Fig. 6d shows the ρm distribution at state 3. Responses for the cubic and spherical
precipitates are quite different between the states 1 and 2. For the cubic shape, the
transition of plastic flow from the γ to γ ′ phase is sharp. Plastic deformation in the
γ channel does not affect the response much, as the channel width is generally small
as observed in Fig. 2a. This situation is different for the spherical precipitates where
after state 1, nucleated dislocations in the γ phase rapidly evolve in the channel
where the round interface between γ and γ ′ provides more spaces to accommodate
higher dislocation densities.
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Fig. 6 Effect of APB shearing for RVE with spherical γ ′ precipitates: a CPFEM mesh, b stress-
strain response with three state-markers, c distribution of mobile dislocation density along x-axis
for the three states, d mobile dislocation density contour plot at state 3

3 Grain-Scale Crystal Plasticity Model with Microtwinning

3.1 Homogenized Activation Energy-Based Crystal Plasticity
(AE-CP) Model

Results of simulation of the sub-grain RVE model, discussed in Sect. 2, are homo-
genized to generate constitutive parameters for a grain-scale activation energy-based
crystal plasticity (AE-CP) model. Determination of parameters is assumed to be
governed by the Hill-Mandel principle of macro-homogeneity (Hill 1984) expressed
as:

〈SSS〉 : 〈Ė〉 = 1

ΩRVE

∫

RVE

SSSdV : 1

ΩRVE

∫

RVE

ĖEEdV = 1

ΩRVE

∫

RVE

SSS : ĖEEdV = 〈SSS : ĖEE〉

(13)
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Here SSS and Ė correspond to the second Piola-Kirchhoff stress and the Lagrangian
strain rate respectively and the symbol 〈•〉 corresponds to volume averaging over the
RVE domain. The constitutive parameters are formulated in terms of morphological
variables and are calibrated by computational homogenization.

The proposed grain-scale, homogenized crystal plasticity model for fcc Ni-based
superalloys follows the framework of activation energy-based crystal plasticity (AE-
CP) models (Kocks et al. 1975; Frost and Ashby 1982; Xie et al. 2004). The homo-
genized constitutive model incorporates an evolving thermal shear resistance as well
as an athermal shear resistance due to plastic deformation. For a slip system, the
plastic shearing rate follows from the Orowan equation as:

γ̇ α =
⎧
⎨

⎩

0 if τα
eff ≤ 0,

γ̇ α∗ exp

{
− Q

kBθ

[
1 −

(
τα
eff

sα∗

)p]q}
sgn(τα) if 0 ≤ τα

eff ≤ sα∗
(14)

Here Q is the activation energy barrier, kB(=1.3807 × 10−23 J · K−1) is the
Boltzmann’s constant, θ is the temperature and exponents p, q are material con-
stants. For the slip system α, γ̇ α∗ is a reference strain-rate, τα

eff(=|τα| − sα
a ) is the

effective resolved shear stress. The temperature-dependent critical slip resistance
s, (>0) is assumed to be comprised of a thermally activated obstacle to slip sα∗
and a part due to the athermal obstacles sα

a . The athermal and thermal shear resis-
tances sα

a and sα∗ correspond to the passing and cutting stress barriers respectively.
The difference between the athermal shear resistance and the resolved shear stress
is the driving force for dislocation motion on the slip system α. γ̇ α∗ can evolve with
the activation of APB shearing, when the γ -phase experiences plastic deformation
with increasing dislocation density, especially near the γ –γ ′ interfaces. This defor-
mation effect can be significant for some γ ′ precipitate shapes, e.g. spherical, but
not as strong for cuboidal. An yield point phenomenon is applied to introduce a
morphology dependent functional form for γ̇ α∗ (Keshavarz and Ghosh 2013, 2014)
as:

γ̇ α∗ = H(εp − lp)γ̇
α
0

(
tanh(k) + tanh(klp)

10(tanh[k∗(εp − lp)] + tanh(klp))
− 1

)
+ γ̇0, (15)

where H is the Heaviside step function, γ̇0 corresponds to the initial strain rate and
lp, k, k∗ are material constants. In this work lp = 10−10, k and k∗ are derived in terms
of morphological parameters. The equivalent plastic strain

εp =
√
2

3
ε
p
i jε

p
i j

is defined in terms of the Lagrangian plastic strain

ε
p
i j = 1

2
(FpT

i j Fp
i j − δi j )
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Consequently, evolution laws for thermal and athermal shear resistances, contributing
to the overall slip resistance sα , are proposed in terms of the plastic strain rate. The
thermal shear resistance, accounting for forest dislocations normal to the slip plane
and the athermal shear resistance reflecting the effect of parallel dislocations in the
slip direction mα , are expressed as:

ṡα
a =

n∑

β=1

hαβ
α |γ̇ β sin(nnnα, tttβ)|, ṡα∗ =

n∑

β=1

hαβ∗ |γ̇ β cos(nnnα, tttβ)|, (16)

where nnnα is slip-plane normal, tttα = mmmα × nnnα, and the total shear resistance is

ṡα =
√

(ṡα
a )2 + (ṡα∗ )2

The initial values of the athermal and thermal shear resistances are respectively
ṡα
a0, ṡα∗0. For convenience, coefficients accounting for the interactions between slip

systems are taken to be the same i.e. hαβ
a = hαβ∗ = hαβ . Each component of hαβ

is the deformation resistance on slip system α due to shearing on slip system β. It
describes both self and latent hardening as:

hαβ = qαβhβ, where hβ =
[

h0

(

1 − sβ

sβ
sat

)r]

sign

(

1 − sβ

sβ
sat

)

(17)

The parameter hβ denotes the resistance dependent self-hardening rate, sβ
sat is the

saturation value of reference shear stress and r is a constant exponent. The coefficient
qαβ = q + (1 − q)δαβ , where q is a latent-hardening parameter chosen as 1.4.

3.1.1 Sub-grain Morphological Parameters

Three characteristic parameters representing the sub-grain microstructural morphol-
ogy in Fig. 1c, are delineated as:

(i) γ ′ volume fraction νp,
(ii) γ ′ shape factor n and,
(iii) minimum limiting channel-width lc between γ ′ precipitates.
The volume fraction is expressed as the ratio of the precipitate volume to the RVE
volume, i.e.

νp = Ωγ ′

ΩRVE

The shape factor is described in terms of the exponent of a generalized ellipsoid:

( x

a

)n +
( y

b

)n +
( z

c

)n = 1,
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where a, b, c are the dimensions of the three principal axes and n is shape exponent.
Here, a = b = c is assumed to represent equiaxed precipitates. A value n = 2
corresponds to a sphere while n → ∞ corresponds to a cube. To avoid a singular
value of n, a transformed shape factor n1 = tan−1(n) is used in the parameterization.

The effect of these morphological parameters on the volume-averaged stress-
strain response of the RVE using the sub-grain dislocation density CPFE simulations
is examined and depicted in Fig. 7. For each simulation conducted at 0.0001s−1

and 800 ◦C, one of the parameters is varied, while the other two are held constant.
Variables considered are

(i) cubic precipitates of volume fractions 75.13 and 57.87%,
(ii) shape factors n = 2.0, and ∞ and
(iii) channel-width lc = 0.29µmand lc = 0.58µmfor cubic precipitates of 29.63%

volume fraction.

Results in Fig. 7 shows that with increasing volume fraction, the post-yield plastic
response does not change too much even though the yield strength increases. The

Fig. 7 Effect of γ ′ precipitate: a volume fraction, b shape and c channel width for cubic precipitates
with 29.63% volume fraction, on the stress-strain response under constant tensile strain-rate of
0.0001 s−1 at a temperature of 800 ◦C
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yield strength changes and the plastic response diverges with increasing strain for
different shapes. The plastic response changes with increasing channel-width, while
the yield strength decreases only slightly.

Plastic slip and hardening parameters in the grain-scale AE-CP model are func-
tions of theSSDs andGNDs. SSDsdonot generally changemuchwithmorphological
variables i.e. they are size independent, but GNDs can vary significantly with pre-
cipitate shape and size. Forest and parallel components of dislocation densities may
be expressed as:

ρF(ρSSD, ρGND) = ρF(γ
α,∇γ α), ρP(ρSSD, ρGND) = ρP(γ

α,∇γ α) (18)

Crystal plasticity hardening parameters are functions of the plastic slip γ α due to
SSD’s. Morphological parameters should also be incorporated in these functions to
account for the effect of GNDs or gradient of plastic shear strain ∇γ α . Sensitivity
analyses indicate that the initial thermal shear resistance and its rate, the reference
slip-rate γ̇∗ and the saturation shear stress sα

sat are functions of the morphology. Thus,
in Eqs. (19)–(21) parameters sα∗ (n1, νp, lc), γ̇∗(n1, νp, lc), sα

sat(n1, νp, lc), are derived
in terms of morphological parameters as well as (γ α,∇γ α) as:

sα∗ (n1, νp, lc) =
n∑

β=1

hαβ(n1, νp, lc)|γ̇ β cos(nnnα, tttβ)|

=
n∑

β=1

[

h0

(

1 − sβ

sβ
sat(n1, νp, lc)

)r]

sgn

(

1 − sβ

sβ
sat

)

|γ̇ β cos(nnnα, tttβ)|,

γ̇∗(n1, νp, lc) = H(εp − lp)γ̇0

{
tanh[k(n1, νp, lc)] + tanh[k(n1, νp, lc)lp]

10tanh[k∗(n1, νp, lc)] + tanh[k(n1, νp, lc)lp] − 1

}

+γ̇0

(19)

The initial strain rate γ̇0 and hardening parameter h0 are insensitive to the
morphology.

3.1.2 Calibrating the Grain Scale AE-CP Model Parameters

Equations (14)–(17), (19) contain a number of material parameters, some of which
vary with the morphology while others are independently constant. The con-
stant material parameters that should be experimentally calibrated for the AE-CP
model are the activation energy Q and exponents p, q in Eq. (14), γ̇0 in Eq. (15)
and hardening parameter h0 and exponent r in Eq. (16). These parameters have
been calibrated in Keshavarz and Ghosh (2013, 2014) for single crystal CMSX-
4 using experimental data from tensile constant strain-rate and creep tests in
Knowles and Gunturi (2002), Fleury et al. (1996). The parameters are listed in
Table3. Subsequently, themorphology-dependent AE-CP parameters sα∗0(n1, νp, lc),
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Table 3 Experimentally calibrated constant material parameters for the grain scale AE-CP model

Parameters Q(J ) p q γ̇0(s−1) h0(MPa) r

Value 6.5 × 10−12 0.78 1.15 5.0 × 107 1,300 1.115

Fig. 8 Calibration of morphology-dependent homogenized crystal plasticity parameters in the
grain-scale activation energy-based crystal plasticity (AE-CP) model: a FEM model of the sub-
grain RVE (SG-RVE) with spherical precipitates of volume fraction 39.16%, and b stress-strain
response by the SG- RVE and AE-CP FE models

k∗(n1, νp, lc), k(n1, νp, lc) and sβ
sat(n1, νp, lc) in Eq. (19) are calibrated from the sim-

ulated volume-averaged response of the sub-grain RVEmodel. These simulations are
conducted under a constant strain-rate of 0.0001 s−1 in the [010] direction at 800 ◦C.
The calibration process has involved 37 different RVE microstructures. An example
of the sub-grain RVE, FE model containing spherical precipitates of 39.16% vol-
ume fraction and different channel-widths, discretized into 8-noded brick elements,
is depicted in Fig. 8a. In Fig. 8b, the homogenized AE-CP model parameters are
calibrated with the averaged stress-strain responses from the RVE model.

3.1.3 Functional Forms of Homogenized AE-CP Constitutive
Parameters

Functional forms of the constitutive parameters sα∗0(n1, νp, lc), k∗(n1, νp, lc),

k(n1, νp, lc) and sβ
sat(n1, νp, lc) in Eq. (19) are generated for representing the effect of

morphology on the single crystal behavior. To derive these functional forms by com-
putational homogenization, a large number of sub-grain RVEmodel simulationswith
varying volume fractions, channel-widths and shapes are conducted (Keshavarz and
Ghosh 2013, 2014). These set of simulations yield the following functional forms,
where the coefficients are determined by solving a set of least square minimization
problems:
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1. sα∗0(n1, νp, lc) = a1(n1, νp) + b1(n1, νp)√
lc

= 1039 + 559νp − 99n1 − 136νpn1

+ −0.1 + 89νp + 53n1 − 90νpn1√
lc

(20)

2. sα
sat(n1, νp, lc) = a2(n1, νp) + b2(n1, νp)

lc
= 3185 − 8905νp − 1648n1 + 6680νpn1 (21)

+ −0.21 + 5008νp + 363n1 − 3599νpn1

lc

3. k∗(n1, νp, lc) = 65 − 7500νp + 33n1 − 2700lc + 12768νpn1

− 23120νplc + 4080n1lc − 19847νpn1lc (22)

4. k(n1, νp, lc) = a3(n1, νp) + b3(n1, νp)√
lc

= 5.5 − 327.6νp + 31.5n1 + 221.4νpn1 (23)

+ 0.14 + 281.2νp − 2.441 − 176.5νpn1√
lc

The explicit dependence on channel-width lc reflects the size-effect due to the
presence of GNDs in the sub-grain dislocation density CP model. In Eqs. (20)–(23)
the unit of lc is µm, while the units of initial thermal resistance and saturation shear
resistance in Eqs. (20), (21) are MPa.

3.1.4 Validation of the Homogenized AE-CP Model

Two sets of validation tests are conducted for the homogenized AE-CP constitutive
model. In the first set, the results of a single grain, crystal plasticity FEManalysiswith
the calibrated homogenized AE-CP constitutive model are compared with the aver-
aged response of a sub-grain RVE (SG-RVE) analysis. Three cases, corresponding
to different microstructures, are considered for simulation. These are:

• Case 1: n = 10, νp = 44%, lc = 0.135 µm;
• Case 2: n = 1.5, νp = 22%, lc = 0.260 µm;
• Case 3: n = ∞, νp = 30%, lc = 0.576 µm,

Simulations for both theAE-CP andSG-RVEFEmodels are conducted for an applied
strain-rate of 0.0001s−1 in the y-direction at 800 ◦C. The true stress-logarithmic
strain response by the AE-CPFE model and the averaged stress-strain response by
the SG-RVE FEmodel are plotted in Fig. 9. Excellent agreement is obtained between
the homogenized grain-scale AE-CPFE model with morphological parameters and
the explicit sub-grain RVEmodel. A notable advantage of the homogenized model is
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Fig. 9 Validation of the
homogenized grain-level
activation energy-based
crystal plasticity (AE-CPFE)
model with a FEM model of
the sub-grain RVE
(SG-RVE) for three different
microstructures

Fig. 10 Creep response by
the homogenized AE-CP
FEM and experiments in Ma
et al. (2008) for tension tests
in [001] direction with 750
and 650 MPa respectively at
750 ◦C

the significant efficiency gain over explicit RVE models. For this example, the gain
in efficiency is of the order of 104 (few seconds for AE-CPFE model) with identical
response.

The second example involves validating theAE-CPconstitutivemodelwith results
from creep experiments in Ma et al. (2008) for single crystal CMSX-4 with 70%
volume fraction of γ ′ precipitates. In Ma et al. (2008) two tensile loads of 650 and
770 MPa are applied in the [001] direction at 750 ◦C. CPFEM analyses with the
homogenized parameters are conducted for a single grain under these conditions.
The simulated logarithmic strain-time response by the simulations is compared with
the experimental results in Fig. 10 with good agreement.

3.2 Micro-Twinning in Grain-Scale CP Model:
Tension-Compression Asymmetry

Single crystal experiments on Ni-based superalloys show considerable tension-
compression asymmetry. Large difference in the creep response for single crystals
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loaded in the [001] and [011] directions under tension and compression conditions
has been reported in Knowles and Gunturi (2002), Fleury et al. (1996). APB shear-
ing is responsible for the difference in tension and compression tests in the [001]
direction. However, transmission electron microscopy observations in Unocic et al.
(2011) have reported micro-twinning mechanism for high temperature creep defor-
mation. To account for this tension-compression asymmetry, a microtwinning model
developed in Unocic et al. (2011) is incorporated in the grain-scale crystal plasticity
formulation. The criterion for micro-twin nucleation is based on the state of disso-
ciation of the leading and trailing partials on a slip system, where the condition for
dissociation of a full dislocation a/2〈110〉 is given as a function of themagnitude and
orientation of the in-plane shear stress. With deformation, the leading and trailing
Shockley partial experience stresses τlead and τtrail respectively. From the magni-
tudes of in-plane resolved shear stress τ inplane, stresses τlead and τtrail the criterion
examines whether the partials will remain together or get dissociated at the interface
of the γ –γ ′ phases. Thus, if ‖τ inplane‖ > τlead, ‖τ inplane‖ < τtrail the leading partial
passes through and hence the leading and trailing partials remain dissociated. The
direction of dislocation is also another determinant for dissociation. This condition
is applied to yield asymmetry due to the difference in the direction of dislocation
motion for tension and compression. The micro-twin evolution model is based on the
premise that γ ′ precipitate shearing and subsequent re-ordering is the predecessor
to the movement of partials that cause plastic slip. The thermal re-ordering rate by
diffusion depends on the activation energy barrier, i.e.

Rreorder ∝ exp

(
−ΔE + pΔVact − θΔS

kBθ

)
,

where ΔE is the internal energy barrier, p is the pressure, ΔVact is the activation
volume for pressure dependent diffusion, ΔS is the change in entropy, kB is Boltz-
mann’s constant and θ is the absolute temperature. For solids, the pressure depen-
dent activation volume ΔVact is small and is hence ignored. Change in entropy
occurs due to irreversible dissipation such as plastic work and is expressed as:
θΔS = WP = τeff APbtp, where τeff is the effective shear stress, Ap is the shearing
area during plastic deformation and btp is the Burgers vector of the twin partials. The
velocity of twin partials may be written as:

νtp = freorderλreorder Preorder(ΔE, θΔS), (24)

where freorder is the frequency of re-ordering, λreorder is the reordering distance
and Preorder is the probability of re-ordering against the energy barrier, which is a
function of plastic dissipation and internal energy barrier. The internal energy barrier
is expressed as ΔE = Γ (t)Aeff , where Γ (t) = (Γpt − Γtt) exp(−K t) + Γtt is the
energy drop, which decreases exponentially with time from pseudo-twin energy Γpt
to true twin energy Γtt . The effective shear stress including the effect of tertiary γ ′
precipitates is expressed in Karthikeyan et al. (2006) as
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τeff = τ − f3
2

Γpt

btp
,

where f3 is the volume fraction of the tertiary γ ′ precipitates. Thus, the plastic shear
strain-rate due to micro-twinning is written from the Orowan equation as:

γ̇ = ρtpbtpλreorder freorder exp

(
− AeffΓ (t) − Vactτeff

kBθ

)
, (25)

where ρtp is the density of partials which is a function of applied stress and time.
ThehomogenizedAE-CPmodel, alongwith the grain-scalemicro-twin nucleation

and evolution models in Eqs. (14)–(25), are employed to simulate creep response of
single crystal superalloys. Significant tension-compression asymmetry is observed
in the experimental data plotted in Fig. 11 for single crystal CMSX-4 specimen
(Xie et al. 2004). Micro-twin formation is not seen for tension loading in the [001]
direction. However, significant micro-twin has been seen to develop for compression
in this direction in the TEM studies of Kakehi (1999). Deformation is dominated by
strain due to micro-twin evolution as shown in Fig. 11a. Similar observations have
also been made in experiments with loading in the [011] direction. For tensile and
compressive creep tests, the observed trend shown in Fig. 11b, is opposite to that for
the [001] direction. Micro-twins in the deformed micro-structure are observed for
tension loading in the [011] direction, whereas no micro-twin induced deformation
is seen for compression loading. Results of compression creep experiments with
single crystals containing 70% volume fraction of cubic precipitates Fleury et al.
(1996), Karthikeyan et al. (2006) are used to calibrate material constants in Eq. (25).
For compression tests, the loading conditions and microstructures are the same as
in the tensile tests of Sect. 3.1. Experimentally calibrated material constants are:

Fig. 11 Logarithmic strain-time response by the homogenized AE-CPFE model including micro-
twin nucleation and evolution, with experimental data (Kakehi 1999), for tension and compression
creep in a [001] and b [011] directions
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ρtp = 1.011 m−2, btp = 0.145 µm, λreorder = 0.3, freorder = 0.1, Γpt = 0.7 Jm−2,

and Γtt = 0.02 Jm−2. Results of CPFE simulations are compared with experimental
data (Xie et al. 2004) in Fig. 11 for validation. The grain-scale crystal plasticity FE
model satisfactorily predicts single crystal experimental data, including micro-twin
induced tension-compression asymmetry.

4 AE-CP Model for Polycrystalline Microstructures

Polycrystalline microstructures of Nickel-based superalloys are modeled in this
section using the homogenized AE-CP model with parametric representation of
the γ –γ ′ microstructure, together with the micro-twin nucleation and evolution
models. For modeling polycrystalline microstructures however, the AE-CP model
should be modified to account for grain boundary lattice incompatibility. Hardening
laws, accounting for GNDs, have been proposed to address lattice incompatibility
in Acharya and Beaudoin (2000) using the Nye tensor along slip plane normal. In
the present study, the dislocation density-based slip relations have been extended to
take into account lattice incompatibility. The hardening parameters in Eq. (16) are
augmented to account for lattice deformation incompatibility at grain boundaries due
to plastic strain gradients leading to dislocation pileup. The athermal and thermal
shear resistances in Eq. (16) are each divided into two parts, corresponding to SSDs
and GNDs as:

sα
a = sα

a,SSD + sα
a,GND, sα∗ = sα∗,SSD + sα∗,GND, (26)

where

sα
a,GND = c̄1Gb

√
ρα
GP, sα∗,GND = Q

c̄2b2

√
ρα
GF (27)

These relations are consistentwith those in the sub-grain scalemodel inEq. (5),where
the cutting and passing shear resistances are expressed as functions of parallel and
forest dislocation densities. In Eq. (27) c̄1 and c̄2 arematerial constants, and ρα

GP, ρ
α
GF

are parallel and forest dislocation densities resulting from GNDs corresponding to
Eq. (9). They may be written as:

ρα
GP =

N∑

β=1

χαβ [ρβ
GNDs| sin(nnnα,mmmβ)| + ρ

β
GNDet| sin(nnnα, tttβ)| + ρ

β
GNDen| sin(nnnα,nnnβ)|],

ρα
GF =

N∑

β=1

χαβ [ρβ
GNDs| sin(nnnα,mmmβ)| + ρ

β
GNDet| sin(nnnα, tttβ)| + ρ

β
GNDen| sin(nnnα,nnnβ)|]

(28)
where χαβ is the interaction strength coefficient and ρGNDs, ρGNDet, ρGNDen are a
screw and two edge components of the GND densities respectively. Implementation
ofGNDbasedhardness in the polycrystallineAE-CPmodel is discussed inKeshavarz
and Ghosh (2014).
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4.1 3D Virtual Polycrystalline Microstructure Simulation
and Mesh Generation

Virtual polycrystalline microstructures have been generated by the author’s group
usingmethods and codes described in Groeber et al. (2008a, b), Thomas et al. (2012),
by matching morphological and crystallographic statistics obtained from electron
back-scattered diffraction or EBSD data of microstructural sections. An image based
CPFE model is developed for the superalloy René-88 DT, dominated by annealing
�3 twin boundaries with a specific misorientation angle for {111} planes (Miao
et al. 2012). The annealing twins that develop during processing have large aspect
ratios as shown in Fig. 12a. The geometric disparity of these twins requires mesh
localization at these areas relative to the remainder of the polycrystalline structure.
In resolving the twin bands and maintaining a large sample size, the voxelized 3D
reconstruction often contains flaws like disconnected defects or hooked features near
grain boundaries, due to resolution. These flaws are eliminated through filtration and
smoothing techniques as shown in Fig. 12.

Twomethods are pursued for developing virtual images and finite element models
of the actual microstructures. The first method shown in Fig. 12 uses a code Sym-
metrix (Simmetrix Inc. 2014) method to directly implement the actual microstruc-
ture derived from EBSD and serial sectioning-based reconstruction in the FE model.
The structural data is filtered with minimal data treatment. A significant percentage
of annealing twins is preserved in this method. The primary steps in transforming
a voxel dataset into a finite element mesh include volume thresholding, erosion,

Fig. 12 Reconstructing a virtual microstructure of polycrystalline René-88 DT: a 3D EBSD data,
b fine scale features, c “hooked” grain boundaries, d isolated defects within grains e, f filtering and
smoothing process, g, h transformation of the EBSD to a FE mesh
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dilation, edge refinement, boundary smoothing, vertex repositioning, and curvature
refinedmeshing. The steps and the final polycrystallinemodel are shown sequentially
in Fig. 12.

Another methodology uses the code DREAM.3D (Groeber and Jackson 2014)
to generate synthetic representation of the microstructure, based on the statistical
features of the 3D reconstruction. The primary structural and crystallographic char-
acteristics such as grain size, number of neighboring grains, orientation, and misori-
entation are matched to the corresponding statistical distributions of the data.

4.2 Results of Polycrystalline Microstructure Simulation

Thevirtual polycrystallinemicrostructures developed by the codes SIMMETRIXand
DREAM.3D are next incorporated for crystal plasticity finite element simulations
using the homogenized crystal plasticity constitutive models.

A constant strain-rate tension test is simulated for eachmicrostructure and for vari-
ous sub-grainmorphological conditions. The competing activation ofmicrostructural
mechanisms controls the volumetric elastic-plastic response of the polycrystalline
material. Local variations in stress and plastic strain are observed to be highly depen-
dent on the grain structure and concentrate near twin bands, where favorably oriented
grains reside. The stress-strain response of the polycrystalline microstructure for the
two models is compared in Fig. 13c with good agreement. The figure also shows the
response in the absence of the annealing twins. Removal of twins reduces the elastic
modulus of the superalloy as well as softens the material in the plastic region. This
reduction in strength is solely due to the variation of microstructural features. The
simulation reveals that the effects ofmorphology and crystallography can be captured
by the statistics of the EBSD scans and reliably controlled within bounds through
error quantification. The implementation of statistically equivalent microstructures
can thus greatly reduce the time and effort required for material characterization and
mechanical experiments.
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Fig. 13 Virtual polycrystalline microstructures of René-88 DT including twins: a generated by
direct implementation, b generated by equivalence of statistical data, and c stress-strain response
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5 Summary and Conclusion

This chapter creates a hierarchical framework for realizing a homogenized grain-
scale crystal plasticity model that can be used for modeling polycrystalline micro-
structures of Ni-based superalloys. Specifically, an activation energy-based crystal
plasticity (AE-CP) FEM model is developed that incorporates characteristic para-
meters of the sub-grain scale γ –γ ′ morphology. Hardening evolution laws are devel-
oped to reflect the effect of dislocation density distributions from the sub-grain
RVE model, which represents deformation mechanisms in the temperature range
650 ◦C ≤ θ ≤ 800 ◦C. A significant advantage of this homogenized AE-CPmodel is
that its high efficiency enables it to be effectively incorporated in polycrystalline crys-
tal plasticity FE simulations, while retaining the accuracy of detailed RVEmodels. It
would be impossible to simulate polycrystalline microstructures with direct numeri-
cal simulation of the subgrainmorphology otherwise. The homogenizedmodel incor-
porates the effect of important characteristics of the sub-grain γ –γ ′ morphology, viz.
the volume fraction and shape of the γ ′ precipitates and the γ channel-width. Para-
metric representations of these sub-grain morphology variables are incorporated in
evolution laws of the homogenized AE-CP model that include both thermal and
athermal shear resistance. The simplified RVEs with uniformly distributed general-
ized ellipsoidal particles provide a demonstrative platform for modeling framework
connecting three-scales, one with explicit representation and the others with their
respective parametric forms. Three homogenized parameters, viz. the thermal shear
resistance, the saturation shear resistance and the reference slip-rate γ̇∗ are expressed
as functions of the sub-grain morphology variables. Size dependence that is explic-
itly represented in the sub-grain dislocation density crystal plasticity model through
the presence of geometrically necessary dislocations or GNDs, is reflected in the
homogenized AE-CP model through the explicit dependence on the channel-width.
The homogenized AE-CP model is found to accurately reproduce the stress-strain
response of the detailed γ –γ ′ RVE for a range of microstructural variations. It is
also found to agree quite well with results of experimental studies on single crystal
superalloys in the literature.

The other dominant mechanism at the grain-scale is micro-twinning, which is
taken into account through a micro-twin nucleation and evolution model that is
incorporated alongside the homogenizedAE-CPmodel. Tension-compression asym-
metry, observed in creep experiments, is very well represented by this model. In the
final ascending scale, a polycrystalline microstructure of Ni-based superalloys is
modeled using the homogenized CPFE model together with microtwinning. The
grain-scale model is augmented through the accommodation of GNDs in the hard-
ness formulations to compensate for lattice incompatibility. Virtual polycrystalline
microstructural models of the superalloy René-88 DT are created for simulating
polycrystalline behavior. This polycrystalline constitutive model implicitly retains
the effect of microstructure morphology while reducing computational cost by sev-
eral orders of magnitude without significant loss of accuracy. This is necessary for
meaningful simulations that can be corroborated by experiments.
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Homogenized Elastic-Viscoplastic
Behavior of Thick Perforated Plates
with Pore Pressure

Kazutaka Ikenoya, Nobutada Ohno and Naoto Kasahara

Abstract The homogenized elastic-viscoplastic behavior of thick perforated plates
with pore pressure is investigated for macro-material modeling. To this end, homog-
enized stress-strain relations of a periodic unit cell of pore-pressurized thick per-
forated plates under uniaxial and multiaxial loadings are analyzed using a finite
element method with periodic boundary conditions. It is assumed in the analysis
that the base metal of the perforated plates exhibits elastic-viscoplasticity based
on Hooke’s law and Norton’s power law and has the material parameters of Mod.
9Cr-1Mo steel at 550 ◦C. The resulting homogenized stress-strain relations are sim-
ulated using a macro-material model in which the pore-viscoplastic macro-strain
rate is represented as an anisotropic power function of Terzaghi’s effective stress.
It is demonstrated that this macro-material model suitably represents the macro-
anisotropy, macro-volumetric compressibility, and pore pressure effect revealed in
the viscoplastic range in the finite element homogenization analysis.

Keywords Homogenized behavior · Macro-material model · Thick perforated
plates · Pore pressure · Viscoplasticity
1 Introduction

Perforated plates used as tubesheets in heat exchangers contain straight circular holes
arranged in a triangular pattern. Full-scale finite element meshing of such perforated
plates necessarily results in significantly high computational costs because of the very
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large number of straight circular holes. If homogenized material properties/models
could be made available for perforated plates, finite element analysis could be per-
formed without full-scale meshing and computational costs would be highly reduced
as a result. Therefore, Appendix A-8000 in the ASME Boiler and Pressure Vessel
Code Sec. III provides homogenized elastic material properties for perforated plates
(ASME 2007). For the homogenized plastic properties of perforated plates, several
studies have been devoted to investigating macro-yield surfaces and conditions in
plane stress states (O’Donnell and Porowski 1973; Porowski and O’Donnell 1974;
Reinhardt 2001; Gordon et al. 2002; Khatam et al. 2009; Khatam and Pindera 2011).

The operating temperatures of perforated plates are considerably high in fast
breeder reactors and high temperature gas cooled reactors. Accordingly, homoge-
nized creep properties and models of perforated plates have been investigated under
plane stress conditions. By assuming Norton’s creep equation for base metals and
by performing finite element analysis of a periodic unit cell, Uragami et al. (1981)
computationally demonstrated that the homogenized creep behavior of thin perfo-
rated plates in plane stress states has the same stress exponent as the creep behavior
of base metals. Igari et al. (1986, 2001) then developed homogenized creep models
for perforated plates in plane stress states by introducing a geometrical parameter
into the creep equations of base metals, although the material isotropy and inelas-
tic volume-incompressibility of base metals were assumed to remain valid for the
homogenized creep behavior.

Semispherical tubesheets are now under development for heat exchangers in the
next generation of fast breeder reactors in Japan (Kasahara et al. 2008; Ando et al.
2013). Since these tubesheets are noticeably thick, three dimensional solid elements
are inevitably required for their finite element models. Consequently, out-of-plane as
well as in-plane homogenized properties need to be correctly taken into accountwhen
developing inelastic macro-material models for such thick tubesheets. Moreover,
semispherical tubesheets are designed to be subjected to considerably high pore
pressure (Ando et al. 2013). Therefore, it is worthwhile to investigate the macro-
anisotropy, macro-volumetric compressibility, and pore pressure effect caused, in
the inelastic range, by the circular holes distributed in thick perforated plates.

Ohnoet al. (2012) describedmicro-macro relations relevant to periodic anisotropic
open-porous bodies subjected to pore pressure, and showed the following constitu-
tive features as consequences of the macro-homogeneity equation of Hill (1967): the
effective stress of Terzaghi (1943) is work-conjugate to the pore-viscoplastic macro-
strain rate, and the constitutive relation of this work-conjugate pair has the same
stress exponent as Norton’s power law assumed for the base metals of open-porous
bodies. Ohno et al. (2012) thus developed a macro-material model in which the
pore-viscoplastic macro-strain rate is represented as an anisotropic power function
of Terzaghi’s effective stress. The resulting macro-material model was applied to
an ultrafine plate-fin structure with pore pressure. The corresponding finite element
homogenization analysis was also performed for comparison. It was thus demon-
strated that the developed macro-material model well simulates the homogenization
analysis results in spite of there being no fitting parameter for the effect of pore
pressure.
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In this study, the homogenized elastic-viscoplastic behavior of thick perforated
plates under uniaxial and multiaxial loadings with pore pressure is investigated to
examine themacro-materialmodel developed byOhno et al. (2012). For this purpose,
the homogenized pore-elastic-viscoplastic behavior is analyzed using the finite ele-
ment homogenizationmethodbasedonperiodic boundary conditions. It is assumed in
the analysis that the basemetal of the perforated plates exhibits elastic-viscoplasticity
based on Hooke’s law and Norton’s power law and has the material parameters of
Mod. 9Cr-1Mo steel at 550 ◦C. It is shown that the pore-elastic-viscoplastic macro-
material model by Ohno et al. (2012) properly represents the macro-anisotropy,
macro-volumetric compressibility, and pore pressure effect found in the viscoplastic
range in the finite element homogenization analysis.

In this paper, direct notations are used for vectors and tensors, and inner products
between them are indicated by middle dots or colons (e.g., uuu ··· vvv = ui vi , DDD ::: εεε =
Di jklεkl ). In addition, the second-rank and fourth-rank unit tensors are denoted by 111
and III , respectively.

2 Periodic Unit Cell of Thick Perforated Plates

Figure1a illustrates a portion of the thick perforated plates considered in this study.
As shown in the figure, straight circular holes are arranged in a triangular pattern in
the thick perforated plates. Figure1b shows the top view of a periodic unit cell Y of
the perforated plates: the unit cell Y consists of solid and pore regions, Vs and Vω ,
and its boundary ∂Y is partitioned into solid and pore parts, ∂Ys and ∂Yω .

2.1 Microscopic Material Properties

We suppose that the medium in Vω has neither rigidity nor viscosity, and that pore
pressure p acts uniformly in Vω (Fig. 1c):

σσσ = −p111 in Vω, (1)

where σσσ denotes stress in Y .
We assume that the solid region Vs undergoes isothermal small deformation at a

high temperature, and consequently that the strain εεε in Vs is additively decomposed
into elastic and viscoplastic parts:

εεε = εεεe + εεεvp in Vs (2)

We further assume that εεεe and εεεvp obey Hooke’s law and Norton’s power law,
respectively:
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Fig. 1 a Portion of the thick perforated plates considered in this study, b top view of periodic unit
cell Y , and c top view of periodic unit cell Y subjected to pore pressure p

εεεe = 1 + ν

E
σσσ − ν

E
(trσσσ)111, (3)

ε̇εεvp = 3

2
ε̇0

(
σeq

σ0

)n−1 σσσd

σ0
, (4)

where E and ν are elastic constants, tr indicates the trace, the superposed dot repre-
sents differentiation with respect to time, ε̇0, σ0 and n are the material parameters of
viscoplasticity, σσσd denotes the deviatoric part of σσσ, and σeq expresses the von Mises
equivalent stress defined as

σeq =
(
3

2
σσσd : σσσd

)1/2

. (5)



Homogenized Elastic-Viscoplastic Behavior … 101

2.2 Macro-Strain and Macro-Stress

Because Y is a periodic unit cell, the affine deformation part of displacement uuu in Y
is considered to be due to the macro-strain EEE of Y (Suquet 1987; Michel et al. 1999):

uuu = EEE ··· xxx + ũuu, (6)

where xxx is the position of a point, and ũuu indicates the perturbed part of uuu that satisfies
Y -periodic boundary conditions:

ũuu(xxx (+)) = ũuu(xxx (−)). (7)

Here, xxx (+) and xxx (−) are a pair of points on the opposite boundary planes of Y
(Fig. 1b).

We suppose that ∂ũuu/∂xxx exists everywhere in Vs. The strain εεε in Vs is then repre-
sented as

εεε = EEE + ε̃εε, ε̃εε = 1

2

[
∂ũuu

∂xxx
+

(
∂ũuu

∂xxx

)T
]

, (8)

where the superscript T indicates the transpose. Equation (8), however, cannot hold
in Vω because ũuu can be arbitrary and discontinuous due to no rigidity and no viscosity
in Vω .

The macro-stressΣΣΣ of Y is defined to be the volume average of σσσ in V :

ΣΣΣ = 1

|Y |
∫

Y

σσσ dV, (9)

where |Y | indicates the volume of Y. In contrast, EEE cannot be the volume average of εεε
in Y (Suquet 1987; Michel et al. 1999; Ohno et al. 2012), because ũuu can be arbitrary
and discontinuous in Vω , as already stated. Here it is noted that EEE depends only on
the displacement uuu on ∂Ys (Ohno et al. 2012):

EEE = 1

2

⎛

⎜
⎝

∫

∂Ys

uuu ⊗ nnn dS ··· GGG−1 + GGG−T ···
∫

∂Ys

nnn ⊗ uuu dS

⎞

⎟
⎠ , (10)

where nnn denotes the outward unit normal to ∂Ys, and

GGG =
∫

∂Ys

xxx ⊗ nnn dS. (11)



102 K. Ikenoya et al.

3 Macro-Material Model

This section outlines the theoretical basis and macro-material modeling studied for
the elastic-viscoplastic behavior of anisotropic open-porous bodies with pore pres-
sure (Ohno et al. 2012).

3.1 Constitutive Features

If the macro-homogeneity equation of Hill (1967) is satisfied, one can state that the
macroscopic work rate due toΣΣΣ and ĖEE is equal to the volume average of microscopic
work rate σσσ : ε̇εε in Y. Here it is noted that the microscopic work in Vω is done by pore
pressure p and the volume change in Vω . It is then shown that themacro-homogeneity
equation provides

(ΣΣΣ + p111) : ĖEE = 1

|Y |
∫

Vs

(σσσ + p111) : ε̇εε dV, (12)

whereΣΣΣ + p111 is called Terzaghi’s effective stress (Terzaghi 1943). The above equa-
tion is proved using Eqs. (1), (7), (8) and (9).

We now consider a steady state in which σ̇σσ = 000 everywhere in Y and Σ̇ΣΣ = 000. In
the steady state, ε̇εε = ε̇εεvp because σ̇σσ = 000 everywhere in Vs, and hence ĖEE is regarded
as pore-viscoplastic (i.e., ĖEE = ĖEEvp). Then, applying Eq. (12) to the steady state and
using Eq. (4), we obtain

(ΣΣΣ + p111) : ĖEEvp = 1

|Y |
∫

Vs

ẇvpdV, (13)

where ẇvp denotes the energy dissipation rate due to σσσd : ε̇εεvp in Vs:

ẇvp = σ0ε̇0

(
σeq

σ0

)n+1

. (14)

It is thus seen that Terzaghi’s effective stressΣΣΣ+ p111 and the pore-viscoplastic macro-
strain rate ĖEEvp are a work-conjugate pair for the homogenized energy dissipation
rate due to ẇvp in Vs.

We consider another steady state inwhich the stressσσσ in Vs and the pore pressure p
in Vω are multiplied by an arbitrary constant c. Then,ΣΣΣ + p111 and ẇvp are multiplied
by c and cn+1, respectively, as seen from Eqs. (9) and (14). Hence, Eq. (13) is
satisfied irrespective of the value of c if ĖEEvp is replaced by cn ĖEEvp. This means that
ĖEEvp becomes cn ĖEEvp if Terzaghi’s effective stress ΣΣΣ + p111 is multiplied by c. In other
words, ĖEEvp has nth-power dependence onΣΣΣ + p111.
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3.2 Constitutive Relations

The Biot pore-elastic law (Biot 1941) is extended by taking account of the pore-
viscoplastic constitutive features described in Sect. 3.1.

We assume that the macro-strain EEE is additively decomposed into pore-elastic and
pore-viscoplastic parts (i.e., EEE = EEEe + EEEvp). We further assume that the pore-elastic
part EEE − EEEvp is related with the macro-stressΣΣΣ by the Biot law:

ΣΣΣ = DDDeH ::: (EEE − EEEvp) − pBBB, (15)

where DDDeH is the fourth-rank tensor standing for the homogenized elastic stiffness
of Y, and BBB is the second-rank tensor called Biot’s coefficient. Dormieux et al. (2002,
2006) and Vincent et al. (2009) showed that BBB is analytically expressed as

BBB = (III − DDDeH : DDD−1
es ) ::: 111, (16)

where DDDes indicates the elastic stiffness of base solids.
To develop a constitutive relation for ĖEEvp, let us remember that, in steady states,

ΣΣΣ + p111 and ĖEEvp are a work-conjugate pair for the energy dissipation in Vs (Sect. 3.1).
This suggests that ĖEEvp is represented as a function ofΣΣΣ + p111, and that the effect of p
on ĖEEvp appears throughΣΣΣ + p111. Hence, we consider the following type of quadratic
anisotropic equivalent stress, which was, in the case of p = 0, proposed by Mises
(1928) and used for the rate-independent plasticity of cellular solids (Badiche et al.
2000; Deshpande et al. 2001; Xue and Hutchinson 2004):

Σeq =
√
3

2
(ΣΣΣ + p111) ::: MMM ::: (ΣΣΣ + p111), (17)

where MMM is a positive-definite symmetric fourth-rank tensor. Then, assuming the
normality of ĖEEvp to a viscoplastic potential f = Σ2

eq leads to

ĖEEvp = λ
∂ f

∂ΣΣΣ
= 3λMMM ::: (ΣΣΣ + p111), (18)

where λ is a scalar function ofΣΣΣ + p111.
To specify the scalar function λ, we remember further that, in steady states, ĖEEvp

becomes cn ĖEEvp if Terzaghi’s effective stress ΣΣΣ + p111 is multiplied by an arbitrary
constant c (Sect. 3.1). This constitutive feature is satisfied if Eq. (18) has the same
stress exponent n as that in Eq. (4). Equation (18) can thus be shaped as

ĖEEvp = 3

2
ε̇0

(
Σeq

σ0

)n−1 MMM ::: (ΣΣΣ + p111)

σ0
, (19)
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where ε̇0, σ0 and n are the same material parameters as those in Eq. (4). The above
equation with p = 0 has been previously used to simulate the elastic-viscoplastic
behavior of an ultrafine plate-fin structure in the absence of p (Tsuda et al. 2010;
Tsuda and Ohno 2011).

The macro-material model described above is implemented in a finite element
code Abaqus with a user subroutine UMAT by taking into account pore pressure
p in the implicit stress integration algorithm and the consistent tangent modulus
derived by Tsuda et al. (2010).

4 Finite Element Homogenization Analysis

To examine the macro-material model outlined in Sect. 3.2, the homogenized elastic-
viscoplastic behavior of a periodic unit cell Y of pore-pressurized thick perforated
plates is analyzed using a finite element homogenization method valid for periodic
solids. This section describes the finite element model and method used for the
homogenization analysis.

4.1 Finite Element Model and Base Solid Property

Figure2a depicts the finite element division of Vs in the periodic unit cell Y analyzed
in this study. Cartesian coordinates x , y and z are used hereafter, as shown in the
figure. The periodic unit cell Y has h/P = 0.2, and is divided into 20-node quadratic
brick elementswith reduced integration.Here,h and P denote theminimum thickness

Fig. 2 Finite element model of periodic unit cell Y : a solid part Vs, and b solid part Vs and fictitious
thin films covering pore part Vω
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of ligaments and the pitch of holes, respectively. The circular holes penetrate Y in the
z-direction. It is noted that the thickness of Y in the z-direction is arbitrary, because
no dependence of micro-stress σσσ and micro-strain εεε on z is assumed in Y.

Since pore pressure p uniformly acts in Vω (Fig. 1c), thin flexible fictitious films
are placed at the boundary ∂Yω , as illustrated in Fig. 2b. The thin flexible films are
modeled using elastic shell elements with a very small thickness of P/103 and an
extremely low Young’s modulus of 1.0 MPa. It is emphasized that the pore region
Vω inside ∂Yω is empty and is not divided into finite elements, and also that the inner
surface of ∂Yω and the interfacial boundary of Vs are subjected to p (see Fig. 1c).
The pore pressure p is taken to be 20 MPa (Ando et al. 2013) when p is considered
in the analysis.

The base solid of Y is assumed to be Mod. 9Cr-1Mo steel at 550 ◦C. This metal
exhibits significant rate-dependence but only shows minor strain hardening under
uniaxial tensile loading at 550 ◦C (Ohno and Wang 1993; Yaguchi and Takahashi
2005). Hence, by power-law fitting of the proof stress versus strain rate data shown
in Fig. 3, the viscoplastic material parameters ε̇0, σ0 and n in Eq. (4) are determined
(Table1).

Fig. 3 Stress versus strain rate relation of Mod. 9Cr-1Mo steel under uniaxial tension at 550 ◦C:
power-law fitting of experimental data taken by Yaguchi and Takahashi (2005)

Table 1 Material parameters of Mod. 9Cr-1Mo steel at 550 ◦C
Elastic Young’s modulus E (GPa) 175.0

Poisson’s ratio ν 0.31

Viscoplastic Reference strain rate ε̇0 (s−1) 1.0 × 10−4

Reference stress σ0 (MPa) 416.6

Stress exponent n 14.4
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4.2 Method of Homogenization Analysis

Equations (6) and (7) can be used to perform the elastic-viscoplastic finite element
homogenization analysis of periodic solids (Wu and Ohno 1999; Ohno et al. 2000,
2001). Alternatively, we can use the following equation for Y -periodic boundary
conditions, which is derived from Eqs. (6) and (7) (Feyel and Chaboche 2000):

uuu(xxx (+)) − uuu(xxx (−)) = EEE ··· (xxx (+) − xxx (−)). (20)

The homogenization analysis in this study is performed using Abaqus. The above
equation is imposed on uuu(xxx) with the help of the Equation command available in
Abaqus. It is noted that Eq. (20) is applied to the fictitious thin films as well as to the
solid part ∂Ys of ∂Y.

When p is considered, the finite element model of Y illustrated in Fig. 2b is pore-
pressurized before subjection to prescribed loading. In this study, pore pressurization
is performed almost instantaneously under the condition of free macro-stress, result-
ing in a macro-strain EEE (p) prior to prescribed loading. This macro-strain EEE (p) is
almost equal to the macro-strain evaluated from Eq. (15) withΣΣΣ = 000:

EEE (p) = pDDD−1
eH ::: BBB. (21)

Then, EEE − EEE (p) is regarded as the macro-strain EEE (�) occurring under prescribed
loading after pore pressurization:

EEE (�) = EEE − EEE (p). (22)

5 Verification of Macro-Material Model

In this section, the macro-material model described in Sect. 3.2 is verified on the
basis of the finite element homogenization analysis explained in Sect. 4.

Tables1 and 2 give the material parameters used for the macro-material model in
this study. The components of DDDeH and MMM in Table2 are based on the assumption
of transverse isotropy owing to the 6-fold rotational symmetry on the xy-plane, as
described in detail in a different case of h/P (Ikenoya et al. 2012). This assumption
is satisfied exactly in the elastic range but approximately in the viscoplastic range in
the homogenization analysis, as previously shown for composites and honeycombs
(Michel et al. 1999; Asada et al. 2009). It is emphasized that all material parameters
have been determined by fitting the homogenization analysis results under uniaxial
tensions and simple shears in the absence of pore pressure p.
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Table 2 Components ofDDDeH andMMM usingVoigt’s notationwith component order xx, yy, zz, xy, yz
and zx

Macro-elastic stiffness (GPa) DDDeH =

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎣

38.50 19.60 18.03 0 0 0

19.60 38.50 18.03 0 0 0

18.03 18.03 84.88 0 0 0

0 0 0 9.45 0 0

0 0 0 0 17.68 0

0 0 0 0 0 17.68

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎦

Macro-viscoplastic anisotropy MMM =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

12.40 −6.76 −1.68 0 0 0

−6.76 12.40 −1.68 0 0 0

−1.68 −1.68 3.36 0 0 0

0 0 0 38.20 0 0

0 0 0 0 28.94 0

0 0 0 0 0 28.94

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

5.1 Uniaxial Tensile Behavior

Figure4a, b show macro-stress versus macro-strain relations under three uniaxial
tensions at Ė (�)

xx = 10−4 s−1, Ė (�)
yy = 10−4 s−1 and Ė (�)

zz = 10−4 s−1 under p = 0
and p = 20 MPa. First, let us see the homogenization analysis results in the figures,
which show that macro-anisotropy is considerable in both the elastic and the vis-
coplastic range. In the steady-states under the uniaxial tensions, �zz is about twice
as large as �xx and �yy , whereas �xx and �yy differ from each other by only 20%.
Therefore, the perforated plate has significant polar macro-anisotropy owing to the
straight circular holes that penetrate in the z-direction. Next, let us compare the
homogenization analysis results in Fig. 4b to those in Fig. 4a. It is seen that the pore
pressure of p = 20 MPa lowers the steady-state values of �xx and �yy by about 10
MPa, but has almost no influence on the steady-state value of�zz . Macro-anisotropy
is thus seen with respect to the effect of pore pressure on the viscoplastic macro-flow
stresses under uniaxial tensions.

The two kinds of macro-anisotropy mentioned above are well simulated by the
macro-material model, as shown in Fig. 4a, b. The success in simulating the polar
macro-anisotropy in steady states is a consequence of the determination ofMMM ; i.e., the
tension-related components of MMM have been determined by fitting the homogeniza-
tion analysis results in steady states under uniaxial tensions within the assumption of
the transverse isotropy on the xy-plane. On the other hand, the success in simulating
themacro-anisotropy in the effect of pore pressure on the uniaxial tensile viscoplastic
macro-flow stresses is a consequence of the following theoretical feature described

in Sect. 3. The effect of p on ĖEEvp appears only through Terzaghi’s effective stress
ΣΣΣ + p111, which has no anisotropic factor. Consequently, the macro-anisotropy in
the pore pressure effect in the viscoplastic range is simulated by the presence of MMM ,
which has been determined in the absence of p.
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Fig. 4 Macro-stress versus macro-strain relation under uniaxial tension at a macro-strain rate of
10−4 s−1: a p = 0 and b p = 20 MPa

Figure5a–c depict macro-strain trajectories under the three uniaxial tensions
at Ė (�)

xx = 10−4 s−1, Ė (�)
yy = 10−4 s−1 and Ė (�)

zz = 10−4 s−1 under p = 0 and
p = 20 MPa. The dashed lines in the figures indicate strain trajectories for volume-
incompressible isotropic solids. The homogenization analysis results in the figures
show that the macro-strain trajectories concerning E (�)

zz under uniaxial tensions in the
x- and y-directions noticeably deviate from the dashed lines over the whole macro-
strain range (Fig. 5a, b). In other words, macro-volumetric compressibility is evident
even in the viscoplastic range under uniaxial tensions in the x- and y-directions.
This volumetric compressibility obviously comes from the straight circular holes
penetrating in the z-direction. In contrast, under uniaxial tension in the z-direction,
no noticeable deviation from the dashed line occurs (Fig. 5c). This is because the
straight circular holes penetrating in the z-direction allow all solid elements in Y
to be uniformly deformed under uniaxial tension in the z-direction if p = 0. The
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Fig. 5 Macro-strain trajectory under uniaxial tension at amacro-strain rate of 10−4 s−1 under p = 0
and p = 20 MPa: a tension in x-direction, b tension in y-direction, and c tension in z-direction

straight circular holes penetrating in the z-direction thus cause considerable macro-
anisotropy and macro-volumetric compressibility even in the viscoplastic range. As
seen from Fig. 5a–c, these macroscopic characteristics are slightly affected by the
pore pressure of p = 20 MPa, and are well simulated by the macro-material model.

5.2 Simple Shear Behavior

Figure6 shows macro-stress versus macro-strain relations under three simple shears
at �̇(�)

xy = 10−4 s−1, �̇(�)
yz = 10−4 s−1 and �̇

(�)
zx = 10−4 s−1 under p = 0 and p = 20

MPa. Here Γ
(�)

i j = 2E (�)
i j (i �= j). As seen from the figure, the homogenization

analysis reveals the following two features. First, macro-anisotropy is consider-
ably large in the elastic range, but becomes relatively small in the viscoplastic
range. This feature is well simulated by the macro-material model, simply because
the shear-related components of DDDeH and MMM have been determined by fitting the
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Fig. 6 Macro-stress versus macro-strain relation under simple shear at an engineering shear macro-
strain rate of 10−4 s−1 under p = 0 MPa and p = 20 MPa

homogenization analysis results in the figure within the assumption of transverse
isotropy on the xy-plane. Second, the pore pressure of p = 20 MPa has no visible
influence on the simple shear behavior, as expected. This feature is well represented
by the macro-material model, because DDDeH and MMM have no nonzero components in
their tension-shear interaction parts (Table2).

5.3 Multiaxial Behavior

Figures7 and 8 depict the steady-state macro-stress surfaces provided by the homog-
enization analysis and the macro-material model under the following biaxial and
triaxial loadings under p = 0 and p = 20 MPa:

Ė (�)
xx = Ė∗ cos θ, Ė (�)

yy = Ė∗ sin θ, �zz = 0, (23)

Ė (�)
xx = Ė (�)

yy = Ė∗
√
2
cos θ, Ė (�)

zz = Ė∗ sin θ, (24)

where Ė∗ and θ are loading parameters, and �xy = �yz = �zx = 0. The macro-
stresses in the steady states at Ė∗ = 10−4 and 10−6 s−1 at θ = (π /12)k (k =
0, 1, 2, . . . , 23) are plotted in the figures. It is seen from Figs. 7a and 8a that
the macro-material model properly predicts the steady-state macro-stress surfaces
attained in the homogenization analysis under p = 0. Here it is recalled that the
macro-material model is based on the quadratic equivalent stress defined by Eq. (17).
This equivalent stress gives elliptic shapes to the steady-state macro-stress surfaces
if p = 0. The elliptic shapes are fairly close to those provided by the homogenization
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Fig. 7 Steady-state macro-stress surface of periodic unit cell Y under biaxial loading condition
(23): a p = 0 MPa and b p = 20 MPa

Fig. 8 Steady-state macro-stress surface of periodic unit cell Y under triaxial loading condition
(24): a p = 0 MPa and b p = 20 MPa

analysis. The pore pressure of p = 20 MPa changes the steady-state macro-stress
surfaces shown in Figs. 7a and 8a to those in Figs. 7b and 8b. Comparing them, we see
that the pore pressure causes translations of the steady-state macro-stress surfaces,
and also that the macro-material model closely predicts the translations found in the
homogenization analysis. The macro-material model is thus validated for the biaxial
and triaxial loadings expressed in Eqs. (23) and (24) under p = 20 MPa.

Figures9 and 10 show the variations in macro-stress and macro-strain in the
following two representative cases of multiaxial loading under p = 0 MPa and
p = 20 MPa:
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Fig. 9 a Macro-stress versus macro-strain relation and b macro-strain trajectory under plane-stress
equi-biaxial loading condition (25) with p = 0 MPa and p = 20 MPa

Fig. 10 Macro-stress versusmacro-strain relation under plane-strain equi-biaxial loading condition
(26) with p = 0 MPa and p = 20 MPa: a in-plane relation and b out-of-plane relation

Ė (�)
xx = Ė (�)

yy = Ė∗
√
2
, �zz = 0, (25)

Ė (�)
xx = Ė (�)

yy = Ė∗
√
2
, Ė (�)

zz = 0, (26)

where Ė∗ = ±10−4 s−1, and Σxy = Σyz = Σzx = 0. Equations (25) and (26)
are special cases of Eqs. (23) and (24), and represent plane-stress and plane-strain
types of equi-biaxial tensile loading, respectively. As seen from Figs. 9a and 10, the
pore pressure of p = 20 MPa decreases Σxx (=Σyy) by about 15 MPa in the steady
state under plane-stress equi-biaxial tensile loading, whereas the same pore pressure
decreases not only Σxx (=Σyy) but also Σzz by about 20 MPa in the steady state
under plane-strain equi-biaxial tensile loading. The effect of pore pressure on the
equi-biaxial tensile viscoplastic macro-flow stresses is thus noticeable. In contrast,
the variation in E (�)

zz under plane-stress equi-biaxial tensile loading is slightly affected
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Fig. 11 Tension-compression asymmetry under plane-stress equi-biaxial loading condition (25)
with Ė∗ = ±10−4 s−1 under p = 20 MPa: a macro-stress versus macro-strain relation and
b macro-strain trajectory

Fig. 12 Tension-compression asymmetry inmacro-stress versus macro-strain relation under plane-
strain equi-biaxial loading condition (26) with Ė∗ = ±10−4 s−1 under p = 20 MPa: a in-plane
relation and b out-of-plane relation

by p = 20 MPa, as shown in Fig. 9b. It is emphasized that the macro-material model
closely simulates the variations in macro-stress and macro-strain under both types
of equi-biaxial tensile loading in the presence and absence of p = 20 MPa.

Figures11 and 12 are concerned with tension-compression asymmetry under the
two types of equi-biaxial loading conditions (25) and (26) with Ė∗ = ±10−4 s−1 in
the presence of p = 20 MPa. As seen from the figures, the viscoplastic macro-flow
stresses have much larger absolute values under equi-biaxial compression than under
equi-biaxial tension. This tension-compression asymmetry is a consequence of the
pore pressure induced translations of steady-state macro-stress surfaces shown in
Figs. 7 and 8, and is again well predicted by the macro-material model.
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6 Conclusions

In this study, the homogenized elastic-viscoplastic behavior of thick perforated plates
with pore pressure was investigated to examine the macro-material model developed
by Ohno et al. (2012). To this end, homogenized stress-strain relations of a periodic
unit cell of pore-pressurized thick perforated plates under uniaxial and multiaxial
loadings were analyzed using a finite element homogenization method for periodic
solids. It was assumed in the analysis that the base metal of the perforated plates
exhibited elastic-viscoplasticity based on Hooke’s law and Norton’s power law and
had the material parameters of Mod. 9Cr-1Mo steel at 550 ◦C. The correspond-
ing macro-material model simulation was performed using the material parameters
determined by fitting the homogenization analysis results under uniaxial tensions and
simple shears. The finite element homogenization analysis and the macro-material
model simulation led to the following main findings:

1. The straight circular holes in the thick perforated plates caused significant macro-
anisotropy andmacro-volumetric compressibility in the viscoplastic range, aswell
as in the elastic range.

2. Pore pressure affected viscoplastic macro-flow stress more noticeably under
multiaxial loading than under uniaxial loading. Pore pressure thus induced appre-
ciable translations of steady-state macro-stress surfaces and marked tension-
compression asymmetry of viscoplastic macro-flow stress under multiaxial
loading.

3. The macro-material model properly simulated the homogenization analysis
results under uniaxial and multiaxial loadings in the presence and absence of
pore pressure in spite of there being no fitting parameter for the effect of pore
pressure.

The macro-material model was shown to be suitable under equi-biaxial loading con-
ditions (25) and (26). These loading conditions are actually important for designing
the spherical thick perforated plates currently under development for heat exchangers
in the next generation of fast breeder reactors in Japan (Kasahara et al. 2008; Ando
et al. 2013). Hence, the present macro-material model is expected to be effectively
used for their finite element models in their design stages.
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Abstract The paper presents experimental results concerning evaluation of an
influence of cyclic torsion on stress variations during monotonic deformation car-
ried out on the X10CrMoVNb9-1 steel. All strain controlled tests were performed
at room temperature using thin-walled tubular specimens. The experimental pro-
gramme contained selected combinations of monotonic and cyclic loadings, i.e. the
torsion-reverse-torsion cycles were superimposed on the monotonic tension. It is
shown that such cycles associated with monotonic tension caused essential varia-
tions of tensile stress. A significant decrease of the axial stress was visible. A single
specimen method for yield surface determination was used to evaluate variations
of yield point at different combinations of tension and torsion. The yield surface
concept was also used to check permanency of the stress reduction during tension
assisted by cyclic torsion. The effects observed during monotonic and cyclic loading
combinations were theoretically described using the Maciejewski-Mróz model. It
enabled to predict kinematic and isotropic softening or hardening of the material in
question. The results exhibited that the model can be used successfully to simulate
material behaviour during various combinations of monotonic and cyclic loadings.
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1 Introduction

Investigations of the material behaviour under biaxial stress state have recently
attracted interest of many researchers and engineers. This is directly related to
the rapid progress in material science, numerical calculations and metal forming
processes. Among a wide range of contemporary problems analysed by a number
of research centres one can distinguished the so called KOBO effect taking place
during an application of a unique method of material forming, proposed by Bochniak
et al. (2001, 2006) and Bochniak and Korbel (2003).

In this method, cyclic torsional loading is applied to the moving parts of techno-
logical machines, i.e. dies or rollers. The KOBO technique has been employed by
Korbel and Bochniak (two first letters of their surnames create the acronym KOBO)
to modify extrusion processes of tubes and wires. It provides essential advantages in
comparison to the typical forming techniques. A significant reduction of technologi-
cal forces due to application of the twisting moment is the main beneficial factor of the
KOBO method. Although this fact plays a significant role in modifications of tech-
nological processes, a number of the results presenting the variations of stress-strain
relationship obtained from tests under combination of monotonic loading assisted
by cyclic torsion is still far from current need. In the last decade the works of Correa
et al. (2003), Kowalewski et al. (2011, 2014) and Szymczak and Kowalewski (2012)
were devoted to experimental or numerical analysis of this issue. In the first paper,
the authors have illustrated variations of effective stress in low carbon steel due to the
presence of delayed torsion cycles with respect to monotonic tension. These results
exhibited an immediate drop of stress equal to 150 MPa when the cycles were acti-
vated. Kowalewski et al. (2011) have observed the same effect for the 2024 aluminum
alloy, applying shear strain amplitude equal to ±0.9 %. In this case, a tensile stress
reduction of 220 MPa was achieved. In addition, the variations of typical mechanical
parameters; i.e. proportional limit and yield point versus value of shear strain ampli-
tude were examined. Other aspects associated with this type of loading combination
are discussed in the paper by Szymczak and Kowalewski (2012), namely, analysis
of strain energy variations during monotonic tension assisted by cyclic torsion of
the 2024 aluminum alloy, M1E copper and X10CrMoVNb9-1 steel. Changes of the
strain energy were illustrated as a function of shear strain amplitude. As it has been
shown, a decrease of plastic energy during tension with an increase of torsion cycles
amplitude slightly increased the total plastic strain energy.

The phenomena mentioned above are also important for development of many
plasticity theories where various models have been considered (i.e. Mróz 1967;
Dafailas and Popov 1976; Wang and Dafailas 1990). Implementation of multi-surface
theories involves the following equations: yield surface equation, flow rule, bounding
surface and kinematic or hardening rules. In many cases, the plastic strain increment
is expressed as a non-linear function of the plastic potential, determined on the basis
of the flow rule, while the yield and bounding surfaces are dependent upon the
deviatory stress tensor. In order to identify the kinematic or isotropic hardening rules
the stress state components, plastic strain components, stress component increments,
and others are required. Moreover, for the correct description of a material behaviour
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applying many plastic theories there is a need to use various mechanical parameters
like the plastic modulus (Dafailas and Popov 1976; Mayama et al. 2007), tangent
modulus of plasticity (Chaboche 1991), saturated value of hardening at infinitely
large strain (Yoshida and Uemori 2002), translation modulus of bounding surface
center (Hassan and Kyriakides 1992) or elastic-plastic stiffness modulus (Hashiguchi
2005). This issue will be reflected in this paper by the Mróz and Maciejewski’s three-
yield surface model to be used for description of experimental data from tests carried
out under combination of monotonic tension and cyclic torsion.

The main objective of this paper is to show how the torsion cycles may affect tensile
characteristic of the X10CrMoVNb9-1 steel, and which parameters play the dominant
role in this process. The results achieved from such investigations are significant
not only from theoretical point of view, but more importantly from technological
reasons, since they are providing a knowledge necessary for modification of some
metal forming processes, such as drawing, extrusion or forging (Bochniak and Korbel
1999, 2000, 2003; Kong and Hodgson 2000; Bochniak et al. 2006).

Furthermore, the yield surface concept was applied to check how a prior combined
deformation (due to monotonic tension plus cyclic torsion) may change material
properties, and whether the effects observed during simultaneous monotonic tension
and cyclic torsion have the permanent character.

2 Details of Experimental Procedure

2.1 Material and Specimen

The material used was X10CrMoVNb9-1 steel (manufactured according to Polish
Standards). Its chemical composition is shown in Table 1. The specimens used were
thin-walled tubes. Nominal dimensions were: total length 122 mm, gauge length
60 mm, outside diameter 19.0 mm, and wall thickness 1.5 mm, Fig. 1.

2.2 Testing Device

The model 1343 INSTRON electrohydraulic, closed-loop, servo-controlled, biaxial
testing machine enabling combined loading in tension-compression-torsion-reverse
torsion was used in all experiments reported in this paper. The maximum axial and

Table 1 Chemical composition of the X10CrMoVNb9-1 steel

C Mn Nb P S Cr Ni Mo V Cu

0.08 0.50 0.06 Max Max 8.00 Max 0.85 0.18 Max

0.12 0.80 0.10 0.02 0.015 9.00 0.40 1.05 0.25 0.25
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Fig. 1 Thin-walled tubular specimen for material tested under biaxial stress states

torsional load capacities are rated at ±100 kN and ±1,000 Nm, respectively. Two
separate servo-controller units connected to the computer of the INSTRON loading
system can independently apply controlled axial loads and torsional moments. The
hydraulic pressure in the actuators comes from two servo-valves operated by servo-
controllers provided with set-point control signals from the computer. A multiple
analogue-to-digital converter feeds the computer with the signals of: axial displace-
ment of machine piston, rotation of the grip fixture of a specimen, axial force, twisting
moment, axial strain and torsional strain. The axial force and the torque applied to
the specimen were measured using load cells incorporated in the machine. The soft-
ware which had been specially developed for these tests enabled the maintenance of
constant effective strain rates during plastic loading and the resulting stress-strain
responses were recorded by acquisition unit. It was connected to the control com-
puter enabling both direct on-line observations of the experimental results and also
their saving onto the hard disk of the computer during each test.

2.3 Strain Measurement

The strains during tests were measured with foil strain gauges bonded to the outer
surface of the specimen in the middle of gauge length. Axial strains were measured
by a full bridge circuit of four strain gauges of which two, located on the oppo-
site sides of the specimen gauge length, were active, while other two, located on a
specially designed semi-ring, were used for temperature compensation. The shear
strains circuit also contained a full bridge of four strain gauges. They were bonded
to the specimen surface under 45◦ to the specimen axis. Both strain measurement
circuits were connected to the INSTRON measurement system and used for control
all tests. Before the start of each test both circuits were calibrated using a highly
sensitive tensometric bridge.
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2.4 Experimental Procedure

Experimental procedure comprised several steps. At first, the yield surface for virgin
material has been determined. Yield loci are typically determined by one of the
following techniques (Ikegami 1975a, b; Hecker 1976; Szczepiński et al. 1990):

(a) method of many specimens testing—in this technique a number of specimens
are loaded up to the plastic range along different stress directions. The yield
stresses for a chosen definition are determined from each stress-strain curve and
plotted in stress space to give the yield locus,

(b) single specimen method—in this technique a single specimen is loaded in many
different stress directions, each time until some measurable and limited plastic
strain is observed. At each point it is unloaded and reloaded in different direction
until the entire yield locus is obtained. These directions differ from each other by a
chosen angular increment, proceeding clockwise or anti-clockwise in individual
cases.

According to previous experiments the first method gives results which are qualita-
tively best, since in this case the shape of the yield surface is not disturbed by the
history of the previous probes performed on the same specimen in order to deter-
mine the other points of the yield locus. It has been found, however, that under
certain conditions single-specimen methods can be successfully used to determine
yield surface. In such technique small plastic strains are needed to define yielding
and they have to use a specific sequence of loading which should be the same for the
whole experimental procedure. Moreover, the use of different variants of the single-
specimen method overcomes the disadvantages of the first method, such as having to
use a number of expensive specimens to determine each yield locus, and also having
to deal with errors due to possible specimen-to-specimen variations. These effects
have been previously studied in detail by a number of researchers (Ikegami 1975a, b;
Hecker 1976; Kowalewski 1997). Taking into account these considerations the single
specimen method was adopted for determination of a yield surface.

The definition of the yield point may have a remarkable effect on the resulting
shape and dimensions of the yield surface. Generally, the yield point may be defined
by different points in the stress-strain diagram (Phillips and Tang 1972; Hecker
1976), e.g.:

• the point of the proportional limit,
• the point by the back extrapolation,
• the point by the proof stress,
• and some other points.

Since in the case of the material tested in this research the yield point determined
by the first two definitions was not clear-cut enough, the yield point was defined
here by the proof stress. In all tests for determination of the yield loci at the begin-
ning of loading phase the Young’s modulus was determined by the test controlling
programme. Such calculations were carried out on the basis of experimental points



122 Z.L. Kowalewski et al.

captured for the assumed stress limits. The loading of the specimen was stopped
when the difference between the total effective strain and elastic effective strain cal-
culated as the quotient of the effective stress and earlier calculated Young’s modulus
reached the chosen yield offset (in our case it was 5×10−5). Subsequently, the strain
control mode was changed to the stress control mode, and the unloading process was
carried out until zero force and zero torque were reached. The entire loading and
unloading processes were recorded. In the considered range of strain the unloading
process was linear for all directions in the stress space.

The experimental procedure comprised 16 successive steps for determining 16
points from the selected proportional (or radial) loading paths as shown in Fig. 2.
The angular spacing of the radial paths was equal to 22.5◦. Starting from the origin,
the specimen was first loaded in tension direction to point 1 where yielding occurred,
as defined above, and then the specimen was completely unloaded and again loaded
in reversed direction up to point 2 where again yielding occurred. The sequence
so described was repeated until all 16 yield points were determined. In Fig. 2 the
increasing numbers at the yield points indicate the loading sequence. In all tests the
stress state components were defined by the commonly used relations for thin-walled
tubes. Namely, the axial stress was expressed by the following formula:

σxx = 4F

π(D2
0 − d2

0 )
, (1)

where: F—axial force, D0—initial outside diameter measured within gauge length
of the specimen, d0—initial inside diameter measured within gauge length of the
specimen, whereas the shear stress was defined in the form:

τxy = 16Ms D0

π(D4
0 − d4

0 )
, (2)

where Ms—twisting moment.

Fig. 2 Loading sequence
for yield locus determination
using single-specimen
method (Kowalewski 1997)
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The magnitude of the effective stress in the stress state considered was expressed
by the well known relationship:

σe =
√

σ 2
xx + 3τ 2

xy, (3)

while the effective strain was determined from the formula involving Poisson’s ratio:

εe =
√

ε2
xx + 3

(1 + ν)2 ε2
xy, (4)

where: ν is the Poisson’s ratio, εxx—axial strain, εxy = γxy/2—shear strain. When
ν = 0.5 then this equation simplifies to the form:

εe =
√

ε2
xx + 1

3
γ 2

xy. (5)

The experimentally determined Poisson’s ratio ν for the steel tested was equal to
0.30 in the considered range of strain, i.e. up to 5 × 10−5. Thus, in all tests for yield
locus determination the Eq. (4) was used to calculate effective strain.

3 Results of Preliminary Tests

3.1 Results of Investigations of the Basic Mechanical
Properties

In order to determine mechanical properties of the tested material the standard tension
test was carried out on the thin-walled tubular specimen at room temperature. This
experiment was conducted on the INSTRON testing machine under constant strain
rate equal to 3.5×10−4 1/s. All typical mechanical properties were determined from
the stress-strain curve for the steel tested. These data are summarized in Table 2.

Table 2 Mechanical
properties of tested steel

Mechanical properties at room
temperature

Value

Young’s modulus E 2.19 × 105 N/mm2

Conventional yield limit R0.2 490 N/mm2

Ultimate tensile stress Rm 640 N/mm2

Elongation 30 %
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3.2 Validation of the Specimen Geometry

The main aim of the first part of experimental programme was to check whether the
specimen geometry provides sufficient range of homogeneous stress distribution. It
has been done using Finite Element Method (FEM). A scheme of loading conditions
for the specimen taken into account is presented in Fig. 3. The specimen was modelled
as a full elastic material. It was covered by the 43567 3D hexagonal elements, Fig. 4.
The Multipoint Constraint was used to apply an axial force and twisting moment by
coaxial vectors of displacement and rotation with z axis, Figs. 3 and 4.

The results of FEM analysis are illustrated in Fig. 5. Figure 5a presents variations
of the axial stress σzz . The uniform distribution of this stress component along 40 mm
measurement zone was achieved. This is important for selection of extensometers
or localization of strain gauges for determination of strain components. Having the
results of analysis for specimen geometry validation under torsional loading, it is
easy to notice a typical gradient of shear stress along the specimen thickness, Fig. 5b,
however, since it is relatively small we assumed that such stress distribution can be
treated as sufficiently homogeneous.

Fig. 3 Thin-walled tubular
specimen subjected to the
combination of axial force
(Fz) and twisting moment
(Ms)

Fz

Fz

Ms

Ms

Fig. 4 3D mesh specimen
and Multipoint Constraint

y

x

z
MPC Element
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Fig. 5 Distribution of stress state components: a axial, b shear

4 Yield Condition

The yield condition represents a relationship between stresses which are used to
describe the transition of a body from the elastic state to the plastic range. In practice,
many of engineering materials are not isotropic. In such cases investigation of a
yield surface evolution is regarded as one of the most effective methods to study
anisotropic properties of materials. Yield loci can be represented in a stress space
by the experimental points determined on the basis of stress-strain diagrams for the
magnitude of the effective strain assumed as a yield definition. These points determine
a shape, dimensions and location of the yield surface. On the basis of the experimental
points, all coefficients in a proposed anisotropic yield condition can be calculated
using the least squares technique. Since numerous experimental data show that plastic
anisotropy induced in metals by plastic forming processes is very complicated, it is
difficult to expect that it can be described by an universal theory. All the forms of
yield conditions discussed in many papers are based on certain simplifications and,
therefore, they should be treated as approximate conditions only. In order to find the
most accurate evaluation of anisotropic properties of a material the yield condition
used should possibly respect all the most important phenomena associated with a
plastic deformation such as for example the Bauschinger effect, shift and rotation of
the yield locus.

von Mises (1928) proposed the general yield function for crystals being quadratic
function with respect to stress components which contains 21 various coefficients of
anisotropy. This function remains unchanged when the sign of all stress components
are changed. It means that when using it, we cannot take into account the Bauschinger
effect. If the Bauschinger effect in metals with deformation-induced anisotropy is
to be accounted for, linear terms with respect to stress components should be intro-
duced in the yield condition. Goldenblat and Kopnov (1965) considered combination
of the stress state components with respect to material axes to propose criterion in
the form of a polynomial function. Szczepiński (1993) has elaborated on the basis
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of the Mises anisotropic yield condition (von Mises 1928) more general form of the
yield condition for materials displaying the Bauschinger effect. This yield condition
has been adopted in numerical calculations presented in this paper since it reflects all
effects mentioned above, and moreover, it can be easily transformed into the other
well known yield conditions, such as Hill’s yield condition (Hill 1956) or the yield
condition proposed by Ota et al. (1959), under adequate assumptions.

Generally, the Mises anisotropic yield condition (von Mises 1928) in form derived
by Szczepiński (1993) can be expressed by the following relationship:

f (σi j ) = k12(σxx − σyy)
2 + k23(σyy − σzz)

2 + k31(σzz − σxx)
2

+ 2τxy[k16(σzz − σxx) + k26(σzz − σyy)]
+ 2τyz[k24(σxx − σyy) + k34(σxx − σzz)]
+ 2τzx [k35(σyy − σzz) + k15(σyy − σxx)]
− 2k45τyzτzx − 2k56τzxτxy − 2k64τxyτyz

+ k44τ
2
yz + k55τ

2
zx + k66τ

2
xy

− b12(σxx − σyy) − b23(σyy − σzz) − b31(σzz − σxx)

+ b44τyz + b55τzx + b66τxy. (6)

In the experiments carried out in this research only σxx and τxy took nonzero values.
When this is substituted into the relation (6) the yield condition is simplified as
follows:

f (σi j ) = (k12 + k31)σ
2
xx − 2k16τxyσxx + k66τ

2
xy + (b31 − b12)σxx + b66τxy = 1. (7)

This expression represents the equation of a curve of a second order, usually written
in the form:

Aσ 2
xx + 2Bσxxτxy + Cτ 2

xy + 2Dσxx + 2Fτxy = 1, (8)

where coefficients A and D denote functions of yield limits for tension and com-
pression, respectively. They can be expressed as follows:

A = 1

Yxx Zxx
, 2D = 1

Yxx
− 1

Zxx
, (9)

where Yxx and Zxx are the yield limits for tension and for compression, respectively.
The coefficients C and F are related to the shear yield limits obtained from tests
under torsion and reverse torsion, respectively. They can be written in the following
simple form:

C = 1

RxySxy
, 2F = 1

Rxy
− 1

Sxy
, (10)

where Rxy denotes the yield limit obtained under positive oriented shear stress and
Sxy denotes the yield limit obtained under negative oriented shear stress.
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The B coefficient, which is proportional to the rotation of a yield surface with
respect to (σxx, τxy) co-ordinate system, has no such simple physical interpretation
as the coefficients described above and it cannot be deduced from uniaxial tests. In
order to find its value it is necessary to carry out at least a single test in a complex
stress state.

The main dimensions of the ellipse for the anisotropic yield condition are
expressed in the form of functions of parameters of a second order curve, i.e.:

• co-ordinates of the ellipse centre:

ασ = B · F − C · D

δ
; ατ = B · D − A · F

δ
, (11)

• rotation angle of the ellipse axes with respect of σxx, τxy co-ordinate system:

Φ = 1

2
· arctan

(
2B

A − C

)
(12)

• major (a) and minor (b) ellipse semi-axes:

a =
√

− Δ

a′ · δ
, b =

√

− Δ

b′ · δ′ , (13)

where:

Δ = −A · C + 2 · B · D · F − C · D2 − A · F2 + B2, δ = A · C − B2, (14)

and:

a′ = 1

2
(A + C +

√
(A − C)2 + 4B2), b′ = 1

2
(A + C −

√
(A − C)2 + 4B2).

(15)

The coefficients of the equation for the ellipse, to fit the experimental data, are
calculated by the least squares method. Such a procedure enables the determination
of all values of the coefficients in general form and, as a consequence, it provides
information about the anisotropic properties of the tested material.

The yield condition for anisotropic materials in form (8) is determined by five
material parameters. From a geometrical point of view they can be identified with
the five ellipse parameters, i.e. the lengths of the axes, its centre co-ordinates and its
rotation angle with respect to the co-ordinate system.

It has to be noted that besides of the quadratic yield functions, the non-quadratic
yield functions have been also proposed, e.g. Gotoh (1977), Hill (1990), Barlat et al.
(1988; 1991). Their yield conditions have been formulated in connection with the
sheet forming problems and are restricted to the special case of anisotropy. Such
approaches are not considered in this paper.
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5 Results of Investigations

5.1 Results for the Material in the As-Received State

Yield surface for the non-deformed steel determined for the offset strain εoff =
5×10−5 is shown in Fig. 6. Points in this figure represent experimental results while
ellipses are obtained by the least squares evaluation of the A, B, C, D, F coefficients
in Eq. (8). The ratio of the tension-compression and torsion-reverse torsion ellipse
axes (13) is close to that resulting from the Huber-von Mises yield condition for
isotropic materials.

In order to determine each single point of the yield surface two diagrams have
to be elaborated first, namely, axial stress and shear stress versus effective plastic
strain, Fig. 7. Having them subsequent points of the yield surface can be found.

5.2 Results for the Material After Prior Cyclic Deformation

In the main part of the experimental programme the steel was tested under cyclic
tension-compression or cyclic torsion-reverse torsion in order to find necessary para-
meters for theoretical simulations of cyclic phenomena related to the planned loading
programme using Maciejewski-Mróz model. After these tests the yield surfaces were
determined in order to check an effect of prior loading history on the initial yield
locus evolution. As it is shown in Fig. 8 an essential changes of the yield surface were
obtained. Prior cyclic loading along tension-compression strain path induced signif-
icant softening of the material, reflected by decrease of the yield surface dimensions,
especially in the direction coinciding with that of prior cycles. In the directions per-
pendicular with respect to the prior cyclic deformation the magnitudes of yield point
remained almost the same as those for the material in the as-received state achieved.

Fig. 6 Initial yield locus for
the X10CrMoVNb9-1 steel
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Fig. 7 Stress state components versus effective plastic strain for the yield point to be determined
for the loading paths oriented by the angular increment equal to 22.5◦ (a) and 67.5◦ (b)

Fig. 8 Comparison of the initial yield surface (0) and subsequent locus (1) were examined after
tension-compression (a) and torsion-reverse-torsion cycles (b) conducted at the strain amplitude
equal to ±0.8 %
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5.3 Results for the Material Tested Under Combination
of Monotonic Tension and Cyclic Torsion

In the next part of the experimental programme the steel was subjected to combination
of monotonic tension and cyclic torsion. The main aim of these tests was to investigate
whether the presence of torsion cycles can influence an axial stress.

All tests were carried out at room temperature under strain control of the servo-
hydraulic testing machine. Axial, shear and hoop strains were measured by means
of the strain gauges bonded to the outer surface of the specimen and located near
the terminal with strain gauges wired to form three temperature compensated bridge
circuits corresponding to the appropriate strain components measurements.

The tests of monotonic tension assisted by cyclic torsion were carried out for
cyclic strain amplitudes equal to ±0.3, ±0.5 and ±0.7 %, and frequency of 0.5 Hz,
Fig. 9a. For all experiments, variations of axial and shear stresses were registered
versus time, Fig. 9b. After unloading an analysis of mechanical properties variations
due to complex loading history induced was performed using again the concept of
yield surface determined in the two-dimensional stress space (σ, τ ). All yield surfaces
were determined using the single specimen method (Kowalewski 1997; Kowalewski
and Śliwowski 1997) for the offset strain equal to 0.005 %.

The experimental results from tests carried out according to the loading pro-
gramme illustrated in Fig. 9a, are presented in Figs. 10, 11, 12, 13 and 14. Figure 10a
shows a comparison of the standard tensile characteristic of the steel with stress-
strain curves determined during tension assisted by torsion-reverse-torsion cycles
for three values of the shear strain amplitude. As it is shown in Fig. 10, the torsion-
reverse-torsion cycles associated with monotonic tension caused variations of the
tensile characteristics. A significant decrease of the axial stress can be observed.
An increase of the cyclic shear strain amplitude led to the further decrease of the

Fig. 9 Details of the experiment: strain signals (a), stress response (b) into the loading program
shown in (a)
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Fig. 10 Results of tests for the steel subjected to monotonic tension assisted by cyclic torsion:
a Comparison of tensile curves; b Shear stress variations versus time; numbers denote: tensile
characteristic (0); 1, 2, 3—tensile curves determined in assistance of torsion-reverse-torsion cycles
at shear strain amplitude equal to: ±0.3, ±0.5, ±0.7 %, respectively

Fig. 11 Evolution of hysteresis loops (a) and variations of maximum values of shear stress versus
cycle number (b) for cyclic strain amplitude equal to: ±0.3 % (1), ±0.5 % (2), ±0.7 % (3)

Fig. 12 Initial yield
surface(0) and subsequent
yield loci after monotonic
tension assisted by torsion
cycles for shear strain
amplitude equal to:
±0.3 % (1), ±0.5 % (2),
±0.7 % (3)



132 Z.L. Kowalewski et al.

Fig. 13 Comparison of tensile stress variations determined during torsion cycles assistance for the
offset strain equal to: (A) – 5 × 10−5, (B) – 0.002, and obtained during yield surface investigation
(C) for the offset strain of 5 × 10−5

Fig. 14 Comparison of stress state components variations during yield surface investigations of
the steel in the as-received state and after monotonic-cyclic loading combination for the shear strain
amplitude being within a range from ±0.3 to ±0.7 %

tensile stress. It is expressed for example by an axial stress drop corresponding to the
axial plastic strain equal to 0.3 %, from 475 to 125 MPa. It has been shown that the
effect can be much stronger for the copper, since such reduction was almost three
times higher than that for the steel achieved (Kowalewski et al. 2014). In Fig. 10b
the results of shear stress component variations are presented. Differences between
maximum values of shear stress amplitude were rather small and did not exceed 50
MPa, despite of various shear strain amplitude levels used in the tests. The data pre-
sented in Fig. 10b was also used to elaborate hysteresis loop variations enabling an
analysis of the material hardening or softening effects, Fig. 11. Variations of the peak
values of hysteresis loops were shown in Fig. 11b. A character of their changes was
not the same for each strain amplitude considered. In the case of the lowest strain
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amplitude (±0.3 %) the material exhibited softening effect expressed by gradual
decrease of the maximum value of shear stress amplitude tending to the asymptotic
level equal to 270 MPa. For higher shear strain amplitude (±0.5 %) the saturation
state was not achieved for the number of cycles applied in the test. The same situation
was observed for the highest shear strain amplitude (±0.7 %). Additionally in this
case a shear stress variation was different than for the lower strain amplitudes. At
the beginning of torsion cycles the hardening effect was evident, however, after five
cycles the material exhibited a gradual softening effect.

The experimental programme comprised also tests the aim of which was to check
whether the axial stress reduction during tension assisted by cyclic torsion had
the permanent character. The yield surface concept was again applied. It was con-
ducted after examination of the steel under monotonic tension and torsion-reverse-
torsion cycles. For each yield surface determined in the experimental programme the
same offset strain equal to 0.005 % was assumed. The representative results for the
X10CrMoVNb9-1 steel are presented in Fig. 12. As it is clearly seen, the subsequent
yield surfaces for the steel proved that the axial force reduction is only related to
torsion cycles during monotonic tension. Looking at the magnitudes of tension stress
instead of reduction a little increase can be observed. Therefore, it can be concluded
that the comparison of the subsequent yield loci with the initial yield surface exhibits
only an influence of the loading history applied, and moreover, proves a transient
character of the axial stress drop, which can be solely attributed to cycles acting
simultaneously.

This fact is more clearly reflected in Fig. 13 that presents the differences between
tensile stresses determined at various levels of the shear strain amplitude. The curves
A and B represent yield point variations determined on the basis of stress-strain
curve from monotonic-cyclic loading test (Fig. 10) for plastic offset strain equal to
0.005 and 0.2 %, respectively. The results denoted by C illustrate the yield points for
tension determined after termination of monotonic tension assisted by cyclic torsion
and taken from yield loci presented in Fig. 12. It is easy to notice that the yield point
for tension, determined after loading history induced (curve C), achieved the average
level close to 440 MPa. It is significantly higher than the yield points calculated on
the basis of tensile curves obtained during tension tests assisted by torsion cycles
(curve A).

Larger changes of yield loci were visible in the torsion direction (Figs. 12 and 13).
The softening occurred for the positive shear stress is reflected by a reduction of the
yield point around 100 MPa independently on the amplitude of torsion cycles. In the
case of negative shear stress the same effect can be observed, however, a drop of yield
point was dependent on the shear strain amplitude. For the strain amplitudes ±0.3,
±0.5, ±0.7 % it attained magnitudes equal to 20, 25 and 100 MPa, respectively.

Some important effects are well reflected in Fig. 14 presenting variations of stress
components versus loading paths orientation applied in the procedure for the yield
surface determination. The axial stress component takes almost the same magnitudes
independently on the loading history induced. There are also very close to the val-
ues obtained for the material in the as-received state. The shear stress component
variations are sensitive into the loading path orientation. In the case of pure torsion



134 Z.L. Kowalewski et al.

Fig. 15 The ratio of
major/minor yield surface
semi-axes versus shear
strain amplitude

(90◦ and 270◦) the greatest difference can be observed between shear stress for mate-
rial in the as-received state and the same material pre-stressed by means of tension
combined with cyclic torsion.

An interesting presentation of the results is shown in Fig. 15. It illustrates varia-
tions of the ratio between the major and minor axes of the yield surfaces as a function
of the shear strain amplitude. As it is shown, in all cases we have material exhibit-
ing an anisotropy in the sense of the isotropic Huber-von Mises yield condition. The
ratio obtained for the steel in the as-received state was the nearest to that representing
isotropic material. It is seen that for higher magnitudes of shear strain amplitude a
degree of anisotropy became greater.

The results of tests containing combination of monotonic and cyclic loading can
be modelled using Maciejewski and Mróz (2007, 2008) approach. In order to demon-
strate opportunities of this model, the experimental data for the X10CrMoVNb9-1
steel will be used.

6 Simulation of Tensile Curve Variations Due to Application
of Torsion Cycles Using the Maciejewski-Mróz Model

The Maciejewski-Mróz model may be applied for theoretical analysis of the elastic-
plastic materials subjected to biaxial stress states realized on thin-walled tubular
specimens loaded by combination of tension and torsion.

In order to demonstrate opportunities of this model, the experimental data for
the X10CrMoVNb9-1 steel will be used. To discuss the process for determining
necessary parameters in the combined tension and cyclic torsion, a thin walled tube
of initial radius r0, length l0 and wall thickness t0 was considered. The alternat-
ing torsion was applied in order to reduce the axial stress and the axial force used,
required to execute the process. To obtain uniform length variation, the axial strain
and strain rate were |ε̇x | = α̇t, |ε̇x | = α̇, where |α̇| = ∣∣l̇

∣∣ /l0. For the logarith-
mic strain measure there is εx = ln (1 ± l0α̇t) and |ε̇x | = ∣∣l̇

∣∣ / l = α̇l/ (1 ± α̇t).
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The shear strain is assumed to oscillate within the range 2γm and the period T . For
piecewise linear oscillation, we have β̇ = γ̇xy = 4γm/T . Marking the ratio of rates
of shear and axial strains by η gives

η = β̇

α̇
= const, β̇ = 4γm

T
, β̇ > 0, α̇ > 0. (16)

For the piecewise linear shear strain control (Fig. 9a) there are two essential parame-
ters controlling the process, namely the strain rate ratio η and the torsion amplitude
2γm.

Maciejewski and Mróz (2008) studied the cyclic deformation process for different
values of η and γm after initial model calibration and verification for uniaxial cyclic
loading. The cyclic hardening model based on the classical Huber-von Mises yield
function and the kinematic hardening rule proposed by Armstrong and Frederick
(1966). The small strain framework is assumed. This is justified by the domain of
application to cyclic loading conditions applied in the experimental programme.
A partition of the total strain tensor into elastic strain and plastic strain is assumed,
where elasticity is described by the linear Hooke’s Law. The yield condition and the
plastic flow rule are expressed by the following equations:

fp =
√

3

2
(SSS − XXX) (SSS − XXX) − σp (ξ) = 0,

ε̇εεp = λ̇
∂ fp

σσσ
= λ̇

3

2
(SSS − XXX)

σp
, λ̇ ≥ 0, fp ≤ 0, λ̇ fp = 0,

(17)

where

λ̇ =
√

2

3
ε̇εεpε̇εεp,

SSS is the stress deviator

SSS = σσσ − 1

3
trσσσ111,

XXX is the back stress deviator and σp is the yield stress. Here · denotes the scalar
product and ˙(. . .) over a symbol denotes the rate with respect to a process evolution
parameter. The back stress evolution rule can be written in the form

ẊXX = λ̇γ (SSSl − SSS) = λ̇γ (XXX l − XXX) = λ̇γρρρΔ, (18)

where γ is material parameter and SSSl and XXX l are the saturation states associated with
the instantaneous plastic strain rate orientation. Considering a deformation process
with constant orientation of the plastic strain rate vector, the stress SSS tends to its
limiting value SSSl (on the hardening surfaces Fh = 0) coaxial with the plastic strain
trajectory for specified ε̇εεp of constant orientation, Fig. 16.
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Fig. 16 Concept of the
three-surface model of
Maciejewski-Mróz
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Consider now a more general model for which the hardening surface is allowed
to translate and expand. The hardening surface equation is assumed in the following
form

Fh =
√

3

2
(SSSl − YYY ) (SSSl − YYY ) − σl (ξ) = 0, (19)

where σ1(ξ) is the hardening of the surface radius, and its translation rule in similar
form to (18) as the Eq. (20), where YYY is the second level back stress, γ1 is the material
parameter, and YYY l is the limit convergence point

ẎYY = λ̇γ1(YYY l − YYY ) for r =
√

3

2
XXX XXX > Rl,

ẎYY = λ̇γ1(XXX − YYY ) for r ≤ Rl

(20)

Assume that YYY l lies on the limit surface whose equation can be written in the form

Fy =
√

3

2
YYY lYYY l − Rl(ξ) = R − Rl = 0, (21)

where Rl is the limit surface radius.
The back stress YYY evolution rule is obtained by assuming that YYY tends to the radial

state YYY l on the limit surface Fy. The limit state YYY l is specified by the vector XXX −YYY 0,
where YYY 0 = f YYY , 0 ≤ f ≤ 1, so we have

YYY l = YYY 0 + ttt lρ, ttt l = XXX − YYY 0

‖XXX − YYY 0‖ , YYY 0 = f YYY , 0 ≤ f ≤ 1. (22)
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Here ttt l is the unit vector along XXX − YYY 0, and the scalar factor ρ. The fraction
factor f is identified from the multiaxial ratcheting tests, for instance from combined
monotonic tension—cyclic torsion tests. It turns out that the position of the limit state
ttt l is very essential in accurate prediction of the ratcheting strain. When the back stress
XXX is represented by the point inside the limit surface Fy = 0, then according to (19)
we set YYY l = XXX . The translation rule of the first level back stress XXX is now modified
and instead of (18) the following formula can be written

ẊXX = λ̇γ (XXX l − XXX) + ẎYY , (23)

where ẎYY is now the convective rate.
It is assumed that both limit, hardening and yield surfaces may expand, but the

ratio of their diameters is constant, thus:

kl = σl

Rl
= const, kp = σl

σp
= const. (24)

The isotropic expansion of surfaces Fh = 0, fp = 0, Fy = 0 are dependent on the
amplitude of cyclic stress. Assumption that there is no isotropic hardening effect for
l ≤ l0 (Fig. 17), leads to

ξ̇ =
⎧
⎨

⎩
λ̇

(
l − l0
1 − l0

)κ

= Lκ , l > l0,

0, l ≤ l0,

l = 1 − |Δ|
2

(
σl − σp

) , Δ = |AB| = |SSSl − SSS| .
(25)
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Fig. 17 Translation of the yield surface along the AB path: a initial position: l = 0, |AB| =
2(σl − σp), b ultimate position: l = 1, |AB| = 0
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The weighting parameter l depends on the distance of the stress point to the hardening
surface. When the yield surface approaches the hardening surface, then l → 1, but
for the other cases there is 0 ≤ l ≤ 1. Thus, the deformation paths more distant
from the hardening surface induce lower hardening than the paths approaching the
surface Fh = 0. Similarly, the cycles of lower stress or strain amplitudes correspond
to lower hardening rates than those of higher amplitudes.

Similar notion for the evolution of isotropic hardening was introduced first by
Chaboche et al. (1979), where the strain range dependence of cyclic hardening was
incorporated into constitutive modeling of isotropic hardening. Later, Ohno (1982)
proposed the cyclic non-hardening region in the plastic strain space and assumed that
when plastic strain changes inside the region under cyclic loading, no evolution of
isotropic hardening occurs, leading to the dependence of cyclic hardening on strain
range. Such concept has been used and further developed in other works (e.g., Ohno
and Kachi 1986; Ohno et al. 1986; Chaboche 1986, 1989; Kang et al. 2002). Instead
of plastic strain space Yoshida and Uemori (2002) specified the cyclic non-hardening
region in the deviatoric stress space for formulating a large-strain cyclic plasticity
model. The extensive review of plastic and viscoplastic hardening models applicable
for simulation of cyclic deformation was presented by Kang et al. (2008).

In our analysis the isotropic hardening rule is assumed in a form

σl = σl0 + (σlf − σl0)
(
1 − e−wξ

)
, (26)

where σl0 is the initial radius of the hardening surface and σlf is the asymptotic value,
w is the constant hardening parameter.

In the case of the X10CrMoVNb9-1 steel the model was used to simulate its cyclic
response on the basis of tests presented in Figs. 9 and 10. The material parameters have
been calibrated from cyclic pure tension and torsion tests. The model parameters for
three-surface models are: the elasticity moduli E = 200 GPa, n = 0.30, hardening
surface radius is σl0 = 520 MPa, σlf = 540 MPa, l0 = 0.5, κ = 1, w = 1, kp =
1.81, kl = 4.0, and translation rule parameters γ = 550, γl = 55, f = 1.

The results of uniaxial tests in simple cyclic tension-compression and cyclic tor-
sion are presented in Fig. 18 and experimental data for axial tension combined with
cyclic torsion are shown in Fig. 19. For the piecewise linear shear strain control
(Fig. 9a) there are two essential parameters controlling the process, namely the strain
rate ratio η = γ̇xy/ε̇x and the torsion amplitude.

The experimental results in Fig. 19 are compared with predictions obtained using
the three-surface model for torsion strain amplitude equal to 0.3 %, (η = 72) and
0.7 %, (η = 168). It can be observed that the model predictions are close to exper-
imental curves for all values of shear strain amplitude considered. Since the three-
surface model provides realistic predictions, it seems to be reasonable to use it in a
further planned analysis of the X10CrMoVNb9-1 steel under combined loading.
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Fig. 18 Experimental and numerical hysteresis loops of the X10CrMoVNb9-1 steel: a cyclic
tension-compression; b cyclic torsion

Fig. 19 Comparison of
the three-surface model
predictions with
experimental data for the
X10CrMoVNb9-1 steel
subjected to monotonic
tension assisted by
torsion-reverse-torsion
cycles at various processing
parameters

7 Summary and Concluding Remarks

The experimental programme carried out on the X10CrMoVNb9-1 steel had to pro-
vide a knowledge necessary for better understanding of phenomena taking place dur-
ing combination of monotonic and cyclic loading in the range of small deformations.
The results exhibited that superimposing cyclic torsion on monotonic tension reduces
the axial stress significantly. In many industrial applications such effect would extend
the lifetimes of some engineering components. This is especially important when
considering the manufacturing costs of these elements which are extremely high.
The applied loading combinations considered in this paper give a promising tool
for reduction of an acting axial force, and therefore, ensure more beneficial work-
ing conditions in comparison to similar loading conditions but realized within large
deformation range. This may lead to the lifetime extension of some working elements
of machines used to fabricate many products in the form of rods, tubes, etc. applying
less energy, and as a consequence, generating less costs.

In order to gain a more thorough knowledge of the effects related to various
combinations of monotonic and cyclic loading the microscopic observations are
necessary. They should be carrying out “on line” with the loading process, what is
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difficult and requires adequate equipment. Our current experimental facility does not
enable a performance of such investigations at the moment.

Experimental evaluation of the influence of prior loading history in the steel
due to tension assisted by cyclic torsion at ambient temperature on the shape and
dimensions of yield surfaces are also reported in this paper. An increase of torsion
cycles amplitude caused essential variations of the yield surface dimensions measured
by the ratio of the major to minor axes. The ratio changed from 1.6 for the material
in the as-received state to 2.6 for the material pre-stressed due to combination of
monotonic tension and cyclic torsion for the highest shear strain amplitude applied
in this research. It means that the tested steel became more anisotropic due to cycles
under higher strain amplitudes.

The theoretical results presented in the paper show that phenomena observed
during combination of monotonic and cyclic loading can be successfully simulated
applying the Maciejewski-Mróz three-surface model.
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Fracture of Cortical Bone Tissue

Simin Li, Adel Abdel-Wahab, Emrah Demirci
and Vadim V. Silberschmidt

Abstract In this chapter, mechanical behaviours of a unique type of composite
material—cortical bone tissue—are considered for different length scales. Both
experimental and computational approaches are discussed in this study to evalu-
ate the effects of mechanical anisotropy and structural heterogeneity on the fracture
process of cortical bone. First, variability and anisotropic mechanical behaviour of
cortical bone tissue are characterised and analysed experimentally for different load-
ing conditions and orientations. Then, results from the experimental studies are used
to develop finite-element models across different length-scales to elucidate mechan-
ical and structural mechanisms underpinning the anisotropic and non-linear fracture
processes of cortical bone.

Keywords Cortical bone · Fracture · Variability · Anisotropy · Microstructure ·
Extended finite-element method (X-FEM)

1 Introduction

Research on the mechanical behaviour of the naturally occurring composite material,
cortical bone tissue, has attracted increasing attention over the past few decades, not
only because bone plays an important role in structural integrity of a musculoskeletal
system, but also due to our growing knowledge of its intrinsic hierarchical structure
and heterogeneous mechanical properties. This mineralized biological tissue pro-
vides both sufficient stiffness and toughness for the skeleton system to serve as the
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main load-bearing component. And yet, it is light-weight to allow flexible movements
around joints through attachment of muscles. Being a living tissue, cortical bone also
has the ability to adapt (both its shape and internal structure) to mechanical environ-
ment through processes called modelling and remodelling (Martin and Burr 1989;
Currey 2013). The excellent mechanical ability of cortical bone is defined by its main
building blocks: on the one hand, a ‘soft’ organic matrix (mainly type-I collagen)
providing sufficient compliance and collagen framework for various bioactivities;
on the other hand, the ‘hard’, carbonated apatite nano-particles (hydroxyapatite)
providing strength and rigidity. Together, they form a hierarchically organized com-
posite material, which could be categorised into several hierarchical organizations
from nano-scale to macro-scale levels (Weiner and Wagner 1998; Ritchie et al. 2005;
Launey et al. 2010; Currey 2012).

At the nano-scale, bone is composed of mineralised collagen fibril bundles and
extrafibrillar mineral particles (Weiner and Wagner 1998; Rho et al. 1998; Currey
1999; Fratzl et al. 2004). At the sub-micro-scale, cortical bone is laid down in layers
of a lamellar structure (3–7 µm in thickness) that is similar to that of plywood com-
positeparallel within each layer, but having a small angle between adjacent layers
(Ascenzi and Benvenuti 1986). Across a bone section, concentric layers of lamel-
lae along with the surrounding central vascular channel form the most prominent
structure under microscope—Haversian system (containing an osteon and a Haver-
sian canal) embedded into the remnants of discrete layers of lamellae bone called
interstitial matrix. Osteons are, on average, 200µm in diameter and up to 1 cm long
cylindrical structures, typically arranged in parallel to a long bone’s main axis (Ethier
and Simmons 2007). In addition, a network of canals and channels formed across the
bone’s cortex accommodates blood vessels, a nervous system and bone cells; those
large canals, on average 50–90µm in diameter, parallel to the osteon axis are called
Haversian canals; those channels, running perpendicular to Haversian canals and
interconnecting adjacent osteons and Haversian canals, are called Volkmann canals
(Martin and Burr 1989). As a living tissue, bone also houses living cells such as
osteocytes that live within an oblong space called lacunae, which is connected to the
surrounding region by a star-like network of miniature-channels called canaliculi.
The latter are responsible for exchange of nutrients and waste between osteocytes
(Ethier and Simmons 2007). The interface which can often be observed between
the secondary osteons and interstitial matrix as a result of remodelling process is
called cement line; it is a 2–5µm thick interface layer that plays a key role in the
bone’s mechanical behaviour, especially its fracture (Martin and Burr 1989; Currey
2013). However, the opinions in the literature with regard to the mechanical prop-
erties of cement line are rather controversial. Different experimental observations
reported that the cement line can act either as a toughening mechanism, deflect-
ing a crack from osteons, or as a weakening path that facilitates the crack initiation
(Ritchie et al. 2005; Currey 2012). At the meso-scale, the dense and thick outer layer
of cortical bone and the porous sponge-like trabecular bone make up the tissue-level
bone structure (Peterlik et al. 2006). All these hierarchical levels work together in
accord, complementing each other to achieve enhanced macroscopic mechanical
properties of the bone tissue at the full-bone scale (Peterlik et al. 2006).
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Macroscopically, the deformation mechanisms of bones differ from those of
metals, polymers and composites since bones consist of a living tissue with a contin-
uously evolving hierarchical microstructure. Mechanical properties of cortical bone
vary not only from bone to bone; they demonstrate a spatial viability even within the
same bone due to changes of the underlying microstructure (Abdel-Wahab et al. 2011;
Li et al. 2013b). They also depend considerably on a loading mode and orientation.
Mechanical properties of cortical bone, such as the Young’s modulus, yield strain
and ultimate stress in a longitudinal direction, i.e. parallel to osteons, were reported
to be significantly higher than those in a transverse direction, i.e. perpendicular to
osteons (Reilly and Burstein 1975). Dissimilar mechanical properties measured by
nano-indentation across different microstructural constituents provided further evi-
dence on its heterogeneous and anisotropic mechanical behaviour (Rho et al. 1997).
Furthermore, it was also reported that cortical bone tissue is able to sustain higher
yield and ultimate stresses in compression than that in tension (Reilly and Burstein
1975; Thompson et al. 2001; Yeni and Fyhrie 2003). Mercer et al. (2006) suggested
that the material’s porous structure could directly affect the deformation mechanism
under tension and compression (Mercer et al. 2006), which coincides with the defor-
mation patterns observed elsewhere (Boyce et al. 1998). To further complicate matter,
results from several authors (Abdel-Wahab et al. 2011; Li et al. 2013b; Bonney et al.
2011) have all indicated a statistically significant variance of mechanical properties
at different anatomical sites of the cortical bone (Abdel-Wahab et al. 2011; Bonney
et al. 2011). Considering the wide spectrum of material properties of cortical bone
and its intricate deformation processes associated with various loading modes and
orientations, a further investigation is needed to elucidate the effect of variations in
material properties in relation to the local regions and underpinning microstructural
constituents.

Microscopically, the intrinsic micro-architecture of cortical bone has a significant
effect on its macroscopic mechanical and fracture properties. Anisotropic deforma-
tion and fracture behaviours observed at macroscopic level are largely attributed to
the preferential alignments of micro-constituents at subsequent length-scales, such as
osteons and Haversian canals at micro-scale, or collagen fibrils and mineral crystals
at nano-scale (Peterlik et al. 2006). From a fracture-toughness perspective, intri-
cate structural hierarchy and material heterogeneity observed in cortical bone tissue
can often lead to an improved fracture resistance owing to the formation of various
fracture toughening mechanisms (Ritchie et al. 2005; Launey et al. 2010). Previous
experimental results reported orientation-dependent fracture toughness, which had
a higher value for fracture perpendicular to osteons’ direction and considerably low
value when fracture was parallel to it (Ritchie et al. 2005; Nalla et al. 2005a; Martin
and Boardman 1993; Behiri and Bonfield 1989). A ratio between the high and low
fracture toughness for crack propagation in different directions ranges from 1.5 to
2.4 (Ritchie et al. 2005; Nalla et al. 2004a, 2005b) depending on
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(a) interaction of a propagating crack with respect to the microstructural features
and

(b) activation of respective toughening mechanisms: formation of microcracks in
the vicinity of the main crack due to stress concentrations ahead of crack tip
(Zioupos and Currey 1994; Zioupos et al. 1996; Vashishth et al. 2003), crack
deflection and blunting at cement lines that are weak interfaces at the boundaries
of secondary osteons (Liu et al. 1999), ligament bridging in the wake zone behind
the crack tip (Nalla et al. 2004b, 2005a; Martin and Boardman 1993; Behiri and
Bonfield 1989).

Being a dynamic living tissue, cortical bone has the ability to continuous remodel,
repair and adapt itself to the surrounding environment. Unlike most engineering
composite materials, which are manufactured based on predefined structure and
volume fraction of their constituents and, consequently, have a limited variability on
their mechanical properties, the distribution and volume fraction of the microstructure
constituents in a cortical bone can differ dramatically from its one part to another.
As a result, toughness varies from 920 to 2,780 N/m (Ritchie et al. 2005) for the
same type of bone tested under the same experimental configuration and material
orientation. This variability is significant even for different cortices of a single bone
(Bonney et al. 2011). However, there is a rather limited number of studies available
to focus on unveiling a potential correlation between the variation of microstructure
and variability of the mechanical behaviour of cortical bone.

Understanding of underpinning mechanisms of, and processes associated with,
damage and fracture is key for prevention and diagnosis of bone-fracture related
traumas. In order to do so, the mechanical properties of cortical bone need to be
characterised at different length-scales. This is especially important for subsequent
implementation of numerical models, incorporating materials properties that depend
fully on the accuracy and understanding of the experimental results.

To the author’s knowledge, there is no single-source study available in literature
that provides a full comparison of the dissimilar deformation and damage behaviours
of bovine cortical bone for both loading conditions and orientations. Nor there is a
systematic study on the variability of mechanical properties of cortical bone. Hence,
in this chapter, uniaxial tension and compression studies were first conducted for a
direct comparison of anisotropy and variability of mechanical properties of bovine
cortical bone; then, fracture toughness for three crack-propagation directions was
measured to characterise the anisotropic fracture resistance of cortical bone. Addi-
tionally, to comprehend our understanding of the correlation between heterogeneity
of the microstructural constituents and the variability of the macroscopic mechani-
cal properties, the distribution of microstructural constituents were analysed. These
studies allowed a complete set of material properties to be extracted and used to
assist the development of accurate finite-element models to evaluate fracture process
in microstructured cortical bone tissue.
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2 Mechanical Properties of Cortical Bone Tissue
at Macro-Scale

2.1 Variability of Anisotropic Mechanical Behaviour
in Tension and Compression

Uniaxial tensile and compressive tests were conducted to characterise the deforma-
tion behaviours of cortical bone at different loading conditions and orientations.

Specimens used for this entire study were obtained from mid-diaphysis of fresh
bovine femoral bones from a local butchery shop soon after slaughter. Specimen
preparation and storage procedures followed precisely with generally adopted meth-
ods in Abdel-Wahab et al. (2011), Roe et al. (1988), Rho and Pharr (1999), details
can be found in Li et al. (2013a, 2014). Dumb-bell shape specimens (15 mm in gauge
length×5 mm×2 mm) oriented along both the longitudinal and transverse directions
were prepared and divided into four groups according to the anatomical positions:
anterior, medial, posterior and lateral for uniaxial tension tests (Fig. 1). The same
categorisation was applies to the cylindrical-shaped specimens (∅5 mm ×5 mm) for
uniaxial compression test.
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Fig. 1 Schematic illustration of specimen preparation process for: a uniaxial tension and compres-
sion tests; b three-point bending tests
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Experiments with specimens from four different quadrants of the bone were
performed on an Instron 3366 (Instron, USA) system with a 10 kN load cell under
quasi-static loading conditions. Displacements were measured using an extensome-
ter (2630 Series, Instron) and a linear variable differential transducer (LVDT) sensor
(2601 Series, Instron) for uniaxial tensile and compressive tests, respectively. The
detailed experimental procedure can be found in Li et al. (2013b).

2.1.1 Results and Analysis

The obtained results (detailed in Li et al. 2013b) are well correlated with those
reported in literature (Reilly and Burstein 1975) and indicate that the mechanical
response of cortical bone diverge dramatically under different loading conditions
and orientations. Among the material properties measured for four anatomic quad-
rants, two orientations and two loading modes, the anterior quadrant has the highest
Young’s modulus in longitudinal direction, while the medial quadrant has the high-
est one in transverse direction (Fig. 2). The lowest values are in lateral and posterior
quadrants for longitudinal and transverse directions, respectively. The difference
between the highest and lowest values of the Young’s modulus in each orientation
is more than 20 %. The relations across different quadrants (Factor A) and loading
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modes (Factor B) were compared in terms of significance of variances using the
two-way ANOVA analysis (α = 0.05) with a Tukey HSD test. Overall, the results
show a statistical significance in factor A (between cortices), but there is no uniform
significance in factor B (between loading modes). The interaction between the two
factors appears to be negative, which means that loading modes do not have effective
contribution to the variability across cortices and vice versa. Results of detailed Tukey
HSD tests together with pairwise comparisons between factors are summarised in
Li et al. (2013b). According to the statistical analysis, no significant variances are
found between anterior to medial and posterior to lateral quadrants in all analyses,
which suggests a strong linkage between each of the two pairs. On the other hand,
the differences between the opposite quadrants are consistently significant (p < 0.05
for all the comparisons), which could be attributed to dissimilar microstructures dis-
tribution. Less-consistent values are found between anterior to lateral and medial to
posterior quadrants, where the transition of the microstructure happens to be the most
severe (Li et al. 2013b). The ANOVA analysis for post-yield mechanical properties
did not reveal statistical correlation between cortices due to simultaneous effects of
strain hardening and progressive damage softening.

2.2 Fracture Toughness of Cortical Bone Tissue

Fracture toughness of cortical bone in different orientations is studied in this section to
deepen our understanding on the anisotropy and variability of the fracture resistance
of cortical bone tissue.

The specimens extracted from fresh bovine femurs were grouped according to
their anatomic positions—anterior, posterior, medial and lateral (Fig. 1). Fifteen spec-
imens cut from each cortex were notched to allow crack growth along three different
orientations relative to the bone axis—longitudinal, transverse and radial as shown in
Fig. 1. After cutting, specimens were polished and then checked under microscope to
insure that their surfaces were free from scratches and damage. Specimens were kept
hydrated in a 0.9 % physiological saline solution prior to tests. All specimens were
prepared with the same dimensions for comparison, according to British Standard:
BS 7448-1 (Standard 1999): 25 mm × 2.72 mm × 5.43 mm (total length × width ×
thickness). Also, a very fine slit of 2.7 mm was produced using a low-speed diamond
blade for all specimens according to Standard (1999). Due to dimensional constraints
of the cortical bone tissue, and in order to provide comparability, specimens with the
same length (L = 25 mm) were used for all cortices and crack directions. Hence, the
span (S), width (W ), thickness (B) of specimens and crack length (a) were chosen
based on the full length of 25 mm and proportions for dimensions defined in Standard
(1999). The used dimension proportions are L = 4.6W , S = 4W , a/W = 0.5, and
B = W/2.

The fracture toughness tests were performed according to British Standard—
BS 7448-1 (Standard 1999) on an Instron 3345 single column bench-top machine
(Instron, USA) using single-edge-notch specimens for bending. All specimens were
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Fig. 3 Three-point bending setup with single-edge-notch cortical bone specimen and LVDT
mounted on Instron 3345 machine

loaded quasi-statically up to failure with a displacement-controlled loading rate of
1 mm/min. The load was measured using a 5 kN load cell and the corresponding
load-line displacement was measured synchronously using a LVDT sensor (2601
Series, Instron, USA), see Fig. 3. The obtained load-displacement curves were then
analysed according to the classification described in Standard (1999). After tests,
fracture surfaces of all the specimens were gold-coated and analysed using scanning
electron microscopy (SEM).

In this study, the fracture behaviour of all specimens was predominantly non-
linear; therefore, an elastic-plastic fracture mechanics parameter, J -integral, was
calculated based on British Standard BS 7448-1, using the following equation (Stan-
dard 1999):

J=
[

F S

BW 1.5
f
(a0

W

)]2 (
1−v2

)

E
+ 2U p

B (W−a0)
, (1)

where S is the bending span, F is the applied force, f
( a0

W

)
is a function of

( a0
W

)
, v is

Poisson’s ratio, E is elastic modulus, Up is the plastic part of area under plot of force
versus specimen displacement along the load-line, B is the specimen’s thickness, W
is the effective width of the test specimen and a0 is the average original crack length.

2.2.1 Results and Analysis

Critical values of fracture toughness JC of the cortical bone tissue were calculated
with respect to three crack-growth directions: longitudinal, radial and transverse;
in addition, anisotropy ratios of the fracture toughness values were analysed. The
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Table 1 Average and standard deviation for critical J -integral values for all cortex positions and
crack growth directions

Units: N/m Anterior Medial Posterior Lateral

Mean SD Mean SD Mean SD Mean SD

Longitudinal 1033.9 ± 254.5 1768.5 ± 98.8 1165.7 ± 340.1 2034.3 ± 509.9

Radial 1199.1 ± 153.1 1418.2 ± 97.2 983.0 ± 369.5 2664.2 ± 554.4

Transverse 4509.1 ± 422.1 5925.5 ± 802.9 3876.7 ± 847.3 5661.6 ± 452.7

obtained experimental data demonstrates that all specimens exhibits a non-linear
fracture process; hence, the J -integral (Table 1) was used to quantify the fracture
toughness based on British Standard: BS 7448-1 (Standard 1999).

It can be noticed from these results that the fracture-toughness values for speci-
mens cut from different cortices are significantly different. In general, cortical bone
shows higher resistance to fracture when a crack grows perpendicular to the osteon
direction and lower resistance for those grow parallel to osteons (i.e. radial and lon-
gitudinal directions, respectively). For a crack growing in transverse direction, speci-
mens from the medial quadrant has the highest critical value of J -integral while those
from posterior quadrant are the lowest. The Tukey HSD test (α = 0.05) demonstrates
statistically significant differences between medial to posterior (p = 0.035) and pos-
terior to lateral (p = 0.028) cortices. On the other hand, specimens with radially
extended cracks have the highest fracture toughness in case of the lateral quadrant
and the lowest for the posterior one. The calculated critical values of J -integral for
the radial cracks, ranging from 983 to 2,664 N/m, are significantly lower compare
with specimens having transverse cracks. Significant differences are found between
anterior to lateral (p = 0.027) and posterior to lateral (p = 0.015) quadrants. Finally,
for specimens with cracks extending along the direction parallel to osteons (longi-
tudinal cracks), the critical J -integral values are comparable with those for radial
cracks, and their highest value is found in the lateral quadrant whereas the lowest
is in anterior specimens. Statistically significant differences in this case are found
between anterior to medial (p = 0.043) and anterior to lateral (p = 0.02) quadrants.
Generally, comparing data between cortices, higher fracture toughness is usually
found in specimens cut from the medial and lateral quadrants. The disparity between
these two groups ranges from as low as 18.3 up to 171 %.

This non-uniform fracture resistance across different cortices of the bovine femur
implies that the variation of microstructure has a great impact on the local frac-
ture toughness values. Previous research (Abdel-Wahab et al. 2011; Li et al. 2013b)
showed that a change in the volume fraction of constituents at microstructure level
largely affects the local material properties, such as elastic modulus, yield stress, ulti-
mate strength, which, in turn, influences fracture properties. Preferential alignment
of microstructural constituents also has an important effect on anisotropy of fracture
toughness values. Higher resistance to fracture are found where the cracks propa-
gate perpendicular to osteons orientation, while lower resistance when cracks extend
parallel to osteons direction. The anisotropy ratios (calculated as ratios of respec-
tive values of JC ) between transversely-orientated cracks and longitudinally- or
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Table 2 Anisotropy ratios of fracture toughness values compared for different crack growth
directions for various cortex positions

Anterior Medial Posterior Lateral

Transverse/Longitudinal 4.36 3.35 3.33 2.78

Transverse/Radial 3.76 4.18 3.94 2.13

radially-orientated cracks are presented in Table 2. Apparently, the anisotropy ratio
also varies for different cortices ranging from 2.13 to 4.36, with the lowest ratio
found in the lateral quadrant and the highest ratio in the anterior quadrant.

Fracture surfaces were analysed for all the tests using SEM. A dissimilar character
of fracture surfaces is evident among different crack-extension directions and cortex
positions.

The combination of microstructural changes and different crack-extension direc-
tions triggers various toughening mechanisms, which, in turn, are reflected in dif-
ferent fracture-toughness values and levels of surface roughness. Generally, for the
longitudinal fracture specimens, with crack fronts propagating along the direction
parallel to the axis of osteons, the fracture toughening mechanism is dominated by
uncracked-ligament bridging (Ritchie et al. 2005; Launey et al. 2010) during the
process of osteons splitting, rupture, interface failure and fibre debonding (Fig. 4a).

200 µm 

40 µm 

200 µm 

40 µm 

1 mm 

200 µm 

(a) (b) (c) 

rupture 

twist & kink  

twist & kink  

deflection 

pull out rupture 

Fiber debonding Fiber debonding 

Fig. 4 Schematic illustrations and SEM images of various toughening mechanisms for longitudinal
a, radial b and transverse c cracks-growth directions
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Similarly, for cracks propagating in the radial direction, this toughening mechanism
is still active as a result of osteon splitting or fibre debonding. However, the differ-
ence in this case is the influence of interface areas or empty spaces such as cement
line or Haversian canals that had a larger contribution towards cracks arresting at
these regions (Ural and Vashishth 2006). As a result, twists and kinks of osteons are
observed in current analysis (Fig. 4b). In contrast to the previous two cases, cracks
growing along the transverse direction require a larger traction force for the crack
front to penetrate and cross the osteons as longitudinal strength of osteons is much
higher than transverse one. Cracks are therefore more likely to be deflected due to
imperfections and heterogeneity of the microstructure as a result of osteons’ pull
outs (Fig. 4c). Consequently, the overall results are higher fracture toughness and
rougher crack surfaces. In the elastic-plastic fracture regime, the tensional field at
the back of the crack tip also promotes a multi-scale bridging effect through shear
sliding between interface regions at different levels (Fig. 4c).

3 Mechanical Properties of Cortical Bone Tissue
at Micro-Scale

3.1 Microstructure Distribution

In this section, a detailed microstructural analysis was introduced to quantify the
effect of heterogeneously distributed microstructural constituents, well known from
the literature (Abdel-Wahab et al. 2011; Li et al. 2014), on the macroscopic mechan-
ical behaviour of cortical bone. Two cross-sectional rings from the upper and
lower mid-diaphysis of one femur were excised, polished and analysed with opti-
cal microscopy (Olympus BX60M, Japan). 16 evenly distributed cross-sectional
images were taken for each ring section and then analysed using Image-Pro soft-
ware (Image-Pro 7.0, Media Cybernetics, USA). The images were taken by stitch-
ing a series of tilting images across the thickness (from ectosteal to endosteal) of
the cross-section area. The microstructural constituents were distinguished into four
categories: osteons (including both primary and secondary osteons), plexiform, inter-
stitial matrix and porosity areas. A detailed procedure to analyse and calculate the
area fraction of each constituent can be found in Li et al. (2013b), Saha and Hayes
(1977). Due to occasional undistinguishable boundaries between constituents, man-
ual adjustment was required to compensate for deficiency of a computer algorithm.
As a result, a reproducibility measurement was employed by this study and the result
showed standard deviation of ± 4 %.

Based on a modified Voigt-Reuss-Hill (VRH) averaging scheme (Bonfield and
Clark 1973; Carter and Hayes 1977), the effective Young’s modulus was calculated
according to the following equation:

Etotal = (EOVO+EIVI+EPVP) (1−VPo)
3 (2)
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Table 3 Magnitudes of Young’s modulus (GPa) used in the calculations based on Eq. 2

Osteonal Interstitial Plexiform

Longitudinal 22.7a 25.1b 26.5a

Transverse 12.85c 14.12d 15.67c

aReilly and Burstein (1975)
bRho and Pharr (1999)
cKatz et al. (1984)
dBudyn and Hoc (2007)

The subscripts O, I and P denote osteonal, interstitial and plexiform areas, respec-
tively; E and V represent the Young’s modulus and volumetric (area in 2D) fractions
of respective parts; VPo is the fraction of porosity. The Young’s moduli used in the
calculation are listed in Table 3.

3.1.1 Results and Analysis

The results from the optical microscopic analysis confirmed regional differences
between different quadrants (Table 4). Generally, the anterior quadrant is dominated
by plexiform bone (over 50 %) and the posterior quadrant is extensively remodelled
with a large proportion of osteonal bone (over 50 %). The medial and lateral quadrants
are transition sections between the two. This transition could also be evidenced by
a relatively large standard deviation of porosity for these two quadrants, ±2.21 and
±3.94 %, respectively (Table 4). Within each quadrant, plexiform bone is usually
located at the ectosteal cortex, and then there is transition from plexiform to a mixture
of osteonal and interstitial bone with osteonal structure positioned predominately
between ectosteal and endosteal cortices (Fig. 5).

The results in Table 4 demonstrate large standard deviations of each constituent
as the microstructure changes considerably within and between cortices. Substantial
variations are also observed for upper to lower mid-diaphysis. The average area

Table 4 Microstructure analysis of average and standard deviation of volumetric area fractions for
constituents for four cortices

Volumetric
fraction (%)

Osteonal Interstitial Plexiform Porosity

Anterior 13.13 (± 10.16) 17.66 (± 16.01) 65.69 (± 24.79) 3.53 (± 0.73)

Medial 16.4 (± 14.49) 25.51 (± 19.56) 53.4 (± 34.52) 4.69 (± 2.21)

Posterior 54.01 (± 17.58) 30.4 (± 16.96) 7.58 (25.6) 8.02 (± 1.89)

(0)

Lateral 44.43 (± 16.41) 35.81 (± 9.51) 10.26 (35.1) 9.51 (± 3.94)

(0)

Note the maximum and minimum values instead of standard deviations were used for the volumetric
fraction of plexiform for posterior and lateral cortices due to large fluctuations of the data
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Fig. 5 a Microstructure transition across thickness at medial quadrant; b colour-coded image after
image analysis; c–d comparison between Young’s modulus and volumetric fraction for four cortices
from different quadrants

fraction of osteonal bone is between 13 and 54 %; interstitial bone ranges from 17 to
35 %; plexiform bone from 10 to 56 % and porosity around 3–9.5 %.

Comparing the Young’s moduli and the area fractions of microstructural con-
stituents for four cortices (see Fig. 5), the correlation between the transition of
microstructural constituents and the variation of the Young’s moduli indicates that
the overall stiffness of cortical bone tissue depends strongly on the microstructure,
i.e. distribution and orientation of constituents (Hamed et al. 2010). For the volume
fractions of each individual constituent, porosity (Sevostianov and Kachanov 2000;
Currey 1988) and secondary osteons (Saha and Hayes 1977) were reported to be
inversely correlated with the Young’s modulus, which corroborates current findings.

The values of the effective Young’s modulus calculated using Eq. (2) are com-
pared with experimental results in Table 5. Apparently, for both the longitudinal and
transverse Young’s moduli for four anatomic quadrants, the theoretical estimation
closely agrees with the experimental results. A larger error for the transverse direc-
tion is due to the fact that the volumetric fractions were measured in the transversal
plane of the femur, and may not be the same for the longitudinal or circumferential
planes.
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Table 5 Comparison between theoretical prediction of effective elastic moduli and experimental
data, experimental data are based on average for compression and tension specimens

Young’s modulus (GPa) Theoretical prediction Experimental data Error (%)

Anterior Longitudinal 22.29 22.40 0.52

Transverse 13.00 13.06 0.52

Medial Longitudinal 21.02 21.17 0.71

Transverse 12.19 14.11 13.6

Posterior Longitudinal 17.04 17.93 4.94

Transverse 9.67 10.08 4.13

Lateral Longitudinal 16.15 17.14 5.75

Transverse 9.17 10.85 15.5

4 Numerical Modelling of Fracture Process of Cortical Bone

Finite-element analysis of crack initiation and growth is a powerful tool, which
enables studying of fracture and damage processes of cortical bone in direct vicinity
of the fracture interaction zone. This is hard to achieve using approaches such as
element de-bonding, cohesive zone method (CZM) or a virtual crack closer technique
(VCCT) due to a well-known fact that the crack path has to be pre-defined in these
modelling schemes. However, with the Extended Finite-Element Method (XFEM), a
crack propagation process can be modelled based on a solution-dependent criterion
without introducing such a predefined crack path. Thus, in this section, two XFEM-
based finite-element models were developed to evaluate the fracture processes of
cortical bone at both macro- and micro-scales. The models were developed for the
same three-point bending configuration as in our previous experiments for model-
validation purposes.

4.1 Modelling of Three-Point Bending at Macro-Scale

For macro-scale simulations, two groups with a total of eight finite-element models
were developed to analyse fracture propagation at four anatomic quadrants: Group A
and Group B for longitudinal and transverse cracks, respectively. The geometry and
dimensions of specimens followed the same specification as in previous experiment
(Fig. 3). A total number of 8,600 linear quadrilateral (CPE4R) elements were used to
generate a mesh for the simulated bone specimen. The fixtures of three-point bending
were modelled as 2D analytical rigid shells with diameter of 10 mm. The following
assumptions were made in the developed numerical models:

1. plain-strain conditions of the specimen;
2. elastic transversally isotropic material properties for the bone specimens (Table 6);
3. a friction coefficient of 0.3 was considered between the pins and specimen.
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Table 6 Transverse isotropic material properties used in FE models

E1 E2 E3 ν12 ν13 ν12 G12 G13 G23

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

Anterior 23.15 13.20 13.20 0.29 0.29 0.44 3.00 3.00 6.00

Posterior 18.00 10.20 10.20 0.29 0.29 0.44 3.00 3.00 6.00

Medial 21.13 14.67 14.67 0.29 0.29 0.44 3.00 3.00 6.00

Lateral 15.14 11.18 11.18 0.29 0.29 0.44 3.00 3.00 6.00

Subscripts denote axial orientation: 1—longitudinal, 2—transverse and 3—radial

Cracks were modelled using an X-FEM technique implemented within the finite-
element software Abaqus 6.11/Explicit. It allows a crack to initiate and propagate
through an arbitrary, solution-dependent path, subject to a local material response.
Hence, the X-FEM enrichment was applied to the whole model for all the cases.
A surface-based cohesive traction-separation criterion was employed to model the
non-linear fracture processes through the crack initiation and evolution criteria. Crack
initiation in a hard biological tissue (cortical bone) was commonly described as a
strain-driven criterion (Nalla et al. 2004a). Therefore, a fracture strain of 0.6 % was
chosen based on our previous study (Li et al. 2013b). When the fracture strain was
reached, damage evolution took place. The evolution criterion was defined in terms
of the fracture energy based on the fracture toughness obtained from the experimental
part of this study. An initial notch was introduced as a 2.7 mm-long straight line in
the model.

4.1.1 Results and Analysis

The simulation part of the study was focused on the crack initiation and propaga-
tion processes in the cortical bone specimens under different loading conditions.
The simulations were performed for quasi-static loading using the Abaqus/Explicit
solver at a constant loading rate until complete specimen’s fracture. Results of finite-
element simulations are compared with the experimental data in Fig. 6 for different
cortices and crack orientations; this comparison shows very good agreement for force
and loading-pin displacement curves. The developed finite-element models success-
fully reproduce the variability of material responses across four cortices for both
longitudinal and transverse crack directions. The results indicate that the fracture-
toughness values are largely affected by the local anisotropic material properties
linked to the variation of microstructure (Li et al. 2013b). The models also pre-
dict an early-stage damage initiation (Fig. 6, horizontal dotted lines), followed by a
non-linear progressive damage-evolution process. By using a surface-based cohe-
sive traction-separation criterion based on the experimental results, these complex
non-linear damage propagation processes are captured reasonably well.

Both initial curvatures of the graphs and the determined peak-force levels are
close to the obtained experiment results. It is also observed that damage initia-
tion for transverse-crack specimens from the medial quadrant is lower than for
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Fig. 6 Comparison of experimental and calculated force-displacement curves: A, M, P and L denote
anterior, medial, posterior and lateral specimens; _L and _T denote longitudinal and transverse crack
propagation directions; dotted lines indicate damage initiation

longitudinal-crack specimens. The lower damage initiation combined with a higher
ultimate fracture force indicates the existence of a strong toughening mechanism
for medial transverse-crack specimens (Fig. 6). On the other hand, a late damage-
initiation combined with a low peak force in longitudinal crack specimens from the
anterior quadrant is an indication of a weak toughening mechanism.

4.2 Modelling the Fracture Processes at Micro-Scale

Heterogeneous distribution of microstructural constituents significantly affects the
mechanical behaviour of cortical bone in both elastic as well as post-yield and
damage regimes. However, the macroscopic bone model cannot fully realize the
microstructure-induced mechanical variability and complex crack propagation
processes. Therefore, three two-dimensional microstructured models of cortical bone
were developed in this section to further investigate the effect of randomly distributed
microstructure on variability and fracture processes of cortical bone. The models
were established based on the same macroscopic three-point-bending model dis-
cussed earlier. A submodelling technique was used to focus computational power at
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the crack-propagation region while maintaining boundary conditions of the full-scale
model. This technique allows development of multiple models based on the same
modelling object and extends the level of interest into a pre-defined region (usually
with a finer mesh or more local geometric details) to achieve adequate and accurate
results. The computational cost of submodelling technique is usually lower when
compared with the full-size model having the same level of accuracy. The developed
approach employed two different levels of modelling of the bone tissue: a full- size
global model for the macroscopic response of the entire specimen under three-point
bending and three submodels reflecting heterogeneous responses of different local-
ized microstructures during the crack propagation process. The boundary conditions
in the submodel were derived for the correspondent region from the results of the
global model using the displacement-control criterion based on the nodal field vari-
ables. The global constrains were maintained the same as in previous macroscopic
model. Then, the submodel was extruded from the central un-cracked region of the
global model with dimension of 2.72 mm× 2.72 mm (Fig. 7). The pre-crack is mostly
outside the submodel with only one element of its bottom middle surface cut by it.
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a =   2.72 mm 

2.72 mm 

Global-model 
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Fig. 7 Schematic illustration of model configurations for three-point-bending setup using global
model and microstructured sub-models
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Table 7 Volume fractions of microstructure constituents for Models A, B and C

Constituent Model A (%) Model B (%) Model C (%)

Osteon 30 44.5 51.2

Porosity 5.01 5.02 8.14

Interstitial matrix 58.77 41.25 30.04

Cement line 6.22 9.23 10.62

The submodels were constructed as four-phase composite structures with
randomly distributed microstructural features:

• interstitial bones,
• osteons,
• Haversian canals and
• cement line.

All geometrical parameters of each model were defined based on statistical analysis
of real microstructures (for details see Abdel-Wahab et al. 2010). The average width
of cement line was close to 5µm. The distributions of diameters of osteons and
Haversian canals were statistically regularized using best-fit functions described in
detail in Abdel-Wahab et al. (2010). The average diameters for osteons and Haversian
canals were 99.89 and 23.1µm, respectively.

The algorithm to generate random microstructures in the submodels was first
programed in a custom-developed Matlab code according to the statistical data for
real bone specimens, and then all the geometrical parameters were encoded into a
python script to construct the microstructural model in Abaqus. Three representative
microstructured cortical bone models were constructed in this study based on the
statistical measurements for each constituent: osteons volume fraction varies from
30 to 51 %, while porosity changes from 5 to around 8 % (Fig. 7). Full data on the
volume fractions of microstructure constituents used in the models are listed in
Table 7.

In this study, the mechanical behaviour of cortical bone was introduced using
an elasto-plastic transverse isotropic material formulation with regard to the radial-
transverse section plane. At macroscopic level, the effective homogeneous material
was used in the global model. The effective elasto-plastic material properties obtained
from our macroscopic experiments (Abdel-Wahab et al. 2011) were applied in the
global model. On the other hand, at microscopic level, microstructural constituents
play an important role in the localized fracture process and formation of toughening
mechanisms. Consequently, the four-phase microstructured models of cortical bone
were employed in the submodel, and individual material properties based on nano-
indentation results (Abdel-Wahab et al. 2010) were assigned to constituents. The
elastic modulus of cement line was initially set to be 25 % lower than that of osteon
based on the findings in Budyn and Hoc (2007), Montalbano and Feng (2011),
and two other levels—equal to that of osteon and 25 % higher—were also used to
investigate the effect of cement line’s properties on the fracture process in cortical
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Table 8 Material properties used in global model and microstructured submodels (Ritchie et al.
2005; Abdel-Wahab et al. 2011; Budyn and Hoc 2007; Abdel-Wahab et al. 2010)

Effective
homogenised
material

osteons Interstitial matrix Cement Line

Elastic modulus (GPa) 11.18 12.85 14.12 9.64

Poisson’s ratio 0.167 0.17 0.153 0.49

Yield strain (%) 0.6 0.6 0.6 0.6

Fracture initiation strain (%) 0.65 0.65 0.65 0.65

Fracture energy release rate (N/m) 2043 860 238 146

bone. A summary of material properties used in this study is given in Table 8. The
post-yield material behaviours in both global and sub-models were based on flow
stress-strain curves obtained experimentally (Abdel-Wahab et al. 2010, 2011).

Damage and crack propagation in this study were modelled using the X-FEM
technique in Abaqus (Dassault Systèmes 2012). The local crack initiation and evo-
lution criteria were chosen to be the same as those employed in the macro-scale
model. It assumes that crack initiates when the maximum principal strain reaches its
critical value and the newly defined crack direction is orthogonal to that of the max-
imum principal strain. Once initiated, crack conforms to the energy-based damage
evolution criterion, and the cracked element starts degradation and eventually fails.
It describes the rate, at which the cohesive stiffness of the cracked surface degrades
once the crack-initiation criterion is fulfilled at particular element. The energy dis-
sipated (fracture energy) as a result of damage progress is equal to the area under
the traction-separation curve at the point of complete damage. The fracture energy
in our models (Table 8) was defined according to the previous results (Ritchie et al.
2005; Abdel-Wahab et al. 2010, 2011).

4.2.1 Results and Analysis

Three microstructured models of cortical bone were analysed in this study. Their
results are compared with the effective homogeneous model as well as experimental
data in terms of force and loading-pin-displacement diagram in Fig. 8a. Dissimilar
fracture-resistance behaviours are evidenced for three different models as a result
of varying microstructural constituents at microscopic level. Among the three mod-
els, Model A has the highest overall critical value of J integral—2503 N/m, while
Models B and C result in 2,369 and 2,212 N/m, respectively. This decreasing trend
in the fracture toughness is apparently linked to the increasing volume fractions of
osteons and porosity (Haversian canals in this case). From the histology point of view,
the bone remodelling process generates new Haversian systems (each including an
osteon, a Haversian canal and a cement line) to replace the old, damaged regions as
an adaptation process. The newly formed bone is usually less mineralized than its
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surrounding area due to the fact that mineral concentration period lasts longer than
the remodelling process (Currey 2012). As a result, a large fraction of less miner-
alized osteons associated with the bone-mass and stiffness reduction has a negative
impact on the overall fracture resistance of cortical bone. Still, benefiting from their
low stiffness but high fracture toughness, osteons demonstrate a higher failure strain
when compared with interstitial matrix and, in general, offer a positive effect on
fracture toughness. On the other hand, the increasing proportion of Haversian sys-
tem leads to the increase in structural compliance as a result of cavitation, hence,
to increased overall fracture strain (Fig. 8a). These mutual effects of microstructural
constituents result in the variation of macroscopic fracture toughness. Significant
nonlinearity observed at the initial loading stage during the experiment is success-
fully captured using the microstructured model. Comparing the proportion of the
plastic component (Jp) of the critical value of J -integral (Jc) in each model, an
increased tendency for the energy associated with plastic deformation is observed
for the increase of osteon and porosity volume fractions (Fig. 8b). Based on the
above findings, the bone remodelling process related with the increasing fraction of
osteons and porosity changes the bone’s fracture resistance from a stress-based mode
to a more strain-based mode—fracture stress resistance reduces but fracture strain
resistance increases.

At the global level, the effective homogeneous material model is able to capture
a macroscopic response in terms of force and loading-pin displacement (Fig. 8a).
However, the detailed fracture-evolution process, especially the localized damage
zone is neglected. On the contrary, the heterogeneous microstructured models, oper-
ating within the framework of the global model using direct displacement-controlled
boundary conditions, emphasise the effect of the local non-uniform stress-strain
field on the crack propagation process at microscopic level. Figure 9 presents con-
tour plots for von Mises stress, maximum principal strain, equivalent plastic strain
(PEEQ) and a damage scale factor for X-FEM (STATUS) for Model B when the
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Fig. 9 a Contour plots for von Mises stress, b maximum principal strain, c equivalent plastic strain
(PEEQ) and d damage scale factor for XFEM (STATUS) for Model B for crack propagation at
maximum reaction force (a and b represent full Model B)

crack is approaching the state of the maximum reaction force. As evidenced from
the Fig. 9a, b, a diffused stress pattern is characteristic for the von Mises contour,
while a cross-hatched strain pattern for the maximum principal strain contour is
located ahead of the crack tip (in the compressive region of the specimen) with a
diffused strain pattern near it (in the tensile region). These dissimilar stress and strain
patterns around the crack tip coincide with results of the previous experimental stud-
ies (Ebacher and Wang 2008; Boyce et al. 1998; Nyman et al. 2009), in which the
authors indicated that such distinctive stress and strain fields in tension and com-
pressive regions could lead to realization of different damage fracture mechanisms.
Equivalent plastic strain illustrated in Fig. 9c indicates that the area undergoes plastic
deformation during the crack propagation process.

The identified plastic zone around the crack tip is within 1–2 osteonal radius i.e.
approximately 100µm in length. The value seems to be higher than 17µm reported
in the experimental work (Robertson et al. 1978). One possible reason for this larger
plastic-zone size predicted in our model is the lack of multiple cracks formation in the
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current model, while, in reality, micro-cracks and natural imperfections inclusions
in front of the crack tip may develop into mini cracks frontal that can release local
stress concentration, thus, reducing the plastic-zone size.

The damage scale factor denoted as STATUS in Fig. 9d indicates that one third of
the crack surface is still under traction force and acts as toughening mechanisms that
contributes to the non-linear fracture process. The toughening mechanisms active
in a radial-transverse crack specimen can be divided predominantly into three types
(Ritchie et al. 2005):

• interfacial debonding as a result of the material’s discontinuity at the interface
between osteons and interstitial matrix—the formation of the weak path of cement
line;

• crack diversion due to microstructural heterogeneity and material imperfections, at
which the crack is redirected towards the most vulnerable part producing a twisted
and deflected fracture path;

• uncracked-ligament bridging caused by osteon splitting and rupture acting as a
post-crack toughening mechanism behind the crack tip.

In this study, the microstructured models are capable to capture these main features
of the toughening mechanisms as shown in Fig. 10.

Figure 10d demonstrates an interface failure predicted by the model as the crack
bends away from the osteon due to the discontinuity in the cement-line region.
Figure 10e reveals the crack-diversion mechanism as crack deviates from its central

100 µm 200 µm 100 µm 

Osteon 
Peak & vale Osteon 

Crack surface 
Pre-crack 

Crack surface 

Interface failure Crack diversion Splitting & rupture

(a) (b) (c) 

(d) (e) (f) 

Fig. 10 Comparison of toughening mechanisms in radial-transverse crack plane between experi-
mental results a, b and c and numerical simulations d, e and f : a and d interface failure between
osteon and interstitial matrix; b and e crack deviation from its central line towards weak part result-
ing in twisted and deflected crack path; c and f splitting of osteons and breakage of ligament due
to crack opening observed in SEM image c
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Fig. 11 Crack length and loading-pin displacement diagram for global and microstructured models
(total crack length is measured until reaching maximum reaction force)

line towards a weak but twisted and deflected crack path. The uncracked-ligament
bridging behind the crack tip is implicitly represented as a cohesive traction force
between the damaged elements along the crack path (Fig. 10f).

To investigate the effect of microstructural constituents on the crack propagation
process, the crack lengths are plotted in Fig. 11 as a function of displacement of
loading-pin for the global model and three different sub-models. Their respective
crack propagation paths are demonstrated in Fig. 12, row a. The total crack length
was measured until reaching the maximum reaction force. It is clear from Fig. 11
that Model A has the longest overall crack length, while Model C has the shortest
one. Comparing the respective crack trajectories, the higher crack length related to
Model A is largely defined by significant crack deflections observed in Fig. 12a. As
a result of increase in the fractions of osteons and porosity from Model A to Model
C, the effect of crack-deflection mechanism gradually reduces (Fig. 12a–c). On the
other hand, the crack-propagation rate (with respect to the loading-pin displacement)
in Model C is higher at the initial stage, but gradually reduces as the crack propa-
gates through more Haversian systems, whereas Model B shows a moderate linear
evolution process and Model A demonstrates an increased crack-propagation rate.

It seems that an increased fraction of Haversian systems has a negative effect on the
crack-propagation rate and constrains the crack-diversion magnitude. This finding
is consistent with experimental observation in Zimmermann et al. (2011), where
the authors concluded that age-related changes in morphology of microstructure
as a result of remodelling process may lead to suppression of the crack-deflection
mechanism and reduction of the total crack length.

The effect of cement line was studied by changing the magnitude of its elastic
modulus within the range 25 % below and above that of osteon. The respective
results for the crack propagation trajectory are compared in Fig. 12 for three different
microstructural models. The result indicates that an increase in the cement line’s
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(a)

(b)

(c)

Fig. 12 Crack propagation trajectories for various elastic moduli of cement line for three microstruc-
tured models: row a: 25 % lower than that of osteon; row b: equal to that of osteon; row c: 25 %
higher than that of osteon

modulus to the levels equal to, or 25 % higher than, that of the osteon results in similar
crack trajectories, that differ from the initial ones (i.e. for 25 % lower modulus) for
both Model A and Model B.

This higher stiffness of cement lines leads to some rise of fracture propagation
in the regions with low fracture toughness—interstitial areas (Fig. 13). Moreover,
higher stiffness also results in a higher rate of interface debonding in Model A
and Model B (Fig. 12b, c) where cement lines facilitate crack propagation around
osteons. However, no substantial difference is found between the two groups (equal
to and 25 % higher). On the other hand, the lower modulus increases the chance of
osteonal fracture and penetration into Haversian canal in Models A and B, where
high fracture toughness and high compliance regions could potentially increase the
overall fracture resistance and may lead to more crack deflections and arrests. As
the fractions of osteons and porosity increase in Model C, the effect of the local
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Fig. 13 Fractions of crack path in microstructure constituents for various magnitudes of cement
line’s modulus

heterogeneity becomes more dominant. Cracks are likely to grow along the most
vulnerable path, and the effect of cement lines relents. Therefore, the influence on
the crack-propagation trajectory is less pronounced than in two other models. In
summary, cement lines play an important role in the crack-propagation process in
cortical bone. Variation of its mechanical properties can considerably affect the shape
of local crack trajectory. Both scenarios demonstrated in our models have been widely
discussed in the previous research (Ritchie et al. 2005; Currey 2012). Considering
the fact that bone is a dynamic living tissue, the mechanical properties of cement line
are likely to vary with time and locations. It is thus sensible that a 25 % differences
in the cement line’s modulus within the local area can cause both toughening and
weakening mechanisms as observed in experiment (Chan and Nicolella 2012).

5 Conclusions

In this chapter, the study was focused on the fracture processes of cortical bone at
various length scales. In order to do so, characterisation of mechanical behaviour of
cortical bone tissue was undertaken for elastic, post-yield and damage regimes. The
results from our studies demonstrate specific features of varying anisotropic defor-
mation and fracture behaviours of the cortical bone tissue, which also depend on the
applied loading conditions. Combining the results from statistical and microstructural
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analyses, a strong correlation of the orientation and distribution of underlying
microstructural constituents on the effective macroscopic properties of cortical bone
tissue is revealed. Due to a natural loading regime exerted by species’ weight and
muscle forces, long bones are normally exposed to combined loading conditions that
are spatially non-uniform (Martin and Boardman 1993). As it is well known from
the literature, bone is a dynamic tissue that reacts to mechanical loading by adapting
its shape, internal microstructure and material properties to meet external loading
environment (Currey 2012). The differences in the values of the Young’s modulus
and fracture toughness (critical J -integral) could be the outcome of bone adaptation
to its natural non-uniform loading conditions.

Combining the characterised local material properties and crack initiation and
evolution techniques based on fracture mechanics, the developed macroscopic model
adequately characterizes the non-linear fracture processes of cortical bone. The fur-
ther implementation of the random distribution of microstructured cortical-bone
model enables the numerical realisation of various toughening mechanisms asso-
ciated with material heterogeneity at micro-scale whereby affecting the macroscopic
response of the cortical bone tissue.
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A Nonlocal Model of Plasticity
and Damage with Different
Internal Lengths

Francesco Marotti de Sciarra

Abstract Anonlocal thermodynamically consistent model of plasticity and damage
is presented using an integral approach. The theory is developed in the framework
of the generalized standard material and the constitutive model is identified by the
specification of a nonlocal first law of thermodynamics and of a local second one.
The constitutive model is then addressed by defining a suitable expression of the
free energy which yields a nonlocal plastic model in the stress space and a nonlocal
damage model in the strain space. A variational formulation depending on local and
nonlocal state variables is thus provided.

Keywords Nonlocal damage · Nonlocal plastic behavior · Internal energies ·
Internal variables · Standard materials · Strain-based damage · Variational formula-
tion · Yield function

1 Introduction

Engineering structures may be subjected to loading conditions which can lead the
material to undergo plastic flow and damage. Phenomenological local damage mod-
els, see e.g. Lemaitre and Chaboche (1990), Chaboche (1988b), Lemaitre (1996),
consider the effects associated with a certain damage state through the definition
of thermodynamic state variables. In addition the material stiffness is reduced by
damage through the effective stress concept introduced by Kachanov (1958). As a
consequence several damage theories have been proposed in the framework of ther-
modynamics of irreversible processes which are either phenomenologically based or
micro-mechanically motivated (Chaboche 1988a, b; Lemaitre 1996; Brünig 2003b;
Brünig et al. 2011).
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A model of generalized standard elastoplastic material has been proposed
by Halphen and Nguyen (1975) where the flow rule is given in terms of a nor-
mality rule to a generalized elastic domain defined in the product space of stresses
and thermodynamic forces. Then several local models of plasticity coupled with
damage have been proposed and investigated in the framework of continuum
mechanics with internal variables (Brünig 2003a; Menzel et al. 2005; Wu et al.
2006; Cicekli et al. 2007).

The necessity for introducing nonlocal theories in a continuummodel is due to the
fact that the classical rate-independent plasticity or damage theories do not possess
an intrinsic length scale.

The evolution of damage causes softening in the continuum theories and it is
known that softening leads to pathological localization and strongly mesh
dependent results in a finite element procedure. To overcome this difficulty, the
continuum model has to be supplied with an internal time scale in the form
of a strain rate dependent behavior (see e.g. Perzyna 1963; Glema et al. 2000)
or with an internal length scale such as Cosserat and Cosserat (1909), gradient
(de Borst and Muhlhaus 1992; Peerlings et al. 1996; Steinmann 1999; Nedjar 2001;
Wang et al. 2003; Voyiadjis et al. 2004; Polizzotto 2003a, b, 2007, 2008, 2011;
Marotti de Sciarra 2013, 2014) and nonlocal (Pijaudier-Cabot and Bazant 1987;
Bazant and Pijaudier-Cabot 1988; Voyiadjis and Dorgan 2001; Bazant and Jirasek
2002; Polizzotto 2003a; Marotti de Sciarra 2009b) models.

Gradient models have been used in recent years for both small-strain and large-
strain plasticity with damage (see e.g. Nedjar 2001; Geers et al. 2003) and for mod-
eling nanostructures (Arash and Wang 2012; Barretta and Marotti de Sciarra 2013;
Simsek and Reddy 2013; Barretta et al. 2014). Gurtin and Murdoch (1975) proposed
a model of surface stresses describing the surface elastic properties of solids. This
model has found many applications for materials at the micro- and nano-scales, see
e.g. Javili et al. (2012), Eremeyev andAltenbach (2013) andAltenbach andEremeyev
(2011). In particular, the surface effects are used for the description of deviancy of
the properties of nanospecimens from the ones of bulk materials.

In this paper a phenomenological model for a class of nonlocal elastoplastic
damaging materials is proposed considering a nonlocal model of integral type.
A nonlocal elastoplastic model is defined in the generalized stress space and is
coupled with nonlocal damage which is formulated in the strain space. The nonlocal
elastoplastic formulation and the stress decomposition of the nonlocal strain damage
model behavior consistently follows from the thermodynamic analysis in a nonlocal
integral context. The nonlocal constitutive equations are derived from a nonlocal
form of the first law of thermodynamics, from the classical form of the second law
and a suitable expression of the free energy. Accordingly the nonlocal counterpart of
the Clausius–Duhem inequality is attained and the maximum dissipation principle
for the nonlocal elastoplastic damage problem can be straightforwardly obtained.

The proposed general thermodynamic framework provides the tools to derive
a new consistent variational formulation for the nonlocal constitutive problem of
elastoplasticity coupledwith damage in the strain space.Hence the variational formu-
lation associated with the nonlocal constitutive model is explicitly provided. Finally
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it is worth noting that an advantage from a computational point of view of models
with strain-based damage is that the stress corresponding to a given strain can be
evaluated directly without any need for solving a nonlinear system of equations (see
e.g. Marotti de Sciarra 2009a).

2 Nonlocal Constitutive Model

A continuum body occupying a finite regular domain Ω of a three-dimensional
Euclidean space is considered. The inelastic model is subjected to a given load
history and a quasi-static evolution process in a geometrically linear range is assumed.
Further the mechanical behavior of the body is time-independent.

The classical theory of small deformation plasticity is based on the additive
decomposition of the total strain εεε into elastic eee and plastic parts ppp, with eee being the
elastic component and ppp being the corresponding plastic strain.

Amodel governing a nonlocal stress-based plasticity with a nonlocal strain-based
damage is developed in this paper following the generalized standard material and
the constitutive framework presented inMarotti de Sciarra (2012) for local plasticity.
The plastic and damage state of the body is phenomenologically described by a set
of internal variables and by the related mechanisms for energy exchange. Reversible
phenomena modify the stored energy and the irreversible phenomena induce energy
dissipation.

The evolution of the hardening phenomena of associated type is described in
terms of a set of dual kinematic and static internal variables which account for the
changes in the material structure at the microscale level (Halphen and Nguyen 1975).
The dual set of internal variables are reported in Table1.The back-stresses χχχ1, χχχ2
are associated with the kinematic hardening and the drag-stresses χχχ3, χχχ4, χχχ5 are
associated with isotropic hardening/softening.

It is known that classical inelastic theories are unable to describe the softening
behavior, small-scale phenomena or effects of the relative size on the mechanical
properties of the material since such theories do not possess an intrinsic material

Table 1 The dual set of
kinematic and static variables

State variables Associated conjugates

Observable Internal

εεε σσσ , sss, σσσeee

ppp χχχ

ααα1 χχχ1

ααα2 χχχ2

ααα3 χχχ3

ααα4 χχχ4

ααα5 χχχ5
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length scale. These problems can then be avoided with the use of a nonlocal theory
which introduces the length scale in the constitutive equations.

It is shown in Al-Rub and Voyiadjis (2003), Fleck and Hutchinson (2001) that
the multiplicity of plastic phenomena at small-scale levels implies the necessity of
more than one length parameter in the nonlocal gradient description. Since plasticity
and damage correspond to different mechanisms acting on different scales, the two
inelastic behaviors are modeled by nonlocal relations with different internal length
scales as hereafter shown.

The nonlocal behavior associated with plasticity is governed by the nonlocal field
Rααα2 which can be obtained as a spatial weighted average of the local variable ααα2 by
the following parametric relation

ααα2 (x) = Rααα2 (x) =
∫

Ω

Wp (x, y)ααα2 (y)dy (1)

where Wp (x, y) is the plastic weight function. An explicit expression of the weight
function is reported in Marotti de Sciarra (2009a). Similar relations hold for the
nonlocal counterparts of the kinematic internal variables ααα3 and ααα5

ααα3 (x) = Rααα3 (x) =
∫

Ω

Wp (x, y)ααα3 (y)dy,

ααα5 (x) = Rααα5 (x) =
∫

Ω

Wp (x, y)ααα5 (y)dy. (2)

The long range forces arising in a damaged structure are provided by the nonlocal
static internal variable sss which has themechanicalmeaning of the nonlocal relaxation
stress sss as shown in the sequel. It is expressed in the following form

sss (x) = Ssss (x) =
∫

Ω

Wd (x, y) sss (y)dy (3)

where Wd is the weight function for damage phenomena. The weight functions will
be left unspecified since it is not necessary to give them an explicit expression to the
for the development of the constitutive model.

Generally deformation processes in metals enhances the creation, motion, and
storage of the dislocations. In particular, the material hardening is caused by the
storage of dislocations which can be referred to as statistically-stored dislocations
(SSDs) and geometrically-necessary dislocations (GNDs). The SSDs are generated
by trapping the dislocations each other in a random way and the GNDs represent
the stored dislocations which are required for compatible deformations within the
polycrystals. During plastic deformations, the density of SSDs increases due to a
wide range of processes that lead to the production of new dislocations. The new
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generated dislocations travel on a background of GNDs which causes additional
storage of defects and increases the deformation resistance by acting like obstacles
to the SSDs (Gao et al. 1999). The SSDs and GNDs are different in nature since
experimental evidences show that the SSDs dependent on the effective plastic strain
while the GNDs are associated with the gradient of the effective plastic strain (Ashby
1970; Fleck and Hutchinson 1997; Arsenlis and Parks 1999; Gao et al. 1999).

The determination of the evolution of the assumed internal state variables is one
of the main challenge of the constitutive modeling. This task can be effectively
achieved through the thermodynamic principles for the development of a continuum
thermo-elasto-plastic-damage based model where damage is modeled in the strain
space.

The first principle of thermodynamics (Edelen and Laws 1971; Lemaitre 1996;
Polizzotto 2003a; Marotti de Sciarra 2009c) for a nonlocal model is expressed point-
wise in the following form

u̇ = σσσ ∗ εεε + Q̇ + P (4)

where the explicit dependence on the point has been dropped for simplicity. The heat
supplied to an element of volume is Q̇ = −div qqq , being qqq the heat flux, and σσσ is
the actual stress. The internal energy density u depends on the kinematic internal
variables ααα1, ααα4, on the kinematic nonlocal internal variables Rααα2, Rααα3, Rααα5 and
on the nonlocal static internal variable Ssss. The nonlocality residual function P takes
into account the energy exchanges between neighbor particles, see e.g. Edelen and
Laws (1971).

The body is assumed to be a thermodynamically insulated system with reference
to energy exchanges due to nonlocality so that the following isolation condition holds
(Polizzotto 2011) ∫

Ω

P (x) dx = 0. (5)

The second principle of thermodynamics for a nonlocal behavior, is written in its
classical point-wise form

ṡT + divqqq − ∇∇∇T ∗ q

T
≥ 0 (6)

in any point of the body where ṡ is the internal entropy production rate per unit
volume. Considering isothermal processes, the total dissipation is then given by

D = σσσ ∗ ε̇εε − Φ̇ + P ≥ 0 (7)

where Φ denotes the Helmholtz free energy.
The complexity of the constitutive model is directly determined by the form of

the free energy so that its definition constitutes a crucial point of the formulation. In
this model the constitutive equations are based on the following expression of the
free energy
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Φ (εεε, ppp,ααα1, Rααα2, Rααα3,ααα4, Rααα5, Ssss) = ψ (εεε−ppp,ααα1, Rααα2, Rααα3,ααα4, Rααα5)

− Ssss ∗ εεε (8)

where the elastic energyψ depends on the difference between the total strain and the
plastic strain and on kinematic local and nonlocal internal variables. Moreover, the
additive term in the free energy Φ is based on the fact that damage has a distinctive
morphology which is different from the plastic deformation mechanisms. Further-
more the expression (8) allows us to derive a yield criterion in the stress space and
a damage domain in the strain space as shown in the sequel.

Expanding the inequality (7) and substituting the rate of the expression (8) above
of the free energy, one obtains the following thermodynamic constraints

D = (σσσ + sss − dεεεΦ) ∗ ε̇εε − dpppΦ ∗ ṗpp − dααα1Φ ∗ α̇αα1 − dααα2Φ ∗ α̇αα2

−dααα3Φ ∗ α̇αα3 − dααα4Φ ∗ α̇αα4 − dααα5Φ ∗ α̇αα5 + P ≥ 0 (9)

Assuming that the axiom of entropy production holds, the inequality (9) results
in the thermodynamic state laws reported in Table2.

The relations in Table2 describe the relationships between the state variables and
their associated thermodynamic conjugate forces. The stress σσσ is a measure of the
elastic changes in the internal structure, the elastic stress σσσeee is related to the elastic
strain, the variablesχχχ1,χχχ2,χχχ3,χχχ4,χχχ5 are the conjugate forces corresponding to the
plastic internal state variables ααα1, Rααα2, Rααα3, ααα4, Rααα5. The conjugate forces χχχ i (i =
1,…,5) are measures of plastic changes in the internal structure and sss is a measure
of the damage changes in the internal structure.

The sum of the actual stress σσσ and of the nonlocal stress Ssss provides the elastic
stress σσσeee. From a mechanical point of view the nonlocal stress Ssss provides the total
damage which is accumulated during loading and the elastic stress causes the same
state of deformation in a virgin material as in a damaged material. The relationships
between the proposed damage model and the classical one are analyzed in Marotti
de Sciarra (2012). The nonlocal stress Ssss is then associated with the elastic-damage
changes in the internal structure resulting from crack and voids during the loading
process.

Table 2 The thermodynamic
state laws

σσσeee = dεεεΦ

χχχ = dpppΦ = −σσσeee

Plasticity Kinematic hardening χχχ1 = dααα1
Φ

χχχ2 = dααα2
Φ

Isotropic hardening χχχ3 = dααα3
Φ

χχχ4 = dααα4
Φ

−χχχ5 = dααα5
Φ

Damage σσσ = σσσeee−sss
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At every point where an irreversible mechanism develops, the dissipation can
be assumed in a bilinear form and following the procedure reported in Marotti de
Sciarra (2008), the nonlocal counterpart of the Clausius–Duhem inequality expresses
the fact that the dissipation energy D is necessarily nonnegative as follows

D = σσσeee ∗ ṗpp − χχχ1 ∗ α̇αα1 − Rχχχ2 ∗ α̇αα2 − Rχχχ3 ∗ α̇αα3 − χχχ4 ∗ α̇αα4 + Rχχχ5 ∗ α̇αα5 + ṡss ∗ Sεεε ≥ 0.
(10)

This result requires that the inelastic work is dissipated away as heat, except for that
energywhich is stored because of the rearrangement of thematerial internal structure.
Although the dissipation D is written in the additive form as shown by Eq. (10), the
corresponding physical mechanisms is not decoupled. In fact coupling does occur
between plasticity and damage since the conjugate forces and their associated fluxes
are related each other so that twodamagemechanisms are introduced: onemechanism
is coupled with plasticity and the other can occur independent of plastic deformation.

Finally the nonlocality residual function has the following expression

P = χχχ2 ∗ Rα̇αα2 − Rχχχ2 ∗ α̇αα2 + χχχ3 ∗ Rα̇αα3
−Rχχχ3 ∗ α̇αα3 − χχχ5 ∗ Rα̇αα555 + Rχχχ5 ∗ α̇αα5 − Sṡss ∗ εεε + ṡss ∗ Sεεε. (11)

Note that the presented approach provides a path to incorporate a nonlocal model,
based on the concept of nonlocality residual, into an existing thermodynamic frame-
work.

3 Evolution Criteria for Plasticity and Damage

The plastic and damage evolution criteria for the considered nonlocal model can be
obtained by assuming that the sublinear function D is lower-semicontinuous (Rock-
afellar 1970). Hence the dissipation D turns out to be the support function of a closed
convex domain C which is given by the local and nonlocal state variables such that
the following inequality is fulfilled

D ≥ σσσeee ∗ ṗpp − χχχ1 ∗ α̇αα1 − Rχχχ2 ∗ α̇αα2 − Rχχχ3 ∗ α̇αα3 − χχχ4 ∗ α̇αα4 + Rχχχ5 ∗ α̇αα5 + ṡss ∗ Sεεε

(12)

for any (ṗpp, −α̇αα1,−α̇αα2,−α̇αα3,−α̇αα4, α̇αα5, ṡss).
In mechanical terms, the domain C is the set of admissible elastic stresses, local

and nonlocal static internal variables and nonlocal strains and its boundary represents
the elasto-plastic-damage surface. As a consequence such a model provides a unique
generalized evolutive relation for plasticity and damage.
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Since plasticity and damage correspond to different mechanisms acting on
different scales, the two inelastic models have to be modeled by different evolu-
tion equations. Accordingly the proposed nonlocal elastoplastic-damage model is
now specialized to a nonlocal elastoplastic model and to a nonlocal damage model
depending on two evolutive relations.

To this end the dissipation D can be splitted into two parts which are associated
with plastic and damage mechanisms

{
D1 = σσσeee ∗ ṗpp − χχχ1 ∗ α̇αα1 − Rχχχ2 ∗ α̇αα2 − Rχχχ3 ∗ α̇αα3 − χχχ4 ∗ α̇αα4 + Rχχχ5 ∗ α̇αα5 ≥ 0
D2 = ṡss ∗ Sεεε ≥ 0.

(13)
It is apparent that the inequalities (13) ensure the non-negativeness of D. The two
dissipations D1(ṗpp,−α̇αα1,−α̇αα2,−α̇αα3,−α̇αα4, α̇αα5) and D2(ṡss) are the support functions of
two closed convex domainsC1 andC2, respectively. From the physical standpoint,C1
is the set of admissible elastic stresses σσσeee, local and nonlocal static internal variables
χχχ1, Rχχχ2, Rχχχ3,χχχ4, Rχχχ5 and its boundary represents the elastic surface. The domain
C2 is the set of admissible nonlocal strains Sεεε and its boundary represents the damage
surface.

The dissipation processes (13) imply the existence of the complementary laws

{
σσσeee ∈ ∂ṗpp D1, Riχχχ i ∈ ∂−α̇ααi D1, Rχχχ5 ∈ ∂α̇αα5 D1
Sεεε ∈ ∂ṡss D2

(14)

with i = 1, . . . , 4 where {Ri } = {I, R, R, I } and ∂ denotes the subdifferential
operator.

The indicator functions of the domains C1 and C2 are denoted by IC1 and IC2

and turn out to be the Fenchel’s conjugates of the dissipation functions D1 and D2
respectively. Therefore the evolutive relations (14) can be equivalently expressed in
terms of the following normality laws

{
(ṗpp,−α̇ααi , α̇αα5) ∈ ∂ IC1

(
σσσeee, Riχχχ i , Rχχχ5

)

ṡss ∈ ∂ IC2(Sεεε)
(15)

with i = 1, . . . , 4. It can be easily proved that the subdifferentials of the indicator
functions IC1 and IC2 coincide to the normal cone to the elastoplastic domain C1 and
to the damage domain C2, respectively. Consequently the evolution laws of the flux
variables can be expressed in terms of the dual local and nonlocal variables in the
form {

(ṗpp,−α̇ααi , α̇αα5) ∈ NC1

(
σσσeee, Riχχχ i , Rχχχ5

)

ṡss ∈ NC2 (Sεεε)
(16)

with i = 1, . . . , 4, and represent the generalized normality relations.
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Properties of Fenchel’s conjugates allow one to state that the nonlocal counterpart
of the classical maximum dissipation principle holds for this nonlocal elastoplastic-
damage model following the reasoning reported in Marotti de Sciarra (2009a). The
nonlocal maximum dissipation principle states that the actual state of the thermo-
dynamic forces (σσσeee,χχχ1, Rχχχ2, Rχχχ3, χχχ4, Rχχχ5) is that which maximizes the inelastic
nonlocal dissipation functions over all other possible admissible states.

4 Plastic and Damage Flow Rules for the Nonlocal Model

The associative evolution laws can be obtained in terms of the plastic and damage
multipliers by assuming that the admissible elastoplastic and damage domains are
defined in terms of the plastic and damage modes

{
h(σσσeee,χχχ1, Rχχχ2, Rχχχ3,χχχ4, Rχχχ5) = h1

(
σσσeee,χχχ1, Rχχχ2

) − h2(Rχχχ3,χχχ4, Rχχχ5) − σy
g (Sεεε) = g1 (Sεεε)−εd

(17)
where σy is the initial size of the yield surface and εd is the initial damage threshold.

Substituting relations (17) in (16), the flow rules (16) can be equivalently rewritten
in terms of the plastic and damage multipliers (see Marotti de Sciarra 2008) to get

⎧
⎨

⎩

(ṗpp,−α̇αα1,−α̇αα2, ) = λpdh1(σσσ
eee,χχχ1, Rχχχ2)

(α̇αα3, α̇αα4,−α̇αα5) = λpdh2(Rχχχ3,χχχ4, Rχχχ5)

ṡss = λddg (Sεεε)

(18)

under the complementarity conditions

{
λp ≥ 0, h

(
σσσeee, Riχχχ i , Rχχχ5

) ≤ 0, λph
(
σσσeee, Riχχχ i , Rχχχ5

) = 0
λd ≥ 0, g (Sεεε) ≤ 0, λdg (Sεεε) = 0

(19)

with i = 1, . . . , 4. Here λp is the plastic multiplier and λd denotes the damage
multiplier.

If the yield mode h1 is such that the norm of its derivative with respect to σσσeee is
equal to one, i.e.

∥
∥dσσσeee h1(σσσ

eee,χχχ1, Rχχχ2)
∥
∥ = 1, the plastic flow

ṗpp = λpdσσσeee h1(σσσ
eee,χχχ1, Rχχχ2) (20)

is such that ‖ṗpp‖ coincides to the plastic multiplier, i.e. ‖ṗpp‖=== λp. Moreover assuming
that dRχχχ3h2(Rχχχ3,χχχ4, Rχχχ5) = 1 it results α̇αα3 = λp = ‖ṗpp‖.

Hence the actual value of the kinematic internal variableααα3 assumes the mechan-
ical meaning of the effective plastic strain
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ααα3 =
t∫

0

‖ṗpp(τ )‖dτ. (21)

Accordingly the internal variable ααα3 can be associated to SSDs.

5 Finite-Step Nonlocal Variational Formulation

Let t0, t1, . . . , tn, tn+1 = tn + �t be convenient time instances along the time
interval over which the response of the body is sought. Consider the time step �t =
tn+1 − tn . At the time t = tn all quantities are known since they are the converged
values of the previous step and the solution must be computed at t = tn+1 for a given
strain increment �εεε.

Hence the time discretization is performed according to the Euler backward
scheme and the constitutive behavior of the body in the small strain range is governed
at the time step n+1 by the relations reported in Table2 and by the flow rules (16).
The finite-step counterparts of the flow rules associated with the nonlocal model are
enforced at the end of the step according to the relations

{
(�ppp, −�ααα1, −�ααα2, −�ααα3, −�ααα4, −�ααα5) ∈ NC1(σσσ

eee,χχχ1, Rχχχ2, Rχχχ3,χχχ4, Rχχχ5)

�sss ∈ NC2 (Sεεε) ,

(22)
and the time increment�t has been dropped being NC1 and NC2 normal cones. Note
that the finite-step flow rule can be equivalently expressed in terms of the dissipation.

Thus the finite-step nonlocal elastoplastic-damage model is governed by the fol-
lowing relations

⎧
⎪⎪⎨

⎪⎪⎩

σσσeee = −dpppψ, χχχ1 = dααα1
ψ, χχχ2 = dααα2

ψ,

χχχ3 = dααα3
ψ, χχχ4 = dααα4

ψ, χχχ5 = −dααα5
ψ,

σσσeee ∈ ∂ppp D1, Riχχχ i ∈ ∂−αααi D1, Rχχχ5 ∈ ∂ααα5 D1
Sεεε ∈ ∂sss D2

(23)

with i = 1, . . . , 4. Therefore the nonlocal potential associated with the nonlocal
model can then be evaluated following the direct procedure reported in Marotti de
Sciarra (2009b) and the following variational formulation holds:

Theorem 1 (Nonlocal variational formulation) The set (εεε, ppp, Riαααi , Rααα5, sss) is a
solution of the saddle problem

statααα5minεεε,ppp,αααi ,sssΠ(εεε, ppp, Riαααi , Rααα5, sss) (24)
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where

Π (εεε, ppp,ααα1, Rααα2, Rααα3,ααα4, Rααα5, sss) =
∫

Ω

ψ (εεε−ppp, Riαααi , Rααα5)dx

+
∫

Ω

D1 (Δppp,−Δαααi ,Δααα5)dx

+
∫

Ω

D2 (Δsss) dx −
∫

Ω

sss ∗ Sεεεdx

−
∫

Ω

σσσ∗εεεdx (25)

with i = 1, . . . , 4, if and only if it is a solution of the finite-step nonlocal elastoplastic
model coupled with damage. �

The stationary conditions of the potential Π enforced at the point

εεε, ppp, Riαααi , Rααα5, sss,

with i = 1, . . . , 4, provides the finite-step nonlocal elastoplastic-damagemodel (23).
In fact the stationary conditions are:

(0, 0, 0, 0, 0, 0, 0, 0) ∈ ∂Π (εεε, ppp,ααα1, Rααα2, Rααα3,ααα4, Rααα5, sss) (26)

which are equivalent to the following relations:

0 ∈ ∂εεεΠ ⇐⇒ Ssss +++σσσ === dεεε−pppψ (εεε−ppp, Riαααi , Rααα5) = σσσeee,

(0, 0, 0, 0, 0, 0) ∈ ∂(ppp,αααi ,ααα5)Π ⇐⇒

⎡

⎢⎢⎢⎢⎢
⎢
⎣

−dpppψ

dααα1ψ

Rdααα2ψ

Rdααα3ψ

dααα4ψ

−Rdααα5ψ

⎤

⎥⎥⎥⎥⎥
⎥
⎦

∈ ∂ D1 (Δppp,−Δαααi , Δααα5)

(27)

with i = 1, . . . , 4 where σσσeee = −dpppψ , χχχ1 = dααα1
ψ , χχχ2 = dααα2

ψ , χχχ3 = dααα3
ψ ,

χχχ4 = dααα4
ψ , χχχ5 = −dααα5

ψ , and further it results:

0 ∈ ∂sssΠ ⇐⇒ Sεεε ∈ D2 (Δsss) . (28)

Reverting the steps above a solution of the finite-step nonlocal elastoplastic model
with damage in the strain space makes the potential Π stationarity.
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6 Conclusions

• An efficient building of a consistent thermodynamic integral nonlocal elastoplastic
behavior coupled with damage in the strain space is presented.

• A variational formulation of the nonlocal elastoplastic and damage problem is
derived.

• It is also shown that the inelastic internal variables can be related to the effective
plastic strain and, then, to the SSDs by a suitable choice of the plastic mode.
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Hysteresis Loop Analysis in Cyclically
Strained Materials

Jaroslav Polák and Roman Petráš

Abstract The generalized statistical theory of the hysteresis loop is adopted to
describe the stress-strain relations, preferably in cyclic straining. The effective stress
and the distribution of the internal critical stresses in cyclic straining are evaluated in
two materials cycled at room and at elevated temperatures using the analysis of the
hysteresis loop shape. The evolution of the shape of the probability density function
of the internal critical stresses yields deeper insight into the mechanisms of cyclic
plastic straining. It indicates the important role of cyclic plastic strain localization
in room temperature fatigue softening. The approximation of the probability density
function by Weibull distribution leads to the assessment of the effective and internal
stresses and allows the simulation of the relations between the stress and strain in
case of different cyclic histories.

Keywords Cyclic plastic straining · Hysteresis loop · Statistical theory · Effective
stress · Internal stress

1 Introduction

The stress-strain relations in the materials are requisite for the calculation of the
stress and strain distributions in structural members or in entire structures subjected
to mechanically or thermally induced forces. Numerous efforts have been devoted to
propose appropriate phenomenological relations that can describe the stress-strain
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relations under stress and strain histories, namely in cyclic loading (Chaboche 2008;
Abdel-Karim and Khan 2010) or to model cyclic hardening/softening behavior of
polycrystals derived from the properties of single crystals (Evrard et al. 2010; Lin
et al. 2010). Both approaches are based on the assumption of a homogeneous mate-
rial behavior represented by the Representative Volume Element (RVE). These
approaches can model cyclic stress-strain relations in good agreement with the
experiment provided the numerous input parameters are previously determined from
experimental results.

All approaches based on the phenomenological characterization of the cyclic
stress-strain response can achieve reasonable quantitative description of this response
provided enough parameters are introduced in the model. It is however difficult to
link the input parameters with characteristic internal structural parameters and their
evolution in cyclic plastic straining. Cyclic plastic straining of materials has number
of specific features which distinguish it from unidirectional straining (Polák 1991).
Cyclic straining is characterized by small amplitude of the total strain and elastic and
plastic strain components of the same order of magnitude. The prominent feature of
cyclic plastic straining is the localization of the cyclic plastic strain into the bands
of localized cyclic slip called persistent slip bands (PSBs). In the description of the
cyclic stress-strain response it is therefore important to use models that can take into
account the inhomogeneous distribution of the cyclic plastic strain in the material.

The basis of such a model represents the approach developed already in the 30ties
of the last century byMasing (1923, 1925) who recognized the inhomogeneity of the
material and the heterogeneity of the plastic strain. The main sources of the hetero-
geneity of the plastic strain were believed to be the different orientations of the grains
in polycrystalline materials. Masing proposed to model the actual behavior of a poly-
crystalline material by a number of elements having different critical yield stresses
that are arranged in parallel. In a more general approach Afanasjev (1953) proposed
the continuous distribution of the critical yield stresses of individual volumes of the
material characterized by the probability density function. In both approaches each
volume is deformed elastically, either in tension or in compression, until critical
yield stress σc is achieved and deforms further plastically without hardening. The
behavior of an individual volume is thus similar to the behavior of a single crystal
oriented for single slip. Total stress is derived as the weighted average provided the
individual volumes are arranged in parallel. Parallel arrangement of the deformed
volumes is close to the real arrangement especially in low amplitude cyclic straining.
The occurrence of the individual volumes is determined by the probability density
function of the critical yield stresses f (σc). Macroscopic stress can be calculated
as the weighted average of the stresses of individual microvolumes. Due to both
simplifying assumptions the model is suitable for small strains which are generally
the case in cyclic plastic loading.

Based on the knowledge of the mechanisms of cyclic plastic straining in which
plastic strain is due to the motion of dislocations driven by the effective stress in
individual volumes of the crystal general statistical theory has been proposed by
Polák and Klesnil (1980, 1982), Polák et al. (1982) and in a different form by
Burmeister and Holste (1981). The application of this theory to the cyclic plastic
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deformation of both polycrystals and single crystals is supported by the recent find-
ings that cyclic plastic strain is highly localized and the amplitude of the cyclic plastic
strain in PSBs varies considerably and can reach up to several percents (Polák 1991;
Man et al. 2009; Weidner et al. 2008a, b).

Based on the theory of the thermal activation (Seeger 1956; Caillard and Martin
2003) dislocations in a crystal move with a velocity which depends on the effective
shear stress τeff provided by the applied stress. The effective shear stress component
is equal in all microvolumes since the effective stress is determined by the proper-
ties of dislocation motion in a particular lattice and is temperature and strain rate
dependent. The second component of the critical stress of a particular microvolume
stems from the stress field of all other dislocations acting on the dislocation in a
direction opposite to the direction of straining. This component, the internal critical
shear stress of the microvolume τic is nearly temperature and strain rate independent.
It depends on the dislocation arrangement in the particular microvolume. The inter-
nal critical shear stress component is different in individual microvolumes and the
occurrence of a volume with internal critical shear stress is given by the probability
density function f (τic).

Since internal critical shear stresses of microvolumes are proportional to the
internal tensile stresses of these microvolumes the statistical theory of the hystere-
sis loop has been formulated in quasi-elastic approximation in terms of the internal
critical tensile stresses σic, their probability density function f (σic) and saturated
effective stress of the material σes (Polák 1991; Polák and Klesnil 1982).

The analysis of the loop shape using this generalized statistical theory have
been applied to the hysteresis loop of carbon steel (Polák et al. 1982), austenitic
and duplex stainless steels (Polák et al. 2001a, b) and recently also to nickel-based
superalloy (Petrenec et al. 2014). The statistical theory without considering explic-
itly the effective stress component has been adopted by Christ (1991), Skelton
et al. (1997), Heino and Karlsson (2001) and Sivaprasad et al. (2010). Recently
Mayer et al. (2013a, b) attempted to describe temperature and strain-rate dependent
plasticity of bainitic steel using the Masing approach, surprisingly without consid-
ering the effective stress contribution.

Present study is devoted to the presentation of basic principles of the general
statistical theory of the hysteresis loop and to its application to the analysis of the
cyclic plastic stress-strain response of two polycrystalline materials. Austenitic steel
represents single phase material and nickel based superalloy consists of two phases
with markedly different effective stresses. Both materials are intended for the design
of components working at high temperatures. Total macroscopic cyclic stress has
two components, the effective and internal stress and both contribute to the high
fatigue resistance of these materials. Effective stress represents not only an important
contribution to the total cyclic stress but on strain reversal leads to transient relaxation
phenomena which are reflected on the shape of the hysteresis loop. Internal stress
can be calculated using probability density function of the internal critical stresses.
Its evolution determines the fatigue hardening/softening behavior in cyclic loading.
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2 Analysis of the Hysteresis Loop

Generalized statistical theory of the hysteresis loop (Polák 1991; Polák and Klesnil
1982) has been formulated for a homogeneous polycrystalline material. Since crit-
ical shear stresses of individual volumes determine critical tensile and compressive
stresses the theory is formulated using critical stresses σc, the internal critical stresses
σic, and saturated effective stress σes. Internal critical stress is the stress at which the
microvolume starts yielding without hardening provided the strain rate is infinitesi-
mally low (i.e. effective stress is zero). The saturated effective stress corresponds to
a given plastic strain rate and temperature and is the same in all volumes. It is called
saturated since it corresponds to the plastic strain rate of the microvolume equal to
the applied strain rate (Polák 1991). The distribution of microvolumes according
to their internal critical stresses is characterized by the probability density function
f (σic).
The probability density distribution function f (σic) determines the frequency

of occurrence of a volume with internal critical stress σic. All microvolumes are
supposed to be arranged in parallel and therefore the macroscopic internal stress
component is given by integration over all elements. The total stress σ as well as
the macroscopic internal σI and the macroscopic effective stress σE components
were calculated in quasi-elastic approximation. In quasi-elastic approximation the
effective stress increases linearly with strain with the slope of the effective elastic
modulus Eeff until saturated value of the effective stress σes is reached and is constant
later. In quasi-elastic approximation no stress and strain relaxation is allowed.

The shape of the hysteresis loop is easily described using second integral function
G(x) of the probability density function of the internal critical stresses defined as

G (x) =
x∫

0

⎛

⎝
z∫

0

f (z) dz

⎞

⎠ dx . (1)

The shape of the hysteresis loop in quasi-elastic approximation can be expressed in
terms of the relative stress σr and relative strain εr (Polák 1991)

σr

{= εrEeff for εr ≤ 2σes
/

Eeff ,

= εrEeff − 2G
(
εrEeff

/
2 − σes

)
for 2σes

/
Eeff ≤ εr ≤ 2εa

(2)

where Eeff is effective elastic modulus. Relative stress and relative strain for tensile
and compression hysteresis-half-loops are

σr = σ + σa, εr = ε + εa for tensile half-loop,
σr = σa − σ, εr = εa − ε for compression half-loop,

(3)
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where σa and εa are the stress and strain amplitude, respectively. The relations for
macroscopic internal and effective stress components in the four intervals of the
strain range can be found elsewhere (Polák 1991; Polák and Klesnil 1982).

By double differentiation of the relation (2) we can obtain the relation for the
probability density function of the internal critical stresses

f

(
εrEeff

2
− σes

)
= − 2

E2
eff

∂2σr

∂ε2r
for 2σes

/
Eeff ≤ εr ≤ 2εa (4)

Relation (4) shows that by plotting the second derivative of the hysteresis half-loop
(multiplied by −2/E2

eff ) versus fictive stress εrEeff/2 we can evaluate the saturated
effective stress σes from the offset of the probability density function relative to the
origin. The first and the second derivatives of the relation (2)1, derived in quasi-
elastic approximation, yields zero. In reality, due to plastic strain relaxation during
unloading the first derivative for very small fictive stresses (εrEeff < σes) decreases
from 2Eeff to Eeff . The negative second derivative is thus initially positive, large,
decreases to zero and should become zero for (σes < εrEeff < 2σes) (Polák 1991).
The total shift of the probability density function in fictive stress is thus σes.

The analysis of the hysteresis loop with the help of the general statistical theory
thus allows separating the effect of temperature and strain rate on the effective and
internal stress component. The effective stress component is influenced strongly by
temperature and strain rate since both parameters directly influence the mobile dislo-
cation density and dislocation mobility. The probability density function is affected
only indirectly by the temperature and strain rate dependence of the dislocation
arrangement.

In case that twophases participate in the cyclic plastic straining both their saturated
effective stresses and the probability density functions could differ. Since the statis-
tical theory of the hysteresis loop is based on the Masing approach (Masing 1923,
1925) in which all microvolumes are deformed in parallel, Eq. (4) can be applied sep-
arately to both phases, provided their effective stresses differ substantially. In case
the experimental data are precise enough so that the first and the second derivatives
could be assessed with good precision the saturated microscopic effective stresses
and the probability density functions characterizing the distribution of the critical
internal stresses in both phases could be evaluated.

3 Experimental Conditions

3.1 Material

Two materials designed primarily for high temperature applications were stud-
ied. Austenitic stainless steel grade UNS S31035, Sanicro 25, was supplied by
Sandvik, Sweden in the form of cylindrical rod of 150mm in diameter. The chemical
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composition of the material in wt.% was: 0.1 C, 22.5 Cr, 25.0 Ni, 3.6 W, 1.5 Co,
3.0 Cu, 0.5 Mn, 0.5 Nb, 0.23 N and the rest Fe. After the production of the rough
shape of specimens they were annealed at 1,200 ◦C for 1h and cooled in the air.
Inconel 738LC was provided by PBS Turbo, Velká Bíteš a. s. in the form of conven-
tionally cast polycrystalline rods of a diameter 22mm in fully heat treated condition.
Chemical composition of the superalloy in wt.% was: 16.22 Cr, 8.78 Co, 3.37 Ti,
3.35 Al, 1.77 Ta, 2.63 W, 1.71 Mo, 0.84 Nb, 0.2 Fe, 0.04 Zr, 0.1 C, 0.008 B, rest Ni.
Cylindrical specimens with the diameter 8mm and the gage length 14mm for room
temperature testing and 6mm in diameter and 15mm gage length with button ends
for elevated temperature testing were produced.

3.2 Testing Procedures

Specimens were cyclically strained in computer controlled electro-hydraulic MTS
testing system with constant total strain rate 2× 10−3 s−1 in symmetric strain cycle
using extensometers with 12mm base. Materials were cycled either at room tem-
perature or at temperature 700 ◦C using split resistance furnace. High temperature
hydraulic grips and high temperature longitudinal extensometer were used in high
temperature cyclic loading. Either constant strain amplitude or blocks of stepwise
increasing constant strain amplitudes εa (multiple step test procedure) were applied
to the specimen at each temperature. High data recording rate (up to 3,000 samples
s−1) allowed obtaining the highest number of data points on the hysteresis loop. In
case the noise of both strain and load channels was low enough and control loop
of the hydraulic system was optimized only 500 data points on the hysteresis loop
recorded using standardMTSLCF programwere enough for performing the analysis
of the hysteresis loop shape. The evolution of the loop shape in cyclic straining was
thus studied with only 500 data points on the hysteresis loop.

3.3 Evaluation Procedures

Using maximum and minimum strains and stresses in a cycle, the relative strain εr
and the relative stress σr were calculated both for tensile and compression hysteresis
half-loops. The first and the second derivatives of the hysteresis half-loops in relative
coordinates were evaluated using numerical procedures and plotted versus fictive
stress equal to εrEeff/2. Appreciable care was paid to choose appropriately the strain
interval on which the first and the second derivatives were numerically evaluated by
fitting a linear relation to the data points. The optimum strain interval had to be
found large enough for which the derivatives did not fluctuate exceedingly but small
enough not to distort the actual shape of the derivatives.

Individual peaks of the second derivative were fitted in some cases to the general
Weibull distribution using least squares fitting procedure. In quantitative evaluation of
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individual peaks the data around the peak of the second derivativewere approximated
by the translated Weibull distribution in the form

f (x) = b

a

(
x − d

a

)b−1

exp

[

−
(

x − d

a

)b
]

(5)

where a is scale parameter, b the shape parameter and d is location or shift parameter
equal to the saturated effective stressσes.All three parameters couldbe evaluated from
the experimental data using least squares fitting procedure. In practical evaluation
of a cyclically deformed material the shape parameter b was first evaluated from a
number of half-loops and an integer close to the average of the values obtained for
the particular material was chosen and fixed in further fitting.

In the evaluation of the changes of the probability density distribution with the
number of loading cycles the following notation will be used in denoting the individ-
ual segments of the hysteresis loops. The initial quarter-cycle starts always in tension
and is denoted as zero segment. The first complete half-loop runs in compression
and will be called the first half-loop or segment (shortly sgm). The second complete
half-loop runs in tension and is called the second half-loop or segment (shortly sgm).
Analogically, all odd segments are compression segments and all even segments are
tensile segments.

4 Results

4.1 Sanicro 25 Steel

4.1.1 Saturated Behavior

Low cycle fatigue tests are ordinarily performed with constant strain amplitude
and constant strain rate. In digitally controlled testing systems hysteresis loops
are recorded but usually only stress amplitude and possibly plastic strain amplitude
are evaluated and plotted versus number of loading cycles. In majority of polycrys-
talline materials the changes of the stress amplitude are eminent in the early stages of
cycling and with increasing number of cycles saturated behavior is found. Figure1
illustrates hardening/softening behavior of Sanicro 25 steel in room temperature
cycling and in cycling at temperature 700 ◦C. High amplitude cyclic straining at
room temperature (Fig. 1a) leads to initial cyclic hardening; stress amplitude reaches
maximum at the number of cycles lower than 100 and cyclic softening follows until
the end of fatigue life. In low amplitude cyclic straining fatigue softening starts from
the first cycle. In all cases the softening rate decreases and a tendency to reach satura-
tion is apparent for all strain amplitudes. Substantially different behavior is found in
cycling at temperature 700 ◦C (Fig. 1b). Stress amplitude starts at much lower value
than in room temperature cyclic straining however for all strain amplitudes rapid
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Fig. 1 Cyclic hardening/softening curves in constant total strain amplitude loading: a T = 22 ◦C,
b T = 700 ◦C

cyclic hardening is present. Hardening rate decreases during cyclic loading and at
temperature 700 ◦C also the tendency to reach saturation is apparent.

For separation of the internal and effective stress components the analysis of
the hysteresis loops in the domain of saturation has been performed. In order to
eliminate the effect of different specimens the multiple step test procedure used
usually for the determination of the cyclic stress-strain curve has been programmed
on the control computer. Figure2 shows the plot of the stress amplitude versus the
number of loading cycles in cycling the specimens with blocks of increasing strain
amplitudes. One specimen was cycled at room temperature, the other at temperature
700 ◦C. Similar behavior of the material at both temperatures is found in cycling with
constant strain amplitudes up to fracture (see Fig. 1). Cycling at room temperature is
characterized by cyclic softening, cycling at temperature 700 ◦C by cyclic hardening.
Hysteresis loops at the end of each block were plotted for both temperatures in Fig. 3.
They are plotted in relative coordinates corresponding to the tensile half-loop of each
hysteresis loop, i.e. the origin of coordinates was put in the minimum of the stress
and strain of each loop. This plot allows checking whether material exhibits Masing
behavior or non-Masing behavior. The real behavior of thematerial in cyclic straining
is more complicated—see discussion in Sect. 5.

In order to separate the effective and internal stress contribution to the total stress
the tensile and compression hysteresis half-loops at the end of each block were ana-
lyzed using the second derivatives. Simultaneously the probability density function
of the internal critical stresseswas assessed using relation (4). Figure4 shows the neg-
ative second derivative of the tensile hysteresis half-loop (multiplied by −2/(Eeff)

2)
recorded at the end of a block runwith the strain amplitude 2.5× 10−3 and 2.7× 10−3

at two temperatures versus fictive stress equal to εrEeff/2. Initial drop of the sec-
ond derivative at both temperatures close to zero corresponds to the relaxation of
the plastic strain under decreasing effective stress during unloading. Plastic strain
relaxation is positive until the effective stress is positive and drops to zero at fic-
tive stress for which the second derivative reaches zero. Due to the finite number
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Fig. 2 Stress amplitude versus number of cycles in block loading of Sanicro 25 with increasing
strain amplitudes at two temperatures

Fig. 3 Hysteresis loops at the end of each block of increasing strain amplitudes: a room temperature
cycling, b cycling at temperature 700 ◦C

of points used for the evaluation of the first and the second derivatives zero of the
second derivative is only rarely achieved. Either zero or a minimum close to zero in y
coordinate is obtained on the plots corresponding to low strain amplitudes. For fictive
stresses above the minimum the second derivative approximates the probability den-
sity function of the internal critical stresses f (σic). The shifted probability density
function has been approximated by the general Weibull distribution (Eq. 5). By fit-
ting Eq. (5) to the second derivative around the peak corresponding to the probability
density distribution of the internal critical stresses we can evaluate effective saturated
stress using relation (4) and parameters characterizing the distribution function. The
characteristic parameters obtained using least square fitting are shown in Table1.
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Fig. 4 Second derivative of the tensile hysteresis half-loop in cyclingwith constant strain amplitude
and the Weibull fits (dashed lines): a εa = 2.7× 10−3, room temperature cycling, b εa = 2.5× 10−3,
cycling at temperature 700 ◦C

Table 1 Parameters of the Weibull distribution Eq. (2) fitted to hysteresis half-loops of individual
materials and their constituents

Material Eeff (GPa) a (MPa) b d = σes (MPa)

Sanicro 25, T = 22 ◦C, εa = 2.5 × 10−3 190 145 2 104

Sanicro 25, T = 700 ◦C, εa = 2.7 × 10−3 151 169 2 97

IN 738LC γ matrix, T = 800 ◦C 137 219 2 205

IN 738LC γ ′ precipitates, T = 800 ◦C 137 182 2 610

4.1.2 Evolution of the Hysteresis Loop

Evolution of the hysteresis loop is nicely illustrated by evaluating the second
derivatives of the hysteresis half-loops during cyclic loading. Figure5 shows the
second derivative of the tensile half-loops produced by cycling at room temper-
ature with two different strain amplitudes during the fatigue life. In low ampli-
tude cycling (Fig. 5a) two pronounced peaks on the second derivative appear. With
increasing number of cycles the second peak diminishes until it completely dis-
appears at 10,000 cycles, i.e. 20,000 segments (0.1Nf ). The first peak increases
and its maximum shifts in direction of lower fictive stress. From the position
and the shape of the peak we can estimate the saturated effective stress σes by
extrapolating the rising part of the second derivative to zero and using Eq. (4).
Initially its value evaluated from the 2nd segment is around 140MPa and it decreases
during cyclic loading to about 100MPa. In cycling with the highest strain amplitude
(Fig. 5b) only one pronounced peak of the second derivative is obtained from the onset
of cycling. With increasing number of cycles the height of the peak decreases, its
width increases and the position of the peak shifts slightly to lower fictive stress until
63rd segment. These changes correspond to fatigue softening. However, inspecting
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Fig. 5 Evolution of the second derivative of the tensile segments during the fatigue life at room
temperature: a εa = 2.7× 10−3, b εa = 1.0× 10−2

Fig. 6 Evolution of the second derivative of the tensile segments during the fatigue life at
temperature: 700 ◦C: a εa = 3.0× 10−3, b εa = 7.0× 10−3

the whole spectrum (Fig. 5b) we can see that at higher fictive stresses the second
derivative at 64th segment is well above that corresponding to the first segment. This
corresponds to fatigue hardening (compare with Fig. 1). Above 64th segment the
height of the peak starts increasing again however the drop of the second derivative
at higher fictive stresses corresponds to cyclic softening.

Much more pronounced changes in the second derivative were found in cyclic
loading at temperature 700 ◦C. Figure6 shows the changes of the second derivative
of the tensile half-loop with increasing number of cycles. In cycling with small strain
amplitude (Fig. 6a) single peak at fictive stress around 160MPa appears and does not
change significantly up to the 10th segment.With further cycling it decreases, widens
and is shifted to higher fictive stresses. In the 2,500th segment the new peak at fictive
stress around 270MPa starts to appear and is well developed at 16,000th segment.
Still later single peak at the fictive stress 280MPa characterizes the shape of the



196 J. Polák and R. Petráš

tensile half-loop. Evaluation of the saturated effective stress based on Eq. (4) shows
that during cyclic loading it increases from the initial value 90MPa to about 120MPa
for 50,000th segment. Both these processes led to cyclic hardening (compare with
Fig. 1b). Similar behavior is found in cycling with the high strain amplitude (Fig. 6b).
High and narrow peak of the second derivative at number of segments smaller than
10 decreases, widens and a tendency to the formation of a new peak at 370MPa
is apparent. Simultaneously the saturated effective stress increases from 90MPa to
around 120MPa for 1,000th segment.

4.2 Nickel Based Superalloy

Hysteresis loop analysis of 738LC superalloy was performed at three temperatures
during multiple step test. Figure7 shows the record of the stress amplitude versus
number of loading cycles during multiple step test at room temperature and at tem-
perature 800 ◦C. At each level of the strain amplitude the stress amplitude is nearly
constant. Fatigue hardening is apparent only during cycling with the highest strain
amplitude at room temperature. Data for temperature 500 ◦C are in between those at
room temperature and temperature 800 ◦C.

The evolution of the second derivative with cycling at three temperatures shows
Fig. 8. The drop of the second derivative due to strain relaxation is very steep at
room temperature (Fig. 8a) and at temperature 500 ◦C (Fig. 8b) where the initial part
is missing. At temperature 800 ◦C the initial drop of the second derivative extends
to substantially higher fictive stresses than at room temperature. Two peaks can
be identified in the plot of the second derivative at all three temperatures. They
correspond to the successive cyclic plastic straining of the matrix (γ phase) and
coherent γ ′ precipitates (Petrenec et al. 2014). The first peak is very weak in room

Fig. 7 Stress amplitude versus number of cycles in block loading of 738LC superalloywith increas-
ing strain amplitudes at two temperatures
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Fig. 8 Evolution of the second derivative of the tensile segments with the number of cycles at three
temperatures: a εa = 3.0 × 10−3, T = 22 ◦C, b εa = 7.0 × 10−3, T = 500 ◦C, c εa = 7.0 × 10−3,
T = 800 ◦C

temperature cycling. The position of the first peak is shifted to higher fictive stresses
with increasing temperature (from 130MPa to 400MPa). The shape and the height
of the first peak do not depend on the number of loading cycles. The second peak
is more pronounced and its position depends on temperature and on the number of
loading cycles. At all temperatures with increasing number of cycles the maximum
decreases and the position of the peak moves to higher fictive stress.

Quantitative evaluation of the saturated effective stresses and probability density
functions of internal critical stresses in both phases was possible only at temperature
800 ◦C using loops having low noise in strain and stress. Figure9 shows two pro-
nounced peaks of the 38th segment. Each peak was fitted by the Weibull distribution
in such a way that only data above 50% of the maximum value of each peak were
used for the fitting. The shape parameter b was always between 2 and 3 provided
all parameters were free. In agreement with the results on Sanicro 25 steel we have
fixed parameter b to b = 2. All other parameters were obtained using least square
fitting and are shown in Table1.
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Fig. 9 Second derivative of the tensile segment of 738Ls superalloy cycled with strain amplitude
εa = 7.0 × 10−3 at temperature T = 800 ◦C and Weibull fits to the two peaks

5 Discussion

5.1 Separation of the Effective and Internal Stress

The principal aim of this investigation was to demonstrate the usefulness of the
hysteresis loop shape analysis based on the generalized statistical theory (Polák
1991). We have studied two materials, single phase Sanicro 25 steel destined for
use at elevated temperatures and 738LC cast superalloy with the main application
also in high temperature domain. It was proved that the hysteresis loop analysis is
preferentially useful in two areas:

1. for the separation of the contribution of the effective stress and internal stress
components,

2. for the study of the probability density distribution of the internal critical stresses
and its evolution in cyclic straining which determines the internal stress contri-
bution.

Study of both components contributes to the understanding of the mechanisms of
cyclic straining and identification of the sources of cyclic stress.

In order to separate the effective and internal stress component most often the
approximate procedures based on themethodfirstly proposed byKuhlmann-Wilsdorf
and Laird (1979) (the KWLmethod) were used. The method is based on a simplified
Cottrell’s analysis (Cottrell 1953) of the dislocation motion in reversed straining.
Subsequently it was modified (Dickson et al. 1984) and is used until now (Vogt
and Magnin 1993; Feaugas et al. 2008; Chang and Zhang 2012; Vucko et al. 2014).
It was shown by Polák et al. (1996) that the use of the second derivative in the
analysis of the shape of the hysteresis loop could yield more exact separation of the
two components of the cyclic stress. Present investigation demonstrates that even
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in case of a low number of data points on the hysteresis loop the effective stress
could be estimated reasonably well provided the strain amplitude is low. However,
the processes of smoothing and evaluation of the first and second derivatives are very
critical, especially in the evaluation of the saturated effective stress. Only the data
with low noise can be used for numerical differentiation using a small basic interval.

In case of cyclingwith high strain amplitude several slip systems become activated
and probability density function becomeswider.While during unloading themajority
of microvolumes still continue to flow plastically under decreasing effective stress
other microvolumes with low critical internal stress start deforming in the opposite
direction. As a result zero value of second derivative is never reached and only
the position of the minimum of the second derivative could be determined. The
extrapolation to zero second derivative can thus result in erroneous saturated effective
stress. This situation is apparent in Fig. 5b during cyclic loadingwith strain amplitude
1× 10−2. Therefore the reliable values of the effective stress are obtained from the
analysis of the loop shape run only with low strain amplitudes.

The effective stress in a particular phase of the material depends on the mobile
dislocation density and their mobility. According to the Orowan equation (Caillard
and Martin 2003) the plastic strain rate is

ε̇p = Mρmbv (6)

where M is Taylor or Sachs factor, ρm mobile dislocation density, v dislocation veloc-
ity and b themodulus of Burgers vector. Neglecting back fluctuations the dependence
of the dislocation velocity on the effective stress σe is

v = v0 exp
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where v0 is the frequency of atomic oscillations ΔG0 the activation energy of an
obstacle that can be overcome by thermal fluctuations, A is the activation area of an
obstacle and T is the absolute temperature.

Provided the activation area is constant or is replaced by an effective activation
area the plastic strain rate is

ε̇p = MρmbKs exp

(
σe

Mαs

)
(8)

where parameter Ks depends on temperature and activation enthalpy of an obstacle

Ks = ν0 exp

(−ΔG0

kT

)
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and αs is function of the activation area of an obstacle. Thus

σe = Mαs ln

(
ε̇p

MρmbKs

)
(9)

and replacing plastic strain rate ε̇p by strain rate ε̇ saturated effective stress is

σes = Mαs ln

(
ε̇

MρmbKs

)
(10)

In constant strain rate loading the effective stress thus depends strongly on temper-
ature and on mobile dislocation density. If mobile dislocation density were constant
effective stress should decrease with temperature. In Sanicro 25 steel the saturated
effective stress at temperature 700 ◦C is approximately the same as that at room
temperature. It implies that the decrease of the mobile dislocation density with tem-
perature is compensated by the increase of the dislocation mobility.

The identifications of the sources of the cyclic stress, preferentially in materials
designated for high temperature applications, is important in improving their proper-
ties or in the design of new materials for a specific application. Though considerable
attention has been paid to the separation of the cyclic stress in a number of materials
(Kuhlmann-Wilsdorf and Laird 1979; Cottrell 1953; Dickson et al. 1984; Vogt and
Magnin 1993; Feaugas et al. 2008; Chang and Zhang 2012), a number of studies
(Christ 1991; Skelton et al. 1997; Heino and Karlsson 2001; Sivaprasad et al. 2010;
Mayer et al. 2013a, b) have neglected the contribution of the effective stress in the
analysis of the hysteresis loop shape. In some cases the effective stress was not
considered even in case when studying the temperature and strain rate sensitivity in
cyclic loading (Mayer et al. 2013a, b). Neglecting the contribution of the effective
stress can result in modification of the real situation and in hiding the actual sources
of the cyclic stress. Cyclic loading results in the evolution of the internal structure
of the material which is reflected in the evolution of the probability density distribu-
tion of the internal critical stresses. This evolution at elevated temperatures could be
more important than at room temperature. The changes in the effective stress due to
variations in temperature and strain rate should be, however, distinguished from the
changes of the probability density function.

5.2 Sanicro 25 Steel

The probability density function of Sanicro 25 steel undergoes important changes
during cyclic plastic straining. These changes are much more pronounced in strain-
ing with low strain amplitudes (Fig. 5a) than with high strain amplitude (Fig. 5b).
The presence of two peaks witnesses two types of cyclic plastic straining. The
explanation of two peaks and subsequent gradual disappearance of the second peak
can be explained in relation to the observation of the surface relief and dislocation
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Fig. 10 Surface of theSanicro 25 cycled at room temperaturewith strain amplitude εa = 3.0× 10−3

for 74 cycles (0.002N f )

arrangement after cyclic straining of Sanicro 25 (Polák et al. 2014). Due to the high
nitrogen content in Sanicro 25 the stacking fault energy is very low. Cyclic plastic
strain starts to by localized to the persistent slip bands from the onset of cycling.
Figure10 shows the surface of the steel cycled with low plastic strain amplitude
3× 10−3 only for 74 cycles. Fine persistent slip markings (PSMs) develop very
early on the surface of the grains. They consist of extrusions and intrusions (see the
inset in Fig. 10) while the majority of the grain surface has no signs of slip. This
indicates that the yield stress in the majority of the grain volume is high and only
in small volumes corresponding to slip bands and later to PSBs plastic deformation
is effective. Therefore the second peak in Fig. 5a corresponds to the deformation of
the matrix and the first peak to developing deformation of PSBs. With increasing
number of cycles the cyclic plastic strain is completely localized to PSBs and the
second peak disappears. The disappearance of the second peak and the shift of the
first peak to the lower fictive stress correspond to fatigue softening observed in low
amplitude cycling (Fig. 1a).

In cycling with high strain amplitude already in the first cycle enough slip bands
and later PSBs not only in primary system but also in secondary slip systems are
formed in the material. Cyclic plastic straining concentrates in the system of inter-
secting PSBs which leads originally to fatigue hardening but very early PSBs start
to transform in the low energy dislocation structures (Laird et al. 1986; Obrtlík et al.
1994; Polák 2003) which results in long-term cyclic softening, similarly to cycling
with low strain amplitudes (Fig. 1a).

Cycling at temperature 700 ◦C results in single peak of the second derivative
(Fig. 6). For all amplitudes with increasing number of cycles the peak is shifted
to higher fictive stresses which corresponds to cyclic hardening. Due to elevated
temperature and high thermal activation the cross slip is more frequent and therefore
the localization of the cyclic plastic strain is much smaller in comparison with room
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temperature cycling (Polák et al. 2014). The shift of the peak to higher fictive stress
and also the widening of the peak corresponds to cyclic hardening of the material.

Different evolution of the probability density function of the internal critical
stresses is reflected in the shape of the hysteresis loops recorded at the end of each
loading block (Fig. 3). Both in room temperature cycling and in cycling at 700 ◦C
non-Masing behavior was found. However in room temperature cycling the relative
stress of the larger loop for the same relative strain is lower than that of the smaller
loop. In cycling at temperature 700 ◦C it is the other way round. Principal role here
plays cyclic softening at room temperature and cyclic hardening at high temperature
and respective shifts of the probability density functions (Figs. 5 and 6).

5.3 738LC Superalloy

The advantage of the hysteresis loop analysis is most evident in the case of materials
containing two deformable phases like duplex steels (Polák et al. 2001b) or nickel
base superalloys. Two peaks in the second derivative of IN738LC superalloy (Fig. 8)
at all three temperatures correspond to the subsequent plastic deformation of the γ

matrix and γ ′ precipitates that are coherent with the matrix. The peaks are well sep-
arated since effective stresses of both phases differ substantially. Figure8 shows that
the fraction of plastic strain accommodated by the matrix increases with increasing
temperature. Nearly saturated behavior of the superalloy was observed in multiple
test at all three temperatures (Fig. 7). Only high strain amplitude cyclic loading at
room temperature and at temperature 500 ◦C resulted in fatigue hardening.

Effective stresses and probability density distributions of the internal critical
stresses evaluated in cyclic straining at temperature 800 ◦C (Table1) show very dif-
ferent saturated effective stresses of both phases. High saturated effective stress of
the ordered γ ′ phase (around 600MPa) is due to the difficult movement of superdis-
locations in ordered lattice. The width of the probability density distribution of the
internal critical stresses in the γ matrix (proportional to the parameter a) is larger
than that in γ ′ precipitates. This is connected with high plastic strain imposed to the
γ matrix which must be accommodated by the activation of multiple slip systems.

5.3.1 Loop Shape Simulation

Basic parameters determining the shape of the hysteresis loop are thus the effective
stress and the probability density function of the internal critical stresses. Both para-
meters are related to physical parameters of the material. Effective stress is deter-
mined by the density and mobility of mobile dislocations and probability density
function is determined by the arrangement of dislocations in the fatigued material.
Knowing both these quantities and the effective Young modulus we can simulate the
hysteresis loop of the material. Provided the probability density function f (σic) can
be approximated by the Weibull distribution
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where Eb(x) is the generalized error function
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The relation between the stress and strain in cyclic straining can be thus expressed
using only a small number of characteristic parameters, namelyEeff a, b (see Table1).
Expression (12) predicts the shape of the hysteresis loop in quasi-elastic approxi-
mation, i.e. no stress and strain relaxation is possible. Moreover, the use of single
probability density function for all strain amplitudes would produce saturated hys-
teresis loops which satisfy completely the Masing behavior. This is not in good
agreement with the behavior of real material see Fig. 3. Therefore the simulation
which matches closely the real cyclic stress-strain behavior of the material in sat-
uration region would require for each temperature and each strain amplitude the
different set of parameters Eeff , a and b.

6 Conclusions

Experimental study of the hysteresis loops recorded in cyclic loading of twomaterials
at different temperatures and their analysis using general statistical theory of the
hysteresis loop led to the following conclusions:

1. Analysis of the hysteresis loop yields important additional information on the
sources of cyclic strength of materials.

2. Loop shape analysis allows separating the contributions of the effective and the
internal stresses.

3. Evolution of the hysteresis loop shape contributes to the understanding of the of
the room temperature fatigue softening of Sanicro 25 steel.

4. The determination of the effective stresses and probability density distributions
of the internal critical stresses in single phase and in two phase materials helps in
optimization of their composition and thermal treatment.

5. The approach using general statistical theory allows simulating the stress-strain
response of materials in cyclic loading based on physical parameters related to
properties of dislocations and their internal structure.
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Creep, Plasticity and Fatigue of Single
Crystal Superalloys: Physics-Based Life
Prediction for Turbine Components
in Severe Operating Environments

Alexander Staroselsky and Thomas J. Martin

Abstract The chapter reports the process and computer methodology for a
physics-based prediction of overall deformation and local failure modes in cooled
turbine airfoils, blade outer air seals, and other turbomachinery parts operating in
severe high temperature and high stress environments. The computational analysis
incorporated coupled aero-thermal CFD with non-linear deformation finite element
calculations with a crystallographic slip-based constitutive model. The methodology
utilized a fully-coupled elastic-viscoplastic model that was based on crystal vis-
coplasticity, and a semi-empirical lifing model introduced the use of dissipated energy
to estimate the remaining part life in terms of cycles to failure. The viscoplastic model
used an incremental large strain formulation additively that decomposed the inelastic
strain rate into components along the octahedral and cubic slip planes of single crys-
tal nickel-based superalloys. This crystallographic-based viscoplastic constitutive
model based on Orowan’s law was developed to represent sigmoidal creep behavior.
Inelastic shear rate along each slip system was expressed as a sum of a time dependent
creep component and a rate independent plastic component. A new robust and com-
putationally efficient rate-independent crystal plasticity formulation was developed
and combined with the creep flow model. The transient variation of each of the inelas-
tic components included a back stress for kinematic hardening and latent hardening
parameters to account for the stress evolution with inelastic strain as well as the evo-
lution for dislocation densities. The model was evaluated at real engine characteristic
mission times and flight points for part life prediction. The method was effective for
use with three-dimensional finite element models of realistic turbine airfoils using
commercial finite element applications. The computationally predicted part life was
calibrated and verified against test data for deformation and crack growth.
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1 Introduction

In modern turbomachines, which comprise turbofans, turbojets, gas turbine engines,
and the like, the purpose of the turbine component is to extract work from the high
pressure and high temperature core flow. The two most important parameters that
determine the turbine’s power output and fuel efficiency are the rotor speed and
turbine inlet temperature. Increases in the rotor speed and turbine inlet temperature
offer the greatest improvements to the fuel efficiency and power output of the engine.
It is well understood that the turbine rotor speed determines the maximum pressure
ratios that can be obtained by the turbine, and increasing the speed, temperature
and cross-sectional area of the core flow increases the amount of energy that can be
extracted as work to drive the fan and compressor (Lakshminarayana 1996). As a
consequence, turbine airfoils are subjected to the highest possible temperatures and
centrifugal loads, which result in increased risk of structural failure, and accelerated
material deterioration and degradation due to creep, oxidation, corrosion and thermo-
mechanical fatigue at high temperature. These damage mechanisms ultimately set the
limit of the entire engine. In addition, the accumulation of structural damage due to
high temperatures and stresses constrains the time allowed between engine overhauls
leading to greater cost of operation. In particular, the amount of time an engine can
spend in continuous service depends on the life of the worst turbine airfoil, which is
limited by the service-life capability, often referred to as the turbine durability. The
goal of a turbine durability engineer is to provide a design for those turbine airfoils
that will maintain a specified (service) life against all forms of damage, and in order
to maintain their required service life, one must generate a turbine airfoil shape, select
a high-temperature resistant material, develop an internal cooling configuration, an
external film cooling scheme, and a thermal barrier and oxidation resistant coating
on the (hot section) components exposed to those high stresses and temperatures.
Hence, it is important to be able to predict the ultimate life, which requires an accurate
prediction of the onset and accumulation of damage due to oxidation, corrosion,
coating spallation, thermo-mechanical fatigue, low cycle fatigue, high cycle fatigue,
and tertiary creep.

In modern turbomachines, high turbine efficiency requires the ability of turbine
airfoils and outer air seals to withstand gas temperatures of the order of 2000 ◦C,
yet most modern turbine components, especially the airfoils, are constructed from
nickel-based super alloys that cannot withstand metal temperatures in excess of
1200 ◦C. Superalloys are widely used in the aerospace and power industries, as they
were specifically designed for hot sections components of jet engines. They exhibit
high mechanical strength, resistance to deformation at high stress and temperature
(creep), fatigue life, and corrosion and oxidation resistance. In polycrystalline mate-
rials these increased temperatures would cause creep strains that would be unaccept-
able. Directionally solidified and single crystal materials were developed to mitigate
the effects of creep at high temperatures. A typical modern single crystal superalloy
has the ordered L12 structure, with a matrix based on a face-centered cubic struc-
ture and regular cubes of γ ′ phase which occupy from 65 to 70 % of the volume.
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This two-phase structure of a superalloy provides improved creep strength at high
temperatures because the hard phase and the phase boundaries provide obstacles to
dislocation motion. Even single crystal materials must be pushed to their creep limits
to ensure that engine performance is maximized.

Internal cooling passages, cold-side impingement, film (external) cooling and
thermal barrier coatings are used on turbine airfoils and air seals in order to allow
these components to withstand greater heat loads, resulting in increases in allowable
turbine inlet gas temperatures. For a given cooling effectiveness, the turbine durability
engineer can increase the amount of cooling air to produce a greater benefit, but
high pressure cooling air must be extracted from the engine’s compressor, thereby
draining energy from the work-producing cycle. In addition, aerodynamic losses will
also occur because of larger airfoil cross-sectional requirements, larger leading and
trailing edge diameters, and the ejection of the cooling air through film cooling holes
and slots reduces the boundary layer (Crawford and Kayes 1976) momentum leading
to lower turbine aerodynamic efficiency (film mixing losses). About 400 ◦C of the
increase in temperature capability can be attributed to internal convective cooling
alone (Goldstein 1971). Internal cooling works by passing cooling air through internal
passages inside the turbine airfoil, or impingement air inside the airfoil or on the
backside of the air seals, and transferring heat by conduction through the blade walls
to the air, and by convection, transferring back into the hot gas stream (Le Grives
1986). A large internal surface area is desirable for this purpose, so the cooling paths
tend to be serpentine and full of small heat exchangers such as impingement holes, pin
fins (pedestal banks), and turbulators, and the technology is moving towards smaller
and smaller cooling features. Film cooling can be targeted upon specific areas of the
turbine airfoil that absorb the most heat, for example, shower head cooling at the
leading edges of the airfoils (Bunker 2005). Thin ceramic top coatings, called thermal
barrier coatings (TBC), shield the turbine airfoils from the high temperature external
gases, providing another 400 ◦C protection, which allows the turbine components to
be fully operable and durable at higher temperatures, providing greater power and
fuel efficiency. However, TBCs are prone to delaminate and spall during operation,
especially at the edges of the parts, and the loss of the thermal barrier must be
compensated by increasing the internal cooling at the leading and trailing edges
using impingement cooling features.

2 Turbine Airfoil Failure Modes

At the high temperatures experienced in a turbine, corrosion and oxidation damage
affects the life of the airfoil. In regions where surface temperatures are extremely
high, surface atoms react with oxygen and oxidation occurs, and this reaction rate
increases with increasing temperature. When the metal alloy is exposed to cyclic
thermal operation, oxide is formed by consuming the alloy, creating and extending
defects in the alloy. This process continues over time and operation, and results in
the erosion of the alloy wall, as well as depletion of the γ ′ material; reducing its
strength and resistance to creep. Thermal protection is provided by a low thermal
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conductivity ceramic top coat that decreases the heat flux into the part, called a
thermal barrier coating (TBC). In order to protect the superalloy against oxidation
and corrosion, environmental barrier coatings (EBC), usually metallic aluminide or
platinum aluminide, are added as an interlayer as well as to improve bonding of
the TBC to the alloy substrate. The addition of TBCs, EBCs and age-hardening
materials such as chromium and cobalt to the nickel-based alloys make the part
resistant to oxidation and corrosion, but these materials are expensive. TBCs are
prone to rapid degeneration in service (spallation) caused by cyclic thermal and
structural loading. After repeated thermal cycling, the ceramic coating spalls or
delaminates, exposing the alloy to the harsh temperature and the oxidative/corrosive
gases of the combustion chamber. Sulfidation is a corrosion phenomenon that results
primarily from the condensation of sodium sulfate on the surface of the blade. With
increasing surface temperature, the corrosion rate first increases and then decreases
because the temperatures are nearer to the vapor pressure of the sodium sulfate and
less condensation occurs. Therefore, metal durability is at a maximum at a specific
high temperature, so turbine airfoils and attached components are designed such that
the maximum temperature in the metal and coating do not exceed some material
limit, and so that the material temperature is maintained within a certain range of
metal temperatures to achieve peak life expectancy.

Thermo-mechanical fatigue (TMF) is the weakening of material as it is subjected
to cyclic thermal loading experienced when the engine is throttled through its operat-
ing cycle. The predominant factor in TMF endurance is the thermal strain; relatively
small changes in the strain range have a significant effect on the TMF endurance
of a part, which is measured as the number of cycles until failure. TMF can result
in thermal-strain induced cracking, weakening of the materials’ resistance to creep,
and TBC spallation. Advanced cooling features inside modern turbine airfoil designs
increase the concerns of TMF, because the external airfoil wall is hotter and the inter-
nal walls are cooler. For example, when designers add small cooling channels inside
the coolant wall very close to the surface exposed to the hot gases, they effectively
separate the wall into two thermal regions, resulting in extremely high thermal gra-
dients around these features. Such configurations can produce three times higher
strains than allowed by conventional cooling standards. Failure usually occurs under
thermal mechanical fatigue loading, where the creep damage accumulates during the
compressive high temperature deformation and the cracks emanate from the cooling
hole or other micro-feature during the tensile low temperature cooling cycle.

Turbine components of aircraft engines are subject to strain controlled cyclic
elastic-plastic deformations during airplane maneuvers which are combined with
dwell times resulting in viscoplastic effects such as creep and/or stress relaxation.
This combination of creep and plasticity leads to damage nucleation and growth and
a significant reduction of the expected service life. It is a well-known fact that, at peak
(e.g. take-off and climb) operating conditions, the service life and mission analysis
of components operating in modern high pressure turbines of aircraft engines can
reduce by half if the blade metal temperature prediction is increased by 30 ◦C.

In recent years considerable attention has been given to the analysis of the
structures and components operating under these extreme thermal and mechanical
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loads and the prediction of these failure modes. Special interest has arisen in high
temperature rotating turbine blades which are subject to long term viscoplastic defor-
mation as well as time independent inelasticity caused by high levels of mechanical
stress (see, for example, Stouffer and Dame 1996). It is also observed that creep accu-
mulation typically show greater creep strain rates and/or reduced strain or time to
creep rupture for thinner specimens than predicted by current, size-independent theo-
ries (Gullickson et al. 2008). Accurate predictions of material response for combined
creep and plastic deformations are complex and greatly compounded during cyclic
loading which is directly related to creep-fatigue interaction phenomena. Hence the
development of a unified creep-plasticity model capable of predicting cyclic non-
isothermal loading conditions and implementation of it in the engineering design
practice is of extreme importance. An advanced creep-LCF/TMF lifing system would
increase part life and engine usage, and allow for an expansion of maintenance limits.

We assert that high fidelity computational thermal and plastic deformation analy-
sis will provide accurate predictions of hot section part life, allow for more durable
hot section components at elevated engine conditions, reduce the number of design
iterations, increase the time interval between service and overhaul, and result in a
significant increase of product reliability and decreased warranty costs. As a rule of
thumb, the quality of the different models used in such a system should be com-
parable; otherwise, one loses the advantages of the precise tool components. The
accuracy and detail of the transient thermal analysis of the cooled turbine airfoils is
critical to predict local transient strains, creep deformation and thermo-mechanical
failure, and to use these to evaluate the effects of transient heating and cooling rates
on the deformation and resulting life, and then to compare these predictions against
damage criteria. This transient thermal prediction required the 3D modeling of four
distinct heat transfer phenomenon, external convective heat transfer, external film
cooling and mixing with the hot gases, internal cooling convective heat transfer, and
transient heat conduction in the solid, all of which are coupled together in a transient
conjugate heat transfer process. Heat radiation was neglected.

The time-dependent evolution of the operating conditions were coupled with the
energy, momentum and mass flow conservation in all four domains using conju-
gate heat transfer interface conditions at different time scales. The predictions are
physics-based, using empirical models only where the computational methods were
inefficient, or unable to reliably predict the physical phenomenon. Using constitu-
tive creep and lifing models, the material capability was calculated using the engine
performance at key flight points. Through the use of sensitivity studies, the most
damaging parameters were deduced and used to determine the directions for design
improvement and optimization. The predictions were compared against experimen-
tal results for the specific failure design criteria, best practice were documented, and
the methodology implemented in Pratt and Whitney engineering standard work.
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3 Cooled Turbine Airfoil Design

The external shapes of the turbine airfoils are designed primarily from an aerody-
namic perspective, optimized for turbine airfoil efficiency, minimum pressure loss,
and a specified work extraction (loading). However, the external airfoil shape must
be able to accept internal and external cooling features, as well as hold manufactur-
ing tolerances and provide enough rigidity and solidity against creep, fatigue, high
cycle fatigue (vibration modes) and to maintain structural integrity. For example, the
cross-sectional areas of the internal cooling passages must be large enough to pass the
needed cooling air, the walls and ribs must be thick enough to handle the centrifugal
loads and to resist creep, the trailing edges must be designed large enough for the
placement of slots required to eject the cooling air at the trailing edge, and the leading
edge must be large enough to accommodate impingement and showerhead cooling
schemes, as well as to withstand impacts from foreign particles. As in all engineer-
ing problems, turbine airfoils operation reaches the limits of inherently conflicting
conditions, for example, the airfoil shapes are made thinner to improve aerodynamic
performance until the limits of structural integrity, durability and manufacturing are
reached.

A typical high turbine cross section and turbine blade design are illustrated in
Fig. 1. This figure shows the external aerodynamic turbine airfoil shape, platform,
attachment and internal convective cooling scheme. The image on the left is the
cross section of the high turbine flowpath. The schematic on the right illustrates the
external airfoil, platform, film cooling holes and ejection slots. A fully parametric
proprietary CAD program is used to generate two- and three-dimensional models of
turbine blades and vanes. Features captured by the parametric model are shown on
Fig. 2.

For rotating turbine blades, inverse shape design was used for the global require-
ments of meeting the maximum section-averaged creep-rate, allowable vibratory
stress (Goodman diagram), and the centrifugal stress limit at the blade root. Since
creep rate is severely temperature-dependent, the radial variation of the average metal
temperature of the blade must be estimated in order to set the nominal wall thick-
ness to maintain an allowable average creep rate (Menon 1992). That is, the average
creep life of the blade is set first by a Larson-Miller based function (Larson and
Miller 1952), then after computing the radial variation of the centrifugal stress limit
from this requirement, the thickness of the coolant wall is determined in order to
not to exceed the centrifugal and vibratory stress limitations. Since the hottest gases
in the turbine tend to migrate to the mid-span radius, and the centrifugal stresses in
the blade are the highest at the root of the blade and decrease radially, the combined
three-dimensional temperature and stress environment predicts that the worst creep
is experienced at some critical span location between the root and the tip. A radi-
ally varying (circumferentially-averaged) gas temperature profile, Tg(r), from a CFD
calculation was used to approximate a radial variation of the blade’s cross-section
averaged metal temperature, Tm(r). With this approximate average blade tempera-
ture variation, cross-sectional area of the load-bearing metal, and a given average
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Fig. 1 a Engine cross-section of high turbine showing first and second turbine vanes and blades,
b Drawing of turbine blade showing airfoil, platform, attachment, tip, film cooling holes, and trailing
edge slots (US Patent #US 8356975 B2)

Fig. 2 Film cooled turbine blade, showing airfoil, tip and platform film cooling holes

creep life of the blade, we estimated the radial variation of the allowable average
centrifugal stress in the blade metal usually using the Larson-Miller relation. In the
design of this turbine blade, a ±5 to 10 % margin of error in coolant flow rate was
accounted for with a 5 % margin of error in metal temperature.

A parametric CAD routine was used to generate rows of film cooling holes and the
airfoil (see Fig. 2). The parametric definition for round and shaped film holes, such
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as hole position, in-plane angle, surface angle, diameter, shape, number of holes and
pitch of the holes of the film cooling, completely defined the rows of film holes that
break out of the pressure and suction sides of the cavities, and those that break out
of the leading edge cavity as showerhead film, trailing edge slots, and tip surfaces
(Martin and Dulikravich 2002). Leading edge (showerhead) film holes were defined
by internal (ligament) distances, external position, diameter, shape, number of holes,
and pitch of the holes. This information was sufficient to get empirical estimates
for film coverage, heat transfer augmentation, cooling air discharge coefficients
(Gritsch et al. 1997) and manufacturability. For example, film hole coverage was
calculated by finding the footprint that each hole makes on the external airfoil sur-
face, and factoring the angle that the hot gas flow streaklines make with the vector
through the centerline of the hole. This film hole information was used to generate
elements in the internal cooling flow model in order to provide boundary conditions
to the thermal model of the solid, as well as for the generation of heat sink terms in
the thermal model to account for the convection cooling on the internal surfaces of
the film holes.

4 Loosely Coupled Conjugate Heat Transfer

We used computational fluid dynamics (CFD) and heat conduction/convection finite
element model (FEM) within a loosely-coupled, conjugate heat transfer (LC-CHT)
framework, where the external aero-thermodynamics of the turbine cascade, external
film cooling, internal cooling thermal-fluid flow, and heat conduction phenomena
were solved separately and coupled using compatibility relations at their interfaces.
The conjugate approach was needed because studies show that, when compared to
a decoupled solution of a convectively cooled airfoil, the material temperature can
change by up to 8 % of the difference in the mainstream and coolant temperature
(Martin 2001). This is even more important when the turbine airfoil is film cooled
because the film effectiveness is a strong function of the time-varying internal cooling
flow rate, blowing ratio and coolant temperature, coupled to the static pressures at
the film exits, lagged coolant supply pressure and temperature, and mission-varying
engine rotor speed. Multiple steady state CFD simulations were run at specific time
points of the mission to provide realistic estimates of hot gas temperature while
minimizing the computational costs of a fully transient CFD simulation. We justified
this by the fact that the time scales of the external flow physics are much shorter
than the response time of the heat conduction in the metal, therefore not requiring
time-accurate CFD simulation of the mission. Many simulations have shown that
the loosely-coupled process converges efficiently and provides temperature and heat
flux results that are just as accurate as the full conjugate procedure (Kassab and Li
1994). The latter involves the prediction for the heat conduction and convection in
the main gas path, solid and internal coolant flow passages simultaneously within
one multi-domain solver. Note that the loosely coupled approach is different from a
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fully coupled conjugate heat transfer (CHT) approach in only its “black-box” style
implementation of the component solvers, but the goals are the same.

LC-CHT procedure starts with a CFD prediction of the hot gas (combustion
products) flow through the entire multistage high and low turbine. We used a
steady-state, non-reacting, compressible Reynolds-Averaged Navier-Stokes (RANS)
flow solver (White 1994) supplemented with a realizable k−ω turbulence model
(Wilcox 1988). Each row of airfoils in the turbine were modeled as a single air-
foil (vane or blade), where each stator vane and rotor blade was coupled with cir-
cumferential symmetry and averaging at the interfacial mixing planes. Hence, our
CFD analyses neglected unsteady interactions (rotor-stator interaction due to shocks,
loadings and wakes) between any two airfoil rows. In the initial RANS CFD run,
we assumed all walls were adiabatic (Qg = 0) and we neglected film cooling and
leakage flows at the endwalls and air seal matefaces and gaps. This initial RANS-
CFD run did not consider the local effects of film and leakage, however, the global
effect of the mixing of coolant air with the main hot gas path was considered by
injecting cooling air uniformly distributed at various axial stations. The purpose of
the initial RANS-CFD run was to predict adiabatic temperature distributions, TG on
the external walls of the airfoils, endwalls and air seals.

Figure 3 illustrates the LC-CHT problem that we considered important to the
cooling design of a turbine blade. In order to balance the heat transfer between the
hot gas, solid airfoil and internal cooling flow, we ran a series of coupled thermal
analyses, where the RANS-CFD analyses of the hot gas path flow was coupled to
heat conduction analyses in the solid, and the internal coolant flow inside the airfoil.
The RANS-CFD runs were supplied with an external (airfoil, endwalls, tip, shroud,
etc.) wall temperature, Tw, as a boundary conditions (instead of Qg = 0) in order

ν
Tg

Tw

Ti

Tc,1

Tc,2

Fig. 3 Illustration of conjugate heat transfer problem of a turbine airfoil, including the velocity
boundary layer, thermal boundary layer, and heat transfer
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to develop a thermal boundary layer on the external surfaces. Since Tw was initially
unknown, we used an initial guess as a fraction of the adiabatic wall temperature
(e.g. Tw = 0.85Tg). These RANS-CFD runs calculated a distribution of heat flux,
Qg, or heat transfer coefficient, hg = Qgs/(Tg − Tw), on the external surfaces. To
account for the presence of the film cooling, the external gas temperature, Tg, was
converted to a film temperature, Tf , via film cooling effectiveness distribution. The
new heat transfer and film temperature coefficient distributions, hg and Tf , were
provided as an external boundary condition to a heat conduction analysis of the
solid. This heat conduction analysis also required internal coolant temperatures, Tc,
and heat transfer coefficient, hc, boundary conditions, which are also temperature
dependent, since the solid provides heating to the internal and film cooling air. The
heat conduction analyses, in turn, produced a new wall temperature distribution,
Tw, which were used as boundary conditions to subsequent RANS-CFD runs. The
external-solid-internal loosely-coupled conjugate aero-thermal process was solved
in succession until the wall temperature converged to within less than 0.5 ◦C.

5 Film Cooling

Film cooling involves the injection of higher density, lower temperature cooling
air into the external (hot gas) free stream through the film holes on the external
surface of the airfoil, tip and endwalls. The film air was assumed to be injected
into the thermal boundary layer in order to provide a layer of film on the airfoil
surface that protects it from the hot gases. It might appear to be straight-forward and
desirable to include film cooling air in the RANS-CFD simulation. The approach
most often implemented is called film injection modeling, but unfortunately, most
attempts at doing so have not met the accuracy requirements for the prediction of film
effectiveness and external heat transfer on turbine airfoils. In our analysis procedure,
the film cooling air was not modeled in the external RANS-CFD simulation but
instead, the external gas temperature was augmented using experimentally derived
adiabatic film effectiveness correlations.

The temperature of the external hot gas, Tg, was augmented by the presence of
the film using the adiabatic film cooling effectiveness, ηt , and the film cooling air
temperature, Tfc, in order to produce a film temperature, Tf = Tg − hf(Tg − Tfc).
Here, Tg is the adiabatic wall temperature predicted by the RANS-CFD solution. The
adiabatic film effectiveness was derived empirically in a proprietary code by corre-
lating heat transfer measurements in the vicinity and downstream of rows of inclined
film cooling holes. Empirical convection correlations were used for the heat transfer
coefficients inside the hole (circular channel with an entrance effect). The film effec-
tiveness and heat transfer factor are taken from empirical data. The film effectiveness
varies along the streamwise and lateral (hole-to-hole) directions, and it is known to be
a functions of a number of parameters, η f (MB, D, s/D, L/D, α, d p/dx, T u), specifi-
cally, the blowing ratio, MB, film hole diameter, D, relative film hole spacing, s/D,
relative distance downstream of the film hole, relative length of the film hole, L/D,
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film injection angle, α, pressure gradient, dp/dx , and turbulence intensity, T u. The
film cooling effectiveness was attenuated along CFD-predicted streaklines emanating
from the film cooling holes, and included the coverage of the film due to the footprints
of the holes on the surface (the local area made by the round or shaped and diffused
film cooling holes projected onto the surface and lateral to the streamwise direction).
Three-dimensional streaklines were generated from the CFD solution along the air-
foil, tip, platform and endwall surfaces. The streaklines on the airfoil surface were
divided into several groups; those that originate at the leading edge and travel to the
trailing edge, those that originate at the leading edge and travel down to the airfoil
root and run along the platform, and those that originate at the leading edge and
travel up to the airfoil tip. These streaklines were used to capture the physics of hot
gas migration in the turbine cascade, as well as the flow direction of the film cooling
air. In order to do this, the streaklines were grouped into regions on the airfoil pres-
sure side, suction side, tip, root and endwalls. The injection of the film disrupts the
external thermal boundary layer. Therefore, the distribution of external heat transfer
coefficient, hg, was also modified by an empirical factor, hf = hg · factor, which
was correlated to experimental film cooling measurements of rows of shaped and
inclined holes. The result was the balance of local RANS-CFD predicted heat flux,
Qg, into the external turbine airfoil surface, so that it matched the heat flux into the
solid at the LC-CHT converged wall temperature, Tw, such that, Qg = hf(Tf Tw).

6 Internal Cooling

The internal cooling air systems within modern turbine airfoil are extremely com-
plex and three-dimensional, having many branches of low to moderate Mach number,
recirculating flows caused by the existence of miniature heat exchangers, skewed trip
strips, sudden expansions or contractions, bifurcations of the flow stream, entrance-
effect flows, 180◦ bends, pedestal cooling schemes, impingement holes producing
jet flows, diffusing cooling air ejection slots for film holes, etc. An example of
three-pass serpentine cooling scheme (Brillert et al. 1999) with leading edge and
trailing edge impingement cooling, showerhead film, and coolant air ejection out
of the trailing edge is shown in Fig. 4. The heat transfer characteristics in a rotat-
ing serpentine coolant flow passage are very complex and three-dimensional, being
affected by Coriolis forces and centrifugal forces combined with thermal buoyancy
(Webb 1998). Thermal buoyancy within the boundary layer is an important effect
caused by the rotation, because Coriolis forces affect each portion of the serpentine
coolant passages differently depending upon whether the coolant stream is traveling
radially-outward or radially-inward. Secondary flows are induced by the Coriolis
force, making the heat transfer coefficients in the radially outward passages dimin-
ish on the leading surfaces and increase on the trailing surfaces, with an increase
in rotational speed. The trend is reversed in the radially inward passage. Hot zones
have a distinct effect on the heat transfer rate because higher temperatures produce
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Fig. 4 Schematic of internal coolant flow network in a turbine blade

greater buoyancy forces and enhanced heat transfer, therefore, the ratio of rotating
to non-rotating heat transfer coefficients, Nur/Nu, were a function of the local wall
temperature.

At present, the computational requirements needed for this type of CFD analy-
sis are beyond the scope of this work. Instead, the application of thermal boundary
conditions on the internal coolant flow passage surfaces was greatly simplified by
a steady-state semi-empirical approach using a network of quasi-one-dimensional
thermal fluid elements, in conjunction with an equation of state to solve for the
coolant air flow rate, coolant static pressure, and coolant static temperature. The fric-
tion, heat transfer, and cooling (head) loss coefficients were derived from empirical
correlations given the known geometry of the cooling passages within geometric
limits and operating ranges (Dipprey and Sabersky 1963; Han and Park 1988). The
coolant supply pressure and wall temperature at the source (supply) nodes, and static
pressures at the sink (dump) nodes (film holes and ejection slots), which might vary
in time, were applied at specific time points in multiple steady-state analyses of this
thermal fluid network (Kawaike et al. 1992). Wall temperatures on each element were
taken from the transient heat conduction solution from the FEM at selected mission
points.
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7 Heat Conduction

ANSYS was used for the prediction of the transient heat conduction response in the
solid, which consisted of two material domains in FEM; the metal superalloy and
the multi-component thermal barrier coating (TBC). The transient heat conduction
model consisted of two material domains in a finite element model (FEM); the nickel
metal alloy and the thermal barrier coating (TBC). The transient heat conduction in
the metal alloy assumed that the specific heat, C(T ), and thermal conductivity, k(T ),
of the metal alloy were functions of temperature within each domain.

ρC(T )
∂T

∂t
= ∇∇∇ · [k(T )∇∇∇T ] (1)

The thermal barrier coating was modeled by a layer of thin elements on the surface
of the finite element model, which included the bond coat and diffusion layer into the
metal using a thermal resistance weighting methodology, where keff is the effective
coefficient of thermal conductivity of the coating, ktbc(T ), kb(T ), and kd(T ) are the
thermal conductivities of the TBC, bond and diffusion layers, respectively, and ttbc, tb
and td are the thicknesses of those layers.

ttbc + tb + td
keff

= ttbc

ktbc
+ tb

kb
+ td

kd
(2)

The transient LC-CHT process continued by iteratively solving the external (hot gas)
CFD model and internal cooling flow model aerothermodynamics by applying wall
temperature boundary conditions predicted by the transient heat conduction model
of the solid airfoil at the interface surfaces (external hot gas/TBC & internal metal
alloy/cooling air)

Tw,gas = Tw,solid, Qw,gas = Qw,solid

These interface conditions are required to couple the heat conduction in the metal
alloy and the thermal barrier coating.

8 Transient Aero-Thermal Analysis

For the transient LC-CHT procedure, we supplied a mission profile, that is, the
engine operating conditions as a function of time in order to generate time-varying
boundary conditions for the thermo-fluid analysis solvers (coupled CFD and FEM),
which consisted of the time-varying engine performance variables such as high or
low pressure turbine rotor speed, core engine airflow into the turbine row (FLOW),
relative total temperature at the inlet to the turbine airfoil row (T41REL), relative
total pressure at the inlet to the turbine airfoil row (P41REL), internal coolant supply
pressure (PSUPPLY), and internal coolant supply temperature (TSUPPLY), versus
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time as shown in Fig. 5. The coolant supply pressure and temperature may alternately
be supplied as functions of, or scaled by, the time-varying compressor discharge
total pressure (PT3) and total temperature (TT3). For our analysis, the time-varying
mission parameters were supplied as radially and circumferentially averaged values.
A radially varying profile factor was applied to the inlet relative total temperature and
this factor was held constant in the transient thermal analysis, with only the average
(scaling) value varying in time. In addition, all other required boundary conditions
were scaled to the time varying condition. For the analysis and lifing of the part,
mission profiles were generated to provide actual or representative time varying
conditions, leading to the evaluation of the temperature, stress and strain fields for
that particular class of missions. The coolant supply pressure and temperature, which
vary in time, were applied to the source nodes (supply) of internal cooling air flow
model. Dump (static) pressures were specified at the sink nodes (film holes and
ejection slots). A constant initial guess for the wall temperatures along each element
of the coolant network was required to start the LC-CHT. This provided the necessary
boundary conditions to solve the internal cooling flow model for the internal cooling
air pressures, temperatures, flow rates and internal heat transfer coefficients.

The transient loosely-coupled conjugate heat transfer (LC-CHT) process was
solved iteratively by sequentially running the external aero-thermodynamic RANS-
CFD, transient heat conduction, and steady-state compressible internal cooling flow
analysis tools, coupled by the transference of wall temperature and heat flux interface
conditions predicted by them. About 4–8 LC-CHT iterations were required to con-
verge the wall temperature, Tw, to under 1 ◦F. The LC-CHT procedure was compared

Fig. 5 Flow chart of the loosely-coupled conjugate transient thermal analysis process for an inter-
nally and film cooled turbine airfoil
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to actual thermal measurements of a second stage turbine blade, where thermocouple
measurements were taken at several locations around the turbine blade, and where
pyrometry was available on the suction side. The loosely-coupled conjugate RANS-
CFD and heat conduction solution shown as a solid line compares very well with
the data. A non-conjugate (decoupled), two-dimensional thermal prediction is also
shown (dashed line).

9 Structural Non-linear Analysis for the Life Prediction

In order to reach our goal of physics-based life prediction, the thermal analysis
was followed by rigorous, time-integrated, visco-plastic structural prediction for
the permanent deformation and accumulated damage. In this work, we focus on
the micromechanics of the high temperature creep, plasticity, and damage accumu-
lation in single crystal nickel base superalloy and their interaction with the fail-
ure processes, for applications in advanced commercial and military gas turbines.
We have developed a unified crystal-plasticity based materials constitutive model
including thermally-dependent creep activation mechanisms for different crystallo-
graphic orientations. The model extends existing approaches to increase the accu-
racy of elastic-visco-plastic material deformation response predictions for cyclic and
thermal-cyclic loading.

During a typical flight mission the transient temperature changes cause non-
homogeneous thermal mechanical loading of single crystal components leading
to inhomogeneous local creep and damage evolution accompanied with extensive
stress redistribution and relaxation. The higher the value of applied stress and work-
ing temperature, the faster the accumulation of deformation takes place, which
can be understood as energy dissipation in the microstructure. Energy dissipation
in a loaded structure could take place either by inelastic (plastic) deformation
or by microcracking. The single crystal (SX) Ni-based superalloy (for example
PWA1484) exhibits nonlinear characteristics, where inelastic deformation is the pri-
mary damage-inducing mechanism; therefore life prediction is based on a fully cou-
pled cyclic visco-plastic damage accumulation model. Study of phenomena such as
strain hardening and saturation requires the analysis of the stability of inelastic defor-
mation under cyclic loading. Cyclic relaxation, like cyclic creep, also depends on the
mean stress/strain. During load and non-homogeneous temperature cyclic variations
a residual stress-strain state arises, which in turn leads to cracks or voids nucleation
and growth.

Creep in single crystal superalloys is highly anisotropic. Single crystal crystal-
lography indicates orientation-dependent creep behavior and, hence, it is extremely
important to be able to predict the creep rates in different crystallographic orientations,
especially due to non-homogeneous temperature distributions in the material. This
anisotropic behavior dictates the choice of the modeling technique (i.e., a crys-
tal plasticity based model). The proposed state variables approach for deformation
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Fig. 6 Strain rate versus creep strain for 〈001〉 creep of single crystal PWA 1484 at 850 ◦C and an
engineering stress of 550 MPa

simulations of L12 single crystals gives us a tool to deduce the physics-based behavior
of the structure and relate it to the microstructure evolution and orientation.

Creep deformation mechanisms dominate at high temperature, while time-
independent plasticity mechanisms become very important at relatively low tem-
perature (in our case in the range 750–850 ◦C). It is typical for Ni-based super-alloys
at operational temperatures to creep without steady state regime. This response is
referred to as sigmoidal creep (Levitin 2006). During the primary creep regime the
strain rate decreases with increasing strain until it reaches a minimal value. After this
point, the creep strain rate increases without a long constant strain-rate interval. At
high temperatures and moderate values of the applied load it is observed that creep can
occur without any noticeable primary stage. Figure 6 illustrates the sigmoidal char-
acter of PWA1484 creep deformation along 〈001〉 crystallographic direction. The
latter tertiary creep interval has a much steeper slope and is associated with active
creep cavitations and deformation localization near the fracture surfaces. Predicting
tertiary creep implies that damage mechanisms must be modeled. A combination of
these two mechanisms provides a description of the complete thermal-deformation
cycle when extensive deformation takes place at high peak temperatures, and the
residual strain/stress generated on cooling or even at engine shut down, which can
eventually lead to the failure initiation.
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10 Visco-Plastic Constitutive Model

The general form of the incremental governing relation for the visco-plastic shearing,
γ , may be written as a function of a number of physical effects:

Δγ α = γ̇ α(τα, sα, ωα, ρα, T )Δt = γ̇ α
creepΔt + Δγ α

plast, (3)

where α is the index of the slip system, τα is resolved shear stress, sα is the defor-
mation resistance, ωα is a kinematic hardening; ρα is the dislocation density, T is
the temperature, and Δt is the time step.

Our finite deformation model (Kalidindi et al. 1992; Staroselsky 1997) is a stan-
dard visco-plastic models that can be used to represent the macroscopic mechanical
response of the single crystal material. In this formulation creep will be included to
the total inelastic strain rate as will be shown in this section. The deformation of a
crystal is taken as the sum of contributions from overall elastic distortion and gener-
alized plastic deformation. The overall plastic response is a sum of responses from
small regions of a single crystal playing the role of representative volume elements
(RVE).

For metallic materials the constitutive equation for the second Piola-Kirchhoff
stress tensor is given by a linear relation

TTT ∗ = CCC[EEE∗ − AAA(T − T0)],
EEE∗ = 1

2

[
FFFeTFFFe − 111

] (4)

The governing variables in this constitutive model are the Cauchy stress, TTT , the
deformation gradient, FFF , the plastic deformation gradient, FFFp, where det[FFFp] = 1, AAA
is the second order thermal extension tensor, CCC is temperature dependent anisotropic
elasticity tensor, T is the temperature, and T0 is a reference temperature. Each crystal
slip system is specified by a unit normal, nnnα

0 , to the slip plane, and a unit vector, mmmα
0 ,

denotes the slip direction along slip system α.
The elastic deformation gradient is defined by decomposition of the total

deformation gradient.
FFF = FFFeFFF in (5)

Here, FFFe describes the elastic distortion of the lattice, where det[FFFe] > 0, which
gives rise to the stress TTT . The Cauchy Stress tensor is calculated as follows

TTT = 1

det(FFFe)
FFFeTTT ∗FFF in (6)
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The evolution equation for the visco-plastic deformation gradient is

ḞFF
in = LLL inFFF in,

LLL in = ∑

slip systems
γ̇ αSSSα,

SSSα = mmmα ⊗ nnnα

(7)

The shear rate along each slip system γ̇ α is given in terms of the slip systems
resistances, equilibrium stress (or back stress), and the resolved shear stress (RSS)

τ = TTT ∗ ··· SSSα (8)

Evolution of crystallographic texture is explicitly defined by the elastic part of the
deformation gradient

mmmα
t = FFFemmmα

0 ,

nnnα
t = FFFe−T

nnnα
0

(9)

We use the twelve octahedral slip systems 〈110〉(111). At high temperatures, the
cube slip systems 〈110〉(001) may also contribute to maintaining the plastic flow
of superalloys, and the material model parameters are different for the octahedral
and cube slip systems. We use Orowan’s assumption that the creep strain rate is
proportional to the density of the mobile dislocations, ρm. If we denote an arbitrary
reference dislocation density throughout as ρ0, then the non-dimensional parameter,
ρm/ρ0, serves as a measure of the mobile dislocation density, and can be used to
predict tertiary creep.

11 Creep Constitutive Model

The constitutive law for the secondary-tertiary creep strain rate along αth slip system
was written as follows (Staroselsky and Cassenti 2008)

γ̇ α = γ̇0

(
ρα

m

ρ0

) ∣∣∣∣
τα − ωα

sα

∣∣∣∣

n

sign
(
τα − ωα

)
exp

(
− Q

kBT

)
(10)

where γ̇0 is a temperature dependent time parameter, and kB is Boltzmann’s constant.
The Arrhenius term with the activation energy, Q, accounts for the temperature
changes and reflects the accumulated damage along the particular slip system. The
power n is the creep exponent, which was assumed n = 3 in this work. We have
chosen latent hardening evolution to be described by the following,

ṡα = h0

(
1 − sα

s∗

)p ∑

β

hαβ |γ̇ β | (11)
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with hardening matrix
hαβ = q + (1 − q)δαβ (12)

for temperature dependent h0 and s∗, and q = 1.4. The exponent p = 2 in this
work. The back stress (or kinematic hardening) has a limiting saturation value,
ω∞ = C1/C2, corresponding to the end of the primary creep stage which evolves
according to the following relationship (Stouffer and Dame 1996).

ω̇α = C1γ̇
α − C2|γ̇ α|ωα = λ(γ̇ αω∞ − |γ̇ α|ωα) (13)

The back stress requires two additional experimentally measured coefficients C1 and
C2 that are explicit functions of temperature. It is important to note that hardening
terms indirectly account for the microstructure evolution during the creep. Dislo-
cation generation and motion represents a non-recoverable state for the material.
We postulated that dislocation generation rate is proportional to the rate of entropy
production which can be expressed by

Ṡ ∼
nslip∑

α=1

(
τα − ωα

sα

)
γ̇ α ≥ 0, (14)

where nslip is the number of active slip systems, which is 18 (12 octahedral and 6
cube) for a Ni-base superalloy.

We consider two types of the dislocations: mobile and pinned. Using concepts
from chemical kinetics we have chosen to represent the dislocation density evolution
as two body interactions. We assume that dislocation immobilization takes place
when two corresponding dislocation loops interact with each other. Note that since
γ̇ α is already a linear function of the mobile dislocation density, then for two body
interactions the dislocation densities growth rates can be taken as the product of γ̇ α

and linear functions of the current dislocation densities. Assuming the existence of
dislocation densities saturation values, ρss

m for mobile dislocations and ρss
p for pinned,

we obtain relations for mobile and pinned dislocations along each slip system as
following (Staroselsky and Cassenti 2008, 2010).

ρ̇α
m = M

(
τα − ωα

sα

)
γ̇ α

in

(
ε2ρss

m + ρss
p − ρα

p − ε2ρα
m

ρ0

)

,

ρ̇α
p = Π

(
τα − ωα

sα

)
γ̇ α

in

(
ρss

p − ρα
p

ρ0

) (15)

Here, M and Π represent specific time constants, different for octahedral and cube
slip systems, ε2 is a positive constant. These equations include the annihilation of
mobile dislocations and also include their conversion to pinned dislocations. The
pinned dislocations grow at a rate that is proportional to the mobile dislocation density
because of the presence of the plastic strain rate term. Dislocation densities evolutions
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have strong temperature dependence because inelastic strain rates expression for γ̇ α

contains Arrhenius term.
In order to predict primary creep in Ni-based superalloys, we have developed rate-

dependent crystal plasticity formalism with a threshold stress on each slip system.

γ̇ α
primary = γ̇0

〈
(τα − ωα

p ) − κ
√

ρα
p

sα

〉n

sign

(
τα − ωα

p

sα

)
exp

(
− Q

kBT

)
(16)

Here,

〈a〉 =
{

a if a > 0
0 if a ≤ 0

and κ is temperature dependent fitting parameter. In the formula for the back stress,
parameter λ is a characteristic time parameter describing how fast the back stress
converges to its saturation value, ω∞. Thus, dislocations cross-slip causes strain
hardening which in turn decreases the rate of creep deformation. Increases in the dis-
location density and in the number of dislocation pile-ups makes further deformation
more and more difficult, resulting in the transition of creep from the primary stage to
a secondary one. The rate of the primary creep gradually decreases with deformation
or with the development of slip resistance. Since dislocation strengthening is propor-
tional to the square root of the dislocation density (for example, Mughrabi 1975), we
introduced the threshold value to also be proportional to the square root of the total
dislocation density. The threshold stress reflects the resistance to plastic flow arising
from hardening associated with an increase of dislocation density and cross-slip. All
threshold parameters as well as hardening parameters depend on temperature.

With an increase in primary creep deformations, dislocation density increases
reducing the applied effective stresses to very small values. Thus, the primary creep
slip rate gradually decreases from a significant value to zero. The back stress during
the primary creep stage has the same functional form as (16) but due to the fact that
primary creep is much faster process than secondary and tertiary ones, a value of γ α

0
for primary creep is smaller than the value of γ0 while the saturation value ω∞, is
the same for all creep stages.

The total creep deformation rate for each slip system is the direct sum of tertiary
creep Orowan’s type expression and the primary one.

γ̇ α
creep = γ̇ α

primary + γ̇ α (17)

Primary creep has been mainly observed in Ni-based superalloy at relatively low
temperatures and high applied nominal stresses. Typical creep curves obtained at
760 ◦C and the model predictions are shown in Fig. 7 (Staroselsky and Cassenti
2011). Figure 8 illustrates the creep model predictions curves against test data for
single crystal superalloy at 982 ◦C. The same model applied to the dwell fatigue
isothermal process and to the thermal mechanical fatigue (TMF) gives predictions
very close to the experimental observations as shown on graphs in Fig. 9.
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Fig. 7 Model predictions and creep test results at temperature 760 ◦C. Lines #1 and #2 are tests
and simulation results correspondingly of creep along (001) crystallographic direction with nominal
(initial) stress of 758 MPa. Lines #3 and #5 are creep test results along (111) direction conducted
at nominal stress levels of 758 and 620 MPa correspondingly. Lines #4 is the simulation results for
the test #3 and line #6 is the results of simulations for the test curve #5

PaM702,)100(gnolatseT

PaM702,)100(gnolanoitciderpledoM

PaM,842,)111(gnolatseT

PaM842,)111(gnolanoitciderpledoM

PaM842,)100(gnolanoitciderpledoM
PaM443,)100(gnolanoitciderpledoM

PaM842,)100(gnolatseT

PaM842,)100(gnolatseT

3000 100 200 400 500 600 700 800
0

0.05

0.10

0.15

C
re

ep
 s

tr
ai

n

Time - hours

Fig. 8 Creep prediction versus experimental data for 982 ◦C corresponding to three different nom-
inal stress levels of 207, 248, and 344 MPa applied along (001) crystallographic direction and of
248 MPa applied along (111) direction
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Fig. 9 Test data and model predictions of a creep-fatigue interaction with 5 min dwell time for
strain-controlled cyclic test up to 0.8 % strain range along 〈001〉 crystallographic direction at 982 ◦C;
and b OP TMF test up to 0.25 % strain range along (001) crystallographic direction at the temperature
range from 427 ◦C to 1038◦C with hot dwell of 30 min

Due to the creep, stress in the part redistributes and some, mostly non-creeping,
sub-volumes of the parts experience very high stresses leading to plastic deformation.
Plasticity causes severe damage significantly reducing service life. The details of the
presented rate-independent formulation can be found in Staroselsky and Cassenti
(2010). Here we briefly summarize the idea how to combine the computational
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benefits of rate independent plastic formulation with the advantages of a power
method affirming the uniqueness of active slip increments calculations.

12 Plasticity Constitutive Model

We postulate that a plastic strain rate is proportional to the rate of plastic work,

γ̇ α = τα − ωα

(sα)2

∣∣∣∣
τα − ωα

sα

∣∣∣∣

m

〈Ẇ p〉 (18)

By dividing both parts on Ẇ p and integrating, we get an explicit function of plastic
work, W p and subsequently the model can be labeled as rate independent. We use
the ramp function to satisfy Kuhn-Tucker condition or in other words, there is no
plasticity under unloading. It means that when the energy is removed from the mate-
rial, W p < 0, and no plastic deformation occur. We use the advantage of the power
model to limit activities of the slip systems with small resolved shear stresses and
to assure the unique choice of active slip systems. Values of the exponent, m < 30,
provide good selection of slip activities and do not cause computational problems
specific for stiff rate-dependent power models with very high values of the exponent
values. We generalize the formulation above by substituting the plastic work rate
with a weighted sum of the total and elastic work rates, and replace the plastic work
rate in the following way

γ̇ α = τα − ωα

(sα)2

∣∣∣∣
τα − ωα

sα

∣∣∣∣

m

〈Ẇ − k(Ẇ − Ẇ p)〉 (19)

Here, k is a temperature dependent material parameter. The total work rate is given by

Ẇ =
∑

i, j

σi j ε̇i j (20)

and the plastic work rate is

Ẇ p =
∑

α

(τα − ωα)γ̇ α (21)

After algebraic manipulation, we get the final form of the rate independent plastic
strain increment.
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Δγ α =
(1 − k)

〈
∑

i, j=1,3
σi jΔεtotal

i j

sα

〉 ∣∣∣ τα−ωα

sα

∣∣∣
m (

τα−ωα

sα

)

1 − k
∑

α

∣∣∣∣
τα − ωα

sα

∣∣∣∣

m+2 (22)

Thus, we have formulated a rate-independent flow rule which automatically guar-
antees a unique selection of active slip systems at each time increment with-out
any additional criteria and constraints. We also introduced one more model weight
parameter, 0 ≤ k < 1. If the value of this parameter is close to zero, yield values
change gradually as it usually observed during hardening. In the limiting case of
k → 1, there will be a sudden change in the plastic strain rate when τα − ωα = sα ,
and, hence, sα can be interpreted as a yield stress. The described model gives good
predictions for different crystallographic orientations.

13 Thermo-Mechanical Fatigue Model

Hot section components in advanced aircraft engines experience severe cyclic tem-
perature gradients and mechanical loads, particularly during takeoff and landing
operations. As a consequence, TMF is a major life-limiting factor air cooled tur-
bine airfoils (Amaro et al. 2010; Kersey et al. 2013) because they are subject to
the combined influences of thermally driven strain transients and creep damage dur-
ing operation. The phasing between thermal and mechanical loads defines the TMF
response of the airfoil. The extremes of load-temperature phasing are in-phase (IP)
and out-of-phase (OP). In-phase cycles occur when an unconstrained local area of
the blade is mechanically loaded at the same time the temperature increases. Out-
of-phase cycling occurs when a locally constrained area of the blade tries to expand
as temperature increases, which usually causes the local compression with the rise
of temperature. OP cycling is generally the most harmful because stress relaxation
at the maximum temperature develops high mean stresses. In addition, TMF crack-
ing occurs at varying locations on turbine airfoils, including pressure and suction
sides, leading and trailing edges, and both parallel and normal to the casting growth
direction. TMF cracks are often nucleated at the airfoil film cooling holes due to a
combination of high mechanical and thermal cyclic stresses and strains.

We have conducted several sets of TMF tests to study the underlying mechanisms
of damage evolution. The first series of OP-tests was performed on single crystals
flat dog bone specimens (Getsov et al. 2008). The loading direction was close to
〈001〉 crystallographic direction. EBSD mapping (measurement of crystal orienta-
tion) was performed in an area of 9×12 μm2 in different spots along the specimens.
Because the measurements were performed on the side plane (perpendicular to the
loading direction) the EBSD results shown as inverse pole figures in Fig. 10 are
close to 〈011〉. All orientation results measured in 10 points far from the failure site
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Fig. 10 Creep prediction versus experimental data for 982 ◦C corresponding to three different
nominal stress levels of 207 MPa, 248 MPa, and 344 MPa applied along (001) crystallographic
direction and of 248 MPa applied along (111) direction

Fig. 11 TMF crack fracture surface after testing up to Δε = 0.8 % at 426–1038 ◦C temperature
range

(further than 4 mm) are almost identical with minimal scattering indicating that the
tested material is the single crystal. There are some minor scattering due to not per-
fectly prepared surface. The results in the spots located within 1 mm from the TMF
fracture edge demonstrate significant scatter, indicating noticeable plastic deforma-
tion accompanies TMF process. It suggests that the primary driver for TMF failure
would be amount of creep and plasticity energy dissipated during each cycle.

The second set of TMF tests (Kersey et al. 2013) was performed on cylindrical
specimens MT41 loaded along 〈100〉 crystallographic direction and having drilled
two holes with dimer of 0.6 mm and located 135 degrees apart (for example, along
〈010〉 and 〈011〉 crystallographic directions). As one can see in Fig. 11, the crack
initiated at 〈110〉 oriented hole is the dominant one. Initially two cracks emanate
from both holes. Crack nucleation is a relatively slow process and for most of the life
time the acquisition system does not register any crack growth. Once crack initiation
has occurred the crack growth rate increases very rapidly. With the increase of the
maximum temperature of the TMF cycle, the number of cycles to failure drops as
can be seen from graphs in Fig. 12a, b.

Based on the fatigue crack growth (FCG) test data we compare the crack prop-
agation rate under TMF loading conditions against corresponding isothermal LCF
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Fig. 12 Dominant crack growth at a 0.5 % mechanical strain range for two different temperature
ranges and b at 0.8 % mechanical strain range for three different temperature ranges of OP TMF
test

crack growth at the low TMF cycle temperature. As one can see from the Fig. 13,
the TMF crack propagates considerably faster than corresponding crack growth rates
of the isothermal low cycle fatigue tests. The difference is at least of a half of an
order of magnitude. From these results one can conclude that at the high temperature
portion of the TMF cycle, the compressive visco-plastic deformations generate the
damage, which in turn reduces material crack resistance. The difference in the crack

Fig. 13 Comparison of crack growth rate during TMF tests against corresponding isothermal data
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growth rate is noticeable, so the damage tolerant design for TMF-limited parts should
account for TMF accelerating damage effects.

At low homologous temperatures, fatigue cracks in PWA1484 propagate predom-
inantly along {111} octahedral crystallographic planes and failure is driven by the
shear mode. Micrographs of the test specimens demonstrate initial crystallographic
crack propagations, which later changed to a non-crystallographic crack growth
mode. The typical fracture surface is rather flat mode I failure with numerous small
crystallographic facets. Hard γ ′ precipitates in a superalloy behave as barriers to
dislocations motion and hence strengthen the material microstructure.

FCG in single crystals is complex phenomenon with two major manifestations:

1. crack propagation in the matrix usually along precipitate interface (so-called
precipitate avoidance) or

2. crystallographic precipitate cutting along multiple (111) planes or sometimes as
001 cleavage along cubic planes

It is widely accepted (Henderson and Martin 1996) that the specific crystallographic
or non-crystallographic fracture mode is a strong function of temperature. Low tem-
peratures favor crystallographic fracture. At higher temperatures, (above 982 ◦C),
propagation is almost entirely non-crystallographic (Lerch and Antolovich 1990;
Staroselsky 2004; Kersey et al. 2013). Mixture of the precipitate avoidance and
matrix tearing along crystallographic steps indicate the damage progression at all
temperature regimes: the crystallographic step formation at low temperature and
high temperature creep and plastic deformation at high temperature. As one can see
the SEM analysis in Fig. 14 (Kersey et al. 2013) suggests that crack propagation is
the mix of crystallographic shear and Mode I separation processes.

Fig. 14 SEM images of TMF fracture surface: a Next to the initial hole, b the details of transition
region with deformation in two crystallographic orientation, c the high magnification showing the
cracking on multiple crystallographic planes
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The rate of the dissipated energy is the sum of the products of effective resolved
shear stress τα − ωα acting along each of the slip system by the shear rate along the
same slip system, γ̇ α . The amount of the energy dissipated during each cycle is the
integral of the dissipated energy rate over one cycle.

ΔW =
∫

cycle

⎡

⎢⎢
⎣

∑

slipsytems
α=1,18

(τα − ωα)γ̇ α

⎤

⎥⎥
⎦ dt (23)

The test data analysis shows that the value of dissipated energy ΔW controls the
life of the specimens. It is worth noting that the damage evaluated based on ΔW
effectively accounts for the combined effect of fatigue and creep/plasticity through
the width of the hysteresis loop and cannot be readily decomposed into a direct
summation of the damages caused by fatigue and inelastic dissipation as widely
used in engineering practice (i.e., Miner’s rule).

14 Damage Model

Thermally induced damage rate is defined by the energy (or entropy) generation rate.
Using kinetic form of the damage rate (Zhurkov 1965) and assuming that the energy
barrier for damage generation, D, depends on the value of dissipated energy per each
cycle, we have the following integral

DT
0 = A

Tperiod∫

0

exp

(
− Q − ΔW

kBT (t)

)
dt (24)

where T (t) is the local metal temperature. Typical values of ΔW/kBT � 1 and,
subsequently, using the Taylor expansion, we obtain the damage due to thermo-
mechanical fatigue

DT = A

Tperiod∫

0

exp

(
− Q

kBT (t)

)
dt (25)

If the dissipated energy per cycle is significant, which corresponds to creep rupture
and to cycles to large strain (>1 % strain magnitude), then the second term should
be also taken into account. Analysis of the DT term suggests that it represents
the oxidation diffusion and corresponding damage effect in a part process zone. A
regression analysis of the test data yields for the following semi-empirical formula
to predict number of cycles to failure.
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1

Nf
= e

qΔW

Tmax

[
1

C1/σm
max

+ 1

C2/(ΔW · DT )k

]
(26)

Here, σmax is the maximum principal stress, and C1, C2, ν, q and m are empirical
constants. Thus, the number of cycles to failure due to inelastic rupture can be
expressed as follows

NR = C2

(ΔW · DT )ν
(27)

Note also that the specimen life is controlled by the energy dissipation, or in other
words, damage initiation life varies with the product (ΔW · DT )ν , where the power,
ν<1 reflects the part of the dissipated energy dissipated in the failure process. Assum-
ing now that fatigue crack propagation is controlled by a Paris law it is easy to show
that the crack growth life is inversely proportional to the maximum principal stress to
some power, NF∞C1/σmax. Using this reduced order approach we neglect the differ-
ence in crystallographic and non-crystallographic crack growth mechanisms. Field
experience demonstrates that the majority of the airfoil failures follow in average
Mode I crack growth trend, which justifies the chosen method. Combining expres-
sions for expected life prediction due to different mechanisms, we obtain the final
result.

1

Nf
= 1

NF
+ 1

NR
(28)

Equation (28) agrees with the work of Neu and Sehitoglu (1989), and indicates that
failure due to elastic and fracture of inelastic rupture are independent quantities.
Finally, we use multi-linear regression to fit the coefficients C1 and C2, in the empir-
ical life prediction formula. The quality of different coupon tests life calculations are
shown in Fig. 15.
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Fig. 15 Life Prediction is within 2X interval against measured data for both OP TMF and isothermal
LCF tests
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15 Simulations of Transient Thermal Mission

The developed formula has been implemented into USERMAT ANSYS in the form
of damage rate evolution and the life predictions. The variation in damage can be
used to identify locations where airfoil cracking will occur and to allow a redesign of
the airfoil before production starts. It helps to eliminate expensive iterations of blade
production and testing to assess durability. In the following examples we demonstrate
our physics-based life prediction model on a second turbine blade of a commercial
aircraft engine. This turbine airfoil consists of a conventionally-cast single crystal
(SX) Ni-based superalloy and a thermal barrier coating.

An ANSYS turbine blade model with 200,000 finite elements was used for both
the thermal and structural analysis. The model used the geometry of the air-foil, inter-
nal channels, heat transfer enhancement features, and impingement cooling holes,
but not the internal turbulators (boundary layer trip strips) and film cooling holes.
Rate-dependent viscoplastic deformation commenced near cooling holes on the con-
cave surfaces of the blade, propagated across the thickness of the blade, in turn, put
extra tension on the leading-edge region, which then necked, and a crack formed at
the trailing edge at about the midspan region. We considered the airfoil deformation
and damage accumulation during a typical combined mission consisting of several
combined cycles, which represented a simplified turbine block test profile. Our dam-
age summation law provided estimates for the damage accumulation for each cycle,
resulting in the part life from the analysis of the combined mission.

During each cycle, the engine began from the idle stage to the maximum takeoff
regime (MTO), which was then stabilized at a slightly lower level at the maximum
continuous thrust (MCT) regime, and finally shut down to the idle condition. The
maximum gas temperature Tmax for the turbine blade inlet temperature, T4.1, was
at takeoff. The maximum continuous thrust regime had a maximum gas tempera-
ture about 10 % cooler. Each simulated cycle had long MTO and MCT legs of a
representative mission. The transient heat transfer procedure described in the first
section of the chapter was used to calculate a time-varying airfoil metal temperature
distribution at each nodal point of the finite element model (FEM) of the solid. The
simulation included a thermal barrier coating for the reduced convective heat transfer
and weight contribution to the overall stress distribution, however, the structural and
load bearing characteristics of this material were ignored.

A contour plot of the instantaneous metal temperature at the end of the climb
point is shown in Fig. 16a. The distribution of von Mises stress is shown in Fig. 16b,
and we show it here only to illustrate an equivalent stress measure for an isotropic
material. We are using this measure to reflect the intensity of the residual stresses
because plasticity is driven by shear stress rather than hydrostatic stresses. Stress
concentrations were seen on the internal cooling surfaces and around cooling holes.
These were found to die out rapidly away from the concentrations; therefore, this
effect on the life prediction was limited and could be ignored. The thermal analyses
showed that the leading edges and blade tip had the highest metal temperature. The
internal airfoil ribs adjacent to the cooling passages were much cooler than the metal
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Fig. 16 Instantaneous contour of a wall temperature on the coating/metal interface of the blade at
the end of climb and b equivalent stress on the external surface of the blade at maximum continuous
thrust

surface at the airfoil leading edge. Thus, the metal temperature varied over a wide
range, high enough to cause creep deformations and, subsequently, significant stress
redistribution.

16 Simulations Using Viscoplastic Model

Since we are focusing on creep-plasticity deformation, we are interested in character-
izing its contribution to the residual stress field and the susceptibility of the material to
yielding. The thermally induced stresses caused noticeable creep deformation within
the range of temperature distribution. Our analysis showed that localized creep strain
might exceed 10 %, so the large deformation options in the damage accumulation
model were, and should be, included in the analysis. It is also important to empha-
size that airfoil cross-section average deformation were small (less than a couple
percent), however, the local deformation was significant, and led to the permanent
damage and cracking.

A slice of the FEM solution is plotted in Fig. 17a to show that stress redistributes
from creeping areas to the cold ribs. As a result, after completion of the mission
cycle (creep inducing heating followed by non-homogeneous part cooling down),
the residual stress builds in the crept areas due to deformation constraints during
the blade cooling. Figure 17b shows that the equivalent stress is highest at the trail-
ing edge, which is also where the creep deformation was the most pronounced.
The tensile residual stress is built in and ratchets with cycles until it reaches the
stable value.

Experience shows that many high temperature components suffer from high
stresses at low (even room) temperature during the mission cooling leg and shut-
down. Materials creep to a new equilibrium state at high temperature and the creep
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Fig. 17 Slice of the stress distribution in the blade showing normalized stress concentration (a),
and residual stress distribution (b)

stress relaxes. During mission cooling and shut-down the non-uniform temperature
fields and the internal mechanical constraints in the component cause high local
residual stresses at low temperatures. In the analyzed example, the maximum resid-
ual tensile stress increases from basically zero up to a very high value in several
cycles. This residual stress is one of the driving forces for TMF cracking. Gener-
ally speaking, the compression creep under the high temperature regime leads to
the stress relaxation, which in turns leads to the increase of the tensile stress at the
low temperature mission leg. This process stabilizes when the compressive stresses
become small enough to cause significant creep. Thus, initially high compressive
stresses relax faster than initially moderate compressive stresses, but both stabilize
at approximately the same temperature dependent level.

Our damage measure accounts for the combined effect of fatigue, creep and plas-
ticity through the width of the hysteresis loop. Figure 18 illustrates the predicted
damage distribution in the analyzed blade after the combined mission cycles con-
sistent with a real blade run through block tests under similar loading conditions
and over a simplified associated mission. The relative variation in damage can be
used to identify locations where actual airfoil cracking occurred. The largest damage
calculations are predicted to be on the pressure side of the airfoil, with the peaks
also at the trailing edge and at the blade tip. Due to Pratt & Whitney Co. proprietary
concerns, we do not show a figure of the actual tested blade. In the actual test, a crack
initiated at approximately midspan on the pressure side at the trailing edge, which
was in the same location where damage was predicted to accumulate.

As can be seen in Fig. 18, the highest amounts of creep occurred at the thin-walled
areas of the pressure side surface between the trailing edge slots and the impinge-
ment holes. In addition, our plasticity model predicted radial growth of the blade that
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Fig. 18 Calculated damage distribution in the blade after the block test which lead to cracking in
the actual test

matched the mean measured blade growth, and local creep strains and stress relax-
ations were evident at expected points in the mission. Specifically, creep accrued
primarily in the maximum take-off stage, while little accrued during maximum con-
tinuous thrust. The majority of plastic strain and stress redistribution occurred upon
initial loading, with the highest plastic strains in areas highlighted in the figure. The
estimated life of the airfoil in this particular calculation was about 350 actual cycles,
which is very close to tests observations. Also the observed damage resembles oxi-
dation damage, which is effectively predicted by the use of the term in Eq. 25. Thus,
the conceptual process for damage evaluation is established, tested and validated.

17 Concluding Remarks

The chapter outlines the methodological approach for gas turbine airfoil durability
life prediction and reliability analysis. Our methodology utilizes a fully-coupled
elastic-viscoplastic model that was based on crystal morphology and combined with
an accurate transient conjugate thermal analysis. Our semi-empirical lifing model
introduced the use of dissipated energy to estimate the remaining part life in terms
of cycles to failure. The method was effective for use with three-dimensional finite
element models of turbine airfoils using commercial finite element applications.

The equations governing the mechanical response have been calibrated against
experimental data to accurately predict deformation, stress, and damage evolution
especially during creep, LCF and TMF cycles. The analysis shows that the value
of dissipated energy over the cycle controls the life of the specimens, and that the



240 A. Staroselsky and T.J. Martin

combined creep and TMF plastic damage is not simply the direct sum of both forms
of damage. Our constitutive model was also demonstrated and validated on a turbine
blade of a commercial airfoil engine. Results showed that the major damage and
TMF cracking took place at low temperature while tensile stresses emerged at the
crept areas of the airfoil. The computational results are in extremely good accord
with the results of the engine block test in that the model accurately predicts the
location of the damage and time to failure.

Our methodology was specifically designed to predict the effects of non-
homogeneous transient temperature variation on airfoil component deformations
and life prediction, which are necessary for the TMF failure prediction, especially
for military fighter missions. Civil aviation mission analysis is not so sensitive to the
very short transient effects, however take off and shut down regimes are still needed
to be analyzed using transient methodology. With this approach, turbine durability
engineers are able to predict damage and design to account for crucial creep-fatigue
interaction the local deformation effects, and make a major step to-wards a damage
tolerant design.
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Ratchetting of Snake Skin: Experiments
and Viscoelastic-Plastic Constitutive Model

Yilin Zhu and Guozheng Kang

Abstract In this paper, the cyclic deformation of snake skin is experimentally
observed by the in vitro tests under uniaxial cyclic loading conditions and at room
temperature for the first time. The effect of loading level on the cyclic deformation
and the anisotropic deformation of snake skin are investigated, respectively. The
results show that ratchetting (i.e., a cyclic accumulation of strain) occurs during
the cyclic tension-tension tests of snake skin, and depends greatly on the loading
orientations and levels. Based on the experimental results of uniaxial ratchetting,
a simplified version of the finite viscoelastic-plastic model (Zhu et al. in J Biomech
47:996–1003, 2014) for soft biological tissues is obtained. The comparison shows
that the simulated results are in qualitative agreement with the experimental ones.

Keywords Snake skin · Ratchetting · Viscoelastic-plastic model · Finite
deformation

1 Introduction

It is important to understand the biomechanical performances of skin soft tissues,
because they are playing a crucial role in the mechanical integrity analysis of living
bodies, and are widely involved in many applications such as surgical treatment,
orthopedic operation, and cosmetic development and so on. In the last few decades,
the biomechanical behaviours of skin soft tissues were studied experimentally and
theoretically by many researchers and many great achievements have been made.

Fung (1993), skin soft tissues are typical highly functional composite materials
mainly made of collagen and elastin proteins, and possess some specific proper-
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ties, such as viscosity, non-linear anisotropic biomechanical responses and precon-
ditioning. Some basic biomechanical properties of skin soft tissues including elastic
modulus, ultimate tensile strength and the anisotropic properties were obtained by
monotonic uniaxial and biaxial tests (Fung 1993; Cua et al. 1990; Daly 1982; Greven
et al. 1995; Silver et al. 2001, 2003; Iatridis et al. 2003; Xie et al. 2005; Gambarotta
et al. 2005). Besides, since the cyclic biomechanical response is very important in
assessing the fatigue life and wear property of skin soft tissues, some researchers
were also devoted to investigate the cyclic deformation of skin soft tissues experi-
mentally (Munoz et al. 2008; Giles et al. 2007; Kang and Wu 2011). Also, plenty of
phenomenological constitutive models have developed to simulate the experimen-
tal phenomena of soft tissues, and of course the presented models can be used for
modeling the tests of skin soft tissues (Zhu et al. 2014; Roan and Vemaganti 2011;
Maher et al. 2012; Humphrey and Yin 1987a, b; Peña et al. 2010, 2011a, b; Peña and
Doblaré 2009).

At present, snake skin has attracted much attention because it can be used to
make elegant crafts for its unique and beautiful pattern. Some basic biomechanical
behaviors of snake skin, such as the elastic and friction properties, had been studied
by monotonic uniaxial tensile tests and friction tests (Jayne 1988; Bruckner et al.
2011; Klein et al. 2010; Klein andGorb 2012;Marvi andHu 2012; Baum et al. 2014).
However, very few studies were focused on the cyclic deformation of snake skin.
Under the stress-controlled cyclic loading conditions with non-zero mean stresses,
it is well-known that ratchetting, a cyclic accumulation of inelastic deformation,
shall occur in many engineering materials (Ohno 1990, 1997; Kang and Liu 2008;
Chaboche 2008). The occurrence of ratchetting is detrimental to the fatigue behavior,
and shortens the low-cycled fatigue life of the materials (Kang and Liu 2008; Kang
et al. 2006). Therefore, it is necessary to reveal the ratchetting behavior of snake skin
by performing corresponding cyclic loading tests in order to assess its fatigue life
and wear property.

Therefore, in this paper, the cyclic biomechanical deformation of snake skin is
investigated firstly by uniaxial cyclic tests, especially for the cyclic accumulation
of peak strain, i.e., the ratchetting behaviors. The dependencies of ratchetting of
snake skin on the loading levels and orientations are discussed. And then, based
on the experimental results, a simplified version of the finite viscoelastic-plastic
constitutive model developed by Zhu et al. (2014) is proposed. The capability of the
simplified model to predict the ratchetting of snake skin is verified by comparing the
predicted results with the corresponding experimental ones.
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Fig. 1 Shape and size of the testing samples (units: mm)

2 Experimental Observations

2.1 Material and Procedure

The snake skin used in the tests was obtained from the dorsal area of the orthriophis
taeniurus with a weight of about 450g and 6h after death. Tested skin samples were
manufactured by CP-25-typed punching machine, with gauge length of 30mm and
gauged section of 4 × 0.3mm (i.e., the width and thickness of samples are 4 and
0.3mm, respectively, as shown in Fig. 1). It should be noted that all the samples were
immerged in 0.9% sodium chloride solution and all the tests were accomplished
within two hours to keep the freshness of skin tissue and the samples for each loading
mode were obtained from the same snake to keep the repeatability of experimental
data.

All the tests were performed with an Instron-5567 (30kN) machine and at room
temperature, and the axial tensile strain was measured by the Instron 2603-080 Long
Travel Extensometer (full scale travel is 250mm) designed for the measurement of
large strain. As commented by Kang andWu (2011), a significant variation of defor-
mation rate occurs in the whole process of deformation in a force-controlled mode,
because the stress-strain response of skin tissue is highly nonlinear and small stress
increment will cause a large strain response at initial stage of deformation. There-
fore, all the tests in this work were performed under a nominal force-controlled
mode which was controlled in a displacement-controlled mode with upper and lower
force thresholds as is often done in such tests. In order to ensure the obtained
mechanical responses steadily, all the samples are firstly preconditioned before test-
ing by one loading-unloading cycle with a prescribed peak force of 2N and loading
rate of 20mm/min. During the tests, applied displacement rate is prescribed to be
20mm/min.

2.2 Monotonic Tensile Behavior

Before the ratchetting of snake skinwas studied, somebasic biomechanical properties
were first investigated by monotonic tension, which are very useful to determine
the loading levels of ratchetting tests and understand the ratchetting more deeply.
The experimental results obtained in the monotonic tensile tests in different loading
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Fig. 2 Tensile stress-strain curves of snake skin: a experimental and simulated curves in different
loading directions; b raw data in L and P directions

orientations are shown in Fig. 2. The orientations denoted as L and P in the figures
represent the loading directions along and perpendicular to the Langer’s lines of
snake skin, respectively. As shown in Fig. 2a the stress-strain response of snake skin
is highly nonlinear, and tensile stress-strain curve can be divided into two parts,
i.e., the first part with an increasing tangent modulus, and the second one with a
constant tangent modulus. It is also seen that the biomechanical response of snake
skin is anisotropic with regard to the Langer’s lines, and the snake skin presents
a higher stress-strain response in the direction along the Langer’s lines than in the
perpendicular ones as shown in Fig. 2a. Hereafter, the values of true stress s and
logarithmic strain e shown in the figures are calculated from the nominal stress σ

and strain ε (originally from the measured forces, areas and lengths) according to
the definitions of s = σ(1 + ε) and e = ln(1 + ε).

The anisotropic deformation of snake skin is similar to the existed results of
monotonic tension for other skin tissues (Fung 1993; Kang and Wu 2011). It should
be noted that each curve shown in Fig. 2a was obtained from averaging the results
of three samples with the same loading condition in order to diminish the dispersion
of experimental data. The raw data of three averaging curves in different loading
orientations shown in Fig. 2a are shown in Fig. 2b. It is seen from Fig. 2b that there
is fairly apparent dispersion in raw data.

3 Uniaxial Ratchetting Behavior

Both the effects of loading orientation and level on the ratchetting behavior of snake
skin were investigated in this section. Firstly, the nominal force-controlled cyclic
tension-tension tests were performed in the directions along and perpendicular to
Langer’s lines, respectively, and the results are shown in Fig. 3. The applied peak
and valley forces are 6 and 2 N, respectively, and the number of cycles is set to be 40.
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Fig. 3 Ratchetting of snake skin in the cyclic tension-tension tests and in different loading direc-
tions: a experimental cyclic stress-strain curves; b simulated cyclic stress-strain curves; c curves of
peak strain εpeak versus number of cycles N

To illustrate the ratchetting of snake skin more clearly, the peak strain epeak during
each loading cycle is used in the figures.

It is seen from Fig. 3 that the cyclic accumulation of the peak strain occurs in the
snake skin during the cyclic tension-tensile tests, especially in the direction perpen-
dicular to the Langer’s lines. It means that the peak strain increases progressively
with the increasing number of cycles, which is similar to that of ordinary metals sub-
jected to a stress-controlled cyclic loading with non-zero mean stress (Ohno 1990,
1997; Kang and Liu 2008; Chaboche 2008). Thus, the cyclic accumulation of the
peak strain presented in the snake skin is also called the ratchetting terminologi-
cally. Similar to that of metal materials, the ratchetting strain of snake skin increases
with the increasing number of cycles, but the ratchetting strain rate (defined as the
increment of ratchetting strain after each cycle) decreases very quickly at the first
stage of cyclic loading and then reaches a nearly constant strain rate after certain
cycles, as shown in Fig. 3c. Moreover, the ratchetting deformation of snake skin is
anisotropic, and the ratchetting in the direction perpendicular to the Langer’s lines is
more significant than that in the direction along the Langer’s lines, due to its weaker
resistance to the deformation, as shown in Fig. 3.
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Table 1 Load cases used in the cyclic tension-tension tests

Load case Mean force (N) Force amplitude (N) Displacement rate (mm/min)

i 8 1 20

4

ii 7.5 2.5 20

12.5

Fig. 4 Experimental and simulated ratchetting of snake skin in the cyclic tension-tension tests with
different loading levels: a curves of peak strain εpeak versus number of cycles N with varied force
amplitude; b curves of peak strain εpeak versus number of cycles N with varied mean force

The effect of loading level on the ratchetting of snake skin is also investigated
by the cyclic tension-tension tests with different loading levels (i.e., different force
amplitudes and mean forces, as listed in Table1) in the direction along the Langer’s
lines. The load cases shown in the figures, for example, 8 ± 4 N implies that the
applied mean force is 8N and force amplitude is 4 N during the cyclic loading (or,
in other words, the applied peak force is 12N and valley force is 4 N). It is seen
that the ratchetting greatly depends on the loading level, and the ratchetting strain
increases with the increasing mean force and force amplitude, as shown in Fig. 4a,
b. When the loading level is too high, such as in the case of 8 ± 4 N in Fig. 4a and
12.5 ± 2.5 N in Fig. 4b, the ratchetting strain rate is relatively large and then results
in a large ratchetting strain after certain cycles, which causes the failure of snake
skin, e.g., 10 cycles in the case of 8 ± 4 N and 4 cycles in the case of 12.5 ± 2.5 N.

4 Simplified Constitutive Model

The finite viscoelastic-plastic constitutive model proposed by Zhu et al. (2014) can
describe both the load level-dependence and time-dependence of the ratchetting for
soft tissues. However, the experimental observations to the cyclic deformation of
snake skin stated in Sect. 3 do not provide any information about the time-dependent
ratchetting. Thus, a simplified form of the finite viscoelastic-plastic constitutive
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model proposed by Zhu et al. (2014) is adopted in this section, which emphasizes
the prediction to the uniaxial ratchetting of snake skin and its load level-dependence.

4.1 Main Equations

The main equations adopted in the simplified finite viscoelastic-plastic constitutive
model are as follows:

FFF = FFFeFFFplFFFpaFFFpv, (1)

BBBe = FFFeFFFeT (2)

DDD = DDDe + DDDepl + DDDepa + DDDepv, (3)

τττ = 1

2
μ exp (α (I1 − 1)) BBBeSSS

︸ ︷︷ ︸
τττ l

+
(

−1

2
μ exp (β (I2 − 1)) BBBe−1SSS

)

︸ ︷︷ ︸
τττa

+ 1

3
qIII

︸︷︷︸
τττ v

, (4)

where FFF is the deformation gradient tensor; FFFe is the elastic deformation gradient
tensor representing the subsequent stretching and rotation caused by the elasticmech-
anism; FFFpv, FFFpa and FFFpl represent the local inelastic distortions caused by the plastic
mechanisms associated with the deformations of volume, surface and line elements,
respectively; BBBe is the left Cauchy-Green tensor; the expression AAAT denotes the trans-
position of the tensor AAA;DDD is the stretching tensor;DDDe represents the elastic stretching
tensor; DDDepl, DDDepa and DDDepv are the coupled elastic-plastic stretching tensors related
to the line, surface and volume elements of the deformed body, respectively; τττ is
the Kirchhoff stress, consisting of three parts, i.e., τττ l , τττ a and τττ v, which represent
the stresses related to the deformations of the line, surface and volume elements,
respectively; μ is a material parameter with the dimension of stress; α and β are
dimensionless material parameters; q is a Lagrange multiplier associated with the
hydrostatic pressure; and SSS is the structure tensor which is defined as

SSS = νmmm ⊗ mmm + (1 − ν)
1

3
III , (5)

In Eq. (5), III is the second-order identity tensor; ν denote scalar weight factors; and
the unit vector mmm represents the orientation of the alignment of the fiber family of
soft tissues.

4.2 Evolution Equations of Coupled Elastic-Plasticity

According to the work of Zhu et al. (2014), DDDepv is a zero tensor, and the evolution
equations of the coupled elastic-plastic stretching tensors DDDepl and DDDepa are set as
follows
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{
DDDepl = γl f (I1) ‖DDD‖τττ ′

l ,

DDDepa = γag (I2) ‖DDD‖τττ ′
a,

(6)

where the expression AAA′ denotes the deviator of the tensor AAA, i.e., AAA′ = AAA −
1
3 trace(AAA)III ; the non-negative coupled elastic-plastic parameters γl , γa are formu-
lated as

{
γl = γ 0

l + (
γ sat

l − γ 0
l

)
(1 − exp (−ble)) ,

γa = γ 0
a + (

γ sat
a − γ 0

a

)
(1 − exp (−bae)) ,

(7)

where γ 0
i (i = l, a) are the non-negative initial values; γ sta

i (i = l, a) are the non-
negative saturation value; bi (i = l, a) controls the evolution rate of γi (i = l, a) and
then controls the evolution of the ratchetting; e denotes the accumulated strain, and
its rate is,

ė = ‖DDD‖ . (8)

5 Simulation and Discussion

5.1 Determination of Material Parameters

The elastic parameters μ,α,β and weight factors vi , i = 0, 1, . . . , n, (here n is set
as 1, and ν0 = 1 − ν1) can be simply determined by fitting the experimental tensile
stress-strain curves of the snake skin obtained in different loading directions. Then the
coupled elastic-plastic parameters γ 0

i (i = l, a) and γ sta
i (i = l, a) can be obtained

from one experimental evolution curve of uniaxial ratchetting by a trial-and-error
method. The obtained material constants are listed in Table2.

5.2 Simulation and Discussion

Using the material constants listed in Table2, the monotonic tensile stress-strain
curves and ratchetting curves of snake skin were simulated numerically by the sim-
plified constitutive model in different loading directions and with different loading
levels. The simulated results are shown in Figs. 1a, 2, 3 and 4 for different loading

Table 2 Material parameters for snake skin

μ (MPa) α β ν1 γ 0
1 γ 0

2 γ sat
1 γ sat

2 b1 b2

27.34 41.40 33.12 0.015 0.02 0.005 0.6 0.03 1.1 3.5
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conditions, respectively. FromFig. 2, it is seen that, the anisotropic responses of snake
skin during the monotonic tension in different loading orientations are reasonably
described, and the simulated results agree with the experimental ones well. From
Figs. 3 and 4 it is concluded that the uniaxial ratchetting of snake skin in different
loading orientations and with different loading levels can also be simulated, in spite
of the discrepancy on value; the simulated results are in qualitative agreement with
the experimental ones.

It is noted that the simulated hysteresis loops look narrower than the experimental
ones, see Figs. 3a and 4b. It is found that the loading elastic modulus is smaller
than the unloading one due to a visco-elastic hysteresis effect, which results in a big
hysteresis loop. In the present model, much attention was focused on the prediction
of ratchetting strain, rather than the shape of the hysteresis loop. Surely, a future work
will be developed to improve the prediction of the hysteresis loops by capturing the
difference between loading modulus and unloading modulus. Besides, only a time-
independent uniaxial ratchetting of snake skin is experimentally and theoretically
investigated in this work. As discussed by Kang and Wu (2011), apparent time-
dependent ratchetting of soft skin tissues occurs in the cyclic loading, and then the
ratchetting of snake skin should be investigated in the future work by addressing its
time-dependence. Furthermore, similar to the previous work (Zhu et al. 2014; Kang
and Wu 2011), only the uniaxial ratchetting of soften skin tissues is discussed here,
much effort should be paid to the bi-axial or multiaxial ratchetting of skin tissues in
the future work.

6 Conclusions

1. The biomechanical responses of snake skin are anisotropic in the monotonic
tensions, and the snake skin presents a higher stress-strain response in the direction
along the Langer’s lines than in the direction perpendicular to the Langer’s lines.

2. Ratchetting, a cyclic accumulation of viscoelastic-plastic deformation occurs in
the snake skin during the cyclic tension-tension tests. The ratchetting of snake
skin also depends greatly on the loading orientations and levels.

3. Based on a simplified constitutive model, the time-independent uniaxial ratch-
etting of snake skin are reasonably simulated, and the simulated results are in
qualitative agreement with the corresponding experimental ones.
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