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Preface

This is the first volume of the new “CEMPI subseries” common to Lecture Notes in
Mathematics and Lecture Notes in Physics. CEMPI, acronym for “Centre Européen
pour les Mathématiques, la Physique et leurs Interactions” is a ‘“Laboratoire
d’Excellence” based on the campus of the Université Lille 1, presented on p. iii. The
material in this volume is based on lectures given during the 2013 Painlevé-CEMPI-
PhLAM Thematic Semester. The central theme of this semester—and hence of this
volume—was the study of the deterministic and stochastic aspects of the nonlinear
complex dynamics of optical and atomic systems, a subject clearly at the interface
of mathematics and physics, and one of the core research areas of CEMPI.

More precisely, the contributions of Professor S. Flach, on one hand, and of
Professors X. Antoine and R. Duboscq, on the other hand, are based on short
post-graduate courses taught during the opening conference of this semester, on
“Nonlinear Optical and Atomic Systems: Deterministic and Stochastic Aspects”,
which took place in January 2013. The contribution by S. De Bievre, F. Genoud,
and S. Simona Rota Nodari (CEMPI postdoc) grew out of discussions during the
one-month visit of F. Genoud to CEMPI in the framework of the semester. Finally,
F. Macia also spent a month at CEMPI as invited scholar and on that occasion
delivered several lectures that form the basis of his contribution to this volume.

The first chapter, entitled “Nonlinear Lattice Waves in Random Potentials”, is
physics-oriented and is written by Sergej Flach, professor at the New Zealand
Institute for Advanced Study, Massey University, Auckland. It deals with the
quantum dynamics of disordered systems, a very active research area at the
confluence of mathematics and of theoretical and experimental physics. Starting
originally from the celebrated Anderson model, introduced more than 50 years
ago, the field has recently experimented a new burst of activity with the advent
of very clean experiments performed with laser-cooled atoms. In particular, the
use of Bose-Einstein condensates in such experiments has introduced a new and
theoretically challenging characteristic to these systems, namely the presence of
nonlinearities in the mean-field approaches leading to the Nonlinear Schrédinger or
Gross-Pitaevskii equation. In his contribution, Professor Flach provides first a broad
and accessible review of the subject that will constitute a very useful introduction
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for young researchers interested in this field. He then describes some of his many
contributions to the field (which can be found in the references of his text).

The second chapter, entitled “Modeling and Computation of Bose-Einstein
Condensates: Stationary States, Nucleation, Dynamics, Stochasticity”, deals with
another aspect of the study of complex nonlinear dynamical systems. It mainly
concerns numerical simulations of Bose-Einstein condensates (BECs) via the Gross-
Pitaevskii equation. Written by Professors Xavier Antoine, from the Institut Elie
Cartan de Lorraine at the Université de Lorraine, and Romain Duboscq, from the
Institut de Mathématiques de Toulouse at the Université de Toulouse, this chapter
gives a review on the Bose-Einstein condensation, including history, mathematical
models, computations of stationary states and dynamics, and some extensions. The
authors introduce different numerical methods to compute both stationary states and
dynamics of equations. They present the tool GPELab, which allows to compute
multi-component BECs and handle stochastic effects. Many examples are provided
to show the effectiveness of GPELab.

The third chapter, entitled “Orbital Stability: Analysis Meets Geometry”, is
written by three authors. Stephan De Bievre is professor at the Laboratoire Paul
Painlevé from the Université Lille 1 and CEMPI Scientific Coordinator, Francois
Genoud is professor at the Faculty of Mathematics from the University of Vienna,
and Simona Rota Nodari is a CEMPI Postdoc. This chapter deals with yet another
aspect of nonlinear dynamics that continues to receive much attention not only
in nonlinear PDE theory, but also in many areas of physics, namely the question
of orbital stability of relative equilibria.The chapter gives an introduction to the
study of this notion of stability for both finite and infinite dimensional Hamiltonian
dynamical systems with symmetry on Banach spaces. Emphasis is put on the
important interplay between geometry and analysis in this subject and in particular
in the energy-momentum method that is explained in detail here. The text is
specifically aimed at young researchers at the Ph.D. or postdoctoral level who wish
to familiarize themselves with the subject. Appendices are provided to introduce
concepts from Lie group theory, Hamiltonian dynamics, and differential geometry,
with the aim of making the text self-contained. Several illustrative examples are
treated in detail for the nonlinear Schrodinger equation, the wave equation, and the
Manakov system. In addition, recent results of F. Genoud on the orbital stability
of solitons for the spatially inhomogeneous nonlinear Schrédinger equation are
presented in some detail to further illustrate the general theory.

The fourth and the last chapter, entitled “High-Frequency Dynamics for the
Schrodinger Equation, with Applications to Dispersion and Observability”, is
written by Fabricio Macia, professor at Universidad Politécnica de Madrid. The
results presented in this chapter are motivated by the fact that an important part
of the study of nonlinear partial differential equations relies on the study of the
corresponding linear problem. For instance, when one wants to prove some (local or
global) existence property for a nonlinear problem, one often has to understand the
“smoothing” properties of the associated linear flow—the most famous example is
given by the so-called Strichartz estimates. The objective of this survey is to describe
some recent results on the regularity properties of the linear Schrodinger flow via
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its Wigner (semiclassical) measures. This survey also covers the introduction to
the semiclassical techniques that are used to define and study Wigner measures
in connection with solutions to the Schrodinger equation. Fabricio Macia presents
recent results on these measures in various geometric settings, with a particular
emphasis on the case of completely integrable systems. He also discusses the
connection of these results with control theory in partial differential equations.

The reader shall thus find in this volume a thorough introduction to various
aspects of the vast domain of nonlinear complex dynamics in infinite dimensional
systems, from mathematical, as well as numerical and physical viewpoints.

Toulouse, France Christophe Besse
Villeneuve d’ Ascq Cedex, France Jean-Claude Garreau
March 2015
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Nonlinear Lattice Waves in Random Potentials

Sergej Flach

1 Introduction

In this chapter we will discuss the mechanisms of wave packet spreading in
nonlinear disordered lattice systems. More specifically, we will consider cases
when the corresponding linear wave equations show Anderson localization, and the
localization length is bounded from above by a finite value.

There are several reasons to analyze such situations. Wave propagation in
spatially disordered media has been of practical interest since the early times of
studies of conductivity in solids. In particular, it became of much practical interest
for the conductance properties of electrons in semiconductor devices more than
half a century ago. It was probably these issues which motivated P.W. Anderson
to perform his groundbreaking lattice wave studies on what is now called Anderson
localization [1]. With evolving modern technology, wave propagation became of
importance also in photonic and acoustic devices in structured materials [2, 3].
Finally, recent advances in the control of ultracold atoms in optical potentials made
it possible to observe Anderson localization there as well [4].

In many if not all cases wave-wave interactions can be of importance, or can even
be controlled experimentally. Short range interactions hold for s-wave scattering of
atoms. When many quantum particles interact, mean field approximations often lead
to effective nonlinear wave equations. Electron-electron interactions in solids and
mesoscopic devices are also interesting candidates with the twist of a new statistics
of fermions. As a result, nonlinear wave equations in disordered media become

S. Flach (2)
Centre for Theoretical Chemistry and Physics, New Zealand Institute for Advanced Study,
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of practical importance. High intensity light beams propagating through structured
optical devices induce a nonlinear response of the medium and subsequent nonlinear
contributions to the light wave equations. While electronic excitations often suffer
from dephasing due to interactions with other degrees of freedom (e.g. phonons),
the level of phase coherence can be controlled in a much stronger way for ultracold
atomic gases and light.

There is moreover a fundamental mathematical interest in the understanding,
how Anderson localization is modified in the presence of nonlinear terms in the
wave equations. All of the above motivates the choice of corresponding linear
wave equations with finite upper bounds on the localization length. Then, the linear
equations admit no transport. Analyzing transport properties of nonlinear disordered
wave equations allows to observe and characterize the influence of wave-wave
interactions on Anderson localization in a straightforward way. Finite upper bounds
on the localization length for the corresponding linear wave equations are obtained
for few band problems, which are essentially emulating waves on lattices. Finite
upper bounds on the localization length also allow to exclude overlap of initial states
with eigenstates of the linear equation which have a localization length larger than
the considered system size, or which even have a diverging localization length.

No matter how tempting the general research theme of this chapter is, one has to
break it down to a list of more specific questions to be addressed. Let us attempt to
file such a list, without pretending completeness:

e I In his pioneering work Anderson addressed the fate of an initially localized
wave packet during the subsequent evolution within the Schrodinger equation
for a single particle [1]. In particular, he showed that the return probability stays
finite for infinite times, which essentially proves localization for the whole wave
packet for all times. What is the outcome for the case with nonlinear terms?

e II. Anderson localization is equivalent to the statement that all eigenstates of
the corresponding time-independent Schrodinger equation are spatially localized.
Can these stationary states be continued into the nonlinear wave equation? What
are the properties of such stationary states in the nonlinear wave equation?

e III. The linear wave equation which enjoys Anderson localization yields zero
conductivity, i.e. the system is an insulator, which is particularly true even for
finite densities of an infinitely extended wave state. Will the conductivity stay
zero for nonlinear wave equations, or become finite?

e IV. If qualitatively new physics is found in the presence of nonlinear terms in
any of the above cases, how does it reconnect back to the linear equation which
enjoys Anderson localization?

e V. Quantizing the field equations leads to many-body interactions. What is the
outcome for the above cases?

e VI. Wave localization for linear wave equations can be obtained also with
quasiperiodic potentials (or in general correlated random potentials), even for
potentials with nonzero dc bias, but also for kicked systems (dynamical local-
ization in momentum space). What is the outcome for all above cases (where
applicable) then?
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We will mainly focus on the first item. A number of studies was devoted to that
subject (see e.g. [5—10] as entree appetizers). It goes beyond the capabilities of this
chapter to give a full account on all publications for the listed items. Some of them
will be briefly discussed. Nevertheless we list also a number of key publications as
entree appetizers for the items [I-VI: IT [11, 12], III [13, 14], IV [15-18], V [19-21],
VI [22-25].

The chapter is structured in the following way. In Sect.2 we introduce the
models, and briefly discuss Anderson localization in Sect.3. In Sect.4 we then
proceed with adding nonlinear terms to the wave equations. Using a secular normal
form approach we demonstrate that a number of approximate treatments of the
nonlinear terms keep localization intact, in contrast to a large number of numerical
observations. We identify omitted resonances, their occurrence probabilities, and
formulate expected dynamical regimes on that basis. Section 4 is closed with a
technical discussion of different ways to characterize the evolution of wave packets.
A number of numerical results on wave packet spreading are discussed in Sect. 5.
Section 6 is devoted to the formulation of an effective noise theory which is capable
of describing the numerical observations. The various additional predictions of the
effective noise theory, along with their numerical tests, are presented in Sect. 7.
A short discussion of wave packet dynamics in related models with correlated
potentials is given in Sect. 8. Section 9 closes this chapter with a discussion the
probalistici restoring of Anderson localization for weak nonlinearity, and issues
open for future research.

2 Lattice Wave Equations

For the sake of simplicity we will first discuss one-dimensional lattice models, and
subsequently generalize. We will use the Hamiltonian of the disordered discrete
nonlinear Schrddinger equation (DNLS)

Hp = Z€1|1ﬁ1|2+ §|¢z|4—(¢z+1%* + Vi V) (1

l

with complex variables y;, lattice site indices / and nonlinearity strength 8 > 0. The
uncorrelated random on-site energies ¢; are distributed with the probability density
distribution (PDF) Z.(]x|] < W/2) = 1/W and Z.(]x|] > W/2) = 0. where
W denotes the disorder strength. The equations of motion are generated by 1'#1 =

97D/ 0(iY)):
i = eV + BVl Vi — Vi1 — Yt (2)

Equation (2) conserve the energy (1) and the norm S = Y, |¢|?. Note that varying
the norm of an initial wave packet is strictly equivalent to varying . Note also
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that the transformation vy, — (—1)11//1*, B — —B, s —> —¢; leaves the equations
of motion invariant. Therefore the sign of the nonlinear coefficient 8 can be fixed
without loss of generality. Equations (1) and (2) are derived e.g. when describing
two-body interactions in ultracold atomic gases on an optical lattice within a mean
field approximation [26], but also when describing the propagation of light through
networks of coupled optical waveguides in Kerr media [27].

Alternatively we also refer to results for the Hamiltonian of the quartic Klein-
Gordon lattice (KG)

2 ~
P &, 1y 1 2
Ik = E =+ = - — —u)°, 3
% 5 + > U + i + 2W(uz+1 up) (3)
where u; and p; are respectively the generalized coordinates and momenta, and €,

are chosen uniformly from the interval [%, %] The equations of motion are it; =
—0% / du; and yield

. - 1
iy = —&u — u + W(uz+1 +um —2uy) . 4)

Equation (4) conserve the energy (3). They serve e.g. as simple models for the
dissipationless dynamics of anharmonic optical lattice vibrations in molecular
crystals [28]. The energy of an initial state £ > 0 serves as a control parameter of
nonlinearity similar to 8 for the DNLS case. For small amplitudes the equations of
motion of the KG chain can be approximately mapped onto a DNLS model [29, 30].
For the KG model with given parameters W and E, the corresponding DNLS model
(1) with norm S = 1, has a nonlinearity parameter 8 ~ 3WE. The norm density
of the DNLS model corresponds to the normalized energy density of the KG model
[30].

The theoretical considerations will be performed within the DNLS framework. It
is straightforward to adapt them to the KG case.

3 Anderson Localization

For B = 0 with ; = A;exp(—iAr) Eq.(1) is reduced to the linear eigenvalue
problem

Mi=€A—A1 — Ay . Q)

The normal modes (NM) are characterized by the normalized eigenvectors A,
(>",AZ, = 1). The eigenvalues A, are the frequencies of the NMs. The width of
the eigenfrequency spectrum A, of (5)is A = W + 4 with A, € [—2 — V—ZV, 2+ %]
While the usual ordering principle of NMs is with their increasing eigenvalues, here
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we adopt a spatial ordering with increasing value of the center-of-norm coordinate
X, =Y, lA%qZ.

The asymptotic spatial decay of an eigenvectoris givenby A, ; ~ e 1/§4) where
£(L,) is the localization length and £(A,) ~ 24(4 — A%)/W? for weak disorder
W < 4[31].

The NM participation number p, = 1/ ZzAﬁ, , measures the number of strongly
excited lattice sites in a given wave density distribution. It is one possible way to
quantize the spatial extend V, (localization volume) of a NM. However fluctuations
of the density distribution inside a given NM lead to an underestimate of V, when
using p,. A better way to estimate the distance between the two exponential tails
of an eigenvector is to use the second moment of its density distribution m(;)

X - 1)2A3J. It follows that the estimate V,, = 4/ 12mgv) is highly precise and
sufficient for most purposes [32]. The localization volume V is on average of the
order of 3¢ for weak disorder, and tends to V = 1 in the limit of strong disorder.

Consider an eigenstate A,; for a given disorder realization. How many of the
neighboring eigenstates will have non-exponentially small amplitudes inside its
localization volume V,,? Note that there is a one-to-one correspondence between
the number of lattice sites, and the number of eigenstates. Therefore, on average
the number of neighboring eigenstates will be simply V,. Let us consider sets of
neighboring eigenstates. Their eigenvalues will be in general different, but confined
to the interval A of the spectrum. Therefore the average spacing d of eigenvalues
of neighboring NMs within the range of a localization volume is of the order of
d ~ A/V, which becomes d ~ AW?/300 for weak disorder. The two scales
d < A are expected to determine the packet evolution details in the presence of
nonlinearity.

Due to the localized character of the NMs, any localized wave packet with size L
which is launched into the system for § = 0, will stay localized for all times. If L <«
V, then the wave packet will expand into the localization volume. This expansion
will take a time of the order of t;, = 2m/d. If instead L > V, no substantial
expansion will be observed in real space. We remind that Anderson localization is
relying on the phase coherence of waves. Wave packets which are trapped due to
Anderson localization correspond to trajectories in phase space evolving on tori, i.e.
they evolve quasi-periodically in time.

Finally, the linear wave equations constitute an integrable system with conserved
actions where the dynamics happens to be on quasiperiodic tori in phase space. This
can be safely stated for any finite, whatever large, system.

4 Adding Nonlinearity

The equations of motion of (2) in normal mode space read

l.(i)v = A\;(,bu + ,3 Z Iu,vl,uz,V3¢:l¢vz¢V3 (6)

V1,V2,V3
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with the overlap integral

I\J,vl,vz,V3 = ZAv,lAvl,lsz,lAvg,l . (7)
1

The variables ¢, determine the complex time-dependent amplitudes of the NMs.

The frequency shift of a single site oscillator induced by the nonlinearity is §; =
B|¥i|?. If instead a single mode is excited, its frequency shift can be estimated by
8 = :3|¢v|2/pv-

As it follows from (6), nonlinearity induces an interaction between NMs. Since
all NMs are exponentially localized in space, each normal mode is effectively
coupled to a finite number of neighboring NMs, i.e. the interaction range is finite.
However the strength of the coupling is proportional to the norm density n = |¢|?.
Let us assume that a wave packet spreads. In the course of spreading its norm
density will become smaller. Therefore the effective coupling strength between NMs
decreases as well. At the same time the number of excited NMs grows. One possible
outcome would be: (I) that after some time the coupling will be weak enough to be
neglected. If neglected, the nonlinear terms are removed, the problem is reduced
to an integrable linear wave equation, and we obtain again Anderson localization.
That implies that the trajectory happens to be on a quasiperiodic torus—on which
it must have been in fact from the beginning. It also implies that the actions of the
linear wave equations are not strongly varying in the nonlinear case, and we are
observing a kind of Anderson localization in action subspace. Another possibility
is: (II) that spreading continues for all times. That would imply that the trajectory
does not evolve on a quasiperiodic torus, but instead evolves in some chaotic part
of phase space. This second possibility (II) can be subdivided further, e.g. assuming
that the wave packet will exit, or enter, a Kolmogorov-Arnold-Moser (KAM) regime
of mixed phase space, or stay all the time outside such a perturbative KAM regime.
In particular if the wave packet dynamics will enter a KAM regime for large times,
one might speculate that the trajectory will get trapped between denser and denser
torus structures in phase space after some spreading, leading again to localization
as an asymptotic outcome, or at least to some very strong slowing down of the
spreading process. We will not go into details of such possible scenaria, but want
the reader to be aware of the fact that the rather innocent set of questions at stake
can quickly lead into highly sophisticated mathematical fields.

Consider a wave packet with size L and norm density n. Replace it by a finite
system of size L and norm density n. Such a finite system will be in general
nonintegrable. Therefore the only possibility to generically obtain a quasiperiodic
evolution is to be in the regime where the KAM theorem holds. Then there is a finite
fraction of the available phase space volume which is filled with KAM tori. For a
given L it is expected that there is a critical density ngay (L) below which the KAM
regime will hold. We do not know this L-dependence. Computational studies may
not be very conclusive here, since it is hard to distinguish a regime of very weak
chaos from a strict quasiperiodic one on finite time scales.
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The above first possible outcome (I) (localization) will be realized if the packet is
launched in a KAM regime. Whether that is possible at all for an infinite system is
an open issue. The second outcome (II) (spreading) implies that we start in a chaotic
regime and remain there. Since the packet density is reduced and is proportional to
its inverse size L at later times, this option implies that the critical density ngap (L)
decays faster than 1/L, possibly faster than any power of 1/L.

Let us discuss briefly one example of an integrable system, for which Anderson
localization will not be destroyed. Consider a Hamiltonian in NM representation
using actions J, and angles 6, as coordinates:

<%int = ZA’\)JV + ,3 Z Ivl,vz,vg,\u vV JUIJVZJV3JU4 . (8)

V],V2,V3,04

We assume that the set of eigenfrequencies {1, } and the overlap integrals ,,, y, v v,
are identical with those describing the DNLS model (6), (7). The equations of
motion J, = —0,,/ 00, and 6, = 0.9,/ dJ, yield J, = 0 since the integrable
Hamiltonian (8) depends only on the actions. Therefore, any localized initial
condition (e.g. J, (t = 0)  §,,,,) will stay localized, since actions of modes which
are at large distances will never get excited. Thus, any observed spreading of wave
packets, which we will study in detail in the present work, is presumably entirely
due to the nonintegrability of the considered models, at variance to (8).

4.1 The Secular Normal Form
Let us perform a further transformation ¢, = e ="y, and insert it into Eq. (6):

B =B D Lo Xy T €T A R0 ©)

V1,V2,V3
The right hand side contains oscillating functions with frequencies
/\v,n = A1) + A1\11 - sz - A1)3 , I = (Vlv V2, V3) . (10)

For certain values of v, n the value A4, , becomes exactly zero. These secular terms
define some slow evolution of (9). Let us perform an averaging over time of all
terms in the rhs of (9), leaving therefore only the secular terms. The resulting secular
normal form equations (SNFE) take the form

i)‘(v = ,3 Zlv,v.vl,vll)(vllz)(v . (11)
V1

Note that possible missing factors due to index permutations can be absorbed into
the overlap integrals, and are not of importance for what is following. The SNFE
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can be now solved for any initial condition y,(t = 0) = 5, and yields

2o () = 0e™ 2, = B> Ly P (12)
V1

Since the norm of every NM is preserved in time for the SNFE, it follows that
Anderson localization is preserved within the SNFE. The only change one obtains
is the renormalization of the eigenfrequencies A, into A, = A, + £2,,. Moreover,
the phase coherence of NMs is preserved as well. Any different outcome will
be therefore due to the nonsecular terms, neglected within the SNFE. We note
that 7, ,,, = p,'. Then the sum in (7) contains only nonnegative terms. By
normalization A, ; ~ 1/ AV inside its localization volume, and therefore 1, , ,,, ~
1/V. Similar argumentation leads to I, ,,,, ~ 1/V if both modes reside in the
same localization volume.

Let us discuss several different initial states. (a) If only one normal mode is ini-
tially excited to norm 7, then it follows from (12) that its frequency renormalization
2, = Bnp;! ~ Bn/V where V is a typical localization volume of a normal mode.
Comparing this value to the spacing d ~ A/V we conclude that a perturbation
approach (and therefore Anderson localization) might survive up to finite values of
Bn ~ A. (b) If however a large group of normal modes is excited inside a wave
packet such that all normal modes have norm 7, then the sum in (12) will change
the frequency renormalization to §2, ~ Bn for each of the participating modes.
Comparing that to the spacing d we now find that perturbation approaches might
break down at sufficiently weaker nonlinearities fn ~ A/V. (c) Finally assume
that only one lattice site is initially excited with norm n. That means that V normal
modes are excited each with norm n/V. And that is also what we will see in a
dynamical evolution of the linear wave equation—after some short transient time
the wave packet will occupy a localization volume region and stay in there. Then
the frequency normalization for each participating mode becomes £2, ~ fn/V as
in (a), and perturbation theory is expected to break down again at fn ~ A.

All of the considered lattices allow for selftrapped states in the regime of strong
nonlinearity. These are well known as discrete breathers, intrinsic localized modes,
and discrete solitons [33] which are time-periodic but spatially localized exact
solutions of the equations of motion. They exist for any sign of nonlinearity due
to the underlying lattice, which generates finite bounds on the spectrum of the linear
wave equation. Discrete breathers appear because the nonlinear terms renormalize
(shift) frequencies completely out of the linear wave spectrum. In the limit of
strong nonlinearity these states are essentially single site excitations, with very
little amplitudes present on neighboring sites. Therefore, the natural basis for the
physics of selftrapping is the original lattice itself, rather than the normal modes of
the linear wave equation. This becomes evident when considering a lattice without
any disorder, for which the normal modes of the linear wave equation are extended
states, yet selftrapping and discrete breathers are perfectly present as well within
the nonlinear wave equation. Selftrapping and discrete breathers are examples of
a nonperturbative physics of strong nonlinearity. For the above cases of initial
conditions, selftrapping can be effectively predicted whenever a single oscillator
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on one site renormalizes its frequency €; + B|v;|? such that it exits the linear wave
spectrum. For the above initial state case (a) this happens when fn ~ V(A/2—1,),
about V times larger than the perturbation threshold. For case (b) the norm n per
normal mode is also the norm r per lattice site. Therefore selftrapping is expected
at Bn ~ A/2, again about V times larger than the corresponding perturbation
threshold. However, case (c) is different. Here we place a norm n initially on one
site. If the selftrapping condition for that site holds, the dynamics will stay from
scratch in the nonperturbative discrete breather regime, without any chance to spread
into a localization volume region set by the linear wave equation. Therefore the
selftrapping threshold reads fn ~ A/2 — ¢, and becomes of the same order as
the perturbation threshold. Single site excitations will be thus launched either in
a perturbative regime, or in a self trapped one. The other initial states allow for
a third regime—outside the perturbative regime, but well below the selftrapping
one. For reasons to come, we coin this additional regime strong chaos regime, and
the perturbative regime weak chaos regime. We recapitulate again, that single site
excitations are expected to be either in the regime of weak chaos, or selftrapping.
Other initial states allow for another intermediate regime of strong chaos.

4.2 Expected Dynamical Regimes

Consider a wave packet at + = 0 which has norm density n and size L. Let us wrap

the above discussion into expected dynamical regimes [34]. Note that due to the

above ambiguities, the following estimates are at the best semi-quantitative.
SINGLE SITE EXCITATIONS with norm n and ¢; = 0 at the excitation site:

Bn < A/2 : weak chaos
strong chaos not present (13)

Bn > A/2 : selftrapping
SINGLE MODE EXCITATIONS with norm n and A, = O for the excited mode:

pn < A : weak chaos
A < Bn<VA/2 : strong chaos (14)
VA/2 < Bn : selftrapping

MULTI SITE/MODE WAVE PACKET with norm density » per site/mode and size V:

Bn < A/V : weak chaos
AJV < Bn < A/2 : strong chaos (15)
A/2 < Bn : selftrapping
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4.3 Beyond the Secular Normal Form

The time-averaged secular norm form (11) keeps the integrability of the nonlinear
wave equation, and therefore also keeps Anderson localization. Any deviation from
Anderson localization is therefore due to the omitted time-dependent oscillating
terms in (9). Let us isolate one of the many terms in the rhs sum in (9)

Ko = Blon i Xos Xvs™n' . (16)

Assume a solution of the secular normal form equations (11) in the limit of weak
nonlinearity which we coined weak chaos. Consider the solution of (16) as a first
order correction. This correction has an amplitude

Avn

v,n

X1 = 181 s s IRy 3+ Ry ~ (17)

The perturbation approach breaks down, and resonances set in, when |7,| < | )(f,l) |

for at least one triplet n, and for at least one excited reference mode v:

p
|'7u| < |'7w'7vZ77V3|— (18)

RU,H ’

Let us discuss this result. The eigenfrequencies contribute through the quadruplet
Avan (10). This quantity can be also interpreted as the difference of two eigenvalue
differences. Resonances will be triggered for small quadruplets. However, for this to
hold we do not need to request that two of the participating eigenvalues are close. In
fact, since we consider only participating states from one localization volume, level
repulsion between neighboring eigenvalues will be present anyway, such that the
level spacing of nearest neighbor eigenvalues shows signatures of Wigner-Dyson
distributions characteristic for random matrices (Fig.4 in [32]). This means in
particular, that the probability density function (PDF) and therefore the probability
of finding weakly separated (well beyond d) eigenvalues tends to zero for vanishing
separation. However, the above quadruplet can become small for eigenvalues which
are separated way beyond d. An extreme example is an equidistant spectrum which
allows for exact zeros of quadruplets. In the disordered case with V > 1, for one
reference mode v we consider V states in its localization volume, which allow for
about V* quadruplet combinations. It is reasonable to assume that the set of V
eigenvalues will show correlations on energy separations of the order of d (level
spacing), but a decay of these correlations at larger energy distances. Therefore,
for most of the V combinations, the participating eigenvalues can be considered to
be uncorrelated. With that assumption, the PDF % (1, ), which is a sum of four
random numbers, can be expected to be close to a normal distribution due to the
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central limit theorem, i.e.

1 e, A
Wy (x) =~ \/Eoe 202 | O ZE' (19)

In a recent study of a one-dimensional ladder geometry [35] the closeness of the
normal distribution to %) was numerically confirmed. Since we are interested in
small quadruplet values, we stress that the normal distribution has a finite value at
Zero argument, i.e.

V3
V2 A

Again the predicted value is only a factor of two off the actual numbers computed
in [35].

The second important quantity which enters (18) through the definition of R, , in
(17) are the overlap integrals I, ,. Much less is known about these matrix elements
(however see [32]). It is instructive to mention that the same overlap integrals play a
crucial role when estimating the localization length of two interacting particles (e.g.
within a Bose-Hubbard chain) with onsite disorder [20, 36, 37] and are the main
reason for the absence of any consensus on the scaling properties of this localization
length. This is mainly due to the strong correlations between eigenvectors of states
residing in the same localization volume but having sufficiently well separated
eigenvalues. Let us ignore those difficulties for the moment, and assume that we
can operate with one characteristic (average) overlap integral (7). Then the PDF #%
of R becomes

73.(0) ~ (20)

V3(I)
V2 A

With the additional assumption that all amplitudes n ~ +/n (note that this excludes
a systematic consideration of a single normal mode excitation) we arrive at the
resonance condition

Wr(x) = (NW5({1)x) . Wr(0) = 2n

Bn <Ryn. (22)
For a given set {v, n} the probability of meeting such a resonance is given by

b V3(I)
Pyn = Wr(x)dx f@v,n n—0 —>
: ; R(X) | pn—0 Ner?)

For a given reference mode v there are V? combinations of quadruplets. The
probability that at least one of these quadruplets satisfies the resonance condition

Bn . (23)



12 S. Flach

is equivalent to the probability that the given mode violates perturbation theory:

9\;:1—(1—
0

The main outcome is that the probability of resonance is proportional to Sn for
weak nonlinearity. Moreover, within the disorder interval 1 < W < 6 a numerical
evaluation of the average overlap integral (I) ~ 0.6 V~'7 [32]. This yields
P, |pn—>0 ~ 0.43 VO3(Bn/d). The uncertainty of the correct estimate of the overlap
integral average, and the restricted studied disorder range may well address the weak
dependence V3. What remains however is evidence that the resonance probability
for weak nonlinearity is proportional to the ratio (8n)/d. Therefore a practical
outcome is that the average spacing d sets the energy scale—for fn < d the
resonance probability & ~ (Bn)/d, while for fn > d the resonance probability
P =~ 1. As already anticipated at the end of the previous subsection, two regimes of
weak and strong chaos can be defined depending on the ratio (8n)/d. In the regime
of strong chaos, any normal mode within an excited wave packet will be resonant
and not obeying perturbation theory. In the regime of weak chaos, this will be true
for a fraction of modes.

A straightforward numerical computation of the above probability can be
performed avoiding a number of the above assumptions. For a given NM v we define
Ry n, = ming R, 5. Collecting R, 5, for many v and many disorder realizations,
we can obtain the probability density distribution # (R, n,). The probability & for
a mode, which is excited to a norm n (the average norm density in a packet of
modes), to be resonant with at least one triplet of other modes at a given value of the
interaction parameter f is again given by Krimer and Flach [32] and Skokos et al.
(10]

Bn «/§V3 (I)

: 24
ﬂAﬁn (24)

V3
%(x)dx) » Polgnso =

Bn
2= wrdx. (25)
0

Therefore again # (R,n, — 0) — C(W) # 0 [10]. For the cases studied, the
constant C drops with increasing disorder strength W, in agreement with (24), which

suggests C = %.
The large power V? in (24) allows to make a simple exponential approximation
3V3(I
WQR) ~ Ce K, C= VAV (26)
V2 A

which in turn can be expected to hold also for the case of weak disorder. It leads to
the approximative result

P=1—ePn. 27)



Nonlinear Lattice Waves in Random Potentials 13

Therefore the probability for a mode in the packet to be resonant is proportional to
CPBn in the limit of small n [9, 10].

We stress again that the discussed uncertainty in the definition of an average
overlap integral, and the fact that the distribution of quadruplets is expected to be
controlled by the stiffness of the set of eigenvalues of the normal mode set {v, n}
rather than its spacing d, might be related. This does become evident if assuming
an equidistant set. But then again, for a disordered system discussed here, the only
scale on which the quadruplets can fluctuate close to zero, is the spacing d.

4.4 Measuring Properties of Spreading Wave Packets

We remind that the ordering of NMs is chosen to be by increasing value of the
center-of-norm coordinate X,. We will analyze normalized distributions n, > 0
using the second moment my = Y (v — v)2n,, which quantifies the wave packet’s
degree of spreading and the participation number P = 1/ n2, which measures
the number of the strongest excited sites in #n,,. Here v = ZV vn,. We follow norm
density distributions n, = |¢,[>/ " |¢..|>. The second moment m; is sensitive to
the distance of the tails of a distribution from the center, while the participation
number P is a measure of the inhomogeneity of the distribution, being insensitive
to spatial correlations. Thus, P and m, can be used to quantify the sparseness of a
wave packet through the compactness index

P2/D
= (28)

ny

where D is the dimension of the lattice.

In order to have a scale for {, we can consider a system of harmonic oscillators
(normal modes) which are weakly interacting through nonlinear couplings. The
contribution of the nonlinear interaction to the overall energy E of the system is
assumed to be small and negligible. However it is essential in order to assume
that the considered system is ergodic, i.e. we can replace time averages by suitable
ensemble distribution averages. We also assume for simplicity that the distribution
is of Boltzmann type. Therefore with good accuracy each oscillator is characterized
by its own distribution p(E,) = e 5% / Bz where B is the inverse temperature, and
E, is the energy of an oscillator with average 1/85. We consider a lattice bounded
by a D-dimensional sphere with radius R >> 1 which contains N lattice sites, and
therefore N oscillators. For D = 1 we have N = 2R, for D = 2 it follows N = 7w R>
and for D = 3 we have N = 47R3/3. We now evaluate the normalized energy
distribution BgE,/N. Due to ergodicity the inverse of the participation number
1/P = (Bg/N)*Y_,E2 = B3/N [ p(E)E? = 2/N. The second moment can be
estimated at any time to be m, = R?/2 (for D = 2) and my = 3R*/5 (for
D = 3) since enough oscillators at large but constant distance from the center
allow for an ensemble average. In the one-dimensional case such an estimate can be
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performed only after a time average over times larger than the equipartition times
(equivalently the correlation decay times) and yields m, = L?/3 (for D = 1).
Finally we neglect correlations between P and m, and find with the definition of
(28) that the compactness index of a thermal cloud of weakly interacting oscillators
t=3forD=1),=2r~ 628 (for D = 2)and ¢ = (47/3)*/35/3 ~ 4.33 (for
D = 3). Such a result can be straightforwardly used for the KG lattice. For norm
density distributions of the DNLS model a W-dependent correction can be expected,
however the numerical data show that this is not of central importance. If we
assume that density distributions experience large gaps between isolated fragments
of the wave packet, then the compactness index will be lowered down from its
equipartition value. In particular, for the above discussed case of selftrapping, we
expect that at least a part of the initial state stays localized, while another part might
spread. Then the second moment m;, is expected to grow, the participation number
P will stay approximately constant, and consequently the compactness index ¢ will
drop substantially down from its equipartition value.

In order to probe the spreading, we can also compute higher order moments
m, = Y, (v —)"n,. In particular the kurtosis y = ma/m3 — 3 is useful as an
indicator of the overall shape of the probability distribution profile. Large values
correspond to profiles with sharp peaks and long extending tails. Low values are
obtained for profiles with rounded/flattened peaks and steeper tails. For example, the
Laplace distribution has y = 3, while a compact uniform distribution has y = —1.2
[38].

S Computing Spreading Wave Packets: Collecting Evidence

We will present results on long time numerical simulations. We therefore first dis-
cuss the methods and particularities of our computations (see [10] for more details).
For both models, symplectic integrators were used. These integration schemes
replace the original Hamiltonian by a slightly different (and time-dependent) one,
which is integrated exactly. The smaller the time steps, the closer both Hamiltonians.
Therefore, the computed energy (or norm) of the original Hamiltonian function will
fluctuate in time, but not grow. The fluctuations are bounded, and are due to the fact,
that the actual Hamiltonian which is integrated, has slightly different energy.

Another possible source of errors is the roundoff procedure of the actual
processor, when performing operations with numbers. Sometimes it is referred to
as ‘computational noise’ although it is exactly the opposite, i.e. purely deterministic
and reproducible. The influence of roundoff errors on the results was discussed in
[10].

The KG chain was integrated with the help of a symplectic integrator of order
O(t*) with respect to the integration time step 7, namely the SABA, integrator
with corrector (SABA,C), introduced in [39]. A brief presentation of the integration
scheme, as well as its implementation for the particular case of the KG lattice (3)
is given in Appendix [10]. The SABA,C integration scheme proved to be very
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efficient for long integrations (e.g. up to 10'* time units) of lattices having typically
N = 1000 sites, since it kept the required computational time to feasible levels,
preserving at the same time quite well the energy of the system. For example, an
integration time step t = 0.2 usually kept the relative error of the energy smaller
than 1074,

The DNLS chain was integrated with the help of the SBAB, integrator [39] which
introduces an error in energy conservation of the order ¢(t?). The number of sites
used in computations varied from N = 500 to N = 2000, in order to exclude finite
size effects in the evolution of the wave packets. For t = 0.1 the relative error of
energy was usually kept smaller than 1073, It is worth mentioning that, although the
SBAB, integrator and the commonly used leap-frog integrator introduce errors of
the same order, the SBAB, scheme exhibits a better performance since it requires
less CPU time, keeping at the same time the relative energy error to smaller values
than the leap-frog scheme.

We remind that we order the NMs in space by increasing value of the center-of-
norm coordinate X, = ) / lA%, ;- We analyze normalized distributions z, > 0 using
the second momentm, = ) (v — )2z, which quantifies the wave packet’s degree

of spreading and the participation number P = 1/, z2, which measures the
number of the strongest excited sites in z,,. Here v = ZV vz,. For DNLS we follow
norm density distributions z, = |¢,|?/ Zu |¢..|>. For KG we follow normalized

energy density distributions z, = E,/ 3, E, with E, = A2/2 + ®2A2 /2, where A,
is the amplitude of the vth NM and w? = 1 + (&, + 2)/W.

5.1 Single Site Excitations

We first show results for single site excitations from [10] in Fig. 1 with W = 4,
n = 1 and ¢; = 0 at the excitation site. We plot the time dependence of the second
moment m;, the participation number P and the compactness index ¢. Let us discuss
the DNLS model (left plots in Fig. 1). The outcome for the KG model (right plots
in Fig. 1) is impressively similar. For § = 0 both m;, and P are constant in time
respecting Anderson localization. For 8 = 0.1 the quantities fluctuate around their
B = 0 values up to ¢ ~ 10 and start to grow for larger times, signaling a spreading
of the wave packet and a departure from Anderson localization. For § = 1 the
spreading is observable already at shorter times. Note that the compactness index ¢
tends to its equipartition value { ~ 3. Finally, deep in the selftrapping regime f =
4.5 the participation number P stays finite, since a significant part of the wave packet
stays localized. Nevertheless, a part of the wave packet spreads with the second
moment m, again growing in time. This growth appears to follow a subdiffusive law
my ~ t'/3. For single site excitations strong chaos is not expected to be observed
(13). Note that the observed crossover from weak chaos to selftrapping happens for
1 < B < 4.5 which compares well with the expected value § ~ 4 using (13).
Repeating the simulations for 20 different disorder realizations in the regime of
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Fig. 1 Single site excitations. m, and P versus time in log—log plots. Left plots: DNLS with W =
4, B = 0,0.1,1,4.5 [(0), orange; (b), blue; (g) green; (r) red]. Right plots: KG with W = 4
and initial energy £ = 0.05,0.4, 1.5 [(b) blue; (g) green; (r) red]. (o) Orange curves for the
linear equations of motion, where the term u; in (4) was absent. The disorder realization is kept
unchanged for each of the models. Dashed straight lines guide the eye for exponents 1/3 (m,) and
1/6 (P) respectively. Insets: the compactness index ¢ as a function of time in linear-log plots for
B = 1 (DNLS) and E = 0.4 (KG). Adapted from [10]

weak chaos, with subdiffusive growth of m, ~ * starting around ¢t = 102, an
average (log,,m>) is obtained. Its time dependence over 6 (DNLS) up to 8 (KG)
decades in time was fitted with a power law, yielding @ = 0.33 £ 0.02 for DNLS
and o = 0.33 & 0.05 for KG [10].

5.2 Single Mode Excitations

For single mode excitations we find a similar outcome, but with rescaled critical
values for the nonlinearity strength which separate the different regimes. Examples
are shown in Fig.2 for W = 4, n = 1 and A, & O for the initially excited mode.
As in the case of single site excitations presented in Fig. 1, the compactness index
¢ plotted in the insets in Fig. 2 remains practically constant for excitations avoiding
selftrapping, attaining the values { = 1.5 at t = 108 for the DNLS model and
¢ = 3.3 at t = 10° for the KG chain. According to (14) weak chaos is realized for
B < 8, and selftrapping should set in for 8 & 80. The order of magnitude of these
thresholds are well captured by the computations. Moreover, pay attention that the
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Fig. 2 Single mode excitations. m, and P versus time in log—log plots. Left plots: DNLS with
W =4, = 0,0.6,5,30 [(0) orange; (b) blue; (g) green; (r) red]. Right plots: KG with W = 4
and initial energy £ = 0.17,1.1,13.4 [(b) blue; (g) green; (r) red]. (o) Orange curves for the
linear equations of motion, where the term u; in (4) was absent. The disorder realization is kept
unchanged for each of the models. Dashed straight lines guide the eye for exponents 1/3 (m,) and
1/6 (P) respectively. Insets: the compactness index ¢ as a function of time in linear-log plots for
B = 5(DNLS) and E = 1.1 (KG). Adapted from [10]

second moment growth in the strong chaos and selftrapping regimes appears to be
subdiffusive m, ~ 1* but with an exponent o > 1/3. It is hard to make quantitative
conclusions about the observed subdiffusive growth laws. For that to be achieved,
we need to perform averaging over disorder realizations.

The final norm density distribution for the DNLS model is plotted in Fig. 3 for
both single site and single mode excitations. The wave packets grow substantially
beyond the maximum size dictated by Anderson localization. The wave packets
show thermal fluctuations, which are barely seen on logarithmic scales (bottom
plots). On these logarithmic scales the remnants of Anderson localization are nicely
observed—these are the exponential tails at the edges of the wave packet. As time
increases, the wave packet spreads further, and the exponential tails are pushed into
outer space. The average value ¢ of the compactness index over 20 realizations
atr = 108 for the DNLS model with W = 4 and B = 5 was found to be
¢ = 2.95 + 0.39 [10]. The slow subdiffusive spreading is apparently sufficient
for a rough thermalization of the wave packet and the formation of exponential
Anderson-localized tails.

The observed start of the growth of m, for weak nonlinearity at times ¢ ~ 10°
in Figs.1 and 2 can, but must not signal a qualitative change in the dynamics.
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Fig. 3 Norm density distributions in the NM space at time ¢ = 108 for the initial excitations of the
DNLS model shown in the left plots of Figs. 1 and 2. Left plots: single site excitation for W = 4
and B = 1. Right plots: single mode excitation for W = 4 and B = 5. |¢,|? is plotted in linear
(logarithmic) scale in the upper (lower) plots. The maximal mean value of the localization volume
of the NMs p ~ 22 (shown schematically in the lower plots) is much smaller than the length over
which the wave packets have spread. Adapted from [10]

Indeed, relaunching wave packets which have spread already substantially (at
somewhat stronger nonlinearity) will yield similar transient curves from a constant
to a growing function [10]. Therefore an alternative explanation for the observed
transients is a large characteristic diffusion time scale for a given initial state, which
will be observable in the time-dependence of the second moment only beyond a
corresponding, potentially large, time.

5.3 Normal Mode Dephasing

For single site excitations the exponent ¢ & 1/3 does not appear to depend on j
in the case of the DNLS model or on the value of E in the case of KG, as shown in
Fig. 4. What is the origin of the observed slow subdiffusive process? If the dynamics
is accompanied by an enforced randomization of phases of the variables y; in real
space (respectively the phases of the oscillators of the KG model) then even for
the linear wave equation Anderson localization is destroyed, and instead a process
of normal diffusion with m, ~ t is observed [40], which is much faster than the
observed subdiffusion. The above tests of the linear wave equation in Figs. 1 and 2
also show that the numerical scheme is correctly reproducing Anderson localization.
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Fig. 4 Single site excitations. m, (in arbitrary units) versus time in log—log plots for different
values of W. Lower set of curves: plain integration (without dephasing); upper set of curves:
integration with dephasing of NMs. Dashed straight lines with exponents 1/3 (no dephasing) and
1/2 (dephasing) guide the eye. Left plot: DNLS, W = 4, 8 = 3 (blue); W = 7, f = 4 (green);
W = 10, B = 6 (red). Right plot: KG, W = 10, E = 0.25 (blue), W =7, E = 0.3 (red), W = 4,
E = 0.4 (green). The curves are shifted vertically in order to give maximum overlap within each
group. Adapted from [10]

Could it then be that the relative phases of the participating normal modes are
randomized leading to the observed slow spreading? We test this by enforcing
decoherence of NM phases. Each 100 time units on average 50 % of the NMs were
randomly chosen, and their phases were shifted by & (DNLS). For the KG case we
change the signs of the corresponding NM momenta. We obtain m, ~ ¢'/2 [10] (see
Fig.4). This is also a subdiffusive process, yet faster than the observed one with
a = 1/3. Therefore, we can expect that the numerical integration is rather accurate.
When the NMs dephase completely, the exponent & = 1/2, contradicting numerical
observations without dephasing. Thus, not all NMs in the packet are randomizing
their phases quickly, and dephasing is at best a partial outcome.

6 Nonlinear Diffusion

The integrable equations of the secular normal form preserve Anderson localization.
It is therefore tempting to assume that the observed departure from Anderson
localization is due to nonintegrability and chaos. Indeed, assume that a wave packet
with V. > 1 NMs is excited. Trap it and replace the exponential edges (see
Fig.3) by fixed walls (boundaries). Then continue to evolve the equations. We
are dealing for sure with a nonintegrable system with many degrees of freedom
(DOF). Will the dynamics be chaotic or regular? That depends on the number of
DOF, and on the energy/norm density of the system. The question touches the range
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of validity of the Kolmogorov-Arnold-Moser regime for persisting invariant tori
with finite measure of a weakly perturbed integrable system. To the best of our
knowledge, no results are known which can help and guide our search. Yet in a
huge body of molecular dynamical simulations of various systems, a large enough
number of degrees of freedom usually ensures equipartition down to extremely
small temperatures (energy densities), with the only consequence that decoherence
time scales increase with lowering the temperature. Let us therefore take the point
that the dynamics inside the trapped wave packet is chaotic. Then, as we will show
below, a removing of the trap (the fixed walls) will inevitably lead to a spreading
and increase of the wave packet size. Therefore the participating number of DOF
increases—Ilinearly with the wave packet size. At the same time the densities drop—
inversely proportional to the wave packet size. The nonlinear terms in the equations
of motion (2), (4) become small compared to the linear ones. It is therefore tempting
to skip the nonlinear terms at some point. But if we skip them, we return to the linear
wave equation, restore integrability, and recover Anderson localization. So then,
for that enlarged wave packet, we can again add trapping hard walls, but keep the
nonlinear terms, and ask the question whether the dynamics inside the wave packet
remains regular, or will be chaotic at large enough times. Again the experience of
molecular dynamics tells that the dynamics will stay chaotic with high probability,
but the decoherence times increase. Therefore the possible flaw in the argument
when dropping the nonlinear terms is the time scale. For sure, at weak enough
nonlinearity, and up to some finite time, the nonlinear terms can be neglected. But
how will that time scale with weak nonlinearity? If it stays finite, then the dropping
of nonlinear terms will be incorrect for large enough times. Which might be just the
times at which we observe the slow subdiffusive wave packet spreading.

6.1 Measuring Chaos

Michaeli and Fishman studied the evolution of single site excitations for the DNLS
model [41]. They considered the rhs of Eq. (9) as a function of time iy, = F, () for
amode v = 0 which was strongly excited at time ¢t = 0. The statistical analysis of
the time dependence of Fy(f) shows a quick decay of its temporal correlations for
spreading wave packets. Therefore the force Fy(¢) can be considered as a random
noise function on time scales relevant for the spreading process. This is a clear
signature of chaos inside the wave packet.

Vermersch and Garreau (VG) [42] followed a similar approach for the DNLS
model. They measured the time dependence of the participation number P(f) of
a spreading wave packet (see e.g. the curves in Figs. 1 and 2). VG then extracted
a spectral entropy, i.e. a measure of the number of participating frequencies
which characterize this time dependence. Spectral entropies are convenient measure
to discriminate between regular and chaotic dynamics. VG concluded that the
dynamics of spreading wave packets is chaotic. They also measured short time
Lyapunov exponents to support their conclusion.
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The long-time dependence of the largest Lyapunov exponent A as chaos strength
indicators inside spreading wave packets for KG models was recently tested in [43].
The crucial point is that during spreading the energy density is decreasing, and
therefore a weakening of the momentary chaos indicator is expected. Therefore
A(t) will be not constant in time, but decrease its value with increasing time.
Moreover, the calculation of Lyapunov exponents for integrable systems will also
yield nonzero numbers when integrating the system over any finite time. This is
due to the method used—one evolves the original trajectory in phase space, and
in parallel runs the linearized perturbation dynamics of small deviations from the
original trajectory in tangent space. Since this deviation is nonzero, any computer
code will produce nonzero estimates for the Lyapunov exponent at short times. The
crucial point is that for integrable systems the long-time dependence of A follows
A ~ 1/t This is also the result found in [43] for the linear wave equation which
obeys Anderson localization. However the nonlinear case of wave packet spreading
yields a dependence

1 1

In Fig. 5a we first show the result for a trajectory of a single site excitation with total
energy E = 0.4 and W = 4 (Case I). We show the time dependence of the second
moment (red curve) and observe the expected subdiffusive growth m, ~ /3. The
simulation of a single site excitation in the absence of nonlinear terms (orange curve)

corresponds to regular motion and Anderson localization is observed. In Fig. 5b we
plot the time dependence of A(f) for the two cases of Fig. 5a. At variance to the !
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Fig. 5 (a) Time evolution of the second moment m, for one disorder realization of an initially
single site excitation with £ = 0.4, W = 4 (Case 1), in log—log scale (red (r) curve). The orange
(0) curve corresponds to the solution of the linear equations of motion, where the term «{ in Eq. (3)
is absent. Straight lines guide the eye for slopes 1/3 (solid line) and O (dashed line). (b) Time
evolution of the finite time maximum Lyapunov exponent A (multiplied by 10 for the orange (o)
curve) for the trajectories of panel (a) in log—log scale. The straight lines guide the eye for slope
—1 (dashed line), and —1/4 (solid line). (¢) Time evolution of the averaged A over 50 disorder
realizations for the “weak chaos” cases I, II and III [(r) red; (b) blue; (g) green] (see text for more
details). Straight lines guide the eye for slopes —1 and —1/4 as in panel (b). (d) Numerically
computed slopes o, of the three curves of panel (¢). The horizontal dotted line denotes the value
—1/4. Adapted from [43]
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decay for the regular nonchaotic trajectory (orange curve), the observed decay for
the weak chaos orbit is much weaker and well fitted with A ~ r~V/* (red curve).

These findings are further substantiated by averaging log,, A over 50 realizations
of disorder and extending to two more weak chaos parameter cases with initial
energy density € = 0.01 distributed evenly among a block of 21 central sites
for W = 4 (case II) and 37 central sites for W = 3 (case III). All cases show
convergence towards A ~ 1~ !/% (Fig.5c). The curves are further analyzed by
estimating their slope o = %. The results in Fig. 5d underpin the above
findings.

The authors of [43] further compare the obtained chaoticity time scales 1A with
the time scales governing the slow subdiffusive spreading and conclude, that the
assumption about persistent and fast enough chaoticity needed for thermalization
and inside the wave packet is correct. The dynamics inside the spreading wave
packet is chaotic, and remains chaotic up to the largest simulation times, without
any signature of a violation of this assumption for larger times (no visible slowing
down).

A further very important result concerns the seeds of deterministic chaos and
their meandering through the packet in the course of evolution. Indeed, assume that
their spatial position is fixed. Then such seeds will act as spatially pinned random
force sources on their surrounding. The noise intensity of these centers will decay
in time. At any given time the exterior of the wave packet is then assumed to be
approximated by the linear wave equation part which enjoys Anderson localization.
However, even for constant intensity it was shown [44] that the noise will not
propagate into the system due to the dense discrete spectrum of the linear wave
equation. Therefore the wave packet can only spread if the nonlinear resonance
locations meander in space and time.

The motion of these chaotic seeds was visualized by following the spatial
evolution of the deviation vector distribution (DVD) used for the computation of the
largest Lyapunov exponent [43]. This vector tends to align with the most unstable
direction in the system’s phase space. Thus, monitoring how its components on the
lattice sites evolve allow to identify the most chaotic spots. Large DVD values tell at
which sites the sensitivity on initial conditions (which is a basic ingredient of chaos)
is larger.

In Fig.6a we plot the energy density distribution for an individual trajectory
of case I (cf. Fig.5) at three different times ¢+ ~ 10°, 107, 10® and in Fig.6b
the corresponding DVD. We observe that the energy densities spread more evenly
over the lattice the more the wave packet grows. At the same time the DVD stays
localized, but the peak positions clearly meander in time, covering distances of the
order of the wave packet width. The full time evolution of the energy density and
the DVD is shown in Fig. 6¢c, d together with the track of the distribution’s mean
position (central white curve). While the energy density distribution shows a modest
time dependence of the position of its mean, the DVD mean position is observed to
perform fluctuations whose amplitude increases with time.
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Fig. 6 The dynamics of an 0
individual trajectory of case I. _ (@) bl (b)
Normalized (a) energy (€;) -4 bl

and (b) deviation vector (w;)
distributions at t = 4 x 10°,
t=3x107,t=4x10% [(r)
red; (g) green; (bl) black].
Time evolution of (c¢) the
energy distribution and (d)
the DVD for the realization of 16 U ) ]
panel (a) in log,, scale. The 300 500 700 300 500 700
position of the distribution’s ¢ ¢

mean position is traced by a 16 -14 -12 -10 -8 -6 -4 -9 0
thick white curve. The times
at which the distributions of
panels (a) and (b) are taken
are denoted by straight
horizontal lines in (c¢) and (d).
Adapted from [43]
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6.2 Effective Noise Theory

Having established that the dynamics inside a spreading wave packet is chaotic, let
us proceed to construct an effective noise theory for spreading. For that we replace
the time dependence on the rhs of Eq. (9) by a random function in time:

ity =F(@0) . (F) =0, (F()) = . (30)

Assume that the norm density (norm per site/mode) inside the wave packet is n.
What are the consequences? Consider a normal mode p which is outside the wave
packet, but in a boundary layer of one of its edges. For obvious reasons the boundary
layer thickness is of the order of V. The equation of motion for this mode is given by
(30). At some initial time #; assume that the norm of the considered mode is close
to zero |y, (to)|> = nu(ty) < n. Then the solution of the stochastic differential
equation (30) is yielding a diffusion process in norm/energy space of the considered
NM:

nu(0) ~ ft. 31)
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The considered mode will reach the packet norm » after a time 7" whose inverse will
be proportional to the momentary diffusion rate of the wave packet D ~ 1/T:

2
D~ r . (32)
n
Let us estimate the variance f for the nonlinear wave equation. It follows from
estimating the absolute value of the rhs of (9) which corresponds to the absolute
value of the stochastic force F(¢) in (30). We find that f ~ Bn*/?(I). With that,
we arrive at D ~ (Bn(I))>. The main point here is that the diffusion coefficient is
proportional to n?, therefore the more the packet spreads, the lower its density, and
the smaller D. We obtain a time-dependent diffusion coefficient, and a tendency to
spread slower than within a normal diffusion process. What are the consequences?
A quick first argumentation line is to observe that the second moment m; of a wave
packet is inverse proportional to its squared norm density m> ~ 1/n?. At the same
time it should obey m, ~ Dt. Since D ~ 1/my it follows my ~ /2,
The second way is to write down a nonlinear diffusion equation [45] for the
norm density distribution (replacing the lattice by a continuum for simplicity, see
also [46]):

om = 0,(Do,n) , D~ n*. (33)

The solution n(v, r) obeys the scaling n(v, t/a) = bn(cv, ) with b = ¢ = q'/¢+?
if n(v & 00, f) — 0. Therefore the second moment

2
my ~ 1%, a= . (34)
K+ 2

Notably an explicit self-similar solution was calculated by Tuck in 1976 [47] which
has the following spatial profile:

_ (5 l/K 35
n(v)—( —2(K+2)) . (35)

Here B is an integration constant (see also [48]).

With ¥k = 2 we obtain the subdiffusive law m, ~ ¢'/? again. We do arrive at
a subdiffusive spreading. Note that the above nonlinear diffusion equation can be
derived through a master equation and a Fokker-Planck equation for both norm and
energy densities [49], or Boltzmann equations [50]. However the exponent is 1/2
and not 1/3. Furthermore, recall that an enforcing of the randomization of NM
phases during the spreading does yield the exponent 1/2. Therefore, we are on the
right track—enforcing the assumption of random NM phases, both numerics and
effective noise theory approaches coincide. What is then the reason for the even
slower subdiffusion with @ = 1/3? We recall that perturbation theory in Sect. 4.2
leads to a probability &2 of a given NM being resonant which is small for small
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densities (24): &, |gn—s0 — % Bn. In case when this probability is equal to one,

the above diffusion constant assumption should make sense, since in that case every
degree of freedom participating in the wave packet evolves chaotically, i.e. randomly
in time. In the case when the resonance probability is zero, perturbation theory
should be applicable, the resonance normal form from Sect. 4.1 yields Anderson
localization, and spreading should stop. In that case f = 0 and then D = 0. In
best traditions of phenomenology we assume that another factor is missing in the
expression of f. This factor shall be a function of &2 such that the factor becomes
one when & = 1 and zero when &2 = 0. The simplest prefactor is & itself. Let us
test whether this works (recallingd = A/V):

f~ 2By, D~ (2Bn{l))?, P=1—eP" C= % . (36)
Then the solution of the nonlinear diffusion equation (33) reads

my ~ (BI)V)*3d™313 | CBn < 1 : weak chaos , (37

my ~ B{I)i'/? , CBn > 1 : strong chaos . (38)

We arrived at a construction which results in the correct weak chaos exponent
a = 1/3 [9]. We also predict that there must be an intermediate regime of strong
chaos for which « = 1/2—without any enforcing of the randomization of NM
phases [34]. It has to be intermediate, since with an assumed further spreading of the
wave packet, the density n will decrease, and at some point satisfy the weak chaos
condition (37) instead of the strong chaos condition (38). Therefore, a potentially
long lasting regime of strong chaos has to cross over into the asymptotic regime of
weak chaos [34]. That crossover is not a sharp one in the time evolution of the wave
packet. It might take several orders of magnitude in time to observe the crossover.
Therefore, instead of fitting the numerically obtained time dependence m,(f) with
power laws, it is much more conclusive to compute derivatives d{log,, m2)/d log,, t
in order to identify a potentially long lasting regime of strong chaos, crossovers, or
the asymptotic regime of weak chaos.

The conditions for weak and strong chaos in (37), (38) match those in Egs. (13)-
(15) if the constant C is replaced by 1/d. Although this is not strictly correct
according to Eq. (36), numerical data [9] suggest that both estimates yield the same
order of magnitude in a wide range of weak and intermediate disorder strength.

6.3 Generalizations

Let us consider D-dimensional lattices with nonlinearity order o > 0:

i =eayi— Bl vi— Y Ym. (39)

meD()
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Here 1 denotes a D-dimensional lattice vector with integer components, and m €
D(1) defines its set of nearest neighbor lattice sites. We assume that (a) all NMs are
spatially localized (which can be obtained for strong enough disorder W), (b) the
property # (x — 0) — const # 0 holds, and (c) the probability of resonances
on the edge surface of a wave packet is tending to zero during the spreading
process. A wavepacket with average norm n per excited mode has a second moment
my ~ 1/n*P. The nonlinear frequency shift is proportional to fn°/?. The typical
localization volume of a NM is still denoted by V, and the average spacing by d.
Consider a wave packet with norm density n and volume L < V. A straightfor-
ward generalization of the expected regimes of spreading leads to the following:

o L 0/2
Bn v V < A : weak chaos ,

L 0/2
,Bn"/2 (V) V > A : strong chaos,
Bn°’? > A : selftrapping .

The regime of strong chaos, which is located between selftrapping and weak chaos,
can be observed only if

V (d 2/o0
L>LC=V1_2/”,n>nC=Z(E) . (40)

Foro = 2weneed L > 1, foroc — oo weneed L > V, and for 0 < 2 we need
L > 1. Thus the regime of strong chaos can be observed e.g. in a one-dimensional
system with a single site excitation and o < 2.
If the wave packet size L > V then the conditions for observing different regimes
simplify to
Bn°/* < d : weak chaos

Bn°/* > d : strong chaos

Bn°’? > A : selftrapping .

The regime of strong chaos can be observed if

2/o
n>n.= (%) . (41)

Similar to the above we obtain a diffusion coefficient

D ~ B*n° (2(Bn°'?))* . (42)
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In both regimes of strong and weak chaos the spreading is subdiffusive [9, 34]:

my ~ (B21)7¥e® | strong chaos , 43)

my ~ (B*1) o> | weak chaos . (44)

Note that the strong chaos result was also obtained within a Boltzmann theory
approach [50].

Let us calculate the number of resonances in the wave packet volume (Ngy) and
on its surface (Ngs) in the regime of weak chaos:

D(o—2)+2
D

Ney ~ Bn°*~" | Ngs ~ pn (45)
We find that there is a critical value of nonlinearity power o, = 2 such that the
number of volume resonances grows for o < o, with time, drops for ¢ > o, and
stays constant for 0 = o,. Therefore subdiffusive spreading is expected to be more
effective for o < o..

We also find that the number of surface resonances will grow with time for

1

D>De= —
T 162 ¢

<2. (46)

Therefore, for these cases, the wave packet surface might not stay compact. Instead
surface resonances may lead to a resonant leakage of excitations into the exterior.
This process can increase the surface area, and therefore lead to even more surface
resonances, which again increase the surface area, and so on. The wave packet could
even fragmentize, perhaps get a fractal-like structure, and lower its compactness
index. The spreading of the wave packet would speed up, but not anymore be due
to pure incoherent transfer, instead it might even become a complicated mixture of
incoherent and coherent transfer processes.

7 Testing the Predictions

In this chapter we will review numerical results which test the above predictions.
We will in particular discuss the crossover from strong to weak chaos, the scaling
of the density profiles, the impact of different powers of nonlinearity and different
lattice dimensions, and the temperature dependence of heat conductivity. We will
also extend the discussion to quasiperiodic Aubry-Andre localization, dynamical
localization with kicked rotors, Wannier-Stark localization, and time-dependent
ramping protocols of the nonlinearity strength which speed up the slow subdiffusive
spreading process up to normal diffusion.
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7.1 The Crossover from Strong to Weak Chaos

The first prediction concerns the possibility to observe subdiffusive spreading of
wave packets in the intermediate regime of strong chaos (15), and the crossover
to the asymptotic regime of weak chaos. The discussed results were obtained by
Laptyeva et al. [51]. We consider compact wave packets at + = 0 spanning a width
V centered in the lattice, such that within V there is a constant initial norm density of
n and a random phase at each site (outside the volume V the norm density is zero). In
the KG case, this equates to exciting each site in the width V with the same energy
density, & = E/V, i.e. initial momenta of p; = #+/2& with randomly assigned
signs. Figure 7 (left plot—DNLS, inset right plot—KG) summarizes the predicted
regimes, in which lines represent the regime boundaries. It should be noted that the
regime boundaries are NOT sharp, rather there is some transitional width between
the regimes. The weaker the strength of disorder, the larger the window of strong
chaos. Inversely, for W > 8 the strong chaos window closes almost completely.
Ideally, one should utilize the smallest possible value of W. Computational limits
restrict this, so a reference of W = 4 was chosen. It is important to note that § will
be reduced in time, since a spreading wave packet increases in size and drops its
norm (energy) density. This gives the following interpretation of Fig.7: given an
initial norm density, the packet is in one of the three regimes (for example, the three
circles in Fig. 7). A packet launched in the weak chaos regime stays in this regime,
while one launched in the strong chaos regime spreads to the point that it eventually
crosses over into the asymptotic regime of weak chaos at later times.
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Fig. 7 Left plot: parametric space of disorder, W, vs. the frequency shift induced by nonlinearity,
g, for the DNLS model. Three spreading regimes are shown for dynamics dictated by: (1) weak
chaos (pale blue), (2) strong chaos (green), and (3) the onset of self-trapping (pale red). The three
circles show the initial numerical values used in Fig. 8. Right plot: spreading behavior in the strong
chaos regime for the KG model, with an initial energy density of & = 0.1. The four curves are for
the disorder strengths of: W = 1—(r)ed, W = 2—(g)reen, W = 4—(o)range, W = 6—(b)lue.
Inset: the KG analog of the DNLS parametric space. It is obtained by the small amplitude mapping
& — 3WS. The four points correspond to the disorder strengths used in the main portion of the
figure. Adapted from [51]
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< loglo m2 >

log,, t log,, t

Fig. 8 Upper row: Average log of second moments (inset: average compactness index) vs. log
time for the DNLS (KG) on the left (right), for W = 4,L = 21. Colors/letters correspond the
three different regimes: (1) weak chaos—(b)lue, f = 0.04 (& = 0.01), (2) strong chaos—(g)reen,
B = 0.72(& = 0.2), (3) self-trapping—(r)ed, B = 3.6(& = 0.75). The respective lighter
surrounding areas show one standard deviation error. Dashed lines are to guide the eye to ~ ¢'/3,
while dotted-dashed guides for ~ t'/2. Lower row: finite difference derivatives for the smoothed
my data respectively from above curves. Adapted from [51]

For DNLS, an initial norm density of n = 1 was used, so that initially § ~
B. Nonlinearities (& for KG) were chosen within the three spreading regimes (see
Fig.7), respectively B € {0.04,0.72,3.6} and & € {0.01,0.2,0.75}.

Ensemble averages over disorder were calculated for 1000 realizations and are
shown in Fig. 8 (upper row). In the regime of weak chaos we find a subdiffusive
growth of m, at large times according to m, ~ *, @ < 1, with a compactness index
¢ = 3. Note that the subdiffusive growth is difficult to see initially in Fig. 8 for two
reasons. Firstly, the logarithmic scaling hides any small initial growth, and secondly,
there is a characteristic time scale for the packet to spread from its initial preparation.
In the regime of strong chaos we observe a faster subdiffusive growth of m,, with an
additional slowing down at larger times, as expected from the predicted crossover.
The compactness index is also { & 3, as in the weak chaos regime. Finally, in the
regime of partial self-trapping m, grows, but the compactness index ¢ decreases
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in time substantially. This indicates that a part of the wave packet is arrested, and
another part is spreading.

In order to quantify these findings, smoothed data (logm,) were produced [51],
with a locally weighted regression algorithm [52], and a subsequently applied
central finite difference to calculate the local derivative

d(logm;)
ot(log l) = Tgtz .

(47)
The outcome is plotted in the lower row in Fig. 8. In the weak chaos regime the
exponent «(f) increases up to 1/3 and stays at this value for later times. In the
strong chaos regime «/(f) first rises up to 1/2, keeps this value for one decade, and
then drops down, as predicted. Finally, in the self-trapping regime we observe an
even larger rise of «(¢). Additionally, we also mention numerics for W € {1,2, 6}
with respective initial packet widths of L = V € {361,91, 11} [51]. Results are
qualitatively similar to those shown in Fig. 8, and thus omitted for graphical clarity.

The duration of the strong chaos regime with & = 1/2 (and thus the location of
the crossover) is largely dependent on how deep in the strong chaos regime the state
is initially. Since the boundaries between different regimes are NOT sharp, but rather
have some characteristic width, ideally one should utilize the smallest possible value
of W. This is shown in Fig. 7 (right plot) for the KG model. For W € {1, 2}, a long
plateau at @« = 1/2 is clearly observed. For W € {4, 6}, the initial energy density
approaches one of the boundary lines and likely crosses into a boundary window, in
whicho < 1/2.

7.2 Density Profile Scaling

If the effective noise theory (Sect. 6.2) applies, then the density distribution (energy
for KG, norm for DNLS) should obey the nonlinear diffusion equation (33). In the
weak chaos regime we have k = 4. A numerical study was performed by Laptyeva
et al. [53] to test whether the scaling properties of the solutions (see Sect. 6.2) hold.
The main results are shown in Fig.9 (for details we refer to [53]). The evolution
of the averaged energy density profiles (KG) (E) in the course of spreading is
illustrated in the left plot in Fig. 9. The peaked initial distribution profiles transform
into more flat ones as time evolves. The most striking result is obtained by rescaling
the profiles in Fig. 9 according to the scaling laws of the nonlinear diffusion equation
(33). The rescaled densities are plotted in the inset of the left plot of Fig.4. We
observe very good scaling behavior. For the DNLS with 8 = 0.04 similar data are
shown in the right plot in Fig. 9 for the times ¢ & t0°, t ~ 10°, t &~ 10”. The data are
rescaled similar to the KG case. The result is shown in the inset of the right plot of
Fig. 9 and shows again very good agreement. Together with the proper scaling of the
edge of the wave packets, which was tested in [54], this is the strongest argument
to support the applicability of NDE and MNDE to the spreading of wave packets
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Fig. 9 Left plot: KG. The log of the normalized energy density distribution (loglo z,) at three
different times (from fop to bottom t ~ 10*, t ~ 107, t ~ 10%). The initial parameters are
E =02, W = 4and V = 21. Symbols correspond to the average over 10° disorder realizations,
and solid lines correspond to an additional smoothing. Inset: rescaled distributions (see text). Right
plot: DNLS. The log of the normalized norm density distribution (log10 zl) at three different times
(from fop to bottom t =~ to°, t =~ 10°, t ~ 107). The initial parameters are § = 0.04, W = 4,
and V = 21. Symbols correspond to the average over 10° disorder realizations, and solid lines
correspond to an additional smoothing. Inset: rescaled distributions (see text). Adapted from [53]

in nonlinear disordered systems. It also strongly supports that the spreading process
follows the predicted asymptotics and does not slow down or even halt.

7.3 Tuning the Power of Nonlinearity and the Lattice
Dimension

Let us consider a generalization of DNLS model (gDNLS) by tuning the power of
nonlinearity, which corresponds to the case D = 1 in (39)

i = e + BVl Vi — Va1 — Vi1, (48)

where o is a positive real number. We want to test the predictions presented in
Sect. 6.3. Note that the previous DNLS and KG models had 0 = 2 which correspond
to cubic nonlinearities in the equations of motion, quartic anharmonicities in the
Hamiltonian, and are related to two-body interactions in quantum many-body
systems. Some other integer values of o might well have physical relevance, e.g.
n = 0/2 + 1 corresponds to n-body interactions, and ¢ = 1 relates to quadratic
Kerr media in nonlinear optics.

Mulansky [55] presented numerical simulations of the gDNLS model for a few
integer values of o and single site excitations, and fitted the dependence m; () ~ *
with exponents o which depend on o (see open circle data in left plot in Fig. 10).
In [57] numerical simulations of the gDNLS model were performed for non integer
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Fig. 10 Left plot: exponent o (m, ~ t*) versus the nonlinearity order o for plain integration
without dephasing (filled squares) and for integration with dephasing of NMs (filled triangles).
Results without dephasing obtained in [55] are plotted with empty circle symbols. The theoretically
predicted functions @ = 1/(1 4 o) (weak chaos) and @ = 2/(2 + o) (strong chaos) are plotted
by dashed and solid lines respectively. Inset: the logarithm of the minimum time t™* for which the
evolution of m; can be numerically fitted by a function of the form #* versus o for integration with
(filled triangles) and without (filled squares) dephasing. Right plot: normalized energy distributions
in NM (upper plot) and real (lower plot) space for ¢ = 0.05,0.2,0.8,1.25,2.0, 3.0 [(b]) black;
(m) magenta; (r) red; (b) blue; (g) green; (br) brown] at times t = 3.6 x 10°,1.3 x 10°,2.5 x
10°,1.4 x 10°,3 x 107, 10° respectively. The second moment of each distribution is m, ~ 103. In
the upper plot the distributions for o = 1.25,2.0 are not clearly visible as they are overlapped by
the distribution for o = 3.0. Adapted from [56]

values of o on rather short time scales, leaving the characteristics of the asymptotic
(t = o0) evolution of wave packets aside.
The corresponding generalized KG model (gKG) follows the equations of motion

L o
U = —€u; — |M1| u; + W(MI_H —+ u—1 — 21/[1) . (49)

and was studied by Skokos et al. [56], again for single site excitations, and a
whole range of different values of 0.02 < o < 4. The dependence m,(f) ~ t*
was again fitted with exponents @ which depend on o. In order to emulate strong
chaos from scratch, an additional normal mode dephasing (see Sect. 5.3 and Fig. 4)
was performed, and again the data were fitted with o-dependent values of «. The
outcome is shown in the left plotin Fig. 10. The data with dephasing (filled triangles)
are nicely following the prediction from strong chaos (43) « = 2/(2 + o) in the
range 0.2 < o < 4. The data without dephasing (filled squares) show very good
agreement with the prediction from weak chaos (44) @ = 1/(1 + o) in the range
2 < o0 < 4. However for 1 < o < 1.8 the numerical results overestimate the weak
chaos prediction, and tend towards the strong chaos ones. The reason for that is
simply, that for 0 < 2 a single site excitation can be launched in the strong chaos
regime [34]. Therefore fitting procedures will average over the strong chaos region,
crossover region, and weak chaos region, and result in a number which is located
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somewhere between the two theoretical lines. Instead of fitting the numerically
obtained time dependence m,(f) with power laws, one should compute derivatives
d(log,, m2)/dlog,, t in order to identify a potentially long lasting regime of strong
chaos, crossovers, or the asymptotic regime of weak chaos. This is a task yet to be
accomplished for the above cases.

The order of nonlinearity o influences not only the spreading rate of wave
packets, but also the morphology of their profiles. In the right plot in Fig. 10 we plot
the normalized energy distributions of initial single site excitations, for different o
values in NM (upper plot) and real (lower plot) space. Starting from the outer, most
extended wave packet we plot distributions for 0 = 0.05 (black curves), o = 0.2
(magenta curves), 0 = 0.8 (red curves), 0 = 1.25 (blue curves), 0 = 2 (green
curves) and o = 3 (brown curves). All wave packets were considered for the same
disorder realization but at different times of their evolution when they have the same
value of second moment my & 103. These times are t = 3.6 x 10° for 0 = 0.05,
t=13x10°forc =02,t=2.5%x10°foroc = 0.8, = 1.4 x 10° foro = 1.25,
t =3x10" foroc = 2and ¢t = 10° for 6 = 3 and increase for ¢ > 0.2 since
the spreading becomes slower for larger 0. When 0 — 0 wave packets remain
localized for very large time intervals before they start to spread [56]. This is why
for 0 = 0.05 the second moment becomes m, ~ 10* at a larger time than in cases
with 0 = 0.2 and 0 = 0.8. From the results of Fig. 10 we see that for large enough
values of 0 (0.8 < o < 3), the distributions on a logarithmic scale have a chapeau-
like shape consisting of a highly excited central part and exponential tails having
practically the same slope. Contrarily, the distributions for 0 = 0.2 and 0 = 0.05
become more extended having different slopes in the tails.

A characteristic of the NM space distributions in the right plot in Fig. 10 for
o > 0.8 is that they exhibit very large value fluctuations (up to 5-10 orders of
magnitude) in their tails, contrarily to the corresponding distributions in real space.
Tail NMs are driven by the core of the wave packet, but may also interact with
neighboring tail NMs. The presence of large tail amplitude fluctuations signals that
neighboring tail NMs do not interact significantly (otherwise we would expect a
tendency towards equipartition). Tail NMs are then excited only by the core. The
further away they are, the weaker the excitation. But within a small tail volume, NMs
with larger localization length will be more strongly excited than those with smaller
localization length, hence the large observed fluctuations, which on a logarithmic
scale are of the order of the relative variation of the localization length. Therefore
Anderson localization is preserved in the tails of the distributions over very long
times (essentially until the given tail volume becomes a part of the core). But the
NM space distributions for 0 = 0.05 and 0 = 0.2 exhibit less fluctuations in their
tail values with respect to the other distributions in the upper right plot of Fig. 10,
implying that tail NMs are now interacting with each other on comparatively short
time scales and reach a visible level of local equipartition. Therefore we observe for
these cases a destruction of Anderson localization even in the tails of the spreading
wave packets.
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How is Anderson localization restored in the limit 0 — 0, since we obtain a
linear wave equation for 0 = 0? Both weak and strong chaos exponents yield
a(0 — 0) — 1 in this case, i.e. normal diffusion. The answer is in the prefactor of
the subdiffusive law m, = Cr*. The only possibility is to assume C(o0 — 0) — 0.
The diverging waiting times for single site excitations in this limit, which have to
pass before spreading is observed, are a good confirmation of the above assumption
[56].

Let us move on to two-dimensional cases. The two-dimensional DNLS case
yields the equations of motion

i = eV + B1Ynl" Yo — ) Y. (50)

Here b = (I, m) denotes a two-dimensional lattice vector with integer components,
and n runs over nearest neighbors. Garcia-Mata et al. [7] studied (50) with 0 = 2.
Single site excitations were launched and the numerically obtained time dependence
of my(t) was fitted with power laws. With the largest integration time ¢ = 10° and
10 disorder realizations the fitting result was o & 0.23. Note that the effective
noise theory predicts « = 1/3 for the strong chaos case (43), and « = 0.2 for
the asymptotic weak chaos case (44). Therefore the result from [7] is again located
between both predictions, which might be due to crossover effects, and insufficient
averaging and integration time (see above discussion).

A further work by Laptyeva et al. [58] studies the two-dimensional KG case for
various values of o'

1
iy = —Eptty — Jup|” iy + — > (1 — 1) 51
i by — |up|” up + WL (t4n — up) (1)

Rather than fitting the numerically obtained time dependence m;(f) with power
laws as in [7], Laptyeva et al. [58] computed derivatives d(log,,m,)/dlog,t in
order to identify a potentially long lasting regime of strong chaos, crossovers, and
the asymptotic regime of weak chaos. The number of disorder realizations was as
large as 400, and integration times extended up to = 108. Initial states were wave
packets occupying a typical localization volume V ~ 30 of the linear wave equation.
In Fig. 11 the results for 0 = 2 are shown. The weak chaos exponent measures as
o =~ 0.21 which is very close to the theoretical prediction « = 0.2. Extensions
to 0 = 1.5,1.3 in the weak chaos regime and to 0 = 0.7, 0.5 in the strong chaos
regime show very good agreement between the numerically observed exponents,
and the theoretical predictions in Fig. 12.

We can conclude, that the predictions from effective noise theory and the non-
linear diffusion approach have been impressively confirmed in various numerical
studies.
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Fig. 11 The parameters (o, &) = (2,0.3), (2, 2.0) correspond to the weak chaos [(b)lue] and self-
trapping [(r)ed]. Left column: average log of second moment (upper) and its power-law exponent
(lower) vs. log time. The dashed line is the theoretical expectation for the weak chaos o = 0.20.
Right column: average log of participation number (upper) and average compactness index (lower)
vs. log time. In both columns of the upper row the lighter clouds correspond to a standard deviation.
Inset: normalized radial density distributions at t = 10%. Adapted from [58]

log ot log |t log ot log |t
Fig. 12 Left plot: The parameters (o, &) = (1.3,0.025), (1.5,0.04) are colored respectively as
(r)ed and (b)lue. Left column: average log of second moment (upper) and its power-law exponent
(lower) vs. log time. Right column: average log of participation number (upper) and average com-
pactness index (lower) vs. log time. Right plot: the parameters (o, &) = (0.5, 0.005), (0.7,0.03)
are colored respectively as (r)ed and (b)lue. Left column: average log of second moment (upper)
and its power-law exponent (lower) vs. log time. Right column: average log of participation number
(upper) and average compactness index (lower) vs. log time. In both columns of the upper row,
the lighter clouds correspond to a standard deviation. The I-bar bounds denote the theoretical
expectations from Egs. (43), (44) for weak chaos (lower bound) and strong chaos (upper bound).
Adapted from [58]
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Fig. 13 KG chain: heat 100 T T
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7.4 Heat Conductivity

Assuming the validity of effective noise theory, we arrive at the next prediction
that the heat conductivity of a thermalized system at small temperature (density)
must be proportional to the diffusion coefficient (36) where the density # is replaced
by the temperature 7. While one has to be careful in the DNLS case, where two
conserved quantities (energy, norm) enforce Gibbs, or non-Gibbs distributions [49],
the KG case might be again a better testing ground, where one conserved quantity
(energy) can be expected to enforce a Boltzmann distribution. The calculation of the
heat conductivity for (4) was performed in [59]. Its dependence on the temperature
is shown in Fig. 13. The strong chaos scaling x(T) ~ T2 is observed nicely. The
expected weak chaos regime was not reachable by the heavily extensive numerical
efforts. Note that the decay of the heat conductivity for large temperatures is due
to selftrapping, and observed even for the ordered chain at W = 0 (solid circles in
Fig. 13).

7.5 Ramping Nonlinearity

Subdiffusion is notoriously slow. This poses problems for numerical studies,
especially in two and even more in three space dimensions. The situation is even
more severe with experimental studies of ultracold interacting K atomic clouds,
where the conversion of the maximum time of keeping the coherence of the
macroscopic quantum cloud is about 10s [61], which turns into  ~ 10*...10°
dimensionless time units used throughout this chapter. Consequently the probing of
subdiffusion in [61] allowed to conclude qualitatively that the onset of a subdiffusive
spreading of the interacting cloud does take place, but was not sufficient to reliably
measure the exponent. In order to fit a power law, we need at least two decades of
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variation in both variables. With a weak chaos exponent 1/3 and two decades in
the second moment we arrive at six decades in time—added to ¢ ~ 10> which is
the time the linear wave equation spreads into the localization volume. Therefore
times ~108 are desirable, which turn into experimental times of the order of 10° s—
clearly not reachable with nowadays techniques. On the other side, the reader is
welcome to reread the above presented numerical data and analysis and welcome
to observe that restricting to maximum integration time 10° will not allow for an
accurate estimate of the exponents. At the same time, numerical studies also suffer
from the computational time restriction. While this appears to be no serious issue for
most one-dimensional system studies, already two dimensional systems can easily
raise the problem of insufficient computational times.

Gligoric et al. [60] suggested a possible way out. Instead of trying to substantially
increase available time scales, they propose to speed up the subdiffusive process
itself. This is done by a temporal ramping of the two-body interaction strength,
which can be varied e.g. for K atoms by three orders of magnitude close to the
Feshbach resonance [62]. Why should that help? The momentary diffusion rate D
of a spreading packet in one spatial dimension is proportional to the fourth power
of the product of interaction strength 8 and particle density n: D ~ (Bn)* for the
asymptotic case of weak chaos (36). In the course of cloud spreading the density
n decreases, and therefore also D. This is the reason for the predicted subdiffusion
process, which is substantially slower than normal diffusion. The proposal is to
compensate the decrease of the density n with an increase in the interaction strength
B. Depending on the concrete ramping protocol () one can expect different faster
subdiffusion processes, and possibly even normal diffusion. The condition for that
outcome to be realized is, that the internal chaos time scales (basically the inverse
Lyapunov coefficients) will be still short enough so that the atomic cloud can first
decohere, and then spread. With that achieved, the cloud spreading will be faster,
and one can expect that the available experimental time will suffice for the precise
observation and analysis of the process.

Let us get into numbers for one spatial dimension. The second moment is m; ~
1/n? and the momentary diffusion constant D ~ (Bn)*. For a constant f the solution
of my = Dt yields my ~ 1/n> ~ t'/3, and therefore n ~ t~/°. Thus we choose now
a time dependence 8 ~ ¢”. Then the resulting spreading is characterized by

my ~ (T3 g =1, (52)

For v = 1/2 we already obtain normal diffusion m, ~ ¢.

Similar for two spatial dimensions, where m, ~ 1/n, for a constant 8 the cloud
spreading is even slower with m, ~ ¢'/°. With a time dependent ramping B ~ 1" the
resulting speedup is

my ~ (1T g =12 (53)
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Fig. 14 Left plot: evolution of the averaged norm density < n;(7) > in the case without (v = 0)
and with ramping (v = 0.3) in log scale for the DNLS model. Right plot: left column: the second
moments (upper) and their power-law exponents o (lower) for the DNLS model for v = 0 (red),
v = 0.1 (green), v = 0.2 (blue), v = 0.3 (magenta), v = 0.4 (cyan), and v = 0.5 (black). Right
column: the second moments (upper) and their power-law exponents o (lower) for the NQKR
model for v = 0 (red), v = 0.17 (green), v = 0.25 (blue), v = 0.33 (magenta), v = 0.5 (cyan),
and v = 1.5 (black). Dashed colored lines correspond to expected values for exponents in both
cases. Adapted from [60]

For v = 1 we again obtain normal diffusion. Note that if numerics confirm the
above predictions then also the above conditions for the chaoticity time scales are
met with good probability.

Once ramping is too fast, one can expect to see several different scenaria. Either
fragmenting atomic clouds appear since some parts of the cloud get self-trapped
and some other parts do not. If self-trapping is avoided, one may also see ramping-
induced diffusion: while the internal cloud dynamics does not suffice to decohere
phases, initial fluctuations in the density distribution can lead to considerably
different temporal energy renormalizations in different cloud spots, and therefore
to an effective dephasing similar to a random noise process in real time and space.

The spreading of wave packets in the DNLS model, without and with ramping
of the nonlinearity are shown in the left plot in Fig. 14 (note that time ¢ is coined
in the plots). Clearly packets spread faster when the nonlinearity is ramped in time.
To quantify the spreading exponent, the authors of [60] averaged the logs (base
10) of m, over 1000 different realizations and smoothened additionally with locally
weighted regression [52]. The (time-dependent) spreading exponents are obtained
through central finite difference method [52], @ = %. The results for the
DNLS model are shown in the right plot in Fig. 14. The exponents of subdiffusive
spreading reach the theoretically predicted values. Note that the first assumption of
the asymptotic exponent occurs after similar waiting times for all v. Monitoring of
the participation number P for the DNLS model indicates that self-trapping starts to
occur already for v = 0.4. Results for the nonlinear quantum kicked rotor (NQKR)
model (see Sect. 8.3), are also shown in the right plot in Fig. 14. Since self-trapping
is avoided in the NQKR model, a normal diffusion process for v = 0.5 can be
reached, as predicted.
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8 Correlated Potentials

The effective noise and nonlinear diffusion theories need only a few assumptions
on input, in particular that (1) the linear wave equation has a regime of localization
with finite upper bound on the localization length, and (2) the nonlinear dynamical
system should be nonintegrable to allow for deterministic chaos (and therefore
normal mode dephasing). The predicted subdiffusive exponents are controlled only
by the lattice dimension, and the power of nonlinearity.

So far we discussed the resulting nonlinear diffusion for uncorrelated random
potentials €;. For linear wave equations, a number of other correlated potentials are
known to result in wave localization for a corresponding linear wave equation.

8.1 Subdiffusive Destruction of Aubry-Andre Localization

Let us replace the uncorrelated disorder potential in Sect. 2 by
€ = AcosQmagal + 0) . (54)

For the linear wave equation 8 = 0 and any irrational choice of a4 4 this results in the
well-known Aubry-Andre localization [64]. Note that the irrationality of a4 implies
that the spatial period of (54) is incommensurate with the lattice spacing Al = 1, and
therefore the lattice potential becomes a quasiperiodic one. For shallow potentials
A < 2 all eigenstates are extended. At the critical value A = 2 a metal-insulator
transition takes place, and for A > 2 all eigenstates are localized with localization
length & = 1/1n(4/2), independent of c44 and the eigenenergy of the state [64].
One peculiarity of the linear wave equation is that its eigenvalue spectrum is fractal,
has a self-similar Cantor set structure and fractal dimension 1 for all A # 0, 2.
In particular it displays a self-similar hierarchy of gaps and subgaps, which implies
that self-trapped states can be generated at any weak nonlinearity.

Spreading wave packets were studied by Larcher et al. [63] in the presence
of nonlinearity (see Fig. 15). Again a clear regime of weak chaos m, ~ ¥ was
observed, with the exponent y ~ 1/3. Signatures of strong chaos are also observed,
which however might be affected by the presence of selftrapping even at weak
nonlinearities.

8.2 Subdiffusive Destruction of Wannier-Stark Localization

An even simpler choice of a dc bias potential

€ = El (55)
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Fig. 15 Top left panel: time evolution of (log,, my); top right panel: (log,, P); bottom left
panel: spreading exponent y; bottom right panel: average compactness index (£). The nonlinear
parameter § = 0.1, 1, 5, 10, 100 (red (r), green (g), blue (b), magenta (m) and yellow (y) curves
respectively). The initial wave packet has V = 13 sites excited, and A = 2.5. The two dashed lines
in the top right panel correspond to the values y = 1/3 and y = 1/2. Adapted from [63]

with a constant dc field value E is generating localized states as well. The spectrum
of the linear wave equation is an equidistant Wannier-Stark ladder with A, = Ev.
All states are localized with localization volume V ~ |1/(EInE)| for weak
field strength £ < 1, and V(E — o0) — 1. These Wannier-Stark states are
superexponentially localized |A]()OZ) o0
in the tails, even for weak dc fields.

Spreading wave packets were studied by Krimer et al. [24] in the presence
of nonlinearity (see Fig. 16). While subdiffusion is observed for a wide range of
parameters, there are distinct differences to the cases discussed so far. Namely,
initial states may be trapped for very long times, but then explosively start to spread.
Further, the subdiffusive growth m; ~ * shows a field dependence of the exponent
a(E). Krimer et al. [24] report «(E = 2) & 0.38, while Kolovsky et al. [65]
report «(E = 0.25) ~ 0.5. The reason for this dependence might be routed in
the fact, that a spreading wave packet has to excite exterior modes close to its
boundary, whose eigenenergies are outside of the energy spectrum excited inside
the wave packet (due to the Wannier-Stark ladder spectrum). The larger E, the
larger is this frequency mismatch. Another interesting feature of this model is, that
exact quadruplet resonances exist, which seem to leave no room for perturbation
approaches.

— (1/E)' /1! and therefore very compact
y p
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Fig. 16 Single site excitation for E = 2. Second moment m, and participation number P versus
time in log—log plots for different values of B inside the interval where an explosive delocalization
of the trapped regime occurs: § = 8.15,8.25, 8.5 [(0) orange; (g) green; (r) red]. B = 8 [(b),
blue]: intermediate regime. 8 = 8.9 [(v), violet]: trapped regime. Adapted from [24]

8.3 Subdiffusive Destruction of Dynamical Localization

Experiments of quantum kicked rotor systems [66, 67] within Bose-Einstein
condensates [68], where many-body interactions play a significant role, focus theo-
retical attention on dynamical localization in the presence of nonlinear interactions.
In the mean-field approximation, the dynamics of the kicked rotor can be modeled
by the following form of the Gross-Pitaevskii equation (Fig. 17)

2 92
,haw_ he 0°y

S
ih% = 5 + BV w+kcos(e)-w;8(t—mﬂ- (56)

Here ,8~ is the nonlinear strength, which is proportional to the tunable scattering
length of atoms in a BEC. M is the mass of the atoms, k is the perturbative kick
strength, and T is the period of applied kicks. Note that the analogy between an
abstract rotor and the atomic wavefunctions is obtained when the atoms are loaded
into a momentum eigenstate of the lattice with Bloch wavenumber zero, Spatially
homogeneous kicks will keep the Bloch wavenumber invariant, but allow to change
the momentum. The solution (6, f) can be expanded in an angular momentum
basis

v (0.1) = J#Z_n Y A (57)

n=—0o0

where the coefficients A, (¢) are Fourier coefficients of the time-dependent wave
function ¥ (0, ). The dynamics between two successive kicks is described by
following equation

L0A,

1

1 2
at = _Efi’l A, + B Z ZA:1A"2AV£—(H2—H1)’ (58)

ny  np
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Fig. 17 Under a kick i T i T i T i T i
strength of k = 5, measures L -
for B = 0.3 (blue) and

B = 10 (red), for both 4 o
quasiperiodic sequences set

by © = 1 (solid line), and for
random sequences (dashed
line, see [23] for details).
Upper row: Mean logarithms
for energy < log,, E >. The
clouds around the
quasiperiodic sequences
correspond to one standard
deviation error. Lower row:
finite-difference derivative of
the above. Grey horizontal
lines correspond to exponents
for weak and strong chaos
regimes. Inset: average
compactness index () as a
function of time. Adapted
from [23]

where g = BT/2nh. Keeping only the diagonal terms in Eq. (58) and integrating
over the free motion between two delta kicks, A, () evolves according to

s

At + 1) = Ay (1) 37 P (59)

After additional integration over the infinitesimal interval over one kick, the map—
which now describes the evolution over one whole period—becomes

At + 1) = D (=i T T (k) A () 2B (60)

This map was first introduced by Shepelyansky in [69]. Comparison of the results
of this map with direct numerical simulation of the corresponding model, Eq. (56),
has shown differences on a short time scale, but the same asymptotic behavior in the
rotor energy [70]. At the same time, this model allows for more efficient and faster
numerical computation.
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For B = 0 all eigenstates are exponentially localized [67]. The eigenvalues are
located on the unit circle, and therefore embedded in a compact space. This implies,
that nonlinear frequency shifts, i.e. shifts of eigenvalues along the unit circle, may
shift points out of a cloud, but with increasing nonlinearity the shifted point will
return after making one revolution. Therefore the nonlinear quantum kicked rotor
(NQKR) serves as a model which lacks selftrapping. It should thus be an ideal
testing ground not only of weak chaos, but also of strong chaos.

Shepelyansky performed the first pioneering study on subdiffusive spreading
and destruction of dynamical localization for § # 0 in [69]. Due to the possible
presence of strong chaos, the method to extract exponents from fitting power laws to
my () lead to inconclusive results. Gligoric et al. [23] repeated the calculations with

. L . . o d<log; E
more averaging over initial conditions, and computing derivatives o = %
0810
instead (note here that the second moment m, is equivalent to the rotor energy

E). The results impressively obtain a regime of weak chaos with « =~ 1/3, and
also strong chaos with @ ~ 1/2. The original simulations of Shepelyansky [69]
were performed in the crossover region between strong and weak chaos, leading to
incorrect fitting results—which are however between the two weak and strong chaos
limits, as expected.

9 Discussion

If a linear wave equation generates localization with upper bounds on the localiza-
tion length (degree of localization), then the corresponding nonlinear wave equation
shows destruction of this localization in a broad range of control parameters, and a
subdiffusive spreading of initially localized wave packets. This observation holds
for a broad range of wave equations, e.g. with uncorrelated random potentials
(Anderson localization), quasiperiodic potentials (Aubry-Andre localization), dc
fields (Wannier-Stark localization), kicked systems (dynamical localization in
momentum space). What is the cause for the observed subdiffusion? Firstly it is the
nonintegrability of the systems, which leads to generic intrinsic deterministic chaos
in the dynamics of the nonlinear system. Second, wave localization is inherently
based on keeping the phases of participating waves coherent. Chaos is destroying
phase coherence, and therefore destroying localization. Wave packets can spread,
but the densities will drop as spreading goes on. Therefore the effective nonlin-
earity and strength of chaos decreases, and spreading is slowing down, becoming
subdiffusive. The subdiffusive exponents are controlled by very few parameters and
therefore rather universal. Typically we only need to know the dimensionality of
the system, and the power of nonlinearity (Anderson, Aubry-Andre, and dynamical
localization). For Wannier-Stark localization the dc field strength is also becoming
a control parameter, probably because the wave packet not only expands in space,
but also in the frequency (energy) domain. A typical evolution outcome for the
DNLS chain discussed at length here (see Sect. 2) is shown in Fig. 18 with all three
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Fig. 18 DNLS, W = 4: time evolution of average norm density distributions (z;) in real space
for (a) B = 0.04, (b) B = 0.72 and (¢) B = 3.6. The color scales shown on fop of panels
(a)—(c) are used for coloring each lattice site according to its log,,(z;) value. (d) The values (z;)
(in logarithmic scale) at the end time ¢+ = 107 of numerical simulations for 8 = 0.04, 0.72, 3.6
[(m) magenta; (b) blue; (g) green]. For comparison the initial norm distribution is also plotted [(b])
black]. Adapted from [71]

regimes of weak chaos, strong chaos, and selftrapping. The effective noise theory
(which contains a phenomenological twist) and the nonlinear diffusion theory yield
a rather coherent and consistent explanation. Many predictions of this approach
were tested, and verified to the extend of current computational possibilities. A
number of construction places are left unfinished and call for more work. This
includes e.g. (a) the explanation of the dc-field dependent subdiffusive exponents
for Wannier-Stark localization, (b) the testing of the prefactor (37), (38), (c) its
complete derivation for higher dimensions and different powers of nonlinearity, and
also (d) for other localization potentials (quasiperiodic, dc field, kicked, etc.). A
rather unexplored direction concerns the breaking of time-reversal symmetry, which
should lead to an increase of the stiffness of the spectrum of interacting modes, and
therefore affect the statistics of interactions. A first work has been recently finished
[35], but certainly more is needed.

One of the hotly debated questions in the community is whether the subdiffusive
spreading will continue forever or eventually slow down, or even stop (see e.g.
[72] and references therein). This is an interesting and perhaps mathematically
deep question, despite the absence of rigorous results which would fuel the above
doubts. From the perspective of current computational studies, efforts to observe
any slowing down directly were not successful [71].

Another question concerns the restoring of Anderson localization in the limit
of weak nonlinearity. The answer appears to depend strongly on the considered
initial states. For instance, in an infinite lattice, we have to discuss the temperature
dependence of the conductivities. One possibility is that the conductivities vanish in
the zero temperature limit (see Sect. 7.4), which restores the linear wave equation,
and Anderson localization. Then, Anderson localization will be destroyed at the
smallest amount of nonlinearity. But may be there is a small but finite nonzero
critical temperature/density/nonlinearity threshold at which the conductivity van-
ishes, similar to the quantum many body localization case [19]? Another type of
initial states are the ones mostly considered in this chapter—compact localized
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Fig. 19 Schematic dependence of the probability &2, for wave packets to stay localized (dark
area) together with the complementary light area of spreading wave packets versus the wave packet
volume V (either initial or attained at some time ¢) for three different orders of nonlinearity y < 4,
y = 4 and y > 4. Adapted from [17]

wave packets in a zero density surrounding. Then, if nonlinearity is lowered, several
papers study the fate of these states [15—17]. The main outcome appears to be, that
for a given and fixed initial state, at small enough nonlinearity, the dynamics will be
in a KAM regime, i.e. there will be a finite probability Py that the state is launched
on a torus in phase space, dynamics is regular, phase coherence is conserved, and no
spreading will occur. But then, there is the complementary probability Pcy, = 1 —Pg
to miss the torus, and instead to be launched on a chaotic trajectory, where dynamics
is irregular, phase coherence is lost, and spreading may occur. Here probability is
meant with respect to the disorder realization (or the space location of the initial
state). The probability Pg increases to one for vanishing nonlinearity, and therefore
Anderson localization is restored in this probabilistic sense. A consequence of the
considerations in [17] is shown in Fig. 19, where y = o + 2 measures the power
of nonlinearity [see (39)]. Namely, we assume that the dynamics starts on a chaotic
trajectory. Then by assumption, we will continue to be on a chaotic trajectory, and
spread. For the typical size of the wave packet at a later stage, we may recalculate
the probability to keep chaoticity if we suddenly change the disorder realization.
The answer is, that for o = 2 (cubic nonlinearity), even in the limit of an infinitely
spread wave packet (with infinitesimally small densities) the probability of chaos
stays finite (and can be anything between zero and one). For ¢ < 2 this chaos
probability tends to one in the infinite time/spreading limit—despite the fact that
the densities drop to zero. In this case chaos always wins. Finally, for o > 2 the
chaos probability shrinks to zero. Therefore, even if our chaotic trajectory will
spread forever, it will enter a phase space region which is predominantly regular.
What kind of regime is that? Is there place for Arnold diffusion? Will subdiffusive
spreading slow down in that case (apparently numerical studies do not report on
anything suspicious in that case)?

The above studies were restricted to lattice wave equations, which introduce
upper bounds for the localization length. Spatially continuous wave equations may
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lack these upper bounds. Therefore an initially compact localized wave packet may
overlap with normal modes whose localization length is unbounded in principle.
While this may become an intricate matter of counting overlap weights, it is
instructive to see that numerical studies of such cases also indicate the appearance
of the universal subdiffusive spreading as observed for lattices [73].

The more models are accumulated for the above studies, the more qualitative
differences are becoming visible. For instance, models can be classified according
to the number of integrals of motion (KG—one, DNLS—two). Other models differ
in the connectivity in normal mode space—while cubic DNLS and KG equations
have connectivity K = 4 (four modes are coupled), other models discussed e.g. in
[17, 74] have connectivity K = 2. Again the strong disorder limit of K = 4 models
yields K = 2 in leading order, which is one of the cases where analytical methods
are applied (see references in [72]). Time might be ripe to perform comparative
studies.
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Modeling and Computation of Bose-Einstein
Condensates: Stationary States, Nucleation,
Dynamics, Stochasticity

Xavier Antoine and Romain Duboscq

1 Modeling: Bose, Einstein, Gross, and Pitaevskii

1.1 From the Theory to the Realization of Bose-Einstein
Condensates

The discovery of Bose-Einstein Condensates (BECs), from their theoretical predic-
tion by Bose and Einstein in 1925 to their first experimental realization in 1995 by
Cornell and Wiemann, results from extraordinary scientific achievements that led
to the birth of condensed matter physics. The origin of the theory of BECs comes
from an Indian physicist, Satyendra Nath Bose, who proposed in 1924 a statistics for
the photons that is different from the classical Maxwell-Boltzmann statistics. This
latter allows to know the distribution of the particles velocity in an ideal gas with
elastic shocks, corresponding to a classical description of matter. However, such
statistics cannot be applied to microscopic particles where quantum effects must be
included. An example is the Heisenberg uncertainty principle which states that both
the position and velocity of a massive particle cannot be known simultaneously.
Therefore, the introduction of a new statistical distribution of the particles in the
phase space is required. In his works, Bose considers the photons which are particles
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that belong to the class of bosons (particles with an integer spin). Photons can
occupy the same quantum state, implying that two photons with the same energy
and position cannot be distinguished. Based on this property, Bose developed the
foundations of the theory of quantum statistical mechanics. He sent his paper to
Albert Einstein who submitted it for him to Zeitschrift fiir Physik [39] and who
generalized this result to atoms [59]. In this work, Einstein predicts the existence of a
new state of matter which is now better known as Bose-Einstein condensates. When
a gas of dilute atoms is at a very low temperature (close to the absolute zero), there
is a phase transition where a part of the gas condensates, which means that a large
fraction of the atoms simultaneously occupy the lowest level quantum energy state,
also called fundamental state. The critical temperature to observe the condensation
phenomena is related to the property that the distance between the atoms is about
one de Broglie wavelength Agc Broglic [53]

h

Ade Broglic = W,

where £ is the Planck constant, m is the atomic mass, kp is the Boltzmann constant
and T is the temperature. When the characteristic distances of the system are about
the same, quantum phenomena arise in the gas. A dimensional analysis argument
[98] provides the formula

h2n2/3

T. =33
ka

to determine the critical temperature 7., where n is the number of particles per unit
volume in the gas and # is the reduced Planck constant (A = %). At the time
of these first predictions, experimentalists where not able to maintain the atoms in
a gaseous state when cooling them, resulting in a transition to the solid state. In
addition to the fact that extremely low temperatures had to be obtained, well-chosen
candidates were required to experimentally observe the condensates.

In 1937, Kapitsa discovers the superfluidity phenomena that occurs in the helium
gas [79]. Helium *He has the property to not solidify when it is cooled but to be
in the liquid state even at very low temperatures. Kapitsa shows that a transition
phase occurs in the helium fluid under 2.17 K. Moreover, this new phase possesses
amazing properties. For instance, there is almost no viscosity in the fluid. In 1938,
London suggests that there is a connection between superfluidity in helium *He
and BECs [89], the difference being that, in the case of the helium superfluid,
only a small part of the atoms is at the fundamental state. The main reason is that
strong interactions exist in the helium which is in a fluid state while BECs creation
arises in ideal gazes with weak interactions. Nevertheless, the helium superfluid
plays a key role in the development of some physical concepts that have next been
applied to BECs. In 1949, Onsager predicts the existence of quantum vortices in
superfluids. His ideas have been further developed by Feynman [62, 63] in 1955.
Quantum vortices are not an extension of classical vortices observed in a classical
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rotating fluid (like for example in water). For a superfluid, the velocity is given by
the gradient of the phase function. Indeed, it is possible to describe a superfluid
through a wavefunction

vt x) = /p(t, x)e),

where p(t, x) is the superfluid density and S := S(z, x) its phase, x := (x,y,z) € R?
is a spatial point in the system (O, e, e,,e;) and ¢+ > 0 is the time variable. The
velocity of a superfluid is given by v(z,x) = VS(¢,x). Hence, a direct calculation
shows that V x v(¢,x) = V x VS(z,x) = 0, where S is smooth (a x b is the exterior
product of two complex-valued vectors/operators a and b). We can then deduce
that the superfluid is irrotational where there is no singularity point, e.g. when the
superfluid density is zero. These singularities create “holes” in the condensate that
are called quantum vortices.

In 1959, Hecht suggests that the hydrogen atom with a polarized spin could be
a suitable candidate to observe a condensate in the framework of weak interactions
[73]. The interaction between two atoms of hydrogen with an aligned spin being
weak, a cooling of the gas would not create a molecule nor a liquefaction. Hecht’s
idea is validated in practice in 1976 by Stwalley and Nosanow [114] who confirmed
the hypothesis of the weak interaction of hydrogen and hence started the race to
the experimental realization of a hydrogen condensate. The first experiments used
a magnetic field to cool the atoms. However, this technique was not robust enough
since only a small part of the atoms was practically cooled. New cooling techniques
were therefore necessary for confining the atoms. In 1987, a physics group from the
Massachusetts Institute of Technology (MIT), supervised by Greytak and Kleppner,
published [75] a method where they first confined the hydrogen atoms by a magnetic
trap and next cooled the gas to about 1073 K by evaporation. Starting from a gas
made of trapped atoms, the evaporation process consists in progressively letting the
hottest atoms going out by diminishing the trap strength as illustrated on Fig. 1. We
represent the trapping potential by a parabol and the atoms by small colored disks
according to their temperature. During the cooling of the gas, a significant part of

Fig. 1 Cooling of atoms by evaporation in a magnetic trap
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the atoms is lost. Therefore, it is necessary to start the process with a large enough
quantity of atoms.

The realization of a condensate made of hydrogen atoms has been obtained in
1998 [64]. Meanwhile, the advances in terms of cooling by a laser, in particular
for alkaline atoms, have finally led in 1995 the Boulder University group headed
by Cornell and Wieman to create the first Bose-Einstein condensate [9]. This BEC,
made of rubidium atoms 8’Rb, has been directly followed by a second realization
by Ketterle’s team at the MIT by using sodium atoms >*Na [52]. Cornell, Wieman,
and Ketterle have been awarded the Nobel prize in Physics in 2001 for their
contributions on BECs. In parallel, a group from Rice University, supervised by
Hulet, created a BEC with lithium atoms ’Li [104]. Since the lithium atoms are
characterized by strong interactions, the condensate collapsed but Hulet was able to
stabilize it through a quantum pressure technique. After these developments, other
kinds of atoms were used to produce new BECs.

1.2 Modeling Bose-Einstein Condensates

Various mathematical models can be used to describe BECs [16, 84, 105]. In this
section, we are most particularly interested in one of the most important models
found in the Physics literature: the Gross-Pitaevskii Equation (GPE).

1.2.1 From Classical to Quantum Mechanics

In quantum mechanics, the state of a system is described by a fundamental time-
dependent equation: the Schrédinger equation. This equation plays the role of the
Euler-Lagrange or Hamilton equations used in classical mechanics. Let us assume
that we have a physical system driven by the classical mechanics rules, for example
a solid ball. The Lagrangian of a classical physical system [42] is given by

L =Tun—V,

where Ty, is the kinetic energy and V is the potential energy of the system. For
an object with mass m which is assimilated to a point and subject to an exterior
conservative force F(x) = —VV/(x) (V is the usual gradient operator) at point x, the
kinetic and potential energies are respectively given by

1
Tiin = §m|5((t)|2 and V = V(x(1)),

where x(¢) is the object velocity obtained by deriving its position x(f) with respect
to the time variable ¢. Therefore, at a given time ¢, the Lagrangian depends on two
variables that describe the configuration of the physical system: the speed and the
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position of the object. For a punctual object, one gets
. L. 5
Lx.%.1) = omxO)|" - V(). (1)

The Euler-Lagrange equations characterize the dynamics of a classical system from
its Lagrangian. They can be written as

.z . L .

i (x,X,1) 7 9% x,x,1) = 0.
By applying this equation to the previous Lagrangian, we derive the fundamental
equation of dynamics: mx(¢) + VV(x(¢)) = 0, which provides the trajectory of the
object.

The Hamilton’s equations are a second approach to deduce the dynamics of a
classical system [15]. We have already seen that the Lagrangian of a punctual object
depends on both its position and velocity. It is possible to extend the expression of
the Lagrangian by considering some generalized coordinates q and the associated
generalized velocity q. The generalized coordinates must be chosen to uniquely
define the configuration of the physical system. The Hamiltonian of the system is
obtained by the following formula which corresponds to a Legendre transformation
of the Lagrangian

'%ﬁ(qvpst):p'q_f(qsqvt)v (2)

a - b being the hermitian product between two complex-valued vector fields a and
b, the associated norm is |a| := ./a-a. In the previous equation, p denotes the
generalized momentum such that

A
p= a—.(q,q,f)- 3)
q

The Hamilton’s equations are given by

LA . oA
q=——(q,p.1), p=-———(q,p.0).
ap aq

By considering a particle subject to an exterior conservative force, we have seen that
we obtain the Lagrangian (1). We determine the associated Hamiltonian by using the
relations (2) and (3). Relation (3) allows us to identify the generalized impulsion of
the particle: p = mq. By using (2), we obtain the Hamiltonian of the particle

1
H(q.p.1) = %Ipl2 + V(q) = Tiin + V,
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where 7 is the sum of the kinetic energy Ty, and the potential energy V of the
particle. The total energy & of the particle is given via the Hamiltonian

& :=Tun +V = 7(q,p,1). 4)

This second approach is the one adopted to describe quantum particles. The main
difference is related to the way the massive particles are considered. Indeed, the
modeling of microscopic particles is realized through a wave function. The idea
behind the oscillating nature of matter comes from some physical experiments
where the duality wave-particles was observed [53, 74]. This duality is associated
to the probabilistic character of quantum mechanics: this is not possible to know in
a deterministic way the state of a quantum system. Following this point of view, a
wave function v is associated to a particle and leads to the probability to determine
a particle at a given point of the space. The probability to find a particle in a volume
M at time ¢ is

P(particle € M) = / |y (1, x)|%dx € [0, 1],
M

implying the so-called “mass conservation” property
P(particle € R?) = / |V (£, x))%dx = 1. 6)
R3

This description of the particles is given by the de Broglie’s relations [53] p = Ak
and & = hw, where p is the impulsion of a particle and k its wave number. The
total energy & of a particle is the sum of its kinetic and potential energies, and
its angular frequency. The relation expresses both the impulsion and the energy of
the particle (assimilated to a wave function) under an operator form. Considering
that a particle is given as the sum of monochromatic plane waves (by Fourier
superposition)

1

VN = 5o

/ U (w, k)™ dkdw,
RxR3

the de Broglie’s relations formally lead to

—ihVy (t,x) = / PV (@, k)X dkdw
RxR3

@2m)*

1 . n .
ihd W (t,x) = G /R . EV(w,K)e = dkdw.

This makes a parallel between the momentum operator p and the operator V: p ~
—ihV, and between the energy operator & and the partial derivative d,: & ~ ihd,. By
using relation (4) and the previous ones, we deduce the following evolution equation



Modeling and Computation of BECs 55

for the wave function with Hamiltonian .77
iho (t,x) = (X, —ihV, )Y (t,X).

Hence, ¢ is now considered as an operator. This famous equation has been derived
by Schrodinger [107]. It provides the dynamics of the wave function associated to
the particles. In the case of a particle subject to an exterior potential V, we have the
following Hamiltonian

I
H = =Bl + V),
m
which leads to the Schrodinger equation

2
ihd (1, %) = —;l—mAl//(l‘, X) + VE)V (5 x).

Let us now introduce a new energy & corresponding to the mean-value of the
Hamiltonian

EW)() = /R3 Y (t, x)* H(x, —ihV, 1)y (¢, x)dXx, (6)

where ¥* designates the complex conjugate function of . We can also write this
energy as

& = (Y(t.x), A (X, —ihV. )Y (1,X))2
where (., .);2 is the hermitian inner product
VW) € B XL @ = [ 600"
for square-integrable functions on R?
Li =L*(R%) := {(ﬁ ‘R - C/ /R} | (x)|%dx < oo} .
The associated norm in L2 is

2
Vo € L3 9]z = (¢.9),57
When the Hamiltonian is self-adjoint, i.e.,

V¢17 ¢2 € %OO(RS)’ (‘%ﬂ(xv _ihvv t)¢1v ¢2>L)2( = (¢17 ‘%ﬂ(xv _ihvv t)¢2>L)2( ’
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and time homogeneous, i.e.
HC (X, —ihV, 1) = F (X, —ihV),
the energy & is conserved with respect to the time variable. Indeed, we have
sE(Y) = /M [0, (1, X)]* 22 (x, —iA V)Y (¢, X)dx
+ /11%3 Y (1, x)* 2 (x, —ih V) [0, (1, X)dx.

Since ¥ satisfies the Schrodinger equation associated with 7, we deduce that

9EW) = / I:—%jf(x, —ihV)lﬂ(t,x):| H(x, —ih V)Y (t, X)dx

R3
+ /}1&3 Y (t, x)* 7 (x, —ih V) [—%%(x, —ih V)Y (2, x):| dx.
By using the property that the Schrodinger operator is self-adjoint, one gets
&) = %/}R} [ (x, =ik V)Y (1, X)|* A (x, —ih V)P (¢, X)dx
— % /R} [ (x, —ih V)Y (1, x)]" S (x, —ihV )Y (t,X)dx = 0.
In addition, we remark that

JC(X, —ihV, ) (1,X) = Dy=&E (W) (1,X), @)

where the derivative of the energy is defined as a functional derivative in L2 equipped
with the hermitian inner product (., .) 2. More precisely, in Eq. (7), we differentiate
& () with respect to ¥* by considering that  and y* are independent: we identify
Dy« & () as satisfying

* — . l * _ *
[ oD cnas=tim ([ wsnproevas— [ vorvax). ®

This energy allows us to come back to the Schrodinger equation associated with a
system by an equation like (7).
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The notion of wave function can be generalized to a system of Np, particles by
using the Hamiltonian: 7 = J7(xy,... s XNparts P1s + + + s PNpart t). For example,for
Npar noninteracting distinct particles under the action of an exterior potential V, the
Hamiltonian is

Nparl hz
H =) oAy V), ©9)
=1
where x; designates the position of the j-th particle, j = 1,...,Npy. We can
then deduce the wave function v = ¥ (,xy,... ,pran) for system (9) through a

Schrodinger equation. One then gets

P(particle 1 € My, ..., particle Npa € MNpm)

_ / V(X1 X dxy,,.
Mlx"'XMNpart

where M; is the j-th volume associated with the j-th particle, 1 < j < Npax.

1.2.2 Application to Bose-Einstein Condensates

We propose here a construction that can be found in [98]. For a BEC, the set of
condensed particles occupies the same quantum state, that is the ground state. The
condensate is considered as a system of indistinguishable particles with the same
wave function . The condensate wave function writes down as

M part

V(xL %Xy, = [ [ v x). (10)
=1

Furthermore, the condensate corresponds to a set of particles subject to an exterior
potential V and an interaction force Uiy, between the particles that depends on the
distance between two given particles. The Hamiltonian of the system is

M part 2

h
H= —o A+ V(%) + > Uni(x—x0).
Jj=1

1§k<j§Npﬂn
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We obtain the energy &y of the system of particles at time ¢ by using formulation
(10) and the mass conservation (5)

Gﬂsys = /(RS)Npan w*(t, Xlyeens XNpan)e%ﬁW(l‘, Xl,.00, XNpm)dxl Ce dXNparl

h2
— N [ [Z—IVWL 02+ Ve[ (. xﬂ dx
R3 m
+ Npm% /}R3 /R} U (X' — X) |9 (1, X') |2dx |y (1, X) | 2dx.

Let us consider the variable change ¥ — 1/,/Np«¥ and let us assume that the
number of atoms is sufficiently large so that (Npax — 1)/Npare &~ 1. This yields the
normalized energy

5)
h? 1
= [ [ 7w+ 0+ 5 [ U Iy xR0 o
R3 m 2 R3

To derive the Schrédinger equation that describes the evolution of the wave function
¥, we compute the functional derivative of the energy

2
[ # D cwax=[ oo (=14 Vo) wamx

1
+ E /R3 ¢(X)* (/RS Uint(x/ _X)|1/f(t, X/)IZdX/) W(t,x)dx

1

T2 /R (/R Ui (X' =x)y (1, x’)«zs(x’)*d"/) [ (1.%)Pdx.

From the Fubini theorem and by assuming that the interaction potential Uy, is even
Ui (X' — x) = Ujye(x — X’) for any points x and x’, we remark that

/ (/ Ui =)y (1, X’)¢(x’)*dx’) ¥ (2, %) [Pdx
R3 R3
- / ( /R} Uini(x — X")p (x) ¥/ (1, x)dx) [ (2, x)|2dx .

R3

Hence, one gets
h2
[ Desax= [ 6007 (-3 4+ Ve xdx
R3 R3 m

* g ’r N2 0!
4 A; B /R U =0 0. X) Py (1 Xy
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This leads to the Schrédinger equation satisfied by ¥

hz
By = Dy S (W) = (—3 A+ V() + /R U =y ) Paxyy.

Let us remark that the parity assumption of Ujy, is not restrictive in practice because
the interatomic interactions are symmetrical. Furthermore, this type of potential can
describe a wide variety of interactions between the atoms. For instance, the Van der
Waals interaction created by a dipole-dipole electric interaction between the atoms
writes [98]

Uaw(lx =) =~
|x — x/|®

From a mathematical point of view, we remark that the nonlocal interaction
term is given by an integral operator. To avoid the problem of evaluating this
class of interactions, physicists introduced the concept of effective interaction. By
considering a system of two interacting particles with low energy, the interaction
between the particles can be quantified by a constant a that is usually called the
“scattering length”. This simplification leads to the computation of an effective
interaction U between two particles that formally satisfies

Ah’a
U() = Ueff(X() — X)dX = s
R4 m

where m is the mass of the particles, X is the reference particle position and x
corresponds to the position of the other particle. Therefore, if we assume that
the interatomic distance inside the condensate is sufficiently large compared to
the scattering length a, the interaction between the particles can be replaced by a
localized interaction which is proportional to Uy, that is: U(xo —X) = Updo(Xo — X).
We deduce a Schrodinger equation for the wave function ¥ as

4 h?
Py (. ). (11

m

2
ihd (1, x) = (—Zh—mA + V(%) +

This equation has been obtained independently by Gross [72] and Pitaevskii [99] in
1961 and is called the Gross-Pitaevskii Equation (GPE). More recently, the equation
was derived in more general frameworks [86, 87]. In the sequel, we consider this
equation for modeling a BEC.
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1.3 Enrichment of the GPE: Quantum Vorticity, Dipole-Dipole
Interaction, Multi-components, Stochasticity

1.3.1 Rotating Bose-Einstein Condensates and Quantum Vortices

One of the most interesting characteristics of superfluids is their response to rotation.
In a superfluid, the velocity of the fluid is given by the gradient of its wave function.
As mentioned before, the fluid is irrotational everywhere except at the singularities
called quantum vortices. Furthermore, another feature of superfluids is that there
exists a characteristic velocity given by the spectrum of the excited states of the
quantum system. Above this critical velocity, the system is excited. For example, an
impurity moving in a superfluid will not cause any perturbation in the fluid unless
its speed is above the critical velocity.

Since Bose-Einstein condensates are supposed to behave like superfluids, a lot
of experiments were proposed to investigate properties like the existence of critical
velocity or the nucleation of quantum vortices when a rotation is applied to the
condensate. Two teams, one from the ENS Paris led by Dalibard [92-94] and
a second one from the MIT and headed by Ketterle, have developed a method
involving anisotropic harmonic potentials to stir the condensate and rotate it. They
observed that there is no nucleation of vortices in the condensate under a certain
rotation speed. The process of nucleation only begins when a certain rotational
speed is obtained. In addition, the number of vortices is directly proportional to
the rotation speed (see Fig. 2).

For modeling a rotating BEC, we need to change from the reference frame of
the laboratory to the rotating frame of the condensate. If the rotation axis is the z-
direction (i.e. £ = (0,0, §2), where §2 is the rotation speed), this change of frame
leads to the following transformation of variables

; X' = cos(£21)x + sin(£21)y,

y = —sin(£20)x + cos(£21)y.

Fig. 2 Nucleation of quantized vortices for an increasing rotation speed (from left to right). The
experiments were done by a group led by Jean Dalibard in 2001 at the Kastler Brossel laboratory
(ENS Paris, France)
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Therefore, to any vector x in the reference frame is associated a time dependent
vector X'(?) in the rotating frame. We remark that: x(r) = x'(¢) + £ x x/(r). We
now consider a particle in rotation and subject to a potential V. The Lagrangian
associated to this particle is

1
L(x,X,1) = Emx(z)2 — V(x(1)).
By using the change of variables, we deduce the Lagrangian in the rotating frame
1
L X, 1) = Em()'(’(t) + 2 xxX(1)* - V(X (1)

and the generalized momentum operator

, AL
S

p =mE + £ xx).

The Hamiltonian of a particle in the rotating frame is then
o YA /oo _ p/2 / / /
HAX,pn=p X -ZLX . x'1)= 2——(.!2 xx)-p + V().
m

Applying the same procedure for the Hamiltonian of a system of Ny, interacting
particles under the action of a potential V, we obtain

Nparl 2
H=Y —5 A+ ih(R X %) - Vi + V() + Y Unx—x0).
j=1 m 1 <k<j=<Npart

Similarly, we deduce the GPE for a rotating BEC

dha

m

[y (@) P)y (),

2
ihd (2, x) = (—;’—ma —ih2 - (xx V) + V(x) +

since (2 xx)- V=—-2-(xxV).

1.3.2 BECs Including Dipolar Interactions

BEC:s were first obtained for alkali and hydrogen atoms. Since these two families of
atoms have a weak magnetic moment, the magnetic dipole-dipole interaction can be
neglected in the associated GPE. Latter, BECs made of chromium atoms >>Cr were
created, leading to a GPE where the dipole-dipole interactions must be included
[70, 71]. As a consequence, an additional interaction term modeling the magnetic
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forces between the atoms has to be added to the Hamiltonian

Npart 2
h
H = E —%ij + V(x)) + g UoBo(x; — Xi) + Udipole (Xj — Xx).  (12)
Jj=1

1 <k<j<Npar
The notation Ugipole corresponds to the magnetic dipole-dipole interaction given by

Udipole (Xj — X¢)

_ Mo I'l'mag‘j(xj) : I'l'mag,k(xk) - 3(”’magzj(xj) : uj,k)(l'l'mag,k(xk) ’ uj,k)
4 Ix; — xi?

’

where p..,; (respectively g,,.,;) is the magnetic momentum of the j-th atom
(respectively k-th atom),

. Xj — Xg
Wik = ———7>
X — X¢|
and po is the permeability of vacuum. We now assume that all the atoms are
polarized by an external magnetic field in the z-direction, implying that p,.,,; =

Pmagk = Mmag€;, Where Umgg is the amplitude of the magnetic momentum of
chromium atoms. Thus, the magnetic dipole-dipole interaction is

HoMzmag 1 — 3 cos(angle(x; — X, €;))
4r Ix; — x|?

Udipote (X — X)) =

’

where angle(x;—x, ;) is the angle between x;—x; and e.. By using the Hamiltonian
(12), we obtain the following GPE with a nonlocal interaction term

ihd, (1, %)

h2 drhla

= (5-A+ VX +] [y (1, %)
m

m

2
A0 Mma,
+ e

e [ U=y xR D),

where

1 — 3 cos(angle(x, e,))

v = X
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1.3.3 Origin of Stochastic Effects in BECs

Some classes of GPEs include some random terms to describe the stochastic effects
that may arise in BECs. For example, let us cite the modeling of random fluctuations
in an optical trap [1-3, 68, 69, 106] or the consideration of the interactions between
a cloud of non condensed atoms and the BEC [40, 66, 67, 111, 112]. This latter
model involves a space and time stochastic process that describes the fluctuations
of the phase and density of the condensate. Here, we focus on the first model and
derive the associated stochastic GPE.

In [106], the authors model randomness in the intensity of the optical trapping
device used to confine the BEC. In the case of a magneto-optical trap, the laser beam
used is slightly detuned to a frequency less than the resonant frequency of the atoms.
When the laser beam is coupled to a spatially varying magnetic field which changes
the resonant frequency of the atoms, a potential force is induced, then creating an
atomic trapping device [95]. Using multiple laser beams leads to the potential

1
V(t.x) = —elE(, x|

where « is the atomic polarizability and E is the amplitude of the electric field
generated by the laser beam. For a small detuning effect of the laser (less than 10 %),
the atomic polarizability is given by the approximation: o = —%, where 7 is the
transition dipole momentum and Aw = w — wy is the detuning parameter between
the laser pulsation w and the electronic transition pulsation wy of the atoms. For a
gaussian laser beam, the intensity of the electric field created by the laser is

_2
E@x)* = Eo(n’e &,

where £ is the gaussian beam radius. If the size of the condensate is small compared
to £ (Jx|] <« £), a Taylor’s expansion gives the following approximation of the
potential

o

5 | Ea() Pl

o
V@@Z—ﬂ&@V+
By a gauge transformation
V(%) =y (1, x)elh BFoR,

we eliminate in the GPE (11) the constant term that appears in the previous potential
and obtain

2

h
indp(x) = (—3 A+ a

4rh?
L B OPIX? + [y (1 x) Py (1. %).
m
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Finally, the fluctuations in the laser intensity are modeled by a random process 5
which determines the difference between the mean intensity |Ey|*> and the intensity
|Eo(f)|? at time . If we set

|Eo(1) > — |Eo|?

§@) = TAE

’

we deduce the following stochastic GPE

h2
ihdp(1.%) = (-5 A + —=|Eol*(1 + E@)IxI* + Iw(t X)) ¥ (1, %).

4€2
A process which is widely used by physicists is the brownian motion (Wy),cg+-
The associated noise (e.g. the time derivative of the process) is the so-called white
noise (W;),cp+, a real-valued centered gaussian process with covariance E[y,w,] =

8(t—s).

1.3.4 Multi-components BECs

In the derivation of the Gross-Pitaevskii model for BECs, we omitted the effect of
the spin of the atoms. For each species of particles, there exists a principal quantum
spin number s that is either an half-integer for the fermions (s = 1/2,3/2,...) or
an integer for the bosons (s = 0, 1,2, ...). The quantum spin number S of a particle

corresponds to a new degree of freedom S € {—s,—(s — 1),...,(s — 1), s}. For
example, a fermion with principal quantum spin number s = 1/2 can only have
two possible spin numbers: S = 1/2 or § = —1/2. Each value of S corresponds

to a quantum state of the particle. To describe the quantum system, we introduce
a vector-valued wave function, where each component is associated to a value of
S. This requires the extension of the GPE to a system of GPEs when s # 0. This
situation corresponds to multi-components BECs.

Let us consider a mixture between two different species of atoms (denoted by
type 1 and type 2), the extension to more components being direct. We suppose
that each type of quantum system occupies the ground state. The first (respectively
second) gas has Npay,1 (respectively Npar,2) atoms. Each component is described by
a wave function, Y| or ,, according to the gas, that satisfies the mass conservation

/ |We(t,x)|*dx = Nyarp, for £ = 1,2. (13)
R3

The wave function of the BEC is

N, part,1 N, part,2

7l 1 2
w(t,xl,...,prmyl,xl,..., Npari2) l_[ v (2, x) l_[ Va(t, X7),
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where x} is the position of the j-th atom of type 1 and xi is the position of the k-th
atom of species 2. If we assume that the £-th component is subject to an external
potential Vi, has a mass m, and that the components interact, we obtain the following
Hamiltonian

Npart.l hz
1 1 1
H = E ——2m ijl + Vl(Xj) + E Uint,l(xj _Xl)
j=1 ! 1< j<I=Npar1
Nparl.2 h2
§ : 2 § : 2 2
+ —EAxg + VQ(Xj) + Uint,Z(Xk — Xm)
k=1 2 1<k<m=<Npan2
Npart.l Npart.l
1 2
+ E Uin,12(X; — X},
j=1 k=1

where Uiy ¢ corresponds to the interactions between the atoms of the type £(= 1, 2)
and Uiy, » describes the interatomic interaction. By symmetry, the interaction term
Uini,1,2 is even. We deduce the energy &y, of the system by using (13)

Ssys(Y1, ¥2)

hz
= {Vpart,1 / [_IVWI(L X)|2 + VI(X)IWI(L X)|2:| dx
R3 2}’/11
+ Nparl,l(Nparl,l — 1)/2/3 /Az Uint,l(x — X/)le(t, X/)Izdx/h//l(t, X)Ide
R? JR3
h? 2 2
+ Npart2 5— IV (6, X)]" + Va(X) |92 (. x)|” | dx
R3 2m2
N2z = /2 [ [ Uimalx = x100x) Pa 900 s
R> JRR:
+ Npart, 1 Vpart,2 /3 /3 Uine12(x — xX) |y (¢, x’)lzwfz(t, X)|2dx’dx.
R? JR

Let us consider the following changes of variables: ¥y — 1//Nparee, £ = 1,2.
Moreover, we assume that Ny, ¢ is large enough to satisfy: (Npare —1)/Nparee = 1,
£ =1, 2. This leads to the normalized energy of the system

EWr1.¥2)

hz
:/ [2_|v¢1(t,x)|2+ (Vi(x)
R3 ny

1

+ / Uit (% — X) 1 (1, X)2dx) [y (1. %) [2] dx
RS
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2
+ /Rs |:2h_mz|v1ﬂ2(t, )P+ (Va(x)

1

¥ / Unnea (% — X) [t ) [2dx) 921, %) [2] dx
RS

+ / / Uini12(X — X) [Yr1 (1. X) | [¥2 (2. X)|2dX dx. (14)
R3 JR3

We obtain the Schrodinger equations that govern the evolution of ,, £ = 1,2, by
using the derivative of the energy with respect to ¥; and vy». We have

hd (1, X) = Dyx& (Y1, ¥2),

for £ = 1,2, which is equivalent to the following system of equations

h2
(%) = (=5 =+ Vi00 + [ Vs =)0 X) Py 63)

+ / Ui 2 = X)X 912, %),
R

hz
ihd (L, X) = (_2_mzA + Vo(x) + /}R3 Uit (x — X)) |2 (£, %) [2dX ) Y2 (1, X)

+ /} Uine12(x — X)) |91 (8, X)) |2dX Y2 (1, X).
R,

Like for the one-component case, the interaction between the particles can be
simplified by introducing an effective interaction

drhlay

my

Ui (x —x') = So(x — X)),

where ay is the scattering length of the atoms of species (= 1,2). The effective
interatomic interaction is given by

47th2a1'2

1.2

Un12(x —X') = 8o(x — x'),

where a) ; is the scattering length between an atom of type 1 and an atom of type 2.
The quantity m; , is the reduced mass of a pair of atoms of types 1 and 2, i.e.

mpmy
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Finally, the evolution of a two-components BEC is modeled by the following system
of GPEs

2

h 47
ihdp (1, x) = (——A + Vi(x) + Dy ()2
4]Th apn

—— (1.0 )%(t X),

Y
ihd Yo (1, x) = (—h—A + Va(x) + dh”

4Jrh
+

|1/f2(f x)?
2y (2, %) )%(f X).

1.4 Stationary States

In quantum mechanics, an excited state of a quantum system is a quantum state
with an energy higher than the energy of the ground state (i.e. the quantum state
with the lowest energy). Furthermore, the stationary states of a quantum system
are the eigenfunctions of the Hamiltonian operator associated to the system. The
eigenvalues for each stationary state are quantified energies related to the spectrum
of the Hamiltonian operator. For a stationary state 1, we have

0y =9 = puy,

where p is the eigenvalue linked to . Therefore, the stationary state is searched as:
Y (t,X) = ¢(x)e ", where ¢ is a time independent square-integrable function such
that: ||¢>||i% = 1. We directly compute an eigenvalue p, also called the chemical
potential, by using the associated eigenfunction ¢ since

n=u [ WwPax= [ o*pax

1.4.1 Critical Points of the Energy Functional &

Stationary states are critical points of the energy functional. To prove this statement,
we follow a proof similar to [98]. Let us consider a GPE for a rotating condensate

ihdp(t,x) = (—h—zA—lh.Q (xx V) +V(x) + (Npart

We have seen that the energy associated to a given system, defined by (6), can be
directly written through the Hamiltonian. For a nonlinear Hamiltonian, a corrective
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term must be added to fulfill (7)

EW) = (W (1.%), A (%, —ih V)Y (1. %) 2
_/ Larha, ol

RSZ m

hz
- /R [%'Wmlz + V)%

Y (LX) h R - (x x V)Y (t,%)] dx

1 4rhH?
+/ I %) . (15)
R3 2 m

Let us set

2
H(x, —ihV) = —;’—A +V(x) —ih2 - (x x V).
m

We remark that the Hamiltonian operator %) is an hermitian operator in L2. Let
us now compute the critical points of the energy functional (15) under the mass
conservation constraint. To this end, we introduce a Lagrange multiplier A and solve

Dy=8($) + Dy & (@) — A[Dy= (1¥]2) () + Dy (1¥1l.2) (¢)] = 0. (16)
Since 7% is an hermitian operator, the functional derivatives are given by

4drhla

m

Dy ([¥]2) (@) = Dy ([¥ll2) (¢) = ¢ (),

1%,

Dy=&(p) = Dy &(¢) = Hop +

leading a more explicit formulation of (16)

dha

m

oy + WPy — Ay = 0.

This finally means that the stationary states are the critical points of &.

1.4.2 Ansatz of the Stationary States

For a magneto-optical trap, the potential is

1
V(t,x) = —ZalE(t, x)|%.
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If we assume that the laser is gaussian, then it generates an electric field such that

|E(t,x)> = E2e & & &,

where £, £, and £ are the intensity radii of the beam in the x-, y-, and z-directions,
respectively. Hence, if the characteristic length of the condensate is small compared
to the lengths £, . and if we use a gauge transformation, one gets the following
GPE with harmonic trap
2 2 2 2
M

‘ h a X z 4rch’a
ho (%) = (- —A+ Z|E0|2(e—2 tE TR T v X))y (2, x).
X y b4

For a noninteracting BEC (e.g. a = 0), this system is a linear quantum harmonic
oscillator. The ground state is then [98]

1 B At e
= 22 2 242
ProlX) = n3/4(axayaz)l/ze ’ (an

B _ ﬁhl{x’y’Z}
I ATANCT

with ay, , -y equal to a,, a, or a; according to the subscript x, y or z, respectively. The
associated energy is

a 1 1 1
Eose 1= E(Pno) = hIE —(—+ =+ ).
(¢no) | Ol‘/Zm(Kx + 0 + ez)

If there are interactions inside the BEC (e.g. a # 0), we have

where

1 4mh’a
E(no) = Eose + .
(¢ 0) osc 2(27[)3/2axayaz m
The gaussian function can still be considered as a suitable approximation of the
exact ground state if the energy associated to the interaction term is small compared
to the energy associated to the quantum harmonic oscillator. Thus, if £, = {, = £,
the approximation of the ground state by a gaussian function is correct when a, > a.
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If the interaction energy is strong (e.g. a > a,), this approximation is no
longer valid. In this case, we consider the so-called Thomas-Fermi approximation
[98, 100] which consists in neglecting the kinetic energy and keeping the potential
and interaction energies, €.g.

Ex(¥) = /R VY Pdx < ()

— / [wx)w(t, 02
]R3

t, x)|4:| dx

The total energy is approximated by & () &~ &rp(¥). Let us set Uy = 4”—;’2“. The
minimizer of &r under the mass conservation constraint is computed by introducing
a Lagrange multiplier utr and by solving

(V + Uolgre))pre = prrerr.

Multiplying the previous equation by ¢y leads to

mre — V(X)

Vx € supp(¢rr),  |prr(x)|? = U
0

Since |¢rp|> > 0, it follows that
/MTF V(X) . f V4 >0,
¢TF (X) — or Utr (X)
0 , for prp —V(x) <0.

The mass conservation gives the chemical potential ptp. For example, for a
quadratic potential (with £, = £, = {), we have

1520 a ;s
2ma, ay '

WTF =

1.5 The Rotating GPE with a Quadratic Potential:
Dimensionless Form in 3d, 2d and 1d

Let us consider the 3d rotating GPE with a quadratic potential

2 dh?
zhaw—(——4+—| Eol (—Jrz—ﬁg—2 _ih@ - (xx V) + 24

vy

where x = (x,y,z2) € R3.



Modeling and Computation of BECs 71

1.5.1 Dimensionless Form of the GPE

Let us set

[a |E [a |E [a |E 4rh’a
Wy =z Oy = [ ———, 0, = [ , Uy = .
2m £, 2m L, 2m £, m

By using these new variables, the GPE writes down

h2
iy = (— -4+ % (0% + w)y” + 027) — ih®2 - (xx V) + Uply[))y.

Let us introduce the following changes of variables

t .
I—=>—, wy= mln(w,h Wy, wz)7 X — Xdo,
O
B
a0 = || ——. we%, 2 = Q. (18)
may, ab

Then, we obtain the dimensionless GPE
. 1 1 )
0y = (—5A+ 5 (X + 7y’ +7.2) —i2 - (xx V) + BV )Y,

U
where yx = wx/On, Yy = wy/On, Y = 0;/0p and f = 0.
07 m

1.5.2 Dimension Reductions

Let us consider the dimensionless GPE
1
0,y (t,x) = (_EA + V(x) —if2 - (xx V) + Bl (€. 0y (1,x), (19)

where £2 = (0,0, £2). We already know that a stationary state is a critical point of

B

5@ = [ IV + VOIPOOF " (LLp(1.3) + T80 .

with L, = —i(xd, — yd,). We assume that

1
V) =5 (v + vy +v27).
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If y, ~ y, and y; > y,, the condensate has a stationary state that expands in the x-
and y-directions but is confined along the z-axis (disc-shaped condensate). Indeed,
the energy associated to the potential operator in the z-direction is large compared
to the energies in the x- and y-directions. Most particularly, an excitation of the
condensate generates less dynamics in the z- than in the x- and y-directions [25].
Therefore, the dynamical solution is written as [77, 85]: ¥ (z,x) = ¥ (z, x, V) ¥3(2),
where

1@ = ([ oty
setting o as the 3d stationary state. Since v is normalized, we have
[ @pa=1.
R
Injecting ¥ in (19), we obtain
. 1 1 )
lWS(Z)arwz(ﬁ X, y) = _§w3(Z)Aw2(Iv X, y) - EwZ(ts X, y)az WB(Z)
1
+ 3 (yix® + )’fyz) Ya(t, x, ¥)¥3(2)

V22X NS — YD RLY(l,x. )
+ Bl (b x. )Y @) Pt 2 ) 3 ().

Multiplying by ¥} and integrating on the whole space with respect to z leads to
. 1 L 22 2.2
0y2(tx.y) = (=54 + 5 (rix* + 1)) = QL

1
+50+ 1Y (t, x, ) )V (t, X, ),

where
o= / P21EP + 1030 dz 12 = / Blva (@) dz.
R R

By using the gauge transformation vy, (¢, x,y) — ¥ (¢, x, y)e_%”’ , one gets the two-
dimensional rotating GPE

11
0 (t,x,3) = (-5 A+ S0 +175") = QL+ Y (66 )PP (5, 3).
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Let us now assume that the BEC is nonrotating and that y,, > y,. Similar
arguments to the previous ones [25, 77, 85] show that ¥ (t,x) = ¥ (t,x)¥23(y, 2),
where

%dwﬁ#éwmw@WWP

Here, we assume that the condensate is cigar-shaped. Similarly to the 2d reduction,
we obtain the following one-dimensional GPE

B0 = (—50 4 272 + 0P ),
where
= [ Blvaat.oldre
Finally, a general form of the rotating GPE in dimensiond (= 1, 2, 3) is
B 0,3%) = (-5 A+ Val) = QoL+ kY PP,

where §2,3 = £2, £2; = 0 (no rotation),

/ B3y, 2)|*dydz, ford =1,
R2

fa = /Rm%(z)ﬁdz, ford = 2,
B, ford = 3,
and
1/2y2x2, ford =1,
Va(x) =4 1/2 ()/sz2 + yyzyz) , ford =2,

1/2 (2 + y}y* + y22?) , ford = 3.
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2 Stationary States and Nucleation of Quantized Vortices

2.1 Stationary States Formulation: Solving a Minimization
Problem for the Energy Functional or a Nonlinear
Eigenvalue Problem (Under Constraint)?

The critical points of the energy functional associated to a GPE-like system are
in fact the stationary states (see Sect. 1.4, page 67). An impressive number of
publications has been devoted to this topic over the last years in the condensed
matter physics literature (see for example [43,49, 83, 110]). Indeed, stationary states
correspond to (meta)stable states of the condensate. As seen in the first section,
the practical realization of a BEC requires a sophisticated experimental system
that is only owned by a few laboratories worldwide. More generally, reaching a
temperature to condensate the atomic gas is very challenging. In addition, imaging
a condensate is a difficult task due to its small size. A widely used technique consists
in letting the condensate expands during a short time scale and then imaging it when
its size is large enough [60]. Let us remark that imaging a condensate destroys it
immediately. As a consequence, some physical phenomenae are extremely difficult
to observe in a BEC on a larger time scale [41, 61, 101]. Therefore, numerical
simulations are helpful [34, 80, 109] to provide a complete visualization of a BEC
and to compute some of its features (e.g. phase structure) in some various and
complex situations (e.g. multi-components, different potentials, nonlinear long-
range interactions). The limitations are essentially due to the model that is chosen.

Let us consider the model problem of a GPE with a nonlinearity defined by a
function f and with a rotation term

10,y (1,x) = —%Aw(t, X) — QLY (t,x) + V)Y (1, x)
+ (Y)Y (r.x), Vi >0, Vx € R?, (20)
¥(0,x) = Yp(x) in Li.

Function V which acts from R? onto R™ corresponds to a (confining) potential.
Function f can be a real-valued smooth function like for the standard case f(|¥/|*) =
Bl¥|?°, with B € R and ¢ > 0. In practice, many other situations exist. As
seen before (Sect. 1.3.2, page 61), f is not necessarily a function but can also be
an integro-differential operator like for dipole-dipole magnetic interactions. The
parameter £2 € R is the rotation speed. The rotation operator L, is given by:
L, = —i(xd, — ydy). To fix the ideas, let us remark that we may choose a transverse
rotation which is written via the operator L,. For d = 1, there is no rotation (£2 = 0).

The computation of the stationary states can be done via the minimization of the
energy under constraint. For (20), the energy is given by

1
Ear(y) = /R SGIVUE + VI = QU Ly + F(y 1)), 1)
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where F is the primitive function of f
Vre[0,00[, F(r):= /0 f(@)dq.

Hence, the minimization problem consists in computing a function ¢ € Li such that

Eor(p) = | min & r(VY). (22)

2=
From a numerical point of view, this implies that a strategy based on numerical
nonlinear optimization techniques under constraints can be used to obtain the
stationary states. A second approach is related to the property (see Sect. 1.4.1, page
67) that the problem can also be formulated as the nonlinear eigenvalue problem:
find an eigenfunction ¢ € L,Z( and an eigenvalue ;¢ € R such that

1
e = =549 = 2Lp + VX + ()0, (23)

under the L2-normalization constraint for ¢. Concerning the nonlinear eigenvalue
solvers, we refer for example to [56] for an application in the framework of GPEs.

Here, we essentially develop a method that is embedded in the class of the
minimization methods. This approach is called Conjugate Normalized Gradient
Flow (CNGF) and corresponds to the well-known imaginary time method in physics
[4, 22, 35, 47, 48, 58, 65]. Let us however remark that other minimization methods
can be used [25, 46, 51, 56]. The CNGF method consists in building a minimizing
sequence of the energy functional &, r given by (21). To this end, we consider a time
discretization (,),en, with #p = 0, and we define the local time step: 8, = t,4+1—1y,
Vn € N. The CNGF method is given by the algorithm: compute the sequence of
iterates (¢ (X, t,))nen defined by

Dp(x.1) = Dy r($) = 3 AP(x.1) + RLp(x,1) ~ VP (x.1)
—f(|¢|2)¢(X, t)v Vit e [tm tn-l—l[v Vx € Rd,

24)
16 o )

. iz
¢(x,0) = ¢o(x) € L3, with [|o||r2 = 1.

(X, typ1) = (X1}, ,) =

In the above equations, we designate by g(t:' 1) (respectively g(¢,,,)) the limit
from the right (respectively from the left) of a function g. The discrete times ¢,
parametrize the sequence. This explains why we use the “inverse” notation ¢ (X, f)
instead of ¢ (%, x). Correctly choosing the initial data ¢y in the iterative algorithm
is important to ensure the convergence. In practice, as we will see later in Sect. 2.3
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(page 88), a suitable choice consists in considering initial data built as Ansatz of the
underlying equation (GPE) with respect to a given asymptotic regime.

The CNGF method conserves the Lﬁ-norm of the solution [22]. Moreover, Bao
and Du [22] proved that the algorithm (24) produces a sequence that minimizes the
energy in the linear case (i.e. f(|¢|?) = 0) for a positive potential (i.e. V(x) > 0).
Hence, under these assumptions, we prove that

Jim $(x.1) = 9, (x). 25)

where ¢, is a stationary state. Practically, the long time computation (25) is fixed
according to a stopping criterion that we will precise later.

2.2 Time and Space Discretizations of System (24)

In this section, we consider several time and space discretization schemes for the
system (24). The Partial Differential Equation that we want to solve is similar to a
heat equation (and not a Schrodinger equation) in imaginary time. At first glance,
one may think that using a standard method adapted to this class of equations
would lead to an admissible scheme. Nevertheless, an important point to keep in
mind is that a normalization constraint must be fulfilled and, more importantly, that
we want to build a minimizing sequence of the energy functional. Therefore, as
precise before, the imaginary time parametrizes the optimization algorithm at the
continuous level. As a consequence, a suitable scheme must produce a minimizing
sequence, at least in some situations (e.g. for f := 0). In [22], Bao and Du analyze
a few a priori standard schemes for (24). The conclusion is the following. The
time splitting scheme (see Sect.4.2, page 109, for the real time-domain GPE)
which is generally an efficient and accurate method in computational dynamics
must not be used here since the time step required to get a decaying energy is
too small. This property can be observed even in simple situations, for example
for the non rotating case (£2 = 0). Another solution consists in applying the
unconditionally stable Crank-Nicolson (CN) scheme that has the a priori advantage
of being second-order accurate both in space and time. The difficulty is that this
scheme is extremely time consuming since it requires the accurate solution to a
nonlinear PDE at each time step. A possibility consists in writing in an explicit way
the nonlinear term (semi-implicit scheme) resulting in the solution of a linear (and
not nonlinear) system at each time step. Even if this solution seems attractive, the
associated sequence is minimizing if a strong restrictive CFL (Courant-Friedrichs-
Lewy) condition between the time and spatial steps holds. Concerning the backward
Euler scheme (and similarly to the CN scheme), a nonlinear system must also be
solved at each time step. However, the very nice result obtained by Bao and Du
[22] is that the semi-implicit backward Euler scheme (see Sect.2.2.1) produces
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a minimizing sequence without any CFL condition, unlike the CN scheme. This
property holds when the potential V is positive.

Concerning the spatial discretization, we consider two approaches (Sect. 2.2.2).
The first one consists in simply choosing a standard second-order finite difference
scheme. An alternative discretization is the pseudo-spectral scheme based on Fast
Fourier Transforms (FFTs). The reason why this last choice is seducing is that the
resulting CNGF method is very robust while also being simple. Indeed, it leads
to the accurate computation of the stationary states even for GPEs with large
rotation speeds §2. These states cannot be reached when considering low-order
spatial discretization schemes (second-order for example). Finally, the efficiency
of the FFT algorithms on large clusters of HPC can lead to the possibility of
computing extremely complex 3d BECs configurations, based on CPU, GPU or
hybrid computers.

2.2.1 Semi-implicit Backward Euler Scheme in Time

Let us introduce the semi-implicit Euler scheme [22] (which is a reference scheme
in the sequel). We consider a uniform time discretization: §t, = 8t = f,41 — t,,
Vn € N, and obtain the semi-discrete time scheme for CNGF

h(x) —d(x,1,) 1 - . 3
PROZPOD) _ L Aj(x) + QLA ~ VOIF)
—f(lp(x, 1) )P(x), VxeR
()
¢(Xv tn+l) - ||(];||L’2( )
$(x,0) = ¢o(x), with [|¢o|[2 = 1.

(26)

The reason why this scheme is considered as a “good” discretization scheme for
CNGF is a consequence of the following theorem (Bao and Du [22]).

Theorem 1 Let us assume that V(x) > 0, Vx € R 2 = 0 and f(|¢|*) = B|o|>
Then, for any > 0, the following results hold: ¥n € N,

1.tz = Igollz = 1.

and

Eaf (@) < Ear(@( 1))

Theorem 1 confirms that the semi-implicit Euler discretization scheme leads
to a decaying modified energy &, at each step of the projected steepest descent
algorithm.
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To numerically check that the numerical solution converged to the stationary
state, we consider in the sequel the following (strong) criterion

1o tnt1) =@ ta)lloo < €61, @27)

where || - || is the infinity norm. We need to fix & small enough to obtain a good
accuracy of the stationary state, most particularly when considering highly accurate
solutions based on pseudo-spectral approximation techniques. Let us remark that
we may also choose another (weak) stopping criterion that is associated with the
evolution of the energy

|2, r(@(C.tht1)) — Ea.r(@(, 1,))] < ét. (28)

This second criterion is defined in GPELab.

2.2.2 Spatial Discretizations

We now focus on the spatial discretization of system (26). We consider the case of
the dimension d = 2, the generalizationtod = 1 and d = 3 being direct by adapting
the notations. Since problem (26) is set in the whole space, the computational
domain has to be truncated. Because there is no physical boundary, it is natural to
choose a rectangular computational domain &' :=]—ay, a,[x] —ay, a,[. We consider
a uniform discretization grid for &' for any indices J(> 3) and K(> 3) in N, we
define

Ok ={Xjx = () € 0, Vje{0,....J}and Vk € {0,...,K}}, (29)

with i, = Xji+1 — Xj, VJ S {O, R 1}, andhy = Yik+1 — YVk» Vk € {0,...,K— 1}
We introduce: xo = —ay, Xx; = ay, yo = —a, and yx = a,. Furthermore, we
define the set of indices: Fyx = {(j, k) € NZ: 1 <j<J—landl <k<K-—- 1},
for finite difference schemes with a Dirichlet boundary condition, and &, x =
{(j, kyeN*1<j<Jandl <k <K }, for the pseudo-spectral approximation with
periodic boundary condition.

Finite difference discretization. We give the discretization of the operators
appearing in problem (26) when using finite differences. We assume that the
potential V confines the stationary states in ¢ (which is physically realistic) and
that we can choose a Dirichlet boundary condition, i.e. ¢(x) = 0, for x € d¢. For
any function ¢ defined on the grid O , we set: ¢(X;x) = @(xj, yx) = @j«, for points
X, in the computational grid, j € {1,...,J — 1}, k € {1,...,K — 1}, considering
the Dirichlet boundary condition. Concerning the directional derivatives along x or
v, we use the second-order approximations

5y = Djk+1 — Pjk—1 ‘ (30)

ik — -1k
’ 2h,

V(i, k) [S yj,K’ 8X¢jk - 2hx



Modeling and Computation of BECs 79

Since we impose a Dirichlet boundary condition, we have: V(j, k) € .,k

Scrx = %, Sydin

k-2

¢j 2 ¢J—2 k
- 8x¢ - - : :
I-LE Zhy

~2h 2h,

o SyPik—1 = —

Consequently, the second-order discretization of the rotation operator L, is

V(. k) € Frx, (L]@)jx = —i(xi0,Pjx — Yibxhjx)- (31)

If L = (J — 1)(K — 1), we associate the matrix [L;] € .#7(C) to this discrete
operator and we denote by ¢ := (¢r(x) ez « the unknown vector in CF, where
we assume that the indices ordering is such that: I(j, k) = j + (J — 1)(k— 1), and
1G6) = Pjk-

Concerning the derivatives of order two, we use the second-order centered three-
points formulae in the directions x and y: V(j, k) € %,k

Dit1k — 205k + Pj—1x Dik+1 — 20k + -1
82pju = = hé =, 8§¢j,k =X h; —. (32)
X y

Since we consider a Dirichlet boundary condition, we have: V(j, k) € %, x

G2k — 2P1x b2 — 2051
8§¢1,k = T’ 5§¢]!1 o ]h—zj’
X y
—2¢5—1x + P2k —2¢ik—1 + ¢jx—
821k = i . §ik—1 = ! 2 Elimey
X y

The Laplacian operator A is then classically discretized by the five-points finite
difference scheme

V(. k) € Frx.  ([Al9)ix = 82¢jx + 8§¢j,k- (33)

We associate the matrix [A] € .#7(C) to this discrete operator.
The potential and nonlinear operators are pointwise evaluated: V(j, k) € %) x

(V19)ix = V(xi)jx and ([F(19" 1))k = FUS7 )bk (34)

The matrices [V] € .#;(C) and [f(|¢"|?)] € .#.(C) are diagonal after the indices
reordering.
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Finally, the finite difference discretization of problem (26) leads to the finite
dimensional approximation: compute the sequence of vector fields (¢"),en in Ct
through

Afp"$ =",
b
¢n+l — _ , 35
Tt G
8 = b0

with

ABER = 1]~ J14] — 2IL] + V] + £8P,

n

b" = —.
ot

In the above system, [I] is the identity matrix in ./ (C). The initial data ¢° is
fixed by the values of ¢y at the grid points. In the framework of Dirichlet boundary

conditions, we define the two-norm || - || e of a complex-valued vector ¢ € C by
1611z == mPHPC Y ldigw)'. (36)
(k) eF K

Furthermore, we define the discrete (strong) stopping criterion as

1" — ¢"[|oo < &1, (37)

with the discrete uniform norm defined by: V¢ € C-, [|§ |00 = max ez, « |14,
and the discrete (weak) stopping criterion as

|Er(@") — Ear(9")] < &b, (38)
with the discrete energy
Sar(®)
— ) R {qs;z-,k) (—%[A]fb ~ QILI$ + Vg + [F<|¢|2)1¢)_ } |
(G.k)EZFyk Jk

In the sequel, the discretization scheme (35) is called BEFD (for Backward Euler
Finite Difference). This scheme produces a minimizing sequence (¢"),en of the
modified energy under the assumptions of Theorem 1, without CFL condition, and
with second-order accuracy in space.

Pseudo-spectral discretization. Let us now consider the pseudo-spectral approx-
imation scheme based on FFTs. We still assume that the state is localized in
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the box &. Unlike finite differences, we consider a periodic boundary condition
which is satisfied since the function a priori vanishes on the boundary. If one
chooses a Dirichlet boundary condition, then Fast Sine Transforms must be used.
For a Neumann boundary condition, Fast Cosine Transforms must be applied.
Nevertheless, these two last transforms require to be correctly coded through FFTs
to be efficient. For example, these two methods are not included in the basic version
of Matlab (but are defined in the signal processing toolbox) contrary to the FFT
(which is a compiled version of FFT3W). Since GPELab is developed under the
basic Matlab version, we restrict our study to the FFT-based algorithm.

In this framework, a function ¢ [that can be considered as an approximation of
the solution ¢ of problem (26)] is defined on the uniform grid &) x by ¢;, for any
indices (j, k) € Pk, i.e. excludingj = 0 and k = 0. Let M := JK be the number
of degrees of freedom for the periodic boundary-value problem. Let us introduce
@ = (9jx)Gres » thatis, ¢ € CY by a lexicographic reordering (that we do
not precise for conciseness). The approximate pseudo-spectral approximations of a
function ¢ in the x- and y-directions (which is represented on & k) are respectively
based on truncated partial inverse Fourier series representations: V (j, k) € &,

B350 ~ 90y 1) = 30271 G (i ettt
K/2—1 ~ i ,
B35, 90) ~ 903 1) = £ 3000 Py, 1)ea it (39)

where @, and @, are respectively the Fourier coefficients of the function ¢ in the
directions x and y, the Fourier multipliers being: 1, = 22 and A, = Z¢. The
ay ay

functions ¢, and @, can be expressed as

J—1

@i, 1) = Z‘/’(xj,yk, f)e " Hrtitad)
=0

K—1

Pax.1) = > @y, y. e HaLFa) (40)
k=0

Consequently, the effect of a directional derivative along x or y, respectively, is
written under the form, V(j, k) € &,

J/2—1

([ONe)x =7 D ity e,
p=—J/2
K/2—1

(0= D iAgfyle nes0Fe).
q=—K/2
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Hence, we deduce the following approximation of the rotational operator L, on 0} g

(ILN@)x = —i (x;([[8,]10)x — y([[0:]10);) - 41)

The formal applications of derivatives to the previous representations yield the
approximations of the second-order derivatives: V(j, k) € &k,

J/2—1
([[8)26]](0)17( = ‘7 Z —H‘i@(yk7t)elﬂp(xj-+ax)’
p=—1/2
| K/2—1
[N = = D —Aadl e,
q=—K/2

leading to the approximation of the Laplacian operator A
([[ANle)x = ([T + [[35T1@),, - (42)
The potential and nonlinear operators are given pointwise, VY (j, k) € &, g,

(VN@)jx = VxD@ix  and  ([F(18"DNe)jx = f(1%] )0k (43)

The pseudo-spectral approximation of (26) then produces a sequence of vectors
(¢")nen solution to

¢n+1 =" (44)

where ¢ € CM. The right-hand side is

bBE,n = ¢_n’
ot

with ¢" € C™. The map || - || ¢2 corresponds to the discrete L2-norm on the grid 0 g
for a vector ¢ € C¥

Il = m?h)2C Y gl (45)

(.k)ePy k
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Furthermore, we define the discrete (strong) stopping criterion as
16" — ¢"lloo < 61, (46)

with the discrete uniform norm defined by: V¢ € CY, ||§||c = maxxez, « |Pils
and the discrete (weak) stopping criterion as

|Ea r(@" ) — Eo r(d™)| < &bt (47)

with the discrete energy

Sar@) = () Y m{qs;fk (—%[[AM—Q[[LZ]M

(GEZ) K

+ (Vg + [[F(|¢|2)]]¢)‘,~,k} :

In (44), the operator ASBE" is a map which, for any vector ¢ € CM associates a
vector ¥ € CM such that

¥ im A = ABENY A,

a8g = Uy v+ 1rgePe.

ABa9 = (—3llA]] - 21LDS. 8)

where [[I]] is the identity matrix of .#,(C).

To evaluate the operator A?E’", we use (43). We remark that the operator is
diagonal in the physical space. For A]Z]?_Q, we consider (41) and (42) for [[L.]] and
[[A]], respectively. Let us note that AIZ{EQ is not diagonal in the physical space but
[[A]], defined by (42), is diagonal in the Fourier space. The semi-implicit backward
Euler scheme with a pseudo-spectral approximation is now designated by BESP (for
Backward Euler pseudo-SPectral).
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2.2.3 Fully Discretized Semi-implicit Crank-Nicolson Scheme

The discretization of (24) by using the semi-implicit Crank-Nicolson scheme is

PXx) + P(x.1,)

60 —pxt) _ 1, P,

8t 2 - B
o B,y $00 4 o)
s Py ERELE) e 49)
e
PO ) = ol

¢ = go. with [|ol|1z = 1.

In [22], Bao and Du proved that the scheme (49) for the one-dimensional case
generates a minimizing sequence of the energy functional under some assumptions
similar to Theorem 1, with 8 = 0, but with the following strong CFL constraint

2h?
- . (50)

ot <
2+ h? max V(x))
je{l

an interval | — a,, a,[. In a practical computation, this CFL is very restrictive.

Concerning the spatial discretization, the previous approaches (FD and SP)
directly extend. For example, for the finite difference scheme at the iteration n, we
obtain the CNFD scheme

ASY 1 = b,
¢! = 9 (51
|1l

with

CNn . l l _l _ n2
AR = S+ S (=514 = 2L+ V] + (4",

n__¢_n ll _ _ n|2 n
b= S+ 5 GlAT+ Q1L = [V = [£(18"[)De".

and the initial data ¢° = ¢, € C~.
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For the pseudo-spectral approximation at iteration n, the CNSP scheme is

ACN Vl¢ — bCN n
Pt = ~¢ (52)
1§12
where Agy’" is the operator which maps any vector ¢ € CM to ¢ € C¥ through the
relations

V= A0 = AR¢ + ALY,
25570 = AL i+ Slire e,
AG9 = (4 l14]] - S 20LID$. (53)
The right-hand side is

(U1

bCN,n =
( ot

[[A]] + QL] ~ VI = [/ (19" HIe". (54)

Like for the semi-implicit Euler scheme, we remark that ACI;'"

physical space and A 4 o is also diagonal but in the Fourier space.

is diagonal in the

2.2.4 BESP or CNSP? That Is the Question

In Sects.2.2.1-2.2.3, we introduced the BESP and CNSP schemes that correspond
to the semi-implicit Euler and Crank-Nicolson schemes for a pseudo-spectral spatial
discretization. We have seen that BESP diminishes the energy without any CFL
condition between the time and spatial steps while the CNSP scheme is constrained.
We illustrate here through a numerical example that the constraint related to CNSP
makes it useless for computing a stationary state while BESP is robust. A similar
conclusion applies to BEFD and CNFD.
Let us consider the two-dimensional problem

(6,3 = 3 AU(%) = LY + VO E) + Y Y 6%,
¥(0.%) = yo(x) € L,

(55)
for t > 0 and x € R?. The potential is harmonic: V(x) = %()/sz2 + yfyz), with
Yx = ¥y = 1. Moreover, we assume that: € R* and £2 € R. We consider BESP
and CNSP for 8 = 107! to show the behavior of the associated energy. When
using BESP and CNSP, each iteration n requires the solution to a linear system



86 X. Antoine and R. Duboscq

by a Krylov subspace iterative solver (see Sect.2.4). The computational domain is:
0 =]-10, 10[?, for a uniform grid & g, withJ = K = 2°. The initial data is chosen
as the Thomas-Fermi approximation (65) when 8 # 0 and the centered gaussian

1/4
Posc(x) = %e‘“ﬂ”mzm, (56)

NG

for = 0.

We report on Fig. 3a, b the evolution of the energy Ao r = o (@) —Ea r(¢°)
for BESP and CNSP for the first time step with respect to 8 and §2. We observe that
the energy decays for BESP in all cases. However, the energy increases for CNSP,
leading to the divergence of the scheme almost immediately (this is worst for large
values of f). To illustrate the difference between these two schemes, we draw on
Fig.4a, b the evolution of the energy for BESP and CNSP, respectively, until 7 = 1
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Fig. 3 Evolution of the energy for the first time step for BESP and CNSP. (a) Evolution of the
energy for BESP. (b) Evolution of the energy for CNSP
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Fig. 4 Evolution of the energy until 7 = 1 for BESP and CNSP with 8 = 500 and 2 = 0.5.
(a) Evolution of the energy for BESP and different 7. (b) Evolution of the energy for CNSP and
different 8¢
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for the time steps 8¢ = 10!, 1072 and 10~3, with 8 = 500 and £2 = 0.5. For BESP,
the energy decays for the three time steps. We can also see that the energy decays
faster as the time step is smaller. Concerning CNSP, we observe that the method
diverges for §¢ = 10~! since the energy increases. For the time steps §t = 1072 and
1073, the energy decays smoothly all along the simulation similarly to BESP. To
have a diminishing energy, a significantly smaller time step must be chosen, limiting
hence the application range of CNSP most particularly in terms of convergence rate
towards the minimum. For this reason, BESP is a robust scheme. Other simulations
support this conclusion for £2 > 0. Finally, only BESP and BEFD are considered in
the sequel.

2.2.5 BESP or BEFD? This Is Another Question

We analyze now the spatial accuracy of BESP and BEFD. In particular, we show
that there is a great interest in considering the pseudo-spectral approximation rather
than the finite difference scheme. A similar study has been conducted by Bao et al.
[31], for £2 = 0, where the authors show that BESP provides a spectral precision
compared with BEFD.

We first consider a numerical test similar to [31]. The problem is

1
D (1.3) = =502 (030 + VY (0.2 + BIYPY (1., )
Y(0.0) = Yo € L.

where V(x) = %xz, B = 300 and v is the centered normalized gaussian, i.e.

to

2
Vx e R, wo(x)zme z,

We choose the computational domain ¢ =] — 10, 10[ and the associated uniform
grid 0, with 6 < J < 12. We use BESP and BEFD for computing a stationary
state of (57) on various grids. The time step is §¢ = 10~ and the linear systems are
solved by BiCGStab with a stopping criterion eV = 1072, Let ¢5F (respectively,
SD ) be the stationary state computed on &, 6 < J < 12, with BESP (respectively,
BEFD), and ¢5F = ¢§ﬂ (respectively, ¢y = EPZ) the reference stationary state.
We report in Table 1 the quadratic error, the infinity norm error and finally the
energy norm error between the reference and computed stationary states for BESP
and BEFD. We observe the spectral accuracy of the stationary states obtained with
BESP and the quadratic precision of BEFD with respect to the different grids.

Let us now consider the two-dimensional example given by system (55) for the
harmonic potential: V(x) = §(y2x*+ VoY), with y, =y, = 1. We fix = 300 and
2 = 0.6. The computational domain is & =] — 10, 10[?, for a uniform spatial grid
Ok, with: 5 < J, K < 9. The time step is 8¢ = 107!, The linear systems are solved
by BiCGStab for a stopping criterion on the residual equal to £¥°V = 10~'2, For
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Table 1 Numerical accuracy for BESP/BEFD for computing the ground state associated to (57)
J=20 |J=27 J=28 J=2° J=210 |j=2M

lpsr — ¢5Flloo 500e—5 | 8.30e—9 | <le—12 | <le—12 | <le—12 | <le—12
l¢r: — 65 lloo 32le—5|2.12e—6 | 1.33e—7 [8.32e—9 |6.03e—10 | 1.94e—10
loor — o5 Il 451e—5|1.00e—8 | <le—12 | <le—12 |<le—12 |<le—12
lprr — 5"l 2.99e—5 | 1.96e—6 |1.23e—7 |7.83e—9 |7.15e—10 |1.74e—10

|6 r(@5h) — G r(@5D)] |9.19e—5 | 3.65e—10 | 2.22e—12 | 2.66e—12 | <le—12 | 1.91e—12

ref

|Ear (@) — 6o r(6TP)| | 8.30e—6 | 5.54e—7 |3.51e—8 |2.23e—9 |1.52e—10|1.25e—11

ref

J and K varying, we can compare the different computed stationary states with a
reference numerical solution ¢,.; obtained with BESP on a fine uniform grid (here
Ok, with J = K = 2°). Let ¢, be the state calculated on a grid 0 (J = K).
We report on Fig. Sa—f the different densities obtained for BESP and BEFD. We
remark that, for coarse grids, the solutions are very different and the finite difference
discretization seems to lead to the most accurate results in this case. In Table 2,
we can see that there is an improved accuracy of BESP when going from a grid
with J = 2% to a grid with J = 27. We observe a convergence towards a different
stationary state for the grids with J < 2% and the grids for J > 6 as seen on Fig. 5a—
f. We see that BESP provides a high resolution calculation and the accuracy is far
better than for BEFD for discretization grids with J > 27,

To conclude, BESP is far more accurate than BEFD when fine enough grids are
considered. As seen in the examples, this precision directly impacts the accuracy of
the associated physical quantities. In the sequel, we focus on BESP.

2.3 Which Initial Guess for CNGF'?

As we discussed above, our goal is to compute a (global) minimizer of the
optimization problem (22). Before any numerical computation by BESP (or another
iterative scheme), it is quite natural to prospect if some explicit exact or approximate
solutions to the GPE are available. This is important for two reasons. Indeed, having
such a solution allows to better understand the physical properties of the GPEs
and BECs from the mathematical point of view. Many developments can be found
in the Physics literature [98, 100]. We give below the example of the Thomas-
Fermi approximation. In addition, since the optimization problem is extremely
complex, it is unexpected to get an analytical solution for the problem, valid for
any interesting situation (weak or strong nonlinearity, various potentials, inclusion
of a rotation term,...). Since the optimization problem is nonlinear, there is no
other alternative than developing some iterative numerical methods. To this end,
we need to determine a suitable initial guess that is injected into the algorithm.
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Fig. 5 Representation of |¢ J|2 obtained by BEFD (left) and BESP (right) for different spatial
discretizations. (a) BEFD: J = 2°; (b) BESP: J = 2°; (¢) BEFD: J = 2%; (d) BESP: J = 2°; (e)
BEFD: J = 27; (f) BESP: J = 27

LTI

In particular, a well-chosen approximate analytical solution can play this role. In
Sect. 1.4 (page 67), we distinguished two cases where it is possible to build an
approximate solution. Let us precise these approximations for different situations.
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Table 2 Numerical accuracy of BESP and BEFD for computing the stationary state associated
with problem (55)

J=2 J=2° J=72 J=28

93 — 63" lloo 1.47e—1 6.95¢—2 5.41e—7 1.78e—9
ot — 65 lloo 1.29e—1 5.02¢—3 6.71e—5 4.39e—6
llpsk — ¢5F Il 1.82e—1 4.23e—2 <le—12 <le—12
o — "l 4.77e—2 6.46e—5 3.79e—8 1.44e—10
|Ea.r(@SE) — Eor(@SD)] 7.55e—3 5.29e—5 2.54e—8 <le—12
|6 r(@F2) — o r(@5)] 5.274e—2 3.054e—3 1.871e—4 1.12e—5

When there is no rotation (i.e. 2 = 0) and the potential is confining, the

minimization problem (22) admits a unique global solution ¢, up to a phase factor
[88]. For a potential V such that: Vx € R?, V(x) = V,(x) + W(x), where

=0, 58
|x|]—>00 V(X) (58)

d
1 . W(x)
Vo(x) = 3 Z yxzj)gf and lim =
j=1
and for a weak nonlinear interaction (for example [f(1)] < 10), a suitable
approximation [31] of the fundamental state of problem (20) is given by

d
(l_[j=1 )’xj)l/4 _1
— ¢

d
VX € Rdv ¢OSC(X) = T /4 2 &=t yz\jsz’ (59)

which corresponds to the fundamental state of the quantum harmonic oscillator [88]

0,y (t,x) = —%Alﬂ(t, X) + Vo(x)¥(1,x), Vi € RT, Vx € R?,

(60)
¥(0.x) = Yo(x) € L.

If one considers now a rotation term (i.e. £2 # 0), finding a good approximation
is much more problematic. In particular, the solution to the minimization problem is
not necessarily unique, local minimizers possibly exist (22) and there is sometimes
not even existence of a solution if the rotation is too large [108]. In the case of a
harmonic potential (58), the critical velocity above which there is no existence of
a fundamental state is given by £2. = min{y,, y,}. In [102], the author shows that
some phase transition phenomenae occur with respect to the rotation velocity when a
quadratic-plus-quartic potential is considered. In particular, it is proved that a second
critical velocity exists above which a giant vortex is created. For more details about
the theory of quantum vortices, we refer to Rougerie et al. [38, 50, 103], Aftalion
et al. [5-8] and Tsubota et al. [81, 82, 120]. An initial data allowing to converge
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towards the correct fundamental state has been proposed by Bao et al. [30] and
consists in choosing the following approximation

(1 - Q)¢OSC(X) + 9¢§SC(X)

d(x) = (1 = 2)ose(x) + S2¢},’SC(X)||L§ ’

(61)

with
Pose(®x) = e 2 FD)and gl (%) = (pax + ip)e 2N (62)

This approximation is in fact an interpolation of the gaussian (59) and the same
gaussian with an added centered vortex (singularity). In the case of a confining
potential in the x-direction, we can simplify the equation as a two-dimensional
GPE (see Sect. 1.5.2, page 71). Moreover, by using the polar coordinates and for
an isotropic potential y, = y,, we obtain [30]

J/Zeimﬂ 2/
du(x) = J‘Te‘“ 2 (63)

where m = 1 is the “winding number” of the central vortex and corresponds to
the first vortex mode. By using these initial data, it is possible to converge to the
fundamental state in the case of a subcritical velocity 2 < £2.. We present on
Fig.6a, b the initial data (61) in 2d for two rotation speeds. For completeness,
we report the three- and one-dimensional cases [respectively, on Figs.7 (for two
rotation velocities) and [8].

In the case of a strong interaction, we consider the Thomas-Fermi approximation
(cf. Sect. 1.4, page 67) which consists in neglecting the kinetic energy related to the
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Fig. 6 Representation of || for the two-dimensional harmonic potential problem (y, = y, =
1) with a weak nonlinear interaction, without and with a rotation term, by using formula (61). (a)
2 =0;(b) 2 =0.99
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Fig. 7 Isovalues |¢y|> = 1072 for a three-dimensional harmonic problem (y, = y, = y, = 1)
with a weak interaction, without and with a rotation term, by using formula (61). (a) £2 = 0; (b)
2 =0.99
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Fig. 8 Representation of |¢|> for a one-dimensional harmonic problem (y, = 1) with a weak
interaction

Laplacian and rotation operators. One then gets a simplified minimization problem
where the energy is given by

Ear(Y) ~ E1p(Y) = Ad [VEOIY (017 + F(ly (1.%)*)] dx.
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More precisely, coming back to an eigenvalue problem similarly to the general case
(23), we are looking for the eigenfunction ¢rr € Lf( and the eigenvalue ptp € R of
the problem

predre = f(|rel) e + Vore,

under the normalization constraint A4 (¢1r) = [|¢1e2 = 1. We obtain

Vx € supp(¢re), e = f(|prr*) + V(X). (64)

By assuming that it is possible to inverse the function f on R, we can then deduce
an explicit form of ¢ which is assumed to be real-valued,

—1 _ —1 —
Vx € RY  gpp(x) = ) Y/ (we = VN)), forf —1('uTF V(x)) >0,
0 , for f~ (prr — V(x)) < 0.
To get ji, we use the mass conservation. For a cubic nonlinearity f(|¢|?) = B|¢|,
with 8 € RT, we can choose the following approximation of the fundamental state

TF—V(x) _
Prr(x) = { 0,/—" 7 for g — V(x) > 0, 65)

, for g — V(x) <0,

where p1r is given by the expression [31]

(BB ford =1,
pre = = 4 @By ford =2, “
(PEGEE)S ford =3,

We represent on Fig. 9 the moduli of the Thomas-Fermi approximations (65) for a
quadratic potential (y, = ¥y, = y, = 1) and a cubic nonlinearity in 1d, 2d and 3d.

The Thomas-Fermi approximation has the advantage of being less restrictive
than the weak interaction approximation concerning the classes of potentials
and nonlinearities that are eligible. In particular, the following potentials can be
considered (d = 2)
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Fig. 9 Representation of || for the Thomas-Fermi approximation and a quadratic potential,
B = 1000 (strong interaction) for the 1d, 2d and 3d cases. (a) Dimension d = 1; (b) dimension
d = 2; (¢) dimension d = 3

* Quadratic-plus-quartic potential [125]
1 K
V) = (=) (2 +vy%) + (2 +vy)* (67)

* Quadratic-plus-gaussian potential [78]

_ =32+ 06—y0)?

1
V(x) = E()/fx2 + yyzyz) + woe & . (68)
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* Quadratic-plus-sine potential (also called optical potential) [125]

1
VOO = S0 + i) + % sin(Z—T)z + % sin(’;—zy)z. (69)
* Double-well potential [123]
1 —X
V) = S0 ) + Voe (70)

Examples of Thomas-Fermi approximations for these potentials are given on
Figs. 10 and 11.
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Fig. 10 Examples of Thomas-Fermi approximations for potentials (67) (left) and (68) (right). (a)
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Fig. 11 Examples of Thomas-Fermi approximations for potentials (69) (left) and (70) (right). (a)
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2.4 Solving BESP Linear Systems: The Fixed Point Method,
Its Limitations and Krylov Subspace Iterative Solvers

We consider now the BESP scheme

ABE,an — pBEn
¢n+1 — L’ (71)
!l
0.
¢ = ¢,
where, for the sake of conciseness, we set: ABE? = AEE " At each iteration n,

it is clear that the minimization method requires the solution of a linear system:
ABEng — BbBE”_Since we use pseudo-spectral approximation methods, the operator
ABE” ig given implicitly through a FFT, meaning that the matrix ABE" is not
explicitly known by its coefficients. As a consequence, using a direct matrix solver is
not permitted. An alternative solution consists in considering a matrix-free iterative
method. A first approach, introduced by Bao et al. [31] for non rotating GPEs, is
based on stationary (fixed-point) methods. It has been next extended to rotating
BEC by Zeng and Zhang [125]. Nevertheless, in [12], some examples show that
the method does not converge when the rotation speed §2 is too large. In [12], the
introduction of Krylov subspace iterative solvers (GMRES, BiCGStab) accelerated
by simple operator-based preconditioners provides robust and fast iterative methods
that can be easily extended to the multi-components case.

2.5 Extension to Multi-components BECs

In this section, we present the extension of BESP to BECs with N, € N components.
The GPEs system that describes this situation is

1
i0,¥(t,x) = —EAII/(I, X) — LY (t,x)+ VX)¥(t,x)

+HW)W(1,x), Ve RT, Vx e RY, (72)
¥ (0,x) = %(x) € L2V, Vx e RY,
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where we set ¥ (1,X) = (¥ (1,X))¢eq1...n,y and |¥ (1, x)|> = Z?’;l |¥(t,x)|*. The

and

£) = (FemPr, o O ¥ 0)) et

For the partial differential operators, we have

All/(tv X) = (All/l(ts X))(E{l ..... NE}s Lzlll(tv X) = (Lzllll(ts X))(E{l ..... Nc}'
We furthermore assume that f; ,,, 1 < £, m < N,, are smooth real-valued polynomial
functions and that the operators V and f are symmetrical, i.e. V;,, = V,, and

fon = fne, 1 < £, m < N, in such a way that we have the mass conservation. For
the multi-components case, let us recall that the mass is given by

N, N,
W)= I = Y ol =Y /R w0,
=1 (=1

and the energy by

Ne
San@)i= 3 [ GIVW0F = 2070 0L e 0)ix
=1

N¢
+ 3 / Vit W (6, X)W (1, %) + Fop (),
£,m=1 R4

where

1
Fon(¥) ;:/ fom (W1, U, W O ) Wd
0

2.5.1 CNGEF for Multi-components BECs
Similarly to the proof detailed in Sect. 1.4 (page 67), we show that a stationary state
is a critical point of the energy functional, i.e. it is solution to the minimization

problem: find a function @ € L2V such that

Eqr(®) = WI}E;LI Ear(¥). (73)
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The CNGF method directly applies to the multi-components case

1
3,®D(1,X) = —Dg+Eqp(P) = EAqb(x, 1)+ QLO(x, 1) + V(X)D(x, 1)
+E(P)D(x, 1), V1 € [ty tar1], VX € RY,

D(x, t;H)

e, 6 )z’
®@(0,x) = Pp(x) € L2,

P(X, lyt1) =

(74)
This problem has been studied for example in [17, 18]. Let us recall the following
result which proves that the energy associated with the solution to (74) is decaying
under suitable assumptions.

Theorem 2 Let us assume that the potential operator is diagonal, i.e. V(x) =
(Ve(X))eeqr...n.) and is such that Vi(x) > 0, Vx € R?, V¢ € {1,...,N.}. Fur-
thermore, we suppose that the nonlinearity is diagonal: f(®) = (£,(¥))ref1... N0
and such that £(¥) = YN Bomlpml?|pe]? with B = 0, Ve, m € {1,...,N,.}.
Finally, we consider that there is no rotation, i.e. 2 = 0. Then, the solution @ to
(74) satisfies, Vn € N,

Vi€ [tn tutr].  Eop(P(X.1) < Eop(P(X. 1))

2.5.2 BESP for Multi-components BECs

We now essentially focus on the semi-implicit backward Euler time discretization
of (74)

w - %Ai)(x) + QLS + V) P(x)

(D (X, 1,)) P (X), V1 € [tn. tag1], VX € RY,

D (x)
@(X, tn+l) = —,
1212

@(0,x) = ®y(x) € L2,

(75)

Let us precise the spatial discretization of (75) leading to BESP. We consider that
d = 2, the extension to d = 1 and d = 3 being straightforward. The computational
box is 0 :=]| —ay, a.[x] —ay, a,[. The associated discrete grid O} k is given by (29).
Let: Py, x = {(E,j,k) eN}1<{<N.,l<j<Jandl<k< K}. For the
pseudo-spectral approximation, the multi-components Laplacian is discretized by

V(. j.k) € Pnoak.  ([[ANP),x = ([AI1Pe) k)
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where [[A]] that appears in the right-hand side is given by the expression (42).
Similarly, the multi-components rotation operator is discretized by

V(l.j.k) € Prnoak. (ILNIP)gjx = (L1 Pe) g

where [[L.]] is fixed by (41). For the potential and nonlinear operators, the
discretization is direct on the grid 0 g

Vil [Viall - [[Vindl

\ Vool -+ [[V
V] = Il :2,1]] Il :2,2]] ) ([ 2:,NE]] ¢ Minx. (©). 6)
[Vl [[Von ] -« [Vl

where [[V,,(]] is given by (43), and

(11 (@] [f12(2M]] -+ [[f1x (@]

f n f n o IF n
oy i— | 1@ W@ Mm@ |
[Fr..1 (@) (i, (@] -+ [ v, (2]

where [[£,.¢(®")]], V&, m € {1,...,N.}, is defined, for any vector field ¢ € C,
V(j.k) € Pk, by

(£ e (@M]@); 1 = L e (D" (X)) 0.5 (78)

with @"(x) = @(x,1,) for (75). Setting @ € CMNe as the solution to (75), one
obtains the BESP scheme, Vn € N,

ABE’"é — bBE,n’
o' — :p (79)
121l

where the operator ABE” maps a given vector @ € CMNe to ¥ € CMNe through
. n BE.n BE.n
W= APPe = AN + AP,

wsre = (04 vy + renpe.

Ao = (5 [14]] - (L. (50)
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The right-hand side is

_ (81)

bBE,n :
8t

The matrix [[I]] is the identity matrix of .#, (C). Finally, the discrete L2V<-norm
of a vector @ € C"Ne is defined by

N,
12112 := Q_ Idel7)">. (82)
(=1

Furthermore, we define the discrete (strong) stopping criterion as
||@" ! — @"||o < &6, (83)

with the discrete uniform norm defined by: V@ € CMV, ||@] =
ZZZ; |\ Max ez, x |Pejxl, and the discrete (weak) stopping criterion as

|Ear(P"T) — Eap(PM)| < &bt (84)

with the discrete energy

. 1
Sor®) = () 3 o, (-5 liane - 2(Lye
T<t<Ng

+HIVI@ + [F(P L), |-

As in the one-component case, preconditioned Krylov subspace solvers can be
used to iteratively solve the associated linear systems (see [12]).

3 The Gross-Pitaevskii Equation Laboratory

3.1 GPELab: A Short Presentation

As seen in Sect. 2 for the stationary state computation and as it will be explained
in Sect. 4 for the dynamics, the numerical methods that we present are robust and
efficient. Furthermore, they can be quite directly extended to different kinds of
Gross-Pitaevskii Equations and systems. The aim of this section is to present a freely
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available Matlab toolbox called GPELab'! (Gross-Pitaevskii Equation Laboratory)
which is based on these advanced numerical schemes. The computational tools
are developed in such a way that they can be easily used by physicists working
on BECs. GPELab allows the user to make various computations in 1d-2d-3d, for
multi-components GPEs with general potentials and nonlinearities. In addition, the
stochastic effects that are described for the dynamics can be numerically simulated
according to efficient and accurate schemes. Even if GPELab is dedicated to
Gross-Pitaevskii Equations, it is more generally useful when one wants to solve
problems related to nonlinear Schrodinger equations. Let us remark that at the
time of writing this contribution, other interesting computational codes for solving
GPEs (with a cubic nonlinearity) are proposed by different authors. In [119], a
Fortran 90 solver based on the imaginary time method can solve the stationary
state problem for the one-component GPE with a quadratic potential and without
rotation term. In [96, 121], the authors distribute finite difference Fortran 90 codes
for one-component problems with radial and spherical potentials, and no rotation.
Improvements, in particular the parallelization of the code with OpenMP, are
provided in [121]. Other codes (developed with Fortran or Matlab) for GPEs are
available [44, 76, 91]. Nevertheless, it seems that none of these solvers propose
the flexibility that GPELab offers where many physical situations of interest can
be considered: any potential and nonlinearity, inclusion of gradient-like terms for
fast rotations, multi-components cases, stationary states and dynamics of BECs,
stochastic effects. To show how GEPLab is powerful, we now consider a few
numerical examples. Other interesting situations (with downloadable source files)
are given in the GPELab user guide and the associated papers [10, 11, 13].

3.2 Experiment I: Stationary State of a 1d BEC with
Josephson Junction

In this example, we want to reproduce the numerical simulations obtained in [18]
where the following one-dimensional (d = 1) system of GPEs with a Josephson
junction is considered

iy = [~34+ V) + 8+ Bulyi* + Bulv2)] ¥i + Ayo,

(85)

0y, = [-34 4+ V(X) + (B2|v2l* + Bialyi )] v2 + Ay
In the above system, § is the detuning constant of the Raman transition, B are
the interaction constants between the gazes and A is the effective Rabi frequency.
We use BESP for a time step §¢ = 10~! and a uniform spatial grid with 20 + 1
points on | — 16, 16]. In addition, the (strong) stopping criterion for computing the

Thttp://gpelab.math.cnrs.ft/.
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stationary states is 107°. Following [18], the values of the physical parameters are:
A=-1,6 =0,8 =500, 811 = B, P12 = 0.948, B, = 0.978. The initial data is
a centered gaussian for each component. At the end of the computation, we obtain
each component of the stationary state and some interesting physical outputs (see
Table 3). We can also simultaneously print out the moduli of the components and
conclude that they are the same as the ones reported in [18] (see Fig. 12).

Table 3 Stationary states outputs for the two-components GPEs system with Josephson junction

Iteration 164 on 1000000

--Outputs of component 1----------
Square at the origin: 0.03512761887793
x-radius mean square: 2.67309309073190
Energy: 9.97806793424214

Chemical potential: 32.84198217411518
Energy evolution: 0.00000000000000
--Outputs of component 2----------
Square at the origin: 0.04853615539806
x-radius mean square: 2.99189318517412
Energy: 13.16187704973455

Chemical potential: 38.16552799804442
Energy evolution: 0.00000000000000

CPU time: 8.28

>

Fig. 12 Moduli of the |phi(x)[? of all components
two-components BEC
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3.3 Experiment II: Stationary State of a Fast Rotating 2d BEC
in a Strongly Confining Trap

We consider the stationary state computation for a two-dimensional (d = 2) GPE

with a quadratic-plus-quartic potential, a cubic nonlinearity and a rotation operator

l—«a

2
+.3|¢|21ﬁ + if2 (yax _xay) v,

1 K
i = 540+ | 5% (el + 1 bP) +5 (b + Do)

with the parameters valuesor = 1.2,k = 0.3,y =y, = 1, § = 1000 and 2 = 3.5.
This is a typical example of a fast rotating BEC. We consider BESP with §t = 1073,
The computational domain is | — 10, 10[?, discretized by a uniform grid with 28 + 1
points in each direction x and y. The (strong) stopping criterion of BESP is 10>
and the initial data is the Thomas-Fermi approximation associated with the physical
problem. In Table 4, we report the outputs at the end of the simulation. We represent
the modulus of the ground state on Fig. 13 obtained by GPELab. In particular, we
can see the existence of many uniformly distributed vortices in the annulus.

3.4 Experiment I11: Stationary State of a 3d Dipole-Dipole
BEC

We show here a last numerical experiment for the three-dimensional (d = 3) GPE
with a quadratic potential, a cubic nonlinearity to which a dipole-dipole nonlocal

Table 4 Outputs at the end of the computation

Iteration 46766 on 1000000

--Outputs of component 1----------
Square at the origin: 0.00000000000000
x-radius mean square: 4.57951169686043
y-radius mean square: 4.57951071463754
Energy: 115.52164061561449

Chemical potential: 122.58168418655728
Angular momentum: 146.32747911959200
Energy evolution: -0.00000000141087

>
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Fig. 13 Modulus of the converged stationary state

nonlinear interaction is added

. 1 1
0y = _EA‘/f + 5 (Vx|x|2 + Vy|y|2 + VZ|Z|2) v

1 —3cos?(a,X)

BV Py + (| s Py, @6)

with yy =y, = y. = 1, B = 2000 and a = (0, 0, 1). The discretization for BESP
uses 8t = 1072 and a uniform grid with 2% + 1 points in each direction x, y and z
for the computational domain | — 15, 15[>. The (strong) stopping criterion is fixed to

107, In GEPLab, the nonlinearity which is defined by the dipole-dipole interaction
can be efficiently computed by using FFTs via

dZ/ 1 — 3cos?(a, X)
X=X

[ (1. %)%

=g! (%szG cos’(@ ®) — D.Z (|y(t. %)) (w)) ®.
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Iphi(x,y ,z)lz of component 1

Fig. 14 10 3-isovalues of the modulus for the converged stationary state

The initial data is the Thomas-Fermi approximation. The converged stationary state
is given on Fig. 14 where we report the isovalues of the solution. We remark that the
stationary state has the property of being elongated along the dipolar direction.
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4 Computation of the Dynamics

We develop now the numerical simulation of the dynamics of deterministic (Sect. 4)
or stochastic (Sect.5) GPEs (or systems of GPEs) with a rotational term. Let us
consider the model equation

10y (t,x) = _%AW(L X) — QLY (t,x) + V(¢ x)¥(t,X)
+ (Y)Y (t.x), Vi€ RY, Vx e RY, (87)

¥(0,%) = Yo(x) € L2.

Our aim is to propose some efficient, robust and accurate discretization schemes that
reproduce at the discrete level some continuous physical properties (see Sect. 4.1).
Like for the stationary states computation, we use high-precision pseudo-spectral
FFT-based discretization schemes. Essentially, we analyze the time-splitting
(Sect.4.2) and relaxation (Sect.4.3) schemes. We discuss some other schemes
that we do not recommend (Sect. 4.4). We also present a recent idea [33] based on
a change of frame for a rotational BEC that should be further investigated in the
future since it simplifies the implementation of the standard schemes. We extend
the time-splitting and relaxation schemes to multi-components GPEs (Sect.4.5).
We detail three examples of numerical simulations for a rotating BEC (Sect. 4.6).
The orders of all these schemes are computed and we check the mass and energy
conservation properties. The examples are based on GPELab.

Section 5 concerns the extension and study of these numerical schemes for
solving the stochastic GPE

D030 = 3 A(,%) — DL (E3) + VO O (.%)
+ (v (r.x), Vi e RT, Vx € R?, (88)
¥ (0.x) = Yo (x) € L],

introduced in Sect. 1.3.3 (page 63).

4.1 Dynamics of the GPE and Continuous/Discrete Properties

The dynamics of a BEC is driven by the GPE (d = 1,2, 3)

0,y (t,x) = —%Aw, x) — QLY (t,x) + V(t, x) ¥ (1, x)
+ (v (r.x), Vi e RT, Vx € R?, (89)
¥ (0.x) = Yo (x) € L.
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We use the notations introduced in Sect.2.1. We assume that the initial data is
localized in a rectangular domain & =] — a., a.[x] — ay, a,[x] — a;, a.[, with a,,
ay, a; € R™ (depending on the dimension). Let 2 = 0 and V(z,x) = V(x). The
solution v of (87) fulfills some important mathematical/physical properties that the
approximation schemes should preserve at the discrete level. In the positive case,
the scheme is considered as a “good” scheme. These continuous properties are the
following

Time reversibility: the solution v is still the solution of Eq. (87) after changing
the time variable t — —¢ and applying a complex conjugation.
Dispersion relation: if V. = 0, the plane wave solution ¥ (¢,x) = pe
satisfies the following dispersion relation

i(k-x—wr)

k[?

®w=—
2

+f(pD-
Gauge transformation: the translation of the potential
VpeR, VxeRY V(X)) — V(x)+p.
creates the following change of phase in the solution
VieRY, Vx eRY,  y(t,x) — ¥ (t,x)e "',

We remark that the modulus of the solution remains unchanged.
Mass conservation: the total mass is conserved over the time

A0 = Y ()l = /R e x)Pdx = A4 (o), Vi >0, (90)

Energy conservation: if f(|¥|*) = B|¥|?, the energy is preserved [20]

B

Ss00 = [ GITYERP + VOl (0 + 1.0/ dx

= &0.8(Yo),

for any ¢ > 0.

We consider the two-dimensional case, the extensions to the dimensions d = 1

and d = 3 are direct. Let 8¢ be the uniform time step and

(W(Y;,k)) (k€T
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the approximate solution at time #, = nét on a uniform grid &, k. At the discrete
level, the previous properties read

o Time reversibility: changing the indices (n,n + 1) <> (n + 1, n) lets the solution
unchanged: y"*! « y".
* Dispersion relation: if V = 0 and the initial data is given by

0 iK-x;
Vin = pe™,
the discrete solution is

i(k‘Xj,k—wt,,)

W(r;,k) = pe ,
where we have the dispersion relation

k 2
("))

This property characterizes the fact that the numerical and exact velocities are
the same or not.
* Gauge transformation: the change of potential

VpeR,VxeRY V(x)— V(x)+p,
implies that the solution is modified as follows
VneN, V(.k) € Prk, Yy — w(’;,k)e_"p’",
letting the modulus of the solution unchanged. This characterizes the property
that the scheme may induce a phase error in the numerical solution.
* Mass conservation: the discrete mass conservation writes
YneN', A= 9"lE = A @0, 1)
also stating the ¢2-stability of the scheme.
s Energy conservation: if 2 = 0 and f(|y|?) = B|¥|?, the energy conservation
[20] is given by: Vn € N*, & s (¥") = & (¥ "), where
Gop(Y")

= (hhy)'? > W

G.k)eZk

B

1
nx [ 7 A n Vv n = n4 n .
v (3l + i + S ),-k%




Modeling and Computation of BECs 109

4.2 Time-Splitting Pseudo-spectral Schemes for the Rotating
GPE

4.2.1 General Principle of Time-Splitting Techniques

The first schemes that we present is the class of time-splitting schemes for (87). This
scheme, which is known since a long time, has been studied in particular by Strang
[113] in a general framework. It has next been applied to the nonlinear Schrodinger
equation in [57, 97, 116, 122]. The numerical analysis of the Lie and Strang time-
splitting schemes for the Schrodinger equation can be found in particular in [37, 90].

To present the time-splitting schemes (also called fractional step methods), we
consider a general dynamical problem. Let A and B be two self-adjoint operators
such that: Z(A) C L2, 2(B) C L2 and A+ B a self-adjoint operator on Z(A)NZ(B).
We denote by Z(A) and Z(B) the domains of the operators A and B, respectively.
Let us consider the system

Y (t,x) = Ay (t,x) + By (t,x), t € RT, x € RY,
¥(0,x) = Yo(x) € Li.

Let ¥(t,x) = e“tB)y(x) be the solution of this system, for > 0 and x € R?,
The time-splitting scheme consists in approximating the solution ¥ of this problem
via an approximation of the operator e“*5)" through the operators e*" and e?. This
leads to solve successively two simpler systems. We seek an approximation of the
form

W(f + 5[, X) — e(A+B)STW(l, X) ~ etllASTeblB5fe¢12A5Tesz5f o e“”A‘S’ebI’B&Ip(t, X),

where {ay, bi}1<k<p C R are some computed weights such that the approximation
of B has a given order for a local time step §#(< 1). The two most well-known
time-splitting methods are the Lie (corresponding to a; = b; = 1) and the Strang
(fora; = ap = 1/2,b; = 1 and b, = 0) schemes. They are respectively of order
one and two in time. It is possible to get higher-order schemes by suitably choosing
the weights [45, 117, 118]. We now focus on the Lie and Strang schemes.

In the case of the GPE with a rotation term, we make the following choice [26,
28]

* we set
A= %A +iQL, (92)

which leads to the solution of a linear Schrédinger equation, without potential
operator but with a rotational term,
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e and

B = —iV(t,x) — if (¥ (t,x)[*), (93)

which gives a nonlinear differential equation that can be solved explicitly in some
cases.

The previous decomposition is motivated by the fact that, by using an Alternating
Direction Implicit (ADI) method [26], the equation associated to the operator (92)
can be solved spectrally by using FFTs. Furthermore, as already mentioned, the
equation associated to the operator (93) is solved explicitly. This leads to highly
accurate methods. Other choice of operators A and B (e.g. including a part of the
potential V in A) lead to different spectral basis that diagonalize the operators (see
[23, 24, 32] for Hermite or Laguerre polynomials).

4.2.2 Lie Time-Splitting Scheme for (87)

Application of the Lie time-splitting scheme and ADI method. The Lie scheme leads
to the following approximation of the solution

Ut + 81,%) ~ ei(%A+9L;)8re—i<V<r,x)+f(|x//<r,x)\2»5%(,7 X).

Let us assume that we want to compute the solution i on [0; 7] that is uniformly
discretized into N intervals (a non uniform grid can also be used): T = N§t, N € N.
Let us set: ¢, := nét, 0 < n < N. For an initial condition wo = Y, the scheme
writes: forO0 <n <N —1,

1. Compute | such that

1
01 (1,%) = =S AY1(6,%) — QLA (1,%), ndt <1 = (1+ s, Vx € R,
Vi (t,, X) = ¥ (x), Vx € R%.
(94)
2. Determine r, satisfying

i0:Y2(1,%) = V({t, )26, %) + (|21, %) ) ¥ (1, ),
nét <t < (n+1)8t, Vx e RY, (95)

WZ(tnv X) = Iﬁl(ln.H,X), Vx € R4,

If y"T1(x) := Y2 (tut1,X), we have Yy"T1(x) ~ ¥ (ty41, X).

We consider the two-dimensional case to simplify the presentation (but the one-
and three-dimensional cases can be easily deduced). The first step (94) of the
splitting scheme can be spectrally resolved for £2 = 0 since the Laplacian operator
is diagonal in the Fourier space. However, when §2 > 0, the situation is more
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complex since the operator L, = —i(xd, — yd,) cannot be directly inverted by
using FFTs. Indeed, variable coefficients are present in its expression. A solution
to this problem has been proposed by Bao et al. [26]. It consists in applying the
ADI method to split the derivations with respect to x and y in two successive
steps, allowing to use one-directional FFTs. More precisely, the resulting scheme
for solving (94) is given by

1(a) Compute ¥V solution to

1
0y (1,x) = =50y V(%)

—i2y0, 0D (1,x), Yt €lty, tas1], VX € R2, (96)
v (1,,x) = ¥ (x), Vx € R%.

1(b) Determine w(z) such that

1
092 (1, x) = =S¥ @)

+i2x0, 0D (1.X), Vi €lty, tus1]. Vx € R2, O7)
YO (1,%) = YO (t,41,%), Vx € R2.

We remark that each partial differential operator appearing in the above equations
can be diagonalized by FFTs. After this process, one gets an approximation:
Vi (tas1,X) ~ ¥ (t,41,x) for the first step (94), the second step leading to resolve
the ODE (95) which is written as: Vx € R?

i,y (1, x) = V(t,x)v ¥ (2, x)
+ (YD) P) YD (1.x), Vi €t tayl, (98)
YO (10, x) = Y@ (1441, %).

This ordinary differential equation is explicitly integrable thanks to the following
result [28].

Lemma 1l Let 1//(3) be the solution to (98). Then, we have
Vi €ty turt], VxR, [P (x| = [P (141, %))

Proof The proof is direct since we have: Vt €]t,, t,+1],

Wy, x) = 20D (1,%)9,¥ (1, %))
= 23V XY @ x)) = 23¢F (YO Py D, %) %) = 0.
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We then get the solution to (98)

Vi€ [t topr]. YO0 x) = e TP G0 P)en)=i [ Voxdsy @ ) ).
99

Finally, the Lie scheme with ADI leads to the approximation ¥"t!(x) =~
YO (041, %),

Let us remark that the above ADI method implies a loss of symmetry of the
global scheme. Indeed, we first solve the equation in the x-direction via (96) and then
in the y-direction by using (97). The symmetry can be obtained easily by alternating
the directions at each step. For problem (94), we first solve (96) and (97) at time ¢,
and next (97) and (96) at time ¢, .

Pseudo-spectral discretization in space. Let us now consider the problem of the
spatial discretization. We again assume that the solution remains confined within
the computational box: & =] —ay, a.[x] —ay, ay[, with a,, a, > 0. We impose some
periodic boundary conditions on d& and consider a uniform discretization grid 0 x
associated with &. Let us recall that &7, x designates the set of grid points indices
used for the pseudo-spectral discretization

Zixk={(G.k)eN:1<j<Jandl <k <K}.

We consider an approximation of 1 on this grid that we designate by ¢, m = 1,
2, 3. Moreover, the approximation of ¥" is denoted by ¢". As for the stationary
case, we use the following pseudo-spectral discretization of a function v in the x-
and y-directions on &) g and based on the truncated inverse partial Fourier series,
Y(j, k) € Pk, Vt € RT, respectively,

121
V(x50 ~ @35, 90 = - D Gpltypetrtited,
p=—J/2
K/2-1
Vit x5, y6) =~ @(t, X, yi) = X Z Py, xp)e a0k, (100)
q=—K/2

where @, and @, are respectively the Fourier coefficients of the function ¢ in the
x- and y-directions, the Fourier multipliers being: 1, = 22 and A, = Z£. The
x 'y

functions @, and ¢, are written as

J—1
@(l‘, yk) = Z @(t, _xj’ yk)e_i/}“p(xj“l‘ax) ,
j=0
K—1
Palt.x)) = @(t.x7, yo)e M), (101)

k=0
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In the x-direction of the Fourier space, we have, 1 —J/2 <p <J/2,

Vi ], YISk <K gm0 = ik + Q) v,
Integrating this equation yields
Vi€t tin], VI <k <K, ¢ty = e GHt@m)i=m g, v,
Similarly, (97) leads to: 1 — K/2 < g < K/2,
Vi€ [t tapi], VI <j<J, ¢P(tx) = e_i(%kg_mx")(t_t”)@;z)(lmxj)-

Therefore, the first part of the Lie time-splitting scheme, where we first solve (96)
and next (97) on [t,, t,+1], is implemented as: V (j, k) € Pk,

J/2—1
(P(l)(tn+l»xj7yk) — _ Z e_i(%ﬂizy+9ykﬂ1))(tn+l_tn)w;;’(yk)eiﬂp(xj"'loc)’
p==—J/2
K/2—1
i1 . _ ~ ; )
(p(z) (tn+lv-xj7yk) — E Z e_l(ikg_gxflq)(ru-ﬁ-l r”)(p;l)(tn-i-lsxj)elkq(yk-‘rLy)-
q=—K/2

(102)

For solving (99) and for a time-dependent potential V, we use the Simpson’s
quadrature rule

In+1 1
/ V(s,xj, yr)ds ~ 3 (Vs x5, y1) + 6V (tng1/2. %5, i)
1,

FV a1, %5, 90)) (tat1 — 1) 2= V(. v)8t,

where byl = (ty + tht1)/2 and (j, k) € &, k. This leads to

0D (tug 1.9 = 0P (1.3, ) eI G100 P+ 0500)). (103)

The complete scheme (102) and (103) is first-order accurate in time and spectral in
space. In the sequel, the Time-Splitting SPectral scheme of order 1-ADI is denoted
by TSSP1-ADI.
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4.2.3 Strang Time-Splitting Scheme for (87)

To improve the time accuracy of the Lie scheme, we now discuss the second-
order Strang TSSP scheme. Since the derivation is quite similar to the previous
scheme, we do not detail too much its construction. The Strang time-splitting
scheme requires three fractional steps while only one is needed for the Lie scheme.
We first resolve the operator A on a time step 6¢/2, next B for §¢ and finally A for
8t/2. This leads to the following approximation

Ut + 81,%) ~ ei(%AH?Lz)%e—i(V(r,X)+f(W(r,X)Iz))b’rei(%A+i9L;)%w(t, x),

for + > 0. An alternative solution consists in changing the roles of A and B. The
Strang time-splitting scheme with ADI is then

1. Compute ¥V solution to

1
latw(l)(l" X) — _Eajsz(l) (t, X)
—i2yd, D (t,x), Vt €]t,, tn+%], Vx € R2, (104)
D (1,,%) = Y(x), Vx € R2.

2. Determine v solution of the equation

1
0y (%) = =2 5v? (1,%)
+i2x0, ¥ P (t,x), Vit €]t,, tn+%], Vx € R?, (105)
W(z)(fm X) — w(l)(tn-‘r%’ X), VX c RZ'

3. Compute y® such that

i,y (t,x) = Ve, x)y (1, x)
+H (YD @)Y (1, x), Vi €]t t41], ¥x € R,
1//(3)(tn,x) = w(z)(z‘ﬁ_%,x), Vx € R2.
(106)
4. Obtain ¥ solution to

1
0y x) = =595V @)

+ix0, 0D (1,X), Vi €ty tay1/2], Vx € R2, (107)
YD (10, x) = YO (141, %), Vx € R2.
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5. Determine ¥© such that

1
0901, x) = =5 9v Y 1,%)
—i2y0 O (1,X), V1 €ty tu11/2], ¥x € R?, (108)
YOt x) = ¥ 9(1,,1.%), Vx € R%

The last step gives "' (x) ~ yO(r,, 1.X). Like the Lie scheme, we solve (104),
(105), (107) and (108) by using one-directional FFTs. Equation (106) is explicitly
integrated. The Strang scheme is second-order in time and spectral in space which
makes it very attractive for the deterministic simulations. Extensions to the one- and
three-dimensional cases are direct. The total computational cost of both schemes
is O(MlogM), with M := J, JK, JKL, in dimensions d = 1, 2, 3, respectively,
since we use FFTs. The Strang scheme is time reversible, mass preserving, invariant
under gauge transformation and the dispersive relation holds. However, it is not
energy conserving but the scheme is unconditionally stable for the two-norm [26].
More details can be found in [14, 27, 29]. In the sequel, the scheme (104)—(108)
(with FFTs) is called TSSP2-ADI for Time Splitting SPectral scheme of order 2-
ADI.

4.3 The Relaxation Scheme for the Rotating GPE

Introduced by Besse [36] for nonlinear Schrodinger equations, the relaxation
scheme has some analogies with the standard Crank-Nicolson scheme (Sect.4.4)
but the nonlinearity is relaxed to avoid a fixed point or a Newton-Raphson method.
Therefore, the computational cost is strongly reduced while the scheme is simple to
implement. For problem (87), the relaxation scheme is

n+1/2 n—1/2
¢ +¢

=1y,
n+1 _ . n n n n n (W]
iw—l//:(_lA__QLZ)(w Ty )+V+lw vy (109)
ot 2 1 n2 2
A )
2

where ¥" = ¥ (t,,x) and V" = V(t,,x), 0 < n < N — 1. The initial conditions
are: Y'(x) = VYo(x) and ¢~2(x) = f(|¥°(x)|?). The operator (—A — L)
is discretized by the highly accurate pseudo-spectral scheme [see page 81 and
Eqgs. (100) and (101)]. Under the same notations, the discrete system is

¢n+1/2 — cRe,n,

ARe,n+l¢n+l — bRe,n7 (110)
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where ARe#+1 pRen and eRe” gre such that

R 17 BT R R Y

2
bR = @ — Ll1A] = 21+ SV + 511"y,
e o= Zf(lvlf”l H—¢ (1)

The linear system appearing in (110) and depending on r is solved by a Krylov
subspace iterative solver (CGS, BiCGStab, GMRES) [12]. The method is called
Relaxation SPectral (ReSP) scheme. The discretization is second-order in time and
spectrally accurate in space like for the TSSP2-ADI scheme. Moreover, it is time
reversible, mass preserving, unconditionally stable and energy preserving (for a
cubic nonlinearity, i.e. f(|¥|?) = B|¥|*). However, it is not invariant under gauge
transformation and the dispersive relation does not hold [14, 36]. The computational
cost is O(M log M) since we again use FFTs.

4.4 Other Schemes: Euler, Crank-Nicolson, Leap-Frog,
Rotating Frame System

In this section, we give a brief description of other schemes that could be applied
to Eq. (87). These schemes are not recommended because of some problems that
we detail now. We end by presenting a nice idea that can be found in [33] and
which considers a change of frame to simplify the implementation of well-adapted
schemes.

The forward or backward Euler schemes are simple schemes in the framework
of evolution problems. For (87), the forward Euler scheme is given by

1pn+l wn

VoV o (A an v fy Py (112)

where ¥" = V¥ (t,,x) and V" = V(z,,x), Yn € N. The spatial discretization can
be obtained, for instance, by using the pseudo-spectral FFT-based approximation
leading to

Yt = —istbpae (113)

bEuler,n

where by is such that

bras™" = (i @ -~ 1 [A]] - 2[[L] + [V']] + [LF (v v
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Since there is no linear system to solve, the computational effort is low. However,
this first-order scheme is well-known to be conditionally stable under a CFL
condition and is therefore useless. The backward Euler scheme is

n+1 _ .n
el

5 (—%A _ QLZ 4 Vn+l _}_f(hhn-i-l|2))wn+l7 (114)

leading to the linear system

Euler,n _ 1 Eulern
Ajiertyy = b, (115)
where A" and bEY™ are such that
Imp Imp

agr = Uy 2 A + @0 - vl - 1y Pl

aern L,
bEnL = lww .

The system (115) cannot be directly inverted since the nonlinearity is implicit. At
each iteration, a fixed point or a Newton-Raphson method is required to resolve the
nonlinearity leading to a computationally expensive scheme. Finally, the scheme is
only first-order accurate in time.

The implicit Crank-Nicolson scheme [14, 19, 20] is

wn-ﬁ-l + wn
2

n+1 _ .n
Pl

1 n+1 n
(S RL gy

1
+ S (VT vy, (116)

with

1
g™y = /0 FQy™ P+ (=0l Pde.

Even if this scheme is second-order accurate in time, the presence of the nonlinearity
makes it computationally expensive.
The semi-implicit Leap-Frog scheme [14, 19-21] is

.wn+l _ 1)”n—l 1 1)Z,n+l + I//n—l
| = L

A n n2 n 117
- (-54- QL) gy Py (17
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For the initialization, we use

1 _ .0 1
Yo o (AL VY
The major disadvantages of this scheme are that it is conditionally stable and it does
not satisfy most of the properties from Sect. 4.1 (see [14]).

In Sect. 1.3 (page 60), we have seen that a change of variables is used for
modeling a rotating condensate. This change of frame, with respect to the reference
frame in dimensions d = 2 and 3, is based on: forx = (x,y) € RZorx = (x,y,z) €
R3,

X = cos(£21)x + sin(21)y,
y = —sin(£21)x + cos(821)y,

where §£2 € R is the rotational speed of the condensate. This gives the relation:
x' = £ (1)x, where, ford = 2,
cos(£21) sin(£2¢)
() = ,
@ (— sin(£2t) cos(£21)

and, ford = 3,

cos(£2t) sin(£2¢) 0
2(t) = | —sin(£27) cos(£21) 0
0 0 1

This change of variables makes the rotation operator L, appear. In [33], the authors
propose to compute the dynamics of a rotating condensate by considering the
coordinates $2 (r)x instead of x'. By setting o (¢, x) = ¥ (7, £ (¢)x), where ¢
satisfies (87), we obtain that ¥, is solution to

0¥ (1, x) = —%Alﬁg(t, X) + V(1, 2 ()x) Yo (t,X)
+ (Ve Vel x), Vi€ RT, Vx € R?, (113)
¥2(0,%) = Yo(x) € L3.

By simply modifying the potential: Vo (¢, x) := V(¢, £ (1)x), we do not need to
discretize the rotation operator which greatly simplifies the resolution of the initial-
value problem. For example, ADI is no longer necessary for the time-splitting
scheme. This recent approach is very promising for both the dynamics and stationary
states computation and should be further studied.
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4.5 The Multi-components Case

We now extend the splitting and relaxation schemes to the case of a system of GPEs
with N, components

1
i0,W(t,x) = —EAIII(t, X) — QLY (t,x) + V(t,x)¥(t,X)

+(W)W(1,x), Vi € RT, Vx e R?, (119)
¥ (0,x) = Y(x) € L2, Vx e RY,

where L2Ve 1= (L2)e. We refer to Sect. 2.5 (page 96) for the notations.

4.5.1 Time-Splitting Schemes for a System with N, Components

The strategy adopted here is closely related to the one developed for the one-
component case. We will see that the explicit formula is only valid for a specific
form of the nonlinearity, which explains why the method has some limitations. For
the sake of simplicity, we only present the Lie TSSP scheme, the extension to the
Strang TSSP scheme being direct. The scheme is given by the two following steps

1. Solve the following system with respect to ¥!

1
0,91, x) = —EAlI/“)(t, x) — QLYY (1, x),

VYt €]ty tyy1], VX € RY, (120)

w1, x) = ¥'(x), Vx € R%.
2. Compute ¥® such that

0,91, x) = V1, x)¥D(1,x) + £ (1, x))¥?(1,x),
Yt €ty tar1], VX € RY, (121)
O (1,,x) = ¥V (t,41.%), Vx € R

Since the operators are diagonal in (120), the unknowns are uncoupled. There-
fore, we can apply the ADI method to effectively solve the system of equations by
using FFTs. For example, Eq. (120) is solved in the two-dimensional case through
the two following successive steps

1
i, w1 (1, x) = —Eaxxw“’”(t, x) — i2y0, vV (1, x),

Yt €lty, tat1], Vx € R?, (122)

wh(z, x) = ¥*(x), Vx € R?,
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and

1
0w (1, x) = —anyw“sz) (t,x) + i2x3,¥ "2 (1,x),

V1 €]ty tur1], VX € R%,
w21, x) = ¢ (1,4,,x), Vx € R2

(123)

For the system of equations (121), we have the following result.

Lemma 2 Let U@ be the solution of (121). Then, we have
Vi€ [ty tur1], [P(%)] = ¥ (1, %)].

Proof First, we have, Vt €]t,, t,11], Yx € R?,

NC Nc
DR =2) KD (%) WP (1.x)
m=1

m=1

N
=2 3 S0 Voo (1, %) + £ (@ ONEP (2, %)).

m,o=1

By using: V,,,,(t,x) = V,,,(¢, x) and fm(,(lll(z) (t,x)) = £, (T, X)), it follows that

Ne
DR ARI(ANTE
m=1

=2 > 3((Vaolt. %) + £ (¥ (2.%)))

Ne=>o>m>1
(T2, x)* ¢ (1, x) + ¢ (1,x)* W2 (1.x)))
2 3 (Ve %) + £ @O (.00 ¥ (1.%) )

Ne>m>1

—4 Y 3 ((Vio(t. %) + B (F P ()R (1. %)* P (1,%))) = 0.

Ne=>o>m>1

Thus, we conclude that ¥ @ (¢, x)| = |¥P(1,,x)|, V1 € [tu, tas1]-

According to the above result, the modulus of the solution is time preserved.
This implies that we can obtain an explicit formulation of the solution by
using an exponential operator assuming that f is such that: f(¥) = f(|¥|) =
(£ne(1¥1)0eq1... v,3» and that the potential is time-independent: V(7,x) := V(x).
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Under these assumptions, the system of equations (121) admits the following
solution

O (1, x) = e 1 D)=V =) g (12 (p 5y (124)

This finally leads to the approximation: ¥"+!(x) ~ U@ (1,11,x).

The form (124) of the solution requires the evaluation of an exponential matrix.
Moreover, the Lie and Strang splitting schemes need to be symmetrized as for
the one-component case because of the ADI method. In the sequel, we call again
these methods TSSP1-ADI and TSSP2-ADI, respectively. The computational cost
O(M log M) is essentially related to the FFTs.

4.5.2 Relaxation Scheme for a System with N, Components
For a system of equations, the relaxation scheme is given by

¢n+l/2 + d)n—l/Z

2
q/n-i-l — "

St

=f(P") + V", x e RY,

1 q/n-i-l Yy
= —i(—EA - QL. + ¢"+1/2)+, x € RY,

where " = W(t,,x) and V" = V(t,,x). The initial data are given by ¥°(x) =
Wy(x) and @~ 1/2(x) = f(¥°(x)). By using the pseudo-spectral scheme, we are led
to solve

MRe,n+l/2 — 2[[f(.pn)]] _ MRe,n—l/Z’

(125)
ARe,n+lwn+l — BRe,nlpn’
where ¥" = (y{',..., ¥y ) is the unknown in C¥e, with M := JK. The nonlinear

operator MRe"1/2 ¢z (C) corresponding to the relaxation is computed by
using the nonlinear operator

[ (DI [Er2(ED1] - [y (]

(2.0 (&I [[E22(8]] -+ [[fon. (F)]]

()] = € Mun.(R),

o ()] [l 2] - [y, ()]
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where we set [[f;.,(¥")]] = (f[’,n(wn(xj,k))(j pew e 1 = £,m < N.. Furthermore,
we choose MRe=1/2 = f(;(x)). The operator AR®" € .#y.(C) is such that

ARC’”'HIP — A%i’n_l—l‘p +Alze9.p’

1 1
A?;,n+lw = l%w _ 5([[vn+1]] + MRe,n-l—l/Z)w’

AW = 2 4] + RALI¥. (126)

The operator ANe"*! € .#yw, (C) is defined through the block-matrices

(7 o --- 0
o ([ ---
([ := T B AMyn,(R),
0 0 - [/
(Vi1 [VELD - [IVIN
(V3.0 (V3.0 - [Vl
(V'] := . . . € Mun.(R),
(Vi 1TV (VA ]

where: [[V?m]] = (Vz,m(xj,k))(j,k)E?/"J.K € My (R). The diagonal operator AIXQ in
(126) is implicitly given by

(AN := (A% ;. n, € C™  and

Finally, the right-hand side is defined by the operator BRe : CMNe — CMNe

BRe"w = BRE"W 4+ B, W,

I 1
Br"W o= i[ES—t”w + EM“’”“”!P,

B oW = (5 llA]] - ([ (12)

The linear system in (125) is solved by a preconditioned Krylov subspace
iterative solver [12] at a computational cost O(MlogM). Unlike the splitting
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schemes, no assumption is required for the relaxation scheme concerning the
nonlinear or potential operators.

4.6 Numerical Study of the TSSP1-ADI, TSSP2-ADI
and ReSP Schemes for the Dynamics of Rotating GPEs

4.6.1 Experiment I: Dynamics of a Rotating BEC in a Harmonic Trap
The first numerical experiment consists in solving
1
iatw(tv X) = _EAw(tv X) - QLZW(L X) + V(X)W(L X)

+BlY Py (1, x), V1€ [0,T], Vx € R?, (128)
¥ (0.x) = Yo(x) € L,

where £2 = 0.4 and 8 = 1000. We fix the quadratic potential

1
V(x) = E(Vxxz + Vyyz)’

with y, = y, = 1. The initial data v/, is computed (by using BESP) as the stationary
state (see Fig. 15) associated with the problem (128) for the quadratic potential with
¥» = ¥y = 2. The modification of the coefficients increases the confinement of the
BEC. This creates a contraction without changing its global shape.

!ph'l!x.y]l? of component 1

Fig. 15 Initial data |v/|? (on the domain & =] — 10, 10[%, J = K = 2° for BESP)
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Fig. 16 Evolution of the density | |? for problem (128) computed by the ReSP scheme. (a) t =
0.13; (b) t = 0.26; (¢) t = 0.39; (d) r = 0.52

For TSSP1-ADI, TSSP2-ADI and ReSP, we use a time step equal to §t = 1073
for a final computational time 7 = 1 (T := N§f). The pseudo-spectral discretization
scheme considers J = K = 27 points for the computational domain & =]—10, 10[>.
For ReSP, we solve the linear system by using BiCGStab with a stopping criterion
set to X1V = 10712, We report on Fig. 16 the solution ¥ obtained by the ReSP
scheme at different times. We remark that the potential confines the condensate.
Visualizing the solutions computed by TSSP1-ADI, TSSP2-ADI and ReSP does
not allow to make the difference between them.

Let us analyze the spatial accuracy of the schemes. The previous simulation is
repeated on different uniform grids & g, with 5 < J, K < 9, where the reference
grid is considered for J = K = 9. For each grid, the initial data is computed
by using the BESP scheme with the parameters of problem (128) for the finest grid.

We represent on Fig. 17 the maximum error Err’; ¥ between the solution ¥’ g onthe
grid O x and the solution ¥"™" computed on the grid @ and then extrapolated
on the coarser grid 0 g, i.e.: Err?lo(o =Yk — ¥ || 5. We also report the error
between the energy (without the rotational term) & (¥ ) on the grid 0k and

the reference energy &p g (pre): é”;'lfo = &Y k) — Sop (¥™"")|. We remark
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Fig. 17 Evolution of Err;¢° and &'¢° for the TSSP1-ADI, TSSP2-ADI and ReSP schemes and
different spatial grids. (a) Err);g" for TSSP1-ADIL; (b) &'~ for TSSP1-ADL (c) Err}g° for
TSSP2-ADI; (d) &;'¢° for TSSP2-ADI; (e) Err’; ¢ for ReSP; (f) &)'c° for ReSP

that the high accuracy of the TSSP1-ADI, TSSP2-ADI and ReSP is obtained for
a sufficiently fine grid, i.e. J,K > 8. Concerning the coarser grids, the error is
relatively important and localized near the central vortex. For this example, the
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spatial accuracy of the three schemes is about the same. Finally, the energy which is
a global quantity is quite accurately computed even for coarse grids.

We are now interested in computing the order of accuracy in time of the three
schemes. We also want to analyze the mass and energy (without the rotational term)
conservation properties. To numerically obtain the order, we use the Richardson
method. Let us denote by vf’g, € CM, k € N, the numerical approximation of a
solution ¥ of the problem (130) at time #;, > 0 by a numerical scheme for a time
step 8z. Then, the Richardson method consists in computing the numerical order of
accuracy by the expression

k k
”'p& B '/’&/2”[]2[
k k
||'/’5r/2 - '/’5r/4||1z§

Pkooum = 10g2 ( ) 5 1 = k = N8t- (129)

Indeed, if we assume that the order is p, we have

195, — ¥, allee &~ C82,
and

k k s
1952 — ¥sipallz = CE’

leading to (129). Let us consider J = K = 20 grid points. We take: #Ns, = k, with
1 < k < Nj,. We report two cases: §t = 1072 (Table 5) and §t = 1073 (Table 6).
Here, we introduce the different quantities

max py, = max , min py;, ‘= min ,
pr,,num 1<k<Ny, Pk num pr,,num 1<k<Nj, Pk num
and
1 N
mean pns, num ‘= T Zpk,num-
N5t =1
Table 5 Numerical orders of TSSP1-ADI | TSSP2-ADI | ReSP

the TSSP1-ADI, TSSP2-ADI

and ReSP schemes for MaX Prymum | 545 6.01 2.04
51 = 102 min pry e | 1.00 2.02 1.84
mean py;, num | 2.54 3.97 1.91
tThab;es gp i\‘zﬂg;ri?gsogge:&f TSSP1-ADI | TSSP2-ADI | ReSP
e -ADI, -
and ReSP schemes for MAX PNs.num 1.00 2.00 1.99
5= 10-3 min pry nem | 0.99 2.00 1.99

mean py;, num | 1.00 2.00 1.99
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Fig. 18 Mass and energy (without rotational term) conservation properties for the three schemes,
for ¢ = 1073 and problem (130). (a) Mass conservation; (b) energy (without rotational term)
conservation

For 8§t = 1072, the numerical orders of TSSP1-ADI and TSSP2-ADI are in average
higher than those expected. This can be explained by the fact that the time step is
too large to get a stable scheme and that instabilities arise most particularly because
of the rotational term. The ReSP scheme seems to provide a better accuracy. For
8t = 1073, we recover the expected orders for the three schemes.

We now report (see Fig. 18a) the error on the mass of the solution: ErrM" :=
[|1— A (¥")||co and the error (Fig. 18b) on the non rotating energy of the solution:
So.p(¥"), for a time step 8t 1073, We can see that the mass is not exactly
conserved but the error is relatively small, even if it increases in time. The ReSP
scheme is the scheme that presents the best mass conservation property for this
example. In addition, the non rotational energy is well conserved for both the
TSSP2-ADI and ReSP schemes while TSSP1-ADI exhibits large fluctuations.

We end the analysis by showing the evolution of the error on the mass (Fig. 19a)
and energy without the rotational term &g(¢") (Fig.19b) for 8¢ 1072
For the three schemes, we observe that the error on the mass is smaller than
when considering the time step §t = 107>, Nevertheless, the energy also grows
substantially in the middle of the simulation for both TSSP1-ADI and TSSP2-ADI.
The ReSP scheme conserves correctly the non rotating energy. This example shows
that ReSP is a robust and accurate scheme.

4.6.2 Experiment II: Dynamics of a BEC in Quadratic-Plus-Quartic Trap
The second example consists in solving the following two-dimensional GPE
1
0. (1,x) = —EAW(t, X) — 2Ly, x) + V)Y (1, x)

+B|v > (t,x), Vi €[0,T], Vx € R?,
¥ (0.x) = Yo (x) € L7,

(130)
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Fig. 19 Mass and energy conservation (without rotational term) properties for the three schemes,
for ¢ = 1072 and problem (130). (a) Mass conservation; (b) energy conservation (without
rotational term)
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Fig. 20 Density |/,|? of the stationary state (with a domain & =] — 10, 102, J = K = 28 for
BESP)

where £2 = 3.5 and 8 = 1000. The potential is the quadratic-plus-quartic potential

l—«o K
V(x) = T(yxx2 + y07) + Z(J/xx2 + y7)%,

where y, = y, = 1, = 1.2 and k¥ = 0.7. To obtain the initial data v/, we compute
the stationary state of (130) for the trapping parameters y, = y, = 1, a = 1.2
and ¥ = 0.3 (see Fig.20). The stationary state is a circular ring with 36 uniformly
distributed vortices.
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The parameters for the simulation of the dynamics with TSSP1-ADI, TSSP2-
ADI and ReSP are: §t = 1073 for a maximal time of computation T = 1 (T := N§¢),
a spatial discretization with J = K = 2% points in & =] — 10, 10[>. Concerning the
ReSP scheme, the linear system is again solved by BiCGStab for a stopping criterion
on the residual equal to e¥°¥ = 107!2, We report on Fig. 21 some snapshots of the
solution obtained with TSSP2-ADI. We observe a complex dynamics in the ring

bl of componn |

| ooIs

ooie

ools

LTI

LLTH

Fig. 21 Snapshots of the density |1|?> computed with TSSP2-ADI for problem (130). (a) r = 0;
(b)t=10.07;(¢)t = 0.14; (d) t = 0.21; (e) t = 0.28; (f) t = 0.35
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Table 7 Numerical orders of TSSP1-ADI | TSSP2-ADI | ReSP
the TSSP1-ADI, TSSP2-ADI

and ReSP schemes for Max Prymum | 115 1.97 1.55
51 = 10-2 min py; pum | 0.89 0.85 0.08
mean py;, num | 0.95 1.08 0.92
;ab”i"es gP ?‘g‘iﬁ;ﬁs"ge]&sﬁf TSSP1-ADI | TSSP2-ADI | ReSP
e -ADI, -
and ReSP schemes for Max pysoum | 1.01 2.30 1.99
5t = 10—? min pyy, aum | 0.99 2.00 1.98
mean py;, num | 1.00 2.02 1.99
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Fig. 22 Mass and energy conservation properties for the three schemes, for § = 1073 and

problem (130). (a) Mass conservation; (b) conservation of the energy without rotational term

BEC. The solutions computed by TSSP2-ADI and ReSP looks the same. Unlike the
first experiment, it is not possible here to analyze the spatial accuracy of the schemes
since the extrapolated stationary state is not accurate enough on a coarse grid with
J = K = 27 points. If one considers more grid points (/ = K > 2° points), the
computational time is too large for GPELab.

We now focus on the numerical order of the TSSP1-ADI, TSSP2-ADI and
ReSP schemes and on the discrete mass and energy conservation properties. For
8t = 1072, the orders are not recovered because the time step is too large (Table 7).
For §t = 1073 (Table 8), the numerical orders are consistent with their respective
theoretical values, meaning that the time step is sufficiently small.

We consider now the evolution of the error ErrM" on the mass of the solution
(Fig.22a) and the non rotational energy & (¥") (Fig.22b) for §t = 107>. The
mass is not exactly preserved for the three schemes but is numerically acceptable.
The energy (without the rotational term) & g(¥") is well conserved for the TSSP2-
ADI scheme. Concerning the ReSP scheme, the energy fluctuates a little. For the
TSSP1-ADI scheme, the energy is not conserved. For §¢ = 1072, we have no energy
conservation for the three schemes. Globally, TSSP2-ADI is the best scheme for this
specific problem.
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4.6.3 Experiment III: Dynamics of a 2d Dark Soliton

The last example consists in the simulation of a black soliton inside a BEC. We
consider the two-dimensional GPE

1 1
0 (t,%) = =5 AY (%) + 3 (IxI> + Iy*) v (%) + Bly . 0Py (.x), (131

with B = 10000. To get a physically admissible initial data, we first compute a
stationary state of (131) by using the BESP scheme for §¢ = 10~! and the stopping
criterion & = 1078, The computational domain & =] — 10, 10[? is discretized by a
uniform grid with 2° 4 1 points in the x- and y-directions. We choose the Thomas-
Fermi approximation to initialize the computation. The converged solution is given
on Fig.23.

We now phase-imprint the black soliton in the condensate and simulate its
dynamics. We use ReSP with a time step 8t equal to 1073, The final time of
computation is 7 = 1.5. A phase-imprinting method [54] is used to initiate the
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Fig. 23 Modulus of the stationary state computed by BESP with the parameters of Sect. 4.6.3
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propagation of a black soliton in the condensate. More precisely, the initial data is
multiplied by

E(x) = €T°(1+tanh(‘ ‘0))

where Afy = /3, xp = 5and s = 0.2. We represent a few snapshots of the
computed solution on Fig. 24 with the new initial data.
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Fig. 24 Dynamics of a phase-imprinted black soliton in a BEC by using the ReSP scheme. (a)
Soliton at time t = 0.25; (b) soliton at time ¢t = 0.5; (¢) soliton at time t = 0.75; (d) soliton at
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5 Computation of the Dynamics with Stochastic Terms

The aim of this last section is to provide a few ideas concerning the extension of the
previous schemes when a random term is included into the GPE. Let us consider the
stochastic GPE (see Sect. 1.3.3)

R 0.3%) = 3 AY (X~ QLY (X + S WPY @+ i)
+BY | ¥ (t,x), Yt € RT, Vx € RY, (132)
Y0.%) = Yox) € L2,

where 8 € R, 0 > 0 and (w;),cg+ € ¢/ (R™) is a Holder continuous function, with
y €]0, 1[. More generally, we consider the following stochastic GPE (d = 1, 2, 3)
for the potential V(w;, x) := V (X)W,

D630 = 5 AY(.%) — QLX) + VO )Y (%)
H vy (.x), ¥re R, vx e R, (133)
Y(0.%) = Yoo € L2

where f is a real-valued polynomial function.

5.1 Numerical Schemes for the Stochastic GPE

We discuss the way the stochastic potential has to be discretized in the (Lie
and Strang) time-splitting and relaxation schemes. For the time-splitting schemes
(Sect.5.1.1), the integration is similar to the deterministic case. Concerning the
meaning of the time-derivative of a continuous process, we use the definition
given by Sussmann [115]. For the relaxation scheme (Sect. 5.1.2), we introduce the
Stratonovich product to precise the formal time-derivative of a continuous process
that will have to be discretized.

5.1.1 The Time-Splitting Schemes

Following Sussmann’s approach, we first assume that the process (w;),cgp+ is in
%! (R™). For the Lie time-splitting scheme, we use the following decomposition of
the problem (133): let §r > 0, n € N,
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1. Solve the system

iatl/fl(ta X) = —%AI//](Z‘, X) - ‘QLZI/II(L X)’ t e]tnytn+l]’ (134)
V1t X) = P"(X).

2. Compute yr, solution to

i0,02(t.X) = VO, X)¥2 (1, X) + Bl (6, X) 292 (8.X), 1 €ty tay1], (135)
Yo (te, X) = Y1(tht1,X).

The Eq. (134) is solved by the ADI method and one-directional FFTs like for the
deterministic case (see Sect.4.2.2). For (135), we have seen in Sect. 4.2.2 that it is
possible to exactly integrate the equation for the nonlinearity and potential, and then
to obtain an explicit formula. It follows that, for all ¢ € [t,,, ,,+1],

U (1,%X) = Y1 (tng1, X)e TV Gt 1 0P 0—t)=i [}, VGiix)ds |

The time integration of the stochastic potential is direct

/r V(wy, X)ds = /r Vx)wds = V(X)(w, —wy,) = V(w, —wy,, X),

In

leading to the exact formula for (135)
Vs (1,X) = ¥y (tn_’_l,X)e_lf(hﬁl([n+lvx)‘2)([_7‘11)_1"/(”'1_‘1'1” X)

This means that the implementation in the Lie time-splitting scheme is straight-
forward. Moreover, it is easy to see that this solution is continuous with respect
to (W;),ep+ € € (RY). Following a similar approach to Sussmann, we can extend
the solution to the case of a continuous process by using a density argument. The
extension to the Strang time-splitting scheme is trivial. The stochastic schemes are
still called TSSP1-ADI and TSSP2-ADI.

5.1.2 The Relaxation Scheme

In Sect. 4.3, we derived the relaxation scheme for the deterministic GPE. Concern-
ing the extension to the stochastic case, the main difference is related to the way
the noise is discretized. To have a better understanding of how to discretize the
derivative of the stochastic process, it is necessary to define the meaning of the
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following stochastic integral

tht1 Tn+1
/ V(ws, X)W (s, X)ds = V(x)/ Wi (s, X)ds.

Here, we consider this integral as the Stratonovich integral, i.e.

41 In+1
/ W (s, X)ds = ¥ (s, X) o dwg
In In
o Y (Skt1,X) + ¥ (sk. X)
= Jim 2 (s = W)
(sk)o<k<t

where, V£ € N, (sx)o<k<¢ is a partition of the interval [t,, #,,+-1]. This type of integral
takes its meaning for a Wiener process (W;),cr+ (also called the brownian motion)
through

/Tn+1 Ve, X)U (5. %) ~ V(X)W(tn+l7x)2+ Y (tn, %) (Wt’IJrl — Wt,,). (136)

The associated ReSP scheme related to the discretization (136) for the problem
(133) is then

n+1/2 n—1/2
¢ +¢

n+l _ n
Sy
ot

=f(v"P).
g (137)

1 n n wn
= (54 = QLA V" + ¢ (———),

where ¢"t1/2 = ¢ (t,412.X), Y" = Y (t,.x) and V" = V((w,,,, —w,,)/8%.x). The
initial data are

YOx) = Yo(x), and ¢ (x) = BlYo )|

5.2 Numerical Examples

We present here a few numerical simulations. First, we explain how to correctly
and efficiently simulate a fractional brownian motion (Sect. 5.2.1). Next, examples
of computations are given for a one-dimensional example. Most particularly,
we numerically explore the order of the schemes of the stochastic GPE under
consideration (see Sect. 5.2.2).
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5.2.1 Simulation of Fractional Brownian Motions

The simulation of stochastic gaussian processes with stationary increments can be
efficiently and accurately realized by using FFTs [124]. Let us recall that a fractional
brownian motion (fbm) (W), g+, with Hurst index H €]0, 1, is a gaussian process
with the following properties

o (WH),cp+ is continuous and self-similar, i.e.
1
VieRT, VaeR*, — Wi =W/ inlaw, (138)
a

o W} = 0 almost surely,

* the increments W — W¥_for all t,s € R, such that t > s, are stationary and
follow a normal distribution law with zero mean and (¢ — s)> as variance,

o forallt,s € RT, such that z > s, we have

1
E[WHWH] = E(r”" + 52— | — 5P, (139)

Let (#;)jen be a uniform time discretization of [0, 1]. Then, we remark that, being
given the increments (§ W§1+1 )jeN = (ng+1 — Wg’ )jen, the fbm can be built through
the telescoping sum

J
H __ H
wil =Y "sw/.
k=1

Therefore, we have to simulate the fbm increments to construct the process.
Moreover, thanks to the self-similarity of the process (138), we remark that the
simulation of a fbm for (#;);en boils down to the simulation of a fbm for the time
discretization (¢ = j)jen. In this case, for all k € Z, the autocovariance function
cw (k) of the process (8 W]H )jen is given by

1
cwn (k) = E[SW/L W] = E(|k + 1P 4 k=128 =20k,

If we assume that we want to construct a process of length N € N and being given

N/2—1

Vi€{-N/2.....N/2=1}, syu(j)= ey (k)2 |
k=—N/2
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Fig. 25 Trajectories of the fbm for various Hurst indices H on the time interval [0, 1]. (a)
Fractional brownian motion for H = 1/2. (b) Fractional brownian motion for H = 3/4. (¢)
Fractional brownian motion for H = 1/4

By using this expression, the following spectral representation of the process [124]
can be obtained

N/2—1
2 — i
W =05 X VG W1/2,2mi% ),

Jj=—N/2

motion. Therefore, the increments of a fbm can be efficiently computed with high
precision. We report on Fig. 25 the simulation of fbm trajectories for various values
of H, on a uniformly discretized time interval [0, 1] (with 1 = 1074).

5.2.2 Order in Time of the Schemes for the Stochastic GPE

We now numerically study the order in time of the Lie and Strang time-splitting and
relaxation schemes for a stochastic potential. The order in time can be understood
as the largest real number p such that

, 712
E 1300 = ¥ (00012 = @y,

where C > 0 is a real-valued positive constant, ¥ is the exact solution of the
dynamical system and Vs, is the approximation of ¥ by using a numerical scheme
for a time step 8¢. Numerically computing such an order requires the simulation of
a large number of trajectories of the process (w;),cg+ for the problem (132) since
the mean error is approximated by a Monte-Carlo method. For N(€ N) trajectories
(W)),er+> 1 <j < N, we compute the numerical approximation of the solution wgt
of (132) by using one of the numerical schemes. For a sufficiently large value N,
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one gets

E [0 0 l] "~ 3 (60— v aw )

J=1

Therefore, p can be estimated by a numerical order p,um that is computed thanks to
a formula similar to (129)

(140)

Bl ¥s: (1. X) — Wiy (ks X)||i§]1/2 )

p(ti) ~ prum(ti) = log, (]E[”wﬁt/Z(tksX) — Vialte, O] 2
In the following study, we are interested in the fbm of Hurst index H that we denote
by (WH),cp+, H €]0, 1[. As previously mentioned, the fbm are gaussian processes
with zero mean that are generalizations of the brownian motion. Moreover, their
trajectories are (H — n)-Holder continuous, for all n > 0. This means that we can
analyze the schemes for processes with various smoothness.

Let us now consider the following one-dimensional stochastic GPE

0.0 = 3B ) + 22U+ W)
+BIY *Y(t,x), Yt e RT, Vx e R, (141)
Y(0.3) = Yol € L2,

where 8 = 300 and (WH),cg+ is a fbm with Hurst index H €]0, 1[. The initial data
Yo is a stationary state computed by the BESP scheme. The computational domain
0 =] —15,15[ is discretized by a uniform grid &, where J = 2°. We fix the time
step to 8¢ = 1073 and the final time of computation to 7 = 1. The numerical results
of the Monte-Carlo method are based on N = 1000 trajectories.

We report in Table 9 the numerical orders resulting from formula (140) for the
Lie splitting scheme. We remark that the order is linked to the Hurst index H. For
H > 1/2, the order saturates to 1 while for H < 1/2 it is less than 1. For H = 1/4,
we observe that N is not large enough to yield a good approximation of the order
and the scheme seems unstable.

We consider now the Strang time-splitting scheme (TSSP2-ADI). The numerical
orders are given in Table 10. We observe that the order can be larger than 1 like for
H = 3/4. There is no saturation in the numerical order. Furthermore, we notice that
the numerical order for a fbm of Hurst index H = 1/4 significantly fluctuates.

Table 9 Numerical orders of H=1/4 |H=1/2 |H=3/4
the TSSP1-ADI scheme for

the stochastic GPE (141), Maxy, Poum(te) | 0.87 1.10 1.06
with various Hurst indices H ming, paum (%) | 0.67 0.91 0.97
of the fbm mean;, ppum (tx) | 0.76 1.01 1.01
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Table 10 Numerical orders H=1/4 |H=1/2 |H=3/4
of the TSSP2-ADI scheme

for the stochastic GPE (141), MaXy Poum (k) 1.59 1.14 1.59
with various Hurst indices H ming, paum (%) | —0.04 0.90 0.97

for the fbm mean,, poum (tx) | 0.89 1.01 1.33
T{ible 11 Numerical orders H=1/4 |[H=1/2 H=3/4
of the ReSP scheme for the

stochastic GPE (141), with maxy, Poum(f) | 1.10 0.80 1.58
various Hurst indices H for ming prum () | 0.27 0.43 1.31

the fbm and § = 300 mean;, pnum (fx) | 0.84 0.58 1.49
Table 12 Numerical orders H=1/4 |H=1/2 |H=3/4
of the ReSP scheme for the

stochastic GPE (141), with maxy prum(®) | 002 1099 1.60
various Hurst indices H for ming, poum (%) | —0.12 0.43 1.42

the fbom and 8 = 100 meany, pnym () 0.00 0.76 1.51

This is probably due to the fact that N is not large enough to obtain a correct
approximation of the order of TSSP2-ADI. The numerical order of the standard
brownian motion (H = 1/2) is not improved in comparison with the TSSP1-ADI
scheme.

Table 11 shows the results obtained for the ReSP scheme. For a standard
brownian motion (H = 1/2), the order of the ReSP scheme is lower order than
for the time-splitting schemes. In the case of a fbm of Hurst index H = 3/4, the
numerical order is larger than 1 and higher than for TSSP2-ADI. The numerical
order for the fbm with H = 1/4 is fluctuating. Therefore, it is not possible to
conclude on the effective order of the scheme. This is probably due to the fact that
the discretization used for the noise [see Eq. (136)] is not adapted to a process with
a smoothness lower than the brownian motion.

To complete the numerical simulation for ReSP, we run the same tests as before
but with a smaller nonlinearity 8 (8 = 100 here) to show its influence on the order
of the scheme. We report the numerical orders on Table 12. For the brownian motion,
we observe an improved order of accuracy which is closer to the value 1 obtained for
the time-splitting schemes. For the fbm with Hurst index 3/4, the order is practically
unchanged. Finally, for H = 1/4, the problem of the discretization remains.

As seen before, TSSP2-ADI and ReSP are some suitable schemes for the
stochastic GPE (accordingly to H). When a rotation term is further added, then they
should be privileged for a practical computation. Since the related computations
are too heavy for GPELab, we do not analyze this problem here. Furthermore, it
would be interesting to develop a complete numerical analysis of these schemes
to understand the rigorous mathematical properties that can be expected. However,
these points are beyond the scope of this paper and can be considered as some open
questions.
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6 Conclusion

In this paper, we have developed some elements related to the modeling and
computation of Bose-Einstein Condensates when the Gross-Pitaevskii Equation is
used. We have introduced a few GPE systems in various physical situations of
interest: dynamics, stationary states, multi-components BECs, inclusion of rotation
and stochastic terms. Next, we have developed in details some stable pseudo-
spectral numerical methods for computing the stationary states of GPEs. A few
numerical examples have been produced by using the dedicated Matlab toolbox
GPELab. Then, we have explained how to correctly reproduce the dynamics
of BECs by using adapted computational schemes (time-splitting and relaxation
methods). Again, various numerical examples have been presented to have a better
understanding of the schemes. Finally, the extensions of the schemes to a stochastic
GPE are explained and numerical simulations based on GPELab show what are the
expected properties of the schemes, in particular concerning the accuracy in time.
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Orbital Stability: Analysis Meets Geometry

Stephan De Bievre, Francois Genoud, and Simona Rota Nodari

1 Introduction

The purpose of these notes is to provide an introduction to the theory of orbital
stability of relative equilibria, a notion from the theory of (mostly Hamiltonian)
dynamical systems with symmetry that finds its origins in the study of planetary
motions [2]. In more recent times it has proven important in two new ways at least.
It has on the one hand found an elegant reformulation in the modern framework of
Hamiltonian mechanics of finite dimensional systems with symmetry in terms of
symplectic geometry. It can indeed be phrased and studied in terms of the theory
of momentum maps and of symplectic reduction [2, 66, 67, 80, 81, 83-85, 88]. On
the other hand, it also underlies the stability analysis of plane waves, of travelling
wave solutions and of solitons in infinite dimensional nonlinear Hamiltonian PDE’s,
which has received considerable attention over the last 40 years or so, and continues
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to be a very active area of research. We will give a brief historical account of the
notion of orbital stability in the context of nonlinear PDE’s in Sect. 11.

It is clear that in this field nonlinear analysis can be expected to meet geometry
in interesting and beautiful ways. It nevertheless appears that in the literature on
Hamiltonian PDE’s, the simple and elegant geometric ideas underlying the proofs
of orbital stability aren’t emphasized. The goal of these notes is to provide a unified
formulation of the theory in a sufficiently general but not too abstract framework
that allows one to treat finite and infinite dimensional systems on the same footing.
In this manner, one may hope to harness the geometric intuition readily gained from
treating finite dimensional systems and use it as a guide when dealing with the
infinite dimensional ones that are the main focus of our interest, but that demand
more sophisticated technical tools from functional analysis and PDE theory. The text
is of an introductory nature and suitable for young researchers wishing to familiarize
themselves with the field. It is aimed at analysts not allergic to geometry and at
geometers with a taste for analysis, and written in the hope such people exist.

1.1 Notions of Stability

There are many notions of stability for dynamical systems. One may in particular
consider stability with respect to perturbations in the vector field generating the
dynamics, or stability with respect to a variation in the initial conditions. It is the
latter one we shall be considering here. For a sampling of possible definitions in
this context, one can consult Sect. 6.3 of Abraham and Marsden [2], who give nine
different ones and mention there exist others still. . . We start by introducing the ones
of interest to us in these notes.

The simplest possible one is presumably the following. Let E be a normed vector
space, d the corresponding metric on E, and X a vector field on E. Let u € E and
t € R — u(f) € E aflow line of X [i.e. i(r) = X(u(?)), with u(0) = u]. Let us
assume the flow is well-defined globally, with u(f) = ®(u). Then one says that the
initial condition u is stable if for all € > 0, there exists a § > 0 so that, forall v € E,

d(v,u) <8 = supd(v(?), u(t)) <e. (1)
1R

Here v(f) = @X(v). This can be paraphrased as follows: once close, forever not too
far. Note that, if u is stable in this sense, then so is u(¢) for all ¢+ € R. There exists
one situation where proving stability is straightforward. It is the case where u = u.
is a fixed point of the dynamics, meaning u(f) = ux, for all # € R, and where u.
is a local non-degenerate minimum of a constant of the motion, that is a function
% : E — R, referred to as a Lyapunov function, satistying .2 (v(r)) = £ (v) for
all r € R, and for all v in a neighbourhood of u.. Let us sketch the argument, which
is classic. Supposing . € C*(E, E) and that Dﬁ*f is positive definite, one obtains
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from a Taylor expansion of . about u, an estimate of the type
cd(v,ux)? < L (V) — L(ux) < Cd(v, ux)?, @)

for all v in a neighbourhood of u.. Then, for v sufficiently close to ux, one can easily
show, using an argument by contradiction, that v () stays in this neighbourhood and
hence, for all 7,

cd(v(t),ux)* < L((1) — L(us) = L) — L(ux) < Cd(v, ux)?, A3)

from which (1) follows immediately. This approach is known as the Lyapunov
method for proving stability.'

In Hamiltonian systems, at least one constant of the motion always exists,
namely the Hamiltonian itself. The above argument leads therefore to the perfectly
standard result that local minima of the Hamiltonian are stable fixed points of
the dynamics. All orbital stability results that we shall discuss below are, in fine,
based on this single argument, appropriately applied and combined with additional
geometric properties of (Hamiltonian) systems with symmetry, and, of course, with
an appropriate dose of (functional) analysis. Let us finally point out that when
this approach does not work, and this is very often the case, one is condemned to
resort to considerably more sophisticated techniques, involving the KAM theorem
or Nekhoroshev estimates, for example.

A stronger version of stability than (1) is an asymptotic one, and goes as follows:
there exists a § > 0 so that, forall v € E,

d(v,u) <é = r_l)l_l:l d(v(r), u(r)) = 0.

This phenomenon can only occur in dissipative systems. When u« is a fixed point
of the dynamics, it corresponds to requiring it is attractive. If the flow line issued
from u is periodic, one obtains a limit cycle. So in this second definition, the idea
is that, if two points start close enough, they end up together. Since our focus here
is on Hamiltonian systems, where such behaviour cannot occur (because volumes
are preserved), we shall not discuss it further. Note, however, that another notion of
“asymptotic stability” has been introduced and studied in the context of Hamiltonian
nonlinear dispersive PDE’s. We shall briefly comment on this in Sect. 11.

There are several cases when definition (1) is too strong, and a weaker notion is
needed, referred to as orbital stability. The simplest definition of this notion goes as
follows. Suppose r € R — u(t) € E is a flow line of the dynamics and consider the
dynamical orbit

y ={u() 1€ R}

'Remark that £ (v(f)) < £(v) would suffice in (3). But in these notes we will exclusively work
with constants of the motion.
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We say u = u(0) is orbitally stable if the following holds. For all € > 0, there exists
8 > 0, so that

d(v,u) <8 = Vre R, d(v(r),y) <e. 4)

The point here is that the new dynamical orbit y = {v(r) | t € R} stays close to
the initial one, while possibly v(f) can drift away from u(f), for the same value of
the time ¢. As we will see, this can be expected to be the rule since the nearby orbit
may no longer be periodic even if the original one was, or have a different period.
A simple example that can be understood without computation is this. Think of two
satellites on circular orbits around the earth. Imagine the radii are very close. Then
the periods of both motions will be close but different. Both satellites will eternally
move on their respective circles, which are close, but they will find themselves on
opposite sides of the earth after a long enough time, due to the difference in their
angular speeds. In addition, a slight perturbation in the initial condition of one of
the satellites will change its orbit, which will become elliptical, and again have a
different period. But the new orbit will stay close to the original circle. So here the
idea is this: if an initial condition v is chosen close to u, then at all later times ¢, v(¢)
is close to some point on y, but not necessarily close to u(t), for the same value of ¢.
We will treat this illustrative example in detail in Sect. 5.2.

1.2 Symmetries and Relative Equilibria

The definition of orbital stability in (4) turns out to be too strong still for many
applications, in particular in the presence of symmetries of the dynamics. This is
notably the case in the study of solitons and standing or travelling wave solutions of
nonlinear Hamiltonian differential or partial differential equations. We will therefore
present an appropriate generalization of the notion of orbital stability in the presence
of symmetries in Sect.4. For that purpose, we introduce in Sect.2 dynamical
systems @X, ¢ € R, on Banach spaces E, which admit an invariance group G with
an action @,, g € G, on E, i.e. ®,®F = ®XP,. We then say u € E is a relative
equilibrium if, for all 1 € R, ®}(u) € O,, where 0, = Pg(u) is the group orbit
of u under the action of G. As we will see, solitons, travelling waves and plane
waves are relative equilibria. We say a relative equilibrium u is orbitally stable if
initial conditions v € E close to u have the property that for all 1 € R, ®X(v)
remains close to . Note that the larger the symmetry group G is, the weaker is the
corresponding notion of stability.

The main goal of these notes is to present a general framework allowing to
establish orbital stability of such relative equilibria of (both finite and infinite)
dynamical systems with symmetry, using an appropriate generalization of the
Lyapunov method sketched above. This approach to stability is often referred to
as the “energy-momentum” method. In the process, we wish to clearly separate
the part of the argument which is abstract and very general, from the part that
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is model-dependent. We will also indicate for which arguments one needs the
dynamics to be Hamiltonian and which ones go through more generally.

In Sect. 5, we treat the illustrative example of the relative equilibria of the motion
in a spherical potential, allowing us to present four variations of the proof of orbital
stability, which are later extended to a very general setting in Sect. 8. The main
hypothesis of the proofs, which work for general dynamical systems on Banach
spaces, is the existence of a coercive Lyapunov function £, which is a group-
invariant constant of the motion satisfying an appropriately generalized coercive
estimate of the type (2) [see (111)]. In applications, the proof of orbital stability is
thus reduced to the construction of such a function.

It is in this step that the geometry of Hamiltonian dynamical systems with
symmetry plays a crucial role. Indeed, the construction of an appropriate Lyapunov
function for such systems exploits the special link that exists between their constants
of the motion F and their symmetries, as embodied in Noether’s theorem and the
theory of the momentum map. This is explained in Sects.6 and 7. The crucial
observation is then that in Hamiltonian systems, relative equilibria tend to come
in families u,, € E, indexed by the value p of the constants of the motion at u,,. In
fact, it turns out that u, € E is a relative equilibrium of a Hamiltonian system if
(and only if) u,, is a critical point of the restriction of the Hamiltonian to the level
surface ¥, = {u € E | F(u) = u} of these constants of the motion (Theorem 7).
This observation at once yields the candidate Lyapunov function .Z), [see (110)].

We finally explain (Proposition 5) how the proof of the coercivity of the
Lyapunov function can be obtained from a suitable lower bound on its second
derivatives D>.%),(w, w), with w restricted to an appropriate subspace of E, using
familiar arguments from the theory of Lagrange multipliers (Sect.8). This ends
the very general, geometric and abstract part of the theory. To control D>.Z, (w, w)
finally requires an often difficult, problem-dependent, and detailed spectral analysis
of the Hessian of the Lyapunov function, as we will show in the remaining sections.

1.3 Examples

We illustrate the theory in Sect. 9 on a first simple example. We consider the plane
waves g (1, x) = ae * e £ € R, k € 2nZ and a € R, which are solutions of the
cubic nonlinear Schrodinger equation on the one-dimensional torus T,

idu(t,x) + ﬁaixu(t, x) + Au(t, x)2u(t, x) = 0,

provided & + Bk*> = A|a|?. This equation is (globally) well-posed on E = H'(T, C)
and its dynamical flow is invariant under the globally Hamiltonian action @ of the
group G = R x R defined by (@, (1)) (x) = €”u(x — a) (see Sect. 6.5). The plane
waves Uy (2, x) are G-relative equilibria. We establish (Theorem 12) their orbital
stability when S 2n)? > 2A|el? Although the linear stability analysis for this
model is sketched in many places, and the nonlinear (in)stability results seem to be
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known to many, we did not find a complete proof of nonlinear orbital stability in the
literature. A brief comparison between our analysis and related results [40, 41, 106]
ends Sect. 9. Note that the analysis of orbital stability of plane waves of the cubic
nonlinear Schrodinger equation on a torus of dimension d > 1 is much more
involved (see for example [34]).

In Sect. 10 we will present orbital stability results pertaining to curves (i.e. one-
dimensional families) of standing waves of nonlinear Schrodinger equations on R?
with a space-dependent coefficient f:

idu(t, x) + Au(t, x) + f(x, |ul*(t, x))u(r, x) = 0. (5)

Imposing a non-trivial spatial dependence has two major consequences. First, the
space-translation symmetry of the equation is destroyed, and one is left with the
reduced one-parameter symmetry group G = R, acting on the Sobolev space E =
H'(RY) via @, (u) = ¢ u. Note that the associated group orbits are of the simple
form 0, = {¢”u : y € R} C H'(R?). Now, standing waves are, by definition,
solutions of (5) of the form u(x,) = e'w(x), which are therefore clearly relative
equilibria. Such standing waves are sometimes referred to as “solitons” due to the
spatial localization of the profile w(x), and to their stability.

Second, constructing curves of standing wave solutions of (5) is now a hard
problem, and we will outline the bifurcation theory developed in [44, 45, 48, 49] to
solve it. This powerful approach allows one to deal with power-type nonlinearities
f(x, [u|*) = V(x)|u|]°~" (under an appropriate decay assumption on the coefficient
V : R? — R) but also with more general nonlinearities, for instance the
asymptotically linear f(x, |u|?) = V(x)%. This will give a good illustration
of how involved the detailed analysis of D>.%(w, w) required by the model can be.
As we shall see, this analysis turns out to be deeply connected with the bifurcation
behaviour of the standing waves.

In the pure power (space-independent) case f(x, |u|?) = |u|°~', the appropriate
notion of stability is that associated with the action of the full group G = R x R,
(Pay () (x) = €”u(x — a). The stability of standing waves in this context was
proved in the seminal paper of Cazenave and Lions [18] for1 <o < 1+ é, and this
result is sharp (i.e. stability does notholdatc = 1+ 3). The contribution [18] is one
of the first rigorous results on orbital stability for nonlinear dispersive equations, and
is based on variational arguments using the concentration-compactness principle
(see for instance [55, 106] for more recent results in this direction). This line
of argument is conceptually very different from the energy-momentum approach
developed here, so we shall not say more about it.

The modern treatment of Hamiltonian dynamical systems with symmetries uses
the language of symplectic geometry, as for example in [2, 6, 67, 95]. But we
don’t need the full power of this theory, since we will work exclusively with linear
symplectic structures on (infinite dimensional) symplectic vector spaces. For the
reader not familiar with Hamiltonian mechanics, Lie group theory and symplectic
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group actions, elementary self-contained introductions to these subjects sufficient
for our purposes are provided in the Appendix.
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2 Dynamical Systems, Symmetries and Relative Equilibria

2.1 Dynamical Systems on Banach Spaces

Let E be a Banach space. A domain Z is a dense subset of E; in the examples
presented in these notes, it will be a dense linear subspace of E.

Definition 1 A dynamical system on E is a separately continuous map
¢>X:(t,u)€RxE—>¢>,X(u) = ®&X(t,u) € E, (6)

with the following properties:

(i) Forallt,s € R,
P odf =) . &f(u)=1dg. (7

(ii) Forallt € R, ®X(2) = 2.
(iii) X : 2 C E — E is a vector field that generates the dynamics in the sense that,
when u € 2, @X(u) := u(t) € 2 is a solution of the differential equation

w(t) = X(u(), u(0) = u. ®)

By this we mean that the curve t € R — u(¢) € E is differentiable as a map from R
to E.

In infinite dimensional problems, the vector fields are often only defined on a
domain &, where they may not even be continuous. But note that we always assume
that the flows themselves are defined on all of E (or on an open subset of E). For
examples illustrating these subtleties, see Sect.3.2. Local flows can be defined in
the usual manner. In that case the domains are dense in some open subset of E, but
we shall not deal with such situations in these notes since we will always assume
the flows to be globally defined.
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Suppose there exists a function F : E — R™ so that
Fo®)=F, VteR. )

We then say that the vector field X or its associated flow @X admits m constants of
the motion, which are the components F; of F. In that case, one may consider the
restriction of the flow @} to the level sets of F: for 1 € R™, we define

T, ={ueE|Fu) = p}, (10)

and one has that XX, = ¥, forall u € R™.

Remark I The role of and the need for a domain & with the properties (ii) and
(iii) in the definition of a dynamical system above will become clear in Sects. 6
and 7. They are in particular needed to prove (9) for suitable F. Some of the stability
results that are our main focus can be obtained without those conditions, as we will
further explain in Sect. 8. Similarly, global existence is not strictly needed: it can
for example be replaced by a weaker “blow-up alternative.” We will not further deal
with these issues here.

2.2 Symmetries, Reduced Dynamics and Relative Equilibria

We now define the notion of an invariance group for a dynamical system. For that
purpose, we need to say a few words about group actions. Let G be a topological
group acting on E. By this we mean there exists a separately continuous map
D :(g,u) € GXE — Dy(u) €E,
satisfying @, = Id, @y,4, = P, 0 Dg,. We will call
Op={P;(u) | g € G} (11

the orbit of G through u € E. For later reference, we define the isotropy group of u,
G,, as follows

Gu=1{g€ G| ®y(u) = u}. (12)

We can then introduce the notion of an invariance group for @.

Definition 2 We say G is an invariance group (or symmetry group) for the
dynamical system cth if, for all g € G, and for all € R,

@, 0 &F = @) 0 @,. (13)
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Remark that G = R is always an invariance group of the dynamical system, with
action QD,X on E. While this is correct, this is not of any particular use, as one can
suspect from the start. Indeed, the flow @X is in applications obtained by integrating
a nonlinear differential or partial differential equation, and is not explicitly known.
In fact, it is the object of study. “Useful” symmetries are those that help to simplify
this study; they need to have a simple and explicit action on E. They are often of a
clearcut geometric origin: translations, rotations, gauge transformations, etc. Several
examples are provided in the following sections.

Finally, it should be noted we did not define “the” symmetry group for @X,
but “a” symmetry group. Depending on the problem at hand and the questions
addressed, different symmetry groups may prove useful for the same dynamical
system, as we shall also illustrate. In particular, any subgroup of an invariance group
is also an invariance group, trivially.

It follows immediately from (11) and (13) that, for all x € E,

D10, = Oy, (14)

In other words, if G is an invariance group, then the dynamical system maps G-
orbits into G-orbits. This observation lies at the origin of the following construction
which is crucial for the definitions of relative equilibrium and orbital stability that
we shall introduce. We give the general definitions here, and refer to the coming
sections for examples. Defining an equivalence relation on E through

u~u & 0, =0y,

we consider the corresponding quotient space that we denote by £ = E/ ~ and
that we refer to as the reduced phase space. We will occasionally use the notation

n:ucek— 0,eE; (15)

for the associated projection. So the elements of Eg are just the G-orbits in E. It is
then clear from (14) that the dynamical system @ on E naturally induces reduced
dynamics on the orbit space Eg: it “passes to the quotient” in the usual jargon. We
will use the same notation for these reduced dynamics and write ®X¢& = &(t) for
any O € Eg. Note that X0, = O, (see Fig. 1).

As a general rule of thumb, one may hope that the reduced dynamics are
simpler than the original ones, since they take place on a lower dimensional (or
in some sense smaller) quotient space. This idea can sometimes provide a useful
guideline, notably in the study of stability properties of fixed points or periodic
orbits of the original dynamical system, as will be illustrated in the coming sections.
Implementing it concretely can nevertheless be complicated, in particular because
the quotient itself may be an unpleasant object to do analysis on, even in finite
dimensions, as its topology or differential structure may be pathological and difficult
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Fig. 1 A dynamical orbit 1 = u(r) and its “attached” G-orbits, with the projection into Eg

to deal with. Conditions on G and on the action @ are needed, for example, to
ensure the quotient topology on E is Hausdorff, or that it has a differentiable
structure [2, 67, 85]. In addition, concrete computations on models are more readily
done on E directly, than in the abstract quotient space, particularly in infinite
dimensional problems. We will avoid these difficulties, in particular because we will
work almost exclusively with isometric group actions. Their orbits have simplifying
features that we will repeatedly use: see Proposition 1 below.

We are now in a position to introduce the notion of relative equilibrium, as
follows.

Definition 3 Let u € E. Let & be a dynamical system on E and let G be a
symmetry group for @X. We say u is a G-relative equilibrium* for @} if, for all
t € R, u(r) € 0,. Or, equivalently, if for all t € R, QD,X O, = O,. When there is
no ambiguity about the dynamical system @ and the group G considered, we will
simply say u is a relative equilibrium.

With the language introduced, u is a relative equilibrium if &, is a fixed point of
the reduced dynamics on E¢. Again, we refer to the following sections for examples.
We are interested in these notes in the stability of such relative equilibria. Roughly
speaking, we will say a relative equilibrium is orbitally stable if it is stable as a fixed
point of the reduced dynamics; we give a precise definition in Sect. 4.

We end this section with two comments. First, the above terminology comes from
the literature on Hamiltonian dynamical systems in finite dimensions. We will see
in the following sections what the many specificities are of that situation. We refer

2In [67], the term stationary motion is used for this concept.
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to [2, 6, 67] for textbook treatments and historical background and to [66, 80, 81, 84,
85, 88] for more recent developments. Second, we will often need to deal with the
restriction of the dynamical systems under consideration to the level sets X, C E
of a family of constants of the motion F, as defined in (10). Note that X', is a metric
space. We define

Gy, ={g€G|Vue X, &u) e X,} (16)

This is clearly a subgroup of G, which is a symmetry group of the dynamical system
restricted to X,,. We will often deal with isometric group actions on such X, or on
the full Banach space E. The following simple proposition collects some of the
essential properties of their orbits that we shall repeatedly need and use. We first
recall the definition of the Hausdorff metric. Let (X, d) be a metric space and let
S, C (X,d). Then

A(S, S') = max{supd(u, S"), sup d(S, u')}. (17)

ues u'es’

Notice that this is only a pseudometric® and that A(S, ") = +oo is possible.

Proposition 1 Let G be a group, (¥,d) a metric space and @ : G x ¥ — X
an action of G on X. Suppose that for each g € G, @, is an isometry: Yu,u' €
2, d(Dy(u), Po(u')) = d(u,u'). Let O, 0" be two G-orbits in X. Then

(i) Yui,up € O Nuj,uy € 0', d(uy, 0') = d(up, 0'), d(u}, 0) = d(u), 0),
(i) Vue 0. € 0, du,0) = A0, 6) = d(d, ),
(iii) Yue O,u' € 0', A(0,0") <d(u, ).

Proof The first statement follows from the existence of g € G so that @, (u;) = u.
For the second, we proceed by contradiction. Suppose first that, Vu € &, u’ € 0,
d(u,0") < dW',0). Letu € O,u’ € O'. Then we know there exists v € 0’
(depending on u, 1) so that d(u, ') < d(u,v) < d(«/, O). But since, by the first
part of the proposition, d(v, &) = d(«/, 0), this implies d(u, v) < d(v, &), which
is a contradiction. So we conclude, using the first part again, that Vu € &,u’ € 0,
d(u, 0") > d(u', 0). Repeating the argument with the roles of &, &’ inverted, the
result follows.

If the action is not isometric, it is quite possible for all the statements of the
theorem to fail. For example, consider on E = R? the action @,(q.p) =

(exp(a)g, exp(—a)p), a € R.

3A(S,S’) = 0 does not imply § = §’. In particular, A(S,S) = 0.
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3 Examples

3.1 Motion in a Spherical Potential

In this section, we illustrate the preceding notions on a simple Hamiltonian
mechanical system: a particle in a spherical potential. We will make free use of the
concepts and notation of Appendices “Lie Algebras, Lie Groups and Their Actions”
and “Hamiltonian Dynamical System with Symmetry in Finite Dimension” that we
invite the reader unfamiliar with Hamiltonian mechanics or Lie group theory to
peruse.

By a spherical potential we mean a function V : R? — R, satisfying V(Rq) =
V(g), for all R € SO(3). With a slight abuse of notation, we write V(g) = V(||gl)),
for a smooth function V : Rt — R. We consider on E = R the Hamiltonian

1
H() = H(g.p) = 30" + V(lal) (18)
and the corresponding Hamiltonian equations of motion

g=p. p=-Vl4ala. 19)

where we introduce the notation b = ﬁ for any b € R3. Integrating those, we

obtain the Hamiltonian flow @ (1) = u(t), where u = (g, p) € R®. Introducing the
angular momentum

L(g,p) = q A p, (20)

one checks immediately that, for any solution € R — (g(), p(t)) € RS, one has

d
d—tL(fJ(f),P(f)) =0. 2y

In other words, angular momentum is conserved during the motion in a central
potential: its three components are constants of the motion. This implies the familiar
result that the motion takes place in the plane perpendicular to L and passing
through 0.

We will now use Noether’s Theorem (Theorem 19) to show this system is SO(3)-
invariant. We start with the following observations. First, the action of the group
G =SO(3) on E = R° given by

Pr(u) = (Rq, Rp) (22)
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is easily checked to be globally Hamiltonian.* Indeed, for each £ € so(3),

F,
Pexpz) = Py f ’

where

Fi(q,p) = §-L(g,p) (23)

[recall that we can identify so(3) with R? via (197)]. In other words, “angular
momentum generates rotations.” Next, it is clear that the Hamiltonian satisfies
H o ®@r = H. As aresult, it follows from Theorem 19(iii) that the dynamical flow is
rotationally invariant:

& o g = Pro D, Vte R, R e SO(3).

Note that, here and in what follows, we are using, apart from the symplectic, also
the standard Euclidean structure on R®.

We now wish to identify the relative equilibria of these systems. For that purpose,
consider first u € R® with L(u) = p # 0. Then the ensuing dynamical trajectory
u(?) lies in the surface

Y, ={ueR® | Lu) = u}. (24)

Now, if u is a relative equilibrium, then, for each ¢, there exists R(f) € SO(3) so
that @gyu = u(t). Hence i = L(u(t)) = L(Prpu) = R(H)L(u) = R(¢)t. In other
words, R(t) belongs to

Gy, ={R € SO(3) | R = p} >~ SO(2),

which is the subgroup of rotations about the p-axis. It follows that ||¢(f)|| = ||¢||, for
all z. Since ¢(#) is perpendicular to u, this means that g(¢) lies on the circle of radius
llg|| centered at O and perpendicular to p. The orbit is therefore circular and, in
particular, for all ¢, g(7) - p(¢r) = 0. Conversely, it is clear that all circular dynamical
orbits are relative equilibria. The initial conditions corresponding to such circular
orbits are easily seen to be of the form

q = pxq, P =0xD, Uf =pV'(px). q-p=0, (25)

with p«,0s > 0 and hence V'(px) > 0. We will discuss in Sect.5 under what
conditions they are orbitally stable in the sense of (4).

Now, let u = (g, p) € R be such that L(«) = 0. In this case ¢ and p are parallel
and this remains true at all times. But if p(¢) # 0 at any time ¢, u cannot be a relative
equilibrium. Indeed, the motion is then along a straight line passing through the

4See Definition 14.
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origin and such a straight line cannot lie in an SO(3) orbit since the SO(3) action
preserves norms. If on the other hand u = (p«q,0) = u(?) is a fixed point of the
dynamics, it is a fortiori a relative equilibrium. This occurs if and only if V/(px) = 0
as is clear from the equations of motion. Note that these fixed points fill the sphere
of radius ps.

It is clear these fixed points cannot be stable in the sense of definition (1) or (4).
Indeed, any initial condition &’ close to such fixed point u, but with p’ # 0 gives rise
to a trajectory in the plane spanned by ¢’ and p’: when ¢’ and p’ are not parallel,
the trajectory will wind around the origin in this plane, moving away from the
initial condition. What we will prove in Sect. 5 is that, provided V" (p«) > 0, these
trajectories all stay close to

Op00=1{u€cR|qg-q=pi. p-p=0,q-p=0}, (26)

which is the SO(3) orbit through the fixed point # = (p«q, 0). Those fixed points
are therefore SO(3)-orbitally stable, in the sense of Definition 5(i) below.

To end this section, we list, for later purposes, all SO(3)-orbits in E = R®. Those
are easily seen to be the hypersurfaces &, ;, of the form

Oroa =1{(q.p) €R® | q-q=p*. p-p=0>, q-p=n0}, (27)

with p,o6 > 0,a € R. Note that || < po. Those orbits are three-dimensional
smooth submanifolds of R®, except on the set where the angular momentum L
vanishes, i.e. on

%o ={(¢q.p) € R®| L(g.p) = O}.

This surface (which is not a submanifold of E) is itself SO(3)-invariant and foliated
by group orbits as follows:

Yo = U ﬁp,a,a = {(070)} U U ﬁp,a,a-
po=lal po=|al

(p.0)#(0,0)

On the latter orbits, g and p are parallel, but do not both vanish, so that these orbits
can be identified with two-dimensional spheres.

3.2 The Nonlinear Schrodinger Equation

An important example of an infinite dimensional dynamical system is the nonlinear
Schrodinger equation

i0u(t,x) + Au(t,x) + f(x,u(t,x)) =0,

(28)
u(0, x) = up(x),
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with u(z,x) : R x R? — C. Here A denotes the usual Laplace operator and f is a
local nonlinearity. More precisely, consider f : (x,u) € RY x Rt — f(x,u) € R
such that f is measurable in x and continuous in u. Assume that

f(x,0) =0ae.inR? (29)
and that for every K > 0 there exists L(K) < 400 such that

f e ) = f(x, v)| < LK) |u — v (30)

a.e. in R? and for all 0 < u, v < K. Assume further that

L(-) € C°([0, +00)) ifd =1,
4 (31)
LK) < C(1 4+ K*) with0 <a < T ifd>2,
and extend f to the complex plane by setting
u
f(-xv M) = mf(—xv |M|)v (32)
forallu € C,u # 0.
Finally, let H be the Hamiltonian of the system defined by
1 Jue] ()
H(u) = - / |Vul*(x) dx — / / f(x,s)dsdx. (33)
2 Jpa R Jo

We now explain how the Schrodinger equation defines an infinite dimensional
dynamical system with symmetries, within the framework of Sects. 2.1 and 2.2. The
sense in which the Schrodinger equation defines a Hamiltonian dynamical system
will be explained in Sect. 6.

For that purpose, we need the following results on local and global existence of
solutions to (28). First, concerning local existence, we have:

Theorem 1 ([17]) If f is as above, then for every uy € H'(R?,C) there exist
numbers Tmin, Tmax > 0 and a unique maximal solution u : t € (—Twin, Tmax) —

u(t) € H'(RY, C) of (28) satisfying
ue CO((_Tmins Tnax)s Hl(Rd)) n Cl((_Tmins Tnax)s H! (Rd))
Moreover, u depends continuously on uq in the following sense: if u/(‘) — up in

H'(R?, C) and if ux is the maximal solution of (28) with the initial value u’é, then
w — uin C°([-S,T), H'(RY)) for every interval [-S,T] C (—Tmin. Tmax)- In
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addition, there is conservation of charge and energy, that is

lu@® 2 = lluollrz.  H(u(r)) = H(uo) (34)

forall t € (—Tmin, Trmax)-

For global existence of solutions, one needs a growth condition on f in its second
variable.

Theorem 2 ([17]) Let f be as in Theorem 1. Suppose in addition that there exist
A>0and0 <v < 3suchthat

Ju

|
fx,s)ds < Alu*(1 + |ul"), xeR?Y ueC. (35)
0

It follows that for every ug € H' (R?, C), the maximal strong H'-solution u of (28)
given by Theorem 1 is global and sup,cy ||u(?)|| g1 < +o0.

Note that the condition on f is always satisfied when f is negative. This result
implies that one can define @X on E = H'(R?,C) by ®}(u) = u(t) € E and that
@rx satisfies (6)—(7). Note however that, whereas the flow lines t — u(t) € E are
guaranteed to be continuous by the above theorems, they are C! only when viewed
as taking values in E* = H~!'(R?,C). The following “propagation of regularity”
theorem allows one to identify the appropriate domain £ on which the stronger
condition (8) holds.

Theorem 3 ([17]) Let f be as in Theorem 1, and consider uy € Hl(Rd, C) and
u € CO((=Tmin» Tmax)» H'(R?)) the solution of the problem (28) given by Theorem 1.
Then the following statements hold.

(i) Ifup € H*(R4, C), thenu € CO((—Tmm, Tmax),Hz(Rd)). If; in addition, f (x,-) €
C!(C, C), then u depends continuously on uy in the following sense: if us — uo
in HX(RY, C) and if uy is the maximal solution of (28) with the initial value uf,
then u; — u in C°([=S, T], H*(RY)) for every interval [—S, T] C (—Tmin, Trax)-

(ii) If up € H™(R?, C) for some integer m > max {%, 2} and if f(x,-) € C"(C,C),
then u € CO((—Tmm, Thnax), Hm(Rd)). In addition, u depends continuously on
uy in the following sense: if us — ug in H™(RY, C) and if uy is the maximal
solution of (28) with the initial value u§, then wy — u in L®([—S, T], H"(R?))
for every interval [—S, T] C (—Tmin, Tmax)-

Note that the derivatives of f should be understood in the real sense here.

Remark 2 Tt follows from Theorem 3 that, if we take 2 = H™(R?, C), with m > 3,
then (8) is satisfied, and so the flow is differentiable as a map from R to E =
H'(R?,C).
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Example 1 A typical example of local nonlinearity which satisfies (29), (30), (31)
and (32) is the pure power nonlinearity

fw) = Aul”'u (36)
with
1<o0<+4+ ford =1,

4 37
l1<o<1l4+—— ford=>2,
d—2

and A € R. The standard “cubic” Schrddinger equation corresponds to ¢ = 3,
which is an allowed value of o only if | < d < 3. The Hamiltonian is then given by

1 A
Ho =5 [ 1P as— = [l @ (38)

In this case, the nonlinear Schrodinger equation reads

idu(t, x) + Au(t, x) + AMu| (e, x)u(t, x) = 0, 39)
u(0,x) = uo(x).
Theorem 1 then ensures the existence of a local solution
ue CO((_Tmins Tmax)v Hl(Rd)) N Cl((_Tminv Tmax)v H_I(Rd)) (40)

and the conservation of the Hamiltonian energy H. To guarantee the existence of
a global flow, we have to distinguish the focusing (A > 0) and the defocusing
case (A < 0). More precisely, Theorem 2 implies the flow is globally defined on
H' (R, C), i.e.

X :Rx H'(RY,C) > H'(R?,C), (41)

if o satisfies (37) in the defocusing case orif 1 <o < 1 + % in the focusing case.
Note that, in the latter situation, 0 = 3 is allowed only if d = 1.
Next, we recall that
o0 €N, oo0dd = f e C®(C,Q0),
ceN, geven = (fe C"(C,C) & m<o—1),
0¢N= (feC"(C,C) om=<[o—1]+1),
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and, in particular, f € C'(C,C) for all o > 1. Hence Theorem 3 applies and the
flow can be restricted to H>(R¢, C)

X : R x H*(RY,C) — H*(R?,C),

whenever o satisfies (37) in the defocusing caseor 1 <o < 1+ § in the focusing
case. This, however, is not enough for our purposes, since it only guarantees the
existence of the derivative of t — u(f) as a function in L?>(R?, C), and not as a
function in E = H'(R?, C). In other words, we cannot take 2 = H*(R?, C) if we
wish to satisfy (8). To obtain sufficient propagation of regularity, having in mind
Remark 2, we state the following results.

In dimension d = 1 both in the defocusing case, for 3 < 0 < +o00, and in the
focusing case, for3 <o < 5,

&* R x H*(R,C) - H*(R,C).

Hence, in these cases, using the notation introduced in Sect. 2.1, E = H (R, C) and
the domain Z of the vector field X can be chosen to be the Sobolev space H3(R, C).

In dimension d = 2,3 and in the defocusing case, the global flow ®X can be
definedon E = H'(RY,C) forall3 <o < 1 + ﬁ. As before, the domain 2 of
the vector field X can be chosen to be the Sobolev space H>(R?, C).

It follows in particular from what precedes that the cubic Schrédinger equation
(o = 3) fits in the framework of the previous section provided either d = 1 (with A
arbitrary)or A < Oandd = 2, 3.

We now turn to the study of the symmetries of the nonlinear Schrodinger
equation (39). Let G = SO(d) x R? x R and define its action on E = H'(R?, C) via

Yue H'(RY), (Pra,w) () =e?u® ' (x—a)). (42)
Here the group law of G is
(Ri,a1,y1)(Ry, a2, y2) = (RiR2, a1 + Riaz, y1 + ¥2)

for all R|,R; € SO(d), aj,a; € RY and y;,y, € R. We claim that G is an
invariance group (see Definition 2) for the dynamics @Y. Indeed, let u(t,x) =
(®X(u))(x) a solution to the nonlinear Schrodinger equation (39) and consider
((Pray © X)) (x) = e”u(t,Rx — a). A straightforward calculation shows that
e"u(t, R~ (x — a)) is again a solution to Eq. (39). More precisely,
i0,(e”u(t, R (x — a))) + A" u(t, R (x — a)))
+ Ale”u(t, R (x — a))|” (e u(t, R (x — a)))
=" (i(u)(t. R (x — @) + (Au)(t, R~ (x — @) + Aul*'u)(t, ™" (x — a)))
=0
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where we use the fact that the Laplace operator is invariant under space rotations,
space translations and phase rotations. As a consequence,

((Pray © D)W@) () = (& © Pray) (W) ()

and G is an invariance group for the dynamics @. Moreover, we can easily prove
that H o @p,, = H.Indeed, using the definition of H given in (38), we have

A
Hotnu, 0 =5 [ VuPE = ayas— = [ @ G- o)
= H(u).

We will see later (in Sect. 6.3) why this is important.

Now, let us give some examples of G-relative equilibria of the nonlinear
Schrodinger equation (39). First, consider the simplest case whered = 1 and o = 3.
The invariance group G reduces to R x R and the nonlinear Schrédinger equation
becomes

idsu(t, x) + 3)2“14(1‘, x) + Au(t, x)2u(t, x) = 0. (43)

In the focusing case (A > 0), there exists a two-parameters family of functions, the
so-called bright solitons,

Ua (1, X) = a\/gsech(a(x - ct))ei(§X+(“2_%)r)

that are solutions to (43) for all («, ¢) € R x R, with initial conditions

Ug.o(X) = Uy (0,x) = a\/gsech(ax)e"(g)‘) € E=H'(R). (44)

For each («,c) € R x R, uy(x) is a G-relative equilibrium of (43). Indeed, the
G-orbit of u, (x) is given by
o,

Ua e

= {ei”ua,c(x —a),(a,y) € R x R} . (45)

Hence, it is clear that for all t € R, uy(t,x) € 0,,, and, by Definition 3, we can
conclude that u, . (x) is a G-relative equilibrium of (43).

More generally, standing and travelling waves are examples of G-relative
equilibria of the nonlinear Schrodinger equation (39). More precisely, standing
waves are solutions to (39) of the form

us(t, x) = ¢'wg(x) (46)



166 S. De Bievre et al.

with £ € R. For this to be the case, the profile ws has to be a solution of the
Stationary equation

Aw + Aw|"tw = Ew.

Bright solitons with ¢ = 0 are examples of such standing waves, withd = 1,0 =
3. Standing waves of the one-dimensional Schrodinger equation with a spatially
inhomogeneous nonlinearity, as well as their orbital stability, will be studied in
Sect. 10. Travelling waves are solutions to (39) of the form

urw(t, x) = e 'wrw(x — cf) 47)
with £ € R and ¢ € R?. Now, the profile wrw has to be a solution of
Aw + Alw|"'w = Ew + ic - Vw.
Bright solitons with ¢ # 0 are examples of such travelling waves, with d = 1 and

o =3.
The G-orbit of the initial condition ws(x) is given by

Oy = {ei”ws(R_l(x —a)),(R,a,y) € G} (48)

and it is clear that us(t, x) € 0, for all r € R. The same holds true for utw with wg
replaced by wrw.
Another, closely related example of an infinite dimensional dynamical system is
the cubic Schrodinger equation
i0u(t, x) + 02 u(t,x) £ |u(t, x)|*u(t,x) = 0
u(0,x) = up(x)

(49)

in the space periodic setting T = R/(277Z) (the one dimensional torus). In [12], the
following theorem is proven.

Theorem 4 ([12]) The Cauchy problem (49) is globally well-posed for data uy €
H(T,C), s = 0 and the solution u € CO(R, H*(T)). Moreover, if u, v are the
solutions corresponding to data uy, vo € H*(T, C), there is the regularity estimate

lu@) = v(®)|lgs < C™Mluo — vol|as (50)

where C depends on the L*-size of the data, i.e. C = C(|lug||;2, |vollr2)-

This ensures the existence of a global flow

@* : R x H*(T,C) — H*(T, C).
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for all s > 1. Hence, we can choose E = H'(T,C) and 2 = H?(T,C) to ensure
the conditions of Sect. 2.1 are satisfied.

As before, by using the invariance of Eq. (49) under space translations and phase
rotations, we can show that the dynamics defined by @} are invariant under the
action of the group G = R x R given by

(Pa,y (u)(x) = ei”u(x —a). (1))

As an example of G-relative equilibria, we can consider the two-parameter family
of plane waves

Ug (1, X) = o™it (52)

with € Rand k € Z and § = —k? £ |«|?>. The G-orbit of the initial condition
gk (x) = ae™* is given by

7 {ocei”e_”‘(x_”), (a,y) € G}.

As before, it is clear that u, «(t,x) € 0, for all t € R. We will study the orbital
stability of these relative equilibria in Sect. 9.

Remark that plane waves are the simplest elements of a family of solutions of the
NLS equation of the form

Upo(t,x) = e P U (x — cr), (1,x) e Rx R

with £,p,c € Rand U : R — C a periodic function. This kind of solutions are
called quasi-periodic travelling waves and their orbital stability has been studied in
[40, 41].

3.3 The Manakov Equation

The Manakov equation [43, 73] is a system of two coupled nonlinear Schrodinger
equations which describe the evolution of nonlinear electric fields in optical fibers
with birefringence, defined by

§ i0au(t, x) + Au(t,x) + Au(t,x)|u(t,x) =0
(53)

(0, x) = uo(x)

uy (t, x)
uy (t, x)

with u(t,x) = (
AeR.

) R xR = C [u(t.0)2 = (1.0 + st 0)[2) and



168 S. De Bievre et al.

With the same arguments as those used for the nonlinear Schrédinger equa-
tion (39), one can easily show that the flow is globally defined in H'(R, C?), i.e.

&* R x H' (R, C?) — H'(R, C?) (54)

both in the focusing (A > 0) and in the defocusing case (A < 0). Moreover, thanks
to the propagation of regularity, the flow preserves H*(R, C?) i.e.

¥ R x H (R, C?) — H* (R, C?) (55)
as before. Hence, using the notation of Sect.2.1, one can choose E = H (R, C?)
and the domain 2 = H3(R, C?).
Now, let (a,5) € G =R x U(2) acton E = H'(R, C?) via
D, 5(u) = Su(x — a). (56)

Here the group law of G is (ay, S1)(a2. S2) = (a1 + a2, S1S») for all a;, a, € R? and
S1,82 € U(2). A straightforward calculation proves that G is an invariance group
for the dynamics @X.

In the focusing case (A > 0), there exists a family of solitons,

u(t,3) =« \/%sech(a(x — el (==5)) (Cos Hei“)

sin fe'?

that are solutions to (53) for all v = (a, ¢, 8, y1, ») € R, with initial condition

1y (x) = 1, (0, %) = a\/gsech(ax)ei(gx) (COS eem) € E=H'(R,C?).

sin f¢'??

For each v € R’, u, (x) is a G-relative equilibrium of (53). Indeed, the G-orbit of
u,(x) is given by

Oy, = {Suy(x —a), (a,S) e RxU(2)}.

Hence, it is clear that for all t € R, u,(¢,x) € 0, and, by Definition 3, we can
conclude that u, (x) is a G-relative equilibrium of (43).

3.4 The Nonlinear Wave Equation

Let us consider the nonlinear wave equation

2u(t, x) — Au(t,x) + Au(t,x)|° u(t,x) =0

(57)
u(0,x) = up(x), o,u(0,x) = ui(x)
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with u(f,x) : R x R? — R, and, for simplicity, let us take d = 1,2, 3. Moreover,
we restrict our attention to the defocusing case, that in our notation corresponds to
A > 0 (because of the minus sign in front of the Laplacian), and to the so-called
algebraic nonlinearities, which means 0 € N is odd. As a consequence the function
f(u) = |u|°'u is smooth.

Let H defined by

1 1 A
H(u, d,u) = -/ |Vu|? dx + -/ |8,u|2dx+—/ |u® ! dx (58)
2 Rd 2 R4 o +1 Rd

be the Hamiltonian of the system. As for the Schrédinger equation, we will
explain in Sect. 6 how the nonlinear wave equation defines an infinite dimensional
Hamiltonian dynamical system.

In the defocusing case and whenever 1 <o < +ooford =1lorl <o < 1+ ﬁ
for d = 2,3, we can define a global flow on H' (R¢, R) x L*>(R?, R), i.e.

&Y R x (H'(RY, R) x L*(RY,R)) - H'(RY,R) x L*(R?, R)
(7, u(0), 3,u(0)) — (¢, u(r), d,u(r))

(59)

with u € C(R, H'(RY)) N C}(R, L*(R¢)) the unique solution to (57). Moreover the
Hamiltonian energy (58) is conserved along the flow, i.e.

H(u(0), 0:u(0)) = H(u(?), du(1))

for all € R (see [101] and references therein). Furthermore, it follows from the
integral form of (57) (see [101, Ex. 2.18 and 2.22]) that u € C*(R, H™!(R?)).

In the algebraic case, thanks to the persistence of regularity, the flow can be
restricted to H*(R?, R) x H*~'(R¢, R),

&Y R x (H'RY, R) x H ' (R4, R)) - H*(R?,R) x H*" (R, R)

for all s > £. Hence, using the notation of Sect.2.1, E = H'(R?, R) x L*(RY,R)
and the domain & of the vector field X can be chosen to be the Sobolev space
H>*(RY,R) x H' (R4, R).

As for the nonlinear Schrodinger equation, by using the invariance of Eq. (57)
under space rotations, space translations and phase rotations, we can show that the
dynamics defined by ®X are invariant under the action of the group G = SO(d) x R?
on E = H'(R?,R) x L*(R, R) defined by

Pr o, 0u) = WR™ (x — a)), du(R™ (x — a))).

Moreover, H o @ ,,, = H and we will explain in Sect. 6.3 the consequences of this
fact.
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3.5 Generalized Symmetries

The nonlinear Schrodinger equation is often said to be invariant under Galilei
transformations. This invariance is however of a slightly different nature than the
one defined in Definition 2, as we now explain.’

Recall that Newtonian mechanics is known to be invariant under coordinate
changes between inertial frames. These include space and time translations, rota-
tions, and changes to a moving frame, often referred to as Galilei boosts. All
together, they form a group, the Galilei group Gg,1, which is a Lie group that can be
defined formally as

Gga = SO(d) x R x R x R
with composition law
(R',v,d, /)R, v,a,t) = (RR,Rv+ v Ra+d +Vt,t+7).
It acts naturally on space-time (x,f) € R? x R as follows:
RV ,d,)x,0) = (R'x+d +v't,7 +1).
Of course, the physical case corresponds to d = 3.
The statement that Newton’s equations are invariant under boosts means for

example that, if 1 — (g1(¢), g2(¢)) is the solution of Newton’s equations of motion
for two particles moving in a spherically symmetric interaction potential V

mig1(t) = —=Vg, V(g1 (t) — q2(0))),  m2g2() = =V, V(llq1(t) — g2()1)).

with initial conditions
. pr . P2
71(0) = g1, ¢2(0) = g2, ¢:1(0) = —, §2(0) = —,
mi ny

then, for all v € R3, t — (g1(f) + vt, g2(f) + vi) is also such a solution, with initial
conditions

. p . p
7100) = g1, 2(0) = g2, §1(0) = == + v, §2(0) = = + v
mi my

SWe will, in this section, make free use of the material of Appendix sections “Lie Algebras,
Lie Groups and Their Actions” and “Hamiltonian Dynamical System with Symmetry in Finite
Dimension”.
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In a Hamiltonian description,® the above equations of motion are associated to the
Hamiltonian

2 2
p p
L S

V - )
)

H(gq.p) =

which generates a flow @/ that is clearly invariant under space translations and
rotations. The situation for Galilei boosts, however, is different. Indeed, in this
context they act on the phase space E = RS x R® with symplectic transformations,
as follows:

Yov e R3, ¢>§(q,p) = (g,p1 — mv, p; — myv).
Here K = miq; + m»q> and cbf is a shorthand notation for
Of =i o P20 0 D,

where each 055" is the hamiltonian flow of one component of K. But those do NOT
commute with the dynamical flow @/ . Indeed, one easily checks that

okl ok = @or @H (60)

where P = p; + p» is the total momentum of the system, which generates
translations: @ (q1,¢2,p1,p2) = (q1 + a,q2 + a,p1, p2). In that sense, the three
dimensional commutative group of Galilei boosts is NOT an invariance group for
the dynamical system according to Definition 2. To remedy this situation, one can
proceed as follows. Define, on E = R® x R®, foreach g = (R,v,a,1) € Gga, the
symplectic transformation

&, = Pl oX oy,

where @, is defined as in (22). It is then easily checked using (60) that the @, define
an action of G, on E. It is clearly globally Hamiltonian (Definition 14).” It follows
that the Galilei boosts are generalized symmetries for the dynamical system @7, in
the following sense:

Definition 4 Let G be a Lie group, and @ an action of G on a Banach space E. Let
@X a dynamical system on E. We say G is a generalized symmetry group for @X
provided there exists £ € g so that ®X = exp(1£)

For our purposes, an important difference between symmetries and generalized
symmetries in Hamiltonian systems is that the latter do NOT give rise to constants of

See Appendix section “Hamiltonian Dynamical System with Symmetry in Finite Dimension”.

7It is however not Ad*-equivariant.
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the motion. To illustrate this, remark that, although the Galilei boosts are generated
by K(q,p) = miq) + maq», it is clear that K is not a constant of the motion of H:

{K,H} =P, (61)

where P = p; + p» is the total momentum of the two-particle system. This is not
a surprise: K = MR, where R is the center of mass of the two-particle system and
M = my + m;y its mass. And of course, the center of mass moves: in fact, (61)
implies it moves at constant velocity.

A similar situation occurs with the nonlinear Schrodinger equation. If u(z, x) is a
solution of (28) with a power law nonlinearity, then so is, for every v € R,

(1, x) = exp (— L -x + 50) ult,x + vo), (62)

as is readily checked. The function # can be interpreted as the wave function in the
moving frame, as can be seen from the shift x — x + v# in position and from the
factor exp(—i3 - x), which corresponds to a translation by %v in momentum, in the
usual quantum mechanical interpretation of the Schrédinger equation. Adopting the
framework of Sect. 3.2, one observes that the maps

&, u(x) = exp (—%(v -x)) u(x),

defined for all v € R? on E = H'(R?) are not symmetries for the Schrodinger flow
®X defined in (41) but that

6o, =, oF, (63)

I,UI‘,—TI‘

where (bl 2 is defined in (42). This commutation relation is very similar to (60),
U ,—T

except for the extra phase exp(—i%t). We note in passing that the boosts ¥, are

unitary on L?, but do not preserve the H' norm. They are nevertheless bounded

operators on E = H'(R?).

As in classical mechanics, one can put together the above transformations
with the representation of the Euclidean group in (42) to form a (projective)
representation of the Galilei group showing that the Galilei boosts are generalized
symmetries of the nonlinear Schrédinger equation with a power law nonlinearity.
We will not work this out in detail here, but note for further use that

Droa,y lj’v = eXP(i% ) lIA/Rv Dray. (64)

In particular (l>1,a,olf/v = exp(i%“)lﬁv@,,a,o so that, in this setting, the boosts lf/v
commute with translations only “up to a global phase” exp(i%*), in the usual
terminology of quantum mechanics. In contrast, in classical mechanics, @ and
&F clearly commute.
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Generalized symmetries do not provide constants of the motion via Noether’s
Theorem, and hence cannot quite play the same role as symmetries in the study
of relative equilibria. We will now show how one may nevertheless use (63) in
the analysis of the stability of the relative equilibria of the (non)linear Schrodinger
equation.

We first remark that the u, ., defined in (44), satisfy uy,. = lf/_cua,o. We will
show that, thanks to (63), if u, ¢ is orbitally stable, then so is u, ., for any c € R. We
will only sketch the argument, leaving the details to the reader. Note first that u, o is
orbitally stable, if and only if, for all € > 0, there exists § > 0 so that, forallw € E
with d(w, uy ) < &, there exists, forall # € R, a(?) € R, y(¢) € R so that

Al <€, where A, :=®Xw— 40,00

Now suppose u € EA is sufficiently close to uqy ., for some ¢ € R. Then, since lI}C is a
bounded operator, ¥.u = w is close to uy . Then, using (63) and (64), one finds

=y_ P > Dra(e).y( a0 + U@

—C P o
Let,—5 Lct,

A
2,4

)

= _C¢I,Ct+a(t)~,_%t+)/(t)ua’0 + lp_"d)l,ct,—%tA’
= ; U_.u + J_.d 2 A
1,cr+a(r),—§r+y(r)+C(CL2“(’)) a0 Fren—g ot

Since uy, = lf/_cua,o, and since lf/_c is bounded, it is now clear that <1§,X u is at all
times close to 0,, , defined in (45).

The above argument shows, more generally, that the relative equilibria of the
homogeneous NLS for G = SO(d) xRIxR [see (42)] come in families lIA/_L.uo = U,
indexed by ¢ € RY. Moreover, if u is spherically symmetric and orbitally stable,
then all . are orbitally stable.

4 Orbital Stability: A General Definition

We can now formulate the general definition of orbital stability that we shall study.
In fact, several definitions appear naturally:

Definition 5 Let @ be a dynamical system on a Banach space E and let G be a
symmetry group for @X.



174 S. De Bievre et al.

(i) Letu € E and let &, be the corresponding G-orbit. We say u € E is orbitally
stable if

Ve > 0,35 > 0,YVv € E, (d(v,u) <§=VieR, inﬂgd(v(t), Oury) < e) .
t'e

(i) Let & be a G-orbitin E. We say O is stable if each u € & is orbitally stable in
the sense of (i) above.

(iii) Let & be a G-orbit in E. We say & is uniformly stable if it is stable and § in
(i) does not depend on u € &. In other words, if Ve > 0, there exists § > 0 so
that, Vu € &, Vv € E,

d(v.u) <8 = Vi€ R, inf d(v(r). Our) <e. (65)
re

(iv) Wesay 0 € E is Hausdorff orbitally stable if & satisfies: Ve > 0, there exists
8 > 0sothat, VO’ € Eg

A0, 0') < § = Vi e R, inf A(O'(1), O(1)) <e. (66)
T/

The four definitions are subtly different.

Definition (i) requires that the dynamical orbit issued from the nearby initial
condition v remains close to the orbit {<1§ff @, (u) | ¥ € R, g € G} of the larger group
R x G. It is therefore a generalization of definition (4), which corresponds to the
case G = {e}. This notion of orbital stability therefore depends on the choice of
the group G and it is clear that, the larger G, the weaker it is. As we will see in the
examples of Sects. 5 and 6.5, there are cases where definition (4) is not satisfied for
some u € E, but where the above definition holds for a suitable choice of G. As we
will also see, the choice of G may depend on the point u € E considered and it is
in particular not always necessary to use the largest symmetry group G available for
@ to obtain orbital stability.

The stability of the orbit & as defined in part (ii) simply requires the orbital
stability of each point u € &, as defined in (i). Note that § depends on u here. In
part (iii) of the definition, uniformity is required.

Part (iv) requires that if two G-orbits &, ¢’ C E are initially close (in the sense
of the Hausdorff metric) then, for all 7, &’(¢) is close to &(f') for some value of
#'. Tt is the natural transcription of the definition of orbital stability in (4) from the
original dynamical system on E to the reduced dynamics on Eg.

Parts (i), (ii) and (iii) are the most telling/interesting, since they give a statement
directly on the phase space E, using the original distance d, rather than in the more
abstract quotient space Eg. They do moreover not use the somewhat unpleasant
Hausdorff metric. In applications, one really wants to prove (i), (ii) or (iii).

As shown in the lemma below, the four definitions in Definition 5 are equivalent
when the group action is isometric. For many applications in infinite dimensional
systems in particular, this is the case.
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Lemma 1 Let X be a dynamical system on E and let G be a symmetry group for
@YX, acting isometrically. Let u € E. Then the following statements are equivalent.

(i) u € E is orbitally stable.

(ii) Eachv € O, is orbitally stable.
(iii) O, is uniformly stable.
(iv) O, is Hausdorf{f orbitally stable.

In practice, one often proves (i) for a suitably chosen u on the orbit. This then
automatically yields (iii). The statement in terms of the reduced dynamics in (iv)
is intellectually satisfying but rarely encountered, it seems.

Proof We prove (i) < (ii) and (i) = (iii)) = (iv) = (i).

(i) = (iii) and (i) = (ii): Letv € &, and v’ € E, d(v',v) < §. Then there
exists g € G so that v = D,(u). Define ' = CDg_l(v/). Then, by the isometry
of &,, d(u’,u) < § and hence, by hypothesis, for all #, there exists ¢ so that
d('(t), Oy)) < €. Hence

d(U/(l), ﬁv(r’)) = d(d)g(u/(t))v ﬁu(r’)) = d(u’(t), ﬁu(r’)) <e€.

This proves (iii) and, in particular, (ii). Since it is clear that (if) = (i), we obtain
(1) & (ii).

(iii) = (iv): Suppose O, is uniformly stable. Let &” be such that A(&,, 0') < 6.
Let ' € 0" with d(u,u’) < §. Then (65), together with Proposition 1(ii), imply
A1), Our) < €.

(iv) = (i): Suppose O, is orbitally stable. Let /' € E so that d(u,u’) < §.
Let ¢/ = 0O,. Then, by Proposition 1(iii), A(C,0’) < §. Hence, for all ¢,
infy A(O'(t), O(¢')) < e. Proposition 1(if) then implies (7).

In many applications, especially in infinite dimensional problems, the @, are both
linear and norm-preserving: several examples were given in Sect.2. In that case
the action is of course isometric. In addition, all group orbits are then bounded.
Note nevertheless that, if the @, are norm-preserving, but not linear, the action is no
longer isometric, while the group orbits are still bounded. Finally, isometric actions
may have unbounded group orbits: think for example of translations on E = R?".

5 Orbital Stability in Spherical Potentials

Before presenting the general Lyapunov approach to the proof of orbital stability
in Sect. 8, we show here the orbital stability of the relative equilibria in spherical
potentials that we identified in Sect.3.1. This simple example is instructive for
several reasons. First, it permits one to appreciate the group theoretic and symplectic
mechanisms underlying the construction of a suitable candidate Lyapunov function.
Second, it nicely illustrates the various methods available to use this Lyapunov
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function in order to prove orbital stability via an appropriate “coercivity estimate”
generalizing (2). We will present three such methods below.

5.1 Fixed Points

The proof of the uniform orbital stability of &, oo in (26) is straightforward, and
can be done with H itself as the Lyapunov function, in close analogy with the proof
sketched in the introduction.

Proposition 2 Let V € C*(R3) be a spherical potential and H(u) = %pz + V(g)
the corresponding Hamiltonian. Let px > 0 with V'(px) = 0, V"’(p«) > 0. Let
Opo00 = {(q.p) € R® | |lq|| = px,p = 0} be the corresponding SO(3) orbit. Then
O, 0,0 Is uniformly orbitally stable.

This result is intuitively clear. Under the assumptions stated, the Hamiltonian
reaches a local minimum at each of the fixed points of the dynamics that make
up the sphere 0, o0, and it increases quadratically in directions perpendicular to
that sphere. Any nearby initial condition must therefore give rise to an orbit that
stays close to the sphere: the potential acts locally as a potential well trapping the
particle close to &, o0.

Proof We know from Sect. 3.1 that the Hamiltonian A in (18) is an SO(3)-invariant
constant of the motion, and that D,H = 0 forall u € 0,, ¢, so that each such point
is a fixed point of the dynamics. We will write Hx = H(u), Yu € 0,, o0. Moreover,
forall u = (¢,0) € O,, 00

DZH — VU(IO*)QZQJ 0
u 0 13 N

Note that the Hessian is not positive definite. In fact, it vanishes on w = (a, 0), for
a-q = 0, which is the two-dimensional tangent space T,0,, oo to the orbit. We
can therefore not expect to obtain a coercive estimate as in (2). On the other hand,
since V”(px) > 0, D2H is positive definite on the four-dimensional orthogonal
complement to the tangent space, given by

(TuOpu00)" = {(@d.b) € R | € R, b € R?}. (67)

As a result, we can still show that there exist constants c«, 7« > 0 with the property
that

Vu' € E, (', O, 00) < e = H') — Hy > cxd (W, 0, 00)%) (63)

and this will suffice for the proof of orbital stability. To show (68), note first that
setting ' = (¢’,p’) and taking N« < p«/2, one has ¢’ # 0. Consider then
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u=(psq,0) € 0,, 0,0 and remark that d(«’, O,, 00) = |lu' — u||. Now compute

HW)—Hy = Hu') — Hu) = D2HW' — u,u’ —u) + o(||u’ — u)?)
min{1, V" (p:)}d (W, Op, 00)* + o(d(i', Op, 00)%).

v

One can then conclude (68) holds by using that the term in o(d(«/, O,, 00)?) is
uniformly smallinu € 0, o0 since H is SO(3)-invariant. We now prove that &, o0
is uniformly orbitally stable. Since the action of SO(3) is isometric, Lemma 1 shows
itis enough to prove all u € &,, o are orbitally stable. Suppose that this is not true.
Then there exists u € &,, o0 and € > 0, and for each n € Ny, u; e E t, € Rso
that d(u,, u) < % and d(u},(1,), O, 00) = €. Since we can choose € < 7, we can
apply (68) to write
H@) — H(u) = H@,(t,)) — He > cxd(U (1), O, 00)* = cx€’.

Taking n — o0 leads to the desired contradiction.

5.2 Circular Orbits

Proving an appropriate notion of stability for the initial conditions in (25) giving
rise to circular orbits of the dynamics turns out to be slightly less straightforward.
Intuitively, as explained already in the introduction, one expects that, under a
suitable condition on the potential, an initial condition close to a circular orbit will
generate a dynamical orbit that stays close to this orbit. As a result, orbital stability
is satisfied in the sense of (4). The following proposition gives a precise statement
of this phenomenon.

Proposition 3 Let V € C*(R?) be a spherical potential and H(u) = 1p*> 4+ V(q)
the corresponding Hamiltonian. Let px,0x > 0 with V'(ps)ps« = o0;. Consider
Uy, = (qx.Px) = (0xGx, OxPx), With G« D« = 0. Then uy,, is a relative equilibrium
for the group SO(2) of rotations about |1« = qx A p«. If in addition,

V'(ps) > =307p57, (69)

uy, is orbitally stable in the sense of definition (4) and of Definition 5(i). In addition,
Uy, is a local minimum of H,, the restriction of H to the level surface X, defined

in (24).

Note that the two definitions of orbital stability mentioned coincide in this particular
case. Also, since the action of the rotation group is isometric, the result implies
uniform orbital stability as well. Below, we will give three different arguments to
prove the proposition, each of which can and has been used to treat various infinite
dimensional problems.
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The origin of the condition V”(px) > —302p, > can be understood as follows.
In standard mechanics textbooks such as [50], motion in a spherical potential is
treated by fixing the angular momentum g A p = «, and then using for ¢, p polar
coordinates (r, 8, p,, pp) in the plane perpendicular to the angular momentum. The
Hamiltonian then reads, in these coordinates,

P PR
H(r,0,pr,pg) = — + F + V().
The equation of motions are
P=pn 6= = I;G Vi(r), pe=0

2
and |« = pe. It follows that the radial motion is decoupled from the angular one,

since ¥ = _V[/l.* (r)with V,, (r) = V(r)+ 33 ’L* . It is then clear that the circular orbits
correspond to the critical points r = p of the effective potential V,,, which are
fixed points of the radial dynamics. By an argument as in the introduction, those are
stable if the critical point is a local minimum of

2
p
H,, (r.pr) = =

2 Il*(r)’

and so in particular if Vl’j* (p«) > 0, which is precisely condition (69). Note however
that the preceding argument does not prove orbital stability of the circular orbits: it
does not allow to consider initial conditions # € R® with i # 4. This is actually
the tricky part of the proof of the proposition.

Proof To mimic the previous proof, we would like to find a constant of the
motion .Z which is SO(2) invariant and so that D.Z vanishes on the orbit under
consideration. We cannot use H for this, since clearly Dy, H # 0, as we are
not dealing with a fixed point of the dynamics. On the other hand, as we pointed
out after the definition of relative equilibrium, when u,,, is a relative equilibrium,
then there exists an element ¢ of the Lie-algebra of the invariance group so that
Xpu(uy,) = Xe(uy, ) or, equivalently, so that
M}L* (H Fé‘- ) = 0.

In the present case, F is defined in (23), the invariance group is a one-dimensional
rotation group and the statement becomes: there exists n € R so that

(H—np«-L) =0, (70)

u,l*
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since, as we saw in Sect. 3.1, iy - L generates rotations about the pt«-axis. So here
£ = nu«. Since, for all u € R®

D,H = (V'(lq)g.p).  Du(ptx-L) = (p A s Jix A ),
one easily checks that (70) is satisfied iff n = p, 2. This suggests to define
L) = H(u) — p s - L(u)

and to try using it as a Lyapunov function. .Z is often referred to as the “augmented
Hamiltonian”. Note that the theory of Lagrange multipliers implies that (70) is
equivalent to the statement that the restriction H,, of H to X,  has u,, as a
critical point. Hence the circular orbits can be characterized as the critical points
of H,,, . This is a general feature of relative equilibria of Hamiltonian systems with
symmetry, as shown in Theorem 7.

The main ingredient of the proof is the following statement:

3> 0,Yveob,, Ywe (T,0,,) NT,5,,, D Lww >clwl>. (71

This is a lower bound on the Hessian of . restricted to the two-dimensional
subspace of R® spanned by the vectors tangent to X, [see (24)] and perpendicular
to the dynamical orbit 0,,, C X, . It will allow us to show the following lower
bound on the variation of the Lyapunov function, which is to be compared to (2):

38>0,c>0,Vu € Z,,,

(dw', 0,,,) <8§=Lu)— L) = cd*W,0,,)). (72)

Upx

Note that this immediately implies that H,, attains a local minimumon &, .
To show (71), note that the three vectors

=Ly e (0) e=()
—(p—*)q P q

form an orthogonal basis of T, %, , for each point v = (q,p) € O,,; e is easily
seen to be tangent to 0,,, so that ¢, and e3 span (7, ﬁu*)l NT,X,,. A simple but
tedious computation then shows that the matrices of D? (i« - L) and of D2H in this

basis are
2
20 0 42 [(;—) —1}
D} (s - L) = 0 -2 0

143 [(Z—)z - 1} 0 203
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and
V' (px)pyx' 0% 0 (V'(px)ps' = Do
D;H = 0 V" (px)p2 + 02 0
(V'(p)ps" = Do 0 V'(px)pi ' os + pi

The estimate (71) now follows immediately from the hypothesis that V(o) p2 +
302 > 0.

We now turn to the proof of (72). Let ' € X, . Then there exists v’ € 0,, so
that d(v/, 6,,) = |’ — v'|| and as a result, one has that ' — v’ € (Ty 0,,) . We
can write

W=u—v+v=v4+w-0)+w-v)L.
Here (1’ —v') 1 is perpendicular to 7,y ¥, , and (u’ — v’) belongs to 7,y ¥,,, and is
perpendicular to T,y 0, since u’—v" is. Now remark that, since Dy L((«'—v")) = 0,
and since u’,v" € ¥,

0= L) = L") = Dy L((' = ") 1) + O([lu’ = v'|). (74)

It is easily checked that, for each v’ € Oy,, » the restriction of Dy L to (T EM*)J- is
an isomorphism. It follows that there exists a constant C so that

I —v) o]l < Cll@ — v (75)

Note that this constant is independent of v" € €, since, for all R € SO(3), and for
all u € RS,

Pr o DyL o Pp—1 = Dgy L,
where @, defined in (22), is an isometry. Returning to (74), and using this last
remark, we conclude there exists a constant cq so that, for ||’ — v’|| small enough,
one has
G =)l = flu =o' = [ = v") L] = collu” —v']. (76)
We can now conclude the proof of (72) as follows, using (75), (76) and (71):
L)~ Lwy,) =LW)—-ZLW)

1
=D, L —v) + zDi/z@/ — v =) +o(flu’ —v'|P)

1 / /
= EDﬁ/-i”((u/ =) @ =) + Ol = V') + o(llu’ — ")
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1
FDU L =) =)+ ol =)

v

1
el =y I+ o(llu’ —v'|1%)

v

Cllu’ —v'|)* = ed* Ou)-

Remark that as before, the constant ¢ is independent of v’ € &), . This shows (72).
Note that we used the boundedness of D%,.Z , uniformly in v’ € ﬁuu* .
We can now prove orbital stability, namely:

Ve>0,38>0,Vu' €eR®, (d(u',0,,,) <8=VieR AW (1), 0,,,) <¢).
a7

For that purpose, we propose three different arguments.

First Argument We proceed by contradiction, as before. Suppose there exists
€ > 0and foreachn € N, u/, € R® and t, € R such that d(u,, uy,) < % and
d(u, (1), ﬁuﬂ*) = €. We can suppose, without loss of generality, that 2¢y < §,
where § is given in (72). We know that £ (u),(t,)) = -Z(u,,), since .Z is a constant
of the motion. Hence

lim 2, (1) = L () = o

Since the orbit ﬁuu* is bounded, and since d(u(,), ﬁuu*) = ¢, it fol-
lows that the sequence u/(#,) is bounded; we can therefore conclude that
lim,— oo d(u),(t,), X)) = 0. (In other words £ satisfies Hypothesis F, see
Lemma 5.) As a consequence, there exist w, € X, so that ||w, — u],(t,)|| — 0. We
can now conclude. Since, for n large enough, % < d(wy, ﬁuu*) < %eo, we have

L) — L (up,) = L, (1) — L (up,)
= L, (tn) — L (wn) + L (Wn) — L (up,)
> LW, (1) — L (wy) + cd®(Wn, Ou,,)-

The sequences u)(t,) and w, are bounded. This, combined with the uniform
continuity of .Z on bounded sets, leads again to a contradiction upon taking
n — +o0.

Second Argument The second proof uses the fact that the relative equilibrium
uy, , which gives rise to a circular orbit, belongs to a continuous family u — u,, of
such equilibria, defined on a neighbourhood I C R? of 1. We will only sketch the
argument, the general case is treated in Theorem 10. One first observes that, for
belonging to a suitably small neighbourhood of i+, both (71) and (72) hold, with
W« replaced by u, and with u-independent ¢ and §. This allows one to prove that the
equilibria u,, are orbitally stable with respect to perturbations of the initial condition
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within X, that is:

Ve > 0,38 >0,Vu' € X, (d(u’, O,)<8=>VieR, d(u' (1), O,,) < €).
(78)

Indeed, suppose that this is not true. Then there exists €y > 0, and for each n € N*,
u, € Xy, t, € Rsothatd(u), u,) < % and d(u,,(t,), 0,,) = €o. Since we can choose
€y < 8, we can apply (72) to write

L) — L) = LWy (tn) — L () > cd(W)(tn), Ou,)* = cxég.

Taking n — +o00 leads to the desired contradiction. It remains to prove (78) with
“Yu' € X, replaced by “Vu € R®.” For that purpose, note that, if ' € R® is close
to uy,, then = L(u') is close to 4« and hence u,, close to u,,. So u’ is close to
u,,. Hence u'(t) remains close at all times to &,,, by (78). Now, since &), is close to

Oy, the result follows.

Third Argument If (71) had been valid for all w € (T, 0, " )J', the first argument
above would have been slightly easier, since we could then have mimicked the proof
of Proposition 2 directly. As it stands, we were able to first show (72), which is valid
only for v € X, and which shows .Z, restricted to X, , attains a local minimum
on the orbit. This immediately implies an orbital stability result for perturbations u’
of the initial condition u,,, that stay within X, _, as is readily seen. But to obtain a
stability result for arbitrary perturbations u’ € R® of the initial condition Uy, WE
had to work a little harder and invoke Hypothesis F (see Sect. 8.3), which may fail
in infinite dimensional problems, as we will see. It turns out that (71) is not valid®
forallw € (T, 0,,, ). However, it is possible to adjust the Lyapunov function .
so that this is the case. Consider, for all K > 0,

Lx(w) = L () + K(Lwu) — pue)*. (79)

Note that the additional term vanishes on X, where £k reaches an absolute
minimum. We now show

3%>0,K>0,Yve b, Ywe (T,0,,) ., D Llv,w)=elw|>.  (80)

Uy

For that purpose, introduce, for each v = (¢, p) € 0,

sk

ey = coes=1. ), ee=—F—7—=|_ 1) (81)
( 0 qAnp V3 + 02 \p«p

8This can be seen from a straightforward computation, which is most readily made in the basis ¢;
introduced in (73) and (81).



Orbital Stability: Analysis Meets Geometry 183

which, together with ey, e;, e3 in (73) form an orthonormal basis of RS. Clearly,
D,(L— u*)z(w) =0, forallv € ﬁuﬂ* and for all w € R®. Moreover, if N1, M2,1M3 €
R3 form an orthonormal basis, then

3
DL — pa)*(w,w) =2 [Dy(ni- W),
i=1
with
Dy(ni-LYw) =wi-(pAn) +w2-(ni Aq), w= (wi,w) € RS
)J_

Now, writing w = Z§=z ajej € (T,0,,, )" andusing 1 = q,m2 = p, N3 = g AP,

j
we find
DAL= 1, w) = 2[0302 + @202 + 0262 + 07)]
> 2min{o7, p} [of + 2 + of]. (82)
We can now conclude the proof of (80) as follows. We write w = wy + wp with

wa = ores + aze; and wp = aueq + 0ses + ageg. Then there exists a constant
C > 0, independent of v € ﬁuu* , so that

D> Zx(w,w) > D>.Z(w,w) + 2K min{o2, p2}||ws|?
> D} % (wa,wa) + 2K min{o], o3 }Hwgll*> — C[Iwalllwsll + llws*] -

Using (71), one finds that, for all m > 0,

Cm? : C
D} Zww) = (= 5= ) Iwal + (2K minfo?. o2} = C = == ) wal .

where we have applied Young’s inequality to the term |w,||||wg|. Choosing m
small enough and K large enough, one finds (80). We can now prove the following
statement, which is to be compared to (72): 38, ¢ > 0 so that, for all ' € RS,

du/, Ou,,) <8= L) — Ly(uy,) > Ad*, Ouy)- (83)
Indeed, for all &’ € RS, there exists v’ € Oy, sothatu’ —v" € (Ty ﬁuﬂ*)l. Hence
ZxW') = ZL(uy,) = L) — L) > gllul — V'[P +O(lu’ = v'|).

This implies (83), from which orbital stability follows by the now familiar argument.
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We point out that the core ingredient of all three arguments in the proof is
estimate (71). Its proof constitutes the only truly model-dependent part of the proofs
of orbital stability via the energy-momentum method. This will become clear in
Sect. 8 where we will show how a suitably adapted version of this estimate implies
orbital stability in a general infinite dimensional setting as well (Theorems 9-11).

As a second remark, note that (72) allows one to prove immediately the
orbital stability for perturbations of the initial condition that preserve the angular
momentum. The three strategies of the proof above therefore concern three different
methods for extending this result to arbitrary perturbations of the initial condition.
The same structure of the proof will be apparent in the general situation treated in
Sect. 8.

The first argument in the above proof is the one used in [53, 54]. It has the
disadvantage of using Hypothesis F, which, while obvious in finite dimensions, may
not hold in infinite dimensional systems, notably when the group G, is not one-
dimensional (as in [54]). We will illustrate this phenomenon in Sect. 8. It has the
advantage—when Hypothesis F does work—of not using the fact that the relative
equilibrium under consideration belongs to a continuous family.

The second argument seems to go back to Benjamin (see Sect. 11) and is used for
example in [104], and in [40, 41]. For this argument the existence of a continuous
family of relative equilibria is needed but not Hypothesis F.

The third argument is commonly used in the literature on finite dimensional
Hamiltonian systems [84], and appears also in [99] in the infinite dimensional case.
It is not universally useable, since it depends on the existence of a G-invariant
Euclidean structure on the dual of the Lie-algebra of G, as we will see in Sect. 8.

6 Hamiltonian Dynamics in Infinite Dimension

The modern formulation of Hamiltonian dynamics has been adapted to the frame-
work of infinite dimensional Banach manifolds in [19, 74]. This approach is not well
suited for our purposes for two reasons. First, we are interested in flows defined by
the solutions to (nonlinear) partial differential equations that are defined on Banach
(or even Hilbert) spaces, for which a general Banach manifold formulation is overly
complex. In addition, the notions of “Hamiltonian vector field” and “Hamiltonian
flow” introduced in [19] seem too general for the purpose of studying stability
questions. We therefore present a simpler and more restricted framework that is well
adapted to the analysis of the stability questions that are our main focus, including
for nonlinear Schrodinger and wave equations.

Our main goal in this section is thus to give a workable and not too complex
definition of “Hamiltonian dynamical system” or of “Hamiltonian flow” in the infi-
nite dimensional Banach space setting (Sect. 6.2). The formalism allows us to easily
obtain general results on the link between symmetries and conserved quantities for
such systems, as in the finite dimensional case (Sect. 6.3). This link is indeed an
essential ingredient for the identification of relative equilibria and the construction
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of coercive Lyapunov functions in Hamiltonian systems with symmetry, as we shall
explain in Sect. 7. Several examples of Hamiltonian PDE’s that fit in our framework
are given in Sect. 6.5. Although this section is self-contained, the reader unfamiliar
with finite dimensional Hamiltonian dynamical systems and their symmetries may
find it useful to consult Appendix section “Hamiltonian Dynamical System with
Symmetry in Finite Dimension” for a concise and self-contained treatment of this
case. We will make regular use of the notation and concepts introduced there.

6.1 Symplectors, Symplectic Banach Triples, Symplectic
Transformations, Hamiltonian Vector Fields

We first generalize the notion of symplectic form to the infinite dimensional setting
and introduce the equivalent notion of symplector (Definition 7). It turns out that,
in the infinite dimensional setting, it is convenient to treat the latter as the central
object of the theory, rather than the symplectic form itself, as is customary in finite
dimensions. As we will see, the two approaches are perfectly equivalent.

We need some preliminary terminology. Let E be a Banach space and B : EXE —
R a bilinear continuous form. We can then define, in the usual manner, forall u € E,
Jsu € E* via

Fsu(v) = B(u, v).

It follows easily that _#p : u € E — _Zpu € E* is linear and continuous, with
| Zsll = [IB|l. We will write #Z s, = Ran_¢p. Conversely, given a continuous
linear map # : E — E*, one can construct B s (u,v) = (_#u)(v). We introduce
the following terminology:

Definition 6 A bilinear continuous form B is non-degenerate (or weakly non-
degenerate) if _Zp is injective. It is strongly non-degenerate if _Zp is both injective
and surjective. Similarly, a linear map ¢ : E — E* is said to be (weakly) non-
degenerate if it is injective, and strongly non-degenerate if it is a bijection.

Definition 7 We now introduce the notion of symplector.”

(i) A symplector or weak symplector is a continuous linear map ¢ : E — E*
that is injective and anti-symmetric, in the sense that

(J W) @) = =7 v)u).

If in addition _# is surjective, we say it is a strong symplector.

9This object does not seem to have been blessed with a name in the literature, so we took the liberty
to baptize it.
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(i) A (strong) symplectic form w is a (strongly) non-degenerate bilinear continu-
ous form that is anti-symmetric.

(iii) When _¢ is a (strong) symplector, we will say (E, ) is a (strong) symplectic
vector space, or simply that E is a (strong) symplectic vector space, when there
is no ambiguity about the choice of _#.

There clearly is a one-to-one correspondence between (strong) symplectors and
(strong) symplectic forms. Note that the definition implies that

Va.pe Ry, a(f7'8) =—B(F ). (84)

The following examples of (strong) symplectors cover all applications we have
in mind in these notes. Let %" be a real Hilbert space and set E = % x % . Then

 :(q.p) €E— (—p.q) €E*

is clearly a strong symplector. Here we wrote u = (¢,p) € # x ¢ and used the
Riesz identification of E with E*. The corresponding strong symplectic form is

wywu)=q-p'—q -p,

where - denotes the inner product on J#. The analogy with (209) is self-evident:
there .# = R”", where R" is equipped with its standard Euclidean structure. Note
that if Q is a bounded self-adjoint operator on " with KerQ = {0}, then

J :1(q.p) €E— (=0p.Qq) € E*

is also a symplector with
wywu')=q-0p'—p-0q'.

We will need the following straightforward generalization of the above construction.
Let K2 be a positive (possibly and typically unbounded) self-adjoint operator on
4, with domain Z(K). Introduce, for all s € R, % = [Z2((K)*)], where
(K) = /1 + K? and where (K)® is defined by the functional calculus of self-adjoint
operators. Here [Z((K)*)] denotes the closure of Z((K)*) in the topology induced
by the Hilbert norm

lleells == 1K) ]l

Note that, since (K)* : (Z((K)*), ||-]ls) = (Z((K)~*), ||-|) is an isometric bijection,
it extends to a unitary map from JZ; to J# for which we still write (K)*. With
these conventions, we can then make the usual identification between 7. * and J#_;:
Yv € #_,, we define

ueX;—v-uck,
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by setting v - u := (K) v - (K)*u. Note that
Vs, s eR, s<s = Ky C K.

Itis easy to see using the spectral theorem that this is an inclusion as sets, and we will
therefore not introduce explicit identification operators to represent such inclusions
which are moreover continuous for the respective Hilbert space topologies. The
typical example of this construction to keep in mind is K> = —A on ¢ = L*(R?).
We then have .#; = H*(R?), the usual Sobolev spaces.

Fors = (s1,52) € R?, we define E; = #;, X .;,. Defining a partial order relation
by s < s"iff s; <] and s, < s/, we have

Vs,s e R?, s<s = Ey CE,.
Setting s = (s7, s1) we then define

Fs:u=(q,p) € Eg — (—p,q) € E;. (85)

The following lemma is now immediate.

Lemma 2 _Z is a weak symplector if and only if s > —s». In that case
Js:u=(q,p) €E;— (—p.q) €e E; CE_, = E].

We have #s := X 4, = Es5. And /S_l = /_S‘EE' IfK? is unbounded, Hs is a strong
symplector if and only if s1 = —s».

Typical examples of this construction are the use of E = Ej/2 —1/2) or of E = E g
with 7" = L?(R?) and K?> = —A to study the wave equation. For the Schrodinger
equation, £ = E(j 1) is a natural choice. We refer to Sect. 6.5 for the details of these
examples. Note that of these three examples, only the first corresponds to a strong
symplector and hence to a strong symplectic form. It is therefore clear that the use
of weak symplectors is unavoidable in applications to PDE’s.

We end our discussion of symplectors with a simple lemma that collects some of
their essential properties.

Lemma 3 Let E be a Banach space and 7 : E — E* be a bounded linear map.
Then the following holds:

(i) If # is a strong symplector, then ¢ ~' is bounded.
(ii) If 7 is injective and (anti-)symmetric, and if E is reflexive, then & y is dense
in E*.
(iii) Suppose Z is injective and (anti-)symmetric, and that its inverse is bounded
on % y. Suppose E is reflexive. Then % y = E*.

Proof

(i) This is a consequence of the open mapping theorem.
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(ii) Suppose v € E satisfies Zu(v) = Oforallu € E. Then Zv(u) = 0 for all
u € E, by (anti-)symmetry. Hence #v = 0 and hence, since ¢ is injective,
v = 0. Since E is reflexive, this means that, if v € E** vanisheson #Z , C E¥,
then v = 0. This implies # 7 is dense (Hahn-Banach).

(iii) Since the inverse is bounded, Z 7 is closed. The result then follows from (ii).

If E is not reflexive, a symplector may not have a dense range, as the following
example'® shows. Let

E={ueL (R, dx) | / u(x)dx = 0} ¢ L'(R)
R

and define

X

u(y)dy € L*(R) C E*.

sue = [

This is clearly bounded, injective and antisymmetric. But it is clear that

I7u—=1oo = 1.

for all u € E. So the range is not dense in L>°(R) and a fortiori not dense in E*.

We are now ready to define what we mean by a symplectic transformation and by
a Hamiltonian vector field. First we recall a very basic definition: when F' : E; — E;
is a function between two Banach spaces E; and E3, and when u € E;, one says that
F is (Fréchet) differentiable at u if there exists D,F € .Z(E1, E,) so that

li |1F(u+ w) — F(u) — DuF(W)”Ez
mm

=0.
w—0 Iwll,

Also, one says that F : E; — Ej is differentiable on some subset of E if for all u in
that subset, F is differentiable in the above sense.

In particular, if E; = E,E, = R, and if F is differentiable at # € E, we have
D,F € E*. And if & is a domain in E, saying that F : E — R is differentiable on 2
means that F is differentiable at each u € 2. In that case, one can define

ue 9 CE— D,JF €E”.

As a last comment, we stress that, in these definitions, the only topology used
is the one on E. This is important to keep in mind in the applications, where
the domain Z often carries a natural topology, stronger than the one induced by
the norm on E, and for which 2 is closed. One can think of E = H'(R) and
9 = H*(R). Such a topology is NOT used in the above statements, nor in the

10Dye to S. Keraani.
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following general definition. We refer to the examples treated in Sects. 6.4 and 6.5
for several illustrations of this last comment.

Definition 8 Let E be a Banach space, Z a domain in E (See Sect.2.1) and ¢ a
symplector.

(i) We will referto (E, 2, ¢ ) as a symplectic Banach triple.
(i) Let (E, 2. #) be a symplectic Banach triple and @ € C°(E,E) N C'(Z,E).
We say @ is a symplectic transformation if

Yue P, Yo,we E, (_ID,Pv)(D,P(w)) = (_Zv)(W). (86)

(iii) We say that a function F : E — R has a _Z-compatible derivative if F is
differentiable on 2 and if, forall u € 9, D,F € % ' 7 - In that case we write
F e Dif(2, 7).

(iv) For each F € Dif(2, #), the Hamiltonian vector field Xp : 9 C E — E
associated to F is defined by

Xr(w) = #7'D,F, Vue 9. (87)

The analogy between (86) and (225) as well as between (87) and (218) is evident.
Note however that, when dealing with weak symplectors, as is often the case in
applications, the vector field Xy does not inherit the continuity or smoothness
properties that F' may enjoy. In particular, even if

DF:9 CE—E*

is continuous, the same may not hold for Xr. We shall for that reason avoid making
use of the vector fields X7 where possible and state all our hypotheses in terms of
F directly. We finally point out that, here and in what follows, and unless otherwise
specified, all functions we consider are globally defined'! on E.

6.2 Hamiltonian Flows and Constants of the Motion

Definition 9 Let (E, 2, #) be a symplectic Banach triple. Let F € Dif(Z, #). A
Hamiltonian flow for F is a separately continuous map @7 : R x E — E with the
following properties:

(i) Forallr,s e R, ®f = &f o ®F & =1d;
(ii) Forallt € R, ®f(2) = 2;

This is a difference with [19], as we will explain in some detail in Sect. 6.4.
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(ili) Forallu € 2, the curvet € R — u(t) := ®F(u) € 9 C E is differentiable
and is the unique solution of

Ju(t) = DypF, u(0)=u. (88)

Local Hamiltonian flows are defined in the usual way. We refer to (88) as the
Hamiltonian differential equation associated to F [Compare to (219) and (212)] and
to its solutions as Hamiltonian flow lines. Note that in this setting separate continuity
implies continuity (see [19], Sect. 3.2). We refer to Sect. 6.5 for examples of PDE’s
generating Hamiltonian flows.

To compare this definition to the ones of [53, 54, 99], we first observe that (88)
implies that, forall u € 2,

d
Yo €%y, —aa(u(t)) = DyyF( 7 '), (89)

which is a weak form of (88). With this in mind, one could think of changing
Definition 9 by replacing (iii) by the following alternative statement'?:

(iii’) Forallu € E, the curvet € R — u(t) := &f(u) € E belongs to C(R, E)
and (89) holds.

This has the advantage of eliminating the introduction of the domain & [and
therefore of condition (ii)] and is precisely the definition of “solution” to (88) used
in [53, 54]. In [99], E is a Hilbert space and still a different formulation is adopted.
Basically, the domain Z is not introduced, the Eq. (88) is interpreted as an equation
in E* and the time derivative is understood as a strong derivative for E*-valued
functions. Those alternative formulations do not allow for a direct proof of the kind
of natural “conservation theorems” such as Theorem 5 below, that are typical for
Hamiltonian systems and that we need for the stability analysis. As a result, the
conclusions of such conservation theorems are added as assumptions in the general
setup of the cited works. It turns out that, in examples, the proof of such assumptions
requires a stronger notion of “solution” than the ones used in [53, 54, 99], so we
found it more efficient to adopt from the start the stronger notion of Hamiltonian
flow found in Definition 9.

Let us finally point out that the formulation adopted in [99] puts further
restrictions on _#, ruling out for example the treatment of the wave equation
as a Hamiltonian system as in Sect.6.5. Also, only one-dimensional invariance
groups are considered there, and restrictions on their action rule out, for example,
the consideration of the translation group as a symmetry group for the nonlinear
homogeneous Schrodinger equation. The formalism does therefore not apply to
the study of the orbital stability of the bright solitons in (44). On the other hand,

2Note that for this formulation one needs F € Dif(E,R), but it is not necessary that it has a
_Z -compatible derivative.
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it can and has been used to study the orbital stability of standing waves of the
inhomogeneous nonlinear Schrodinger equation. We refer to Sect. 10 for more
details.

Definition 10 Let F,G € Dif(Z, ). Then the Poisson bracket of F' and G is
defined by

{F,G}(u) = D,F(_#"'D,G), Yue 9. (90)

Equation (90) is the obvious transcription of (220) to the infinite dimensional
setting. We now have the following crucial result, which is a simple form of
Noether’s Theorem in the Hamiltonian setting. A more complete form follows below
(Theorem 6).

Theorem S Let (E, 2, ) be a symplectic Banach triple. Let H, F € C(E,R) and
suppose they have a 7 -compatible derivative, i.e. H,F € Dif(9, ¢). Suppose
there exist Hamiltonian flows ®, ®F for H and F. Then:

(i) Forallu € 9, and forallt € R,
d
3 (@ W) = {H.FY(®/ (). 1)

(ii) The following three statements are equivalent:

(a) Forallu e 9, {F,H}(u) = 0.
(b) Forallu € E, and forallt € R,

(Ho®F)(u) = H(u). (92)
(c¢) Forallu € E, and forallt € R,
(F o &™) (u) = F(u). (93)

In this result, the roles of H and F are interchangeable. But in practice, one of
the flows, say cD,F , is simple, explicitly known, and often linear, whereas @rH is
obtained by integrating a possibly nonlinear PDE of some complexity, such as the
nonlinear Schrédinger or wave equations. It is then often very easy to check by a
direct computation that H o @/ is constant in time for all u € E: one says that H
is invariant under the flow @/, or that the @/ are symmetries of H. The important
conclusion of the theorem is that this implies that F is a constant of the motion for
@ . This is a strong statement, since in applications, the flow @/ is complex and
poorly known. So being able to assert that it leaves the level surfaces of F invariant
is a non-trivial piece of information. Several examples are given in Sect. 6.5.
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Proof

(i) Letu € 2. Thent € R — H(®f (1)) € R is differentiable and the chain rule
applies: writing u(f) = ®F (u), we have

d
aH(qbrF(”)) = Dy, H (1)),

which yields the first equality in (91) since _Z u(f) = Dy, F.

(i) That (92) or (93) imply {H,F}(u) = O for u € % is immediate from
(i). Conversely, it follows from (i) and the fact that {H, F}(u) = 0, for all
u € 9, that (H o ®/)(u) = H(u). Since Z is dense in E, H € C(E,R) and
dﬁtF € C(E,E), (b) now follows for all u € E. Similarly for (c).

It should be noted that condition (ii) of Definition 9 is crucial here. We are
assuming there is a common invariant domain for both flows. To obtain conservation
theorems of the above type without such an assumption requires other technical
conditions [19].

We end with some technical remarks. First, it follows from Theorem 18 in the
Appendix, that Hamiltonian flows @/ are symplectic as soon as F € C*(E, E) and
®F € C*(E,E). But these two assumptions (especially the latter) are generally
too strong to be of use in infinite dimensional dynamical systems generated by
PDE’s, except possibly when they are linear. Of course, one can conceive of weaker
conditions that imply the result. For efforts in that direction, we refer to [19]. In
other words, proving that Hamiltonian flows, as defined above, are symplectic, can
be painful. A second, related issue is the following. In finite dimensional systems,
we know that, if {F|,F,} = 0, with F|,F, € C2*(E), then the corresponding
Hamiltonian flows commute: see (222) and Lemma 9. This is a very useful fact:
indeed, computing a Poisson bracket is a routine matter of taking derivatives, and
the information obtained about the flows is very strong. Again, this is not immediate
in infinite dimensional systems under reasonable conditions. For our purposes, and
in particular for the proof of Theorem 6, the following analog of Lemma 13 will
suffice.

Lemma 4 Let (E, 2, #) be a symplectic Banach triple. Let ® be a C'-diffeo-
morphism on E and suppose that ®(P) = 2 and that @ is symplectic. Let F €
Dif(2, #) and let Xr be its Hamiltonian vector field. [See Definition 8(iv).] Then,
Fo® eDif(2, #)and, forallu € 9

D, ®(Xpop (1)) = Xp(P(u)). 94)
Moreover, forall t € R,
Do Pod! = f. (95)

In particular, if F o @ = F, then @ commutes with ®F, for all t € R. Finally, if
F € C'(E,R) and if @ commutes with ®F, for all t € R, then there exists ¢ € R so
thatFo® =F +c.
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Proof The proof is very close to the one of Lemma 13. It gives a good illustration
of the technical difficulties associated with the domain 2. Since F € Dif(Z, ¢)
and since @ € C!(E, E) and leaves Z invariant, one can compute, for all u € & and
v EE,

Du(F o @)(U) = Dq)(u)FDu(p(v) = [/XF((D(M))] DL,CP(U)
= — [/ D.2(®)] Xr(@W))).

Since @ is symplectic, this yields

D,(F o ®)(v) = — [ Zv] (D] Xp(@w))) = [ 7 [Du®]™ Xp(@w))] (v).

This shows D,(F o @) € % y and that Xrog (1) = [D, @]~ (Xr(D(u)), for all
u € 9. Finally, considering for each u € & the strongly differentiable curve ¢ €
R—> & lo @f o @ € E, one checks readily that it is the flowline of Xpop with
initial condition u, which concludes the proof.

The point here is that we suppose @ to be a symplectic transformation. As we just
saw, that is a strong assumption. In practice, to avoid the difficulties just mentioned,
we will always assume that the symmetry group of the system under consideration
acts with symplectic transformations. Since the latter are often linear, that they are
symplectic can then be checked through a direct computation. We finally point out
that, if one wanted to exploit the presence of a formal constant of the motion with
a nonlinear flow, such as in completely integrable systems, it could in general be
difficult to prove it acts symplectically and commutes with the dynamics. This, in
turn, makes it difficult to exploit such formal constants of the motion in the stability
analysis that is our main interest here.

6.3 Symmetries and Noether’s Theorem

When dealing with a symplectic Banach triple, the appropriate type of group action
to consider is the following.

Definition 11 Let (E, 2, #) be a symplectic Banach triple. Let G be a Lie group
and @ : (g.x) € G X E — ®u(x) € E, an action of G on E. We will say @ is a
globally Hamiltonian action if the following conditions are satisfied:

(i) Forall g € G, ®, € C'(E,E) is symplectic.
(ii) Forallg € G, 9,(2) = 2.
(iii) For all £ € g, there exists Fz € C'(E,R) N Dif(Z, #) such that @expe) =
@,FE, and the map & — F is linear.

This definition reduces to Definition 14 in the Appendix, for finite dimensional
spaces E: in that case Z = E and the restriction that F € Dif(Z, _#) is superfluous.
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We can now state the version of Noether’s Theorem that we need. It links the
invariance group of Hamiltonian dynamics to constants of the motion and is to be
compared to the finite dimensional version given in the Appendix (Theorem 19).
As in (230), we will identify g and g* with R” and view F asamap F : E — R”
[See (232)]. This allows us to write

F'%':;;'.F'7

where - refers to the canonical inner product on R™.

Theorem 6 Let (E, 2, ) be a symplectic Banach triple. Let G be a Lie group and
& a globally Hamiltonian action of G on E. Let H € C'(E,R) N Dif(2, ¢) and
let ®H be the corresponding Hamiltonian flow. Suppose that

VgeG, Hod,=H. (96)

Then:

(i) Forall& € g, {H,F¢} = 0.
(ii) Forallt € R, Fg o @1 = Fy.
(iii) G is an invariance group"® for ®H.

This is an immediate consequence of Theorem 5 and Lemma 4. In the applications,
the result is used as follows. The action @ of G is simple and well known. It is then
easy to check (96) directly. One then concludes that (ii) and (iii) hold, which are
the important pieces of information for the further analysis. In particular, the level
surfaces X, defined in (10) are invariant under the dynamics ®//. Examples are
given in the next section. The result in [19] that is closest in spirit to our Theorem 6
is Theorem 2 of Sect. 6.2.

Remark 3 For the statements of this section, we could have taken H, F € C(E,R)
rather than H, F € C! (E,R), but in applications, it is more convenient to take them
to be C!, as we will see in the next section.

6.4 Linear Symplectic Flows

Since invariance groups often act linearly on the symplectic Banach space (E, ),
and since the nonlinear dynamical flows studied often are perturbations of linear
ones, it is important to have a good understanding of linear symplectic flows. Their
study also sheds some light on the various technical difficulties mentioned above,
and in particular on the role of the domain &, the definition of Hamiltonian flow we
adopted, etc.

13See Definition 2.
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Proposition 4 below (which corresponds to Theorem 2 in Sect.2.3 of [19])
characterizes all strongly continuous linear symplectic one-parameter groups on
a symplectic Banach space in terms of their generators. We adopt the following
notation. Given a strongly continuous group of linear transformations on E, we
denote its generator by A, with domain Z(A). By the Hille-Yosida theorem, we
then know that t € R — u(r) = ®,u € E satisfies

w(t) = Ya(u(r)), 7
provided u € Z(A), where we introduced the vector field
Yyrue 9(A) CE— AueE.

Note that Y, is not continuous if A is an unbounded operator. Clearly, the @, form a
dynamical system as defined in Sect. 2. We introduce the function

Hy:ue P(A) - Hy(u) = %w/(Au,u) eR.

Observe that H4 admits directional (or Gateaux) derivatives 8,H4(v), for all u, v €

PD(A):
SuHAW) = lim - (Hy(u -+ 10) — Ha ()

Nevertheless, if A is an unbounded operator, Hy is not continuous since, for all
u,we Z(A)

Hy(u+w) — Ha(u) = @ 7 (Au, w) + o g (Aw, u) + o 7 (Aw, w)

and the last term in particular does not necessarily converge to 0 as w — 0 in the
topology of E. It follows that, a fortiori, Hy is not Fréchet differentiable.

Proposition4 Let (E, ¢) be a symplectic vector space. Let @, be a strongly
continuous one-parameter group of bounded linear operators on E. Let (A, Z(A))
be the generator of ®@,. Then the following are equivalent.

(i) The @, are symplectic, i.e. g (Pu, Pv) = w 4 (u,v) forallu,v € E;
(ii) Forallu,v € Z(A),

a)/(Au, V) = —a)j(u,Av);
(iii) Forallu € 2(A), one has

IY(u) = 8,Hy € E*. (98)
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In this case, §,Hx(v) = o s (Au,v), Ho(®;u) = Hy(u) for all u € Z(A) and for all
reR.

Proof The three equivalences are obvious. To prove Hy is a constant of the motion,
it suffices to remember that the Hille-Yosida theorem implies AQ,u = &D,Au
providedu € Z(A).

In other words, when the &, are symplectic, the equation of motion (97) can be
rewritten

Ju(t) = 8uwHa. (99)

which is to be compared to (88). Clearly, the symplectic linear flows considered
here are NOT Hamiltonian in the sense of Definition 9. Still, (99) gives meaning
to the idea that in infinite dimension as well, linear strongly continuous symplectic
flows are of “Hamiltonian nature,” with a quadratic Hamiltonian. Moreover, the
Hamiltonian Hy is a constant of the motion for the flow @;. But note that, whereas
in (92), the conservation of energy holds for all ¥ € E, this makes no sense here,
since Hy is only defined on Z(A).

Generally, because of the appearance of the Gateaux derivative rather than a
Fréchet differential in the right hand side, it turns out that the above formulation is
inadequate for various reasons. For example, the absence of a chain rule for Gateaux
derivatives prevents one from computing derivatives such as d%HA (u(?)) directly to
prove Hy is constant along the motion. In fact, in the proof above, this result is
proven using the Hille-Yosida theorem, and without computing a derivative at all.
This approach cannot work for nonlinear flows of course. Similar problems arise
when dealing with other constants of the motion than the Hamiltonian himself, even
in the linear case, due to various domain questions and the complications in defining
commutators. Finally, for our purposes, we need to restrict the motion to the level
sets of the constants of the motion, and to use their manifold structure. This requires
sufficient smoothness, a property not guaranteed at all by Gateaux differentiability
alone. Again, as pointed out before, an approach to the resolution of these technical
difficulties other than the one chosen here can be found in [19].

In applications to PDE’s, the function spaces that occur naturally are often
complex Hilbert spaces. To make the link with Hamiltonian dynamics, one then
proceeds as follows. Let 77 be a complex Hilbert space and let us write (-, -)
for its inner product. First, it is clear that .77 is a real Hilbert space for the real
inner product defined by Re(-, -), which induces the same topology on .7 as the
original inner product since both inner products have the same associated norm.
Let us write E for this real Hilbert space. We now identify E* with E using the
corresponding Riesz isomorphism. Note that this is not the same as identifying
JC* with A through the Riesz isomorphism associated to (-,-) and that there is
no natural identification between s#* and E* as sets: each non-zero element of
JC* necessarily takes complex values, whereas the elements of E* take real values
only.
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On the real Hilbert space E, one checks readily that
o(u,v) =Im(u,v) € R

defines a strong symplectic form. Note in particular that o is real bilinear, but not
complex bilinear. To identify the corresponding symplector # : E — E in a
convenient manner,'* one proceeds as follows:

w(u, v) = Re (iu, v)

so that _#Zu = iu. The reader should not let itself be confused by the fact that we
write iu, while considering u as an element of the real vector space E. The way to
see this is as follows: the real vector space E is, as a set, identical to .7#’. And on /7,
multiplication by i is well defined and actually an isometric complex linear map. So
multiplication by i is well defined on E as an isometric real linear map.

To sum up, we showed how to associate to a complex Hilbert space (7, (-, -)) a
real Hilbert space (E, (-, -)g) with symplectic structure

o(u,v) =( Zu,v)g, _Fu=iu.

Now let us return to the linear symplectic flows. Suppose B is a self-adjoint operator
on S, with domain Z(B). Then U, = exp(—iBt) is a strongly continuous one-
parameter group of unitaries.'> The corresponding Hille-Yosida generator is A =
—iB, with Z(A) = 2(B). Clearly, each U; is a symplectic transformation on E with
the symplectic form w. We are therefore in the setting of Proposition 4 and

Hi(u) = %(u,Bu). (100)

It turns out that in the applications we have in mind, the one parameter subgroups of
the symmetry group G act with such unitary groups on the relevant Hilbert space .77
But within this framework, as we pointed out above, the U, are NOT Hamiltonian
flows. To remedy this situation, one can, and we will, proceed along the following
lines. First remark that the function Hy above is C! if we view it as a function on the
Banach space E obtained by considering on Z(|B|'/?) the graph norm. And that
the flow U, is strongly differentiable on 2 := 2(|B|*/?), viewed as a subset of Ejp.
So now we are in the setting of Definition 9, and U, is a Hamiltonian flow on Ep, on
which ¢ still defines a weak symplector. The trouble with this reformulation so far
is that now the Banach space Ep and the domain & depend on B. If the symmetry
group is multi-dimensional, it will have several generators, and we need a common

1“We identified E* with E, so the symplector can be seen as a map from E to E.

5By Stone’s theorem, every strongly continuous one parameter group of unitaries is of this form.
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domain and Banach space on which to realize them all as Hamiltonian flows. We
will see several examples where this formalism is implemented.

In practice, very often, 5 = ¢ C = ¥ @i#,where £ isareal Hilbert space.
One has u = g + ip € J with q,p € 2. Then, clearly E = J# x JZ with its
natural Hilbert space structure. Moreover, identifying u € 57 with (¢, p) € & xZ,
clearly #(q,p) = (—p,q) and we are back to the examples of symplectors given
in Sect. 6.1.

6.5 Hamiltonian PDE’s: Examples

In this section we give some examples of PDE’s generating Hamiltonian flows in
the sense of Definition 9.

Let E = H'(R?,C), 2 = H*(R?,C) and consider the nonlinear Schrodinger
equation

iQuu(t, x) + Au(t,x) + Alu(t,x)|° u(t,x) =0

(101)
u(0,x) = uo(x)
introduced in Sect. 3.2, defined on R%, d = 1,2,3. Ford = 1, suppose that 3 <
o < o0 in the defocusing case and 3 < o < 5 in the focusing case. In dimension
d = 2,3, consider only the defocusing case and assume 3 < o < 1 + ﬁ. Let
@X . E — E be the global flow defined in (41). Recall that the existence of @X is
ensured by Theorem 2 and, thanks to Theorem 3, @X(2) = % forall t € R.
Our purpose is to show that Eq. (101) is the Hamiltonian differential equation
associated to the function H defined by (38) and @X = @/ forallt € R.
As explained in the end of Sect. 6.4, we usually identify u = ¢ + ip € H*(R?, C)
with (¢,p) € H'(RY,R) x H*(RY,R) for all s € R. Hence, let (E, Z, _#) be the
symplectic Banach triple given by

E = H'(RY,R) x H' (R4, R),
2 = H*(RY,R) x H*(RY, R),
J(q.p) = (-p.q), Y(g.p) € E.

Clearly f#u = iuand % y = E C E*. Now consider

/X o+1
\V/ 2 \v/ 2\ / 2 2 T,
(IValz: +1VplL:) P Rd(lQl + Ipl")

N =

H(gq,p) =

and remark that if we write u = g+ip with (¢, p) € E, H(u) = H(q, p) is exactly the
energy defined in (38). A straightforward calculation, using the Sobolev embedding
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theorem, shows that H € C?(E, R). In particular,

o—1
DypH = (=Aq.—Ap) — Al + |p]) 2 (q.p) € E*
which can be written as
D,H = —Au— Au|”u

in terms of u = ¢ + ip. Next, using the fact that the Sobolev space H*>(R9) is an
algebra for d = 1,2,3, we have DH(Z) C 92/ so that H has a _#-compatible
derivative on 2.

Moreover, the curve (g(1), p(t)) = @ (g, p) is the unique solution to

(q(1),p(1)) = (=Aq, —Ap) = Alq]* + |P|2)UT_1(CI7P) = Dy .penH

that is Eq. (88). As a consequence, ®@X is a Hamiltonian flow for H in the sense
of Definition 9, ®* = &/ and the nonlinear Schridinger equation (101) is a
Hamiltonian differential equation.

In Sect. 3.2, we prove directly from the equation that G = SO(d) x R? x R with
the action defined by (42) is an invariance group for the dynamics. In general, the
action of this group is not globally Hamiltonian. Nevertheless, let us consider the
subgroup G = R? x R and the restricted action

®: GXE—>E
(a,y,u) = D,y () = " u(x — a). (102)
Forall g € G, @, € C'(E,E) is symplectic, ®,(Z) = 2 and for all
§=.... 8811 €9,

point (iii) of Definition 11 is satisfied by taking Fy, = &F; with
Fiu) = —%/ A u() dx Vi = 1,....d, (103)
RY '
1 -
Fani == [ atout ax (104
2 R4

As a consequence the action @ of G onE is globally Hamiltonian. Moreover, in
Sect. 3.2, we showed that Ho®, = H, hence we may apply Theorem 6 and conclude
that F; o @' = Fy, that means that each F} is a constant of the motion.

Fmally we show that the action @ : (R, u) € GxE — ®p(u) = u(R™'x) € E of

= SO(d) on E is not globally Hamiltonian. For simplicity, let us consider d = 2
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and let us identify a matrix £ € so(2) with § € R

_ (0§
i= (%),
Then for each £ € R, Peypir) = @,F ¢ with Fe =&F and

F(u) = —é /R d(xlaxZ — X0y, Ju(x)ia(x) dx.

The issue is that F is not even well-defined on the Banach space H' (R?)!

Finally, let us remark that if we choose 2 = H*(R?) x H*(R?), then DH(Z) C
L*(RYxL2(RY) ¢ # s =H '(RY) x H'(RY) and H does not have a _# -compatible
derivative for this new choice of 2. In the same way, if we take E = L*(RY) xL>(R%)
and 2 = H'(RY) x H'(RY), the same function H is not even continuous.

We point out that the Manakov equation can be treated similarly. In that case, in
addition to the momentum, there are four constants of the motion associated to the
U(2) symmetry.

Next, let (E, &, #) be the symplectic Banach triple given

E = H'(RY,R) x L*(R?,R),
2 = H*(RY,R) x H'(RY, R),
J(q.p) = (-p.q), V(g.p) € E.

and consider the nonlinear wave equation

O2u(t, x) — Au(t,x) + Au(t,x)|” u(t,x) =0

(105)
u(0, x) = up(x), 0u(0, x) = up(x)

introduced in Sect. 3.4, defined on RY, d = 1,2, 3. Suppose A > 0 and o an odd
integer such that 3 < 0 < o0 in dimensiond = 1 and 3 < 0 < 1 + = for
d =2,3.Let ®X : E — E the global flow defined in (59). Thanks to the pers1stence
of regularity, we have @} (%) = Z for all 1 € R (see Sect.3.4).

As before, our purpose is to show that Eq. (105) is the Hamiltonian differential
equation associated to the function H defined by (58) and cDX @ forallz € R.

First of all, note that Z , = L*(RY) xH'(RY) C E* = 1(]Rd) x L2(R). Next,
consider

Hig.p) = 5 (191 + IplF) + / (gh°*".

and remark that if we write ¢ = u and p = d,u with (¢,p) € E, H(u) = H(q,p)
is exactly the energy defined in (58). As for the nonlinear Schrédinger equation,
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a straightforward calculation, using the Sobolev embedding theorem, shows that
H € C*(E,R). In particular,

DypH = (—Aq + Ag”"'q.p) € E*.

Next, using the fact that the Sobolev space H?(R9) is an algebra ford = 1,2, 3, we
have DH(Z) C % 7 so that H has a _# -compatible derivative on 2.

Moreover, the curve (u(7), du(r)) = @} (u(0),d,u(0)) is the unique solution
to (105). As a consequence, using u = g and d,u = p, we have that (q(¢), p(r)) =
@X(q, p) is the unique solution to

J(q(0), p() = (=Aq + A|q1°""'q.p) = D pupH.

that is, Eq. (88). Finally, if (¢,p) € 9, the curve t — ®(q,p) € C(R,2) N
C'(R,E). As a consequence, ®* is a Hamiltonian flow for H in the sense of
Definition 9, ¥ = &/ and the nonlinear wave equation (105) is a Hamiltonian
differential equation.

7 Identifying Relative Equilibria

We now dispose of the necessary tools that will allow us to characterize the
relative equilibria of Hamiltonian systems with symmetry and that will yield the
candidate Lyapunov function to study their stability. Before stating the main result
(Theorem 7), we recall some of the terminology used below, but refer to the
Appendices for details. First, for u € g*, we have [see (203)],

G, =1{geG|Adju = u};

g, g, are the Lie algebras of G and G,, respectively, and g*, g; their duals. We
always identify g* with R™ [see (204)]. Hence, if @ is a globally Hamiltonian action,
we think of its momentum map as a map F : E — R” and define, for all © € R",

Y,={u€E|F(u) = u}.
We then know from Proposition 10 that G, = G, provided the momentum map is
Ad*-equivariant.

Theorem 7 Let (E, 2, #) be a symplectic Banach triple. Let H € C'(E,R) N
Dif(2, #) and suppose H has a Hamiltonian flow ®. Let furthermore G be a Lie
group, and @ a globally Hamiltonian action on E with Ad*-equivariant momentum
map F. Suppose that,

VgeG, Hod,=H. (106)
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(i) Then G is an invariance group for ®H.
(ii) Letu € E and let u = F(u) € R™ >~ g*. Consider the following statements:

(1) uis a relative G-equilibrium.
(2) uis a relative G -equilibrium.
(3) There exists § € g, so that, forallt € R,

D (1) = Pexp(e) (1) (107)
(4) There exists § € g, so that

D,H—-§&-D,F =0. (108)
(5) There exists & € g so that

D,H—-§&-D,F=0. (109)

Then (1) & (2) < (3).

Ifue P, then(l) & (2) <= (3) < (4) & (5).

If in addition, u is a regular value of F [See Definition 12], then
(1) & (2) <= (3) & (4) & (5) & (6), where (6) is the statement:

(6) u is a critical point of H, on X, where H,, = H|2ﬂ.
In addition, & is then unique.

That (1) is equivalent to (2) is a particular feature of Hamiltonian systems. In
fact, its statement makes no sense outside of the Hamiltonian setting. It implies that,
if u is a G-relative equilibrium, it is automatically a relative equilibrium for the
smaller group G,,. So the relevant invariance group depends on the point u through
the value u = F(u) of the constants of the motion at u. This is important since, as
we will see in Sect. 8, one then ends up showing u is G,.-orbitally stable, which is a
stronger result than G-orbital stability. We already saw examples of this mechanism
in Sect. 5. The proof of the equivalence between (1) and (2), although very simple,
uses the subtle relations between constants of the motion and symmetries for
Hamiltonian systems explained in the previous section.

For our purposes, the most interesting information obtained in this result is the
observation that if u € & satisfies (108), sometimes referred to in the PDE literature
as “the stationary equation”, then it is a relative equilibrium. And that, if @ is a
regular value of F, those solutions are precisely the critical values of H,. This means
that, given a Hamiltonian system with symmetries, one can find relative equilibria
by looking for critical points of the Hamiltonian H restricted to the surfaces X,.
In practice, this can be done concretely by solving (109), which in applications to
Hamiltonian PDE’s often takes the form of a stationary PDE in which £ is treated as
a (vector valued) parameter. Examples are given in the following sections. See also
Sect. 5 for examples in finite dimension.
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One immediately suspects that the Lagrange theory of multipliers for the study
of constrained extrema should be of relevance here. This is indeed the case:
introducing, on E, the Lagrange function

YveE, ZL()=HWwW)—E&-F(v), (110)

one sees that (109) expresses the vanishing of its first variation at u: D,.Z = 0. Here,
& € g ~ R™ plays the role of a Lagrange multiplier. From the experience gained
with the examples given so far, one suspects that, to show u is a stable relative
equilibrium, one could try proceeding in two steps. First, show u is not just a critical
point, but actually a local minimum of H,, by studying the second variation of the
Lagrange function .# on X,. Next, use the Lagrange function as Lyapunov function
in the proof of stability. Indeed, u € X, is a local minimum of H, if and only if

dp>0,YVveX,, dw,u) <p=H,(v)—H,(u) >0,
which is equivalent to
dJp>0,YveX,, dvu) <p=2LWv)—ZL@u) >0,

since F is constant on X,. This is clearly the strategy used in the proofs of Sect. 5.
We will see in Sect. 8 how to implement it in a general setting and give examples
from the nonlinear Schrodinger equation in Sects. 9 and 10. This is the approach
that goes by the name of energy-momentum method.

Proof

(i) This is an immediate consequence of Theorem 6(iii).

(i) (1) & (2). If u is a relative G-equilibrium, then there exists, for each t € R,
g(t) € G so that @ (u) = Py (u). Since u € X, so is D/ (u), since F is a
constant of the motion for H, by Theorem 6(ii). Hence

1= Fu) = F(® () = F(Pg(w) = Ady, .

It follows that g(f) € G, which concludes the argument. The reverse
implication is obvious.

(3) = (2). Obvious from the definition.

Now suppose u € 2.

(3) & (4). Suppose (3) holds. Since u € &, this implies that /_IDMH =
_Z7'D,(& - F), which implies (4). Now suppose (4) holds. Since u € 2 and
since H o @ = H and F; o ®} = F; by Theorem 6(ii), we have, for all 1 € R,

DgiyHD @' = D,H, Dy, (& - F)D,® = Dy(§ - F).

Writing u(t) = @[ (u), this yields DyH = Dy (§ - F) so that Zu() =
Dy (€ - F), which shows t — u(?) is a flow line of the Hamiltonian & - F, with
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initial condition u. Since the latter is unique, we find u(r) = CD,E 'F(u), which
concludes the argument since @f = exp(e) [See Definition 11(iii)].

(4) < (5). We only need to establish that (5) implies (4). As above, (5) implies
u(t) = Dexp(st)- Hence

AdZps 1 = Adgp e F () = (F 0 Pexpp) (u) = F(u(t)) = F(u) = p,

since F; o @ = F;. Hence § € g,.

Now suppose in addition p is a regular value of F.

(4) < (6). We remark that, since p is a regular value of F, X, is a co-dimension
m submanifold of E and [see (191)]

T,.X, ={v e E|D,F(v) =0}

Hence clearly (4) implies (6). Conversely, suppose D,H vanishes on 7, X),.
Since pu is a regular value of F, we know that D,F is onto R”. Let W be
a subspace of E complementary to 7, X, so that E = T, @ W. It follows
dimW = m and that the m one-forms D, F; € W*,i = 1,...m form a basis
of W*. Consequently, the restriction of D,H to W can be written uniquely as
D,H = Z:”:l &D,F; = D,(§-F). Since both sides vanish on T}, ¥, (4) follows.

We conclude this section with two technical remarks that can be skipped in a first
reading.

Remark 4 We have seen that (3) implies (2). Under suitable technical conditions,
the reverse is also true. This can be understood as follows. If u € Z is a G, -relative
equilibrium then, for all 7 € R, there exists g(t) € G, so that u(r) = ®u = Py(yu.
So the curve

teR — & (u) € Gyu = {P,(u) | g€ G,} CE

is a smooth curve on the group orbit G,u. Under appropriate topological conditions
on G, and G, [defined in (12)], and if the action @ of the group G, is sufficiently
smooth,'® this orbit is an immersed submanifold of X, that can be identified with
the homogeneous space G,,/G,, and its tangent space at u is therefore

Tu(Guu) = {Xr,(u) | § € gu}.

We recall that Xr, is the Hamiltonian vector field associated to the function Fy =
& F. Since Xy(u) = %@tH(u)‘,:O € T,(G,u), it follows that there exists £ € g,
so that

Xy (u) = Xe.p(u),

16See for example Sect. 4 of [2], and in particular Corollary 4.1.22.
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which is equivalent to (108) and therefore implies (3). We refer to [2, 67] for the
detailed argument, in the finite dimensional setting. We shall not have a need for
the implication (2) = (3), but will point out that, “morally”, there is a one-one
relationship between the critical points of H,, and the relative equilibria of the
Hamiltonian flow ®#.

Remark 5 What is the role of the condition that u be a regular value of F'? This has
several consequences. First, it guarantees that X, is a co-dimension m submanifold
of E and that 7, X', = KerD, F. This is convenient in the further stability analysis, as
we will see. Second, if u € Z and Rank D, F = m, then§ € R" >~ g — @f’F(u) €
0, = Gu C E is a local immersion and the action is locally free, meaning that
the isotropy group G, of u is discrete. Hence £ € g, — CDIE'F(M) €eo,NX, =
Gyu C Eis also a local immersion. This observation will be used in Lemma 7 in the
next section. If p is not regular, various additional technical difficulties arise in the
stability analysis of the next section, even in finite dimensional settings, where they
have been studied in [66, 81]. As an example of such a singular value p, consider the
action of SO(3) on R® introduced in Sect. 3.1, on the level set L(1) = p = 0. The
corresponding isotropy group G,, is SO(3) itself in that case. Its action is not locally
free, since G,, for u = (g, p), with g and p parallel, is the copy of SO(2) given by
the rotations about the common axis of ¢ and p. We will see another example of
such a situation when treating the nonlinear Schrodinger equation on the torus in
Sect. 9. In both these cases, the ensuing complication is easily dealt with on an ad
hoc basis.

8 Orbital Stability: An Abstract Proof

8.1 Introduction: Strategy

We have seen that in many situations the relative equilibria of Hamiltonian
systems with symmetry are precisely the critical points of the restriction H,, of
the Hamiltonian H to a level surface X, for some u € g*, of the constants of
the motion F associated to the symmetry group via the Noether Theorem. This
at once explains why they tend to come in families u,, indexed by u in some
open subset of g* ~ R™. Indeed, considering equation (109), it is natural to
think of it as an equation in which both § and u are unknown. And so, under
suitable circumstances, one can hope to find a family of solutions ug of (109) by
letting £ run through some neighbourhood inside g. Typically, as £ changes, so
does uz = F(ug) € g*. Depending on the situation, it may be more convenient
to label the solutions by p¢ than by £ € g. In these notes, we use mostly u as a
parameter, except in Sect. 10 where £ is used. The question of the existence of such
families of relative equilibria—a problem related to bifurcation theory—is studied,
in the finite dimensional setting, in [66, 80]. We already saw several examples of
this phenomenon and more will be provided in Sects. 9 and 10.
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It remains to see how one can prove the orbital stability of those relative
equilibria. The basic intuition is that—modulo technical problems—they should
be stable if they are not just critical points, but actually local minima of H,. To
understand the origin of this intuition, recall that, if u,, € X, is arelative equilibrium
of the Hamiltonian dynamics @/, then the orbit G u, = {®,(u,) | g € G} of G,
viewed as an element of the orbit space X, /G, is a fixed point of the reduced
dynamics. And, since H,, is invariant under the action of G, it can be viewed
as a function on this orbit space. If H,, has a local minimum at u,,, it thus has a
local minimum at the orbit G,u, € X,/G,. Finally, since H, is a constant of the
motion for the reduced dynamics, we are precisely in the situation described in the
introduction: Gu,, is a fixed point of the reduced dynamics, and H,, is a constant
of the motion for which G,u, is a minimum. We can therefore hope to use the
Lyapunov method to prove the stability of G,u,,. To do so, it would suffice to prove
a coercive estimate of the type (2) for H, on X, /G,..

There are two obvious problems one has to face when trying to implement this
strategy. First, even if one executes this program, one will have proven only that
u, is orbitally stable with respect to perturbations v of u, with v € X,. But
one would like to prove this is true for arbitrary perturbations v € E. Second, it
is difficult to work on the abstract quotient space X, /G,, which, even in finite
dimensional systems, but particularly in infinite dimensional ones, may not have a
nice topological or differentiable structure, so that analytical tools to prove estimates
are not readily available. To deal with both these problems, the idea is to use the
theory of constraint minimization and Lagrange multipliers. This has the obvious
advantage that one can work in the ambient space E, which has the added redeeming
feature of being linear. As already outlined in the discussion following Theorem 7,
it turns out that it is the Lagrange function

Ly =H—¢,-F

associated to the relative equilibrium u,, [see (110)] that plays the role of Lyapunov
function in the proofs. In practice, one uses a Taylor expansion to second order of
Z,, about points on the orbit G,u, and one controls the second derivative of .Z,
to prove it is a minimum; this in turn gives the necessary coercivity to conclude
stability. The reader will have noticed that the above strategy was worked out in all
detail in the simple example of motion in a spherical potential presented in Sect. 5.

In this section, we will provide a detailed implementation of the above strategy
in the following general setup. We refer to Sect. 2 for the definitions of the objects
used below.

Hypothesis A

(i) E is a Banach space and & a domain in E.
(ii)) @X is a dynamical system on E with a vector field X : 9 — E.
(iii) F € C?(E,R™)is a vector of constants of the motion for @) with level surfaces
X, n € R" asin (10).
(iv) @X admits an invariance group G, with an action @ of G on E.
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Recall that if p is a regular value for F then X, is a co-dimension m submanifold
of E. In this setting, we consider relative equilibria of the following type.
Let u € R™

Hypothesis By

(1) There exists u, € X, which is a relative equilibrium of the dynamics for the
group Gy, = {8 € G| P, %), = X}.
(ii) There exists £, € C(E,R) which is a Gy, -invariant constant of the motion.
(iii) There exist n > 0, ¢ > 0 so that

Yue 0, Vi € X, duu)<n=L,0)— L) = cdW.0,,)
(111)

where

ﬁlm = qu):,l (“u) = {@g(“u) | 8 € GZ}L}' (112)

Under the above conditions, we say £}, is a coercive Lyapunov function on &,
along X,. If the Gz, -action is isometric then it is enough to check (111) holds at
one single point u € ﬁuﬂ. It will then hold everywhere, with the same 7, ¢, as a
result of the G, -invariance of .£),. Isometric actions are common in applications
and this is one of the places where they provide a simplification. For what follows,
the power 2 in the right hand side of (111) is of no consequence. One can generalize
the definition by replacing the right hand side in (113) by f(d(«’, 0,,)), for some
function f : RT — RY, f(0) = 0, f(d) > 0if d > 0. In practice, as we will see
below, one gets the lower bound in (111) from a Taylor expansion of .Z, so that the
square appears naturally. We point out that conditions (ii) and (iii) in Hypothesis Bu
imply (i). Indeed, if u € 0, and u’ = u(¢') for small enough ¢, then (ii) and (iii)
imply that

0= L (u(t)) — Lu(u) > ed*(u(t), Ou,)s

so that u(?') € 0,,. Hence the flow @X leaves 0, invariant and consequently each
u € 0,,is a Gy, relative equilibrium. We have however found it convenient to keep
this redundancy in the statement of the hypothesis.

We point out that Hypotheses A and By are formulated without imposing the
dynamical system to be Hamiltonian. Nor do they impose any link between the
symmetry group G, the constants of the motion F and the Lyapunov function
-Z,,. The first goal of this section is to formulate and prove very general abstract
theorems establishing orbital stability under the above general assumptions and
some extra technical conditions. The first such result, Theorem 8, is a general
version of Proposition 2: it imposes a strong coercivity condition, but is nevertheless
sometimes of use, as we will see in Sect.9. Theorems 9 and 10 correspond
essentially to the first two arguments proposed in the proof of Proposition 3. The
proofs of these results are quite simple, as we shall see. These three results show that
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the essential ingredient in the proof of orbital stability is the coercivity condition in
Hypothesis B u(iii).

It therefore remains to understand how to find a Lyapunov function satisfying in
particular Hypothesis Bu(iii). It is at this point that the Hamiltonian nature of the
dynamical system plays an important role. We already saw in Sect. 7 that a candidate
Lyapunov function arises naturally in that context. We will furthermore show in
Proposition 5 how to obtain the coercivity condition Hypothesis By (iii) from a
lower bound on the Hessian of the Lyapunov function, in the case of Hamiltonian
systems with symmetry. Combining this with Theorems 9 and 10 then yields a
complete proof of orbital stability.

We will end this section with Theorem 11 which provides a slightly different
proof of orbital stability of relative equilibria in Hamiltonian systems, and which
is a generalization of the third argument proposed in the proof of Proposition 3.
The argument uses Proposition 5 again, but combines it with the construction of an
“augmented” Lyapunov function.

In applications of the theory developed in this section, the work is therefore
reduced to solving (109) to identify the relative equilibria, and to proving a suitable
lower bound on the Hessian of the corresponding Lyapunov function. This usually
involves non-trivial (spectral) analysis, as one may expect. A first illustrative
example—the orbital stability of plane waves for the nonlinear Schrodinger equation
on the torus—is presented in Sect. 9. A widely applicable technique for obtaining
the appropriate lower bound on the Hessian is described in [53, 54]. It is illustrated
in Sect. 10 for standing wave solutions of the inhomogeneous nonlinear Schrodinger
equation in one dimension.

In conclusion, the theorems of this section isolate the “soft analysis” part of the
proof of orbital stability of relative equilibria from the more concrete and model
dependent estimates needed to prove coercivity.

Remark 6 We point out that the domain Z of the dynamical system ®X appears
in Hypothesis A(i) and (ii). As already seen before, it is used in these notes when
the system is Hamiltonian to identify the appropriate constants of the motion via
Noether’s theorem, to construct the Lyapunov function ., and to identify the
relative equilibria of the system. If this can be accomplished by some other means,
2 is not needed. In fact, for the results of Sects. 8.2, 8.3, and 8.4 the hypotheses
involving & are not used. For the results of Sect. 8.5, and notably for Theorem 11,
they are on the contrary essential.

8.2 A Simple Case

Before turning to the general results, we first formulate and prove a simple orbital
stability result, under a stronger coercivity condition than (111).
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Theorem 8 Let Hypotheses A and By (i)—(ii) for some i1« € R™ be satisfied. Let
Oy, be as in (112). Suppose there exist n > 0,c > 0 so that

Yue 0,

Upy s

YveE, dv,u) <n= 2L, W) L, () > cd?(v, Ou,,)-
(113)

Then, allu € 0,,, are orbitally stable Gy, -relative equilibria.

We refer to Definition 5 for the definition of orbital stability. Observe that in (113)
the coercivity estimate is imposed for all perturbations v in E, rather than only in
X,..»asin(111). So here we are assuming that the Lyapunov function reaches a local
minimum on &, o when viewed as a function on E, rather than only as a function
on X, . This therefore constitutes a strengthening of Hypothesis B« (iii).The
theorem can be used to prove orbital stability in some cases: for the fixed
points in the spherical potentials treated in Sect. 5.1, for example, this is how we
proceeded. Similarly, to establish the stability of the plane waves for the nonlinear
defocusing Schrodinger equation on a one-dimensional torus, this theorem will also
be sufficient, as we will see in Sect. 9. But we have already noticed in Sect. 5 that the
coercivity imposed in (113) may be too strong a condition: we saw it is not satisfied
for the natural choice of Lyapunov function for the circular orbits of Sect. 5.2, for
example. It is too strong also in many situations involving the stability of solitons or
standing waves. An example is treated in Sect. 10.
The proof is very simple, and based on the usual argument by contradiction.

Proof Suppose there exists a pointu € 0, that is not orbitally stable. Then there

exists €y > 0 and for all n € N*, there exists v, € E so thatd(v,, u) < % and3dr, € R
so that d(v,(t,), Oy,,) = €. We can suppose €y < 1. Then there exists v, € Oy,
so that d(v,(#,), ¥,) < 1 and hence, since .Z},, is both a constant of the motion and
constant on ﬁ“u*’

~ 2 2

L W) = Ly () = Ly, (Vn(tn)) — Ly (Un) = cd™(Va(tn), Ou,, ) = cé.

Since .Z),, is continuous, the left hand side tends to zero when n — +o0, which is
a contradiction.

8.3 Coercivity Implies Stability 1

We now turn to the task of showing that Hypotheses A and By, imply the Gy, -
orbital stability of u,,, . For our first result, we need the following hypothesis.

Hypothesis F Let F : E — R”. Let u € R™. We say F satisfies Hypothesis F at
if, for any bounded sequence u, in E,

lim F(u,) = n = d(u,, X)) — 0. (114)
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The following lemma gives sufficient conditions for this to be satisfied.
Lemma 5

(a) SupposedimE < +o0. Let F € C(E,R™). Then F satisfies Hypothesis F for all
neR™

(b) Suppose F € C(E,R™) and that there exists C > 0 so that {u € E | F(u)?> < C?}
is compact. Let jn € R™ with u> < C2. Then F satisfies Hypothesis F at Ji.

(¢) Let F : E — R. Suppose that there exists k € R* so that, Yu € 9, for all
A € R*, F(Au) = A*F(u). Suppose i # 0. Then F satisfies Hypothesis F at Ji.

Proof

(a) Suppose there exists €p > 0 and a bounded sequence u,, so that F(u,) — u, but
d(u,, ¥,)) > €. Then the boundedness of the sequence implies the existence
of a convergent subsequence u,, — v € E. By continuity of F, it follows that
F(v) = psothatv € X,. So d(u,,, ¥,) — 0. This is a contradiction.

(b) The proof is similar to the one in (a).

(c) Let (u,), be a bounded sequence satisfying F(u,) — p # 0. Then, for large

1/k

enough n one has u/F(u,) > 0 and we can define v, = (#) u,. Then
F(v,) = p. Clearly ||v, — u,|| — 0 so that d(u,, X,,) — 0.

Remark 7

(i) The boundedness of the sequence is important, even in finite dimension.

Indeed, consider on R? the function F(x,y) = 11_2):4’ u = 0 and remark that
F(x,x) > 0asx — +o0.

(i) Condition (c) can be used for constants of the motion arising from linear
actions of one-parameter groups on a Hilbert space, as described in Sect. 6.4,
and which have a quadratic hamiltonian of the type

F(u) = %(u, Bu),

such as in (103). An example of such application will be given in the proof of
Proposition 6, at the end of Sect. 9.

(iii) The condition i # 0 is essential in part (c) of the Lemma. Indeed, consider
E = H'(RY) and F(u) = ||u},. Let & = 0. Then X, = {0}. But F(u,) — 0
does not imply u,, — 0 in H'(R?).

(iv) Condition (c) is no longer sufficient to ensure F satisfies Hypothesis F when
F : E — R" with m > 2. To see this, we consider an example relevant
to the treatment of the Manakov equation. Let E = H'(R, C?) and consider
Fi(u) = ||v||iz,F2(u) = ||w||iz, where we wrote u = (v,w) € E. Note that
those are the two constants of the motion associated to the diagonal part of
the U(2) action on E (See Sect. 3.3). We choose i = (1,0) # 0 € R?. Then
Y,={ueE|w=0, ||v||i2 = 1}. Now let a, b € C5°(R), such that ||a||i2 =
1= ||b||§2 and consider u,(x) = (a(x), ﬁb(n(x— n))) =: (v,, w,) € E. Note
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that this sequence is bounded. Moreover, clearly, lim,,— 4 oo F(u,) = . Now,
foru = (v,0) € ¥, one has

2 2 2
ttn — ull” = |la— v”H‘(R,C) + ”W””HI(R,(C)
2 n2 ’ 2 112
> “W"”HI(R,(C) = 7 |b (n(-x_n))l dx = ”b ”LZ-
R

It follows that d(u,, X)) = inf,ex, lu, — ul > ||[| 2, so that Hypothesis F is
clearly not satisfied in this situation.

Theorem 9 Suppose Hypotheses A and Bi« (Sect. 8.1) are satisfied for some (L« €
R™. Then

Yue0,,, Ve>0,38>0, (Vu' € X, .d(u',u) <6 = suﬂgd(u’(z‘), Ou,) S €.
te
(115)
If in addition,

(i) 2, is uniformly continuous on bounded sets,
(ii) O, is bounded,
(iii) F : E — R" satisfies Hypothesis F,

thenallu € 0,,, are orbitally stable G, -relative equilibria.

We point out that (115) is already an orbital stability result for all u € 0,,, =
Gy, u, but only with respect to perturbations of the initial condition u inside X, .
The theorem asserts that, with the extra conditions (i)—(ii)—(iii), orbital stability with
respect to all perturbations within E is obtained. It is the observation that coercivity
along X, [Hypothesis Bu(iii)] suffices to establish orbital stability that explains,
in fine, the advantage of Theorem 9 over Theorem 8. This is already illustrated in
Sect. 5.2 on a simple example. Note furthermore that conditions (i) and (iii) of the
theorem are automatically satisfied in finite dimension. The boundedness of 0,
[condition (ii)] is guaranteed for example when the group is compact, or when E is
a Hilbert space and the group acts with unitary transformations, which is often the
case in infinite dimensional systems.

The argument in the proof of Theorem 9 is extracted from the proof of
Theorem 5.3 in [53] and is used in [54] as well. We point out however, that
conditions (i) and (iii) are not made explicit there. The first one is usually easy to
check in examples, where the Lyapunov function tends at any rate to be uniformly
Lipschitz on bounded sets. For the second one, we gave some sufficient conditions
in Lemma 5. But, as pointed out in Remark 7, it may fail, in particular in the very
general setting of [53, 54]. In that case, a different argument is needed; we will
provide two below.



212 S. De Bievre et al.

Proof We will prove (115) by contradiction, yet again. Let us therefore suppose
there exists u € ﬁuﬂ* and €p > 0 so that for all n € Ny, there exists u, € X, so
that

d(u,,u) < —, and 37, € R so that d(u,(%,), O,, ) > €.

1k

S| =

We can choose, without loss of generality, € < 1, where 7 is defined in (111) and
choose ¢, the smallest value of 7 so that

d(up, u) <

S| =

,and  d(uy(tn), Oy,,) = €0 < 1.

Consequently, there exists y, € 0, so that d(u,(t,),y,) < n. Note that u,(t,) €
Y., since X, is invariant under the dynamical flow. Then, since .Z},, is a constant
of the motion, and since it is constant and coercive on ﬁuﬂ* along X,

L (un) = L, () = Ly, (un(tn)) — Ly, (u)
= L1, Un(tn)) — Ly ) = cd®(un(t), Ou,,) = cég.

Since .Z),, is continuous, one obtains a contradiction by taking n — +oc. This
shows (115).

To prove the last statement, suppose &,,, is bounded and Z),, uniformly
continuous on bounded sets. We need to show that

Yue 0

Uy 0

Ve > 0,36 >0, (Vu' € E,d(//,u) <8 = supd(/(?), Ou,,) < €).
teR
(116)

We proceed again by contradiction. Suppose there exists u € 0, and 0 < €y <1
so that, for all n € N, there exists u,, € E,

1
d(up,u) < —, and 3, € Rsothatd(u,(t,), O,,) = €0 < 1.
n
Note that, this time, u, € E and u,(t,) € E, notin X, . So we can’t use the
coercivity of .%,,, along X, directly. We do know, however, that F(u,(t,)) =

F(u,), since F is a constant of the motion. Hence
lim F(uy(t,)) = M.
n—>-+00
Since the orbit ﬁuﬂ* is bounded, and since d(u,(t,), ﬁuﬂ*) = €, it follows that the

sequence u,(t,) is bounded. Hypothesis F then implies there exist z, € X, so that
lltn(t2) — 2|l — O.
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We can now conclude. Since, for n large enough, % < d(zy, ﬁuﬂ*) < n, we have

ZM* (un) - Z(”) = ZM* (“n(tn)) - ZM* (M)
= Lo, un(tn)) — Ly, (20) + L (2n) — L (u)
2 XM* (un(tn)) - XM* (ZVI) + Cdz(Zn, ﬁuu* )

Since the orbit &,,, is bounded, the sequences u,(f,) and z, are bounded. This,
combined with the uniform continuity of .Z),, on bounded sets, leads again to a
contradiction upon taking n — +oc0.

We now give a third proof of orbital stability starting from a coercive Lyapunov
function, along the lines of the second argument in the proof of Proposition 3. The
point here is that we exploit the fact that the relative equilibria u,, often come in
families.

Theorem 10 Suppose the following.

(i) Hypothesis A holds.
(ii) There exists a continuous map w € U C R" — u, € X, C E so that
Hypothesis B is satisfied for all u € U, with 1 and c in (111) independent of

(iii) sup,ey llupll < +o0.
(iv) There exists C > 0 so that

VueUVu € Xy, |u—ul <n=LW)—Luu,) <Cllu' —u,l.
(117)

(v) Vg € G, @ is an isometry on E: Yu,u' € E, d(®,(u), Po(u')) = d(u, ).
Then, any u € 0, is an orbitally stable G5, -relative equilibrium of the flow o

Condition (iii) is not very restrictive. It is sufficient to take U bounded, for example.
Condition (iv) follows if we know that D,..Z, is bounded for u in bounded sets. This
is a reasonable condition. Condition (v) is commonly satisfied in PDE systems, but
is quite restrictive, as we already explained. It implies we can use Proposition 1 and
Lemma 1.

Proof Let s« € U. As aresult of Lemma 1, it is enough to show the orbital stability
of u,,. So we need to show that, for all € > 0, there exists § > 0 so that, for all
u' € E, one has

' —uy,ll <8 = VeeR,dW (1), 0,,,) <e. (118)

For that purpose, we need three preliminary estimates. We first show that Ve > 0,
there exists § > 0 so that, for all u € U, forall u’ € X,

I —u,|l <8 = Vt e R.A( (1), O,,) < €/2. (119)

"
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In other words, we first show that the u,, are all orbitally stable for perturbations
within X,,. The method of proof—by contradiction—is the same as several times
before, but we need to make sure to obtain the necessary uniformity in p. If the
above is not true, then there exists €y > 0 so that for all n € N* there exist u, € U
andu, € ¥, t, € R, so that

1 €
louww —up, ||l < = d(ua(ta), Ou,,) = > <.

S

Here n is given in Hypothesis By (iii) and we recall that it is independent of .
Hence

2
€
fuu(”n) - gﬂn (”Mn) = gﬂn (un(t2)) — gﬂn (”Mn) = Cdz(un(tn)s 0, n) = CZO-
Now, since the u,,, form a bounded set by hypothesis (iii) of the theorem, the same

is true for the u,. Hence, it follows from hypothesis (iv) of the theorem that

gﬂn (un) - "gﬂn (uMu) S C”un - uMn ||7
2
where C does not depend on n. Hence Cl|u, —u,, || > c2 | 5o that, taking n — +o0,
we obtain a contradiction. This proves (119).
As a second step, we show the following estimate. Let s« € U. Then, for all
€ > 0, there exists 6 > 0 so that,

A €
VieU. (lu—pd <p=VYoe6,.d0.6,.) < 3). (120)

To see, this, note that hypothesis (i) of the theorem implies that there exists p > 0 so

that || w — x|l < p implies |lu, —uy, | < /2. Hence d(uy, O,,,) < €/2. The result

then follows from Proposition 1, since we suppose the action @ of G is isometric.
The third ingredient for the proof of (118) is the following:

V8 >0,¥p>0,38>0,Vu €E,
(I =] = 8 = ' = el < I = e < 8). (121)
where ' = F(u'). This follows immediately from the continuity of F and of u —
Uy at .

We can now conclude. Let s« € U and € > 0. Choose § asin (119), p asin (120)
and § as in (121). Then, by (119) and (121), we find that

Vi € E, (||u’ —u ] <8 = Vi e R AWM. 6,,) < %) .
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Hence, for all t € R, there exists v(f) € ﬁuﬂ,, so that d(«'(¢), v(f)) < €/2. Next,
from (121) and (120), there exists w(z) € &,,, so that d(v(?),w(r)) < 5. Hence
d(u/'(?), O,,,) < €. This proves (118).

8.4 Sufficient Condition for Coercivity

We now turn to the task of showing how one can obtain the coercivity Hypothe-
sis Bu(iii) from an estimate on the Hessian of .Z), (Proposition 5). We work in the
following setting.

As before, let E be a Banach space, G a Lie group and @ a G-action on E. Let
F € C*(E,R™). We recall that, for . € R,

Sy ={ueE|Fu) = pu},

and that Gz, is the subgroup of G leaving X, invariant. We now introduce one extra
ingredient to the theory. Let (-, -) be a scalar product on E, which is continuous in
the sense that

Vo.weE, [(v.w)] < [lv]lIwl].

where we recall that || - || is our notation for the Banach norm on E. This inner
product induces a metric on E, that we shall denote by

ds(v,w) = (v —w,v —w). (122)

Clearly ds(v,w) < d(v,w). We introduce this inner product since we need a notion
of orthogonality for the statement of the main result of this section, Proposition 5:
see in particular (126) and (127).

We point out that we are not supposing E is a Hilbert space for this inner product,
and that the only topology we will be using in what follows is the one induced by the
Banach norm on E. In addition, even if E is in fact a Hilbert space, the inner product
(-,-) above is not necessarily the Hilbert space inner product. As an example, if
E = H'(R,C) and depending on the problem considered, one may want to use
either the L? inner product or the H' inner product: in Sect.9 the first choice is
made and in Sect. 10 the second one. In the formalism developed in [53, 54, 99], E
is always supposed to be a Hilbert space, and only the Hilbert space inner product is
used in the analysis of the Hessian. But the introduction of a second inner product
is a regularly used device in the literature on orbital stability for the Schrodinger
in particular. Our approach here gives a systematic treatment in the general setting
presented above.

Let u € R™ and u,, € X,,. We need the following hypothesis on the group action
and on the function F.



216 S. De Bievre et al.

Hypothesis Cu

(i) @, is linear and preserves both the structure (-,-) and the norm | - || for all
g€G;
(i) Ad; € O(m) forall g € Gx,;
(iii) p is a regular value of F;
(iv) uy is a C'-vector for @ and the map

g € EZ,L —> @exp(g)uu eFE (123)

is one to one in a neighbourhood of £ = 0.

Note that both Hypothesis Ciu above and Proposition 5 below involve G and its
action on E, as well as F, but not the dynamics thX itself.

Remark 8 (i) The meaning of condition (ii) of Hypothesis Cu is explained in
Remark 15.

(i) We say u € E is a C'-vector for the action @ if the map g € G — ®,(u) € E
is C'. Now, if W € O, = ®g(u), then u’ is also a C'-vector. Indeed, there
exists g’ € G so that @yu = u’ and, since g — gg’ is smooth, it follows that
g — Pgouis Cl.

To state the result, we need the following notation. Let Gbea subgroup of G; we

can then define, for all ' € 0, = g (u),

T/O, ={weE|3Eecgw=X: )}, (124)

where we recall from (206) that

d
Xe(u) = 3 Pexpire) (W) =0-

Proposition 5 Let E be a Banach space and {-,-) be a continuous scalar product
on E. Let G be a Lie group and @ a G-action on E. Let F € C*(E,R™). Let jix €
R™ and u,, € X,,. Let £,, € C*(E,R) be a Gy, -invariant function. Suppose
Hypothesis Ciy holds and that, for allu € O, [defined in (112)],

Vj=1,...,m3VFj(u) € E such that D, F;(w) = (VF;(u),w) Yw e E.  (125)

Suppose £, satisfies the following conditions:

(a) D%, (w) =0forallue 0,, andw € E;
(b) there exists C > 0 so that

Yue 0,,, ,VYweE, Difﬂ* (w,w) < C|w|*;
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(c) there exists ¢ > 0 so that

Yue 0y, YweT,X,, N(T,0,

4y

Y DLy (wow) = c|w? (126)
where
(T, 0Nt ={z€E|(zy) =0.Vy e T,,0,}. (127)

Then Hypothesis By (iii) holds.

Condition (125) is automatically satisfied when E is a Hilbert space and (-, -) the
Hilbert space inner product. But not in general. For example, let E = H'(R, C) and
let (u,v) = Re [, u(x)v(x)dx. Now, if Fi(u) = 5. [ 1(x)dsu(x)dx, (125) is satisfied
if u € H*(R, C) but not for arbitrary u € E.

For the proof of this proposition, we need some simple technical results.

First, let V be a bounded open neighbourhood of e in a subgroup G of G with the
property that, forall g € G, gVg~' = V. Let us introduce

Ry(u) = min{dy(®,(u), u) | g € IV}.

It then follows that, for all «’ € &, Ry(«') = Ry (u). Indeed, there exists g’ € G so
that @, (1) = u’. Hence

Ry (u') = min{dy(P,y (1), Py (u)) | g € IV}
= min{ds(®g,—1gg,(u), u) | g € 3V} = Ry(u),

since g/ 9Vg = V.
We can now formulate the following simple but crucial technical result, which is
a multi-dimensional version of Lemma 2.1 in [99].

Lemma 6 Let E be a Banach space and (-, -) be a continuous scalar product on E.
Let G be a Lie subgroup of G and @ a linear G-action on E which preserves the
inner product (-,-). Suppose u € E is a C'-vector for ® and let V be a bounded
open neighbourhood of e € G which is conjugation invariant (i.e. gVg~" =V, for
all g € G). Suppose Ry (u) > 0. Then, for all v € E,

1
d(v, €,) < SRv(u) = Iw € O, = Pg(u), w—v € (T,,O,)*. (128)

The lemma states that if v is not too far from the orbit &, then there exists a point
w on the orbit so that the segment from v to w is orthogonal to the orbit at w. This
point does not necessarily realize the distance between v and the orbit, which can
vanish.
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Proof Let v € E and d(v,0,) < %Rv(u). Then there exists ¥’ € O, so that
d(v,u’) < %Rv(u) = %Rv(u’) and hence dg(v, ') < %Rv(u’). Now consider

g€V —di(v,du') e RT.

Since V is compact, this function reaches a minimum at some point g € V. We set
w = &z’ € O, sothatds(v,w) < ds(v,u) < %Rv(u’). We now show that g cannot
belong to dV. Indeed, if g were on the boundary of V, then, by the definition of
Ry(), ds(w,u') > Ry(). But then

1 2
ds(w,v) > —d, (!, v) + dy (i, w) > RV(u') — §Rv(u’) = gRV(u’).

which is a contradiction because ds(v,w) < %Rv(u’ ). So g belongs to V. Now
choose ¢ € g and consider

t€R — d2(v, Pexpeyz(t)) € R,

which now reaches a local minimum at # = 0 since for small #, exp(¢£)g belongs to
V. Hence its derivative vanishes. So

d d
0= &dz(va ®exp(t5)§(“/))|t=0 = &(U - ®exp(t5) (W)7 v — ®exp(t5) (W)>|t=0

= 2(Xs(w), v —w),

which proves the result in view of (124).

In the proof of Proposition 5, we will need to apply the previous lemma to
the group Gy, for some pux € R™ and u,, € X,,. The following lemma gives
hypotheses for this to be possible. It appears in various guises in the literature, and
can be referred to as a “modulation” argument.

Lemma 7 Let E be a Banach space and (-, -) be a continuous scalar product on E.
Let G be a Lie group and ® a G-action on E. Let F € C2(E,R™). Let jt+« € R™ and
uy, € X,,.Suppose Hypothesis Cix holds. Then, there exists R > 0 such that, for
allv e E,

d(v,0,,,) <R=3we 6, ,w—ve (T,0,,)" (129)

1k

where 0, = DGy, Upns-

Proof Thanks to Lemma 6, it is enough to prove that there exists V a bounded open
neighbourhood of ¢ € G, , which is conjugation invariant (i.e. gVg™! =V, forall
g € Gy,,) and such that Ry (u,,.) > 0.
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First of all, we recall that the exponential map

exp: £ € gy, —expé) € Gy,

is a local diffeomorphism from some neighbourhood of 0 € g,,, to a neighbourhood
ofee G S In other words, there exists § > 0 such that

exp: § € B5(0) C gy, — exp(§) € Gs,,

is a local diffeomorphism onto a bounded open neighbourhood V := exp(Bs(0)) of
ein G, . In particular, note that 3V = exp(dBs(0)).

Since, thanks to Hypothesis Cpi«(ii), Bs(0) is Adg-invariant for all g € G S V
is conjugation invariant. Indeed, for all § € Bs(0) and all g € Gy, , we have that
gexp(§)g! = exp(Adyé) € V.

Hence, it only remains to show that Ry (u,,, ) > 0, which is equivalent to Guu* n
90V = @. Thanks to Hypothesis Cji«(iv), there exists 8o > 0 such that

S € 380 (O) - ®exp(§')uﬂ* €EE

is one to one. As a conclusion, choosing § < &y, we have 9V C exp(Bs,(0)) which
implies @expe)ity, 7 Uy, forallexp(§) € dV. Hence, for allexp(§) € dV, exp(§) ¢
G

Up s *

We can then conclude this section with the proof of Proposition 5.

Proof (of Proposition 5) Recall that we have to prove there exist n > 0,¢ > 0 so
that

Yue 0,

Uy s 0

Vil € By, dwu) <n= L, ) — L () = e, O,,).

Letu € E,L*, dw', 0,,,

that o/ — v’ € (T G, )"

Next, let W,y be the subspace of E spanned by {VF;(v')}j=i. m. It follows
from (191) and hypothesis (125) that T,y X, = (Wy)*. As a consequence, we
can write E = Ty X, @ W, . Indeed, since W, has finite dimension, it admits an
orthonormal basis {ei, ..., e,} w.r.t. {-,-). Hence, all w € E can be written as

w= (=Yt )+

Clearly w — Y7L (w, ¢)e; € (W)t = Ty Zy,, YL (w,¢)e; € Wy and Wy N
(Wy)t = {0}. Then,

) < R. Thanks to Lemma 7, there exists v’ € &), such

T Ms
%
\m

w—v' = =)+ =),
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where (W' —v'); € TyX,, and (W' — V'), € Wy. Moreover, since u' — v’ €
(Tv/ ﬁuﬂ*) we can easily show (' —v'); € Ty X}, N (Tv/ ﬁuu*) and (' —v'),; €

L .
Wy N (TU/ ﬁuu* ) . Now, Lemma 10 ensures the existence of constants c1, ¢y so that,
for ||u’ — v’|| small enough, one has

1" = vl = collu’ —v'[l and || — vl < erflu’ — V'], (130)

Since the action @, is linear and preserves both (-,-) and || - ||, the decomposition
above is group invariant and the constant ¢ and ¢; do not depend on v’.

We can now conclude the proof as follows, using respectively conditions (a), (b)
and (c), and (130):

Lun W) = L) = L () = L, (V)
=Dy L, —V) + —D L = =)
ol —v'|1?)
= 2L L (O =) =) + O — V')
ol —v'|1?)
= 3% Z (W =), @ =) + ol — 1)

= Ell(u’ =) |? + o(lu’ = v'|*)

> ol —v'|)* > ed* (o, Ou,)-

Remark that as before, the constant ¢ is independent of v’ € 0.

8.5 Coercivity Implies Stability I1

We can now state and prove a fourth theorem yielding orbital stability under slightly
different technical assumptions. We will work in the Hamiltonian setting and in
particular use the characterization of relative equilibria given by Theorem 7. Recall
that in this context, for each 1 € g* >~ R", G5, = G,, (Proposition 10).

Theorem 11 Let E be a Banach space and {-,-) be a continuous scalar product
on E, 9 a domain in E and ¢ a symplector. Let H € C*(E,R) N Dif(2, 7).
Let G be a Lie group, and @ a globally Hamiltonian G-action on E with Ad*-
equivariant momentum map F. Let i, € R™ ~ g* and u,, € 9 N X,,,. Suppose
that Hypothesis Cii«(i)—(iii) is satisfied, and H o ®, = H forall g € G. Let £,,, =
H—§&,, -Fwith§,, € gy, givenby Theorem7 and assume Dy, %), = 0. Suppose
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in addition that

Vj=1,...,m3VFj(u,,) € E such that D, Fi(w) = (VFj(u,,),w) Yw € E.

(131)

Upy s

and

(a) G, is commutative;
(b) there exists C > 0 so that

Vw e E, DiM*ZM* (w,w) < C|w|%;
(c) there exists ¢ > 0 so that

Vw e T,

win Zue N (T, O )5 DL Lo (w,w) = clw].

ok

Then allu € 0, are orbitally stable G, -relative equilibria.
Hypothesis (a) in Theorem 11 is not very restrictive (see [31]).

Proof Let K > 0 and define
L) = Ly, () + K(F(u) = ).

Here (F(u) — jtx)? = (F(u) — ftx) - (F(u) — us) where, - is the G, -invariant inner
product described in Remark 15. It follows that % is a G, -invariant constant of
the motion. Indeed, for all g € G, and forall u € E,

Lx(Pgu) = H(Pgu) — &1, - F(Pgut) + K(F(Dgu) — jux)”
= H(u) — &, - AdSF(u) + K(AdSF(u) — Ad} j4)

= H(u) — Adgé,, - F(u) + K(F(u) — j4)* as Ady € O(m)
= H(u) — &, - F(u) + K(F(u) — ps)? as Gy,
is commutative

= % ).

The main idea is to prove that the hypotheses of Proposition 5 are satisfied by .Zx
and then use its proof to conclude that all u € 0, are orbitally stable G, -relative
equilibria.

First, note that in this setting Hypothesis Cpi«(iv) follows from Remark 5.

Next, we claim that D, Zx(w) = O forall u € ﬁuﬂ* and for all w € E. Indeed, it
is clear that D, (F(u) — p+)? = 2(F(u) — ptx) -D,F = Oforall u € O.,, and, thanks
to the fact that D,,,, Zk, (w) = 0, we obtain D,,,, Zkx(w) = 0 for all w € E. Next,
letu € 0,,, and g € G, such thatu = ®4(uy, ), then

D, %x(w) = [Dd’g(uu*)ZK o @g—l](w) = [D,,. %k OD¢g(uﬂ*)@g—l](W) =0.

Upx
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Using the fact that @, is linear and preserves both (:,-) and || - ||, we can easily
show, as a consequence of hypothesis (c), that

Yue 0,

Uy s

, D%, (w,w) > cllwlf?, (132)

for all w € T,X,, N (T,0,,,)". Indeed, for all u € 0, andw € T,%,, N
(TuOu, )"

1k

DX, (ww) =D} . (L, 0 Pp1)(w, w)

Dty

- Di“*iﬂﬂ*(Du@gﬂw, D ®1w) + Dy, %, (Di® 1 (W, w))

Uy

= Diﬂ* Ly (@1, Dpiw) > c||q§g71w||2 = c|w|?
because @p—1w € Ty, Xy, N (Ty,, ﬁuu*)l.
Similarly, using hypothesis (b), we prove that

D% (w,w) = Cllwl?

forallu € 0,,, andw € E.
Next, by a straightforward calculation, we obtain for all u € ﬁuﬂ* andw € E,
D*(F — us)*(w,w) = 2D,F(w) - D,F(w), and
DuF(W) = [D¢g

Fo®g0®i](w) = [Dy,, Fo®](DyPy—1w)

Ups Upx
= [Dy,,, Ad; o F(®g—1w) = Ad:(DuM* F(P,—1w)). (133)
As a consequence, since Ad; € O(m),
D(F — jux)*(w,w) = 2Dy, F(D—1w) - Dy, F(Pp1w). (134)

It is then clear that D2(F — j14)2(w, w) < C,,, ||w|? forall u € Oy,, andw € E, and
hypothesis (b) of Proposition 5 is satisfied by .Zk. In addition (133) together with
the fact that the @, preserve the inner product (-, -) shows that (131) implies (125).
Now letw € (TM@,M* )J- and write w = wy +wy withwy € T, X, N (Tuﬁuu* )J-
andw, € W, N (T, 0,,, )L. Then
D> % (w,w) = D2.Z,, (w,w) + 2KD.

F(d)g—l Wz) -D F(d)g—l Wz)

Upse Upx

> D2%,, (wi,wi) — C(|lwil[lwa]| + [[w2]*)
+ 2KD,,, F(P,—1w2) - Dy, F(®Py—1w2)

Uy

2 2 2
z clwill” = Ciwrlllwall + lw2ll) + Kep, [lw2ll”,
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where in the last line we use the fact that diquM* = mand D, F W, - Wi, —
g

R™ is an isomorphism. Finally, thanks to Young’s inequality, there exists ¢ > 0 so
that

Ce C ~
Ditnn) = (e= 5 ) bl + (Kewo = €= ) boalP = lh?

with ¢ > 0 provided that K > 0 is chosen large enough. As a consequence, using
the same arguments as in the proof of Proposition 5, we conclude that there exist
n > 0,c > 0 so that

Yu e ﬁu#* s Yv € E, d(u, U) =n= XK(U) - fK(”) = Cdz(vs ﬁuﬂ)

which implies, thanks to Theorem 8, that all u € 0,,, are orbitally stable G-
relative equilibria.

9 Plane Wave Stability on the Torus for NLS

In this section we will illustrate the general theory described above on a simple
example, that is the orbital stability of plane waves of the cubic focusing and
defocusing nonlinear Schrodinger equation on the one-dimensional torus. More
precisely, let us consider the cubic Schrédinger equation

io.u(t,x) + ﬁaﬁxu(t, x) 4+ Au(t, x)Pu(t,x) =0 (135)

in the space periodic setting T}, the one-dimensional torus of length L > 0, and with
u(t, x) € C. The constants B and A are parameters of the model; A < 0 corresponds
to the defocusing case and BA > O to the focusing one. In what follows, we fix
B> 0.

Using the same arguments as in Sect. 6.5, we can show that Eq. (135) is the
Hamiltonian differential equation associated to the function H defined by

1 L Ak
H(u)=§(ﬁfo |3xu(x)|2dx—5/0 |u(x)|4dx). (136)

As before the symplectic Banach triple is given by (E, 2, #) with E = H'(T;, C),
2 = H3(T, C), both viewed as real Hilbert spaces, and _Z u = iu (see Sect. 6.4 to
understand how a complex Hilbert space can be viewed as a real Hilbert space with
symplectic structure). We recall that the scalar product on E = H' (T, C) is

(u,v)g = Re /OL(axu(x)axﬁ(x) 4+ u(x)v(x))dx u,v €E, (137)
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and the dual space E* can be identified with H~'(T,, C) through the pairing
L
(u,v) = Re/ u(x)v(x)dx, ue€kE*, veeE. (138)
0

Moreover, since the action @ of the group G = R x R defined by @,, (1) =
e u(x — a) is globally Hamiltonian (see Sect. 6.5) and H o &, = H (see Sect.3.2),
the quantities

i L
Fi(u) = —5/0 u(x)0,u(x) dx, (139)

1 [t ) 1
F(u) = —5/0 lu(x)|”dx = —E(u,u) (140)

are constants of the motion.
As pointed out in Sect. 3.2, the two-parameter family of plane waves

Ui (1, X) = e e (141)

withé e R, k € ZT”Z and o € R are G-relative equilibria of (135) whenever &, k and
«a satisfy the dispersion relation

£+ BK? = Alaf?. (142)

In the notation of the previous sections, g = U, , With jiox € R? given by

F o’ [k
[ak = ( 1(Ma,k)) — ——L( ) '
Fo(ttg k) 2\l
Remark that in this case y is not a regular value of F = (Fy, F,), as is readily
checked (see Definition 12).

The G-orbit of the initial condition u,,, (x) = ce™*" is given by
Otase = {2 e™ 7 (a.y) € G}, (143)

Our goal is to investigate the orbital stability of these particular solutions by
applying the general arguments presented above. Our main result is the following
theorem showing the orbital stability of plane waves in the defocusing case (1 < 0)

as well as in the focusing case provided 0 < 2 |a|? < B (ZT”)2

Theorem 12 If (ZT”)2 —2AMa)? > O, then all u € Ou,,, are orbitally stable
relative equilibria.
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. 2 . . .
Furthermore, in the case j (ZT”) — 2A|a|*> < 0, we can investigate the linear
stability of the plane waves and we obtain the following theorem.

Theorem 13 Let the plane wave uq (1, x) = ae’®* be a solution to (135) and

B (ZT”)2 —2A|a|* < 0. Then the spectrum of the linearization of (135) around g x
in L*(T}) has eigenvalues with strictly positive real part. Consequently, this wave is
spectrally unstable in L*(T}).

This second result follows from a rather straightforward computation that we do
not reproduce here.

As discussed in the introduction, the nonlinear (in)stability of plane waves for the
cubic focusing and defocusing nonlinear Schrodinger equation in a one-dimensional
space is a result known to the experts in the field (see the introduction of [40, 41],
for example). We did not however find a complete proof of it in the literature, so
we furnish one here as an illustration of the general theory presented in the previous
sections.

In [106], a related but slightly different analysis is proposed. The cubic nonlinear
Schrodinger equation is defined on the entire line R and not on the one-dimensional
torus T. Using the Galilean invariance of the equation (see Sect. 3.5), the stability
of any plane wave is equivalent to that of u(t,x) = ae*e! The main result on
stability of plane waves of [106] is given in Theorem III.3.1. It states that, in the
defocusing case (A < 0), the plane wave u(t, x) = aetolt i orbitally stable under
small perturbations in H'(R).

Our approach is different: we focus on the Schrodinger equation on a one-
dimensional torus. Our functions live on a torus and the perturbations too. In other
words, our definition of stability is with respect to perturbations within H'(T;) =
ngr([o, L]). Moreover in Zhidkov’s book nothing is said about the (in)stability of
plane waves in the focusing case, a situation we cover partially.

Finally, the analysis of orbital stability of plane waves of the cubic nonlinear
Schrodinger equation on a torus of dimension 1 < d < 3 is more involved and it
will be done in a forthcoming paper together with the periodic Manakov equation
[29].

9.1 Orbital Stability

To study the stability of u,,, (x), it is useful to write the solutions of (135) in the
form

u(t,x) = P Ul(t,x) (144)
where U(t, x) is a function which satisfies the evolution equation

i0,U + B0 U — 2ipkd, U + L|U|*U — Bk*U = 0. (145)
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Equation (145) is the Hamiltonian differential equation associated to the function A
defined by

H(U) = H(U) — 2BkF,(U) — BK*F»(U). (146)

As before, the action @ of the group G = R x R defined by @, (1) = €”u(x — a)
is globally Hamiltonian, Ho P, = H and the quantities F, F, defined by (139)
and (140) are constants of the motion.

If £, k and « satisfy the dispersion relation (142), U, (t,x) = ae is a solution
to (145). Moreover, Uy, (x) = U, (0,x) = « is a one-parameter family of G-

relative equilibria and our goal is to study their stability. Here p, = —”‘—ZZL ((1)) and,

as above, [, is not a regular value of F = (F, F»).
Recall that the G-orbit of U, (x) = « is

Oy

1223

= {eiyoz, y € [0, ZJT)}. (147)
and, by definition, U € Oy, is orbitally stable if
Ve, I, VW € E, (d(W.U) <§ = Vte R, d(W(,-), Oy,,) <€)

(see Definition 5).
Proposition 6 Let 8 (ZT”)2 —2A|a|* > 0. Then every U € Oy, is orbitally stable.

Our stability result in Theorem 12 is an immediate consequence of the previous
statement since the change of variables # — U is bounded in E.

Now, to prove this proposition, we would like to apply the general results given
in the previous section and more precisely Theorem 8 or Theorem 9. The idea is
to construct a Lyapunov function .Z},, which is a group invariant constant of the
motion and such that D, vanishes on 0y, . Since U,,,, is a G-relative equilibrium,
Theorem 7 ensures that it satisfies

Dy, H—& Dy, F=0

for some § € R2. As a consequence, H — § - F is a good candidate to be a Lyapunov
function. Nevertheless, since Dy, F1 = 0, iy is not a regular value of F, and the

choice of § € R? is not unique. Hence, working in the spirit of Sect. 8.1, we will
consider only F, as constant of motion and we define

2
.= W eE|FyW) :—%L . (148)

With this definition, X, is a co-dimension 1 submanifold of E.
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Moreover, we need .Z,,, to be coercive on ﬁ(]ﬂa, which means here that there
exist § > 0 and ¢ > 0, depending only on f, L, A and |«|?, such that, for all W € E
[asin (113)] or W € X, [asin (111)],

d(W, 0y,,) =8 = L, (W) = Z,,(Uy,) = cd(W, Oy, )*. (149)

A convenient choice for .Z},, turn out to be
L (U) = HU) = (€ + B)F>(V), (150)
—2Bk

§
Ouy,, - Indeed, since Dy.Z),,, € E*, Dy%,, (V) = (DyZ),, V) with

which corresponds to § = ( ) By construction, Dy.%),, vanishes for U €
Dy.%,, = —po,U—AUPU + (£ + BK)U € H (T, C), (151)

so clearly Dy.%,, = 0if U € 0y, . Furthermore, the bilinear form D}.%,, :
ExE — Ris givenby D?,.2(V, V) = (V2.%,, (U)V,V) with

V2L, (U)V = —BoL,V =AUV =A(UPV+VU?) + (£ + BK*)V € H ' (T1: C):
(152)

in particular, for all U € E, VZXM(U) is a bounded linear operator from E to E*
and the expression above makes sense.
Now to prove (149), the main ingredient is the property:

3> 0.YV € (Ty,, Ou,, )" Dy L, (V.V) = | V|2,
or
3¢ > 0.YV € Ty, Zu N (Tu,, Ou,,) . DYy Lu(V.V) = | V2,
where
Ty,, Tu = {W € E, (@, W) = 0},
(Ty,, Ou,,)" = (W € E, (i, W) = 0}.

This is proven in the following proposition, from which coercivity is deduced in
Proposition 8.

Proposition 7 Let 8 (ZT”)2 —21a? > 0 and a # 0.
(a) If A <O then

Dy, L, (V. V) = (V2L (U )V, V) = e[V (153)
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0V e(Ty 6y V:andey = mind LEY. 9302
forallV e (Ty,, Oy,,)” and ¢, = min et o2,
(b) If0 < 22a® < B (2)” then,

Dy, %, (V. V) = (V2L (U )V, V) = |V (154)

1 (2”) —21a?
forallV e Ty, Yo N (TUM ﬁyﬂa) and ¢, = ()

Proof LetV = v; + iv, = (v1, vy) € E. A straightforward calculation gives
Dy, %, (V,V) =Re / (—BOLV — A (V + V)V

- / BV + [Voal?) — 2202y 2
0

Now, since v; and v, are real functions on the torus, we can write them in Fourier
representation, namely,

v (x) = aO(vl) + Zan(vl)cos (2 ) + b, (vy) sin (%nx) ,
vy (x) = aO(UZ) + Zan(vz) cos (2 ) ~+ b, (v7) sin (ZZ ) ,

and recall that

a2 ad 2
e =2 (# £y ((27”) v 1) @) + b,%wl»)
L
2

2 R 2
(B )

n=1

Next,

n=1

2
DY, 2 (V. V)=§( 2202 000 +Z( (F n) —zmz) (@) + 5] (vl)))
L
5
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(a) If A < 0, it is clear that D%,M £, (V,V) > 0 for all V e E. Moreover, if
1 . . .
Ve (TUM ﬁyﬂa) , then (i, V) = 0, that 15 ap(vy) = 0. Hence, the coercivity
property of Dj;, £, (-,-) on (T, Ov,,) " follows easily.
(b) Now, let 0 < 24a? < B(2)* and V € Ty, 5o N (Ty,, Ou,,) " As a
consequence, (i, V) = 0 = («, V) which implies ap(v;) = 0 = ap(v2). As
before, the coercivity property of D%]u Ly, () on Ty, Xy N (TUM ﬁUM)

follows.

The following lemma gives a representation of the elements of E which are close
to the G-orbit Oy, . It is used in the proof of Proposition 8 and is a special case of
Lemma 6. We give a direct proof in the current simple setting.

Lemma 8 There exists § > 0 such that any W € E with (W, Oy, ) < & can be
represented as

W=U, +V (1553)

withy = y(W) € [0,2n) and V € (TUM ﬁUM)J'. Moreover; there exists a positive
constant C such that

d(w, by,,) = VIl = Cd(W, y,,). (156)

Proof Let W € E such that d(W, Oy, ) < § with § > 0 sufficiently small. Hence
there exists ¥, which depends on W, such that

le"W —a| <2 inf ||W—etal <28
A€[0,27)

Next, consider the functional

F:ExR—->R
. L .
(v, ¢) = (¢v,i) = —Re/ i’ v(x) dx.
0

Since #(«,0) = 0 and 94%(2,0) = «L # 0, by means of the implicit
function theorem, we can conclude that there exists A : ¥ — (—e¢,¢) with ¥ a
neighbourhood of « in E and ¢ > 0 sufficiently small, such that if v € ¥ then there
exists a unique ¢ = A(v) € (—¢, &) for which we have (¢?v,i) = 0.

As a consequence, since ||e” W — a|| < 26, if we choose § > 0 sufficiently small
then there exists ¢ € R such that (¢/¢T")W i) = 0. By taking y = 7 + ¢ modulo
27, we obtain (155). Indeed, E = Ty, Oy, & (Tu,, Ou,,)" and Ty, Oy, =
spang {i}. Hence,

EW—a=ai+V
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witha € Rand V € (Ty,, Oy, )J'. As a consequence,
0= ("W —a,i) = ali,i)

and a has to be equal to 0.
Estimate (156) follows directly from the definition of V.

Finally, the following proposition, in the same spirit of Proposition 5, proves the
coercivity of £, on Oy, .

Proposition 8 Ler 8 (ZT”)2 —2A|a|? > 0, & # 0 and &), be defined as in (150).

2712
(a) IfA <0, letc) = min{ iG] —2/\0{2}. Then there exists § > 0 such that

()
c
L W) = 2, (Uy,) z AW, 0y,)* (157)
for all W € E, such that d(W, ﬁUM) <.
) 2772 B(2)’ 202 .
(b) If0 <2Aa” < B (—) , let ¢y = =L=———. Then there exists § > 0 such that
' +Co)
Ly W) = 24, (Uy) 2 W, 0y, ) (158)

forall W € X, such that d(W, Oy, ) < 6.

Proof Let W € E such that d(W, Oy, ) < & with § > 0 sufficiently small. By

Lemma 8, there exists y € [0, 27] such thate” W—U,,, = Vwith V € (Ty,, Ou,, )J'
and [|[V|| < Cd(W, Oy, ). As a consequence, since Dy, £}, = 0,

L W) = Z2,,(Uy,) =%, (eiy W) =2, (Uy,)
1 . . )
=§D%]M L (@"W = Uy, "W —U,,) +o(|e"W — Uy, |*)
1

=5D%,, Zu (V. V) +o(IVIP).

If A < 0, we can apply (153), and for all W € E with d(W, Oy, ) small, we obtain
o
g}ta (W) - ZMQ(U;L&) = Id(W’ ﬁU,m)z-
If 0 < 20 < B (ZT”)Z, we proceed as follows. Let W € X, such that

d(W,0y,,) < § with § > 0 sufficiently small. As before, thanks to Lemma 8,
there exists y € [0,27] such that €”W — U, = V with V € (Ty,, ﬁUM)J'
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and [|[V| < Cd(W,0y,,). Next, it is clear that E = Ty, X & span{UM}.
Hence, V = Vi + V, with Vy € Ty, Zo N (Tu,, ﬁyﬂu)l and V, € span{U,,} N

1l . .
(TUM ﬁyﬂa) . Moreover, using the same arguments as in Lemma 10, for ||V|| small
enough, one has

IVl <

L vz and i) = Lqvy
an 1l = = .
24/ 2L 2

As a consequence,

1
LuaW) = £, Up) = 304, Z (V. V) + o(IVI)

1
= 504, Zu (V1. VD) + o(IVI)

C) Cx
LM I +o(IVII*) = §||V||2 +o(IVIP).

v

Finally, if 0 < 2Aa? < B (ZT”)Z, and for all W € X, with d(W, Oy,) small, we
obtain

C),
L W) =2, (@) = Ed(W, 0u,,).
Now, whenever Ala|> < 0, a straightforward application of the proof of

Theorem 8 with .Z),, as Lyapunov function allows us to conclude that Oy, is
orbitally stable under small perturbations in E.

To conclude in the case 0 < 2ia? < B (%”)2, we can apply Theorem 9.
Indeed, Hypotheses A and B, (Sect. 8.1) are fulfilled and the function F, satisfies
Hypothesis F thanks to Lemma 5.

10 Orbital Stability for Inhomogeneous NLS

This section is concerned with an NLS equation of the form

i+ Au+fx |u)u=0, u=u(tx):RxR!—C. (159)
We consider standing wave solutions u(f,x) = e w(x), where w : RY — R is
localized'"—typically w € H'(R¢) and w(x) — 0 exponentially as |x| — oco. Such

a solution exists if and only if

Aw — Ew + f(x, wHw = 0, (160)

17Note that we focus here on situations where the wave profile w(x) is real-valued.
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which is precisely the “stationary equation” (108). Note that the notation for the
nonlinearity in (159) is slightly different than in Sect. 3.2, and automatically ensures
that (32) holds, for all u € C \ {0}.

The existence of solutions of (160) can be obtained under various hypotheses on
f, the easiest case being the pure power nonlinearity, f(x,w?) = |w|°~!, ¢ > 1.
Note that, unlike in the case of periodic boundary conditions studied in the previous
section, it is crucial here that the nonlinearity be focusing for standing waves to exist.
The stationary equation (160) has no solutions if, for instance, f(x, w?) = —|w|°~!,
In the sequel, we will indeed suppose that the nonlinearity is focusing, which in the
context of (159) means that f(x, s) is positive and increasing in s > 0.

The purpose of this section is to further illustrate the general stability theory
developed in Sect. 8. Orbital stability results for standing waves of (159) have been
obtained in [44, 45, 48, 49] and will be summarized here. The stability analysis
in these papers benefits from having solution curves § — w. In the setting of
Sect. 8, they can be seen as an application of Theorem 10. The approach used
in [44, 45, 48, 49] was to apply the celebrated Theorem 2 of Grillakis, Shatah,
Strauss [53]. This result essentially relies on the set of spectral conditions (S1)—
(83), formulated below in the context of (159), together with a convexity condition,
which here takes the form (172). In the framework developed in these notes, the role
of Theorem 2 of [53] can be interpreted as follows. It will be shown in Proposition 9
that the conditions (S1)—(S3) and (172) ensure that the coercivity property (126)
required by Proposition 5 is satisfied at the relative equilibrium wg. Theorem 10 can
then be applied. As already mentioned in the introduction to Sect. 8, and explained
in more detail after the proof of Proposition 9, the relative equilibria of (159) can
be parametrized equivalently by the parameter £ appearing in (160), or by the
corresponding value . = %Hw; ||§2 of the constant of the motion. It turns out that
using £ is more convenient here. Note that, since this constant of the motion satisfies
Hypothesis F, one could also apply Theorem 9 instead of Theorem 10.

The notion of orbital stability we shall be concerned with here is that correspond-
ing to the group action (102) of Sect.6.5. Note however that the explicit spatial
dependence in (159) breaks the invariance under translations, and one rather needs
to consider the restricted action @, on the phase space E = H I(R?, C),

D, (u) = eu(x), uekE, yeR. (161)

The standing waves corresponding to solutions we of the stationary equation (160)
are then relative equilibria for the dynamics of (159), with respect to the action @,.

Remark 9 If f does not depend on x then the full group action (102) is to be
considered, and the standing waves of (159) are in general not orbitally stable in
the sense of (161). Orbital stability in the sense of the full group action (102) was
proved by Cazenave and Lions [18] by variational arguments.

We will only consider here situations where the coefficient f explicitly depends
on the space variable x € R?—(159) is then often referred to as an inhomogeneous
NLS—and decays as |x| — oo, in a sense that will be made more precise below.
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We shall also suppose that f(x,w?) ~ V(x)|w|°~! as w — 0. Conditions relating
the function V and the power o > 1 will be given for stability of standing waves to
hold. In particular our assumptions will imply o < 1 + d 5> so that local existence
in H'(R?) for the Cauchy problem associated with (159) is ensured by the results of
Sect. 3.2. Two cases will be considered:

(PT) the power-type nonlinearity f(x, w?) = V(x)|w|°™;
(AL) the asymptotically linear case f(x, w?) — V(x) as |w| — oo

[e.g. with f(x,w?) = V()20

We will give a short account of the main arguments used in [44, 45, 48, 49]
to establish the stability of standing waves along a global solution curve. We will
also briefly sketch the bifurcation analysis yielding a smooth branch of non-trivial
solutions of (160) emerging from the trivial solution w = 0. This part of the
argument is crucial since, in the approach originally developed in [49], the spectral
properties and the condition (172) required to obtain the coercivity of an appropriate
Lyapunov functional are derived by continuation from the limit we — 0. It is worth
emphasizing here that the verification of these hypotheses is precisely that part of the
stability analysis which strongly relies on the model considered. Once the required
coercivity properties are established, the orbital stability can be deduced from the
abstract results of Sect. 8.

10.1 Hamiltonian Setting
Similarly to Sect. 9, we work here with
E=H'(R?,C), (mvhzzRgf Vu(x) - Vi (x) + u(x)v(x) dx.
R4

The Hamiltonian and the charge are respectively defined by H,Q : E — R,

1 1 lul? 1
H(u) = —/ |Vu|2dx——/ / f(x,s)dsdx, Q(u) = —/ lul?dx, wuekE.
2 R4 2 R4 Jo 2 R4

(162)
In the notation of Sect. 6.5, Q(u) = —Fg4+1(u), but we will keep the customary
notation Q here. Under our assumptions, H, Q € C*(E, R).
Now (159) can precisely be written in the form
iy =D, H (163)

considered in Sect. 6, with E = H'(R?, C) ~ H'(R?, R) x H'(R?,R) and

7=(1%)
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with I : H' < H™! the (dense) injection. Thatis, _#(¢,p) = (—p,q) € E*, for all
(g,p) € E, asin Sect. 6.5. Note that we use the identification

H'(RY, R) c L*(RY,R) = L2(RY,R)* ¢ H™ (R, R).

In this setting a solution of (159) is a function u € Cl((—Tmin, Thax), E), for
some Tiin, Tmax > 0 [depending on u(0)], satisfying (163) for all f € (—Tin, Tmax)-
Standing waves are particular solutions of the form u(t) = @ w, w € E, and the
stationary equation (160) now reads

D.H + £D,,Q = 0. (164)
Hence, the discussion in Sects. 7 and 8 indicates that

L =H+£Q (165)

is the natural candidate for the Lyapunov function. Furthermore, the invariance of
H and Q under the action of @, implies that

Do, wH + Do, yQ =0, y€R. (166)

Finally, note that the isometric action (161) can equivalently be expressed as
o, (Reu) _ (0933/ —smy) (Reu) . UCE yeR
Imu siny cosy Imu
10.2 Bifurcation Results

In this section we present bifurcation results ensuring the existence of smooth curves
of solutions of (160). From a bifurcation-theoretic viewpoint the peculiarity of these
results is that, in both the (PT) and (AL) cases, bifurcation occurs from the essential
spectrum of the linearization of (160), namely

Aw = Ew,

this linear problem set on R? having no eigenvalues.
We start with the power-type case (PT), that is, we first consider the problem

Aw(x) + V(@) w@) [ 'wx) = Ewx), we H' R R), (167)

where d > 1 and V : R? — R satisfies:

(V1) VeC'RY;
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(V2) thereexists b € (0,2) [b € (0, 1) if d = 1] such that

l<o<*2 ifd>3, l<o<oo ford=12,

lim |x’V(x) =1 and Jim X’[x - VV(x) + bV (x)] = 0:
xX|[—>00

|x|—>o00

(V3) Vs radial with V(r) > 0 and V'(r) < 0 for r > 0;

V4) V'(r)
,

Vi(r)

is decreasing in r > 0 [and so — —b by (V2)].

Note that V(x) = (1 + |x|>)~*/? satisfies all of the above assumptions.

Theorem 14 Suppose that the hypotheses (V1) to (V4) hold. Then there exists a
curve w € Cl((O, oo),Hl(Rd)) such that, for all ¢ € (0,00), wg = w(§) is
the unique positive radial solution of (167), wg € C*(R?) N L>®°(R?), and wg is
strictly radially decreasing, with wg(x), [Vwe(x)| — 0 exponentially as |x| — oo.
Furthermore, the asymptotic behaviour of the curve reads

fim e 0 if l<o<l1+%2,
1 =
£—0 ellH Uc1+42h<0_<1+42b

and

lim |wgllgn =00 forall 1<o <1+ 422
E—o00

This theorem has been proved in [46] by a combination of variational and
analytical arguments. It provides a global continuation, in the radial case, of the local
curve of solutions of (167) obtained in [49] [parametrized by £ € (0, &), with & > 0
small] under the much weaker assumptions (V1) and (V2). Note in particular that
(V2) only requires the problem to be focusing at infinity, no further sign restrictions
being imposed on V. The orbital stability of the solutions wg, £ € (0,&), is also
discussed in [49], and it is found that they are stable provided

l<o<1+%2, (168)

and unstable if 1 + =2 <o < 1+ 2.

Remark 10 1n fact, more information about the asymptotic behaviour as § — 0 is
obtained in [49]. In particular,

0 if 1<o<l++2,

li =
EER)”WE”LZ oo if 1+42h<0_<1+42b
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whereas

; — 4—2b
gg% [Vwel 2 =0 foralll <o <1+ 2=

We now state a global bifurcation result similar to Theorem 14, for (160) in
dimension d = 1, in the asymptotically linear case (AL). That is, we consider

W (x) + £, wx)H)w(x) = Ew(x), we H'(R,R), (169)

where, to fix the ideas,'® we let

| |o—l

fx,w?) = V(x) (170)

1+ |wlo—t

In the asymptotically linear case, one cannot expect to find positive solutions
of (169)—(170) for large values of £ > 0. Heuristically, letting u — oo in (169)-
(170) leads to the so-called asymptotic linearization

w (x) + Vx)w(x) = Ew(x), (171)

having a ray of positive eigenfunctions { iwe : 1t > 0} corresponding to a principal
eigenvalue £, > 0. This has been put on rigorous grounds in [47], where it is
shown that positive even solutions of (169)—(170) only exist for £ < £, and satisfy
Iwellyn — 00 as & — oo

Theorem 15 Suppose (V1) to (V3) and 1 < 0 < 5 — 2b. Then there exists a curve
w € Cl((O, Eoo),Hl(R)) such that, for all § € (0,§x), wg is the unique positive
even solution of (169)-(170), wg € C*(R) N H*(R) with Wg_ (x) < Oforx >0, and
we (x), we(x)” — 0 exponentially as |x| — oo. Furthermore, there holds

li =0 d i = 00.
Sl_rf(l)”WEHHI(]R) an E—1>Igloo ”WE”HI(]R) oo

Remark 11 The reader might wonder why (V4) is not needed for Theorem 15. It
turns out that this assumption is essential in the proof of Theorem 14, where it
ensures uniqueness of positive radial solutions of (167), for any fixed & > 0. In the
one-dimensional problem (169)—(170), uniqueness can be proved without invoking
(V4).' However, we will see in the next section that this hypothesis is crucial to the
stability analysis, in both the (PT) and (AL) cases.

"8More general assumptions on the coefficient f in (AL) can be given, under which the bifurcation
and stability results presented here still hold, see [48].

“Note that the main reason for restricting the discussion to d = 1 in Theorem 15 is the lack of
uniqueness results in higher dimensions for the (AL) case.
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Remark 12 Thanks to the form of the nonlinearity in (170) the global branch of
Theorem 15, bifurcating from the trivial solution u = 0 at £ = 0, is obtained by
perturbation from the (PT) nonlinearity dealt with in Theorem 14. In fact, the case
where asymptotic bifurcation occurs at § = 0, corresponding in dimensiond = 1 to
5—2b < 0 < 00, could also be extended to the (AL) case, where instability could
be inferred, in the limit § — 0. We refrain from going in this direction here since
we were only able so far to extend the discussion to a global branch in the stable
case. We shall therefore assume (168) from now on, both for (PT) and (AL).

10.3 Stability

In dimension d = 1, assuming that 1 < 0 < 5 — 2b, the global curves of standing
wave solutions given by Theorems 14 and 15 are stable. This has been proved in
[45] for the (PT) case and in [48] for the (AL) case. The proofs rely on the theory
of orbital stability in [53] and we will now outline the main arguments.

We shall start by convincing the reader that, in the context of (159), one cannot
hope for stability in the usual sense (1). Indeed, suppose &, — £ and consider

ug(t,x) = “'we(x) and  u,(t, x) = wy, (x).
Then
V8> 03N €N, n> Ns = [|un(0,) — ug (0, )11 = wg, — wellm <.
However,

letn (2, ) = w2, ) e = [ = 5wl — llwe, — well |

= sup [|un (1) — ug @)l = 2[lwellgr — 8. n = N.
>0

Therefore, for n large enough, the initial datum u,(0) may be chosen §-close to
ug(0), u, (1) will nevertheless drift at least 2||we || ;1 — & far away from wug (7).

Theorem 16 Suppose that d = 1 and the hypotheses (VI1)—(V4) are satisfied. Then
the standing waves ug(t,x) = eiEng (x) of (159) given by either Theorem 14 or
Theorem 15 are orbitally stable.

The proofs of Theorem 16 given in [45, 48] used Theorem 2 of [53], and so relied
upon verifying Assumptions 1-3 of [53], as well as the condition

[well ;2 is strictly increasing in £ > 0. (172)
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The latter is often referred to as the slope condition or the Vakhitov-Kolokolov
condition. It seems to have indeed first appeared in the paper [103] of Vakhitov
and Kolokolov (1968), in the context of nonlinear optical waveguides.?’

Assumption 1 of [53] is about the well-posedness of the Cauchy problem
for (159) which, under our hypotheses, follows from Sect. 3.2. Assumption 2 per-
tains to the existence of smooth solution curves and is ensured by Theorem 14/15.
It is this property which allows us to apply Theorem 10 of Sect. 8.

We will see that Assumption 3 of [53], together with the slope condition (172),
ensure the required coercivity property of the Lyapunov function .#; introduced
in (165). In order to formulate Assumption 3 in the present context, consider the
bounded linear operator Dié 2 E—E *

D;, % =D, H+¢D; 0, &>0. (173)
We define the spectrum of Di‘s %Z; as the following subset of R:
a(Dié‘Zg) = {A eR: vas‘iﬂg — AR :E — E* isnot an isomorphism}, (174)

where R = diag(R,R) and R = —% + 1 : H'(R,R) - H'(R,R) is the
Riesz isomorphism. Under the hypotheses of Theorem 14/15, I}_IDVZ%‘ZE E—>E
is a bounded self-adjoint Schrodinger operator, and its spectrum coincides with
J(vagiﬂg). The motivation for this definition of the spectrum of ng‘s‘zé will be
discussed in Remark 13.

A straightforward calculation shows that Di‘s % is explicitly given by

d2
—— 4 E—[f(x, w?) + 20:f (x, wHw?] 0
o= | @ 3 £IWe P ’
0 2 +&—f(x,wp)
(175)
and the spectral conditions formulated in Assumption 3 of [53] are:

(S1) 3ot € R such that U(vaéjfg) N (=00,0) = {—a;} and ker(Dﬁ%fg + agk)
is one-dimensional;

(S2) kerDj, % = span{iwe};

(S3) cr(DfVé Z)\ {—ag, 0} is bounded away from zero.

The fact that iw; € ker Di,gi”g directly follows by differentiating (166) with respect
to y at y = 0. So (S2) really only states that ker Di,gi”g is one-dimensional.

20The mathematical theory of NLS has been intimately connected to nonlinear optics from its early
days. See [45] for additional references on this.
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We now explain how hypotheses (S1)—(S3), together with (172), imply the
coercivity property (126) in Proposition 5. In order to explicitly write down
condition (126), let us first observe that we parametrized the standing waves by
the “frequency” £ here, whereas in Sect. 8 the relative equilibria are rather labelled
using the value u of the constraint. In the present context, i = u(§) = Q(wg), and
we only deal with situations where p is a smooth, strictly increasing function of &,
so both parametrizations are equivalent. Now the level surface

Towy ={u € E| Qu) = Qwe)}
and, given a standing wave ug (f) = P, we we have, for any u = ¢~ "“w; € 0,
TuZowy = {v € E| (77D, 0,v) = 0}.
On the other hand, 7,0, = span{e~7) iwg }, so that
T ot N (Tu04)" = {v € E | (7D, 0.v) = (¢7"Wiw, v) = 0}.
Next, differentiating
Dy.H + D, Q =0

with respect to § yields

Di,s.,gg Xe = =Dy, Q. where xg:= dd%, (176)
so that
(D, Zixe. xe) = —(D, 0. xe) = —%Q(Ws) <0 (177)
by (172).

Proposition 9 Suppose that (S1) to (S3) hold, as well as (172). Then there exists
¢ > 0 such that

Yu € 0, Yv € TuZouy) N (Tu04)", D2Li(v,v) > cl|v]}.

Proof Letu = e‘”’“"ws € 0. First remark that, by the invariance of .’ on the
orbit {®,we | y € R}, we have

D% =D e = D (L 0 P—yw) = D}, .

Y)W
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Therefore, we need only prove the result at u = wg, i.e. that there exists ¢ > 0 such
that

Vv € E, (Dy,Q,v) = (iwg, v)e = 0 = D}, % (v,v) = c|[v|z.
Introducing the bounded self-adjoint operator Sg := R_IDEVE.,% : E — E, this is
equivalent to

Yu € E, (Sexe, v)E = (iwg,v)g = 0 = (Szv,v)g > c|v]2.

Now by (177) we see that (S¢x¢, x¢)e < 0, and the result readily follows from
Lemma 5.3 in [99].

The verification of properties (S1)—(S3) and of the slope condition (172) in [45,
48] is intimately connected with the behaviour as § — 0 of the solutions given by
Theorems 14 and 15. The main idea is to show that the required properties hold true
for a limiting problem obtained by letting £ — 0 in the stationary equation (160)
(in suitably rescaled variables), and then to deduce them for the original problem
by perturbation and continuation along the global curve given by Theorem 14/15. In
other words, it is first shown that (S1)—(S3) and (172) hold for small values of § > 0,
and then that these properties cannot change along the global curve. It is worth
noting here that, in both Theorems 14 and 15, it can be shown that ||wg ||z — 0 as
& — 0 (see Sect. 10.3.1 below). Therefore, case (AL) can be seen as a perturbation
of (PT), in the limit of small £, and the stability properties of standing waves are the
same in both cases for small £ > 0.

The remainder of this section is devoted to the proof of Theorem 16. We will
sketch the arguments yielding the local stability results close to § = 0, and
the continuation procedure extending these to the whole curves of solutions in
Theorems 14 and 15. For the local results, we shall only consider case (PT), the
details of the perturbation argument one has to go through to deal with (AL) being
cumbersome and not very enlightening (see [44] for more details). We will however
present the global continuation procedure for both cases in a unified manner. For this
we will use the general notation of (159)-(160) rather than the particular form of f
in each case, and we will merely write £ > 0 throughout, of course really meaning
0 < £ < £ in the (AL) case.

10.3.1 Local Stability by Bifurcation

We consider here (160) in dimension d = 1, and with f(x, s*) = V(x)|s|°~!. The
scaling

E=K, u@x)=ktv(y), y==ky, k>0, (178)
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yields
V' —v 4+ kv (y/k) | v =0, k> 0. (179)
Then, by (V2),
lim KV (y/k) = /K V7K = [y ¥y #0,
which suggests considering the limit problem
v — v+ [y = 0. (180)

It turns out [45] that (180) has a unique positive radial solution vy € H'(R). This
solution can be shown to have a variational characterization, from which it bears the
name ground state of (180).

The advantage of the scaling is that, in the new variables (k, v), one can now
obtain solutions by perturbation of (180), which is non-degenerate. More precisely,
one can apply a version of the implicit function theorem to the function F : R x
H'(R) — H™'(R) defined by

v = v+ KTV O/ kDI T v,k # 0,
Flk,v) = v — v+ |y v|o ", k=0,

at the point (k,v) = (0,vp) € R x H'(R), where D,F(0,v) : H'(R) — H™'(R)
is an isomorphism (see [45, Proposition 2.1]). This provides a small k) > 0 and a
local C' curve of solutions {(k,v) : |k| < ko} C R x H'(R) of F(k,v) = 0. The
local bifurcation in Theorem 14 can then be obtained by going back to the original
variables using (178), which yields a local C! curve of solutions

{(E.we) : 0 <& <k} CRxH'(R)

of (160). The various solution norms in the two sets of variables are related by

2 -1 2 2 2
Iwell2 = & llvgalle, 1Vwelle = §*IVoga g,

2—b — —
Iwellzoo = EX=D v lroo,  where e = *5HED,
The behaviour of wg as § — 0 follows readily from these relations and the fact that
vr — Vg both in H'(R) and in L®(R) (see [45, Proposition 3.1]).

The Slope Condition Let us now explain how the slope condition (172) can be
derived from this analysis, for small & > 0. We show that % [lwe ||i2 > 0foré >0
small enough. Observe that

1 d

d. , 1d
el = geqeel = g

kP vl
dek{ lloell72}
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where

_4-2b—(0—1)
- o—1

B =2(—1). (181)

Now

d _ d
a{{kﬁllvkllfz} = BKP T luell, + KP2(vr, E(Ukhz

d
= KB Bllvi % + 2k{v, va")“}'

Since [lvx[|?, = [lvoll?, > 0 as k — 0, we have that

d
sgn{d—$||w§||i2} = sgn{a — 1} for § = k* small, (182)

provided
ki d Oask— 0 183

(v, J{vk)Lz — 0ask — 0. (183)

On the other hand,
d
F(k,vr) =0 = DyF(k,vy) + D,F(k, Uk)acvk =0
d -1
= kﬁcvk = —DUF(k, Uk) kaF(k, Uk)

= —D,F(k,v;) 'k W(y/k)v,

where W(x) := x - V/(x) + bV(x) appears in hypothesis (V2). Then, using (V2), it
is not difficult to show that

kW (y/kyv — 0in H ' as k — 0.
Finally, it follows from the open mapping theorem that
DyF(k,v)"' — D,F(0,v9) ' inB(H™',H") as k — 0,
and we conclude that k%vk — 0in H' as k — 0, from which (183) follows.

Recalling our assumption that | < o < 5 — 2b, the slope condition (172) now
readily follows from (181) and (182).
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The Spectral Assumptions Regarding the verification of (S1)—(S3), we shall not
give as much detail as for the slope condition. That the solutions we indeed give rise
to a Hessian D?_%; : E — E* with the appropriate spectral structure also follows
from the properties of the limit problem (180) through the perturbation procedure
outlined above. The crucial point is the variational characterization of the ground
state vo, which can be shown to minimize the functional

- 1 1
Zow) == | W)Y +vPdx— —— [ |x|Pw|° T dx
2 R o+1 R

on an appropriate codimension 1 submanifold N of H'(R). Note that the direct
method of the calculus of variations cannot be applied to the functional % since
it is not coercive. In fact it turns out that vy is a saddle-point of jo. More
precisely, vp is a critical point of %} (i.e. Dvo-jo = 0), and the quadratic form
D%Ofo : H' x H' — R is positive definite tangentially to N, and negative along
the ray spanned by vy, transverse to N. This information—together with some
Schrodinger operator theory—precisely implies that D%Ojo enjoys the properties
(S1)—(S3). Furthermore, if wg and vy are related by the change of variables (178), a
straightforward calculation shows that

3-2%+to
Lr(we) =k 0 ZLo(we),

where . is the Lyapunov function defined in (165). However, it is by no means
trivial to verify that the spectral properties of D%O Z are carried through to vaé.,?”g,
for £ > 0 small, in the perturbation procedure. This was shown in [49] in arbitrary
dimension.

Note that, if the solutions wg are themselves saddle-points of .#%, the perturbation
procedure can be dispensed of, and the spectral properties of the Hessian vaéfg
derived directly from this variational characterization. This is in fact the case for the
solutions obtained in Theorem 14, but it is not known in the (AL) case, where the
variational structure is much less transparent.

Remark 13 When verifying assumptions (S1)—(S3) in the context of (159)—(160)
(which are set on the whole of R) one has to deal with the continuous spectrum of
vaé -Z; in addition to the negative eigenvalue lying at the bottom of the spectrum.
The standard approach to tackle this is via the theory of Schrodinger operators
applied to the self-adjoint operator R‘lDﬁ%f; : E — E. This motivates the
definition of cr(DfVé Z;) given in (174). On the other hand, the problem considered
in Sect.9 (set on a compact manifold) only gives rise to discrete spectrum in the
linearization, and so can be handled with a more elementary spectral analysis, not
requiring to introduce the Riesz isomorphism R:E— E* explicitly.
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10.3.2 Global Continuation

In this section we show how both the slope condition (172) and the spectral
properties (S1)—(S3) extend from the previous local analysis to the global curve
given by either Theorem 14 or Theorem 15. We will handle the two cases in a unified
approach, using the general notation f(x, w?)w for the nonlinearity. As earlier, we

will often merely write §¢ > 0, really meaning £ € (0, co) in the (PT) case and
& € (0, &) in the (AL) case. Again, we only consider here the case d = 1.

The Slope Condition From the previous analysis, (172) holds for £ > 0 small
enough. Hence we need only verify that

d%_/ngdx¢o VE > 0.

First notice that, since the solutions wg are even,

d/de 2/ d dx 4/00
— | w = We—W = We Xes
d Jo ¢ R CdE T o

dwe
where y¢ = T satisfies

xi +{f(x, wg) + 205f (x, w?)w?} xe =Exe + we.

To simplify the notation, we will drop the subscript £ in the remainder of the
argument. It can be shown [45, 48] that

o0 o
/ {Zf(x, w?) + x01f (x, w?) — dof (x, wz)wz}wxdx = 25/ wy dx (184)
0 0
and that there exists xo > 0 such that
x >0o0n(0,x), xo)=0, yx<O0forx> xp.

Supposing by contradiction that fooo w y dx = 0, we can write (184) as

/oo {Zf(x, w?) + x01f (x, w?)
0

0of (x, w2)w? - 1}32f(X, wHw? ydx = 0.

Denoting by ¢ (x) the function in the curly brackets, this becomes

/oo C(x)of (x, wHw? y dx = 0.
0
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Now using the unique zero xq of y, we can rewrite this identity as

/0 (20 — £0x0)}0f (e WP g dx + £ (x0) /0 Bof (v W))Wy dx = .

Moreover, multiplying the equation for w by y, the equation for y by w, subtracting
and integrating, yields

o0 o0
/ wdx =2 / Dof (x, wHw? y dx,
0 0

and so

/oo 3of (e, WHW{E (x) — (x0)} y dx + C(;O) /oowzdx =0. (185)
0 0

Now,

o—1 :
=V o in the (PT) case,
azf(x’ WZ)W3 — 21 (.X)W ) . ( )
U%V(X)MTI)Z in the (AL) case,

hence 9,f (x, w*)w® > 0 on (0, 00) in any case. On the other hand,

2 V/(x) 5—
oy = ) T BT 5 (PT)
%[x“/,((j; +32] + ﬁ[xvv(‘j; + 2w~ (AL)

and we claim that ¢ is positive and decreasing in any case, which immediately leads

to a contradiction with (185). To conclude, the claim follows from our hypotheses
since

4

!
X —=x decreasing, x ) >—p and o<5-2b
Vix V(x)
Vv 5—
X () + g > 0 and decreasing
V(x) 2

[note that hypothesis (V4) is crucial here]. Furthermore,

V/
w > 0 and decreasing = [x V((x)) + Z]W"_l > 0 and decreasing,
X
N——

>—b+2>0

so that ¢ is indeed positive and decreasing in any case.
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The Spectral Conditions The spectral conditions (S1)—(S3) can be reformulated
in terms of the self-adjoint operators Lg’, L;:H 2(R) C L*(R) — L?(R) defined by

L;'v =—v" + v —[f(x, w?) + 20,f (x, wg)wg]v,
Lyv = —v" +§v —f(x, w)v.

Then (S1)—(S3) are equivalent to
ChH  infoes(L) >0, ML) =1, kerLf = {0},
(C2) infoess(Lg) >0, 0= info(LE_), kerLE_ = vect{wg},
where 0.5s(A) denotes the essential spectrum of a self-adjoint operator A, and M(A)
its Morse index, i.e. the dimension of the larger subspace where A is negative
definite.

A first step toward verifying that (C1) and (C2) hold for all £ > 0 is to show that

all eigenvalues of Lg', LE are simple, which follows by standard ODE arguments.
Then, since

lim f(x,ws(¥)%) = lim 2051 (x, we (x)?)we (x)* = 0,

[x]—o00 |x|]—>00
it follows from the spectral theory of Schrodinger operators (see e.g. [98]) that

inf 0ess (L) = infoess (L) = € > 0.

Furthermore, applying ODE comparison arguments to the equations L;'v =0

and (160), it can be seen that kerLg' = {0}. On the other hand, since wg > 0 is
a solution of (160), it follows again from standard spectral theory that

ker Ly = span{we} and 0 = info (L; ).

It remains to show that L;r has exactly one negative eigenvalue. As discussed
earlier, the local bifurcation analysis close to § = 0 shows that M (Lg') =1foré >0
small enough. By perturbation theory, the eigenvalues of L; depend continuously
on £ > 0. Since kerL;' = {0} for all £ > 0, the eigenvalues cannot cross zero

as & varies. Therefore, M (L;") = 1 for all £ > 0, which completes the proof of
conditions (C1) and (C2).

11 A Brief History of Orbital Stability

The stability theory of infinite dimensional nonlinear evolution equations has been
the object of intense study in the past four decades. It originated in the mathematical
analysis of nonlinear waves propagating in dispersive media, such as waves on a
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water surface, or electromagnetic waves in dielectric media. Giving an exhaustive
review of the subject would take us far outside the scope of these notes. We shall
only aim to guide the reader through a choice of references which appear important
to us, providing possible directions for further investigation of the literature on
orbital stability.

Let us first remark that the notion of orbital stability defined in (4) is a classical
one in the study of periodic solutions of finite dimensional dynamical systems,
which originated in the pioneering works of Floquet [37], Poincaré [87] and
Lyapunov [69]. The rigorous mathematical analysis of orbital stability for nonlinear
dispersive PDE’s has been initiated in 1972 by Benjamin [8], who considered
solitary waves of the Korteweg—de Vries (KdV) equation. This equation was first
written down by Boussinesq in 1877 [13] and then rediscovered independently by
Korteweg and de Vries in 1895 [61], as a model for water wave motions. It describes
long waves in shallow water (i.e. with water depth small compared to wavelength)
propagating in one space direction.?! The terminology of “orbital stability” is not
employed by Benjamin, who rather speaks of the stability of the shape of the solitary
waves: “A device entailing the definition of a certain quotient space is used to
discriminate the stability of solitary waves in respect of shape—which is a more
reasonable property to investigate than absolute stability” ([8, p. 155]). The quotient
referred to by Benjamin is with respect to space translations in R, which is a group
of symmetry for the KdV equation. Benjamin’s proof of stability makes use of
a Lyapunov functional constructed by means of the constants of motion, i.e. the
energy-momentum method studied in these notes. It is worth observing here that,
before proving stability for arbitrary perturbations of the initial data, he starts by
proving stability for perturbations having same L?> norm as the solitary wave, and
then uses the fact that solitary waves come as continuous families parametrized
by the wave speed. This idea was later used by Weinstein [104] for general NLS
equations and a generalized KdV equation. We use it to prove our Theorem 10.
Benjamin motivates his approach heuristically by discussing some early remarks of
Boussinesq [13] suggesting the use of a Lyapunov function to prove stability.

An abundant literature on the stability theory of solitary waves for equations
modelling water waves has followed Benjamin’s paper. Just to mention a few, the
interested reader may consult the following papers and references therein: [10, 11,
23, 24, 32, 33, 104] for waves in shallow water, including the KdV and Camassa-
Holm equations; [14, 15, 25] for the full water wave problem, governed by the Euler
equation.

A couple of years after Benjamin’s seminal work, Bona [10] made a substantial
contribution to the theory, by grounding it into the Sobolev space setting. Indeed,
in the absence of a general well-posedness theory, Benjamin had assumed that
solutions were global in time and smooth. Bona proved global well-posedness in
appropriate Sobolev spaces and rephrased Benjamin’s arguments in this natural

21'The KdV equation also appears in other physical contexts [105].
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framework. This was an important step for subsequent work on stability for
nonlinear dispersive equations.

Two remarkable contributions to the stability theory of KdV-like equations were
given about a decade later by Weinstein [104] and by Bona, Souganidis and Strauss
[11], who applied the energy-momentum method to generalized versions of the KdV
equation. Weinstein [104] also proves the orbital stability of standing wave solutions
to a general class of nonlinear Schrodinger equation. His proof, based on the energy-
momentum method, provides the first alternative, in the NLS context, to the proof
of orbital stability given a few years earlier by Cazenave and Lions [18] for the NLS
with a power-law nonlinearity (see also [16]), which is purely variational, based on
Lions’ concentration-compactness principle [68].

In the same spirit, taking advantage of general existence results for nonlinear
waves that were obtained in the early 1980s (see e.g. [9, 97]), an important body of
work including [51, 52, 57, 58, 90, 91] made use of linear stability analysis and the
energy-momentum method to study stability properties of standing/solitary waves
for Hamiltonian systems including the NLS and nonlinear Klein-Gordon equations.
This line of research culminated in the general theory of orbital stability of Grillakis,
Shatah and Strauss [53, 54], who derived sufficient and necessary conditions for
the stability of standing/solitary waves of infinite-dimensional Hamiltonian systems
with symmetry, via a combination of spectral properties and a general convexity
condition. In the NLS context, this convexity condition takes the form of the
condition (172) of Sect. 10. This stability condition seems to have first appeared in
1968 in a paper of Vakhitov and Kolokolov [103], where stability of trapped modes
in a cylindrical nonlinear optical waveguide is discussed by formal arguments. In
fact, the NLS equation is a standard model for slowly modulated waves in nonlinear
media, for instance in nonlinear optics, see [72, 100].

Following the seminal contributions of the 1980s, the amount of work on stability
for the NLS and other nonlinear dispersive equations has increased tremendously.
Important results have been obtained for instance in [3, 4, 21, 22, 30, 36, 38-41,
48, 49, 55, 56, 63-65, 70, 71, 82], and many other references can be found in these
papers.

In addition to orbital stability, the stronger property of asymptotic (orbital)
stability?> has also been investigated, see e.g. [75-78, 86] for KdV and [26—
28,59, 79, 93, 94] for NLS. Roughly speaking, a relative equilibria U is (orbitally)
asymptotically stable if it is orbitally stable and any solution starting close to
its orbit eventually resolves into a “modulation” of the original wave U and a
purely dispersive part, solution of the linear version of the governing equation. An
important related conjecture, known as the soliton resolution conjecture stipulates
that, generically, any reasonable initial data should give rise to a solution which
eventually resolves into a sum of solitary waves (solitons) and a purely dispersive
part (radiation). More details and references on these topics can be found in
[92, 102]. Let us just conclude by remarking that the term “soliton” (which was

22This notion is well known in the finite dimension context, see e.g. [20].
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coined in [105]) comes from the literature on integrable systems, originating in
[35, 42, 62, 73, 89, 105]. Loosely speaking, solitons are (stable) solitary waves of
integrable systems, that can be obtained by exact solution methods,?* such as the
inverse scattering transform [62]. However, the term soliton is now used in a more
flexible manner throughout the nonlinear dispersive PDE’s community, whenever
referring to a persistent localized wave resulting from a balance of dispersion and
nonlinear effects. The inverse scattering transform provides detailed information
about the asymptotic behaviour (e.g. soliton resolution) of general solutions in
the integrable cases—see [60, 102] and references therein for recent accounts
comparing the inverse scattering to other PDE methods.

Further discussion and more references about nonlinear dispersive PDE’s can be
found in the monographs [1, 5, 17, 101].

Appendix

The goal of this Appendix is to present those very basic notions from differential
geometry, Lie group theory and Hamiltonian mechanics that are indispensable to
follow the treatment of the main text and that are not necessarily familiar to all.
The only prerequisites for this part are a good grasp of differential calculus on finite
dimensional normed vector spaces not going much beyond a fluent mastery of the
chain rule for differentiation and an intuitive grasp of what a submanifold of such
spaces is.

Differential Geometry: The Basics

We first recall some elementary notions of differential geometry and dynamical
systems on a normed vector space E. For the general theory on differentiable
manifolds, one may for example consult [2, 67, 96].

By a vector field on E we will mean a smoothmap X : E — E. Given u € E, one
should think of X (u) as a “tangent vector to E at 1. With this idea in mind, a vector
field naturally determines a differential equation

w(t) = X(u(®), wuo =u,

the solutions of which induce a flow on E defined as @ (u) = u(t). For ease of
discussion, we will suppose throughout the Appendix that all solutions are global

2These methods are somewhat reminiscent of the Fourier transform approach to solve linear
PDE’s, though the formulas are much more involved for nonlinear waves.
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and hence all flows complete. Most results carry over even if the flow exists only
locally in time.

The diffeomorphisms>* @ of E act naturally on vector fields as follows. First
note that, when @ is a diffeomorphism, and y : t € (a,b) — E a curve with
y(0) = u, y(0) = v, then we can consider the curve y : t € (a,b) — E defined by
y(t) = @(y(?)). This is the curve y, “pushed forward” by @: we invite the reader
to draw a picture. This new curve satisfies y(0) = @(u), so it passes through @ (u).
What is its tangent vector at that point? The chain rule yields immediately

#(0) = D,@(v),

where D,® is our notation for the Fréchet derivative of @ at y € E, which is a
continuous linear map from E to E. This equality gives a geometric interpretation to
the purely analytical object D, @ (v): it is the tangent vector at @ (u) to the curve y at
t = 0. With this in mind, given a vector field X, we can now define a new vector field
@, X, the push forward of the vector field X by the diffeomorphism @, as follows:

D X(P(u)) := D, P(X(u)).
Note that, with the above interpretation of the “push forward” of a vector at u,
D, ®(X(u)) is a vector “at @(u)”, which explains why @ (u) appears in the argument
in the left hand side. Of course, we can write
DX (1) = D1, @(X(P ' (). (186)
We will make little use of this notation from differential geometry, preferring to
write out the explicit expression D, @ (X (u)) whenever needed.

Diffeomorphisms also act naturally on flows, as follows. Given a diffeomorphism
@ :E— E,onehas, forallu € E,

d
d—t(<1> 0 @) (1) = Do,y (X (Dy(u))).
From this and (186), one concludes
d _ _
&@ 0 @Y 0 7)) = Dyx (1) DX (D (@7 (w))))
= D X(P o @F 0 &7 (u)).

In other words, the flow @ o @X o @~ is generated by the pushed forward vector
field @, X.

24%We mean @ € C'(E, E) with a C'(E, E) inverse.
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It follows from the above and an application of the chain rule that, if X, Y are two
vector fields on E, then, forall u € E,

9? d
mq}f o & 0 @) (u)j=0= = &Dd)lj(u)®_3<Y(X(®Z_y(u)))s=0
d Y d Y
= d—X(d)_s(lfi))s=0 + _Dx(p5 (X(u))x=0
s ds
= [X, Y](w), (187)

where the commutator [X, Y] of two vector fields is defined as follows:
[X. Y](u) = DY (X () — DuX (Y (u)).

This definition is justified by the following observation. Given a vector field X and
a C! function F : E — R, one can define a differential operator

X(F)(u) = DF(X(w)), (188)

which is—geometrically—nothing but the directional derivative of F at u in the
direction X (u). A simple computation shows readily that

A

X, 7] = [X.7]. (189)

The following is then well known:
Lemma 9 The following are equivalent:
(i) Foralls,t € R, @tx o @SY = QYY o @tx;
(ii) [X,Y]=0.

Proof That (i) implies (ii) follows immediately from the preceding computation.
The proof of the converse is slightly more involved, for a simple argument we refer
to [96].

Remark 14 Note that, if X(«) = Au, Y(u) = Bu, where A,B : E — E are linear,
then, with our convention, [X, Y](u) = —[A, B]u. Here [A,B] = AB — BA is the
standard commutator of linear maps.

Definition 12 Let F € C*(E,R") for some k > 1. For each u € R™ we define a
level set of F by

Y,={u€E|F(u) = uj. (190)

We will say u € E is a regular point of F if D,F : E — R" is surjective. We will
say ( is a regular value of F, if ¥, # @ and all u € X, are regular points of F.
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If u is a regular value of F, then ¥, is a co-dimension m submanifold of E [7,
Theorem 6.3.34]. In that case, the tangent space to X, at u is defined as follows:

T.%, = {w € E | D,F(w) = 0} = Ker(D,F). (191)

We point out that if r = Rank(D,F) is constant on X, then ¥, is a co-dimension
r submanifold. We will need the following simple result in Sect. 8.4.

Lemma 10 Let F € CK(E,R™) for some k > 2. Let 1 € R™ be a regular value of
F.Letu € X, and let W, be a subspace of E so that E = T, X, ® W,,. Then, for all
veEX,

v = w2l < O(lv — ul®).
and there exist §, C > 0 such that

[v—ull =6 = l[(v—whl = Cllv—ul,

where (Vv —u) = (v—u)1 + (v —u) €T, X, ® W,
Note that both § and C depend on u and on the decomposition of E chosen.

Proof Write u — v = w; + wy, with w; € T, X, and w, € W,. Then, using that
D,F(w;) = 0, we have

0 = F(v) = F(u) = DuF(w2) + O(|[v — ul>).
Now, since D, F is a diffeomorphism from W, to R™, there exists ¢ > 0 so that
IDFw2)|| = clwall,  hence  O(lv — ull*) = c[[wa].
Finally
Iwill = llu=v =wall = [lu=v]| = wall = u— vl = O(Jv — ul?),

from which the result follows.

Lie Algebras, Lie Groups and Their Actions

In general, a Lie algebra is a vector space V equipped with a bilinear composition
law (u,v) € VXV — [u,v] € V, called a Lie bracket, which is anti-symmetric and
satisfies the Jacobi identity, meaning that for all u, v,w € V:

([, v]. w] + [[v, w]. ] + [[w. u], v] = 0. (192)
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The basic example of this structure is given by spaces of matrices or, more
generally, of linear operators on vector spaces, where the Lie bracket is given by
the usual commutator. Two other examples play an important role in these notes,
namely the space of vector fields on a normed vector space with the commutator
defined in (187) and the space of all smooth functions on a symplectic vector
space, where the Lie bracket is given by the Poisson bracket, as explained in
Sect. 11 “Hamiltonian Dynamical System with Symmetry in Finite Dimension”
below. The validity of the Jacobi identity follows in all these examples from a
direct computation, whereas the bilinearity and the anti-symmetry are obvious. Lie
algebras are intimately linked to Lie groups, as the terminology strongly suggests,
and as we now further explain.

In general, a Lie group is a group equipped with a compatible manifold structure.
For our purposes, it is however enough to define a Lie group G to be a subgroup of
GL(R"), such that G is also a submanifold of R (i.e. for our purposes, typically
the level surface of a vector-valued function). As such, GL(RN ) itself, which is an
open subset of RV * isaLie group. So are the rotation group

SO(N) = {R € GL(N,R) | RTR =1y}

and the symplectic group

Sp(2N) = {S € GL2N.R) | STJS = J}, with J = ( (; Ig) . (193)
—IN

A simple verification shows that Sp(2) = SL(2,R), the space of two by two
matrices of determinant one. The dimension of a Lie group is by definition its
dimension as a manifold. For SO(N), it is N(N — 1)/2, and for Sp(2N), it is
N(2N + 1), as is readily checked. The group R" is also a Lie group in this sense.
Indeed, putting N = n + 1, and defining, for each a € R",

=)

one readily sees that A(a)A(b) = A(a + b), so that one can view R” as a subgroup
of GL(n + 1, R).

We recall that, in general, an action of a group G on a set X' is a map @ :
(g.x) € Gx ¥ — P,(x) € X which satisfies ®.(x) = x, forall x € X,
and @, o P, = D ,,. In these notes, we consider actions that are defined on a
normed vector space E. If the @, are linear, one says @ is a representation of the
group. This will not always be the case in these notes: actions may be nonlinear.
Furthermore, all actions considered will be at least continuous, and very often they
will have additional smoothness properties. In this Appendix, where we deal with
finite dimensional systems only, the actions are supposed to be separately C' in each



254 S. De Bievre et al.

of their two variables g € G and u € E. Appropriate technical conditions to deal
with infinite dimensional spaces E are given in the main part of the text as needed.

By definition, the Lie algebra g of a Lie group G is the tangent space to the
manifold G at the unit element e € G:

g=T.G.

In other words, for each ¢ € g, there exists y : + € R — G, a smooth curve with
y(0) = e = Iy, and y(0) = £. Note that one should think of £ as a matrix, since for
each 7, y(¢) is one. In addition, it turns out that, given £ € g,

exp(t§) € G,

for all + € R where exp(#£) is to be understood as the exponential of the matrix f£.
Indeed, given £ and y as above, foralln € N, y(ﬁ) € G and so y(ﬁ)” € G. Taking
n — +oo, the result follows. A one-parameter subgroup of G is, by definition, a
smooth curve y : t € R — y(f) € G, which is also a group diffeomorphism:
y(t + s) = y(t)y(s). What precedes shows that any such one-parameter group is
of the form t — exp(#£). So there is a one-to-one correspondence between the one-
parameter subgroups of G and its Lie-algebra, which starts to explain the importance
of this latter notion. In addition, it turns out that, if £,n € T,G, then so is their
commutator (seen as matrices)

[§.n] = &n —nég,
which justifies calling 7,G a Lie algebra. Indeed, consider, for each s € R, the curve
y 1t € R — exp(sn) exp(t€) exp(—sn) € G.
Clearly y(0) = Ly and y(0) = exp(sn)& exp(—sn) € T.G. So we have a curve
s € R — exp(sn)é exp(—sn) € T.G.

Taking the derivative with respect to s yields [, £] € T,G:

d
5 SXPmE exp(=sn) =0 = [n.§]. (194)
As an example, the Lie algebra of SO(N), denoted by so(N), is given by
so(N) = {A e .#(N,R) | AT + A =0},

which is the space of all anti-symmetric N x N matrices. This is easily established by
writing exp(tAT) exp(tA) = Iy and taking a t-derivative at t = 0. And it is obvious
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that the commutator of two anti-symmetric matrices is anti-symmetric. A basis for
so(3) is

000 001 0-10
e1=100—-1),e2=1]000),e3=1|100], (195)
010 —-100 000
and one readily checks that
le1,e2] = €3, [e2,e3] = €1, [e3,e1] = ea. (196)
One then identifies £ € so(3) with £ € R3 via
3 0 & &
E=) Eei=|& 0 —&|. (197)
=1 =& & 0

Similarly, a basis for sl(2, R), the Lie algebra of SL(2, R), is

()G ()

and one has
[eOs e+] = 26+, [e()ve—] = _26_, [e—s e+] = —¢€p. (199)
In general, if e;, i = 1, ..., mis a basis of g, there exists constants cg so that

[eis e]] = Ci'cjekv (200)

where the summation over & is understood; the cf.‘i are called the structure constants
of g.

There exists a natural linear action of G on its Lie algebra, called the adjoint
action or adjoint representation, defined as follows, forall g € G, ¢ € T,G:

Ady§ = gkg™.

Clearly Adg,,, = Ad,, Ad,,. Note that for a commutative Lie group G, such as R”,
it is trivial: Ad,§ = £. It is instructive to compute some non-trivial adjoint actions
explicitly. For SO(3), one finds, with the above (somewhat abusive) notation

0 —(RE)s (RE)
Adg§ = | (RE)s 0 —(R§) | =Ré. (201)
—(RE)> (RE)1 O
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We invite the reader to do the analogous computation for sl(2, R), determining the
matrix of Ad, in the basis given above.

The dual of the Lie algebra g (as a vector space) is denoted by g*. It appears very
naturally in the study of symplectic group actions arising in the study of Hamiltonian
systems with symmetry, as we will see in section “Symmetries and Constants of the
Motion” below. Given a basis ¢; of g, we denote by e the dual basis defined by
@;»k (Ej) = 81]

Moreover, there is a natural action of G on g*, obtained by dualization as follows.
For all u € g*, forall £ € g, we define

Adg 1 (§) = p(Ady—i§). (202)

This is called the co-adjoint action of G. For later purposes, we define, for all u €
g",

Gu=1g € G| Adip = pu}, (203)
the so-called stabilizer or isotropy group of u € g*.
As above, given a basis e; of g, one identifies u € g* with u = (U1,..., Um) €
R™ by writing
=y el sothat u() = Y k. (204)
i=1 i=1

Let u € so(3)*; we write u(§) = Z?=1 wi& and identify u € so(3)* with
w = (1, 2, u3) € R3. Again, one readily checks that

Adr* 1 = Rp. (205)

Remark 15 1t is often useful to suppose there exists an Euclidian structure on g that
is preserved by Ad, for all g € G. This is equivalent to supposing that there exists a
basis e; of g so that the matrix of Ad, in e; belongs to O(m). We will simply write
Ad, € O(m) in this case. It follows that the matrix of Ad; in the dual basis e}
belongs to O(m) as well. This implies that the natural Euclidian structure induced
on g* by the one on g is preserved by Ad; for all g € G. Such a structure always
exists if the group G is compact.

Suppose now we have a C'-action @ : (g,u) € G X E — @P,(u) € E of a Lie
group G on a normed vector space E. Then, for all £ € T,G, one can define the
vector field X; on E, called generator, via

d
Xf(u) = d_t exp(rf)(u)\r=0- (206)
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Lemma 11 If & is a C*-action, then for all g € G, £,1 € g, for all u € E, one has
Xe, Xp] = =X 207)
Xads (Pg (1)) = Dy Dy (X (u)). (208)

Proof Tt follows from (187) that

32
@éew(m) exp(§) exp(—sn) |s=0=¢ — [XEvXn] :

Now, by definition,

d
Xexp(sntexp(—sn) = - Pexp(sn) exp(st) exp(—sm) 1=

and furthermore

d
I Sexp(sn)t exp(—sn)js=0 = X[ns]-

This proves (207). For (208), note that the chain rule implies

d
d_td)g((pexp(té) (u))|t=0 = Du¢g(X$(u))

On the other hand, @, expie) (u) = @

cexp(i) g1 (Pg(u)). Hence

d
d—t@g(@exp(tg) (1)) =0 = Xad,¢-

Lemma 11 shows that the map £ € g — X¢ is a Lie algebra anti-homomorphism.

Hamiltonian Dynamical System with Symmetry in Finite
Dimension

We now turn to a very short description of Hamiltonian dynamical systems and their
symmetries on a finite dimensional normed vector space E. We present the theory in
a simple but slightly abstract formalism that is well-suited for the generalization to
the infinite dimensional situation needed for the main body of the text and presented
in Sect. 6. The modern theory of finite dimensional Hamiltonian dynamical systems
finds its natural setting in the theory of (finite dimensional) symplectic geometry [2,
6, 67, 95]. We shall however have no need for this more general formulation in these
notes.
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Hamiltonian Dynamical Systems

The central object of the theory in its usual formulation is a symplectic form, that
we now define. Let  : E x E — R be a bilinear form which is anti-symmetric,
meaning

Yu,u' €E, o(u,u') = o, u),
and non-degenerate, meaning that, for all u € E,
(Vu’ €EE, w(u,u) = 0) =u=0.

Such a form is called a symplectic form. The standard example is £ = R” x R” with
u = (gq,p) and

ww,u')=q-p'—4q -p, (209)

where - indicates the standard inner product on R". Given a C!-function F : E — R,
one defines the Hamiltonian vector field Xr associated to F as follows: forallu € E,

o(Xr(u),u") = D,F(W'), Yu' €E. (210)

We recall that D, F € E* is our notation for the Frechet derivative of F' at u. Observe
that one can think of the map u € E — D,F € E* as a differential one-form on E.
The vector field X is well-defined and unique, thanks to the non-degeneracy of the
symplectic form. If @ were symmetric, rather than anti-symmetric, it would define
an inner product on E, rather than a symplectic form, and (210) would actually
define the gradient of F; in analogy, one sometimes refers to Xy as the symplectic
gradient of . We will see it has radically different features from the gradient.
For later reference, we point out that

Xr=0=3ceR, YuekE, F(u) =c. 211)

The flow of the Hamiltonian vector field Xy, for which we shall write <1§,F , 18
obtained by integrating the differential equation

w(t) = Xp(u(), uo=u, (212)

referred to as the Hamiltonian equation of motion. One writes @/ (1) = u(?). In this
section we suppose that (212) admits a unique and global solution and that, for all
teR,® e C(EE).

As a typical example from elementary mechanics, let V € C'(R?; R) and define
the function

H(q.p) = ip* + V(g) (213)
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on E = R®, with the symplectic form as above. The equations of motion
corresponding to H are then

q() = p@). p@) =-VV(g(®). (214)

Note that they lead to Newton’s force law in the form §(tf) = —VV(q(¢)). More
generally, in the example above, with E = R?", one finds

_{ 9F(.p)
Xr(q.p) = (_éqF(q, p))’

which leads to the familiar Hamiltonian equations of motion:
q(1) = 9pF(q(1). p(1)). p(1) = —09,F(q(1). p(1).

We give several other explicit examples of such flows in the main part of these notes.
Let us return to the general situation. Given two functions F, F, : E — R, one
defines their Poisson bracket {F, F,} via

{F1, F2} = o(XF, XF,) = —{F2, F1}. (215)
Observe that, with the notation from (188), we have
Xr\(F2) = DFy(Xp,) = 0(Xp,. X)) = {F2. F1}, (216)
ie. forallu € E,
X, (F2) () = DyFy(Xp, () = o(Xr, (). Xp, () = {Fa. F1} ().

It is then immediate from what precedes that, for all u € E,

d
AR @) (u) = Dy, Fr(Xp (P ()))

= {F2, Fi}(®" ()

which in turn yields:

Theorem 17 Let Fy, F, € CY(E,R). Then Fy o ®> = F| forall t iff Fo ®' = F,
Sforallt, iff {F\,F,} = 0.
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When Fy o ®/? = F, forall 7, one says either that the @/ form a symmetry group®
for F; or that F; is a constant of the motion?® for the flow CD,F 2, The theorem, which
is a Hamiltonian version of Noether’s theorem (See [2, 6, 67, 95] for a general
treatment), can therefore be paraphrased by saying that F is a constant of the motion
for the flow @/ iff the flow @/ of F, forms a group of symmetries for F. Several
instances and applications of this result appear in the main body of the text. It is
typically used in the following manner. One wishes to study the dynamical flow
@', One has a simple and well-known one parameter group @[ for which one
readily establishes with an explicit computation that F o ®/? = F|. From this,
one can then conclude that F, is a constant of the motion for the dynamical group
@' We will elaborate on this point in section “Symmetries and Constants of the
Motion” below.

The radical difference between the properties of the symplectic gradient and
the “usual” gradient is now apparent. The anti-symmetry of the Poisson bracket
implies )A(F(F ) = 0, that is, the symplectic gradient is fangent to the level surfaces
of F [see (191)], rather than orthogonal. Hence its flow QD,F preserves these surfaces
rather than moving points to increasing values of F as does the usual gradient. These
features, together with the Jacobi identity, are at the origin of all special properties
of Hamiltonian systems.

To prepare for the treatment of Hamiltonian dynamical systems in infinite
dimension (see Sect. 6), we reformulate the above as follows. Given a symplectic
form w on a finite dimensional normed vector space E, one can define a bijective
linear map

Y ucE— fuckE"
by Zu(v) = w(u,v). Itis clear that
HFu) =—_Zv(u). (217)
With this notation, we find that
Xr= ¢ 'DF, or _#Xp=DF (218)
so that the Hamiltonian equations of motion (212) can be equivalently rewritten as
Ju(t) = DyyF. (219)

This formulation is the one that we carry over to the infinite dimensional setting in
the main body of these notes. Note that the Poisson bracket of two functions can

25See Definition 2.

2Defined in (9).
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now be written as
{F,G} = DF(_7 "'DG). (220)

The point to make is that all objects of the theory can be expressed in terms of _#.
This is illustrated in the proof of the following result.

Lemma 12 [fF|,F,,F5 € C? (E,R), then the Jacobi identity holds:
P P} Fa) + (P2 Fa) iy + {{F5, Fi} B} = 0 (221)
IfF\,F, € C*(E,R), then
Xer py = —1XF . Xp,]. (222)
Proof To prove (221), one first easily checks that
UF1 Fo}, F3}(u)

= D2F\( 7 'D,F>, #7'D,F3) + D,Fi( ¢ '\D2F>(-, 77 'D,F3))
= D.F\( 7/ "'DuF,, 7 'D,F3) — D)F>( # ~'D,Fy, #~'D,F3),
where we used (217). The result is then immediate. To prove (222) we use (188)—
(189) to write
[Xr,. Xp,)(F3) = Xr, (Xp,(F3)) — Xr, (Xp, (F3))
= X, ({F3, F2}) — Xr, ({F3, F1}))
= {F3, P2} Fiy — {{F3, Fu}, B}
= {{F19F2}5F3} = _}/\({Fl,Fz}(F?))a

where we used the Jacobi identity in the last line.

For the case where E = R?* with the standard symplectic structure, one readily
finds

(F1, Fa} = 3,F) - 8,F2 — 0,Fy - 3,F>. (223)

The above lemma then follows from a direct computation.

The lemma implies that the vector space C*°(E, R), equipped with the Poisson
bracket, is a Lie algebra. In addition, it follows that the constants of the motion of a
given function F € C*°(E, R) form a Lie subalgebra. Indeed, introducing the space
of constants of the motion of F,

G ={G e C®(E,R)|God =G, VteR}, (224)
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which is clearly a vector space, it follows immediately from (221) that
G1,Gy € ¢r = {G1, Ga} € CF,
so that €r is a Lie subalgebra of C*°(E, E).
We finally need to introduce symplectic transformations.
Definition 13 A symplectic transformation on a symplectic space (E,w) is a C!
diffeomorphism @ : E — E so that, forall u,v,w € E

(D P(v), Du®(W)) = (v, w). (225)

This is often paraphrased by the statement that “@ preserves the symplectic
structure.” To understand what this means, one should recall the interpretation
of D,®(v) as the “push forward” of v by @, explained in section “Differential
Geometry: The Basics” below. Equation (225) states that a diffeomorphism is
symplectic if the symplectic form is left invariant by the “push forward” operation of
its arguments. Note that, if @ is linear, (225) reduces to w(®@(v), P(w)) = w(v, w).
And if E = R with its standard symplectic structure, this then means that
@ € Sp(2n), defined in (193).

Lemma 13 Let F € C'(E,R) and let @ € C'(E, E) be a symplectic transforma-
tion. Then, for allu € E,

Dy @ (Xrow (1)) = Xp(P(u)). (226)
Moreover, forall t € R,
Do o = @f. (227)

In particular, if F o @ = F, then @ commutes with ®F, for all t € R. And if @
commutes with @tF, forallt € R, then there exists c € Rsothat Fo® = F + c.

Equation (226) asserts that the push forward of the vector field Xrop by @ is Xr.

Proof Forall u, v € E, one has

0(Xpop (), v) = Dy(F o @)(v) = Doy F(D,@(v))
= o(Xp(®(u)), DyP(v)).

Hence, since @ is symplectic and since Dy @ 'D, @ = Idg = D, @Dy @,

o (Dy®(Xroo (), v) = @(Xpoo (). Dow @~ (v) = 0(Xr(P(w). v)
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which yields (226). Next, for all u € E, one finds from the chain rule and (226)

d o — o —
E(b(‘er 27 (W))) = Dgror 10 P (Xroa (D (27" (1))
= Xp((® o dﬁtF"‘p o @ ().
This shows t € R — (@ 0 ®/°® 0 @~ 1)(u) € E is a flow line of X. Since the latter
are unique, (227) follows.

We end with a proof of a basic fact about Hamiltonian flows: if they are smooth,
they are symplectic.

Theorem 18 Let F € C*(E, R). Suppose that the corresponding Hamiltonian flow
®F : R x E — E is of class C°. Then, for all t € R, ®f is a symplectic
transformation.

Proof Tt will be sufficient to show that, for all u, v,w € E, and for all r € R,
d ¢F d)F _
d—t(/Du ;) (D@, w) = 0.

Using the group property of the flow, one sees it is enough to show this at t = 0.
Then

%(/DMQva)(DMQDfW)\r:o = J(J7'DIF (. )W) + (F0)(F ' DiF(w.)).

where we used the continuity of ¢, the Schwarz Lemma (exchange of partial
derivatives) and the observation that

dDF .
/7(”) = Du(r)F S E .

and hence, att = 0,

Rlodd
I D, (T) (u) = (DiF),
which means that, for all v € E,

7D, (%) (w)v = (DIF) (v,-).

Note that both sides are elements of E* since u € E — 3% € E so that

D, (B%F) (v) € B(E,E). Using the anti-symmetry of ¢, one then finds

d
ol I D@ v)(D, D W)= = D2F(v,w) — D2F(w,v) = 0.
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Remark 16 We point out that the proof, as it stands, is valid in infinite dimensional
systems. Remark however that the conditions imposed on the flow @/ are very
strong for systems in infinite dimension. Too strong actually to be of much use
in that context. We use/need those conditions to apply the Schwarz Lemma at
several points in the proof. Also, it is known that Hamiltonian flows in infinite
dimension need not always be symplectic. In the framework of Sect. 6 it is possible
to give sufficient smoothness conditions on the restriction of the flow to Z that
will guarantee the result, but we shall not need this. For a different set of technical
conditions guaranteeing the symplecticity of the flow, we refer to [19].

Symmetries and Constants of the Motion

Hamiltonian dynamical systems have many special features, but the one important
to us here is that there exists for them a special link between the symmetries of the
dynamics and the constants of the motion. This link takes the form of a Hamiltonian
version of Noether’s Theorem, of which we already gave a simple version in
Theorem 17, and has far-reaching consequences, some of which we further explore
in this section. Again, a general treatment can for example be found in [2, 67]; we
give just those few elements needed in these notes.

We start with some notions on Hamiltonian Lie group actions on a symplectic
vector space.

Definition 14 Let G be a Lie group and @ : (g,x) € G X E — @D,(x) € E, an
action of G on E with @, € C'(E, E). We will say @ is globally Hamiltonian if @,

is symplectic for all g € G and if, for all £ € g, there exists F¢ € C*(E,R) so that
F

Dexpus) = ;-
In other words, an action is globally Hamiltonian if all @, are symplectic and if
all one parameter groups are realized by Hamiltonian flows. In the notation of the
previous sections this means that

Xe = Xp,.

Here, the left hand side is the generator of the action, defined in (206) and the right
hand side is the Hamiltonian vector field associated to Fe.

Remark 17 In view of Theorem 18, if g = exp(§) for some £ € g and @, can

be written as Peype) = @fg for some F¢ € C2(E, R) such that @fg is C2, then
@, is symplectic. This will obviously hold as well for all g that can be written as
a finite product of elements of the form exp(£), which is the case for all g in the
connected component of G containing e € G (see [67, page 145, Proposition 2.10]).
So the assumption that @, is symplectic is only needed for elements g that are not
connected to e € G. In infinite dimensional systems, as indicated in Remark 16 at
the end of the previous section, the condition that all @, must be symplectic is more
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restrictive. In practice, one often works with linear actions of the symmetry group,
for which the symplectic property can be checked directly.

The above definition is a special case of the more general definition of globally
Hamiltonian action for infinite dimensional systems that we introduced in Defini-
tion 11. It suffices to take & = E in the latter to obtain the definition here.

We shall now continue with the abstract theory where, in particular, we will see
through a version of Noether’s Theorem that, if the Hamiltonian is invariant under
a globally Hamiltonian action @ as above, then the functions Fy € C2(E ,R) are
constants of the motion. The theory will be illustrated in Example 2 at the end of
the section, in the simple case where E = R® and G = SO(3).

Theorem 19 Let G be a Lie group and ® a globally Hamiltonian action of G on
a symplectic vector space E. Let H € C'(E,R) and let ®f be the corresponding
Hamiltonian flow. Suppose that

VgeG, Hod,=H. (228)

Then the following statements hold.

(i) Forall€ € g, {H,Fe¢} = 0.
(ii) Forallt € R, Fz o @/ = Fy.
(iii) G is an invariance group®' for ®H.

Proof This is an immediate consequence of Theorem 17 and of Lemma 13.

This result is useful because it is often easy to check (228), whereas the
conclusions (ii) and (iii) are statements about the flow CDtH , which is usually not
explicitly known, and are therefore hard to check directly. In particular, (iii) says
that if the Hamiltonian H is G-invariant as a function, then G is an invariance group
of the dynamics.?® And (ii) ascertains that the group generators F are then constants
of the motion for ®*.

Let us point out that (iii) implies neither (i), (ii) or (228) (see Lemma 13).

So the hypothesis that the Hamiltonian is invariant under the group action is
strictly stronger than the statement that the Hamiltonian flow is invariant under G.
The map

Eeg— F: e CHE,R) (229)

can be chosen to be linear. Indeed, if ¢;, i = 1,...,d is a basis of g, if we choose
F; = F,, and if we write £ = ), §;e;, we can define

Fe =) &F;, (230)

27See Definition 2.

8This is the point in the proof where the symplectic nature of the @, is used, via Lemma 13.
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by linearity. This allows one to define the momentum map for the action @, as
follows:

FiucE—>Fweg, FZw(E) = F:(u). (231)

This, of course, is just a rewriting of (229). In the main body of the text we shall
always assume a basis has been chosen for g, as above, so that we can identify
g ~ R™. And we shall simply write

F:ueE— (Fi(u), - ,Fn(u) € R" ~ g*. (232)

We shall refer to .# or to F as a momentum map for the action, indifferently.

Definition 15 Let @ be a globally Hamiltonian action of G on E, with momentum
map F. One says the momentum map is Ad*-equivariant if, for all g € G, for all

§eg,
Fio®y = Faq_ys- (233)

The terminology comes from the following observation. If (233) holds, then it
follows from (231) and (202) that

F o, =Ad;o§. (234)
Since we identify g* ~ R™, this can be written
Fod, = Ad;F. (235)

We can now formulate the final result from the theory of invariant Hamiltonian
systems that we need. It is an immediate consequence of (235) or, for the reader
weary of duals, of (233).

Proposition 10 Let @ be a globally Hamiltonian, Ad*-equivariant action of a Lie
group G on a symplectic vector space E. Let u € g* >~ R™ and define

S, ={ueE|Fu) = (236)

Then G, = Gx,, where G, is the stabilizer of |1, defined in (203) and Gz, is defined
in (16).

The situation we have in mind is the one where G is such that H o @, = H, for all
g € G. By Theorem 19, the functions F; are then constants of the motion for the
flow @/ and hence the surfaces ¥, are @/ invariant. We can therefore consider
the dynamical system (X, @), which has G, as an invariance group (G, leaves
invariant both ¥, and the flow ®/). This viewpoint will prove useful in the study
of orbital stability in several situations.
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Definition 16 Let @ be a globally Hamiltonian action of a Lie group G on a
symplectic vector space E. Let 1 € g*. We say j is a regular point of the momentum
map F if, forallu € X, D, F is surjective.

This definition simply guarantees that X, is a co-dimension m submanifold of E,
where m is the dimension of g.

Example 2 For the simple Hamiltonian system with spherical potentials considered
in Sects. 3.1 and 5, one has E = R, G = SO(3), and it is not difficult to check that,
for all u(g,p) € R®, F(u) = L(g,p) € R? ~ so(3)* and Fe(g,p) = §-L(q,p),
where we use the identifications (197) and (204). Furthermore, for all R € SO(3),

L(Rq,Rp) = RL(q,p),

which shows the action is Ad*-invariant, in view of (205).

We end this section with some comments on the Poisson brackets of the
components of the momentum map. Remark first that the momentum map of
a globally Hamiltonian action is not unique since, for any choice of A € g*,
I:} = Fr + A(§) also satisfies Xy = ng. Note furthermore that, in view of (207)

and (222), the momentum map satisfies, for all £, € g,

Xrey = Xien) = X(re.Fy)-

It then follows from (211) that, for all £, n € g, there exists a constant c¢(&, 1) so that

Fieq = {Fg, Fy} + (. n).

The following lemma is useful and an easy consequence of (235):
Lemma 14 Let @ be a globally Hamiltonian action of G on E, with momentum
map F. If F is Ad*-equivariant, then, for all £, 1 € g,

Figy = {Fg, Fy}. (237)
Conversely, if (237) holds, then (233) holds for all g € G of the form g = exp(n),
for some n € g and then for all g in the connected component of e.

What one has to remember here is this. In applications, we often wish to assure (233)
holds. The preceding lemma states this is essentially guaranteed by (237), at least
for all g = expn, which, for many Lie groups, means all of G. Finally, (237) is
guaranteed by

{Fi.Fj} = cjFr, (238)

where we used the notation introduced in (200) and (230). As an example, one
may remark that the components of the angular momentum vector L satisfy the



268 S. De Bievre et al.

commutation relations of the Lie algebra of SO(3), namely
{Li,Lj} = GijkLka i,j,kz 1,2,3.

One may therefore show that an action is Ad*-equivariant by showing (238)
holds. However, in infinite dimension, this is not immediate since the necessary
smoothness properties of the F;’s and even of the corresponding Hamiltonian vector
fields are not readily verified.

Finally, an Ad*-equivariant moment map may not exist. An easy example is £ =
R2, G = R? and @ : R?> x R? — R? given by @.)(q,p) = (¢ + a,p — b).
Identifying g ~ R? in the obvious way, this action has a moment map F;(q,p) =
p.Fa(q,p) = q and {F,, F,} = —1. Since the group is commutative, it is clearly
not Ad*-equivariant. Ways to handle such situations exist, but we shall not deal with
such complications in the main part of the text. We refer to [2, 67, 95] for details.
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High-Frequency Dynamics for the Schrodinger
Equation, with Applications to Dispersion and
Observability

Fabricio Macia

1 Introduction

1.1 The Schrodinger Equation

The dynamics of a quantum particle of mass m = 1 propagating under the influence
of a real potential V is described by its wave function ¥ (t,x), which solves
Schrodinger’s equation:

2
ihoy (¢, x) + %Axl// t,x)—VX)y(tx) =0, (1)

where 7 > 0 is the normalized Planck’s constant and A, stands for the Laplace-
Beltrami operator. On Euclidean space R this is:

d
A=) 02,
j=1

and, more generally, on a smooth Riemannian manifold (M, g), one has A, =
div (Vg) where the gradient and the divergence are taken with respect to the
Riemannian metric g. In a local chart:

A= — Xd:ax_/< detgg"’%-),
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where, following standard conventions, g stands for the matrix defining the Rie-
mannian metric and (g¥) := g~'. This more general framework is the one we shall
adopt here.

The wave function allows to construct a probability density | (¢, x)|* describing
the probability of finding the quantum particle in an infinitesimal neighborhood of x
at time ¢. In other words, the probability of finding the quantum particle in a region
U C M at time ¢ is simply:

‘[wmnﬁm
U

where dx stands for the Riemannian measure.
This problem is the quantum analog (or the quantization) of the classical
Hamiltonian system corresponding to the Hamiltonian function

1
H:T"M — R, Hx) = +V @, )

defined on the cotangent bundle of M. This system is given by the Hamiltonian
vector field, whose local expression is Xy := 0: H0, — 0,H0¢ and whose trajectories
are given by:

50 = 0:H (0.6 (), )
§(0) =—0H (x(1).§ ().

Under suitable assumptions on (M, g) and V (for instance, if (M, g) is geodesically

complete and V € C"! (M; R) is bounded from below), system (3) defines a global

flow on T*M:

A.T*M — T*M, teR (4)

called the Hamiltonian flow of H. For any (xo, &) € T*M, ¢ (xo, &) is the unique
solution to (3) with initial datum (xo, £&). When ¢/ is globally defined in t € R,
¢ is called (classically) complete. When V = 0, the classical flow is denoted by
¢, = ¢? and coincides with the geodesic flow of (M, g).

The rescaling (¢, x) —> (¢/h, x/h) transforms equation (1) in the adimensional
problem:

idu (t,x) + %Axu t,x) =V ux) =0, (5)

where, with a slight abuse of notation, V denotes again the rescaled potential. When
the operator

A 1
H=—A,+V,
7 +
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is essentially self-adjoint over C2° (M), Stone’s theorem (see for instance, [101])
ensures that H generates a group of unitary operators on L (M), the Schrodinger
Sflow associated to (M, g) and V, that we denote by:

e 12 (M) — [2(M), 1eR. 6)

In that case, given any initial datum uy € L?> (M), there exists a unique solution
u(t,”) = e ™uq to (5) satisfying u (0, -) = up. Moreover, the L?>-norm is conserved
by the dynamics of the Schrodinger flow: for any 7 € R,

1/2
e 1) 20 = lollany = ( / |M0(x)|2dx) .
M

Therefore, as soon as [[uo||;25 = 1, the density |u (7, )|* defines a probability
measure on M.

When H is not essentially self-adjoint, there is not a unique way to extend
the dynamics from C%® (M) to L* (M). Consequently, (5) is not well-posed (the
reader can consult [100 105] for a comprehensive account on the conditions on
(M, g) and V that ensure that H is essentially self-adjoint). When H is essentially
self-adjoint then e~ is said to be quantum complete. Quantum completeness is
achieved, for instance, as soon as (M, g) is geodesically complete and V € L (M)
is essentially bounded from below. The article [99] gives examples of systems
for which ¢>,H is complete but ¢™ is not, and viceversa. Therefore, classical and
quantum completeness are independent notions.

In contrast to what happens in the classical setting (3), the linear, conservative
character of problem (5) restricts considerably the class of dynamics that e~ can
develop. The spectral theorem for self-adjoint operators establishes the existence
of a Borel measure o on R supported on the spectrum sp(I:I) of H, as well as the
existence of a unitary operator:

U:L*(M) — L*(R,0)
such that e~ is conjugated to a multiplication operator on L? (R, 0):
Ue—itI:I U* = ¢7ifs. )

Nonetheless, these objects are hard to compute explicitly, and even when this is
possible, it is not always simple to extract from the spectral representation a useful
description of the structure of the solutions to (5).

When sp(I:I) consists only of eigenvalues of H, formula (7) takes a very simple
form. This is the case, for instance, when M is compact. In the non compact case
this issue is related to the growth of the potential at infinity (more precisely, with the
fact that the resolvent (H — A)~!is a compact operator in L? (M) for some A € R).
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In that case, there exists an orthonormal basis (/,),cy of L? (M) consisting of
eigenfunctions:

vy, = X9
In that case, 0 = ), 62, and
U ur— (i (An)yen »

where:
1) = Wiz = [ 0V s
Formula (7) takes the form:

My = 3" i (M) Y (8)

neN

This shows that any solution e~

e~ "nyr, of frequency A,. The dynamics of e

u can be written as a superposition of plane waves

~itH are therefore quasi-periodic.

1.2 Some (More or Less) Explicit Examples

We next present some examples for which these objects can be computed to some
extent.

* The free Hamiltonian on R? (M, g) = (R¢,can) and V = 0). In this case, one
has:

—itH itAe)2 e fidsent il
e "y (X) =é </ Up (X) = W /d e’y (y) dy )
s R

This formula is obtained by inverting the identity:
i () = 2 (&) (10)

for the Fourier transform of a solutions u:

i€ = /R U (1, x) e ¥ dx.
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+ The harmonic oscillator ((M,g) = (R¢can) and V = |x|2). The quantum
Hamiltonian H = —%Ax + |x|2 has purely discrete spectrum:

d
)anx/z(n—i—z), neN,

its eigenfunctions are expressed in terms of Hermite polynomials and decay
exponentially at infinity. It is clear from (8) that e~ is periodic in ¢, as happens
for its classical counterpart ¢7”.

+ The free Hamiltonian on the torus T¢ = R?/277Z¢ (M, g) = (T%can) and
V = 0). The spectrum of —%Ax is explicit:

k2
/\k:u, keZ,
2

as well as the corresponding eigenfunctions:

6‘zk-x

Vi (x) := W'

The representation formula (8) shows that e*+/2 is periodic in . Note that this is

not the case for its classical counterpart, the geodesic flow ¢;, when d > 2.
* The free Hamiltonian on the sphere S¢ (M, g) = (S¢, can) and V = 0). The
spectrum of the Laplacian in this case is:

Ai=nn+d—1), neN,

and its eigenfunctions, called spherical harmonics, are obtained by restricting to
the sphere the harmonic polynomials in R+ In this case, both ¢"4*/2 and ¢, are
periodic.

¢ The free Hamiltonian on a Zoll manifold. A Zoll manifold is a manifold (M, g)
all of whose geodesics are closed (see [18] for a comprehensive treatment of this
type of geometry). The spectrum of the Laplacian is a union of clusters of the

form:
21\? B\’ s
) \n+g) Fomri=t g an

with r, € N, Pnzi‘ < K for every n € N and some fixed values B,K,L >
0 depending on the geometry of (M, g). This expression is not as explicit
as the previous ones. However, Precise asymptotic formulae for r, for the
statistical distribution of eigenvalues on each cluster C, for n — oo are known.
The interested reader can consult [40, 48, 115, 117, 121, 122] for additional

C, =
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information. Generically, e4+/2

is always periodic.

is quasiperiodic, even though the geodesic flow

1.3 A First Approach to the Study of the Dynamics: The
Correspondence Principle and the Semiclassical Regime

The correspondence principle states that the laws of quantum mechanics, valid at
atomic scales, should tend to their classical counterparts in the high-frequency limit.
For instance, if the characteristic length scale over which the potential V and the
metric g vary significantly are much larger than the characteristic wave length of a
solution u (¢, ) = it uo to (5) then the probability density |u (7, -)|* should follow a
propagation law based on classical mechanics (i.e. the propagation should be related
to the dynamics of the Hamiltonian flow ¢).

Let us suppose that M = R and that we have normalized the problem in order to
have that the characteristic wave length of the solution under consideration is equal
to one. The potential varies at a macroscopic scale much larger than the wave length;
suppose this scale is of order 1/h with & < 1. Therefore, if the microscopic variable
for the position is x, the potential can be written in those variables as V (hx). The
corresponding Schrodinger equation is:

1
idu (t,x) + EAXM (t,x) =V (hx)u(t,x) = 0.
If a change to macroscopic variables is performed:

1 T X
e T=h x> X=he w(TX) = mul ).

then the semiclassical Schrodinger equation is obtained:

2
ihaTuh (T, X) + %Axuh (T, X) -V (X) up (T, X) =0. (12)

One expects that in the limit 4 —> 0% the position density |u, (T, -)|* can be
described in terms of ¢#. The reader should be aware of the fact that the parameter
h cannot be identified to Planck’s constant; this notation for the characteristic
frequency may be unfortunate, but we maintain it as it is widely used in the
literature.

Consider now the operator:

N h?
Hj = —EAX + V() 13)
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the propagator e~iflh associated to (12) will be referred to as the semiclassical
Schrodinger flow.

Among the first results obtained on the dynamics of the Schrddinger flow, we
find those of Wentzel, Kramers and Brillouin in 1926, that dealt with the study of
stationary solutions of the semiclassical Schrodinger equation:

Hyyn = Exn,

and were aimed at describing the spectrum of Hy,. To that effect, they introduce the
nowadays known as WKB Ansatz:

Vi) =a(@er

where the amplitude a is obtained as a power series in .

The time-dependent version of this ansatz that we next describe is due to Van
Vleck [116]. The goal is to construct an approximate solution to the semiclassical
Schrodinger (12) having the initial datum:

.Sp(x)

ug xX)=ap(x)e' (14)

where, for instance, ag, So € C2° (M). One makes the following Ansatz on the form
of the solution:

_ith )

u, (t,x) =e ’LH”ug x) ~a(t,x)e n =1v,(t,x).
The first step of the construction consists in introducing the expression for vy, in Eq.
(12), and then grouping together those terms having the same power of /. One next
imposes that each of the terms thus obtained must vanish. The nullity of the lowest
order term implies that S must solve the Hamilton-Jacobi equation:

3S(tx) + Hx VS (%) =0, S| = So: (15)

and the nullity of the next term amounts to the fact that a is a solution to the transport
equation:

1
d;a+ V.S-Va—+ EanS =0, ali=0 = ag. (16)

The Hamilton-Jacobi (15) does not have in general solutions that are globally
defined in . Therefore, S (¢, x) can be constructed for |f| < T; Duhamel’s formula
ensures then that the exact and approximate solutions are close to each other:

lim ||Lth (t,)) — v (2, ')||L2(M) =0, |l| <T.
h—0t
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The position densities must satisfy, for |¢| < T

lim Ju, (6, 0)> = Lm |vs (1,%)]* = |a (1, %)]*.
h—01 h—0t

One easily checks from (16) that |a|2 solves the following transport equation:
3, |al® + div (|a|2 vxs) =0, |aP|ieo = |aol.

If S solves (15) then the integral curves x () of the gradient vector field V,S (¢, )
with x (0) = x are:

x(1) = 7 o ¢/’ (x0. VSo (x0)) .
where 7w : T*M —> M is the projection onto the base. Define
Dt ()C) =To ¢[H ()C, VXSO (X)) ’

then the following explicit formula for the limiting position density is obtained:

lao (07" )

lim |u t,xzzat,xzz , t<T.
Jim i (10 = Ja (0f = AT <

This makes precise the claim that, in the limit # — 07 the dynamics of |u;, (¢, x) |2
is described by means of the classical Hamiltonian flow ¢/.

1.4 Semiclassical Analysis of the Non-semiclassical Problem

These notes are devoted to presenting an approach to the study of the high-frequency
propagation of the position densities |~ b12|2 associated to solutions of the non-
semiclassical Schrodinger equation (5) using tools arising from the study of the
semiclassical propagator. The key observation in our analysis is the following.
Remark 1 The non-semiclassical propagator e~#
certain semiclassical propagator as follows:

can be expressed in terms of a

T —i-L ]’l2
M= TR with A= = A RV

Therefore, looking at e~ amounts to looking at a semiclassical equation at times

of the order of 1/h with a potential of size 42.
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A precise statement of the problem we are interested in is given in Sect. 2, as
well as its relevance to the study of other aspects of the dynamics of the Schrodinger
flow, such as dispersive effects and unique continuation properties. In this regards,
the reader can also consult the survey articles [8, 87].

Section 3 is devoted to introducing the main tools from semiclassical analysis that
we shall need: semiclassical pseudodifferential operators, semiclassical measures,
Egorov’s theorem, etc.; these objects are used to prove our first results on high-
frequency dynamics of Schrodinger flows in Sect. 4 and relate it to the dynamics of
the Hamiltonian flow ¢/.

Finally, Sect. 5 presents the main ideas of the proof of the more advanced results
of [9] based on two-microlocal analysis in the model case of the two-dimensional
torus.

Acknowledgements These notes are an expanded version of the lectures given by
the author at the Laboratoire Paul Painlevé of Université de Lille 1 during October
2013 in the framework of the CEMPI program. The author wishes to thank that
institution for its warm hospitality and support.

2 The Compactness Approach to the Study of the Dynamics
of the Schrodinger Flow

2.1 Description of the Problem

Instead of looking at the dynamics of a specific solution, we shall consider a
sequence of solutions associated to some sequence of initial data:

@), udllzen = 1. (17)

This approach is similar in spirit to the WKB method (14), except that no
assumptions are made a priori on the form of the sequence of initial data. The

corresponding solutions u, (t,+) := e ™’ define a sequence of one-parameter
probability densities:

R 5t —> |u, (1,°)]> € P(M),

where & (M) denotes the set of probability measures on M. Therefore, |un|2 can
be identified with an element of L> (R; &(M)), or more generally, to an element
of L*° (R; #+(M)), where now .#4 (M) stands for the cone of positive Radon
measures on M.
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The space L™ (R;.#+(M)) is compact for the weak *-topology'; hence there
exist a subsequence (#,/) and an element measure v € L (R; .#4 (M)) such that,
for every ¢ € C. (M) and every couple of real numbers a < b one has:

b b
lim / / @ (x) luy (¢, x) |Pdxdt = / / @ (x) v (1, dx) dt. (18)
=00 Jq Ju a JIM
We shall denote by .# the set of all measures v € L™ (R;.#(M)) obtained as
a limit (18) as the sequence of initial data (1) varies among sequences satisfying
(17). Note that, when M is compact since no mass can escape to infinity one has
M S L (R; P(M)).

Our goal will be to characterize the elements in .#. More precisely, we are
interested in questions such as:

* How can an element of .# be computed in terms of the sequence of initial data?
* Do the elements of ./ satisfy some kind of propagation law?

* Are the elements in .# more regular than one would expect a priori?

* Are there any restrictions on the sets that are the support of an element of .#?

The last two questions are related to dynamical properties of the Schrodinger
flow such as dispersive effects and unique continuation, respectively. The rest of
this section will be devoted to elaborating on those connections.

Before doing that, let us anticipate that the answer to those questions is closely
related to the global dynamics of the geodesic flow ¢,. In fact, the natural approach
to this problem consists in lifting the measures |u, (¢, -)|2 to the cotangent bundle
T*M. This is done by using the theory of pseudodifferential operators and is
described in Sect. 3.

Let us also mention that this problem is related to the study of concentration
effects of high-frequency eigenfunctions (in the physics literature this is known as
scarring phenomena). Denote by .#o, the subset of .# consisting of those v that
are obtained as a weak-x limit (18) for some sequence of initial data (x°) consisting
of eigenfunctions of H with eigenfrequencies tending to infinity. In other words:
u’ =, where:

lim A, = oo.
n—>o00

Hyy = 0¥, Wallfgn = 1.

Of course, .#~, can be empty when M is non-compact. Note that every v € # is
constant in ¢, since:

) . 2
|e LtHwn|2 — |€ ltknwn|2 — |Wn| )

IRiesz’s theorem implies that L™ (]R; My (M)) can be identified to the dual of L! (R; C. (M)); the
weak-* topology is induced by this duality.
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The study of .#, on a compact manifold has been the object of a considerable effort
in the last forty years. Clearly, as .#o, < .#, any result on the characterization of
A will also be a result on .#~,. We shall come back to this problem in Sect. 4.4.

2.2 Dispersive Effects

The Schrédinger equation is a dispersive equation. This means that its solutions can
be written as a superposition of waves that propagate at different speeds, that depend
on the characteristic oscillation frequencies of the initial data. This can be readily
seen, for instance, in the representation formula (8) that was obtained when M is
compact. For M = R it is straightforward to obtain, from (10), the identity:

. -~ ; £
en‘Ax/ZMO (x) — / uO (E) et%'-(x—ti) d%‘ -
R4 2m)
Above, ¢4+/2y is written as a superposition of plane waves ¢*"“~%/2) propagating
at velocity £/2. From the equivalent representation (9) on deduces the dispersion
estimate:

. C
A/2,0 0

€4/ 2u ”LOO(Rd) = 1|72 Ju ”LI(R")’ (19)
that quantifies the decay of solutions to the Schrodinger equation due to dispersive
effects. Combining this estimate with the conservation of the L?(R¢)-norm, and
applying the 7T* argument (see for instance [108]) one obtains the following
estimate, known as a Strichartz estimate:

HE”AX/ZMO ||U(]RIXR,{£) <C HMO ”LZ(Rd) ) 20)
where

B e 2 21

R (+Zz)‘ @1

This estimate shows that the singularities that any solution can develop (quantified
through a L”-norm) are “better” than one could expect using only the fact that u’ €
L’ (Rd). These estimates play a key role in the well-posedness theory for semilinear
Schrédinger equations, see for instance [30, 38, 59, 60, 108] .

It is very natural to try to understand the circumstances under which an estimate
such as (20) remains valid when R? is replaced by a more general Riemannian
manifold (M, g). One must clarify how the geometry of M affects the dispersive
character of the Schrédinger flow. When M is compact, a first difficulty arises: since
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the dynamics of ¢4*/2 are quasiperiodic, it is not possible to obtain an estimate that
is global in time, nor a decay estimate such as (19).

Even if (20) is replaced by an estimate that is local in time, there are situations in
which the estimate fails for every p > 2, as is the case for the sphere S?, see [21].

In fact, the validity of a Strichartz estimate:

1 ey = €1 2

on a compact manifold M is closely related to the regularity of the elements in .Z .
To see this, suppose that (22) holds for some p > 2, and let v € .# be obtained from
a sequence of initial data (%) of norm one. Then (22) implies that the corresponding
solutions (u,) satisfy:

(Jun|*) is bounded in /% ([a, b] x M) .

Therefore, the accumulation point v must also belong to L7/? ([a, b] x M).

Proposition 1 [f the Strichartz estimate (22) holds for some p > 2 then, for every
vdt € M we have vl € 17? ([a,b] x M). In particular; the projection onto
M of the measures in M are absolutely continuous with respect to the Riemannian
measure.

As a consequence of this, if one is able to construct a sequence of initial data
(u2) that produce a measure v € . that has a non trivial singular component, it
automatically follows that the Strichartz estimate (22) fails for every p > 2.

Let us review some well-studied situations.

* Zoll manifolds. If (M, g) is a Zoll manifold then we shall see that §, € .#
for every geodesic y of M. This automatically proves that Strichartz estimates
are always false in this case (see [87]). However, some frequency-dependent
analogues of (22) still hold in this setting: i.e., when the L? (M)-norm in the
right hand side of (22) is replaced by a Sobolev norm H* (M)) with 0 < s < 2%,
where 2* is the exponent given by the Sobolev injection. The interested reader
should consult the series of articles [22-24].

* The torus. The situation is completely different for the torus T¢ equipped with
the flat metric. When d = 1, a classical argument by Zygmund [125] shows that
(22) holds for p = 4. This is no longer the case if d = 1, p = p; = 6 or
d = 2, p = p» = 4 which are the exponents corresponding to Euclidean space.
Estimate (22) fails in those cases [28, 31] (see also [23]). We shall see later on
that .# C L* (R; L' (M)) (see [9, 29]), which does not exclude in principle the
validity of a Strichartz estimate in this case.

* Negatively curved manifolds. In the case of manifolds with negative curvature,
the dispersive effect is stronger than in Euclidean space. The reader can find more
details in [15, 19, 32].
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2.3 Unique Continuation and Observability

Another aspect of the dynamics of the Schrodinger flow that is related to the
structure of the elements of ., is the validity of the observability property, a
quantitative version of the unique continuation property that is of great importance
in Control Theory [82], and Inverse Problems [70].

Let T > 0 and U C M a non-empty open set; the Schrodinger flow ¢#(4/2=") on
(M, g) satisfies the observability property for 7" and U if a constant C = C (T, U) >
0 exists such that the following estimate holds:

T
2 i Iy
””0HL2<M) < C/o /U|er(AA/z Y10 (x) Padxdt 23)

for every initial datum u° € L? (M). The Unique Continuation Property:

eit(A*‘/z_V)uokho)XU =0,'el’>’M) = u"=0

follows immediately from (23). Notice, however, that (23) also implies a stronger
stability result: two solutions that are close to each other in (0, T) x U (with respect
to the norm L? ((0, T) x U)) are close to each other globally.

A sufficient condition on U for the observability property to hold for every 7 > 0
is the Geometric Control Condition:

There exists Ly > 0 such that

— 24
every geodesic (M, g) of length greater than Ly intersects U. 24

This result is due to Lebeau [78] (see also [49, 103]).

The validity of the observability estimate (23) is related to the structure of .Z.
The fact that (23) fails for some T and U is clearly equivalent to the existence of a
sequence of initial data (%) such that:

n—>o0

T
Nl zon = 1. lim / / |e" A2 (x) [Pdxdt = 0.
o Ju
This in turn is equivalent to the existence of a v € . such that:

T
/u@mm=0
0

Therefore, the following must hold.

Proposition 2 The observability estimate (23) holds for U and T if and only if for
every v € . one has

T
/u@mm¢a
0
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Taking this into account, it is easy to prove that (24) is necessary when (M, g) is
a Zoll manifold (see [87]). This is again due to the fact that, for these geometries,
one has 8, € .# for every y geodesic of (M, g). A proof of this fact will be given in
Sect. 5.

However, this is a rather uncommon situation. For instance, if (M, g) is the flat
torus T¢, Jaffard has shown [71] (see also [36]), when V = 0, that (23) holds for
every open set U. This was further extended to the case d = 2, V € C(T?), see [37],
the case V continuous except for a set of null measure and d arbitrary, see [9], and
very recently to d = 2, V € L**#(T?), see [17].

Analogously, in [12] it is shown that the observability property holds under
conditions weaker than (24) for manifolds with negative curvature.

3 Pseudodifferential Operators and Semiclassical Measures

3.1 Basic Notions from the Theory of Pseudodifferential
Operators

The theory of pseudodifferential operators has its origins in the works by Calder6én
and Zygmund [46] on singular integrals that appear, for instance, as resolvents of
elliptic operators. The theory was shaped by Kohn-Nirenberg [75] and Hérmander
[68]. Many books present a comprehensive introduction to the theory; the reader
may consult for instance [2, 63, 69, 107, 110, 114]. We shall briefly review the
aspects of the theory that will be useful in the sequel.

As it is customary in this context we shall use the notation:

the Fourier transform of Dy, u is then:

Brn® = [ Dunye e = 6 @),
If P (D,) is a constant-coefficient differential operator of order N:

PDHu@ = Y  aDiu(),

a€Nd |a|<N

one clearly has:

P(DYu®) =pE (), wherep(f):

o auE™

€N |a|<N
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and applying the inverse Fourier transform, one obtains:

i&-(x—y dé
Py = [ [ p@uo et
Rd JRA (2n)
This formula shows how to define an operator a (x, D,) for a function a (x, £) that is
not necessarily polynomial in £. One defines a (x, D,) as an oscillatory integral:

i d
a(x,Du(x) = /Rd /Rd a(x,£) u(y) e gy (Zf)d;

this expression is in principle only defined for u € C®°(R?); it can be extended
to more general functions or distributions provided the integrals are interpreted in
distributional sense.

Operators of the form a (x, D,) are called pseudodifferential operators (¥ DO);
the function a (x, §) is the symbol of the operator a (x, D,). It is easy to check that if
a (x) does not depend on & the corresponding pseudodifferential operator coincides
with the operator acting by multiplication by a (x). When a (£) does not depend on x,
the corresponding pseudodifferential operator is usually called a Fourier Multiplier.
The Calderén-Vaillancourt theorem [45] establishes that, for any a € C*°(R¢ x RY)
that is bounded, as well as its derivatives up to a certain order K; > 0, the operator
a (x, Dy) is bounded on L?(R¢) and

lla (x, Dx)”g(LZ(Rd)) = Z ) (25)

D ca H .
5 llLoo (RIxRY)
aeNY |a| <K,
Moreover, as we shall see below, the composition of two ¥ DO is again a ¥DO as
well as the adjoint of any ¥DO.

3.2 Symbolic Calculus for Semiclassical Pseudodifferential
Operators

Pseudodifferential operators can be viewed as quantizations of classical observables.
A quantization procedure is a rule that associates to each classical observable a (x, &)
an operator Op (a) acting on L?>(R?) (i.e. a quantum observable) in such a way
that algebraic properties of the functions a (boundedness, positivity, Lie algebra
structure, etc.) are reflected somehow in the operators Op (a). From this point of
view, Op (@) = a (x, D,) is a quantization rule, usually called the Kohn-Nirenberg or
classical quantization rule. However, historically the first quantization procedure is
slightly different from that; it is due to Weyl [118] and called the Weyl quantization
rule. In some aspects, it is more satisfactory than the Kohn-Nirenberg quantization
rule. A good introduction to the theory of pseudodifferential operators from the
point of view of quantization rules is the book [54].
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The form of the semiclassical Hamiltonian (13) suggests to introduce a class of
pseudodifferential operators that involve a small parameter 4. For instance, we could
introduce operators of the form a (x, hD,). Instead of this, we shall work with Weyl
quantization rule. Let a € ./ (R¢xR?) be a tempered distribution; the semiclassical
pseudodifferential operator of symbol a, obtained by Weyl’s quantization rule, acts
on a function u € C®(RY) as:

Op,, (@) u (x) = a" (x, hD,) u (x)

o x+y iEGmy) 4. A€
o /Rd/Rda( 2 ,hS)u(y)e }dy(Zn)d'

This definition differs from the classical quantization a (x, hD,) in the symmetric
role that x and y play in the oscillatory integral defining a" (x, hD,). For instance, if
a(x, &) = b(x)§ then:

a” (x,hD,) = [b (x) hDy; + hDb (x)] ., buta(x,hDy) = b (x) hD,,.

1
2
The quantum semiclassical Hamiltonian (13) and the classical Hamiltonian (2) are
related through:

R h? 1
== 4,4 v = 0y (5 164V 0) = O ).

The theory of semiclassical pseudodifferential operators was developed in the
seventies; many textbooks present this theory in a comprehensive way. Among
others, we cite [50, 65, 88, 98, 124].

Many properties of the operators Op,, (a) rely on the particular smoothness
properties of the symbol a. In many cases, the problem one is interested to solve
determines the symbols class to be used. The following classes of symbols will
suffice to our purposes:

§t = {a e C®(R* x [0,ho]) : Yo € N*,3C, > 0t.q. [0%a (2. )|
k/2
< C (1 + |z|2) } .

Clearly, S* contains all symbols of differential operators of order k with bounded,
smooth coefficients. It should be noted from the very beginning that the class of
operators under consideration does not depend on the choice of the quantization we
have made. If a € S* then there exists b € S* such that:

a" (x, hDy, h) = b (x, hDy, h) ,

and conversely.
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In what follows we will not make explicit the dependence of the symbols on the
small parameter h.
We next state some properties of semiclassical pseudodifferential operators.

1. L?(RY)-boundedness. If a € S° then Op, (a) is a bounded operator on L?(R¢)
and

||Oph (a)”g(LZ(]Rd)) S C Z sup ‘3?(1 (Z)

2d
lo|<m, 2R

. (26)
where M, only depends on the dimension d.
2. Regularizing operators. If a € . (R??) then
Op, (a) : L*(R?) — H'(R?)
is bounded for every s € R.
3. Adjoints. Let a € S* be real-valued. Then Op,, (a) is a self-adjoint operator on
L?(R%):
Op, (a) = Op, (a)*.

4. Composition. Let a € ¥ and b € S*, then there exists ¢ € S¥1 7% depending on
a, b such that:

Opj, (@) Op;, (b) = Op,, (¢) .
If at least one of the symbols belongs to the Schwartz class .7 (R?) then?:
Op,, (a) Op,, (b) = Op,, (ab) + O 2 (12(RY)) (h).

The nontrivial proof of this fact is based on the Stationary Phase principle (see
for instance [124]).

5. Commutators. Let a and b be as above, suppose that at least one of a or b
belongs to . (R??); then the commutator [Op,, (a) , Op,, (b)] = Op,, (a) Op,, (b)—
Op,, (b) Op,, (a) satisfies:

h
[0, (@) O, (B)] = = Op, ({a.bY) + .y 2y (1) @7

2Here and in what follows we shall use the notation & 2(12®)) (g (h)) to denote a family of

bounded operators on L?(R¢) depending on the parameter & such that their operator norm is
bounded by a uniform constant times g (h).



292 F. Macia

The order /* of the remainder term is specific to the fact that we are using the
Weyl quantizations procedure. It can be also shown that this formula is exact (i.e.
the remainder & (12 (r)) (h?) is identically equal to zero) when either a or b is a

polynomial of degree at most two.

These last three statements are part of what is usually known as the symbolic
calculus of semiclassical ¥DO.

3.3 Operators on a Manifold

It is possible to define semiclassical ¥ DO on a smooth manifold M. First note that it
is straightforward to generalize the definition of the class of symbols S* to functions
that are defined on 7*M. To define Op,, (a) it suffices to take a partition of unity
(x1);; subordinated to a locally finite covering of M by charts such that ) Xf =1

and define, for a € S*:

Op; (@) u =Y Op, (x;a) 1

jel

each summand Op,, (x;a) y;u is defined through the formula on R¢ in each chart.
This definition is by no means intrinsic, it depends on the systems of charts used to
define Op,, (a) as well as on the partition of unity. However, the difference between
any two operators defined by this procedure from the same symbol a is a regularizing
operator (see [124]).

The Laplacian on a Riemannian manifold (M, g) can be written in terms of
pseudodifferential operators:

— h*A, = Op,, (Hy) + ih Op,, (r) + h* Op,, (m) (28)

where m € C*° (M) is a function of x alone, that only depends on the derivatives up
to order to of the metric g. In a coordinate patch, the functions H, and r are given by:

Hy (x,§) :

d
> gl () &k, (29)

ij=1

— ij
r(x,§): W,leg (x) 3, v/det g (x)E;. (30)

Finally, let us recall that DO are well-behaved regarding the functional calculus
of self-adjoint operators. Given o € C%° (R), the operator o (—h?A,) defined using
the spectral theorem can be written as:

o (—h*A,) = Op,, (0 o Hy) + Gy M- (31)
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When M is compact, a proof of this result can be found in [22]; the Euclidean
version of this result can be found in [98], whereas [33] deals with some classes
of non-compact manifolds.

3.4 Semiclassical Measures: Motivations

It is time to come back to the dynamics of the Schrédinger equation. Recall
the definition of the semiclassical propagator and the WKB method presented in
Sect. 1.3. Motivated by that, we are going to try to generalize that analysis to more
general classes of initial data. More precisely, we are interested in understanding
the propagation law obeyed by the weak-* limits v (¢, -) of a sequence of probability
densities:

U (1,-) i= |e ity )2

corresponding to a sequence of initial data (1) with || | 2an = 1,and a sequence
(hy) of positive real numbers tending to zero. This problem is different than the
one presented in Sect. 2.1; in the one we are considering here, ¢ is the order of one,
whereas in the one described in Sect. 2.1, ¢ is taken of the order of 1/, (recall the
discussion in Sect. 1.4).

The major drawback in trying to analyze v, (t, ) directly comes from the fact
that the accumulation points of (v,) do not obey a closed propagation law. In
other words, the limiting measure v (¢, -) is not going to be, in general, completely
determined by the measure v (0, -) corresponding to the sequence of initial data.
This can be easily verified for M = R? and V = 0.

Let (x0. &) € R? x R and consider the sequence of initial data:

2
1 _ b=l %

ug(x)zﬂ—e el T, (32)

This type of sequence is usually known as a wave-packet or a coherent state centered
at (xo, &). As h —> 0 the sequence (1)) concentrates near xo and oscillates rapidly
in the direction of &. It is straightforward to check that:

2 1 _ b=xo)?
M2 (x)| - We =8y (), ash— 07",

where §,, is the Dirac mass centered at xo. Notice that this result is independent of
the choice of the direction of oscillation &.
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Using the representation formula (9) one gets:

|e—i,’7ﬁ1,, W02 = |e™Ad2,0)2

2
1 _ lx=xo—rko|

= n(1+2) s +
(;Th 1+ tz))d/Ze xo+1o (X) , ash— 07, (33)

which indeed does depend on &. Therefore, there is no hope to find a propagation
law for v (¢, -) = 8x,+4, solely in terms of v (0, ) = Jy,.

3.5 Semiclassical Measures, Definition

The preceding discussion shows the need of finding an object that detects, in addi-
tion to the asymptotic behavior of the sequence in physical space, the characteristic
frequencies of oscillations developed by the sequence. This leads to the definition
of semiclassical or Wigner measures.

In order to properly motivate the definition that follows, it is convenient to shift a
little bit our point of view. Given a function u € L? (Rd ), the action of the measure

|u|2 on a test function ¢ € C.(R?) can be written as follows:
[ 0@ P dr = gl ey (34)
R4

where m, denotes the operator acting on L?*(R?) by multiplication by ¢, and
('|')L2(Rd) is the scalar product in L*(R). The operator m, somewhat localizes
a function u in the x-variable, but the expected value (myulu),, (re) destroys the

structure of the oscillations developed by u. In order to keep track of this structure,
one should replace m, by an operator that localizes simultaneously in x and £
(in other words, by an operator that localizes in phase-space T*R¢ = R? x RY),
This is precisely what a pseudodifferential operator Op,, (a) achieves when a €
CX(RY x RY).

Therefore, this leads to replacing (34) by:

(Opj, (a) ul”)LZ(Rd) . (35)
Using the boundedness of Op,, (a), Eq. (26), it follows that the mapping:
wh: C®°(R? x R?Y) 3 a+—> (Op, (a)u|u)L2(Rd) eC

is a distribution wf: € 7'(R? x R?). This object was introduced by Wigner in [119]
and is known as the Wigner distribution of u (although the terms Wigner function
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or Wigner transform are also used). One easily checks that w" has the following

expression:
h\ [ h\ .. d
W (x,€) :/ M(x——v)u(x—f——v)els'” vd'
R? 2 2 (2n)

(&
h

hence, w” contains more information than |u|2 does; in particular, it keeps track of

the oscillations of u via the modulus square of the semiclassical Fourier transform:

Notice that:

1 2

h - 2 " = S
A; W6 dE = lu @), /R S de=on

e
€)= (h)
h

However, w” is not positive in general.?
It follows from (26) that for a sequence (u,) bounded in L? (Rd) and a scale (h,),
i.e. a positive sequence of real numbers tending to zero,

(w,") is a bounded sequence in 7' (R4 x RY).

Therefore, the sequence (wﬁ;) has at least an accumulation point 1 € 2'(R? x RY)
as n —> oo (with respect to the inductive limit weak topology in &). In spite of the
fact that the distributions wﬁ; are not, in general, positive, the accumulation points
u always are.

Theorem 1 ([55,57,83]) Let it be an accumulation point of (WZZ) in 7' (R4 xRY).
Then W is a finite, positive, Radon measure on R¢ x R,

In that case, one says that p is a semiclassical measure or Wigner measure of
the sequence (u,). This definition extends in a natural way to sequences in L? (M),
where M is a smooth manifold equipped with a Riemannian metric. It suffices to
replace Op,, (a) in (35) by the pseudodifferential operator associated to a tes symbols
a € CX(T*M). Note that, although the operators Op, (a) are not intrinsically
defined on M, the difference between any two different realizations of Op, (a)
is a term that tends to zero as n — oo in operator norm. This shows that the
accumulation points of (wﬁ;) are intrinsically defined on T*M.

It is possible to define similar objects using non-semiclassical ¥DO of the form
Op, (a) with a (x, £) zero-homogeneous at infinity in the variable §. Historically,

3The Wigner distribution of u is positive if and only if u (x) = ce” e~ for some matrix A
symmetric and positive definite, see [54].



296 F. Macia

that construction precedes the one presented here, and was performed independently
by Gérard [56] and Tartar [109], and the corresponding limiting measures were
respectively called Microlocal Defect Measures and H-measures. Those authors
were originally motivated by problems arising from the study of the defect of
compactness of bounded sequences in L? due to oscillation and concentration
phenomena that appear in numerous problems in the Calculus of Variations and
the theory of P.D.E., see for instance [80, 81].

3.6 Semiclassical Measures, Properties and Examples

We next describe some relevant properties of semiclassical measures. The reader
may consult [61] for a systematic presentation of the theory, as well as the survey
article [35]. We start by describing to what extent semiclassical measures are able
to describe the limit of the position densities |u, |2.

In this section, (%,) will denote a sequence of positive real numbers that tends to
zero as n —> oo. In what follows, we shall use the term scale to refer to a sequence
with those properties.

Let (u,) be a bounded sequence in L? (M) and suppose that:

lus|> = v, asn—> oo, (36)

in the weak* topology of Radon measures. Suppose moreover that u is a semiclas-
sical measure of (u,), that is:

whn W, asn— 00, (37)

Un

weakly in @' (T*M). The measures p and v are related by:

/ a(x) u(dx,df) < / a(x) v (dx), (38)
T*M M

for every non-negative a € C, (M). In general, equality in (38) may not hold. This
is due to the non-compactness of 7*M which allows some loss of mass of (WZZ) at
infinity as |§| — oo.

The following definition characterizes precisely those sequences for which this
loss of mass does not occur. A sequence (u,) bounded in L? (M) is h,-oscillating
provided that, for every ¢ € C2° (M) the following holds:

lim sup ||]l[R,oo) (—hiAx)fpun ||L2(M) —> 0, asR— oo. 39)
n—-o0

Here, 1z o) (s) denotes the characteristic function of the interval [R, c0); the
operator 1[g o0)(—h2A,) is the one given by the spectral theorem.
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The meaning of condition (39) when M = R is simply:

limsup/ |@($)|2d$—>0, as R — oo;
[EI=R/hn

n—-0o0

whereas, if M is compact and (A j) are the eigenvalues of —A, indexed in increasing
order, (39) simply states that:

lim sup Z \b’t;()kj)|2—>0, as R —> oo.

—
"0 =R/

Intuitively, this condition prevents that a fraction of the L?>-norm of (u,) may
concentrate on frequencies of order greater than 1/h2. One should notice that any
sequence (u,) bounded in L? (M) is h,-oscillating for a suitable choice of the scale

(hn).

On the other hand, we shall say that (u,) is compact at infinity provided that:

lim sup/ |un (¥)|? dx —> 0, asn —> oo,
n—>00 JM\K,

where (K,) is a sequence of compact sets whose union is the whole M.

Theorem 2 Suppose that (u,) satisfies (36) and (37). Then the following statements
hold:

(i) (uy) is hy-oscillating if and only if:

v@%=qu@ﬂ@.

x

(ii) If (un) is hy-oscillating and compact at infinity then:
lim lualZ2ny = 1 (T*M) .
(iii) If (uy,) is hy-oscillating and compact at infinity then:
=0 <= (u,) converges strongly to 0 in L* (M) .
(iv) Ifu, — uasn —s oo in L> (M) then:
w@.€) = [u () 8o (§).

(v) If (vn) is a sequence in L* (M) with a semiclassical measure y' satisfying i L
W' then:

v, =0, asn— ooin %2 (M). (40)
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We refer the reader to [55, 61, 62, 83] for a proof. We next present some explicit
computations of semiclassical measures in M = R?. In the examples that follow,
a € L*(RY) and (s,) is a scale.

1. Convergent sequence. Suppose u, — u strongly in L (M). Then,
1(x,§) = [u )8 ().
2. Oscillating sequence. Let
Uy (X) 1= a (x) &5/,
Then*
|Cl (X)|2 dXSO (S) if hn < &g,
W §) = | la (I dbe, (€) if by = e,
0if h, > e,.

3. Concentrating sequence. Let

1 —
Uy (X) = W(l (xs—nx()) .

Then

lall 2 gy B0 (6) B0 (€) if n < .
_ 2o %
HE6) =1 80 02 @)F 5o
0if h, > &,.

if h, = ¢,

4. Wave-packet or Coherent state. Let

1 X—=X0\ i
Uy (x) = Wﬂ (s—n) e %—O/h”, (41)

with &, < g&,. Then:
p(x,§) = ”a”iz(Rd) 8xy (x) 8g, (£) -
5. W.K.B. state. Let

S
u, (x) =ax)e .

“Here we use the notation 1, < &, (resp. h, > &,) do express that lim,— oo h,/€, = O (resp.
lim,— oo 1ty /€, = 00).
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Then:

1 (x,€) = la ()] dxdy,s (€)

meaning that

/ b (x. £) pu (dv. dE) = / b (x, V,S (1)) Ja (0) 2 d.
R4 xR R4

Notice that, as soon as h, < ¢, or h, = g, all the above sequences are h,-
oscillating. All these examples illustrate how the semiclassical measure is able
to capture simultaneously oscillation and concentration effects developed by a
sequence (u,). This key property makes semiclassical measures a suitable object
to study the semiclassical approximation.

4 Semiclassical Measures and the Schrodinger Flow
4.1 Semiclassical Propagation and Egorov’s Theorem

We now return to the study of the dynamics of the semiclassical Schrodinger flow.
Recall that the semiclassical Schrédinger equation reads:

ihd,uy, + Hyuy = 0, (42)

where ), = —%Ax + V.

Let (uj) be a sequence of initial data such that ||u)] ., = 1 which is
hy-oscillating. Recall that one of the central questions in the semiclassical approx-
imation and the correspondence principle (see Sect. 1.3) is to compute the weak-*
limit v (¢, -) of the sequence of probability densities associated to the corresponding
solutions to the semiclassical Schrodinger equation:

e 0|2, (43)

i LF .
It is not difficult to check that for any 7 € R, the sequence (¢ ' Hi u?) is also h,-
oscillating. Therefore, because of Theorem 2, in order to obtain v (z, ) it suffices

j-L

to compute the semiclassical measures associated to ¢ ' Hi u®. Denote by w, (f)

-t 7 .
the Wigner distribution of e¢~'7 40, Tt turns out that the weak-* accumulation
points of w, (¢) satisfy a propagation law that involves the classical Hamiltonian

1 2
H(x,§) =5 €y + V).
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Theorem 3 ([55, 62, 83]) Suppose that (w, (0) = WZZ) converges to the semiclas-
sical measure po € M+(T*M). Then, for every t € R, (wy (f)) converges to a
semiclassical measure m (¢, -) that solves the transport equation:

i ax,&m(t, dx,dE) = /T*M {H,a} (x,&)m(t,dx, d§) . (44)

dt Jrxy

Therefore, m (t,-) is described by the formula:
/ a(x,&)m(t dx,dE) = / a ((;Sfl (x, g)) Wo (dx, d§) . (45)
T*M T*M

The propagation law (44) simply states that m (z,-) is a weak solution (in the
sense of distribution) of Liouville’s equation:

a,m-i— {H,m} = 0.

Note also that identity (45) is equivalent to the fact that m (z, -) is obtained as the
push-forward of o along ¢/; this is usually written as:

m(t,) = (¢, Ho.
Using the h,-oscillation property of the solutions and Theorem 2, (i) we deduce that
m (t,-) is given by the following Corollary.

Corollary 1 Suppose the hypotheses of Theorem 3 hold. Then one has, for every
teRand g € C. (M):

lim 8 ¢ (x) |e—iﬁi1hn uldx = /* ¢ (7 (¢ (x.€))) 1o (dx, df),

n—>oQ T*M

where T : T*M —> M is the canonical projection.

With this result in mind, we can generalize the computation made in (3.4) for
M = R?and V = 0 to the general case. Let (xo, &) € T*M and define, locally on a
chart,

1 xX—x0\

0 . ix-&o/hp

u, (x) == ——a ( ) e ,
(hn)d/4 Vv hﬂ

where ||al|;2y;) = 1. Then (41) implies that

o (x,§) = 5):0 () 550 é).

As a direct consequence of (45) we deduce:

H
m (l, ) = (¢t )* Ho = 8¢{'1(Xofo)’
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and, by Corollary 1, for every t € R:

. —is Ay, 012 _
im e = 6,
where x (1) = 7 (¢ (x0. &))-
We next sketch the main ideas of the proof of Theorem 3, as they lie on the basis
of further developments.
A straightforward computation shows that w,, () solves Wigner’s equation:

d I A ) it h
= (0, @) grxcee = 5= (U, Opy,, (@™ M aiple™ 0wl oy, (46)

for every a € C®° (T*M). When M = R this equation admits a simpler, closed
expression, on wy,:

ow, +&-Vow, — fé’”wn =0,

where f‘ﬁ’ is the integral operator acting on functions f € C°(R? x R?) by:

LU (.8) ::i/Rd/Rd [v( —%)—V(x—i—%)}

. dv
iE—n)v .
x,n)e dv ;
fm (27t)d

Using the commutator identity (27) in the symbolic calculus we conclude that:

d% (W (1) @)oo = O (1) AH. @) groo + O ().

where the remainder is & (h,) locally uniformly bounded in . This identity shows
that the distributions (w,, (f)) form an equilipschitz family with respect to 7. Hence,
it is possible to apply a diagonal extraction argument and conclude that (w, (¢))
converges for every ¢ along some subsequence, showing (44).

Equivalently, one can obtain (44) as a consequence of Egorov’s theorem (see, for
instance, [124] for a proof). This result shows that conjugation of Op, (a) by the
semiclassical propagator amounts to transporting the symbol a along the classical
flow ¢f7.

Theorem 4 (Egorov) For every a € CX (T*M) there exists a family R, (1) of
bounded operators on L* (M) such that:

¢ Op, (a) e = Op, (a0 ¢) + Ry (1), (47)
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where |Ry, (t) ||$(L2(M)) < p (|t|) h for some continuous function p : Ry — R4. If
M = R9 and H is a polynomial in (x, £) of degree at most two, then R;, = 0.

At this point, the reader should remember the problem that was the main object of
these notes, as described in Sect. 2.1, namely the study of those probability measures
that arise as accumulation points of sequences of position densities associated to
solutions to the non-semiclassical Schrodinger equation (5). As already noticed
in Remark 1, the non-semiclassical Schrodinger equation can be rewritten as a
semiclassical problem provided the time scaling t ~> t/h is performed.

Remark 2 For an initial datum u® € L* (M), the corresponding solution u to (5) can
be written as:

i (14 a-12v)

u(t,)) = e M0 = o' u’ =: v, (t/h,),

where vy, is a solution to the semiclassical problem:

h2
iho; vy, + ?Avh — hZVvh =0.
The corresponding Wigner distributions are related by:
wZ (1 = wfjh (t/h).

Therefore, Egorov’s theorem implies that understanding the dynamics of w' ()
requires:

1. understanding the long-time dynamics of ¢/;
2. controlling the time behavior of the remainder term Ry, (f) for t ~ 1/h in (47).

4.2 The Ehrenfest Time

We shall now address the issue of understanding the influence of the long-time
dynamics of ¢ in the behavior of the Wigner distributions wy, (f). Let us come
back to the explicit computation that was performed in Sect. 3.4 for M = R and
V = 0. We showed that the position densities associated to a Gaussian wave-packet
(32) followed the explicit propagation law (33). That formula showed, in particular,
that the propagated object is again a Gaussian wave-packet of width /A (1 + 7).
Therefore, for times ¢ ~ h~'/2 the width of the wave-packet is of order one, and
there is no hope that for r > h~'/2 the position densities converge to a Dirac mass.

This behavior is better seen at the level of the Wigner distributions wy, (). In this
setting, Egorov’s theorem is exact and,

wy (t,x,8) =w, (0,x —1£,§);
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one can compute wy, (0, -) explicitly in this case [assuming that (1)) is a gaussian
wave-packet centered at (xg, &) of the form (32)]:

1 e i =
0 o

wy (,x,€) = (nh)de e

For a € C° (RY x R?) a Taylor expansion shows the following:

(wa (1,7) , a) = 1 /R a (xo + ko + VI (x +1E) o + ﬁgo) e PP IEP e

7d

=a(¢” (Xo,fo))+ﬁ(«/ﬁ(1+ |t|)),

where ¢ is the classical flow corresponding to the free Hamiltonian. Therefore,
the convergence wy, (t, ) — & 70 (x0 £0) takes place uniformly on intervals of the form
|f| < h=1/2%¢ for every & > 0. A larger time intervals, the dispersive nature of the
classical flow enters into play and it is no longer possible to describe the dynamics
of wy (1, -) solely in terms of ¢/,

Let us assume now that V is not identically zero; the preceding computation gives
in this setting:

1 ls—zo|*
_lz=20

" h)de hdz

T

/ a (@) wy (0.9, (2)) dz = / a (4 (2)
R2d R2d

where zo = (xo, &). As expected, this converges to § ! (zo) Jocally uniformly in 7. In
order to find the size (in terms of /) of the time intervals for which the convergence
is uniform, we must estimate:

1 ==l

; 4
el dz (48)

Dy (t,a) = /RM (a (¢ (@) —a (8] (z0)))

A standard computation shows:

— l—l*>  dz
D t, =< hl/2/ dw " IZ Z0| TR ’
Dy @l < 12 | sup flda (97 00) | Zame™ 0
and
1
W [ sup Jdua (@2 00) |1 e ae = cnlir,
R yyeR2d T
as soon as

[dugt o0)] < MeT
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The coefficient I > 0 is the Liapunov exponent of ¢/’; it measures the maximal
expansion rate of the flow ¢/ a along the unitary unstable directions of the dynamics
(see [74] for additional details).

This leads to introducing the following distinguished time-scale:

=g (5)
Tg = —=log| - ). 49)
h

At times t ~ T’é the difference (48) is of order one; whereas for |f| < (1 —¢) T}g
the difference (48) is of the order of 4° and tends to zero as i —> 0. The smallest
time scale that enjoys the property is known as the Ehrenfest time; when I" > 0 the
Ehrenfest time is precisely T": for the free Hamiltonian, it is A~1/2,

Note that, in the previous computation, the remainder term Ry (f) given by
Ergorov’s theorem (Theorem 4) has been ignored. However, a careful analysis
shows, [20, 34, 44, 66, 67] that wy, (¢, -) converges to 8¢1H(x0§0) in intervals of the
form |¢| < (1 —¢) TP

As seen in the case of the free Hamiltonian, the logarithmic scale T}g does not
always coincide with the Ehrenfest time. The articles [47, 76] show that this scale
is indeed optimal for some hyperbolic systems, in the sense that for time-scales
greater than Th the Wigner distributions wy, (¢, -) associated to a coherent state do
not converge to the Dirac mass centered at the corresponding classical trajectory.

4.3 Beyond the Eherenfest Time

We now turn to the problem of describing the global in time dynamics of the

. e . il A .
Wigner distributions w,, (¢, -), corresponding to a sequence (e~ 7/ u?) of solutions

to the semiclassical Schrodinger equation (12). This issue is intimately related to
the problem proposed in Sect. 2.1, as explained in Remark 2.

Let us fix a time scale t = (t,) with lim, s 7, = 0o (we will be particularly
interested in the case 7, = 1/h,, see Remark 2). One may ask in general whether
or not it is possible to describe the dynamics of wj, (#,-) uniformly in intervals
of the form |f| < 7,. The answer to this question is affirmative as soon as t, is
asymptotically smaller or comparable to (1 — ¢) T": however, this problem can
be very complicated as soon as 7, > T¢". An example of this is given by the
flat torus: Wigner distributions are explicit, although very complicated oscillating
sums whose pointwise behavior is hard to study, due to interferences caused by
superposition of different terms. The case of negatively curved compact surfaces
provides also examples of explicit constructions. In this setting, it is possible to
construct coherent states whose evolution is explicit up to times 7, ~ h;z [94],
Schubert (2007, Semiclassical wave propagation for large times, http://www.maths.
bris.ac.uk/~marcvs/publications.html, unpublished), whose Wigner distributions
have a very complicated structure. Moreover, as we shall immediately see, Wigner
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distributions do not converge to a limiting object on general intervals of the form
[—Tu, 4], for 7, big enough.

However, this question becomes more tractable if we perform an average with
respect to . Instead of considering the pointwise behavior of w,, (¢, -) we can analyze
the behavior of the means:

T 1
/ wy (t,)dt = % / wy (Tu8, +) ds. (50)

T 1

21,

At this point notice that w, (z,s, -) is nothing but the Wigner distribution associated
to the time-rescaled solution to the Schrodinger equation:

I o
U sHp, MO
n

e

Therefore, computing the accumulation points of the time averages (50) amounts to
performing the semiclassical limit , —> 01 and simultaneously letting time go to
infinity as t = 1,§ —> 00.

Set wy (t,-) := wy (tat, -); the convergence of (w} (¢, -)) in average sense is easy
to establish. In fact, (w™) is bounded in L*® (R; 2’ (T*M)) since

jn

| |e_lhn Si]hn u

SHLZ(M) = ||M;(1)||L2(M) =1,
and, for any compact set K C T*M and every a € L'(R; C* (T*M)) such that
suppa (t,-) C K for a.e. r € R, one has:

. —i S, 0112
’/ (Wi (t.+) ,a(1,-))dt| < Cg sup || " un”LZ(M)/ lla @, )l a1 =y dt
R 1€R R
< Ck |lall p wyca+1(r*any) »

for some constant Cx > 0 depending only of d and K. At this point one can invoke
the Banach-Alaoglu theorem to conclude that (w}) is a relatively compact set in
L*® (R; 2’ (T*M)) when equipped with the weak-* topology. In particular, we can
extract a subsequence from (w;), which we shall not relabel and a distribution u €
L*®(R; ' (T*M)) such that:

lim / / a(t,x, &) wr (t,dx,d€) dt
R JT*M

n—>oo

- / / a(t,x, &) (t,dx, dg) di, Ya € L' (R;C® (T*M)).  (51)
RJT*M

Similarly as we did in Sect.2.1, we denote by M () the set consisting in all
distributions € L*® (R; 2’ (T*M)) that are obtained as an accumulation point,
for the weak-* topology in L*® (R; 2’ (T*M)), of some sequence of Wigner
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distributions of the form (w™) associated to a sequence of initial data (1) that is
normalized in L? (M) and is h,-oscillating in the sense of (39).

Theorem 5 ([85]) Let t be a time scale. Then the set //Z(r) is contained
L>® (R; A+ (T*M)). Moreover, every u € # (t) is invariant by the classical
flow: fora.e. t € R and every s € R,

wit) =", nt).

If, in addition, i is obtained from a sequence of initial data (u?) then:

n—>o0

b . b
im [ [ gt @aar= [ [ p@utdndga 52
a M a T*M

foreverya < band ¢ € C. (M).

If M is compact, then property (52) automatically implies that u (¢, -) is a proba-
bility measure for a.e. t € R. Therefore, in this case M (1) C L™ (R; P (T*M)).

When I:Ih = %A — W2V and v, = 1/h (which corresponds to study the non-
semiclassical case, see Remark 2), the set M (1/h) determines the set .# introduced
in Sect. 2.1. To see this, simply note that given any sequence () that is normalized
in L2 (M), it is always possible to find a sequence (/,,) of positive real numbers that
tends to zero such that

Jim [ L ooy (<A un| 2y = O

in other words, it is always possible to find (h,) such that («?) is h,-oscillating.
Then, identity (52) implies that the elements of ./ are obtained by projecting those
of .# (1/h,) onto M.

The following result, whose proof can be found in [1], deals with the dependence
of . (t) on the time scale (z,).

Proposition 3 Let (t,) and (0,) be time scales tending to infinity as n —> 00 such
that lim,— o0 0,/ T, = 0. Then for every u € . (t) and almost every t € R there
exist u' € Conv .4 (o) such that

1
wit.) = /0 W (s.-) ds. 53)

Above, Conv .4 (o) denotes the convex hull of M (0). As a consequence of this
result, we see thatif 0, < 1y, ~then the measures in .# () can be constructed using
those in .# (o). Therefore, .# (7) is somewhat decreasing with respect to the scale
T.

The problem of characterizing M (1) when 1, > Tﬁ” on an arbitrary Rie-
mannian manifold can be very complex. In order to get some insight in it, let
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us first assume that the convergence of the Wigner distributions w, (¢, -) to their
corresponding semiclassical measures m(t, -) = ((;S,H )* Mo, as given by Theorem 3,
is uniform in the interval ¢ € [—1,, 7,,]. Then, necessarily, for any a € C° (T*M)
we would have:

-1
lim / a(x, &) wr (t,dx,d§) dt
T*M

n—oo |_;

= lim —/ / a(x, &) w, (t,dx,d§) dt
—1, JT*M

n—00 T,

= lim (a),, (x,§) po (dx, d§),

n—>oo T*M

where, recall, ;1o = (0, -) stands for the semiclassical measure of the sequence of
initial data and:

T
@y 0= 7 [ a@l wo)as

Therefore, under the assumption that the convergence of w, (f,-) to m(t,-) is
uniform for ¢ € [—1,, 7,], the time averages (50) converge to:

/ / a (x.§) p (¢, d,dE) di = hm/ B o (e dE). (54

where (1 is a weak-#* accumulation point of w}”.

If
(a) (x, &) := hrn (a); (x,&) exists jo-almost everywhere, (55
then (54) implies:
-1
[ [ acopeaapa= [ @eomad. 6o
-1 Jrm T*M

To summarize, we have showed that under the assumption that w, (¢, -) converges
uniformly in ¢ € [—1,, 7,], the measure u satisfies (56) provided one of the two
following statements holds.

1. imr— oo {a)y (x, &) exists for every (x,§) € T*M (for instance, when H is
completely integrable in the sense of Liouville). Condition (55) is trivially
satisfied in this case.

2. The measure p is ¢ -invariant. Then (55) is the well-known result on conver-
gence of Birkhoff averages.
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This is the situation when (ug) is a quasi-mode; that is, when
th ug = A’hn Ml(l) + rhn’

where A, — A € Rand |, |2 — 0asn — oo. In this case, it is easy to check

that:
ll7, I
=t0 ﬂ ,
L2(M) h,

it i
H e Hy, ’42 _ e—th/\hn M;(1)

which in turn implies:

17, 172
Wa (1,2) —wy (0,) = 20 (h—z“M) .

In this case, w, (¢, -) converges to po uniformly in time intervals [—z,, 7,] provided
T, K hy ||, ||L_21(M). The problem of constructing quasi-modes in a Riemannian
manifold has been the object of numerous studies, see for instance [13, 16, 39, 95,
96].

4.4 Concentration of Laplacian Eigenfunctions

Another instance in which the convergence of Wigner distributions towards their
limiting semiclassical measures is uniform in time corresponds to the case in which
the sequence of initial data consists of eigenfunctions of the Laplacian.

In this section we shall assume that (M, g) is a compact Riemannian manifold;
this ensures that the Laplace-Beltrami operator —A, has discrete spectrum, consist-
ing of an non-decreasing sequence of eigenvalues:

O=Ag<A <A <...<A, o0, asn—> 0.

The corresponding normalized eigenfunctions satisfy:

1
- EAan = /\n%, ”wn”LZ(M) =1, (57)

and it is possible to construct an orthonormal basis of L? (M) formed exclusively by
eigenfunctions.

A sequence (v,) formed by eigenfunctions corresponding to an increasing
sequence of eigenvalues is clearly h,-oscillating if i, = An_l/ 2 (or h, tends to zero
faster than A;l/ 2) since (57) can be written in this case as:

- _nAxl/fn = Wn (58)
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The corresponding solutions to the semiclassical Schrodinger equation can be
written, in view of (8), as:

e—iﬁHo,/m Yy = eithnAx/an — e—ir«/l,,/zw

ne

Therefore, for every ¢ € R:

ieirhnAx/aniz = |l?,

and, for any time scale (t,), the corresponding time-rescaled Wigner distributions
satisfy:

wir (1) = wir (0.7) = wy!.

Hence, the convergence of \e"’h"A*'/ zwniz or wy (t,-) towards its limit is (trivially)
uniformint € R.

Any weak-* limit u of w, (¢,) = wf’;ﬂ is necessarily independent of . Moreover,
(44) can be rewritten as:

/ a (x.§) p (dv, dE) = / a (¢ (5. ) 1 (dx, )
T™*M T™*M

forevery a € C2° (T*M), t € R. In other words, u is invariant by the geodesic flow

¢, which is the classical flow associated to the classical Hamiltonian Hy.
An application of the symbolic calculus developed in Sect. 3.2 to the semiclassi-
cal problem (58) for eigenfunctions gives:

0= (Oph,, (Cl) (_hiAx - 1) wnlwn)Lz(M)
= (Opy, (Ho — 1) @) Yul¥w) 2y + O (ha) .

Therefore, taking limits as n — oo shows:
1 2
a(x,§) 3 €Ny — 1) (dx,d§) = 0,
T*M

which in turn implies that p is supported on the sphere bundle S*M:

1
supppu € S*M := {(x,é) €T"M: 5 I3 = 1} :

which is the energy level E = 1 for the classical Hamiltonian Hy.

Let us introduce some notation: we shall denote by .#i,, (T*M) (resp.
Miny (S*M)) the set of all probability measures on 7*M (resp. supported on S*M)
that are invariant by the geodesic flow. We shall also denote by Mo the set of those
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measures that arise as semiclassical measures of a sequence of eigenfunctions of
the Laplacian. The following chain of inclusions trivially takes place for any time
scale (t,):

Moo C M () C L™ (R; Miny (T*M)) .

Naturally, the set .# introduced in Sect. 2.1 is obtained by projecting the elements
of //Zoo onto the base.

The question of characterizing the set Moo is an extremely difficult one; its
answer relies on fine aspects of the global dynamics of ¢, (the reader can consult
the recent survey [123]). A complete answer is known in very few cases, in some
others partial results are available. We next describe some examples.

« The Spheres (S¢, can). In this case Moy = Min (S*M), i.e. every invariant
measure on $*M can be realized as a semiclassical measure for some sequence of
eigenfunctions. This was first proved by Jakobson and Zelditch [73]. The proof
relies on three ingredients. The first one is an explicit computation. The sequence:

F(k+—d;1)
V()= | —pg———— (a + ix)*
2 (k+ 1)

of eigenfunctions corresponds to the eigenvalues k (k + d — 1) and concentrates
onto the equator Yy given by x3 = ... = x4+ = 0. More precisely,

|wk|2A8y0, wf;/“k—\&;() as k — oo;

where J, denotes the lift of yy to S*M.> The second ingredient is that the
isometries of the sphere act transitively on the space of geodesics: if y is a
geodesic then there exists an isometry @ € Isom(S%,can) such that @ (y) = .
Since ¥ o @ is again a normalized eigenfunction of the Laplacian, this shows
that §; € Mo for every orbit y of the geodesic flow; finally, the third step
consists in noticing that convex combinations of orbit measures d; are dense
in M (S*M). One concludes by applying a diagonal extraction argument
combined with the quasi-orthogonality property (40) of semiclassical measures.
It should be noted, nonetheless, that this phenomenon is not very robust. It has
been recently proved in [90] that if one considers sequences of eigenfunctions

SThe orbit measure §; corresponding to an orbit ¥ of the classical flow ¢! is defined as

Lty
[ atos @)= tim %[0! o) a

lim
T—00

where (xo, &) € 7.
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for the operator —%A + V, for V generic, only a finite number of orbit measures
85 can be realized as semiclassical measures.

* Zoll manifolds. For manifolds with periodic geodesic flow, the situation is not so
clear. However, if one assume additional structure on the manifold one has again
that //Zoo = M (S*M). This is the case for all rank-one compact symmetric
spaces, as proved in [84] (in fact, it only suffices to assume a spectral separation
property for —A,). In [7] it is showed that Moo = Miny (8$*M) holds as soon as
(M, g) has constant positive sectional curvature (in that case, M is a quotient of
the sphere by a group of isometries).

s Flat tori (T, can). In spite that the geodesic flow is completely integrable (as was
the case in the sphere and Zoll manifolds), in this case Mo 18 strictly contained
in Miny (S*M). A result by Bourgain (see Jakobson’s article [72]) shows that
the set .#x, of projections onto T¢ of the elements of Moo are measures that
are absolutely continuous with respect to the Lebesgue measure. In particular
85 ¢ Moo Whenever y is periodic. Jakobson [72] refined this result for d = 2:
any element of .# is of the form Z‘k‘e{nlm} age™™ for certain ny, ny € R4.In
higher dimensions, see [3, 72, 93], it can be proved that the Fourier coefficients
of the elements in .#, satisfy an estimate of the form Zkezd |ak|d_2 < Cy.The
proofs of these results are based on fine results on the distribution of points of
Z4 on spheres and on deep results on the structure of solutions to Pell’s type
equations. In [9], Bourgain’s result is generalized to sequences of eigenfunctions
of more general operators of the form —%Ax + V (x); this proof is very different,
of microlocal nature, and follows from the analysis presented in the next section.

* General completely integrable geodesic flow and KAM type situations. For
completely integrable geodesic flows it is possible to show the existence of
sequences of eigenfunctions that concentrate on unstable periodic orbits of the
geodesic flow [42, 111-113]. It is possible to show the existence of sequences of
eigenfunctions or quasi-modes that concentrate on invariant Lagrangian tori in
some KAM situations [43, 77, 95]. Bourgain’s result also generalizes to quantum
completely integrable systems [1].

» Ergodic geodesic flow. When the geodesic flow of (M, g) is ergodic, i.e. every
invariant subset of $*M has either full or zero measure, the situation is rather dif-
ferent. Shnirelman’s theorem (whose proof can be found in [41, 106, 120]) states
the following. Suppose that (1) is an orthonormal basis of L>(M) consisting of
eigenfunctions of the Laplacian. Then there exists a subset . C N, of density 1,
such that (W:Z,)ne . converges to the Liouville measure on S*M. This fact can be
interpreted as stating that a “generic” sequence of eigenfunctions asymptotically
equidistributes on S*M (both in physical and frequency space). It has been
proved by Hassell that there exists plane domains whose billiard flow is ergodic
for which measures different from Liouville can be realized as semiclassical
measure for eigenfunctions, see [64]. The Quantum Unique Ergodicity conjecture
of Rudnick and Sarnak [102, 104] states that in a compact manifold with negative
curvature (and therefore, whose geodesic flow is ergodic) the set Mo reduces to
the Liouville measure. This conjecture has been partially solved in the case of



312 F. Macia

arithmetic congruence surfaces by Lindenstrauss [26, 79]. On general manifolds
of negative sectional curvature, Anantharaman and Nonnenmacher have proved
[10, 11] a lower bound for the Kolmogorov-Sinai Entropy of elements in ..
This was further refined by Riviere [97] in the case of surfaces.

S Results in Completely Integrable Geometries

5.1 Averaging and Zoll Manifolds

In this last section we shall focus on manifolds with completely integrable geodesic
flows. We shall mainly focus on Zoll manifolds and flat tori. We shall restrict
ourselves to compact M and will consider the non-semiclassical Hamiltonian case.
For the rest of these notes, let:

1
H=-—-A+V,
2

where V € C® (M).% As we did before, we introduce the associated semiclassical
operator:

A

h2
M, = —?A + KV,

that satisfies:

i _;Tht 2 . 1
e = o= Wlth‘fhzz.

We shall use semiclassical notation and denote generically by w;" (¢, -) the Wigner

L . S 1,
distribution associated to a solution e~ i y,0:

Th . h
w t,:) i =w PO
h ( ’ ) e_irlTltmlug

Theorem 5 gives that all accumulation points of (w}') are elements of
L>® (R; My (T*M)), where M, (T*M) is the set of probability measures on
T*M that are invariant by the geodesic flow of (M, g). A proof of this fact is
sketched in the proof of Proposition 4 below. When we write & — 07 it should
be understood that convergence takes place along a subsequence. Again, we shall
denote by ¢, the geodesic flow of (M, g) acting on T*M.

6Most of the results presented here hold for potentials satisfying lower regularity requirements.
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We start by presenting a result that exploits the existence of completely integrable

structure in the geodesic flow. It can be interpreted as a weak version of Egorov’s
theorem for very long times.

Proposition 4 ([85]) Let (ug) an h-oscillating sequence that is normalized in
L? (M), and suppose that v, < h~2. Assume that (w,r,h ) , the sequence of Wigner

distributions corresponding to e_i%t'}ﬁ'uh, converges to L € M (r) and that
(wi' (0) = WZ?) converges to (o € M+ (T*M). Then, if a € CX° (T*M) is ¢;-

invariant one has, for every t € R:

tim (o ).0) = [ ) o (). (59)

In particular, for every such a and for a.e. t € R, the following holds:

/ 0 (6.6) o (1. d. dE) = / a (. 8) o (dx. dE) 60)
M ™M

Proof Recall that w;» solves the Wigner equation (46), which after taking into
account the change of time scale reads:

d 7 ifh A~ _il’ 7 _ii’,’A
O 0@y = 1 Op, @) Bl E ) . (61)

Let us analyze the structure of the above commutator. First notice that, applying the
commutator rule (27) to the term involving the potential V we obtain:

A 1
(7. Opy, (@)] = 5[—h2Ax, Op, ()] + 0 (K) .

Now recall that the Laplace-Beltrami operator (28) can be expressed in terms of
Weyl pseudodifferential operators as:

—h? Ax = Opy, (Ho) + ih Op,, (r) + h* Op,, (m),

where Hy (x,£) = |||, m € C® (M) and r can be written as (30), which is
equivalent to:

1
r(x.§) = 5 {Ho.log p}
where p = /detg. The commutator rule implies in this case:

[, Op, (@)] = Op, ({Ho. a}) + 1 Op, (ir.a}) + 0 (). (62)
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Since a o ¢ = a for every s € R, necessarily {Hy, a} = 0 and therefore:

N n?
(71 Op, (@) = = Op, ({r.a}) + € ().

Introducing this into the Wigner equation (61) gives:

d T i T
i (wy (1) ’a>9’xC?° = Ethh (wi @) . 4r, a}>@/xcg>° + 0 (uh’) .
Integrating with respect to time, we obtain:
(wi' . a)@/xcgo —(wi' (0) *a>9f><cg>°

. t
= %‘L’hh/(; (w,tl” (), {r, a})@,xc?o ds+ 0O (thhz) )

Now notice that 7,4> — 07 by hypothesis and that using Jacobi’s identity for the
Poisson bracket:

{r.a} = 5 o, flog p.a}

Now, it is an easy exercise to prove, using (61) and (62), that, forany b € C° (T*M)
and any ¢ € L' (R) one has:

/R‘p (1) {wj" (1) . {Ho, b}b,xq?o dt=o (L) :

‘L'hh

This, in particular, shows that w (¢, -) is invariant by the geodesic flow for almost
every t € R. We therefore conclude that:

. 7 1 Th
(3 0 0)grcoe = lim, (03! 0). oo

which is (59). Identity (60) now follows from the fact that (59) implies that, for
a € C* (T*M) that is ¢,-invariant:

/ / 0 () a(x, ) u(t,dx, d€) dt
R JT*M

_ (/(p(t)dt)/ a (x,€) o (dx, dE)
R T*M

Surprisingly, in some situations Proposition 4 suffices to characterize the set
A (t). In order to simplify our presentation, we shall restrict the class of initial

for every ¢ € L' (R).
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data we shall be interested in. In what follows, we shall assume that the sequence
(uy) of initial data is normalized in L? (M) and satisfies the stronger assumption of
strict h-oscillation:

lim limsup > Juj (4) > = lim limsup Y up (&) > = 0: (63)
k=00 ot ) o §>0F po+ >

jZR/h Aj=68/h
this condition expresses that no oscillations take place at scales asymptotically
higher or lower than 1/A. It should be pointed out that it is not always possible
to find a scale for which both sides of (63) are satisfied simultaneously,’ see [58] for
an example. If (ug) satisfies (63) and the Wigner distributions (w”,) converge to a

Uy

probability measure o € &2 (T*M) then:

o ({§ = 0}) = 0.

In fact this condition is equivalent to the right hand side of (63).

We now turn to the case of Zoll manifolds. Recall that (M, g) is a Zoll manifold
provided all its geodesics are closed. In this case, the geodesic flow ¢, is periodic on
each level set ||£]|, = E (see [18] for a proof). We shall denote by L the period on
¢, for E = 1. Then, on ||§||, = E the period of the geodesic flow is L/ ||&]|,.

The book [18] provides a detailed exposition of this type of geometries. Note
that Zoll’s contribution was to show the existence of a Riemannian structure on S?
that is not isometric to the canonical one with the property that all its geodesics
are closed. Examples of Zoll manifolds are Compact Rank-One Symmetric Spaces
(CROSS) and their quotients. Note also that the topology of a Zoll manifold (under
the additional hypothesis that all geodesics have the same length) is close to that of
a CROSS: the cohomology ring of such a Zoll manifold must be that of a CROSS.

The following holds.

Theorem 6 ([85]) Let (M, g) be a Zoll manifold. Suppose v, < h~> and that
(u)) satisfies (63) and is normalized in L* (M). If (w,rl”) and (w)" (0)) converge
respectively to  and Ly then € My, (T*M) does not depend on t and is given
by:

/ o (. §) p (dv. dE) = / (a) (x.£) puo (dv. dE) (64)
™M T*M
Remark 3 Recall that:
. 1 (7
@ 6 = fim 7 [ a8 ds (©9)

"Note, however, that it is always possible to find a scale such that the left hand side of (63) holds.
The right hand side is equivalent to the fact that (1) converges weakly to zero in L2 (M).
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Our periodicity assumption implies that if a € C° (T*M) vanishes close to £ = 0
then (a) € C° (T*M). In fact:

L&,
@wo =" [ e woras

Proof (Proof of Theorem 6) Let a € C° (T*M) vanish close to § = 0. Identity (60)
combined with the preceding remark show that:

/ (a) (6.8) p (. dx. dE) = / () (x. §) po (dx. dE) (66)
T*M T*M

Since the convergence in (65) takes places for every (x,§) € T*M we conclude,
using the invariance of u (z, -):

N
f. @eoueaa = im g [ awsnds
:/ a (. §) (¢, dx. dE) |
T*M

Note also that (66) implies that w (t, T*M \ {0}) = po(T*M\{0}) = 1 and
therefore, u (¢,-) cannot charge {§ = 0}. We conclude that (64) holds for every a
and therefore characterizes (.

Formula (64) should be interpreted as that p is obtained by averaging ji along
the geodesic flow. Note in particular that as soon as (g € .#iny (T*M) one has:

L= Lo

As a consequence, the following holds.

Corollary 2 Let (M, g) be a Zoll manifold and suppose that 7, < h™2. Then
My (T*M) C M (7).

A complete characterization of the structure of p close to the zero section
requires preforming a second microlocalization close to § = 0 (second microlo-
calizations will be described for the case of the torus in Sect.5.3). The following
formula holds when one does not assume (63):

/ a (x.€) ju (¢, d, dE) = / (a) (5. €) o (dx. d€)
T*M T*M\{0}
4 /M () (x.0) vo (dx)

+ / a(x,0) |e_’ﬂgu0|2 (x) dx,
M
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with vy € .#4 (M) only depending on (ug) and u° being the weak limit of (ug) in
L* (M).

We stress the fact that the effect of V cannot be detected on these time scales.
This is no longer true if 7, ~ h~2 as has been recently proved in [90].

Another interesting corollary of Theorem 6 refers to the propagation of wave-
packets (41) at the scale t, = 1/h [which is equivalent to consider the non-
semiclassical propagation (5)]. Suppose ug is supported on a coordinate chart and

locally of the form:

1 X—=X0\ it /hx
ul) (x) = P (—JE )efo/h , (67)

where p € L? (M) with o2y = 1 and (xo,60) € T*M \ {0}. Then, as we saw in
Sect. 3.6, the Wigner distributions of u}) converge towards:

Mo = 5)60 ® 850'

Let ¥ be the orbit of the geodesic flow issued from (xg,&p) and let y be the
corresponding geodesic in M. Theorems 5 and 6 imply the following.

Corollary 3 Let (M, g) be a Zoll manifold and u) be given by (67). Then, for every
a < bandeveryp € C(M):

b
lim / /M 0 (1) [e"GA") 012 (x) dxdt = (b — a) /M 0 (1) 8, (dx).

h—0t

As a consequence of this, no Strichartz estimate can hold on a Zoll manifold, as
explained in Sect. 2.2. Moreover, it also shows that the Geometric Control Condition
is necessary in order to have an observability estimate (see Sect.2.3).

5.2 Flat Tori

The periodicity assumption on the dynamics of ¢, is deceptively simple. One may
ask whether or not an averaging formula as (64) still holds under more complicated
dynamical hypotheses.

The simplest setting to consider is perhaps flat tori. Suppose that M = T¢ =
R?/277Z% is equipped with the canonical flat metric. The geodesic flow on T*T? is
explicit:

b (x.§) = (x + 5. 8) .

The the flow ¢; is the prototype of a completely integrable Hamiltonian flow (see,
for instance, [14, 91]). The orbits of ¢, are quasi-periodic. In fact, they are dense in
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tori of dimension less or equal to d. In order to describe them precisely, define the
submodule:

Agi=1tkeZ' : k-£=0}.

Kronecker’s lemma states that the orbit corresponding to (x, §) € T*T is dense in a
torus of dimension d — rk Ag. Therefore, if A¢ = {0} then the corresponding orbits
are dense in T¢, whereas if rk Ag = d — 1, they are periodic. A § € R is said to be
resonant if tk Ag > 0; we shall denote by £2 C R the set of resonant frequencies.

Note that the average (a) (x, §) of a smooth function a € C®(T*T?), as defined
in (65), exists for every (x,£) € T*T?; but is not a smooth function in general. In
fact, for £ € R?\ £ one has:

1
@ e = [avoa

This is clearly not generally the case if the orbit corresponding to (x, §) is periodic.
Therefore, it is not possible to apply the same strategy we used to prove Theorem 6.

In fact, the only smooth functions @ € C®°(T*T¢) that are invariant under the
geodesic flow are of the form a (£), i.e. they do not depend on x. In this context,
Proposition 4 gives the following result.

Proposition 5 Let (M, g) = (T%can) and suppose ©, < h™* and that (u}) is
normalized in L*(T?). Assume again that (WZ” ) and (w;" (0)) converge respectively
to ( and [o. Let U and T denote the respective images of | and (o by the
projection (x,§) +—> &. Then & € M+ (R?) does not depend on t and is given
by:

= Mo.

Proof Proposition 4 ensures that for every a € C° (R?) one has:

/ 0 (€) 1 (1. dv. dE) = / a (€) o (dx. ).
T*Td T*Td

which is equivalent to the claim.
An immediate consequence of this is the following.
Corollary 4 Suppose the hypotheses of Proposition 5 hold. If j1o(T? x 2) = 0 then
for almost every t € R,
1

dx ® Tio.
(Zﬂ)d Mo

pt,) =
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Proof The hypothesis and Proposition 5 imply that (2, T¢ x £2) = 0,

1
@)

/T a(uE)dy= (@) (8), Torp ) ae. (58 €T,

and the convergence (65) of the Birkhoff mean to the average takes place u (¢, -)-
almost everywhere. Therefore, since u (¢, -) is invariant by the geodesic flow:

1 T
[ ewonaaa =1 [ [ a@eonenga

/ () (. §) p (1, d. dE)
T*Td

- /T*Td ((2%)[1 /Tda(% §) dy) 14 (2, dx, d€)

= [ (G [ev-oa)mae.

and we conclude using Proposition 5.

Corollary 4 shows that in order to get a complete characterization of wu (z,-) it
only remains to understand the structure of p (t,-)]pexgo. It turns out that this is
more difficult than one would a priori think. In the following example, V = 0 and
=1 / h.

Example 1 ([85], Proposition 11) Let p € L>(T?) with lollz2(r2) = 1. Define:

. : h o ph
i /h z(x1+k1)/hetahk2/h7

) = p @, W) =p@e

where k" 1= (k?ké‘) €Z*and h < g, — 0. Itis possible to choose (h,), (&,)
and (kh) in such a way that: both (ug) and (vg) belong to L?(T?) and have the same
semiclassical measure:

lp ()|” dx81.0) (£)

. . . . . . h h
but their time-dependent Wigner distributions w’; w and w, ayp Comverge respec-

tively to:
; 2d
(/ le"p (y1,x2)| %) dx8q.0) (§) ,
T 4
and
L b0 )
—=aX .
Qry2

In fact (kh / |kh |) converges to an element of R? \ £2.



320 F. Macia

This example shows that if 1o(T? x £2) > 0 the measure j (f,-) may depend
on ¢ in a non trivial way and, most importantly, that 1y does not determine p (t, -)
anymore. Two sequences of initial data may have the same semiclassical measure
but the semiclassical measures associated to the evolution at 7, = 1/h may differ.
In particular, there is no hope of obtaining a simple averaging formula as (65).

This problem was solved in [86] ford = 2 and V = 0 and in its full generality in
[9], in 2010, in any dimension and allowing for time dependent potentials that are
continuous except in at most a set of zero measure. In those articles it is proved that
any i € M (1 /h) enjoys the following properties:

l. p € CR;P(T*M)) and the image of u under the projection (x,§) —> x is
absolutely continuous with respect to the Lebesgue measure.

2. u can be decomposed as a sum of measures whose propagation is described by a
Schrddinger type equation in lower dimensional tori.

3. fOT w(t, w x RY)dt > 0 for every open subset @ C T¢.

Here we shall not present this result in its full generality. Instead, we shall restrict
us to the case d = 2, V € C*®(T?) and to sequences of initial data satisfying (63).

In order to state our result, we need some notation. Denote by .} the set of all
primitive submodules of Z? of rank one.® An element A € ., is a one dimensional
lattice of Z? generated by a k € Z? whose components are relatively prime. Denote
by L% (T?) the subspace of L?(T?) consisting of those functions u such that:

ulx+v)=uk), VveAdt

Above, A+ denotes the subspace of the vectors of R? that are orthogonal to A. Note
that every u € L% (T?) has a Fourier expansion of the form:

ux) = Z e,

keA

Givena € CX®(T*T?), a (x,£) = Y 1z ax (§) € denote:

(a) 4 (6, 8) = D ax (€)™,

keA

Note at this point that (a), can also be obtained as a Birkhoff average along a
periodic flow. If v € A+ \ {0} then:

(@), (x,8) = TILII;O%/OTa(x—}- v, §)dt.

8 A submodule A of Z? is primitive provided the intersection of its linear span over reals with Z4
is A itself.
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That limit exists everywhere and
[{a) all oo 12y = llall oo (r2) - (68)

Let my,, (§) be the operator acting on Lfl (T?) by multiplication by (a), (-, £).
Denote by U, () the propagator on L% (T?) associated to the Schrodinger equation:

iou (2, x) + %AAM tx)—(V),®)ux) =0. (69)

where A, is the restriction of A to Li (T?); note that (69) is a one-dimensional
Schrodinger equation.
Define:

Ry = A%\ {0},
and note that

|_|A€$1RA U (R?\ £2) = T*T2\ {0}.

Finally, given a Hilbert space H, recall that .Z }r (H) denotes the set of positive,
hermitian, trace-class operators on H.

Theorem 7 ([9]) Let (ug) be normalized in L*(T?) and satisfy (63). Let © €
L®(R; P (T*T?)) be a weak-* accumulation point of (wﬁh). Then for every A € £
there exists a [u-integrable family of operators:

Ra3E > pa(€) € ZL(LA(T?))

that only depends on the sequence of initial data such that:

[ awonacds =Y [ Trm, ©Ua 000 @ U3 0) 70

A€

+ /T 2 /R NRCICOLTOLE

Before giving some ideas of the proof of this result, let us present some
consequences.

Corollary 5 Let 1 be as in Theorem 7. Then the image of 1 under the projection
(x, &) —> x is absolutely continuous. In particular, any weak-* accumulation point

of |ei’(%A_V) u)|?dxdt is of the form p (t, x) dxdt with p € C(R; LY (T?)).
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Proof The image measure v € Z(T?) is given by:

/T b (rd) = > Tr (mgy,Ma (1))

A€ZL

5 dx
LR\ ) /T R (70)

where M (1) € £} (L (T?)). Note that any measure of the form:
Cc(T?) 3 b —> Tr(mgy) , K),

where K € £} (L%(T?)), extends to a bounded form on L>°(T?) because of (68),
and therefore can be represented by a positive element of L! (T?). Since both sides of
the identity (70) define a probability measure, the sum of the densities corresponding
to each summand must converge to an element p € C(R; L} (']1“2)) by the monotone
convergence theorem.

Remark 4 The result of Corollary 5 can be improved. It is showed in [4] that, in fact,
the density p is in C(R; L?(T?)), and similar results hold in any dimension. This is
the result predicted by the Strichartz estimate corresponding to the two dimensional
Euclidean exponent, which is known to be false since the work of Bourgain [28]
(see also Sect. 2.2). The failure of this estimate is thus a very subtle phenomenon.

Corollary 6 Let i be as in Theorem 7. Then, for every T > 0 and every open,
non-empty subset w C T? the following holds:

T
/ w(t, 0 x R¥)dr > 0.
0

Proof Suppose that, on the contrary

T
/ w(t, o x R¥)dr = 0,
0

for some T > 0 and non-empty @ C T?. We are going to show that ;& must vanish
identically, and therefore, it is not a probability measure. Using formula (70), one
deduces the identity:

T|o|

=0.

/ 37 Tr (me,y,Ma () dr + (R

0 Aes @)
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Since all the terms in the above sum are positive, we infer that:
AR*\ 2) =0,
T
/ Tr (m<]lw>AMA (t)) dt = 0. (71)
0
Theorem 7 ensures:
Mp(t) = Ux () M4 (0) Uy (1)

Since M4 (0) is self-adjoint and trace class, it possesses an orthonormal basis of
Li (T?) consisting of eigenfunctions. Write this basis as (wnA); clearly:

Ma @)yt =20yt A =0, YAt <L

neN

Now, M, () can be written in terms of this expansion as a superposition of
orthogonal projections:

Ma(0) =Y A UL v U ) w2

neN

Identity (71) becomes, since again all the terms involved in the sums are non-
negative:

T
A A2 _
i [ by @102 0 v F @ =o

for every n € N. If A2 # 0 then |U, (£) ¥2|* (x) = O for ae. t € (0,T) and
ae. X € wy = U el (w + v). Since |Uy (1) ¥;A|* can be viewed as defined
v

on a one-dimensional torus (more precisely, U, (¢) can be unitarily conjugated to
a propagator acting on L? (T ,) for some one-dimensional torus T, see [9]), and
w, projects onto an open set of that torus, one concludes Uy () ¥A = 0 by a
standard unique continuation result for the one-dimensional Schrédinger equation.
This proves that p vanishes identically.

It turns out that Corollary 6 is essentially equivalent to the validity of the
observability estimate (23) on the torus. See Sect. 2.3 and [9, 87] for more details.
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5.3 Some Ideas from the Proof of Theorem 7

The proof of Theorem 7, even in our relatively simple setting is quite lengthy and
technical. Here we present the main ideas.

Our starting point is a geometric remark that motivates the introduction of the
sets Ry.

Proposition 6 Let 1 € My, (T*'I['Z). Then wlroxg,, A € £, and Pl g2\g) are
invariant measures that possesses additional regularity properties.

(i) w]m2x®2\g) is constant with respect to x;
(ii) each pW]m2xg, is invariant with respect to the translations:

X—x+v, veAl (72)

As a consequence of statement (ii) of Proposition 6 we conclude that 1] g2z, is
completely determined by its action on functions a € C.(T*T?) that are invariant by
translations of the form (72). Those functions admit a Fourier series development of
the form:

a(x€) =) a (e (73)

keA

We say that such a function has only frequencies in A. This remark translates into
the problem under consideration by concluding that, if i is now a time-dependent
measure as in the statement of Theorem 7, then, in order to compute & (t, )12z,
it suffices to test Wigner distributions against symbols that have only frequencies
in A.

On the other hand, Example 1 suggests that in order to compute p (2, -) | r2xg,, One
must take into account the specific way in which energy concentrates onto R 4. This
vague statement can be made precise using ideas from two-microlocal analysis [25,
27] and, more precisely, two-microlocal semiclassical measures. Those objects were
introduced independently by Nier and Fermanian-Kammerer and further developed
in the following articles [51-53, 89, 92].

To simplify matters a little bit, let us just consider the case

A={n,0):ne}.

We introduce the class of symbols .} that are defined on T* T?

g ¥ R, and have
the following properties.

1. they are compactly supported in (x, £) € T*T?, and only have frequencies in A;
2. they are homogeneous of degree zero at infinity in n € R. This means that there
exists a function apo, € C°(T*T? x {—1, 1}) and Ry > O such that:

a (6, 1) = dnom (x, £, |—Z|) . for |§] > Roand (x,£) € T*T2.
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Note that the requirement of only having frequencies in A (see (73)) translates
into the fact that a does not depend on the variable x,. Hence, symbols in .} can
be canonically identified to functions defined on T, xR? x R,.

From now on, we shall suppose that (ug) satisfies the hypotheses of the theorem
and we denote by wy, (z,-) the Wigner distribution of the solution ¢(34=V) ;0. We
are going to decompose (two-microlocalize) wy, (, -) around

Ry C At ={(0.&): & R},

To this aim, we use the symbols of the class a € .} as follows. Take y € C* (R)
to be a nonnegative cut-off function that is identically equal to one near the origin.
For every R > 0 and a € .}, we define

(Wi (1) ,a) == /T*Tz (1 — X (%)) a (x, £, %) w (1, dx, dE) |

and

wanr (1), a) = /

T

- X (%) a (x, &, Eh—l) wy, (¢, dx, d§) . (74)

Clearly,

<wh 0).a (x, ‘ %» — (Wi () )+ (a g () a)

One readily sees that w,’kR (1) is concentrated on the region {|&;| = Rh}, whereas
wanr (1) lives in {|&,| < Rh}. The distribution w4 (¢) is intended to capture the
fraction of the “energy” of e"(z4-Y) ug that stays at a distance of order i to AL,
while w,’k r () captures the energy that concentrates on A™ at a slower speed.

One then defines 14,14 € (1) by taking limits (whose existence follows from
the Calderén-Vaillancourt theorem, identity (25), adapted to the present setting):

/1;90 o) (3" (t,-) ,a)dt == Rli)ngo hgl(l)l+ i @ (1) (wig (1) . a)dt,

and

/R(p ®{(fta(t,),a)dt := lim lim ; @ () (wangr (@), a)dt. (75)

R—00 p—0t+

Let us start by analyzing i, Clearly, fR @) ([LA -, a) dt only depends on ane-
One can prove, following for instance the arguments in [56], that ji* is positive
and it is supported in {E € AJ-} =~ Rg,. It can be therefore identified to a positive
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measure on 7*T? x {—1, 1} (or on Ty, x Rg, x {—1, 1}, since it has only frequencies
in A).

Using Egorov’s theorem (which is exact for —A in this case) one can prove that
fi (t,-) is invariant by the geodesic flow and that it satisfies, in addition:

0d i (tx,E,0) =0, (0§ w) e T*T* xR* x {—1,1}.

This clearly implies that i does not depend on x;.
Let us postpone our discussion on ji 4 and focus on how  (t, )] r2xg,, is related
to i and ji,. Let

w1 = /{ e ()= / i (1 dn)] o,
—1,1 R

We shall show later on that fR fia(t,-,dn) is a positive measure, so that the
preceding definition makes sense. In that case:

Bt ) mxr, = 1) + pa(t,). (76)

Note that, since 14 (¢,-) does not depend on xj, is concentrated in {§ € R,}, and
is invariant by the geodesic flow, necessarily it does not depend at all on x, by
Proposition 6.

Now it only remains to compute fi 4 (¢, ). Clearly, writting uy, (f) := e"(34-V) u,
one has:

(Wang (1) @) =(Op, (x (%) a (xl, 3 %)) un () 16n ()2,

—(Opl (x (%) a (1,0, hDs,, so) s (0 16r ()12,
+ 60

Note that

Op(lmfl) (X (%) a(x1,0,hD,,, 51))

can be viewed as a semiclassical operator in the variables (x;, &) taking values
into the space . (L? (Ty,)) of compact operators on L? (T, ). This motivates the
following definition. For K € C2° (T*T,,: £ (L* (Ty,))) denote:

(ni (1) . K) = (K (2. hDxy) un (1) 1w () 12,z ))- (77)

Above, we have made the natural identification L?(T?) =~ L* (T.,; L* (Ty,)).
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Proposition 7 Modulo a subsequence, one has the following:

tim [0t o). Ka= [ oo [ |, Ko s )
78)

for every K € C° (T*'H‘XZ; H (L2 (Txl))) and every ¢ € L' (R). Therefore, p, is a
weak-* accumulation point in the space of operator-valued distributions:

L (R 7 (T* (Ty,); £ (L (Ty))))

Moreover, for a.e. t € R, p4 (t,) is a positive L' (L2 ('I['xl))-valued measure on
T*Ty, and it is invariant by the geodesic flow ¢y|r+r,,.

In general,

/ o (1) (wang (1) a) dt = / 0 () [n (1) Kog)di + 6 () (79)
R R

where
K.r (§2) = OP(lxl’El) (X (%) a(x1,0,&, 51)) ;

note that when a (x, £) does not depend on 7 this is merely:

Kur (62) = a (x1.0.6) 1 (‘; ) |

Identity (79) shows in particular that:

/ 0 (1) fin (1) .a) di = / o () Tr / Ka (B2) pa (¢, da, dEs)
R R T*

T,

where

K. (&) := Op™" (a (01,0, 6, &),

and, fora € .7 /11 not depending on 7,

/ 0 (1) (pa (1) a) di = / o () Tr / Mo (62) s (1, s, dEs) di
R R Ty, X (Rg, \{0})
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Finally, using the Radon-Nikodym theorem for operator-valued measures, as
described for instance in the Appendix of [56], and the fact that sz ua (t,dx,-)
does not depend on ¢, we obtain:

/T P (todvn. £2) = pa (1 ED An (E2).

X

for some positive measure A 4 on {E € AJ-} >~ R¢, and some A 4-integrable family

p(t.6) € £ (L* (Ty)).
Let us now deduce the propagation law for p4 (¢, &). Start with:

L 1) Ku)

dt
1 (c1.61) &1
=i( 2A + V,Op; 1|z )a (x1,0,hDy,, 1) | | un (8) |un () 12(12).-
Clearly,
1 (x1.£1) &
|:—§A, op! 1.61 (X (E) a(x1,0,hD,,, 51)):|
_ _132 ’Op(xlfl) x é a(xy,0,hD,,, &)
77X 1 R 2
1.,
= | 5%, Kar (hDy) |
Therefore,

d 1
w7 (ni (1) . Kur) = i<n,¢ OF [—Eaﬁl +V, KQ,RD,

Taking limits and using the fact p4 (¢, -) is invariant by the geodesic flow, we can
average V:

d

r / Ko (62) pa (1. dvs. dE2)
dt Jr,,x(Re, \(0})

1 -

= iTr/ [——8)2{1 +(V),.K, (52)} Pa (t,dxs,d&) ,
T x (R, \(0}) L 2

where

(V) (1) = % /T V (11, x0) dxa

which allows us to conclude.
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For an arbitrary A € %} one has to perform a change of coordinates to reduce to
problem to the one studied above. In higher dimensions or when o ({§ = 0}) # 0
one has to iterate the two-microlocal scheme in a recursive manner. Additional work
is also required to lower the regularity requirements of the potential, see [9].

5.4 Other Results in Other Geometries

Let us briefly comment on recent developments on the subject. The results in [9]
can be used to obtain sharp decay rates for the damped wave equation on T2, see
[5].

Moreover, the results of [9] have been extended in [1] to encompass semiclassical
completely integrable systems of the form:

ihdu (t,x) —H (hDy) u (t,x) —h>V (x, D) u (t,x) = 0, (t,x) e Rx T,  (80)

at different time scales under convexity assumptions on H (£), that turn to be
necessary. Let us simply mention that the scale 7, = h™! is critical for this
type of problem in the following sense. If 7, < h~! then .# (t) contains all
orbit measures associated to the classical flow. If 7, ~ A~! one can show that
A (t) € C(R;L'(T?)) and it is possible to prove a microlocal propagation law,
much more complicated than the one presented here, that involves superpositions of
Schrodinger propagators of the form e (PHEDD=(V)4®) Finally, if 7, > h~! and
under certain separation assumptlons on the spectrum of H (hD,) (that are satisfied,
for instance, when H (§) = |§| and V = 0) it is proved that M (1) = Conv .Mno

The strategy of proof of Theorem 7 also adapts to boundary value problems. In
[6] analogous results are proved for the disk in R?, whose billiard flow is completely
integrable.

Let us note that in the case of negative curvature, [ 12] proves lower bounds for the
Kolmogorov-Sinai entropy of the elements M (h_l) and establishes observability
results for the corresponding Schrédinger equations under conditions much weaker
than the Geometric Control Condition.

Acknowledgements The author takes part into the visiting faculty program of ICMAT and is
partially supported by grants ERC Starting Grant 277778 and MTM2013-41780-P (MEC).

References

1. N. Anantharaman, C. Fermanian-Kammerer, F. Macia, Semiclassical completely integrable
systems: long-time dynamics and observability via two-microlocal Wigner measures. Amer.
J. Math. 137(3), 577-638 (2015)

2. S. Alinhac, P. Gérard, Pseudo-Differential Operators and the Nash-Moser Theorem. Graduate
Studies in Mathematics, vol. 82 (American Mathematical Society, Providence, RI, 2007)
[Translated from the 1991 French original by Stephen S. Wilson]



330

10.

I1.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

F. Macia

. T. Aissiou, Semiclassical limits of eigenfunctions on flat n-dimensional tori. Can. Math. Bull.
56(1), 312 (2013)

. T. Aissiou, D. Jakobson, F. Macia, Uniform estimates for the solutions of the Schrodinger
equation on the torus and regularity of semiclassical measures. Math. Res. Lett. 19(3), 589—
599 (2012)

. N. Anantharaman, M. Léautaud, Sharp polynomial decay rates for the damped wave equation
on the torus. Anal. PDE 7(1), 159-214 (2014)

. N. Anantharaman, M. Léautaud, F. Macia, Wigner measures and observability for the
Schrodinger equation on the disk. Preprint arXiv:1406.0681 (2014)

. D. Azagra, F. Macia, Concentration of symmetric eigenfunctions. Nonlinear Anal. 73(3),
683-688 (2010)

. N. Anantharaman, F. Macia, The dynamics of the Schrodinger flow from the point of view of
semiclassical measures, in Spectral Geometry, ed. by A.H. Barnett, C.S. Gordan, P.A. Perry,
A. Uribe. Proceedings of Symposium on Pure Mathematics, vol. 84 (American Mathematical
Society, Providence, RI, 2012), pp. 93-116

. N. Anantharaman, F. Macia, Semiclassical measures for the Schrodinger equation on the

torus. J. Eur. Math. Soc. (JEMS) 16(6), 1253-1288 (2014)

N. Anantharaman, S. Nonnenmacher, Half-delocalization of eigenfunctions for the Laplacian

on an Anosov manifold. Ann. Inst. Fourier (Grenoble) 57(7), 2465-2523 (2007) [Festival

Yves Colin de Verdiere]

N. Anantharaman, Entropy and the localization of eigenfunctions. Ann. Math. (2) 168(2),

435-475 (2008)

N. Anantharaman, G. Riviere, Dispersion and controllability for the Schrédinger equation on

negatively curved manifolds. Anal. PDE 5(2), 313-338 (2012)

V.I. Arnol’d, Modes and quasimodes. Funkcional. Anal. PriloZen. 6(2), 12-20 (1972)

V.I. Amol’d, Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics,

vol. 60 (Springer, New York, 1989)

V. Banica, The nonlinear Schrédinger equation on hyperbolic space. Commun. Partial Differ.

Equat. 32(10-12), 1643-1677 (2007)

V.M. Babi¢, V.S. Buldyrev, Short-Wavelength Diffraction Theory. Springer Series on Wave

Phenomena, vol. 4 (Springer, Berlin, 1991) [Asymptotic methods, Translated from the 1972

Russian original by E.F. Kuester]

J. Bourgain, N. Burq, M. Zworski, Control for Schrodinger operators on 2-tori: rough

potentials. J. Eur. Math. Soc. JEMS) 15(5), 1597-1628 (2013)

A.L. Besse, Manifolds All of Whose Geodesics Are Closed. Ergebnisse der Mathematik und

ihrer Grenzgebiete, vol. 93 (Springer, Berlin, 1978)

N. Burqg, C. Guillarmou, A. Hassell, Strichartz estimates without loss on manifolds with

hyperbolic trapped geodesics. Geom. Funct. Anal. 20(3), 627-656 (2010)

D. Bambusi, S. Graffi, T. Paul, Long time semiclassical approximation of quantum flows: a

proof of the Ehrenfest time. Asymptot. Anal. 21(2), 149-160 (1999)

N. Burg, P. Gérard, N. Tzvetkov, An instability property of the nonlinear Schrodinger equation

on S¢. Math. Res. Lett. 9(2-3), 323-335 (2002)

N. Burg, P. Gérard, N. Tzvetkov, Strichartz inequalities and the nonlinear Schrédinger

equation on compact manifolds. Am. J. Math. 126(3), 569-605 (2004)

N. Burq, P. Gérard, N. Tzvetkov, Bilinear eigenfunction estimates and the nonlinear

Schrodinger equation on surfaces. Invent. Math. 159(1), 187-223 (2005)

N. Burq, P. Gérard, N. Tzvetkov, Multilinear eigenfunction estimates and global existence for

the three dimensional nonlinear Schrédinger equations. Ann. Sci. Ecole Norm. Sup. (4) 38(2),

255-301 (2005)

J.-M. Bony, N. Lerner, Quantification asymptotique et microlocalisations d’ordre supérieur I.

Ann. Sci. Ecole Norm. Sup. (4) 22(3), 377433 (1989)

J. Bourgain, E. Lindenstrauss, Entropy of quantum limits. Commun. Math. Phys. 233(1),

153-171 (2003)



High-Frequency Dynamics of Schrodinger Flows 331

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

J.-M. Bony, Second microlocalization and propagation of singularities for semilinear hyper-
bolic equations, in Hyperbolic Equations and Related Topics (Katata/Kyoto, 1984), ed. by S.
Mizohata (Academic, Boston, 1986), pp. 11-49

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applica-
tions to nonlinear evolution equations, I. Schrodinger equations. Geom. Funct. Anal. 3(2),
107-156 (1993)

J. Bourgain, Analysis results and problems related to lattice points on surfaces, in Harmonic
Analysis and Nonlinear Differential Equations (Riverside, CA, 1995), ed. by V.L. Shapiro,
M.L. Lapidus, L.H. Harper, A.J. Rumbos. Contemporary Mathematics, vol. 208 (American
Mathematical Society, Providence, 1997), pp. 85-109

J. Bourgain, Global Solutions of Nonlinear Schrédinger Equations. American Mathematical
Society Colloquium Publications, vol. 46 (American Mathematical Society, Providence,
1999)

J. Bourgain, On Strichartz’s inequalities and the nonlinear Schrodinger equation on irrational
tori, in Mathematical Aspects of Nonlinear Dispersive Equations, ed. by J. Bourgain, C.E.
Kenig, S. Klainerman. Annals of Mathematics Studies, vol. 163 (Princeton University Press,
Princeton, 2007), pp. 1-20

J.-M. Bouclet, Strichartz estimates on asymptotically hyperbolic manifolds. Anal. PDE 4(1),
1-84 (2011)

J.-M. Bouclet, Semi-classical functional calculus on manifolds with ends and weighted Lp
estimates. Ann. Inst. Fourier (Grenoble) 61(3), 1181-1223 (2011)

A. Bouzouina, D. Robert, Uniform semiclassical estimates for the propagation of quantum
observables. Duke Math. J. 111(2), 223-252 (2002)

N. Burq, Mesures semi-classiques et mesures de défaut. Séminaire Bourbaki, vol. 1996/1997.
Astérisque (245); Exp. No. 826, 4, 167-195 (1997)

N. Burq, M. Zworski, Geometric control in the presence of a black box. J. Am. Math. Soc.
17(2), 443471 (2004) (electronic)

. N. Burq, M. Zworski, Control for Schrodinger operators on tori. Math. Res. Lett. 19(2), 309—
324 (2012)
T. Cazenave, Semilinear Schrodinger Equations. Courant Lecture Notes in Mathematics, vol.

10 (New York University Courant Institute of Mathematical Sciences, New York, 2003)

Y. Colin de Verdiere, Quasi-modes sur les variétés Riemanniennes. Invent. Math. 43(1), 15—
52 (1977)

Y. Colin de Verdiere, Sur le spectre des opérateurs elliptiques a bicaractéristiques toutes
périodiques. Comment. Math. Helv. 54(3), 508-522 (1979)

Y. Colin de Verdiére, Ergodicité et fonctions propres du laplacien. Commun. Math. Phys.
102(3), 497-502 (1985)

Y. Colin de Verdiere, B. Parisse, Equilibre instable en régime semi-classique, I. Concentration
microlocale. Commun. Partial Differ. Equat. 19(9-10), 1535-1563 (1994)

H. Christianson, Quantum monodromy and nonconcentration near a closed semi-hyperbolic
orbit. Trans. Am. Math. Soc. 363(7), 3373-3438 (2011)

M. Combescure, D. Robert, Semiclassical spreading of quantum wave packets and applica-
tions near unstable fixed points of the classical flow. Asymptot. Anal. 14(4), 377-404 (1997)
A.-P. Calderén, R. Vaillancourt, On the boundedness of pseudo-differential operators. J. Math.
Soc. Jpn. 23, 374-378 (1971)

A.-P. Calder6n, A. Zygmund, Singular integral operators and differential equations. Am. J.
Math. 79, 901-921 (1957)

S. de Bigvre, D. Robert, Semiclassical propagation on | log /| time scales. Int. Math. Res. Not.
(12), 667-696 (2003)

J.J. Duistermaat, V.W. Guillemin, The spectrum of positive elliptic operators and periodic
bicharacteristics. Invent. Math. 29(1), 39-79 (1975)

B. Dehman, P. Gérard, G. Lebeau, Stabilization and control for the nonlinear Schrodinger
equation on a compact surface. Math. Z. 254(4), 729-749 (2006)



332

50

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.
73.

F. Macia

. M. Dimassi, J. Sjostrand, Spectral Asymptotics in the Semi-classical Limit. London Mathe-
matical Society Lecture Note Series, vol. 268 (Cambridge University Press, Cambridge, 1999)
C. Fermanian-Kammerer, Mesures semi-classiques 2-microlocales. C. R. Acad. Sci. Paris Sér.
I Math. 331(7), 515-518 (2000)

C. Fermanian Kammerer, Propagation and absorption of concentration effects near shock
hypersurfaces for the heat equation. Asymptot. Anal. 24(2), 107-141 (2000)

C. Fermanian-Kammerer, P. Gérard, Mesures semi-classiques et croisement de modes. Bull.
Soc. Math. France 130(1), 123-168 (2002)

G.B. Folland, Harmonic Analysis in Phase Space. Annals of Mathematics Studies, vol. 122
(Princeton University Press, Princeton, 1989)

P. Gérard, Mesures semi-classiques et ondes de Bloch, in Séminaire sur les Equations aux
Dérivées Partielles, 1990-1991, pp. Exp. No. X VI, 19 (Ecole Polytechnique, Palaiseau, 1991)
P. Gérard, Microlocal defect measures. Commun. Partial Differ. Equat. 16(11), 1761-1794
(1991)

P. Gérard, Oscillations and concentration effects in semilinear dispersive wave equations. J.
Funct. Anal. 141(1), 60-98 (1996)

P. Gérard, Description du défaut de compacité de I’injection de Sobolev. ESAIM Control
Optim. Calc. Var. 3, 213-233 (1998) (electronic)

P. Gérard, Nonlinear Schrddinger equations in inhomogeneous media: wellposedness and
illposedness of the Cauchy problem, in International Congress of Mathematicians, vol. 111
(European Mathematical Society, Ziirich, 2006), pp. 157-182

J. Ginibre, Le probléme de Cauchy pour des EDP semi-linéaires périodiques en variables
d’espace (d’aprés Bourgain). Séminaire Bourbaki, vol. 1994/1995. Astérisque (237), Exp.
No. 796, 4, 163—187 (1996)

P. Gérard, E. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem. Duke
Math. J. 71(2), 559-607 (1993)

P. Gérard, P.A. Markowich, N.J. Mauser, F. Poupaud, Homogenization limits and Wigner
transforms. Commun. Pure Appl. Math. 50(4), 323-379 (1997)

A. Grigis, J. Sjostrand, Microlocal Analysis for Differential Operators: An Introduction.
London Mathematical Society Lecture Note Series, vol. 196 (Cambridge University Press,
Cambridge, 1994)

A. Hassell, Ergodic billiards that are not quantum unique ergodic. Ann. Math. (2) 171(1),
605-619 (2010) [With an appendix by the author and Luc Hillairet]

B. Helffer, Semi-classical Analysis for the Schrodinger Operator and Applications. Lecture
Notes in Mathematics, vol. 1336 (Springer, Berlin, 1988)

G.A. Hagedorn, A. Joye, Semiclassical dynamics with exponentially small error estimates.
Commun. Math. Phys. 207(2), 439465 (1999)

G.A. Hagedorn, A. Joye, Exponentially accurate semiclassical dynamics: propagation,
localization, Ehrenfest times, scattering, and more general states. Ann. Henri Poincaré 1(5),
837-883 (2000)

L. Hormander, Pseudo-differential operators. Commun. Pure Appl. Math. 18, 501-517 (1965)
L. Hormander, The Analysis of Linear Partial Differential Operators. Il Pseudo-Differential
Operators. Classics in Mathematics (Springer, Berlin, 2007) [Reprint of the 1994 edition]

V. Isakov, Inverse Problems for Partial Differential Equations, 2nd edn. Applied Mathemati-
cal Sciences, vol. 127 (Springer, New York, 2006)

S. Jaffard, Contrdle interne exact des vibrations d’une plaque rectangulaire. Port. Math. 47(4),
423-429 (1990)

D. Jakobson, Quantum limits on flat tori. Ann. Math. (2) 145(2), 235-266 (1997)

D. Jakobson, S. Zelditch, Classical limits of eigenfunctions for some completely integrable
systems, in Emerging Applications of Number Theory (Minneapolis, MN, 1996), ed. by D.A.
Hejhal, J. Friedman, M.C. Gutzwiller, A.M. Odlyzko. IMA Volumes in Mathematics and Its
Applications, vol. 109 (Springer, New York, 1999), pp. 329-354



High-Frequency Dynamics of Schrodinger Flows 333

74.

75.

76.

7.

78.

79.

80.

81.

82.

83

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems. Encyclo-
pedia of Mathematics and Its Applications, vol. 54 (Cambridge University Press, Cambridge,
1995) [With a supplementary chapter by Katok and Leonardo Mendoza]

J.J. Kohn, L. Nirenberg, An algebra of pseudo-differential operators. Commun. Pure Appl.
Math. 18, 269-305 (1965)

O. Lablée, Semi-classical behaviour of Schrodinger’s dynamics: revivals of wave packets on
hyperbolic trajectory. Asymptot. Anal. 71(1-2), 59-99 (2011)

V.F. Lazutkin, KAM Theory and Semiclassical Approximations to Eigenfunctions. Ergebnisse
der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)],
vol. 24 (Springer, Berlin, 1993) [With an addendum by A.L. Shnirel’man]

G. Lebeau, Controle de 1’équation de Schrodinger. J. Math. Pures Appl. (9) 71(3), 267-291
(1992)

E. Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity. Ann. Math.
(2), 163(1), 165-219 (2006)

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit
case, I. Rev. Mat. Iberoam. 1(1), 145-201 (1985)

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit
case, II. Rev. Mat. Iberoam. 1(2), 45-121 (1985)

J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems.
SIAM Rev. 30(1), 1-68 (1988)

. P-L. Lions, T. Paul, Sur les mesures de Wigner. Rev. Mat. Iberoam. 9(3), 553-618 (1993)
84.

F. Macia, Some remarks on quantum limits on Zoll manifolds. Commun. Partial Differ. Equat.
33(4-6), 1137-1146 (2008)

F. Macia, Semiclassical measures and the Schrodinger flow on Riemannian manifolds.
Nonlinearity 22(5), 1003-1020 (2009)

F. Macia, High-frequency propagation for the Schrédinger equation on the torus. J. Funct.
Anal. 258(3), 933-955 (2010)

F. Macia, The Schrodinger flow in a compact manifold: high-frequency dynamics and disper-
sion, in Modern Aspects of the Theory of Partial Differential Equations, ed. by M. Ruzhansky,
J. Wirth. Operator Theory: Advances and Applications, vol. 216 (Birkhduser/Springer, Basel,
2011), pp. 275-289

A. Martinez, An Introduction to Semiclassical and Microlocal Analysis. Universitext
(Springer, New York, 2002)

L. Miller, Propagation d’ondes semi-classiques a travers une interface et mesures 2-
microlocales. Ph.D. thesis, Ecole Polythecnique, Palaiseau, 1996

F. Macia, G. Riviére, Concentration and non-concentration for the Schrodinger evolution on
Zoll manifolds. Preprint arXiv:1505.04945 (2015)

J. Moser, E.J. Zehnder, Notes on Dynamical Systems. Courant Lecture Notes in Mathematics,
vol. 12 (New York University Courant Institute of Mathematical Sciences, New York, 2005)

F. Nier, A semi-classical picture of quantum scattering. Ann. Sci. Ecole Norm. Sup. (4) 29(2),
149-183 (1996)

N. Nadirashvili, J. Toth, D. Jakobson, Geometric properties of eigenfunctions. Russ. Math.
Surv. 56(6), 1085-1105 (2001)

T. Paul, Semiclassical approximation and noncommutative geometry. Preprint (2011), http://
www.math.polytechnique.fr/~paul/

J.V. Ralston. On the construction of quasimodes associated with stable periodic orbits.
Commun. Math. Phys. 51(3), 219-242 (1976)

J.V. Ralston, Approximate eigenfunctions of the Laplacian. J. Differ. Geom. 12(1), 87-100
1977)

G. Riviere, Entropy of semiclassical measures in dimension 2. Duke. Math. J. 155(2), 271-
335 (2010)

D. Robert, Autour de I’Approximation Semi-classique. Progress in Mathematics, vol. 68
(Birkhéuser, Boston, 1987)


http://www.math.polytechnique.fr/~paul/
http://www.math.polytechnique.fr/~paul/

334

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

F. Macia

J. Rauch, M. Reed, Two examples illustrating the differences between classical and quantum
mechanics. Commun. Math. Phys. 29, 105-111 (1973)

M. Reed, B. Simon, Methods of Modern Mathematical Physics, 1I. Fourier Analysis, Self-
adjointness (Academic [Harcourt Brace Jovanovich Publishers], New York, 1975)

M. Reed, B. Simon, Methods of Modern Mathematical Physics, 1. Functional Analysis, 2nd
edn. (Academic [Harcourt Brace Jovanovich Publishers], New York, 1980)

Z. Rudnick, P. Sarnak. The behaviour of eigenstates of arithmetic hyperbolic manifolds.
Commun. Math. Phys. 161(1), 195-213 (1994)

J. Rauch, M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded
domains. Indiana Univ. Math. J. 24, 79-86 (1974)

P. Sarnak, Arithmetic quantum chaos, in The Schur Lectures (1992) (Tel Aviv). Israel
Mathematical Conference Proceedings, vol. 8 (Bar-Ilan University, Ramat Gan, 1995), pp.
183-236

M. Shubin, Classical and quantum completeness for the Schrodinger operators on non-
compact manifolds, in Geometric Aspects of Partial Differential Equations (Roskilde, 1998),
ed. by B. Booss-Bavnbek, K. Wojciechowski. Contemporary Mathematics, vol. 242 (Ameri-
can Mathematical Society, Providence, 1999), pp. 257-269

A.L Snirel’man, Ergodic properties of eigenfunctions. Uspehi Mat. Nauk 29(6(180)), 181—
182 (1974)

E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory
Integrals. Princeton Mathematical Series, vol. 43. (Princeton University Press, Princeton,
1993) [With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III]
T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis. CBMS Regional
Conference Series in Mathematics, vol. 106 (Published for the Conference Board of the
Mathematical Sciences, Washington, DC, 2006)

L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and
concentration effects in partial differential equations. Proc. R. Soc. Edinb. Sect. A 115(3—
4), 193-230 (1990)

M.E. Taylor, Pseudodifferential Operators. Princeton Mathematical Series, vol. 34 (Princeton
University Press, Princeton, 1981)

J.A. Toth, Eigenfunction localization in the quantized rigid body. J. Differ. Geom. 43(4), 844—
858 (1996)

J.A. Toth, On the quantum expected values of integrable metric forms. J. Differ. Geom. 52(2),
327-374 (1999)

J.A. Toth, On the small-scale mass concentration of modes. Commun. Math. Phys. 206(2),
409-428 (1999)

F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators. Pseudodiffer-
ential Operators. The University Series in Mathematics, vol. 1 (Plenum Press, New York,
1980)

A. Uribe, S. Zelditch, Spectral statistics on Zoll surfaces. Commun. Math. Phys. 154(2), 313—
346 (1993)

J.M. Van Vleck, The correspondence principle in the statistical interpretation of quantum
mechanics. Proc. Natl. Acad. Sci. USA 14(2), 178-188 (1928)

A. Weinstein, Asymptotics of eigenvalue clusters for the Laplacian plus a potential. Duke
Math. J. 44(4), 883-892 (1977)

H. Weyl, The Theory of Groups and Quantum Mechanics (Methuen, London, 1931)
[Reprinted by Dover, New York, 1950]

E.P. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749—
759 (1932)

S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke
Math. J. 55(4), 919-941 (1987)

S. Zelditch, Maximally degenerate Laplacians. Ann. Inst. Fourier (Grenoble) 46(2), 547-587
(1996)

S. Zelditch, Fine structure of Zoll spectra. J. Funct. Anal. 143(2), 415-460 (1997)



High-Frequency Dynamics of Schrodinger Flows 335

123. S. Zelditch, Local and global analysis of eigenfunctions on Riemannian manifolds, in
Handbook of Geometric Analysis, No. 1, ed. by L. Ji, P. Li, R. Schoen, L. Simon. Advanced
Lectures in Mathematics (ALM), vol. 7 (International Press, Somerville, 2008), pp. 545-658

124. M. Zworski, Semiclassical Analysis. Graduate Studies in Mathematics, vol. 138 (American
Mathematical Society, Providence, 2012)

125. A. Zygmund, On Fourier coefficients and transforms of functions of two variables. Stud.
Math. 50, 189-201 (1974)



Index

Adjoint action, 255

Adjoint representation. See Adjoint action
Alternating Direction Implicit, 111, 119
Anderson localization, 1, 4, 44

Ansatz, 69, 70

Aubry-Andre localization, 39

Bifurcation, 234
Bose-Einstein Condensates (BEC), 49, 57, 60,
61, 64

CFL. See Courant-Friedrichs-Lewy (CFL)
Chaos, 9, 19, 20, 23

Co-adjoint action, 256

Coherent state, 293

Conjugate normalized gradient flow, 75, 98
Constants of the motion, 154, 189
Courant-Friedrichs-Lewy (CFL), 76, 84, 117
Crank-Nicolson scheme, 84, 117

Dipolar, dipole-dipole interaction, 59, 61, 104
Disorder, 1

Dispersion relation, 107, 108

Domain, 153

Dynamical localization, 41

Dynamical system, 153

Dynamics, 55, 106

Egorov’s theorem, 301, 302, 313
Ehrenfest time, 304
Energy conservation, 56, 107, 108, 127, 130

© Springer International Publishing Switzerland 2015

Energy functional, 55, 58, 65, 67, 74, 97
Energy minimization, 74, 77, 98
Equation
Manakov, 167
nonlinear Schrédinger, 160
nonlinear wave, 168
Euler scheme, 77, 98, 116

Fast Fourier Transform (FFT), 80, 111, 115,
116

Finite difference, 78, 87

Fluctuations, 63

Fractional brownian motion (fbm), 136

Gauge transformation, 63, 107, 108
Generalized symmetry group, 171
Generator, 256
Geodesic flow, 276
completely integrable, 311,312, 317
ergodic, 311
Globally Hamiltonian action, 193, 264
GPELab, 101
Gross-Pitaevskii equation, 59, 61, 62, 64, 67,
71
Ground state, 50, 57, 67, 90

Hamiltonian, 53, 57, 61, 65, 67
Hamiltonian flow, 189, 258, 276, 280
Hamiltonian vector field, 189, 258
h-oscillation, 296

¥ -compatible derivative, 189
Hurst index, 136

C. Besse, J.-C. Garreau (eds.), Nonlinear Optical and Atomic Systems,
Lecture Notes in Mathematics 2146, DOI 10.1007/978-3-319-19015-0

337



338

Initial guess, 91, 93
Invariance group, 154
Isotropy group, 154, 256

Josephson junction, 101

Kolmogorov-Arnold-Moser (KAM) theorem,
5,45
Krylov subspace iterative solver, 96, 116

Lagrangian, 52, 61
Laplace-Beltrami operator, 275

eigenfunctions, 278, 279, 308
Level set, 251
Lie

algebra, 252

bracket, 252

group, 253

scheme, 110, 119
Localization length, 1, 5, 11, 33, 39, 46
Lyapunov function, 201

coercive, 207

Mass conservation, 54, 68, 75, 107, 108, 127,
130
Momentum map, 266
equivariant, 266
Multi-components, 64, 96, 119

Noether’s Theorem, 191, 194, 260, 265
Nonlinearity, 1, 3, 5, 8, 27, 31, 36, 44

Observability estimate, 287, 322
Orbit, 154
Orbitally stable, 174

Participation number, 5, 13, 20
Plane waves, 167

stability, 223
Poisson bracket, 191, 259, 260
Potential, 52, 63, 93
Pseudodifferential operator, 289-293

functional calculus, 292

on manifold, 292

semiclassical, 290

symbol calculus, 291

Weyl quantization rule, 290
Pseudo-spectral, 80, 87, 112, 115

Index

Quantum vortex, vortices, 50, 60, 91

Reduced dynamics, 155
Regular point, 251, 267
Regular value, 251

Relative equilibrium, 156
Relaxation scheme, 115, 121
Rotating frame, 61, 118
Rotation speed, 60, 90

Scattering length, 59, 66
Schrodinger equation, 54, 59
Schrodinger flow, 277
semiclassical, 281
Second moment, 5, 13, 15, 21, 24, 27
Selftrapping, 8,9, 26
Semiclassical measure, 295-299
time dependent, 312
transport of, 300
two-microlocal, 325
Slope condition, 238, 241, 244
Solitons, 131, 165, 249
Stabilizer. See Isotropy group
Standing waves, 165, 231
Stationary equation, 202
Stationary states, 67, 74
Stochastic, 63, 133
Strang scheme, 114
Stratonovich integral, 135
Stricharz estimate, 285
Subdiffusion, 19, 23, 36, 39
Symmetry group. See Invariance group
Symplectic Banach triple, 189
Symplectic transformation, 189, 262
Symplector, 185

Thomas-Fermi approximation, 70, 91
Time reversibility, 107, 108
Time-splitting scheme, 109

Vakhitov-Kolokolov condition. See Slope
condition

‘Wannier-Stark localization, 39
Wave-packet. See Coherent state
Weak symplector, 185

Wigner equation, 313

‘W.K.B. method, 281

Zoll manifold, 279, 286, 311, 312



@ Springer

LECTURE NOTES IN MATHEMATICS
Edited by J.-M. Morel, B. Teissier; P.K. Maini

Editorial Policy (for Multi-Author Publications: Summer Schools / Intensive Courses)

1. Lecture Notes aim to report new developments in all areas of mathematics and their applications -
quickly, informally and at a high level. Mathematical texts analysing new developments in modelling
and numerical simulation are welcome. Manuscripts should be reasonably selfcontained and rounded
off. Thus they may, and often will, present not only results of the author but also related work by other
people. They should provide sufficient motivation, examples and applications. There should also be an
introduction making the text comprehensible to a wider audience. This clearly distinguishes Lecture
Notes from journal articles or technical reports which normally are very concise. Articles intended
for a journal but too long to be accepted by most journals, usually do not have this “lecture notes”
character.

2. In general SUMMER SCHOOLS and other similar INTENSIVE COURSES are held to present
mathematical topics that are close to the frontiers of recent research to an audience at the beginning
or intermediate graduate level, who may want to continue with this area of work, for a thesis or later.
This makes demands on the didactic aspects of the presentation. Because the subjects of such schools
are advanced, there often exists no textbook, and so ideally, the publication resulting from such a
school could be a first approximation to such a textbook. Usually several authors are involved in the
writing, so it is not always simple to obtain a unified approach to the presentation.

For prospective publication in LNM, the resulting manuscript should not be just a collection of course
notes, each of which has been developed by an individual author with little or no coordination with
the others, and with little or no common concept. The subject matter should dictate the structure of
the book, and the authorship of each part or chapter should take secondary importance. Of course
the choice of authors is crucial to the quality of the material at the school and in the book, and the
intention here is not to belittle their impact, but simply to say that the book should be planned to be
written by these authors jointly, and not just assembled as a result of what these authors happen to
submit.

This represents considerable preparatory work (as it is imperative to ensure that the authors know
these criteria before they invest work on a manuscript), and also considerable editing work afterwards,
to get the book into final shape. Still it is the form that holds the most promise of a successful book
that will be used by its intended audience, rather than yet another volume of proceedings for the
library shelf.

3. Manuscripts should be submitted either online at www.editorialmanager.com/Inm/ to Springer’s

mathematics editorial, or to one of the series editors. Volume editors are expected to arrange for
the refereeing, to the usual scientific standards, of the individual contributions. If the resulting reports
can be forwarded to us (series editors or Springer) this is very helpful. If no reports are forwarded
or if other questions remain unclear in respect of homogeneity etc, the series editors may wish to
consult external referees for an overall evaluation of the volume. A final decision to publish can be
made only on the basis of the complete manuscript; however a preliminary decision can be based on
a pre-final or incomplete manuscript. The strict minimum amount of material that will be considered
should include a detailed outline describing the planned contents of each chapter.
Volume editors and authors should be aware that incomplete or insufficiently close to final
manuscripts almost always result in longer evaluation times. They should also be aware that parallel
submission of their manuscript to another publisher while under consideration for LNM will in
general lead to immediate rejection.



. Manuscripts should in general be submitted in English. Final manuscripts should contain at least 100
pages of mathematical text and should always include

— a general table of contents;

— an informative introduction, with adequate motivation and perhaps some historical remarks: it
should be accessible to a reader not intimately familiar with the topic treated;

— a global subject index: as a rule this is genuinely helpful for the reader.

Lecture Notes volumes are, as a rule, printed digitally from the authors’ files. We strongly recommend
that all contributions in a volume be written in the same LaTeX version, preferably LaTeX2e. To
ensure best results, authors are asked to use the LaTeX2e style files available from Springer’s web-
server at

ftp://ftp.springer.de/pub/tex/latex/svmonot1/ (for monographs) and
ftp://ftp.springer.de/pub/tex/latex/svmultt1/ (for summer schools/tutorials).

Additional technical instructions, if necessary, are available on request from:

Inm@springer.com.

. Careful preparation of the manuscripts will help keep production time short besides ensuring
satisfactory appearance of the finished book in print and online. After acceptance of the manuscript
authors will be asked to prepare the final LaTeX source files and also the corresponding dvi-, pdf- or
zipped ps-file. The LaTeX source files are essential for producing the full-text online version of the
book. For the existing online volumes of LNM see:
http://www.springerlink.com/openurl.asp?genre=journal&issn=0075-8434.

The actual production of a Lecture Notes volume takes approximately 12 weeks.

. Volume editors receive a total of 50 free copies of their volume to be shared with the authors, but no
royalties. They and the authors are entitled to a discount of 33.3 % on the price of Springer books
purchased for their personal use, if ordering directly from Springer.

. Commitment to publish is made by letter of intent rather than by signing a formal contract. Springer-
Verlag secures the copyright for each volume. Authors are free to reuse material contained in their
LNM volumes in later publications: a brief written (or e-mail) request for formal permission is
sufficient.

Addresses:
Professor J.-M. Morel, CMLA,
Ecole Normale Supérieure de Cachan,

61 Avenue du Président Wilson, 94235 Cachan Cedex, France

E-mail: morel @cmla.ens-cachan.fr

Professor B. Teissier, Institut Mathématique de Jussieu,
UMR 7586 du CNRS, Equipe “Géométrie et Dynamique”,
175 rue du Chevaleret,

75013 Paris, France

E-mail: teissier@math.jussieu.fr

For the “Mathematical Biosciences Subseries” of LNM:

Professor P. K. Maini, Center for Mathematical Biology,
Mathematical Institute, 24-29 St Giles,

Oxford OX1 3LP, UK

E-mail: maini @maths.ox.ac.uk

Springer, Mathematics Editorial I,
Tiergartenstr. 17,

69121 Heidelberg, Germany,
Tel.: +49 (6221) 4876-8259

Fax: +49 (6221) 4876-8259
E-mail: Inm@springer.com


ftp://ftp.springer.de/pub/tex/latex/svmonot1/
ftp://ftp.springer.de/pub/tex/latex/svmultt1/
mailto:lnm@springer.com.
http://www.springerlink.com/openurl.asp?genre=journal&issn=0075-8434.
mailto:morel@cmla.ens-cachan.fr
mailto:teissier@math.jussieu.fr
mailto:maini@maths.ox.ac.uk
mailto:lnm@springer.com

	Preface
	Acknowledgements
	Contents
	List of Contributors
	Nonlinear Lattice Waves in Random Potentials
	1 Introduction
	2 Lattice Wave Equations
	3 Anderson Localization
	4 Adding Nonlinearity
	4.1 The Secular Normal Form
	4.2 Expected Dynamical Regimes
	4.3 Beyond the Secular Normal Form
	4.4 Measuring Properties of Spreading Wave Packets

	5 Computing Spreading Wave Packets: Collecting Evidence 
	5.1 Single Site Excitations
	5.2 Single Mode Excitations
	5.3 Normal Mode Dephasing

	6 Nonlinear Diffusion
	6.1 Measuring Chaos
	6.2 Effective Noise Theory
	6.3 Generalizations

	7 Testing the Predictions
	7.1 The Crossover from Strong to Weak Chaos
	7.2 Density Profile Scaling
	7.3 Tuning the Power of Nonlinearity and the Lattice Dimension
	7.4 Heat Conductivity
	7.5 Ramping Nonlinearity

	8 Correlated Potentials
	8.1 Subdiffusive Destruction of Aubry-Andre Localization
	8.2 Subdiffusive Destruction of Wannier-Stark Localization
	8.3 Subdiffusive Destruction of Dynamical Localization

	9 Discussion
	References

	Modeling and Computation of Bose-Einstein Condensates: Stationary States, Nucleation, Dynamics, Stochasticity
	1 Modeling: Bose, Einstein, Gross, and Pitaevskii
	1.1 From the Theory to the Realization of Bose-Einstein Condensates
	1.2 Modeling Bose-Einstein Condensates
	1.2.1 From Classical to Quantum Mechanics
	1.2.2 Application to Bose-Einstein Condensates

	1.3 Enrichment of the GPE: Quantum Vorticity, Dipole-Dipole Interaction, Multi-components, Stochasticity
	1.3.1 Rotating Bose-Einstein Condensates and Quantum Vortices
	1.3.2 BECs Including Dipolar Interactions
	1.3.3 Origin of Stochastic Effects in BECs
	1.3.4 Multi-components BECs

	1.4 Stationary States
	1.4.1 Critical Points of the Energy Functional E
	1.4.2 Ansatz of the Stationary States

	1.5 The Rotating GPE with a Quadratic Potential: Dimensionless Form in 3d, 2d and 1d
	1.5.1 Dimensionless Form of the GPE
	1.5.2 Dimension Reductions


	2 Stationary States and Nucleation of Quantized Vortices
	2.1 Stationary States Formulation: Solving a Minimization Problem for the Energy Functional or a Nonlinear Eigenvalue Problem (Under Constraint)?
	2.2 Time and Space Discretizations of System (24)
	2.2.1 Semi-implicit Backward Euler Scheme in Time
	2.2.2 Spatial Discretizations
	2.2.3 Fully Discretized Semi-implicit Crank-Nicolson Scheme
	2.2.4 BESP or CNSP? That Is the Question
	2.2.5 BESP or BEFD? This Is Another Question

	2.3 Which Initial Guess for CNGF?
	2.4 Limitation of the Fixed Point Method for BESP
	2.5 Extension to Multi-components BECs
	2.5.1 CNGF for Multi-components BECs
	2.5.2 BESP for Multi-components BECs


	3 The Gross-Pitaevskii Equation Laboratory
	3.1 GPELab: A Short Presentation
	3.2 Experiment I: Stationary State of a 1d BEC with Josephson Junction 
	3.3 Experiment II: Stationary State of a Fast Rotating 2d BEC in a Strongly Confining Trap 
	3.4 Experiment III: Stationary State of a 3d Dipole-Dipole BEC 

	4 Computation of the Dynamics
	4.1 Dynamics of the GPE and Continuous/Discrete Properties
	4.2 Time-Splitting Pseudo-spectral Schemes for the Rotating GPE
	4.2.1 General Principle of Time-Splitting Techniques
	4.2.2 Lie Time-Splitting Scheme for (87)
	4.2.3 Strang Time-Splitting Scheme for (87)

	4.3 The Relaxation Scheme for the Rotating GPE
	4.4 Other Schemes: Euler, Crank-Nicolson, Leap-Frog, Rotating Frame System
	4.5 The Multi-components Case
	4.5.1 Time-Splitting Schemes for a System with Nc Components
	4.5.2 Relaxation Scheme for a System with Nc Components

	4.6 Numerical Study of the TSSP1-ADI, TSSP2-ADI and ReSP Schemes for the Dynamics of Rotating GPEs
	4.6.1 Experiment I: Dynamics of a Rotating BEC in a Harmonic Trap
	4.6.2 Experiment II: Dynamics of a BEC in Quadratic-Plus-Quartic Trap
	4.6.3 Experiment III: Dynamics of a 2d Dark Soliton


	5 Computation of the Dynamics with Stochastic Terms
	5.1 Numerical Schemes for the Stochastic GPE
	5.1.1 The Time-Splitting Schemes
	5.1.2 The Relaxation Scheme

	5.2 Numerical Examples
	5.2.1 Simulation of Fractional Brownian Motions
	5.2.2 Order in Time of the Schemes for the Stochastic GPE


	6 Conclusion
	References

	Orbital Stability: Analysis Meets Geometry
	1 Introduction
	1.1 Notions of Stability
	1.2 Symmetries and Relative Equilibria
	1.3 Examples

	2 Dynamical Systems, Symmetries and Relative Equilibria
	2.1 Dynamical Systems on Banach Spaces
	2.2 Symmetries, Reduced Dynamics and Relative Equilibria

	3 Examples
	3.1 Motion in a Spherical Potential
	3.2 The Nonlinear Schrödinger Equation
	3.3 The Manakov Equation
	3.4 The Nonlinear Wave Equation
	3.5 Generalized Symmetries

	4 Orbital Stability: A General Definition
	5 Orbital Stability in Spherical Potentials
	5.1 Fixed Points
	5.2 Circular Orbits

	6 Hamiltonian Dynamics in Infinite Dimension
	6.1 Symplectors, Symplectic Banach Triples, Symplectic Transformations, Hamiltonian Vector Fields
	6.2 Hamiltonian Flows and Constants of the Motion
	6.3 Symmetries and Noether's Theorem
	6.4 Linear Symplectic Flows
	6.5 Hamiltonian PDE's: Examples

	7 Identifying Relative Equilibria
	8 Orbital Stability: An Abstract Proof
	8.1 Introduction: Strategy
	8.2 A Simple Case
	8.3 Coercivity Implies Stability I
	8.4 Sufficient Condition for Coercivity
	8.5 Coercivity Implies Stability II

	9 Plane Wave Stability on the Torus for NLS
	9.1 Orbital Stability

	10 Orbital Stability for Inhomogeneous NLS
	10.1 Hamiltonian Setting
	10.2 Bifurcation Results
	10.3 Stability
	10.3.1 Local Stability by Bifurcation
	10.3.2 Global Continuation


	11 A Brief History of Orbital Stability
	Appendix
	Differential Geometry: The Basics
	Lie Algebras, Lie Groups and Their Actions
	Hamiltonian Dynamical System with Symmetry in Finite Dimension
	Hamiltonian Dynamical Systems
	Symmetries and Constants of the Motion


	References

	High-Frequency Dynamics for the Schrödinger Equation, with Applications to Dispersion and Observability
	1 Introduction
	1.1 The Schrödinger Equation
	1.2 Some (More or Less) Explicit Examples
	1.3 A First Approach to the Study of the Dynamics: The Correspondence Principle and the Semiclassical Regime
	1.4 Semiclassical Analysis of the Non-semiclassical Problem

	2 The Compactness Approach to the Study of the Dynamics of the Schrödinger Flow
	2.1 Description of the Problem
	2.2 Dispersive Effects
	2.3 Unique Continuation and Observability

	3 Pseudodifferential Operators and Semiclassical Measures
	3.1 Basic Notions from the Theory of Pseudodifferential Operators
	3.2 Symbolic Calculus for Semiclassical Pseudodifferential Operators
	3.3 Operators on a Manifold
	3.4 Semiclassical Measures: Motivations
	3.5 Semiclassical Measures, Definition
	3.6 Semiclassical Measures, Properties and Examples

	4 Semiclassical Measures and the Schrödinger Flow
	4.1 Semiclassical Propagation and Egorov's Theorem
	4.2 The Ehrenfest Time
	4.3 Beyond the Eherenfest Time
	4.4 Concentration of Laplacian Eigenfunctions

	5 Results in Completely Integrable Geometries
	5.1 Averaging and Zoll Manifolds
	5.2 Flat Tori
	5.3 Some Ideas from the Proof of Theorem 7
	5.4 Other Results in Other Geometries

	References

	Index

