Elementary Behavmur of

summﬁ
STRUCTURAL
MEMBERS

Deric J. Oehlers
Mark A. Bradiord



Elementary Behaviour of
Composite Steel and Concrete
Structural Members



This Page Intentionally Left Blank



Elementary Behaviour of
Composite Steel and
Concrete Structural Members

Deric J. Oehlers

Department of Civil and Environmental Engineering
The University of Adelaide, Australia

Mark A. Bradford

Professor of Civil Engineering
School of Civil and Environmental Engineering
The University of New South Wales, Australia

UTTERWORTH

EINEMANN
OXFORD AMSTERDAM BOSTON LONDON NEW YORK PARIS
SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO



Butterworth-Heinemann

An imprint of Elsevier Science

Linacre House, Jordan Hill, Oxford OX2 8DP
225 Wildwood Avenue, Woburn MA 01801-2041

First published 1999
Transferred to digital printing 2002

Copyright © 1999, Mark A. Bradford and Deric J. Oehlers.
All rights reserved

The right of Mark Bradford and Deric Oehlers to be identified as
the authors of this work has been asserted in accordance with the
Copyright, Designs and Patents Act 1988

No patt of this publication may be reproduced in any material form (including
photocopying or storing in any medium by electronic means and whether

or not transiently or incidentally to some other use of this publication) without

the written permission of the copyright holder except in accordance with the
provisions of the Copyright, Designs and Patents Act 1988 or under the terms of

a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road,
London, England WI1T 4LP. Applications for the copyright holder’s written
permission to reproduce any part of this publication should be addressed

to the publisher

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 0 7506 3269 0

For information on all Butterworth-Heinemann publications
visit our website at www.bh.com




Contents

Preface
Notation

1 Introduction
1.1 Composite structures
1.2 Design criteria
1.2.1 General
1.2.2 Characteristic values
1.2.3 Limit states design
1.3 Material properties
1.3.1 General
1.3.2 Structural steel
1.3.3 Profiled steel
1.3.4 Reinforcing steel
1.3.5 Concrete
1.3.6 Rigid plastic properties
1.4 Partial shear connection
1.4.1 General
1.4.2 Equilibrium of forces
1.8 Partial interaction
1.5.1 Slip and slip strain
1.5.2 Degree of interaction
1.6 Buckling
1.6.1 General
1.6.2 Lateral-distortional buckling
1.6.3 Local buckling
1.7 References

2 Sizing of members
2.1 Introduction
2.2 Shear lag
2.2.1 General
2.2.2 Sizing for effective width
2.2.3 Effective section of a composite member
2.3 Local buckling
2.3.1 General
2.3.2 Initial local buckling
2.3.4 Beams in positive bending
2.3.5 Local buckling in shear
2.3.6 Concrete-filled steel tubes
2.4 References

3 Elastic analysis of composite beams
3.1 Introduction
3.2 Linear material properties
3.3 Full interaction analysis
3.3.1 Elastic transformed cross-sections
3.3.2 Continuous composite beams
3.3.3 Deflections due to creep
3.3.4 Deflections due to shrinkage
3.4 Partial shear connection
3.4.1 Simplified model
3.5 Method of construction
3.5.1 General
3.5.2 Fiexural stresses
3.6 Shear flow on connectors
3.6.1 General
3.7 References

OO0 00 ~J ~3~3 A Unn S ot



vi Contents

4 Rigid plastic analysis of simply supported beams
4.1 Introduction
4.2 Rigid plastic flexural capacity of standard composite beams
4.2.1 Equilibrium of forces at a design section
4.2.2 Steel component weakest
4.2.3 Concrete component weakest
4.2.4 Shear component weakest
4.2.5 Effect of vertical shear on the flexural capacity
4.3 Rigid plastic flexural capacity of encased composite beams
4.3.1 General
4.4 Variation of flexural capacity along the length of the beam
4.4.1 General
4.4.2 Uniformly distributed shear connection
4.5 References

5 Mechanical shear connectors
5.1 Introduction
5.2 Local detailing rules
5.2.1 General
5.2.2 Shape of stud shear connections
5.2.3 Spacing of stud shear connectors
5.3 Dowel resistance to the shear flow forces
5.3.1 General
5.3.2 Mean strength in push-tests approach
5.3.3 Characteristic strength in composite beams approach
5.3.4 Composite beams with non-uniform loads
5.3.5 Composite beams designed using linear-elastic theory
5.4 Fracture of shear connectors due to excessive slip in simply supported beams
5.4.1 General
5.4.2 Stip capacities of stud shear connectors S,
5.4.3 Parametric study approach
5.4.4 Mixed analysis approach
5.5 References

6 Transfer of longitudinal shear forces

6.1 Introduction

6.2 Shear flow planes

6.3 Shear flow forces

6.4 Generic shear flow strengths

6.5 Resistance of shear plane traversing depth of slab
6.5.1 Shear flow strength of full depth plane

6.6 Resistance of shear planes that encompass connectors
6.6.1 Strength of planes encompassing connectors

6.7 References

7 Stocky columns
7.1 Introduction
7.2 Plastic centroid and concentrically loaded column
7.3 General methods of analysis
7.3.1 Elastic-plastic technique
7.3.2 Rational non-linear analysis
7.4 Rigid plastic analysis
7.4.1 General
7.4.2 Point ‘B’
7.4.3 Point ‘'C’
7.4.4 Point ‘D’
7.4.5 Allowance for shear
7.5 References

8 Slender columns
8.1 Introduction
8.2 Elastic columns
8.2.1 Concentric loading
8.3 End moments

110
110
114
118
115
116
118
119
120
120

121
121
121
121
127



Contents

8.3.1 Secondary effects
8.3.2 Graphical interpretation
8.4 Moment capacity of slender composite columns
8.4.1 Concentrically loaded columns
8.4.2 Second order effects
8.4.3 Moment capacity for a given column
8.5 References

9 Composite beams with service ducts
9.1 Introduction
9.2 Outline of general analysis procedure
9.3 Maximum flexural capacity of ducted beam
9.4 Pure flexural capacity of ducted reglon
9.4.1 Flexural behaviour
9.5 Pure shear capacity of ducted region
9.5.1 Mechanism of shear transfer
9.5.2 Pure shear capacity of steel T-section
9.5.3 Pure shear capacity of composite T-section
9.6 Interaction hetween shear and flexure
9.6.1 Failure envelope
9.7 Enhanced shear strength due to the shear resistance of the slab
9.7.1 Contribution of slab
9.8 Strengthening ducted regions by plating
9.8.1 Plating
9.9 Service duct near supports
9.9.1 General
9.10 Embedment failure
9.10.1 General
9.11 Reference

10 Local splitting
10.1 Introduction
10.2 Mechanisms of splitting
10.3 Splitting resistances of slabs with rectangular cross-sections
10.3.1 Splitting resistance to individual connectors
10.3.2 Effective widths of prisms
10.4 Effective dimensions for groups of connectors
10.5 Pairs of connectors
10.5.1 Splitting resistance to pairs of connectors
10.6 Groups of connectors
10.6.1 Splitting resistance to groups of connectors
10.7 Blocks of connectors
10.7.1 Blocks of stud shear connectors
10.8 Prisms with non-rectangular cross-sections
10.8.1 Upper and lower bound solutions
10.8.2 Equivalent prism concept
10.9 References

11 Post cracking dowel strength
11.1 Introduction
11.2 Hooped reinforcing bars
11.2.1 Dowel strength of studs with hooped reinforcement
11.3 Post-cracking confinement of concrete
11.3.1 Dowel strength with straight transverse bars
11.4 Post-splitting transverse forces
11.4.1 Transverse splitting forces
11.5 References

12 Rigid plastic analysis of continuous composite beams

12.1 Introduction

12.2 Continuous stee! beams
12.2.1 The plastic hinge
12.2.2 Requirements for plastic analysis of steel beams
12.2.3 Plastic analysis of continuous steel beams

vil

127
129
130
130
132
132
134

138
13§
135
137
139
139
141
141
143
145
150
150
151
15t
154
154
156
156
159
159
161

162
162
162

164
165
168
168
168
170
170
171
17
172
172
173
176

177
177
1m
178
180
180
182
183
184

185
18§

186
188
190



. Contents

viii
12.3 Continuous composite beams 193
12.3.1 General 193
12.3.2 Composite plastic hinges 194
12.3.3 Plastic analysis of continuous composite beams 196
12.4 References 198
13 Lateral-distortional buckling 199
13.1 Introduction 199
13.2 Steel componentbehaviour 200
13.2.1 General 200
13.2.2 Design by buckling analysis 200
13.3 Design models 203
13.3.1 General 203
13.3.2 Inverted U-frame approach 203
13.3.3 Empirical approach 207
13.4 Recommendations 208
13.5 References 208
14 General fatigue analysis procedures 209
14.1 Introduction 209
14.2 General fatigue properties 209
14.2.1 General 209
14.2.2 Fatigue endurances 209
14.2.3 Residual strength 211
14.3 Applied loads on bridges 214
14.3.1 General 214
14.3.2 Frequency of fatigue vehicles 215
14.3.3 Standard fatigue vehicles 215
14.3.4 Load spectrum 216
14.4 Cyclic stress resuitants 218
14.4.1 General 218
14.4.2 Influence line diagrams 218
14.4.3 Equivalent range of cyclic forces 222
14.4.4 Force spectrum 225
14.5 Frictional shear flow resistance 226
14.5.1 General 226
14.5.2 Frictional resistance 227
14.5.3 Frictional resistance influence line diagrams 228
14.6 Generic fatigue equation 23
14.6.1 General 231
14.6.2 Generic fatigue material properties 231
14.6.3 Fatigue damage analysis 232
14.6.4 Generic fatigue equation 233
14.7 References 234
15 Fatigue analysis of stud shear connections 235
15.1 Introduction 235
15.2 Stud shear connector fatigue material properties 238
15.2.1 Crack initiation properties 235
15.2.2 Crack propagation properties 237
15.3 Details of composite beam 237
15.4 Crack initiation approach 239
15.4.1 Design mode 239
15.4.2 Assessment mode 243
15.5 Crack propagation approach 245
15.5.1 Design mode 245
15.5.2 Assessment mode 248
15.6 Composite building beam 252
15.6.1 General 252
15.7 References 255

Index 256



Preface

In a companion book entitled ‘Composite Steel and Concrete Structural Members:
Fundamental Behaviour'’, the authors have described the fundamental behaviour of
composite members in order to give the engineer a feel for the behaviour that is
often missing when design is based solely on using codes of practice or by the direct
application of prescribed equations. This was achieved by first describing both the
basic material responses and the basic structural mechanisms, which were then used
to develop the fundamental equations or fundamental analysis procedures that
simulated mathematically the structural responses, and which was then consolidated
with a few carefully chosen worked examples.

The aim of this book on elementary behaviour is to supplement the book on
Sfundamental behaviour'in order to develop analysis skills, familiarity and an intuitive
Jeel for composite construction that is required by students and practising engineers.
A topic is first described very briefly and not comprehensively. Numerous examples
are then worked and used to give an in-depth illustration of a technique, point or
concept. The worked examples are therefore part of the main text, and it is necessary
for the reader to work through all of them to gain a full understanding. In contrast,
an engineer can obtain an in depth knowledge of the development of the techniques
from the companion book on fundamental behaviour', which also contains more
advanced analysis techniques. Both books are self-contained.

This book on elementary behaviour describes the analysis techniques required
for standard forms of composite steel and concrete structures, and in particular the
analysis techniques required for non-standard forms of construction that are not or
rarely covered in national standards. In fact, most of the analysis techniques described
in this book are not covered by national standards. The analysis procedure is described
firstly in general terms, this is then followed by detailed worked examples in which
the technique is applied in the assessing and upgrading of existing structures or in
the designing of new structures. The subject may therefore be of interest to practising
engineers, particularly if they are involved in the design or assessment of non-standard
or unusual composite structures for buildings and bridges, or are involved in the
upgrading or strengthening of existing composite structures. However, this book
has been written specifically for teaching elementary analysis skills to undergraduate
students. Factors of safety or resistance factors are not included in the analysis
procedures, and it will be left to the designer to include his or her own national
values. However, mean and characteristics strengths are included as these are basic
properties. It is only necessary for the student before using this book to have grasped
fundamental concepts of mechanics such as equilibrium, compatibility, Young's
modulus and second moment of area.

It is not the object of this book to provide quick design procedures for composite
members, as these are more than adequately covered by recourse to such aids as safe
load tables. The emphasis in writing this book is to develop both elementary analysis
skills and a feel for composite construction through the direct design and assessment
of composite structural members, and in a manner that ensures that the student or
engineer understands the fundamental principles and assumptions on which the
analysis procedure is based. The contents have been divided into fifteen very short
self-contained chapters, many of which can be taught in single one hour lectures. By
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using this format, the instructor can choose chapters according to his or her interest
and the length of the course.

Chapter 1 introduces in general qualitative terms different forms of composite
construction, their behaviour and the terminology peculiar to this form of construction.
Chapter 2 idealises the shape and size of the component by defining effective sizes
that allow for shear lag, voids and local buckling. The composite structure is now
ready for analysis. Standard forms of simply supported composite beams are then
analysed elastically in Chapter 3, their flexural capacity is determined in Chapter 4
using rigid plastic analyses, the strength and ductility of their mechanical shear
connectors is treated in Chapter 5 and the resistance of the slab of the composite
beam to the mechanical shear connectors is determined in Chapter 6. Standard forms
of stocky composite columns are analysed in Chapter 7 and slender composite
columns in Chapter 8.

At this stage, the standard forms of analysis have now been described and applied
to standard forms of composite construction. Composite beams with service ducts
in the webs of the steel component, which is a common form of construction, are
dealt with in Chapter 9. Longitudinal splitting of the slabs of composite beams,
which is the commonest form of shear failure of the slab and which is rarely if ever
dealt with in standards, is covered in Chapters 10 and 11. Chapter 12 deals with the
elastic and plastic analysis of continuous composite beams as well as moment
redistribution, and Chapter 13 with lateral-distortional buckling of these beams. Chapter
14 applies analysis techniques for the fatigue design of stud shear connectors for new
composite bridge beams, and methods for assessing the remaining strength and
endurance of stud shear connectors in existing bridge beams is covered in Chapter 15.

It is suggested that a composite course should at least include Chapters 1 to 6, as
this covers the basic analysis techniques required for standard forms of composite
beams. This could be followed by Chapters 7 and 8 that cover composite columns.
Furthermore and if there is time, Chapter 9 on composite beams with service ducts
could be included, as the analysis of this form of construction requires a thorough
understanding of the first six chapters and helps to consolidate the understanding of
this theory, as well as to provide an interesting practical problem as a design project.

An enormous amount of personal time has been dedicated to preparing this book
at the expense of our families. The authors would like to thank their wives Suzanne
and Bernie and children Robert, Allan, Nigel, Amy and Adam for their good-
humoured tolerance.

Reference

Oehlers, D. J. and Bradford, M. A. (1995). Composite Steel and Concrete Structural
Members: Fundamental Behaviour. Pergamon Press, Oxford.



Notation

The following notation is used in this book. Generally, only one meaning is assigned to each symbol, but
in cases where more than one meaning is possible, then the correct one will be evident from the context

in which it is used.
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cross-sectional area; area of the free body; generic form of the fatigue damage
parameter;
area of bottom transverse reinforcement per unit length of shear plane;
cross-sectional area of the concrete component;
cross-sectional area of column;
cross-sectional area of flange;
area of one arm of hooped reinforcement;
area of applied moment diagram in a shear span; applied moment parameter;
cross-sectional area of profiled sheeting per unit length;
area of individual rib of composite profiled slab;
area of reinforcing bars;
cross-sectional area of the steel component;
cross-sectional area of steel component in ducted region;
cross-sectional area of the shank of a stud connector;
cross-sectional area of slab;
area of longitudinal shear force diagram or longitudinal thrust in a shear span;
longitudinal thrust parameter;
area of top transverse reinforcement per unit length of shear plane;
total area of transverse reinforcement per unit length; A+AL
area of an individual void between the ribs in a profiled slab;
cross-sectional area of steel web;
constant of integration;
length of duct;
probability of occurrence of each weight of vehicle in a load spectrum;
breadth of plate element; width of column; width of concrete component;
plate slenderness;
effective width of patch;
effective patch width of a group of n connectors;
effective patch width of a pair of connectors;
effective patch width of an individual connector;
width of prism; effective width of prism;
effective width required to achieve triaxial restraint for dowel action;
width of haunch;
minimum effective width of prism;
minimum effective width of prism for a group of stud shear connectors;
minimum effective width of prism for an individual stud shear connector;
minimum effective width of prism for a pair of stud shear connectors;
effective width of prism for a group of a connectors;
effective width of prism for a pair of connectors;
effective width of prism for an individual connector;
effective breadth of slab;
width of concrete flange outstand; breadth of steel flange;
mean width of haunch;
effective width of pseudo inner prism;
breadth of slab on left side;
effective width of pseudo outer prism;
breadth of slab on right side;
mean width of trough;
resultant force in a component; constant in the generic form of the fatigue endurance
equation; constant in endurance equation that defines the mean and characteristic
values;
strength of the weakest component in a standard composite beam;
cover;
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Notation

bottom cover to reinforcing bar

minimum cover to stud shear connector to achieve dowel strength; 2.2d_;
factor to allow for different end moments in a column;

one standard deviation; dowel strength of an individual shear connector;
total depth of composite beam; depth of column;

dowel strength of shear connector after longitudinal cracking

maximum dowel strength of an individual connector; where (D) pash is the strength
in push-tests and (D__ ), .., is the strength in composite beams; direction of dispersal
of a concentrated force; strength of shear connector prior to cyclic loading;
distance;

distance from top fibre to centroid of concrete component;

distance from top fibre to elastic centroid;

longitudinal spread of a group of connectors;

internal diameter of hoop;

outside diameter of circular steel tube;

distance from top fibre to plastic centroid;

diameter of reinforcing bar;

distance from top fibre to centroid of steel component;

slip strain;

slip strain across duct;

slip strain across steel-concrete interface;

diameter of the shank of a stud shear connector;

depth of solid portion of the slab;

depth of the web;

Young’s modulus; endurance of a structural component;

Young’s modulus for concrete; short term Young’s modulus of concrete;
characteristic endurance at two standard deviations;

effective modulus; long term modulus;

endurance of a component at range R ;

Young's modulus for steel; usually taken as 200 kN/mm?;

initial modulus of the strain hardening range;

eccentricity of load;

flexural rigidity;

flexural rigidity of composite section;

effective flexural rigidity of composite column;

flexural rigidity of composite section;

flexural rigidity of a composite beam with no interaction;

flexural rigidity of steel component;

flexural rigidity of the slab;

force;

axial force in concrete component;

compressive force;

transverse compressive force;

tensile force induced by flexure; force constant YfR™:

normal force at interface;

normal force to shear plane per unit length;

concentrated load applied as a patch;

resultant force;

axial force in steel component;

concentrated force applied by an individual shear connector;

shear force in shear span; shear force in an individual shear connector;
transverse force; transverse tensile force induced by splitting;
transverse compressive force;

transverse tensile force;

tensile force; transverse tensile force;

strength; function; frequency of cyclic stress resultant;

bond strength of profiled sheeting ribs;

compressive cylinder strength of concrete; approximately 0.85f_;
Brazilian tensile strength; 0.5V f_for normal density concrete;
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Notation xiit

flexural tensile strength; 0.6*/1‘c for normal density concrete;

direct tensile strength of the concrete; 0.4*/ft for normal density concrete;
compressive cube strength of the concrete;

compressive ‘yield strength’ of the concrete; 0.85f_ or approximately 0.72f ;
equivalent yield strength; flexural stress to cause yield in an element subjected to
shear;

maximum transverse stress

ultimate tensile strength;

yield strength of steel;

yield strength of profiled sheeting; proof stress;

yield strength of reinforcing bars; maximum stress in reinforcing bar that can be
achieved when not fully anchored;

ultimate tensile strength of the stud material;

longitudinal shear force; longitudinal compressive force; intercept of fatigue
regression line; component detail parameter;

longitudinal compressive force at low moment end of top T-section;

longitudinal compressive force at high moment end of top T-section;

vertical distance;

height of bottom steel T-section;

height of concrete component; height of slab; effective height of prism;

distance between centroid of concrete component and interface;

distance between centroid of steel component and interface;

distance between the centroid of the concrete component and the centroid of the steel
component; distance of centroid of reinforcing bar from the base of the stud;

lever arm between horizontal compressive forces;

distance of neutral axis from plastic centroid for condition of pure bending;

height of duct opening;

depth of reinforcing bars;

height of rib of composite profiled beam; height of rib of haunch;

height of steel component;

height of solid part of concrete component;

height of stud shear connector;

height of top composite T-section;

height of stud weld collar;

second moment of area; second moment of area of column about weaker principal
axis; second moment of area of steel beam;

second moment of area of concrete component;

second moment of area of the flange about an axis through the web;

second moment of area of the composite section transformed to concrete taken about
the centroid of the transformed concrete section; transformed second moment of area
about the neutral axis;

second moment of area of the composite section transformed to steel taken about
the centroid of the transformed steel section; second moment of area of ‘steel’
section in negative bending;

second moment of area of steel component;

number of weights of fatigue vehicles; number of levels in the load spectrum;
number of fatigue zones;

shear connector stiffness or modulus; constant for determining the maximum slip in
a composite beam; parameter A y /I ;

parameter defining the characteristic dowel strength; 4.7-1.2NN’;

long term value of parameter A y /1 ;

short term value of parameter A y /1 ;

local buckling coefficient;

effective length factor;

longitudinal distance; span of beam; length of column; length of shear plane; length
of portion of the shear span;

length of slab between parallel beams;

maximum distance between points of contraflexure;

longitudinal spacing of connectors;
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Notation

length of beam between supports for lateral-distortional buckling;

distance of duct from nearest support;

distance between edge of stud shear connector and edge of flange; effective length of
acolumn; L 21.3d ;

load constant YBW™;

longitudinal spacing of stud shear connectors; 0.5d <L, < 6h ;

length of shear span n;

area of shear plane per unit longitudinal length; perimeter length of shear plane;
longitudinal spacing of reinforcing bars;

longitudinal spacing of a single line of connectors; longitudinal spacing if the
connectors were placed along a single line

length of shear span; spread of reinforcing bars required to confine the concrete;
spread of shear connectors that can fail as a group;

length of shear span; length between the design section and the support in a simply
supported beam;

transverse spacing of stud shear connectors; L. 2 4d,  ;

longitudinal spacing of transverse reinforcement;

moment; moment capacity;

applied moment;

applied moment to cause first yield;

applied moment at high moment end of duct;

applied moment at low moment end of duct;

available local moment capacity;

moment in bottom steel T-section at high moment end of duct; moment capacity of
bottom steel T-section at high moment end of duct;

moment in bottom steel T-section at low moment end of duct;

moment in the concrete component;

moment capacity of composite section when governed by distortional buckling;
flexural capacity at high moment end of duct;

flexural capacity at low moment end of duct;

full-shear-connection moment capacity of a composite beam;

moment to cause fracture of the shear connection due to excessive slip;

hogging or negative moment;

moment capacity of duct subjected to vertical shear load V__;

end moments in a column;

maximum end moment in a column;

maximum moment; maximum value of the second order moment in a column; the
sum of the primary and secondary moments;

pure flexural moment capacity;

the elastic lateral-distortional buckling moment in the steel component;

rigid plastic moment for bending about the weaker axis;

rigid plastic moment capacity of steel component;

rigid plastic moment capacity of composite beam in hogging moment,

rigid plastic moment capacity of composite beam in sagging moment;
partial-shear-connection moment capacity of a composite beam;

pure flexural capacity;

pure flexural capacity at mid-span of duct;

required moment capacity to resist shear;

reserve moment capacity;

moment in steel component; cross-sectional strength of the steel component in bending;
moment capacity of a steel beam; rigid plastic moment capacity of steel component;
moment in steel component when composite section is fully plastic;

moment in steel component when composite section first yields;

sagging or positive moment;

bending strength of the steel in the absence compression;

reduced steel bending strength for the effects of axial compression;

moment in steel component of a composite beam;

moment in top composite T-section at high moment end of duct;

moment in top composite T-section at low moment end of duct;
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Notation Xv

short term moment taken about the plastic centroid;

moment taken about the top fibre;

first yield moment;

non-dimensional moment in a column Mm/Mp; slope of fatigue regression line;
exponent of fatigue equation; material component parameter;

number of connectors in part of a span; axial force; number of cycles of load;

normal tensile force induced by V ;

strength of simply supported column; strength of Euler column;

elastic buckling load of a perfect simply supported column; elastic buckling load of
the bottom flange in a composite beam;

minimum value of elastic buckling load of the bottom flange;

Euler buckling load;

number of traversals of fatigue vehicle W, ;

number of cycles of load of range R,

number of connectors that can be assumed to fail as a group; in rigid plastic analysis
Ns’ can be taken as the number of connectors in a shear span N_;

squash load;

the elastic lateral-distortional buckling load in the steel component;

normal force across interface derived from the analysis of the pure shear capacity;
cross-sectional strength of the steel component in compression;

short term axial force;

the compressive strength of the steel in the absence of bending;

squash load;

number of connectors in a shear span;

number of connectors in a trough;

the axial load at which the column first yields;

modular ratio for short term loading; distance from top compressive fibre to neutral
axis; depth of concrete in compression in a haunch; depth of element in compression;
non-dimensional axial load in a column N_ /N,.; number of connectors that can fail as a
group; number of connectors in a group;

neutral axis position below the top fibre;

neutral axis position above the bottom fibre;

non-dimensional axial load to cause failure of concentrically loaded column;
modular ratio for long term loading;

neutral axis;

component strength;

strength of concrete component; A 0.85f ; Acfc, remaining strength or residual
strength of a component after cycllc Ioadmg,

splitting resistance to a group of connectors;

minimum splitting resistance to an individual stud shear connector;

minimum splitting resistance to a pair of stud shear connectors;

minimum splitting resistance to a groupof stud shear connectors;

splitting resistance to an individual connector;

characteristic splitting resistance to an individual connector;

splitting resistance to a pair of connectors;

strength of reinforcing bars;

strength of steel component; A f static strength of a component prior to cyclic
loading;

strength of shear component in a shear span; ND; QL
strength of shear connection for full shear connectlon.
resistance to splitting;

resistance to splitting of inner prism;

resistance to splitting of outer prism;

squash load;

percentage of reinforcing bars;

yield strength of the reinforcement when fully anchored per unit area of the shear
plane; bond strength of the reinforcement when not fully anchored per unit area of
the shear plane;

shear flow strength;
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Notation

characteristic shear flow strength of a shear plane;

shear flow strength of stud shear connectors; static strength D__ per

unit length;

shear flow strength required to resist the fatigue loads in the crack initiation
approach;

mean frictional shear flow resistance;

shear flow strength required to resist the maximum overload;

shear flow strength required to resist both the maximum overload and the reduction
in strength due to fatigue damage; shear flow strength required when the structure is
first built;

residual or remaining shear flow strength after cyclic loading;

shear flow strength of the shear connection; strength of shear connection per unit
length;

shear flow strength at the start of cyclic loading; shear flow strength when first built;
shear flow; shear flow force; longitudinal force per unit length;

shear flow force resisted by the dowel action of the mechanical shear connectors;
shear flow force resisted by the dowe! action of the mechanical shear connectors in
shear span n;

shear flow force induced by maximum overload; maximum

uni-directional shear flow force that the connector has to resist;

uni-directional shear flow force;

maximum uni-directional shear flow force; maximum static shear flow force
imposed by the traversal of the standard fatigue vehicle.

total shear flow force imposed by shear connectors; total range of the shear flow
force; total range of shear flow force that causes fatigue damage;

maximum uni-directional shear flow force;

stress resultants; range of cyclic load; reaction;

transverse rib reduction factor to the dowel strength of the stud shear connector;
nominal strength of the member;

radius of gyration; JWA);

minor axis radius of gyration of the compressive flange;

maximum slip;

slip at the commencement of plasticity;

plastic section modulus; M_ = S‘fy;

slip at fracture of the shear connector;

slip; longitudinal spacing of stud shear connectors;

transverse tensile force; total number of fatigue vehicle traversals

in a design life; total number of fatigue vehicle traversals in a fatigue zone;
transverse distance to adjacent beam;

transverse distance to edge of slab;

fatigue zone; fatigue damage; TFL;

time; thickness of plate element;

flange thickness; thickness of plate to which the stud is welded; t, 20.4d,;

time at application of constant stress;

lateral spacing between connectors at the extremities of a group;

lateral spacing of a pair of connectors;

thickness of web;

longitudinal displacement of concrete component;

variation in initial imperfection in a column; additional deflection in

column due to the bending curvature;

Jongitudinal displacement of steel component;

buckling deformation;

vertical shear force; magnitude of moving point load; axle load;

applied shear force;

shear force in bottom steel T-section;

shear resisted by the concrete slab;

shear load in combination with M, ;

material shear strength of steel web;

material shear strength of steel web of bottom steel section;



Notation xvii

material shear strength of steel web of bottom steel section;

shear force in shear span n;

pure shear capacity;

pure shear capacity of ducted section;

shear force in steel component;

shear force in top composite T-section;

upper bound to pure shear capacity of top composite T-section;

deflection;

characteristic shear strength of shear plane;

deflection of composite beam with full interaction;

deflection of composite beam with no interaction;

deflection of composite beam with partial interaction;

W_./W,,,: concentrated load;

concentrated load to cause collapse of beam;

weight of fatigue vehicle;

weight of maximurm overload vehicle;

weight of standard fatigue vehicle;

width; width of slab;

uniformly distributed applied load;

effective flange width;

effective width of slab over ducted region;

width of steel flange;

short term uniformly distributed load;

long term uniformly distributed load;

parameter in the denominator of the generic form of the cyclic stress resultant;
level of load spectrum;

length of lateral tensile stress distribution;

distance from top compressive fibre; vertical distance; distance from centroid of
section to position of stress o;

distance between the centroid of the concrete component and the centroid of the
transformed composite beam

depth of plastic neutral axis from the inside of the compression flange; distance
between the centroid of the concrete component

and the centroid of the composite section transformed to a concrete section;
depth of the neutral axis below the top fibre;

structural property; elastic section modulus;

mean property;

characteristic property;

distance from end of column; number of magnitudes of the cyclic ranges; level of
force spectrum; number of levels in the force constant;

exponent for the effect of span on the maximum slip; reference to a specific shear span;
neutral axis parameter;

elastic restraint stiffness per unit length applied to flange strut;

exponent for the moment effect on the maximum slip; moment gradient in a column;
load factor; neutral axis factor;

change;

additional deflection of column;

maximum value of the initial out of straightness;

strain; strain profile;

strain in concrete;

creep strain;

instantaneous strain;

fracture strain;

strain in steel;

shrinkage strain;

final shrinkage strain;

strain in steel at start of strain hardening;

uitimate compressive strain of concrete; 0.003;

yield strain;
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xviii Notation

= degree of shear connection; strength of shear connection as a proportion of that
required for full-shear-connection; imperfection parameter;
degree of shear connection at the position of maximum applied moment;
= degree of shear connection at the transition point;
= angle of sloping side from vertical in degrees; angle in degrees between the direction
of the span of the ribs and that of the composite beam; slope;
rotation of plastic hinge in hogging region;
curvature;
curvature at first strain hardening;
curvature at first yield;
slenderness ratio; L/r;
buckling strength parameter for steel component in hogging bending;
coefficient of friction at the steel-concrete interface; = 0.7,
Poisson’s ratio for steel;
parameter to determine N ;
density in kg/m®;
stress; stress profile;
stress in bottom fibre;
stress profile in concrete component;
maximum stress to cause elastic buckling;
equivalent stress profile;
longitudinal stress;
peak stress;
stresses in the transformed concrete section, that is the composite section
transformed to concrete;
stress normal to shear plane; active normal stress across interface which is positive
when compressive;
constant stress;
real stress profile;
shear stress;
shear stress in web; mean stress in web;
shear stress to cause yield;
capacity reduction factor; creep coefficient;
final creep coefficient;
slenderness parameter; ductility parameter;
two dimensional dispersal of the concentrated force;
D = three dimensional dispersal of the concentrated force;
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1 Introduction

1.1 Composite structures

Composite steel-concrete structures are used widely in modern bridge and building
construction. A composite member is formed when a steel component, such as an I-
section beam, is attached to a concrete component, such as a floor slab or bridge
deck. In such a composite T-beam, as shown in Figure 1.1, the comparatively high
strength of the concrete in compression complements the high strength of the steel
in tension. Throughout this book, we will refer to the stecl and concrete as the
components of the member, which are further made up of elements, such as the
flanges or web of the steel I-section component, or the reinforcement in the slab.

Q® & Q & _ reinforcement

concrete slab

stud shear connector
§ steel top flange
web

stee| bottom flange

Figure 1.1 Composite T-beam

The fact that each material (steel or concrete in Figure 1.1) is used to take advantage
of its best attributes makes composite steel-concrete construction very efficient and
economical. However, the real attraction of composite construction is based on having
an efficient connection of the steel to the concrete, and it is this connection that allows
a transfer of forces and gives composite members their unique behaviour. In this book,
we will make considerable reference to the behaviour of this connection at the interface
between the steel and concrete components, and will attempt to demonstrate that the
connection between the steel and concrete characterizes the composite member.

There are a number of structural arrangements in which the steel and concrete
act in this symbiotic composite fashion. In simply supported bridge construction,
the concrete slab is subjected to compressive forces, and this slab is supported
typically by steel I-section components, as depicted in Figure 1.1. The connection
between the steel and concrete is in the form of mechanical shear connectors, which
allow the shear transfer of the forces in the concrete to the steel and vice versa, and
which also prevent vertical separation of the concrete and steel components. There
are many forms of mechanical shear connectors as shown in Figure 1.2. The most
common, however, is the stud shear connector shown in (a), which consists of a
head and a plain shank connected to the steel component by a weld collar. These
stud shear connectors are considered in Chapter 5, and in bridges particularly, their
efficiency may be reduced by fatigue loading, as discussed in Chapters 14 and 15.
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head concrete element - steel flange

shank

weld collar

reinforcing

(a) stud (b) bolt (c) channel (d) pinned

bars

(e) bar () angle (g) external bolt (h) friction grip bolt

Figure 1.2 Mechanical shear connectors

Itis worth noting that in composite T-beams the way in which the beam is constructed
affects greatly its response to load. Buildings generally have the floors supported by
closely spaced props, as shown in Figure 1.3(a), which carry all of the wet concrete
loading applied to the steel component, so that the latter component does not contain
any significant bending moments. This is called propped construction. On the other
hand, environmental constraints in the construction of bridges usually prevent props
from being used, as in (b), so that the flexural stiffness and strength of the steel component
must carry the weight of the wet concrete. This method of construction, which is also
experienced in pretensioned prestressed concrete bridge construction, is called unpropped
construction. The ramifications of propped and unpropped construction on the flexural
behaviour of beams are considered in Chapter 3.

Composite columns are also used widely in practice to resist predominantly
compressive loading, and they may take the form of an encased I-section, as shown
in Figure 1.4(a), a concrete-filled rectangular steel section, as in (b), or a concrete-
filled steel circular tube, as in (c). The use of high strength-high performance concrete

closely spaced props \ -wet concrete

ST R SRS

e w3
PR A LY Sy RIS TV e o v B

steel component

(a) propped (b) unpropped
Figure 1.3 Propped and unpropped beams
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is now finding its way into composite column construction, where concrete strengths
may be more than twice the strength of ‘normal’ concrete. Short or stocky composite
columns tend to fail by squashing, and their strength is governed by the strength of
the cross-section. Stocky columns are considered in Chapter 7. Long or slender
columns, on the other hand, tend to fail by a combination of material and geometric
nonlinearities, and their strength is governed primarily by the phenomenon of
buckling. Slender columns are considered in Chapter 8.

steel component concrete component
A \ f

/ \

b \l
\

(a) ib) (c)

Figure 1.4 Composite column sections

Most modern flooring systems in buildings use a concrete slab with a cold formed
profiled steel sheeting element about 1 mm thick as its soffit, as shown in Figure 1.5(a).
This is a special form of composite member where the steel forms permanent and
integral formwork for the concrete component, and the composite action is achieved by
embossments in the sheeting as in (b) to (d), and by some chemical bonding between
the concrete and steel sheeting. Commonly, the ribs of the profiled sheeting are
orthogonal to the centreline of the I-section component which supports it, and the stud
shear connectors are welded through the thin steel sheeting into the top flange element
of the steel component. There is thus shear connection in the longitudinal beam direction
by way of the mechanical shear connectors, as well as in the direction transverse to the
steel I-beam component by the embossments in the profiled sheeting. The resulting
behaviour of this system is thus referred to as double composite action.

Another way of forming composite beams is by filling trough girders that are
fabricated from profiled sheeting with concrete as shown in Figure 1.6. The resulting

concrete cold formed ribs

(a) composite slab e

steel decking or profiled sheet

indentations or protrusions

8)(e

(b) re-entrant (c) trapezoldal (d) L-shaped
or dove-tafled or re-entrant L

Figure 1.5 Composite profiled slabs

internal angle

rib connections
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Figure 1.6 Profiled trough girders

profiled beam bears a resemblance to the composite profiled slab in that the steel
sheeting is used as permanent formwork and acts compositely with the concrete. An
extension of this concept in flooring construction would be to produce a flooring
formwork consisting of profiled troughs and profiled sheeting, and then to pour
concrete so as to produce a fully composite profiled beam-slab system.

It is now commonplace in high-rise buildings to use a combination of these
composite forms of construction. For example, the columns may be concrete-filled
tubes or encased I-sections, and these are connected to the core of the building by
steel I-beam components. These I-beams are then made composite by laying steel
profiled sheeting onto their top flange elements, welding stud shear connectors
through the profiled sheeting into the flanges and pouring the concrete slab to form
the flooring of the building storey. The I-sections must be connected to the columns
by some form of mechanical connection, which is not to be confused with the
mechanical shear connectors considered so far. Such composite connections are
still the subject of vigorous on-going research, and are not treated in this book.

The composite members and composite forms of construction described in the
previous discussion represent only the common applications, and the use of steel
and concrete to form these types of composite member is only limited by the
imagination of the designer. For example, in retrofitting deteriorating concrete beams
or slabs to improve their performance, or to increase their resistance to earthquake
loading, steel plates may be glued or bolted to the concrete component, and these
plated members must be analysed by the theories based on composite analysis. We
shall see that although this text deals with the elementary behaviour of composite
members, there are a number of concepts peculiar to this form of construction, and
the basic principles that are established must be borne in mind if the designer is to
take advantage of composite action in his or her final design solution,

1.2 Design criteria
1.2.1 General

It is worth noting at this point that the main philosophy in modern structural design
is based on so-called Limit States Design or Load and Resistance Factor Design.
This almost universally adopted procedure was developed during the 1970’s and
early 1980’s. Although the basis and requirements of this philosophy have been
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well-developed and explained in a number of texts, it will be treated briefly in Section
1.2.3. Because of the variation of material properties, particularly those of concrete,
design is generally based on characteristic values, and these are introduced in Section
1.2.2. It must be remembered that in this book we are considering the structural
response of composite members, which can loosely be defined as their behaviour
when subjected to some form of applied loading. The methods of structural analysis,
in so far as it is used to determine the loading, will not be treated specifically. This
is particularly so as many of the members we will be dealing with are statically
determinate, so that the distribution of the applied moments and shears can be found
from statics alone. Where these internal actions need to be found by structural analysis,
and this is mainly restricted to continuous beams that are statically indeterminate,
the method of analysis will be described.

1.2.2 Characteristic values

In structural design, it is usually assumed that the frequency of the predicted properties
are of a Normal type, which is sometimes termed a Gaussian Distribution. This frequency
distribution is shown in Figure 1.7. If we let Z denote the predicted structural property,
such as its material strength or stiffness, this Normatl Distribution is characterized by (i)
the mean strength Z__ and (ii) its standard deviation D,. In order to allow for this
scatter of properties, design is often simplified by basing it on the upper or lower
characteristic strength values Z . For properties derived from static loading, the
characteristic values are defined as either the value of the property at which 5% of the
values lie below, or 5% of the values lie above. This may thus be written as

Zoh = Zypean £1.64D7 (1.1)

where 1.64 is the number of standard deviations from the mean to reach the 5
percentile value.

The conservative value of the characteristic property is used in design. For most
design procedures, such as strength and deflection calculations, this will be given
by the lower characteristic value, that is Z__~1.64D,, as shown in Figure 1.7.
Occasionally, the upper characteristic value Z____+1.64D, is used, such as in crack
width predictions. In limit states design it is common practice to insert the
characteristic material properties into the characteristic value of the prediction
equation, in order to allow for the normal scatter of both the material properties
and the prediction equation. Throughout this book, it will be made clear whether
the predictive equation is based on characteristic values or mean values.

It is worth noting that it is only by convention that the 5% characteristic value is
used in design. In fatigue design, as in Chapters 14 and 15, the characteristic property
is often defined as the value at two standard deviations from the mean, that is
Z,=%Z_, -20D, sothat2.3% of the values lie beyond this characteristic value.

1.2.3 Limit states design

We will assume implicitly in this book that design is based on limit states design
principles. The basis for this method may be found in a number of books, such as
Ref. 1 for concrete design and Ref. 2 for steel design.
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Frequency
5% 5%
1.64D, 1.64D,
(Zch) lower Zmean (Zch) upper
Property

Figure 1.7 Distribution of static properties

In limit states design, the forces acting on the structure must be found, usually
from loading codes. The methods of structural analysis are then used to convert
these loads to the internal actions acting on the structure, and these may be the
bending moments, shear forces, axial forces or even torques. These internal actions
are called the nominal actions. For limit states design they must be multiplied by
appropriate load factors . Because different types of loading (dead, live, wind
etc.) have different variabilities and chances of occurrence, the value of the load
factor for each type of loading is different. It is thus usual to multiply the appropriate
load by the appropriate load factor vy at the outset, and then perform the structural
analysis. The resulting (factored) action is referred to as the design action.

The two limit states to be considered are for strength and stiffness. For strength
design, the nominal strength of the member R ; (which may be its bending, axial or
shear strength) is determined, and extensive guidance is given for this calculation in
this book. The nominal strength is then reduced by a capacity reduction factor f to
obtain a design strength. The strength design equation may then be written as

Design action < Design strength (1.2)
or
X y x(Nominal action) < ¢R (1.3)

The load factors used in structural design vary from country to country, and it will be
left to the designer to insert his or her national value. The same can be said of the capacity
reduction factor. It is worth noting here that specifying the capacity reduction factor ¢ for
composite construction is not as straightforward as in steel or concrete design alone, as
we are using two different materials that have different properties. In this book, as
mentioned earlier, only the strength of the member R will usually be specified.

The serviceability limit state is generally governed by limiting excessive deflections
and vibrations. Generally for the serviceability limit state, the nominal loads are
used and so are not factored, although sometimes a load factor g less than unity may
be specified for long-term loads. It will be reiterated finally that this book is not a
text on limit state design of composite structures, and considers only the behaviour
or response of a composite member to loading. If the book is to be used in a design
mode, then the reader will have to convert the governing equations to his or her
national limit states format.
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1.3 Material properties
1.3.1 General

Composite members normally use structural grade steel and normal strength concrete.
However, high strength concrete may be used particularly in columns, as well as cold-
rolled profiled steel sheeting in profiled slabs and beams. Detailed information may be
obtained on the behaviour of these materials in a number of standard texts that deal
with concrete! and steel® or Ref. 3 which treat both static and fatigue behaviour.
However, a very brief description of the mechanical properties of both hot and cold-
rolled steel, reinforcing steel and normal strength concrete is given in this section
for use throughout this book. Stud shear connectors are treated in Chapter 5.

1.3.2 Structural steel
Structural steel is hot-rolled, and may be further rolled into structural shapes, most
typically I-sections, or welded from flat plate to form structural sections. A typical
stress-strain curve for mild steel is shown in Figure 1.8. The response is elastic-
plastic-strain hardening, and the most important characteristics of the steel are its
elastic modulus E_= 200 kN/mm? and its yield stress fy, typically in the range 250 N/
mm? to 400 N/mm?, Strain hardening generally takes place at a strain of 10 or 11 times
the yield strain € =f /E, and the initial modulus of the strain hardening range is often
taken as E_ = E/30. The stress-strain curve is normally the same in tension and
compression, and the Poisson’s ratio in the elastic range is v, = 0.3. In addition, the
ultimate tensile stress f_ in Figure 1.8 is usually between 400 N/mm? and 500 N/mm?.
The stress-strain curve shown in Figure 1.8 is based on uniaxial loading of a mild
steel specimen. Sometimes the steel may be loaded in a biaxial stress state with
shear stresses, and recourse is usually made to the von Mises yield criterion? to
define the interaction between these stresses at failure. When such a yield criterion
is adopted, the yield stress of mild steel in pure shear is T, = fy/\/3.

1.3.3 Profiled steel

Profiled steel sheeting used in composite profiled slabs and beams is manufactured
by cold rolling thin steel plate into an appropriate shape. The cold-rolling process
tends to increase the yield stress. The stress-strain curve is rounded in the vicinity of

\ plastic flow

elastic strain hardening
E, = 200x10* N/mm?

~— real stress-strain

o & €, Strain € &

Figure 1.8 Stress-strain curve for mild steel (not to scale)
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L )

. 0
0.2% € €

{a) profiled sheet (b) steel relnforcement

Figure 1.9 Stress-strain curves for profiled sheeting and reinforcement

the yield stress, as in Figure 1.9(a), and so a 0.2% proof stress f = 550 N/mm? is
often used. The elastic modulus is again close to E_ = 200 kN/mm?.

1.3.4 Reinforcing steel

The concrete component is almost invariably reinforced with steel in some way.
The reinforcement is usually in the form of deformed bars, or smaller diameter
rectangular mesh or fabric. Here the stress-strain curve is usually elastic-perfectly
plastic, as in Figure 1.9(b). Again, the elastic modulus E = 200 kN/mm?, while a
common value for the yield stress is fyr =400 N/mm?.

1.3.5 Concrete
1.3.5.1 Short-term properties

The property of concrete that is most quoted is its compressive strength f . Because
of the high variation of concrete strengths, it is common to specify a characteristic

strength f “as in Section 1.2.2 that is exceeded by 95% of samples tested in compression,
and so is 1.64 standard deviations below the mean strength. It will be left for the reader
of this book to insert his or her characteristic values into the design equations. The
concrete compressive strength f_used in these equations will be the cylinder strength,
as opposed to the cube strength f_ used in some countries, however, it can be assumed
that f ~0.85f_. The values of f_for normal strength concretes are in the range 20 N/
mm? to 40 N/mm?. High strength concretes are gaining popularity in column
construction, and strengths may exceed f_= 100 N/mm’.

The tensile strength of concrete is very much lower than its compressive strength.
The direct tensile strength f_ is obtained from simple pull tests and can be obtained
from the empirical equation f | f =0.4Y f_where the units are in N/mm’. Lateral tensile
stresses are encountered in beams w1th stud shear connectors, and hence we will
need to know the splitting strength . This can be obtained directly from a Brazil
strength test or approximately from f =0. 5‘/f The modulus of rupture f_ is the
flexural strength of an unreinforced concrete prism tested in flexure, and is glven by

the empirical expression f = O.6\/fc.
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The stress-strain relationship for concrete under compression is very different in
shape from that of steel, and depends greatly on the compressive strength f_and also
significantly on the rate of straining. A typical curve is given in Figure 1.10. At
stresses below 0.4f , the behaviour is close to linear elastic, with an elastic modulus

E, often quoted as
E, =0043p" .[f, (1.4)

where f_and E_are expressed in N/mm? and p is the density in kg/m’. For normal
weight concretes, p = 2400 kg/m’, and so E_= SOSOVfc.

real
o fc s
0856, e G S >
G
J—
0.4f idealised
EC
concrete
i/ 1 crushing
0 J F
A D 0002 o € =0003
<«<—>i< >
-7k, e, :

Figure 1,10 Stress-strain curve for normal strength concrete

The maximum stress f_occurs at a strain of about 0.002 after which the stress reduces.
For unrestrained concrete, it is usual to assume that the concrete fails in crushing at
a strain € = 0.003.

1.35.2 Long-term properties

Unlike steel, concrete is subjected to time-varying deformations due to creep, shrinkage
and thermal strains. At a constant temperature, the total strain at any time t may be
taken as

et) =€, (1) + e, (1) +eg4 () (1.5)

where €_is the instantaneous strain, €_ is the creep strain and €, is the shrinkage
strain. The deformations which take place under a constant stress applied at a time t
=t are shown in Figure 1.11.

The reader is referred to specialist texts* on details of the mechanisms of creep
and shrinkage. We will simply note here that creep is the deformation that occurs
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constant stress applied at time ¢t

Strain /

€ creep strain €,

.....

elastic strain €,

lshrinkage strain €y,

o Time t

Figure 1.11 Time-dependent deformations under sustained stress

under a sustained stress applied at time t . It is often convenient to express the creep
strain €_ in terms of the creep coefficient ¢ by

Ecr\l:ly
o(t,,)= “‘Z((t—)—) (1.6)

The final creep coefficient ¢*(t ) as t — oo is usually in the range 1.5 to 4.0.
Under the action of a constant stress G, the sum of the elastic and creep strains is

o /E (tt ), where E, is the effective modulus given by
EC
E. =17 P am
Shrinkage is also treated in standard texts* on time effects in concrete, and the

rate of shrinkage decreases as time increases, as shown in Figure 1.12. The final shrinkage
strain €%, as t — oo may be as high as 1000x10°. The coefficient of thermal expansion

for concrete is also of importance, and a value of 10x10%/°C is often quoted for design.

1.3.6 Rigid plastic properties
When conducting a service load analysis (to satisfy the serviceability limit state) as
is undertaken in Chapter 3, the steel and concrete components are loaded in the

£*sh ===
Shrinkage
strain (€,) £,
0 Time t

Figure 1.12  Shrinkage strains
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linear elastic range and the behaviour is governed primarily by the values of the
elastic moduli E_and E . Hence the stress-strain curves shown in Figures 1.8 to 1.10
are invoked in their elastic ranges of structural response.

Elastic or elastic-plastic analyses of composite members can be quite tedious, and
the behaviour of a composite member at ultimate may be more easily determined by
conducting a rigid plastic analysis which assumes that the composite beam is ductile.
A rigid plastic analysis allows the designer to calculate an upper bound to the ultimate
strength, and is a prerequisite for the analysis treated in detail in Chapter 4 and used in
Chapter 12. In order to conduct a rigid plastic analysis, the stress-strain relationships in
Sections 1.3.2 to 1.3.5 must be simplified. This requires the assumption to be made that
the materials are either not stressed at all, or are fully yielded with an infinite deformation
capacity at the yield stress or plastic plateau, as shown in Figure 1.13,

The rigid plastic simplification of the steel stress-strain curve is shown as the
dotted line 0-A-B in Figure 1.8. This is applicable to a composite beam whose
steel component is subjected to large curvatures, so that the strains (both tensile
and compressive) over most of the steel component exceed € . As the fracture strain
€, in Figure 1.8 can be orders of magnitude greater than the first yield strain €
owing to the ductility of the mild steel, it is very unlikely that the steel will fracture
before the concrete crushes, and so the assumption of an infinite plastic plateau as
depicted in Figure 1.13 is adequate. Although it may seem slightly unconservative
to treat the small elastically strained portions of the steel component as being fully
yielded at fy, this is compensated for by the increase in strength due to strain
hardening which is ignored in the rigid plastic assumption. Hence the rigid plastic
strength which is theoretically unattainable, as it requires an infinite curvature, can
be attained in practice due to strain hardening,

Similarly, the rigid plastic assumption for the concrete stress-strain curve is shown
as the dotted line A-B-E in Figure 1.10. Here the tensile strength of the concrete is
assumed to be zero, and all compressive concrete is fully yielded with an unlimited
plastic plateau at 0.85f , as shown in Figure 1.13. This is in contrast to the analysis of
reinforced concrete beams' that make use of a so-called neutral axis 7y factor approach
in which the concrete is not fully yielded over its entire compressive region at ultimate
as shown by the line A-D-C-E-F in Figure 1.10. It is argued in Ref. 3 that use of a y

0. 85[[\
or f, >
orD J \

Stress " plastic plateau

or Force

0 Deformation

Figure 1.13  Idealized rigid plastic material properties
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factor is not necessary in composite construction. It is worth noting that the 0.85
factor for the fully yielded strength of the concrete can be attributed to a size effect’,
and arises because a typical concrete component crushes at 0.85 times its cylinder
strength f . Although details of the material properties of stud shear connectors are
deferred until Chapter 5, in a rigid plastic analysis they too are assumed to deform
in arigid plastic manner with a yield plateau equal to their maximum dowel strength
D __ as shown in Figure 1.13.

max

1.4 Partial shear connection
1.4.1 General

Two commonly-used terms that describe composite behaviour are partial-
shear-connection and partial-interaction, and these relate to the behaviour of
the connection between the steel and concrete components. We shall see that
partial-shear-connection concerns equilibrium of the forces within a composite
member, while partial-interaction concerns compatibility of deformations at the
steel/concrete interface. Partial-shear-connection thus represents a strength criterion,
while partial interaction represents a stiffness criterion. Numerical examples that
illustrate partial-shear-connection are given in Chapter 4.

1.4.2 Equilibrium of forces

1.4.2.1 Composite beam

Consider the simply supported composite T-beam shown in Figure 1.14(a)
and (b) that is subjected to positive or sagging bending, and we will assume that the
curvature is large so that the strains are large. If we know the distribution of strains
across the section A-A distant L from the support, the stress-strain curves for the
materials could be invoked to determine the stress distribution, as shown in (d). Let us
assume that the neutral axis N-A lies in the steel component, so that the portion below
N-A in (d) in the steel is subjected to tension and that above it is subjected
to compression, and all of the concrete component is subjected to compression. If we
integrate the tensile stress distribution, then this will be equivalent to a tensile force F_,
positioned h, below the steel/concrete interface, and integrating the compressive stress
produces a compresswe force positioned h, above the interface. This is shown in Figure
1.14(e). Clearly from horizontal equ:llbrlum o = F,, = F, and from rotational
equilibrium M, =F (h + h,), where M, is the apphedp moment at section A-A.

Another way of v1suahzmg the internal stress resultants is to replace the stress
distribution acting on the concrete component by a moment M, and an axial force F,
acting at the centroid of this component, and to replace the stress distribution acting on
the steel component by a moment M, and an axial force F, acting at the centroid of the

steel component, as in Figure 1.14(f). Clearly then from force and moment equilibrium
F.=F; (1.8)
M=M+M+F (h, th

cenc cen,s )

1.9)
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Figure 1.14 Internal forces in a composite beam

where (hmc+ h_, ) is the distance between the component centroids as shown in (c). In
many ultimate strength design calculations (Chapter 4) it is assumed that the concrete is
unreinforced in the longitudinal direction so that its strength is governed by its very low

strength in tension (see Section 1.3.5). In this case it is often assumed that M_ = 0.

1.4.2.2 Concrete component

Consider the free body diagram of the concrete component loaded externally over
the span length Lsp shown in Figure 1.15. As the left hand end of the span is at a
simple support (or point of contraflexure), the total shear force on the shear connectors
F,, = F_. In addition, the couple at the right hand side formed from M_and h_F,

must be equilibrated by the couple L, F, shown. The shear connectors must therefore
be designed to resist the tensile normal force F,, while the compressive normal force

F_is resisted by the shear connectors and bearing at the interface.

1.4.2.3 Degree of shear connection
So far we have considered the actions that act on a composite cross-section, We will
now concentrate on the strengths of the components of a composite section by using
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Figure 1.15 Concrete component

the rigid plastic assumptions introduced in Section 1.3.6. Firstly, the axial strength
of the steel component of area A is definedas P, = A, f where fis the yield stress
of the steel (Section 1.3.2). The axial strength of the concrete component of area A_
is taken as P_=0.85A f , where f_is the compressive strength of the concrete (Sectxon
1.3.5). Finally, we will define the strength of the shear connection, P_, as the product
of the number N of shear connectors in the shear span as shown in Figure 1.15 and
the strength of an individual connector D_

There are three possible stress distributions that can occur for a composite beam
at its maximum strength, and these are shown in Figure 1.16 for the beam shown in
Figure 1.14 under the assumption that M_ = 0. In Case 1 in Figure 1.16, we are
assuming that P_ < P_so that the steel component is fully stressed and the concrete
component is partially stressed as shown in (b). Hence F, =F_ =P_as shown in (a),
and as we saw in Figurel.15 that F, = F , the strength of the shear connectors to
ensure that this equilibrium condition exists is P > P . This condition is referred to

as one of full-shear-connection. The moment capacity of the section is then
Mfsc = Py (1.10$)

In Case 2 of Figure 1.16, P, < P_ so that the concrete component is now fully
stressed and therefore F, = F_= P . In order for this latter condition to be realized,
some of the steel must be in tension and some in compression as shown in (e),
resulting in the couple M, shown in (d). Again, with the necessary equilibrium
condition that P, > P, we have a situation with full-shear-connection and now

Mg = Mg+ Pohy (1.11)

Note that in both Cases 1 and 2 in Figure 1.16, there is only one neutral axis.

Consider now the case where the strength of the shear connection governs, that is
P, <P and P, <P, asshownin Case 3 of Figure 1.16. For the equilibrium condition
in anure 1. 15 to ex1st then F_=P_ so that not all of the concrete in Figure 1. 16(h)
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Figure 1,16 Degree of shear connection
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is at its maximum stress and a neutral axis will lie in the concrete component.
Furthermore as F, = P in (g) then some of the steel is in tension and some in
compression as shown in (h), and another neutral axis will lie in the steel component
and a moment M, will be induced. This is referred to as partial-shear-connection
because the flexural capacity is now governed by the lack of shear connection, whereas
in the previous cases it was assumed that there was a plentiful supply of shear
connectors. The bending strength is

M poe = Mg+ Py (1.12)

It can thus be seen in Figs. 1.16(c), (f) and (i) that there is always one neutral axis
when there is full-shear-connection, and there are always two neutral axes when
there is partial-shear-connection.

In Case 1 in Figure 1.16, we required that for full shear connection (P,), =P, and
similarly in Case 2 for full shear connection that (P,), = P_. On the other hand, the
strength of the shear connection P, controlled the strength of the composite beam
for partial interaction (Case 3). In this book, we will use the degree of shear connection
1 in a shear span, defined as

= tsh
(Ba) @19

1.5 Partial interaction

1.5.1 Slip and slip strain

The behaviour of a composite beam is affected directly by the slip of the shear
connection at the steel/concrete interface. The elevation of a simply supported
composite beam is shown in Figure 1.17(a). When the composite beam is unloaded,
the sections AB in the concrete component and CD in the steel component are in line,
and positioned at some distance L from a convenient reference axis. On application
of the load F, the section deforms as shown in (b). The flexural forces in the top fibres
of the concrete component and steel component cause these fibres to contract, while
the flexural forces in the bottom fibres of the concrete and steel cause these fibres to
expand. There is thus sliding action at the interface, and the relative movement at the
interface caused by this sliding action is referred to as the slip s.

If the new position of B in the concrete component is at L + u_, as shown in Figure
1.17(b), and that of C in the steel component is at L + u,, then s = u_—u,. This slip is
resisted by the longitudinal shear forces. If we now consider the
distribution of strains in the concrete and steel components over the length L, as in

Figure 1.17(c), then

u, = Jecdx
L

and (1.14a,b)

ug = Jesdx
L
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Figure 1.17  Slip and slip strain

and substituting these values into s =u_- u_and upon differentiation,

2;=8c"€s (1.15)

The derivative of the slip ds/dx is referred to as the slip strain and as can be seen
in Figure 1.17(d) it is the step change between the strain profiles in each component.

1.5.2 Degree of interaction

A condition of no interaction is achieved when the interface is greased, but when
the steel and concrete components are in contact and so have the same curvature, as
shown in Figure 1.18(a). On the other hand, when the interface is glued theng =g
and so the slip strain ds/dx = 0 as in (b). This condition is referred to as one of full
interaction, and clearly partial interaction is the usual condition encountered between
full interaction and no interaction as shown in (c).

It should be noted that the degree of interaction is a stiffness-based property, and
is not the same as the degree of shear connection considered in Section 1.4 that is
based on strength. The degree of shear connection and degree of interaction are
directly related, however, as increasing the number of shear connectors both increases
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Figure 1.18 Degree of interaction

the shear strength at the interface P and increases the shear stiffness at the shear
connection. Note also that slip strains in beams with partial shear connection as
shown in Figure 1.16(i) tend to be significantly larger than those in beams with full
shear connection as shown in Figures 1.16(c) and (f).

1.6 Buckling
1.6.1 General

Although in a composite member the best use of the steel is made when it carries
tensile forces, there are some cases where some of the steel is subjected to
compression. For example: T-beams in negative bending (such as over an interior
support or adjacent to a column) have their bottom flange element and substantial
portions of the web element in compression; beams with full shear connection where
the strength of the concrete element P_ governs as in Case 2 in Figure 1.16; and
beams with partial shear connection have the top flange element subjected to
compressive actions as shown in Case 3 in Figure 1.16.

The disadvantage of a steel element subjected to compression is that it is prone
to buckle. The buckling of steel structures is covered in depth in standard texts?,
and essentially arises because the steel component attains a more favourable
equilibrium position when it buckles or moves out of the plane of loading. In composite
members, the two modes of buckling encountered are known as local and lateral-
distortional, and these are covered in the following sub-sections. Buckling of the
steel component usually exhausts its strength and results in catastrophic failure of a
composite member, and therefore means must be established to ensure that buckling
does not occur. Of course, buckling must not occur if a composite beam is analysed
by using rigid plastic assumptions.
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Figure 1,19 Lateral buckling

1.6.2 Lateral-distortional buckling

When a composite T-beam is subjected to negative or hogging bending, the bottom
flange element is loaded in compression, and is restrained only by the stiffness of the
steel web. In this lateral-distortional buckling mode, shown in Figure 1.19(a), the flange
element buckles sideways and twists, with the web element distorting in the plane of its
cross-section. Generally the flange element is quite stocky, so that it displaces and
twists as a rigid body during buckling, with only the web element experiencing distortion
during the buckling phenomenon. Distortion of the web element occurs necessarily
because the top of the web is attached to the concrete component by the shear connection,
and the high stiffness of the concrete component permits only very small twists during
buckling. Lateral-distortional buckling depends on the moment M, shear force V_and
axial compression F, that are present in the steel component, Its accurate prediction is
quite complex, and recourse usually has to be made to a finite element computer program
in lieu of approximate techniques.

Lateral-distortional buckling is treated in more detail in Chapter 13, where an
approximate method of prediction is introduced. If we are to take advantage of rigid
plastic design for continuous beams, as in Chapter 12, then lateral-distortional
buckling must be prevented from occurring before the ultimate load is reached.
This is usually achieved by the provision of cross-bracing, as in Figure 1.19(c). Itis
worth noting that lateral-torsional buckling can occur in positive bending prior to
the concrete setting as shown in (b).
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1.6.3 Local buckling

Local buckling occurs when the steel component forms ‘ripples’ with a short haif-
wavelength over the portion of the steel component in compression. In a composite
T-beam in hogging bending, it may occur in the flange element and compressive
portion of the web element prior to lateral-distortional buckling, as shown in Figure
1.20. Local buckling may also occur when the steel is in contact with the concrete, such
as in the flange element of a T-beam in positive bending when the flange is subjected to
compression, or in the thin profiled sheeting that is used to make a composite profiled
slab, as in Figure 1.21. Unlike lateral-distortional buckling, local buckling in some
cases does not usually cause immediate catastrophic failure, and there is often a
postbuckling reserve of strength before ultimate conditions are reached.

Generally, local buckling can be prevented by imposing geometrical constraints
on the steel component, such as limiting the width to thickness ratio of the flange
element or the depth to thickness ratio of the web element. These constraints are
used to size the member, and are discussed in the following chapter.
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2 Sizing of members

2.1 Introduction

The analysis of a composite member is often not based on the gross cross-sectional
proportions. In reinforced concrete design, it is common to consider only the effective
width of a T-beam, while in slender steel plate structures the effective width is again
commonly used. In composite construction, both steel and concrete are used, and so
effective widths are often specified for the concrete component as well as for the
steel component. The effective width treatment of the concrete component arises
primarily from the effects of shear lag, while that in the steel component arises mainly
from the effects of local buckling. Both of these phenomena are nonlinear, and
simplifications are fortunately available for transforming the nonlinearities into a
form suitable for a linear analysis. This transformation is possible by considering
the effective size of a composite member, obtained from the effective widths of the
concrete and steel components.

The methods presented in this chapter are simplifications by which the effective
size (or effective section) may be determined. Once this has been determined, the
section may be analysed by the methods presented in the remainder of this book.
Of course, the effective size is only an analytical approximation for obtaining section
properties, and it must be remembered in calculating design actions that the full
load may act over the gross section, and not just the effective section.

2.2 Shear lag
2.2.1 General

The conventional or engineering theory of bending assumes that plane sections
remain plane, which means that shearing strains are neglected. The term shear lag'
is used to describe the discrepancies between the approximate engineering theory,
and the real behaviour that results in both increases in the stresses in the concrete
component adjacent to the steel I-section component in a composite T-beam, and
to decreases in the stresses in the concrete component away from the steel.
Consider the simply supported T-beam with a central concentrated load
shown in Figure 2.1(a). The shear flow distribution in the slab is linear, and
this produces warping displacements or complementary displacements in the
longitudinal direction that are parabolic in the transverse direction. In the left
hand side of the beam, the shear is positive and the warping displacements are
as shown in (b). On the other hand, the right hand side of the beam is subjected
to negative shear, resulting in the warping displacements also shown in (b). In
order for geometric compatibility to be maintained at midspan, changes are
required in the bending stress distribution as well as in the shear stress
distribution. These changes in stress result in the shear lag effect.

21
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Figure 2.1 Incompatible warping displacement at a shear discontinuity

The approximate method of accounting for shear lag is to use an effective width
concept, whereby in theory the actual width w of the slab is replaced by a reduced
width w . given by

W nominal bending stress
—= : ; @10
w maximum bending stress

This approach simply replaces the actual bending stresses by constant stresses
that are equal to the actual maximum stress distributed over an effective flange width w .

Equation 2.1 may be restated in terms of the peak stress 6__and the longitudinal
stress o, that varies with x along the width of the concrete component. In order to
allow for a nonuniform distribution of stress due to shear lag, we assume that the
concrete component is narrower so that the rectangular stress block of area w < h,
x 6, is equal to the area under the parabolic stress block 6, over the width w. This
is equivalent to integrating the rigorously calculated longitudinal stress in the concrete
slab over the width w, and dividing by the peak value of the stress o__ .

Mathematically, this restatement of Eq. 2.1 can be written as

by
J'bg Ordx @.2)

Weﬁr =

Gmax

where the breadths b, and b, are half of the transverse spans of the slab on the left
and right of the steel component, as shown in Figure 2.2, and x is the coordinate
transverse to the centreline of the steel component.

The shear lag problem is complex, and a particular model for the effective width
may be accurate for predicting deflections yet be quite inaccurate for predicting
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flexural stresses. As with most of structural design, the effective width concept is only
justified if the design is conservative, so that the stresses and deflections derived from
linear elastic analysis using the effective width are greater than the values calculated
rigorously. Fortunately, rigid plastic analyses are not overly sensitive to etrors in the

effective width.

2.2.2 Sizing for effective width

2.2.2.1 General

There are a number of parameters that affect the effective width of the concrete component
of a composite beam, and as noted earlier an effective width model that is accurate for
deflections may not have the same accuracy for determining flexural stresses. Because of
these variations, the simplified model of the Eurocode 4% and Ansourian’s approach?® will
be treated here. The Eurocode recommendation is that w. be calculated from

ey =025L, @3

where L_is defined as the maximum distance between points of contraflexure, and
recommended values are given in Figure 2.3. Of course, the geometrical constraints

W < (T“df ) 1 : (Tadj )2 (2.4

and Wog <27, 40, (2.5)

must apply, where T, gand T, ge 1€ shown in Figure 2.2.
The recommendation of Ansourian® is slightly more complex, being based on
sophisticated numerical modelling. For a continuous beam, this proposal is

bep  _1o—1of Tadi | when Tag _ s (2.6)
Ty /2 L, L

C
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when T4 Q@7

>05

by =01L,
(4
where b and T, refer to the value at the same side of the steel component A in Figure

2.2 and where ij = (b)), + (b,),. For a simply supported steel beam, Ansourian’s
recommendation is that

beff =10— 0.6( Tadj ) when &11’_ <10 2.8)
Tadj /2 LC Lc
when Tadj 29
by =02L, >10

(s

where geometrical constraints similar to Eqs. 2.4 and 2.5 of course apply.

2.2.2.2 Example 2.1 Effective widths of slab to the Eurocode

recommendations

The composite T-beam shown in Figure 2.2 has (T, ) = (T, ) = 2000 mm and is
continuous between points of contraflexure with L= 7 m. Hence from Eq.23,w.=
0.25x7000 = 1750 mm. The effective width each side of the steel component is thus
1750/2 = 875 mm < 2000/2 = 1000 mm. The slab of the T-beam is therefore not fully
effective, and for analysis the regions 875 mm each side of the centreline should be

M :
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Figure 2.3 Eurocode 4 approach
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considered for analysis. Of course, the dead load due to the entire slab, and any live
loads over it, should be considered in determining the actual loading on the beam.

2.2.2.3 Example 2.2 Effective widths of slab to Ansourian’s

recommendations

The same cross-section analysed in Example 2.1 according to the Eurocode is now considered
using Ansourian’s recommendations. Since T aclj/Lc = 2000/7000 = 0.286 < 0.5, Eq. 2.6
applies and b /(2000/2) = 1.0 - 1.2 X (2000/7000) = 0.657 so that (b,;), = (b;), = 657
mm. This is more conservative than the value of 875 mm calculated in Example 2.1
using the Eurocode approach, but it is shown in Section 4.2.2.2 that ultimate strengths

are insensitive to this discrepancy in effective width recommendations.

2.2.3  Effective section of a composite member
The concrete component in a composite member may have a profiled soffit, so that when
the steel component acts compositely with such a concrete component, then the cross-
sectional shape of the composite slab, to be used in the analysis, depends on the relative
direction of the span of the ribs of the concrete slab to the span of the steel component.
The cross-section of a composite member in which the profile ribs span in the same
direction as the composite beam is shown Figure 2.4(a), where h_, is the height of the
solid part of the concrete component and h , is the height of the rib. Also in this figure,
A, is the area of an individual rib, A__ is the area of an individual void between the
ribs as shown, and 0 = 0° where 0 is the angle in degrees between the direction of the
span of the ribs and that of the composite beam, as shown in Figure 2.5. The cross-
section can be analysed as shown in Figure 2.4(b), where the area of the haunch is equal
to the areas of the individual ribs T A, over the effective width w_ of the section.
Therefore, the mean width of the haunch b, can be calculated as

A (2.10)
(bhaunch )9:() = ((beﬁ )g +(beﬁ )r)zm

Unless the haunch is very deep, it can be assumed to have vertical sides instead of
the sloping sides shown in Figure 2.4(b).

When 6 = 90° in Figure 2.5, the ribs are transverse to the direction of the span of the
composite beam. If we use the weakest cross-section in the analysis, this occurs at a
section through a void between the ribs as shown in Figure 2.6. Hence in this case

(bhaunch )9=90n =0 2.11H)

The profile ribs may be oblique to the span of the beam, as shown in Figure 2.5
where 0 <0 <£90°. Hence, the effective cross-sectional shape lies between that shown
in Figure 2.4(b) and Figure 2.6, and the effective width of the haunch lies between
zeroand (b, ). _ . In general, the area of the haunch has only a minor effect on the
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strength of the member. If, for example, the neutral axis under positive bending lies
in the solid portion of the slab h_, in both Figures 2.4(b) and 2.6, then the haunch is
in tension and does not contribute to the strength of the beam as the tensile strength
of the concrete is generally ignored. In addition, even if the neutral axis lies within
the haunch, the difference in the flexural strength using different values of the haunch
will only be small, since the haunch lies very close to the neutral axis of the section.
Hence any reasonable variation between the extremes of Egs. 2.10 and 2.11 may be
used. For simplicity, we will assume here that the variation is linear, that is
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6° (2.12)
(bhaunch )9 = [1 - %) (bhaunch )9:()

2.3 Local buckling
23.1 General

The second effect that determines the size of a composite member is the local buckling
response of the steel component. Local buckling occurs in thin-walled steel
sections*, and takes place when the steel section forms a more favourable or stable
equilibrium position by buckling or distorting. A typical local buckle in the negative
region of a composite beam is shown in Figure 1.20. The distortions shown in this
figure vary along the length of the member, but local buckling is characterized
by the flange-web junction remaining straight throughout the member’s length. This is
in direct contrast to lateral-distortional buckling that is treated in Chapter 13 as shown
in Figure 1.19(a). Local buckling is precipitated by compressive stresses that arise from
bending and axial compressive actions, and by shear. It is not caused by tensile stresses.

2.3.2 Initial local buckling
2.3.2.1 General

In a steel plate or a plate assembly such as an I-section component of a composite
beam, the maximum stress to cause elastic buckling ¢_ is*

n’E, 1 2.13)
12(1-v7) (b/¢)?

O =

where E, is the Young’s modulus of the steel and v_ is its Poisson’s ratio. In
Eq. 2.13, b and t are the breadth and thickness of the plate element respectively,
and K is the so-called local buckling coefficient. The local buckling coefficient
depends on a number of factors, including the arrangement of loading and the
restraint of the plate in a steel section. Values of k have been tabulated, and are

given in standard texts®,

2.3.2.2 Example 2.3 Plate slenderness limits in bending

In the web element of an I-section member that is subjected to pure bending and
which is simply supported at its connections to the flanges, the local buckling
coefficient’ k = 23.9 in Eq. 2.13 and where b = depth of the web d, and tis the plate
thickness of the web t . We will determine the plate slenderness b/t if the plate is to
yield before buckling locally, that is its yield stress f, is less than the local buckling
stress o in Eq. 2.13. If E, = 200 kN/mm? and v_ = 0.3 (see Section 1.3.2) are
substituted into Eq. 2.13, then
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o o 239x7® x200x10°
T o12x(1-03%)x@rn)?

which may be rearranged to produce (b/t) f /250< 131where the units of f arein
N/mm?, and the normalizing of f by dividying by 250 N/mm? is a convenient
manipulation to give the (b/t) limit some transparency, since yield stresses are often
of Grade 250 (250 N/mm?). Hence for Grade 250 steel, provided the web is
proportioned such that (b/t) < 131, we can develop the full yield stress before buckling
occurs. It is worth noting that for higher strength steels (f,>250 N/mm?), the limit
on (b/t) must actually drop below 131, since the elastic range before buckling is
higher as yielding is delayed. It is worth noting that the term (b fy/250 is often
referred to as the modified slenderness as it is the slenderness b/t modified to take

into account the yield strength fy.

2.3.2.3 Example 2.4 Plate slenderness limits in shear

Consider now the web of an I-section member that is subjected to pure shear and
which is simply supported along its edges. The local buckling coefficient® for along
web without stiffeners in shear is k = 5.35. Hence if the plate yields in shear at fy/‘/ 3
(Section 1.3.2) before buckling elastically at g_, then

535x w2 x200x10° _ fy
6, = >-X
12x(1-032)x b/ V3

which may be rearranged to produce (/e f/250<82, where again the units of f are
in N/mm?.

2.3.3 Section classifications
2.3.3.1 General

When a composite cross-section is analysed, it is important to ensure that the steel
component does not buckle locally, and this forms the basis of proportioning the
cross-section in such a way that the desired limit state such as full plastification
(Chapters 4 and 12) or first yielding (Chapter 3) occurs before the onset of local
buckling. The types of cross-sections which correspond to the various limit states
are called plastic, compact, semi-compact and slender. The rationale behind
classifying a cross-section was illustrated in Examples 2.3 and 2.4, and this will be
considered in the following in more detail.

Local buckling is more likely to take place in the negative or hogging moment regions
than in the positive or sagging moment regions. When the neutral axis lies in the concrete
component of a composite T-beam in positive bending, the steel is subjected only to
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tension and will not in general buckle, although local buckling is theoretically possible
in regions of high shear. Buckling in shear is considered in Section 2.3.5.

2.3.3.2 Plastic sections

Plastic cross-sections are defined as those which allow a plastic mechanism to
develop. Plastic mechanisms are considered in detail in Chapter 12, but we will note
here that such cross-sections must be able to reach their strain hardening ranges
(Section 1.3.2) before local buckling occurs. In addition, such sections must allow
enough rotation in the strain hardening region for moment redistribution. This means
that the depth to thickness ratios (b/t) for the elements of the steel component (the
web and flanges) are restricted to quite low values, far more so for a web than
Example 2.3 would suggest.

Figure 2.7 shows a composite T-beam in negative bending. The beam may be
welded or hot-rolled, and there are different (b/t) ratios for both forms of fabrication
owing to imperfections that are induced during their manufacture. For example, for
a plastic section built-up by welding, the width to thickness ratio of the flange outstand
(b/t,) must satisfy

by [Fy o .14
ty V250

while for a hot-rolled section, this ratio (b/t,) must satisfy

by Uigg 2.15)
ty V250

Figure 2.7 T-beam in negative bending
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Figure 2.8 Box beam in negative bending

If the flange is not an outstand, but is simply supported as in the bottom flange of
a box section as illustrated in Figure 2.8, the local buckling coefficient is much
higher, so that the corresponding limits for a welded member are

bi ,-f—y324 (2.16)
ty 250

and for a hot-rolled member that would occur in a rolled box profile are

.b_f_ ;f_y_ <27 217
£, V250

The limiting depth to thickness ratio of the web (d,/t ) in Figure 2.8 depends on
the amount of the web element subjected to compressive stresses. This can be found
as a function of the plastic neutral axis parameter o,_shown in Figures 2.7 and 2.8,
and defined as

a. =2 (2.18)
©d,l2

where y_ is the depth of the plastic neutral axis from the inside of the compression
flange of the steel component as shown in Figures 2.7 and 2.8. When the composite
beam is subjected to negative bending, then for a plastic section classification it is
suggested that the web depth to thickness ratio satisfies the inequality

gﬁ_{f5 < 82
t, V250 ~ 04 +06c, (2.19)

which is applicable to both welded and hot-rolled sections.
Itis worth reiterating that, to achieve a plastic section as the yield stress f increases,
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a narrower or shallower plate must be chosen for a given thickness owing to the
reciprocal relationship between the slenderness and Vf . This is not paradoxical as
the strength of the cross-section is related to f linearly and thus the section strength
increases as the yield stress increases.

2.3.3.3 Example 2.5 Checking a plastic T-beam

The composite T-beam with a welded steel component of yield strength f,=250N/
mm? shown in Figure 2.7 has the dimensions d, = 344 mm, b, = 75 mm, t, = 10 mm
and t, = 18 mm. Suppose a rigid plastic analysis in negative bending (Chapters 4 and
12) indicates that the plastic neutral axis lies 204 mm above the inside of the bottom
flange. Hence (b/tf)‘/(fy/ZSO) = (75/18)V(250/250) = 4.17 < 8 in Eq. 2.14 and so the
bottom flange is plastic. Also, o_=204/(344/2) = 1.19, so that the limit in Eq. 2.19
is 82/(0.4 + 0.6 x 1.19) = 74 and (d,/t WV(f /250) = (344/10N(250/250) = 34.4 < 74
so that the web is also plastic. This section is thus suitable for plastic design.

2.3.3.4 Compact sections
A section is classified as compact if it buckles into the strain hardening region with
sufficient rotation capacity to sustain the plastic moment, but may buckle locally
before a full plastic mechanism (Chapter 12) may develop. Because of this, the
limiting width to thickness ratios or depth to thickness ratios are relaxed slightly,
and of course a plastic section will also be compact.

For a flange outstand built-up by welding, the limit is

br | fy <45 220
t; V250

and if the flange is hot-rolled, the limit is
b
by | Sy <10 (2.21)
te V250

In addition, for a simply supported welded plate (as in Figure 2.8) the limit is

b |y <26 (2.22)
te V250

and if the simply supported flange plate is produced by hot-rolling, then
by | Iy <34 (2.23)
ty V250

A suggested limit on the web slenderness for the compact section classification is
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Gw 1y 12 (2.24)

where o_is defined in Figures 2.7 and 2.8, and in which Eq. 2.24 is assumed to be
applicable to both welded and hot-rolled sections.

2.3.3.5 Semi-compact sections

Semi-compact sections allow the first yield moment (Ms)y of the steel component of a

composite beam to develop, but the steel component may buckle locally before the full

plastic moment (M,)_is developed. The limits on the plate element slendernesses for

the semi-compact classification are relaxed above those for compact sections, and of

course both plastic and compact sections will satisfy the semi-compact classification.
For a welded flange outstand, the limit is

_I_)L ’_f_Y_ <14 (2.25)
ty V250

while for a hot-rolled flange outstand, the limit is

fL ’_fL <16 (2.26)
1y V250

For a welded supported flange plate as in Figure 2.8, the limit is

by |1y <30 (2.27)
ty V250

while for a hot-rolled supported flange plate as in Figure 2.8, the limit is

l_’f_ /12_ <41 (2.28)
iy 250

As for a compact section, the limiting web depth to thickness ratio is not dependent
on whether it is hot-rolled or welded, and a suggested limit is

dy ff_ysﬁ 229)
t, V250 " o,

where o in Figures 2.7 and 2.8 is obtained from an elastic analysis based on
transformed areas, as described in Chapter 3. If there was no reinforcement in the
slab and the steel component was a doubly symmetric I-section, the neutral axis
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would be at the mid-height of the steel component and o would be 1.0. The limit in
Eq. 2.29 would then be 115, which is lower than the limit of 131 calculated in
Example 2.3 that ignored residual stresses.

2.3.3.6 Example 2.6 Section strength of a semi-compact section

If we define M to be the cross-sectional strength of the steel component, then it
was shown that for plastic and compact sections, M, = (M) which is the full plastic
moment of the steel component. Note that in negative bending, the section capacity
of the composite section will be greater than this, owing to the presence of tensile
forces in the reinforcement in the cracked concrete component which also contributes
to the bending capacity.

Consider now a welded box section composite beam, as in Figure 2.8, whose webs
can be considered as being compact, but with a flange modified slenderness (b/t )\/ (f /
250) = 27.5. Suppose the moment to cause first yield of the steel component is (M), =
140 kNm and that to cause full plasticity of the steel component M), =155 KNm.
Clearly because the modified flange slenderness of 27.5 is less than the limit of 30 in
Eq. 2.27, the section can be considered as semi-compact, but because it is greater than
the limit of 26 in Eq. 2.22 it is not compact. This means that a moment in the steel
component of 140 kNm is attainable, but that the plastic moment of 155 kNm is not.
We can, however, interpolate linearly between these two moments based on the value
of the section slenderness. In this case, the capacity of the steel section M_ = 140+ (155
- 140) x (30 — 27.5)/(30 - 26) = 149.4 kNm. This increase of 7% above the first yield
moment of the steel component should not be ignored in the analysis of a seri-compact
section, and the increase for T-section beams may be much higher than this.

It can thus be seen that for plastic and compact sections, the section strength of
the steel component in negative bending M_= (M, ) while for semi-compact sections
M, ) 2M z2M )y Of course, semi- compact sectlons are unsuitable for the rigid
plasuc analysns techniques of Chapter 4, which are restricted to plastic and compact
sections. Semi-compact sections must be analysed by the linear elastic techniques
of Chapter 3.

It is worth reiterating that the moments (M ) and (M, ) are the moments in the
steel component when a moment M, is applied to the composxte section. For sections
that remain elastic, the moment in the steel component when the composite member
just starts to yield (M,), can be determined from an elastic analysis of the section as
described in Chapter 3. For example, if a moment (M, ), is applied to a composite
section of flexural rigidity (EI)_ mp O Cause yield, then the curvature in the composite
section is K, = M, /(EI) whlch is also the curvature in the steel component.
Hence (M, ) =K (EI) where (EI), is the flexural rigidity of the steel component.

The moment in the steel component when the composite section is fully
plastic (M) can be determined from the distribution of stresses in the steel component
as shown in Figures 1.16(b), (e) and (h) (the method for determining these
stress distributions is described in detail in Chapter 4). For example let us consider
the stress distribution in Case 2 at (e) in Figure 1.16 which is shown again in Figure
2.9(b). It is only necessary to consider the stress distribution in the steel component
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Figure 2.9 Moment in steel component

which is shown by itself in (c). This stress distribution resists the axial load F,
and moment (Ms)p shown in (d). Hence the stress distribution in (c) can now be
visualized as that required to resist flexure over regions h, and h, and that required
to resist the axial load over region h, as shown. As the neutral axis position N-A
is already fixed by a rigid plastic analysis from Chapter 4, h, is fixed so that the
magnitude and position of the axial force above the neutral axis, Fcomp in (e), can
be determined directly. The compressive force F__ is in equilibrium with a
tensile force at the bottom of the steel component such that F_ = F__ hence
the position of F, can be determined from which (M) = F - The remaining
stress distribution in (c) over region h, simply resists the longitudinal shear in the
composite beam F .

2.3.3.7 Slender sections

Slender sections possess plate element width to thickness ratios that exceed those
for the semi-compact classification, and their steel components buckle at moments
below that to cause first yield (M,),. Slender composite cross-sections occur in deep
T-beam bridge section girders, or in slender box sections.

There are two ways of determining the strength of slender sections. The first is to use
an effective width approach, similar to that in Section 2.2 for shear lag, in which regions
beyond the effective area are ignored. However, this generally renders the section
monosymmetric, and the calculation of the section properties is quite involved. The basis
for the effective width approach is the post-local buckling response of thin steel plates*®.

The second way is to simply factor the moment at first yield by the ratio of the
limit for a semi-compact section to the actual modified slenderness ratio (b/t)
\/(fy/250) or (dw/tw)\f(fy/250) for the section.

2.3.3.8 Example 2.7 Section strength of a slender section

Consider the steel component of a welded composite T-beam that has a moment at
first yield, calculated on the full steel cross-section of (Ms)y = 120 kNm, and which
has a value of a_based on an elastic analysis of 1.25. Suppose the web has a modified
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slenderness ratio of (dw/tw)‘/(fy/ZSO) = 105 and the modified slenderness ratio of the
flange is 19. The limit in Eq. 2.29 is 115/1.25 = 92 < 105 and so the web is slender.
Moreover, the limit in Eq. 2.25 is 14 < 19 and so the flange is slender also. It is worth
noting that only one of the steel elements (flange outstands or web) being slender renders
the section classification as being slender. The section strength of the steel component
may then be calculated as M_ =(92/105) x (14/19) x 120 = 80.0 kNm. A section strength
for the steel element of 80.0 kNm would then be used in a linear elastic analysis. Note
that the method of this example, although very simple, is conservative,

2.3.4 Beams in positive bending

Beams in positive bending have the neutral axis in the web above the centroid of
the steel component. These web elements are not generally prone to local buckling,
since at their connection to the top flange they are restrained by the attachment to a
rigid concrete component, while at the neutral axis level they are restrained by the
tensile portion of the steel component. We may therefore consider the webs as
being plastic, although in deep beams this classification may be unconservative,
and should be viewed with care.

When the neutral axis lies in the steel web, the top steel flange will be subjected to
compression. If the section is to considered plastic or compact, as described in the
previous paragraph, the top steel flange must not buckle away from the concrete
slab, as shown in Figure 2.10. It is suggested that to prevent this buckling, the spacing
s of the stud shear connectors should not exceed

S f_y_sso (2.30)
t; V250

2.3.5 Local buckling in shear

2.3.5.1 Slenderness limit
It will be shown in Chapters 4 and 9 that it is usual to assume that all the
shear carried by the cross-section of a composite beam is resisted by the web element

concrete slab —-—\ A

_|- top steel flange

te A

Figure 2.10 Buckling of top flange in positive bending
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of the steel component. If the web element is proportioned so that it may develop
its full yield strength, then it is said to be stocky, and the depth to thickness ratio
must satisfy

i*i _fL <82 (2.31)
t, \/250

Normally if this limit is exceeded and the web is slender, it is usual to stiffen the web
with vertical web stiffeners. However, vertical web stiffeners in the steel component
are beyond the scope of this book, and we can calculate the strength of the unstiffened
web on the basis of initial local buckling as described in the following example.

23522 Example 2.8 Section strength of a slender web in shear

Suppose the web element of a steel component has a yield strength f, = 300 N/mm?
and has dimensions d, = 1000 mm and t, = 8 mm. The modified slenderness
(d,/t W(F,/250) = (1000/8)¥(300/250) = 136.9 > 82 from Eq. 2.31 and so the web is
slender in shear. If we note that the yield strength of the web in shear is (d_t,)T, M3
= 1000 x 8 x 300/Y3 = 1386 kN (Section 1.3.2), then its section strength may s1mply
be determined from (82/136.9)?x 1386 = 497 kN as the buckling strength from Eq.

2.13 is inversely proportional to (b/t)?, The strength of the slender web is only 36%
of its yield strength, and a more economic design would involve the use of a thicker
web or the use of vertical web stiffeners.

2.3.6 Concrete-filled steel tubes

Concrete-filled steel tubes find widespread use as compression members, and their
flexural buckling is considered in Chapter 8. The section classifications for a
compression member are either slender or semi-compact, since the compact and
plastic moments are irrelevant in the absence of bending because the member is
subjected to compression throughout. A semi-compact section allows yielding and
hence the squash foad of the steel component of the tube to be attained before local
buckling, while slender sections buckle locally before the yield stress is reached,
and so the steel component of slender compression members buckles locally before
it reaches its squash load.

Unlike hollow steel rectangular sections, local buckling of concrete-filled steel
tubes is resisted by the restraint provided by the concrete core, as shown in Figure
2.11. It is suggested that for a concrete-filled tube fabricated by welding, the b/t
limit shown in Figure 2.11 should satisfy

Sy <47 (2.32)
250

while if it is fabricated by hot-rolling, the b/t limit should satisfy
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Figure 2.11 Local buckling of a concrete-filled tube

b /f_y <66 233)
: V250

It can be seen that the above two limits are much greater than those for a supported
flange (30 and 41 for a welded and hot-rolled flange plate respectively, as in Egs.
2.27 and 2.28) owing to the restraint provided by the concrete core.

If the composite column is a concrete-filled circular steel tube of outside diameter
d_ and thickness t, then the slenderness d /t should satisfy

do[ Iy <82 (2.34)
t {250

The provision of Eq. 2.34 is based on that generally used for a hollow circular tube, and
in the absence of reliable data for concrete-filled circular tubes this limit is conservative.
Of course, an encased steel section as shown in Figure 1.4(a) is unlikely to buckle
locally, unless the concrete cover is very thin. Occasionally, however, only the void
between the steel flanges is filled with concrete, and these flanges form partial and
permanent formwork for the concrete as in Figure 2.12. In this case, the web is

N steel flange may buckle

= concrete

Figure 2.12 Partially encased I-section
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prevented from buckling locally, but the flanges must satisfy the limits of Eqgs. 2.25
and 2.26 if they are to remain fully effective and not buckle.
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3 Elastic analysis of composite
beams

3.1 Introduction

In ultimate strength analyses, such as the rigid plastic analysis of Chapter 4, the
behaviour of the composite member is governed essentially by inelasticity and the
nonlinear behaviour of the steel and concrete components. However, in their day to
day life, composite structures are usually loaded well below levels that would cause
failure, and the behaviour of the steel, concrete and shear connection can be considered
as linear. In limit states terminology, we refer to behaviour at these lower load
levels as service load behaviour, or to the serviceability limit state.

Service loads are the loads usually experienced by a member over a relatively long
period of time, including self weight and sustained loads, and by short-term lower level
live loads. Satisfaction of the serviceability limit state is important, as it must be ensured
that the composite structure does not deflect excessively, that is does not vibrate greatly
and that crack widths in the concrete component remain sufficiently small. Analyses to
guard against the attaining of these serviceability limit states are based on linear elastic
assumptions, rather than the plastic assumptions of Chapter 4. It is worth noting that
fatigue design, which is treated in Chapters 14 and 15, is carried out using linear elastic
analysis, even though fatigue is a failure criterion. This is also true for lateral-distortional
buckling treated in Chapter 13, where linear elastic analysis again is used in the prediction
of a strength failure mode.

3.2 Linear material properties

In order to undertake an elastic analysis, we must assume that the relationship between
stress and strain, or load and deformation, is linear for the steel and concrete components,
as well as for the reinforcement and the shear connectors. The material properties for
the steel, concrete and reinforcement were described fully in Chapter 1. Stud shear
connectors are treated in detail in Chapter 5, but we only need to note here that their
response is linear elastic for a substantial range of loads, with the ratio of the shear force
to the corresponding shear deformation being expressed by the stiffness or modutus K.
In terms of the degree of interaction introduced in Section 1.5.2, a full interaction analysis
(as considered in Section 3.3) is characterized by K — oo in which there is no slip and
hence no slip strain at the steel/concrete interface as in Figure 1.18(b), and by K = 0
when there is no interaction between the steel and concrete components, so that the
interface may be considered as greased and hence the slip strain is at its maximum as
shown in Figure 1.18(a). The condition of partial interaction is therefore dependent on
a finite value of K, but because of the complexities that arise in such a condition, we
shall concentrate here on the condition of full interaction, that is when K — eo.

39
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Stress

or
load

linear

Strain or deflection

Figure 3.1 Linear elastic material properties

The schematic representation of the linear elastic range of the component materials
is shown in Figure 3.1. The ratio of stress to strain in the steel, concrete and
reinforcement is constant. For the steel component, it is assumed that this ratio is
equal to E_ = 200 kN/mm?’ in tension and compression until the yield stress f is
reached, and for the reinforcement that, again, E_= 200 kN/mm? up to the yield
stress f For the concrete in the short-term, the stress to strain ratio is assumed to be
govemed by E_in Eq. 1.4 and in the long-term by E, in Eq. 1.7. Because the stress-
strain response of the concrete becomes nonlinear well before its compressive strength
f_is reached, it is usual practice to assume linear elastic behaviour is governed by
the moduli E_ or E_ up to about 40% or 50% of {_.

The mechanical response of shear connectors is usually stated in terms of the
load-slip behaviour, as noted earlier. The modulus K (whose units are force/length)
may usually be considered as constant for stud shear connectors loaded statically up
to about 70% of their dowel strength D__ . This is again depicted in Figure 3.1.

3.3 Full interaction analysis

3.3.1 Elastic transformed cross-sections

3.3.1.1 Assumptions

For full interaction, it is assumed that the slip and hence slip strain at the steel/
concrete interface are negligible, that is K = eo. Furthermore, under service loading
the short-term and effective concrete moduli E_and E_respectively will be considered
constant as noted in the previous section, and this forms the basis for transformed
area analysis. As is usual in elastic structural mechanics, the cross-section is
transformed into an equivalent concrete section according to the modular ratios n =
E /E, for short-term loading, and n_=E/E_ for long-term loading.

3.3.1.2 Example 3.1 Transformed cross-sections in positive bending
Consider the composite beam shown in Figure 3.2 that is subjected to positive
bending. For short-term behaviour, the modular ratio is n = 200/26.8 = 7.0. The
composite section can be transformed into an equivalent concrete section by
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Figure 3.2 Composite steel and concrete beam

increasing the area of the reinforcement to (n — 1)A, (and using the gross concrete
area) and the area of the steel component to nA_ as shown in Figure 3.3. In this
example, there is no reinforcement and the transformed area of steel is 7.0 x 6180 =
43,260 mm?. The transformation process is shown in Figure 3.3. Note also that the
transformed second moment of area of the steel is nl =7.0x 115.1 x 10°=806 x 10°
mm* with the same steel depth of 324 mm.

If the concrete is assumed to be uncracked, then the neutral axis will lie at the
centroid of the transformed section. By taking first moments of area about the top fibre,
(130x 1500 +43,260) y_ = 1500 x 130 x (130/2) + 43,260 x (130 + 324/2), and so the
depth of the neutral axis below the top fibre is y,_ = 106.2 mm. The transformed second
moment of area about the neutral axis is [ = 130°x 1500/12 + 130 x 1500
x (130/2 - 106.2)* + 806 x 10° + 43,260 x (130 + 324/2 - 106.2)% = 2905x10¢ mm*.

Since the depth to the neutral axis is 106.2 mm < 130 mm, the neutral axis lies in
the concrete component as in Figure 3.3(b) and the concrete below this axis is

transformed reinforcement A, O,
1 © © §f \ y
K _ S P
................. 27 A i
transformed ’ H {m t; A
steel component  { |4 i (n-1)A,
A 7 I i
nb < b i :
(a) (b) (c)

Figure 3.3 Composite beam transformed to a concrete beam
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subjected to tension. Although the concrete does have a small tensile strength (Section
1.3.5.1), it is usual to ignore this and assume that its tensile strength is zero. The
position of the neutral axis in the cracked section can then be determined by equating
the first moment of area about the neutral axis of the transformed areas above and
below it. Hence 1500y %2 = 43,260 x (130 + 324/2 —y ) from whichy_=104.1 mm,
and the second moment of area of the uncracked transformed section about this axis
is’_ =2897 x 10° mm*. The flexural rigidity of the cracked section is thus only
0.3% less than that of the uncracked section as the cracked region is adjacent to the
neutral axis, and hence cracking can be ignored in standard composite T-sections in
positive bending. It is also worth noting that making the steel beam composite with
the concrete slab has increased the flexural rigidity of the member by E1 /E1 or
360%, so that the deflection of the composite beam will be only 28% of the steel
beam of the same length when acting by itself.

3.3.1.3 Example 3.2 First yield of a composite section in positive
bending

The analysis in Example 3.1 is valid while the steel and concrete remain elastic. Let
us suppose that the section remains linearly elastic until the bottom fibre of the steel
yields at f =300 N/mm’. The strain at this level is € = 300/200 x 10°=1.5 x 103

Hence assummg a full interaction analysis, that is that there is no slip strain at the
steel/concrete interface, the strain at the top fibre of the concrete is (106.2/(454 —
106.2)) x 1.5 x 10~ = 0.458 x 10, This top fibre concrete strain produces a concrete
stress of 28.6 x 10°x 0.458 x 103 = 13.1 N/mm?. This concrete stress is in the elastic
range, as the concrete component would generally have a strength f_ > 25 N/mm?,
and the maximum concrete stress at first yield of the steel is only about half of this
concrete strength. It is usually the case that elastic analysis of a T-section remains
valid up to first yield of the steel.

The moment of resistance of the composite section at first yield may also be
calculated easily The curvature at first yield is K = 1.5 x 10%/(454 — 106.2) = 4.31
x 10 mm', and so the first yield moment M, = (EJ, )x, =28.6 X 10°x 2905 x 108x
4.31 x 10°° Nmm = 358.1 kNm. If the steei component acted alone, the moment in
the steel beam to cause first yield is M = f 1/(h/2) =300 x 115.1 x 10%/(324/2)
Nmm =213.1 kNm. The first yield moment of the composite beam is thus 168% of
that of the steel component alone.

The steel component for this beam subjected to positive bending is in
tension throughout and therefore there is no need to check the section classifications
of Chapter 2 (which require at least a semi-compact steel section). For the situation
when the top region of the web is subjected to compression as in Figure 3.3(c),
the web is restrained rigidly against buckling by its attachment to the top flange,
which is connected by the shear connectors to the concrete, and the lower part of
the compression region of the web is restrained by its tensile portion. The web
is therefore unlikely to buckle, and a check of its section classification is not
generally needed.
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33.14 Example 3.3 Transformed cross-sections in negative
bending

Let us assume that the cross-section in Figure 3.2 is now subjected to a negative
moment. Unless the neutral axis lies in the concrete component, the concrete will
have little or no effect as it is subjected to tension, and the strength of the bare steel
beam alone must be enhanced by providing reinforcement in the slab. We will assume
the concrete component has 0.6% reinforcement (A = 1170 mm?) that has the same
elastic modulus as the steel component, and that this reinforcement is positioned 35
mm below the top surface of the slab.

If it is first assumed that the neutral axis lies within the steel component, then the
composite beam will consist of the steel component in compression and tension and the
reinforcement component in tension. As both of these components have the same elastic
modulus, E,, there is no need to transform the beam and it can be analysed as a steel
beam. Performing this analysis, by taking first moments of areas about the lower fibre
of the bottom flange leads to the neutral axis being y_= 203 mm from the bottom fibre
of the steel component, which is well within the steel. The second moment of area of
this ‘steel’ section is therefore I = 115.1x 10°+ 6180 x (324/2 - 203)* + 1170 x (454
—35-203)* = 180.1 x 10° mm*. Even though the concrete is ineffective in flexure, the
flexural rigidity of the steel beam-reinforcement component is 56% greater than that of
the steel beam by itself, and 180.1 x 7/2905 or 43% of the flexural rigidity of the
composite section in positive bending that was determined in Example 3.1.

If the composite beam has a very large area of reinforcement or a very deep slab,
then the neutral axis may lie in the concrete component. In this case the area of
concrete below the neutral axis is uncracked, and the position of the neutral axis can
be found by equating the first moment of area about the neutral axis of the transformed
section above to that of the transformed section below, in a similar fashion to Example
3.1. 1t is worth reiterating that the likelihood of the neutral axis being in the concrete
portion of a standard composite T-beam is remote.

3.3.1.5 Example 3.4 First yield of a composite section in negative

bending

An illustration similar to that of Example 3.2 will be used to study the behaviour of
the beam in Figure 3.2 when subjected to negative bending. Again, let us suppose
the behaviour is linearly elastic until first yield of the bottom fibre of the steel
component in compression at a stress of f = 300 N/mm?. The curvature is then K,
=300/(200 x 10°x% 203) = 7.39 x 10°* mm'. The tensile strain in the reinforcement
is thus 7.39 X 106x (454 — 35 — 203) = 1.60 x 10 and the stress is 200 x 10°x 1.60
x 107 = 320 N/mm?, This stress is below the typical yield stress of f, =400 N/mm’
for the reinforcement, and indeed in the majority of cases the reinforcement
remains elastic until first yield of the steel component is reached. If in
fact the reinforcement has yielded, the bending capacity will be slightly
overestimated if elastic procedures are used, but the error in linear elastic analysis
is generally minuscule.
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At first yield, the moment capacity M, =EI k =200 x 10°x 180.1 x 10°x 7.39
X 10 Nmm = 266.2 kNm. This is 266.2/358.1 or 74% of the first yield moment in
positive bending, and 266.2/213.1 or 25% greater than the first yield moment of the
steel section alone.

For first yield to be achievable in negative or hogging bending, the steel
component must be semi-compact. Hence for the flanges, (b/t, )‘/(f 1250) =
((170 = TH/(2 x 12) x V(300/250) = 7.4 < 14 (Eq. 2.25), and so the ﬂanges are
compact. For the web, a_= (203 -12)/(300/2) = 1.27 (Eq. 2.18), and so a,(d /t.)
V(£ /250) = 1.27 x (300/7) x ¥(300/250) = 59.8 < 115 (Eq. 2.29) and so the web is
also semi-compact.

3.3.2 Continuous composite beams

A continuous composite beam is shown in Figure 3.4. Within the lengths (L ), and
(L,),, the beam is subjected to positive bending and has a transformed flexural
rigidity E I , while in the region (L ), the beam is in negative bending and has a
transformed flexural rigidity E I . Because the positive (or sagging) flexural rigidity
is greater than the negative (or hogging) flexural rigidity as shown in Examples 3.1
and 3.3, the response of the beam is that of a nonuniform or ‘stepped’ member. The
difficulty with analysing continuous composite beams, even in the linear elastic
range of structural response, is that the internal points of inflection are not known
at the outset, so that an iterative scheme must be followed to determine the extent
of the positive and negative bending regions.

In fact, the force method of structural analysis' may be used conveniently to
analyse the two-span composite beam shown in Figure 3.4. Firstly, the positive
bending flexural rigidity E I as determined by the method of Example 3.1 can be
assumed throughout, and the force method used to calculate the redundant vertical
reaction at B in the figure. This then allows the bending moment distribution M to
be determined, and the region (L )_ to be identified over the internal support. In the
positive moment regions (L ), and (L), the curvature is M/E I, while in the negative
moment region (L )_ the curvature is M/E] , where I is determined as in Example
3.3 and M is the moment at any point along the beam. Of course, the curvatures
in the positive and negative moment regions of the beam are of different sign, as the
moment is positive in the sagging moment region and negative in the hogging moment
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Figure 3.4 Two-span continuous beam
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region. Using these curvatures, the force method may again be used to determine an
updated estimate of the vertical reaction at B, so that an updated bending moment
diagram may be drawn and updated estimates of the positive and negative bending
regions established. The curvatures in these regions are again calculated for use in the
force method, and a second estimate of the vertical reaction at the internal support B
may be determined. In this hand method, which lends itself to computer programming,
the vertical reaction at B is calculated iteratively until it converges to an acceptable
tolerance. The final bending moment for the continuous beam may thus be established.

It is worth noting that such an analysis must be carried out to undertake a lateral-
distortional buckling study of a continuous beam, as discussed in Chapter 13. This
is because lateral-distortional buckling can cause failure of the steel component
over the hogging region (L) . Note, too, that the analytical technique presented in
the previous paragraph is based on linear elastic principles, although the solution
strategy is iterative.

For a general composite beam continuous over a number of spans, a commercially
available stiffness-based computer program may be used. The sagging and
hogging flexural rigidities E I _and EI_ respectively are determined as in Examples
3.1 and 3.3. For a given loading, the program is invoked using the positive or
sagging rigidity E 1  throughout, and the bending moment diagram is drawn and
the points of contraflexure identified. The program is again used using EI__ in the
identified positive region and EI_ in the identified negative region, the bending
moment diagram redrawn and the revised points of contraflexure identified. The
analysis is undertaken iteratively by determining the positive and negative moment
regions until the reactions or moments at the supports converge to a suitable accuracy.

With graphics capabilities, this analysis may be undertaken with relative ease.

3.3.3 Deflections due to creep
3.3.3.1 General

By using simple modular ratio theory in a full interaction analysis, it is possible to
determine relatively accurately the deflections of a composite beam caused by creep.
This merely requires a transformation of the area according to the modular ratio n_=
E/E, instead of the modular ration=E/E_

3.3.3.2 Example 3.5 Deformations induced by creep

The beam considered in Example 3.1 spans 6 m and is acted upon by a sustained
uniformly distributed load of w = 45 kN/m. In Example 3.1, the transformed second
moment of area I was calculated to be 2897 x 10° mm*. Under short-term or
instantaneous loading, the deflection would then be (5/384) x (45 x 60004)/(2897 x
10°x 28.6 x 10%) = 9.1 mm.

Consider now long-term loading for which the creep coefficient ¢ = 3. The effective
modulus E, = 28.6/(1 + 3) = 7.15 kN/mm? (Eq. 1.7) and the long-term modular ratio
n, =200/7.15 = 28. This produces a transformed steel area of n A =173 x 10° mm?
and a transformed steel second moment of area of n I = 3233 x 10° mm*. Because
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most of the transformed area now lies below the slab, we will assume that the depth
to the neutral axis below the top fibre y_lies in the steel. It can then be shown thaty,
= 171.1 mm which indeed is 41.1 mm below the soffit of the slab. The transformed
second moment of area I__ can be calculated similarly to Example 3.1 to be 7964 x
10 mm*. Using the value of E_= 7.15 kN/mm’ produces a long term deflection of
13.3 mm which is a 46% increase in deflection above the short-term value. It is
worth noting that shrinkage can increase this time-deflection even more, and this
effect is considered in the following sub-section.

3.3.4 Deflections due to shrinkage
3.3.4.1 Behaviour

Shrinkage is time-dependent, and therefore the forces that are induced will cause
creep. Because of this, the effective modulus E, introduced in Section 1.3.5.2 should
be used in a shrinkage analysis.

The effect of shrinkage in the sagging region of a composite T-beam is shown in
Figure 3.5. In the absence of shear connectors, the concrete will contract as shown in
(a). The shear connectors resist this contraction as shown in (b), so that the shear forces
on the connectors due to shrinkage oppose those due to gravity loads as indicated by the
distorted shape of the connectors. However, contraction of the concrete through shrinkage
will cause the beam deformation shown in Figure 3.5(b), and so induce deflections and
flexural stresses that are in the same direction as those induced by gravity loads.

In order to quantify the forces and deformations induced by shrinkage, consider
the right hand side of the beam shown in Figure 3.5(a) that does not have any shear
connectors and which is also shown in Figure 3.6. The concrete component is allowed
to contract due to shrinkage as shown, producing a lack of fit of € L/2, where € is
the shrinkage strain, as shown in Figure 3.5(a). The shear connectors will resist this
contraction as shown in (b), and therefore enforce compatibility. Again, following
the linear elastic assumption of this chapter we will assume that there is zero slip, so
that the analysis is a full interaction analysis based on transformed sections.
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Figure 3.5 Shrinkage deformations
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Figure 3.6 Equivalent force system for shrinkage

3.3.4.2 Example 3.6 Deformations caused by shrinkage

Let us consider again the section in Example 3.1 that is 6 m long and has a long-term
shrinkage strain of €, = 500 x 10, In order to prevent slip and hence lack of fit, as
shown in Figure 3.6(a), an axial force AN in (b) has to be applied to the concrete
component. This axial force must lie at the centroid of the concrete component (ignoring
any reinforcing as only the concrete is shrinking) and has a magnitude AN=E¢_A =
7.15%10°x 500x10*x 1500 x 130 N = 697.1 kN. When this value of AN is applied to
the concrete component in (b) it ensures compatibility, but the system is now not in
equilibrium. The net effect of maintaining equilibrium by applying an equal and opposite
force AN in line with the concrete centroid is to apply an axial compression AN and a
moment AM at the centroid of the composite section, as in (c). The system of forces
shown in (d) is thus in equilibrium, and clearly AM =y __ AN = (171 - 130/2) x 697.1
kNmm = 73.96 kNm, which is the couple formed from the two forces AN.

It is thus clear that the effect of shrinkage is to produce a constant moment of
73.96 kNm in this case over the full length L of the beam. Such a constant moment
will produce a deflection of AMLY8E I =73.96x10° x 6000/ (8 x 7.15x10°x 7964
x 10%) = 5.8 mm. The total time-dependent deflection may then be approximated as
13.3 +5.8=19.1 mm.

It is worth noting that it has been shown? that relaxing the condition of full
interaction does not influence greatly the time-dependent results, and that the above
analyses techniques are satisfactory.

3.4 Partial shear connection
3.4.1 Simplified model

Linear elastic analyses utilizing partial interaction when 0 < K < e are complex. The
concept of partial-shear-connection was introduced in Chapter 1, and obviously the
degree of interaction, which influences the deflections, depends on the degree of
shear connection . Obviously whenn__ = 0 there is no interaction as there are
no shear connectors, and the deflection of the beam v__ depends only on the flexural
rigidities E I_of the concrete component and E I, of the steel component.
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It has been suggested’ that the deflection under partial interaction v__ can be determined
from that assuming full interaction v, and no interaction v_ by the empirical equation

Vpart =V full + a(vno =V full )(1 - nmax) G-D

where the coefficient o is taken as 0.4, and where the flexural rigidity for no interaction
is given by

(EI) = ECIC + Esls 3.2)

no

3.4.1.1 Example 3.7 Short-term deflections with partial shear

connection

We will again analyse the cross-section shown in Figure 3.2, and it will be assumed that
this beamn spans 6 m and is acted upon by a short-term uniformly distributed load of w =
45 kN/m. The flexural rigidity with no interaction (EI)  =28.6 x 10°x 130°% 1500/12 +
200 x 10°x 115.1 x 10° = 3.09 x 10" Nmm?®. The deflection v_ is thus (5/384) x 45 x
6000%/3.09 x 10"* = 24.6 mm, From Example 3.5, v, , = 9.1 mm. Let us assume that the
degree of shear connectionisn, , =0.5. Hence fromEq.3.1, v, =9.1+0.4x(24.6-9.1)
x (1-0.5) = 12.2 mm. Decreasing the degree of shear connection from 100% used in full
interaction analysis to 50% increases the deflection by 12.2/9.1 or 34%.

34.1.2 Example 3.8 Long-term deflection with partial shear

connection

Example 3.7 will now be reworked assuming partial interaction, except that
long-term properties associated with ¢ = 3 and €, = 500 x 10 will be used as
in Examples 3.5 and 3.6. Under a condition of no interaction, the value of E_ must
be used, but the effects of shrinkage are of course irrelevant. Hence (E) | = 7.15
x 1P x 130° x 1500/ 12 + 200 x 10°x 115.1 x 10° = 2.50 x 10" Nmm? and so
the deflection v = 30.4 mm. From Example 3.6, Ve = 19.1 mm. Hence from
Eq.3.1, Vour = 19.1 + 0.4 x (30.4 - 19.1) x (1 —0.5) = 21.4 mm. Decreasing the degree
of shear connection from full to 50% therefore increases the long-term deflection by
21.4/19.1 or 12%, which is much less than the increase for the short-term analysis in
Example 4.1. Generally speaking, long-term deflections are influenced more by the
effects of creep and shrinkage than by partial interaction or partial shear connection.

3.5 Method of construction
3.5.1 General

When a composite beam is constructed, it may be propped or unpropped as
shown in Figure 1.3. Propped construction is usually reserved for building
construction where the weight of the wet concrete is transferred through the
steel component to a number of closely spaced props as in (a). These props are



Elastic analysis of composite beams 49

then removed when the concrete has set, and the resulting behaviour is determined
by analysing the resulting composite beam. Unpropped construction is usual for
bridges, where the steel component alone is required to support its own self weight
as well as that of the wet concrete as in (b). Composite action is not achieved from
the outset, and the deformations must be calculated initially from the flexural rigidity
E[ of the steel component alone. The method of construction has significant
ramifications on the flexural stresses, deformations and the forces on the shear
connection, and this will be illustrated below by use of examples.

3.5.2  Flexural stresses
3.5.2.1 Example 3.9 Calculation of flexural stresses in propped

beams

Consider again the T-beam of Example 3.1 which is subjected to positive bending.
The uniformly distributed load of 45 kN/m is composed of a long-term dead load
w of 15 kN/m and a short-term live load of 30 kN/m. If full interaction is
assumed, the stress distributions for long-term loading are shown in Figure 3.7(b)
(with ¢ = 3) and in (c) for short-term loading. The stresses in the transformed section
can be calculated from 6, = My/I _ for short-term loading or from o, = My/I _ for
long-term loading. The stresses at midspan calculated using I are shown in (b) and
those calculated using I are shown in (c). In the long-term, M,),=15x6%/8=67.5
kNm, so that at the top of the transformed section 6 = 67.5 x 10°x 171.1/7964
x 10® = 1.5 N/mm? (Example 3.5) and at the bottom o, =—67.5 x 108x
(454 - 171.1)/7964 x 10° = —2.4 N/mm? (compressive stresses positive), Similarly
in the short-term under a moment (M), = 30 x 6?/ 8 = 135 kNm, G _ (top) =
135 x 105x 106.2/2905 x 10° = 4.9 N/mm (Example 3.1) and o, (bottom) =
~135 x 10°x (454 — 106.2)/2905 x 10° = —16.2 N/mm?. These stresses may be
superimposed, and then transformed back to their original constituents according
the modular ratios n or n_ as shown in (d). The maximum flexural tensile stress in
the steel is thus 7.0 X 16.2 + 28 x 2.4 = 181 N/m?.
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Figure 3.7 Propped construction
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3.5.2.2 Example 3.10 Calculation of flexural stresses in unpropped

beams

The same beam analysed in Example 3.9 for propped construction is now analysed for
unpropped construction. In this typical analysis, it has been assumed that all long-term
load is resisted by the steel component, as shown in Figure 3.8(b), and that all short-
term load is resisted by the composite beam, as in (c). The long-term stresses are
calculated from 6 = My/I_ in the steel component alone, while those in the composite
section due to the short-term loading are calculated from 6 = My/I . Because the
stresses were transformed according to the short-term modular ratio n, they are
superposed and transformed according to n, as shown in (d). The short-term stresses
are as in Example 3.9, while those in the steel are + 67.5 x 10° x (324/2)/115.1 x 10
=+ 95 N/mm?. The maximum flexural tensile stress in the steel is thus 95 +7.0 X 16.2
=208 N/mm? which is 115% of the maximum flexural stress in propped construction.

3.5.2.3 Example 3.11 Deflections in propped and unpropped

construction

We will now consider the midspan deflections for the previous two analyses of
propped and unpropped construction. For propped construction, the deflection due
to long-term loads (based on 1 ) is (5/384) % 15 X 6000%/7.15 x 10°x 7964 x 105 =
4.5 mm, and that due to short-term loads (based on I ) is similarly 6.1 mm, giving a
total deflection of 10.6 mm.

In unpropped construction, the deflection due to long-term loading is based
on the flexural stiffness E I of the steel component, and is 11.0 mm. The deflection
due to short-term loading is the same as that in propped construction, viz. 6.1 mm,
giving a total deflection in unpropped construction of 17.1 mm. It can be seen that
the deflections in unpropped construction are considerably higher than those in
propped construction.
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Figure 3.8 Unpropped construction
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3.6 Shear flow on connectors
3.6.1 General

Assuming linear elastic full interaction analysis, the shear flow on the connectors
may be determined from

_Yo VA y (33)

where Q = A ¥ and where ¥ is the distance between the centroid of the concrete
component and the centroid of the transformed composite beam, that is the composite
beam transformed to concrete. In propped construction, the shear flows due to the
short and long-term loads have to be determined separately from the short and
long-term transformed sections, and the shear flows added as in Figure 3.7(e). On
the other hand, in unpropped construction, only the composite behaviour induces
shear flows in the connectors, so this will be due to the short-term loading as shown
in Figure 3.8(e).

Note that it is more usual to determine the distribution of the shear connectors in
composite beams in buildings from the results of a rigid plastic analysis, as described
in Chapter 4. However, the following example that uses a beam in a building will
demonstrate the use of linear elastic analysis in determining the distribution of shear
connectors, as this procedure is generally used in the design of the shear connectors
in composite bridge beams.

3.6.1.1 Example 3.12 Shear flow on connectors

For propped construction and with the cross-section considered in the previous
examples, the maximum shear for the long-term loading is V = 45 kN and
y = 171.1 - 130/2 = 106.1 mm. Hence q,,, = 45,000 X 1500 x 130 x 106.1/7964
x 10° = 117 N/mm and similarly the maximum shear flow for short-term loading
q,,.. = 237 N/mm producing a total shear flow of 354 N/mm. On the other hand, for
unpropped construction only the short-term loads exert forces on the shear connectors,
so that q, = 237 N/mm as before. Let us assume that we will be designing the
shear connectors for propped construction, that is for a shear flow of 354 N/mm
based on linear elastic analysis.

It will be assumed that the characteristic strength of a dowel connector is
D, = 60 kN. The spacing required at the supports is thus 60,000/354 = 170 mm,
and that at midspan is infinite as shown in Figure 3.9. The connectors can be placed
in blocks as shown in the figure.

If we are willing to accept an understress of x = 25% in Figure 3.9, then the length
of blocks adjacent to the support is 750 mm where the connectors will have a spacing
of 170 mm. If we accept an overstress of 10%, then the length of the next block is
750 + 300 = 1050 mm where the connectors will have a spacing of 260 mm. The
procedure outlined in Figure 3.9 tends to be more conservative at the supports than
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/’— blocks of uniform spacing connector density

N/

q =354 N/mm 10% overstress
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Figure 3.9 Distribution of connectors based on elastic analysis

between the supports, and this is desirable as the shear connectors at the support
regions are more prone to failure.
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4 Rigid plastic analysis of
simply supported beams

4.1 Introduction

The maximum possible flexural strength or moment capacity of a simply
supported composite beam can be derived from rigid plastic analyses in which
it is assumed that all the materials are fully yielded and have unlimited ductility. In
order to obtain this upper bound to the flexural strength, it is necessary to ensure that
the following modes of failure do not occur prematurely: local buckling of the
rectangular elements of the steel component which are dealt with in Chapter 2;
lateral-distortional buckling of the steel component as described in Chapter 13;
fracture of the shear connectors because of their limited slip capacity as described in
Chapter 5; and failure of the concrete component of the composite member due to
the concentrated dowel loads imposed on it by the shear connectors as covered in
Chapters 6, 10 and 11.

The basic procedures for determining the rigid plastic flexural capacities at a
design section of a composite beam are first illustrated in Section 4.2 for standard
composite beams in which neither the steel nor the concrete components are encased
by the other as shown in Figure 1.1. Non-standard composite beams, in which one
component is encased by the other, are analysed in Section 4.3. The distribution of
the flexural forces and the terminology used in describing them are explained in
qualitative terms in Section 1.4.2 and it is suggested that the reader glance through
this before proceeding.

4.2 Rigid plastic flexural capacity of standard composite
beams

4.2.1 Equilibrium of forces at a design section

It is worth noting that rigid plastic analysis techniques are based purely on
equilibrium of forces because all the materials are assumed to be fully yielded and have
unlimited ductility. Furthermore, the flexural forces in a composite beam and the positions
of the neutral axes depend on the relative strengths of the three components of a composite
beam which are the concrete slab, the steel beam and the shear connection.

Consider the simply supported composite beam in Figure 4.1, and let us assume
that we are trying to determine the flexural capacity at the design section A-A in (b).
The composite beam can be considered to consist of three distinct components which
are the concrete and steel components in (a) and the shear connection component in
(b). The strengths P of the three components are shown in (c). The compressive
strength of the concrete component P_= A 0.85f where A_is the cross-sectional
area of the concrete slab, f_is the compressive cylinder strength of the concrete
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which can be taken as 85% of the cube strength f_, 0.85f = f_ is the compressive
‘yield’ strength of the concrete which can also be taken as 0.72f_, and where the
tensile strength of the concrete material and hence the tensile strength of the concrete
component is taken as zero. The tensile and compressive strength of the steel
component P_= Asfy, where A_is the cross-sectional area of the steel beam and fy is
the yield strength of the steel. Furthermore, the shear strength of the shear connection
isP, =Q,L_where Q_ is the shear flow strength of the shear connection, that is the
strength of the shear connection per unit length of beam, and L_ is the length of the
shear span between the design section and the support. It is worth noting that while
the strengths of the steel and concrete components (P, and P ) are unchanged
throughout the length of the beam, the strength of the shear connection component
(P,,) varies throughout the length of the beam as it depends on the distance from the
design section to the support (L ).
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Figure 4.1 Strengths of the components of a composite beam

The forces F acting along the longitudinal axis of a composite beam are shown in
Figures. 4.2(a) and (b). As was explained in Section 1.4, the maximum axial force
that can act on the concrete component is the weaker of the strengths of the concrete
component P_and of the shear connection component P, . Similarly, the maximum
axial force in the steel component is the weaker of P and P, Furthermore, the shear
forces across the steel/concrete interface in (a) must be equal in magnitude to the
axial force and hence equal to the weaker of the forces in the steel and concrete
components. Therefore, the component forces C, in (b) must be the weakest of the
strengths of the three components P, P_and P_, that is the resultant force in the three
components of a composite beam C,, is equal to the strength of the weakest of the
three components of the composite beam.

Examples of the three possible component force distributions and hence
stress distributions are shown in Figures. 4.2(c) to (e). When the steel component is the
weakest of the three components, then C, = P, in (b), the steel component is
fully yielded as in (c) and there is one neutral axis that lies in the concrete
component as shown. When the concrete component is the weakest, then
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C, = P, the concrete is fully ‘yielded’ at fcy and the one neutral axis now lies in
the steel component as in (d). However, when the shear connection component is the
weakest, then C_ = P and neither the concrete nor the steel components are fully
yielded in one direction as shown in (¢), that is neither component is fully yielded in
either compression or tension, so that there are now two neutral axes. As described in
Section 1.4.2, the cases shown in (c) and (d) are often referred to as those of full-shear-
connection whereas that shown in (e) is referred to as one of partial-shear-connection.
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Figure 4.2 Resultant axial forces in components

4.2.2 Steel component weakest
4221 General

The composite beam shown in Figure 4.3 will be analysed in the following
examples to illustrate different aspects of composite construction. The beam has a
span of L_= 10 m as shown in (b) and it will be assumed that the composite beams
have a lateral spacing of T, = 5 m. Hence, the effective breadth of the concrete
component either side of the steel component is b . = 1750 mm as shown in (a);
this breadth is based on Ansourian’s approach' (Eq. 2.8). However, it is worth
noting that the Eurocode approach? gives an effective breadth of 1250 mm (Eq. 2.3)
which is 29% less. As these analyses are based on the steel component being
the weakest, it will be assumed that the strength of the shear connection on each
side of the design section in Figure 4.3(b), along the length of the shear span (L),
and along (L), is equal to or greater than the strength of the steel component.
Hence we are dealing with full-shear-connection. Units of N and mm will be used
throughout unless stated.

4222 Example 4.1 Full-shear-connection analysis

(a) Rigid plastic analysis of a composite beam

The rigid plastic analysis of the composite beam in Figure 4.3 is summarized in
Figure 4.4. As we are applying a full-shear-connection analysis, the first step is to
determine the distribution of the component forces C in (d). The strength of each
rectangular element in (a) is listed in (b), from which it can be seen that the strength
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of the concrete component is 9692 kN, the strength of the steel component is 2300
kN, and the strength of the shear connection component is shown as P which is
assumed to be greater than the weaker of the other two components. As the strength
of the steel component (2300 kN}) is less than the strength of the concrete component
(9692 kN), the component forces are equal to the strength of the steel component
(that is the weakest element) as shown in (d).

All units in N and mm unless shown
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Figure 4.3 Simply supported standard composite beam
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Figure 4.4 Example 4.1 Rigid plastic analysis of a composite beam

The neutral axis lies in the stronger component, which in this case is the
concrete component, and is shown at a depth n below the top fibre in Figure 4.4 (c).
As the steel component is uniformly stressed as shown in (c) and as the steel
component is symmetrical, the resultant force in the steel component, shown in (d),
acts at the mid-depth of the steel which is 320 mm from the top fibre as in (). The
axial force in the concrete component acts over a depth n and width 3500 mm of the
concrete component as shown shaded in (a). Equating this force to the strength of
this shaded section, that is 2,300,000 = 21.3 x 3500 x n, gives n = 30.9 mm.
Furthermore, the resultant axial force in the concrete component acts at n/2 = 15 mm



Rigid plastic analysis of simply supported beams 57

from the top fibre as shown in (e) where y is the distance of the component force
from the top fibre.

The magnitude and positions of all the flexural forces in the composite beam are
now known and shown in Figures. 4.4(d) and (e). Taking the moment of the two forces
about any convenient axis such as the top fibre or at a position of a resultant component
force gives the moment capacity of the composite beam as M, = 2300 x 0.305 = 702
kNm. The moment capacity is not sensitive to the effective width of the slab used in the
analysis, for example, using the Eurocode effective width (Section 4.2.2.1) which is
29% less than that used in this analysis, reduces the flexural capacity by only 2.0%.

It can also be seen in Figure 4.4(d) that the shear force across the steel/concrete
interface is 2300 kN. This is the force in the shear connectors in a shear span such as
L in Figure 4.2(a). In order to achieve full shear connection, the strength of the
shear connectors in each shear span, (L_),and (L ), in Figure 4.3(b) must be equal
to or greater than 2300 kN. Therefore, the total strength of the shear connectors in a
composite beam must be at least equal to twice the strength of the weaker of the
concrete and steel components, which in this example is 4600 kN, in order to achieve
full-shear-connection.

(b) Increase in strength due to composite action

A simple and familiar rigid plastic analysis could be used to calculate the moment
capacity of the steel beam in Figure 4.3(a), in order to determine the increase in
strength due to the composite action. However, the steel beam acting by itself is the
composite beam with no shear connection, that is with a zero degree of shear
connection. The flexural strength of the steel beam acting by itself will be determined
using composite analyses in order to introduce partial-shear-connection analysis
techniques; however the concept of partial-shear-connection will be covered in much
greater detail in Section 4.2.4.

The partial-shear-connection analysis of the composite beam with zero-shear-
connection is illustrated in Figure 4.5. It is worth comparing this analysis with the
full-shear-connection analysis shown in Figure 4.4. The strengths of the three
components are shown in Figure 4.5(b). The strength of the shear component P_ is
the weakest and equal to zero and, therefore, the component forces are all zero as
shown in (d). As the concrete component force is zero and as the tensile strength of
the concrete is assumed to be zero, the concrete element is unstressed as shown in
(c) with the neutral axis at the top fibre. As the steel component force is zero and as
the steel component is symmetrical, the neutral axis must lie at mid-depth of the
steel component as shown in (c) which gives the forces in (e) and their distances
from the steel/concrete interface in (f). Using (e) and (f) to take moments about the
interface gives the moment capacity of the steel element as 335 kNm. Therefore,
tying the steel beam to the concrete slab using shear connectors has increased the
flexural capacity by a factor of 702/335 = 2.1. This substantial increase in strength
combined with a similar increase in stiffness (illustrated in Chapter 3) emphasises
the enormous gain that can be achieved by making the concrete slab and the steel
beam composite.
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(c) Approximate approach for initial design

In most composite beams in buildings, the steel component is usually weaker
than the concrete component so that the full-shear-connection analysis illustrated
in Figure 4.4 will apply most of the time. The moment capacity is equal to the
strength of the steel component (A f ) times the lever arm between the forces in the
steel and concrete components shown as h in (d). For a composite beam with a
symmetrical I-section, the smallest value of h occurs when the strength of the concrete
component is equal to the strength of the steel component, in this case the lever arm
is equal to half the total depth D of the composite section shown in (a). Therefore
and as a first approximation, a lower bound to the full-shear-connection flexural
capacity is given by

M g < Ay f,(D/2) “-1)

Applying Eq. 4.1 to the composite beam in Figure 4.4 gives a lower bound to the

moment capacity of 587 kNm which is 16% less than the upper bound rigid plastic
strength of 702 kNm.
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Figure 4.5 Example 4.1 Partial-shear-connection analysis with zero shear connection

4.2.2.3 Example 4.2 Efficient forms of composite beams
The contribution of the top flange of the steel component in Figure 4.4(a) to the
moment capacity is small because it is close to the neutral axis. It can therefore be
seen that the main purpose of the top flange of the steel component is for the
attachment of the shear connectors. An efficient design would be to make the top
flange as small as possible or to remove it altogether as shown in Figure 4.6(a),
where the shear connectors are welded to the sides of the web of an inverted
T-section. Because the cover to the sides of the shear connectors is small in this
hybrid composite beam, the concrete element is prone to splitting as described in
Chapter 10 where design rules to prevent splitting are given.

The analysis of the hybrid beam is summarized in Figure 4.6; the area of the web
encased by the concrete in (a) has been ignored in the analysis. The strengths of the
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components of the composite beam are listed in (b) where it can be seen that the
steel component is the weakest at 1625 kN. Therefore, the steel element is fully
yielded in tension as shown in (c) and the strength of the steel component controls
the distribution of the component forces C as shown in (d). Because this steel
component is not symmetrical, it is much easier to deal with the forces F in the
rectangular elements as shown in (e) instead of the resultant component forces in
(d). The forces in the rectangular elements of the steel component act at the centroid
of the rectangular elements and their distance from the top fibre is shown in (f). The
depth of the neutral axis n in (c) is 22 mm and can be derived in the usual way by
equating the component force in the concrete element of 1625 kN to the strength of
the slab in compression which is 21.3 x 3500 x n.
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Figure 4.6 Example 4.2 Composite beams with inverted T steel component

By taking moments using Figures. 4.6(e) and (f), the moment capacity of the
composite beam without a steel top flange is 624 kNm which can be compared with
the capacity of the same composite beam but with the top steel flange in Example
4.1 of 702 kNm. Removal of the top steel flange has reduced the area of steel by
29% but has only reduced the moment capacity by 11%. In order to obtain full-
shear-connection, the strength of the shear connection in a shear span must be at
least 1625 kN as shown in (d), and hence the strength of the shear connection in the
whole beam must be at least 3250 kN.

4224 Example 4.3 Strengthening composite beams
The bottom flange in Figure 4.6(a) contributes to most of the moment capacity
as it is furthest from the neutral axis and, therefore, an efficient way of increasing
the flexural strength of a composite beam is to attach an additional flange as
shown in Figure 4.7. This additional flange can have a higher yield strength
than that of the I-section making the system even more efficient.

The steps of the analysis are summarized in Figure 4.7. The additional 220x26
mm flange has been chosen to virtually double the strength of the steel component
from 2300 kN to 4588 kN. However, the strength of the steel component
(P, = 230042288 = 4588 kN) is still weaker than that of the concrete component
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Figure 4.7 Example 4.3 Strengthening composite beams

(P_=9692 kN) so that the steel component still controls the distribution of component
forces as shown in (d). From (d) and (e), the moment capacity is now 1790 kNm
which is 2.6 times the strength of the original composite beam and 5.3 times the
strength of the I-section acting by itself. It can be seen that doubling the strength of
the steel component by the addition of a steel flange increases the moment capacity
of the composite section by a greater factor (2.6) as the additional flange is placed at
its most efficient position.

In order to achieve this increase in the moment capacity, it would be necessary
to increase the strength of the shear connectors in a shear span from 2300 kN
(as shown in Figure 4.4(d)) to 4588 kN as shown in Figure 4.7(d). This can be achieved
with the addition of friction grip bolts as shown in (a). However, if it is impractical to
add more shear connectors, then the increase in strength can be derived from partial-
shear-connection analyses as in Example 4.7. The additional 220 x 26 mm flange has
to be attached to the I-section by bolting or welding as shown in Figure 4.7(a) and the
strength of this shear connection per shear span must be at least equal to 2288 kN as
shown in (d) in order to achieve full-shear-connection for the additional flange.

4.2.2.5 Example 4.4 Composite beams with longitudinal ribs

The previous examples have dealt with composite beams with solid slabs. An alternative
and common form of construction is a composite beam that has a composite profiled slab
as its concrete component. The ribs of these composite slabs can be longitudinal to the
composite beam as shown in Figure 4.8(a) or they can be transverse to the composite
beam as in Figure 4.10. As with the hybrid beam in Figure 4.6(a), composite beams with
longitudinal ribs as in Figure 4.8(a) are prone to splitting because of the limited side
cover to the shear connectors. It is up to the designer to determine whether the splitting
resistance, as determined in Chapter 10, controls the strength of the shear component.
In order to design the composite beam in Figure 4.8(a), we will use the effective section
in (b) as described in Section 2.2.3, which has the same cross-sectional area of slab as
in (a). To further simplify the problem, we will assume that the haunch has vertical
sides as shown in (b} as the error is minuscule.
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Figure 4.8 Equivalent section of a composite beam with longitudinal ribs

The composite beam in Figure 4.8(b) has been analysed in Figure 4.9 for
different yield strengths of the steel of 250 N/mm? and 400 N/mm?. For f =
250 N/mm?, the strengths of the elements are shown in (b). It can be seen that the
strength of the steel component (2300 kN) is less than the strength of the concrete
component (2722 + 1166 = 3888 kN). In fact the strength of the steel component
is smaller than the strength of the upper element of the concrete component
(2722 kN), and therefore the neutral axis lies in this upper element, that is above the rib.
Because the neutral axis lies above the rib, the analysis is the same as that of the composite
beam with a solid slab in Figure 4.4, except that the width of the slab is now 1830 mm
instead of 3500 mm in Figure 4.4. The depth of the neutral axis n = 2,300,000/(1830
% 21.3) = 59 mm and hence the moment capacity is now 2300 x 0.2905 = 668 kNm. It
can be seen that virtually halving the width of the slab from 3500 mm to 1830 mm has
only reduced the strength from 702kNm to 668 kNm that is by 5%.

The analysis when fy: 400 N/mm? is shown in Figures. 4.9(c) to (f). The strength
of the steel component (3680 kN) is still weaker than the strength of the concrete
component (2722 + 1166 = 3888 kN) but stronger than the strength of the upper
element of the concrete component. Therefore, the neutral axis now lies in the lower
element of the concrete component as shown in (d) and, furthermore, the resultant
force in each component is equal to the strength of the steel component (3630 kN)
as shown in (e). The distribution of the force in the concrete component of 3680 kN
consists of 2722 kN in the upper element with the remainder of 958 kN in the lower
element as shown in (e). If n is the depth of concrete in compression in the lower
concrete element as shown in (a) and (d), then by equating the element force (958 kN)
to the strength of the concrete element in compression (915xnx21.3) gives
n=49.2 mm. The resultant forces and their distance from the top fibre are shown in
(e) and (f) from which it can be determined that the moment capacity is 991 kNm.

The analysis procedure described in the previous paragraph was based on the fact
that the resultant force in each component is equal to the strength of the weakest
component. An alternative way of visualizing the problem is that the compressive
force above the neutral axis is equal to the tensile force below the neutral axis. Take
for example the beam in Figure 4.9 with f, =400 N/mm? and where the strengths of
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Figure 4.9 Example 4.4 Composite beam with longitudinal ribs

the elements are listed in (c). The element in which the neutral axis occurs can be
determined by trial and error. For example if the neutral axis were assumed to be at
level A, the resultant force is tensile and equal to 3680 — 2722 = 958 kN, however,
at level B the resultant force is compressive and equal to 3680 — 2722 — 1166

=-208 kN. Therefore, the neutral axis lies between levels A and B.

4.2.3 Concrete component weakest
4.2.3.1 General

Occasionally the concrete component is weaker than the steel component. This can
happen in composite L-beams such as that shown in Figure 4.8(a), particularly if the
concrete component is a composite slab as the profiled ribs reduce the area of concrete.
This is also often the case in unpropped composite bridge beams where deflection is
amajor design criterion necessitating a large steel element. It will again be assumed
in the following analyses that the strength of the shear connection in a shear span is
greater than the strength of the concrete component and hence we are still dealing
with full-shear-connection analyses.

4232 Example 4.5 Full-shear-connection analysis of a composite

beam with transverse ribs

(a) Rigid plastic analysis

A composite L-beam that has a composite slab with transverse ribs is shown in
Figure 4.10. The flexural strength is governed by the weakest cross-section which
occurs between the transverse ribs such as at A-D in (b). Therefore, the section to
analyse has a solid slab of depth A-B and a steel element of depth C-D that is separated
by the void due to the ribs of depth B-C as shown in Figure 4.11(a).

By inspection of the element strengths in Figure 4.11(b), the neutral axis lies in
the top steel flange. If the neutral axis lies at a distance n below the concrete/steel
interface as shown in (c), then equating the compressive force above the neutral axis
(2,729,000 + (160 x n x400)) to the tensile force below (160(18 —n)400 + 1,376,000
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Figure 4.10 Composite L-beam with transverse ribs

+ 1,152,000) gives n = 7.4 mm and, hence, the magnitudes and positions in (d) and
(e), from which can be determined the moment capacity of 955 kNm. It can be seen
in (d) that the strength of the shear connection per shear span must be 2729 kN.

(b) Equivalent stress block approach

The strength and stress distributions in Figures. 4.11(b) and (c) are shown in Figures.
4.12(a) and (b). A simpler analytical approach is to use the equivalent stress system
in (c) in which all of the steel element is yielded in tension at f_ and the part that is in
compression has an increased stress of 2f . It can be seen that this equivalent stress
distribution has the same resultant stress distribution as in (b).

Consider the equivalent stress system of Figure 4.12(c). The tensile force in the
steel component is 3680 kN as shown in (d) and as the resultant force in the steel
component is 2729 kN, the compressive force is 951 kN as shown. If the depth of
the neutral axis is n as in (c), equating the compressive force (951 kN) to the strength
of the steel flange in compression (160 X n x 400 x 2) where the yield strength in
compression is 2f , gives n=7.4 mm and the position of this compressive force from
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Figure 4.11 Example 4.5 Full-shear-connection analysis
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Figure 4.12 Example 4.5 Equivalent stress block approach

the top fibre as 134 mm in (e). It can be seen that deriving the moment capacity from
Figures. 4.12(d) and (e) is much simpler than from Figures. 4.11(d) and (e).

4.2.4 Shear component weakest

4.2.4.1 General

When the strength of the shear component is the weakest of the three components, then
the component forces are equal to the strength of the shear component and this is referred
to as partial-shear-connection. Partial-shear-connection can occur in com-posite beams
with transverse ribs, as in Figure 4.10(b), because there are a limited number of troughs
through which the connectors can be welded and also because the voids either side of
the troughs weaken the shear connection as explained in Chapter 5. Furthermore, a
composite beam may start with full-shear-connection, but the shear connection may
weaken with time due to splitting (Chapter 10) or fatigue (Chapter 15), so that the beam
eventually has partial-shear-connection. Or quite simply, the designer may find that the
full-shear-connection strength is more than required and hence uses fewer shear
connectors to reduce both the strength and the cost.

4.2.4.2 Example 4.6 Partial shear connection analysis

The composite beam in Figure 4.4 was originally designed with full-shear-connection
where the strength of the shear connection in a shear span was at least 2300 kN as
shown in (d). Let us assume that the traversal of a concentrated load caused splitting
and that the post-splitting strength (Chapter 11) is 20% weaker at 1840 kN. The
composite beam now has partial-shear-connection and the degree of shear connection
as defined in Section 1.4.2.3 and Eq. 1.13 is 80%. The analysis of the composite
beam is shown in Figure 4.13 where the strengths of the components are shown in
(b). As the shear component is the weakest component, the resultant force in all
three components is equal to the strength of the shear component as shown in (c)
and, furthermore, there are now two neutral axes as shown in (d). The equivalent
stress distribution in (¢) will be used in the following analyses.
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Figure 4.13 Example 4.6 Partial-shear-connection analysis

The concrete component is not fully stressed in compression as shown in Figure
4.13(e). The neutral axis position n, can be determined by equating the component
force (1840 kN) to the strength of the concrete compression zone (3500 x n,x21.3)
to give n, = 24.7 mm. The steel component is also not fully stressed in tension. The
neutral axis position n, can be determined by inspection. Consider the strengths of
the steel rectangular elements in (b) and recall that the resultant force in the steel
component is 1840 kN as in (c). If the neutral axis is at level A in (b), then the
resultant tensile force in the steel component is the tensile force below the neutral
axis less the compressive force above, that is (720 + 860) x 720 = 860 kN which is
less than the required value of 1840 kN. Therefore the tensile force has to be increased
by raising the neutral axis above level A, that is into the top steel flange where the
neutral axis is shown at a distance n, in (d). The force in the compression zone of the
steel element in (e) must equal 2300 - 1840 = 460 kN and equating this force to the
strength of the compression zone (160 x n, x 500) gives n, = 5.8 mm.

From Figures. 4.13(f) and (g), the moment capacity is 653 kNm. It is worth noting
that a 20% reduction in the strength of the shear connection from full shear connection
has only reduced the moment capacity from 702 kNm to 653 kNm, that is by 7%. It
can be seen that the moment capacity of a composite beam with an initial high
degree of shear connection is not sensitive to reductions in the strength of the shear
connection, so that composite beams can generally withstand substantial damage to
the shear connection with minimal effect on their flexural capacity.

4243 Example 4.7 Strengthening of composite beams
The composite beam in Figure 4.3 was strengthened in Figure 4.7 by adding a flange
and extra shear connectors. Let us now assume that it is impractical to add more shear
connectors and hence the composite beam now has partial-shear-connection, and the
degree of shear connection is the strength of the original shear connection divided by
that required for full-shear-connection, that is 1 = 2300/(2300 + 2288) = 50%.
The analysis of the beam is shown in Figure 4.14. The elements in which the
neutral axes can occur can be determined by inspection. Equating the force in the
concrete element (2300 kN) to the strength of the area in compression (3500 x n,
x21.3) gives n, = 30.9 mm.
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Figure 4.14 Example 4.7 Strengthening a beam with partial-shear-connection

The steel component force is 2300 kN as shown in Figure 4.14(c), the tensile
strength of the steel component is 4588 kN as in (b), and the compressive strength
of the top steel flange is 2 X 720 = 1440 kN as in (e) because the compressive yield
strength of the top flange is assumed to be 2fy = 500 N/mm? as shown in (d). As the
steel component force is 2300 kN, from (e) it can be seen that 4588 — ch.. =2300
whereF s the compressive force in the steel component with the stress distribution
in (d). Therefore | 2288 kN. The force F,_is resisted by the top flange and
part of the web as shown in (d) hence the compressive force in the web is 2288 —
1440 = 848 kN which is equal to the strength of the web in compression (10 x n, X
500), and hence n, = 169.6 mm. The magnitudes of the forces and their positions are
now know and shown in (e) and (f) from which the moment capacity is 1500 kNm.

1t can be seen from the calculations in Figure 4.14 that, even though additional
shear connectors were not added to provide full-shear-connection, the inclusion
of the plate has substantially increased the moment capacity from 702 kNm to
1500 kNm. Another way of viewing this situation is that a 50% reduction in
the shear connector capacity of the composite beam from full-shear-connection
has only reduced the flexural capacity by 16% from 1790 kNm to 1500 kNm. It is
worth noting that the strength of the bolt shear connectors shown in Figure 4.14(a)
must still remain at 2288 kN per shear span as the force in the additional plate is
unchanged. It is also worth noting that composite beams with low degrees of shear
connection are prone to premature failure due to fracture of the shear connectors as
described in Chapter 5.

425 Effect of vertical shear on the flexural capacity
4.2.5.1 Equivalent flexural yield strength

The vertical shear force in a composite beam is assumed to be resisted entirely by
shear stresses in the web of the steel element. These shear stresses T, reduce the
flexural stress that cause the web to yield from the yield strength fy to an equivalent
yield strength f; that can be derived from von Mises yield criterion described in
Section 1.3.2 as



Rigid plastic analysis of simply supported beams 67

4.2)
fry=\fy =3t

where the shear stress T_ is assumed to be uniformly distributed over the web.

4252 Example 4.8 Reduction in flexural capacity due to vertical

shear forces

Let us determine the reduction in the flexural capacity due to vertical shear
forces for the composite beam in Figure 4.3 when it is subjected to a uniformly distributed
load and when the composite beam has a uniform distribution of shear connectors.
From Section 4.2.2.2, the composite beam has a full-shear-connection moment capacity
of 702 kNm. Therefore, the beam can support a uniformly distributed load of 56.2 kN/
m over its span of 10 m which gives reactions at the supports of 280.8 kN.

As there is a uniformly distributed load, the vertical shedr force at mid-span
is zero and hence the full-shear-connection moment capacity of 702 kN is not
reduced at this section. At the supports, the vertical shear force is at its greatest
but the applied moment is zero, so the effect of vertical shear is irrelevant unless
the shear stress exceeds f /3. Instead, let us consider the effect of the vertical
shear on the beam at the quarter-span where the vertical shear force is 140.4 kN. At
the quarter-span, the degree of shear connection is 50% as there is a uniform distribution
of shear connectors, that is the strength of the shear connection between the quarter-
span and the support is half the strength between mid-span and the support.

The analysis at the quarter-span is shown in Figure 4.15. The average shear stress
in the web is T = 140,400/(344 x 10) = 40.8 N/mm?and hence from Eq. 4.2 f =
239.8 N/mm? which is only a slight reduction from the yield strength of 250 N/mm2
The strength of the elements are shown in Figure 4.15(b) where the strength of the
web of 825 kN is based on f, . The analysis follows the usual procedure in (c) to (e)
which gives a moment capacity of 562.8 kNm. If the effect of the vertical force is
ignored, then the strength of the web in (b) is now 860 kN instead of 825 kN and the
moment capacity is 569.3 kNm. Hence, the vertical shear force has only reduced the
moment capacity by 1.1% which is irrelevant and generally ignored in practice.
However, it is worth noting that the vertical shear force has a much greater effect in
negative regions where the position of the maximum shear and maximum moment
coincide (Chapter 12), and also in the vicinity of service ducts (Chapter 9) where a
mechanism is required to transfer the shear forces across the duct.

4.3 Rigid plastic flexural capacity of encased composite

beams
4.3.1 General

The full-shear-connection analysis of an encased composite beam differs from the
analysis of a standard composite beam because one component is now encased by
the other and, therefore, the neutral axis must now lie in both components.
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Figure 4.15 Example 4.8 Effect of vertical shear forces at quarter-span

43.1.1 Example 4.9 Infilled box section

(a) Full shear connection analysis
The full-shear-connection analysis of an infilled box section is shown in
Figure 4.16. The strengths of the rectangular elements are shown in (b), the
stress distribution in the concrete component in (c), and the equivalent stress
distribution in the steel component in (d). The neutral axis position in (c) and (d)
can be determined by bearing in mind that the total force above the neutral axis,
that is in the steel and concrete elements, is equal to the total force below. Hence
by inspection, the neutral axis lies below the inside of the top flange at the distance
n as shown. Using the equivalent stress system in (d), the tensile force of
924 kN in (e) is the strength of the steel component, the ‘strength’ of the steel
flange in compression is 360 kN and, therefore, the remaining steel and concrete
in compression must resist a force of 924 — 360 = 564 kN. Equating this force
to the sum of the ‘strength’ of the steel in compression (12 X n x 500) and the
strength of the concrete in compression (29.8 X n x 108) gives n = 61.2 mm.

The magnitudes and positions of all the forces in Figures. 4.16(e) and (f) are
now known, from which the moment capacity is 70.5 kNm. This is only slightly more
than the moment capacity of the steel component acting by itself of 61.4 kKNm. However,

120 . P(kN) Guam Gr. qu.steel F(kN) y(mm)
180 (steel flange) __ J s [==360_____ 3
f.=35 pog n | €564 37
- f., =29.8] | 564 (steel web)
20 5 |
f, =250 605 (concrete) 250| i)zj 100
| = (180+564+180)
e |
A/ o _ el [(emTr——
6 180 (steel flange) ___ M S
(a) (b) (c) (d) (e) ()

Figure 4.16 Example 4.9 Full-shear-connection analysis
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it is worth noting that the addition of the concrete substantially increases the local
buckling strength of the steel elements as now they can only buckle away from the
concrete component and, furthermore, the addition of the concrete substantially increases
the flexural ductility of the structure making it ideal for earthquake zones.

As with the standard composite beam in Section 4.2, the resultant force in
the concrete component in Figure 4.16(c) is equal to the resultant force in the
steel component in (d) which is equal to the resultant force in the shear connection
component in a shear span. The component force, and hence the shear connector
force in a shear span, can be determined from the resultant force in either (c) or
(d) and is equal to 197 kN. This shear connector force acts uniformly around the
perimeter of the interface between the steel and concrete components (because
the slip-strain throughout the depth of the beam is constant’) of length 592 mm,
and on a area extending the full length of the shear span, which we will assume to
be 2 m. Therefore, the bond strength required for full-shear-connection is
(197000/(592 x 2000)) = 0.17 N/mm?,

(b) Partial shear connection analysis

Let us assume that, in the previous example in Section 4.3.1.1(a) above, the strength
of the shear connector component is less than the 197 kN required for full shear
connection and is equal to 100 kN. We are therefore dealing with a composite beam
with partial-shear-connection and, therefore, the resultant force in both the steel
component and the concrete component is 100 kN. The partial-shear-connection
analysis is shown in Figure 4.17.

The resultant force in each component is now 100 kN as shown in Figure 4.17(c).
Because there is partial-shear-connection, there are two neutral axes as shown in (d)
for the concrete component and in (f) for the steel component, and their positions can
be determined by considering each component separately. The distribution of forces in
the steel component is shown in (g). For the resultant force to be 100 kN, the neutral
axis must lie below the top flange as shown in (f) and the ‘compressive’ force below the

top flange F,can be derived from 924 -360 -~ F, =100 kN and hence E =464
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: throughout
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Figure 4.17 Example 4.9 Partial-shear-connection analysis
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kN. Equating this force to the ‘compressive’ strength of the steel component below the
top flange (12 X n, x 500) gives n, = 77.3 mm. The positions of all the forces from the
top fibre are shown in brackets in (h). Using a similar procedure for the concrete
component gives n, = 31.1 mm and the position of the force in brackets in (e). The
moment capacity can be determined from (e) and (h) and is equal to 68.2 kNm.

4.4 Variation of flexural capacity along the length of

the beam
4.4.1 General

In all of the previous sections of this chapter, we dealt with the flexural capacity
at a design position, such as at section A-A in Figure 4.3(b). This design section
is usually chosen at the position of the maximum applied moment. The strength
of the shear connector component is the strength of the shear connectors in a
shear span, and it is necessary to ensure that this strength is the same in the
shear spans on either side of the design position. The maximum degree of shear
connection occurs at this design position which will be referredtoasn_, .

The shear connectors have to be carefully distributed within each shear span in
Figure 4.3(b) in order to ensure that the variation of the flexural strength along the
length of the beam is never exceeded by the distribution of the applied moment
along the length of the beam. Furthermore, it is also necessary to choose a distribution
of shear connectors that ensures that the connectors do not fracture prematurely
due to excessive slip as described in Chapter 5.

4.4.2 Uniformly distributed shear connection
44.2.1 General

Most composite beams in buildings are designed to resist an applied load
that is uniformly distributed along the length of the beam. It is normal practice to design
these beams with a uniform distribution of shear connection, that is the shear flow
strength of the shear connectors is constant throughout the length of the beam.

4.4.2.2 Example 4.10 Variation in the moment capacity
(a) Equilibrium approach
A half-span of the composite beam in Figure 4.3 is shown in Figure 4.18(a). The
beam is subjected to a uniformly distributed applied load and the shear connectors
are also uniformly distributed as shown. The beam was analysed in Figure 4.4 for
full-shear connection where it was shown that the moment capacity is 702 kKNm. It
was also shown that the strength of the shear connection in a shear span required for
full-shear-connection, thatism__ =1, is 2300 kN and, therefore, the beam requires
a shear-flow-strength of Q, = 2300/5 = 460 kN/m.

As the beam in Figure 4.18(a) is subjected to a uniformly distributed load, the
maximum applied moment occurs at mid-span at section A-A where the degree of
shear connectionn =n___= 1. Consider section B-B at a quarter span. The strength
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of the shear connection in the shear span to the left of this design point is
Q. (L), =460 x25 = 1150 kN, and the strength of the shear connection in the
shear span to the right is Q (L), =460 x 7.5 = 3450 kN. The maximum thrust that
the connectors can apply at this design point is the weaker of these two strengths,
that is 1150 kN, and, therefore, the degree of shear connection at the quarter-span
is 1150/2300 = 0.5. Similarly at section C-C which is adjacent to the support, the
strength of the shear connectors to the left tends to zero so that n—0. It can be seen
that the degree of shear connection varies along the half span from 1 = 0 at the
supports tony =n__ = 1 at mid-span and because there is a uniform distribution of
shear connectors, the variation in the degree of shear connection along the shear
span is linear as shown in (c).

In the previous worked examples, the moment capacities at degrees of
shear connection of 0, 0.5, 0.8 and 1 were calculated and these have been plotted
in Figure 4.18(b) as the ‘moment capacity’ curve. It can be seen that the moment
capacity varies from the strength of the steel component acting by itself
(M, =335 kNm from Example 4.1(b)) at the supports, to the full-shear-connection
moment capacity (M, =702 kNm from Example 4.1(a)) at mid-span. Also plotted
in (b) is the ‘applied moment’ distribution which varies from zero at the supports to
that of the moment capacity at mid-span. In this example, the applied moment exceeds the
moment capacity in region D-E and hence the beam will be slightly weaker than anticipated.
This can be corrected by adding more connectors or moving the connectors towards the
supports but this slight difference is usually ignored in practice.
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Figure 4.18 Example 4.10 Uniform distribution of shear connectors
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(b) Linear interpolation approach

The design procedure can be simplified by assuming a linear variation in the
moment capacity from M_ = 335 kNm to M, _ = 702 kNm as shown by the ‘linear
interpolation’ line in Figure 4.18(b). For example, let us assume that we only
require a moment capacity of 569 kNm, hence, from the ‘linear interpolation’ line
in (b) we require a degree of shear connection of n_,_ = (569 — 335)/(702 - 335) =
0.64. Therefore to achieve a strength of 569 kNm, the beam can be designed with
partial-shear-connection and with only 64% of the shear connectors required for
full-shear-connection. The linear interpolation approach is conservative. If the
more accurate equilibrium approach had been applied, then from Example 4.8,
the degree of shear connection would be 50% instead of 64%.

443 Non-uniformly distributed shear connection
4.4.3.1 General

When beams are subjected to concentrated loads or variable distributed loads,
then it may become unsafe to use a uniform distribution of shear connectors, as the
applied moment may substantially exceed the mement capacity in regions along
the shear span or fracture of the shear connectors due to excessive slip may occur.
The designer could guess a configuration of connectors and then check for strength
at various design positions using the procedure described in Section 4.4.2 and
also check for fracture using Chapter 5, however, this may be impractical. Instead,
the designer may use guidelines or rules of thumb. One such guideline is to concentrate
the connectors according to the distribution of the vertical shear force V as
the longitudinal linear elastic shear flow force q is proportional to V, that is
q = VQ/I = VAy /1. It should be remembered that this is only a guideline as we are
dealing with rigid plastic theory and not linear elastic theory from which the VAy
equation is derived.

4432 Example 4.11 Distribution of shear connectors

The beam in Figure 4.3 bas a shear connector strength per shear span of
2300 kN and is subjected to the applied loads in Figure 4.19(a). The vertical shear force
distribution is shown in (b) from which it can be seen that the position of maximum
moment (zero vertical shear force) occurs at mid-span, and hence the shear spans are of
equal length of Sm and each requires a strength of shear connection of 2300 kN.

The areas of the shear force diagram between the concentrated loads in Figure
4.19(a) is shown in brackets in (b). It is normal practice to distribute the connectors
according to these areas. Therefore in the span A-B, the required strength of the
shear connectors is 2300 x (542/(542 + 160)) = 1777 kN as shown in (c), and similarly
the strength of the shear connection in B-C in (b) is 2300 x (160/(542+160)) = 523
kN. As C-D in (b) is a shear span, the strength of the shear connectors is 2300 kN as
shown in (c). Therefore, the mean shear flow strength required in span A-B is
1777/2.5 = 711 kKN/m as shown in (d) and similarly that required in B-C is
209 kN/m, and that required in C-D is 460 kN/m, It is worth noting that even though
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Figure 4.19 Example 4.11 Distribution of shear connectors

there is a linear variation in the linear elastic shear flow force in regions A-B and
C-D (as shown by the linear variation in V in (b)), the shear flow strengths are kept
constant in these regions as shown in (d), which is in line with the procedure described
in Section 4.4.2 where the shear flow strength was kept constant in a beam with a
uniformly distributed load.
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5 Mechanical shear connectors

5.1 Introduction

The linear elastic shear flow forces in composite beams were derived in Chapter 3
and the rigid plastic shear flow forces in Chapter 4. These shear flow forces have to
be resisted by the shear flow strengths of the mechanical shear connectors that are
used to tie the concrete component to the steel component. There is an enormous
variety of mechanical shear connectors as shown in Figure 1.2 so their properties
are always determined experimentally in simple push-tests where the shear load is
applied directly to the shear connection'. Furthermore, all of these mechanical shear
connectors resist the shear flow forces by acting as steel dowels embedded in a
concrete medium as shown in Figure 5.1, they all require slip between the concrete
component and the steel component to resist these shear forces which are also shown,
and they all have to be able to prevent the concrete component from separating from
the steel component which is the purpose of the head of the stud.

This chapter will only deal with stud shear connectors, which are unthreaded bolts that
are welded to the steel component and then encased in concrete as in Figure 5.1, as these
are the most common form of shear connection. The diameter of the shank d , varies from
about 13 mm to 22 mm, with 19 mm being a common size for use in composite beams in
buildings. The head of the stud is about 1.5d, wide and 0.5d | deep, and the weld collar is
about 1.3d, wide and varies in heighth__ from zero to about 0.4d,,. The height of the stud
h_ is usually greater than 4d,, with a common size being 5d,.
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Figure 5.1 Dowel action of a stud shear connector
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A typical experimentally determined shear-load/slip characteristic of a stud shear
connection is shown in Figure 5.2. The initial response O-B is reasonably linear up to a
slips at S_of about 0.1d, at which point plasticity commences. There is then a plastic
plateau B-C at the maximum dowel strength D__, until the stud fractures due to excessive
slip at S, which occurs at about 0.3d,. The response is not unlike the stress/strain
relationship of many steels as shown in Figure 1.8. However, unlike steel where the strain
at fracture is about 100 times the yield strain, the slip at fracture S , is only about 3 times
the slip at which plasticity commences S, Hence, a major concem in composite beam

design is to ensure that the connectors do not fracture prematurely due to excessive slip.

elastic region g plastic plateau
< > 1< —iC
Dmax B
Shear

load ! D E
{
(Fsh) d
|

0 Sl Sp Sy Sz Sult

Slip (s)

Figure 5.2 Load/slip characteristics of a stud shear connector

The analyses presented in this chapter are based on the maximum dowel strengths
D, of stud shear connectors that can be achieved when all the other failure modes
that are described in Chapters 6 and 10 are designed against. Detailing rules are first
given to ensure that this dowel strength can be achieved, this is followed by methods
for determining the dowel strengths and the distribution of connectors in a beam
and, finally, procedures are described to ensure that these connectors do not fracture
prematurely due to excessive slip.

5.2 Local detailing rules
5.2.1 General

The transfer of the longitudinal shear by the dowel action of the stud shear
connection exerts very high stresses onto the concrete surrounding the stud and to
the steel plate to which the stud is welded. For example, the concrete in the bearing
zone shown in Figure 5.1 has to be restrained triaxially to resist the bearing
stresses that have to exceed 10 times the cylinder strength of the concrete f in
order for the dowel strength to be achieved. The distribution of these stresses, that
are local to the dowel, is extremely complex, so we have to resort to empirically
derived detailing guidelines to ensure that premature failure does not occur due to
these local stresses.
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5.2.2 Shape of stud shear connections

The maximum dowel strength D__ varies from about 50 kN to 250 kN, depending
on the diameter of the shank and the material strengths of the concrete f_and the stud
f . The dowel strength also depends on the height of the stud, as short studs tend to
pull out of the concrete. Research! suggests that the maximum dowel strength is
achieved when the height of the stud h_> 5d_ as shown in Figure 5.1. Research has
also shown' that the dowel strength depends on the height of the weld collar h__ as
the weld collar has a much larger cross-sectional area than the shank of the stud and,
hence, can resist a substantial amount of the longitudinal thrust. The analyses in this
chapter will be limited to groups of stud shear connectors where the mean height of
the weld collars h _ > 0.2d, and where h 2 5d, .

The dowel action of a stud shear connector imposes high stress concentrations
on the steel flange of thickness t,in Figure 5.1. In order to prevent the flange tearing, it
is recommended that the flange thickness t > 0.4d_, and that the distance between the
edge of the connector and the edge of the flange L >1.3d, as shown in Figure 5.3(a).

5.2.3 Spacing of stud shear connectors

In the dowel mechanism for transferring the shear flow forces, a small volume of concrete
adjacent to both the weld collar and the shank in the bearing zone in Figure 5.1 is
crushed. In order to ensure that this failure zone does not affect adjacent connectors, the
longitudinal spacing of the connectors L, > 5d, as shown in Figure 5.3(b) and the
transverse spacing L. > 4d_ . Furthermore, in order to limit the separation between the
steel and concrete components in the region between the connectors, so that we can
assume that the curvatures are the same in both components, the longitudinal spacing
L, > 6h_as in (b) where h_is the depth of the slab as in (a). It is also suggested that,
wherever possible, the connectors are staggered over the width and length of the flange
as shown in (c), in order to prevent a longitudinal crack forming in the concrete
component due to the splitting action of the shear connectors', and in order to prevent
shear failure of the concrete component as described in Chapter 6. The alternative of
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Figure 5.3 Detailing rules for stud shear connections
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a single line of stud shear connectors may be aesthetically pleasing to an engineer
but can cause the connectors to slice through the slab prematurely.

5.3 Dowel resistance to the shear flow forces
5.3.1 General

The shear flow forces are usually derived from rigid plastic analyses (Chapter 4) for
composite beams in buildings and from linear elastic analyses (Chapter 3) for
composite beams in bridges. These shear flow forces are resisted by the shear flow
strengths of the stud shear connectors. These strengths are derived empirically from
push tests' in which the shear connection is loaded directly, in comparison with
composite beams where the shear connection is loaded indirectly through the flexural
action of the beam. In the following section, several procedures will be described
for determining the shear flow strengths and these will be used to determine the
distribution of connectors in composite beams in buildings as well as in bridges.

5.3.2 Mean strength in push-tests approach

5.3.2.1 Meandowel strength of stud shear connections in push-tests
The mean strength of stud shear connections in push-tests? is given by the following equation.

(5.1a)
(Dmax )push =050Ay, v f E

when

£, 2486 N / mm? G.16)

where A is the cross-sectional area of the shank of the stud and E_is the short term
Young’s modulus for the concrete surrounding the stud, and in which the ultimate
tensile strength of the stud material in these tests was f =486 N/mm? The most important
parameter in Eq. 5.1 is the cross-sectional area of the shank A at the level of the main
failure zone shown in Figure 5.1 where the critical flexural and shear stresses are resisted.
The concrete parameter */f E. in Eq. 5.1 affects the position e of the shear force F, in
Figure 5.1 and hence the ﬂexural stresses in the shank. For normal density concrete, the
material stiffness of the concrete E_can be derived from Section 1.3.5.1 where

E, =5050,f, G-

when E_and f_ are measured in N/mm?.
5.3.2.2 Example 5.1 Mean dowel strength in push-tests approach

(a) Composite beam
Let us determine the number and distribution of the stud shear connectors for the
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simply supported composite beam of span 10 m in Figure 4.3, which has full-shear-
connection and when the beam is subjected to a uniformly distributed load. The strength
of the concrete f =25 N/mm?, the depth of the slab h_ = 130 mm, and the thickness and
width of the flange to which the studs are welded are t, = 18 mm and w,= 160 mm. As
the beam is subjected to a uniformly distributed load, the maximum moment occurs at
mid-span and, hence, the shear span is half the length of the beam, thatis L_=5m, and,
furthermore, the connectors need to be distributed uniformly along a shear span.

The rigid plastic full-shear-connection analysis for this composite beam is given
in Example 4.1 in Section 4.2.2.2 and illustrated in Figure 4.4. From Figure 4.4, it

can be seen that the shear force P in a shear span is 2300 kN.

(b) Stud shear connections
When the strength of a single shear connectionis D__, then the number of connectors
N, required in a shear span is given by

Pgp, = Dipax N gs 5.3)

In order to determine the number of connectors in a shear span N_, we first need to
determine the shear strength D__ .

In our beam f = 25 N/mm? (Figure 4.3), then from Eq. 5.2, E = 25,250 N/mm?. From
the detailing rules described in Section 5.2.2 and in order to prevent the steel flange of
thickness t = 18 mm from tearing, d < t/0.4 =45 mm. We will, therefore, use a 19mm
diameter stud so that A =284 mm?”. Substituting these valuesinto Eq. 5.1 gives (D, ), .=
113 kN. Therefore from Eq. 5.3, the number of connectors required in a half spanis N_
=2300/113 = 21 connectors. It is important to realize that these dowel strengths were
derived empirically from stud shear connections in which f =486 N/mm’ and, hence, it is
essential to choose studs with steel strengths at least equal to those tested.

(c) Detailing

The longitudinal spacing for a uniformly distributed single line of connectors is
givenby L =L _/N_=5000/21 =238 mm. This is less than the maximum permitted
spacing of 6h = 6x130 = 780 mm and greater than the minimum spacing of
5d, =5%x19=95mm defined in Section 5.2.3. Therefore, these connectors could be
placed in a single line but in order reduce the possibility of splitting, they will be
spread over the width of the flange as in Figure 5.3(c). As w, = 160 mm and
L =1.3x19=25 mm, then L, = 160-50-19 =91 mm. As the connectors are staggered,
there is no need to ensure that L. 2 4d .

5.3.3 Characteristic strength in composite beams approach
5.3.3.1 Characteristic dowel strength of stud shear connectors in

composite beams
The 5% characteristic strength of a group of stud shear connectors in a composite
beam is given by’
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f 0.35 E 040 (5.48)
C 4da
(Dmax )beam = Ken Asn fu (f_c') (’E‘:]
u
in which
1.2
Ko =47 - (.40)

[N,
and which applies within the material bounds of

10<E_<33kN/mm?, 24<f <8 1N/mm? and 430<f,<640N/mm’ (5.4¢)

where N_ is the number of connectors that can be assumed to fail as a group and
which is often taken as the number of connectors in a shear span N, and E_ is the
Young'’s modulus for the steel used in the stud which can be taken as 200 kN/mm?,
The equation was derived from tests with the range of material properties in Eq.
5.4c and should not be used beyond this range.

The parameter A_f in Eq. 5.4a represents the strength of the shank of the stud.
Whereas, the parameters (f /f )*** and (E/E )*“ are factors that cope with changes to
the material properties.

Let the load/slip curves O-B-C and O-D-E in Figure 5.2 represent the behaviour
of two stud shear connectors in the shear span of a composite beam. The difference
between the two curves represents the normal scatter of strengths and deformations
that is to be expected. Let us assume that the flexural deformation of the composite
beam induces a slip in both connectors of s . It can be seen that the strengths of both
connectors is achieved at this slip because of their plastic plateaux. Hence in composite
beams with ductile connectors such as stud shear connectors, it is not necessary to
design for the probability of an individual connector failing but for the group of
connectors failing. This is allowed for in Eq. 5.4a by the parameter K, which is
defined in Eq. 5.4b and which depends on the number of shear connectors Ngr that
fail as a group that can be taken as the number of connectors in a shear span N_.
When N =1, then K, = 3.5 and this represents the characteristic strength of an
individual connector. Alternatively when n — oo, then K, =4.7 and this represents
the mean strength of the stud shear connectors.

5.3.3.2 Example 5.2 Characteristic strength in composite beams
approach

(a) Iterative analysis procedure

Let us redesign the beam in the previous Example 5.1 where the details of the beam

are given in Section 5.3.2.2(a). An iterative procedure has to be used as the parameter
K, in Eq. 5.4 depends on the number of connectors in a shear span Ngr, which is



80 Mechanical shear connectors

initially unknown as it depends on the dowel strength which is also initially unknown.
Let us use 19 x100 mm studs (A =284 mm?) in which f =486 N/mm? and E_=200
kN/mm?, and which are encased in concrete with the properties f_ = 25 N/mm? and
E_= 25,250 N/mm?’, Substituting these values into Eq. 5.4 gives D =21,350K .
The iterative procedure can be started by assuming that (Ngr)l — oo, in which case
from Eq. 5.4b K, =4.7 and (D__ )_= 100.3 kN (which is the mean strength of the
stud shear connectors). From Eq. 5.3, a more accurate estimate of the number of
connectors is (N ), =2300/100.3 =22.9. Repeating the analysis but this time starting
with (Ngr)2 =229 givesK, =4.45and (D_),,,=95.0kN and (Ngr)3 =2300/95.0=
24.2. Now starting with (Ngr)3 =242 givesK, =446and (D_ ), ,=95.2kN and
(Ngr)4 = 2300/95.2 = 24.2, that is 25 connectors. It can be seen that the iterative
procedure converges very rapidly.

If the analysis had been based on the characteristic strength of an individual
connector, then in Eq. 5.4b Ngr =1,K,=35and (D_, ), =74.7kN and Ng’ =N_=
2300/ 74.7 = 30.8. We would have required 30.8 - 24.2 = 6.6 more connectors per
shear span. This iterative procedure makes full use of the ductility of the shear
connection and allows us to use almost the full strength of the shear connection,
particularly in large beams with many connectors.

(b) Variation in the stud shear connection material properties
The dowel strength is very sensitive to the materials that comprise the stud shear
connection. Let us use the lower bounds to the range of material properties given Eq.
5.4c. Therefore, the mean strength of a 19 X100 mm stud of weak material strength
f =430 N/mm?, that is encased in lightweight concrete of E_= 10 kN/mm’ of low
strength f = 24 N/mm?’, can be derived from Eq. 5.4 as 63 kN. In contrast, using the
upper bounds to the ranges of the material properties which are f = 640 N/mm?,
E =33 kN/mm’ and f_= 81 N/mm?, the mean dowel strength is 202 kN. It can be seen
that the range of possible strengths for the same size of stud connection is very large.
It is also worth noting that shear strengths D__ greater than the tensile strength of
the shank of the stud A f can be achieved. For example using the upper bound to
the strengths in the previous paragraph, equating the shear strength of 202 kN to
A_f givesf =711 N/mm?, which is greater than the actual strength of 640 N/mm?.
This is because the cross-sectional area of the weld-collar shown in Figure 5.1 is
about 70% greater than the cross-sectional area of the shank A, and hence the weld-
collar can resist a larger shear load. Furthermore the weld collar directly resists a
portion of the shear load shown as F, so reducing the shear force F, on the shank.
This helps to emphasize the importance of the weld collar.

(c) Reduction in strength due to transverse ribs

The concrete slab of a composite beam is often made with steel decking or profiled
sheets. The decking ribs are either in the longitudinal direction, as in Figures 2.4 and
4.8, forming a haunch around the shear connection with voids on either side of the
haunch, or the ribs are in the transverse direction, as in Figures 2.6 and 4.10, encasing
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the shear connection in a trough with voids on either side. When the voids in the
composite slab are in the vicinity of the shear connectors, they can reduce the
maximum dowel strength by reducing the triaxial restraint to the concrete in the
bearing zone in Figure 5.1.

The strength of the shear connection in composite beams with longitudinal ribs,
that is haunches, is covered by the splitting and post-splitting analyses in Chapters
10 and 11. In contrast, the effect of transverse ribs on the maximum dowel strength
of stud shear connectors is usually dealt with by applying a reduction factor R , to
the maximum dowel strength D__ . that depends on the geometrize of both the shear
connection and the composite slab. The following equation* is an example of a
reduction factor for stud shear connectors in the troughs of composite slabs with
trapezoidal profiled sheeting as in Figure 5.4.

0.7b h
Rrib - tr ( st 1) <10 (5.5a)
Ny hyipy \ Mrip
in which
d,<20mm, f"S450N/mm2, and R  <0.8 when N <2 (5.5b)

where b is approximately the mean width of the trough shown in Figure 5.4, N is
the number of connectors in each trough, and h , and h_ are the heights of the rib and
the stud respectively.

Let us assume that the concrete element in Example 5.1 (Section 5.3.2.2(a)) is a
composite slab with the transverse ribs in Figure 5.4 in which the troughs and the
voids are anti-symmetric and in which b, = 300 mm and h , =70 mm. Therefore, the
longitudinal spacing of the troughs is 600 mm so that there are 5000/600 = 8 troughs
in each shear span of 5 m length. From Section 5.3.3.2, the mean strength of the
shear connection (D, ) = 100.3 kN when f = 486 N/mm’. However, Eq. 5.5 is
only applicable when f, =450 N/mm? at which steel strength Eq. 5.4 gives (D_ )_=
20,309K , = 95.4 kN. We would, therefore, require more than 2300/95.4 = 24
connectors as (D__)_ is the mean strength not the characteristic strength. Three
connectors per trough would only give 24 connectors and, hence, we would require

steel decking

| sheeting

|hr'rh

YR [ 2 VETY

d " trough void shape of trough

Figure 5.4 Composite beam with transverse ribs
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some troughs with at least 4 connectors. From Eq. 5.5, the reduction factor with 4
connectors per trough is (R ), = (0.7 X 300)/((100/70) — 1)/(‘]4 x 70) =0.64.

If we used 4 connectors per trough that is a total of 32 connectors per shear span,
then the strength in a shear span P, < 0.64 x 95.4 x 32 = 1954 kN (as we are
using the mean strength of an individual connector), which is less than the required
value for full shear connection of 2300 kN. If the slope of the trough in Figure 5.4
is 45°, then the width at the base of the trough d = 230 mm. The minimum
longitudinal spacing of stud shear connectors L, = 5d, =95 mm. At this spacing,
the longitudinal cover at the base of the stud ¢ = 58 mm which is as small as one
would wish. Furthermore, the width of the steel flange of 160 mm will only allow
two longitudinal lines of connectors. Therefore, there is only room in each trough
for 4 connectors. From Eq. 5.4b, the characteristic strength of a group of 32
connectors is less than the mean strength by a factor of 4.49/4.7 = 0.955, hence, the
strength of the shear connection in a shear span P, = 0.955 x 1954 = 1866 kN
which is less than the required value of 2300 kN. To overcome this problem, the
engineer could either change the profile, use stronger concrete, increase the height
of the stud, or simply use partial-shear-connection analyses to determine the
reduction in the rigid plastic flexural capacity, which would probably be slight, to
see if it can be accommodated.

5.3.4 Composite beams with non-uniform loads

5.3.4.1 Example 5.3 Variable distributions of shear connectors
Let us determine the shear connection required for the beam in Example 4.11 in
Section 4.4.3.2 which is subjected to the variable loads in Figure 4.19(a). From the
rigid plastic analysis in Section 4.4.3.2, we have already determined the shear flow
strengths required in each part of the beam which are given in Figure 4.19(d); these
were derived from the areas of each of the regions in (b). From the analysis in
Figure 4.4, the required strength of the shear connection in a shear span is P, =2300
kN. The strength of a 19 x 100 mm stud shear connector was derived in
Section 5.3.3.2(a) as (D__),0,100 = 21,350K, where K, is defined in Eq. 5.4(b).
If instead of a 19 x 100 mm stud (A, = 284 mm?), we will use a 16 x 80 mm stud
(A, =201 mm?), then from Eq. 5.4, (D, ) g0 = 21,350(201/284)K , = 15,110 K ;.

For the 16 x 80 mm stud and when n = o, (D_ ) = 71.0 kN, which from
Eq. 5.3 gives a value of n = 2300/71.0 = 32.4. When N, = N =324, D, )54
=71.0 x 4.49/4.7 = 67.8 kN and a new value of Ngr =2300/67.8 = 33.9, that is 34
connectors per shear span; the next iteration also gives 34 connectors. Therefore,
we require 34 connectors in each of the shear spans A-C and C-D in Figure
4.19. Furthermore and in shear span A-C, the 34 connectors should be distributed
in proportion to the areas in (b). Therefore along the span A-B, we need
34 x (542/702) = 26.3 connectors. As shear connectors are more effective in the
region near the beam supports than near the position of maximum moment, we will
place 27 connectors in the span A-B and the remaining 7 in the span B-C.

In span A-B in Figure 4.19, the longitudinal spacing of a single line of connectors
L, = 2500/27 = 93 mm which is slightly more than the minimum limitation of
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5d_, = 80 mm and considerably less than the maximum limitation of 6h =780 mm.
We could, therefore, use a single line of connectors but would prefer to space them
as wide apart as possible at a maximum lateral spacing from Figure 5.3 of L, = 160-
16-42 = 102 mm and stagger them as in Figure 5.3(c). In span B-C in Figure 4.19,
L, =2500/7 = 357 mm which falls well within all the limitations, and as the connectors
are widely spaced we could leave them in a single line. Finally in span C-D, L
=5000/34=147 mm and it is suggested that a staggered distribution be used.

5.3.5 Composite beams designed using linear elastic theory
5.3.5.1 General

The ultimate flexural strength of composite beams in buildings and the shear flow
strengths of their shear connection are usually determined from rigid plastic analyses
as described in Chapter 4. However, the serviceability behaviour of these composite
beams, as described in Chapter 3, is determined from linear-elastic full-interaction
analyses which are known to give satisfactory results, even though the distribution
of the shear connection is based on rigid plastic analyses. In contrast, the ultimate
strength of composite beams in bridges and the distribution of their connectors are
both usually designed using linear-elastic full-interaction theory. The linear-elastic
distribution of the shear connectors is described in this section.

5.35.2 Example 5.4 Linear elastic design of the shear connection
Let us assume that the beam in Figure 4.3 of span of 10 m is propped during
construction. Furthermore, the beam is subjected to a uniformly distributed short
term load of w = 16 kN/m so that the maximum vertical shear force at the support
V... is 8O kN, and it is also subjected to a long term load of Wiong = 20 KN/m that is
also resisted compositely, in which case Vm = 100 kN. The linear-elastic properties
of the components of the composite beam are given in Figure 5.5(a) where the units
are in N and mm. Using the procedures described in Chapter 3, the composite beam
can be transformed to a steel section with the long term and short term properties of
the composite section in (b), where A_is the area of the transformed concrete
component andI__ is the second moment of area of the transformed composite section.
From q = VAY/I in Eq. 3.3, the maximum shear flow force at the supports due to the
long term loads is 100x10°x28,720x(127—-65)/716x10°% = 248 N/mm, and it is
198 N/mm for the short term load, giving a total of (Q,), =446 N/mm as shown at
the support in Figure 5.6. Therefore, the shear flow strength required varies from
446 N/mm at the supports to zero at mid-span as shown by the line A-B.

It can be seen in Figure 4.1(b) that when there is a single line of connectors of
spacing L., each shear connector resists a shear flow force within a tributary length
of L. Hence, the longitudinal spacing of a single line of connectors L _ is given by

Diax = Qs Ly (5-6)

It would be impractical to gradually vary the spacing of the shear connectors L so
that the shear flow strength followed the line A-B in Figure 5.6. Instead, the connectors
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are placed in blocks with a uniform spacing in each block as in Example 3.12. We
could, for example, allow both a 10% overstress and a 10% understress as shown in
Figure 5.6, in which case the shear flow strengths Q,, required for each block of length
1 m are shown on the vertical axis. If we use for our design the mean strength of the
shear connector of D__ = 113 kN, from Example 5.1 in Section 5.3.2.2(b), then the
spacing of the connectors L _ in Figure 5.6 can be derived from Eq. 5.6. The maximum
spacing permitted is 6h_ = 780 mm, hence, this maximum spacing should be used in
the region within 2 m of mid-span in Figure 5.6. Hence, the number of connectors N
in each block of 1 m can be derived as shown in Figure 5.6.

centroid transformed section
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Figure 5.5 Example 5.4 Linear-elastic properties of composite beam
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Figure 5.6 Example 5.4 Linear-elastic distribution of shear connectors

5.4 Fracture of shear connectors due to excessive slip

in simply supported beams
5.4.1 General

It was shown in Chapter 4 how to derive the variation of the moment capacity M of
a composite beam with the maximum degree of shear connection 1}, that is the
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degree of shear connection at the position of the maximum moment. A typical variation
is shown in Figure 5.7 as the curve A-B-C-D. Rigid plastic analysis techniques were
used to derive this failure envelope which assumed that the connectors had an unlimited
slip capacity. Unfortunately, as discussed in Section 5.1 and shown in Figure 5.2, shear
connectors do have a limited slip capacity, so that it is essential to ensure that fracture
due to excessive slip does not occur before the design moment capacity is reached. The
prevention of connector fracture is an extremely complex problem as we have to deal
with the properties of the whole beam where parts may be behaving elastically whilst
others are plastic. Research has shown® that fracture of the shear connection at a slip of
S, can be represented by a curve such as G-H in Figure 5.7.

Consider a beam in which the strength of the shear connection is in excess of that
required for full-shear-connection, such as atn__ =m in Figure 5.7. As the applied
load is increased, the moment in the beam increases along the vertical load path
emanating from 1, causing the slip in the beam to increase until the capacity M__is
reached, that depends on the weaker of the component strengths P_or P_as described
in Chapter 4. The slip at which this moment capacity is reached is shown as s, in
Figure 5.2 and will be less than Sp because we have more connectors than that required
for full-shear-connection. Now consider a composite beam with partial-shear-
connection where | __ =, in Figure 5.7. The moment can be increased along the
vertical load path until the capacity Mpsc =M, is reached that depends on the strength

M Mfrac [f\(sult)] ,/H A
fsc \} s
M, r -
Moment 27 1C
cal;\):city M, ,,’ /
M) /
M3 7 ,, ’ Mpsc [f(Psh)]
MS D ,I/
e Mfsc [f( Pc or Ps)]
L
G
load A
path
0 5 N M L m

Maximum degree of shear connection (M max)

Figure 5.7 Fracture of the shear connectors in composite beams

of the shear connection P, and which occurs at the slips, < S in Figure 5.2. However,
if the degree of shear connection is reduced to 7, in Figure 5.7, then fracture will
occur at the moment M, =M, whens=S_ in Figure 2 and in which M, is less than

the rigid plastic strength M,
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Two methods will be described for preventing premature failure due to fracture
of the shear connectors due to excessive slip in simply supported beams. The
following Parametric Study Approach’ is based on defining the degree of interaction
1, at the transition point C in Figure 5.7; this point defines the transition between the
fracture failure envelope G-H and the rigid plastic failure envelope B-C-D. This
approach is found to be in good agreement with tests in the upper regions of the
degree of shear connection, that is wheren__ 2 0.5. In contrast, the Mixed Analysis
Approach® is based on defining the fracture failure envelope G-H in Figure 5.6 and
can be applied to beams with small degrees of shear connection.

5.4.2 Slip capacities of stud shear connectors S,

The 5% characteristic slip capacity of an individual stud shear connector that is
encased in a solid concrete slab’ is given by

S = (042-000421,)d, 5.7)

where the units are in N and mm and where the mean slip can be derived by replacing
the coefficient 0.42 with 0.48. It is felt that these slip capacities can be used for stud
shear connectors in haunches (Figure 4.8) and troughs (Figure 4.10) in composite
slabs as the presence of both the voids in the composite slab and the transverse
reinforcement appear to make the shear connection more ductile.

Failure of a composite beam by fracture of the shear connectors due to excessive
slip is very rapid and resembles an unzipping action, as the fractured connector
sheds its load to adjacent connectors causing them to further slip and fracture in
turn, in much the same way as the ‘unbuttoning’ of bolted steel connections.
Therefore, the characteristic slip of an individual connector should be used in design.

543 Parametric study approach

5431 Maximum slip in standard composite beams
A detailed parametric study of experimental tests and computer generated tests® which
had standard composite sections was used to derive the following design equation.

_ B
> [ Msth Xi)a MPSC MS (5.8a)
l =
“t =\ 6E;I; \D M,
where
Forn_ =0.5,0=-~0.13and B =1.03 (5.8b)
Forn =0.75, o.=-0.24 and B=170 (5.8¢)

where M_ is the rigid plastic moment capacity of the steel component, L is the span
of the beam, h_is the height of the steel component, 1, is the second moment of area
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of the steel component, D is the depth of the composite beam and M___ is the partial-
shear-connection capacity of the composite beam.

The first parameter on the right hand side of Eq. 5.8a represents the maximum
slip in the composite beam when there were no shear connectors. However, the
second parameter represents the increase in slip with span and the third parameter

represents the reduction in slip as the degree of shear connection increases.

5.4.3.2 Example 5.5 Standard composite beam

Let us apply Eqgs. 5.8 to Example 4.6 in Section 4.2.4.2 in whichn___=0.8. We will
assume M =0.75 as in Eq. 5.8(c) as this will give a conservative answer. From the
previous analyses, M, = 335 kNm (Example 4.1 in Section 4.2.2.2(b)) and (Mpsc)m
=653 kNm (Example 4.6 in Section 4.2.4.2). From Figure 4.3(b), L=10m, h =380
mm and D = 510 mm and from Figure 5.5(a), I, = 223 x 105, Substituting these
values into Egs. 5.8(a) and 5.8(c) gives S, >2.13 mm which is the maximum slip in
the beam. As f_ =25 N/mm? and d = 19 mm, then from Eq. 5.7 S, = 5.99 mm and
hence the shear connection has adequate slip capacity.

Applying Eq. 5.8(a) and 5.8(b) to the composite beam in Example 4.8 in Section
4.2.5.2 where i = 0.50 and in which (Mpsc)so% =569 kNm gives S, > 2.25 mm,
which is only slightly larger than that required with the higher degree of shear
connection of 80% in the previous paragraph.

It is worth noting that the slip capacity of a stud shear connection reduces as the
strength of the concrete increases, that is the connection becomes more brittle. For
example, if we assume that S | in Eq. 5.7 is the maximum slip in the beam which
was calculated previously as 2.13 mm, then for a 19 mm diameter stud, fracture
would occur when f_ > (0.42 - (2.13/19))/0.0042 = 73 N/mm? and this reduces to 61
N/mm? when 13 mm studs are used.

5.4.3.3 Example 5.6 Strengthened composite beam

(a) Maximum slip in the composite beam

Although Eqs. 5.8 were developed for standard composite beams with I-sections,
let us apply it to the beam that was strengthened in Example 4.7 in Section 4.2.4.3
by adding a plate to the bottom flange which caused the degree of shear connection
to reduce to 50%. The strengthened beam is shown in Figure 4.14 and the
ultimate strength is determined in Section 4.2.4.3. For this strengthened beam: the
rigid plastic moment capacity of the plated steel component can be determined from
a similar analysis to that depicted in Figure 4.5 except that the neutral axis in (c)
now occurs at the bottom flange plate interface in Figure 4.14(a), from which taking
moments about the top fibre of the steel beam gives M_ = (2288 x 0.393) -
(720 0.371) - (860 x 0.190) - (720 X 0.009) = 462 kNm; L = 10 m; h_ = 406 mm;
M, )op, = 1500 kNm; D = 536 mm; and the second moment of area of the
plated steel component I = (160x18x259%) + (10x344%/12) + (10x344x78?)
+ (160x18x103%) + (220%26x125%) = 368 x 10°mm®, where the neutral axis is
268 mm from the top of the steel beam. Substituting into Eqs. 5.8(a) and
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5.8(b) gives S, > 6.68 mm which is greater than the characteristic slip of the
shear connection being used of 5.99 mm (which was derived in Section 5.4.3.2).
Therefore, the shear connection will fracture and prevent the flexural capacity of
1500 kNm being achieved.

(b) Flexural capacity at fracture of connectors

As fracture will occur prematurely, we can use Eq. 5.8 to estimate the maximum
moment capacity that can be achieved, by substituting the actual slip capacity of
5.99 mm for S, into Eq. 5.8 gives 5.99 = 4.248 x 0.684 x (M, — 462.2)/462.2)'%.
Solving gives (Mpsc)m= 1,396 kNm which is still substantially stronger than the
unplated composite capacity of 702 kNm.

5.4.4 Mixed analysis approach
5.4.4.1 Uniform distribution of shear connectors and a uniformly
distributed applied load

The mixed analysis approach is an exact solution for an idealized composite beam
in which the steel and concrete components remain linear-elastic but the shear
connector component is fully plastic’. The maximumslip S__, in a simply supported
composite beam of span L, with a uniform distribution of shear connectors of strength
P per shear span, and subjected to a uniformly distributed applied load that induces
a maximum moment M__ is given by

M L P, L

Smax — n;ax Kl _ s: K2 (5.9
in which

K = Beent (5.10)

V" E.I+E,I
and

2
X, hient 1 1 (5.11)

= +
EJI, +EJ, E,A, EA,

where h__is the distance between the centroid of the concrete component and the
centroid of the steel component.

The first parameter on the right hand side of Eq. 5.9, that is (M LK /3) is the
maximum slip in the composite beam without shear connectors, whereas, the second
parameter (P LK,/4) is the reduction in slip due to the shear connectors. It is worth
noting that the first parameter depends on the applied moment, while the second
parameter depends on the shear connector forces.
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5.4.4.2 Example 5.7 Standard composite beam with a uniformly

distributed load
Let us determine the maximum slip that occurs at the rigid plastic moment
capacity of the composite beam in Figure 4.3 when: the beam has a 50% degree of
shear connection; the shear connectors are uniformly spaced along the beam; and the
beam is subjected to a uniform distribution of the applied load. The elastic properties of
the steel and concrete components of the composite beam are given in Figure 5.5(a).
The variables in Eq. 5.10 are (from Figure 4.3) h__ = (130/2) + (380/2) = 255 mm
and (from Figure 5.5) I =223x10° mm?, I =641x105mm*, E =200 kN/mm? andE =
25,250 N/mm? Hence, K, =26x125% (Nmm)'. The remaining variables in Eq. 5.11 are
(from Figure 5.4) A_=455,000 mm? and A_= 9,200 mm? which gives K, = 1.70x 10
°N'. From Example 4.8 in Section4.2.5.2,M__ = (Mm)m% =569 kNmand P_ =2300/
2 =1150kN and from Figure 4.3 L = 10 m. Substituting these values into Eq. 5.9 gives
S,... = 7-97 ~4.89 = 3.08 mm. Therefore, the maximum slip in the stud shear connectors
which occurs at the supports is 3.08 mm. It is worth noting that the maximum slip with
‘no shear connectors’, which is the first parameter in Eq. 5.9, is 7.97 mm which would
easily fracture a 19 mm stud shear connector at each support. However, the compressive
force induced in the concrete component by the shear connectors has reduced this slip
by 4.89 mm, which is the second parameter in Eq. 5.9, to give an overall slip of 3.08
mm which is unlikely to fracture 19 mm stud connectors.

5443 Uniform distribution of shear connectors and a point load
applied at mid-span

The maximum slip in a composite beam also depends on the type of applied load.
For the case of a point load applied at mid-span (instead of the uniformly distributed
load in the previous example) on a beam which still has a uniform distribution of
shear connectors, the maximum slip is given by

M ax L Py L i
Smax = 4 Ky - s: K, o12
Comparing Eq. 5.9, for a uniformly distributed load, with Eq. 5.12, for a concentrated
load at mid-span, it can be seen that the uniformly distributed load is the critical case, as
a larger slip is induced when there are no shear connectors, that is the first parameter in
Eq. 5.9 is larger than the first in Eq. 5.12. It is worth noting that the second parameter in
both equations is the same, as this depends on the strength and distribution of the shear

connectors which is obviousty the same in both beams,

5.4.4.4 Example 5.8 Standard composite beam with a point load
Applying Eq. 5.12 to the composite beam with the properties in Section 5.4.4.2 above
givesS__ =7.97x(3/4)-4.89 = 1.09 mm, where the coefficient (3/4) is the ratio of the
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first parameters in Eqgs. 5.9 and 5.12. The slip of 1.09 is considerably less than the
slip of 3.08 mm for a uniformly distributed load. Hence, if the connectors are unlikely
to fracture in a composite beam that subjected to a uniformly distributed load, then
there is no need to check for fracture when point loads are applied.

5.4.4.5 Example 5.9 Strengthened composite beam

(a) Maximum slip in composite beam

Let us apply this mixed analysis approach to the strengthened composite beam in
Example 4.7 which is described in Section 4.2.4.3 and shown in Figure 4.7 and which
has already been analysed in Section 5.4.3.3 using the parametric-study approach. From
Section 5.4.3.3,1 =368 x 10° mm* (where the centroid is 268 mm from the top fibre of
the steel component), therefore, h__ = (130/2) + 268 = 333 mm, and from Figure 5.5(a),
E, =200 kN/mm? A_=455x 10°mm?, I =641 x 10°and E_=25,250 N/mm? and from
Figure 4.7 A, = 14,920 mm?, Hence from Eq. 5.10, K, = 3.70 x 10”2 (Nmm) in Eq.
5.10and K, = 3.70x10"?x333 + 8.70x10"" + 3.35x10"" = 1.655 x 10° N"! in Eq. 5.11.
Furthermore, from Section 4.2.4.3 M = (Mpsc)m =1,500kNm, P, =2300kN and L
=10m. Applying Eq. 5.9 (for the case of a uniformly distributed load) gives S =18.5
—9.5 = 9.0 mm. Therefore, fracture will occur before the rigid plastic moment capacity
of 1,500 kNm is reached as the characteristic slip capacity, which was derived in Section
5.4.3.2,is only 5.99 mm.

(b) Flexural capacity at fracture of connectors

From the analysis in (a) above, it was shown that fracture will occur before the rigid
plastic capacity is reached. Therefore, the fracture failure envelope, such as G-H in
Figure 5.7, is controlling the strength of the composite beam. This failure envelope,
which is given by Eq. 5.9 for a uniformly distributed load, will now be used to predict
the capacity of the composite beam. Substituting into Eq. 5.9 S___=5.99 mm, which
is the slip capacity of the stud shear connectors, and using the sectional and material
properties in (a) above, gives M__ = ((S_ + (P LK /4)3)/LK, = (599 + 9.52) x

max

81x10° = 1,256 kNm which is the moment capacity of the composite beam.

544.6 Variable distributions of both the shear connectors and
the applied loads

Equations 5.9 and 5.12 are specific to a type of loading and to a beam with a uniform
distribution of the shear connectors. However, these equations can be written in the
following generic form that can be applied to any distribution of shear connectors
and to any distribution of the applied load.

(Smax )a = (Am )a Ky _(Asr )a K>

where (S__ ), is the maximum slip in the shear span designated a, and where (A ),
is the area of the moment diagram in the shear span o and (A ), is the area of the
longitudinal shear force or thrust diagram in the shear span o.

(5.13)



Mechanical shear connectors 91

The area-parameters (A ) and (A ), in Eq. 5.13 are shown diagrammatically in
Figure 5.8 for a composite beam with eight groups of connectors which are shown at
discrete points in each shear span. The connectors impose a thrust on the concrete
component which is zero at the supports and accumulates along the length of the shear
span. This is shown as starting at F, in the right hand shear span in (a) and finishing at
the total thrust of P at the maximum moment position. The distribution of the
longitudinal thrust in each shear span is plotted in (b), where the area of the diagram in
a shear span is equal to the longitudinal thrust parameter (A _)_. The composite beam in
(a) is subjected to a variable load which causes the distribution of the applied moment
in (c), where the applied moment parameter (A ), is the area in a shear span.

As can be seen in Eq. 5.13, the slip at the end of a beam is a function of the
difference between A in Figure 5.8(c) and A_ in (b). This difference is usually
greatest in the longer shear span, however, the difference also depends on
the distribution of the shear connectors. For example, if all the connectors are
concentrated at a support, such as in the right hand shear span in (a), then (A ), in
(b) would be rectangular, that is at its maximum value, so that the slip from Eq. 5.13
will be at its least value. Needless to say, it would be foolish to concentrate all the
connectors at the supports, as the structure would no longer be acting as a composite
beam but more like an arch.

5.4.4.7 Example 5.10 Variable distribution of shear connectors and

loads
Let us analyse the composite beam in Example 5.7 in Section 5.4.4.2 where all of
the properties are give in Section 5.4.4.2 and from which K, = 4.20x102 (Nmm)'!

(a) { Lss)f (.Ls,s}r
P
P
(b) longitudinal .
thrust ’J_,_’i
' - (Ageh
(c) applied | position al Mmax and zero slip
moment | el ) ¥ ]-v[m.'n;
| [
|7 (Aax [ )

Figure 5.8 Variable loads and connector distributions
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(b)

| — — -Ma=(Mpeo)sog
(A, (AL: R — 569 kNm
1852 kNm? [I775KNm? = Do
A B C T

(c) 439 kN

Figure 5.9 Example 5.10 Slip in shear spans

and K?=1.70x10° N'' was calculated. The beam has a moment capacity of (M__), .,
= 569 kNm and, hence, can just resist the distribution of applied loads in Figure
5.9(a) in which M__ = 569 kNm as shown in (c). Integrating the applied moment
diagram over region A-B in (c) gives

25
(Am),_g = J217x-332x% /2 =592 kNm?
0

and integrating over B-C gives (A ), .= ((439 + 568)/2) x2.5=1260 kNm?, therefore,
(A,),c=592+1260=1852 kNm? as shown in (¢). Integrating over C-D in (c) gives
(A )ep= 1775 kKNm?,

The beam has 50% shear connection so that the strength of the shear connection
in a shear span, which is also the thrust of the connectors at the position of maximum
moment, is P, =2300/2 = 1150 kN, as shown at the mid-span in Figure 5.9(b). The
distribution of the applied loads in Figure 5.8(a) was chosen so that they are exactly
in the same proportion to those in Figure 4.19(a). Therefore, the area of the vertica
shear force distribution of the beam in Figure 5.9(a) has the same proportions as
those in Figure 4.19(b). Hence, Figure 4.19(b) can be used to distribute the connectors
in the shear span A-C in Figure 5.9(a). From Figure 4.19(b), the proportion of
connectors in A-B is 542/ (542 + 160) = 0.772. Therefore the strength of shear
connection required in A-B in Figure 5.9(a) is 0.772 x 1150 = 888 kN which is the
thrust at section B in (b). As there are a fairly large number of connectors, we will
ignore their discrete positions and assume the linear variation in thrust shown which
gives from their areas (A ), = (888 x 2.5 /2) + (888 + 1150) x 2.5/2 = 3658 kNm? and
(A,), = 1150 x5/2 = 2875 kNm.
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Applying Eq. 5.13 gives the maximum slip in the right shear span of (S ) =
(2875 x 10°x 4.2x10'?) + (2875x10° x1.70x10°) = 7.45 ~ 4,89 = 2.56 mm, and that
atthe leftof (S_, ),=7.78 - 6.22 = 1.55 mm. It can be seen that the concentration of
connectors in region A-B in Figure 5.8(b) has made the slip on the left hand side
much less than that in the right hand side.

5.4.4.8 Fracture failure envelope

Equation 5.9, which is based on a uniformly distributed applied load and a
uniform connector distribution, can be re-arranged to give the following fracture
failure envelope

M 1ax =ZE(Smax +'—s4—) .14

As the maximum degree of shear connection n__ is directly proportional to the
strength of the shear connection P, it can be seen that the fracture failure envelope
defined by Eq. 5.14 is linearly proportional to the degree of shear connection.

5.4.4.9 Example 5.11 Failure envelopes for long and short term loads
Let us consider the beam in Figure 4.3 in which there is a uniform distribution of
shear connectors and which is subjected to a uniformly distributed load. We will
assume that the beam has 13 mm diameter stud shear connectors of S, =4.10 mm..
The flexural capacity of this beam has already mean analysed for different degrees
of shear connection and the resuits are plotted as the rigid plastic failure envelope
in Figure 5.10.

The elastic properties of the beam are given in Figure 5.5. Furthermore, the
beam has already been analysed for fracture due to short term loads in Section
5.4.4.2 where the values for K, =4.20 x 102 (Nmm)'and K, = 1.70 x 10° N"' have
been used in Eq. 5.14 to plot the short term fracture enveloped in Figure 5.9. It can
be seen that the fracture failure envelope governs the strength at low degrees of
shear connection in region A-B, whilst the rigid plastic failure envelope governs
the strength at the higher degrees of shear connection in the region B-C. If the
rigid-plastic linear-interpolation envelope is used, then the fracture failure envelope
only governs over the smaller region A-D as the interpolation method under-
estimates the strengths.

From the long term properties in Figure 5.4, K = 4.84 x 10"and K, =7.18 x 10"°,
from which can be derived the long term fracture failure envelope in Figure 5.10.
This envelope can be seen to control the strength for all degrees of shear connection,
As beams are never designed to withstand the maximum design loads for long
periods, the true fracture failure envelope will lie between the two extremes (that is
between the long and short term fracture envelopes) in Figure 5.10, and should
approach the short term fracture failure envelope.
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6 Transfer of longitudinal
shear forces

6.1 Introduction

It has been shown in Chapters 3 and 4 that the composite action between the steel
and concrete components of a composite beam induces longitudinal shear forces in
the mechanical shear connectors that tie these components together. These
longitudinal shear forces are transferred into the concrete component by the dowel
action of the mechanical shear connectors, as described in Chapter 5, and then these
concentrated dowel forces are dispersed longitudinally and laterally into the concrete
component. This chapter deals with the ability of the concrete component to resist
the longitudinal component of this dispersal, whereas the lateral component of the
dispersal is dealt with in Chapter 10.

It is convenient in the analysis of the longitudinal shear transfer to convert
the longitudinal shear forces into shear flow forces, that is the longitudinal force
per unit length of beam q. In designing the concrete component to resist the shear flow
forces, it is first necessary to identify the critical longitudinal planes in which failure can
occur and these planes are referred to in the following section as the shear flow planes.
The next step is to quantify the shear flow forces in these shear flow planes and then to
ensure that the resistance of these planes, that is their shear flow strengths, is adequate,

6.2 Shear flow planes

The concrete component of a composite beam is shown in Figure 6.1(a). The hatched
region at A is a longitudinal shear plane of area L x L_that is subjected to a total
uniformly distributed longitudinal shear force of H. For a the length of the shear
plane L of unit length as shown, the shear force is H/L which is now a shear flow
force, that is a force per unit length, which is shown as q,. Furthermore, the area of
the shear plane is now (LP) x1= (L ), Which will be referred to as the perimeter
length. Hence when dealing with shear ﬂows, the perimeter length L_defines a shear
plane that extends a longitudinal distance of one unit.

There are an infinite number of shear planes and it is necessary to use engineering
judgement to determine the critical planes that are most likely to fail or to govern the
design. These planes can be categorized as those that traverse the depth of the
concrete component such as (Lp) A (Lp) and (L ) in Figure 6.1 and those that
encompass the connectors such as (L )C, (L )D, (L )F, (L )g and (L )H

6.3 Shear flow forces

The shear flow force imposed by the connectors on the concrete component is
shown in Figure 6.1 as q,. The shear flow force q, can be derived from Chapter 3 or

95
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Chapter 4 depending on whether the analysis is elastic or plastic. Alternatively, q, can
be derived directly from the connector spacings in Chapter 5, if it is assumed that the
connectors are fully loaded. For example, if the connector spacings at a design point in
a beam are those shown in Figure 5.3(b), then q, is the strength of a single connector
D__ divided by the longitudinal spacing when the connectors are placed in a single
lon gitudinal line L. In both Figures 5.3(b) and (c), L ;=L /2 even though the connectors
are staggered in the latter example (it may be worth refemng to Eq. 5.6 which is also
based on the concept of deriving the shear flow from a single line of connectors). The
shear flow force q, in Figure 6.1(a) is gradually dispersed into the concrete component,
so that the force in the shear planes I._diminishes with distance from the connectors,
reducing to zero at the sides of the concrete component. The next step in the analysis is
to determine the shear flow force at each critical shear flow plane such as q, at L),
The shear flow force q, that is shown adjacent to the shear connectors in Figure 6.2 is
in equilibrium with the compressive force along the whole section e-f-g-h, which is
shown as uniformly distributed as the effects of shear lag are ignored, so that e-f-g-h
can be considered to be the effective width of the slab as described in Section 2.2.2. The
shear flow force along any longitudinal plane can be determined by cutting the concrete

longitudinal shear plane

Figure 6.1 Shear flow planes
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Figure 6.2 Shear flow forces

component along the plane and determining the resultant force that acts on either of the
free bodies. For example, the resultant force on the shear plane represented by (PO is
the resultant force on the free body a-b-g-h, which is the compressive force actmg over
thearea A,. If A is the total cross-sectional area of the concrete component, then q,, is
the proportlon A /A, of q as shown. For shear plane (L,)y» the resultant force on the
free body c-d-e-f is g minus the compressive force that acts over the area A, that is
qA /A, Altematlvely, the shear force on (L )B is the resultant force on the free body
a-c-f-h which is shown in Figure 6.2 as q,,.

6.4 Generic shear flow strengths

Fundamental research'? has shown that the weakest shear planes occur where there
is a longitudinal crack in the concrete which may have been formed by transverse
flexure or longitudinal splitting as described in Chapter 10 and, hence, the strength
of a cracked shear plane is generally used in design. The mechanism by which shear
is transferred across a crack is shown in Figure 6.3. The shear is resisted by the
dowel action of the transverse reinforcement which is shown as a bend in the
reinforcement in Figure 6.3. The longitudinal shear forces F induce slip between the
two crack surfaces which causes the two elements to separate as the aggregate
particles on each surface ride over each other. This separation, due to the shear
displacement, stretches the reinforcing bars and induces passive tension in the bars
which is balanced by the passive compressive forces across the crack which in turn
resist the shear by passive friction; this mechanism is often referred to as aggregate
interlock. It can, therefore, be seen that the transverse reinforcement is essential to
the transfer of shear across the shear plane by both dowel action and by aggregate
interlock action. Shear is also transferred across the interface by friction imposed by
direct compression across the interface which is shown as ¢ .
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Figure 6.3 Transfer of shear across a crack

The following characteristic strength (v ), of a cracked shear plane was
determined directly by tests and is dependent on: the tensile strength of the concrete
f_; the axial strength of the reinforcement per unit area of the shear plane pfyr which
is the yield strength when the reinforcement is fully anchored or the bond strength
when the reinforcement is not fully anchored; and the active normal stress o, which

is positive when compressive and negative when tensile.

(), = 066f +08pfy, +080, 6.1

For convenience, Eq. 6.1 can be written in terms of shear flow strengths of a
shear plane

6.2
O = 066fyL, +08A,fy, +08Fy ©2)

where A_is the area of the transverse reinforcement per unit length of beam, f_is the
yield strength of the transverse reinforcement when fully anchored or the maximum
stress that can be achieved in the reinforcement when it is not fully anchored, and F ; is
the normal force per unit length. Tests have shown that the parameter O.66dep requires
a minimal active or passive normal force and, hence, Eq. 6.2 has a lower bound of

6.3
08(Ay fyr + Fry) 2 053fL, 63

Furthermore, tests have also shown that the mechanism of shear resistance
portrayed in Figure 6.3 has an upper bound beyond which the cracked section
behaves as uncracked, and this upper bound limit is given by
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(64)
O < 03f, Lp

6.5 Resistance of shear plane traversing depth of slab

6.5.1 Shear flow strength of full depth plane

Examples of full depth shear planes are shown in Figure 6.1(a) as (Lp) X (Lp)B and (Lp)E
and the stress resultants acting on these planes are shown in Figure 6.4. Shear is
resisted by the contribution of the top and bottom transverse reinforcement of areas
A and A, to the aggregate interlock and dowel action mechanisms. Furthermore as
the shear plane traverses the full depth of the slab, the resultant normal force acting
on the shear plane F_ due to transverse flexure is zero. Therefore from Eq. 6.2, the
shear resistance of a full depth plane is given by

6.5
Qcn = 066f;L,+ 08(A; + Ay )f yr w

and the lower bound of Eq. 6.3 becomes

6.6
08A,f,r 2 053fyL, 69

and the upper bound of Eq. 6.4 remains unchanged.

Example 6.1 T-beam with solid slab

The concrete component of the composite T-beam in Figure 4.3 is shown in Figure
6.5. The stud shear connectors have already been designed in Example 5.1 in Section
5.3.2.3 and the results are summarized on the right hand side of the figure. Units of N
and mm are used throughout unless shown otherwise.

Let us consider the shear plane A-A in Figure 6.5. The perimeter length of
the shear plane (L)), = 130 mm. The shear flow strength of the shear plane is
given by Eq. 6.5 in which the direct tensile strength of the concrete f, can be derived
from the following relationship with the cylinder compressive strength f_as given in
Section 1.3.5.1.

transverse reinforcement

transverse
flexure / A
|

Ay

shear plane

Figure 6.4 Full depth shear planes
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fer =047, 67)

in which the units are in N and mm and when the concrete is of normal density. Hence,
f, =2 N/mm’. The shear flow force imposed by the connectors g, =D__ /L. =113,000/238
= 475 N/mm. The area of the free body to the left of the shear plane
A, = 221,325 mm?, hence q, = (A,/A )q, = 0.49q,. For all intents and purposes
q, =(1750/3500)q, = q/2 = 237 N/mm, that is the shear flow force is in proportion to the
width of the free body as a proportion of the effective width of the concrete component.

3500 (effective width) All units in N and
1750—, : 1750 ' mm unless stated:
0 A f, = 25 N/mm?
A, D, = l13kN
130 L,;=238 mm
i | A=455,000 mm?

fyr = 400 N/mm?

Figure 6.5 T-beam with solid slab

The area of transverse reinforcing bars required to resist q, can be derived from
Eq. 6.5 by substituting q, for Q, which gives A =A, + A =(237-0.66x2x130)/(0.8
% 400) =0.203 mm, which is the area required per unit length of shear plane. However,
the lower bound requirement of Eq. 6.6 gives A > (0.53x2x130)/ (0.8x400)=0.431 mm
and, hence, this condition controls the design. Using 8 mm diameter bars of yield
strength f = 400 N/mm’ would require a longitudinal spacing of these tansverse
barsof L = (nx8%4) / 0.431 = 117 mm. It is usually assumed that the transverse
reinforcement in the top of the slab, suchas A in Figure 6.5, that is required to resist
the hogging or negative moment in the slab over the composite beam can also resist
the longitudinal shear. Furthermore the bottom transverse reinforcement A, is often
part of the sagging reinforcement in the slab that is extended over the supports, that
is over the composite beam. It is worth noting that the
upper bound requirement of Eq. 6.4 will allow a shear flow force of 0.3x25x130
=975 N/mm which is substantially larger than the requirement of 237 N/mm

6.5.1.2 Example 6.2 Longitudinally spanning profiled sheets

Let us replace the solid concrete slab in Figure 6.5 with the profiled slab in Figure 6.6
in which the ribs of the trapezoidal sheeting are parallel with the longitudinal span of
the composite beam and in which the composite beam is slightly eccentric to the
slab. By inspection, a critical shear flow plane will occur at B-B where the depth of
the slab is reduced by the rib of the profiled sheeting. Hence, (LP)B = 70 mm.
The shear flow force exerted by the shear connectors q, remains at 475 N/mm.
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3500 (effective width) . .
2500 i 1000 - £ =25 N/mm?

| D,_,=113kN

L ;=238 mm

A= 455,000 mm?'

f)T = 400 N/mm?

profiled sheeting - o

Figure 6.6 Profiled slab with longitudinal ribs

As the shear plane B-B will be assumed to be close to the shear connectors,
g, =q,(2500/3500) = 339 N/mm which is less than the upper bound value of 0.3x25x70
=525 N/mm from Eq. 6.4. Applying Eq. 6.5 gives A _= (339 —0.6x2x70)/(0.8x400) =
0.797 mm which is larger than the minimum requirement of (0.53x%2x70)/(0.8x400) =
0.231 mm from Eq. 6.6.

The profiled sheeting in Figure 6.6 crosses the shear plane and, therefore, may be
expected to contribute to the longitudinal shear strength of the shear plane. However
in order to contribute to the longitudinal shear strength, it must be able to provide
passive tension across the shear plane as shown in Figure 6.3. It can be seen in
Figure 6.6 that any transverse tension in the profiled sheeting will simply straighten
the sheeting and cause it to unravel from the concrete slab. Hence, the profiled
sheeting is not anchored in the transverse direction and, therefore, does not contribute
to the longitudinal shear strength. All of the required transverse reinforcement of A
= 0.797 mm must, therefore, be supplied by transverse reinforcing bars; this would
require 8 mm diameter bars at (n8%/4)/0.797 = 63 mm centres which can be placed both
at the top of the slab or just above the profiled sheeting as shown in Figure 6.6.

6.5.1.3 Example 6.3 Transverse spanning profiled sheets

The composite slab with longitudinal trapezoidal ribs in Figure 6.6 has been replaced
with a composite slab with dove-tailed transverse ribs in Figure 6.7. In this case, the
ribs can resist transverse tension and, therefore, will contribute to the longitudinal
shear strength.

(a) Shear plane supporting short shear span

Let us first consider the shear plane at C-C in Figure 6.7(a) and the strength of the
sheeting to the right of this section. The cross section of the sheeting is shown in Figure
6.7(b). The ribs are at 200 mm centres and the area of sheeting for each 200 mm width can
be derived as 50 + 67 + 67 + 200 =384 mm? from the dimensions given, Therefore, the area
of profiled sheeting per unit longitudinal length A= 384/200 = 1.92 mm and the yield
strength of the profile sheet per unit length A lf =1.92 X550 = 1056 N/mm. However,
this yield strength can only be achieved if the sheetmg is fully anchored. Let us assume
that the bond strength of the sheeting f, = 0.25 N/mm?. This bond strength acts over
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Figure 6.7 Profiled slab with transverse ribs

the perimeter of the rib of length 50 + 67 + 67 = 184 mm and over the length of the rib
of 1000 mm. Hence the bond strength per rib = 184 x 1000 x 0.25 = 46,000 N which over
a unit longitudinal length is 46,000/200 = 230 N/mm. As the bond strength of 230 N/
mm is less than the yield strength of 1056 N/mm, the bond strength controls the
design so that the effective strength of the profiled sheeting ‘AL =Af =230
N/mm.

The voids in the concrete slab encased by the transverse dove-tailed ribs in
Figure 6.7(b) will reduce the ability of the concrete to transfer the shear. This reduction
in strength can simply be catered for by using an effective depth of slab, which is the
depth of a solid slab with the same cross-sectional area of concrete as the profiled
slab. In this example, the effective depth is ((200x130) — (50x62/2)) x 130)/ (200x130)
= 122 mm which is only slightly smaller than the overall depth of 130 mm, however the
reduction can be substantial when transverse trapezoidal ribs are used. Hence, the
perimeter length (Lp)C =122 mm. The shear flow force imposed by the connectors g,
remains unchanged from the previous examples at 475 N/mm so that g, = q (1000/
3500) = 136 N/mm. In order to determine the area of transverse reinforcement required,
Eq. 6.5 can be written as the following equation with the values of the parameters
shown immediately below.

gc = 066f,L,+08A,00 fy, +08A, f,
136 161 184 0'8Alrfyr

ol yp

It can be seen that the parameter 0.66f de = 161 N/mm is sufficient to resist the shear
flow force of g = 136 N/mm. Therefore, only the minimum transverse reinforcement
is required which from Eq. 6.6 comes to A f > (0.53x2x122)/0.8 =162 N/mm which
is less than that already supplied by the profiled sheeting of ‘Apmffyp’ =230 N/mm.
These calculations show that the shear flow force can be transferred into the

cantilevered section without the addition of transverse reinforcing bars.

(b) Shear plane supporting long shear span
Let us now consider shear plane D-D in Figure 6.7(a). The shear flow force
q,, =475 % (2500/3500) = 339 N/mm. The bond strength of the profiled sheeting at D-
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D is virtually the same as that at C-C as it is governed by the shorter of the two bond
lengths, of approximately 1 m and 2.5 m, which remains virtually unchanged at close
to 1000 mm. Applying Eq. 6.5 gives

9p = O66fctL +08Aproffyp +08Atrfyr
339 161 184 0.8A, f

As the first two terms on the right hand side just exceed the shear flow force, the
shear flow plane is sufficiently strong.

If the cantilevered section in Figure 6.7 is halved from 1 m to 0.5 m, then
q, =475 x(3000/3500) = 407 N/mm and the bond strength ‘A__f " is halved to 115N/
mm. Equation 6.5 now becomes

gp = 066fyL, +08Ap,offyp+08A,,fyr
407 161 08Af

from which A = 0.481 mm which would require 8 mm bars at (18%/4)/0.481
= 105 mm centres which could be placed at the top of the slab to help in resisting the
transverse flexure; these bars need to be fully anchored across the shear plane or

alternatively the bond strength must be equal to A f .

e yr’

6.5.1.4 Example 6.4 Composite L-beams

The steel component in the composite beam in Figure 6.7 has been placed on the
edge of the slab in Figure 6.8 to form a composite L-beam. As the area of slab to the
right of the shear plane E-E is much smaller than the area to the left, it can be assumed
that q, =q =475 N/mm. As the bond length of the profiled sheeting to the right of E-
E is very short ‘Apm,fyp’ — 0. Applying Eq. 6.5 gives

g = 066f,L, +08Aproffyp +08A, fy,
475 161 0.8A,f

3500

looped reinforcement

Figure 6.8 Composite L-beam
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from which A_=0.98 mm which would require 8 mm bars at 51 mm centres. However,
these bars need to be fully anchored across the shear plane E-E which can be achieved
by looping the bars around the shear connectors as shown. As each looped bar traverses
the shear plane twice, it will only be necessary to space the looped reinforcement at 2x
51 = 102 mm centres. If this is still too small a spacing, then two bars could be looped
around a shear connectors so that the spacing can be increased to 204 mm centres.

6.6 Resistance of shear planes that encompass

connectors

6.6.1 Strength of planes encompassing connectors

Examples of longitudinal shear planes that encompass the shear connectors are shown in
Figure 6.1. Failure can occur along shear planes that encompass individual connectors as
in (L), along shear planes that encompass groups of connectors as in (L, ),,, along shear
planes that encompass individual connectors within the group, and across the haunch of
acomposite beam as in (L. ). and (L ). Because these shear planes do not traverse the full
depth of the slab as shown in Figure 6.9, the resultant transverse force acting on these
shear planes F _ can vary from compression to tension depending on the transverse
flexure that is acting on the slab at the time the composite beam is being fully loaded. It is
a matter of engineering judgement to determine the magnitude of these transverse forces
and the proportion of these transverse forces that act on the shear plane.

The bottom reinforcement Ab in Figure 6.9 crosses the shear plane twice and, hence,
the cross-sectional area that resists shear is 2A, . In general the slab will be subjected to
transverse negative or hogging moments so that the transverse force F _ acting on the
shear plane is compressive and as such will enhance the longitudinal shear strength.
However, the magnitude of the transverse force depends on the transverse flexure
acting on the slab at the time the composite beam is being subjected to its design load
and, hence, it is difficult to predict. Furthermore, the portion of this force acting on the
shear plane depends on the geometry of the concrete component and in particular the
height of the shear plane h_relative to that of the concrete component h_and the
position of the top reinforcement h. The simplest solution is simply to ignore the
beneficial effect, that is to assume F = 0. Inserting these values into Eq. 6.2 and 6.3
gives

e — I /P
{ A F, (- b Fur ] S /?\ h,
T - vH EF— = 3/ ________ \

L h

Figure 6.9 Transverse forces on shear planes that encompass shear connectors
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3500 (effective width)

1750 1750 - f, =25 N/mm?
' Dpax = 113 kKN
A :E 19 x 100 stud L, =238 mm
3 f B A= 455,000 mm?
. ]S I | £,,= 400 N/mm?
Figure 6.10 Shear plane that encompasses the connectors
QOch = 066f L, +16A,fy, ©68)
16Ay fyy 2053f oL, ©69)

Example 6.5 Composite T-beam

Let us now consider the shear flow planes that encompass the shear connectors in
Example 6.1 in Section 6.5.1.1. Longitudinal shear failure can either occur around the
pair of connectors or around each individual connector as shown in Figure 6.10.

The perimeter length encompassing the pair of connectors in Figure 6.10 is (L), =
100 + 100 + 95 =295 mm. As the area of concrete enclosed by (Lp) , is much smaller than
the cross-section area of the slab A , g, = q, =475 N/mm. Applying Eq. 6.8 gives A, =
(475-0.66x2x295)/(1.6x400)=0.134 mm and Eq. 6.9 gives A, >(0.53x2x295)/(1.6x400) =
0.489 mm and, hence, the lower bound controls the design which will require 8 mm bars
at 103 mm centres.

The perimeter length encompassing an individual connector in Figure 6.10is (L ), =
219 mm. Each longitudinal row of connectos transfers a shear flow force of q/2 =238 N/mm.
Therefore applying Eq. 6.8 gives 238 =289 + 640A, , hence only the minimum reinforcement
in Eq. 6.9 is needed which gives A, >0.363 mm. As this transverse reinforcement traverses
both shear planes of the individual connectors which are shown as shear planes B in
Figure 6.10, this is the total transverse reinforcement required for both shear planes and
it is less than that required for the shear plane that encompasses both connectors.

3500 (effective width)

10 f, =25 N/mm?

D, = 113kN
L, =238 mm

A = 455,000 mm?
fyr = 400 N/mm?

Figure 6.11 Haunched beam
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6.6.1.2 Example 6.6 Composite haunched beam

If it is assumed that the cross-sectional area of the haunch encompassed by the
minimum length of shear plane shown as (L), . = 244 mm in Figure 6.11 is much
smaller than the cross-sectional area of the slab, then the shear flow force on the
shear plane is equal to q =475 N/mm. Applying Eq. 6.8 gives A, = (475 — 66x2x244)/
(1.6x400) = 0.239 mm and Eq. 6.9 gives A, = 0.404 mm. Hence the lower bound
controls the design, which requires 8 mm bars at 124 mm centres. These bars need to
be fully anchored across this shear plane.

6.7 References

1. Hofbeck,J.A., Ibrahim, 1.O. and Mattock, A.H. (1969). ‘Shear transfer in reinforced
concrete’. ACI Journal, Feb., 119-128.

2. Mattock, A.H. and Hawkins, N.M. (1972). ‘Shear transfer in reinforced concrete
recent research’. Precast Concrete Institute Journal, March-April, 55-75.



7 Stocky columns

7.1 Introduction

Composite columns are used to resist compressive forces, and most usually act in
combination with bending moments. As was noted in Chapter 1, the most commonly
used and studied column types are the encased I-section shown in Figure 7.1(a), the
concrete-filled steel rectangular hollow section shown in (b) and the concrete-filled
circular steel tube shown in (c). Unlike composite beams, the steel component is
rarely subjected to tensile forces, and both the concrete and bare steel have to resist
compressive stresses.

Short or stocky columns fail essentially by squashing, and their strength is
governed by the geometric proportions and the material strengths f of the steel and
f of the concrete alone, Stocky columns are considered in this chapter. On the other
hand, it is common for a column to be quite long or slender, for which the strength
is governed by overall instability or geometric nonlinear effects. Slender columns
are considered in the next chapter.

The column sections shown in Figure 7.1(a) and (b) may be bent about the x-axis
by an eccentric compressive load, about the y-axis by an eccentric compressive load
or more generally about both axes. In this book, we will consider the case of bending
about the major or x-axis of the section, and the methods of analysis may with little
modification be extended to bending about the minor or y-axis of the section. The

y ) | -
X |

b/2 " b/2

. | plastic
] r:cnlr:nd

D72

e
D2 : | concrete

b
|

/

(a)

I reinforcing bars

Figure 7.1 Typical symmetrical composite columns
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analysis presented in this chapter will assume short-term loading only, so that creep,
shrinkage and temperature effects are ignored. This is because we will be concerned
with failure of the cross-section, and the combinations of compression and bending
actions that cause this failure. The relevant material properties are thus f and f, and
properties modified by long-term effects are not considered.

This chapter will concentrate primarily on encased columns as in Figure 7.1(a) as
these are the most commonly encountered form of composite column, although the
techniques may be extended easily to concrete-filled rectangular steel sections as in
(b), and with a little more difficulty to concrete-filled circular tubes as in (c). The
main difference to note is that fully encased steel sections are compact, as they are
unable to buckle locally because of the concrete encasement. On the other hand,
when the steel is on the outside of the column as in concrete-filled tubes, the geometric
provisions of Chapter 2 must be met if the steel is to remain compact and hence
achieve its full yield strength.

7.2 Plastic centroid and concentrically loaded column

It is usual for the axial force to be applied at the plastic centroid of the section when
bending effects are zero, that is for concentric loading, or eccentric to the plastic
centroid when bending is present.

Consider the non-symmetric column section shown in Figure 7.2(a) that has a
cross-sectional area A_ = D X b. The cross-sectional area of the steel component is
A and the remaining area of the column shown shaded is the cross-sectional area of
the concrete A = A — A_Furthermore, the centroid of the steel area A is d, from
the top fibre as shown in (d), and the centroid of the concrete area A_is d_from the
top fibre. The axial strengths of the concrete component P_and steel component P,
are shown in (b). In order for the concrete component to be uniformly stressed at its
ultimate strength, a force F. of magnitude P_must be applied at the centroid of the
concrete component, that is at a distance dc from the top fibre as shown in (c) and
(d). Similarly, for the steel component to be uniformly stressed at yield, an axial
force F, = P, must be applied at the centroid of the steel element as shown. The
resultant force Psq = (P_+ P ) is the maximum axial strength of the column and is
referred to as the squash load; from equilibrium, the squash load the Psq must act at
dp as shown in (c) and (d) where

_ P.d.+ Pd; (7.1)
p P.+P
in which
P. =085f.A; (7.2)
(7.3)

Ps':fyAs
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Figure 7.2 Plastic centroid of non -symmetric composite cross-section

The position at d_is referred to as the plastic centroid. The depths d_and d_ in Eq.
7.1 are the depths to the geometric centroids of the concrete and steel components
respectively, and implicit in Eqs. 7.1 to 7.3 is that the cross-section is rigid plastic,
that is the steel and concrete are fully and uniformly stressed.

A more convenient method of determining both the plastic centroid d_and the
squash load P_ is to assume in Eq. 7.2 that A_is the cross-sectional area of the
column A_ which equals b x D. This assumption overestimates the cross-sectional
area of concrete by an area A_and, hence, in order to compensate for this additional
area of concrete, the yield strength of the steel in Eq. 7.3 is reduced to fy - 0.85f.
Therefore Eqs. 7.2 and 7.3 become

P, =085f Ay 4
P, =(f, - 0857, ), @)

However, in many design procedures Egs. 7.1 to 7.3 are used, with A_ being
made equal to A_ .

It is worth noting that the familiar elastic centroid is not in general at the same
position as the plastic centroid. The position of the elastic centroid d, below the top
fibre of the section in Figure 7.2 is given by

g = Acdc +rAsdy (7.6)
¢ A, +nA

where n is the elastic short-term modular ratio E/E , and d_and d_ are defined as
before. Of course, the denominator in Eq. 7.4 is simply the transformed area.

For doubly symmetric sections as in Figure 7.1(a), the elastic and plastic centroids
coincide, and fortunately this is often the case in practice. If the axial compressive
load N is applied eccentrically at an eccentricity e to the plastic centroid in the
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direction of the plane of bending, then we will refer the effects of this axial force
back to the plastic centroid, which will be assumed to be subjected to an axial
compressive force N and a moment Ne in the plane of bending.

7.3 General methods of analysis

7.3.1 Elastic-plastic technique

Figure 7.3 shows an encased I-section member in compression that is also bent
about its major or x-axis. We will consider this case, although the extension to
bending of an encased I-section about the y-axis and to a concrete-filled rectangular
hollow section is simple. The extension to a circular concrete-filled tube is a little
more complex, but nevertheless follows the same arguments. The analysis in Figure
7.3 is an elastic-plastic analysis, for which it will be assumed that there is full
interaction with only one strain profile. The concrete encases the whole of the
I-section in (a) and it is unlikely that all of the steel component will have yielded
before the concrete crushes at a strain of 0.003. Hence it will be necessary to use the
familiar y factor method in reinforced concrete design' to determine the real neutral
axis position n_below the top fibre shown in (b). The stress distribution in the steel
component will be assumed to have the elastic-plastic distribution in (d), while in
contrast the concrete component will be assumed to be rigid plastic as in (c), stressed
to 0.85f_ over a depth yn,, where'

y = 085-0.007(f, —28) < 085 a7

where the units of f_are in N/mm’.

With the previous assumptions and for a given neutral axis depth n,, the resultant
force in the concrete F, ignoring the presence of the steel component, will be
positioned yn /2 below the top fibre, as in Figure 7.3 (e), and given by

F, =085f.y nab

where b is the width of the concrete component in (a). Because we know that
the curvature in the steel element x is 0.003/n, as can be seen in Figure 7 3(b),
the strain distribution in (b) is uniquely defined, and by invoking the elastic-
plastic stress-strain curve 0-C-B in Figure 1.8 for the steel component so too is
the stress distribution. As the steel stresses are known, the forces F in the top flange,
F, in the web and F, in the bottom flange may be calculated as shown in (f), where
F is negative in thls example as the bottom flange is in tension as shown in (d).
Because the yield strain of the steel is usually considerably less than the concrete
crushing strain (0.003), the steel top flange and some of the web element will often
be at yield.

As the forces F, F, and F, act through the centroid of their stress blocks defined
over their respective areas, the depths to these forces below the top fibre may be
conveniently obtained, and taking the moments of these forces about the top fibre

(1.8)
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produces the moment M, . Of course, any reference fibre may be used, but the top
fibre is often a convenient one, and usually we finally relate the moment and axial
force acting in the section to that which occurs at the plastic centroid. From
equilibrium, the axial force N, which acts in the cross-section shown in Figure
7.3(g) is clearly the following algebraic sum of the element forces.

Nspor = Fc+Fi+F + F3 .9
while the moment M __ at the plastic centroid is, from simple statics

N short D

M spore = _2_ - Mtop (7.10)

since the top fibre is positioned D/2 above the plastic centroid.

By varying the position of the neutral axis depth n_ in Figure 7.3, we may
determine a locus of points (M_,_., N, ) at which a stocky cross-section fails, as
shown in Figure 7.4, This locus is the failure envelope of the section, and generally

0] o
c 5
{J.BSFC_""
...................................................... )
plastic centroid concrete steel stress
forces resultants

short

short

O

Figure 7.3 Analysis of doubly symmetric section
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Figure 7.4 Stocky column strength interaction curves

has the shape shown in (a) for major axis bending and in (b) for minor axis bending.
If we let n, — oo, then a condition of pure compression will arise and if the area of
steel encased by the concrete is ignored in determining the area of the concrete, as
was done in the above analysis, then the squash load N_ will be produced as

N, = 085bDf, + A, f, (7.11)

Note that the squash load is the same as in the denominator of Eq. 7.1. Clearly we
may generate the failure envelope in this fashion by suitable computer programming,
but it will be shown in the Section 7.4 how an approximate curve may be produced
by assuming rigid plastic behaviour.

The reader familiar with reinforced concrete design will note that the composite
strength interaction curves take a similar form to those for reinforced concrete
columns. However, the same assumptions are not always applicable to both. The
concept of balanced failure in singly or doubly reinforced concrete columns is not
the same as that for composite columns. Balanced failure in reinforced concrete
columns occurs when the concrete crushes at a strain €, of 0.003 and the steel yields
in tension simultaneously at a strain of €, and this point on the (Msh - Nsho “) curve
closely defines the point of maximum moment. In reinforced concrete design, the
region below the balanced failure point defines what is called ‘tension failure’ and
above this point defines what is called ‘compression failure’. However, this is not
the case for composite columns, and in fact the simultaneous failure mode does not
appear to be of particular interest for composite columns.

7.3.1.1 Example 7.1 Section strength from elastic-plastic assumptions
Figure 7.5(a) shows an encased I-section bent about the major axis, where the
geometric dimensions are in mm and f, = 30 N/mm? and f, =300 N/mm?. If the
neutral axis depth n_lies at infinity, the concrete stress block is as shown in (b) and
the steel stress block is as shown in (c). Since A_= 500 x 900 = 450,000 mm?
(ignoring the encased steel) and A_= 16,000 mm?, from Eq. 7.11 N_ = 16,275 kN.
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It is worth noting that the true squash load P = P + P = (450,000 x 0.85 x 30)
+ (16,000 x (300 - 0.85x30) = 11,475+ 4,392 = 15, 867 kN which is 2.5% less than
N_, hence the error can be ignored.

The neutral axis is now taken at mid-depth, that is n_ = 450 mm, and from Eq. 7.7
¥ = 0.836, so that yn_= 376 mm. The force F_in Eq. 7.8 is 0.85 x 30 x 0.836 x 450
% 500 = 4797 kN as shown in (g) which acts 376/2 = 188 mm from the top fibre as
shown in (h). It is worth re-emphasizing that in Eq. 7.8 the area of the steel within
the concrete component has been ignored.

From Figure 7.5(d), the strain on the inside face of the flange is ((450 - 100)/450)
x 0.003 = 0.00233 > € = 300/200 x 10° = 0.0015, so that all of the top flange has
yielded as in (f). Hence from symmetry F,| =~F , =300 % 15 X 300 N = 1350 kN as
shown in (g). The depth in the steel below the top fibre to first yield is 450 —
(0.0015/0.003) x 450 = 225 mm, so that 450 — 225 = 225 mm of the web above the

(N and mm throughout) G, g, € G,
l
‘ 500 —> | ( )_Bﬁﬂll ;i 0.85x30
‘ J‘mo . '
a5 | H "i'
| ™k 2 [l :
| 1350 ! i .
900 _; SRS - I
_F)- =—10 ! i s :
350J_ : .
—3n 300 - T E’ -------- ?-_
(a) (b) (c)
v J
n, @ infinity n, @ 450 mm
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Figure 7.5 Example 7.1: Elastic-plastic axial strength
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neutral axis is elastic and 350 — 225 = 125 mm of the web above the neutral axis is
at yield. The total force in the web above the neutral axis F, is then (125 + 225/2)
x 10 x 300 N = 713 kN, and the height at which it acts above the neutral axis is
[(125 x (225 + 125/2)) + (225%3)] / (125 + 225/2) = 222 mm or 228 mm below the
top fibre. The force in the web below the neutral axis F , is clearly —713 kN and acts
450 + 222 = 672 mm below the top fibre.

The forces in Figure 7.5 can be summed to produce N =4797 kN, and the moment
of these forces about the top fibre can be summed to producc M =4797x188 + 1350x93
+ 713%228 — 713%672 ~ 1350807 kNmm = -379 kNm Hence from Eq. 7.10,

M, . =-379 +4797x900x10°/2 = 1780 kNm. This point (1780, 4797) may be plotted
on the strength interaction envelope, and corresponds to an eccentricity e, of 1780 x
10°/4797 = 371 mm. The above analysis may clearly be programmed on a spreadsheet,
giving values of (M,_, N, ) as a function of n, that may be used to generate a locus
corresponding to the interaction diagram by varying n_ from zero to a large number.
When n_ is small, the cross-section will be subjected to tension, and this condition is
generally ignored in deriving the strength interaction diagram.

7.3.2 Rational non-linear analysis

The method described in Section 7.3.1 above forms the basis of a more rational
technique for determining the strength interaction diagram. This method has been
confined to research analyses, in which a particular axial force N, __ is assumed in
therange 0SN_ <N . For this particular value of N, _ = (N, ), a small curvature
K, is chosen. The strains corresponding to this value of k, are still not yet defined, as
we do not yet know the position of the neutral axis n_. This is determined by varying
n,, with each value of n, and the assumed value of K, uniquely describing the strain
distribution in the cross-section, as in Figure 7.3(b). As the strains are known at
each point in the cross-section, the accurate stress-strain relationships described in
Chapter 1 may be invoked to determine the stress in the concrete, steel or
reinforcement at each point in the cross-section. These stresses are then integrated
numerically over the cross-section to determine the axial force N that equates to the
combination of k, and n_. If N # (N__), the neutral axis depth n,_ is adjusted
progressively until N converges to (N, ), with an acceptable tolerance. At this

short’ 1

stage, for the predetermined value of (N, ), are a curvature x|, and the strain (and
stress) distribution throughout the cross-section is defined uniquely.

The next step is to integrate the first moments of the stresses over the cross-
section in order to determine the moment M, at the plastic centroid which gives
point 1 in Figure 7.6. The curvature K, is then increased to k,, with the iterative
scheme again being used to generate the moment M, for the chosen value of (N, ),
and a given curvature X, and hence point 2 in Flgure 7.6. In this way, we may
generate the moment versus curvature curve for a given (N, ), as shown in Figure
7.6. The curve shown is this figure demonstrates that, after a peak moment is attained,
the curve then softens owing to the presence of the descending branch of the stress-
strain curve for concrete shown schematically in Figure 1.10. Fortunately, there are
empirical equations that express the stress-strain curves for the concrete, steel and
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Figure 7.6 Moment-curvature response for a given axial force

reinforcement, so that generation of the moment-curvature curve may be performed
by routine computer programming. The maximum moment that is attained in Figure
7.6 is identified as (M_,_),, so that we now have one point (N,, ),, (M, ), on the
strength interaction diagram in Figure 7.4.

The entire interaction diagram for a stocky column may be generated in this
fashion, by specifying a value of (N__), calculating the moment-curvature
relationship corresponding to this load and identifying the peak moment (M, ).
The process is rather involved mathematically, as for each assumed (N ), an
iteration must be performed at each curvature to determine the position of the neutral
axis. However, the method is well-suited to obtaining rapid solutions on modern
computers, and has the main advantage that the actual stress-strain curve for the
concrete is used, so we do not have to rely on the approximation of a rectangular
stress block stressed to 0.85f_ over a depth n,. Of course, this rational approach
may be employed with little modification to short concrete-filled steel tubes.

short

7.4 Rigid plastic analysis
7.4.1 General

In the ingenious method developed by Roik and Bergmann?, the interaction diagram
AECDB shown in Figure 7.7 is approximated by the polygon ACDB shown. The
approach assumes that the cross-section is doubly symmetric about the axis of
bending, which is usually the case, and is based on rigid plastic principles described
in Chapters 1 and 4, so that the steel or concrete is either fully yielded or not stressed
at all. The procedure will be illustrated for the general cross-section shown in Figure
7.8(a), which is symmetrical about the axis D which is the position of the plastic
centroid. Because of the symmetry of the cross-section about D, the plastic centroid
is also the position of the elastic centroid. The section is comprised of the steel
component, which is assumed to be fully yielded in compression and tension at f ,
and the concrete component which is assumed to be fully yielded in compression dt
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Figure 7.7 Ultimate strength failure envelope

0.85f , but which has no tensile strength. The following definition of each of the
point§ in Figure 7.7 will be illustrated by means of an example. Of course, the point
A in Figure 7.7 is obtained from Eq. 7.11.

Point ‘B’

7.4.2.1 Pure bending analysis

Point B in Figure 7.7 corresponds to the pure flexural capacity. Consider the distribution
of stress shown in Figure 7.8(b) where the stress above the neutral axis N-A is
compressive. Below the neutral axis, only the steel component is stressed in tension,
and this neutral axis is positioned h_above the plastic centroid. For convenience, the
section is divided into three regions shown in (a), namely region 2 which lies h on
either side of the plastic centroid, region 1 which is further than h_above the plastic
centroid and region 2 which is further than h_below the plastic centroid. The resultant
forces in the steel and concrete components are shown in (c), where F_| is the resultant
force in the concrete in region 1 and acts at the centroid of the concrete region, while F,|
is the resultant force in the steel component in this region and acts through the centroid
of the steel in region 1, and so on. Taking moments of the forces in (c) produces the
pure flexural moment capacity M_shown in (d).

The force F, in region 2 in Figure 7.8(c) must act through the plastic centroid
because of the symmetry about D in Figure 7.8 that we have assumed. This symmetry
also dictates that the magnitude of the force F,, = F ;. As the section is in pure
flexure, the net resultant of the axial forces is zero, that is

A2

Fy+ Fy =Fg +Fg 712
and as it has been shown that F = F_, then F_ = F,,. Furthermore as the area of
concrete in regions 1 and 3 in (a) are the same, then the compressive strength of the
concrete in region 3, that is F_, is the same as that in region 1, then ch = Fc,. Hence

c3?

Fy=F3=Fp (7.13)
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7.4.2.2 Example 7.2 Roik and Bergann’s method — Point B
Consider the cross-section shown in Figure 7.5(a) that was considered in Example 7.1.
If it is assumed that the neutral axis lies in the web of the steel component and using the
notation in Figure 7.8, then F, = 2h x 10 x 300 = 6000h, N, while the force in the
concrete component F_| = (450 —h ) X 500 0.85 x 30 = 12750 X (450 —h ). Since F |
=F,, from Eq. 7.13, h, = 306 mm which indeed is in the web element, and F | = 0.85 x
30 x 500 x (450 - 306) = 1836 kN. The force F, in region 1 is then 300 X (15 x 300 +
(350-306) x 10) N = 1482 kN and is positioned (15 % 300 x 358 + 10 x (350 — 306)%
2) % 300/1482 x 10° = 328 mm above the plastic centroid. Moreover, the concrete force
F , is positioned (450 — 306)/2 + 306 = 378 mm above the plastic centroid. Hence by
taking the moment of the forces F_, F, and F ; about the plastic centroid produces M
= 1836 x 378 + 1482 x 328 + 1482 x 328 kNmm = 1666 kNm.

7.4.3 Point ‘'C’
7.4.3.1 Analysis

Point C in Figure 7.7 lies where the moment capacity about the plastic centroid is
the same as the pure flexural capacity M, but where there is a resultant axial force
N, .- The analysis of this section is shown in Figures 7.8(e) and (f). Roik and
Bergmann showed'” that the neutral axis N-A in (e) lies h, below the plastic centroid,
where h_ was determined as in Section 7.4.2.1 for point B. This can be confirmed by
comparing the forces in (c) with those in (f). The only difference between these
force distributions is F , in (f) and as this acts through the plastic centroid, as the
steel element is symmetrical about the plastic centroid, F_, does not contribute to the
moment and, hence, the moments at Points B and C are the same.

The resultant force in Figure 7.8(c) is zero as we are dealing with pure flexure. As
the moment M is the same in (c) and (f), any changes between these resultant forces
due to the movement of the neutral axis from the level in (b) to that in (e) is equal to
the increase in the axial force N__. Comparing (f) with (c), it can be seen that the
algebraic change in the steel force is 2F52 and the change in the concrete force is Fcz,
therefore the change in force

No =2Fg + Fgp (7.14)
and substituting Eq. 7.13 givesN_ =F_ +F_ +F_, thatis
N,,, = P. (7.15)

where P_is the axial compressive strength of the concrete component.

7.4.3.2 Example 7.3 Roik and Bergmann’s method — Point C

Consider the cross-section in Figure 7.5(a). We saw in Example 7.2 that F, = 1836 kN
and lies (450 — 306)/2 + 306 = 378 mm above the plastic centroid, F,, = 1482 kN and lies
328 mm above the plastic centroid, and F, = 1482 kN and lies 328 mm below the plastic
centroid. Moreover, h_again equals 306 mm, but this time is below the plastic centroid.
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Clearly, F_ =2 x 306 x 500 x 0.85 x 30 N = 7803 kN. The axial compressive force isN, |
= 1836+ 7803 = 9,639 kN which is equal to the axial compressive strength of the concrete
P, and taking moments about the plastic centroid produces M, as in Example 7.2.

7.4.4 Point ‘D’
7.4.4.1 Analysis

Point D in Figure 7.7 corresponds to the point of maximum moment. Roik
and Bergmann showed that the neutral axis for this point passes through the
plastic centroid as shown in Figure 7.8(h). The proof is illustrated in (k) to (n). If
the neutral axis is dropped a fraction Ah then the additional axial compressive force AF
reduces the moment M__ in (j) to M_ - eAF shown in (n). Furthermore, if
the neutral axis is raised then the change in the axial force AF is now tensile and acting
above the original level of the neutral axis so reducing the moment to that shown in (n).
Hence the maximum moment occurs when the neutral axis passes through the centroid.
The summation of the forces in Figure 7.8(i) gives
Fga N

Nshort = F +_'2_=%=7 (7.16)

that is half the compressive strength of the concrete component. The concrete
forces F_/2 and F_, in (i) lie above the neutral axis, while the compressive and
tensile steel forces F_/2 lie at the centroid of the steel in region 2 above and
below the neutral axis respectively. It is clear that the moment contribution of the
steel component is equal to its plastic moment capacity.

7.4.4.2 Example 7.4 Roik and Bergmann’s points D and A

We have already established in Examples 7.2 and 7.3 that F, = 7803 kN,
F, = 1836 kN (378 mm) and F,; (328 mm) = F_, (-328 mm) = 1482 kN, where the
distance in brackets is the height of the force above the plastic centroid, which is also
the position of the neutral axis. Clearly the force F /2 lies 306/2 = 153 mm above the
neutral axis, and because only the web element of the steel component lies in region 2,
F,/2 =306 %10 x 300 N = 918 kN and lies 306/2 = 156 mm above the plastic centroid
in compression and 156 mm below the plastic centroid in tension. From Example 7.3,
the axial force N, =9639/2 = 4820 kN and using Example 7.2, the moment about the
plastic centroid is M__ = 1666 + 2x918x156x10 + (7803/2) x 153x10°? = 2549 kNm.

Finally, Point A in Figure 7.7 is N_= 16,275 kN from Example 7.1.

Points A, B, C and D are shown plotted in Figure 7.9 for Examples 7.2 to 7.4. It is
worth noting that in Example 1, at a load eccentricity of 371 mm, the axial strength was
4797 kN and the bending strength was 1780 kNm. A line corresponding to this
eccentricity is shown in Figure 7.9, where the point on the rigid plastic failure envelope
is (2280 kNm, 6100 kN). It can thus be seen that the rigid plastic assumption of Roik
and Bergmann overestimates the bending and the axial compressive capacities by
28%. This degree of unconservatism can be tolerated, as it can be argued that strength
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Figure 7.9 Failure envelopes from Examples 7.1 to 7.4

reduction factors in national codes of practice, in conjunction with the benign strain
hardening effect of the steel component, will compensate for the unconservative
assumptions made in the rigid plastic assumption.

7.4.5 Allowance for shear

The rigid plastic analysis must be modified for the effects of shear, in the same way
as in Chapter 4. If the composite column is loaded with unequal end eccentricities,
it will experience a moment gradient and hence a shear force V. This shear force is
assumed to be resisted by the web element of the steel component.

Because of this, the web yield stress in the method of Roik and Bergmann must be
reduced below its strength f It was shown in Section 4.2.5 that an appropriate reduced
yield strength is f,_given by Eq. 4.2, where the shear stress in the web of depth d_ and
thickness t_ is taken as

Vv
dyyty,

a1

Ty =

Equations 4.2 and 7.17 are based on the von Mises yield criterion (Chapter 1), and on the
assumption that the shear yield stress T, in the web element of the steel member is uniform.
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8 Slender columns

8.1 Introduction

In Chapter 7, we introduced the concept of a composite column that is required to
resist axial compression as well as bending actions. The behaviour of the column
was restricted to stocky columns whose strength was attributable entirely to material
failure of the cross-section. Composite columns in practice are rarely stocky, but are
slender, in that their length is much larger than the cross-sectional proportions. This
chapter will again consider composite columns which are subjected to compressive
and bending actions, but the behaviour is inherently more complex as the column
slenderness contributes to the so-called second order effects. These second order
effects must be considered in the design of slender composite columns. The
fundamental procedures will first be developed for steel columns in Sections 8.2
and 8.3 which are then applied to composite columns in Section 8.4.

8.2 Elastic columns

8.2.1 Concentric loading

8.2.1.1 First yield approach

Flexural or Euler buckling is based on elastic principles, and forms the basis for the
design of concentrically loaded steel columns. We will consider the analysis of this
type of buckling here, as the results are used for the design of composite columns
described in Section 8.4. Euler buckling of a simply supported and initially straight
steel column takes place when the column moves to an adjacent equilibrium position
at aload N, given by’

n’E s1
L2
where L is the length of the column and I is its second moment of area about the weaker
principal axis. The shape of the buckle follows a sine curve, but the magnitude of the
buckle is indeterminate. The concept of Euler buckling is used to some extent in
reinforced concrete design, but because of the material nonlinearities in the variation of
E_and particularly due to cracking, a concrete column will not ‘buckle’ at a load given
by Eq. 8.1. This is also true of a composite column, as the concrete component also
behaves nonlinearly with respect to its material properties. However, it is worth reiterating
that the most advanced analysis techniques for composite columns, which will be treated

in this chapter, are in fact based on the concept of Euler buckling,

If a concentrically loaded (steel) column was ‘perfect’ in the sense that it was
initially straight, concentrically loaded and had the stress-strain curve given in Figure
3.1, it would fail by Euler buckling at N, for lengths greater than n\/(ExI/qu) and

Ng = 8.1)

121



122 Slender columns

Euler
Axial buckling
force
N first
yield
N..

maximum reduction
in strength

0 Length L
Figure 8.1 Failure of an elastic steel column

squash at lengths less than this, where qu = Asfy is the squash load of the steel cross-
section. This failure load is shown in Figure 8.1.

Steel columns are never ‘perfect’. We will now drop the condition that the column
is initially straight, and suppose that it has an initial imperfection u_ that varies
sinusoidally according to

. Tz
u, =9, sin— 8.2)
where z is measured from the end of the column along the length, and J_ is the
maximum value of the initial out of straightness as shown in Figure 8.2. For this
crooked column, the member deflects increasingly by an additional amount & at

midspan as the axial load N is increased, given by'

8 NINg

- 8.3)
6, 1-N/Ng

It is noteworthy that when N = 0 in Eq. 8.3 then & = 0 as expected, and that as
N — N; then the column deflection increases towards infinity. This high column
curvature as N increases leads to increased stresses in the column, and forms the basis
of the failure theory outlined below.

The bent column under an axial load N is subjected to a moment at midspan of
N( + &) as can be seen in Figure 8.2 which, on the concave side of the bent
column, produces a compressive stress of N(8 + 80)/2, in which Z is the section
modulus. The axial compression also produces a compressive stress N/A . If the
column is deemed to fail when the sum of these two compressive stresses reaches
the yield stress of the steel fy then

_N  NE+5,) @4

YT A V4
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Figure 8.2 Initial imperfections in a column

The load N at which first yield occurs may be obtained by substituting Eq. 8.3
into Eq. 8.4. After some manipulation, this load may be written as

N
2 E
Ny, =Ng &~ |62 -

8.5)
N sq
in which
N
1+(1+7)—E
N sq
&= (8.6)
2
and 1 is called the imperfection parameter, which in this derivation is given by
n = 60? (87)
2r

where D is the width of the member (assumed to be rectangular) transverse to the
axis of buckling and r = ‘/(I/As) is its radius of gyration.

8.2.1.2 Example 8.1 Strength of a simply supported concentrically
loaded steel bar

Consider the case of a simply supported rectangular steel bar of dimensions
200 mm x 20 mm and yield stress f =300 N/mm?, Its properties are A_=200x 20 =4000
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mm? and I =20°x 200/12 = 133 x 10° mm* and so r = V(133 x 10°/4000) = 5.77 mm. The
squash load is N =4000 x 300 N = 1200 kN, and let us assume further that the length
is L = 468 mm, so that its Euler load from Eq. 8.1is N = n”x 200 x 133 x 10°/468?
= 1200 kN which is the same as the squash load. Hence if the column was ‘perfect’, Euler
buckling and yielding would occur simultaneously at a load of 1200 kN.

Suppose now that the column has a maximum out of straightness § = 5 mm.,
From Eq. 8.7, 1 = 5 x 20/(2 X 5.77% = 1.50, from Eq. 8.6 § = (1 + (1 + 1.50)
% 1200/1200)/2 = 1.75 and so from Eq. 8.5 N = (1.75 - V(1.75% = 1200/1200))
% 1200 =377 kN. The presence of the geometric 1mperfect10n that renders the column
crooked thus reduces the strength of the column by 377/1200 or 69% below that
assuming elastic buckling.

The load to cause first yield of a crooked column N_ is shown schematically in
Figure 8.1. As L — 0 the strength approaches the squash load N, of the column,
while as L — o the effects of yielding become negligible and the strength approaches
the Euler load N_. The greatest reduction in strength below either N__ or N actually
occurs at the point where N = N which was considered in Example 8.1.

8.2.1.3 Column curves
Equation 8.5 forms the basis of column strength curves for steel columns that are given in
many national standards. In the derivation presented in Section 8.2.1.1, it was assumed
that the column was rectangular, and that moreover the magnitude of the initial geometric
imperfection 8, was known. Both of these effects appear in the imperfection parameter 1}.
In a real (steel) column, the cross-section is rarely rectangular and the magnitude of
the initial out-of-straightness is also unknown. In addition, residual stresses that are
formed during the manufacture of the column are present, but are not easily quantifiable.
The column strengths given in national standards are therefore based on Eq. 8.5, but
they have been calibrated against test results and also against advanced numerical
solutions that incorporate a variety of cross-sections, geometric imperfections and
residual stresses. By doing this, the imperfection parameter | may be determined
empirically as a function of the slenderness ratio A = L/r (where r is the radius of
gyration about the axis of buckling) and also as a function of the type of cross-section,
which categorizes its residual stress pattern. When this is simplified, the strength of
steel columns are categorized by their slenderness and their cross-sectional type. For
example, in the Eurocode?, Eq. 8.5 is written as

(8.8)
col =X N

where N__ is the strength of the steel column, qu is its squash load and the slendemess
parameter % is a function of the slenderness ratio A = L/r and also of the empirically
determined imperfection parameter 1.

If we write the term N/N_ that occurs in Egs. 8.5 and 8.6 as

Ng m*EJd 1 m°E

= 8.9)
qu L2Asfy /12 fy
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then clearly N/N_is inversely proportional to the slenderness ratio squared.
The result of this is that the column curve concept expresses the slenderness parameter
x as a function of the slenderness ratio A. In the Eurocode?, four column curves
are given as illustrated in Figure 8.3, and these curves are denoted a,b,c and d. Column
‘a’ is used for sections that are free from residual stresses, which calibration of Eq. 8.5
with tests show have a very low value of 1 and hence have the highest strength. On the
other hand, the column curve labelled ‘d’ is used for sections with thick plates, which
experimental calibration shows that 1 is quite large, and so the corresponding strength
is lower. The curves labelled ‘b’ and ‘c’ apply to cross-sections whose residual stresses
and out-of straightness due to fabrication have been found to be between those ‘a’ and
‘d’. It is worth noting that the British steel standard also presents four column curves,
while the Australian standard presents five.

82.14 Effective lengths

The length of the column L in the derivation of the column curve was taken as that
between simple supports as shown in Figure 8.4(a). The elastic buckling load N_, of a
perfect column depends on what is termed the effective length of the column. For example,
if the column of length L was not simply supported at each end, but in fact was fully
built-in at each end as in (d), then its buckling ioad can be shown to be 4n’EI/L? or 4N,
that is the buckling load of the portion of the column or idealized column shown as L,
that resembles the simply supported Euler column. It is most usual to express the end
conditions of a column by referring to its effective length L, so that

2
N =F El (8.10)
crit = 2
Le
1.0 ‘
-‘.‘.,-__,.-~m~ a (free from residual stress
RN and low values of 1)
‘N, 't e
X AN
SR N b (composite columns)
d ~'~. ‘."'- ~‘\
e )
05 e (sections with S "-::"'-,‘
thick plates) c B RARRED
0 0.2 Y 1.0 14

Figure 8.3 Illustration of column curves used in the Eurocode (not to scale)
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which merely replaces the length L in the Euler formula by the effective length L.
Further, it is common to express the effective length of a column of length L in
terms of its effective length factor k_by

L, =k,L

Further examples of effective length factors for idealized conditions of column
restraint are given in Figure 8.4.

Generally, a column in a building does not have the idealized end restraints shown
in Figure 8.4, but is part of a rigid frame so that the end condition is intermediate
between fully built-in at both ends and simply supported at both ends. In addition, the
effective length is influenced by whether or not the frame of which the column is a
part is free to sway. The determination of the effective length factor k_in these cases
is beyond the scope of this book, but is explained for elastic columns in Ref. 1.
Guidance for determining the effective length factor is generally given in chart or
nomogram form in most national steel (and concrete) standards, in which the effective
length is a function of the stiffness of restraining beams and columns at each end of
the column under consideration.

The concept of the effective length is important, as the slenderness ratio is given
more generally, not as L/r, but as

8.11)

1< L, (8.12)

r

This slenderness ratio is again used in the column curves, in which the column
effective length L. merely replaces the simply supported length L.

Example 8.2 Strength of a restrained concentrically loaded steel bar
Let us consider the steel bar that was analysed in Example 8.1, but this time it shali
be assumed that the bar is fixed rigidly at both ends. As in Example 8.1, we shall
make recourse to first principles and not to any national design standard.

From Figure 8.4(d), the effective length factor is k_ = 0.5, so that L, = 0.5 x 468
= 234 mm and the elastic buckling load is N_. = n?x 200 x 133 x 10%/234?
= 4795 kN. Again assume 8 =5 mm, so thatn = 1 50 as before. The parameter
E=((1+(1+15) x4795/1200)/2 5.49, and so from Eq. 8. 5N =(5.49 - ¥(5.49*
— 4795/1200)) x 1200 = 452 kN. It can thus be seen by comparxson with Example
8.1 that increasing the restraint of the column from simply supported ends to built-
in ends increases the elastic buckling load by a factor of four, but the effects of
yielding result in an increase in failure strength of 452/377 or 20%. Nevertheless,
this 20% increase cannot be ignored in design, and so the effective length factor k_
should be used. This is particularly so when k_> 1 (as in columns in frames that are
free to sway), as the strength of the slender column derived assuming k, = 1 (Eq.
8.1) will be unconservative.
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Figure 8.4 Effective length factors for idealized end restraints

8.3End moments
8.3.1 Secondary effects

Let us consider a simply supported column that is subjected to end moments
M, and M_, that bend the column into single curvature as shown in Figure 8.5(a). In
concrete and composite terminology, this is still referred to as a column, while in steel
design it is referred to, perhaps more correctly, as a beam-column. Although we are
discussing steel members here, we will however refer to the member as a column.
The effect of the end moments M, and M_, is to bend the column into single
curvature, as shown in Figure 8.5. This bending curvature gives rise to additional
deflections u, and so an additional moment of Nu is generated along the member.
The total moment at any cross-section where the deflection is u_is M + Nu_ this
moment causes a curvature (M + Nu )/EI, and so we can calculate a new deﬂcctlon
u,, a new moment (M_ + Nu )/EI a revised deflection u, and so on. Finally, the
bending moment converges to Mm + Nu. As shown in Figure 8.5, the constant moment
M, is referred to as the primary moment, while the additional moment Nu is referred
to as the secondary moment. The maximum value of the second order moment, the

sum of the primary and secondary moments, is denoted M_ . and it is this moment
capacity at a given axial compression N that must be established.

Fortunately for elastic analysis a closed form solution for the maximum value
M__ exists, and a derivation is given in Ref. 1. However, material nonlinearities and
cracking in composite columns preclude expressing M__ in a closed form, and so
approximations have to be made. If for the present we ignore these material
nonlinearities that are germane to the concrete component of a composite column
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and consider again a steel column, in lieu of the complex closed form solution for
M__ asuitable linear interaction between the moment M, and axial compression
N to cause failure of a steel column is

M pax N (8.13)

=]-
M Ncol

P

where M _is the plastic moment for bending about the weaker axis.

In Eq. 8.13, the moment M___is the maximum second order moment obtained from
the closed form solution. As this closed form solution is complex even for steel, and
indeed does not exist for composite columns, the following approximation is used.

M pax - Cm (8.14)
Mml 1- N
Ncrit

where N is the axial force, N__ is given by Eq. 8.10, and the factor c_,is intended to
take account of the different moments M_ and M_, applied at the ends of the member
shown in Figure 8.5. IfM_ is chosen as the larger moment and M, , is chosen as the
smaller, then the moment gradient  is given by

M, (8.15)
M 1
N primary
/' - bending
moment
- Mai
’(‘ . \
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,
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Figure 8.5 Primary and secondary moments in compression members
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where B is negative if the end moments bend the column into single curvature and is
positive if the end moments bend the column into reverse curvature. Using this
definition of the moment gradient, a commonly used expression for c_ is

cm =066-0448 2 044 (8.16)

Hence in Eq. 8.14, the coefficient c accounts for the benign effect of the moment
gradient, while the denominator,"which is less than unity, accounts for the

amplification of the moment due to nonlinear effects.

8.3.1.1 Example 8.3 Moment capacity of a steel square column section
Let is again consider the column of Example 8.2, but this time the column is subjected
to an axial load N = 300 kN which has a moment applied at its top and none at its
bottom, The moment gradient is thus = 0 and so from Eq. 8.16, c_ = 0.66. We will
use the column strength as determined from first principles rather than that implicit
in codes of practice, so that N = N, =452 kN. The rigid plastic moment M, for
bending about the weaker axis 1s 300x202x200/4 Nmm = 6.00 kNm. The second
order moment to cause failure from Eq. 8.13 is M_ = (1-300/452)x6
= 2.02 kNm. Substituting this value of M__ into Eq. 8.14 produces M, = 2.02 x
(1-300/452)/0.66 = 1.03 kNm. This end moment would correspond to a load
eccentricity at the top of the column of 1030/300 = 3.4 mm.

8.3.2 Graphical interpretation

The provision of Eq. 8.13 may be explained conveniently in graphical form. This is
introduced here for steel columns, because it forms the basis of the Eurocode?
approach for composite columns described in Section 8.4.

Figure 8.6 shows the interaction between compression and bending for a steel
column that is similar to Figure 7.4. The moments are plotted dimensionally as m =
M, /M andtheloadsasn=N__ /N,,» Where M, is the plastic moment and N, isits
squash foad. The section failure envelope is taken in most national codes as the
straight line m = | — n, as shown.

Now consider the point at A in Figure 8.6 where n_= N_ /N, “ and m =0, this point
corresponds to the pure compressive load to cause failure of the column when loaded
concentrically, as would be determined from the relevant column curve. In terms of
Eq. 8.8, n_is identical to x. If section failure, that is failure of the material such as
that given in Figure 7.7, was the relevant limit state, then the column loaded to n_
could support the moment m, , drawn in Figure 8.6. Of course, the limit state is
failure by buckling, so that the column cannot resist any of the moment m, g a8 it
buckles at n_ without any moment being applied. At the origin when there is no axial
force, the column can of course resist the full plastic moment m = 1 at point C.

Let us now draw a line (which we will assume to be straight) between B and 0 in
Figure 8.6. For any non-dimensional load n, =N /N_ between n_and 0 as shown in
Figure 8.6, the triangular region A-B-0 represents the moment that cannot be
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supported owing to slenderness or buckling effects. Hence, for aload N, that is non-
dimensionalized as n, as shown in the figure, the moment m_ _ cannot be resisted by
the column, but the reserve of capacity m_ . can be resisted by the column and it is
this reserve capacity m_ . that is available toresist M___in Figure 8.5. By noting that
the failure envelope for the interaction between n and m is a straight line, and that
the region A-B-0 is a triangle, it can be shown from similar triangles that m,
=1-n,/ n_. This construction of the reserve capacity m,_ _ leads to an equation for
the capacity of a column under a load N < N_ that is identical to Eq. 8.13. The
moment M, /M , where M__ is the reserve moment capacity, represented by E-F
must, of course, be transformed back to end moments in accordance with Egs. 8.14

to 8.16 as M__ is the second order moment M__ in Eq. 8.14.

8.4 Moment capacity of slender composite columns

8.4.1 Concentrically loaded columns
8.4.1.1 Ciritical or buckling load

The most widely accepted approach for determining accurately the bending capacity
of a composite column is that used in the Eurocode?, and follows very closely the
same arguments presented in Section 8.3 for steel columns. In the previous section,
the second order moment was quantified fairly accurately by an approximation based
on a knowledge of the buckling strength N_ of a steel column. The same rationale
is used in composite columns, in that Eq. 8.14 is used to magnify the maximum end
moment M_| that has been determined from a first order linear analysis. However,
in the Eurocode approach, the ‘buckling’ load N_, is written as

cross-sectional
failurem+n=1

m U\Ishurv'nl\'ip)

Figure 8.6 Graphical interpretation of moment capacity at a given load for a steel column
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2
_n*(EI), (8.17)
crit = Lz,
where the effective flexural rigidity is taken as

(8.18)
(EI), = Egl; +08E I,

Presumably the factor 0.8 in Eq. 8.18 is intended to account for concrete cracking
and other material nonlinearities in an approximate way.

8.4.1.2 Example 8.4 ‘Buckling load’ of a composite column

The buckling or critical load for the column shown in Figure 7.5(a) and which buckles
about the major axis will be determined. As Eq. 8.18 is approximate, we can justifiably
ignore the steel in calculating the concrete properties. Hence I = 900°x500/12
=30.4x10° mm*. Similarly for the steel component we may obtain I_= (10x700%12)
+ (2x300x15x357.5%) = 1436x10° mm*. Assuming that E = 25 kN/mm?, E,
=200 kN/mm? and that the effective length of the column is L, = 25 m, from Eq.
8.18 (EI), = (200x1436%x10°) + (0.8x25x30.4x10'*) kNmm? = 895x10'2 Nmm?, and
from Eq. 8.17, N_, = n?x895x10'%/25,000* N = 14,133 kN.

8.4.1.3 Column curve for composite columns

It was shown in Section 8.2.1.3 that the slenderness ratio A = L/r is proportional to
\/(qu/NE). This may be extended to composite columns of effective length L_ by
writing a modified slenderness

A% = Nsg (8.19)

N crit
where N__ is given by Eq. 8.17 and N,, is the squash load given by the sum of Egs. 7.2
and 7.3. The strength N_, of a concentrically loaded composite column may be
determined from the modified slenderness A* and the relevant steel strength curve
(curve ‘b’ in Figure 8.3) of the Eurocode. The slenderness factor x* is tabulated in the
Eurocode directly as a function of A* and the relevant column curve. Hence by analogy
with Eq. 8.8 for a steel column,

Negt=2* qu (8.20)

for a composite column.

8.4.1.4 Example 8.5 Strength of a concentrically loaded column

For the column considered in Example 8.4 that was also analysed in Example
T, A*= \/(16,275/14,133) = 1.07. Hence from curve ‘b’ of the Eurocode, x = 0.58
and so the column strength of the slender composite member is 0.58 x 16,275 =
9440 kN which is the maximum concentric load that can be applied to the column.
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8.4.2 Second order effects
8.4.2.1 General

Second order effects caused by axial compression and bending in composite columns are
treated in exactly the same way as was described in Section 8.3.1 for steel columns. Hence,
the maximum moment in the slender column is obtained from the maximum end moment
M_, and the moment gradient B by amplifying the maximum end moment by c /(1 — N/
N_.), wherec_is given by Eq. 8.16, N_ by Eq. 8.17 and where N is the axial compression.

Example 8.6 Moment amplification factor for a slender column
Suppose now that the column in Example 8.4 is subjected to a moment M_; at one
end and M_ /2 at the other end that bend the column in single curvature. Hence
B =-0.5 and from Eq. 8.16 ¢ _ = 0.66 + 0.44 x 0.5 = 0.88. The maximum moment
within the column M___ is therefore obtained by amplifying the end moments by the
right hand side of Eq. 8.14. If the applied load N = 6000 kN, then this amplification
is 0.88/(1 — 6000/ 14,133) = 1.53, thatisM__ =1.53 M_ .

8.4.3 Moment capacity for a given load
8.4.3.1 General

When a composite column is subjected to a given axial compression N, the Eurocode
approach allows us to calculate the bending capacity in an analogous manner to that
described for steel beam-columns. Instead of the straight line fromn=1tom=1 that
describes the cross-section strength in Figure 8.6, the cross-section strength is determined
using the methods described in Chapter 7 by either first principles, or the rigid plastic
method applied in the Eurocode that was described in Section 7.4. We can again illustrate
this method graphically in Figure 8.7, where mis the moment M, non-dimensionalized
with respect to the pure bending capacity of the composite column Mp, and n is the
compressive force N, non-dimensionalized with respect to the squash load N

Under the action of an axial compression, we determine first the column strength
described in Section 8.4.1.3, which non-dimensionally is the slenderness parameter
% in the Eurocode? and which is shown in Figure 8.7. Following the same technique
for steel beam-columns, the line AB is drawn to intersect the strength envelope
(m, ., n, )at B, and the line OB constructed. The axial force N is non-
dimensionalized to produce n,=N/N_, which clearly must be less than . This axial
force is plotted on the vertical axis, and the line CF drawn to intersect the strength
interaction envelope at F and the line BO at E. The dimensionless moment EF is
thus the bending capacity that is allowed at the level of axial compression N.

This approach is a little conservative, and larger capacities than EF are achievable
under higher values of moment gradient. This can also be shown to be true for steel
beam-columns. The Eurocode allows for this by extending the line OB up the vertical
axis to a point G whose dimensionless capacity is  , in which

xn=(1;ﬁ)x < ng (8.21)
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Using the construction in Figure 8.7,

ng — Xn ) (8.22)
X—Xn

and if the section failure envelope is drawn according to Section 7.4 assuming rigid
plastic assumptions then

M =09uM ,

8.4.3.2 Example 8.7 Bending capacity of a composite column

The failure envelope for the column considered in Example 8.6 was determined in
Examples 7.2 to 7.4 and is shown in Figure 7.9. At a value of ) = 0.58, the
dimensionless point of intersection with the strength envelope developed in Chapter
7 is p, = 1.05. It is worth noting that for a composite column the dimensionless
moment m can be greater than unity owing to the concavity of the cross-section
failure envelope. The point F in Figure 8.7 corresponding to the load n, = 6000/
16,275 = 0.37 is p, = 1.41 where N_ = 16275 kN from Example 7.4. In addition,
from Eq. 8.21, %, =0.58 x (1 + 0.5)/2 =0.22 < 0.37, so x, = 0.22. Hence from Eq.
8.22, u = 1.41 - 1.05 x (0.37 — 0.22)/(0.58 — 0.22) = 0.97, and since the cross-
sectional strength envelope was generated making rigid plastic assumptions, M =
0.9 x 0.97 x 1666 kNm = 1450 kNm where M = 1666 kNm from Example 7.2.
This moment is the maximum moment in the cross-section, amplified from the end

H=Hq -.Uk(

(8.23)
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Figure 8.7 Design procedure for compression and bending
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moments according to Eq. 8.14. Hence from Example 8.6, the end moments that
can be resisted by this column are 1454/1.53 = 950 kNm and 950/2 = 475 kNm. These
moments correspond to eccentricities of the end load of 6000 kN of 950/6000 m = 158
mm and 158/2 =79 mm.
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9 Composite beams with
service ducts

9.1 Introduction

Passing the building services through ducts in the webs of the composite beams in
buildings can allow a considerable reduction to the storey height and, hence, reduce
the overall height of the building and foundations. The rigid plastic analysis
procedures developed in Chapter 4 are used throughout this chapter to assess the
effect of inserting a service duct into the web of an existing composite beam and to
assess the effect of strengthening the ducted region. It needs to be emphasized that
the simplicity of both the ensuing analyses and examples is solely due to the fact
that rigid plastic assumptions have been used.

The general analysis procedures'* first developed by Redwood and Darwin are
described in Sections 9.2 to 9.6 where a service duct is inserted into an existing beam
in a region where flexure predominates. The analysis is then extended in Section 9.7
to determine the enhancement of the strength due to the shear capacity of the slab,
and in Section 9.8 to determine the effect of strengthening the ducted region by
plating. The procedure is then applied in Section 9.9 to the insertion of a duct in a
region of a composite beam where shear predominates. Finally in Section 9.10, methods
are proposed for determining whether local embedment failure of the shear connectors
will occur due to the insertion of the duct.

9.2 Outline of general analysis procedure

A composite beam with a service duct is shown in Figure 9.1. The duct can be
visualized as partitioning the composite beam into the three distinct regions shown,
that is the support region A-B, the ducted region B-C and the mid-span region C-D.
The section at C will be referred to as the high moment end of the duct and that at D
as the low moment end. The insertion of the duct in Figure 9.1 not only weakens the
composite beam by reducing the cross-sectional area of steel in the ducted region to
(A),,, as shown, but can also reduce the longitudinal shear forces in all three regions,
that is (F), ., (F)), . and (F,), .. The overall flexural capacity of the existing
composite beam with a duct and in particular the effect that the duct has on the
flexural capacity at the position of maximum moment, is covered in Section 9.3.

The ducted region in Figure 9.1 is shown in Figure 9.2 where it can be seen that the
beam now consists of an inverted steel T-section at the bottom of the composite
beam and a composite T-section at the top. These T-sections have to resist
combinations of the applied shear forces V, as well as the applied moments M,
Instead of trying to analyse the ducted region for combinations of these stress
resultants that is extremely complex, the following analysis procedure is used:

135
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Figure 9.1 Composite beam with service duct

o First of all, the pure flexural capacity of the ducted region is determined in Section
9.4, that is the flexural capacity of the section ignoring the effect of vertical shear.
@ The pure shear capacity is then determined in Section 9.5, that is the ability of the
T-sections to resist vertical shear in a region of very low applied moment.
® Finally, the interaction between the applied shear V_and the applied moment M,
is dealt with in Section 9.6, using experimentally derived failure envelopes.

It will be shown in the following analyses that the critical region of the ducted

composite beam, in both the ensuing shear analyses and flexural analyses, occurs at
the high moment end of the duct at section C in Figures 9.1 and 9.2.
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Figure 9.2 Stress resultants acting on ducted region
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9.3 Maximum flexural capacity of ducted beam
9.3.1.1 Example 9.1 Flexural capacity of ducted beam at mid-span

(a) Effect of transverse ribs

The composite beam in Figure 4.3 in Chapter 4 was previously analysed in Figure 4.4 in
Section 4.2.2.2 with full shear connection and with a solid slab. In this analysis, the
strength of the steel component was weaker than that of the concrete component and,
hence, P, =P =2300kN atthe position of maximum moment. Let us now assume that the
solid concrete slab is replaced with a profiled slab with transverse dove-tailed ribs of
height 50 mm as shown in Figure 9.3. In the full shear connection analysis in Figure 4.4,
the depth of the concrete in compression n = 30.9 mm that is less than the depth of 80 mm
of the solid concrete above the transverse ribs in Figure 9.3. Therefore, the transverse
ribs in the composite beam in Figure 9.3 will not reduce the maximum flexural capacity of
the beam in Figure 4.4 and the strength will remain at M, =702 kNm.

(b) Insertion of a service duct

Let us now insert a service duct into the beam in Figure 4.3 in the region of high
moment near the mid-span of the beam as shown in Figure 9.3. It will be assumed in
the following analyses that the stud shear connectors are uniformly distributed
along the length of the beam so that the degree of shear connection at any section is
directly proportional to the distance of that section from the nearest support. The
high moment end of the duct, such as at section C-C in Figure 9.1, is a critical section
in the analysis because, at this section, the reduced cross-sectional area of the steel
component (A ), is subjected to the largest longitudinal shear force (F,), .. Hence,
let us start the analysis at this section.

At the critical section C-C in Figure 9.3:

o the strength of the concrete component (P ). . = Acfcy =3500%80x%21.3
=5964 kN

All units in N and mm unless shown

< 1750 1750 . n=066 1=086

uniformly distributed connectors

A B \_Ci D! n =l
Tulviviglvivluld
50, : N service duct fc =25
244 LIS - (fy =21.3)
| L ™ f, = 250
% 3am | B D
18 = 43m = g7 m
) Sm 4 - 5m i

Figure 9.3 Duct inserted into an existing composite beam
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o the strength of the steel component (P).. = (A)
+ (160 x18x250)) = 1690kN
and as the degree of shear connection 1} = 4.3/5 = 0.86,
the strength of the shear connectors that can impose a thrust on section C-C is
P =1MP,), = 0.86 % 2300 = 1978 kN in which from Example 4.1
(P, =2300kN

f,=2x ((50x10%x250)

duct

The weakest of the three components (P ). . (P). . and (P ) . that are listed above
is the strength of the steel component and, hence, the resultant force in the shear
connectors in region A-C in Figure 9.3 is (F,), . = (P ). = 1690 kN. Therefore, the
connectors in region A-C are not fully loaded because the weak steel section now
controls the design. However, the connectors in region C-D remain fully loaded. As the
degree of shear connection within this region C-D is 1 —0.86 =0.14, the strength of the
shear connectors within region C-D is 0.14 X 2300 = 322 kN. Therefore, the maximurm
thrust that the connectors can impose at mid-span is (F,), .+ (P,)., = 1690 + 322 =
2012 kN that is less than the requirement for full shear connection of 2300 kN, so the mid-
span now has partial-shear-connection due to the insertion of the duct.

The partial shear connection analysis at mid-span is shown in Figure 9.4. The analysis

procedure that is depicted has been fully described in Chapter 4 and in brief consists of:

The cross-sectional properties of the section shown in (a).
The axial strengths P of the three components of the composite beam in (b),
which are derived from (a) and from the force in the connectors in the shear span
under consideration in Figure 9.3 which in this case is the half span.

¢ The weakest of the three components in (b) controls the force in each component
and, hence, the resultant force in each component in (c) is, in this case, the force
in the shear connectors of 2012 kN.

e An equivalent stress distribution has been used in (d) to simplify the analysis,
where the sum of the stresses in the steel component gives the real stress distribution.

PkN) CknN) C F(kN) y(mm)

o 3500 equi!\'.
80| foy =2137 | 596 €—2012 23 €302 135
il T R i P
50 1130 2012 © —=2012
. —— - e g 300
15— Ilﬁp 720 s 55 E_{—288 131.8
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(a) (b) (c) (d) (e) (f)

Figure 9.4 Flexural capacity of ducted beam at mid-span
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In this case, the neutral axis is in the top steel flange and, hence, the real stress in the
steel component above the neutral axis is 500 — 250 = 250 N/mm? compression and
that below the neutral axis is 250 N/mm? tension.

¢ As the steel component is not fully yielded in tension as shown in (b) and (c) where
the force 2012 kN is less than the strength of 2300 kN, part of the steel component must
be in compression as shown in (e). The compressive force
of 288 kN is such that the sum of forces in the steel component in (¢), that is 2300 kN
—288 kN, is equal to the resultant force in the steel component in (c) of 2012 kN.

¢ Knowing the resultant forces in (e), the cross-sectional widths over which they
act in (a), and the equivalent stresses in (d), the distance of these resultant forces
from the top fibre can be derived and are shown in (f)

¢ Taking moments about the top fibre using (e) and (f), gives the capacity at mid-
span (M), , =671 kNm. This can be compared to the capacity without the duct
from Example 4.1 of 702 kNm. Hence, the effect of inserting the duct is to reduce

the flexural capacity at mid-span by a small amount of only 4%.

9.4 Pure flexural capacity of ducted region

9.4.1 Flexural behaviour

The ducted region in Figure 9.1 is shown subjected to flexure in Figure 9.5. In deriving
the flexural capacity within the ducted region, the following standard assumptions are
made: the steel and concrete components have the same curvature k as shown; and a
slip-strain (ds/dx), . exists at the interface between the steel and concrete components.
However, in analysing the ducted region for flexure, it will also be assumed that the top
steel T-section is in full interaction with the bottom inverted steel T-section, so that the
strain profile in the top steel T-section is in line with that of the bottom steel T-section
as shown, that is (ds/dx), , = 0. Hence, the rigid plastic analysis procedures developed
in Chapter 4 can be applied directly to the composite ducted section.

high compression ) € tensile cracking

top steel '\ 0 ST (ds"rdx}imer
Tasection )

d!\'l‘rd.‘_}ﬂ.‘](‘= 02

bottom inverted i

--..._____ﬂc;e] T-section !
—_ :

Figure 9.5 Ducted region subjected to flexure
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Figure 9.6 Pure flexural capacity at high moment end of duct

94.1.1 Example 9.2 Pure flexural capacity at high moment end

of ducted region

The analysis for the pure flexural capacity of the ducted region at the high moment
end of the duct, at section C-C in Figure 9.3, is shown in Figure 9.6. The strength of
the concrete component is listed in (b) as 5964 kN, the strength of the individual
rectangular elements of the steel component sums to 1690 kN, and the strength of
the shear connectors between the high moment region of the duct and the support is
shown as 1978 kN. Hence, the weakest component in (b) is the steel component that,
therefore, controls the forces in the components as shown in (c). It can now be seen
by comparing (c) with (b) that the connectors in the shear span A-C in Figure 9.3 are
now not fully loaded due to the presence of the duct, which will also affect the
flexural strength at the low moment end of the duct. As the strength of the steel
component controls the force distribution, the steel component is fully yielded in
tension as shown in Figure 9.6(d) so that there is no need to use the equivalent
stress distribution in this analysis. From (e) and (f), the pure flexural capacity at the
high moment end of the duct comes to (M, ), = 522 kNm.

duct

94.1.2 Example 9.3 Pure flexural capacity at low moment end

(a) Pure flexural capacity at low moment end

It was shown in Example 9.2 that the shear connectors in shear span A-C in Figure 9.3 are
now no longer fully loaded but are resisting a force of (F,, ), . = 1690kN. It will be assumed
that this force is uniformly distributed along the shear span A-C so that at the low moment
end of the duct at section B-B, the shear connector force F)up=F),c
XL, /L, .=1690x3.3/4.3=1297kN. This is shown as the strength of the shear connectors
in Figure 9.7(b) in the analysis at the low moment end. From () and (f) in Figure 9.7, the
pure flexural capacity at the low momentend (M, ), =477 KNm.

(b) Pure flexural capacity of ducted region
It can be assumed that the pure flexural capacity at mid-span of the duct, which is
needed in the analysis in Section 9.6, is the average of that at the high and low
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Figure 9.7 Pure flexural capacity at low moment end of duct

moment ends, that is (Mpm) et = (M), + M, ) 1/2= 500 kKNm. Alternatively, the
pure flexural capacity can be derived directly following the procedures already outlined
for the low moment end.

9.5 Pure shear capacity of ducted region

9.5.1 Mechanism of shear transfer

The shear deformation of the ducted region under an applied shear force V_ is shown
in Figure 9.8. As the low moment end is subjected to negative or hogging curvature
whilst the high moment end is subjected to positive or sagging curvature, it can be
seen that a point of contraflexure exists within the ducted region. Hence, the duct
spans across a point of zero flexure so the applied moment M,, that is in the vicinity
of the duct in Figure 9.8, will be small and can be ignored in this analysis of the pure
shear capacity. It is also worth noting that at the high moment end of the duct at
section C-C in Figure 9.8, the concrete is in compression at the top of the slab,
however and in contrast, at the low moment end of the duct at section B-B, the
concrete is in compression at the soffit of the slab. This transfer of the position of the
resultant compressive force in the slab across the ducted region needs to be allowed
for in the analysis. Furthermore, it is also worth noting that the shear V is transferred
across the duct by a mechanism within the bottom steel inverted T-section and also
by a mechanism within the top composite T-section.

The mechanism by which the applied shear V_ is transferred across the ducted
region in Figure 9.8 is shown in Figure 9.9. In the preceding flexural analysis, the steel
T-sections were assumed to act together as shown in Figure 9.5 by (ds/dx),,,
= 0. In contrast in this pure shear capacity analysis, the T-sections are assumed to
act independently of each other. As the applied moment M, in Figure 9.8 is assumed
to be very small, the axial force F in both of the T-sections in Figure 9.9 are, therefore,
assumed to be zero as shown.

Let us first consider the bottom steel T-section in Figure 9.9. Equilibrium occurs when

Mbh + Mbl = V,,ao ©.n
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Hence the shear force V, induces a moment across the duct of V,a_that has to be
resisted by local moments at the ends of the T-section of M,, and M,,. It can be seen
that the shear force is transferred across the duct by a mechanism of local moments.
These moments have been referred to as ‘local’ as they do not resist the applied
moment M, but are only there to resist the moment induced by the shear forces. As
the shear force is increased, the ability of the T-section to resist flexure diminishes as
the flexural capacity of the steel material is reduced by the shear stresses as given by
Eq. 4.2. The analysis procedure consists of determining the maximum shear force V,
that can be applied, such that the remaining local flexural capacity can just resist the
moment induced by this shear force.

For the top composite T-section in Figure 9.9,

Mth + Mtl = V,ao 9.2

The analysis procedure follows the same principles as that of the bottom
T-section, but in this case the capacity to resist the shear V depends on the local flexural
capacities of the composite T-section that will be shown to have partial shear connection.

The pure shear capacity of the ducted section is then equal to the sum of the
individual capacities of the T-sections.

V =Vt +Vb

pure

©9.3)

9.5.2 Pure shear capacity of steel t-section
9.5.2.1 Example 9.4 Pure shear capacity of bottom steel inverted
T-section

(a) Iterative approach

Von Mises’ yield criterion, given in Eq. 4.2, will be used to allow for the interaction
between the shear stresses induced by V, in Figure 9.9 and the flexural stresses
induced by M, . Because of this interaction, the equivalent yield strength of the steel
f, depends on the shear stress T, that is unknown at the start of the analysis, so that
an iterative approach is required to find a solution. Hence, the first step in the
analysis is to guess a reasonable value for the shear force V..

(b) Material shear capacity
It will be assumed in these analyses that only the web of the steel section resists
shear. Some approaches assume that the extension of the web into the flange can
also resist the shear and this can be easily allowed for as shown elsewhere*, It will
also be assumed in these analyses that the shear stress t_ is uniformly distributed
over the webarea A, thatist =V/A .

The maximum shear stress that the steel material can resist can be derived from Eq. 4.2
as ny3 by inserting f, = 0. Hence, the material shear strength of the web is given by

() =25 o0

V3
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which is an upper bound to the shear force that can be applied to the T-section.
For the bottom inverted steel T-section in Figure 9.3, (V))__ = 50 X 10 x 2503

=72 kN. Hence, let us start our iterative analysis by applying a shear force of 25 kN.

(©)V,=25kN

Consider the bottom T-section at the high moment end of the duct in Figure 9.3. For V,

=25kN, T, =25,000/500 = 50 N/mm? and, hence, from Eq. 4.2 the flexural strength of the
webisf, = = (2507 - 3x50%) =235 N/mm?. The axial strengths of the rectangular elements
of the T-sectlon can now be determined as shown in Figure 9.10(b). It can be seen in (c)
and (d) that the flexural strength of the steel is now either f 235 N/mm?or f 250N/
mm?Z. The resultant forces are shown in (e) where 602 = ﬂm —P.,=720-1 18 Aswe
are dealing with the high moment end of the duct, the forces shown in (e) are those that
are external to the ducted region that is shown hatched. From (e) and (f), the external
moment to the duct is M, =+7.1 kNm, where the positive sign signifies an anti-clockwise
moment.

The analysis depicted in Figure 9.10 can also be applied to the low moment end of the
duct. This gives M,, = +7.1 kNm, which is exactly the same moment capacity as at the
high moment end of the duct because the T-section is steel throughout. Considering
equilibrium of the T-section in Figure 9.9(b) gives M, + M,, = 14.2 kNm and V,a
=-25 x 1 =-25 kNm. Hence, the moment induced by the shear force V,a_exceeds the
remaining flexural capacity M,,+ M, so that the shear load has to be reduced.

(d) Graphical representation of results

Equilibrium of the bottom T-section is shown graphically in Figure 9.11. The
results of analyses that fall below the ‘equilibrium line’ are safe as the remaining local
flexural capacity M,,+ M,, exceeds the moment induced by shear Va . In
the preceding analysis, the available local moment capacity is shown as
M, , = 14.2 kNm and that required to resist the shear is shown as M _, = 25 kNm.

avl
Hence in the next analysis, the applied shear load is reduced to 15 kN.
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Figure 9.10 Local flexural capacity at high moment end at 25 kN
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Figure 9.11 Shear capacity of bottom steel T-section

(€) V, = 15kN

The analysis at a shear load of 15 kN is shown in Figure 9.12. From this analysis M,,
+M,, =14.7kNmand V a = 15x1 = 15 kNm that is shown as point B in Figure 9.11,
which is very close to the ‘equilibrium line’. Using a linear extrapolation of points A

and B to intersect the equilibrium line shows that equilibrium occurs at V,a_= 14.9
kNm, thatis V, = 14.9kN as a=Im

9.5.3 Pure shear capacity of composite t-section
9.5.3.1 Example 9.5 Pure shear capacity of top composite T-section

(a) Local flexural capacity at high momentend (V =50kN)

In the beam in Figure 9.3, the duct has been placed at the'mid-depth of the web, so
that the steel web above and below the duct are the same size. Hence, the material
shear capacity of the web of the top T-section is the same as that of the bottom steel
section, that is (V) = 72 kN. As the top composite T-section is substantially
larger that the bottom steel T-section, let us start with a shear load of V, = 50 kN. The
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Figure 9.12 Local flexural capacity at high moment end at 15 kN

analysis is shown in Figure 9.13, from which the flexural capacity is
M, =+111.3kNm. Itis worth noting that at this high moment end, the top portion of
the concrete slab is in compression as shown in Figure 9.8 and, hence, standard
flexural strength analysis procedures can be followed.
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Figure 9.13 Top composite T-section at high moment end at 50 kN

(b) Local flexural capacity at low moment end (V =50 kN)

It can be seen in the analysis at the high moment end in Figure 9.13 that the shear
connectors are not fully loaded but resist a shear load of 810 kN. By assuming that
this shear load is uniformly distributed over the shear span A-C in Figure 9.3, the
shear connector force in the shear span A-Bis (F), , =810x3.3/4.3 =622 kN, which
is shown in the analysis in Figure 9.14 as the strength of the shear connector
component in the profile entitled P. This component force controls the resultant
forces as shown in profile C.

Care should now be taken at this stage of the analysis. It can be seen in Figure 9.8
that at the low moment end of the duct, the concrete compression zone lies near the
bottom of the slab. This can only be achieved with the strain distribution shown in
Figure 9.14(d) that requires a very large slip strain and, hence, is peculiar to composite
sections with mechanical shear connectors. The real stress distribution associated
with this unusual strain distribution is shown in (e). It can be seen that the concrete
component is now in compression at the bottom of the solid part of the slab, that is
above the transverse ribs in the profiled sheeting. Furthermore, the steel component
is now in tension at its top and in compression in its lower parts. The equivalent
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Figure 9.14 Top T-section at low moment end at 50 kN

stress system is shown in (f) and the forces associated with this equivalent stress
distribution in (g) where the hatched region signifies the ducted region.

The tensile force of 1432 kN in Figure 9.14(g) is derived from the fact that the
resultant force in the steel component in (g) is 622 kN (= 1432 — 720 - 90) as shown in
(c). Alternatively it can be derived from the forces in (g) summing to zero, that is 622
+ 720 4+ 90 = 1432 kN. From (f), the equivalent tensile stress in the steel flange is 2fy =
500 N/mm? and, hence, the maximum tensile force in the steel flange is
2 %720 = 1440 kN. As the tensile force required of 1432 kN is less than the tensile
strength of 1440 kN, the neutral axis must lie in the steel flange as shown in (f). The
forces in (g) are the forces external to the low moment end of the duct in Figure 9.8 and,
hence, have been shown to the left of the duct region shown hatched. The direction of
these forces is extremely important and should be shown as the forces external to the
duct. The position of these resultant forces is shown in (h). Taking moments from (g)
and (h), with anti-clockwise moments being positive, gives M, =-36.2 kNm, that is the
moment at the low moment end is now acting in a clockwise direction. It is worth noting
that unlike the local moment at the high moment end M, that remains constant in
direction, the direction of the moment at the low moment end can change, as it depends

on the position of the duct along the length of the composite beam.

(c) Shear capacity (V, = 50 kN)

FromEq. 9.2, Mm + Mu= 111.3-36.3 =75 kNm, however, Vlan =50x 1=50kNm. Hence,
the available flexural capacity of 75 kNm is more than sufficient to resist the moment
induced by the shear load of 50 kNm. The result is shown as point A in Figure 9.15. In
this graphical presentation of the results, the shear load is plotted along the ordinate
and the local flexural capacity as the abscissa, so that the slope of the line that represents
equilibrium is a function of the length of the duct a_as shown.

(d) Shear capacity (V,=V__ =72kN)
As point A in Figure 9.15 lies below the equilibrium line for the beam with a duct

length of a_= 1 m, the shear force can be increased. Let us try the maximum shear load
that the steel web can resist, thatis V=V __=72kN, and hence f, =0 for the web. The
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Figure 9.15 Shear capacity of top composite T-section

analysis for the high moment end is shown in Figure 9.16, where it can be seen that
the strength of the web shown in the strength profile P is shown as zero. The local
moment capacity comes to M, =+96.6 kNm

It can be seen in Figure 9.16 that at the high moment end of the duct the shear
connectors are not fully loaded but resist a force of 720 kN. Therefore at the
low moment end of the duct, the force exerted by the shear connectors (Fsh) AB
=720x%3.3/4.3 =553 kN, as shown in the analysis of the low moment end in Figure
9.17 from whichM, =-33.4 kNm.
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Figure 9.16 Top composite T-section at high moment end at 72 kN
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Figure 9.17 Top composite T-section at low moment end at 72 kN

From the preceding calculations M, + M, = 96.6 ~ 33.4 = 63.2 kNm when
Va, =72 kNm. This coordinate is shown as point B in Figure 9.15. The linear
interpolation between points A and B intersects the equilibrium line at V =66 kN that
is, therefore, the shear capacity of the top composite T-section. It is worth noting
that the shear capacity of the bottom steel T-section, which had an identical steel
component as the top T-section and hence an identical V_, was previously shown
to be 15 kN. The increase in the shear capacity from 15 kN to 66 kN is due to the
composite action of the top steel T-section with the slab and has nothing to do with
the shear capacity of the slab which was not considered in this analysis; the
contribution of the shear capacity of the slab is considered in Section 9.7.

(e) Pure shear capacity of ducted region

From Example 9.4, the pure shear capacity of the bottom T-section was derived as V, = 15
kN, whereas, from Example 9.5 the pure shear capacity of the top T-sectionis V, =66 kN.
Hence, the pure shear capacity of the ducted region (Ve = 15+ 66 =81 kN.

() Variation in the duct size a_

The variation A-B in Figure 9.15 was derived for a duct size of a = 1 m. Increasing the
ductsize toa_= 1.5 m will lower the equilibrium line as shown. Although the analyses
that were used to determine the results A and B are not directly applicable to a duct
size of 1.5 m, as they were derived for a duct size of 1 m, the linear extrapolation of
these points to intercept the new equilibrium line of a_= 1.5 m will give the engineer
a very good indication of the effect of increasing the duct size by 0.5 m. It can be seen
that increasing the duct size from 1 m to 1.5 m will reduce the pure shear capacity from
66 kN to 49 kN,

In contrast, reducing the duct size to 0.5 m in Figure 9.15 will raise the equilibrium
line as shown and, thereby, allow increased shear loads. As point B was determined
atV__=72KkN, thatis at the largest shear force that can be applied to the web of the
composite T-section, the applied shear force cannot be increased to find a point that
intercepts the new equilibrium line. In fact it is not necessary, as point B lies on the
safe side of the equilibrium line at a_ = 0.5 m, that is the local restraining moment
capacity of 63 kNm (point B) is more than adequate to resist the moment induced by

shearof Va =72x0.5=36 kNm (Point C).
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9.6 Interaction between shear and flexure
9.6.1 Failure envelope

The analyses in Section 9.4 dealt with the derivation of the pure flexural capacity of
the ductedregionM, | _and that in Section 9.5 derived the pure shear capacity V__ .
These results can be visualized are just two points on the extremities of a failure
envelope of the combination of stress resultants acting at a section that cause
failure, as shown at points A and B in Figure 9.18.

In a statically determinate beam, as the load is gradually increased the combination
of the applied stress resultants at the ducted region M, and V_ follows the linear load
path O-C in Figure 9.18. The intercept of this load path O-C with the failure envelope
A-C-B at point C is the combination of the stress resultants M, and V,  that causes
failure. Darwin? derived the following failure envelope experimentally.
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which for a statically determinate beam can be written in the following form
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Figure 9.18 Failure envelope of stress resultants
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where M, and V_ are the applied moment and shear force at the ducted region and
M, , is the flexural capacity of the ducted region that allows for the reduction in
strength due to V, .

9.6.1.1 Example 9.6 Flexural capacity of ducted region

The mid-span of the duct in Figure 9.3 occurs at a distance of L, , = 3.8 m from the
nearest support. In Examples 9.2 and 9.3, the pure flexural capacity at L, , =3.8 m was
derivedas (M ), =500kNm and in Examples 9.4 and 9.5, the pure shear capacity was
derived as Vel = 81 kN. Let us assume that the simply supported beam in Figure 9.3
is supporting a uniformly distributed load w, KN/m. From simple statics, the ratio of the
applied stress resultants at L, =3.8 mis givenby (M), /(V),..= 11.7w /12w =9.8
m. Applying these results to Eq. 9.6 givesM, = 0.93M,_,. =0.93 x500=465 kNm. Itcan
be seen that the shear force at the ducted region has reduce the flexural capacity at the

ducted region from SO0 kN to 465 kNm, that is by 7%.

9.7 Enhanced shear strength due to the shear

resistance of the slab
9.7.1 Contribution of slab

In the derivation of the pure shear capacity of the top composite T-section in Example
9.5, it was assumed that the web of the steel component resisted all the vertical shear
force, which is definitely a safe assumption but probably also a reasonable assumption
when the slab does not have longitudinal reinforcing bars. Let us now assume that the
slab has at least some nominal longitudinal reinforcing bars, so that the slab can now
also resist vertical shear forces. The simplest solution to determining the enhanced
shear capacity of the ducted region due to the shear resistance of the slab V_is to
assume that the slab reduces the shear in the steel web of the top composite T-beam to
V_as shown in Figure 9.19.

It can be seen in Figure 9.19 that V = V_+ V. The composite T-section has still to
resist the moment induced by shear Va_ through the local moments M, + M,. The
effect of resisting at least part of the vertical shear by the slab, is to reduce the shear
stress in the web and, thereby, increase its effective flexural strength ffy that will increase
the local moment capacity and, thereby, increase the overall shear capacity.

slab —_ . longitudinal bars .

Figure 9.19 Shear resisted by slab in top composite T-section
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9.7.1.1 Example 9.7 Slab resists 26 kN of the vertical shear force
Let us now determine the pure shear capacity of the beam in Figure 9.3 by allowing
for the enhancement in strength due to the shear resistance of the slab. The first
problem is to estimate the shear resistance of the slab.

(a) Shear resistance of slab over ducted region

It would appear to be unreasonable to assume that the full width of slab of
3.5 m in Figure 9.3 could transfer the shear across the ducted region of only 1 m
length. Instead, let us just consider the top composite T-section in Figure 9.19 as
acting as a beam of span L = a_ = 1 m. For guidance, we can use methods for
estimating the effective width of beams w ., such as those described in Section 2.2.2,
for estimating the effective width of this composite T-beam of span a . For example,
codes often use w_ = 0.25L, as in Eq. 2.3, which in this example gives (w ), =
0.25x1000 =250 mm.

The shear resistance of the width of slab of (w_), = 250 mm can be
derived from the shear resistance of beams or slabs without stirrups as given
in national standards. Alternatively and as a guideline, the shear strength of
an initially cracked section that is given by Eq. 6.1 could be used, as in the
following example:

® The weakest section of the slab in Figure 9.3 occurs above the profiled sheeting
where the depth of the solid slab is d_., = 80 mm deep.

e Hence, the area of slab that resists the vertical shear A = (W ),
xd_,.=250x80=20,000 mm’.

® The minimum shear resistance from Eq. 6.1 is 0.66f,. Hence for f =2 N/mm?, the
minimum shear resistance of the slab Vc=0.66x2x20,000 =26.4kN.

e It should be noted that to achieve the minimum shear resistance of 0.66f  in Eq.
6.1, a minimum strength of bars* crossing the shear plane is required of
pf, = 0.66f , where p is the cross-sectional area of the reinforcing bars as a
proportion of the area of the shear plane. For f_=400 N/mm? and f_ =2 N/mm?’, the
minimum requirement gives p=0.33%.

® Hence V_=26.4 kN when there is at least 0.33% of longitudinal reinforcing bars in
the solid portion of the slab.

(b) Pure shear capacity of top composite T-section

Let us assume that the slab over the ducted region in Figure 19.9 can resist V_ =26
kN, and let us start our iterative analysis with V_ =50 kN so that V =50 +26 =76
kN and, hence, Vlao =76 x1=76kNm. As Vs =50 kN, the analyses in Figures 9.13
and 9.14 apply directly and, hence, M, + M, = 111.3 -36.2 =75 kNm. The results
are plotted as point E in Figure 9.15 and as this point lies above the equilibrium
line, we will reduce the shear force at our second attempt to Vs = 40 kNm. The
second analysis at the high moment end is depicted in Figure 9.20 and that at the
low moment end in Figure 9.21.
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Figure 9.20 High moment end at V =40 kN

From Figure 9.20, M, =+113.5 kNm and from Figure 9.21 (where it has been assumed
that the neutral axis is at the web/flange interface because the required force of 1456 kN
is very close to the ‘flange strength’ of 1440 kN), M, =-36.6 kNm and, hence, M, + M,
=76.9kNm.AsV =40kNand V_=26kN,V =66kNandVa =66x 1= 66kNm The
results are plotted as point D in Flgure 9.15. The linear mterpolauon of points E and D
intersects the equilibrium line at V_ _ =74 kN. It can be seen that the inclusion of the
shear resistance of the slab of 26 kN has increased the pure shear capacity by 8 kN, from
66 kN to 74 kN. Hence, the analysis is not sensitive to the shear capacity of the slab. This
is because no matter what the shear capacity of the slab is, the moment induced by the
shear force V a_has still to be resisted by the local moments M, + M, at the ends of the
duct. This phenomenon is further itlustrated in the next example where it is assumed that
the slab resists all of the shear force.
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Figure 9.21 Low moment end at V, = 40 kN

9.7.1.2 Example 9.8 Slab resists all the vertical shear force
If the slab over the ducted region in Figure 9.3 resists all of the vertical shear,
then shear stresses will not be present in the web of the top T-section, which will now have
its full yield strength of f, =f =250 N/mm?. The analyses for the local moment capacities
are shown in Figures 9.22 and 9.23 from which M, =+116.9kNm and M, =~37.3 kNm that
gives a local moment capacity of M, + M, =80 kNm Equating this local moment capacity
to the moment induced by the shear gives M, +M,=80=Va_.Asa =1m,this gives the
upper bound to the pure shear capacity of (V) pper = BOKN.

The upper bound to the shear resistance, (VDypper = 80 kN, is shown as point
J in Figure 9.15. Hence, the maximum increase in the pure shear capacity is
80— 66 = 14 kN. This maximum increase cannot be exceeded no matter how strong
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Figure 9.22 High moment end when slab resists all the shear

the shear resistance of the slab. In this example, the maximum shear strength required
of the slab is 80 kN as any further increase would not increase the pure shear capacity
of the ducted region. It is worth emphasizing further, that even if the slab couid resist
all the shear load of 80 kN, the maximum increase in the pure shear capacity is only 14
kN that is only 21% of the shear capacity with the web taking all of the shear. Hence,
the analysis is not sensitive to the shear capacity of the slab so that any reasonable
estimate should suffice.
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Figure 9.23 Low moment end when slab resists all the shear

9.8 Strengthening ducted regions by plating
9.8.1 Plating

If the previous calculations had shown that inserting a duct would not allow the
ducted beam to withstand the required design loads, then the ducted region could
be strengthened by welding or bolting steel plates to the steel beam, as illustrated in
the following examples.

9.8.1.1 Example 9.9 Flange plate attached to bottom steel T-section
A plate can be welded or bolted to the bottom flange to increase the pure shear
capacity of the bottom steel T-section, such as shown in Figure 9.24. In this example,
the area of the attached flange plate is equal to the area of the bottom flange. The
analyses at two values of shear load, V, =25kN and at V, =35 kN, are shown and
they are applicable to both the high and low moment ends. AtV, =25kN,M, +M,
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Figure 9.24 Bottom T-section strengthened with an additional flange plate

=344kNmandat V =35kN, M, + M,,=33.8 kNm. It is worth noting that there is
only a very small reduction in the local moment capacity from 34.4 kNm to 33.8 kNm
(that is 2%) when the shear load is increased from 25 kN to 35 kN (that is 40%). This
emphasizes the insensitivity of the local flexural capacity to the shear force assumed
to be resisted by the steel webs.

The resuits of the analyses in Figure 9.24 are shown as points D and E in
Figure 9.11. It can be seen that the addition of the flange plate has substantially
increased the pure shear capacity of the bottom steel T-section from 149 kN (at V a
=14.9kNm)to 33.7kN(at V,a =33.7kNm).

9.8.1.2 Example 9.10 Flexural capacity at mid-span

It was shown in Example 9.1 that the insertion of the duct into the beam in Figure 9.3
would reduce the flexural capacity at mid-span by 4%. This reduction can be overcome,
if required, by attaching a plate to the flange. In this example, the cross-sectional area
of the plate that is to be attached to the flange needs to be greater than or equal to the
cross-sectional area of the plate that was removed from the web to form the duct,
such as that shown in Figure 9.24. Furthermore, the plate should be placed over the
full length of the ducted region. The addition of this plate wiil allow all the connectors
in the composite beam in Figure 9.3 to be fully loaded and, hence, it will maintain the
flexural capacity at mid-span.

9.8.1.3 Example 9.11 Web plates attached to top composite T-section
The addition of web plates has been used in Figure 9.25 to increase the pure shear
capacity of the top composite T-section. The additional web plate is of equal area to
the original web plate. The analysis for the high moment end is given in Figure 9.25
and that at the low moment end in Figure 9.26,

AtV =90kN (Va =90 kNm), M, + M, = 128.2 - 41.7 = 86.5 kNm, and at
V =80kN(Va =80kNm),M, +M =130.3 ~42.6 =87.7 kKNm, These results are
plotted as points F and G in Figure 9.15. It can be seen that the addition of the side
webs has substantially increased the pure shear capacity from 66 kN to 86 kN.
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Figure 9.25 Additional web plates, high moment end
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Figure 9.26 Additional web piates, low moment end

9.9 Service duct near supports
9.9.1 General

The duct in Figure 9.3 was placed in a high moment region, let us now look at the
effect of placing the duct in a low moment region as shown in Figure 9.27. In this
region, shear is more likely to predominate than flexure.

9.9.1.1 Example 9.12 Flexural capacities

The composite beam in Figure 9.27 was originally designed with full shear connection
in which P =2300 kN. The degree of shear connection at the high moment end of the
duct is = 1.7/5 = 0.34 and, hence, the strength of the shear connection at the high
moment end is (P ), . = 0.34 x 2300 = 782 kN. Furthermore, it has been shown in
previous examples such as in Figure 9.6, the strength of the steel component (P ).,
= 1690 kN. As the strength of the steel component in the ducted region (P),  is
greater than (P,), ., the connectors are fully loaded in shear span A-B and, hence,
they are fully loaded throughout the length of the beam. Therefore, the flexural
capacities in shear span C-D are not affected by the insertion of the duct and remain
unchanged. As the connectors are fully loaded throughout the length of the beam,
standard rigid plastic analysis procedures described in Chapter 4 can be used to
predict the pure flexural capacities throughout the shear span A-D.
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Figure 9.27 Service duct in low moment region

9.9.1.2 Example 9.13 Pure shear capacity

(a) Bottom T-section

The pure shear capacity of the bottom T-section is not affected by the position of
the duct and, hence, it is given by the analyses depicted in Figures 9.10 and 9.12 with
the results plotted in Figure 9.11.

(b) Top T-section
The analyses for the pure shear capacities of the top composite T-section at the high
moment end and at a shear load of 50 kN is shown in Figure 9.28, from which M, =
+107.9 kNm. It can also be seen in Figure 9.28 that the connectors are fully loaded, so
they are also assumed to be fully loaded in the analysis of the low moment end in
Figure 9.29, where (P,), , =(0.7/5)(P,), ,=0.14(P,), , =0.14x2300 = 322 kN. From
Figure 9.29,M, =—15.2 kNm. Hence, M, +M,=107.9-11.6 =96.3kNmwhen Va_=
50 kNm, and this coordinate is shown as point H in Figure 9.15. As this point lies on
the safe side of the equilibrium line, the shear force has been increasedto V,__ in the
next attempt at equilibrium,

In this second attempt, let us apply the maximum shear force of V_ =72 kN. The
analyses are shown in Figures 9.30 and 9.31 where it is worth noting that the
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Figure 9.28 Pure shear capacity at high moment end at V = 50 kN
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Figure 9.29 Pure shear capacity at low moment end at V = 50 kN
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Figure 9.31 Pure shear capacity at low momentend at V_,

connectors are now not fully loaded at the high moment end (720 kN in Figure 9.30)
and, hence, the force in the connectors at the low moment end (Figure 9.31) is
(0.7/1.7)x720 =296 kN. From Figures 9.30and 9.31,M, +M,=96.6—15.4 =81 kNm
when V,_ =72 kN, and this result is shown as point I in Figure 9.15. It can be seen that
even when the maximum shear is being applied, the local moment capacity is sufficient,
so that the pure shear capacity is V__ =72 kN.

(c) Reversal in moment direction at low moment end
In the analyses of the ducted beam in Figure 9.3, shown in Figures 9.14 and 9.17, the
local moment capacity at the low moment end acted in a clockwise direction and had
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amagnitude of M, = —34 kNm. When the duct was moved towards the supports as in
Figure 9.27, the local moment capacity, as shown in the analyses in Figure 9.29, still
acted in a clockwise direction but reduced to M, = —13 kNm. It can be seen that as the
low moment end of the duct shifts towards the supports, the magnitude of the
moment at the low moment end diminishes.

As the low moment end of the duct approaches the support, the force in the shear
connectors over shear span A-B in Figure 9.27, (F), , — 0. The analysis when(F,),
s =0, is shown in Figure 9.32. There is now no longer any force in the concrete as the
resultant force in each component C = 0, so that the strain distribution now induces a
positive moment, which is in the reverse direction to those previously calculated. The
positive moment is now benefiting the transfer of shear as can be seen in Figure 9.9 and
Eq. 9.2, where a positive M,, assists the positive M, to transfer V a .

Fo,5=0

compression tens

ﬁ ension

\ compressi

i
4

l— —>)

anti-clockwise

Figure 9.32 Reversal in moment at low moment end of duct

9.10 Embedment failure
9.10.1 General

The shear distortion of the ducted region of the composite beam that is shown in
Figure 9.8 causes the concrete component to lift away from the steel component at
the high moment end of the beam. This separation induces tensile axial forces in the
shear connectors that can cause them to pull out of the slab. Another way of
visualizing this problem is to consider the longitudinal forces in the slab in the top
c 0 m p o s i t e
T-section in Figure 9.8 when it is subjected to pure shear, as shown in Figure 9.33.

The longitudinal compressive force H at each end of the ducted region is shown
in Figure 9.33. At the high moment end of the duct, H acts within the upper regions
of the solid portion of the slab of depth d_,, at point A, whereas, at the low moment
end of the duct H acts in the lower regions of the solid slab at point B. The transfer
of the longitudinal compressive force H from A to B has to be balanced by the normal
forces shown as N .

At the low moment end of the duct in Figure 9.33, the normal force N induces
compression across the interface, between the steel and concrete component, which is
resisted by the slab bearing against the flange. However, the tension force across the
interface at the high moment end can only be resisted by axial tension in the shear
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Figure 9.33 Embedment forces in shear connectors

connectors adjacent to the high moment end. The resultant normal force across the
interface is zero and, hence, the overall or global longitudinal shear strength of the shear
connectors in the composite beam is unaffected. However, the interface tensile force at
the high moment end may cause local embedment failure of the shear connectors, which
would destroy the composite action of the top T-section and, thereby, destroy its ability
to resist shear. In fact, embedment failure would reduce the pure shear capacity of the
top composite T-section to that of the top steel T-section.

9.10.1.1 Example 9.14 Embedment failure of duct in high moment region
Let us consider the duct in Figure 9.3 and the longitudinal forces within the duct as
shown in Figure 9.33. An estimate of the longitudinal force at point A can be derived
from Figures 9.13 and 9.16, from which H, =745 kN and acts at y = 5 mm from the top
fibre. Let us now assume that there are no shear connectors within the ducted region
in Figure 9.33, so that at the low moment end Hu =H,, =745 kN and, therefore, acts at
S mm from the bottom fibre of the solid concrete slab. Then from simple geometry of
the forces within the solid slab of depth 80 mm and length 1000 mm, tan@=h_/a = (80
—5=5)/1000 = 0.070. From simple statics at node A, the normal tensile force N
which is the normal force when the duct is subjected to the pure shear capacity V
is given by Npm =H,tanf =52 kN.

The tensile normal force Noe is the maximum tensile force that occurs when the
maximum shear force V__ is acting. In a composite beam, the ducted region is subjected
to an applied shear load of V. If N_is the normal tensile force induced by V , thenas a
guide to the magnitude of N_itis suggested thatN_=(V /V pm)prm. From Example 9.6,
M, =465 kNm which would allow a uniformly distributed load of w = 39.5 kN/m to be
applied to the composite beam. For this applied load, the shear force at the duct
V. =47.5kN. As Ve =81 KN, thenN =(V/V XN, =(47.5/81)52 =30kN and it is
necessary to ensure that the connectors adjacent to the high moment region can resist
this embedment force. Shear connectors in solid slabs are usually shaped to have a high
resistance to embedment failure and can usually safely resist axial forces of up to 25 %
of the shear strength®. However, profiled slabs are more prone to embedment failure
particularly if the concrete element is a profiled slab with trapezoidal ribs transverse to
the beam as shown in Figure 5.3.

pure®

pure’
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9.10.1.2 Example 9.15 Embedment failure of duct in high shear
region

Consider now the ducted beam in Figure 9.27 that is subjected to a uniformly
distributed load so that the duct is in a low moment and high shear region. The forces
in Figure 9.28 can be used as an estimate of the longitudinal compressive force in the
slab, from whichN_ =55 kN and which is virtually the same as that of the duct in the
low moment region in Example 9.14.

If the beam is subjected to the same uniformly distributed load as in Example 9.14,
the applied shear force at the duct V_ = 150 kN that exceeds the pure shear capacity
of V. =72+ 15 =87 kN. The ducted beam could be strengthened by plating the
flange and the webs as in Examples 9.9 and 9.11 and this would increase the pure
shear capacity to me =86 + 34 = 120 kN which would still require the applied load to
be reduced to w, = (120/150) x 39.5 = 31.6 kN/m. If the load were reduced, then V_=
Voue 50 that N = N__ = 55 kN. It can be seen that shifting the duct towards the
supports increases the probability of embedment failure.
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10 Local splitting

10.1 Introduction

Splitting is probably the most common form of shear connection failure in a composite
beam, and often occurs where there is only a small amount of side cover to the shear
connectors, such as in composite L-beams and in composite haunched beams. The
mechanisms that cause splitting are described first in this chapter. Fundamental analysis
techniques are then applied to the derivation of the splitting resistance of a wide
variety of the cross-sectional shapes of the concrete component of the composite
beam. If it is found that splitting has occurred or is likely to occur, then the post
splitting dowel strength of the shear connectors can be estimated from Chapter 11.

10.2 Mechanisms of splitting

Each individual shear connector in a composite beam, such as the stud shear connector
in Figure 10.1, imposes a highly concentrated load P , onto the concrete component that
is dispersed longitudinally, vertically and transversely as shown by the arrows marked
D. The ability of the slab to resist the longitudinal component of the dispersal, through
the formation of the diagonal shear cracks that are shown in (b), has already been deait
with in Chapter 6. However, the transverse dispersal D of the concentrated load in (b)
requires the transverse tensile force T to maintain equilibrium. This transverse force can
cause a longitudinal split along the line of connectors that can reduce the dowel strength

of the shear connectors.

The shear connector in Figure 10.1 can be visualized as a patch load that is being
applied to a concrete prism, as shown in Figure 10.2. When the connector is close to
the transverse edge of the concrete slab as in Figure 10.1(b), the dispersal of the
dowel force induces the transverse stresses in Figure 10.2(a). This is a well known
stress distribution' that is often used in the analysis of the anchorage zones of post-
tensioned members. When the connector is placed well away from the transverse
edge, as is the case for most shear connectors, then the transverse stress distribution

tranverse edge of slab

steel flange \ shear crack splitting crack
N, ™ g

| concrete
slab

it

(a) longitudinal and vertical dispersal (b) longitudinal and transverse dispersal

Figure 10.1 Dispersat of concentrated load
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Figure 10.2 Transverse stress distributions

in (c) occurs, that is peculiar to mechanical shear connectors? in composite beams. It
can be seen in (c) that the transverse tensile stresses in front of the shear connector
are balanced by an identical distribution of compressive stresses behind the
connector, so that the resultant of the transverse forces (F.)cmp and (F),, is zero. It
can also be seen that the length of the transverse tensile and transverse compressive
stress distributions x, is a function of the width of the prism b .

A single longitudinal line of connectors in a composite beam is shown in Figure 10.3.
Let us assume that there is a linear variation in the shear flow q as shown, so that the
connector force (F,), is greater than (F,,),, in which case the lateral stresses will reduce
to the left as shown. Bearing in mind that the extent of the transverse stress x in Figure
10.2 is a function of the width of the prism b, it can be seen in Figure 10.3 that when the
longitudinal spacing of the connectors L >> b, then the interaction between the
transverse tensile and compressive stresses is minimum., In this case, splitting is a
function of the forces in an individual connector that is referred to as local splitting.

When in Figure 10.3, L <<b,, then there is substantial overlap of the transverse
stress distributions of the individual connectors. This interaction between the local
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stress distributions of the individual connectors can reduce the overall transverse
tensile stress in parts of the composite beam but it can also increase the tensile
stresses in other parts. This interaction is referred to as global splitting as it depends
on the distribution of the connectors throughout the beam, and is generally only a
problem when the beam is subjected to longitudinally moving loads.

Local splitting of flexible stud shear connectors is dealt with in this chapter. Local
splitting of stiff connectors, such as block connectors, and the global splitting of all
types of connectors are dealt with elsewhere”.

10.3 Splitting resistances of slabs with rectangular

cross-sections

10.3.1 Splitting resistance to individual connectors

In Figure 10.1, a stud shear connector of shank diameter d_ is acting concentrically
on the concrete element or concrete prism of a composite beam of width b_and
height h_. The mean splitting resistance’ of the concrete prism to the dowel force
from an individual stud shear connector is given by the following equation.

2 —1
b, __09dg, 09d,, (10.1)

e r——— e +
d( dgp )2 (hc).<_8.!dsh (hc)s&ld,h
sh

2
Fope = 3'4dshf cb

1_._._._

(4

where f, = Brazilian tensile strength of the concrete that can be assumed to be equal
to 0. 5‘/f when f_is measured in N/mm? as suggested in Section 1.3.5 . Furthermore,
the charactenstlc splitting strength, in which 5% of the test results fall below, can be
obtained from Eq. 10.1 by substituting the coefficient 3.4 with 2.6.

The first term in the bracket on the right hand side of Eq. 10.1 gives the resistance
to splitting of the prism when the concentrated load is dispersed in the longitudinal

variation of q
tension

shear connectors A
A steel flange

]
\J '
74" .
il b
2
o

compression

concrete slab

Figure 10.3 Interaction between transverse tensile and compressive stresses
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and transverse directions, that is in two-dimensions only as shown in Figure 10.1(b).
It can be seen in this term that the splitting resistance increases with the width of the
prism b_. The second term in the bracket gives the increase in the splitting resistance
due to the vertical dispersal of the concentrated dowel force into the third dimension
as pictured in Figure 10.1(a). It should be noted that in this second term, an upper
bound of 8.1d, is placed on the height of the prism h_to limit the increase in strength
due to the vertlcal dispersal; whenh > 8.1d  theni it can be assumed that h =8.1d.
It can be derived? from Eq. 10.1 that the mmlmum splitting resistance to an 1nd1v1dual
stud shear connector occurs when the width of the prism is

(bc)min—one =3dg, 102

and that the minimum splitting resistance is given by
2 -1

27 09d g, 09dg, (10.3)
(Pain) e = 34t 2 H|1- * :

(hc )53.1‘1 sh (h“ )ss.uish

10.3.2 Effective widths of prism

The splitting resistances given in Egs. 10.1 and 10.3 were derived for concentrically
loaded prisms of width b_. Eccentrically loaded prisms, such as those shown in
Figure 10.4, can be analysed using an effective width concept that is often used in
the design of the anchorage zone of post-tensioned members'. The effective width
of the prism is the portion of the width of the eccentrically loaded prism that can be
assumed to be loaded concentrically.

Examples of the effective widths of prisms are given in Figure 10.4 where the equivalent
concentrically loaded prism of area b xh_is shown shaded. Each stud shear connector
acts concentrically on a prism of width b, where b /2 is the distance from the centre-line
of the stud to the nearest free edge of slab or edge of the effective width of the slab as
s h 0 w n
It can be seen in (a) that stud A acts on a prism that has a greater effective width than
stud B so that the splitting resistance to an individual stud connectors will governed
by stud B. Similarly, in the composite L-beam in (b), the splitting resistance to stud D will
be weaker than that to stud C, because the effective with of the former is smaller.

It is worth bearing in mind that it is the lateral dispersal of the load that causes
splitting. Therefore, in the hybrid beam in Figure 10.4(d), the effective widths b_are
determined by the distance to the nearest horizontal edge and the effective height
h_ is now the horizontal distance from the base of the stud that must not exceed
8.1d . It is also worth bearing in mind that the dowel force is concentrated at the
base of the stud. Hence, dispersal of this force will cause splitting to start at the
base of the stud, so that the effective width at the level of the base of the stud tends
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Figure 10.4 Effective prism widths for individual connectors

to control the splitting resistance as shown in the haunched beam in (c).

10.3.2.1 Example 10.1 Splitting resistance to an individual connector
The stud shear connector in Example 5.2 has a diameter d, = 19 mm and a maximum
dowel strength of D__ = 100 kN. The slab in which it is embedded has a depth of
h, = 130 mm and concrete strength of f = 25 N/mm?, so that the tensile strength
f =0.5V25 = 2.5 N/mm?. These stud shear connectors are to be used in a composite
L beam such as that in Figure 10.4(b) and it is necessary to determine the minimum
effective width (b ) /2 in (b) that will allow the dowel strength to be reached.

(a) Mean splitting resistance
As the depth of the slabh_= 130/19 = 6.8d , <8.1d_, the full depth of the slab can be
used in Eq. 10.1 which becomes

b,
re = 3069| ————+1008| N
o] 1- 2
b

[

P

[¢]

Furthermore from Eq. 10.3, (P_ ) =52 kN when, fromEq. 10.2,(b) . =57 mm.
These results are plotted in Figure 10.5 as the curve P the suffix 3D refers to the fact
that the concentrated load is being dispersed in three-dimensions. It can be seen that the
intercept with D__ = 100 kN occurs at b = 390 mm. Hence, (b,),/2 = 195 mm in Figure
10.4(b), so that the side cover required to the shank is ¢ = (390 ~19)/2 = 185 mm.

(b) Characteristic splitting resistance
Splitting of plain concrete is a brittle mechanism that can lead to rapid failure if an
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alternative mechanism is not present to transfer the transverse forces after splitting. If it
is necessary to prevent splitting, then it may be advisable to base the design on the 5%
characteristic strength that tests have shown occurs at 76% of the mean values given in
Egs. 10.1 and 10.3. These results are plotted as (P, ), in Figure 10.5, from which
b_ =590 mm, that is a side cover of ¢ = 285 mm would be required to prevent splitting.
However if transverse reinforcement is supplied across the splitting zone as stipulated
inChapter 11, then failure can be considered to be ductile so that design could be based
on a value close to the mean strengths? as in the previous calculation.

(c) Dispersal of concentrated load

The transverse component of the splitting resistance in Eq. 10.1 is shown in Figure
10.5 as (P_),; where the suffix 2D refers to the fact that the concentrated load is
being dispersed in only two directions. It can be seen that this is a lower bound to
the three dimensional resistance (P_),,.. It is also worth noting that the difference
between (P_ ), and (P_ ), is constant and, therefore, vertical dispersal has its

greatest benefit at low values of the effective width b_.

(d) Minimum splitting resistance

The minimum splitting resistances shown in Figure 10.5, as given by P ___in Eq. 10.3,
occur at an effective width of prism of 57 mm, as given by (b)) . in Eq. 10.2. For effective
widths less than (b)) =57 mm in Figure 10.5, the splitting resistance increases rapidly
and is asymptotic tob_=d_ = 19 mm as shown. This increase in the splitting resistance
atb <(b),,, should be ignored in practice, so that when b_< (b ) ., then it should be
assumed that the splitting resistance Psplit =P . asshownin Figure 10.5. This limitation
is unlikely to occur with individual connectors because it would require a side cover of
less than the diameter of the stud. However, it is worth noting that it can apply when

dealing with groups of blocks of connectors as discussed in Section 10.4.
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Figure 10.5 Splitting resistance of slab to individual connectors
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(e) Minimum side cover to achieve the dowel strength
Stud shear connectors require a minimum side cover of

Cdo =22d g, (104)

to achieve the triaxial restraint to the concrete that is necessary to attain the maximum
dowel strengthD__ . The effective width from this cover is shown as (®),,=54d, =103
mm in Figure 10.5. Effective widths less than (b,),, should not be used in practice as
crushing of the concrete may precede the splitting resistance. For example, the splitting
resistance (P ), in Figure 10.5 intercepts (b),,=5.4d, =103 mm, at point A at Psplit =
56 kN. Hence, if it is not required to achieve the maximum dowel strength D . =100kN,
then the side cover to the stud can be reduced to 2.2 d.thatisb =5.4d_, when splitting
will occur at a load of 56 kN prior to dowel failure.

10.4 Effective dimensions for groups of connectors

Stud shear connectors can often be grouped together as in Figure 10.6(a). In this example
the concrete prism is subjected to one lateral row of connectors that is positioned in
three longitudinal lines as shown. The prism can split due to the concentrated load from
an individual connector or from the combined effect of a group of connectors. It is,
therefore, necessary to check for the splitting resistance to all possible combinations,
however, engineering judgement can be used to minimize the number of checks required.

Each individual connector of the n connectors in the group in Figure 10.6(a) can
cause the slab to split but as the connector in line 1 has the smallest effective width, the
resistance of the concrete prism to this individual connector will be the least. Hence, it
is only necessary check the splitting resistance to this individual connector using the
procedure described in Section 10.3.1. It is worth noting that this individual connector
acts as a concentric patch load of width (b ), =d_, on the prism of width (b)), Furthermore,
the pair of connectors in lines 1 and 2 in Figure 10.6(a) act as a concentric patch load of
width (ba)p =t + d_, on the prism of width (bc)p, where (bc)P/2 is measured from the centre-
line of the patch to the nearest side or effective side. Similarly, the group of n connectors
act as a patch of width (b) =t + d on the prism of width (b) , where (b) /2 is
measured from the centre of the patch to the nearest effective side.

10.5Pairs of connectors

10.5.1 Splitting resistance to pairs of connectors
The mean splitting resistance of a concrete prism to a pair of connectors is given by

-1
2

b, 09d, ] 09d, (105)
(

vda) (1_ 3
(1) +ds,.)(1 A ; "'.) (he)<g 0
c

Ppair =381t +d gy )d . fep
he )ss.lds,,

where the minimum splitting resistance is given by
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Figure 10.6 Effective dimensions for combinations of connectors

2 -1
09d, 094, (106)

Poin) . =34t +dgy Mo feo] 4+|[ 1~
(mm)pa,r (P ’h)ds" cb (hC)SS-ldsh (hf)s&ldsh

and which occurs at an effective width of
(b min—pair=2tp+dsp) (10.7)

The main difference between Egs. 10.5 and 10.1 is that the square in the denominator
of the first term in Eq. 10.1 does not occur in Eq. 10.5. It is also worth noting that Eqgs.
10.5 and 10.6 give the resistance of the slab to a force P imposed by a pair of connectors
and, hence, these strengths P should be divided by two to determine the force per
connector to cause splitting.

10.5.1.1 Example 10.2 Resistance to a pairs of connectors

The connectors in the slab in Example 10.1 are to be placed in pairs. In order to be
able to achieve the maximum dowel strength D__, the connectors are spaced at the
minimum lateral spacing of stud shear connectors, that is L. = 4d_ as shown in
Figure 5.3. Placing the pairs of connectors at this lateral spacing gives t =4d, =76
mm and applying this to Eq. 10.5 gives

b
(Psplit) = 7671 ——5——+1008| kN
’p=4dsh 9{ 95)

per stud 1-—=
be

which is plotted, in terms of the load per stud and side cover ¢ in Figure 10.6(b),
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as line B in Figure 10.7. The minimum strength can be derived from Eq. 10.6 as (Pmi“)pair
= 108 kN/stud which exceeds the maximum dowel strength required of
D__ = 100kN so that there is no problem with splitting.

If the lateral spacing is reduced to t =2d_, then Eq. 10.5 becomes

per stud

b
(Pypii) = 4603 ——<—+1008| KN
tp=2dsp 57(1 57)

c

which is shown as line D in Figure 10.7 and, hence, a minimum side cover of 270 mm
would be required to achieve a dowel strength of D_.=100kN.

10.6 Groups of connectors

10.6.1 Splitting resistance to groups of connectors
The mean splitting resistance of a concrete prism to the group of n connectors in
Figure 10.6(a) is given by

2
b 09d 09d (10.8)
Peroup=34(tn +dsp M fop L4 =H|1- - sh n sh
(t vd 1= ty+dg, ( C)ss.lds;, ( < )ss.ld,,,
n sh 'b“c‘
which has a minimum splitting strength of
9 -1
27 09dy, 094, (10.9)
(Pmin)gmup=3.4(tn +d g )dsp fep 2t 1—(h ) )
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Figure 10.7 Splitting resistance to groups of connectors
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(10.10)

(bc )min—group = 3(tn + dsh)

10.6.1.1 Example 10.3 Resistance to groups of connectors

Let us place the connectors in Example 10.1 in groups of three with the minimum
recommended lateral spacing of L. =4d,, so that the spread of connectors, in Figure
10.6(a), t_ = 152 mm. Applying Eq. 10.8 gives

b,
Popiy ) = 9208 —— =5 +1008) kN
(( spli ):,,=8dxh per stud 2

that has a minimum splitting resistance of 154 kN/stud and which is plotted as line C
in Figure 10.7. As with the two studs at L. =4d_, in Figure 10.7, the minimum splitting
resistance of the group of three studs exceeds the dowel strength so that splitting
will also not be a problem.

The results from the splitting resistance of individual connectors, from Figure
10.5, are also plotted in Figure 10.7 as line A. It can be seen that the splitting resistance
to the individual connector controls the analysis for all the cases when the minimum
recommended lateral spacing of L, =4d_ is adhered to.

10.7 Blocks of connectors

10.7.1 Blocks of stud shear connectors

Occasionally it may be necessary to concentrate the stud shear connectors in blocks as in
Figure 10.6(b); this may be necessary in open composite truss girders or in composite stub
girders. Let us define a block of connectors as several groups of connectors in which the
longitudinal spread of the connectors d, is much less than the effective width of the
prism b_as shown in (b). When d_ is of the same order of magnitude as b_ then we
have the problem of global splitting which is dealt with elsewhere?.

The block of connectors in Figure 10.6(b) can cause the slab to split through a single
line of connectors and through combinations of these lines. In estimating the splitting
resistance of the block of 9 connectors in (b), let us assume that the three lines shown
are coincident with the three lines of connectors in (a), that is they are at the same
distance from the effective side. As the effective width for the connector in line 1 in (a)
is exactly the same as the effective width of the connectors in line 1 in (b), the splitting
resistance of the concrete prism will be exactly the same. The same can be said for the
pair of connectors in (a) and (b) and the group of n connectors in (a) and (b).

10.7.1.1 Example 10.4 Resistance to a block of connectors

The stud shear connectors in Example 10.1 are to be used in an open truss girder
where they are to be placed in blocks of 9 connectors as shown in Figure 10.6(b). The
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lateral spacing between individual connectors is to be maintained at L. = 4d . The
splitting resistances to one row of this group as in (a) have already been determined
and the results are given in Figure 10.7 (where the result for two studs at L._=2d_ is
not applicable to this analysis). As there are three rows of studs in Figure 10.6(b), the
splitting resistance per stud is one-third of the splitting resistance per stud in (a). In
other words, the splitting resistance per stud for the block of connectors in (b) is one-
third of the strengths given in Figure 10.7 and which are shown in Figure 10.8.

It can be seen in Figure 10.8 that the splitting resistance to all 9 connectors, that is
the curve labelled ‘3 lines and 3 rows’, now controls the strength and a side cover of
1660 mm is required to allow the total dowel force of 900 kN to be applied to the slab. It
is worth comparing this analysis with that in Figure 10.7 where the strength of the
individual connector controlled the design for all the cases except where L, =2d .

10.8 Prisms with non-rectangular cross-sections

The previous sections dealt with splitting of rectangular prisms such as those
shown in Figure 10.4, The procedure is now applied to prisms that have sloping
sides and haunches.

10.8.1 Upper and lower bound solutions

Consider the non-rectangular prisms in Figure 10.9 in which the lower width is b, the
upper width is b , the height of the prism h_ < 8.1d_, and the sides slope at an angle of
0 degrees to the vertical.

The non-rectangular prisms in Figure 10.9 can be considered to be bound by a
pseudo inner rectangular prism of width b_ = b, that is shaded, and a pseudo outer
rectangular prism of width b_ = b, that is hatched. As the cross-section of the
pseudo inner rectangular prism falls within the perimeter of the non-rectangular
prism, the splitting resistance of the inner prism (P_), will give a lower bound to the
splitting resistance of the non-rectangular prism. Conversely, as part of the outer
pseudo rectangular prism falls outside the non-rectangular prism, the strength of the
pseudo outer rectangular prism (Pspm)o will form an upper bound to the strength.
These upper and lower bounds can be determined from the splitting resistance of

rectangular prisms already described.

- i .
=1 1 line and 3 row

Pspm

(kN/stud)

50—
2 lines and 3 rows
3 lines and 3 rows
1 ]
0 1000 ¢ (mm) 1660 2000

Figure 10.8 Splitting resistance to blocks of connectors
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(a) non-rectangular prism (b)

b, . : b,

inner
prism

outer prism
shown hatched

Figure 10.9 Standard non-rectangular sections

It is also worth noting that when 8 = 0 in Figure 10.9, the inner rectangular prism
gives the correct strength and when 6 = 90° the outer rectangular prism gives the
correct strength. Tests have shown that the splitting resistance of the non-rectangular
prism (P__), is given by the following linear interpolation between the strengths of
the pseucfo inner and outer prisms.

(P“”"‘)e - (Ps/”i')i+((P5P’i')o—(Psplit),')%% (01b

10.8.2 Equivalent prism concept

In order to determine the splitting resistance of a non-rectangular prism, it is necessary to
simplify its shape to one of the standard non-rectangular prisms in Figure 10.9. Forexample,
consider the haunched prism in Figure 10.10. The non-rectangular section can be represented
by an equivalent prism that is created with effective sloping sides such as the one shown
shaded. As this equivalent prism falls within the cross-section of the slab, the splitting
resistance of the equivalent prism will be a lower bound to the true resistance.

The range of effective sides that can be chosen to create the equivalent prism in
Figure 10.10 varies from b, = (b)), when the effective width of the inner prism is the
shaded equivalent prism shown, tob, =b, =b_that is the equivalent prism is a rectangle
of width b . It is a question of finding the effective side that gives the maximum splitting
resistance. However even if the optimum side had not been chosen, the result would be
a lower bound to the splitting resistance and, hence, safe. A simple design procedure
would be to check the splitting resistances at the two extremities: when b, = (b) _so
that b_is a function of the geometry of the slab and (b)), and whenb =b_=b .

The procedure used in Figure 10.10, where a range of effective sides can be used
to determine the maximum splitting resistance, can also be applied to the haunched
beam with sloping sides in Figure 10.11. Alternatively, the equivalent prism shown
shaded, that follows the slope of the haunch, can be used to determine a lower
bound to the splitting resistance.

The equivalent prism concept can also be used to determine the splitting resistance
of composite beams with composite slabs, such as the composite slabs with dove-
tail ribs or trapezoidal ribs in Figure 10.12.



174 Composite beams with service ducts

effective width of slab
- b,=fl(b,)

c mm]

hn: hh

h.<8.1d,,

range of\ |
effective sides

Figure 10.10 Effective sides

10.8.2.1 Example 10.5 Haunched beam with vertical sides

(a) Single line

The stud shear connectors in Example 10.1 are placed in a single line in the haunched
beam in Figure 10.13; the haunch has been inserted so that the height of the slab can
be varied. It is required to find the variation of the strength of the shear connection
with the depth of the rib of the haunch h .

The side cover ¢ = 100 mm, in Figure 10.13, exceeds C,.= 2.2dsh=42mm (Eq. 10.4), hence,
the dowel strengthD__ = 100kN can be achieved when splitting is prevented. We will use
the equivalent prism shown shaded in Figure 10.13 to derive at least a lower bound to the
strength. The equivalent prism has been chosen so that the inner prism has the minimum
allowable splitting width of 3d, (Eq. 10.2) and, furthermore, the sides touch the top edge
of the haunch as shown. Equations 10.1 and 10.3 are subjected to an upper bound of h =
8. ldsh= 154 mm, hence, we will assume that hrib 324 mmsso that h, 3 154 mm. Hence, for h=
154 mm, from Eq. 10.3,(P_,),=56 kN and from Eq.10.1

Figure 10.11 Haunched beam with sloping sides
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Figure 10,12 Effective sides of prisms in composite slabs

where from the geometry of the equivalent prism b= (2x154x81)/h, + 57
=(24,948/h )+ 57 mm.

Applying Eq. 10.11 for various values of h gives the variation in strength in
Figure 10.14 which is asymptotic to the minimum splitting resistance of 56 kN. It can
also be seen in Figure 10.14 that the dowel strength of 100 kN can be achieved when
h_.. <56 mm and, therefore, for any larger values of h , the shear connector strength

rib
is reduced to that of the splitting resistance.

(b) Double line

Let us replace the single line of studs in Figure 10.13 with a pair of studs that has a
lateral spacing L, = 4d = 76 mm. Furthermore, let us increase the width of the
haunch by 76 mm, to 295 mm, so that the side cover to the studs remains at 100 mm.
The splitting resistance to an individual connector remains unchanged as that
shown in Figure 10.14. However, it is now necessary to check for the splitting
resistance to the pair of connectors. The weakest prism is probably a rectangle with
a width equal to that of the haunch of 295 mm. Applying Eq. 10.5 gives the splitting
resistance per stud of 767 1x[4.58 + 11.39] = 123 kN, that exceeds the dowel strength
as shown in Figure 10.14 and, hence, splitting induced by the pair of connectors
does not affect the strength of the shear connection.

10.8.2.2 Example 10.6 Haunched beam with sloping sides

The shear connectors in Example 10.1 are to be placed in a haunch of depth 150 mm as
shown in Figure 10.15. It is necessary to make the base of the haunch as narrow as
possible so that the side cover has been reduced to ¢, =2.2d, =42 mm. It is required to
determine the siope of the haunch that will allow the dowel strength of the shear
connection to be achieved.

< h.
8. Id\h ‘n\“ 1 bi: 57
= 154 ‘\:‘ !
| %
¢
' ! 104 v equivalent
419814 prism

100—19=— 100

Figure 10.13 Varying depth of haunch
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Figure 10.14 Variation in haunch height

An equivalent prism that follows the sides of the haunch has been chosen as shown in
Figure 10.15. The splitting resistance of the inner prism P, = 3069 [8.15 + 11.39] =60 kN and
that of the outer is given by the equation in Example 10.5 where, from the geometry of the
haunch, b =103 +(2x154) tan 8 mm. The results are plotted in Figure 10.16 where it can be
seen that it is necessary for the slope of the haunch to be greater than 55° for the dowel
strength of 100 kN to be achieved.

b,
| equivalent |
| prism |

2.2d, 19 42
103

Figure 10.15 Haunched beam with sloping sides

l:.split 100
(kN/stud) P,

60

Figure 10.16 Vr-iation in slope of the haunch
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11 Post cracking dowel strength

11.1 Introduction

The stud shear connector of shank diameter d, = 19 mm in Example 5.2 has
a maximum dowel strength of D__ = 100 kN when encased in concrete of compressive
strength f = 25 N/mm* As can be seen in Figure 5.1, the stud bears against
the concrete in a small zone that is adjacent to the base of the stud. If we assume
that the area of the bearing zone is d, x d_, then the mean bearing stress is
277 N/fmm? = L 1£,, that is considerably greater than the cylinder compressive strength of
the concrete. The concrete in the bearing zone can only sustain this magnitude of stress
because it is restrained triaxially by the stud and the adjacent flange. It can be seen that if
the triaxial restraint is reduced, with the consequential reduction in the triaxial compressive
strength, then the dowel strength of the stud shear connection will also reduce.

A longitudinal crack that extends through the bearing zone in Figure 5.1, that may
have been induced by transverse positive moments in the slab of a composite beam
or by splitting as described in Chapter 10, can reduce the triaxial restraint in the
bearing zone and, hence, reduce the post-cracking dowel strength. For example, in
the absence of any transverse reinforcement bridging the splitting crack in
Figure 10.1(b), the concrete elements on either side will separate so that the post-
cracking dowel strength D__, = 0. However, tests have shown that judicious
placement of transverse reinforcement across the crack plane can substantially
increase the post-cracking dowel strength and, if required, allow the maximum dowel
strength D to be achieved.

The effect of transverse reinforcement on the post-cracking dowel strength of
stud shear connectors is dealt with in this chapter. The transverse reinforcement has
the following very important functions after longitudinal cracking has occurred in
the vicinity of the stud shear connectors:

o The transverse reinforcement maintains equilibrium by resisting the transverse
tensile force (F),,, in Figure 10.2, that were originally resisted by the uncracked
concrete; this is covered in Section 11.4,

o Confines the concrete in the bearing zone in Figure 5.1 so that the dowel action
can be maintained and which is covered in Sections 11.2 and 11.3.

o Inhibits or arrests the propagation of the longitudinal crack'.

Allows a ductile mode of failure after splitting.

11.2 Hooped reinforcing bars

Composite L-beams such as that shown in Figure 10.4(b) are prone to longitudinal
splitting along the line of the outer stud D. When the cover c is very small it may be
impractical if not impossible to anchor straight reinforcing across the crack plane. This

177
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Figure 11.1 Hooped reinforcement

may be overcome by bending the transverse reinforcement around the outer stud as
shown in Figure 11.1 where the transverse reinforcement has the dual role of confining
the concrete and transferring the longitudinal shear into the concrete slab. This form
of construction can be used in precast slabs for composite beams where pockets are
left in the precast slabs at the positions of the shear connectors. After placing the
precast slab on the steel beam, the pockets can then be grouted with a much stronger
concrete than the slab, to enhance the dowel strength of the shear connection.

11.2.1 Dowel strength of studs with hooped reinforcement
Figure 11.1 illustrates a pair of studs that are close to the side of a composite
L-beam and in which splitting has occurred along the longitudinal plane
indicated. Tests have shown that the hooped reinforcement confines a cone of concrete
around the outer stud as shown shaded, so that the longitudinal shear is transferred by
dowel action into the reinforced concrete cone and thence by longitudinal shear action
into the concrete slab. It is worth noting that the dowel strength of the inner stud is not
affected by the longitudinal crack and, hence, can be assumed to be unchangedatD__ .

It has been explained previously using Figure 5.1 that the dowel strength of a
stud shear connector depends on the eccentricity e of the resultant force F; the
smaller the eccentricity the larger the dowel strength. The position of the resultant
force F, in the outer stud in Figure 11.1 depends on the height of the transverse
reinforcementh and, therefore, the strength of this outer stud after splitting, D

is a function of h__ as shown in the following empirically derived equation.

crack’

OAhcons (111

Depack = Dmax 16— dy,
s

whereh __ is measured from the centroid of the transverse reinforcement to the base
of the stud and in whichD__, <D__ .

crack
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To achieve the dowel strength D__, in Eq. 11.1, it is necessary to provide sufficient
triaxial restraint to the concrete and this can be achieved by ensuring that

2
O'9dh LDcrack -0 4) (11.2)

n Dpax

where A, is the cross-sectional area of both arms of the hoop as shown in Figure
11.1(a) and n is the modular ratio E /E . Equation 11.2 applies when

dp 2 3dg, (11.3)

where d, is the internal diameter of the bend of the hoop. Triaxial restraint is also
maintained by the following equations that ensure that the hooped reinforcement
does not yield and the concrete does not crush within the bend of the hoop.

Anfyr 2 024dEf, (114)

h, 2 016d, (115)

where f is the yield strength of the hooped reinforcement, that has to be fully
anchored within the slab, and h, is the depth of the hooped reinforcement as shown
inFigure 11.1.

11.2.1.1 Example 11.1 Hooped transverse reinforcement

The stud shear connectors in Example 5.1 are to be placed in a composite
L-beam such as in Figure 10.4(b) where the cover c to the outer connector is
100 mm. The stud shear connection has the following properties: D___= 113 kN;
f,=25N/mm? f, =2.5 N/mm? E_=25 kN/mm?; E_ =200 kN/mm?; hence n=8; and fyr
=400 N/mm?,

From Figure 10.5, the splitting resistance of the slab to the outer connector is
Psplil = 56 kN which is considerably less than the required dowel strength of
113 kN. As there is very little room to anchor the transverse reinforcement across the
splitting plane, hooped reinforcement will be used. It is worth noting that as splitting may
occur at serviceability loads, as P . <<D,,, it may still be necessary to place nominal
reinforcement across the splitting plane just to hold the concrete in place after splitting.

From Eq. 11.3, we will choose d, =4d, =76 mm to allow for some construction
tolerance. Inserting D__, =D__into Eq. 11.2, as we require the maximum dowel
strength, and d, = 76 mm and n = 8, gives A, /2 = 195 mm? which converts to two
12 mm diameter bars or one 16 mm diameter bar. From Eq. 11.5,h 212.2 mm so forall
intents and purposes we can use either the two 12 mm diameter bars or the one 16 mm
diameter bar. Inserting D__, =D __ into Eq. 11.1, as we require the maximum dowel

strength, givesh < 1.5d =29 mm. Hence, if the 16 mm bar is being used then the
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maximum coverc, = hcem -h/2=29-16/2= 21 mm, whereas, if the two 12 mm bars are
being used thenc, =29~ 12=17 mm.

11.3 Post-cracking confinement of concrete

The following confinement rules were determined empirically from tests on
the dowel strength of stud shear connectors in longitudinally split slabs in which
straight transverse reinforcement crossed the cracked plane. An example of the
configuration of these tests is shown in Figure 11.2 where the reinforcing bars are
transverse to the direction of thrust from the connectors. In these tests the main purpose
of the transverse reinforcement was to confine the concrete in order to enhance the
dowel strength, however, it is worth noting that the transverse reinforcement also resisted
the transverse forces after splitting had occurred. Hence, the transverse reinforcement
had the dual role of confining the concrete and resisting the transverse forces.

11.3.1 Dowel strength with straight transverse bars
The post-cracking dowel strength of stud shear connectors in longitudinally cracked
slabs with straight transverse reinforcing bars is given by the following equation

D

0934, L 116
crack = Dmax 0.60+ ———Eﬂ (11

dsh

where L___is the longitudinal spacing of the connectors as shown in Figure 11.2, A,
is the area of the bottom transverse reinforcement per unit length, D_ . <D_ , and
in which the characteristic strength, below which 5% of the results fall, can be
obtained by replacing the coefficient 0.6 with 0.55. Equation 11.6 can be applied
when A, exceeds the following minimum requirement

0065d2,

LCO"

(11.7)

h.,<3.1d

cent sh

> e
L, >20d, L, > 20dg,

Figure 11.2 Transverse confinement reinforcement
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Itis worth noting that Egs. 11.6 and 11.7 are dimensionally correct as A, is the area
per unit length and hence has the unit of length.

The following detailing rules ensure that the transverse reinforcement adequately
confines the concrete in the stud shear connection bearing zone.

d, £ 072dg, (11.8)
hcent < 3ld sh (11.9)
Lsp 2 20dgp (1L10)

where d, is the diameter of the transverse reinforcement as shown in Figure 11.2,h__
is the distance from the centroid of the transverse reinforcement to the base of the
stud, and L_ is the spread of the transverse reinforcement on either side of the
concentrateJ load as shown in Figure 11.2,

It is worth noting that because the primary purpose of this transverse
reinforcement is to confine the concrete, it does not need to be fully anchored. It is
suggested that an anchorage length sufficient to achieve a stress of 250 N/mm? is
adequate for confinement purposes.

11.3.1.1 Example 11.2 Individual connector concrete confinement
Let us consider the composite beam in Example 5.1 where D, =113kNandd, =19 mm.

(a) Design of a single line of connectors

From Example 5.1, L =238 mm and we wish to place confinement reinforcement so
that the post-cracking dowel strength D = D__ = 113 kN. From Eq. 11.6,
A, =(0.4x19%/(0.93 x 238) = 0.65 mm*mm = 0.65 mm, which would require 8 mm bars
at a longitudinal spacing of L, = (x8%/4)/0.65 = 77 mm centres. From Eq. 11.7, the
minimum requirement for A = 0.065x19%238 = 0.099 mm which is less than the
requirement of 0.65 mm. From Eq. 11.8,d £0.72x19 = 14 mm, so that the 8 mm bars can
be used. From Eq. 11.9,h_ <3.1x19 =59 mm so that the 8 mm transverse reinforcement
has to be placed within a distance of 57 mm from the base of the slab. From Eq. 11.10,
L, 2 20x19 = 380 mm and as this is greater than
L., = 238,the 8 mm bars can be spread uniformly throughout the slab.

(b) Double line of connectors

When there is a double line of connectors, the longitudinal spacing is twice that
in the previous section (a) so that L., = 2x238 = 476 mm. From Eq. 11.6 and
in order to ensure that D_.=D_. A, =(0.4x19%/(0.93x476) = 0.33 mm, which would
require 8 mm bars at 154 mm centres which is simply double the spacing in the preceding
analysis (a). Thus having two lines of connectors reduces the required amount of

confining reinforcement, as each bar confines each line of connectors.
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(c) Assessment of an existing structure

Let us now assume that the composite beam already exists, that the transverse
reinforcement had been designed for the transfer of longitudinal shear as in Chapter
6, and that a longitudinal split has occurred in the beam. It is required to determine
whether this split has weakened the composite beam.

In Example 6.5, the composite beam was designed with a double line of connectors and
the amount of transverse reinforcement required for longitudinal shear was
A, =0.49 mm. In part (b) above, the amount of transverse reinforcement required for
confinement is 0.33 mm and as this is less than that already provided, the shear connectors
should reach their maximum dowel strength even though splitting has occurred.

It can be deduced from Example 6.5 that if there were a single line of connectors,
then the composite beam would have been designed for longitudinal shear with the
minimum reinforcement requirement of A, =0.363 mm. This is less than the confinement
requirement in part (a) of this example of 0.65 mm and, hence, the maximum dowel
strength cannot be achieved. Substituting A =0.363 into Eq. 11.6 givesD__, =0.60
+(0.93x0.363x238/19>) =0.82D__ =0.82x113 =93 kN. Hence, splitting has reduced
the strength of the shear connection by 18%, so that the strength of the composite
beam will have to be reassessed using the partial shear connection procedures in
Chapter 4.

11.3.1.2 Example 11.3 Confinement of a block of connectors

Let us now design the confinement steel for the block of nine 19 mm diameter
connectors in Example 10.4 which are shown in Figure 10.6(b), so that the post-
cracking dowel strength D__, is equal to the maximum dowel strength D__ . It will be
assurned that the connectors are spaced at the recommended minimum longitudinal
spacing of L, =5d, in Figure 5.3(c). Hence L =5d, =95 mm. Applying Eq. 11 .6 gives
A, =(0.4x19)/(0.93x95) = 1.63 mm which is much larger than the minimum requirement
0f 0.065x19%95 = 0.25 mm from Eq. 11.7; furthermore from Eq. 11.8, dr <14 mm. Hence
we could use 10 mm bars at L = (1xx10%/4)/1.63 =48 mm within the group of connectors
in Figure 10.6(b) and 12 mm bars at L, = 69 mm extending either side of the group by
L =380 mm. The bars should be placed within a distance of h __ = 59 mm from the
soffit of the slab.

11.4 Post-splitting transverse forces

Section 11.3 dealt with the transverse reinforcement required to confine the concrete
in the vicinity of the shear connectors, in order to achieve either the maximum dowel
strength or at least a reasonable dowel strength. After splitting, the concentrated
load has still to be dispersed into the concrete slab and this can be achieved if
transverse reinforcement is available to transmit the transverse forces.

It can be seen in Figure 10.2(a) and (c) that the concentrated load induces both
transverse tensile forces and transverse compressive forces of equal magnitude.
Hence, the resultant force across a splitting plane is zero which means that the
transverse forces do not affect the global behaviour of the slab. Therefore, transverse
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flexural reinforcement that crosses the splitting plane can contribute to resisting the
transverse splitting force (F),_.

An alternative way of viewing the problem is shown in Figure 11.3 where the local
stress resultants are shown in a region of the slab where there is a local transverse
tensile force F, due to splitting, such as in the slab below the patch load in Figure 10.2(c).
Let us assume that the transverse hogging moment applied to the slab of the composite
beam has yielded the reinforcement so that transverse tension due to flexure across the
crackedplaneis F =F = Af_as shown inFigure 11.3. Hence for equilibrium along the
cracked plane, the transverse compressive force Fo=F— F. In order to simplify the
illustration of this mechanism we will assume that F, is in line with chp.

Let us start by assuming that the slab in Figure 11.3 is not subjected to splitting
forces but is only resisting the full flexural capacity so that F, = 0 and, hence,
F..=F, =F=Af . Asthe splitting force F is increased, F, remains the same as
the top steel is fully yielded so that the compressive force F___ reduces. However,
the resultant force at the bottom of the slab chp - F, remains unchanged at F = A.fy,s
so that the moment capacity is being maintained. It can be seen that the transverse
tensile force has not affected the moment capacity, which means that the transverse
reinforcing bars provided for fiexure also act in resisting splitting and which also
means that additional reinforcement is not required. This situation remains stable
whilst F <F =Af . WhenF >Af then additional reinforcement will have to be
provided so that the strength of the transverse reinforcement is now governed by
the splitting force F,.

It is worth noting that the mechanism iltustrated in Figure 11.3 requires that the top
flexural reinforcement is ductile, as it first extends to resist flexure and then further
extends to resist the splitting forces. If there are problems with the ductility of the
reinforcement, then it may be necessary to add more reinforcement.

11.4.1 Transverse splitting forces
A conservative estimate of the tensile splitting force T in Figure 10.1 is to assume
that none of the concentrated load is dispersed vertically as shown in (a) but all of

ten
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Figure 11.3 Local distribution of stress resultants
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the concentrated load is dispersed longitudinally and transversely as in (b). For this
case the transverse tensile force F,, which is shown as T in Figure 10.1, is given by

P 2
F, = Pl (1—b—“) (L11)
t

/1 b,

where Pspli is the concentrated force; and where for individual lines of connectors, such
as those shown in Figure 10.6, b, =d_; for two adjacent lines of connectors b, = (tp +d)
and the exponent 2 should be replaced by 1; and for n lines of connectors b, = (t_+d_).
It is necessary to ensure that the transverse reinforcement that is provided to
resist F, is fully anchored. The distribution of the transverse tensile stresses prior to
splitting is shown in Figure 10.2, where it can be seen that the longitudinal spread is
a function of the effective width b_and that it is concentrated near the patch load.
Hence, it is suggested that the transverse reinforcement required to resist F, is spread
in front of the connector, that is in front of the thrust, and over a length of
approximately 0.5b_ from the connectors. It is still necessary to supply transverse
reinforcement in front of and behind the connectors to confine the concrete.

11.4.1.1 Example 11.4 Splitting force for block connectors

In the block of 9 stud shear connectors in Example 10.4 (that have already been analysed
for confinement in Example 11.3), Psplit =900kN,b,=9d, =171 mm,c= 1660 mm and,
hence, b_=2x1660 + 171 = 3491 mm. Inserting these values into Eq. 11.11 gives F, =
(900/m)(1-171/3491) = 259 kN which has to be placed in the splitting zone of length
0.5b_= 1.7 min front of the block; 8 mm bars of fyr =400 N/mm? at longitudinal spacing

of L, = (1700/259x10%) x(nt8%4)x400 = 132 mm will suffice.

11.4.1.2 Example 11.5 Splitting force for individual connector

Let us continue the analysis in Example 11.2 where the stud shear connector force
isD__=113kN and where the transverse reinforcement for a single line of connectors
was determined to be A, = 0.65 mm and which was spread uniformly throughout
the slab. As L =238 mm, the strength of the confining reinforcement per stud is
F =0.65 x 236 x 250 = 38 kN (it has been assumed that the minimum bond strength
has been used for this confinement reinforcement, that is it will allow a stress of 250
N/mm?). It can be seen in Eq. 11.11 that an upper bound to the lateral tensile force is
P_./m=D_ /m=113/r=36kN/stud which is less than the strength of the confining

split ) R i
reinforcement of 39 kN/stud and, hence, extra reinforcement is not required.

11.5 Reference
1. Oehlers, D. J. and Bradford, M. A. (1995). Composite Steel and Concrete
Structural Members: Fundamental Behaviour. Pergamon Press, Oxford.



12 Rigid plastic analysis of
continuous composite beams

12.1 Introduction

The previous chapters have presented enough material to enable a static analysis of
simply supported composite beams to be carried out, either with the elastic
assumptions of Chapter 3 or the rigid plastic assumptions of Chapter 4. The analysis
based on either assumption is straightforward, since simply supported beams
subjected to gravity loads experience sagging bending throughout and are statically
determinate. In the elastic analysis of these beams with full shear connection, we
may use the full-interaction flexural rigidity based on the transformed cross-section
E 1 _for the whole length of beam. Furthermore, it was demonstrated in Chapter 4
that rigid plastic analyses of simply supported beams, even with partial shear connection,
are not difficult. This chapter will extend the rigid plastic analyses of Chapter 4 to
continuous composite beams, and will highlight that with certain conditions being
met, the assumptions made in the rigid plastic model lead to a method of analysis that
is extremely efficient and allows considerable increases in the loads that the beam can
resist above those that are determined from an elastic analysis.

Continuous beams are statically indeterminate, and experience hogging or negative
moments over the internal supports as well as sagging or positive moments within
the spans. It was shown in Section 3.3.2 that the elastic analysis of these beams is
not straightforward, as the points of contraflexure are not known in advance because
of the different flexural rigidities in the sagging and hogging regions. An iterative
solution is therefore required to solve for the redundant actions using either standard
stiffness or flexibility methods of structural analysis. This difficulty can be overcome
by use of a rigid plastic analysis, and the failure loads of a continuous composite
beam may be determined quite readily by this method. Not only is rigid plastic
analysis much easier than elastic analysis of continuous composite beams, but it is
also more efficient as the shape factors, which are the ratio of the fully plastic moment
to the moment to cause first yield, in both sagging and hogging are quite high, and
this leads to an increase in failure loads above those determined from elastic analysis.

Rigid plastic analysis was initially developed some fifty years ago for mild steel
beams, where it was demonstrated that the rigid plastic assumptions resulted in an
increase in the failure load over that based on an elastic analysis with first yield,
significantly so in some cases. The main assumption in a rigid plastic analysis is that the
cross-section is ductile, and can experience large curvatures before failure, as was
indicated in Section 2.3.3. It is perhaps logical to introduce the concepts of plastic
analysis in continuous uniform steel beams first, and then to extend these concepts to
composite beams, which of course have different moment capacities in sagging and
hogging bending. There are also different ductility requirements for sagging bending
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186 Rigid plastic analysis of continuous composite beams

of composite beams to those for steel beams, since the ductility of composite beams
depends on the crushing of the concrete component. The following analysis presented
in Section 12.2 for steel beams is merely to illustrate primarily the concepts of plastic
hinges and moment redistribution. There is a proliferation of standard textbooks that
treat plastic analysis and design in steel beams and frames fully (and are cited in Ref. 1),
that include theorems and other aspects that are beyond the scope of this book. The
reader should make recourse to these texts for a full understanding of the plastic analysis
and behaviour of steel beams.

12.2 Continuous steel beams
12.2.1 The plastic hinge
Real moment-curvature response
Consider the mild steel I-section beam shown in Figure 12.1(a), where the actual stress-
strain curve for the steel is shown in Figure 1.8, that is subjected to increasing curvature
x and which is free from residual stresses. We will make the usual engineering assumption
that plane sections remain plane, so that the strain distribution varies linearly throughout
the section as in (b). The response is initially elastic until the strain at the outermost
fibre of the section reaches the yield straine =f /E_at the moment to cause first yield
My =f Z, where Z is the elastic section modulus. As the curvature further increases, so
too do the strains at the top and bottom of the section increase beyond the yield strain,
so that yielding spreads down the section at fy as in Figure 12.1(c). When the curvature
produces a strain at the extreme fibres of the section equal to the strain hardening
strain € , most of the section has yielded and on increasing the curvature still further
the beam enters the strain hardening region, so that the stresses increase in the highly
strained regions of the section, as in (d). Theoretically increasing the curvature still
further will finally produce failure when the strain reaches that to cause fracture in
tension or inelastic local buckling in compression.

It is convenient to mode! the stress distribution in Figure 12.1(d) with the fully-
plastic stress block shown in (e). Although the small elastic zone near the centroid is
assumed to be fully yielded, this unconservative assumption is negated by ignoring
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Figure 12.1 Strains and stresses on a bare steel I-section with increasing curvature
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the real stresses in the outermost portions of the cross-section that are in the strain
hardening zone and thus exceed f,.

By increasing the curvature in steps, the bending moment may be obtained by
taking the moment of the stresses over the area of the section, and which are of the
shape depicted in Figures 12.1(c) and (d), producing the actual moment-curvature
response shown in Figure 12.2. The moment of the idealized stress block shown in
Figure 12.1(e) is of course the fully plastic momentM =f S, where S is the plastic
section modulus, and which is shown in Figure 12.2 along with M,. It can be seen
that the difference between the actual moment and the plastic moment at the strain
hardening curvature x_ is minuscule, since the elastic zone is very small and located
close to the centroid of the section.

12.2.1.2 Idealized moment-curvature responses

In lieu of generating the real moment-curvature relationship which is arithmetically
involved (although not significantly so), and because the real curve is not required
to determine the collapse loads in the rigid plastic analysis, two idealizations of this
real curve will be made for use subsequently. Firstly we can assume that the moment
curvature response is linear elastic with flexural rigidity E I until the plastic moment
M_, is attained, and is then constant at a plateau at M| as the curvature tends to
infinity, as shown in Figure 12.2. Secondly, if the rigid plastic idealization of the rigid
plastic stress-strain curve for the steel shown in Figure 1.13 is adopted, no elastic
curvatures develop and the curvature is zero until M_ is reached. The moment then
remains constant at M__as shown in Figure 12.2. Although the rigid plastic idealization
forms the basis of the analysis of continuous beams, the elastic-perfectly plastic
moment curvature idealization will be used in Section 12.2.3 to demonstrate the

concept of moment redistribution upon which plastic analysis is based.

12.2.1.3 Plastic hinge in a steel member
A simply supported steel beam is shown in Figure 12.3(a) subjected to a central

Moment idealised rigid plastic

ideatised
elastic plastic

KY Curvature K
Figure 12.2 Real and idealized moment-curvature relationships for a bare steel I-section
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concentrated load W. The bending moment diagram is known from statics and has a
maximum value of WL/4, as shown in (b). If the load W is sufficiently large to
produce moments that extend well into the inelastic range, the real moment-curvature
response shown in Figure 12.2 may be used in conjunction with the bending moment
diagram in Figure 12.3(b) to generate the curvature diagram that consists of elastic,
plastic and strain hardened portions, as shown in (c). The curvature may be integrated
to produce the variation of beam slope 0 as in (d), and this may be in turn integrated
to produce the variation of deflection v, as in (e).

Several related observations may be made from the real variations of curvature,
rotation and deflection shown in Figures 12.3(c) to (e) respectively. Firstly it can be
seen from (c) that when the beam is loaded well into the inelastic range the elastic
curvatures are very small in comparison with the inelastic (plastic and strain hardened)
curvatures. This is then reflected in the rotation of the beam in (d), which remains
nearly constant in the elastic range at 8 on each side of the load as shown in (e),
except adjacent to the load point where it varies very rapidly from +0 to -0 as in (d).
Finally, as the slope is nearly constant except near the concentrated load, the
distribution of deflection is close to linear (meaning that the beam deflects as a near
to straight bar) except in the vicinity of the loading point.

The real behaviour shown in Figures 12.3(a) to (e) may be replicated closely if we
adopt the rigid-plastic assumptions for the steel beam shown in Figure 12.2. Because
the curvature in the real beam is small except close to the region of the concentrated
load, this curvature is taken as zero and infinite at the ioad position, as shown in
Figure 12.3(g). This assumption then leads to the rotations being constant at 10
either side of the load, as in (h), so that the beam deflects linearly as rigid bars on
either side of the load point, as in (i). Under the load there is thus a ‘kink’ of angle 26
which is shown in (i).

Because the curvature under the load is infinite, the corresponding moment is the
maximum moment the beam canresist, M_, and the beam will fail when WL/4=M_or
when Wm"apse = 4MP5/L. The plastic region shown in Figure 12.3(a) is now assumed
concentrated directly under the load as shown in (f) and a hinge forms under the
load. This plastic hinge is associated with the ‘kink’ under the load shown in (i). In
this case, the rotation at the plastic hinge cannot be determined explicitly by the
rigid-plastic idealization, but once the load reaches W, the beam is assumed to
reach a mechanism condition. In this sense, the plastic hinge is analogous to a
‘structural hinge’, except that in the latter case the moment is zero while at a plastic
hinge the moment is Mps. It is worth reiterating that the underlying assumption of the
plastic hinge concept is that the steel is ductile.

12.2.2 Requirements for plastic analysis of steel beams

The major requirement for plastic analysis of steel (or composite) beams is that
plastic hinges can form, as will be illustrated in Section 12.2.3. This of course is a
ramification of the ductility of the cross-section. Although as a material mild steel is
ductile, the required rotations at plastic hinges may not be achieved due to premature
failures associated with buckling. Local buckling may be prevented my ensuring that
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the section classification in Section 2.3.3 is at least compact. The geometric limits
placed on the elements of a compact steel section ensure that inelastic local buckling
will occur at large curvatures well into the inelastic range, and that the plastic moment
is at least achievable before failure caused by inelastic local buckling. Statically
indeterminate beams require a quantifiable amount of rotation at a plastic hinge to be
achieved prior to inelastic local buckling occurring at the hinge, and such beams
require the more stringent plastic classification (Section 2.3.3.2) which allows higher
curvatures to be obtained.

The other requirement is that lateral-torsional buckling does not take place prior to
collapse based on rigid-plastic analysis. This requirement is achieved by ensuring that the
spacing of lateral restraints or braces satisfies specified limits in codes of practice’. However,
Chapter 13 will demonstrate that the lateral-distortional buckling introduced in Section
1.6.2 that is associated with composite beams is far harder to quantify than lateral-torsional
in plain steel members, but nevertheless must be prevented from occurring.

12.2.3 Plastic analysis of continuous steel beams
12.2.3.1 General

In continuous beams, at least two plastic hinges must form to produce a collapse
mechanism in which the beam is able to deflect freely by rotating freely at the plastic
hinges. Associated with the formation of this collapse mechanism is the concept of
moment redistribution, that we will see in Section 12.3 is very important in composite
beams. The analysis of a continuous steel beam will be carried out by means of a
numerical example in Section 12.2.3.2, where the simplicity of calculating the collapse
load will be shown ultimately.

12.2.3.2 Example 12.1 Analysis of two-span steel beam

Consider a continuous steel beam whose dimensions are shown for the steel
component in Figure 4.3 that is simply supported at the ends and over an internal
support. Each span is of length 6 m, and subjected to concentrated loads at midspan
of magnitude W. The symmetry of this problem allows us to analyse only one span,
which must be modelled as a propped cantilever as shown in Figure 12.4(a). The
properties of the cross-section are [ =222.8x10°mm*, Z=1.173x 10mm’ and S_=
1.338 X 10° mm’ with E, =200 kN/mm’ and f =250 N/mm?.

The flexural rigidity of this uniform steel beam is constant along the length
(unlike a composite beam) and the relevant moments in the elastic bending moment
diagram shown in Figure 12.4(b) are given in structural engineering handbooks as

m =-6WL/32 and M = SWL/32. The maximum (elastic) moment is thus in the
hoggmg region. The first yleld momentis M, =250x1.173x 10° Nmm =293.3 kNm, so
that first yield will occur when W =(293.3 x 32)/(6 % 6)=260.7 kN. We will now use the
elastic-perfectly plastic assumption shown in Figure 12.2 that assumes the beam is
elastic until a plastic hinge forms, which will be at the internal support (modelled as
the root of the propped cantilever shown as position A in Figure 12.4(a)). Hence
using M, = 250 1.338 x 108 Nmm = 334.5 kNm, the load to cause a first hinge to form
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is W =(334.5 x32)/(6 x 6) =297.3 kN. Note that this is an increase of 297.3/260.7 or
14% above the first yield load. In addition, the moment under the load is M, =5x
297.3x6/32=287.7kNm,

When a plastic hinge forms at the interior support (modelled as the root of the
right hand span in Figure 12.4(a)), it is obvious that the span has not reached a
collapse mechanism, but now resembles a simply supported beam (but with a moment
of —Mps at the interior support). The beam can now be analysed when W is increased
above its first hinge value of 297.3 kN by the elastic-perfectly plastic model assumed,
and the bending moment diagram for this condition is shown in Figure 12.4(c). In this
elastic analysis we must note that Mmg remains constant at —M_, and most importantly
that the beam is free to rotate 6, _at the interior support. Although the analysis is still
elastic, the ramifications of the latter behaviour is that Msag no longer equals SWL/32,
as this ‘elastic solution’ is derived on the assumption that the beam is built-in at the
root, that is Ghog = (). The elastic analysis must therefore be modified as follows to
allow Ohng to be non zero.

The beam is shown in Figure 12.4(d) when W > 297.3 kN, with the reaction at the
right hand simple support being denoted R. The bending moment diagram
corresponding to this state is shown in (e) where the moment at mid-span is 3xR (the
reaction R times the lever arm of 3 m) and the static moment is WL/4. Clearly the
distribution of moment M along the beam is given by

d2
M =El P ;=(W—R)x—3345-—W<x—3) az.n
x

which upon successive integrations produces

2
w
E,16 = (W - R)7-=3345x——-{x=37 +a (122)
% 2 W 3 (123)
El v=(W—R)?—-l67.25x ——6-(x—3) +ajx+ay '

in which a and a, are constants of integration, x is measured from the root of the
propped cantilever as show, and ( ) represent Macaulay brackets?, that is the term
in the bracket is ignored when negative. The constants a, and a, may be determined
by imposing the boundary conditions of zero deflection at the two ends, viz. v(0) =
v(6) =0, producing a, = 0 and

a, =1004 +6R ~525W (124

1t is worth noting again that the condition 6(0) =0 does not hold as the beam is free
to rotate at the plastic hinge at x = 0 with its moment remaining at -M__. If we sum
moments about the internal support (or root of the propped cantilever idealization)
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then from equilibrium in Figure 12.4(d) 3W =334.5 + 6R. Substituting this into Eq.
12.4 and then into Eq. 12.2 and putting x = 0 produces the rotation at the hogging
plastichinge as E16(0)=E16, =a,or

Bj0p =505x107(2973-W)  (radians) (i25)

where W is in kN,

As W is increased above its first hinge value of 297.3 kN, a (negative) rotation Ohog
develops at the internal support and the moment under the concentrated load shown
in Figure 12.4(e) increases until finally MMB =M when3R=334.5kNm,orR=1115
kN. Therefore, as it has already been shown that 3W =334.5 + 6R then 3W_ =
3345 + (6 x 111.5), that is W_ __ = 334.5 kN. The continuous beam (or propped
cantilever model) has now been loaded until it forms a plastic mechanism as in (f) at
acollapse load of W_, _ =334.5 kN. In order to achieve this collapse mechanism,
from Eq. 12.5 the hogging hinge has been required to rotate 50.5 x 109x (297.3 -
334.5) or —1.88x10 radians. However, once Ww"apse has been attained, both the
hogging and sagging hinges are free to rotate as a mechanism with an undetermined
(but theoretically large) magnitude.

This example has illustrated a number of concepts that are unique to plastic
analysis. Firstly, the load to cause plastic collapse of the continuous beam is 334.5/
297.3 or 13% greater than that to produce a first hinge, so that the beam strength is
not fully utilized when based on a first hinge analysis. Secondly, to reach failure a
quantifiable rotation is required at the position of the hinge that forms first. Thirdly,
and most importantly, the calculation of the collapse load is very easy. Although
performed slightly differently in the previous calculations, it can be seen
directly from the variation of the bending moment diagram in Figure 12.4(e) that at
the position of the applied load W, that the static moment at collapse = WL/4
=W_,. Li4= Mps + Mps/2 producing Wm"ﬂpse = (4 x 1.5 x 334.5)/6 = 334.5 kN,
a calculation which is greatly simpler than that for elastic analysis of a statically
indeterminate beam. Finally, it can be seen from the bending moment diagram in
(e) that the shape of the bending moment distribution changes constantly as W
is increased from its value to form a first hinge to that which causes collapse
when a mechanism is reached. At the first hinge load, the sagging moment
M,,, =287.7 kN as noted earlier, but as the load is increased above its first hinge value,
Mhog remains constant while moment is redistributed to the positive bending region, so
that ultimately there is a moment redistribution 334.5/287.7 or 16% in the sagging region.
This moment redistribution is a characteristic of plastic analysis, and is permitted by the
ability of the plastic hinges to rotate freely due to their ductility.

12.3 Continuous composite beams
12.3.1 General

The presentation of plastic analysis in Section 12.2 for bare steel beams illustrated
the simplicity and economy of design based on such analysis. Plastic analysis may
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also be used for composite beams, and the same benefits that are achieved in steel
design also accrue to continuous composite beams. There are two major differences
with composite beams compared with uniform steel beams, Firstly the plastic moments
of resistance in composite beams are different in hogging and bending regions. The
second difference relates to the ductility of the sagging region in particular, and this
must be ensured by the requirements outlined in Section 12.3.2 so that the rigid-plastic
assumptions of Chapter 4 that are used to calculate the plastic moment are valid.

12.3.2 Composite plastic hinges
12.3.2.1 Hogging behaviour

Under hogging bending, the real moment-curvature response is similar to that
shown in Figure 12.2 for a steel beam, since the concrete cracks at low curvatures
when the stress exceeds f_ in Section 1.3.5.1, and the cross-section comprises of a
‘steel’ section consisting of the steel component and the reinforcement, as discussed
in Chapter 3. In composite plastic analysis, we may make the usual rigid plastic
assumptions unreservedly that were made in Section 12.2, provided of course that
local buckling is prevented prior to a collapse mechanism developing, and that
lateral-distortional buckling is also prevented. The local buckling provision is
enforced by ensuring that the cross-section is compact or plastic, while the
possibility of lateral-distortional buckling can be checked by the design models
given in Chapter 13. The plastic hinge concept is thus the same as that for a bare
steel cross-section, where at the plastic moment (Mp),mg the cross-section is allowed
to rotate freely.

12.3.2.2 Sagging behaviour

The real moment-curvature relationship may be generated by modifying the
model described for a bare steel section described in Section 12.2.1.1. However,
under certain conditions the moment-curvature curve may reach the sagging plastic
moment (M))_ and then decrease at relatively low curvatures owing to premature
crushing of the concrete. Indeed, in some cases the value of (M), may not even be
attained as the concrete stress-strain curve, as shown in Figure 1.10, is not ductile.
Typical real moment-curvature responses of composite cross-sections subjected to
a sagging moment are shown in Figure 12.5.

If the sagging hinge forms first, it must be ductile enough to allow sufficient
rotation for the next hinge to form, as was quantified for the interior support region
in Example 12.1, although this was a hogging hinge. In conventional reinforced
concrete analysis®, a singly reinforced beam is assumed to be ductile if the steel
reinforcement yields before the concrete crushes at a strain € . Based on an extensive
parametric study, Rotter and Ansourian® proposed a similar ductility requirement for
composite beams in sagging bending (that implicitly assumed full shear connection),
except that the ductility requirement was that the bottom fibres of the steel component
reach the strain hardening strain €  prior to crushing of the concrete component.
This ductility requirement was modified for rigid plastic stress blocks in Ref. 5, and
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Figure 12,5 Moment-curvature response of a composite beam in sagging bending
expressed as

x>1 (12.6)

in which the ductility parameter Y is expressed as

085f.b.€,D (127
x =
Asfy (Eu + sst)

where b_is the width of the concrete component, D is the total depth of the composite
beam thatis h_+ h, and A_is the cross-sectional area of the steel component.

The requirement of Eq. 12.6 has been found to be unconservative in situations
where severe rotation is required at the sagging plastic hinge of a composite beam.
Based on tests performed by Ansourian® on continuous beams which required
substantial rotation capacity for the moments to redistribute and ultimately form a
plastic mechanism, it has been suggested*® that the ductility requirement

x>16 (128)
be satisfied. This allows for curvatures well into the strain hardening region, and
allows the rigid plastic assumption of the curve shown in Figure 12.5 to be used.

12.3.2.3 Example 12.2 Calculation of ductility parameter

The cross-section shown in Figure 4.3(a) is assumed to have a strain hardening
strain € = llsy = (11 x 250)/(200 x 10*) = 0.01375 and the ultimate strain g, in
the concrete is taken as® 0.0033. The area of the steel component is A_= 9200 mm?.
Hence from Eq. 12.7, 3 = (0.85 x 25 x 3500 x 0.0033 x (130 + 380))/(9200
%250 % (0.0033 + 0.01375)) = 3.2 > 1.6, and this cross-section may thus undergo large
rotations at the plastic hinge in order for other hinges to develop and lead to
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a collapse mechanism.
12.3.3  Plastic analysis of continuous composite beams
12.3.3.1 General

The advantages of plastic analysis in bare steel continuous beams were made
obvious in Section 12.2. These advantages are even greater for continuous composite
beams, and follow the same arguments that were presented in Section 12.2. In
the latter section, an elastic analysis was used to calculate the first-hinge collapse load,
but it was demonstrated in Chapter 3 that such an elastic analysis is difficult for a
continuous composite beam. Since we seek to calculate the collapse load, a first-hinge
analysis is unnecessary as it does not produce a mechanism condition
in the beam. Hence only the final collapse mechanism need be chosen, and with the
values of (Mp)sag and (Mp)hﬂg which are easily calculated for a cross-section, determining
the collapse load is usually straightforward. It is worth noting again that the basis of the
method of plastic analysis is the rigid plastic analyses of a beam with full shear connection
discussed in Chapter 4, which of course depends on the ductility of the cross-sections.
Since the collapse mechanism is selected at the outset using the sagging and hogging
plastic moments, it is often not obvious whether the sagging hinge will form first unless
an elastic analysis is undertaken. Of course, the advantage of plastic analysis is that an
elastic analysis is not needed, so to safeguard against loss of ductility of the sagging
hinge should this form first and require severe rotation capacity to achieve a collapse
mechanism, the cross-section should satisfy Eq. 12.8.

12.3.3.2 Example 12.3 Analysis of a two-span continuous composite beam
The continuous composite beam whose cross-section is shown in Figure 4.3(a) and
which has the same 6 m spans with central concentrated loads that was considered in
Example 12.1 will now be analysed plastically. When the bearn has full shear connection,
it was shown in Section 4.2.2.2(a) in Example 4.1 that (Mp)sag =702 kNm and in Example
12.2 that this section satisfies the sagging ductility criterion of Eq. 12.8.

Let us suppose in the hogging region (whose extent can be determined at failure
from the bending moment diagram) that the concrete component has 0.6%
reinforcement of yield strength f_= 400 N/mm? positioned 50 mm from the top, so
that P =0.006 x 130 % 3500 x400 N=1092kN. Noting A =9200 mn’, the rigid plastic
strength of the steel component is 9200 x 250 =2300 kN> P, so the neutral axis must
lie in the steel component. It can be shown easily using the rigid plastic analysis
techniques described in Chapter 4 and illustrated in Figure 12.6 that the plastic
neutral axis lies in the top flange (so all the concrete has cracked and does not
contribute to the strength) at a distance n = 145.1 mm from the top of the composite
beam and that the plastic moment is (M ) =515kNm.

From the bending moment diagram in Flgure 127, W - 1/4= (M Db /2 + (Mp)sag, SO

collapse =4 x (515/2 + 702)/6 = 640 kN. It is worth noting that the collapse
load of the steel beam acting by itself was shown in Example 12.1 to be 334.5 kN. Hence
the composite action has increased the strength by a factor of 640/334.5 thatis by 91%.
It is also worth noting that the length of the hogging region in the beam is given by A-
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Figure 12,6 Rigid plastic analysis of composite beam in hogging region

B in Figure 12.7 as 3 x 515/(515 + 720) = 1.25 m and that the strength of the shear
connection required in this shear span A-B is 1092 kN as shown in Figure 2.6(c).
Furthermore, the strength of the shear connection required in the full sagging region
span B-C in Figure 12.7 is 2 x 2300 =4600 kN as can be derived in the analysis in Figure
4.4(d). Therefore, the strength of the shear connectors required in the propped cantilever
of span A-Cis 4600+ 1092 + 5692 kN.

Finally, the section classification must be checked. For the compression
flange outstands, b, = (160 - 10)/2="75 and (b,/t,)\f(fy/250) =(75/18)x1.0=4.2 <8 (Eq.
2.14) and so the flange is plastic. In the web from Figure 2.8 and 12.6,y =510~ 18-145.1
=346.9 and so o, =346.9/(344/2) = 2.0 (Eq. 2.18). Hence using Eq. 2. 19 82/(0.4+0.60,) =
82/(0.4+0.6x2. 0) 51.3>d ./t )\/(f 250)=(344/10) x 1.0=234 and the web is also plastlc
The hogging region hinge is therefore free to form and rotate. Note that the lateral-
distortional buckling capacity (Chapter 13) has not been checked.
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Figure 12.7 Collapse bending moment diagram for Example 12.3
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13 Lateral-distortional buckling

13.1 Introduction

The concept of lateral-distortional buckling was introduced in Section 1.6.2. As has
been noted earlier, buckling arises when portions of the steel component are subjected
to compression. Lateral-distortional buckling is therefore associated with negative
bending regions in composite beams, as would occur over an internal support in a
continuous beam or in the region of a rigid beam to column connection. In steel structures,
it is necessary to design against lateral-torsional buckling', and preventing this mode of
failure occupies significant portions of national structural steel standards. There have
been literally thousands of studies made of lateral-torsional buckling in steel beams,
and it is widely accepted that the phenomenon can be predicted quite accurately. Although
related to lateral-torsional buckling, the lateral-distortional buckling that occurs in
composite beams is much more difficult to predict, and recourse needs to be made to
advanced computer software to model it. In this chapter we will consider the concept of
lateral-distortional buckling of composite beams, and consider two design approaches
with the aid of examples to illustrate prediction of the buckling strength.
Lateral-distortional and lateral-torsional buckling take place when a steel
section is loaded in its stronger plane, and a point is reached when the steel moves toa
more favourable equilibrium position by deflecting sideways (or laterally) and twisting.
The region of the beam over which this buckling takes place is usually quite long,
Lateral-torsional buckling in hogging bending is shown in Figure 13.1(a), and the
underlying assumption is that the cross-section remains rigid and does not distort during
buckling. On the other hand, lateral-distortional buckling, as shown in Fig 1.19(a) and
again in Figure 13.1(b) must be accompanied by distortion of the cross-section, since in
negative bending the concrete component (although cracked) restrains the top tensile
region of the steel component, and the bottom flange may only displace laterally and
twist when the web element distorts in the plane of its cross-section. This distortional
buckling is difficult to analyse, and the reader is directed to Ref. 2 for a review of

rigid cross distorted
/— section /‘ web

(a) Lateral-torsional (b) Lateral-distortional

Figure 13.1 Lateral-torsional and lateral-distortional buckling modes
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its experimental and theoretical research, and the various approaches that have
been adopted.

13.2 Steel component behaviour
13.2.1 General

In familiar limit states terminology, lateral-distortional buckling represents an ultimate
limit state, and when it occurs in a composite beam it is accompanied by catastrophic
failure or so-called strain-weakening. In elastic design as in Chapter 3, it is therefore
important to ascertain that the maximum negative moment in a beam is less than the
strength of the composite beam as determined by lateral-distortional buckling.
Generally speaking, the lateral-distortional buckling strength is not directly related
to the classification of the cross-section based on local buckling that was considered
in Section 2.3.3, except that it is used in its prediction of the strength of the cross-
section, which is needed to determine the distortional buckling strength.

This book has considered rigid plastic analyses of cross-sections, which were
introduced initially in Chapter 4. It was shown that a necessary requirement for
rigid plastic analysis was that every cross-section is able to achieve the full plastic
moment. Hence the steel component must not buckle locally, and this is controlled
by proportioning the steel component to be at least compact, as in Section 2.3.3.
This analysis philosophy must also be fuifilled by ensuring that premature lateral-
distortional buckling does not occur in negative moment regions, so that the beam
must be analysed for lateral-distortional buckling, and the buckling strength must
not be less than the full plastic moment if a rigid plastic analysis is to be valid. In
Chapter 12 we saw that rigid plastic analysis of continuous composite beams relies
on moment redistribution, and it was noted that in such an analysis that lateral-
distortional buckling must be prevented if this moment redistribution is to be achieved.

13.2.2 Design by buckling analysis
Design philosophy and complexity
Designing against lateral-distortional instability is usually based on procedures
for steel structures, in that an elastic analysis is carried out to determine the actions in
the steel portion or steel component of a cross-section subjected to negative bending.
One of the complications of this analysis is that the steel component is subjected to
combined negative moments and compression; the latter being in equilibrium with the
tensile force in the reinforcement. The buckling strength of the steel component is then
calculated, and this is used in determining the strength of the composite cross-section.
The composite section shown in Figure 13.2(a) is subjected to a negative or hogging
moment. In order to demonstrate the complexity of this buckling problem, let us consider
the results of a rigid plastic analysis, which is described in detail in Section 12.3.3, and
which are depicted in Figures. 13.2(b) and (c). It can be seen that the resultant compressive
force in the steel component oo is equal to the tensile strength of the reinforcing bars
F,=P = A[fy[. The force F . is resisted by the compressive stresses adjacent to the

ten com)

centroid of the steel component as shown in (c) which leaves the stresses in the rest
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of the steel component to resist the moment in the steel component M__, as shown.
It can therefore be seen in (b) that the steel component is subjected to a moment and
axial force both of which vary along the length of the beam and both of which vary
according to the variation of the degree of shear connection 1 along the length of the
beam, as described in Chapter 4. These variations make the buckling problem in
composite beams much more complicated than in a steel beam.

13.2.2.2 Elastic buckling parameters M_, and N_,

The first step in a thorough elastic analysis of lateral distortional buckling is to
determine the moment M__, in Figure 13.2(b) which will cause buckling when the
compressive force F__ is not present. This moment capacity is referred to as the
elastic lateral-distortional buckling moment in the steel section M_,, and its derivation
is computationally difficult. Fortunately, there are design methods that can be used
either directly for this calculation, or which make use of the lateral-distortional
buckling moment M_, implicitly, and these will be treated in Section 13.3.

As was noted in Section 13.2.2.1 and in Figure 13.2(b), the steel component is
also subjected to an axial compressive force F__that equilibrates the tension in the
reinforcement. The force mep to cause buckling in the absence of M__ in (b) also
needs to be determined in an accurate distortional buckling analysis. This force is
referred to as the elastic lateral-distortional buckling compressive load N ;. The
simplified design method of Section 13.3.2 allows this load to be calculated, but
rigorous incorporation of the effects of the axial force is often omitted as the stresses
induced in the bottom compressive flange due to bending are usually much larger
than those induced by the axial compression?, as will be shown subsequently,

13.2.2.3 Strengths in bending and compression M_ and N,

In the method of ‘design by buckling analysis’', the elastic buckling moment M,
and the elastic buckling load N _, for the steel component are converted into strengths
using relevant strength curves in national standards. Typical illustrations of these

F
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Figure 13.2 Composite beam subjected to a negative or hogging moment
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Figure 13.3 Buckling curves in bending and compression

curves are shown in Figures. 13.3(a) and (b), where the non-dimensional slenderness
is written as \/(MS/M o) for bending and v (N/N_,) for compression, where M, is the
cross-section strength of the steel component in bending (which is its plastic moment
M, if the cross-section is compact) and N_ is the cross-section strength of the steel
component in compression (which is its squash load qu if the cross-section is free
from local buckling effects). It is worth noting that these curves resemble the complex
interaction between buckling and non-linear material behaviour in steel columns
as shown in Figure 8.1. Hence as in the failure envelope for the steel columns in
Figure 8.1, these curves relate the pure axial strength and pure flexural strength
with both the elastic and rigid plastic strengths.

Once these slendernesses have been determined using the elastic distortional
buckling moment M , and load N_,, the bending strength of the steel in the absence
of compression M_, and the compressive strength of the steel in the absence of bending
N_, may be determined from national standards. For example, we saw in Section
8.2.1.3 that the strength of the steel component in compression in accordance with
the Eurocode was

Ngg = XNy 3.1y

for an appropriate column curve in which ) is a function of N_,, while in the
Australian AS4100 steel standard the bending strength of the steel component is
written as

2
M M 13.2
M =06 (Ms) +3 - ( S)Ms <M, (132)

od M od

It must be noted at this stage that Eqs. 13.1 and 13.2 were developed for lateral-
torsional beam buckling and flexural column buckling. Their use for lateral-
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distortional buckling is questionable, but they are considered to be conservative and
their use will therefore be recommended.

13.2.2.4 Interaction between axial load and flexure M,

Finally, the bending strength must be reduced for the effects of axial compression if an
‘accurate’ analysis is being performed by treating the steel component as a beam-
column. Because we are determining the buckling moment of a steel cross-section, the
compression in the steel component is not known at the outset. Although an elastic
analysis is being undertaken for the buckling analysis, it is conservative to use the
yield strength of the reinforcement fyrAr in the concrete component as the compression
in the steel component. Hence and in accordance with national steel standards, the
steel member strength M, can be determined by reducing M, according to

Arfyr
My, = Msd[l_ N (13.3)
sd

It is worth reiterating firstly that the calculation of the lateral-distortional buckling
moment and load are based on very approximate design models in lieu of complex
finite element modelling, and secondly that the member strengths that are based on
combined elastic buckling and yielding are derived from lateral buckling results, and
their applicability to lateral-distortional member strengths is questionable. Because of
this, design may often be simplified by ignoring the effects of compression. In Sect.
13.3.2, the U-Frame Method will be used to show in principle how compression may
be incorporated into the buckling analysis, while in the Alternative Method in Sect.
13.3.3 it will be ignored.

13.3 Design models
13.3.1 General

There are a number of ways of treating lateral-distortional buckling in composite
beams, and advanced finite element software that can in principle handle the
phenomenon is now becoming available. However, this software is only a research
tool, and it is easier and more appropriate to use design equations. The so-called
Inverted U-frame Method and an alternative method based on finite element studies
will be considered in this section.

13.3.2  Inverted u-frame approach

13.3.2.1 Elastic buckling

The Inverted U-frame Approach is based on the design philosophy for half-through
girder bridges. Consider the inverted U-frame shown in Figure 13.4. The compression
flange is modelled as a uniformly compressed strut restrained elastically against
flexural buckling by the stiffness of the web. The web is treated as a cantilever, and
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its stiffness may be determined by applying the fictitious unit horizontal forces shown.
In addition, the unit horizontal forces may cause bending of the composite beam
between the webs of the beams, so a rotational stiffness at the top or tension flange/
web junction of 2(EI)_ /L, , in which (ED)_, is the flexural rigidity of the slab and L,
is the length of the slab between the webs of the parallel beams as shown, may be

included. However, this effect is fairly small and may be ignored.

Figure 13.5 shows the strut buckling model, in which the flange strut is subjected
to an elastic restraint of stiffness o, per unit length that produces a distributed restoring
force of a,u, per unit length, where u, is the buckling deformation which is assumed
to be a sine curve. It can be shown readily that the elastic critical value of the force
in the strut to cause buckling N_ is

7t2Es1F +oc,Lz

cr L2 71'2

(13.4)

where I is the second moment of area of the flange about the web. The relationship
between N_and L in Eq. 13.4 is of a garland shape, and the minimum value of N_
may be determined by setting dN_/dL to zero. Hence,
= (13.5)
(Ner) . = 2JEsIpoy

The conversion of (N_) . to determine M, for the steel component and thento a
composite member strength will be illustrated in the following example.

13.3.2.2 Example 13.1 Beam strength using the Inverted U-Frame
Approach

@F =Af

comp T ryr o )
Consider the beam analysed in Example 3.3 and shown in Figure 3.2 when subjected

to negative bending. The slab in this example had 0.6% reinforcement (A = 1170

(171 § O

,

compression web junction

tension-flange d\\'

flange

Figure 13.4 Inverted U-frame
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buckling deformation

(I wy)/unit length

plan of bottom flange
Figure 13.5 Strut model

mmZ). We will assume that the web acting as a cantilever has a length of 300 + 12/
2 = 306 mm. Applying a unit force of 1 N/mm length to the centroid of the bottom
flange produces a deformation in the web acting as a cantilever (whose second
moment of area is 77/12 = 28.58 mm*/mm length) of 306°/(3x200x10°<28.58) =
1.67 mm. The stiffness o, is the force (1 N/mm) divided by the deformation (1.67
mm), so that o, = 0.598 N/mm?. The second moment of area of the bottom flange is
I, = 170°x12/12 = 4.913x10° mm*, and so substituting into Eq. 13.5 produces (N_) ..
= 2V(200x10°x4.913x106x0.598) N = 1533 kN.

The elastic critical load of (N_) . = 1533 kN in the compression flange
must now be converted to the buckling strength of the steel component M, by
firstly calculating the elastic distortional buckling moment M_,. Firstly, this load produces
a stress in the compression flange of (N ) /A = (1533x10°)/(170x12) = 752 N/mm?,
and using from Figure 13.6 the value of I = 115.1x105 mm* produces (from simple
linear elastic beam theory M = cl/y) an elastic buckling moment of M_, =
(752x115.1x10%)/(15046) Nmm = 554.8 kNm. Secondly, we require the cross-section
strength M_ for the steel component. It can be shown (although the position of the
neutral axis for the composite section is needed to determine the web parameter o in
Eq. 2.19) that the steel component is compact, and has a plastic section modulus about
its major axis, using the procedure illustrated in Figure 4.5, of S_= 794x10° mm’. For
the yield stress f =300 N/mm? (as assumed in Example 3.4),M = fS,= 300x794x10°
Nmm = 238.2 kNm and substituting into Eq. 13.2 produces M, = 0.6 x (2382
554.8)* + 3) — (238.2/554.8)) x 238.2 = 193.7 kNm.

Finally, we will assume that the reinforcement (positioned 35 mm below the top
surface as in Example 3.3 and Figure 13.6) is at yield at f_=400 N/mm? which results
inatensile forceof F = Af =1170x400N=468kN. The stress resultants across the
composite section have the distribution shown in Figure 13.6(b) which is the same as
that shown in Figure 1.16(d) except that the signs are reversed because we are dealing
with a negative region instead of the positive region depicted in Figure 1.16. Hence
taking moments about the centroid of the steel component in Figure 13.6(b) produces
the moment capacity of the composite section when governed by distortional buckling
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Figure 13.6 Composite beam subjected to lateral-distortional buckling

asM_ = 193.7 + (130 - 35+12+300/2) x 468/1000 = 314.0 kNm. Note that this
buckling moment is greater than the first yield moment of 266.2 kNm determined in
Example 3.4 for the composite beam in hogging bending, so that first yield is attainable
prior to lateral-distortional buckling. We have also assumed full shear connection.

(b) F___from linear elastic analysis
comp

Using the more accurate linear elastic method of Example 3.3 and 3.4, at buckling
of the steel component the stress in the bottom fibre is 6, = M_y/I_= 193.7 x 10¢
x (150 + 12)/(115.1 x 10% = 272.6 N/mm? for which the curvature (from Example
3.4)is k=0, /En, =272.6/(200 x 10°x 203) = 6.71 x 10 mm' and which results in
a moment in the composite beam of M, = EI_x =200 x 10°x 180.1 x 10°x 6.71
x 10 Nmm = 241.7 kNm. The 30% disparity between the moment of 241.7 kNm
that was based on the linear elastic analysis of Examples 3.3 and 3.4 and the moment
of 314.0 kNm that was determined assuming that the reinforcement was at yield
illustrates the unconservatism of the latter assumption, although the calculation is
easier than the linear elastic method. It is worth noting that at the curvature of
6.71 x 10 mm at which the beam buckles in a lateral-distortional mode, the stress
in the reinforcement is 6.71 x 105x (454 — 35 — 203) x 200 x 10° = 291.2 N/mm?
which is significantly less than the yield value of 400 N/mm? assumed.

It is also worth noting from the linear elastic analysis and the lateral-distortional
buckling analysis of the steel component, that the stress in the bottom flange at
buckling is 272.6 N/mm?. The tensile stress in the reinforcement at buckling (initially
assumed to be zero in the buckling analysis) also produces a compressive stress in
the bottom flange of 291.2 XA /A =291.2x 1170/6180 = 55.1 N/mm’. This additionai
axial stress is 20% of the bending stress at buckling based on pure bending of the
steel component, and illustrates that an accurate analysis must treat the steel
component as a beam-column. Although recourse could be made to Eq. 13.3 to
allow for the additional compression in the steel component that equilibrates with
the tension in the reinforcement, the highly conservative assumptions of the Inverted
U-Frame Approach probably do not justify the additional effort.
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13.3.3 Empirical approach

13.3.3.1 Inelastic finite element solutions

The use of Eq. 13.2 showed that the governing variable for determining the buckling
strength of the steel component in hogging bending was A, = \/(Ms/M ) and we
have demonstrated already the difficulty in calculating M _, accurately. Of course,
the section strength M_ of the steel component is readily obtainable. A sophisticated
finite element analysis that incorporated geometric and material nonlinearities was
undertaken to determine the strength of the steel component of a composite beam
when governed by lateral-distortional buckling by Weston, Nethercot and Crisfield*.
Their study was restrictive, owing to the immense computational prowess that was
needed to obtain numerical solutions. Bradford® also analysed the inelastic lateral-
distortional buckling of steel beams restrained by a slab, using a computer program
that required less computing effort than the study of Weston et al. Bradford’s solutions
compared favourably with those of Weston ef al. when their modified slenderness
A, was adjusted slightly to

Ay =0018 — - 040 (13.6)

(e

Ty w

and the strength was predicted by modifying Eq. 13.2 to

My = o.s{w/)g +3-23 }Ms < M, (13.7)

in which L, is the length of the beam between supports, r, is the minor axis radius of
gyration of the compression flange, and d  and t_ are the depth and thickness of the
web respectively. The solutions were obtained with the yield stress £ in the range
250 N/mm? to 400 N/mm? for which the prediction of the modified slenderness in
Eq. 13.6 was found to be virtually independent of M_and hence fy. The use of Egs.
13.6 and 13.7 should therefore be limited to steel elements whose yield stresses are
in the range indicated, and implicit in the statement of Eq. 13.6 is the value of the
elastic distortional buckling of the steel component M.

13.3.3.2 Example 13.2 Beam strength using the Empirical Approach
The beam analysed in Example 13.1 will now be analysed using Eqs. 13.6 and 13.7.
It was shown in the Inverted U-Frame method that the buckling moment was
independent of the beam length, so here we will assume L, =7 m. Thus I, =4.913x10°
mm*, A, = 170x12 = 2040 mm?, of,= V. 913x10°/2040) 49.1 mm, and A,=0.018
X (7000/49 1)'2(300/7)"” - 0.40 = 0.352. Hence from Eq. 13.7 and using M 238.2
kNm (from Example 13.1), M_, = 0.8 x ((V(0.352* + 3) — 0.352%) x 238.2 = :307.3 >
M, and soM_, =238.2kNm and the steel component and hence the composite beam
is unaffected by lateral-distortional buckling.
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Finally, we may make the simple assumption, albeit unconservative, that the
reinforcement has reached yield at 468 kN, so that Mcmp =2382+(130-35+12
+ 300/2) x 468/1000 = 358.5 kNm. The buckling capacity of the steel component
using the Empirical Method is thus 238.2/193.7 or 23% greater than that of the
Inverted U-Frame Method, and the corresponding composite beam bending strength
is 358.5/314.0 or 14% greater. The comparisons are somewhat arbitrary, however,
as the Empirical Approach depends on the beam length and the Inverted U-Frame
Approach does not. It is worth noting that in this example the latter model is more
conservative than the former, and this is generally the case for practical beams.

13.4 Recommendations

The discussion and examples presented in this chapter have illustrated the
substantial difficulties that arise when modelling lateral-distortional buckling in composite
beams. Nevertheless, a necessary requirement is that this mode of buckling must be
prevented if a rigid plastic analysis of continuous composite beams is to be carried out.
Although there are a number of approaches to the problem, it is recommended

that the Inverted U-Frame Approach illustrated in Example 13.1 be used to determine
the bending capacity of the steel component through the use of Eq. 13.2 by firstly
converting N_ in Eq. 13.4 to the elastic distortional moment M . The neutral axis
can be determined by the elastic methods of Chapter 3 and the curvature at buckling
then calculated from the strain in the bottom compressive flange of the steel section
at buckling. The capacity of the composite beam is then simply the product of its
elastically-determined flexural rigidity and the curvature, which is conservative.

The recommended method described above does not allow for the destabilizing
compressive force in the steel member that equilibrates with the tension in the
reinforcement. In theory this effect, which lowers the buckling moment, can be
included by treating the steel component as a beam-column with respect to buckling.
However, this is not considered necessary as any lack of conservatism produced by
ignoring the compressive force is more than compensated for by the assumption in
the U-Frame Model that the flange is a uniformly compressed strut, when in fact the
compression in the flange-strut idealization varies in accordance with the bending
moment distribution along the composite beam.
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14 General fatigue analysis
procedures

14.1 Introduction
Composite beams in buildings and particularly in bridges are often required to resist
continuous repetitions of applied loads such as those imposed by the traversal of
vehicles or cranes. Although these fatigue loads are small in comparison with the
ultimate strength of the structure, the fensile component of the stresses induced by
these fatigue loads can cause cracks to initiate and propagate that can eventually lead
to failure of the structure at serviceability loads. It is, therefore, necessary for the engineer
to ensure that the remaining strength or residual strength of the structure during the
whole design life of the structure is greater than the maximum possible design ovetload.
In this chapter, generic fatigue analysis procedures and behaviours are described
that can be applied to any type of component. It is assumed throughout that the
composite beam behaves in a full interaction linear elastic fashion. General forms of
the fatigue material properties are first described, followed by methods for quantifying
the numerous applications of load and the cyclic stress resultants that they induce,
and finally a generic form of the fundamental fatigue equation is developed. In
Chapter 15, the generic fatigue equation is applied specifically to the assessment
and design of stud shear connectors in composite beams.

14.2 General fatigue properties
14.2.1 General

There are two fundamental properties that are required for fatigue analysis which are
the endurance and the residual strength of the structural component. The endurance
is a measure of the rate of fatigue damage, such as crack initiation or crack propagation,
whereas, the residual strength is a measure of the effect of the fatigue damage on the
remaining static strength of the structure.

14.2.2 Fatigue endurances

The endurance of a structural component E, that is the number of cycles to failure,
depends on the range R of the cyclic load that induces tensile stresses in the
component. The dependence of the endurance on the range of the cyclic load is
usually determined experimentally and the relationship derived from a linear regression
of the logarithm of the variables as shown in Figure 14.1. To allow for the scatter of
the test results, design is usually based on the characteristic endurance at 2 standard
deviations, that is at a 2.3% probability of failure, which is given by the following
equation

209
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Figure 14.1 Fatigue endurance

Ech = 10H—2DR"’" (14.1)
where m is the slope of the regression line in Figure 14.1, H the intercept with the
y-axis and D is the magnitude of one standard deviation.

14.2.2.1 Example 14.1 General fatigue endurance equation

(a) Material component parameter m

It can be seen in Eq. 14.1 that the endurance is inversely proportional to R™. The
exponent m is a material property that varies from 3 for welded steel components to
about 20 for concrete, with stud shear connectors having a value of about 5. The
exponent m defines the susceptibility of the component to changes in the cyclic range
R. For example, halving the range of the cyclic load that is applied to a welded steel
component will increase the endurance by a factor of 2° = 8. Whereas, halving the cyclic
range that is applied to a concrete component will increase the endurance by a factor of
2% = 1,000,000. Hence, a concrete component is much more sensitive to changes in the
applied range than welded steel components as it has a larger value of the exponent m.

(b) Component detail parameter H

It can also be seen in Eq. 14.1 that the mean endurance is directly proportional to 10"
where the intercept-constant H in Figure 14.1 defines the susceptibility of the structural
component detail to fatigue failure. For example for a steel flange plate with a smoothly
varying cross-sectional shape, 10" = 2 10" when the stress is measured in N/mm?.
However, when a small hole is inserted into this flange, then the stress concentrations
caused by the hole reduce the constant to 101 = 4 x 10'2, that is the endurance has
reduced by a factor of (2 x 10Y)/(4 x 10?) = 500. Furthermore, welding a stud shear
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connector to the flange will not only induce stress concentrations but also cause
minute cracks and residual stresses that reduce the constant to 10" = 2 x 102 and,
hence, reduce the fatigue life of the original flange by a factor of about 1000.

(c) Standard deviation D

It is also worth noting that the scatter associated with predicting fatigue endurances
is very large. For example for steel components, the characteristic endurance as a
proportion of the mean endurance that is 10%2°/10" = 0.4. This means that a component
that is designed for a mean fatigue life of 100 years has a 4.6% probability of failing
at less than 40 years or more than 250 years.

14.2.3 Residual strength

14.2.3.1 Accumulated damage laws

Two forms of residual strength envelopes are shown in Figure 14.2, where P, is the static
strength of a component prior to cyclic loading, P_is the remaining or residual strength
after cyclic loading, N, is the number of cycles of load of range R, that have been
applied, and E, is the endurance of the component at the range R, . The residual strength
variation marked ‘B’ will be referred to as the ‘crack initiation approach’; this variation
assumes that there is no reduction in strength until N, > E,_and is applicable to steel
components, particularly when a large number of cyclic loads are required to initiate a
crack. In contrast, the residual strength variation marked ‘A’ assumes a linear reduction
in the strength as soon as cyclic loads are applied and will be referred to as the ‘crack
propagation approach’. This approach is applicable to stud shear connectors where
tests have shown that minute cracks in the weld zones are propagated immediately
cyclic loads are applied and cause an immediate reduction in strength.

(a) Crack propagation approach

Let us first consider the crack propagation linear residual strength envelope ‘A’ in
Figure 14.2. When the number of applied cycles of load N, = 0, the residual strength
P_is equal to the static strength P, that is, the strength prior to cyclic loading.
Furthermore when N, = E,, then the residual strength P, = 0. The residual strength
envelope is, therefore, given by N,/E, =1 —P /P_. It can be shown' that because the
residual strength envelope is linear, it can be applied to combinations of ranges of
cyclic loads and, furthermore, that the sequence in which the cyclic loads are applied
does not affect the reduction in strength. In which case, the linear residual strength
failure envelope is given by the following equation with an inequality.

k=
N P, (142)

k=1Ek Ps

where there are a total of z magnitudes of the ranges of applied loads.
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(b) Crack initiation approach
The crack initiation approach failure envelope ‘B’ in Figure 14.2 is a special case' of
Eq. 14.2 because when

k=z
ﬁ’i <1 (14.3)
k=1Ek
thenP_=P_
(c) Fatigue damage

Equations 14.2 and 14.3 are also referred to as accumulated damage laws. The parameter
N,/E, on the left hand side of these equations can be considered to be the fatigue
damage that the cyclic loads have induced. Whereas, the right hand side of these
equations is the fatigue damage that can be sustained. Once the left hand side exceeds
the right hand side then the structure fails as the residual strength can no longer resist
the applied load. It is also worth noting that the fatigue damage term N, /E, in Eq. 14.2 is
proportional to N,R™, as E =< R™ in Eq. 14.1. Hence, the fatigue damage is directly
proportional to both the number of cycles applied and the magnitude of the range of the
cyclic load.

14.2.3.2 Fatigue analysis procedures
The accumulated damage laws of Egs. 14.2 and 14.3 are fundamentally different, and
this difference affects their application in the design or assessment of composite
bridge beams. These fundamental analytical differences are demonstrated by
considering the fatigue design of the shear connection in a simply supported
composite beam in Figure 14.3(a) that is subjected to the longitudinal traversal of a
point load.

The longitudinal traversal of a point Joad across a simply supported composite
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Figure 14.3 Fatigue analysis procedures

bridge beam produces the shear flow envelope shown in Figure 14.3(a). At a design
point such as at ‘A, the shear connectors are subjected to uni-directional shear flow
forces of (g), and (q), and, hence, a total cyclic range of q = (q), + (q),. For this
example of a point load moving across a simply supported beam, the total range of the
shear flow force q, is constant throughout the span of the beam and equal to the
maximum uni-directional shear flow force at the supports q . Furthermore, the uni-
directional shear flow force at mid-span is equal to half of the uni-directional shear flow
force at the supports, that is q /2. As we are dealing with stud shear connections, it will
be assumed that the endurance is a function of the total range q, as will be shown in
Section 15.2.

(a) Overload

Irrespective of whether the crack initiation or crack propagation procedure is being
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applied, the engineer has to ensure that the maximum static design load or maximum
overload can be resisted. Therefore, shear connectors have to be distributed along
the beam in proportion to the variation along the beam of the maximum uni-directional
shear flow force. This is shown in Figure 14.3(b) as the shear flow resistance Q_ that
is required to resist the maximum overload. The static strength Q_ is proportional to
q, at the supports and proportional to q /2 at mid-span.

(b) Crack initiation procedure

The crack initiation approach, as given by the accumulated damage law of Eq. 14.3
and illustrated in Figure 14.2 as line B, assumes that there is no reduction in strength
until the fatigue endurance of the component is exceeded when N, > E, . It is, therefore,
necessary to ensure that the fatigue endurance is never exceeded, thatis N, <E, at
any position of the beam. It will be shown in Section 14.6 how Eqs. 14.1 and 14.3 can
be developed to determine the shear flow strengths of the shear connectors Q, in
order to ensure that the fatigue cyclic loads do not cause failure of the shear
connectors during the design life. As the total range q, causes fatigue damage in
shear connectors and as this is constant over the length of the beam as shown in
Figure 14.3(a), then the shear flow strength required to ensure fatigue failure does
not occur is also constant along the length of the beam as shown by Q; in Figure
14.3(b).

The engineer still has to ensure that the maximum static load can be resisted, so
that the shear flow strength of the shear connectors must be equal to or exceed Q_ in
Figure 14.3(b). Therefore, the upper bound of Q_and Q, is used in the crack initiation
design procedure. It can be seen in Figure 14.3(b) that for this analysis, the static
strength requirement governs the design near the supports, whereas, the fatigue
requirement governs the design near mid-span.

(c) Crack propagation procedure

The crack propagation procedure that is given by the accumulated damage law of
Eq. 14.2 and illustrated by line A in Figure 14.2, assumes that the residual strength
is dependent on the fatigue loads. In this approach, the static strength requirement
Q, in Figure 14.3(b) is increased to Q  to allow for the anticipated reduction in
strength due to the fatigue damage during the design life of the structure. Hence,
the shear flow strength Q_, is the strength required when the structure is first built
and Q_ is the anticipated strength at the end of the design life that is sufficient to
resist the maximum overload. The difference Q_~ Q, is the anticipated reduction in
strength due to fatigue damage during the design life.

In summary, the crack initiation approach requires two completely separate and
independent analyses for strength and endurance that assume that fatigue loads do not
affect the static strength until the fatigue endurance has been reached. In contrast, the
crack propagation approach requires one analysis in which the strength and endurance
are integrally related.

14.3 Applied loads on bridges
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14.3.1 General

A composite bridge beam must be able to resist the maximum overload or ultimate
strength design load that may occur infrequently, such as once in a design life time or
not at all. The composite bridge beam must also be able to sustain the fatigue damage
induced by all of the working or serviceability vehicular loads that can be applied to the
composite beam as frequently as several times a minute. Furthermore, it is necessary to
ensure that the residual strength of the composite beam, after any reduction in strength
due to fatigue damage, can resist the maximum overload during the whole design life of
the composite beam.

There is an enormous variety of shapes of vehicles, an enormous variety of weights of
these vehicles, and an enormous variety of combinations of these weights and shapes. It
would be impossible to determine the stress resuitants from each individual combination.
Therefore, the problem is simplified by designing for a specific number of vehicle traversals,
using standard vehicular shapes (that is standard fatigue vehicles), and standard
combinations of weights (that is load spectrums). The problem is further simplified by
assuming the structure behaves in a linear elastic fashion which will allow the principle of
superposition to be used; this is a reasonable assumption as fatigue damage is induced by
working or serviceability loads. A further assumption that is often used for composite
bridge beams is to assume that there is full interaction between the concrete and steel
components; this assumption simplifies the determination of the stress resultants but
tends to overestimate the shear flows and underestimate the flexural stresses.

14.3.2 Frequency of fatigue vehicles

A bridge may be subjected to vehicles that range in weight from cars of a few kN to
commercial vehicles weighing 4000 kN. It was shown in Section 14.2.3.1 that the fatigue
damage is proportional to N R™. As we are assumning linear elastic behaviour, the range
of the cyclic load R is directly proportional to the weight of the fatigue vehicle W_,.
Therefore, the fatigue damage is proportional to N (W, )™ where N, is the number of
traversals of a fatigue vehicle of weight W, and the exponent m can range from 3 to 6.
Even though cars occur much more frequently than commercial vehicles, the fatigue
damage that they induce is much less than that induced by commercial vehicles and,
therefore, cars are generally ignored in a fatigue analysis which is usually restricted to
the traversal of commercial vehicles.

14.3.2.1 Example 14.2 Load traversals

A bridge may be subjected to 2.5 million commercial vehicle traversals per
year from one lane, 2 million traversals per year in an adjacent lane, and may
be required to last 120 years. Hence, a component in a beam that is loaded from
both lanes will be subjected to a total number of fatigue vehicle traversals of
T =(2.5%120) + (2x120) = 540 million. Furthermore, as each vehicle traversal can induce
serval ranges of cyclic load, as will be shown in Section 14.4, the component may have to
be designed to resist over a billion cycles of stress. It can now be seen that structural
components in bridges can be subjected to an enormous number of cyclic stresses, which
is the reason fatigue failure is the most common form of faiture in bridges.
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Figure 14.4 Standard fatigue vehicle

14.3.3 Standard fatigue vehicles

A typical example? of the axle distribution of a standard fatigue vehicle that is used
to represent all the fatigue vehicles that traverse the composite beam is shown in
Figure 14.4. The shape of the vehicle, that is the number of axles and their distribution,
should be chosen to induce the same fatigue damage as the fatigue vehicles of the
same weight. If necessary, several shapes of standard fatigue vehicles can be used
to represent the myriad shapes of fatigue vehicles.

A typical weight of a standard fatigue vehicle? is 20 kN per wheel, which for the
standard fatigue vehicle in Figure 14.4 gives a weight of W, = 320 kN. The actual
weight of the standard fatigue vehicle W, that is used in the fatigue analysis is not
important as variations in the weight can be allowed for in a load spectrum that is
described in the following section. The standard fatigue vehicle can be used to
traverse the bridge to determine the theoretical cyclic stress resultants as described
in Section 14.4. As the bridge is assumed to be behaving in a linear elastic fashion,
the traversal of the standard fatigue vehicle can be used to determine the fatigue
damage for all the fatigue vehicles as described in Section 14.6.

1434 Load spectrum

Each standard fatigue vehicle can be used to represent a group of fatigue vehicles of
varying weights. It is useful practice to represent the variation in the fatigue vehicle
weights W_, as a proportion of the weight of the standard fatigue vehicle W, . This is
shown as W in column 2 in Table 14.1, where there are ‘i’ weights of fatigue vehicles as
shown in column 1. The weight of a fatigue vehicle at level x is, therefore, (W) =
W W.... The probability of occurrence of each weight of vehicle ateach of the ‘i’ levels in
Table 14.1 is given as B in column 3, such that the summation of B is unity. Therefore, the
number of fatigue traversals at level x is B T, where T is the total number of load traversals
from all of the fatigue vehicles associated with the standard fatigue vehicle.

Columns 2 and 3 in Table 14.1 are often referred to as a load spectrum. The fatigue
damage has already been shown in Section 14.3.2 to be proportional to N (W_ )™
As the number of vehicle traversals at level xisN_ =B T and the weight of the vehicle
(Wg), o< W, then the fatigue damage is proportional to B W ™ which is given in
column 4 in Table 14.1.
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14.3.4.1 Example 14.3 Frequency of fatigue loads

Let us assume that: the weight of the standard fatigue vehicle is W, = 320 kN; the
load spectrum is given by columns 2 and 3 in Table 14.2, which is similar to
Table 14.1 Format of load spectrum

Level (x) Weight (W) Probability (B) Bwm
(1) (2) (3) (4)

1 Wy By B lwlm
2 W B) ByW,M
i W; B BiWim

y=18=1 L =Y BW"

that applied to a British motorway?; the design life of the bridge is 120 years;
and that the structure in which the component is located is subjected to T = 240
million applications of fatigue vehicle traversals during its design life.

From Table 14.2, the weights of the fatigue vehicles range from 6.5 x 320
=2080kN at level 1t00.2 x 320 = 64 kN at level 6. The number of load traversals at
level 1 for the vehicle of weight 2080 kN is B, T = 4800 which is just over three per
month. In contrast, the number of load traversals for the lightest fatigue vehicle of
weight 64 kN at level 6 is 144 million which is just over two per minute.

Table 14.2 Load spectrum

Level W B BW3 BwW4 swo-1 BW20

welded non-welded  stud shear concrete
components components  connectors

(1) (2) (3) 4 % (5) % (6) % (7) %

1 6.5 000002 0.006 2 0036 9 0280 25 363x109 97
2 50 0.00010 0013 5 0063 15 0367 32 10x109 3
3 20 001000 0080 29 0160 39 0343 30 O 0
4 1.0 0.13988 0.140 51 0140 34 0140 12 0 0
5 0.5  0.25000 0.031 11 0016 4 0.007 1 0 0
6 0.2  0.60000 0.005 2 0001 O 0000 0 O 0




218 General fatigue analysis procedures
W= 320kN  £=0274=L, ZX=0415=L, Z=1.14=L,

14.3.4.2 Example 14.4 Distribution of fatigue damage in a load spectrum
It was shown in Section 14.3.4 that the fatigue damage is proportional to B W ™. For the
load spectrum of columns 2 and 3 in Table 14.2, the fatigue damage at each level of the load
spectrum is shown in column 4 for the case of a welded component where m = 3. The sum
of the fatigue damage terms in column 4 is 0.274 as shown in the bottom row. The fatigue
damage terms in column 4 are also given as a proportion of the total fatigue damage of
0.274 in the adjacent column. Similar analyses have been applied to a non-welded component
in column 5 where m = 4, stud shear connectors in column 6 where m = 5.1, and to a
concrete component in column 7 where it is assumed that m = 20.

By comparing columns 4 to 7 in Table 14.2, it can be seen that as the exponent m
increases the greatest fatigue damage occurs at greater fatigue vehicle weights. For
example for the welded component in column 4 in which m = 3, 51% of the fatigue
damage occurs for vehicles of weight 1 xW . However when m =20 in column 7,97%
of the fatigue damage occurs for vehicles of weight 6.5 x W_. In other words, the
weight of vehicle that causes the maximum fatigue damage depends on ‘m’ and this
weight increases as ‘m’ increases. Another way of viewing this distribution of fatigue
damage is to consider the effect of placing a weight restriction on the bridge that
eliminates levels 1 and 2, that is the fatigue vehicles of weight 6.5W
and 5W,, are prevented from crossing the bridge. For the welded component in which
m = 3, placing the weight restriction will only reduce the fatigue damage by 2 +5=7%
which can be considered to be insignificant. However for stud shear connectors in
which m = 5.1, the same weight restriction will reduce the fatigue damage by 25 + 32 =
57% which would significantly increase the fatigue life of the structure.

14.4 Cyclic stress resultants
14.4.1 General

So far in this chapter, it has been shown how the numerous fatigue vehicles that traverse
the bridge can be represented by a standard fatigue vehicle and a load spectrum. The
variation of the stress resultants that the standard fatigue vehicle induces on a
component, as it traverses the bridge, are determined in this section using influence
lines. These influence lines are then converted to equivalent ranges of cyclic forces that
are used to form a force spectrum, that is analogous to the load spectrum already
described, and which is required for the fatigue analysis procedure developed in Section
146

14.4.2 Influence line diagrams

To illustrate a simple influence line analysis, let us move the standard fatigue vehicle
in Figure 14.5(a) that has an axle length of 1./4 and axle weight of V across the simply
supported beam in (b) of span L. We will determine how the vertical shear force
varies at a design point which is located at the quarter-span at section D in (b). The
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variation of these vertical shear forces could be used to design the shear connection
at this design point.

The procedure adopted here is to determine influence lines for each loaded
axle and then to combine these influence lines to determine the influence line when
the vehicle is fully loaded. The analysis when the rear axle is loaded is shown
in Figures 14.5(c) to (i) where the standard fatigue vehicle is moved up to the beam in (c),
in steps of L/4 along the beam in (d) to (h), and off the beam in (i). The distribution along
the beam of the vertical shear force is plotted at each analysis step. From these
distributions, the vertical shear force at the design point at section D can be seen. It is
important that analyses are conducted when the Joaded axle is just to the left of the
design point and then just to the right of the design point as in (e) and (f), as this
movement causes a step change in the vertical shear force.

The vertical shear force at the design point at section D of the beam in Figure 14.5(b)
can be obtained from Figures 14.5(c) to (i) for different positions of the vehicle. These
vertical shear forces are plotted as an influence line in Figure 14.6(b) where the front axle
has been used as the reference point for the position of the vehicle, For example, when
the front axle is just to the left of section E in Figure 14.5(e), then the shear force at the
design point at D is 0.25V which is shown as point (1) in Figure 14.6(b). However when
the front axle moves to the right of section E in Figure 14.5(f), then the vertical shear
force at the design point reverses in direction to 0.75V which is shown as point (2) in
Figure 14.6(b).

The same procedure has been used to determine the influence line when the front
axle is loaded and the results are plotted in Figure 14.6(c). Combining (b) and (c)
gives the influence line when both axles are loaded in (d), which is the variation in the
vertical shear force at the quarter-span design point as the standard fatigue vehicle
traverses the beam. This influence line variation will be converted in Section 14.4.3 to
cyclic ranges of shear force for use in the fatigue analysis procedure that is developed
in Section 14.6.

14.4.2.1 Example 14.5 Shear flow influence lines along length of beam
A standard fatigue vehicle consisting of two axles is moved across a simply supported
composite beam such as that shown in Figure 14.6(a). The load imposed by an
axle of the standard fatigue vehicle V = 180 kN, the longitudinal spacing of
the axles is 8 m, and the span of the beam is 32 m. The shear flow force acting at
the interface between the steel and concrete components of the composite beam
is given by the following well known equation which is also given in slightly different
terms in Eq. 3.3.

A
q=V( CyC)=VK (144)

Inc

where V is the vertical shear force, A_ is the cross-sectional area of the concrete
element, y_is the distance between the centroid of the concrete element and the
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centroid of the transformed concrete section of the composite beam, and I__ is the

second moment of area of the composite section transformed to a concrete section.

For the 32 m beam in this example, it will be assumed that, from the cross-section of

the composite beam, the parameter in Eq. 14.4of Ay /I =K=0.5x10"mm".
Table 14.3 Influence lines at gnarter-span

Position: C D E F G H
(1) q(KV) 0 +0.25 -0.75 -025 -1.25 -0.75 -0.75 -0.25 -0.25 0
(2) q (N/mm) 0 +22.5 -675 -22.5 -113 -67.5 -67.5 -22.5 -22.5 0

(940 Without friction)

3) Qfic (WVL) 0 033 3 1.33 4 1.33 133 033 033 0

4 Qfpjc NW/mm) 0 13 118 53 158 53 53 13 1.3 0
(5) qgo(with friction)
N/mm 0 +21.2 -55.7 -17.2 967 -622 -622 -21.2 -21.2 0

As the axle spacing of the standard fatigue vehicle, in this example, is a quarter

of the span of the beam, the previous analyses depicted in Figures 14.5 and 14.6
apply directly to this beam when the design point is at a quarter-span. The results
of the influence line analysis in Figure 14.6(d) are listed in row 1 in Table 14.3.

Applying Eq. 14.4 with the appropriate values for K and V, gives the shear flow
forces in row 2 in Table 14.3; these are the shear flow forces that the dowel action of
the mechanical shear connectors have to resist q,  when there is no other mechanism
for shear transfer such as interface friction The same analytical procedure was
applied to determining the influence lines for design points at both the support at
section C in Figure 14.5(b) and at mid-span at section E, and the results are given in
rows 1 and 2 in Tables 14.4 and 14.5. These influence line diagrams, at all three
design points, are plotted in Figure 14.7.

14.4.3 Equivalent range of cyclic forces

The influence line diagram in Figure 14.6(d) quantifies the variation of the vertical
shear force at the design point but does not quantify the magnitude of the cyclic
range that causes fatigue damage. Hence, the influence line diagram has to be

Table 14.4 Influence lines at support

Position: C D E F G H

1) q(KV) -1 075 -1.75 -125 -1.25 -075-075 025 025 O

(2) q(N/mm) 90 -67.5 -158 -113 -113 -67.5 -67.5 -225 -225 0
(qqo Without friction)

(3) Qfic(MV/L) oo 3 oo 4 4 1.33 1.33 033 033 0

(4) Qfyic (Nmm) oo 11.8 158 158 53 53 13 13 0

5) 940 0 -557 0 967 -96.7 -622-622 -212 -21.2 0
N/mm (with friction)

8



Table 14.5 Influence lines at mid-span
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Position:

F G H

(1) q(KV)
(2) q(N/mm)

(g4o Wwithout friction)
(3 Qfric(uv/L) 0
4 Qfic (N/mm) 0

o) Ydo

N/mm (with friction)

+0.75 -0.25
+67.5 -22.5

1.33
53
+62.2 -17.2

+0.25-0.75 -0.25 -0.25 0
+22.5-67.5 -22.5 -225 0

1.33 133 033 033 0
53 53 13 1.3 0
+17.2-62.2 -21.2 -212 0
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q (N/mm)
(-ve)

(b) quarter-span
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Figure 14.7 Shear flow force influence line diagrams
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Figure 14.8 Equivalent range using reservoir method

converted to equivalent ranges of cyclic stress resultants for use in the fatigue
analysis procedure developed in Section 14.6.

The reservoir approach? can be used to convert the influence line diagram in Figure
14.6(d) into equivalent cyclic ranges as illustrated in Figure 14.8. In this approach, two
of the same influence line diagram are placed adjacent to each other as shown in (a) and
(b). This diagram can now be visualized as the cross-section of a reservoir that must be
emptied by successively draining from the lowest point that contains water. The
procedure is repeated at the different drainage points at the parts of the reservoir that
contain water until the reservoir is completely empty. The depth from the water surface
at the commencement of drainage to a drainage point is an equivalent cyclic range R.

When the total range of the stress resultant is required, as in the fatigue design of
stud shear connectors and other welded components, then the positive and negative
shear forces have to be combined as in Figure 14.8(a). In this case, the equivalent
cyclic ranges are R and R,. When the uni-directional range is required as may occur
in the fatigue analysis of an unwelded steel component, then the positive and negative
portions need to be considered independently as in Figure 14.8(b), where it can be
seen that there are now three cyclic ranges.

14.4.3.1 Example 14.6 Equivalent range of cyclic forces

Applying the reservoir approach to the influence line diagrams listed in rows 2 of
Tables 14.3 to 14.5, and which are plotted in Figure 14.7, gives the cyclic shear flow
ranges in rows 1 and 2 in Table 14.6 where each range occurs once, that is the
frequency f = 1. It is worth noting that Figure 14.7 depicts the variation in the shear
flow for unpropped construction where the steel beam resists all the dead load and
the composite beam resists all the live load due to the vehicular traversals. The effect
of propped construction is to maintain the same shape of the influence line diagram
but to displace the origin of the ordinate. Hence propped construction will not affect
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the total range, as required for the analysis of the shear connection, but will affect
the uni-directional range.

Also of interest is the maximum uni-directional peak shear flow that can also be
derived from the influence line diagrams and which is tabulated as (g ) ,, inrow 3 in
Table 14.6. This is the maximum static shear flow force imposed by the traversal of
the standard fatigue vehicle and is an indication of the maximum static strength
required of the shear connectors. For example, if the maximum overload W is a
vehicle that has the same shape as the standard fatigue vehicle but is say 9 times its
weight, thatis W_=9W__, then the static shear flow strength of the shear connectors
q, must be at least 9(q,),,,, as tabulated in row 4. It has been assumed in this analysis
that the beam has been constructed using unpropped construction, that is the shear
connectors only resist the live load due to the traversals of the vehicles. If propped
construction had been used, then this maximum uni-directional shear flow would
have to be superposed on that due to the dead load. A comparison of the methods
of analysis for propped and unpropped construction is given in Section 3.5.

14.44 Force spectrum

From the influence line analyses, the magnitudes of the ranges of the cyclic stress
resultants R and the frequencies f at which they occur can be tabulated as a force
spectrum as shown in columns 2 and 3 in Table 14.7. In Section 14.2.3.1(c), it was

Table 14.6 Shear flows

(1) (2) Support (3) Y4 -span (4) Mid-span
(N and mm) (N and mm) (N and mm)

No Friction:

(g, (=1) 158-0=158 113+23=136 68 +68=136
(2)(q),(f=1) 90-68 =22 68-23=45 23+23=46
(3)q),.. 158 113 68
#q,090),.) 1422 1017 612
(5)F,(x10°) 163 76 76

With Friction:

6)(q), (=1 97+0=97 97+21=118 62+62=124
N (), f=1) 56+0=56 56~17=39 17+17=34
(8) (9, 97 97 62

9)F,(x10°) 14 3 48
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Table 14.7 Format of Force Spectrum

Level (k) Range (R) frequency (f) fRM
(1) (2) (3) (4)

1 R f fR™
2 R, £, £R"
Z R, f, f.R"

F=Ym"

shown that the fatigue damage term N,/E, in Egs. 14.2 and 14.3 is proportional to
N,R™. As the number of cycles N of range R are also proportional to the frequency f
at which they occur during the traversal of a standard fatigue vehicle, it can be seen
that the parameter fR™ in column 4 in Table 14.7 is also a fatigue damage parameter. It
has already been shown that the fatigue damage in a load spectrum is given by the
parameter BW™ in column 4 of Table 14.1. Hence, the force spectrum in Table 14.7 is
analogous to the load spectrum in Table 14.1, as both are a measure of the fatigue
damage that the cyclic loads induce.

14.4.4.1 Example 14.7 Distribution of fatigue damage in a force spectrum
The magnitudes of the ranges and frequencies of the cyclic loads in Figure 14.7,
which were derived from the influence line analysis of the beam in Figure 14.5(b), are
listed as force spectrums in Table 14.8 for design points at the support, quarter-span
and mid-span. The fatigue damage term fq™ has been calculated for stud shear
connectors where m = 5.1. It can be seen that at each of the design points, the fatigue
damage is dominated by the largest cyclic range. This is because the frequency of
the smaller range is equal to that of the larger range, that is f, = f, = 1, so that the
distribution of the fatigue damage is now directly proportional to q™. This is why it
is common practice to base the fatigue analysis purely on the larger cyclic range.

14.5 Frictional shear flow resistance
14.5.1 General

The shear flow forces on the mechanical shear connectors in a composite beam
are reduced by the friction that acts at the interface between the concrete and
steel components and, hence, the friction extends the fatigue life of the mechanical
shear connection. A procedure is described here for quantifying the frictional shear
flow resistance in a form that can be used in the fatigue analysis procedure developed
in Section 14.6 and which is then used in Chapter 15 for the assessment of the
strength and endurance of existing composite bridge beams.
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Table 14.8 Variation in the Force Spectrum along beam

Level Support Quarter- span Mid-span
q, f fq‘ 5.1 q, f fqn 5.1 q, f fq‘ 5.1
(Ninm) 10 Nim) (x1() - (Nimm) <107
1 158 1 1634 136 | 760 136 1 760
2 2 1 0007 45 1 027 46 1 030
2=163=F, X=76=F, 2=76=F,

14.5.2  Frictional resistance

The effect of interface friction is illustrated in Figure 14.9 by considering the traversal
of a point load of magnitude V across the top surface of a simply supported beam as
shown in Figure 14.9(a). From the load paths shown arrowed in (a), it can be seen that
normal force across the steel/concrete interface of the shear span of length L,
is the shear force in that shear span of V, from which, the interface frictional
resistance in this shear span of length L, is uV,, where L is the coefficient of
friction between the steel and concrete components at the interface. Therefore,
the mean frictional shear flow resistance in the shear span of length L, is
(Qq,.), =WV /L. Similarly, the mean frictional shear flow resistance in the shear span
oflength L, is (Q,, ), =1V /L,.

The shear flow force resisted by the dowel action of the mechanical shear connectors
q,, is the shear flow force acting at the interface q less the mean frictional shear flow
resistance Q, . . The shear flow force at the steel/concrete interface q is given by Eq.
14.4, therefore, the shear flow force resisted by the dowel action of the shear
connectors is given by

Acye M
o), {22
n

Inc

where (q, ), is the shear flow force on the connectors in a span designated n of
length L , V is the vertical shear force in shear span n, and Ll is the coefficient of
friction between steel and concrete that can be taken as about 0.7. It should be noted
that when the bracket in Eq. 14.5 becomes negative in theory, this means that the
frictional shear flow resistance Q,, is greater than the shear flow force q_, . In this
case, the mechanical shear connectors do not slip so that the term in the bracket in
Eq. 14.5 should be equated to zero, thatisq, = 0.

Equation 14.5 can be used to derive the effect of friction on the shear flow force
envelope for the point load moving across the beam in Figure 14.9(a). For example,
line A is the envelope for the shear flow forces q in shear span L, which is given by
the first term in the bracket on the right hand side of Eq. 14.5 and line A, is the
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Figure 14.9 Shear flow envelopes

shear span tends to zero. To complete the picture, the shear flow frictional resistance
when the design point is at section E at the mid-span in Figure 14.6(b) is given in row
3in Table 14.5.

14.5.3.1 Example 14.8 Shear flow frictional resistance

(a) Influence lines

Letus continue the analysis in Example 14.5 in Section 14.4.2.1 in which a simply supported
beam of span L = 32 m was traversed by a standard fatigue vehicle that had two axles of
spacing 8 m and a load per axle of 180 kN. The only additional information required, to
that already given in Example 14.5, for determining the shear flow frictional resistance is
the coefficient of friction which will be assumed tobe u=0.7.

For the axle spacing and beam length chosen in this problem, the shear flow frictional
resistances have already been determined as a function of LV/L in rows 3 in Tables 14.3 to
14.5. These resistances have been converted to shear flow frictional resistances in rows 4
of these tables. Rows 2 of these tables gives the shear flow force acting at the interface.
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envelope in shear span L,. Line B, is the shear flow frictional resistance Q___in shear
span L, which is given by the second term in Eq. 14.5. Therefore, the hatched region
is the shear flow force q, acting on the connectors. The sum of both components of
the hatched regions, that is (q, ), + (g, ),, is the total range of the cyclic shear flow
force acting on the mechanical shear connectors. It can be seen that the
frictional resistance has the greatest benefit adjacent to the supports where in this
case q, =0 and has the least effect at mid-span where q,_is at its maximum.

14.5.3  Frictional resistance influence line diagrams

The shear flow frictional resistance can be derived from the influence line analyses
that are used to determine the ranges of shear flows at a design point, such as the
analysis illustrated in Figure 14.5 that has already been described in detail in Section
14.4.2. Take for example the distribution of vertical shear in Figure 14.5(¢): the design
point occurs in the right hand side shear span D-G of length 0.75L; the vertical shear
force at the design point is 0.25V which is the normal force across the interface along
the right hand shear span; hence, the interface frictional force is n0.25V; and as the
interface frictional force acts over a shear span of length 0.75L, the mean shear flow
frictional resistance is 10.25V/0.75L as listed on the right hand side of the figure.
When the rear axle is moved to the right of the design point as in (f): the design point
now lies along the left hand shear span of length 0.25L; the vertical shear force at the
design point is now .75V, so that the mean shear flow frictional resistance at the
design point is p0.75v/0.25L.

It is worth emphasizing the point that the shear flow frictional resistance is not
dependent on the sign of the vertical shear force, as the shear flow frictional resistance
simply resists movement. A convenient approach in the analysis is to attach the
appropriate sign of the vertical shear force to V_in Eq. 14.5. The terms within the
bracket now depend only on the geometric and material properties of the beam and,
as a further reminder, when this bracket is negative it should be assumed to be zero.
The shear flow frictional resistances listed on the right hand side of Figure 14.5 are
plotted as an influence line diagram in Figure 14.10(a) using the front axle as the
reference point for the position of the vehicle on the beam. The results marked (1)
and (2) in Figure 14.10(a) correspond to the analyses in Figure 14.5(e) and (f) where
nx0.25V/0.75L = 0.33uV/L, and u x 0.75V/0.25L = 3uV/L. It can be seen that even
though the sign of the vertical shear force at the design point changed in the analyses
in Figures 14.5(e) and (f), both frictional shear flow resistances are shown as positive
in the influence line diagram in Figure 14.10(a).

The shear flow frictional resistance for when the rear axle is loaded has been
derived using the same procedure and is shown in Figure 14.10(b). Adding (a) to (b)
gives the shear flow frictional resistance in (c) when both axles are loaded and which
applies to the design point at a quarter-span. The results are tabulated as Q, . in row
3 in Table 14.3. The shear flow frictional resistance when the design point is at the
support at section C in Figure 14.6(b) is listed in row 3 in Table 14.4 and plotted in
Figure 14.11. It can be seen that the frictional resistance tends to infinity when the
axle loads are adjacent to the design point at the supports because the length of the
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Reducing the magnitude of rows 2 in these tables by the magnitude of rows 4 of these
tables gives row 5, which is the shear flow force acting on the mechanical shear connectors.
The results are plotted in Figure 14.7 as the broken line labelled ‘with friction’.

The differences in Figure 14.7 between the shear flows ‘without friction’ and the
shear flows ‘with friction’ are the reductions due to friction of the shear flow forces
resisted by the mechanical shear connectors. It can be seen that the effect of friction
is large at the supports but relatively small at mid-span.

(b) Equivalent range of cyclic shear flow forces

Applying the reservoir technique described in Section 14.4.3, to the influence line diagrams
‘with friction’ in Figure 14.7, gives the results in rows 6 to 8 in Table 14.6. Let us compare
these results ‘with friction’ to the results in rows 1 to 3 in which there was no friction. At
the supports, the beneficial effect of friction has reduced the maximum cyclic range from
158 to 97 N/mm that is by 39% and the peak uni-directional load by the same amount,
which means that the shear connectors at the supports can resist a higher static load and
will last much longer than originally anticipated. At mid-span, the maximum range and
peak uni-directional load has only reduced from 136 to 124 N/mm that is by 9% and, hence,
at mid-span the beneficial effect of friction is fairly minor.

14.6 Generic fatigue equation
14.6.1 General

So far in this chapter, we have discussed general methods for representing: the
fatigue material properties; the fatigue vehicular loads; and the cyclic stress resultants
that induce fatigue failure. A generic fatigue equation will now be developed that
incorporates all these general representations and which will be used in Chapter 15
for the design and assessment of the shear connection composite bridge beams.

14.6.2 Generic fatigue material properties
Both the crack propagation accumulated damage law of Eq. 14.2 and the crack initiation
accumulated damage law of Eq. 14.3 can be written in the following generic form.

¥ N _ (14.6)

The general form of the endurance given by Eq. 14.1 can be represented by the
following generic form,

R -m
-l = (14.7)
E=c(%]

It is often convenient in fatigue analyses to represent the cyclic stress resultant as
the ratio R/X in Eq. 14.7. For example in the design of a fillet weld, R could be the
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shear flow force derived from the analysis of the beam and X the unknown transverse
width of the weld to be determined in the design, so that R/X is the shear stress T in
a design procedure where the endurance of the fillet weld is given in terms of the
shear stress T. However in the assessment of an existing weld of known dimensions,
R could represent the shear stress T so that X = 1.

14.6.3 Fatigue damage analysis

14.6.3.1 Cyclic stress resultants
The generic fatigue equation will be derived by considering the following very simple
fatigue problem: a composite beam is subjected to a total of T traversals of fatigue vehicles;
the fatigue vehicles can be represented by one standard fatigue vehicle; there are only
two weights of fatigue vehicles as listed in Table 14.9; the traversal of the standard fatigue
vehicle produces two ranges of the stress resultant as listed in Table 14.10.

From Tables 14.9 and 14.10, it can be deduced that there are only four ranges of
the stress resultants which are: W R, that occurs B, Tf, times; W R, that occurs

B, Tf, times; W,R, that occurs B,Tf, times; and W R, that occurs B,Tf, times.

14.6.3.2 Fatigue damage

Let us consider the fatigue damage due to the first cyclic range W R, from Section
14.6.3.1 which in terms of the parameter X can be written as W R /X. Substituting
this range into the generic endurance of Eq. 14.7 gives the endurance for the first of
the cyclic range W R, as

E gy =CW "R{"X"™ (148)

Table 14.9 Load spectrum with two weights of vehicles

(1) Level (x) (2) Weight (W) (3) Probability (B) (4)BwWm

wl Bl Blwlm
2 w, B, B,W,"
Z = 1 Lf= Zme

Table 14.10 Force spectrum with two ranges

(1) Level (k) (2) Range (R) (3) frequency (f) (4) fR™
1 Rl fl fIl{lm
2 RZ f2 fZRZm

F=3R"
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The number of cycles of the first range W R, from Section 14.6.3.1 has been shown tobe
N, =B, Tf,. Substituting the values for N, | and E__ into the generic accumulated damage
law of Eq. 14.6 gives the fatigue damage A__ due do the first of the cyclic ranges W R, as

Aﬁm=C‘(BlWl"‘)(flRl"')TX"" (14.9)

The same procedure can be applied to the remaining three cyclic ranges of W R,
W,R, and W,R, to give the following fatigue damage terms.

A = C'BWRITX™ (14.10)
A yra=C ' BW,NS R TX™ (14.11)
Ayird™ c'8 2W2m)(f2Rzm)TX_m (14.12)

Summing the fatigue damage in Egs. 14.9 to 14.12, as required in Eq. 14.6, gives the
total fatigue damage ‘A’ as

A=T(B,W"+B,W,\fR"+f,RMX"C
(14.13)
14.6.4 Generic fatigue equation

14.6.4.1 Load constant

The parameter (B,W ™+ B,W,") in Eq. 14.13 is the sum of the fatigue damage terms
in column 4 of the load spectrum in Table 14.9. This fatigue parameter will be referred
to as the load constant and will be denoted by the symbol L. Hence, the load
constant L, is given by the following equation

x=i

L=24BW"
! Z(n " (14.14)

where there are ‘i’ levels in the load spectrum as in Table 14.1. The derivation of L is
also shown in column 4 of Table 14.1.

14.6.4.2 Force constant

The fatigue parameter (f R "™ +f,R,") in Eq. 14.13 will be referred to as the force
constant Fg and can be obtained from the force spectrum in Table 14.10. Hence, this
fatigue parameter can be derived from the following equation

k=2
Fy= QIR (14.15)
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where there are z levels in the force spectrum as shown in Table 14.7 and where the
force constant is also derived in column 4 of this table.

14.6.4.3 Generic fatigue equation
Substituting the fatigue damage terms Lgand Frin Eqs. 14.14 and 14.15 into Eq. 14.13
gives the following generic fatigue equation.

L — AC (14.16)
yi‘j(TFfo)y Tl(Ff)l(Lf )1 +T2(Ff)2(l'f)2 """ + Tj(Ff)j(Lf)j
y=1

The parameters TFL in the denominator of Eq. 14.16 quantifies the fatigue damage that
the component is subjected to. For convenience in the fatigue analysis, we will define a
fatigue zone as a period of T traversals of fatigue vehicles during which both F, and L are
constant. As it has been shown in Section 14.2.3.1 that the accumulated damage laws are
based on a linear variation in the residual strength, the sequence at which the fatigue
zones occur does not affect the overall damage', so that the fatigue damage due to each
fatigue zone can be summed as shown in Eq. 14.16 where there are j fatigue zones.

14.6.4.1 Example 14.9 Load constant and force constant

Examples of the derivation of the load constant L are given in Table 14.2 for different
values of the fatigue exponent m. Itis fairly obvious that L increases as m increases.
The variation in the force constant fatigue damage term F, is shown in Table 14.6 for
the beam analysed in Example 14.5 in Section 14.4.2.1. The beneficial effect of friction
is ignored in the fatigue design of new composite beams and, hence, the results in
row 5 of Table 14.6 would be used in the design of new bridges. It can be seen that
the greatest fatigue damage along the length of the beam occurs to the shear
connectors adjacent to the supports where F, o< 163.

In contrast to the design of new structures in the previous paragraph, in the
fatigue assessment of an existing composite beam it may be a requirement to determine
a realistic residual strength and residual endurance. In this case the effects of friction
could be included as in the analyses in row 9 of Table 14.6. It can be seen inrow 9 that
friction at the support has reduced the fatigue term by an order of magnitude from F,
o< 163 to F, e 14. Furthermore, the greatest fatigue damage now occurs adjacent to

the mid-span where F, o 48.
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15 Fatigue analysis of stud shear connections

15.1 Introduction

The fatigue behaviour of composite steel and concrete beams with mechanical
stud shear connectors is unique. The concrete slab of the composite beam exhibits the
usual well known time dependent characteristics of creep and shrinkage. However,
tests have shown conclusively that the shear connection reduces in strength
and stiffness immediately cyclic loads are applied, which means that both the degree of
interaction and the degree of shear connection of the composite bridge beam changes
each time a fatigue vehicle traverses the bridge. Hence, the strength and stiffness of an
existing composite beam that is subjected to fatigue loads is continually changing with
time, which makes the fatigue design and assessment a very interesting problem.

In Chapter 14, standard procedures were described for determining the
cyclic stress resultants that cause fatigue damage, and for using these stress resultants
to determine the residual strength and endurance of a component of a structure.
These standard procedures were described in a form that can be applied in theory
to any type of stress resultant and any type of structural component. This chapter
will concentrate on the fatigue design and assessment of the stud shear connectors
in composite bridge beams, and will deal with the shear flow forces that act on stud
shear connectors q and the shear flow strengths Q that they require for strength and
endurance. It is worth reiterating that even though the fatigue limit state is an ultimate
limit state, the analysis is elastic, in contrast to the ultimate limit state of strength
that is often governed by the upper bound rigid plastic analysis.

The crack initiation and crack propagation fatigue material properties of
stud shear connectors are first described in Section 15.2. This is then followed in
Section 15.3 by the details of a composite beam that are used in Sections 15.4 and
15.5 to illustrate the crack initiation approach and crack propagation approach of
the fatigue design of new bridge beams, and the fatigue assessment of existing bridge
beams. Finally in Section 15.6, the crack propagation fatigue approach is applied to
assessing the strength and endurance of composite beams in buildings that are
subjected to cyclic loads.

15.2 Stud shear connector fatigue material properties
Endurance equations for stud shear connectors have the general form shown in Eq.
14.1 and can be categorized in terms of whether they follow the crack initiation
approach described in Section 14.2.3.1(b) or the crack propagation approach
described in Section 14.2.3.1(a).

15.2.1 Crack initiation properties
The following two equations are examples' of crack initiation fatigue endurance
equations for stud shear connectors.

235
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0.7) _s1
159-—= -
E, = 10( Vn ( R) (15.1)
Ash
where the units and in N and mm, and
OJO) _54
227 -—— -
E, = 10( Vn ( R J (15.2)
Dmax

where E_, refers to the characteristic endurance at two standard deviations, n is
the number of connectors in a group within the composite beam that can be assumed
to fail together, R is the magnitude of the range of a cyclic shear load acting on a
stud shear connector, A is the cross-sectional area of the shank of the stud shear
connector, and D__ is the static strength of the stud shear connector, that is its
strength prior to cyclic loading.

The fatigue parameter that controls the endurance is often assumed to be R/A_ as
shown in Eq. 15.1 The fatigue term R/A  is a pseudo shear stress that is supposed to be
acting on the shank of the stud shear connector; it is a pseudo shear stress as it ignores
the shear forces resisted by the weld-collar of the stud shear connector as shown in
Figure 5.1. However, this approach allows stud shear connectors to be designed using
the same standard procedures as are used for other welded metal components. It should
be remembered that endurance equations of this form are dimensionally incorrect, that
is the constant of the equation depends on the units being used and, hence, the requirement
of N and mm for Eq. 15.1. Another common form of the endurance equation is shown
in Eq. 15.2 where the fatigue parameter now depends on R/D__ . This form of endurance
equation is dimensionally correct and published statistical analyses' of fatigue endurances
have shown that the fatigue parameter R/D___gives the least scatter of results.

In the analysis of composite beams it is often more convenient to deal with shear
flow forces and shear flow strengths as these are derived directly from the analysis
of the composite beam, and are not dependent on the choice of the mechanical shear
connector. In which case, Eq. 15.2 can be written in the following form

0.70

_= -54
E, = 10(2'27 I )(_q_) (153)
ch QD

where g, is the range of the cyclic shear flow force, and Q,, is the shear flow strength
of the stud shear connectors prior to cyclic loads, that is the static strength D___of
the stud shear connectors per unit length.

The accumulated damage law for the crack initiation procedure is given by the
following equations
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k=

zﬂ‘_ <1 (15.4a)
k=1"k
E,=fq) (15.4b)

where there are z magnitudes of the cyclic shear flow ranges q,, N, applications of
range (q,),, and in which the shear connection when subjected to a range of magnitude
(q,), has an endurance E,_which is a function of q, such as that given by Eq. 15.3.

15.2.2 Crack propagation properties
The crack propagation fatigue endurance' for stud shear connectors is given by
0.70

312-== =3.1
E, = 10( s/;) ( J (15.5)
Dmax

that can be written in the following form in terms of the shear flows

0.70
(3.12——) g )
E =10 vn )| 4t (15.6)
Op
for which the following accumulated damage law is applicable
k=z
Ne o - 0 (15.7a)
k=1 Ek Op
E.=f4) (15.7b)

where q_ is the maximum uni-directional shear flow force that the stud shear
connection has to resist, which could be the maximum uni-directional shear flow
force induced by the maximum overload that the composite beam has to resist, and
Eq. 15.7b has been included to remind the reader that the endurance E_is a function
of the cyclic shear flow range q,.

15.3 Details of composite beam
The composite bridge beam that was analysed in detail in Chapter 14 will also be
used in this chapter to illustrate the design and assessment procedures in Sections
15.4 and 15.5. The details of the beam and the results of the analyses in Chapter 14
that are required in this chapter are summarized in this section,

The simply supported composite beam in Figure 15.1 has a span of L =32 m, the
cross-section of the composite beam when transformed to concrete has a value of K
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=Ay/l _=0.5x10°mm", and the coefficient of friction between the concrete slab
and steel beam has a value of |L = (.7. The beam has been analysed at the three design
points shown in Figure 15.1, that is at the support, at the quarter-span and at the mid-
span. It will be assumed that the beam has been constructed using unpropped construction,
so that the stud shear connectors only resist the live load imposed by the fatigue vehicles.

The standard fatigue vehicle that is used to represent the fatigue vehicles that cross
the beam has a weight W, =320 kN, and consists of two axles that have a spacing of
L/4 = 8 m and which are equally loaded at V = 160 kN. The load spectrum associated
with this standard fatigue vehicle is shown in columns 2 and 3 in Table 15.1 and the
load spectrum has a value of the load constant of L= 1.14 as shown in column 4.

The force spectrums at each design point that was derived from the longitudinal
traversal of the standard fatigue vehicle across the beam is shown in Table 15.2. The
results in the ‘No friction’ part are the shear flow forces at the interface, all of which
has to be resisted by the mechanical shear connectors, as the beneficial effect of
friction is ignored in this analysis. In contrast, the results in the “With friction’ part
are the shear flow forces acting on the stud shear connectors, that allows for the
beneficial effect of friction. The force constants F, for each force spectrum are also
listed in Table 15.2. The values in Table 15.2 are slightly different from the results
of the original analyses in Table 14.8 due to rounding off errors that occurred in
demonstrating the technique in Chapter 14.

The maximum uni-directional shear flow forces (q,)_ acting on the stud shear
connectors when the standard fatigue vehicle traverses the beam are given in rows 1
and 3 in Table 15.3. It will be assumed that the maximum overload is a vehicle with
the same shape of axle configuration as the standard fatigue vehicle, and that the
weight of this overload vehicle W_=9W__ = 2880 kN. Hence, the maximum uni-
directional shear flow force that has to be resisted by the stud shear connectors q_ is
9 times that induced by the standard fatigue vehicle and which is given in rows 2
and 4. It needs to be emphasized that this is the maximum uni-directional shear flow
force when unpropped construction was used, otherwise the connectors would be
subjected to an additional shear flow force due to the dead weight of the structure
acting on the composite beam. Hence if propped construction had been used, then
the uni-directional shear flow due to the dead load would have to be superposed on
that due to the live load to obtain q_as explained in Section 3.5.

design points

support quarter-span

:(_‘ 8m —|)

PR S

-~ 16 m

Figure 15.1 Composite beam used in the analyses
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Table 15.1 Load spectrum

() (2) (3) (4) (5) (6) (7) (8) (9) (10)
Level W B BWY W B BW W B BWA!
1 6.5 0.00002  0.280 6.5 0.00002 0.280 - - -

2 50 000010 0.367 50 000010 0.367 - - -

3 20 0.01000 0343 20 001000 0.343 2.0 0.01000 0.343
4 1.0 0.13988  0.140 1.5 013988 1.106 1.5 0.13990 1.106
5 0.5 0.25000 0.007 0.5 025000 0.007 0.5 025003 0.007
6 0.2 0.60000 0000 02 0.60000 0.000 0.2 0.60007 0.000

2B=1 L=1.14 XB=1 L=2.10 IB=1 L=146

Table 15.2 Force Spectrum for m = 5.1

Level Support Quarter- span Mid-span
M 2 3 C)) & © Q)] ® 9
q, f fg,*! q, f fq, 5.0 q, f fq, 51
(N/mm) (x10%°)  (N/mm) x10°)  (N/mm) X109

Part 1: No friction ( it = 0):

1 158 1 163.4 135 1 73.2 135 1 732

2 23 1 0.009 45 1 0.27 45 1 027
F. =163 F,=73 E=73

Part 2: With friction (= 0.7):

1 97 1 13.6 118 1 369 124 1 475

2 56 1 0.82 39 1 0.13 34 I 065
F.=14 F =37 F=48

15.4 Crack initiation approach

In this section, the generic fatigue equation of Eq. 14.16 is developed specifically
for the crack initiation approach for stud shear connectors. It is written in both a
design mode and an assessment mode.

15.4.1 Design mode

15.4.1.1 Crack initiation fatigue design equations
Equation 14.16 was derived from the generic form of the accumulated damage law
in Eq. 14.6 and the generic form of the endurance Equation 14.7. Comparing Egs.
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Table 15.3 Uni-directional shear flow forces

(1) (2) Support (3) Y -span (4) Mid-span
(N and mm) (N and mm) (N and mm)

Part 1: No Friction

0 Q) 158 113 68

2 9q,=99),,,=9Q, 1418 1013 608

Part 2: With Friction:

3 Q). 97 97 62

@ q,=99,),., 870 870 560

14.6 and 14.7 with their crack initiation counterparts for stud shear connectors in
Egs. 15.4 and 15.3, it can be seen that generic fatigue equation of Eq. 14.16 can be

written in the following form.

Qf =

L

AC

y=j
2 (1FrLy)
y=1
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(15.8)

where Q, is the shear flow strength of the stud shear connectors that depends purely
on the fatigue endurances, and F, = f(q)) that is the force constant is to be derived
from the cyclic shear flow forces q..

15.4.1.2 Example 15.1 Fatigue design based on mean properties
Even though the crack initiation approach does not allow directly for the gradual
reduction in the strength of stud shear connectors during cyclic loading, this approach
is commonly used in practice as factors of safety and the use of characteristic
properties can cater indirectly for reductions in strength.

The composite beam in Figure 15.1 will be designed for T = 300 million traversals
of fatigue vehicles that occurs over a period of 100 years. In Eq. 15.8, the exponent
m = 5.4 and this has been used to derive both the force constants in Table 15.4, at the
various design points, and the load constant L = 1.654 in column 4 in Table 15.5.
Furthermore, it will be assumed in Eq. 15.8 that n — eo, that is we will designing
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using the mean material properties. Again units of N and mm are used throughout
this analysis and also in the ensuing analyses unless stated otherwise.

(a) Shear flow strengths

At the support design point in Figure 15.1, the variables in Eq. 15.8 are: T = 300 x
105 L,= 1.654 from column 4 in Table 15.5; F,= 746 x 10° from column 3 in the no
friction part in Table 15.4; and n — e, From which (Qf)suppo = 2447 N/mm which is
shown as point A in Figure 15.2. Applying the same analysis at the quarter-span and
mid-span design points in Figure 15.1, where the only change in the variables is F,
=320 x 10° from columns 6 and 9 in Table 15.4, gives (Q)), span = (Qodric.spon = 2092
N/mm that are shown as points B and C in Figure 15.2. Also plotted as A”, B” and

C” in Figure 15.2 are the shear flow strengths Q_ that are required to resist the
maximum overload that are listed in row 2 in Table 15.3.

Table 15.4 Force Spectrum for m = 5.4

Level Support Quarter- span Mid-span
M @ 0 C)) 5 © @) ® O
q, f fq, 54 q £ fq‘ 54 q, f qu 5.4
(N/mm) x10%  (N/mm) (<10  (N/mm) (x10%)
Part 1: No friction (L= 0)
1 158 1 746.0 135 1 319.0 135 I 3190
2 23 i 0.002 45 1 0.85 45 085
F, =746 F,=320 F,=320
Part 2: With friction (1 = 0.7)
1 97 1 53.5 118 1 154.2 124 1 201.6
2 56 1 2.8 39 1 0.39 34 I 019
F, =56 F, =155 F, =202
Table 15.5 Load Spectrum with m = 5.4
(1) (2) (3) (4) (5) (6) (7)
Level w B BW+4 w B BW34
1 6.5 0.00002 0.491 6.5 0.00002 0491
2 5.0 0.00010 0.595 5.0 0.00010  0.595
3 2.0 0.01000 0.422 2.0 0.01000 0422
4 1.0 0.13988 0.140 1.5 0.13988 1.249
5 0.5 0.25000 0.006 0.5 0.25000  0.006
6 0.2 0.60000 0.000 0.2 0.60000  0.000
3B=1 L,=1.654 2B=1 L, =2763
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It can be seen in Figure 15.2 that, in this example, Q, is greater than Q_ throughout
the length of the beam and, hence, the endurance controls the design of this beam
throughout its length. The relative positions of the lines Q,and Q dependonTand W .
For example, doubling Q_ as shown by the line marked 2Q_ would make the static
strength control the design over about half of the beam that is adjacent to the supports.
Conversely reducing T would lower Q..

(b) Distribution of stud shear connectors

Let us assume that 19 x 100 mm studs are being used in this composite beam, that
these shear connectors have the strengths given by Eq. 5.4, and that inserting the
appropriate material properties of the stud shear connections into Eq. 5.4 gives the
static or dowel strength as

12 (15.9)
Dpax = 25000(4.7 - 'ﬁ)

where the strength is in N.

When n — « in Eq. 15.9, the mean dowel strength of the stud shear connector is
(D, ) vean = 117.5 kN. The longitudinal spacing of the stud shear connectors, if they
were placed in one single line, is L, =D, /Q,, that at the supports comes to (L)
= 117500/2447 = 48 mm and at the other design points has the value (L))
(L) i span = 117500/2092 = 56 mm.

support
1/4-span =

15.4.1.3 Example 15.2 Characteristic material properties

(a) Number of connectors n that fail as a group
Stud shear connectors fail as a group both because they have a ductile plateau as
described in Chapter 5 and shown in Figure 5.2 and because of the incremental set?,

3000 [
O R ‘((.._\ZQO : Qf\
AQmseal e
(N'mm) | YT T Ttmeen L e, i
SesSte, B
2000 f— i Sy 9C
A T
oo — 1 . ®--.....
9o and Qo/ B" TTteen.
..."C"
support quarter-span mid-span

Figure 15.2 Shear flow strengths from crack initiation approach
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that is the permanent set that occurs during cyclic loading. Hence, their characteristic
strength and endurance is a function of the number of connectors n that can be
assumed to fail as a group, as given by Eqs. 15.8 and 15.9.

In the ultimate strength design of composite beams in Chapter 4 it was a simple
matter to define n as the number of connectors in a shear span, that is between the
position of maximum moment and the support, as all of these connectors are required
to resist the thrust at the ultimate toad. Defining n in the fatigue design of an ‘elastic’
composite bridge beam is much more difficult as there are generally more connectors
than required for equilibrium and the extent of the redistribution of shear due to the
incremental set has not been quantified. It will be assumed in this analysis that only
the connectors that are spread over a length equal to twice the depth of the beam,
L, = 2D, can be assumed to fail as a group. It will be assumed thatL_=2D=3m
for the beam being analysed.

(b) Spacing of connectors as a function of their characteristic strengths

and endurances

As both the characteristic endurance and characteristic static strength depend on n in
Egs 15.8 and 15.9, an iterative procedure will have to be used to quantify n. Let us start
by determining the spacing of the connectors at the quarter-span and mid-span regions
where F, is the same. This analysis uses the same variables as in Example 15.1 except
that n now varies. From Eqgs. 15.8 and 15.9 with n - eo, Q= 2092 N/mm and D =
117,500 N, from whichn=QL /D _ = 53.4 mm for L_ = 3000 mm. Now repeatmg
the analyses with n = 53.4 in Eqs 15 8 and 15.9 gives Qf 2179 N'mmand D, =
13,379 N from whichn = QL /D, =57.7. Continuing with n =57.7 gives Q= 2176
N/mm, D__ = 113,550 N from whxch n= QfL /D . = 57.5. 1t can be seen that the
number of connectors n converges rapidly. The spacmg required is, therefore, L =
3000/57.5 = 52.2 mm. A similar iterative analysis at the supports gives L, =44.9 mm

(c) Sensitivity of design to n

The variation of the longitudinal spacing L, with the number of connectors that can
be assumed to fail as a group n is shown in Figure 15.3. Whenn = 1 in Egs. 15.8 and
15.9, we are dealing with the characteristic endurance and strength of an individual
connector, this gives a longitudinal spacing of L =32 mm at n = 1 as shown. When
n— oo, L, — 56 mm which is shown as the asymptote in Figure 15.3. It can be seen
in Figure 15.3 that as n increases L rapidly converges to the asymptote. It can also
be seen that when n exceeds about 40 then there is very little change in L. Therefore,
it is suggested that, as in most composite bridge beams where n is fairly large, the
design is based on the mean endurance and strength as given in Example 15.1.

15.4.2 Assessment mode

15.4.2.1 Fatigue assessment equation
In the assessment of an existing composite bridge beam, the shear flow strength of the shear
connection Q;is already known, so that the variable to be determined is the residual endurance
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Figure 15.3 Number of connectors that fail as a group

that can be measured in terms of the remaining fatigue vehicle traversals T. Therefore, Eq.
15.8 can be rearranged into the following form that is convenient for assessment.

0.70
(rFyLs) +(1FsLy) +o{TF Ls) = 10(2'27—_‘/7) 0¥ (15.10)
= F=f), f=f j f

where there are j fatigue zones (as defined in Section 14.6.4.3 as when F, and L, are
constant), and only one unknown value of T in these j fatigue zones.

15.4.2.2 Example 15.3 Fatigue assessment of an existing composite

bridge beam

Suppose that the composite beam that was designed in Example 15.1 for a total of
300 million fatigue vehicle traversals has now been subjected to T, = 150 x 10°
fatigue vehicle traversals. Furthermore that during this fatigue zone of T, = 150 x 10%,
the load spectrum has remained constant so that the load constant has the original design
value of (L), = 1.654, and the force spectrums has also remained constant so that the
force constant remains at (F,), = 320 x 10° at both mid and quarter spans and at (F), =
746 % 10 at the supports. Let us now assume that the weights of the commercial vehicles
have been allowed to increase which has caused level 4 in column 2 in Table 15.5 to
increase from Wy, = 1 X W to W, = 1.5 X W, as shown in column 5. This has
increased the load constant to (L)), = 2.736 as shown in column 7. It is required to
determine the fatigue effect of increasing the commercial vehicle weights.

Let us at first apply Eq. 15.10 at the quarter-span and mid-span design points
where the force constant F, is the same. From Example 15.1, Q,= 2092 N/mm. In
the first fatigue zone, T, = 150 x 108, (F), =320 x 10° and (L), = 1.654. In the
remaining fatigue zone, the force constant remains unchanged at (F), = 320 x 10°,
as the standard fatigue vehicle and the cross-sectional properties of the bridge are
unchanged, however, the load constant has increased to (L,), = 2.736. Hence, the
only unknown in Eq. 15.10 is the number of fatigue vehicle traversals T, in the
second fatigue zone which comes to 91 million traversals. As the bridge was
originally designed for 300 million traversals over 100 years and as the number of
traversals to cause failure has reduced to 150 + 91 = 241 million. The bridge will
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last (241/300) x 100 = 80 years in total or a further 30 years, from the increase in
the commercial vehicle weights, assuming the rate of loading remains unchanged.
A similar analysis applied to the supports will give exactly the same result because
the same change in L_has occurred at all the design points.

15.4.2.3 Example 15.4 Fatigue assessment with friction

If the endurances in Example 15.3 are not considered to be satisfactory, then a more
accurate analysis would be to include the effect of friction in applying Eq. 15.10.
The force constants with friction are given in Table 15.4. At the mid-span: Q,= 2092
N/mm from Example 15.1; the first fatigue zone is given by T, = 150 x 10, (F), =
202 x 10° from column 8 in the friction part of Table 15.4; and (L), = 1.654 from
column 4 of Table 15.5. In the second fatigue zone the force, (F), = 202 x 10° and
the load constant is(L,), = 2.763 from column 7 of Table 15.5. Solving Eq. 15.10
gives T, = 195 million load traversals and, hence, friction has extended the endurance
of the stud shear connectors from 90 million, in Example 15.3, to 195 million
traversals and, hence, this section of the beam will last a further 65 years. Applying
the same analysis to the quarter-span design point gives T, = 282 million which is
equivalent to a further 94 years, and to the support design points gives T, = 2,304
million traversals which is equivalent to a further 768 years. It can be seen that
friction has an enormous beneficial effect at the supports.

15.5 Crack propagation approach

The generic fatigue equation of Eq. 14.16 is adapted in this section to the crack
propagation approach for stud shear connectors, in both a design mode and an
assessment mode. Because the crack propagation approach allows for the direct
interaction between strength and endurance, it is ideally suited for assessment.

15.5.1 Design mode

15.5.1.1 Crack propagation fatigue design equations
Comparing the generic fatigue material properties of Eqs. 14.6 and 14.7 with the
stud shear connection crack propagation material properties in Egs. 15.7 and 15.6
and substituting the corresponding values into the generic fatigue equation of Eq;.
14.16, gives the following crack propagation fatigue equation.

0.70 0.70
[1 I S e SN PR S e
si_{ (@ =10) L (@ =s) (15.11)

yi'(T(Ff = flar))Lys) T(Fr) (Lr), + Tl Fr ), (Lr )+

y

(Qor = fw)

y=1
where q, is the shear flow force due to the maximum overload, and Q , is the shear flow
strength of the stud shear connection when the structure is first built and which is
required to resist not only the maximum overload q_ but also the reduction in strength
due to fatigue loads. The function F,=f(q)) in Eq. 15.11 is to remind the reader that the
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force spectrum must be derived in terms of shear flow forces, and the function Qﬁf =
f(n) is to remind the reader that the number of connectors required depends on their
characteristic strength and, hence, the number n that can be assumed to fail as a group.

Equation 15.11 can be written in the following design form that is based on the
mean material properties.

9o 51
1318 1 — ——
Qof (15.12)

The aim of the design procedure is to determine the shear flow strength of the stud
shear connectors when the structure is first built Q .. It can be seen in Eqgs. 15.11 and
15.12 that the parameter Qof occurs on both sides of the equation, hence, an iterative
approach has to be used.

It is worth noting that in general one standard fatigue vehicle with its associated
load spectrum and force spectrum is used to represent all the fatigue vehicles, and
therefore there is usually only one fatigue zone (TFL), in Eq. 15.12. However, if
two standard fatigue vehicles are required to represent all the fatigue vehicles, then
the second standard fatigue vehicle and its associated values of T, (L,),and (F),
would form a second fatigue zone in Eq. 15.12. Similarly, if the same standard
fatigue vehicle was moved across different lanes that crossed the bridge, then a

fatigue zone would be created for the traversal across each lane.

15.5.1.2 Example 15.5 Fatigue design based on mean properties
Let us apply Eq. 15.12 to the design of the composite bridge beam in Figure 15.1 in
which T =300 million. At the support design point: F,= 163 x 10° from column 3 of
the no friction part of Table 15.2; L = 1.14 from column 4 in Table 15.1; q, = 1418
N/mm from column 2 of the no friction part of Table 15.3. Hence TFL = 5.575 X
10" and, therefore, Eq. 15.12 becomes

(qo _ 1418) -0.1961

Qof

Equation 15.13 has to be solved iteratively. For example, as we know that Q
must be greater than q_ = 1418 N/mm, we could start with Q_ = 2000 N/mm which
will make the right hand side equal to 2318 N/mm, which could then be used as the
second estimate of Q_ for insertion into Eq. 15.13 in the next cycle of the calculation.
The solutions converge fairly rapidly to Q,, = 2220 N/mm; the calculations being
achieved readily on a spreadsheet program.

Qof =182001- (15.13)
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At the quarter-span design point: F,= 73 x 10° (Table 15.2); L, = 1.14 (Table
15.1); g, = 1013 N/mm (Table 15.3); Q, = 1555(1 - 1013/Q_)*'%; which gives
Q,, = 1820 N/mm. Finally at the mid-span design point: F =73 x 10°, L, = 1.14;
q, = 608 N/mm; Q_ = 1555(1 - 608/Q_)*'*; which gives Q = 1700 N/mm.

The shear flow strengths are plotted in Figure 15.4 as Q. The difference between
Q,, and Q,, that is shown hatched, is the reduction in strength due to the fatigue
damage during the design life of the structure. The strength when the structure is
first built has to be at least Q , so that at the end of the design life, the strength will
not have reduced to less than Q_, that is just sufficient to resist the maximum overload.
Hence, Q_ will always be larger than the static requirement of Q,, unless fatigue
loads are not applied to the bridge in which case Q .= Q..

At the supports TFL = 5.57 x 10" and at mid-span TFL = 2.50 x 10", therefore,
the greater fatigue damage occurs at the supports. However, it can be seen in Figure
15.4 that the increase in strength due to fatigue damage Q .- Q, is less at the supports
than at mid-span. This is because the fatigue damage term TFL depends on the
cyclic range q,, whereas, the actual damage depends on the cyclic range as a proportion
of the static strength, that is q/Q_.. Therefore, the increase in strength Q .— Q_ that s
required at the supports is less than that at mid-span because the static strength
requirement is larger at the supports.

15.5.1.4 Example 15.6 Varying the static strength requirement

Let us consider the effect of varying the static strength requirement q  of the composite
bridge beam whilst maintaining the same fatigue damage, that is the same value of
TFL. For example, it may be required to add more connectors to counteract the
effects of creep, shrinkage or thermal gradients, or reduce slip at the concrete-slab/
steel-beam interface.

Applying Eq. 15.13 for different values of g_ at the supports gives the variation in
Figure 15.5, where the ordinate is the proportional increase in strength required for
fatigue. The variation in the proportional increase is asymptotic to the line
Q_/q, = 1, because when g, >> q, the fatigue damage (q/Q,,)*' — 0. This means that
if the static strength requirement is very large then the additional strength of
connectors required for fatigue will be relatively small.

ZOOOL—

Qoand Q

support quarter-span mid-span

Figure 15.4 Shear flow strengths from crack propagation approach
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Figure 15.5 Variation of the static strength requirement

Another way of visualizing the effect of increasing the minimum static strength
requirement is to double the static strength requirement in Example 15.5. Equation
15.13, that applies to the support, now becomes Q = 1820(1 — 2836/Q_)*'* which
gives Q = 3050 N/mm at the support. At the quarter-span Q .= 1555(1 —2026/Q )
019 = 2325 N/mm and at mid span Q_ = 1555(1 — 21216/Q_)*'** = 1900 N/mm.

The results are plotted as the lines labelled 2Q_ and Q_ = f(2Q) in Figure 15.6.
Hence, the shaded region within points B is the increase in the shear connection strength
that is required because of fatigue loads when the static strength is doubled. The partly
hatched region within points A is the increase in strength for the original static strength
from Figure 15.4. It can be seen that doubling the minimum static strength requirement
has considerably reduced the additional connectors required for fatigue damage.

15.5.2 Assessment mode

15.5.2.1 Crack propagation fatigue assessment equations
The crack propagation design equation of Eq. 15.11 can be written in the following
form that is suitable for assessment.

o B .
3000 B O . =f(2Q,)

Q

(N/mm)

2000 L A

,\. ,,,,,, i
P NN by

1000 pP— 0. "'ng-....,___ B _ ‘
“ Qur=f(Qy) TA

0 . H
support quarter-span mid-span

Figure 15.6 Doubling the static strength requirement
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where Q_ is the shear flow strength of the stud shear connectors prior to cyclic
loading that can be taken as the strength when the structure was first built Q , Q,, is
the residual or remaining strength after cyclic loading, and TFL are the fatigue zones
that have or will occur. For assessment purposes, the unknown in Eq. 15.14 is either
the residual strength Q_, or the residual endurance T, after cyclic loading.

Assuming n — o in Eq. 15.14, gives the following assessment equation for deriving
the mean residual strength

=51
0. =0.|1- 0™ 2 TFL (5.15)
res st 1318

that can be rearranged in the following form in order to determine the mean residual
endurance Tj.

Q y=j-1
1318Q3! 1_5'@)- Z(TFL)y
T. = S/ y=l (15.16)

J F;L j
It can be seen in the assessment equations of Egs. 15.15 and 15.6, that the residual
strength Q__ varies linearly with the fatigue damage parameter TFL. Therefore, the
iterative solution required for the design of new structures in Section 15.5.1 is no
longer required in this assessment mode.

15.5.2.2 Example 15.7 Assessing the remaining strength and endurance
Let us now assess the performance of the composite bridge beam that was designed in
Example 15.5. We will ignore the beneficial effect of friction and assess the performance
throughout the whole design life at the mid-span design point. The original design
parameters were: T = 300 million fatigue vehicle traversals during a design life of 100
years; Q_ =608 N/mm from Table 15.3; Q .= 1700 N/mm from Example 15.5; F,=73
x 10° from Table 15.2; and L, = 1.14 from row Table 15.1.

(a) Assessment equations
As Q, =Q_ = 1700 N/mm, Eqgs. 15.15 and 15.16 can be written as

Q.. =1700—(4.318x10-""xZTFL) (15.17)
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and

T; = (3937x10'(1-(Qys /1700)) - T 7FL)/ FyL; @51

where the units again are N and mm.

(b) Initial reduction in strength

Let us assume that the number of vehicle traversals during the first 30 years is T, =
150 x 10° that far exceeds the original anticipated rate of vehicle traversals of 300
million over 100 years. However, the distribution of the fatigue vehicle weights is
as expected in the original design, so that the load constant remains unchanged at
(L)), = 1.14. Furthermore, as no structural changes have been made to the bridge
beam, the force constant also remains unchanged at (F), =73 x 10°,

The first fatigue zone is, therefore, given by (TFL), = 150x10°x 73x10° x 1.14 =
12.48 x10", Inserting this value into Eq. 15.17 and bearing in mind that there is only
one fatigue zone at this stage, gives Q _ = 1154 N/mm which is shown as point B in
Figure 15.7. An alternative way of determining the residual strength is to remember
that 150 million vehicle traversals have been applied of the original design number
of 300 million. Therefore, as the residual strength varies linearly in a fatigue zone,
the reduction in strength is given by (Q_~ Q,) x (150/300) = 546 N/mm and, hence,
the residual strength is 1700 — 546 = 1154 N/mm.

(c) Increasing the allowable commercial vehicle weights

We will now assume that the maximum weight of commercial vehicles has been
allowed to increase. It is anticipated that level 4 in the load spectrum in column 2 in
Table 15.1 will increase rapidly by 50%, so that the new load spectrum is given by
columns 5 to 6 where the load constant has now increased to (L), = 2.10.

The effect of the change in the commercial vehicle weights on the remaining
endurance can be derived from Eq. 15.18. It is now required to determine the
endurance when: the residual strength reduces to the minimum strength required to
resist the maximum overload, that is Q , = Q, = 608 N/mm; 2TFL = (TFL),
=12.48 x 10'; (L ), = 2.10; and the force constant remains unchanged at (F), = (F),
=73 x 10°. Inserting these values into Eq. 15.18 gives T, = 84 x 10° fatigue vehicle
traversals which is shown as point D in Figure 15.7 and, hence, the increase in the
weights of the commercial vehicles has reduced the remaining design life from a
further 150 million traversal to 84 million traversals.

Let us now assume that 60 million of these fatigue vehicle traversals have
been allowed to occur, so that the second fatigue zone (TFL), = 60x10° x 73x10°
x 2.1 =9.20x10" and, hence, ¥TFL = (TFL, + (TFL)= 12.48x10" + 9.20x10"®
=21.68 x 10", Applying Eq. 15.17 gives Q_, =762 x 10° which is shown as point C
in Figure 15.7. Figure 15.7 clearly shows how the rate of the residual strength
reduction due to the increase in the commercial vehicle weights has increased from
fatigue zones 1 to 2.
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(d) Placement of a weight restriction
Because of the rapid reduction in strength induced by the increase in the commercial
vehicle weights, let us now assume that a weight restriction has to be placed on the
bridge that eliminates levels 1 and 2 in Table 15.1 as shown in column 8. This will
change the distribution of the probabilities as they have to be increased in proportion
so that they sum to 1, as shown in column 9. Furthermore, the load constant in
column 10 is now (L)), = 1.46.

Applying Eq. 15.18 with (F), =73 x 10°, Q, = Q, = 608 N/mm and YTFL =21.68
x 108, gives T, = 34 x 10° which is the number of cycles required for the strength to
reduce to the minimum requirement. This is shown as point E in Figure 15.7 and occurs
after a total of 244 million fatigue vehicle traversals. If the rate of fatigue vehicle traversals
remains constant at 150 million every 30 years, as occurred in the first fatigue zone,
then the bridge will last a total of (244/150) x 30 = 49 years.

(e) Remedial measures

At this stage, the strength of the stud shear connectors is at the minimum requirement
of the strength to resist the maximum overload. The only way to increase the design
life without reducing the maximum overload requirement, is to strengthen the bridge
so that the shear flow forces are reduced. Let us assume that a plate is welded to the
bottom flange of the composite beam, and that the addition of this plate reduces the
original cross-sectional property of A y /I _in Eq. 14.4 by 20%. Hence, the addition
of the plate reduces K in Example 14.5 to 0.4 x 10 mm' and, therefore, reduces the
shear flows to 80% of their original values prior to plating.

Reducing the shear flows to 80% of the original value, reduces the shear flows
with no friction q in Table 15.2 by the same factor. Hence the force constant reduces
by a factor of 0.8%' = 0.320, so that at mid-span (F)), = 0.320 x 73x10° = 23x10°.
Furthermore, the shear flow due to the maximum overload also reduces by 20% to
Q, = 0.8 x 608 = 486 N/mm. The fatigue damage in the third fatigue zone that was
previously analysed is (TFL), = 34x10° x 73x10° x 1.46 = 3.61x10", so that the
total fatigue damage of the first three zones is now XTFL = 25.29 x 10'®. Applying
Eq. 15.18 with Q_, = Q_ = 486 N/mm, Y TFL = 25.29 x 10%, (F), = 23 x 10°,
and with the value of the load factor prior to the weight restriction (L)), = 2.10, gives
T, = 58 x 10¢ which is shown as point F in Figure 15.7. The remedial work has,
therefore, extended the life of the bridge to a total of 302 million traversals, that at
the present rate of vehicle traversals will give a total design life of 60 years.

15.5.2.3 Example 15.8 Assessing the beneficial effect of friction

The beneficial effect of friction is illustrated in this example by redoing the analyses in
Example 15.7 with the effect of friction. It was shown in Example 15.4 that friction had
the least effect on the endurance at the mid-span design point, so the analysis of this
region will demonstrate the least benefit of friction on this beam. The effect of friction
is to reduce the force constant from (F,) = 73x10° in column 9 in the no friction part of
Table 15.2 to (F)=48x10’ in column 9 in the with friction part.
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Figure 15.7 Variation in the residual strength

At zone 1 in Figure 15.7, (TFL), = 150x10°x48x10°x1.14 = 8.21x10", hence
from Eq. 15.17, Q_, = 1700 — (8.21x10'"*x4.318x10""") = 1346 N/mm as shown at
point B’ in Figure 15.5. At zone 2, (TFL), = 60x10°x48x10°%2.10 = 6.05x10',
therefore, 2 TFL = 8.21x10® + 6.05x10'"® = 14.26x10'8, hence, Q,., = 1700-
(14.26x10'*x4.318x10"") = 1084 N/mm as shown at point C*. At zone 3, (TFL), =
34x10%48x10°x1.46 = 2.38x10'¢, therefore, > TFL = 16.63x10', hence, Q. =1700
—(16.63 x 10'%x4.318x10'") = 982 N/mm as shown at point E’. Finally at zone 4,
(TFL), = 58x10°%0.32x48x10° x 2.10 = 1.89x10', therefore, XTFL = 18.52x10'8,
hence, Q_ = 1700 ~ (18.52x10'*x4.318x10°"") = 900 N/mm as shown at point F’. It
can be seen in Figure 15.7 that friction can substantially increase the residual strength

and that friction provides a factor of safety against failure.

15.6 Composite building beam
15.6.1 General

Composite building beams can be subjected to fatigue loads such as those imposed
by the traversal of cranes or fork lift trucks.

15.6.1.1 Example 15.9 Assessment of a composite beam in a building
Let us consider the effect of the continuous applications of loads from the traversal
of a fork lift truck as shown in Figure 15.8(a). It will be assumed that the fork
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lift truck does not cross the beam longitudinally but transversely and in line with
the mid-span of the beam, so that the distance from the wheel loads V to the
supports remains equal. It will also be assumed that the width between wheels
remains constant at 1.6 m.

The composite beam spans 10 m and the material and geometric properties are given
in Figure 4.3. The beam has already been designed in Example 4.1 in Section 4.2.2.2
using ultimate strength rigid plastic theory. In these analyses, the beam was designed
with full shear connection, it had a flexural capacity of M, =702 kNm, and the strength
of the shear connection in a half span was 2300 kN. Hence, the shear flow strength Q_
= 2300 x 10%5000 = 460 N/mm which is shown in Figure 15.8(b).

The elastic properties of the beam are given in Figure 5.4 in Section 5.3.5.2,
where it was assumed that the beam was subjected to a long term load of
w,. =20 kN/m. It will be assumed in this analysis that the only short term loads are
the fork lift trucks. It will also be assumed that propped construction was used, so
that all of the uniformly distributed dead load is resisted by the long term properties
of the beam, and that all of the fork lift truck loads are resisted by the short term
properties. From Figure 5.5, the long term value of K in Eq. 144 is K, _=(Ay/l )
= (28270 x 62)/716 x 10° = 2.49 x 10 and the short term value is ng =(Ay/1)
= (57450 x 35)/819 x 10¢ = 2.46 x 10°.

(a) Minimum shear flow strength requirement

Assume that the beam must be able to resist a maximum overload that consists of a
fork lift truck of 97 kN. This truck would induce a shear load of 48.5 kN and, hence,
a short term shear flow force of 48,500 x 2.46 x 10? = 119 N/mm. The long term
uniformly distributed load of 20 kN/m induces a maximum shear load of 100 kN at
a support and, hence, a maximum long term shear flow force of 100 x 10°x 2.49 x
10 = 249 N/mm. Therefore, the maximum overload shear flow force q, which is
also the minimum strength requirement Q_= 119 + 249 = 368 kN and occurs at the
support as shown in Figure 15.8(b).

(b) Formation of a force and load spectrum

Let us assume that the weights W, and frequencies f of the fork lift trucks were
measured over a day and the results are listed in columns 2 and 3 in Table 15.6.
These weights have been converted to shear flow forces using the short term
properties of the beam and are listed in column 4. Because of the loading
arrangement, q, is both the peak and range of the cyclic shear flow force induced by
the lateral traversal of a vehicle,

A simple way to visualize the problem is to assume that columns 3 and 4 in
Table 15.6 are the ranges and frequencies induced by a standard fatigue vehicle
that has taken one day to traverse the beam. In which case, the force constant can
be calculated as F,= 1.974 x 10'? in column 5. The load constant L, = 1, as only one
vehicle equal to the weight of the standard fatigue vehicle is assumed to have
traversed the beam
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Table 15.6 Force spectrum for building beam

(1) (2) (3) 4) (3) (6) (7) (8)
Level L~ f q, f q:“ eric 9 f qdaﬂ
(kN) (perday) | (N/mm) (x10%) |(N/mm) (N/mm) (x107)
Without friction With friction
80 100 98.2 1445 | 4.8 93.4 1.119
2 50 400 61.4 0.527 | 3.0 58.4 0.408
3 10 300 12.3 0.002 | 0.6 11.7 0.000
F,= 1.974x10" F = 1.527x10"

and, hence, B = 1 and W = 1 in the load spectrum in Table 14.1, that will now only
have one level. Furthermore T is now equal to the number of days, as it took the
standard fatigue vehicle one day to cross the beam.

An alternative procedure for acquiring the force spectrum would have been to
strain gauge the beam and record the variations in the strains for a fixed period.
Columns 3 and 4 could have been derived from the magnitude and variations of
the strain readings and T would now be the length of the period during which the
strains were recorded.

(c) Endurance
Applying Eq. 15.16 in which Q=460 N/mm, Q_ = Q_ =368 N/mm, F,= 1.974x10"
and L = 1 gives T = 5080 days. Hence after 5080 days, the shear flow strength of all

mid-span
(a)
20 kN/m

V AV

42m H 4.2 m

5m : I 5m
(b) Q. i 1.6m
460 i
L B Ry T
o e Qg |
(N/mm) Q ¥, &
0

Figure 15.8 Composite building beam
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the connectors in the shear span has reduced to Q_, = 368 N/mm as shown in Figure
15.8(b). The strength of the shear connectors at the support will be just sufficient to
resist the maximum overload. However in the rest of the shear span there is a reserve
of strength of Q- Q, as can be seen in Figure 15.8(b). Therefore, this endurance
can be considered to be a lower bound.

(d) Residual flexural strength

As the cyclic shear flow forces are the same throughout the beam, because of the
loading configuration shown in Figure 15.8(a), the strengths of all the connectors in
a shear span reduce by the same amount, so that they will all have the same residual
strength of 368 N/mm. Hence, the shear flow strength has reduced from 460 to 368
N/mm, that is the shear flow strength is 368/460 = 80% of the strength when first
constructed. As the beam was originally designed with full shear connection, the
degree of shear connection is now 1 __ =0.8. It was shown in Example 4.6 in Section
4.2.4.2 that this beam with a degree of shear connection of 80% has an ultimate rigid
plastic strength of 653 kNm. Therefore, the fatigue loads will have reduced the
flexural capacity of the composite from 720 kNm to 653 kNm in 5080 days.

(e) Beneficial effect of friction

Equation 14.5 has been used to determine the effect of friction. It has been assumed
in the analyses that i1 =0.5. The shear flow frictional resistances are given in column
6 in Table 15.6. This reduces the shear flows acting on the stud shear connectors
from those in column 4 to those in column 7, from which F = 1.527x10". Applying
Eq. 15.15 in which Q, =460 N/mm, T = 5080, F,= 1.527x10? and L, = 1, gives Q_,
= 389 N/mm. Hence, the degree of shear connection is now 389/460 = 85% which
means that friction has increased the degree of shear connection by 5%.
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