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Preface 
In a companion book entitled 'Composite Steel and Concrete Structural Members: 
Fundamental Behaviour m', the authors have described the fundamental behaviour of 
composite members in order to give the engineer a feel for the behaviour that is 
often missing when design is based solely on using codes of practice or by the direct 
application of prescribed equations. This was achieved by first describing both the 
basic material responses and the basic structural mechanisms, which were then used 
to develop the fundamental equations or fundamental analysis procedures that 
simulated mathematically the structural responses, and which was then consolidated 
with a few carefully chosen worked examples. 

The aim of this book on elementary behaviour is to supplement the book on 
fundamental behaviour ~ in order to develop analysis skills,familiarity and an intuitive 
feel for composite construction that is required by students and practising engineers. 
A topic is first described very briefly and not comprehensively. Numerous examples 
are then worked and used to give an in-depth illustration of a technique, point or 
concept. The worked examples are therefore part of the main text, and it is necessary 
for the reader to work through all of them to gain a full understanding. In contrast, 
an engineer can obtain an in depth knowledge of the development of the techniques 
from the companion book on fundamental behaviour ~, which also contains more 
advanced analysis techniques. Both books are self-contained. 

This book on elementary behaviour describes the analysis techniques required 
for standard forms of composite steel and concrete structures, and in particular the 
analysis techniques required for non-standard forms of construction that are not or 
rarely covered in national standards. In fact, most of the analysis techniques described 
in this book are not covered by national standards. The analysis procedure is described 
firstly in general terms, this is then followed by detailed worked examples in which 
the technique is applied in the assessing and upgrading of existing structures or in 
the designing of new structures. The subject may therefore be of interest to practising 
engineers, particularly if they are involved in the design or assessment of non-standard 
or unusual composite structures for buildings and bridges, or are involved in the 
upgrading or strengthening of existing composite structures. However, this book 
has been written specifically for teaching elementary analysis skills to undergraduate 
students. Factors of safety or resistance factors are not included in the analysis 
procedures, and it will be left to the designer to include his or her own national 
values. However, mean and characteristics strengths are included as these are basic 
properties. It is only necessm'y for the student before using this book to have grasped 
fundamental concepts of mechanics such as equilibrium, compatibility, Young's 
modulus and second moment of area. 

It is not the object of this book to provide quick design procedures for composite 
members, as these are more than adequately covered by recourse to such aids as safe 
load tables. The emphasis in writing this book is to develop both elementary analysis 
skills and a feel for composite construction through the direct design and assessment 
of composite structural members, and in a manner that ensures that the student or 
engineer understands the fundamental principles and assumptions on which the 
analysis procedure is based. The contents have been divided into fifteen very short 
self-contained chapters, many of which can be taught in single one hour lectures. By 



x Preface 

using this format, the instructor can choose chapters according to his or her interest 
and the length of the course. 

Chapter 1 introduces in general qualitative terms different forms of composite 
construction, their behaviour and the terminology peculiar to this form of construction. 
Chapter 2 idealises the shape and size of the component by defining effective sizes 
that allow for shear lag, voids and local buckling. The composite structure is now 
ready for analysis. Standard forms of simply supported composite beams are then 
analysed elastically in Chapter 3, their flexural capacity is determined in Chapter 4 
using rigid plastic analyses, the strength and ductility of their mechanical shear 
connectors is treated in Chapter 5 and the resistance of the slab of the composite 
beam to the mechanical shear connectors is determined in Chapter 6. Standard forms 
of stocky composite columns are analysed in Chapter 7 and slender composite 
columns in Chapter 8. 

At this stage, the standard forms of analysis have now been described and applied 
to standard forms of composite construction. Composite beams with service ducts 
in the webs of the steel component, which is a common form of construction, are 
dealt with in Chapter 9. Longitudinal splitting of the slabs of composite beams, 
which is the commonest form of shear failure of the slab and which is rarely if ever 
dealt with in standards, is covered in Chapters 10 and 11. Chapter 12 deals with the 
elastic and plastic analysis of continuous composite beams as well as moment 
redistribution, and Chapter 13 with lateral-distortional buckling of these beams. Chapter 
14 applies analysis techniques for the fatigue design of stud shear connectors for new 
composite bridge beams, and methods for assessing the remaining strength and 
endurance of stud shear connectors in existing bridge beams is covered in Chapter 15. 

It is suggested that a composite course should at least include Chapters 1 to 6, as 
this covers the basic analysis techniques required for standard forms of composite 
beams. This could be followed by Chapters 7 and 8 that cover composite columns. 
Furthermore and if there is time, Chapter 9 on composite beams with service ducts 
could be included, as the analysis of this form of construction requires a thorough 
understanding of the first six chapters and helps to consolidate the understanding of 
this theory, as well as to provide an interesting practical problem as a design project. 

An enormous amount of personal time has been dedicated to preparing this book 
at the expense of our families. The authors would like to thank their wives Suzanne 
and Bernie and children Robert, Allan, Nigel, Amy and Adam for their good- 
humoured tolerance. 

Reference 
Oehlers, D. J. and Bradford, M. A. (1995). Composite Steel and Concrete Structural 
Members: Fundamental Behaviour. Pergamon Press, Oxford. 



Notation 

The following notation is used in this book. Generally, only one meaning is assigned to each symbol, but 
in cases where more than one meaning is possible, then the correct one will be evident from the context 
in which it is used. 

A b 
Ac 
Acol 
Af 
Ah 
A,, 
A f A pro 

rtb 
A r 
A 

A.h 

Aslob 
A,, 

A t 
Air -- 

Avoid 
A , ~ ,  ffi 
a -- 
a -- 

b ffi 
bit 
b i 
(b).  
(b.) r (b.), 
b e 
(b)~  
b h 
(b,)m,. 

(b,)u.r, ~ : 
~ , ) .  
(b)p 
(b),  
beff 
b r 
bh,ench 
b t = 
b I = 
b ~ 
b r = 
b e 
C 

C w 
c 

= cross=sectional area; area of the free body; generic form of the fatigue damage 
parameter; 

= area of bottom transverse reinforcement per unit length of shear plane; 
= cross-sectional area of the concrete component; 
= cross-sectional area of column; 
= cross-sectional area of flange; 
= area of one arm of hooped reinforcement; 
= area of applied moment diagram in a shear span; applied moment parameter; 
= cross-sectional area of profiled sheeting per unit length; 
= area of individual rib of composite profiled slab; 
ffi area of reinforcing bars; 
= cross-sectional area of the steel component; 
= cross-sectional area of steel component in ducted region; 
= cross-sectional area of the shank of a stud connector; 
= cross-sectional area of slab; 
ffi area of longitudinal shear force diagram or longitudinal thrust in a shear span; 

longitudinal thrust parameter; 
area of top transverse reinforcement per unit length of shear plane; 
total area of transverse reinforcement per unit length; A t + Ab; 
area of an individual void between the ribs in a profiled slab; 
cross-sectional area of steel web; 
constant of integration; 
length of duct; 
probability of occurrence of each weight of vehicle in a load spectrum; 
breadth of plate element; width of column; width of concrete component; 
plate slenderness; 
effective width of patch; 
effective patch width of a group of n connectors; 
effective patch width of a pair of connectors; 
effective patch width of an individual connector; 
width of prism; effective width of prism; 
effective width required to achieve triaxial restraint for dowel action; 
width of haunch; 
minimum effective width of prism; 

minimum effective width of prism for a group of stud shear connectors; 
minimum effective width of prism for an individual stud shear connector; 
minimum effective width of prism for a pair of stud shear connectors; 
effective width of prism for a group of n connectors; 
effective width of prism for a pair of connectors; 
effective width of prism for an individual connector; 
effective breadth of slab; 
width of concrete flange outstand; breadth of steel flange; 
mean width of haunch; 
effective width of pseudo inner prism; 
breadth of slab on left side; 
effective width of pseudo outer prism; 
breadth of slab on right side; 
mean width of trough; 
resultant force in a component; constant in the generic form of the fatigue endurance 
equation; constant in endurance equation that defines the mean and characteristic 
values; 

= strength of the weakest component in a standard composite beam; 
--- C o v e r ;  



xii Notation 

C b 
Cdo 
C m 
D 

Dc~k 
D 

d 
de 

df 

do 
d 
d p 

r 

d 
s 

ds/dx 
(ds/dX)dur 
(ds/dx)i.te r 
dsh 
dsolid 
d. 
E 
E 
Ech 
E 
Ek 
E 
Est 
e 
El 
(El)crop 
(EI)e 
(El)crop 
(EI),o 
(El), 
(El),hb 
F 

Fc 
F 

comp  

F 
cm p  

Ff 
F 
F 

nf  

Fsh 
F, 
(F,)cmp 
(F,),.. 
F,,,, 
f 
f~ 

= bottom cover to reinforcing bar 
= minimum cover to stud shear connector to achieve dowel strength; 2.2d h; 
= factor to allow for different end moments in a column; 
= one standard deviation; dowel strength of an individual shear connector; 

total depth of composite beam; depth of column; 
= dowel strength of shear connector after longitudinal cracking 
= maximum dowel strength of an individual connector; where ( D )  .~ is the strength 

in push-tests and (D)b~,m is the strength in composite beams; di"'rec~'t]on of dispersal 
of a concentrated force; strength of shear connector prior to cyclic loading; 

= distance; 
= distance from top fibre to centroid of concrete component; 
= distance from top fibre to elastic centroid; 
= longitudinal spread of a group of connectors; 
= internal diameter of hoop; 
= outside diameter of circular steel tube; 
= distance from top fibre to plastic centroid; 
= diameter of reinforcing bar; 
= distance from top fibre to centroid of steel component; 
= slip strain; 
= slip strain across duct; 
= slip strain across steel-concrete interface; 
= diameter of the shank of a stud shear connector; 
= depth of solid portion of the slab; 
= depth of the web; 
= Young's modulus; endurance of a structural component; 
= Young's modulus for concrete; short term Young's modulus of concrete; 
= characteristic endurance at two standard deviations; 
= effective modulus; long term modulus; 
= endurance of a component at range R~; 
= Young's modulus for steel; usually taken as 200 kN/mm~; 
= initial modulus of the strain hardening range; 
= eccentricity of load; 
= flexural rigidity; 
= flexural rigidity of composite section; 
= effective flexural rigidity of composite column; 
= flexural rigidity of composite section; 
= flexural rigidity of a composite beam with no interaction; 
= flexural rigidity of steel component; 
= flexural rigidity of the slab; 
= force; 
= axial force in concrete component; 
= compressive force; 
= transverse compressive force; 
= tensile force induced by flexure; force constant ~fRm; 
= normal force at interface; 
= normal force to shear plane per unit length; 
= concentrated load applied as a patch; 
= resultant force; 
= axial force in steel component; 
= concentrated force applied by an individual shear connector; 
= shear force in shear span; shear force in an individual shear connector; 
= transverse force; transverse tensile force induced by splitting; 
= transverse compressive force; 
= transverse tensile force; 
= tensile force; transverse tensile force; 
= strength; function; frequency of cyclic stress resultant; 
= bond strength of profiled sheeting fibs; 
= compressive cylinder strength of  concrete; approximately 0.85f~.; 
= Brazilian tensile strength; 0.5df~ for normal density concrete; 
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f f 
f~ 

f 

mllx 
f, 

HII 
H~ 
h 
hb 
h 
h 
h 

Cen,c 
cen,s 

hcent 

h. 
h. 
ho 
h 
hab 
h, 
hso.d 
hst 
ht 
hwc 
I 

I C 
If 

llllJ 

K c h  

KIng 
Ksht 
k 
k 
L 

L b 
Lc 
Lcon 

= flexural tensile strength; 0.6qf for normal density concrete; 
- direct tensile strength of the concrete; 0.4qf~ for normal density concrete; 
- compressive cube strength of the concrete; 
= compressive 'yield strength' of the concrete; 0.85f~ or approximately 0.72fc,; 
- equivalent yield strength; flexural stress to cause yield in an element subjected to 

shear; 
= maximum transverse stress 
= ultimate tensile strength; 
- yield strength of steel; 
= yield strength of profiled sheeting; proof stress; 
= yield strength of reinforcing bars; maximum stress in reinforcing bar that can be 

achieved when not fully anchored; 
- ultimate tensile strength of the stud material; 
- longitudinal shear force; longitudinal compressive force; intercept of fatigue 

regression line; component detail parameter; 
= longitudinal compressive force at low moment end of top T-section; 
= longitudinal compressive force at high moment end of top T-section; 
= vertical distance; 
-- height of bottom steel T-section; 
= height of concrete component; height of slab; effective height of prism; 
= distance between centroid of concrete component and interface; 
- distance between centroid of steel component and interface; 
= distance between the centroid of the concrete component and the centroid of the steel 

component; distance of centroid of reinforcing bar from the base of the stud; 
= lever arm between horizontal compressive forces', 
= distance of neutral axis from plastic centroid for condition of pure bending; 
= height of duct opening; 
-- depth of reinforcing bars; 
= height of rib of composite profiled beam; height of rib of haunch; 
= height of steel component; 
= height of solid part of concrete component; 
= height of stud shear connector; 
- height of top composite T-section; 
-- height of stud weld collar; 
-- second moment of area; second moment of area of column about weaker principal 

axis; second moment of area of steel beam; 
- second moment of area of concrete component; 
= second moment of area of the flange about an axis through the web; 
= second moment of area of the composite section transformed to concrete taken about 

the centroid of the transformed concrete section; transformed second moment of area 
about the neutral axis; 

-- second moment of area of the composite section transformed to steel taken about 
the centroid of the transformed steel section; second moment of area of 'steel' 
section in negative bending; 

= second moment of area of steel component; 
- number of weights of fatigue vehicles; number of levels in the load spectrum; 
- number of fatigue zones; 
= shear connector stiffness or modulus; constant for determining the maximum slip in 

a composite beam; parameter A y / l ;  
= parameter defining the characteristic dowel strength; 4.7-1.2/~/Nr 
= long term value of parameter A y/I.o; 
= short term value of parameter A ~ y ~ ;  
- local buckling coefficient; 
- effective length factor; 
= longitudinal distance: span of beam; length of column; length of shear plane; length 

of portion of the shear span; 
= length of slab between parallel beams; 
- maximum distance between points of contraflexure; 
= longitudinal spacing of connectors; 
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L d 
Lduct 

LL 
Ln 
L 
L p r 
Lsi 

L 
sp 

L 

L~ 
L~ 
M 
M a 
(M)y 
(Ma) h 
(M.)t 

Marl 
Mbh 

Mbt 
M c 
M 

(M~ct)h 
(Md,,~)l 
Mr,. 
Mf~ 
Mhog 
Mint 
M m 
Mini 
Mmax 

M o 
Mod 
M 
M p 

( p)hog 

MMp)~. 

M ~ 
(~Upurere)duc t 
M rqd 
M 
M 

(Ms)p 
(Ms)y 
M 

sag 
M~ 
M .  

Mste~t 
M~ 
Ma 

= length of beam between supports for lateral-distortional buckling; 
= distance of duct from nearest support; 
= distance between edge of stud shear connector and edge of flange; effective length of 

a column" L >_l.3d." �9 sn ~ 

= load constant ~BWm; 
= longitudinal spacing of stud shear connectors; 0.5d h< LL< 6h;  
= length of shear span n; 
= area of shear plane per unit longitudinal length; perimeter length of shear plane; 
= longitudinal spacing of reinforcing bars; 
= longitudinal spacing of a single line of connectors; longitudinal spacing if the 

connectors were placed along a single line 
= length of shear span; spread of reinforcing bars required to confine the concrete; 

spread of shear connectors that can fail as a group; 
= length of shear span; length between the design section and the support in a simply 

supported beam; 
= transverse spacing of stud shear connectors; Lr~ 4dh" 
= longitudinal spacing of transverse reinforcement; 
= moment; moment capacity; 
= applied moment; 
= applied moment to cause first yield; 
= applied moment at high moment end of duct; 
= applied moment at low moment end of duct; 
= available local moment capacity; 
= moment in bottom steel T-section at high moment end of duct; moment capacity of 

bottom steel T-section at high moment end of duct; 
= moment in bottom steel T-section at low moment end of duct; 
= moment in the concrete component; 
= moment capacity of composite section when governed by distortional buckling; 
= flexural capacity at high moment end of duct; 
= flexural capacity at low moment end of duct; 
= full-shear-connection moment capacity of a composite beam; 
= moment to cause fracture of the shear connection due to excessive slip; 
= hogging or negative moment; 
= moment capacity of duct subjected to vertical shear load Vin,; 
= end moments in a column; 
= maximum end moment in a column; 
= maximum moment; maximum value of the second order moment in a column; the 

sum of the primary and secondary moments; 
= pure flexural moment capacity; 
= the elastic lateral-distortional buckling moment in the steel component; 
= rigid plastic moment for bending about the weaker axis; 
= rigid plastic moment capacity of steel component; 
= rigid plastic moment capacity of composite beam in hogging moment; 
= rigid plastic moment capacity of composite beam in sagging moment; 
= partial-shear-connection moment capacity of a composite beam; 
= pure flexural capacity; 
= pure flexural capacity at mid-span of duct; 
= required moment capacity to resist shear; 
= reserve moment capacity; 
--- moment in steel component; cross-sectional strength of the steel component in bending; 

moment capacity of a steel beam; rigid plastic moment capacity of steel component; 
= moment in steel component when composite section is fully plastic; 
= moment in steel component when composite section first yields; 
= sagging or positive moment; 
= bending strength of the steel in the absence compression; 
= reduced steel bending strength for the effects of axial compression; 
= moment in steel component of a composite beam; 
= moment in top composite T-section at high moment end of duct; 
= moment in top composite T-section at low moment end of duct; 
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= short term moment taken about the plastic centroid; 
= moment taken about the top fibre; 
-- first yield moment; 
= non-dimensional moment in a column Mm.x/Mp; slope of fatigue regression line; 

exponent of fatigue equation; material component parameter; 
= number of connectors in part of a span; axial force; number of cycles of load; 
= normal tensile force induced by V,; 
= strength of simply supported column; strength of Euler column; 
= elastic buckling load of a perfect simply supported column; elastic buckling load of 

the bottom flange in a composite beam; 
= minimum value of elastic buckling load of the bottom flange; 
= Euler buckling load; 
= number of traversals of fatigue vehicle W~;  
= number of cycles of load of range Rk; 
= number of connectors that can be assumed to fail as a group; in rigid plastic analysis 

N can be taken as the number of connectors in a shear span N '  iF 
= squash load; 
= the elastic lateral-distortional buckling load in the steel component; 
= normal force across interface derived from the analysis of the pure shear capacity; 
= cross-sectional strength of the steel component in compression; 
= short term axial force; 
= the compressive strength of the steel in the absence of bending; 
= squash load; 
= number of connectors in a shear span; 
= number of connectors in a trough; 
= the axial load at which the column first yields; 
= modular ratio for short term loading; distance from top compressive fibre to neutral 

axis; depth of concrete in compression in a haunch; depth of element in compression; 
non-dimensional axial load in a column N J N q ;  number of connectors that can fail as a 
group; number of connectors in a group; 

= neutral axis position below the top fibre; 
= neutral axis position above the bottom fibre; 
= non-dimensional axial load to cause failure of concentrically loaded column; 
= modular ratio for long term loading; 
= neutral axis; 
= component strength; 
= strength of concrete component; Ac0.85f; A fy; remaining strength or residual 

strength of a component after cyclic loading; 
= splitting resistance to a group of connectors; 
= minimum splitting resistance to an individual stud shear connector; 
= minimum splitting resistance to a pair of stud shear connectors; 
= minimum splitting resistance to a groupof stud shear connectors; 
= splitting resistance to an individual connector; 
= characteristic splitting resistance to an individual connector; 
= splitting resistance to a pair of connectors; 
= strength of reinforcing bars; 
= strength of steel component; A fy; static strength of a component prior to cyclic 

loading; 
= strength of shear component in a shear span; ND; Q,hL,p; 
= strength of shear connection for full shear connection; 
= resistance to splitting; 
= resistance to splitting of inner prism; 
- resistance to splitting of outer prism; 
= squash load; 
= percentage of reinforcing bars; 
= yield strength of the reinforcement when fully anchored per unit area of the shear 

plane; bond strength of the reinforcement when not fully anchored per unit area of 
the shear plane; 

= shear flow strength; 
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- characteristic shear flow strength of a shear plane; 
- shear flow strength of stud shear connectors; static strength Din, per 

unit length; 
- shear flow strength required to resist the fatigue loads in the crack initiation 

approach; 
- mean frictional shear flow resistance; 
- shear flow strength required to resist the maximum overload; 
= shear flow strength required to resist both the maximum overload and the reduction 

in strength due to fatigue damage; shear flow strength required when the structure is 
first built; 

- residual or remaining shear flow strength after cyclic loading; 
- shear flow strength of the shear connection; strength of shear connection per unit 

length; 
-- shear flow strength at the start of cyclic loading; shear flow strength when first built; 
- shear flow; shear flow force; longitudinal force per unit length; 
- shear flow force resisted by the dowel action of the mechanical shear connectors; 
-- shear flow force resisted by the dowel action of the mechanical shear connectors in 

shear span n; 
- shear flow force induced by maximum overload; maximum 

uni-directional shear flow force that the connector has to resist; 
- uni-directional shear flow force; 
- maximum uni-directional shear flow force; maximum static shear flow force 

imposed by the traversal of the standard fatigue vehicle. 
-- total shear flow force imposed by shear connectors; total range of the shear flow 

force; total range of shear flow force that causes fatigue damage; 
- maximum uni-directional shear flow force; 
- stress resultants; range of cyclic load; reaction; 
= transverse rib reduction factor to the dowel strength of the stud shear connector, 
= nominal strength of the member; 
= radius of gyration; ~(I/A); 
= minor axis radius of gyration of the compressive flange; 
= maximum slip; 
= slip at the commencement of plasticity; 
= plastic section modulus; M = S fy; 
= slip at fracture of the shear connector; 
= slip; longitudinal spacing of stud shear connectors; 
= transverse tensile force; total number of fatigue vehicle traversals 

in a design life; total number of fatigue vehicle traversals in a fatigue zone; 
= transverse distance to adjacent beam; 
= transverse distance to edge of slab; 
= fatigue zone; fatigue damage; TFfLf; 
= time; thickness of plate element; 
= flange thickness; thickness of plate to which the stud is welded; tf ~,O.4d,h; 
= time at application of constant stress; 
= lateral spacing between connectors at the extremities of a group; 
= lateral spacing of a pair of connectors; 
= thickness of web; 
= longitudinal displacement of concrete component; 
= variation in initial imperfection in a column; additional deflection in 

column due to the bending curvature; 
= longitudinal displacement of steel component; 
= buckling deformation; 
= vertical shear force; magnitude of moving point load; axle load; 
= applied shear force; 
= shear force in bottom steel T-section; 
= shear resisted by the concrete slab; 
= shear load in combination with Min,; 
= material shear strength of steel web; 
= material shear strength of steel web of bottom steel section; 
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= material shear strength of steel web of bottom steel section; 
ffi shear force in shear span n; 
- pure shear capacity; 
- pure shear capacity of ducted section; 
= shear force in steel component; 
= shear force in top composite T-section; 
= upper bound to pure shear capacity of top composite T-section; 
= deflection; 
- characteristic shear strength of shear plane; 
- deflection of composite beam with full interaction; 
ffi deflection of composite beam with no interaction; 
= deflection of composite beam with partial interaction; 
- WFv/Ws~; concentrated load; 
= concentrated load to cause collapse of beam; 
- weight of fatigue vehicle; 
- weight of maximum overload vehicle; 
= weight of standard fatigue vehicle; 
-- width; width of slab; 
= uniformly distributed applied load; 
- effective flange width; 
- effective width of slab over ducted region; 
- width of steel flange; 
- short term uniformly distributed load; 
- long term uniformly distributed load; 
= parameter in the denominator of the generic form of the cyclic stress resultant; 
= level of load spectrum; 
- length of lateral tensile stress distribution; 
= distance from top compressive fibre; vertical distance; distance from centroid of 

section to position of stress o; 
- distance between the centroid of the concrete component and the centroid of the 

transformed composite beam 
- depth of plastic neutral axis from the inside of the compression flange; distance 

between the centroid of the concrete component 
and the centroid of the composite section transformed to a concrete section; 

= depth of the neutral axis below the top fibre; 
= structural property; elastic section modulus; 
= mean property; 
= characteristic property' 
= distance from end of column; number of magnitudes of the cyclic ranges; level of 

force spectrum; number of levels in the force constant; 
= exponent for the effect of span on the maximum slip; reference to a specific shear span; 
- neutral axis parameter; 
- elastic restraint stiffness per unit length applied to flange strut; 
= exponent for the moment effect on the maximum slip; moment gradient in a column; 
= load factor; neutral axis factor; 
= change; 
= additional deflection of column; 
= maximum value of the initial out of straightness; 
-- strain; strain profile; 
= strain in concrete; 
= creep strain; 
= instantaneous strain; 
= fracture strain; 
= strain in steel; 
ffi shrinkage strain; 
= final shrinkage strain; 
= strain in steel at start of strain hardening; 
= ultimate compressive strain of concrete; 0.003; 
= yield strain; 
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= degree of shear connection; strength of shear connection as a proportion of that 
required for full-shear-connection; imperfection parameter; 

= degree of shear connection at the position of maximum applied moment; 
= degree of shear connection at the transition point; 
= angle of sloping side from vertical in degrees; angle in degrees between the direction 

of the span of the ribs and that of the composite beam; slope; 
= rotation of plastic hinge in hogging region; 
= curvature; 
= curvature at first strain hardening; 
= curvature at first yield; 
= slenderness ratio; L/r; 
= buckling strength parameter for steel component in hogging bending; 
= coefficient of friction at the steel-concrete interface; --- 0.7; 
= Poisson's ratio for steel; 
= parameter to determine Ny; 
= density in kg/m3; 
= stress; stress profile; 
= stress in bottom fibre; 
= stress profile in concrete component; 
= maximum stress to cause elastic buckling; 
= equivalent stress profile; 
= longitudinal stress; 
= peak stress; 
= stresses in the transformed concrete section, that is the composite section 

transformed to concrete; 
= stress normal to shear plane; active normal stress across interface which is positive 

when compressive; 
= constant stress; 
= real stress profile; 
= shear stress; 
= shear stress in web; mean stress in web; 
= shear stress to cause yield; 
= capacity reduction factor; creep coefficient; 
= final creep coefficient; 
= slenderness parameter; ductility parameter; 
= two dimensional dispersal of the concentrated force; 
= three dimensional dispersal of the concentrated force; 



1 I n t r o d u c t i o n  

1.1 Composite structures 
Composite steel-concrete structures are used widely in modem bridge and building 
construction. A composite member is formed when a steel component, such as an I- 
section beam, is attached to a concrete component, such as a floor slab or bridge 
deck. In such a composite T-beam, as shown in Figure 1.1, the comparatively high 
strength of the concrete in compression complements the high strength of the steel 
in tension. Throughout this book, we will refer to the steel and concrete as the 
components of the member, which are further made up of elements, such as the 
flanges or web of the steel I-section component, or the reinforcement in the slab. 
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Figure 1.1 Composite T-beam 

The fact that each material (steel or concrete in Figure 1.1) is used to take advantage 
of its best attributes makes composite steel-concrete construction very efficient and 
economical. However, the real attraction of composite construction is based on having 
an efficient connection of the steel to the concrete, and it is this connection that allows 
a transfer of forces and gives composite members their unique behaviour. In this book, 
we will make considerable reference to the behaviour of this connection at the interface 
between the steel and concrete components, and will attempt to demonstrate that the 
connection between the steel and concrete characterizes the composite member. 

There are a number of structural arrangements in which the steel and concrete 
act in this symbiotic composite fashion. In simply supported bridge construction, 
the concrete slab is subjected to compressive forces, and this slab is supported 
typically by steel I-section components, as depicted in Figure 1.1. The connection 
between the steel and concrete is in the form of mechanical shear connectors, which 
allow the shear transfer of the forces in the concrete to the steel and vice versa, and 
which also prevent vertical separation of the concrete and steel components. There 
are many forms of mechanical shear connectors as shown in Figure 1.2. The most 
common, however, is the stud shear connector shown in (a), which consists of a 
head and a plain shank connected to the steel component by a weld collar. These 
stud shear connectors are considered in Chapter 5, and in bridges particularly, their 
efficiency may be reduced by fatigue loading, as discussed in Chapters 14 and 15. 
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Figure 1.2 Mechanical shear connectors 

It is worth noting that in composite T-beams the way in which the beam is constructed 
affects greatly its response to load. Buildings generally have the floors supported by 
closely spaced props, as shown in Figure 1.3(a), which carry all of the wet concrete 
loading applied to the steel component, so that the latter component does not contain 
any significant bending moments. This is called propped construction. On the other 
hand, environmental constraints in the construction of bridges usually prevent props 
from being used, as in (b), so that the flexural stiffness and strength of the steel component 
must carry the weight of the wet concrete. This method of construction, which is also 
experienced in pretensioned prestressed concrete bridge construction, is called unpropped 
construction. The ramifications of propped and unpropped construction on the flexural 
behaviour of beams are considered in Chapter 3. 

Composite columns are also used widely in practice to resist predominantly 
compressive loading, and they may take the form of an encased I-section, as shown 
in Figure 1.4(a), a concrete-filled rectangular steel section, as in (b), or a concrete- 
filled steel circular tube, as in (c). The use of high strength-high performance concrete 

closely spaced props ~ ~ w e t  concrete 

.... -T T / T' I ' '  ,/.717 ,/-/17 / . 7 t 7  ~ steel component 

(a) propped (b) unpropped 

Figure 1.3 Propped and unpropped beams 
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is now finding its way into composite column construction, where concrete strengths 
may be more than twice the strength of 'normal' concrete. Short or stocky composite 
columns tend to fail by squashing, and their strength is governed by the strength of 
the cross-section. Stocky columns are considered in Chapter 7. Long or slender 
columns, on the other hand, tend to fail by a combination of material and geometric 
nonlinearities, and their strength is governed primarily by the phenomenon of 
buckling. Slender columns are considered in Chapter 8. 

Figure 1.4 

steel component concrete component 

(a) (b) (e) 

Composite column sections 

Most modem flooring systems in buildings use a concrete slab with a cold formed 
profiled steel sheeting element about 1 mm thick as its soffit, as shown in Figure 1.5(a). 
This is a special form of composite member where the steel forms permanent and 
integral formwork for the concrete component, and the composite action is achieved by 
embossments in the sheeting as in (b) to (d), and by some chemical bonding between 
the concrete and steel sheeting. Commonly, the ribs of the profiled sheeting are 
orthogonal to the centreline of the I-section component which supports it, and the stud 
shear connectors are welded through the thin steel sheeting into the top flange element 
of the steel component. There is thus shear connection in the longitudinal beam direction 
by way of the mechanical shear connectors, as well as in the direction transverse to the 
steel I-beam component by the embossments in the profiled sheeting. The resulting 
behaviour of this system is thus referred to as double composite action. 

Another way of forming composite beams is by filling trough girders that are 
fabricated from profiled sheeting with concrete as shown in Figure 1.6. The resulting 

concrete ~ ~ c o l d  formed ribs 

(s) composite slab 

steel decking or profiled sheet 

Figure 1.5 
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Figure 1.6 Profiled trough girders 

profiled beam bears a resemblance to the composite profiled slab in that the steel 
sheeting is used as permanent formwork and acts compositely with the concrete. An 
extension of this concept in flooring construction would be to produce a flooring 
formwork consisting of profiled troughs and profiled sheeting, and then to pour 
concrete so as to produce a fully composite profiled beam-slab system. 

It is now commonplace in high-rise buildings to use a combination of these 
composite forms of construction. For example, the columns may be concrete-filled 
tubes or encased I-sections, and these are connected to the core of the building by 
steel I-beam components. These I-beams are then made composite by laying steel 
profiled sheeting onto their top flange elements, welding stud shear connectors 
through the profiled sheeting into the flanges and pouring the concrete slab to form 
the flooring of the building storey. The I-sections must be connected to the columns 
by some form of mechanical connection, which is not to be confused with the 
mechanical shear connectors considered so far. Such composite connections are 
still the subject of vigorous on-going research, and are not treated in this book. 

The composite members and composite forms of construction described in the 
previous discussion represent only the common applications, and the use of steel 
and concrete to form these types of composite member is only limited by the 
imagination of the designer. For example, in retrofitting deteriorating concrete beams 
or slabs to improve their performance, or to increase their resistance to earthquake 
loading, steel plates may be glued or bolted to the concrete component, and these 
plated members must be analysed by the theories based on composite analysis. We 
shall see that although this text deals with the elementary behaviour of composite 
members, there are a number of concepts peculiar to this form of construction, and 
the basic principles that are established must be borne in mind if the designer is to 
take advantage of composite action in his or her final design solution. 

1.2 Design criteria 
1.2.1 General  
It is worth noting at this point that the main philosophy in modem structural design 
is based on so-called Limit States Design or Load and Resistance Factor Design. 
This almost universally adopted procedure was developed during the 1970's and 
early 1980's. Although the basis and requirements of this philosophy have been 
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well-developed and explained in a number of texts, it will be treated briefly in Section 
1.2.3. Because of the variation of material properties, particularly those of concrete, 
design is generally based on characteristic values, and these are introduced in Section 
1.2.2. It must be remembered that in this book we are considering the structural 
response of composite members, which can loosely be defined as their behaviour 
when subjected to some form of applied loading. The methods of structural analysis, 
in so far as it is used to determine the loading, will not be treated specifically. This 
is particularly so as many of the members we will be dealing with are statically 
determinate, so that the distribution of the applied moments and shears can be found 
from statics alone. Where these internal actions need to be found by structural analysis, 
and this is mainly restricted to continuous beams that are statically indeterminate, 
the method of analysis will be described. 

1.2.2 Characteristic values 
In structural design, it is usually assumed that the frequency of the predicted properties 
are of a Normal type, which is sometimes termed a Gaussian Distribution. This frequency 
distribution is shown in Figure 1.7. If we let Z denote the predicted structural property, 
such as its material strength or stiffness, this Normal Distribution is characterized by (i) 
the mean strength Zmm and (ii) its standard deviation D z. In order to allow for this 
scatter of properties, design is often simplified by basing it on the upper or lower 
characteristic strength values Z h. For properties derived from static loading, the 
characteristic values are defined as either the value of the property at which 5% of the 
values lie below, or 5% of the values lie above. This may thus be written as 

Zc h = Zmean -I- 1.64 D z (1.1) 

where 1.64 is the number of standard deviations from the mean to reach the 5 
percentile value. 

The conservative value of the characteristic property is used in design. For most 
design procedures, such as strength and deflection calculations, this will be given 
by the lower characteristic value, that is Zmea-l.64D z, as shown in Figure 1.7. 
Occasionally, the upper characteristic value Zme~+ 1.64D z is used, such as in crack 
width predictions. In limit states design it is common practice to insert the 
characteristic material properties into the characteristic value of the prediction 
equation, in order to allow for the normal scatter of both the material properties 
and the prediction equation. Throughout this book, it will be made clear whether 
the predictive equation is based on characteristic values or mean values. 

It is worth noting that it is only by convention that the 5% characteristic value is 
used in design. In fatigue design, as in Chapters 14 and 15, the characteristic property 
is often defined as the value at two standard deviations from the mean, that is 
Zch --- Zm~,, - 2.0D z, so that 2.3% of the values lie beyond this characteristic value. 

1.2.3 Limit states design 
We will assume implicitly in this book that design is based on limit states design 
principles. The basis for this method may be found in a number of books, such as 
Ref. 1 for concrete design and Ref. 2 for steel design. 
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Figure 1.7 
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In limit states design, the forces acting on the structure must be found, usually 
from loading codes. The methods of structural analysis are then used to convert 
these loads to the internal actions acting on the structure, and these may be the 
bending moments, shear forces, axial forces or even torques. These internal actions 
are called the nominal actions. For limit states design they must be multiplied by 
appropriate load factors T. Because different types of loading (dead, live, wind 
etc.) have different variabilities and chances of occurrence, the value of the load 
factor for each type of loading is different. It is thus usual to multiply the appropriate 
load by the appropriate load factor y at the outset, and then perform the structural 
analysis. The resulting (factored) action is referred to as the design action. 

The two limit states to be considered are for strength and stiffness. For strength 
design, the nominal strength of the member Rtj (which may be its bending, axial or 
shear strength) is determined, and extensive guidance is given for this calculation in 
this book. The nominal strength is then reduced by a capacity reduction factor f to 
obtain a design strength. The strength design equation may then be written as 

o r  

Design action < Design strength (1.2) 

Z 7 x(Nominal action) < ~R o (1.3) 

The load factors used in structural design vary from country to country, and it will be 
left to the designer to insert his or her national value. The same can be said of the capacity 
reduction factor. It is worth noting here that specifying the capacity reduction factor ~ for 
composite construction is not as straightforward as in steel or concrete design alone, as 
we are using two different materials that have different properties. In this book, as 
mentioned earlier, only the strength of the member R o will usually be specified. 

The serviceability limit state is generally governed by limiting excessive deflections 
and vibrations. Generally for the serviceability limit state, the nominal loads are 
used and so are not factored, although sometimes a load factor g less than unity may 
be specified for long-term loads. It will be reiterated finally that this book is not a 
text on limit state design of composite structures, and considers only the behaviour 
or response of a composite member to loading. If the book is to be used in a design 
mode, then the reader will have to convert the governing equations to his or her 
national limit states format. 
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1.3 Material properties 
1.3.1 General 
Composite members normally use structural grade steel and normal strength concrete. 
However, high strength concrete may be used particularly in columns, as well as cold- 
rolled profiled steel sheeting in profiled slabs and beams. Detailed information may be 
obtained on the behaviour of these materials in a number of standard texts that deal 
with concrete I and steel s or Ref. 3 which treat both static and fatigue behaviour. 
However, a very brief description of the mechanical properties of both hot and cold- 
rolled steel, reinforcing steel and normal strength concrete is given in this section 
for use throughout this book. Stud shear connectors are treated in Chapter 5. 

1.3.2 Structural steel 
Structural steel is hot-rolled, and may be further rolled into structural shapes, most 
typically I-sections, or welded from flat plate to form structural sections. A typical 
stress-strain curve for mild steel is shown in Figure 1.8. The response is elastic- 
plastic-strain hardening, and the most important characteristics of the steel are its 
elastic modulus E s = 200 kN/mm 2 and its yield stress fy, typically in the range 250 N/ 
nun 2 to 400 N/mm 2. Strain hardening generally takes place at a strain of 10 or 11 times 
the yield strain Ev = f fE,  and the initial modulus of the strain hardening range is often 
taken as Est = l~s/3(). 1~he stress-strain curve is normally the same in tension and 
compression, and the Poisson's ratio in the elastic range is v = 0.3. In addition, the 
ultimate tensile stress f in Figure 1.8 is usually between 400 N/mm 2 and 500 N/mm 2. 

The stress-strain curve shown in Figure 1.8 is based on uniaxial loading of a mild 
steel specimen. Sometimes the steel may be loaded in a biaxial stress state with 
shear stresses, and recourse is usually made to the von Mises yield criterion 2 to 
define the interaction between these stresses at failure. When such a yield criterion 
is adopted, the yield stress of mild steel in pure shear is xy = f/~/3. 

1.3.3 Profiled steel 
Profiled steel sheeting used in composite profiled slabs and beams is manufactured 
by cold rolling thin steel plate into an appropriate shape. The cold-rolling process 
tends to increase the yield stress. The stress-strain curve is rounded in the vicinity of 

...... ......... " 
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Figure 1.8 Stress-strain curve for mild steel (not to scale) 
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Figure 1.9 Stress-strain curves for profiled sheeting and reinforcement 

the yield stress, as in Figure 1.9(a), and so a 0.2% proof stress fp = 550 N/mm 2 is 

often used. The elastic modulus is again close to E s = 200 kN/mm 2. 

1.3.4 Reinforcing steel 
The concrete component is almost invariably reinforced with steel in some way. 
The reinforcement is usually in the form of deformed bars, or smaller diameter 
rectangular mesh or fabric. Here the stress-strain curve is usually elastic-perfectly 
plastic, as in Figure 1.9(b). Again, the elastic modulus E = 200 kN/mm 2, while a 

common value for the yield stress is fr  = 400 N/mm 2. 

1.3.5 Concrete 
1.3.5.1 S h o r t - t e r m  p r o p e r t i e s  
The property of concrete that is most quoted is its compressive strength f .  Because 

r . , 

of the high variation of concrete strengths, it is common to specify a characteristic 
strength f 'as in Section 1.2.2 that is exceeded by 95% of samples tested in compression, 
and so is 1.64 standard deviations below the mean strength. It will be left for the reader 
of this book to insert his or her characteristic values into the design equations. The 
concrete compressive strength f used in these equations will be the cylinder strength, 
as opposed to the cube strength fu used in some countries, however, it can be assumed 
that f --- 0.85f u. The values of f for normal strength concretes are in the range 20 N/ 
mm 2 to 40 N/mm 2. High strength concretes are gaining popularity in column 

construction, and strengths may exceed f = 100 N/mmL 
The tensile strength of concrete is very much lower than its compressive strength. 

The direct tensile strength ft is obtained from simple pull tests and can be obtained 
from the empirical equation ft = 0.4~/f where the units are in N/mm 2. Lateral tensile 
stresses are encountered in beams with stud shear connectors, and hence we will 
need to know the splitting strength fb" This can be obtained directly from a Brazil 
strength test or approximately from fb = 0.5~/f. The modulus of rupture ff is the 
flexural strength of an unreinforced concrete prism tested in flexure, and is given by 

the empirical expression ff = 0.6~/f. 
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The stress-strain relationship for concrete under compression is very different in 
shape from that of steel, and depends greatly on the compressive strength fr and also 
significantly on the rate of straining. A typical curve is given in Figure 1.10. At 
stresses below 0.4f,  the behaviour is close to linear elastic, with an elastic modulus 

Er often quoted as 

E c =O.043pl'5 /fc: (1.4) 

where f and E are expressed in N/mm ~ and p is the density in kg/m 3. For normal 
weight concretes, p = 2400 kg/m 3, and so E = 5050~/f. 

Figure 1.10 
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Stress-strain curve for normal strength concrete 

The maximum stress f occurs at a strain of about 0.002 after which the stress reduces. 
For unrestrained concrete, it is usual to assume that the concrete fails in crushing at 
a strain e = 0.003. 

1 .3 .5 .2  L o n g - t e r m  p r o p e r t i e s  
Unlike steel, concrete is subjected to time-varying deformations due to creep, shrinkage 
and thermal strains. At a constant temperature, the total strain at any time t may be 
taken as 

e ( t )  = e e (t) + ~cr (t) + Esh (t) (1.5) 

where E e is the instantaneous strain, Ecr is the creep strain and Esh is the shrinkage 
strain. The deformations which take place under a constant stress applied at a time t 

= t o are shown in Figure 1.11. 
The reader is referred to specialist texts 4 on details of the mechanisms of creep 

and shrinkage. We will simply note here that creep is the deformation that occurs 
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Figure 1.11 Time-dependent deformations under sustained stress 

under a sustained stress applied at time t .  It is often convenient to express the creep 

strain ~ in terms of the creep coefficient ~ by 

~)(t,to ) = ~cr (t't~ ) 
ee(t ) (1.6) 

The final creep coefficient ~*(t o) as t --~ ~ is usually in the range 1.5 to 4.0. 
Under the action of a constant stress o o, the sum of the elastic and creep strains is 

o/Ee(t, to), where E is the effective modulus given by 

E c 
Ee = ~ (1.7) 1+r 

Shrinkage is also treated in standard texts 4 on time effects in concrete, and the 
rate of shrinkage decreases as time increases, as shown in Figure 1.12. The final shrinkage 
strain e*sh as t ~ ~ may be as high as 1000xl0 -6. The coefficient of thermal expansion 

for concrete is also of importance, and a value of 10xl0-6pc is often quoted for design. 

1.3.6 Rigid plastic properties 
When conducting a service load analysis (to satisfy the serviceability limit state) as 
is undertaken in Chapter 3, the steel and concrete components are loaded in the 

Shankage 
s t ra in(~ 

Time t 

Figure 1.12 Shrinkage strains 
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linear elastic range and the behaviour is governed primarily by the values of the 
elastic moduli E s and E.  Hence the stress-strain curves shown in Figures 1.8 to 1.10 
are invoked in their elastic ranges of structural response. 

Elastic or elastic-plastic analyses of composite members can be quite tedious, and 
the behaviour of a composite member at ultimate may be more easily determined by 
conducting a rigid plastic analysis which assumes that the composite beam is ductile. 
A rigid plastic analysis allows the designer to calculate an upper bound to the ultimate 
strength, and is a prerequisite for the analysis treated in detail in Chapter 4 and used in 
Chapter 12. In order to conduct a rigid plastic analysis, the stress-strain relationships in 
Sections 1.3.2 to 1.3.5 must be simplified. This requires the assumption to be made that 
the materials are either not stressed at all, or are fully yielded with an infinite deformation 
capacity at the yield stress or plastic plateau, as shown in Figure 1.13. 

The rigid plastic simplification of the steel stress-strain curve is shown as the 
dotted line 0-A-B in Figure 1.8. This is applicable to a composite beam whose 
steel component is subjected to large curvatures, so that the strains (both tensile 
and compressive) over most of the steel component exceed Ey. As the fracture strain 
eft in Figure 1.8 can be orders of magnitude greater than the first yield strain ey 
owing to the ductility of the mild steel, it is very unlikely that the steel will fracture 
before the concrete crushes, and so the assumption of an infinite plastic plateau as 
depicted in Figure 1.13 is adequate. Although it may seem slightly unconservative 
to treat the small elastically strained portions of the steel component as being fully 
yielded at f ,  this is compensated for by the increase in strength due to strain 

Y 

hardening which is ignored in the rigid plastic assumption. Hence the rigid plastic 
strength which is theoretically unattainable, as it requires an infinite curvature, can 
be attained in practice due to strain hardening. 

Similarly, the rigid plastic assumption for the concrete stress-strain curve is shown 
as the dotted line A-B-E in Figure 1.10. Here the tensile strength of the concrete is 
assumed to be zero, and all compressive concrete is fully yielded with an unlimited 
plastic plateau at 0.85f, as shown in Figure 1.13. This is in contrast to the analysis of 
reinforced concrete beams ~ that make use of a so-called neutral axis T factor approach 
in which the concrete is not fully yielded over its entire compressive region at ultimate 
as shown by the line A-D-C-E-F in Figure 1.10. It is argued in Ref. 3 that use of a T 

0.85(] 
orf, 

Stress ~ Dma-~] 
or Force 

i i | l  ii 

~ ~ -  plastic plateau 

0 Deformation 

V 

Figure 1.13 Idealized rigid plastic material properties 
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factor is not necessary in composite construction. It is worth noting that the 0.85 
factor for the fully yielded strength of the concrete can be attributed to a size effect !, 
and arises because a typical concrete component crushes at 0.85 times its cylinder 
strength f .  Although details of the material properties of stud shear connectors are 
deferred until Chapter 5, in a rigid plastic analysis they too are assumed to deform 
in a rigid plastic manner with a yield plateau equal to their maximum dowel strength 

Dma x as shown in Figure 1.13. 

1.4 Partial shear connection 
1.4.1 General 
Two commonly-used terms that describe composite behaviour are partial- 
shear-connection and partial-interaction, and these relate to the behaviour of 
the connection between the steel and concrete components. We shall see that 
partial-shear-connection concerns equilibrium of the forces within a composite 
member, while partial-interaction concerns compatibility of deformations at the 
steel/concrete interface. Partial-shear-connection thus represents a strength criterion, 
while partial interaction represents a stiffness criterion. Numerical examples that 
illustrate partial-shear-connection are given in Chapter 4. 

1.4.2 Equilibrium of forces 
1.4.2.1 Composite beam 
Consider the simply supported composite T-beam shown in Figure 1.14(a) 
and (b) that is subjected to positive or sagging bending, and we will assume that the 
curvature is large so that the strains are large. If we know the distribution of strains 
across the section A-A distant L from the support, the stress-strain curves for the 

sp 
materials could be invoked to determine the stress distribution, as shown in (d). Let us 
assume that the neutral axis N-A lies in the steel component, so that the portion below 
N-A in (d) in the steel is subjected to tension and that above it is subjected 
to compression, and all of the concrete component is subjected to compression. If we 
integrate the tensile stress distribution, then this will be equivalent to a tensile force F~, 
positioned h 2 below the steel/concrete interface, and integrating the compressive stress 
produces a compressive force positioned ht above the interface. This is shown in Figure 
1 14(e) Clearly from horizontal equilibrium, F = E = F and from rotational 

�9 �9 c o m p  t e n  r 

equilibrium M a = F(h~+ h2), where M is the applied moment at section A-A. 
Another way of visualizing the internal stress resultants is to replace the stress 

distribution acting on the concrete component by a moment M and an axial force F c 
c 

acting at the centroid of this component, and to replace the stress distribution acting on 
the steel component by a moment M and an axial force F acting at the centroid of the 

steel component, as in Figure 1.14(0. Clearly then from force and moment equilibrium 

yc = Fs (1.8) 

Ma = Mc+ M + F(hcen, c + hcen, s) (1.9) 
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where (hee.,c+ h s) is the distance between the component centroids as shown in (c). In 
many ultimate strength design calculations (Chapter 4) it is assumed that the concrete is 
unreinforced in the longitudinal direction so that its strength is governed by its very low 
strength in tension (see Section 1.3.5). In this case it is often assumed that M e = 0. 

1.4.2.2 Concrete component 
Consider the free body diagram of the concrete component loaded externally over 
the span length L shown in Figure 1.15. As the left hand end of the span is at a 
simple support (or~ of contraflexure), the total shear force on the shear connectors 
F h = F c. In addition, the couple at the fight hand side formed from M c and hcenc,cFc 
must be equilibrated by the couple L ,F  shown. The shear connectors must therefore 
be designed to resist the tensile normal force F ,  while the compressive normal force 
F. is resisted by the shear connectors and bearing at the interface. 

1.4.2.3 Degree of shear connection 
So far we have considered the actions that act on a composite cross-section. We will 
now concentrate on the strengths of the components of a composite section by using 
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Figure 1.15 Concrete component 

the rigid plastic assumptions introduced in Section 1.3.6. Firstly, the axial strength 
of the steel component of area A s is defined as P = A f ,  where f is the yield stress 
of the steel (Section 1.3.2). The axial strength of the concrete component of area Ar 
is taken as P = 0.85Acf, where f is the compressive strength of the concrete (Section 
1.3.5). Finally, we will define the strength of the shear connection, P~, as the product 
of the number N of shear connectors in the shear span as shown in Figure 1.15 and 
the strength of an individual connector Din. 

There are three possible stress distributions that can occur for a composite beam 
at its maximum strength, and these are shown in Figure 1.16 for the beam shown in 
Figure 1.14 under the assumption that Me = 0. In Case 1 in Figure 1.16, we are 
assuming that P < Pc so that the steel component is fully stressed and the concrete 
component is partially stressed as shown in (b). Hence F = F = Ps as shown in (a), 
and as we saw in Figurel. 15 that F h = Fr the strength of the shear connectors to 
ensure that this equilibrium condition exists is Psh > P~" This condition is referred to 

as one of full-shear-connection. The moment capacity of the section is then 

M fs c = Pshl (1.10) 

In Case 2 of Figure 1.16, Pc < Ps so that the concrete component is now fully 
stressed and therefore F = F = P .  In order for this latter condition to be realized, 
some of the steel must be in tension and some in compression as shown in (e), 
resulting in the couple M s shown in (d). Again, with the necessary equilibrium 
condition that P~h > P '  we have a situation with full-shear-connection and now 

M fs c = M s + Pch3 (1.11) 

Note that in both Cases 1 and 2 in Figure 1.16, there is only one neutral axis. 
Consider now the case where the strength of the shear connection governs, that is 

Psh < Pc and Psh < Ps as shown in Case 3 of Figure 1.16. For the equilibrium condition 
in Figure 1.15 to exist, then F c = P~h so that not all of the concrete in Figure 1.16(h) 
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is at its maximum stress and a neutral axis will lie in the concrete component. 
Furthermore as F s = Psh in (g) then some of the steel is in tension and some in 
compression as shown in (h), and another neutral axis will lie in the steel component 
and a moment M s will be induced. This is referred to as partial-shear-connection 
because the flexural capacity is now governed by the lack of shear connection, whereas 
in the previous cases it was assumed that there was a plentiful supply of shear 

connectors. The bending strength is 

M psc - M s + Psh h2 (1.12) 

It can thus be seen in Figs. 1.16(c), (f) and (i) that there is always one neutral axis 
when there is full-shear-connection, and there are always two neutral axes when 
there is partial-shear-connection. 

In Case 1 in Figure 1.16, we required that for full shear connection (Psh)fsc = Ps and 
similarly in Case 2 for full shear connection that (Psh)f~ -- P" On the other hand, the 
strength of the shear connection Psh controlled the strength of the composite beam 
for partial interaction (Case 3). In this book, we will use the degree ofshear connection 
q in a shear span, defined as 

lash 

" =  (es,,):,,c (1.13) 

1.5 Partial interaction 
1.5.1 Slip and slip strain 
The behaviour of a composite beam is affected directly by the slip of the shear 
connection at the steel/concrete interface. The elevation of a simply supported 
composite beam is shown in Figure 1.17(a). When the composite beam is unloaded, 
the sections AB in the concrete component and CD in the steel component are in line, 
and positioned at some distance L from a convenient reference axis. On application 
of the load F, the section deforms as shown in (b). The flexural forces in the top fibres 
of the concrete component and steel component cause these fibres to contract, while 
the flexural forces in the bottom fibres of the concrete and steel cause these fibres to 
expand. There is thus sliding action at the interface, and the relative movement at the 
interface caused by this sliding action is referred to as the slip s. 

If the new position of B in the concrete component is at L + u e as shown in Figure 
1.17(b), and that of C in the steel component is at L + u,  then s = u - u: This slip is 
res is ted  by the longi tud ina l  shear forces.  If  we now cons ider  the 
distribution of strains in the concrete and steel components over the length L, as in 

Figure 1.17(c), then 

Uc - ~ Ecdx and Us = ~ Esdx 
L L 

(l.14a,b) 
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Figure 1.17 Slip and slip strain 

and substituting these values into s - u - u and upon differentiation, 

ds 
dx - e c  - e s  (1.15) 

The derivative of the slip ds/dx is referred to as the slip strain and as can be seen 
in Figure 1 . 1 7 ( d )  it is the step change between the strain profiles in each component. 

1.5.2 Degree o f  interaction 
A condition of no interaction is achieved when the interface is greased, but when 
the steel and concrete components are in contact and so have the same curvature, as 
shown in Figure 1.18(a). On the other hand, when the interface is glued then e c = es 
and so the slip strain ds/dx = 0 as in (b). This condition is referred to as one of full 
interaction, and clearly partial interaction is the usual condition encountered between 
full interaction and no interaction as shown in (c). 

It should be noted that the degree of interaction is a stiffness-based property, and 
is not the same as the degree of shear connection considered in Section 1.4 that is 
based on strength. The degree of shear connection and degree of interaction are 
directly related, however, as increasing the number of shear connectors both increases 
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(a) no-interaction (b) full-interaction 

Figure 1.18 Degree of interaction 

(c) partial-interaction 

the shear strength at the interface Psh and increases the shear stiffness at the shear 
connection. Note also that slip strains in beams with partial shear connection as 
shown in Figure 1.16(i) tend to be significantly larger than those in beams with full 
shear connection as shown in Figures 1.16(c) and (f). 

1.6 Buckling 
1.6.1 General  
Although in a composite member the best use of the steel is made when it carries 
tensile forces, there are some cases where some of the steel is subjected to 
compression. For example: T-beams in negative bending (such as over an interior 
support or adjacent to a column) have their bottom flange element and substantial 
portions of the web element in compression; beams with full shear connection where 
the strength of the concrete element P governs as in Case 2 in Figure 1.16; and 
beams with partial shear connection have the top flange element subjected to 
compressive actions as shown in Case 3 in Figure 1.16. 

The disadvantage of a steel element subjected to compression is that it is prone 
to buckle. The buckling of steel structures is covered in depth in standard texts 2, 
and essentially arises because the steel component attains a more favourable 
equilibrium position when it buckles or moves out of the plane of loading. In composite 
members, the two modes of buckling encountered are known as local and lateral- 
distortional, and these are covered in the following sub-sections. Buckling of the 
steel component usually exhausts its strength and results in catastrophic failure of a 
composite member, and therefore means must be established to ensure that buckling 
does not occur. Of course, buckling must not occur if a composite beam is analysed 
by using rigid plastic assumptions. 
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Figure 1.19 Lateral buckling 

1.6.2 Lateral-distortional buckling 
When a composite T-beam is subjected to negative or hogging bending, the bottom 
flange element is loaded in compression, and is restrained only by the stiffness of the 
steel web. In this lateral-distortional buckling mode, shown in Figure 1.19(a), the flange 
element buckles sideways and twists, with the web element distorting in the plane of its 
cross-section. Generally the flange element is quite stocky, so that it displaces and 
twists as a rigid body during buckling, with only the web element experiencing distortion 
during the buckling phenomenon. Distortion of the web element occurs necessarily 
because the top of the web is attached to the concrete component by the shear connection, 
and the high stiffness of the concrete component permits only very small twists during 
buckling. Lateral-distortional buckling depends on the moment M s, shear force V s and 
axial compression F s that are present in the steel component. Its accurate prediction is 
quite complex, and recourse usually has to be made to a finite element computer program 
in lieu of approximate techniques. 

Lateral-distortional buckling is treated in more detail in Chapter 13, where an 
approximate method of prediction is introduced. If we are to take advantage of rigid 
plastic design for continuous beams, as in Chapter 12, then lateral-distortional 
buckling must be prevented from occurring before the ultimate load is reached. 
This is usually achieved by the provision of cross-bracing, as in Figure 1.19(c). It is 
worth noting that lateral-torsional buckling can occur in positive bending prior to 
the concrete setting as shown in (b). 
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1.6.3 Local  buckling 
Local buckling occurs when the steel component forms 'ripples' with a short half- 
wavelength over the portion of the steel component in compression. In a composite 
T-beam in hogging bending, it may occur in the flange element and compressive 
portion of the web element prior to lateral-distortional buckling, as shown in Figure 
1.20. Local buckling may also occur when the steel is in contact with the concrete, such 
as in the flange element of a T-beam in positive bending when the flange is subjected to 
compression, or in the thin profiled sheeting that is used to make a composite profiled 
slab, as in Figure 1.21. Unlike lateral-distortional buckling, local buckling in some 
cases does not usually cause immediate catastrophic failure, and there is often a 
postbuckling reserve of strength before ultimate conditions are reached. 

Generally, local buckling can be prevented by imposing geometrical constraints 
on the steel component, such as limiting the width to thickness ratio of the flange 
element or the depth to thickness ratio of the web element. These constraints are 
used to size the member, and are discussed in the following chapter. 
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2 Sizing of members 

2.1 Introduction 
The analysis of a composite member is often not based on the gross cross-sectional 
proportions. In reinforced concrete design, it is common to consider only the effective 
width of a T-beam, while in slender steel plate structures the effective width is again 
commonly used. In composite construction, both steel and concrete are used, and so 
effective widths are often specified for the concrete component as well as for the 
steel component. The effective width treatment of the concrete component arises 
primarily from the effects of shear lag, while that in the steel component arises mainly 
from the effects of local buckling. Both of these phenomena are nonlinear, and 
simplifications are fortunately available for transforming the nonlinearities into a 
form suitable for a linear analysis. This transformation is possible by considering 
the effective size of a composite member, obtained from the effective widths of the 
concrete and steel components. 

The methods presented in this chapter are simplifications by which the effective 
size (or effective section) may be determined. Once this has been determined, the 
section may be analysed by the methods presented in the remainder of this book. 
Of course, the effective size is only an analytical approximation for obtaining section 
properties, and it must be remembered in calculating design actions that the full 
load may act over the gross section, and not just the effective section. 

2.2 Shear lag 
2.2.1 General  
The conventional or engineering theory of bending assumes that plane sections 
remain plane, which means that shearing strains are neglected. The term shear lag ~ 
is used to describe the discrepancies between the approximate engineering theory, 
and the real behaviour that results in both increases in the stresses in the concrete 
component adjacent to the steel I-section component in a composite T-beam, and 
to decreases in the stresses in the concrete component away from the steel. 

Consider the simply supported T-beam with a central concentrated load 
shown in Figure 2.1(a). The shear flow distribution in the slab is linear, and 
this produces warping displacements or complementary displacements in the 
longitudinal direction that are parabolic in the transverse direction. In the left 
hand side of the beam, the shear is positive and the warping displacements are 
as shown in (b). On the other hand, the right hand side of the beam is subjected 
to negative shear, resulting in the warping displacements also shown in (b). In 
order for geometric compatibility to be maintained at midspan, changes are 
required in the bending stress distribution as well as in the shear stress 
distribution. These changes in stress result in the shear lag effect. 

21 
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Figure 2.1 Incompatible warping displacement at a shear discontinuity 

The approximate method of accounting for shear lag is to use an effective width 
concept, whereby in theory the actual width w of the slab is replaced by a reduced 
width waf given by 

w nominal bending stress 

w maximum bending stress 
(2.1) 

This approach simply replaces the actual bending stresses by constant stresses 
that are equal to the actual maximum stress distributed over an effective flange width wen- 

Equation 2.1 may be restated in terms of the peak stress 6ma x and the longitudinal 
stress a t that varies with x along the width of the concrete component. In order to 
allow for a nonuniform distribution of stress due to shear lag, we assume that the 
concrete component is narrower so that the rectangular stress block of area wafx h 
x area x is equal to the area under the parabolic stress block a t over the width w. This 
is equivalent to integrating the rigorously calculated longitudinal stress in the concrete 
slab over the width w, and dividing by the peak value of the stress ama x. 

Mathematically, this restatement of Eq. 2.1 can be written as 

we = 
~b br tT e dx (2.2) 

O'ma x 

where the breadths b t and b r are half of the transverse spans of the slab on the left 
and right of the steel component, as shown in Figure 2.2, and x is the coordinate 
transverse to the centreline of the steel component. 

The shear lag problem is complex, and a particular model for the effective width 
may be accurate for predicting deflections yet be quite inaccurate for predicting 



Sizing of members 23 

Weft W e f  t .... .. :... '..< . . . . .  :, 

c~ ' i (beff)d h i (bell)/ ~. (beff)r i i (beff)l ' 
k . . . . .  ~ ~ . . . .  ~:.-- -~ 

i 

(Tadj) I  > ~  , (Tadj)2 

,... ..L. J i 
r q"  " v - . . . _ _ _ ~ _ _ / b r  = (Tadj )2 /2  [ 

bl = (Tadj)l/2 ~ ,  W = b t + b r q 

F i g u r e  2,2 Ef fec t ive  wid th  

flexural stresses. As with most of structural design, the effective width concept is only 
justified if the design is conservative, so that the stresses and deflections derived from 
linear elastic analysis using the effective width are greater than the values calculated 
rigorously. Fortunately, rigid plastic analyses are not overly sensitive to errors in the 
effective width. 

2 .2 .2  Sizing for effective width 
2.2.2.1 G e n e r a l  

There are a number of parameters that affect the effective width of the concrete component 
of a composite beam, and as noted earlier an effective width model that is accurate for 
deflections may not have the same accuracy for determining flexural stresses. Because of 
these variations, the simplified model of the Eurocode 45 and Ansourian' s approach  3 will 
be treated here. The Eurocode recommendation is that we~ be calculated from 

Weft = 0.25Lc (2.3) 

where L c is defined as the maximum distance between points of contraflexure, and 
recommended values are given in Figure 2.3. Of course, the geometrical constraints 

Wef f < 
( Tadj )1 + ( Tadj )2 (2.4) 

and Wef t < 2Tedg e (2.5) 

must apply, where T d j and T dso are shown in Figure 2.2. 
The recommendation of Ansourian 3 is slightly more complex, being based on 

sophisticated numerical modelling. For a continuous beam, this proposal is 

beff (Tadj) when Tad J<0.5 
= 1 . 0 -  1.2 

(2.6) 
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beff = O.1L c when Tadj > 0.5 
me 

(2.7) 

where be~ and T~dj refer to the value at the same side of the steel component A in Figure 
2.2 and where war = (belt) t + (bfr) r. For a simply supported steel beam, Ansourian's 
recommendation is that 

beff = 1 . O - o . ~ T a d j )  when TadJ<l.O 
Tad j / 2  L c L c 

(2.8) 

beff = 0.2L c when Tadj > 1.0 (2.9) 

where geometrical constraints similar to Eqs. 2.4 and 2.5 of course apply. 

2.2.2.2 Example  2.1 Effective widths o f  slab to the Eurocode 
recommendations 
The composite T-beam shown in Figure 2.2 has (T d j) ~ = (Tadj) 2 -- 2000 mm and is 
continuous between points of contraflexure with L = 7 m. Hence from Eq. 2.3, wef f = 
0.25x7000 = 1750 mm. The effective width each side of the steel component is thus 
1750/2 = 875 mm < 2000/2 = 1000 mm. The slab of the T-beam is therefore not fully 
effective, and for analysis the regions 875 mm each side of the centreline should be 

Lc in a negative region 
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Figure  2.3 Eurocode 4 approach 
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considered for analysis. Of course, the dead load due to the entire slab, and any live 
loads over it, should be considered in determining the actual loading on the beam. 

2 .2 .2 .3  E x a m p l e  2 . 2  Effective widths of slab to Ansourian's 
recommendations 
The same cross-section analysed in Example 2.1 according to the Eurocode is now considered 
using Ansourian's recommendations. Since T~j/L = 2000/7000 = 0.286 < 0.5, Eq. 2.6 
applies and ben/(2000/2) = 1.0 - 1.2 x (2000/7000) = 0.657 so that (b ff)~- (bff) r = 657 
mm. This is more conservative than the value of 875 mm calculated in Example 2.1 
using the Eurocode approach, but it is shown in Section 4.2.2.2 that ultimate strengths 
are insensitive to this discrepancy in effective width recommendations. 

2 .2 .3  Effective section of a composite member 
The concrete component in a composite member may have a profiled soffit, so that when 
the steel component acts compositely with such a concrete component, then the cross- 
sectional shape of the composite slab, to be used in the analysis, depends on the relative 
direction of the span of the ribs of the concrete slab to the span of the steel component. 

The cross-section of a composite member in which the profile ribs span in the same 
direction as the composite beam is shown Figure 2.4(a), where hso~ d is the height of the 
solid part of the concrete component and h,b is the height of the rib. Also in this figure, 
A~ b is the area of an individual rib, Avoid is the area of an individual void between the 
ribs as shown, and 0 = 0 ~ where 0 is the angle in degrees between the direction of the 
span of the ribs and that of the composite beam, as shown in Figure 2.5. The cross- 
section can be analysed as shown in Figure 2.4(b), where the area of the haunch is equal 
to the areas of the individual ribs t: A,b over the effective width wet r of the section. 
Therefore, the mean width of the haunch bhau,ch can be calculated as 

Arib 
(bhaunch)o=o =((beff)e +(beff)r ) Ari b +Avoid 

(2.10) 

Unless the haunch is very deep, it can be assumed to have vertical sides instead of 
the sloping sides shown in Figure 2.4(b). 

When 0 = 90 ~ in Figure 2.5, the ribs are transverse to the direction of the span of the 
composite beam. If we use the weakest cross-section in the analysis, this occurs at a 
section through a void between the ribs as shown in Figure 2.6. Hence in this case 

(bhaunch)0=90 ~ = 0 (2.11) 

The profile ribs may be oblique to the span of the beam, as shown in Figure 2.5 
where 0 _< 0 <_ 90 ~ Hence, the effective cross-sectional shape lies between that shown 
in Figure 2.4(b) and Figure 2.6, and the effective width of the haunch lies between 
zero and (bhaunch)0-- 0. In general, the area of the haunch has only a minor effect on the 
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strength of the member. If, for example, the neutral axis under positive bending lies 
in the solid portion of the slab hso~i a in both Figures 2.4(b) and 2.6, then the haunch is 
in tension and does not contribute to the strength of the beam as the tensile strength 
of the concrete is generally ignored. In addition, even if the neutral axis lies within 
the haunch, the difference in the flexural strength using different values of the haunch 
will only be small, since the haunch lies very close to the neutral axis of the section. 
Hence any reasonable variation between the extremes of Eqs. 2.10 and 2.11 may be 
used. For simplicity, we will assume here that the variation is linear, that is 
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( ~176 / 
(bhaunch ) 0 = 1 - (bhaunch ) o=o 

90 

(2.12) 

2.3 Local buckling 
2.3.1 General 
The second effect that determines the size of a composite member is the local buckling 
response of the steel component. Local buckling occurs in thin-walled steel 
sections 4, and takes place when the steel section forms a more favourable or stable 
equilibrium position by buckling or distorting. A typical local buckle in the negative 
region of a composite beam is shown in Figure 1.20. The distortions shown in this 
figure vary along the length of the member, but local buckling is characterized 
by the flange-web junction remaining straight throughout the member's length. This is 
in direct contrast to lateral-distortional buckling that is treated in Chapter 13 as shown 
in Figure 1.19(a). Local buckling is precipitated by compressive stresses that arise from 
bending and axial compressive actions, and by shear. It is not caused by tensile stresses. 

2.3.2 Initial local buckling 
2.3.2.1 Genera l  
In a steel plate or a plate assembly such as an I-section component of a composite 
beam, the maximum stress to cause elastic buckling a ,  is 4 

O'er ~--" k 
lr2Es 1 (2.13) 

2 ) (b / t): 

where E is the Young's modulus of the steel and v S is its Poisson's ratio. In 
Eq. 2.13, b and t are the breadth and thickness of the plate element respectively, 
and k is the so-called local buckling coefficient. The local buckling coefficient 
depends on a number of factors, including the arrangement of loading and the 
restraint of the plate in a steel section. Values of k have been tabulated, and are 
given in standard texts s. 

2 .3.2.2 E x a m p l e  2.3 Plate slenderness limits in bending 
In the web element of an 1-section member that is subjected to pure bending and 
which is simply supported at its connections to the flanges, the local buckling 
coefficient 5 k = 23.9 in Eq. 2.13 and where b = depth of the web d w and t is the plate 
thickness of the web t w. We will determine the plate slenderness bit if the plate is to 
yield before buckling locally, that is its yield stress f is less than the local buckling 
stress ~ in Eq. 2.13. If E s = 200 kN/mm ~ and v = 0.3 (see Section 1.3.2) are 
substituted into Eq. 2.13, then 
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acr = 
23.9 x 11~ 2 • 200  x 103 

12 • 2 1 5  2 >-- f y 

which may be rearranged to produce (b/t)~ / f/250< 131 where the units of f are in 
N/mm 2, and the normalizing of f by dividing by 250 N/mm 2 is a convenient 
manipulation to give the (b/t) limit some transparency, since yield stresses are often 
of Grade 250 (250 N/mm~). Hence for Grade 250 steel, provided the web is 
proportioned such that (b/t) < 131, we can develop the full yield stress before buckling 
occurs. It is worth noting that for higher strength steels ( f  > 250 N/mm2), the limit 
on (b/t) must actually drop below 131, since the elastic range before buckling is 
higher as yielding is delayed. It is worth noting that the term (b/t)~ / f/250 is often 
referred to as the modified slenderness as it is the slenderness bit modified to take 

into account the yield strength f .  

2 .3 .2 .3  Example 2.4 Plate slenderness limits in shear 
Consider now the web of an I-section member that is subjected to pure shear and 
which is simply supported along its edges. The local buckling coefficient s for a long 
web without stiffeners in shear is k = 5.35. Hence if the plate yields in shear at f/~/3 
(Section 1.3.2) before buckling elastically at ~f, then 

5.35 X Ir 2 X 200  X 10 3 f y  > - -  

- 12•  (1 -  03 )• (b i t )  - 

which may be rearranged to produce (b/t)~ / f/250<82, where again the units of f are 
in N/mm 2. 

2.3.3 Section classifications 
2.3.3.1 Gene ra l  
When a composite cross-section is analysed, it is important to ensure that the steel 
component does not buckle locally, and this forms the basis of proportioning the 
cross-section in such a way that the desired limit state such as full plastification 
(Chapters 4 and 12) or first yielding (Chapter 3) occurs before the onset of local 
buckling. The types of cross-sections which correspond to the various limit states 
are called plastic, compact, semi-compact and slender. The rationale behind 
classifying a cross-section was illustrated in Examples 2.3 and 2.4, and this will be 
considered in the following in more detail. 

Local buckling is more likely to take place in the negative or hogging moment regions 
than in the positive or sagging moment regions. When the neutral axis lies in the concrete 
component of a composite T-beam in positive bending, the steel is subjected only to 
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tension and will not in general buckle, although local buckling is theoretically possible 
in regions of high shear. Buckling in shear is considered in Section 2.3.5. 

2.3.3.2 Plastic sections 
Plastic cross-sections are defined as those which allow a plastic mechanism to 
develop. Plastic mechanisms are considered in detail in Chapter 12, but we will note 
here that such cross-sections must be able to reach their strain hardening ranges 
(Section 1.3.2) before local buckling occurs. In addition, such sections must allow 
enough rotation in the strain hardening region for moment redistribution. This means 
that the depth to thickness ratios (b/t) for the elements of the steel component (the 
web and flanges) are restricted to quite low values, far more so for a web than 
Example 2.3 would suggest. 

Figure 2.7 shows a composite T-beam in negative bending. The beam may be 
welded or hot-rolled, and there are different (b/t) ratios for both forms of fabrication 
owing to imperfections that are induced during their manufacture. For example, for 
a plastic section built-up by welding, the width to thickness ratio of the flange outstand 
(bt/t f) must satisfy 

bf l fY < 8  

tf 2 5 0 -  

(2.14) 

while for a hot-rolled section, this ratio (b/tf) must satisfy 

< 9  
tf 

(2.15) 

I ~ ~ i , : ~ i i ~ J  . . . . . . . . . . . .  ~ ....... 

N-r . . . . . . . . . .  A 

dw Y~= t:t~dw/2 [i~ tw 
i~i!i b 

Figure 2.7 T-beam in negative bending 
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dw ---> 6 tw 
N ...... ~ ..... A 

tf ]Yc = Ctcdw/2 
~/ !~. . . . . . . . . . . . . . . . . . -  

bf 

Figure 2.8 Box beam in negative bending 

If the flange is not an outstand, but is simply supported as in the bottom flange of 
a box section as illustrated in Figure 2.8, the local buckling coefficient is much 
higher, so that the corresponding limits for a welded member are 

bij  < 24 
t f  

and for a hot-rolled member that would occur in a rolled box profile are 

(2.16) 

bij  
t f  

<_ 27 
(2.17) 

The limiting depth to thickness ratio of the web (dJt  w) in Figure 2.8 depends on 
the amount of the web element subjected to compressive stresses. This can be found 
as a function of the plastic neutral axis parameter a shown in Figures 2.7 and 2.8, 
and defined as 

~ C  --" 
Yc (2.18) 

d w / 2  

where Yc is the depth of the plastic neutral axis from the inside of the compression 
flange of the steel component as shown in Figures 2.7 and 2.8. When the composite 
beam is subjected to negative bending, then for a plastic section classification it is 
suggested that the web depth to thickness ratio satisfies the inequality 

- 82 
t w 0.4 + 0.6a c 

(2.19) 

which is applicable to both welded and hot-rolled sections. 
It is worth reiterating that, to achieve a plastic section as the yield stress f increases, 
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a narrower or shallower plate must be chosen for a given thickness owing to the 
reciprocal relationship between the slenderness and "4f. This is not paradoxical as 

y 

the strength of the cross-section is related to f linearly and thus the section strength 
increases as the yield stress increases. 

2.3.3.3 E x a m p l e  2.5 Checking a plastic T-beam 
The composite T-beam with a welded steel component of yield strength f = 250 N/ 
mm: shown in Figure 2.7 has the dimensions d w = 344 m m ,  bf -- 75 mm, t w = l0 mm 
and tf = 18 mm. Suppose a rigid plastic analysis in negative bending (Chapters 4 and 
12) indicates that the plastic neutral axis lies 204 mm above the inside of the bottom 
flange. Hence (b/tf)~/(f/250) = (75/18)~/(250/250) = 4.17 < 8 in Eq. 2.14 and so the 
bottom flange is plastic. Also, t~ --- 204/(344/2) - 1.19, so that the limit in Eq. 2.19 
is 82/(0.4 + 0.6 x 1.19) = 74 and (d/ t  )~/(f/250) = (344/10)~/(250/250) = 34 4 < 74 

W W y " 

so that the web is also plastic. This section is thus suitable for plastic design. 

2.3.3.4 C o m p a c t  sect ions 
A section is classified as compact if it buckles into the strain hardening region with 
sufficient rotation capacity to sustain the plastic moment, but may buckle locally 
before a full plastic mechanism (Chapter 12) may develop. Because of this, the 
limiting width to thickness ratios or depth to thickness ratios are relaxed slightly, 
and of course a plastic section will also be compact. 

For a flange outstand built-up by welding, the limit is 

_< 8.5 
t f  

and if the flange is hot-rolled, the limit is 

(2.20) 

..... < 10 (2.21) 
t f  

In addition, for a simply supported welded plate (as in Figure 2.8) the limit is 

. < 26 
t f  

and if the simply supported flange plate is produced by hot-rolling, then 

(2.22) 

- - -  _< 34 
t f  

(2.23) 

A suggested limit on the web slenderness for the compact section classification is 
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dw ~ f ; o  < 103 

tw ac 
(2.24) 

where ~ is defined in Figures 2.7 and 2.8, and in which Eq. 2.24 is assumed to be 
applicable to both welded and hot-rolled sections. 

2.3.3.5 S e m i - c o m p a c t  sect ions 
Semi-compact sections allow the first yield moment (Ms)y of the steel component of a 
composite beam to develop, but the steel component may buckle locally before the full 
plastic moment (Ms) p is developed. The limits on the plate element slendemesses for 
the semi-compact classification are relaxed above those for compact sections, and of 
course both plastic and compact sections will satisfy the semi-compact classification. 

For a welded flange outstand, the limit is 

bf, l fY < 1 4  

t f 2 5 0 -  

while for a hot-rolled flange outstand, the limit is 

(2.25) 

bf ~ f y  < 1 6  

t f 250 

For a welded supported flange plate as in Figure 2.8, the limit is 

(2.26) 

tf 
while for a hot-rolled supported flange plate as in Figure 2.8, the limit is 

(2.27) 

b f  I f ; 0  < 4 1  (2.28) 
tf  

As for a compact section, the limiting web depth to thickness ratio is not dependent 
on whether it is hot-rolled or welded, and a suggested limit is 

dw I f ; 0  < 115 
t w Otc 

(2.29) 

where t~ c in Figures 2.7 and 2.8 is obtained from an elastic analysis based on 
transformed areas, as described in Chapter 3. If there was no reinforcement in the 
slab and the steel component was a doubly symmetric I-section, the neutral axis 
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would be at the mid-height of the steel component and o~ would be 1.0. The limit in 
Eq. 2.29 would then be 115, which is lower than the limit of 131 calculated in 
Example 2.3 that ignored residual stresses. 

2 .3 .3 .6 E x a m p l e  2.6 Section strength of a semi-compact section 
If we define M to be the cross-sectional strength of the steel component, then it 
was shown that for plastic and compact sections, M = (Ms) p which is the full plastic 
moment of the steel component. Note that in negative bending, the section capacity 
of the composite section will be greater than this, owing to the presence of tensile 
forces in the reinforcement in the cracked concrete component which also contributes 
to the bending capacity. 

Consider now a welded box section composite beam, as in Figure 2.8, whose webs 
can be considered as being compact, but with a flange modified slenderness (b/tf)~/(f/ 
250) = 27.5. Suppose the moment to cause first yield of the steel component is (M)y = 
140 kNm and that to cause full plasticity of the steel component (Ms) p = 155 kNm. 
Clearly because the modified flange slenderness of 27.5 is less than the limit of 30 in 
Eq. 2.27, the section can be considered as semi-compact, but because it is greater than 
the limit of 26 in Eq. 2.22 it is not compact. This means that a moment in the steel 
component of 140 kNm is attainable, but that the plastic moment of 155 kNm is not. 
We can, however, interpolate linearly between these two moments based on the value 
of the section slenderness. In this case, the capacity of the steel section M s = 140 + (155 
- 140) x (30-  27.5)/(30- 26) -- 149.4 kNm. This increase of 7% above the first yield 
moment of the steel component should not be ignored in the analysis of a semi-compact 
section, and the increase for T-section beams may be much higher than this. 

It can thus be seen that for plastic and compact sections, the section strength of 
the steel component in negative bending M s = (Ms) p, while for semi-compact sections 
(Ms) p ___ M s > (Ms)y. Of course, semi-compact sections are unsuitable for the rigid 
plastic analysis techniques of Chapter 4, which are restricted to plastic and compact 
sections. Semi-compact sections must be analysed by the linear elastic techniques 
of Chapter 3. 

It is worth reiterating that the moments (M)y and (M)p are the moments in the 
steel component when a moment M is applied to the composite section. For sections 
that remain elastic, the moment in the steel component when the composite member 
just starts to yield (Ms)y can be determined from an elastic analysis of the section as 
described in Chapter 3. For example, if a moment (Ma)y is applied to a composite 
section of flexural rigidity (EI)c,,p to cause yield, then the curvature in the composite 
section is K:y = (M)F/(EI)c,~ p which is also the curvature in the steel component. 
Hence (M)y = ~y(EI)~ where (El), is the flexural rigidity of the steel component. 

The moment in the steel component when the composite section is fully 
plastic (M). can be determined from the distribution of stresses in the steel component 

s I, 

as shown in Figures 1.16(b), (e) and (h) (the method for determining these 
stress distributions is described in detail in Chapter 4). For example let us consider 
the stress distribution in Case 2 at (e) in Figure 1.16 which is shown again in Figure 
2.9(b). It is only necessary to consider the stress distribution in the steel component 
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Figure 2.9 Moment in steel component 

which is shown by itself in (c). This stress distribution resists the axial load F 
sh 

and moment (Ms) p shown in (d). Hence the stress distribution in (c) can now be 
visualized as that required to resist flexure over regions h I and h 3 and that required 
to resist the axial load over region h 2 as shown. As the neutral axis position N-A 
is already fixed by a rigid plastic analysis from Chapter 4, h, is fixed so that the 
magnitude and position of the axial force above the neutral axis, F~n_. in (e), can 
be determined directly. The compressive force Fcomp is in equilib'r]um with a 
tensile force at the bottom of the steel component such that Fte n = Fcomp, hence 
the position of Fte" can be determined from which (M)p = Fcomph 4. The remaining 
stress distribution in (c) over region h 2 simply resists the longitudinal shear in the 
composite beam F h. 

2 .3 .3 .7  S l e n d e r  sec t ions  
Slender sections possess plate element width to thickness ratios that exceed those 
for the semi-compact classification, and their steel components buckle at moments 
below that to cause first yield (Ms)y. Slender composite cross-sections occur in deep 
T-beam bridge section girders, or in slender box sections. 

There are two ways of determining the strength of slender sections. The first is to use 
an effective width approach, similar to that in Section 2.2 for shear lag, in which regions 
beyond the effective area are ignored. However, this generally renders the section 
monosymmetric, and the calculation of the section properties is quite involved. The basis 
for the effective width approach is the post-local buckling response of thin steel plates 4.5. 

The second way is to simply factor the moment at first yield by the ratio of the 
limit for a semi-compact section to the actual modified slenderness ratio (b/tf) 
~/(f/250) or (dw/tw)~/(f/250) for the section. 

2 .3 .3 .8  E x a m p l e  2 .7  Section strength of a slender section 
Consider the steel component of a welded composite T-beam that has a moment at 
first yield, calculated on the full steel cross-section of (Ms)y = 120 kNm, and which 
has a value of % based on an elastic analysis of 1.25. Suppose the web has a modified 



Sizing of members 35 

slenderness ratio of (dw/tw)~/(f/250) -- 105 and the modified slenderness ratio of the 
flange is 19. The limit in Eq. 2.29 is 115/1.25 = 92 < 105 and so the web is slender. 
Moreover, the limit in Eq. 2.25 is 14 < 19 and so the flange is slender also. It is worth 
noting that only one of the steel elements (flange outstands or web) being slender renders 
the section classification as being slender. The section strength of the steel component 
may then be calculated as M s = (92/105) x (14/19) x 120 = 80.0 kNm. A section strength 
for the steel element of 80.0 kNm would then be used in a linear elastic analysis. Note 
that the method of this example, although very simple, is conservative. 

2.3.4 Beams in positive bending 
Beams in positive bending have the neutral axis in the web above the centroid of 
the steel component. These web elements are not generally prone to local buckling, 
since at their connection to the top flange they are restrained by the attachment to a 
rigid concrete component, while at the neutral axis level they are restrained by the 
tensile portion of the steel component. We may therefore consider the webs as 
being plastic, although in deep beams this classification may be unconservative, 
and should be viewed with care. 

When the neutral axis lies in the steel web, the top steel flange will be subjected to 
compression. If the section is to considered plastic or compact, as described in the 
previous paragraph, the top steel flange must not buckle away from the concrete 
slab, as shown in Figure 2.10. It is suggested that to prevent this buckling, the spacing 
s of the stud shear connectors should not exceed 

S < 30 
t f  

(2.30) 

2.3.5 Local buckling in shear 
2.3.5.1 Slenderness limit 
It will be shown in Chapters 4 and 9 that it is usual to assume that all the 
shear carded by the cross-section of a composite beam is resisted by the web element 

concl 

tf A 

Figure 2.10 Buckling of top flange in positive bending 

top steel flange 
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of the steel component. If the web element is proportioned so that it may develop 
its full yield strength, then it is said to be stocky, and the depth to thickness ratio 
must satisfy 

tw 
(2.31) 

Normally if this limit is exceeded and the web is slender, it is usual to stiffen the web 
with vertical web stiffeners. However, vertical web stiffeners in the steel component 
are beyond the scope of this book, and we can calculate the strength of the unstiffened 
web on the basis of initial local buckling as described in the following example. 

2 .3 .5 .2  E x a m p l e  2.8 Section strength of  a slender web in shear 
Suppose the web element of a steel component has a yield strength f = 300 N/mm 2 

Y 
and has dimensions d = 1000 mm and t = 8 mm. The modified slenderness 
(dJt)4(f/250) = (100t3/8)4(300/250) = 136".9 > 82 from Eq. 2.31 and so the web is 
slender in shear. If we note that the yield strength of the web in shear is (dJw)xJ~/3 
= 1000 x 8 x 300/~/3 = 1386 kN (Section 1.3.2), then its section strength may sinaply 
be determined from (82/136.9)2 x 1386 = 497 kN as the buckling strength from Eq. 
2.13 is inversely proportional to (bit) 2. The strength of the slender web is only 36% 
of its yield strength, and a more economic design would involve the use of a thicker 
web or the use of vertical web stiffeners. 

2 .3 .6  Concrete-filled steel tubes 
Concrete-filled steel tubes find widespread use as compression members, and their 
flexural buckling is considered in Chapter 8. The section classifications for a 
compression member are either slender or semi-compact, since the compact and 
plastic moments are irrelevant in the absence of bending because the member is 
subjected to compression throughout. A semi-compact section allows yielding and 
hence the squash load of the steel component of the tube to be attained before local 
buckling, while slender sections buckle locally before the yield stress is reached, 
and so the steel component of slender compression members buckles locally before 
it reaches its squash load. 

Unlike hollow steel rectangular sections, local buckling of concrete-filled steel 
tubes is resisted by the restraint provided by the concrete core, as shown in Figure 
2.11. It is suggested that for a concrete-filled tube fabricated by welding, the bit 
limit shown in Figure 2.11 should satisfy 

t 

(2.32) 

while if it is fabricated by hot-rolling, the bit limit should satisfy 
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Figure 2.11 Local buckling of a concrete-filled tube 

b fy  
t 256 < 66 

(2.33) 

It can be seen that the above two limits are much greater than those for a supported 
flange (30 and 41 for a welded and hot-rolled flange plate respectively, as in Eqs. 
2.27 and 2.28) owing to the restraint provided by the concrete core.  

If the composite column is a concrete-filled circular steel tube of outside diameter 
d o and thickness t, then the slenderness dolt should satisfy 

' t "  " "  

(2.34) 

The provision of Eq. 2.34 is based on that generally used for a hollow circular tube, and 
in the absence of reliable data for concrete-filled circular tubes this limit is conservative. 

Of course, an encased steel section as shown in Figure 1.4(a) is unlikely to buckle 
locally, unless the concrete cover is very thin. Occasionally, however, only the void 
between the steel flanges is filled with concrete, and these flanges form partial and 
permanent formwork for the concrete as in Figure 2.12. In this case, the web is 

  st  ,Oang may uc ,  

�9 ~ .  , : ~ . . . -  . . . ~ .  . . . . . .  ~ . . . .  

Figure 2.12 Partially encased I-section 
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prevented from buckling locally, but the flanges must satisfy the limits of Eqs. 2.25 
and 2.26 if they are to remain fully effective and not buckle. 
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3 Elastic analysis of composite 
beams 

3.1 Introduction 
In ultimate strength analyses, such as the rigid plastic analysis of Chapter 4, the 
behaviour of the composite member is governed essentially by inelasticity and the 
nonlinear behaviour of the steel and concrete components. However, in their day to 
day life, composite structures are usually loaded well below levels that would cause 
failure, and the behaviour of the steel, concrete and shear connection can be considered 
as linear. In limit states temfinology, we refer to behaviour at these lower load 
levels as service load behaviour, or to the serviceability limit state. 

Service loads are the loads usually experienced by a member over a relatively long 
period of time, including self weight and sustained loads, and by short-term lower level 
live loads. Satisfaction of the serviceability limit state is important, as it must be ensured 
that the composite structure does not deflect excessively, that is does not vibrate greatly 
and that crack widths in the concrete component remain sufficiently small. Analyses to 
guard against the attaining of these serviceability limit states are based on linear elastic 
assumptions, rather than the plastic assumptions of Chapter 4. It is worth noting that 
fatigue design, which is treated in Chapters 14 and 15, is carried out using linear elastic 
analysis, even though fatigue is a failure criterion. This is also true for lateral-distortional 
buckling treated in Chapter 13, where linear elastic analysis again is used in the prediction 
of a strength failure mode. 

3.2 Linear material properties 
In order to undertake an elastic analysis, we must assume that the relationship between 
stress and strain, or load and deformation, is linear for the steel and concrete components, 
as well as for the reinforcement and the shear connectors. The material properties for 
the steel, concrete and reinforcement were described fully in Chapter I. Stud shear 
connectors are treated in detail in Chapter 5, but we only need to note here that their 
response is linear elastic for a substantial range of loads, with the ratio of the shear force 
to the corresponding shear deformation being expressed by the stiffness or modulus K. 
In terms of the degree of interaction introduced in Section 1.5.2, a full interaction analysis 
(as considered in Section 3.3) is characterized by K --> oo in which there is no slip and 
hence no slip strain at the steel/concrete interface as in Figure I. 18(b), and by K = 0 
when there is no interaction between the steel and concrete components, so that the 
interface may be considered as greased and hence the slip strain is at its maximum as 
shown in Figure I. 18(a). The condition of partial interaction is therefore dependent on 
a finite value of K, but because of the complexities that arise in such a condition, we 
shall concentrate here on the condition of full interaction, that is when K --> oo. 

39  
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Stress 
or 
load 

L ~  limit of proportionality 
. v _ _ _ _ _ - _ .  i i l l l  I ~ 1 |  i l ~ l l l l l i l l  I I  l o l l  I 

Strain or deflection 

F i g u r e  3.1 Linear elastic material properties 

The schematic representation of the linear elastic range of the component materials 
is shown in Figure 3.1. The ratio of stress to strain in the steel, concrete and 
reinforcement is constant. For the steel component, it is assumed that this ratio is 
equal to E = 200 kN/mm 2 in tension and compression until the yield stress f is 
reached, and for the reinforcement that, again, E = 200 kN/mm 2 up to the yield 
stress f . For the concrete in the short-term, the stress to strain ratio is assumed to be yr 
governed by E c in Eq. 1.4 and in the long-term by E in Eq. 1.7. Because the stress- 
strain response of the concrete becomes nonlinear well before its compressive strength 
f is reached, it is usual practice to assume linear elastic behaviour is governed by 
the moduli E or E up to about 40% or 50% of f .  

The mechanical response of shear connectors is usually stated in terms of the 
load-slip behaviour, as noted earlier. The modulus K (whose units are force/length) 
may usually be considered as constant for stud shear connectors loaded statically up 
to about 70% of their dowel strength Dma x. This is again depicted in Figure 3.1. 

3.3 Full interaction analysis 
3.3.1 Elastic transformed cross-sections 
3.3.1.1 A s s u m p t i o n s  
For full interaction, it is assumed that the slip and hence slip strain at the steel/ 
concrete interface are negligible, that is K = oo. Furthermore, under service loading 
the short-term and effective concrete moduli E and E e respectively will be considered 
constant as noted in the previous section, and this forms the basis for transformed 
area analysis. As is usual in elastic structural mechanics, the cross-section is 
transformed into an equivalent concrete section according to the modular ratios n = 

Es/E c for short-term loading, and n = E / E  for long-term loading. 

3 .3 .1 .2  E x a m p l e  3.1 Transformed cross-sections in positive bending 
Consider the composite beam shown in Figure 3.2 that is subjected to positive 
bending. For short-term behaviour, the modular ratio is n = 200/26.8 = 7.0. The 
composite section can be transformed into an equivalent concrete section by 
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Figure 3.2 Composite steel and concrete beam 

increasing the area of the reinforcement to (n - 1)A (and using the gross concrete 
area) and the area of the steel component to nAs as shown in Figure 3.3. In this 
example, there is no reinforcement and the transformed area of steel is 7.0 x 6180 = 
43,260 mm 2. The transformation process is shown in Figure 3.3. Note also that the 
transformed second moment of area of the steel is n I  = 7.0 x 115.1 x 106 = 806 x 106 
mm 4 with the same steel depth of 324 mm. 

If the concrete is assumed to be uncracked, then the neutral axis will lie at the 
centroid of the transformed section. By taking first moments of area about the top fibre, 
(130 x 1500 + 43,260) y, = 1500 x 130 x (130/2) + 43,260 x (130 + 324/2), and so the 
depth of the neutral axis below the top fibre is y, = 106.2 mm. The transformed second 
moment of area about the neutral axis is I = 1303x 1500/12 + 130 x 1500 
x (130/2 - 106.2) 2 + 806 x l06 + 43,260 x (130 + 324/2 - 106.2) ~- = 2905x106 mm 4. 

Since the depth to the neutral axis is 106.2 mm < 130 mm, the neutral axis lies in 
the concrete component as in Figure 3.3(b) and the concrete below this axis is 
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. ......... :ii :~ :~i~ : ii~:~: :: ~i: ~ i .......... | ...... | 
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Figure 3.3 Composite beam transformed to a concrete beam 
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subjected to tension. Although the concrete does have a small tensile strength (Section 
1.3.5.1), it is usual to ignore this and assume that its tensile strength is zero. The 
position of the neutral axis in the cracked section can then be determined by equating 
the first moment of area about the neutral axis of the transformed areas above and 
below it. Hence 1500y 2/2 = 43,260 x (130 + 324/2 - y,) from which y, = 104.1 mm, 
and the second moment of area of the uncracked transformed section about this axis 
is I ' r  = 2897 x 106 mm 4. The flexural rigidity of the cracked section is thus only 
0.3% less than that of the uncracked section as the cracked region is adjacent to the 
neutral axis, and hence cracking can be ignored in standard composite T-sections in 
positive bending. It is also worth noting that making the steel beam composite with 
the concrete slab has increased the flexural rigidity of the member by EclJEsI s or 
360%, so that the deflection of the composite beam will be only 28% of the steel 

beam of the same length when acting by itself. 

3 .3 .1 .3  E x a m p l e  3 .2  First yield of a composite section in positive 
bending 
The analysis in Example 3.1 is valid while the steel and concrete remain elastic. Let 
us suppose that the section remains linearly elastic until the bottom fibre of the steel 

= 300/200 x 103 = 1 5 x 10 -a. yields at f = 300 N/mm 2. The strain at this level is ey 
Hence assuming a full interaction analysis, that is that there is no slip strain at the 
steel/concrete interface, the strain at the top fibre of the concrete is (106.2/(454 - 
106.2)) x 1.5 x 10 3 - 0.458 x 10 -3. This top fibre concrete strain produces a concrete 
stress of 28.6 x 10ax 0.458 x l0 -a = 13.1 N/mm 2. This concrete stress is in the elastic 
range, as the concrete component would generally have a strength f >_ 25 N/mm 2, 
and the maximum concrete stress at first yield of the steel is only about half of this 
concrete strength. It is usually the case that elastic analysis of a T-section remains 
valid up to first yield of the steel. 

The moment of resistance of the composite section at first yield may also be 
calculated easily. The curvature at first yield is ~:y = 1.5 x 10-3/(454 - 106.2) = 4.31 
x 10 .6 mm -~, and so the first yield moment My = (EcI r ~ = 28.6 x 103x 2905 x 106• 
4.31 x 10 .6 Nmm = 358.1 kNm. If the steel component acted alone, the moment in 
the steel beam to cause first yield is My = f I / ( h [ 2 )  = 300 x 115.1 x 106/(324/2) 
Nmm = 213.1 kNm. The first yield moment of the composite beam is thus 168% of 
that of the steel component alone. 

The steel component  for this beam subjected to positive bending is in 
tension throughout and therefore there is no need to check the section classifications 
of Chapter 2 (which require at least a semi-compact steel section). For the situation 
when the top region of the web is subjected to compression as in Figure 3.3(c), 
the web is restrained rigidly against buckling by its attachment to the top flange, 
which is connected by the shear connectors to the concrete, and the lower part of 
the compression region of the web is restrained by its tensile portion. The web 
is therefore unlikely to buckle, and a check of its section classification is not 
generally needed. 
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3 .3 .1 .4  Example 3.3 Transformed cross-sections in negative 
bending 
Let us assume that the cross-section in Figure 3.2 is now subjected to a negative 
moment. Unless the neutral axis lies in the concrete component, the concrete will 
have little or no effect as it is subjected to tension, and the strength of the bare steel 
beam alone must be enhanced by providing reinforcement in the slab. We will assume 
the concrete component has 0.6% reinforcement (A -- 1170 mm 2) that has the same 
elastic modulus as the steel component, and that this reinforcement is positioned 35 
mm below the top surface of the slab. 

If it is first assumed that the neutral axis lies within the steel component, then the 
composite beam will consist of the steel component in compression and tension and the 
reinforcement component in tension. As both of these components have the same elastic 
modulus, E,  there is no need to transform the beam and it can be analysed as a steel 
beam. Performing this analysis, by taking first moments of areas about the lower fibre 
of the bottom flange leads to the neutral axis being y, = 203 mm from the bottom fibre 
of the steel component, which is well within the steel. The second moment of area of 
this 'steel' section is therefore I = 115.1 x l0 s + 6180 x (324/2- 203) 2 + 1170 x (454 
- 3 5 -  203)2= 180.1 x l06 mm 4. Even though the concrete is ineffective in flexure, the 
flexural rigidity of the steel beam-reinforcement component is 56% greater than that of 
the steel beam by itself, and 180.1 x 7/2905 or 43% of the flexural rigidity of the 
composite section in positive bending that was determined in Example 3.1. 

If the composite beam has a very large area of reinforcement or a very deep slab, 
then the neutral axis may lie in the concrete component. In this case the area of 
concrete below the neutral axis is uncracked, and the position of the neutral axis can 
be found by equating the first moment of area about the neutral axis of the transformed 
section above to that of the transformed section below, in a similar fashion to Example 
3.1. It is worth reiterating that the likelihood of the neutral axis being in the concrete 
portion of a standard composite T-beam is remote. 

3 .3 .1 .5  E x a m p l e  3.4 First yield of a composite section in negative 
bending 
An illustration similar to that of Example 3.2 will be used to study the behaviour of 
the beam in Figure 3.2 when subjected to negative bending. Again, let us suppose 
the behaviour is linearly elastic until first yield of the bottom fibre of the steel 
component in compression at a stress of f = 300 N/mm ~. The curvature is then ~: 
-- 300/(200 x 103x 203) - 7.39 x 10 -~ mm -~. The tensile strain in the reinforcemen~ 
is thus 7.39 x 10-tx (454 - 35 - 203) -- 1.60 x 10 .3 and the stress is 200 x 103x 1.60 
x 10 a = 320 N/mm 2. This stress is below the typical yield stress of f = 400 N/mm 2 
for the reinforcement, and indeed in the majority of cases the reinforcement 
remains elastic until first yield of the steel component is reached. If in 
fact the reinforcement has yielded, the bending capacity will be slightly 
overestimated if elastic procedures are used, but the error in linear elastic analysis 
is generally minuscule. 
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At first yield, the moment capacity My = Eslnsl(y = 200 x 103 x 180.1 x 106 x 7.39 
x 10 .6 Nmm - 266.2 kNm. This is 266.2/358.1 or 74% of the first yield moment in 
positive bending, and 266.2/213.1 or 25% greater than the first yield moment of the 
steel section alone. 

For first yield to be achievable in negative or hogging bending, the steel 
component must be semi-compact. Hence for the flanges, (bf/tf)~/(fy/250) = 
( ( 1 7 0 -  7)/(2 x 12) x ~/(300/250) = 7.4 < 14 (Eq. 2.25), and so the flanges are 
compact. For the web, % = (203 -12)/(300/2) = 1.27 (Eq. 2.18), and so ot (dJ t  w) 
~/(f/250) = 1.27 x (300/7) x ~/(300/250) = 59.8 < 115 (Eq. 2.29) and so the web is 
also semi-compact. 

3 .3 .2  Continuous composite beams 
A continuous composite beam is shown in Figure 3.4. Within the lengths (L)  t and 
(Lc) r, the beam is subjected to positive bending and has a transformed flexural 
rigidity E l ,  while in the region (L)~ the beam is in negative bending and has a 
transformed flexural rigidity Esls. Because the positive (or sagging) flexural rigidity 
is greater than the negative (or hogging) flexural rigidity as shown in Examples 3.1 
and 3.3, the response of the beam is that of a nonuniform or 'stepped' member. The 
difficulty with analysing continuous composite beams, even in the linear elastic 
range of structural response, is that the internal points of inflection are not known 
at the outset, so that an iterative scheme must be followed to determine the extent 
of the positive and negative bending regions. 

In fact, the force method of structural analysis t may be used conveniently to 
analyse the two-span composite beam shown in Figure 3.4. Firstly, the positive 
bending flexural rigidity E 1  as determined by the method of Example 3.1 can be 
assumed throughout, and the force method used to calculate the redundant vertical 
reaction at B in the figure. This then allows the bending moment distribution M to 
be determined, and the region (Lc) c to be identified over the internal support. In the 
positive moment regions (L)  t and (L),, the curvature is M/E In~, while in the negative 
moment region (L),  the curvature is M/E I ,  where I is determined as in Example 
3.3 and M is the moment at any point along the beam. Of course, the curvatures 
in the positive and negative moment regions of the beam are of different sign, as the 
moment is positive in the sagging moment region and negative in the hogging moment 
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Figure 3.4 Two-span continuous beam 
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region. Using these curvatures, the force method may again be used to determine an 
updated estimate of the vertical reaction at B, so that an updated bending moment 
diagram may be drawn and updated estimates of the positive and negative bending 
regions established. The curvatures in these regions are again calculated for use in the 
force method, and a second estimate of the vertical reaction at the internal support B 
may be determined. In this hand method, which lends itself to computer programming, 
the vertical reaction at B is calculated iteratively until it converges to an acceptable 
tolerance. The final bending moment for the continuous beam may thus be established. 

It is worth noting that such an analysis must be carried out to undertake a lateral- 
distortional buckling study of a continuous beam, as discussed in Chapter 13. This 
is because lateral-distortional buckling can cause failure of the steel component 
over the hogging region (L ) .  Note, too, that the analytical technique presented in 
the previous paragraph is based on linear elastic principles, although the solution 
strategy is iterative. 

For a general composite beam continuous over a number of spans, a commercially 
available stiffness-based computer program may be used. The sagging and 
hogging flexural rigidities E I  and E I respectively are determined as in Examples 
3.1 and 3.3. For a given loading, the program is invoked using the positive or 
sagging rigidity E I  throughout, and the bending moment diagram is drawn and 
the points of contraflexure identified. The program is again used using E I in the 
identified positive region and E I in the identified negative region, the bending 
moment diagram redrawn and the revised points of contraflexure identified. The 
analysis is undertaken iteratively by determining the positive and negative moment 
regions until the reactions or moments at the supports converge to a suitable accuracy. 

With graphics capabilities, this analysis may be undertaken with relative ease. 

3.3.3 Deflections due to creep 
3.3.3.1 Genera l  
By using simple modular ratio theory in a full interaction analysis, it is possible to 
determine relatively accurately the deflections of a composite beam caused by creep. 
This merely requires a transformation of the area according to the modular ratio n e = 
Es/E e instead of the modular ratio n = Es/E. 

3 .3 .3 .2  E x a m p l e  3.5 Deformations induced by creep 
The beam considered in Example 3.1 spans 6 m and is acted upon by a sustained 
uniformly distributed load of w = 45 kN/m. In Example 3.1, the transformed second 
moment of area I c was calculated to be 2897 x 106 mm 4. Under short-term or 
instantaneous loading, the deflection would then be (51384) x (45 x 60004)/(2897 x 
106x 28.6 x 103) = 9.1 mm. 

Consider now long-term loading for which the creep coefficient ~ = 3. The effective 
modulus E = 28.6/(1 + 3) = 7.15 kN/mm 2 (Eq. 1.7) and the long-term modular ratio 
n = 200/7.15 = 28. This produces a transformed steel area of n A = 173 x 103 mm 2 
and a transformed steel second moment of area of n I -- 3233 x 106 mm 4. Because 
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most of the transformed area now lies below the slab, we will assume that the depth 
to the neutral axis below the top fibre y, lies in the steel. It can then be shown that y, 
= 171.1 mm which indeed is 41.1 mm below the soffit of the slab. The transformed 
second moment of area I can be calculated similarly to Example 3.1 to be 7964 x 
106 mm 4. Using the value of E e = 7.15 kN/mm 2 produces a long term deflection of 
13.3 mm which is a 46% increase in deflection above the short-term value. It is 
worth noting that shrinkage can increase this time-deflection even more, and this 
effect is considered in the following sub-section. 

3.3.4 Deflections due to shrinkage 
3.3.4.1 Behaviour 
Shrinkage is time-dependent, and therefore the forces that are induced will cause 
creep. Because of this, the effective modulus E introduced in Section 1.3.5.2 should 
be used in a shrinkage analysis. 

The effect of shrinkage in the sagging region of a composite T-beam is shown in 
Figure 3.5. In the absence of shear connectors, the concrete will contract as shown in 
(a). The shear connectors resist this contraction as shown in (b), so that the shear forces 
on the connectors due to shrinkage oppose those due to gravity loads as indicated by the 
distorted shape of the connectors. However, contraction of the concrete through shrinkage 
will cause the beam deformation shown in Figure 3.5(b), and so induce deflections and 
flexural stresses that are in the same direction as those induced by gravity loads. 

In order to quantify the forces and deformations induced by shrinkage, consider 
the fight hand side of the beam shown in Figure 3.5(a) that does not have any shear 
connectors and which is also shown in Figure 3.6. The concrete component is allowed 
to contract due to shrinkage as shown, producing a lack of fit of eshL/2, where e h is 
the shrinkage strain, as shown in Figure 3.5(a). The shear connectors will resist this 
contraction as shown in (b), and therefore enforce compatibility. Again, following 
the linear elastic assumption of this chapter we will assume that there is zero slip, so 
that the analysis is a full interaction analysis based on transformed sections. 
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(a) unrestrained shrinkage 

(b) restrained shrinkage 

Figure 3.5 Shrinkage deformations 
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Figure 3.6 Equivalent force system for shrinkage 

3.3.4.2 Example 3.6 Deformations caused by shrinkage 
Let us consider again the section in Example 3.1 that is 6 m long and has a long-term 
shrinkage strain of e h = 500 • 10 6. In order to prevent slip and hence lack of fit, as 
shown in Figure 3.6(a), an axial force AN in (b) has to be applied to the concrete 
component. This axial force must lie at the centroid of the concrete component (ignoring 
any reinforcing as only the concrete is shrinking) and has a magnitude AN = EeeshA = 
7.15• 103 • 500• .6 • 1500 x 130 N = 697.1 kN. When this value of AN is applied to 
the concrete component in (b) it ensures compatibility, but the system is now not in 
equilibrium. The net effect of maintaining equilibrium by applying an equal and opposite 
force AN in line with the concrete centroid is to apply an axial compression AN and a 
moment AM at the centmid of the composite section, as in (c). The system of forces 
shown in (d) is thus in equilibrium, and clearly AM = y=,tAN = (171 - 130/2) • 697.1 
kNmm = 73.96 kNm, which is the couple formed from the two forces AN. 

It is thus clear that the effect of shrinkage is to produce a constant moment of 
73.96 kNm in this case over the full length L of the beam. Such a constant moment 
will produce a deflection of AML2/8E I = 73.96•215 60002/(8 • 7.15•215 7964 
x 106) = 5.8 mm. The total time-dependent deflection may then be approximated as 
13.3 + 5.8 = 19.1 mm. 

It is worth noting that it has been shown 2 that relaxing the condition of full 
interaction does not influence greatly the time-dependent results, and that the above 
analyses techniques are satisfactory. 

3.4 Part ia l  shear  connec t ion  
3.4.1 Simplified model 
Linear elastic analyses utilizing partial interaction when 0 < K < ** are complex. The 
concept of partial-shear-connection was introduced in Chapter 1, and obviously the 
degree of interaction, which influences the deflections, depends on the degree of 
shear connection rim,. Obviously when rim ~ = 0 there is no interaction as there are 
no shear connectors, and the deflection of the beam V o depends only on the flexural 
rigidities EcI c of the concrete component and EsI s of the steel component. 
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It has been suggested 3 that the deflection under partial interaction Vp~ can be determined 
from that assuming full interaction vf~, and no interaction Vno by the empirical equation 

Vpart = V full + O~(Vno -- V full ) ( 1 -  Omax ) 
(3.1) 

where the coefficient o~ is taken as 0.4, and where the flexural rigidity for no interaction 
is given by 

(E1)n ~ = EcI  c + EsI  s (3.2) 

3 .4 .1 .1  E x a m p l e  3 .7  Short-term deflections with part ial  shear 
connection 
We will again analyse the cross-section shown in Figure 3.2, and it will be assumed that 
this beam spans 6 m and is acted upon by a short-term uniformly distributed load of w = 
45 kN/m. The flexural rigidity with no interaction (EI), ~ = 28.6 • 103• 1303x 1500112 + 
200 x 103 x 115.1 x 106 = 3.09 x 10 t3 Nmm 2. The deflection v o is thus (5/384) x 45 x 
6(X~/3.09 x 10 ~3 = 24.6 mm. From Example 3.5, v m = 9.1 mm. Let us assume that the 
degree of shear connection is ~m~ = 0.5. Hence from Eq. 3.1, vm = 9.1 + 0.4 x (24.6 - 9.1 ) 
x (1 - 0.5) - 12.2 mm. Decreasing the degree of shear connection from 100% used in full 
interaction analysis to 50% increases the deflection by 12.2/9.1 or 34%. 

3 .4 .1 .2  E x a m p l e  3 .8  Long-term deflection with partial shear 
connection 
Example 3.7 will now be reworked assuming partial interaction, except that 
long-term properties associated with t~ = 3 and ~h = 500 • 10 .6 will be used as 
in Examples 3.5 and 3.6. Under a condition of no interaction, the value of E must 
be used, but the effects of shrinkage are of course irrelevant. Hence (EI)r~ = 7.15 
x 103• 1303x 1500/12 + 200 • 103x 115.1 x 106 = 2.50 x 1013 Nmm 2 and so 
the deflection V o = 30.4 mm. From Example 3.6, v m = 19.1 mm. Hence from 
Eq. 3.1,  Vp~, = 19.1 + 0 .4  x (30 .4  - 19.1) • (1 - 0.5) = 21.4 mm. Decreasing the degree 
of shear connection from full to 50% therefore increases the long-term deflection by 
21.4/19.1 or 12%, which is much less than the increase for the short-term analysis in 
Example 4.1. Generally speaking, long-term deflections are influenced more by the 
effects of creep and shrinkage than by partial interaction or partial shear connection. 

3.5 Method of construction 
3.5.1 General 
When a composite beam is constructed, it may be propped or unpropped as 
shown in Figure 1.3. Propped construction is usually reserved for building 
construction where the weight of the wet concrete is transferred through the 
steel component to a number of closely spaced props as in (a). These props are 
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then removed when the concrete has set, and the resulting behaviour is determined 
by analysing the resulting composite beam. Unpropped construction is usual for 
bridges, where the steel component alone is required to support its own self weight 
as well as that of the wet concrete as in (b). Composite action is not achieved from 
the outset, and the deformations must be calculated initially from the flexural rigidity 
E I  of the steel component alone. The method of construction has significant 
ramifications on the flexural stresses, deformations and the forces on the shear 
connection, and this will be illustrated below by use of examples. 

3.5.2 Flexural stresses 
3.5.2.1 Example 3.9 Calculation of flexural stresses in propped 
beams 
Consider again the T-beam of Example 3.1 which is subjected to positive bending. 
The uniformly distributed load of 45 kN/m is composed of a long-term dead load 
w of 15 kN/m and a short-term live load of 30 kN/m. If full interaction is 
assumed, the stress distributions for long-term loading are shown in Figure 3.7(b) 
(with ~ = 3) and in (c) for short-term loading. The stresses in the transformed section 

nr --'~ for can be calculated from o = M y / I  for short-term loading or from o o M y / I  
long-term loading. The stresses at midspan calculated using Ine are shown in (b) and 
those calculated using I c are shown in (c). In the long-term, (Ma) ~ -- 15 x 6V8 = 67.5 
kNm, so that at the top of the transformed section o = 67.5 x 106• 171.1/7964 
x 106 = 1.5 N/mm 2 (Example 3.5) and at the bottom o = -67.5 x 1 0 6 X  

(454 - 171.1)/7964 • 106 = -2.4 N/mm 2 (compressive stresses positive). Similarly 
in the short-term under a moment (M)~ - 30 x 62 / 8 = 135 kNm, o,~ (top) = 
135 x 106 x 106.2/2905 • 106 = 4.9 N/mm (Example 3.1) and o (bottom) = 
-135 x 106• (454 - 106.2)/2905 • 106 -- -16.2 N/mm 2. These stresses may be 
superimposed, and then transformed back to their original constituents according 
the modular ratios n or n as shown in (d). The maximum flexural tensile stress in 
the steel is thus 7.0 x 16.2 + 28 • 2.4 --- 181 N/m 2. 

centroid transformed Onc(Ee) Onc(E~) O 
section (Ec) ~ N/mm 2 N/mm 2 N/mm2 

�9 " ~  1..51 _4.91 L . 6 .41  

, 04 
centroid 

t r a n s f o r m e d &  i \  
s e c t i o n  ( E e )  . . . .  ~ t ~ ,~ | , 

'2.4 ' 16.2 ' 181 
(a) (b) (c) (d) 

long term short term total 
(e) 

shear flow 

Figure 3.7 Propped construction 
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3.5.2.2  E x a m p l e  3 .10  Calculation of flexural stresses in unpropped 
beams 
The same beam analysed in Example 3.9 for propped construction is now analysed for 
unpropped construction. In this typical analysis, it has been assumed that all long-term 

load is resisted by the steel component, as shown in Figure 3.8(b), and that all short- 
term load is resisted by the composite beam, as in (c). The long-term stresses are 
calculated from o = My/l  in the steel component alone, while those in the composite 
section due to the short-term loading are calculated from One = My/Inc. Because the 
stresses were transformed according to the short-term modular ratio n, they are 
superposed and transformed according to n, as shown in (d). The short-term stresses 
are as in Example 3.9, while those in the steel are • 67.5 x 106 x (324/2)/115.1 x 106 
= +_ 95 N/mm 2. The maximum flexural tensile stress in the steel is thus 95 + 7.0 x 16.2 

= 208 N/mm 2 which is 115% of the maximum flexural stress in propped construction. 

3 .5 .2 .3  E x a m p l e  3 .11  Deflections in propped and unpropped 
construction 
We will now consider the midspan deflections for the previous two analyses of 
propped and unpropped construction. For propped construction, the deflection due 
to long-term loads (based on I e) is (5/384) x 15 x 6000417.15 x 103x 7964 x 10 6 = 

4.5 mm, and that due to short-term loads (based on I c) is similarly 6.1 ram, giving a 
total deflection of 10.6 mm. 

In unpropped construction, the deflection due to long-term loading is based 
on the flexural stiffness EsI s of the steel component, and is 11.0 mm. The deflection 
due to short-term loading is the same as that in propped construction, viz. 6.1 mm, 
giving a total deflection in unpropped construction of 17.1 mm. It can be seen that 
the deflections in unpropped construction are considerably higher than those in 
propped construction. 

centroid transformed O~steel O'nc(Ec) (~ 

section (Ec) ~ N/mm 2 N/mm2 N/ram2 
' ~  ~ 4.g: _ 4.9[ 

........ X . . . .  !:,,:1 
. . . . . . . . . . . . . . .  i .... ; : ! ; ! 

centroid '7~'" .... - - ~ "  i ~ i ~ ~ 

' 95 ' 16.2 208 component 
(a) (b) (c) (d) 

long term short term total 

(e) 
shear flow 

Figure 3.8 Unpropped construction 
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3.6 Shear flow on connectors 
3.6.1 General 
Assuming linear elastic full interaction analysis, the shear flow on the connectors 
may be determined from 

m 

VQ VAc Y (3.3) 
q =  .... i - Inc 

where Q = A~9 and where 9 is the distance between the centroid of the concrete 
component and the centroid of the transformed composite beam, that is the composite 
beam transformed to concrete. In propped construction, the shear flows due to the 
short and long-term loads have to be determined separately from the short and 
long-term transformed sections, and the shear flows added as in Figure 3.7(e). On 
the other hand, in unpropped construction, only the composite behaviour induces 
shear flows in the connectors, so this will be due to the short-term loading as shown 
in Figure 3.8(e). 

Note that it is more usual to determine the distribution of the shear connectors in 
composite beams in buildings from the results of a rigid plastic analysis, as described 
in Chapter 4. However, the following example that uses a beam in a building will 
demonstrate the use of linear elastic analysis in determining the distribution of shear 
connectors, as this procedure is generally used in the design of the shear connectors 
in composite bridge beams. 

3.6.1.1 Example 3.12 Shear f low on connectors 
For propped construction and with the cross-section considered in the previous 
examples, the maximum shear for the long-term loading is V = 45 kN and 

= 171.1 - 130/2 = 106.1 mm. Hence qlo,g = 45,000 x 1500 x 130 x 106.1/7964 
x l0 ~ -- 117 N/mm and similarly the maximum shear flow for short-term loading 
qsho, = 237 N/mm producing a total shear flow of 354 N/mm. On the other hand, for 
unpropped construction only the short-term loads exert forces on the shear connectors, 
so that q~ho, = 237 N/mm as before. Let us assume that we will be designing the 
shear connectors for propped construction, that is for a shear flow of 354 N/mm 
based on linear elastic analysis. 

It will be assumed that the characteristic strength of a dowel connector is 
Din, ~ - 60 kN. The spacing required at the supports is thus 60,000/354 = 170 mm, 
and that at midspan is infinite as shown in Figure 3.9. The connectors can be placed 
in blocks as shown in the figure. 

If we are willing to accept an understress of x = 25% in Figure 3.9, then the length 
of blocks adjacent to the support is 750 mm where the connectors will have a spacing 
of 170 mm. If we accept an overstress of 10%, then the length of the next block is 
750 + 300 = 1050 mm where the connectors will have a spacing of 260 mm. The 
procedure outlined in Figure 3.9 tends to be more conservative at the supports than 
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Figure 3.9 Distribution of connectors based on elastic analysis 

between the supports, and this is desirable as the shear connectors at the support 
regions are more prone to failure. 

3.7 
I. 
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4 Rigid plastic analysis of 
simply supported beams 

4.1 Introduction 
The maximum possible flexural strength or moment capacity of a simply 
supported composite beam can be derived from rigid plastic analyses in which 
it is assumed that all the materials are fully yielded and have unlimited ductility. In 
order to obtain this upper bound to the flexural strength, it is necessary to ensure that 
the following modes of failure do not occur prematurely' local buckling of the 
rectangular elements of the steel component which are dealt with in Chapter 2; 
lateral-distortional buckling of the steel component as described in Chapter 13; 
fracture of the shear connectors because of their limited slip capacity as described in 
Chapter 5; and failure of the concrete component of the composite member due to 
the concentrated dowel loads imposed on it by the shear connectors as covered in 
Chapters 6, 10 and 11. 

The basic procedures for determining the rigid plastic flexural capacities at a 
design section of a composite beam are first illustrated in Section 4.2 for standard 
composite beams in which neither the steel nor the concrete components are encased 
by the other as shown in Figure 1.1. Non-standard composite beams, in which one 
component is encased by the other, are analysed in Section 4.3. The distribution of 
the flexural forces and the terminology used in describing them are explained in 
qualitative terms in Section 1.4.2 and it is suggested that the reader glance through 
this before proceeding. 

4.2 Rigid plastic flexural capacity of standard composite 
beams 
4.2.1 Equilibrium of forces at a design section 
It is worth noting that rigid plastic analysis techniques are based purely on 
equilibrium of forces because all the materials are assumed to be fully yielded and have 
unlimited ductility. Furthermore, the flexural forces in a composite beam and the positions 
of the neutral axes depend on the relative strengths of the three components of a composite 
beam which are the concrete slab, the steel beam and the shear connection. 

Consider the simply supported composite beam in Figure 4.1, and let us assume 
that we are trying to determine the flexural capacity at the design section A-A in (b). 
The composite beam can be considered to consist of three distinct components which 
are the concrete and steel components in (a) and the shear connection component in 
(b). The strengths P of the three components are shown in (c). The compressive 
strength of the concrete component P = A 0.85f where A is the cross-sectional 
area of the concrete slab, f is the compressive cylinder strength of the concrete 
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which can be taken as 85% of the cube strength f ,  0.85f = fy is the compressive 
'yield' strength of the concrete which can also be taken as 0.72f u, and where the 
tensile strength of the concrete material and hence the tensile strength of the concrete 
component is taken as zero. The tensile and compressive strength of the steel 
component P = Asf, where A s is the cross-sectional area of the steel beam and f is 
the yield strength of the steel. Furthermore, the shear strength of the shear connection 
is Psh = Q~hL~ where Qsh is the shear flow strength of the shear connection, that is the 
strength of the shear connection per unit length of beam, and Ls~ is the length of the 
shear span between the design section and the support. It is worth noting that while 
the strengths of the steel and concrete components (Ps and Pc) are unchanged 
throughout the length of the beam, the strength of the shear connection component 
(Psh) varies throughout the length of the beam as it depends on the distance from the 
design section to the support (L) .  

Ac, 0.85fc (fcy) ~ ~  shear connection componentll ' ] 
. ^ A P 

 ompon nt ~ , L O 'i s Os  ss . . . .  

-.f Ps = Asfy 

steel component / ' ~  .section 
(a) (b) (c) 

cross-section shear span component strengths 

Figure 4.1 Strengths of the components of a composite beam 

The forces F acting along the longitudinal axis of a composite beam are shown in 
Figures. 4.2(a) and (b). As was explained in Section 1.4, the maximum axial force 
that can act on the concrete component is the weaker of the strengths of the concrete 
component Pc and of the shear connection component Ps," Similarly, the maximum 
axial force in the steel component is the weaker of Psh and P. Furthermore, the shear 
forces across the steel/concrete interface in (a) must be equal in magnitude to the 
axial force and hence equal to the weaker of the forces in the steel and concrete 
components. Therefore, the component forces C w in (b) must be the weakest of the 
strengths of the three components P,  Ps and Ps,, that is the resultant force in the three 
components of a composite beam C w is equal to the strength of the weakest of the 
three components of the composite beam. 

Examples of the three possible component force distributions and hence 
stress distributions are shown in Figures. 4.2(c) to (e). When the steel component is the 
weakest of the three components, then C w = P in (b), the steel component is 
fully yielded as in (c) and there is one neutral axis that lies in the concrete 
component as shown. When the concrete component is the weakest, then 
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C w = P,  the concrete is fully 'yielded' at fy and the one neutral axis now lies in 
the steel component as in (d). However, when the shear connection component is the 
weakest, then C w = Psh and neither the concrete nor the steel components are fully 
yielded in one direction as shown in (e), that is neither component is fully yielded in 
either compression or tension, so that there are now two neutral axes. As described in 
Section 1.4.2, the cases shown in (c) and (d) are often referred to as those of full-shear- 
connection whereas that shown in (e) is referred to as one of partial-shear-connection. 

C O . O O 
concrete component-, ~ m~ Ii 

~ ~  r~ neutral ~ ~ ~  . 

r- Cw noutra I  

m m m m m l m m m m m m m  m m m m m  

" ~  (a) components (b) forces (e) Cw= Ps (d) Cw= Pc (e) Cw= Psh 

Figure 4.2 Resultant axial forces in components 

4 .2 .2  Steel component weakest 
4.2.2.1 Genera l  
The composite beam shown in Figure 4.3 will be analysed in the following 
examples to illustrate different aspects of composite construction. The beam has a 
span of L c = 10 m as shown in (b) and it will be assumed that the composite beams 
have a lateral spacing of Tad j - 5 m. Hence, the effective breadth of the concrete 
component either side of the steel component is bet f = 1750 mm as shown in (a); 
this breadth is based on Ansourian's approach t (Eq. 2.8). However, it is worth 
noting that the Eurocode approach ~ gives an effective breadth of 1250 mm (Eq. 2.3) 
which is 29% less. As these analyses are based on the steel component being 
the weakest, it will be assumed that the strength of the shear connection on each 
side of the design section in Figure 4.3(b), along the length of the shear span (Lss) ~ 
and along ( L )  r, is equal to or greater than the strength of the steel component. 
Hence we are dealing with full-shear-connection. Units of N and mm will be used 
throughout unless stated. 

4 .2 .2 .2  E x a m p l e  4.1 Full-shear-connection analysis 
(a) R ig id  plast ic  ana lys i s  o f  a c o m p o s i t e  b e a m  
The rigid plastic analysis of the composite beam in Figure 4.3 is summarized in 
Figure 4.4. As we are applying a full-shear-connection analysis, the first step is to 
determine the distribution of the component forces C in (d). The strength of each 
rectangular element in (a) is listed in (b), from which it can be seen that the strength 
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of the concrete component is 9692 kN, the strength of the steel component is 2300 
kN, and the strength of the shear connection component is shown as P,h which is 
assumed to be greater than the weaker of the other two components. As the strength 
of the steel component (2300 kN) is less than the strength of the concrete component 
(9692 kN), the component forces are equal to the strength of the steel component 

(that is the weakest element) as shown in (d). 

All units in N and mm unless shown 
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Figure 4.3 Simply supported standard composite beam 
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Figure 4.4 Example 4.1 Rigid plastic analysis of a composite beam 

The neutral axis lies in the stronger component, which in this case is the 
concrete component, and is shown at a depth n below the top fibre in Figure 4.4 (c). 
As the steel component is uniformly stressed as shown in (c) and as the steel 
component is symmetrical, the resultant force in the steel component, shown in (d), 
acts at the mid-depth of the steel which is 320 mm from the top fibre as in (e). The 
axial force in the concrete component acts over a depth n and width 3500 mm of the 
concrete component as shown shaded in (a). Equating this force to the strength of 
this shaded section, that is 2,300,000 = 21.3 x 3500 x n, gives n = 30.9 mm. 
Furthermore, the resultant axial force in the concrete component acts at n/2--- 15 mm 
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from the top fibre as shown in (e) where y is the distance of the component force 
from the top fibre. 

The magnitude and positions of all the flexural forces in the composite beam are 
now known and shown in Figures. 4.4(d) and (e). Taking the moment of the two forces 
about any convenient axis such as the top fibre or at a position of a resultant component 
force gives the moment capacity of the composite beam as Mrs ~ = 2300 x 0.305 = 702 
kNm. The moment capacity is not sensitive to the effective width of the slab used in the 
analysis, for example, using the Eurocode effective width (Section 4.2.2. l) which is 
29% less than that used in this analysis, reduces the flexural capacity by only 2.0%. 

It can also be seen in Figure 4.4(d) that the shear force across the steel/concrete 
interface is 2300 kN. This is the force in the shear connectors in a shear span such as 
L in Figure 4.2(a). In order to achieve full shear connection, the strength of the 
shear connectors in each shear span, (L)~ and (L)~, in Figure 4.3(b) must be equal 
to or greater than 2300 kN. Therefore, the total strength of the shear connectors in a 
composite beam must be at least equal to twice the strength of the weaker of the 
concrete and steel components, which in this example is 4600 kN, in order to achieve 
full-shear-connection. 

(b) Increase in s trength due to compos i t e  act ion 
A simple and familiar rigid plastic analysis could be used to calculate the moment 
capacity of the steel beam in Figure 4.3(a), in order to determine the increase in 
strength due to the composite action. However, the steel beam acting by itself is the 
composite beam with no shear connection, that is with a zero degree of shear 
connection. The flexural strength of the steel beam acting by itself will be determined 
using composite analyses in order to introduce partial-shear-connection analysis 
techniques; however the concept of partial-shear-connection will be covered in much 
greater detail in Section 4.2.4. 

The partial-shear-connection analysis of the composite beam with zero-shear- 
connection is illustrated in Figure 4.5. It is worth comparing this analysis with the 
full-shear-connection analysis shown in Figure 4.4. The strengths of the three 
components are shown in Figure 4.5(b). The strength of the shear component Psh is 
the weakest and equal to zero and, therefore, the component forces are all zero as 
shown in (d). As the concrete component force is zero and as the tensile strength of 
the concrete is assumed to be zero, the concrete element is unstressed as shown in 
(c) with the neutral axis at the top fibre. As the steel component force is zero and as 
the steel component is symmetrical, the neutral axis must lie at mid-depth of the 
steel component as shown in (c) which gives the forces in (e) and their distances 
from the steel/concrete interface in (f). Using (e) and (f) to take moments about the 
interface gives the moment capacity of the steel element as 335 kNm. Therefore, 
tying the steel beam to the concrete slab using shear connectors has increased the 
flexural capacity by a factor of 702/335 = 2.1. This substantial increase in strength 
combined with a similar increase in stiffness (illustrated in Chapter 3) emphasises 
the enormous gain that can be achieved by making the concrete slab and the steel 
beam composite. 



58 Rigid plastic analysis of simply supported beams 

(c) Approx imate  approach for initial design 
In most composite beams in buildings, the steel component is usually weaker 
than the concrete component so that the full-shear-connection analysis illustrated 
in Figure 4.4 will apply most of the time. The moment capacity is equal to the 
strength of the steel component (Asf) times the lever arm between the forces in the 
steel and concrete components shown as h in (d). For a composite beam with a 
symmetrical I-section, the smallest value ofh occurs when the strength of the concrete 
component is equal to the strength of the steel component, in this case the lever arm 
is equal to half the total depth D of the composite section shown in (a). Therefore 
and as a first approximation, a lower bound to the full-shear-connection flexural 
capacity is given by 

M fsc < a s f y ( D / 2  ) (4.1) 

Applying Eq. 4.1 to the composite beam in Figure 4.4 gives a lower bound to the 
moment capacity of 587 kNm which is 16% less than the upper bound rigid plastic 
strength of 702 kNm. 
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Figure 4.5 Example 4.1 Partial-shear-connection analysis with zero shear connection 

4.2.2.3 E x a m p l e  4.2 Efficient forms of composite beams 
The contribution of the top flange of the steel component in Figure 4.4(a) to the 
moment capacity is small because it is close to the neutral axis. It can therefore be 
seen that the main purpose of the top flange of the steel component is for the 
attachment of the shear connectors. An efficient design would be to make the top 
flange as small as possible or to remove it altogether as shown in Figure 4.6(a), 
where the shear connectors are welded to the sides of the web of an inverted 
T-section. Because the cover to the sides of the shear connectors is small in this 
hybrid composite beam, the concrete element is prone to splitting as described in 
Chapter 10 where design rules to prevent splitting are given. 

The analysis of the hybrid beam is summarized in Figure 4.6; the area of the web 
encased by the concrete in (a) has been ignored in the analysis. The strengths of the 
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components of the composite beam are listed in (b) where it can be seen that the 
steel component is the weakest at 1625 kN. Therefore, the steel element is fully 
yielded in tension as shown in (c) and the strength of the steel component controls 
the distribution of the component forces C as shown in (d). Because this steel 
component is not symmetrical, it is much easier to deal with the forces F in the 
rectangular elements as shown in (e) instead of the resultant component forces in 
(d). The forces in the rectangular elements of the steel component act at the centroid 
of the rectangular elements and their distance from the top fibre is shown in (f). The 
depth of the neutral axis n in (c) is 22 mm and can be derived in the usual way by 
equating the component force in the concrete element of 1625 kN to the strength of 
the slab in compression which is 21.3 x 3500 x n. 
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Figure 4.6 Example 4.2 Composite beams with inverted T steel component 

By taking moments using Figures. 4.6(e) and (f), the moment capacity of the 
composite beam without a steel top flange is 624 kNm which can be compared with 
the capacity of the same composite beam but with the top steel flange in Example 
4.1 of 702 kNm. Removal of the top steel flange has reduced the area of steel by 
29% but has only reduced the moment capacity by 11%. In order to obtain full- 
shear-connection, the strength of the shear connection in a shear span must be at 
least 1625 kN as shown in (d), and hence the strength of the shear connection in the 
whole beam must be at least 3250 kN. 

4.2.2.4 E x a m p l e  4.3 Strengthening composite beams 
The bottom flange in Figure 4.6(a) contributes to most of the moment capacity 
as it is furthest from the neutral axis and, therefore, an efficient way of increasing 
the flexural strength of a composite beam is to attach an additional flange as 
shown in Figure 4.7. This additional flange can have a higher yield strength 
than that of the I-section making the system even more efficient. 

The steps of the analysis are summarized in Figure 4.7. The additional 220x26 
mm flange has been chosen to virtually double the strength of the steel component 
from 2300 kN to 4588 kN. However, the strength of the steel component 
(P = 2300+2288 = 4588 kN) is still weaker than that of the concrete component 
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Figure 4.7 Example 4.3 Strengthening composite beams 

(Pc = 9692 kN) so that the steel component still controls the distribution of component 
forces as shown in (d). From (d) and (e), the moment capacity is now 1790 kNm 
which is 2.6 times the strength of the original composite beam and 5.3 times the 
strength of the I-section acting by itself. It can be seen that doubling the strength of 
the steel component by the addition of a steel flange increases the moment capacity 
of the composite section by a greater factor (2.6) as the additional flange is placed at 
its most efficient position. 

In order to achieve this increase in the moment capacity, it would be necessary 
to increase the strength of the shear connectors in a shear span from 2300 kN 
(as shown in Figure 4.4(d)) to 4588 kN as shown in Figure 4.7(d). This can be achieved 
with the addition of friction grip bolts as shown in (a). However, if it is impractical to 
add more shear connectors, then the increase in strength can be derived from partial- 
shear-connection analyses as in Example 4.7. The additional 220 x 26 mm flange has 
to be attached to the I-section by bolting or welding as shown in Figure 4.7(a) and the 
strength of this shear connection per shear span must be at least equal to 2288 kN as 
shown in (d) in order to achieve full-shear-connection for the additional flange. 

4 .2 .2 .5  E x a m p l e  4.4 Composite beams with longitudinal ribs 
The previous examples have dealt with composite beams with solid slabs. An alternative 
and common form of construction is a composite beam that has a composite profiled slab 
as its concrete component. The ribs of these composite slabs can be longitudinal to the 
composite beam as shown in Figure 4.8(a) or they can be transverse to the composite 
beam as in Figure 4.10. As with the hybrid beam in Figure 4.6(a), composite beams with 
longitudinal ribs as in Figure 4.8(a) are prone to splitting because of the limited side 
cover to the shear connectors. It is up to the designer to determine whether the splitting 
resistance, as determined in Chapter 10, controls the strength of the shear component. 
In order to design the composite beam in Figure 4.8(a), we will use the effective section 
in (b) as described in Section 2.2.3, which has the same cross-sectional area of slab as 
in (a). To further simplify the problem, we will assume that the haunch has vertical 
sides as shown in (b) as the error is minuscule. 
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(a) haunched composite beam (b) equivalent section 

Figure 4.8 Equivalent section of a composite beam with longitudinal ribs 

The composite beam in Figure 4.8(b) has been analysed in Figure 4.9 for 
different yield strengths of the steel of 250 N/mm 2 and 400 N/mm 2. For f -- 
250 N/mm 2, the strengths of the elements are shown in (b). It can be seen that the 
strength of the steel component (2300 kN) is less than the strength of the concrete 
component (2722 + 1166 = 3888 kN). In fact the strength of the steel component 
is smaller than the strength of the upper element of the concrete component 
(2722 kN), and therefore the neutral axis lies in this upper element, that is above the rib. 
Because the neutral axis lies above the rib, the analysis is the same as that of the composite 
beam with a solid slab in Figure 4.4, except that the width of the slab is now 1830 mm 
instead of 3500 mm in Figure 4.4. The depth of the neutral axis n --- 2,300,000/(1830 
x 21.3) = 59 mm and hence the moment capacity is now 2300 x 0.2905 = 668 kNm. It 
can be seen that virtually halving the width of the slab from 3500 mm to 1830 mm has 
only reduced the strength from 702kNm to 668 kNm that is by 5%. 

The analysis when f = 400 N/mm 2 is shown in Figures. 4.9(c) to (f). The strength 
of the steel component (3680 kN) is still weaker than the strength of the concrete 
component (2722 + 1166 -- 3888 kN) but stronger than the strength of the upper 
element of the concrete component. Therefore, the neutral axis now lies in the lower 
element of the concrete component as shown in (d) and, furthermore, the resultant 
force in each component is equal to the strength of the steel component (3680 kN) 
as shown in (e). The distribution of the force in the concrete component of 3680 kN 
consists of 2722 kN in the upper element with the remainder of 958 kN in the lower 
element as shown in (e). If n is the depth of concrete in compression in the lower 
concrete element as shown in (a) and (d), then by equating the element force (958 kN) 
to the strength of the concrete element in compression (915xnx21.3) gives 
n = 49.2 mm. The resultant forces and their distance from the top fibre are shown in 
(e) and (f) from which it can be determined that the moment capacity is 991 kNm. 

The analysis procedure described in the previous paragraph was based on the fact 
that the resultant force in each component is equal to the strength of the weakest 
component. An alternative way of visualizing the problem is that the compressive 
force above the neutral axis is equal to the tensile force below the neutral axis. Take 
for example the beam in Figure 4.9 with f = 400 N/mm 2 and where the strengths of 
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Figure 4.9 Example 4.4 Composite beam with longitudinal ribs 

the elements are listed in (c). The element in which the neutral axis occurs can be 
determined by trial and error. For example if the neutral axis were assumed to be at 
level A, the resultant force is tensile and equal to 3680-  2722 = 958 kN, however, 
at level B the resultant force is compressive and equal to 3 6 8 0 -  2722 - 1166 

= -208  kN. Therefore, the neutral axis lies between levels A and B. 

4.2.3 Concrete component weakest 
4.2.3.1 General 
Occasionally the concrete component is weaker than the steel component. This can 
happen in composite L-beams such as that shown in Figure 4.8(a), particularly if the 
concrete component is a composite slab as the profiled ribs reduce the area of concrete. 
This is also often the case in unpropped composite bridge beams where deflection is 
a major design criterion necessitating a large steel element. It will again be assumed 
in the following analyses that the strength of the shear connection in a shear span is 
greater than the strength of the concrete component and hence we are still dealing 
with full-shear-connection analyses. 

4.2.3.2 E x a m p l e  4.5  Full-shear-connection analysis of a composite 
beam with transverse ribs 
(a) Rigid plastic analysis 
A composite L-beam that has a composite slab with transverse ribs is shown in 
Figure 4.10. The flexural strength is governed by the weakest cross-section which 
occurs between the transverse ribs such as at A-D in (b). Therefore, the section to 
analyse has a solid slab of depth A-B and a steel element of depth C-D that is separated 
by the void due to the ribs of depth B-C as shown in Figure 4.11 (a). 

By inspection of the element strengths in Figure 4.11 (b), the neutral axis lies in 
the top steel flange. If the neutral axis lies at a distance n below the concrete/steel 
interface as shown in (c), then equating the compressive force above the neutral axis 
(2,729,000 + (160 x n x400)) to the tensile force below (160(18 - n)400 + 1,376,000 
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Figure 4.10 Composite L-beam with transverse ribs 

+ 1,152,000) gives n = 7.4 mm and, hence, the magnitudes and positions in (d) and 
(e), from which can be determined the moment capacity of 955 kNm. It can be seen 
in (d) that the strength of the shear connection per shear span must be 2729 kN. 

(b) Equivalent stress block approach 
The strength and stress distributions in Figures. 4.11 (b) and (c) are shown in Figures. 
4.12(a) and (b). A simpler analytical approach is to use the equivalent stress system 
in (c) in which all of the steel element is yielded in tension at f and the part that is in 
compression has an increased stress of 2f. It can be seen that this equivalent stress 

Y 
distribution has the same resultant stress distribution as in (b). 

Consider the equivalent stress system of Figure 4.12(c). The tensile force in the 
steel component is 3680 kN as shown in (d) and as the resultant force in the steel 
component is 2729 kN, the compressive force is 951 kN as shown. If the depth of 
the neutral axis is n as in (c), equating the compressive force (951 kN) to the strength 
of the steel flange in compression (160 x n x 400 x 2) where the yield strength in 
compression is 2f, gives n =7.4 mm and the position of this compressive force from 
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Figure 4.11 Example 4.5 Full-shear-connection analysis 
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Figure 4.12 Example 4.5 Equivalent stress block approach 

the top fibre as 134 mm in (e). It can be seen that deriving the moment capacity from 
Figures. 4.12(d) and (e) is much simpler than from Figures. 4.11 (d) and (e). 

4.2.4 Shear component weakest 
4.2.4.1 General 
When the strength of the shear component is the weakest of the three components, then 
the component forces are equal to the strength of the shear component and this is referred 
to as partial-shear-connection. Partial-shear-connection can occur in com-posite beams 
with transverse fibs, as in Figure 4.10(b), because there are a limited number of troughs 
through which the connectors can be welded and also because the voids either side of 
the troughs weaken the shear connection as explained in Chapter 5. Furthermore, a 
composite beam may start with full-shear-connection, but the shear connection may 
weaken with time due to splitting (Chapter 10) or fatigue (Chapter 15), so that the beam 
eventually has partial-shear-connection. Or quite simply, the designer may find that the 
full-shear-connection strength is more than required and hence uses fewer shear 
connectors to reduce both the strength and the cost. 

4.2.4.2 Example 4.6 Partial shear connection analysis 
The composite beam in Figure 4.4 was originally designed with full-shear-connection 
where the strength of the shear connection in a shear span was at least 2300 kN as 
shown in (d). Let us assume that the traversal of a concentrated load caused splitting 
and that the post-splitting strength (Chapter 11) is 20% weaker at 1840 kN. The 
composite beam now has partial-shear-connection and the degree of shear connection 
as defined in Section 1.4.2.3 and Eq. 1.13 is 80%. The analysis of the composite 
beam is shown in Figure 4.13 where the strengths of the components are shown in 
(b). As the shear component is the weakest component, the resultant force in all 
three components is equal to the strength of the shear component as shown in (c) 
and, furthermore, there are now two neutral axes as shown in (d). The equivalent 
stress distribution in (e) will be used in the following analyses. 
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Figure 4.13 Example 4.6 Partial-shear-connection analysis 

The concrete component is not fully stressed in compression as shown in Figure 
4.13(e). The neutral axis position n, can be determined by equating the component 
force (1840 kN) to the strength of the concrete compression zone (3500 x n, x 21.3) 
to give n, --- 24.7 mm. The steel component is also not fully stressed in tension. The 
neutral axis position n 2 can be determined by inspection. Consider the strengths of 
the steel rectangular elements in (b) and recall that the resultant force in the steel 
component is 1840 kN as in (c). If the neutral axis is at level A in (b), then the 
resultant tensile force in the steel component is the tensile force below the neutral 
axis less the compressive force above, that is (720 + 860) x 720 -- 860 kN which is 
less than the required value of 1840 kN. Therefore the tensile force has to be increased 
by raising the neutral axis above level A, that is into the top steel flange where the 
neutral axis is shown at a distance n 2 in (d). The force in the compression zone of the 
steel element in (e) must equal 2300 - 1840 -- 460 kN and equating this force to the 
strength of the compression zone (160 x n 2 x 500) gives n 2 = 5.8 mm. 

From Figures. 4.13(f) and (g), the moment capacity is 653 kNm. It is worth noting 
that a 20% reduction in the strength of the shear connection from full shear connection 
has only reduced the moment capacity from 702 kNm to 653 kNm, that is by 7%. It 
can be seen that the moment capacity of a composite beam with an initial high 
degree of shear connection is not sensitive to reductions in the strength of the shear 
connection, so that composite beams can generally withstand substantial damage to 
the shear connection with minimal effect on their flexural capacity. 

4 .2 .4 .3  E x a m p l e  4.7 Strengthening of composite beams 
The composite beam in Figure 4.3 was strengthened in Figure 4.7 by adding a flange 
and extra shear connectors. Let us now assume that it is impractical to add more shear 
connectors and hence the composite beam now has partial-shear-connection, and the 
degree of shear connection is the strength of the original shear connection divided by 
that required for full-shear-connection, that is 1] = 2300/(2300 § 2288) - 50%. 

The analysis of the beam is shown in Figure 4.14. The elements in which the 
neutral axes can occur can be determined by inspection. Equating the force in the 
concrete element (2300 kN) to the strength of the area in compression (3500 x n, 
x 21.3) gives n, - 30.9 mm. 
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Figure 4.14 Example 4.7 Strengthening a beam with partial-shear-connection 

The steel component force is 2300 kN as shown in Figure 4.14(c), the tensile 
strength of the steel component is 4588 kN as in (b), and the compressive strength 
of the top steel flange is 2 x 720 = 1440 kN as in (e) because the compressive yield 
strength of the top flange is assumed to be 2 f  = 500 N/mm 2 as shown in (d). As the 
steel component force is 2300 kN, from (e) it can be seen that 4588 - Fcomp = 2300 
where Fore p is the compressive force in the steel component with the stress distribution 
in (d). Therefore F omp = 2288 kN. The force F omp is resisted by the top flange and 
part of the web as shown in (d) hence the compressive force in the web is 2288 - 
1440 = 848 kN which is equal to the strength of the web in compression (10 x n 2 x 
500), and hence n 2 = 169.6 mm. The magnitudes of the forces and their positions are 
now know and shown in (e) and (f) from which the moment capacity is 1500 kNm. 

It can be seen from the calculations in Figure 4.14 that, even though additional 
shear connectors were not added to provide full-shear-connection, the inclusion 
of the plate has substantially increased the moment capacity from 702 kNm to 
1500 kNm. Another way of viewing this situation is that a 50% reduction in 
the shear connector capacity of the composite beam from full-shear-connection 
has only reduced the flexural capacity by 16% from 1790 kNm to 1500 kNm. It is 
worth noting that the strength of the bolt shear connectors shown in Figure 4.14(a) 
must still remain at 2288 kN per shear span as the force in the additional plate is 
unchanged. It is also worth noting that composite beams with low degrees of shear 
connection are prone to premature failure due to fracture of the shear connectors as 
described in Chapter 5. 

4.2.5 Effect of vertical shear on the flexural capacity 
4.2.5.1 Equ iva l en t  f lexura l  y ie ld  s t rength  
The vertical shear force in a composite beam is assumed to be resisted entirely by 
shear stresses in the web of the steel element. These shear stresses x w reduce the 
flexural stress that cause the web to yield from the yield strength f to an equivalent 
yield strength ffy that can be derived from von Mises yield criterion described in 

Section 1.3.2 as 
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where the shear stress x w is assumed to be uniformly distributed over the web. 

4 .2 .5 .2  Example 4.8 Reduction in flexural capacity due to vertical 
shear forces 
Let us determine the reduction in the flexural capacity due to vertical shear 
forces for the composite beam in Figure 4.3 when it is subjected to a unifom~y distributed 
load and when the composite beam has a uniform distribution of shear connectors. 
From Section 4.2.2.2, the composite beam has a full-shear-connection moment capacity 
of 702 kNm. Therefore, the beam can support a uniformly distributed load of 56.2 kN/ 
m over its span of 10 m which gives reactions at the supports of 280.8 kN. 

As there is a uniformly distributed load, the vertical shear force at mid-span 
is zero and hence the full-shear-connection moment capacity of 702 kN is not 
reduced at this section. At the supports, the vertical shear force is at its greatest 
but the applied moment is zero, so the effect of vertical shear is irrelevant unless 
the shear stress exceeds f/~/3. Instead, let us consider the effect of the vertical y 
shear on the beam at the quarter-span where the vertical shear force is 140.4 kN. At 
the quarter-span, the degree of shear connection is 50% as there is a uniform distribution 
of shear connectors, that is the strength of the shear connection between the quarter- 
span and the support is half the strength between mid-span and the support. 

The analysis at the quarter-span is shown in Figure 4.15. The average shear stress 
in the web is 1: w = 140,400/(344 x 10) = 40.8 N/mm 2 and hence from Eq. 4.2 ffy = 
239.8 N/mm 2 which is only a slight reduction from the yield strength of 250 N/mm 2. 
The strength of the elements are shown in Figure 4.15(b) where the strength of the 
web of 825 kN is based on fly. The analysis follows the usual procedure in (c) to (e) 
which gives a moment capacity of 562.8 kNm. If the effect of the vertical force is 
ignored, then the strength of the web in (b) is now 860 kN instead of 825 kN and the 
moment capacity is 569.3 kNm. Hence, the vertical shear force has only reduced the 
moment capacity by 1.1% which is irrelevant and generally ignored in practice. 
However, it is worth noting that the vertical shear force has a much greater effect in 
negative regions where the position of the maximum shear and maximum moment 
coincide (Chapter 12), and also in the vicinity of service ducts (Chapter 9) where a 
mechanism is required to transfer the shear forces across the duct. 

4.3 Rigid plastic flexural capacity of encased composite 
beams 
4.3.1 General 
The full-shear-connection analysis of an encased composite beam differs from the 
analysis of a standard composite beam because one component is now encased by 
the other and, therefore, the neutral axis must now lie in both components. 
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Figure 4.15 Example 4.8 Effect of vertical shear forces at quarter-span 

4.3.1.1 Example 4.9 Infilled box section 
(a) Full shear connection analysis 
The full-shear-connection analysis of an infilled box section is shown in 
Figure 4.16. The strengths of the rectangular elements are shown in (b), the 
stress distribution in the concrete component in (c), and the equivalent stress 
distribution in the steel component in (d). The neutral axis position in (c) and (d) 
can be determined by bearing in mind that the total force above the neutral axis, 
that is in the steel and concrete elements, is equal to the total force below. Hence 
by inspection, the neutral axis lies below the inside of the top flange at the distance 
n as shown. Using the equivalent stress system in (d), the tensile force of 
924 kN in (e) is the strength of the steel component, the 'strength' of the steel 
flange in compression is 360 kN and, therefore, the remaining steel and concrete 
in compression must resist a force of 924 - 360 = 564 kN. Equating this force 
to the sum of the 'strength' of the steel in compression (12 x n x 500) and the 
strength of the concrete in compression (29.8 x n x 108) gives n = 61.2 mm. 

The magnitudes and positions of all the forces in Figures. 4.16(e) and (f) are 
now known, from which the moment capacity is 70.5 kNm. This is only slightly more 
than the moment capacity of the steel component acting by itself of 61.4 kNm. However, 
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Figure 4.16 Example 4.9 Full-shear-connection analysis 
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it is worth noting that the addition of the concrete substantially increases the local 
buckling strength of the steel elements as now they can only buckle away from the 
concrete component and, furthermore, the addition of the concrete substantially increases 
the flexural ductility of the structure making it ideal for earthquake zones. 

As with the standard composite beam in Section 4.2, the resultant force in 
the concrete component in Figure 4.16(c) is equal to the resultant force in the 
steel component in (d) which is equal to the resultant force in the shear connection 
component in a shear span. The component force, and hence the shear connector 
force in a shear span, can be determined from the resultant force in either (c) or 
(d) and is equal to 197 kN. This shear connector force acts uniformly around the 
perimeter of the interface between the steel and concrete components (because 
the slip-strain throughout the depth of the beam is constant 3) of length 592 mm, 
and on a area extending the full length of the shear span, which we will assume to 
be 2 m. Therefore, the bond strength required for full-shear-connection is 
(197000/(592 x 2000)) = 0.17 N/mm 2. 

(b) Partial shear connection analysis 
Let us assume that, in the previous example in Section 4.3.1.1 (a) above, the strength 
of the shear connector component is less than the 197 kN required for full shear 
connection and is equal to 100 kN. We are therefore dealing with a composite beam 
with partial-shear-connection and, therefore, the resultant force in both the steel 
component and the concrete component is 100 kN. The partial-shear-connection 
analysis is shown in Figure 4.17. 

The resultant force in each component is now 100 kN as shown in Figure 4.17(c). 
Because there is partial-shear-connection, there are two neutral axes as shown in (d) 
for the concrete component and in (f) for the steel component, and their positions can 
be determined by considering each component separately. The distribution of forces in 
the steel component is shown in (g). For the resultant force to be 100 kN, the neutral 
axis must lie below the top flange as shown in (f) and the 'compressive' force below the 
top flange Fcomp Can be derived from 924 - 360 - Fcomp -" 100 kN and h e n c e  Fore  p = 464 
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Figure 4.17 Example 4.9 Partial-shear-connection analysis 
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kN. Equating this force to the 'compressive' strength of the steel component below the 
top flange (12 x n z x 500) gives n z = 77.3 mm. The positions of all the forces from the 
top fibre are shown in brackets in (h). Using a similar procedure for the concrete 
component gives n~ = 31.1 mm and the position of the force in brackets in (e). The 
moment capacity can be determined from (e) and (h) and is equal to 68.2 kNm. 

4.4 Variation of flexurai capacity along the length of 
the beam 
4.4.1 General 
In all of the previous sections of this chapter, we dealt with the flexural capacity 
at a design position, such as at section A-A in Figure 4.3(b). This design section 
is usually chosen at the position of the maximum applied moment. The strength 
of the shear connector component is the strength of the shear connectors in a 
shear span, and it is necessary to ensure that this strength is the same in the 
shear spans on either side of the design position. The maximum degree of shear 
connection occurs at this design position which will be referred to as timex. 

The shear connectors have to be carefully distributed within each shear span in 
Figure 4.3(b) in order to ensure that the variation of the flexural strength along the 
length of the beam is never exceeded by the distribution of the applied moment 
along the length of the beam. Furthermore, it is also necessary to choose a distribution 
of shear connectors that ensures that the connectors do not fracture prematurely 
due to excessive slip as described in Chapter 5. 

4 .4 .2  Uniformly distributed shear connection 
4.4.2.1 G e n e r a l  
Most composite beams in buildings are designed to resist an applied load 
that is uniformly distributed along the length of the beam. It is normal practice to design 
these beams with a uniform distribution of shear connection, that is the shear flow 
strength of the shear connectors is constant throughout the length of the beam. 

4 .4 .2 .2  E x a m p l e  4 .10  Variation in the moment capacity 
(a) E q u i l i b r i u m  a p p r o a c h  
A half-span of the composite beam in Figure 4.3 is shown in Figure 4.18(a). The 
beam is subjected to a uniformly distributed applied load and the shear connectors 
are also uniformly distributed as shown. The beam was analysed in Figure 4.4 for 
full-shear connection where it was shown that the moment capacity is 702 kNm. It 
was also shown that the strength of the shear connection in a shear span required for 
full-shear-connection, that is rlmax = 1, is 2300 kN and, therefore, the beam requires 
a shear-flow-strength of Qsh = 2300/5 = 460 kN/m. 

As the beam in Figure 4.18(a) is subjected to a uniformly distributed load, the 
maximum applied moment occurs at mid-span at section A-A where the degree of 
shear connection 11 = rlmax = 1. Consider section B-B at a quarter span. The strength 
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of the shear connection in the shear span to the left of this design point is 
Qsh(Ls~)~ = 460 x 2.5 = 1150 kN, and the strength of the shear connection in the 
shear span to the right is Qsh(L )~ = 460 x 7.5 = 3450 kN. The maximum thrust that 
the connectors can apply at this design point is the weaker of these two strengths, 
that is 1150 kN, and, therefore, the degree of shear connection at the quarter-span 
is 1150/2300 = 0.5. Similarly at section C-C which is adjacent to the support, the 
strength of the shear connectors to the left tends to zero so that 1"1--->0. It can be seen 
that the degree of shear connection varies along the half span from rl = 0 at the 
supports to rl = rlm~ = 1 at mid-span and because there is a uniform distribution of 
shear connectors, the variation in the degree of shear connection along the shear 
span is linear as shown in (c). 

In the previous worked examples, the moment capacities at degrees of 
shear connection of 0, 0.5, 0.8 and 1 were calculated and these have been plotted 
in Figure 4.18(b) as the 'moment capacity' curve. It can be seen that the moment 
capacity varies from the strength of the steel component acting by itself 
(M--  335 kNm from Example 4.1(b))at the supports, to the full-shear-connection 
moment capacity (Mf~ -- 702 kNm from Example 4.1 (a)) at mid-span. Also plotted 
in (b) is the 'applied moment' distribution which varies from zero at the supports to 
that of the moment capacity at mid-span. In this example, the applied moment exceeds the 
moment capacity in region D-E and hence the beam will be slightly weaker than anticipated. 
This can be corrected by adding more connectors or moving the connectors towards the 
supports but this slight difference is usually ignored in practice. 
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Figure 4.18 Example 4.10 Uniform distribution of shear connectors 
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(b) L i n e a r  in te rpo la t ion  a p p r o a c h  
The design procedure can be simplified by assuming a linear variation in the 
moment capacity from M s = 335 kNm to Mrs c = 702 kNm as shown by the 'linear 
interpolation' line in Figure 4.18(b). For example, let us assume that we only 
require a moment capacity of 569 kNm, hence, from the 'linear interpolation' line 
in (b) we require a degree of shear connection of rlmax = (569 - 335)/(702 - 335) = 
0.64. Therefore to achieve a strength of 569 kNm, the beam can be designed with 
partial-shear-connection and with only 64% of the shear connectors required for 
full-shear-connection. The linear interpolation approach is conservative. If the 
more accurate equilibrium approach had been applied, then from Example 4.8, 
the degree of shear connection would be 50% instead of 64%. 

4 .4 .3  Non-uniformly distributed shear connection 
4.4.3.1 Genera l  
When beams are subjected to concentrated loads or variable distributed loads, 
then it may become unsafe to use a uniform distribution of shear connectors, as the 
applied moment may substantially exceed the moment capacity in regions along 
the shear span or fracture of the shear connectors due to excessive slip may occur. 
The designer could guess a configuration of connectors and then check for strength 
at various design positions using the procedure described in Section 4.4.2 and 
also check for fracture using Chapter 5, however, this may be impractical. Instead, 
the designer may use guidelines or rules of thumb. One such guideline is to concentrate 
the connectors according to the distribution of the vertical shear force V as 
the longitudinal linear elastic shear flow force q is proportional to V, that is 
q = VQ/I = VA~/I. It should be remembered that this is only a guideline as we are 
dealing with rigid plastic theory and not linear elastic theory from which the VAy 
equation is derived. 

4 .4 .3 .2  E x a m p l e  4 .11 Distribution of shear connectors 
The beam in Figure 4.3 has a shear connector strength per shear span of 
2300 kN and is subjected to the applied loads in Figure 4.19(a). The vertical shear force 
distribution is shown in (b) from which it can be seen that the position of maximum 
moment (zero vertical shear force) occurs at mid-span, and hence the shear spans are of 
equal length of 5m and each requires a strength of shear connection of 2300 kN. 

The areas of the shear force diagram between the concentrated loads in Figure 
4.19(a) is shown in brackets in (b). It is normal practice to distribute the connectors 
according to these areas. Therefore in the span A-B, the required strength of the 
shear connectors is 2300 • (542/(542 + 160)) = 1777 kN as shown in (c), and similarly 
the strength of the shear connection in B-C in (b) is 2300 • (160/(542+ 160)) = 523 
kN. As C-D in (b) is a shear span, the strength of the shear connectors is 2300 kN as 
shown in (c). Therefore, the mean shear flow strength required in span A-B is 
1777/2.5 = 711 kN/m as shown in (d) and similarly that required in B-C is 
209 kN/m, and that required in C-D is 460 kN/m. It is worth noting that even though 
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Figure 4.19 Example 4.11 Distribution of shear connectors 

there is a linear variation in the linear elastic shear flow force in regions A-B and 
C-D (as shown by the linear variation in V in (b)), the shear flow strengths are kept 
constant in these regions as shown in (d), which is in line with the procedure described 
in Section 4.4.2 where the shear flow strength was kept constant in a beam with a 
uniformly distributed load. 

4.5 References 
1. Ansourian, P. (1975). 'An application of the method of finite elements to the 

analysis of composite floor systems'. Proceedings of the Institution of Civil 
Engineers, London, Part 2, Vol. 59, 699-726. 

2. Eurocode 4 (1994). Part 1: Design of Composite Steel and Concrete Structures. 
DDENV 1994-1-1: 1994. Draft for development. 

3. Oehlers, D.J. and Bradford, M.A. (1995). Composite Steel and Concrete Structural 
Members: Fundamental Behaviour. Pergamon Press, Oxford. 



5 Mechanical  shear connectors 

5 . 1  I n t r o d u c t i o n  
The linear elastic shear flow forces in composite beams were derived in Chapter 3 
and the rigid plastic shear flow forces in Chapter 4. These shear flow forces have to 
be resisted by the shear flow strengths of the mechanical shear connectors that are 
used to tie the concrete component to the steel component. There is an enormous 
variety of mechanical shear connectors as shown in Figure 1.2 so their properties 
are always determined experimentally in simple push-tests where the shear load is 
applied directly to the shear connection I. Furthermore, all of these mechanical shear 
connectors resist the shear flow forces by acting as steel dowels embedded in a 
concrete medium as shown in Figure 5.1, they all require slip between the concrete 
component and the steel component to resist these shear forces which are also shown, 
and they all have to be able to prevent the concrete component from separating from 

the steel component which is the purpose of the head of the stud. 
This chapter will only deal with stud shear connectors, which are unthreaded bolts that 

are welded to the steel component and then encased in concrete as in Figure 5. l, as these 
are the most common form of shear connection. The diameter of the shank d h varies from 
about 13 mm to 22 mm, with 19 mm being a common size for use in composite beams in 
buildings. The head of the stud is about 1.Sd h wide and 0.Sd h deep, and the weld collar is 
about 1.3dsh wide and varies in height hwc from zero to about 0.4d h. The height of the stud 
hst is usually greater than 4dh with a common size being 5dsh. 
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Figure 5.1 Dowel action of a stud shear connector 
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A typical experimentally determined shear-load/slip characteristic of a stud shear 
connection is shown in Figure 5.2. The initial response O-B is reasonably linear up to a 
slip s at Sp of about 0. l d  h at which point plasticity commences. There is then a plastic 
plateau B-C at the maximum dowel strength Dm~, until the stud fractures due to excessive 
slip at S,,, which occurs at about 0.3dsh. The response is not unlike the stress/strain 
relationship of many steels as shown in Figure 1.8. However, unlike steel where the strain 
at fracture is about 100 times the yield strain, the slip at fracture Sutt is only about 3 times 
the slip at which plasticity commences Sp. Hence, a major concem in composite beam 
design is to ensure that the connectors do not fracture prematurely due to excessive slip. 
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Figure 5.2 Load/slip characteristics of a stud shear connector 

The analyses presented in this chapter are based on the maximum dowel strengths 
Dm~ of stud shear connectors that can be achieved when all the other failure modes 
that are described in Chapters 6 and 10 are designed against. Detailing rules are first 
given to ensure that this dowel strength can be achieved, this is followed by methods 
for determining the dowel strengths and the distribution of connectors in a beam 
and, finally, procedures are described to ensure that these connectors do not fracture 
prematurely due to excessive slip. 

5.2 Local detailing rules 
5.2.1 General  

The transfer of the longitudinal shear by the dowel action of the stud shear 
connection exerts very high stresses onto the concrete surrounding the stud and to 
the steel plate to which the stud is welded. For example, the concrete in the bearing 
zone shown in Figure 5.1 has to be restrained triaxially to resist the bearing 
stresses that have to exceed 10 times the cylinder strength of the concrete f in 
order for the dowel strength to be achieved. The distribution of these stresses, that 
are local to the dowel, is extremely complex, so we have to resort to empirically 
derived detailing guidelines to ensure that premature failure does not occur due to 
these local stresses. 
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5.2.2 Shape of stud shear connections 
The maximum dowel strength Dma x varies from about 50 kN to 250 kN, depending 
on the diameter of the shank and the material strengths of the concrete f and the stud 
f .  The dowel strength also depends on the height of the stud, as short studs tend to 
pull out of the concrete. Research ~ suggests that the maximum dowel strength is 
achieved when the height of the stud hst >__ 5dsh as shown in Figure 5.1. Research has 
also shown t that the dowel strength depends on the height of the weld collar hw~ as 
the weld collar has a much larger cross-sectional area than the shank of the stud and, 
hence, can resist a substantial amount of the longitudinal thrust. The analyses in this 
chapter will be limited to groups of stud shear connectors where the mean height of 
the weld collars hwc > 0.2dsh and where hs, > 5dsh. 

The dowel action of a stud shear connector imposes high stress concentrations 
on the steel flange of thickness tf in Figure 5.1. In order to prevent the flange tearing, it 
is recommended that the flange thickness tf > 0.4dh and that the distance between the 
edge of the connector and the edge of the flange L > 1.3dh as shown in Figure 5.3(a). 

5.2.3 Spacing of stud shear connectors 
In the dowel mechanism for transferring the shear flow forces, a small volume of concrete 
adjacent to both the weld collar and the shank in the bearing zone in Figure 5.1 is 
crushed. In order to ensure that this failure zone does not affect adjacent connectors, the 
longitudinal spacing of the connectors L L > 5d h as shown in Figure 5.3(b) and the 
transverse spacing L T > 4dsh. Furthermore, in order to limit the separation between the 
steel and concrete components in the region between the connectors, so that we can 
assume that the curvatures are the same in both components, the longitudinal spacing 
L L > 6h c as in (b) where h is the depth of the slab as in (a). It is also suggested that, 
wherever possible, the connectors are staggered over the width and length of the flange 
as shown in (c), in order to prevent a longitudinal crack forming in the concrete 
component due to the splitting action of the shear connectors t, and in order to prevent 
shear failure of the concrete component as described in Chapter 6. The alternative of 
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Figure 5.3 Detailing rules for stud shear connections 
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a single line of stud shear connectors may be aesthetically pleasing to an engineer 
but can cause the connectors to slice through the slab prematurely. 

5.3 Dowel resistance to the shear flow forces 
5.3.1 General 
The shear flow forces are usually derived from rigid plastic analyses (Chapter 4) for 
composite beams in buildings and from linear elastic analyses (Chapter 3) for 
composite beams in bridges. These shear flow forces are resisted by the shear flow 
strengths of the stud shear connectors. These strengths are derived empirically from 
push tests ~ in which the shear connection is loaded directly, in comparison with 
composite beams where the shear connection is loaded indirectly through the flexural 
action of the beam. In the following section, several procedures will be described 
for determining the shear flow strengths and these will be used to determine the 
distribution of connectors in composite beams in buildings as well as in bridges. 

5.3.2 Mean strength in push-tests approach 
5.3.2.1 Mean dowel strength of stud shear connections in push-tests 
The mean strength of stud shear connections in push-tests 2 is given by the following equation. 

(Omax)push =O-$OAsh4fcEc 
when 

(5.1a) 

2 (5.1b) 
f u > 486 N / mm 

where Ash is the cross-sectional area of the shank of the stud and E is the short term 
Young's modulus for the concrete surrounding the stud, and in which the ultimate 
tensile strength of the stud material in these tests was f = 486 N/mm 2. The most important 
parameter in Eq. 5.1 is the cross-sectional area of the shank Ash at the level of the main 
failure zone shown in Figure 5.1 where the critical flexural and shear stresses are resisted. 
The concrete parameter ~/fE in Eq. 5.1 affects the position e of the shear force Ft in 
Figure 5.1 and hence the flexural stresses in the shank. For normal density concrete, the 
material stiffness of the concrete E can be derived from Section 1.3.5.1 where 

= 50504y  (52) 

when E c and f are measured in N/mm 2. 

5.3.2.2 Example 5.1 Mean dowel strength in push-tests approach 
(a) Composite beam 
Let us determine the number and distribution of the stud shear connectors for the 



78 Mechanical shear connectors 

simply supported composite beam of span 10 m in Figure 4.3, which has full-shear- 
connection and when the beam is subjected to a uniformly distributed load. The strength 
of the concrete f = 25 N/mm 2, the depth of the slab h c = 130 mm, and the thickness and 
width of the flange to which the studs are welded are tf = 18 mm and wf = 160 mm. As 
the beam is subjected to a uniformly distributed load, the maximum moment occurs at 
mid-span and, hence, the shear span is half the length of the beam, that is L = 5 m, and, 
furthermore, the connectors need to be distributed uniformly along a shear span. 

The rigid plastic full-shear-connection analysis for this composite beam is given 
in Example 4.1 in Section 4.2.2.2 and illustrated in Figure 4.4. From Figure 4.4, it 

can be seen that the shear force Psh in a shear span is 2300 kN. 

(b) S t u d  shea r  c o n n e c t i o n s  
When the strength of a single shear connection is Din,, then the number of connectors 
N required in a shear span is given by 

Psh = Dmax Nss (5.3) 

In order to determine the number of connectors in a shear span N ,  we first need to 
determine the shear strength Din. 

In our beam f=  25 N/mm 2 (Figure 4.3), then from Eq. 5.2, E =  25,250 N/mm 2. From 
the detailing rules described in Section 5.2.2 and in order to prevent the steel flange of 
thickness tf = 18 mm from tearing, dsh< t/0.4 = 45 mm. We will, therefore, use a 19 mm 
diameter stud so that Ash = 284 mm 2. Substituting these values into Eq. 5.1 gives (D)~sh=  
113 kN. Therefore from Eq. 5.3, the number of connectors required in a half span is N s 
= 2300/113 = 21 connectors. It is important to realize that these dowel strengths were 
derived empirically from stud shear connections in which f=  486 N / r a m  2 and,  hence, it is 
essential to choose studs with steel strengths at least equal to those tested. 

(c) D e t a i l i n g  
The longitudinal spacing for a uniformly distributed single line of connectors is 
given by Lsi = L / N  = 5000/21 - 238 mm. This is less than the maximum permitted 
spacing of 6h c - 6x130 - 780 mm and greater than the minimum spacing of 
5dsh = 5X19 = 95 mm defined in Section 5.2.3. Therefore, these connectors could be 
placed in a single line but in order reduce the possibility of splitting, they will be 
spread over the width of the flange as in Figure 5.3(c). As wf = 160 mm and 
L = 1.3x 19 = 25 mm, then L T = 160-50-19 = 91 mm. As the connectors are staggered, 

there is no need to ensure that L T _> 4dh. 

5 .3 .3  Characteristic strength in composite beams approach 
5.3 .3 .1  C h a r a c t e r i s t i c  d o w e l  s t r e n g t h  o f  s tud  s h e a r  c o n n e c t o r s  in 

c o m p o s i t e  b e a m s  
The 5% characteristic strength of a group of stud shear connectors in a composite 
beam is given by 3 
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(Dmax)beam = Kch Ash f u 

in which 

_ Ec )0.40 
(5.4a) 

Kch = 4.7 - 
1.2 

x//Vgr 
(5.4b) 

and which applies within the material bounds of 

10<E<33kN/mm 2, 24<f<81N/mm 2 and 430<f <640N/mm 2 (5.4c) 

where Nsr is the number of connectors that can be assumed to fail as a group and 
which is often taken as the number of connectors in a shear span N ,  and E is the 
Young's modulus for the steel used in the stud which can be taken as 200 kN/mm 2. 
The equation was derived from tests with the range of material properties in Eq. 
5.4c and should not be used beyond this range. 

The parameter A hf in Eq. 5.4a represents the strength of the shank of the stud. 
Whereas, the parameters (f /f)~ 3~ and (Ec/Es)~176 are factors that cope with changes to 
the material properties. 

Let the load/slip curves O-B-C and O-D-E in Figure 5.2 represent the behaviour 
of two stud shear connectors in the shear span of a composite beam. The difference 
between the two curves represents the normal scatter of strengths and deformations 
that is to be expected. Let us assume that the flexural deformation of the composite 
beam induces a slip in both connectors of s .  It can be seen that the strengths of both 
connectors is achieved at this slip because of their plastic plateaux. Hence in composite 
beams with ductile connectors such as stud shear connectors, it is not necessary to 
design for the probability of an individual connector failing but for the group of 
connectors failing. This is allowed for in Eq. 5.4a by the parameter Kch which is 
defined in Eq. 5.4b and which depends on the number of shear connectors N that 

gr 

fail as a group that can be taken as the number of connectors in a shear span N .  
When N = 1, then K h - 3.5 and this represents the characteristic strength of an 
individual connector. Alternatively when n ---> 0-, then K h = 4.7 and this represents 
the mean strength of the stud shear connectors. 

5 .3 .3 .2  E x a m p l e  5.2 Characteristic strength in composite beams 
approach 
(a) I tera t ive  ana lys i s  p rocedu re  
Let us redesign the beam in the previous Example 5.1 where the details of the beam 
are given in Section 5.3.2.2(a). An iterative procedure has to be used as the parameter 
K h in Eq. 5.4 depends on the number of connectors in a shear span N ,  which is 
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initially unknown as it depends on the dowel strength which is also initially unknown. 
Let us use 19 x 100 mm studs (Ash = 284 mm 2) in which f = 486 N/ram 2 and E s = 200 
kN/mm 2, and which are encased in concrete with the properties f - 25 N/ram 2 and 
E - 25,250 N/mm 2. Substituting these values into Eq. 5.4 gives Dm~ x -- 21,350Kch. 
The iterative procedure can be started by assuming that (N) I  --~ oo, in which case 
from Eq. 5.4b K h - 4.7 and (Dmax)o.= 100.3 kN (which is the mean strength of the 
stud shear connectors). From Eq. 5.3, a more accurate estimate of the number of 
connectors is (Ngr) 2 = 2300/100.3 - 22.9. Repeating the analysis but this time starting 
with (Ngr) 2 - 22.9 gives K h = 4.45 and (Dmax)EZ 9 - 95.0 kN and (Ngr) 3 = 2300/95.0 = 
24.2. Now starting with (Ng)3 - 24.2 gives K h - 4.46 and (Omax)24.2 = 95.2 kN and 
(Ng)4 = 2300/95.2 = 24.2, that is 25 connectors. It can be seen that the iterative 
procedure converges very rapidly. 

If the analysis had been based on the characteristic strength of an individual 
= N  = connector, then in Eq. 5.4b Ng r = 1, K h = 3.5 and (Dm.,x) I = 74.7 kN and Ng, ss 

2300/74.7 = 30.8. We would have required 30.8 - 24.2 - 6.6 more connectors per 
shear span. This iterative procedure makes full use of the ductility of the shear 
connection and allows us to use almost the full strength of the shear connection, 
particularly in large beams with many connectors. 

(b) Variation in the stud shear connection material properties 
The dowel strength is very sensitive to the materials that comprise the stud shear 
connection. Let us use the lower bounds to the range of material properties given Eq. 
5.4c. Therefore, the mean strength of a 19 x l00 mm stud of weak material strength 
f = 430 N/mm 2, that is encased in lightweight concrete of E - 10 kN/mm 2 of low 
strength f -- 24 N / r a m  2, can  be derived from Eq. 5.4 as 63 kN. In contrast, using the 
upper bounds to the ranges of the material properties which are f - 640 N/mm 2, 
E = 33 kN/mm 2 and f = 81 N/mm 2, the mean dowel strength is 202 kN. It can be seen 
that the range of possible strengths for the same size of stud connection is very large. 

It is also worth noting that shear strengths Dm~ greater than the tensile strength of 
the shank of the stud Ashf can be achieved. For example using the upper bound to 
the strengths in the previous paragraph, equating the shear strength of 202 kN to 
Ashf  gives f = 711 N / r a m  2, which is greater than the actual strength of 640 N/mm ~. 
This is because the cross-sectional area of the weld-collar shown in Figure 5.1 is 
about 70% greater than the cross-sectional area of the shank Ash and hence the weld- 
collar can resist a larger shear load. Furthermore the weld collar directly resists a 
portion of the shear load shown as F 2 so reducing the shear force F I on the shank. 
This helps to emphasize the importance of the weld collar. 

(c) R e d u c t i o n  in s t r eng th  due  to t r a n s v e r s e  r ibs  
The concrete slab of a composite beam is often made with steel decking or profiled 
sheets. The decking ribs are either in the longitudinal direction, as in Figures 2.4 and 
4.8, forming a haunch around the shear connection with voids on either side of the 
haunch, or the ribs are in the transverse direction, as in Figures 2.6 and 4.10, encasing 
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the shear connection in a trough with voids on either side. When the voids in the 
composite slab are in the vicinity of the shear connectors, they can reduce the 
maximum dowel strength by reducing the triaxial restraint to the concrete in the 
bearing zone in Figure 5.1. 

The strength of the shear connection in composite beams with longitudinal ribs, 
that is haunches, is covered by the splitting and post-splitting analyses in Chapters 
10 and 11. In contrast, the effect of transverse ribs on the maximum dowel strength 
of stud shear connectors is usually dealt with by applying a reduction factor Rab to 
the maximum dowel strength Dm~ x, that depends on the geometrize of both the shear 
connection and the composite slab. The following equation 4 is an example of a 
reduction factor for stud shear connectors in the troughs of composite slabs with 
trapezoidal profiled sheeting as in Figure 5.4. 

Rri b = 
in which 

0"7btr (hs__L_ t ) 
x[Nirhri b hrib -1 <1.0  

( 5 . 5 a )  

dh<_20mm, f, <450N/mm2, and Rr~b___0.8 when Ntr<2 (5.5b) 

where bt, is approximately the mean width of the trough shown in Figure 5.4, Ntr is 
the number of connectors in each trough, and h,b and hst are the heights of the rib and 
the stud respectively. 

Let us assume that the concrete element in Example 5.1 (Section 5.3.2.2(a)) is a 
composite slab with the transverse ribs in Figure 5.4 in which the troughs and the 
voids are anti-symmetric and in which btr - 300 mm and hr~ b = 70 mm. Therefore, the 
longitudinal spacing of the troughs is 600 mm so that there are 5000/600 = 8 troughs 
in each shear span of 5 m length. From Section 5.3.3.2, the mean strength of the 
shear connection (Dm~,)**= 100.3 kN when f = 486 N/mm 2. However, Eq. 5.5 is 
only applicable when f = 450 N/mm 2 at which steel strength Eq. 5.4 gives (Dm~,).o= 
20,309Kch = 95.4 kN. We would, therefore, require more than 2300/95.4 = 24 
connectors as (Dm~,).. is the mean strength not the characteristic strength. Three 
connectors per trough would only give 24 connectors and, hence, we would require 

decking W W /~ / / / / /  ~-----sheeting / ] 

< . . . .  d > trot 

Figure 5.4 Composite beam with transverse ribs 

J /~ shape of trough ~h void 
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some troughs with at least 4 connectors. From Eq. 5.5, the reduction factor with 4 
connectors per trough is (Rrib) 4 = (0.7 X 300)/((100/70) -- 1)/(%/4 X 70) = 0.64. 

If we used 4 connectors per trough that is a total of 32 connectors per shear span, 
then the strength in a shear span Psh < 0.64 x 95.4 x 32 = 1954 kN (as we are 
using the mean strength of an individual connector), which is less than the required 
value for full shear connection of 2300 kN. If the slope of the trough in Figure 5.4 
is 45 ~ then the width at the base of the trough d = 230 mm. The minimum 
longitudinal spacing of stud shear connectors L L = 5dh = 95 mm. At this spacing, 
the longitudinal cover at the base of the stud c = 58 mm which is as small as one 
would wish. Furthermore, the width of the steel flange of 160 mm will only allow 
two longitudinal lines of connectors. Therefore, there is only room in each trough 
for 4 connectors. From Eq. 5.4b, the characteristic strength of a group of 32 
connectors is less than the mean strength by a factor of 4.49/4.7 = 0.955, hence, the 
strength of the shear connection in a shear span P,h = 0.955 x 1954 = 1866 kN 
which is less than the required value of 2300 kN. To overcome this problem, the 
engineer could either change the profile, use stronger concrete, increase the height 
of the stud, or simply use partial-shear-connection analyses to determine the 
reduction in the rigid plastic flexural capacity, which would probably be slight, to 

see if it can be accommodated. 

5 .3 .4  Composite beams with non-uniform loads 
5.3.4 .1  E x a m p l e  5 .3  Variable distributions of shear connectors 
Let us determine the shear connection required for the beam in Example 4.11 in 
Section 4.4.3.2 which is subjected to the variable loads in Figure 4.19(a). From the 
rigid plastic analysis in Section 4.4.3.2, we have already determined the shear flow 
strengths required in each part of the beam which are given in Figure 4.19(d); these 
were derived from the areas of each of the regions in (b). From the analysis in 
Figure 4.4, the required strength of the shear connection in a shear span is Psh = 2300 
kN. The strength of a 19 x 100 mm stud shear connector was derived in 
Section 5.3.3.2(a) a s  (Dmax)19xl00 = 21,350Kch where K h is defined in Eq. 5.4(b). 
If instead of a 19 x 100 mm stud (Ash = 284 mm2), we will use a 16 x 80 mm stud 
(Ash = 201 nun2), then from Eq. 5.4, (Dmax)|6x8 o = 21,350(201/284)K~h = 15,110 Kc~. 

For the 16 x 80 mm stud and when n --~ ~,, (Dm~)~. = 71.0 kN, which from 
ss = 32.4, (Dmax)32 4 Eq. 5.3 gives a value of n = 2300/71.0 = 32.4. When N = Ng, 

= 71.0 x 4.49/4.7 = 67.8 kN and a new value of Ng, = 2300/67.8 = 33.9, that is 34 
connectors per shear span; the next iteration also gives 34 connectors. Therefore, 
we require 34 connectors in each of the shear spans A-C and C-D in Figure 
4.19. Furthermore and in shear span A-C, the 34 connectors should be distributed 
in proportion to the areas in (b). Therefore along the span A-B, we need 
34 x (542/702) = 26.3 connectors. As shear connectors are more effective in the 
region near the beam supports than near the position of maximum moment, we will 
place 27 connectors in the span A-B and the remaining 7 in the span B-C. 

In span A-B in Figure 4.19, the longitudinal spacing of a single line of connectors 
Lsi = 2500/27 = 93 mm which is slightly more than the minimum limitation of 



Mechanical shear connectors 83 

5dsh --- 80 mm and considerably less than the maximum limitation of 6h c - 780 mm. 
We could, therefore, use a single line of connectors but would prefer to space them 
as wide apart as possible at a maximum lateral spacing from Figure 5.3 of L r = 160- 
16-42 - 102 mm and stagger them as in Figure 5.3(c). In span B-C in Figure 4.19, 
Ls~ = 2500/7 = 357 mm which falls well within all the limitations, and as the connectors 
are widely spaced we could leave them in a single line. Finally in span C-D, L i 
=5000/34=147 mm and it is suggested that a staggered distribution be used. 

5.3.5 Composite beams designed using linear elastic theory 
5.3.5.1 General 
The ultimate flexural strength of composite beams in buildings and the shear flow 
strengths of their shear connection are usually determined from rigid plastic analyses 
as described in Chapter 4. However, the serviceability behaviour of these composite 
beams, as described in Chapter 3, is determined from linear-elastic full-interaction 
analyses which are known to give satisfactory results, even though the distribution 
of the shear connection is based on rigid plastic analyses. In contrast, the ultimate 
strength of composite beams in bridges and the distribution of their connectors are 
both usually designed using linear-elastic full-interaction theory. The linear-elastic 
distribution of the shear connectors is described in this section. 

5.3.5.2 Example 5.4 Linear elastic design of the shear connection 
Let us assume that the beam in Figure 4.3 of span of 10 m is propped during 
construction. Furthermore, the beam is subjected to a uniformly distributed short 
term load of Who, = 16 kN/m so that the maximum vertical shear force at the support 
V ho, is 80 kN, and it is also subjected to a long term load of W~o,g = 20 kN/m that is 
also resisted compositely, in which case V~ong --- 100 kN. The linear-elastic properties 
of the components of the composite beam are given in Figure 5.5(a) where the units 
are in N and mm. Using the procedures described in Chapter 3, the composite beam 
can be transformed to a steel section with the long term and short term properties of 
the composite section in (b), where A c is the area of the transformed concrete 
component and I is the second moment of area of the transformed composite section. 
From q = VA~'/I in Eq. 3.3, the maximum shear flow force at the supports due to the 
long term loads is 100x 103x28,720x(127-65)/716x 106 = 248 N/mm, and it is 
198 N/mm for the short term load, giving a total of (Qsh)max = 446 N/mm as shown at 
the support in Figure 5.6. Therefore, the shear flow strength required varies from 
446 N/mm at the supports to zero at mid-span as shown by the line A-B. 

It can be seen in Figure 4.1 (b) that when there is a single line of connectors of 
spacing Ls~, each shear connector resists a shear flow force within a tributary length 
of L~. Hence, the longitudinal spacing of a single line of connectors Lsi is given by 

Dmax = Qsh Lsi (5.6) 

It would be impractical to gradually vary the spacing of the shear connectors Ls~ so 
that the shear flow strength followed the line A-B in Figure 5.6. Instead, the connectors 
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are placed in blocks with a uniform spacing in each block as in Example 3.12. We 
could, for example, allow both a 10% overstress and a 10% understress as shown in 
Figure 5.6, in which case the shear flow strengths Qsh required for each block of length 
1 m are shown on the vertical axis. If we use for our design the mean strength of the 
shear connector of Din, = 113 kN, from Example 5.1 in Section 5.3.2.2(b), then the 
spacing of the connectors L~ in Figure 5.6 can be derived from Eq. 5.6. The maximum 
spacing permitted is 6h  = 780 mm, hence, this maximum spacing should be used in 
the region within 2 m of mid-span in Figure 5.6. Hence, the number of connectors N 

in each block of 1 m can be derived as shown in Figure 5.6. 

centroid transformed section 
I c = 641x106 . \ 

i30 .::~ i !:!I: :~i A c = 455 000 . . . .  

160x181~| (Ec)long = 12,6e~troid transformed slab ~ he= 15.84 
223x106 344x10 [~] Is= n = 792 H (&')long.. = 28720 

380 H As = 9'200 (Ac)short = 57'450 H iI~i:~: = 716x106 

6 0 ~  200,000 (Ins)short = 819X 1 ~ , o n g  =127 1 / 

Yshort = 100 
(a) composite beam (b) composite beam transformed to steel 

Figure 5.5 Example 5.4 Linear-elastic properties of composite beam 

Qsh 
(N/mm) 

support mid-span 
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Figure 5.6 Example 5.4 Linear-elastic distribution of shear connectors 

5.4 Fracture of shear connectors due to excessive slip 
in simply supported beams 
5.4.1 Genera l  
It was shown in Chapter 4 how to derive the variation of the moment capacity M of 
a composite beam with the maximum degree of shear connection timex, that is the 
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degree of shear connection at the position of the maximum moment. A typical variation 
is shown in Figure 5.7 as the curve A-B-C-D. Rigid plastic analysis techniques were 
used to derive this failure envelope which assumed that the connectors had an unlimited 
slip capacity. Unfortunately, as discussed in Section 5.1 and shown in Figure 5.2, shear 
connectors do have a limited slip capacity, so that it is essential to ensure that fracture 
due to excessive slip does not occur before the design moment capacity is reached. The 
prevention of connector fracture is an extremely complex problem as we have to deal 
with the properties of the whole beam where parts may be behaving elastically whilst 
others are plastic. Research has shown 5 that fracture of the shear connection at a slip of 
Su~ t can be represented by a curve such as G-H in Figure 5.7. 

Consider a beam in which the strength of the shear connection is in excess of that 
required for full-shear-connection, such as at rlma, = rl, in Figure 5.7. As the applied 
load is increased, the moment in the beam increases along the vertical load path 
emanating from rll, causing the slip in the beam to increase until the capacity Mrs c is 
reached, that depends on the weaker of the component strengths Pc or P as described 
in Chapter 4. The slip at which this moment capacity is reached is shown as s, in 
Figure 5.2 and will be less than Sp because we have more connectors than that required 
for full-shear-connection. Now consider a composite beam with partial-shear- 
connection where rl,,~, = r12 in Figure 5.7. The moment can be increased along the 
vertical load path until the capacity Mps c = M 2 is reached that depends on the strength 

Mfsc b= = ............ M.f.r~s..[..(~.S...u.l.!!! .......... ~s.sS.H. ......... 

1 
ME ............................................................................................. ~ J 

capacity M4 

M3 PJ 

i i'oad T . . . .  J . I path 
0 113 'tit 1"12 1 1"11 

Maximum degree of shear connection (ylmax) 

Figure 5.7 Fracture of the shear connectors in composite beams 

of the shear connection Psh and which occurs at the slip s 2 < S~ t in Figure 5.2. However, 
if the degree of shear connection is reduced to r13 in Figure 5.7, then fracture will 
occur at the moment Mr~ c = M 3 when s = S,  t in Figure 2 and in which M 3 is less than 
the rigid plastic strength M 4. 



86 Mechanical shear connectors 

Two methods will be described for preventing premature failure due to fracture 
of the shear connectors due to excessive slip in simply supported beams. The 
following Parametric Study Approach 6 is based on defining the degree of interaction 
tit at the transition point C in Figure 5.7; this point defines the transition between the 
fracture failure envelope G-H and the rigid plastic failure envelope B-C-D. This 
approach is found to be in good agreement with tests in the upper regions of the 
degree of shear connection, that is where timex > 0.5. In contrast, the Mixed Analysis 
Approach 5 is based on defining the fracture failure envelope G-H in Figure 5.6 and 
can be applied to beams with small degrees of shear connection. 

5.4.2 Slip capacities of stud shear c o n n e c t o r s  Slt 
The 5% characteristic slip capacity of an individual stud shear connector that is 
encased in a solid concrete slab 7 is given by 

Suit -(0.42-O.O042fc)dsh (5.7) 

where the units are in N and mm and where the mean slip can be derived by replacing 
the coefficient 0.42 with 0.48. It is felt that these slip capacities can be used for stud 
shear connectors in haunches (Figure 4.8) and troughs (Figure 4.10) in composite 
slabs as the presence of both the voids in the composite slab and the transverse 
reinforcement appear to make the shear connection more ductile. 

Failure of a composite beam by fracture of the shear connectors due to excessive 
slip is very rapid and resembles an unzipping action, as the fractured connector 
sheds its load to adjacent connectors causing them to further slip and fracture in 
turn, in much the same way as the 'unbuttoning' of bolted steel connections. 
Therefore, the characteristic slip of an individual connector should be used in design. 

5.4.3 Parametric study approach 
5.4.3.1 Maximum slip in standard composite beams 
A detailed parametric study of experimental tests and computer generated tests ~ which 
had standard composite sections was used to derive the following design equation. 

Sul t ->( Msths  ~ L ) a (  s 

where 

psc - Ms " )fl (5.8a) 

Ms ) 

For rl,,~x = 0.5, tx = -0.13 and ~ = 1.03 (5.8b) 

For timex = 0.75, tx = -0.24 and 13 = 1.70 (5.8c) 

where M s is the rigid plastic moment capacity of the steel component, L is the span 
of the beam, h s is the height of the steel component, I s is the second moment of area 
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of the steel component, D is the depth of the composite beam a n d  Mps c is the partial- 
shear-connection capacity of the composite beam. 

The first parameter on the fight hand side of Eq. 5.8a represents the maximum 
slip in the composite beam when there were no shear connectors. However, the 
second parameter represents the increase in slip with span and the third parameter 

represents the reduction in slip as the degree of shear connection increases. 

5 .4 .3 .2  Example 5.5 Standard composite beam 
Let us apply Eqs. 5.8 to Example 4.6 in Section 4.2.4.2 in which rlmax --- 0.8. We will 
assume rlmax = 0.75 as in Eq. 5.8(c) as this will give a conservative answer. From the 
previous analyses, M s = 335 kNm (Example 4.1 in Section 4.2.2.2(b)) and (M)80~ psc 

= 653 kNm (Example 4.6 in Section 4.2.4.2). From Figure 4.3(b), L = l0 m, h s = 380 
mm and D = 510 mm and from Figure 5.5(a), I s = 223 x l0 s. Substituting these 
values into Eqs. 5.8(a) and 5.8(c) gives Su~ t > 2.13 mm which is the maximum slip in 
the beam. As f = 25 N/mm 2 and d h = 19 mm, then from Eq. 5.7 Su, = 5.99 mm and 
hence the shear connection has adequate slip capacity. 

Applying Eq. 5.8(a) and 5.8(b) to the composite beam in Example 4.8 in Section 
4.2.5.2 where rlm~ = 0.50 and in which (Mp~c)~0 ~ = 569 kNm gives S,~t > 2.25 ram, 
which is only slightly larger than that required with the higher degree of shear 
connection of 80% in the previous paragraph. 

It is worth noting that the slip capacity of a stud shear connection reduces as the 
strength of the concrete increases, that is the connection becomes more brittle. For 
example, if we assume that Su~ t in Eq. 5.7 is the maximum slip in the beam which 
was calculated previously as 2.13 mm, then for a 19 mm diameter stud, fracture 
would occur when f > (0.42 - (2.13/19))/0.0042 = 73 N/mm 2 and this reduces to 61 
N/mm 2 when 13 mm studs are used. 

5 .4 .3 .3  Example 5.6 Strengthened composite beam 
(a) M a x i m u m  slip in the c o m p o s i t e  b e a m  
Although Eqs. 5.8 were developed for standard composite beams with I-sections, 
let us apply it to the beam that was strengthened in Example 4.7 in Section 4.2.4.3 
by adding a plate to the bottom flange which caused the degree of shear connection 
to reduce to 50%. The strengthened beam is shown in Figure 4.14 and the 
ultimate strength is determined in Section 4.2.4.3. For this strengthened beam: the 
rigid plastic moment capacity of the plated steel component can be determined from 
a similar analysis to that depicted in Figure 4.5 except that the neutral axis in (c) 
now occurs at the bottom flange plate interface in Figure 4.14(a), from which taking 
moments about the top fibre of the steel beam gives M s = (2288 • 0.393) - 
(720 • 0.371) - (860 • 0.190) - (720 • 0.009) = 462 kNm; L = 10 m; h s = 406 mm; 
(Mpsc)50 ~ = 1500 kNm; D = 536 mm; and the second moment of area of the 
plated steel component I s --- (160•215 + (10• + (10•215 
+ (160•215 + (220•215 = 368 • 10~mm 4, where the neutral axis is 
268 mm from the top of the steel beam. Substituting into Eqs. 5.8(a) and 
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5.8(b) gives S~ t > 6.68 mm which is greater than the characteristic slip of the 
shear connection being used of 5.99 mm (which was derived in Section 5.4.3.2). 
Therefore, the shear connection will fracture and prevent the flexural capacity of 
1500 kNm being achieved. 

(b) Flexural capacity at fracture of connectors 
As fracture will occur prematurely, we can use Eq. 5.8 to estimate the maximum 
moment capacity that can be achieved, by substituting the actual slip capacity of 
5.99 mm for S~ t into Eq. 5.8 gives 5.99 = 4.248 x 0.684 x ((Mps - 462.2)/462.2) L~ 
Solving gives (Mpsr = 1,396 kNm which is still substantially stronger than the 
unplated composite capacity of 702 kNm. 

5.4.4 Mixed analysis approach 
5.4.4.1 Uniform distribution of shear connectors and a uniformly 
distributed applied load 
The mixed analysis approach is an exact solution for an idealized composite beam 
in which the steel and concrete components remain linear-elastic but the shear 
connector component is fully plastic 5. The maximum slip S , in a simply supported 
composite beam of span L, with a uniform distribution of shear connectors of strength 
Psh per shear span, and subjected to a uniformly distributed applied load that induces 
a maximum moment Minx is given by 

M max L esh L 
Smax = 3 K 1 -  4 K2 

(5.9) 

in which 

and 

hcent 

K 1 = E c i c  + E s I  s 

(5.10) 

hc2nt 1 1 

K 2 = Eclc + EsI s + EcA----- ~ + EsAs 
(5.11) 

where hcent is the distance between the centroid of the concrete component and the 
centroid of the steel component. 

The first parameter on the fight hand side of Eq. 5.9, that is (Mm~xLK/3) is the 
maximum slip in the composite beam without shear connectors, whereas, the second 
parameter (PhLK2/4) is the reduction in slip due to the shear connectors. It is worth 
noting that the first parameter depends on the applied moment, while the second 
parameter depends on the shear connector forces. 
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5 .4 .4 .2  Example 5.7 Standard composite beam with a uniformly 
distributed load 
Let us determine the maximum slip that occurs at the rigid plastic moment 
capacity of the composite beam in Figure 4.3 when: the beam has a 50% degree of 
shear connection; the shear connectors are uniformly spaced along the beam; and the 
beam is subjected to a uniform distribution of the applied load. The elastic properties of 
the steel and concrete components of the composite beam are given in Figure 5.5(a). 

The variables in Eq. 5.10 are (from Figure 4.3) hr = (130/2) + (380/2) = 255 mm 
and (from Figure 5.5) I = 223x106 mm 4, I = 641x106 mm 4, E = 200 kN/mm 2 and E = 
25,250 N/mm 2. Hence, K~ = 26x 1252 (Nmm) -~. The remaining variables in Eq. 5.11 are 
(from Figure 5.4) Ar = 455,000 mm 2 and A = 9,200 mm 2 which gives K 2 = 1.70 x 10- 
9 N-~. From Example 4.8 in Section 4.2.5.2, M = ( M ) s 0 ,  --" 569 kNm and P h = 2300/ 

m a x  psc s 

2 = 1150 kN and from Figure 4.3 L = 10 m. Substituting these values into Eq. 5.9 gives 
Sm~ x = 7.97 - 4.89 = 3.08 mm. Therefore, the maximum slip in the stud shear connectors 
which occurs at the supports is 3.08 ram. It is worth noting that the maximum slip with 
'no shear connectors', which is the first parameter in Eq. 5.9, is 7.97 mm which would 
easily fracture a 19 mm stud shear connector at each support. However, the compressive 
force induced in the concrete component by the shear connectors has reduced this slip 
by 4.89 mm, which is the second parameter in Eq. 5.9, to give an overall slip of 3.08 
mm which is unlikely to fracture 19 mm stud connectors. 

5 .4 .4.3 Uniform distribution of shear connectors and a point load 
applied at mid-span 
The maximum slip in a composite beam also depends on the type of applied load. 
For the case of a point load applied at mid-span (instead of the uniformly distributed 
load in the previous example) on a beam which still has a uniform distribution of 
shear connectors, the maximum slip is given by 

Mmax  L Psh L ~K (5.12) 
Smax = 4 K 1 -  4 2 

Comparing Eq. 5.9, for a uniformly distributed load, with Eq. 5.12, for a concentrated 
load at mid-span, it can be seen that the uniformly distributed load is the critical case, as 
a larger slip is induced when there are no shear connectors, that is the first parameter in 
Eq. 5.9 is larger than the first in Eq. 5.12. It is worth noting that the second parameter in 
both equations is the same, as this depends on the strength and distribution of the shear 

connectors which is obviously the same in both beams. 

5 .4 .4 .4  Example 5.8 Standard composite beam with a point load 
Applying Eq. 5.12 to the composite beam with the properties in Section 5.4.4.2 above 
gives Sm~ = 7.97 X (3/4) --4.89 = 1.09 mm, where the coefficient (3/4) is the ratio of the 
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first parameters in Eqs. 5.9 and 5.12. The slip of 1.09 is considerably less than the 
slip of 3.08 mm for a uniformly distributed load. Hence, if the connectors are unlikely 
to fracture in a composite beam that subjected to a uniformly distributed load, then 
there is no need to check for fracture when point loads are applied. 

5 .4 .4 .5  E x a m p l e  5.9 Strengthened composite beam 
(a) M a x i m u m  slip in c o m p o s i t e  b e a m  

Let us apply this mixed analysis approach to the strengthened composite beam in 
Example 4.7 which is described in Section 4.2.4.3 and shown in Figure 4.7 and which 
has already been analysed in Section 5.4.3.3 using the parametric-study approach. From 
Section 5.4.3.3, I s = 368 x 106 mm 4 (where the centroid is 268 mm from the top fibre of 
the steel component), therefore, h t = (130/2) + 268 = 333 mm, and from Figure 5.5(a), 
E s = 200 kN/mm 2, A c = 455 x 106 mm 2, I = 641 x 106 and E = 25,250 N/mm 2 and from 
Figure 4.7 A s = 14,920 mm 2. Hence from Eq. 5.10, K~ = 3.70 x 10 -~ (Nmm) -~ in Eq. 
5.10 and K 2 = 3.70x10-12x333 + 8.70x10 -I~ + 3.35x10 -~ = 1.655 x 10 .9 N "l in Eq. 5.11. 
Furthermore, from Section 4.2.4.3 Mm~ x = (Mp~)50 . = 1,500 kNm, Psh = 2300 kN and L 
= 10 m. Applying Eq. 5.9 (for the case of a uniformly distributed load) gives Sm~ = 18.5 
- 9.5 = 9.0 mm. Therefore, fracture will occur before the rigid plastic moment capacity 
of 1,500 kNm is reached as the characteristic slip capacity, which was derived in Section 
5.4.3.2, is only 5.99 mm. 

(b) F l e x u r a l  c ap ac i t y  at f r ac tu re  o f  c o n n e c t o r s  
From the analysis in (a) above, it was shown that fracture will occur before the rigid 
plastic capacity is reached. Therefore, the fracture failure envelope, such as G-H in 
Figure 5.7, is controlling the strength of the composite beam. This failure envelope, 
which is given by Eq. 5.9 for a uniformly distributed load, will now be used to predict 
the capacity of the composite beam. Substituting into Eq. 5.9 Sm~ = 5.99 mm, which 
is the slip capacity of the stud shear connectors, and using the sectional and material 
properties in (a) above, gives Mma x = ((Sm~ x + (Pma LK2/4)3)/LK~ = (5.99 + 9.52) x 
8 lxl06 = 1,256 kNm which is the moment capacity of the composite beam. 

5 .4 .4 .6  Variable distributions of both the shear connectors and 
the applied loads 
Equations 5.9 and 5.12 are specific to a type of loading and to a beam with a uniform 
distribution of the shear connectors. However, these equations can be written in the 
following genetic form that can be applied to any distribution of shear connectors 
and to any distribution of the applied load. 

(Smax)c t  - ( A m ) a K 1 - ( A s r ) a K 2  
(5.13) 

where ( S ) ~  is the maximum slip in the shear span designated ct, and where (A)~ 
is the area of the moment diagram in the shear span o~ and (A),~ is the area of the 
longitudinal shear force or thrust diagram in the shear span ct. 
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The area-parameters (Am) a and (A)a in Eq. 5.13 are shown diagrammatically in 
Figure 5.8 for a composite beam with eight groups of connectors which are shown at 
discrete points in each shear span. The connectors impose a thrust on the concrete 
component which is zero at the supports and accumulates along the length of the shear 
span. This is shown as starting at F! in the right hand shear span in (a) and finishing at 
the total thrust of P~h at the maximum moment position. The distribution of the 
longitudinal thrust in each shear span is plotted in (b), where the area of the diagram in 
a shear span is equal to the longitudinal thrust parameter ( A ) .  The composite beam in 
(a) is subjected to a variable load which causes the distribution of the applied moment 
in (c), where the applied moment parameter (Am) ~ is the area in a shear span. 

As can be seen in Eq. 5.13, the slip at the end of a beam is a function of the 
difference between A m in Figure 5.8(c) and A in (b). This difference is usually 
greatest in the longer shear span, however, the difference also depends on 
the distribution of the shear connectors. For example, if all the connectors are 
concentrated at a support, such as in the fight hand shear span in (a), then (A) ,  in 
(b) would be rectangular, that is at its maximum value, so that the slip from Eq. 5.13 
will be at its least value. Needless to say, it would be foolish to concentrate all the 
connectors at the supports, as the structure would no longer be acting as a composite 
beam but more like an arch. 

5 .4 .4 .7  E x a m p l e  5 .10  Variable distribution of shear connectors and 
loads 
Let us analyse the composite beam in Example 5.7 in Section 5.4.4.2 where all of 
the properties are give in Section 5.4.4.2 and from which K 2 = 4.20xl 0 -~2 (Nmm) -I 

(a) 

(b) longitudinal 
thrust 

(c) applied 
moment 

I T ~r r ~P T ~ ~  : .... !::ii:!::' i . . . .  :=,::iii~.. +::~ ........ ~+~ :+'+~:~ 
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Figure 5.8 Variable loads and connector distributions 
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(a) 

(b) 

(c) 
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Figure 5.9 Example 5.10 Slip in shear spans 

and K 2 = 1 . 7 0 •  -9 N" was calculated. The beam has a moment capacity o f  (Mpsc)5o ~ 
= 569 kNm and, hence, can just resist the distribution of applied loads in Figure 
5.9(a) in which Mma x = 569 kNm as shown in (c). Integrating the applied moment 
diagram over region A-B in (c) gives 

2_5 

( A m ) A _  B = _~ 2 1 7 x -  33.2x 2 / 2 = 592  k N m  2 

0 
and integrating over B-C gives (Am)e.c = ((439 + 568)/2) • 2.5 = 1260 kNm 2, therefore, 
(Am)A.C = 592 + 1260= 1852 kNm 2 as shown in (c). Integrating over C-D in (c) gives 
(Am)c. o = 1775 k N m  2. 

The beam has 50% shear connection so that the strength of the shear connection 
in a shear span, which is also the thrust of the connectors at the position of maximum 
moment, is Psh = 2300/2 = 1150 kN, as shown at the mid-span in Figure 5.9(b). The 
distribution of the applied loads in Figure 5.8(a) was chosen so that they are exactly 
in the same proportion to those in Figure 4.19(a). Therefore, the area of the vertica 
shear force distribution of the beam in Figure 5.9(a) has the same proportions as 
those in Figure 4.19(b). Hence, Figure 4.19(b) can be used to distribute the connectors 
in the shear span A-C in Figure 5.9(a). From Figure 4.19(b), the proportion of 
connectors in A-B is 542/(542 + 160) -- 0.772. Therefore the strength of shear 
connection required in A-B in Figure 5.9(a) is 0.772 x 1150 - 888 kN which is the 
thrust at section B in (b). As there are a fairly large number of connectors, we will 
ignore their discrete positions and assume the linear variation in thrust shown which 
gives from their areas ( A ) / =  (888 x 2.5/2) + (888 + 1150) x 2.5/2 = 3658 kNm 2 and 
(A)~ = 1150 x5/2 = 2875 kNm. 
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Applying Eq. 5.13 gives the maximum slip in the right shear span of (Smax) r = 
(2875 x 109• 4.2x10 12) + (2875x106 xl .70xl0 -9) = 7.45 -4 .89  = 2.56 mm, and that 
at the left of (Smax) t = 7.78 - 6.22 = 1.55 mm. It can be seen that the concentration of 
connectors in region A-B in Figure 5.8(b) has made the slip on the left hand side 
much less than that in the fight hand side. 

5 .4 .4 .8  Fracture failure envelope 
Equation 5.9, which is based on a uniformly distributed applied load and a 
uniform connector distribution, can be re-arranged to give the following fracture 
failure envelope 

3(PshLK2) (5.14) 
Mmax - LK1 Smax + 4 

As the maximum degree of shear connection rlm,x is directly proportional to the 
strength of the shear connection Ps,, it can be seen that the fracture failure envelope 
defined by Eq. 5.14 is linearly proportional to the degree of shear connection. 

5 .4 .4 .9  E x a m p l e  5.11 Failure envelopes for long and short term loads 
Let us consider the beam in Figure 4.3 in which there is a uniform distribution of 
shear connectors and which is subjected to a uniformly distributed load. We will 
assume that the beam has 13 mm diameter stud shear connectors of Sul t = 4.10 mm.. 
The flexural capacity of this beam has already mean analysed for different degrees 
of shear connection and the results are plotted as the rigid plastic failure envelope 
in Figure 5.10. 

The elastic properties of the beam are given in Figure 5.5. Furthermore, the 
beam has already been analysed for fracture due to short term loads in Section 
5.4.4.2 where the values for K~ = 4.20 x 10 ~2 (Nmm)-~and K2= 1.70 x 10 -9 N -! have 
been used in Eq. 5.14 to plot the short term fracture enveloped in Figure 5.9. It can 
be seen that the fracture failure envelope governs the strength at low degrees of 
shear connection in region A-B, whilst the rigid plastic failure envelope governs 
the strength at the higher degrees of shear connection in the region B-C. If the 
rigid-plastic linear-interpolation envelope is used, then the fracture failure envelope 
only governs over the smaller region A-D as the interpolation method under- 
estimates the strengths. 

From the long term properties in Figure 5.4, K~= 4.84 x 1012and K 2 = 7.18 x 10 -~~ 
from which can be derived the long term fracture failure envelope in Figure 5.10. 
This envelope can be seen to control the strength for all degrees of shear connection. 
As beams are never designed to withstand the maximum design loads for long 
periods, the true fracture failure envelope will lie between the two extremes (that is 
between the long and short term fracture envelopes) in Figure 5.10, and should 
approach the short term fracture failure envelope. 
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6 Transfer of longitudinal 
shear forces 

6.1 Introduction 
It has been shown in Chapters 3 and 4 that the composite action between the steel 
and concrete components of a composite beam induces longitudinal shear forces in 
the mechanical shear connectors that tie these components together. These 
longitudinal shear forces are transferred into the concrete component by the dowel 
action of the mechanical shear connectors, as described in Chapter 5, and then these 
concentrated dowel forces are dispersed longitudinally and laterally into the concrete 
component. This chapter deals with the ability of the concrete component to resist 
the longitudinal component of this dispersal, whereas the lateral component of the 
dispersal is dealt with in Chapter 10. 

It is convenient in the analysis of the longitudinal shear transfer to convert 
the longitudinal shear forces into shear flow forces, that is the longitudinal force 
per unit length of beam q. In designing the concrete component to resist the shear flow 
forces, it is fu'st necessary to identify the critical longitudinal planes in which failure can 
occur and these planes are referred to in the following section as the shear flow planes. 
The next step is to quantify the shear flow forces in these shear flow planes and then to 
ensure that the resistance of these planes, that is their shear flow strengths, is adequate. 

6.2 Shear flow planes 
The concrete component of a composite beam is shown in Figure 6.1 (a). The hatched 
region at A is a longitudinal shear plane of area L x Lp that is subjected to a total 
uniformly distributed longitudinal shear force of H. For a the length of the shear 
plane L of unit length as shown, the shear force is H/L which is now a shear flow 
force, that is a force per unit length, which is shown as qA' Furthermore, the area of 
the shear plane is now (Lp^) x 1 - (Lp) A which will be referred to as the perimeter 
length. Hence when dealing with shear flows, the perimeter length Lp defines a shear 
plane that extends a longitudinal distance of one unit. 

There are an infinite number of shear planes and it is necessary to use engineering 
judgement to determine the critical planes that are most likely to fail or to govern the 
design. These planes can be categorized as those that traverse the depth of the 
concrete component such as (L)  , (L)  and (L)  in Figure 6.1 and those that 
encompass the connectors such as ~Lp) c.(~p)D, (Lp)~F?(Lp)o and (Lp).. 

6.3 Shear flow forces 
The shear flow force imposed by the connectors on the concrete component is 
shown in Figure 6.1 as q,. The shear flow force qt can be derived from Chapter 3 or 
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Chapter 4 depending on whether the analysis is elastic or plastic. Alternatively, q, can 
be derived directly from the connector spacings in Chapter 5, if it is assumed that the 
connectors are fully loaded. For example, if the connector spacings at a design point in 
a beam are those shown in Figure 5.3(b), then q, is the strength of a single connector 
Dma x divided by the longitudinal spacing when the connectors are placed in a single 
longitudinal line Lsr In both Figures 5.3(b) and (c), Ls~ = LL/2 even though the connectors 
are staggered in the latter example (it may be worth referring to Eq. 5.6 which is also 
based on the concept of deriving the shear flow from a single line of connectors). The 
shear flow force q, in Figure 6.1 (a) is gradually dispersed into the concrete component, 
so that the force in the shear planes Lp diminishes with distance from the connectors, 
reducing to zero at the sides of the concrete component. The next step in the analysis is 
to determine the shear flow force at each critical shear flow plane such as qk at (Lp)A. 

The shear flow force qt that is shown adjacent to the shear connectors in Figure 6.2 is 
in equilibrium with the compressive force along the whole section e-f-g-h, which is 
shown as uniformly distributed as the effects of shear lag are ignored, so that e-f-g-h 
can be considered to be the effective width of the slab as described in Section 2.2.2. The 
shear flow force along any longitudinal plane can be determined by cutting the concrete 
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Figure 6.2 Shear flow forces 

component along the plane and determining the resultant force that acts on either of the 
free bodies. For example, the resultant force on the shear plane represented by (Lp) A is 
the resultant force on the free body a-b-g-h, which is the compressive force acting over 
the area A A. If A c is the total cross-sectional area of the concrete component, then qA is 
the proportion AA/A c of qt as shown. For shear plane (Lp) s, the resultant force on the 
free body c-d-e-f is qt minus the compressive force that acts over the area A s, that is 
qtAs/A c. Alternatively, the shear force on (Lp) s is the resultant force on the free body 
a-c-f-h which is shown in Figure 6.2 as qs' 

6.4 Generic shear flow strengths 
Fundamental research ~,2 has shown that the weakest shear planes occur where there 
is a longitudinal crack in the concrete which may have been formed by transverse 
flexure or longitudinal splitting as described in Chapter 10 and, hence, the strength 
of a cracked shear plane is generally used in design. The mechanism by which shear 
is transferred across a crack is shown in Figure 6.3. The shear is resisted by the 
dowel action of the transverse reinforcement which is shown as a bend in the 
reinforcement in Figure 6.3. The longitudinal shear forces F induce slip between the 
two crack surfaces which causes the two elements to separate as the aggregate 
particles on each surface ride over each other. This separation, due to the shear 
displacement, stretches the reinforcing bars and induces passive tension in the bars 
which is balanced by the passive compressive forces across the crack which in turn 
resist the shear by passive friction; this mechanism is often referred to as aggregate 
interlock. It can, therefore, be seen that the transverse reinforcement is essential to 
the transfer of shear across the shear plane by both dowel action and by aggregate 
interlock action. Shear is also transferred across the interface by friction imposed by 
direct compression across the interface which is shown as o r  
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Figure 6.3 Transfer of shear across a crack 

The following characteristic strength (V.)char of a cracked shear plane was 
determined directly by tests and is dependent on: the tensile strength of the concrete 
ft; the axial strength of the reinforcement per unit area of the shear plane p f  which 
is the yield strength when the reinforcement is fully anchored or the bond strength 
when the reinforcement is not fully anchored; and the active normal stress of  which 
is positive when compressive and negative when tensile. 

(VU)char = 0"66 fct + 0"8pf y r + 0"8~nf (6.1) 

For convenience, Eq. 6.1 can be written in terms of shear flow strengths of a 
shear plane 

Qch = 0.66fc t Lp + 0 .8At r fy r  + 0.8Fnf (6.2) 

where A~ is the area of the transverse reinforcement per unit length of beam, f is the 
yield strength of the transverse reinforcement when fully anchored or the maximum 
stress that can be achieved in the reinforcement when it is not fully anchored, and F f is 
the normal force per unit length. Tests have shown that the parameter 0.66ftL requires 
a minimal active or passive normal force and, hence, Eq. 6.2 has a lower bound of 

o8(atrlyr + ) > O.53fctLp 
(6.3) 

Furthermore, tests have also shown that the mechanism of shear resistance 
portrayed in Figure 6.3 has an upper bound beyond which the cracked section 
behaves as uncracked, and this upper bound limit is given by 
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Qch < 0.3 f cLp 
(6.4) 

6.5 Resistance of shear plane traversing depth of slab 
6.5.1 Shear flow strength of full depth plane 
Examples of full depth shear planes are shown in Figure 6.1 (a) as (Lp)A, (Lp)s and (Lp) E 
and the stress resultants acting on these planes are shown in Figure 6.4. Shear is 
resisted by the contribution of the top and bottom transverse reinforcement of areas 
A, and A b to the aggregate interlock and dowel action mechanisms. Furthermore as 
the shear plane traverses the full depth of the slab, the resultant normal force acting 
on the shear plane F,f due to transverse flexure is zero. Therefore from Eq. 6.2, the 
shear resistance of a full depth plane is given by 

Qch = 0"66 f ct Lp + 0.8(A t + A b ) f yr 

and the lower bound of Eq. 6.3 becomes 

0 .8Atr fyr  > 0.53fc t Lp 

and the upper bound of Eq. 6.4 remains unchanged. 

(6.5) 

(6.6) 

E x a m p l e  6.1 T-beam with solid slab 
The concrete component of the composite T-beam in Figure 4.3 is shown in Figure 
6.5. The stud shear connectors have already been designed in Example 5.1 in Section 
5.3.2.3 and the results are summarized on the right hand side of the figure. Units of N 
and mm are used throughout unless shown otherwise. 

Let us consider the shear plane A-A in Figure 6.5. The perimeter length of 
the shear plane (Lp)  A = 130 mm. The shear flow strength of the shear plane is 
given by Eq. 6.5 in which the direct tensile strength of the concrete f, can be derived 
from the following relationship with the cylinder compressive strength f as given in 
Section 1.3.5.1. 

transverse 

transverse reinforcement \ \  shear plane 

. o x u r  - -  

[' - , - - -  

Ab 
m ~  

Figure 6.4 Full depth shear planes 

Lp 



I00 Transfer of longitudinal shear forces 

f c, = 0"4~/ f c (6.7) 

in which the units are in N and mm and when the concrete is of normal density. Hence, 
ft = 2 N/mm 2. The shear flow force imposed by the connectors qt = Dm~x/L~i = 113,000/238 
= 475 N/mm. The area of the free body to the left of the shear plane 
A a = 221,325 mm 2, hence qA = (AA/A)q, = 0.49q,. For all intents and purposes 
qA = (1750/3500)q t = q/2 = 237 N/mm, that is the shear flow force is in proportion to the 
width of the free body as a proportion of the effective width of the concrete component. 
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mm unless stated: 

fo = 25 N/mm 2 

Dma x = 113 kN 

Lsi = 238 mm 
A~= 455,000 m m  2 

fyr = 400 N / m m  2 

Figure 6.5 T-beam with solid slab 

The area of transverse reinforcing bars required to resist qA can  be derived from 
Eq. 6.5 by substituting qA for Qch which gives At~ = A b + A t = (237-  0.66x2x130)/(0.8 
x 400) = 0.203 mm, which is the area required per unit length of shear plane. However, 
the lower bound requirement of Eq. 6.6 gives A~ > (0.53x2x 130)/(0.8x400) = 0.431 mm 
and, hence, this condition controls the design. Using 8 mm diameter bars of yield 
strength fr  = 400 N/mm 2 would require a longitudinal spacing of these tansverse 
bars of Ltr = (/I;• / 0.431 = 117 mm. It is usually assumed that the transverse 
reinforcement in the top of the slab, such as A t in Figure 6.5, that is required to resist 
the hogging or negative moment in the slab over the composite beam can also resist 
the longitudinal shear. Furthermore the bottom transverse reinforcement A b is often 
part of the sagging reinforcement in the slab that is extended over the supports, that 
is over  the composi te  beam. It is worth noting that the 
upper bound requirement of Eq. 6.4 will allow a shear flow force of 0.3x25• 
= 975 N/mm which is substantially larger than the requirement of 237 N/mm 

6.5 .1 .2  E x a m p l e  6 . 2  Longitudinally spanning profiled sheets 
Let us replace the solid concrete slab in Figure 6.5 with the profiled slab in Figure 6.6 
in which the ribs of the trapezoidal sheeting are parallel with the longitudinal span of 
the composite beam and in which the composite beam is slightly eccentric to the 
slab. By inspection, a critical shear flow plane will occur at B-B where the depth of 
the slab is reduced by the rib of the profiled sheeting. Hence, (Lp) n = 70 mm. 
The shear flow force exerted by the shear connectors qt remains at 475 N/mm. 
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Figure 6.6 Profiled slab with longitudinal fibs 

As the shear plane B-B will be assumed to be close to the shear connectors, 
qB --" q,(2500/3500) = 339 N/mm which is less than the upper bound value of 0.3x25x70 
= 525 N/mm from Eq. 6.4. Applying Eq. 6.5 gives At-- (339- 0.6x2x70)/(0.8x400) = 
0.797 mm which is larger than the minimum requirement of (0.53x2x70)/(0.Sx400) = 
0.231 mm from Eq. 6.6. 

The profiled sheeting in Figure 6.6 crosses the shear plane and, therefore, may be 
expected to contribute to the longitudinal shear strength of the shear plane. However 
in order to contribute to the longitudinal shear strength, it must be able to provide 
passive tension across the shear plane as shown in Figure 6.3. It can be seen in 
Figure 6.6 that any transverse tension in the profiled sheeting will simply straighten 
the sheeting and cause it to unravel from the concrete slab. Hence, the profiled 
sheeting is not anchored in the transverse direction and, therefore, does not contribute 
to the longitudinal shear strength. All of the required transverse reinforcement of A,r 
- 0.797 mm must, therefore, be supplied by transverse reinforcing bars; this would 
require 8 mm diameter bars at (n82/4)/0.797 = 63 mm centres which can be placed both 
at the top of the slab or just above the profiled sheeting as shown in Figure 6.6. 

6.5.1.3 E x a m p l e  6 .3  Transverse spanning profiled sheets 
The composite slab with longitudinal trapezoidal ribs in Figure 6.6 has been replaced 
with a composite slab with dove-tailed transverse ribs in Figure 6.7. In this case, the 
ribs can resist transverse tension and, therefore, will contribute to the longitudinal 
shear strength. 

(a) Shear  plane support ing short shear span 
Let us first consider the shear plane at C-C in Figure 6.7(a) and the strength of the 
sheeting to the fight of this section. The cross section of the sheeting is shown in Figure 
6.7(b). The ribs are at 200 mm centres and the area of sheeting for each 200 mm width can 
be derived as 50 + 67 + 67 + 200 - 384 mm 2 from the dimensions given. Therefore, the area 
of profiled sheeting per unit longitudinal length Apmf-- 384/200 = 1.92 mm and the yield 
strength of the profile sheet per unit length A ~ = 1.92 x 550 = 1056 N/mm. However, 

pro yp 

this yield strength can only be achieved if the sheeting is fully anchored. Let us assume 
that the bond strength of the sheeting fb ---- 0.25 N/mm 2. This bond strength acts over 



(a) 

Transfer of longitudinal shear forces 102 

(b) 
Sshtr;;tglth5 5%t ~,c km and yield t 

200 , ' ' ] 
[801 ,,,, 

~ 
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Figure 6.7 Profiled slab with transverse ribs 

the perimeter of the rib of length 50 + 67 + 67 = 184 mm and over the length of the rib 
of 1000 mm. Hence the bond strength per rib = 184 x 1000 x 0.25 = 46,000 N which over 
a unit longitudinal length is 46,000/200 = 230 N/mm. As the bond strength of 230 N/ 
mm is less than the yield strength of 1056 N/mm, the bond strength controls the 
design so that the effective strength of the profiled sheeting 'A .f ' = 'A f ' = 230 pmr yp tr yr 
N/mm. 

The voids in the concrete slab encased by the transverse dove-tailed ribs in 
Figure 6.7(b) will reduce the ability of the concrete to transfer the shear. This reduction 
in strength can simply be catered for by using an effective depth of slab, which is the 
depth of a solid slab with the same cross-sectional area of concrete as the profiled 
slab. In this example, the effective depth is ((200x 130)- (50x62/2)) x 130)/(200x 130) 
= 122 nun which is only slightly smaller than the overall depth of 130 ram, however the 
reduction can be substantial when transverse trapezoidal ribs are used. Hence, the 
perimeter length (Lp)r = 122 rnm. The shear flow force imposed by the connectors qt 
remains unchanged from the previous examples at 475 N/ram so that qc = q,(1000/ 
3500) = 136 N/rnm. In order to determine the area of transverse reinforcement required, 
Eq. 6.5 can be written as the following equation with the values of the parameters 
shown immediately below. 

q c  = O.66 f c t Lp + O.8Aprof f yp + O.8Atrf y r 
136 161 184 0.8A~f 

It can be seen that the parameter 0.66ftL = 161 N/mm is sufficient to resist the shear 
flow force of qc = 136 N/ram. Therefore, only the minimum transverse reinforcement 
is required which from Eq. 6.6 comes to A ~ f  > (0.53x2x122)/0.8 - 162 N/ram which 
is less than that already supplied by the profiled sheeting of 'A .f ' - 230 N/ram. pror yp 
These calculations show that the shear flow force can be transferred into the 

cantilevered section without the addition of transverse reinforcing bars. 

(b) S h e a r  p lane  suppor t ing  long  shear  span 

Let us now consider shear plane D-D in Figure 6.7(a). The shear flow force 
qt, = 475 x (2500/3500) = 339 N/mm. The bond strength of the profiled sheeting at D- 
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D is virtually the same as that at C-C as it is governed by the shorter of the two bond 
lengths, of approximately 1 m and 2.5 m, which remains virtually unchanged at close 
to 1000 mm. Applying Eq. 6.5 gives 

qD 
339 

- , z ' _  0.66fc t Lp + 0.8Aprof f yp + 0.8 Atr f yr 
161 184 0.8Au.f ,. 

As the first two terms on the fight hand side just exceed the shear flow force, the 
shear flow plane is sufficiently strong. 

If the cantilevered section in Figure 6.7 is halved from 1 m to 0.5 m, then 
% =  475 x (3000/3500) =407 N/mm and the bond strength 'Ap,,rfy p' is halved to 115 N/ 
ram. Equation 6.5 now becomes 

qD 
407 

0.66fc t Lp + 0.8Aprof f yp + 0.8Atr f yr 
161 92 0.8A J r  

from which Air = 0.481 mm which would require 8 mm bars at (n82/4)/0.481 
= 105 mm centres which could be placed at the top of the slab to help in resisting the 
transverse flexure; these bars need to be fully anchored across the shear plane or 

alternatively the bond strength must be equal to Atrf r. 

6.5.1.4 E x a m p l e  6.4 Composite L-beams 
The steel component in the composite beam in Figure 6.7 has been placed on the 
edge of the slab in Figure 6.8 to form a composite L-beam. As the area of slab to the 
fight of the shear plane E-E is much smaller than the area to the left, it can be assumed 
that qe = q, = 475 N/mm. As the bond length of the profiled sheeting to the fight of E- 
E is very short 'Aproffy p ---) 0. Applying Eq. 6.5 gives 

qE 
475 

0.66fc t Lp + 0.8 Aprof f yp + 0.8 Atr f yr 
161 0 0.8At f r 

3500 ....... ~E 
i i 

~ -  .... .  looped reinforcement _ ~ "  

Figure 6.8 Composite L-beam 
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from which A N = 0.98 mm which would require 8 mm bars at 51 mm centres. However, 
these bars need to be fully anchored across the shear plane E-E which can be achieved 
by looping the bars around the shear connectors as shown. As each looped bar traverses 
the shear plane twice, it will only be necessary to space the looped reinforcement at 2x 
51 = 102 mm centres. If this is still too small a spacing, then two bars could be looped 
around a shear connectors so that the spacing can be increased to 204 mm centres. 

6.6 Resistance of shear planes that encompass 
connectors 
6.6.1 Strength of planes encompassing connectors 
Examples of longitudinal shear planes that encompass the shear connectors are shown in 
Figure 6.1. Failure can occur along shear planes that encompass individual connectors as 
in (Lp) H, along shear planes that encompass groups of connectors as in (Lp) D, along shear 
planes that encompass individual connectors within the group, and across the haunch of 
a composite beam as in (Lp) F and (Lp) C. Because these shear planes do not traverse the full 
depth of the slab as shown in Figure 6.9, the resultant transverse force acting on these 
shear planes F f can vary from compression to tension depending on the transverse 
flexure that is acting on the slab at the time the composite beam is being fully loaded. It is 
a matter of engineering judgement to determine the magnitude of these transverse forces 
and the proportion of these transverse forces that act on the shear plane. 

The bottom reinforcement A b in Figure 6.9 crosses the shear plane twice and, hence, 
the cross-sectional area that resists shear is 2A b. In general the slab will be subjected to 
transverse negative or hogging moments so that the transverse force F f acting on the 
shear plane is compressive and as such will enhance the longitudinal shear strength. 
However, the magnitude of the transverse force depends on the transverse flexure 
acting on the slab at the time the composite beam is being subjected to its design load 
and, hence, it is difficult to predict. Furthermore, the portion of this force acting on the 
shear plane depends on the geometry of the concrete component and in particular the 
height of the shear plane hp relative to that of the concrete component h c and the 
position of the top reinforcement h t. The simplest solution is simply to ignore the 
beneficial effect, that is to assume Ff  = 0. Inserting these values into Eq. 6.2 and 6.3 
gives 

At F n f  ~ T ' " T ]  , Fnf 

Lp ........... ~ Ihp 

Figure 6.9 Transverse forces on shear planes that encompass shear connectors 

, . . O e . O . o .  O O .  
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Figure 6.10 Shear plane that encompasses the connectors 

Qch = 0"66 f ct Lp + 1.6A b f yr 

1.6 Ab f y r > 0.53fc t Lp 

fc = 25 N/mm 2 

Dmx = 113 kN 

Lsi = 238 mm 
Ac= 455,000 nun 2 

frr = 400 N/ram 2 

(6.8) 

(6.9) 

Example 6.5 Composite T-beam 
Let us now consider the shear flow planes that encompass the shear connectors in 
Example 6.1 in Section 6.5.1.1. Longitudinal shear failure can either occur around the 
pair of connectors or around each individual connector as shown in Figure 6.10. 

The perimeter length encompassing the pair of connectors in Figure 6 10 is (L.) = 
�9 v A 

100 + 100 + 95 = 295 mm As the area of concrete enclosed by (L)  is much smaller than 
the cross-section area of the slab A c, qA = q, = 475 N/mm. Applying Eq. 6.8 gives A b --- 
(475 - 0.66>O.x295)/( 1.6x400) =0.134 mm and Eq. 6.9 gives ~ > (0.53x2x295)/(1.6x400) = 
0.489 mm and, hence, the lower bound controls the design which will require 8 mm bars 
at 103 mm centres. 

The perimeter length encompassing an individual connector in Figure 6.10 is (L)  B = 
219 mm. Each longitudinal row of connectors transfers a shear flow force of q/2 = 238 N/rmm. 
Therefore applying Eq. 6.8 gives 238 = 289 + 640A b, hence only the minimum reinforcement 
in Eq. 6.9 is needed which gives A b > 0.363 mm. As this transverse reinforcement traverses 
both shear planes of the individual connectors which are shown as shear planes B in 
Figure 6.10, this is the total transverse reinforcement required for both shear planes and 
it is less than that required for the shear plane that encompasses both connectors. 

< - -  3500 (effective width) > 

i130  244 

100 

f~ = 25 N/ram 2 

Dma x = 113 kN 
L,i = 238 mm 

Ac = 455,000 mm 2 

frr = 400 N/ram 2 

< .... "50  

F i g u r e  6 . 1 1  H a u n c h e d  b e a m  

50 < .... 
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6.6.1.2 Example 6.6 Composite haunched beam 
If it is assumed that the cross-sectional area of the haunch encompassed by the 
minimum length of shear plane shown a s  (Lp)mi n = 244 mm in Figure 6.11 is much 
smaller than the cross-sectional area of the slab, then the shear flow force on the 
shear plane is equal to qt = 475 N/mm. Applying Eq. 6.8 gives A b = (475 - 66x2x244)/ 
(1.6><400) = 0.239 mm and Eq. 6.9 gives A b = 0.404 mm. Hence the lower bound 
controls the design, which requires 8 mm bars at 124 mm centres. These bars need to 
be fully anchored across this shear plane. 
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7 Stocky columns 

7.1 Introduction 
Composite columns are used to resist compressive forces, and most usually act in 
combination with bending moments. As was noted in Chapter 1, the most commonly 
used and studied column types are the encased 1-section shown in Figure 7.1 (a), the 
concrete-filled steel rectangular hollow section shown in (b) and the concrete-filled 
circular steel tube shown in (c). Unlike composite beams, the steel component is 
rarely subjected to tensile forces, and both the concrete and bare steel have to resist 
compressive stresses. 

Short or stocky columns fail essentially by squashing, and their strength is 
governed by the geometric proportions and the material strengths f of the steel and 
f of the concrete alone. Stocky columns are considered in this chap~'er. On the other 
lfand, it is common for a column to be quite long or slender, for which the strength 
is governed by overall instability or geometric nonlinear effects. Slender columns 
are considered in the next chapter. 

The column sections shown in Figure 7.1 (a) and (b) may be bent about the x-axis 
by an eccentric compressive load, about the y-axis by an eccentric compressive load 
or more generally about both axes. In this book, we will consider the case of bending 
about the major or x-axis of the section, and the methods of analysis may with little 
modification be extended to bending about the minor or y-axis of the section. The 
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t 
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Figure 7.1 Typical symmetrical composite columns 
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analysis presented in this chapter will assume short-term loading only, so that creep, 
shrinkage and temperature effects are ignored. This is because we will be concerned 
with failure of the cross-section, and the combinations of compression and bending 
actions that cause this failure. The relevant material properties are thus f and f ,  and 
properties modified by long-term effects are not considered. 

This chapter will concentrate primarily on encased columns as in Figure 7. l(a) as 
these are the most commonly encountered form of composite column, although the 
techniques may be extended easily to concrete-filled rectangular steel sections as in 
(b), and with a little more difficulty to concrete-filled circular tubes as in (c). The 
main difference to note is that fully encased steel sections are compact, as they are 
unable to buckle locally because of the concrete encasement. On the other hand, 
when the steel is on the outside of the column as in concrete-filled tubes, the geometric 
provisions of Chapter 2 must be met if the steel is to remain compact and hence 
achieve its full yield strength. 

7.2 Plastic centroid and concentrically loaded column 
It is usual for the axial force to be applied at the plastic centroid of the section when 
bending effects are zero, that is for concentric loading, or eccentric to the plastic 
centroid when bending is present. 

Consider the non-symmetric column section shown in Figure 7.2(a) that has a 
cross-sectional area Aco ~ = D x b. The cross-sectional area of the steel component is 
A s and the remaining area of the column shown shaded is the cross-sectional area of 
the concrete A c = Aco ~ - A s Furthermore, the centroid of the steel area A s is d s from 
the top fibre as shown in (d), and the centroid of the concrete area A c is d c from the 
top fibre. The axial strengths of the concrete component Pc and steel component Ps 
are shown in (b). In order for the concrete component to be uniformly stressed at its 
ultimate strength, a force F of magnitude Pc must be applied at the centroid of the 
concrete component, that is at a distance d c from the top fibre as shown in (c) and 
(d). Similarly, for the steel component to be uniformly stressed at yield, an axial 
force F = P must be applied at the centroid of the steel element as shown. The 
resultant force Psq = (Pc + Ps ) is the maximum axial strength of the column and is 
referred to as the squash load; from equilibrium, the squash load the Psq must act at 
d as shown in (c) and (d) where 

P 

dp- Pcdc + Psds (7.1) 

+ 

in which 

Pc = 0 .85 fc  Ac 
(7.2) 

Ps = f yAs 
(7.3) 
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Figure 7.2 Plastic centroid of non -symmetric composite cross-section 

The position at d is referred to as the plastic centroid. The depths d and d r in Eq. p 
7.1 are the depths to the geometric centroids of the concrete and steel components 
respectively, and implicit in Eqs. 7.1 to 7.3 is that the cross-section is rigid plastic, 
that is the steel and concrete are fully and uniformly stressed. 

A more convenient method of determining both the plastic centroid dp and the 
squash load P is to assume in Eq. 7.2 that A is the cross-sectional area of the sq c 
column Aco t whnch equals b x D. This assumption overestimates the cross-sectional 
area of concrete by an area A and, hence, in order to compensate for this additional 
area of concrete, the yield strength of the steel in Eq. 7.3 is reduced to f - 0.85f. 
Therefore Eqs. 7.2 and 7.3 become 

Pc = 0"85fc Acol (7.4) 

Ps = ( f  y -0.85 fc)as (7.5) 

However, in many design procedures Eqs. 7.1 to 7.3 are used, with A being 
made equal to A o r 

It is worth noting that the familiar elastic centroid is not in general at the same 
position as the plastic centroid. The position of the elastic centroid d below the top 
fibre of the section in Figure 7.2 is given by 

d e 
Acdc + nAsds (7.6) 

A c +nAs 

where n is the elastic short-term modular ratio E/E c, and d and d s are defined as 
before. Of course, the denominator in Eq. 7.4 is simply the transformed area. 

For doubly symmetric sections as in Figure 7.1 (a), the elastic and plastic centroids 
coincide, and fortunately this is often the case in practice. If the axial compressive 
load N is applied eccentrically at an eccentricity e to the plastic centroid in the 
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direction of the plane of bending, then we will refer the effects of this axial force 
back to the plastic centroid, which will be assumed to be subjected to an axial 
compressive force N and a moment Ne in the plane of bending. 

7.3 General methods of analysis 
7.3.1 Elastic-plastic technique 
Figure 7.3 shows an encased I-section member in compression that is also bent 
about its major or x-axis. We will consider this case, although the extension to 
bending of an encased I-section about the y-axis and to a concrete-filled rectangular 
hollow section is simple. The extension to a circular concrete-filled tube is a little 
more complex, but nevertheless follows the same arguments. The analysis in Figure 
7.3 is an elastic-plastic analysis, for which it will be assumed that there is full 
interaction with only one strain profile. The concrete encases the whole of the 
I-section in (a) and it is unlikely that all of the steel component will have yielded 
before the concrete crushes at a strain of 0.003. Hence it will be necessary to use the 
familiar ), factor method in reinforced concrete design I to determine the real neutral 
axis position n a below the top fibre shown in (b). The stress distribution in the steel 
component will be assumed to have the elastic-plastic distribution in (d), while in 
contrast the concrete component will be assumed to be rigid plastic as in (c), stressed 
to 0.85f over a depth ~a '  where~ 

7' = 0 . 8 5 -  0 . 0 0 7 ( f  c - 2 8 ) <  0.85 (7.7) 

where the units of f are in N/mm 2. 
With the previous assumptions and for a given neutral axis depth n a, the resultant 

force in the concrete F ,  ignoring the presence of the steel component, will be 
positioned yn/2 below the top fibre, as in Figure 7.3 (e), and given by 

Fc = 0.85fc Y na b (7.8) 

where b is the width of the concrete component in (a). Because we know that 
the curvature in the steel element r is 0.003In a as can be seen in Figure 7.3(b), 
the strain distribution in (b) is uniquely defined, and by invoking the elastic- 
plastic stress-strain curve 0-C-B in Figure 1.8 for the steel component so too is 
the stress distribution. As the steel stresses are known, the forces F~ in the top flange, 
F 2 in the web and F 3 in the bottom flange may be calculated as shown in (f), where 
F 3 is negative in this example as the bottom flange is in tension as shown in (d). 
Because the yield strain of the steel is usually considerably less than the concrete 
crushing strain (0.003), the steel top flange and some of the web element will often 

be at yield. 
As the forces F I, F 2 and F 3 act through the centroid of their stress blocks defined 

over their respective areas, the depths to these forces below the top fibre may be 
conveniently obtained, and taking the moments of these forces about the top fibre 
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produces the moment Mtop. Of course, any reference fibre may be used, but the top 
fibre is often a convenient one, and usually we finally relate the moment and axial 
force acting in the section to that which occurs at the plastic centroid. From 
equilibrium, the axial force N ho. which acts in the cross-section shown in Figure 
7.3(g) is clearly the following algebraic sum of the element forces. 

N shor t = F  c + F  I + F  2 + F  3 (7.9) 

while the moment  Mshor t at the plastic centroid is, from simple statics 

N short D 
M short = 2 - M top (7.10) 

since the top fibre is positioned D/2 above the plastic centroid. 
By varying the position of the neutral axis depth n in Figure 7.3, we may 

determine a locus of points (M ho., N ho.) at which a stocky cross-section fails, as 
shown in Figure 7.4. This locus is the failure envelope of the section, and generally 
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Figure 7.3 Analysis of doubly symmetric section 
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(b) Minor axis bending 

Figure 7.4 Stocky column strength interaction curves 

has the shape shown in (a) for major axis bending and in (b) for minor axis bending. 
If we let n a ---> oo, then a condition of pure compression will arise and if the area of 
steel encased by the concrete is ignored in determining the area of the concrete, as 
was done in the above analysis, then the squash load N O will be produced as 

No = 0.85bDf c + A s f  y (7.11) 

Note that the squash load is the same as in the denominator of Eq. 7.1. Clearly we 
may generate the failure envelope in this fashion by suitable computer programming, 
but it will be shown in the Section 7.4 how an approximate curve may be produced 
by assuming rigid plastic behaviour. 

The reader familiar with reinforced concrete design will note that the composite 
strength interaction curves take a similar form to those for reinforced concrete 
columns. However, the same assumptions are not always applicable to both. The 
concept of balanced failure in singly or doubly reinforced concrete columns is not 
the same as that for composite columns. Balanced failure in reinforced concrete 
columns occurs when the concrete crushes at a strain e u of 0.003 and the steel yields 
in tension simultaneously at a strain of ey, and this point on the (Mshor t, Nsho,) curve 
closely defines the point of maximum moment. In reinforced concrete design, the 
region below the balanced failure point defines what is called 'tension failure' and 
above this point defines what is called 'compression failure'. However, this is not 
the case for composite columns, and in fact the simultaneous failure mode does not 
appear to be of particular interest for composite columns. 

7.3.1.1 E x a m p l e  7.1 Section strength from elastic-plastic assumptions 
Figure 7.5(a) shows an encased I-section bent about the major axis, where the 
geometric dimensions are in mm and f = 30 N/mm 2 and f = 300 N/mm 2. If the 
neutral axis depth n lies at infinity, the concrete stress block is as shown in (b) and 
the steel stress block is as shown in (c). Since A = 500 x 900 = 450,000 mm 2 
(ignoring the encased steel) and A s = 16,000 mm 2, from Eq. 7.11 N O = 16,275 kN. 
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It is worth noting that the true squash load Psq = Pc + P~, = (450,000 x 0.85 x 30) 
+ (16,000 x ( 3 0 0 -  0.85x30) -- 11,475 + 4,392 = 15,867 kN which is 2.5% less than 
N o , hence the error can be ignored. 

The neutral axis is now taken at mid-depth, that is n a - 450 mm, and from Eq. 7.7 
T = 0.836, so that ~ = 376 mm. The force F in Eq. 7.8 is 0.85 x 30 x 0.836 • 450 
x 500 = 4797 kN as shown in (g) which acts 376/2 = 188 mm from the top fibre as 
shown in (h). It is worth re-emphasizing that in Eq. 7.8 the area of the steel within 
the concrete component has been ignored. 

From Figure 7.5(d), the strain on the inside face of the flange is ( (450-  100)/450) 
x 0.003 - 0.00233 > ey = 300/200 x 103 = 0.0015, so that all of the top flange has 
yielded as in (f). Hence from symmetry Fsl = -Fs4 = 300 x 15 x 300 N = 1350 kN as 
shown in (g). The depth in the steel below the top fibre to first yield is 4 5 0 -  
(0.0015/0.003) x 450 = 225 mm, so that 450 - 225 --- 225 mm of the web above the 

(N and mm throughout) O' e O s E O c 
0 ! 

<- 500----> 0.85x30 [ i0.003 0.85x30 

~:! ......... i I ..... itoo ........ f [  .... 7 ..... f l  - 

. . . . . . . . .  ., . . . .  I -  ...... . . . . .  . .  -  76. 

~ i I L ! /  : t .......... . . . . . . . . . . . . . . . . . . . . . . . .  , , ,  " ,  

t ~ i !  ......... ~ .... .I ...... ; '-.-. / ! ! 
�9 . . . . . . . . .  o I . . . . .  ; . . . . . . . . . . . .  ,r . . . . . .  .;. . . . . . . . . . . . . . . . . . .  o . . . . . . . . . . .  

( a )  i ( b ) _  (c)_ I I (d)_  ( e )  I 
Y Y 

n~ @ in f in i ty  n~ @ 4 5 0  m m  

T 
4 

m m 

450 

1 

i i 

~ 2~i i))i i::i 2 ::; ,:= :. i'i) :i: 

O s F o r c e s  (kN) y 
, . 1 ~  . , I  . , . . , . . . . . .  t . . . . . , , . . . , , , ,  i , . . I . . . . . , . . . .  ~ .  f ~  g . . , . . . . o . . . . ,  s ,  o . a , . .  

| 300 
.................... ] | F s I " . ~ F ~  1350 93 
.................... ] .... ""] F c ~ i 1 " ~ 4 7 9 7  188 

. . . . . . . . . .  i . / . .  . . . . . .  .~s~. ~ j : . L . ~ . ~ . , .  

F s 3 - - ' ~ . :  713 672 

...... : .... I ' " " " !  F s 4 - - - ~ ;  1350 807 
I 
I I 

i(f) (g) (h)  
i i 

V 

n a @ 4 5 0  m m  

Figure 7.5 Example 7.1' Elastic-plastic axial strength 
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neutral axis is elastic and 3 5 0 -  225 = 125 mm of the web above the neutral axis is 
at yield. The total force in the web above the neutral axis Fs2 is then (125 + 225/2) 
x 10 x 300 N = 713 kN, and the height at which it acts above the neutral axis is 
[(125 x (225 + 125/2)) + (2252/3)] / (125 + 225/2) = 222 mm or 228 mm below the 
top fibre. The force in the web below the neutral axis Fs3 is clearly-713 kN and acts 
450 + 222 = 672 mm below the top fibre. 

The forces in Figure 7.5 can be summed to produce N~o, = 4797 kN, and the moment 
of these forces about the top fibre can be summed to produce Mtop = 4797xl 88 + 1350x93 
+ 713x228 - 7 1 3 x 6 7 2 -  1350x807 kNmm = - 3 7 9  kNm. Hence from Eq. 7.10, 
Msho, = -379 + 4797X900X 10 .3 / 2 = 1780 kNm. This point (1780, 4797) may be plotted 
on the strength interaction envelope, and corresponds to an eccentricity e I of 1780 x 
103/4797 = 371 mm. The above analysis may clearly be programmed on a spreadsheet, 
giving values of (M ho,, N ~ )  as a function of n a that may be used to generate a locus 
corresponding to the interaction diagram by varying n a from zero to a large number. 
When n is small, the cross-section will be subjected to tension, and this condition is 
generally ignored in deriving the strength interaction diagram. 

7 .3 .2  Rational non-linear analysis 
The method described in Section 7.3.1 above forms the basis of a more rational 
technique for determining the strength interaction diagram. This method has been 
confined to research analyses, in which a particular axial force N ho, is assumed in 
the range 0 < N,o, < N o. For this particular value of N ho, = (N ho,) , a small curvature 
r~ is chosen. The strains corresponding to this value of ~ are still not yet defined, as 
we do not yet know the position of the neutral axis n .  This is determined by varying 
n ,  with each value of n and the assumed value of K:, uniquely describing the strain 
distribution in the cross-section, as in Figure 7.3(b). As the strains are known at 
each point in the cross-section, the accurate stress-strain relationships described in 
Chapter 1 may be invoked to determine the stress in the concrete, steel or 
reinforcement at each point in the cross-section. These stresses are then integrated 
numerically over the cross-section to determine the axial force N that equates to the 
combination of ~:, and n .  If N ~ (N ho,) ~, the neutral axis depth n is adjusted 
progressively until N converges to (N ho,) , with an acceptable tolerance. At this 
stage, for the predetermined value of (N ,o,) ~ are a curvature ~:,, and the strain (and 
stress) distribution throughout the cross-section is defined uniquely. 

The next step is to integrate the first moments of the stresses over the cross- 
section in order to determine the moment M, at the plastic centroid which gives 
point 1 in Figure 7.6. The curvature ~:~ is then increased to ~ ,  with the iterative 
scheme again being used to generate the moment M 2 for the chosen value of (N ,o,) , 
and a given curvature ~:2 and hence point 2 in Figure 7.6. In this way, we may 
generate the moment versus curvature curve for a given (Nshort) I a s  shown in Figure 
7.6. The curve shown is this figure demonstrates that, after a peak moment is attained, 
the curve then softens owing to the presence of the descending branch of the stress- 
strain curve for concrete shown schematically in Figure 1.10. Fortunately, there are 
empirical equations that express the stress-strain curves for the concrete, steel and 
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Figure  7.6 Moment-curvature response for a given axial force 

reinforcement, so that generation of the moment-curvature curve may be performed 
by routine computer programming. The maximum moment that is attained in Figure 
7.6 is identified as (M ho,) ~, so that we now have one point (N ho,) ,, (M ho,) ,) on the 
strength interaction diagram in Figure 7.4. 

The entire interaction diagram for a stocky column may be generated in this 
fashion, by specifying a value of (Nsho,)n, calculating the moment-curvature 
relationship corresponding to this load and identifying the peak moment (M ,o,) .. 
The process is rather involved mathematically, as for each assumed (N ho,) ., an 
iteration must be performed at each curvature to determine the position of the neutral 
axis. However, the method is well-suited to obtaining rapid solutions on modem 
computers, and has the main advantage that the actual stress-strain curve for the 
concrete is used, so we do not have to rely on the approximation of a rectangular 
stress block stressed to 0.85f over a depth Tn a. Of course, this rational approach 
may be employed with little modification to short concrete-filled steel tubes. 

7.4 Rigid plastic analysis 
7.4.1 General 
In the ingenious method developed by Roik and Bergmann 2, the interaction diagram 
AECDB shown in Figure 7.7 is approximated by the polygon ACDB shown. The 
approach assumes that the cross-section is doubly symmetric about the axis of 
bending, which is usually the case, and is based on rigid plastic principles described 
in Chapters 1 and 4, so that the steel or concrete is either fully yielded or not stressed 
at all. The procedure will be illustrated for the general cross-section shown in Figure 
7.8(a), which is symmetrical about the axis D which is the position of the plastic 
centroid. Because of the symmetry of the cross-section about D; the plastic centroid 
is also the position of the elastic centroid. The section is comprised of the steel 
component, which is assumed to be fully yielded in compression and tension at f ,  
and the concrete component which is assumed to be fully yielded in compression ~t 
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0.85f, but which has no tensile strength. The following definition of each of the 
point~ in Figure 7.7 will be illustrated by means of an example. Of course, the point 
A in Figure 7.7 is obtained from Eq. 7.11. 

Point  'B '  

7.4.2.1 Pure  bend ing  ana lys is  

Point B in Figure 7.7 corresponds to the pure flexural capacity. Consider the distribution 
of stress shown in Figure 7.8(b) where the stress above the neutral axis N-A is 
compressive. Below the neutral axis, only the steel component is stressed in tension, 
and this neutral axis is positioned h n above the plastic centroid. For convenience, the 
section is divided into three regions shown in (a), namely region 2 which lies h on 
either side of the plastic centroid, region 1 which is further than h above the plastic 
centroid and region 2 which is further than h below the plastic centroid. The resultant 
forces in the steel and concrete components are shown in (c), where F~ is the resultant 
force in the concrete in region 1 and acts at the centroid of the concrete region, while F I 
is the resultant force in the steel component in this region and acts through the centroid 
of the steel in region 1, and so on. Taking moments of the forces in (c) produces the 
pure flexural moment capacity M ~ shown in (d). 

The force Fs2 in region 2 in Figure 7.8(c) must act through the plastic centroid 
because of the symmetry about D in Figure 7.8 that we have assumed. This symmetry 
also dictates that the magnitude of the force Fsl = Fs3. As the section is in pure 
flexure, the net resultant of the axial forces is zero, that is 

Fc 1 + Fs 1 = Fs 2 + Fs 3 (7.12) 

and as it has been shown that F~ = Fs3 then F~ = F2. Furthermore as the area of 
concrete in regions 1 and 3 in (a) are the same, then the compressive strength of the 
concrete in region 3, that is F 3, is the same as that in region 1, then F 3 = F~. Hence 

Fc 1 = Fc 3 = Fs 2 (7.13) 
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7.4.2.2 Example 7.2 Roik and Bergann's method- Point B 
Consider the cross-section shown in Figure 7.5(a) that was considered in Example 7.1. 
If it is assumed that the neutral axis lies in the web of the steel component and using the 
notation in Figure 7.8, then Fs2 = 2 h  x 10 x 300 = 6000h N, while the force in the 
concrete component F t = (450 - h )  x 500 x 0.85 x 30 = 12750 x (450-  h).  Since F~ 
= F 2 from Eq. 7.13, h = 306 mm which indeed is in the web element, and F~ = 0.85 x 
30 • 500 x (450 - 306) = 1836 kN. The force F~ in region 1 is then 300 x (15 x 300 + 
(350-  306) x 10) N = 1482 kN and is positioned (15 • 300 • 358 + 10 • (350-  306)2/ 
2) x 300/1482 x 103 = 328 mm above the plastic centroid. Moreover, the concrete force 
F~ is positioned (450-  306)/2 + 306 = 378 mm above the plastic centroid. Hence by 
taking the moment of the forces F~, F~ and F 3 about the plastic centroid produces M ~ 
= 1836 x 378 + 1482 x 328 + 1482 x 328 kNmm = 1666 kNm. 

7 .4 .3  Point 'C' 
7.4.3.1 Analysis 
Point C in Figure 7.7 lies where the moment capacity about the plastic centroid is 
the same as the pure flexural capacity M o, but where there is a resultant axial force 
N o. The analysis of this section is shown in Figures 7.8(e) and (f). Roik and 
Bergmann showed ~.2 that the neutral axis N-A in (e) lies h below the plastic centroid, 
where h was determined as in Section 7.4.2.1 for point B. This can be confirmed by 
comparing the forces in (c) with those in (f). The only difference between these 
force distributions is Fc2 in (f) and as this acts through the plastic centroid, as the 
steel element is symmetrical about the plastic centroid, F2 does not contribute to the 
moment and, hence, the moments at Points B and C are the same. 

The resultant force in Figure 7.8(e) is zero as we are dealing with pure flexure. As 
the moment M ~ is the same in (c) and (f), any changes between these resultant forces 
due to the movement of the neutral axis from the level in (b) to that in (e) is equal to 
the increase in the axial force No, ,. Comparing (f) with (c), it can be seen that the 
algebraic change in the steel force is 2F2 and the change in the concrete force is F 2, 
therefore the change in force 

Nmo - 2Fs2  + Fc2 (7.14) 

and substituting Eq. 7.13 gives Nmo = Fct + Fc3 + F 2, that is 

Nmo = Pc 

where P is the axial compressive strength of the concrete component. 

(7.15) 

7 .4 .3 .2  Example 7.3 Roik and Bergmann's me thod-  Point C 
Consider the cross-section in Figure 7.5(a). We saw in Example 7.2 that FI = 1836 kN 
and lies (450-  306)/2 + 306 = 378 mm above the plastic centroid, F ! = 1482 kN and lies 
328 mm above the plastic centroid, and F 3 = 1482 kN and lies 328 mm below the plastic 
centroid. Moreover, h, again equals 306 mm, but this time is below the plastic centroid. 
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Clearly, Fc2 = 2 x 306 x 500 x 0.85 x 30 N = 7803 kN. The axial compressive force is N 
= 1836 + 7803 = 9,639 kN which is equal to the axial compressive strength of the concrete 
P and taking moments about the plastic centroid produces Mo as in Example 7.2. 

7.4.4 Point 'D' 
7.4.4.1 Analysis 
Point D in Figure 7.7 corresponds to the point of maximum moment. Roik 
and Bergmann showed that the neutral axis for this point passes through the 
plastic centroid as shown in Figure 7.8(h). The proof is illustrated in (k) to (n). If 
the neutral axis is dropped a fraction Ah then the additional axial compressive force AF 
reduces the moment Morn in (j) to Morn- eAF shown in (n). Furthermore, if 
the neutral axis is raised then the change in the axial force AF is now tensile and acting 
above the original level of the neutral axis so reducing the moment to that shown in (n). 
Hence the maximum moment occurs when the neutral axis passes through the centroid. 

The summation of the forces in Figure 7.8(i) gives 

Fc2 Nmo Pc (7.16) 
N s h ~  2 - 2 - 2 

that is half the compressive strength of the concrete component. The concrete 
forces FcJ2 and F t in (i) lie above the neutral axis, while the compressive and 
tensile steel forces Fs2/2 lie at the centroid of the steel in region 2 above and 
below the neutral axis respectively. It is clear that the moment contribution of the 
steel component is equal to its plastic moment capacity. 

7.4.4.2 Example 7.4 Roik and Bergmann's points D and A 
We have already established in Examples 7.2 and 7.3 that Fr - 7803 kN, 
F~ = 1836 kN (378 mm) and F~ (328 mm) = Fs3 (-328 mm) = 1482 kN, where the 
distance in brackets is the height of the force above the plastic centroid, which is also 
the position of the neutral axis. Clearly the force F J 2  lies 306/2 - 153 mm above the 
neutral axis, and because only the web element of the steel component lies in region 2, 
F2/2 = 306 x 10 x 300 N = 918 kN and lies 306/2 -- 156 mm above the plastic centroid 
in compression and 156 mm below the plastic centroid in tension. From Example 7.3, 
the axial force Nsho~ = 9639/2 - 4820 kN and using Example 7.2, the moment about the 
plastic centroid is Mo~ = 1666 + 2x918x156x10 -3 + (7803/2) x 153x10 -3 = 2549 kNm. 

Finally, Point A in Figure 7.7 is N O = 16,275 kN from Example 7.1. 
Points A, B, C and D are shown plotted in Figure 7.9 for Examples 7.2 to 7.4. It is 

worth noting that in Example 1, at a load eccentricity of 371 mm, the axial strength was 
4797 kN and the bending strength was 1780 kNm. A line corresponding to this 
eccentricity is shown in Figure 7.9, where the point on the rigid plastic failure envelope 
is (2280 kNm, 6100 kN). It can thus be seen that the rigid plastic assumption of Roik 
and Bergmann overestimates the bending and the axial compressive capacities by 
28%. This degree of unconservatism can be tolerated, as it can be argued that strength 
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Figure 7.9 Failure envelopes from Examples 7.1 to 7.4 

reduction factors in national codes of practice, in conjunction with the benign strain 
hardening effect of the steel component, will compensate for the unconservative 
assumptions made in the rigid plastic assumption. 

7.4.5 Allowance for shear 
The rigid plastic analysis must be modified for the effects of shear, in the same way 
as in Chapter 4. If the composite column is loaded with unequal end eccentricities, 
it will experience a moment gradient and hence a shear force V. This shear force is 
assumed to be resisted by the web element of the steel component. 

Because of this, the web yield stress in the method of Roik and Bergmann must be 
reduced below its strength f. It was shown in Section 4.2.5 that an appropriate reduced 
yield strength is fly given by Eq. 4.2, where the shear stress in the web of depth d w and 
thickness t w is taken as 

"r 
V 

dwtw 
(7.17) 

Equations 4.2 and 7.17 are based on the von Mises yield criterion (Chapter 1), and on the 
assumption that the shear yield stress x w in the web element of the steel member is uniform. 
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8 Slender columns 

8.1 Introduction 
In Chapter 7, we introduced the concept of a composite column that is required to 
resist axial compression as well as bending actions. The behaviour of the column 
was restricted to stocky columns whose strength was attributable entirely to material 
failure of the cross-section. Composite columns in practice are rarely stocky, but are 
slender, in that their length is much larger than the cross-sectional proportions. This 
chapter will again consider composite columns which are subjected to compressive 
and bending actions, but the behaviour is inherently more complex as the column 
slenderness contributes to the so-called second order effects. These second order 
effects must be considered in the design of slender composite columns. The 
fundamental procedures will first be developed for steel columns in Sections 8.2 
and 8.3 which are then applied to composite columns in Section 8.4. 

8.2 Elastic columns 
8.2.1 Concentric loading 
8.2.1.1 First  yield approach  
Flexural or Euler buckling is based on elastic principles, and forms the basis for the 
design of concentrically loaded steel columns. We will consider the analysis of this 
type of buckling here, as the results are used for the design of composite columns 
described in Section 8.4. Euler buckling of a simply supported and initially straight 
steel column takes place when the column moves to an adjacent equilibrium position 
at a load N E given by t 

~2Esl 
NE = L 2  (8.1) 

where L is the length of the column and I is its second moment of area about the weaker 
principal axis. The shape of the buckle follows a sine curve, but the magnitude of the 
buckle is indeterminate. The concept of Euler buckling is used to some extent in 
reinforced concrete design, but because of the material nonlinearities in the variation of 
E and particularly due to cracking, a concrete column will not 'buckle' at a load given 
by Eq. 8.1. This is also true of a composite column, as the concrete component also 
behaves nonlinearly with respect to its material properties. However, it is worth reiterating 
that the most advanced analysis techniques for composite columns, which will be treated 
in this chapter, are in fact based on the concept of Euler buckling. 

If a concentrically loaded (steel) column was 'perfect' in the sense that it was 
initially straight, concentrically loaded and had the stress-strain curve given in Figure 
3.1, it would fail by Euler buckling at N E for lengths greater than n~/(E I/N ) and 
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Figure 8.1 Failure of an elastic steel column 

squash at lengths less than this, where Nsq = Asf is the squash load of the steel cross- 
section. This failure load is shown in Figure 8.1. 

Steel columns are never 'perfect'. We will now drop the condition that the column 
is initially straight, and suppose that it has an initial imperfection u ~ that varies 
sinusoidally according to 

Uo = (50 sin 7rz (8.2) 
L 

where z is measured from the end of the column along the length, and ~5o is the 
maximum value of the initial out of straightness as shown in Figure 8.2. For this 
crooked column, the member deflects increasingly by an additional amount ~5 at 
midspan as the axial load N is increased, given by t 

t~ N /  N E 

1-NINE 
(8.3) 

It is noteworthy that when N = 0 in Eq. 8.3 then ~5 = 0 as expected, and that as 
N ---> N E then the column deflection increases towards infinity. This high column 
curvature as N increases leads to increased stresses in the column, and forms the basis 
of the failure theory outlined below. 

The bent column under an axial load N is subjected to a moment at midspan of 
N(~5 + ~5 o) as can be seen in Figure 8.2 which, on the concave side of the bent 
column, produces a compressive stress of N(~5 + ~5o)/Z, in which Z is the section 
modulus. The axial compression also produces a compressive stress N/A s. If the 
column is deemed to fail when the sum of these two compressive stresses reaches 
the yield stress of the steel f then 

N N(t~+t~o) (8.4) 
fY  = a---~ + Z 
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The load Ny at which first yield occurs may be obtained by substituting Eq. 8.3 
into Eq. 8.4. After some manipulation, this load may be written as 

. . . . .  - 

in which 

(8.5) 

1+(1+.) u~ 
Nsq 

(8.6) 
~ =  2 

and TI is called the imperfection parameter, which in this derivation is given by 

t~oD 
(8.7) 

r / -  2 r  2 

where D is the width of the member (assumed to be rectangular) transverse to the 
axis of buckling and r = ~/(I/A) is its radius of gyration. 

8.2.1.2 E x a m p l e  8.1 Strength of a simply supported concentrically 
loaded steel bar 
Consider the case of a simply supported rectangular steel bar of dimensions 
200 mm x 20 mm and yield stress f = 300 N/mm 2. Its properties are A s = 200 x 20 = 4000 
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mm 2 and I = 20ax 200/12 = 133 x 103 mm 4 and so r = ~/(133 x 103/4000) = 5.77 mm. The 
squash load is N = 4000 x 300 N = 1200 kN, and let us assume further that the length 
is L = 468 mm, ~o that its Euler load from Eq. 8.1 is N E = rdx 200 x 133 x 103/4682 
= 1200 kN which is the same as the squash load. Hence if the column was 'perfect', Euler 
buckling and yielding would occur simultaneously at a load of 1200 kN. 

Suppose now that the column has a maximum out of straightness ~5 = 5 mm. 
o 

From Eq. 8.7, rl = 5 x 20/(2 x 5.772) = 1.50, from Eq. 8.6 ~ = (1 + (1 + 1.50) 
x 1200/1200)/2 = 1.75 and so from Eq. 8.5 Ny = (1.75 - ~/(1.752- 1200/1200)) 
x 1200 = 377 kN. The presence of the geometric imperfection that renders the column 
crooked thus reduces the strength of the column by 377/1200 or 69% below that 
assuming elastic buckling. 

The load to cause first yield of a crooked column N is shown schematically in 
Y 

Figure 8.1. As L ---> 0 the strength approaches the squash load N of the column, 
sq 

while as L ---> oo the effects of yielding become negligible and the strength approaches 
the Euler load N E. The greatest reduction in strength below either Nsq or N E actually 
occurs at the point where Nsq = N E which was considered in Example 8.1. 

8 .2 .1 .3  C o l u m n  c u r v e s  
Equation 8.5 forms the basis of column strength curves for steel columns that are given in 
many national standards. In the derivation presented in Section 8.2.1.1, it was assumed 
that the column was rectangular, and that moreover the magnitude of the initial geometric 
imperfection 50 was known. Both of these effects appear in the imperfection parameter rl. 

In a real (steel) column, the cross-section is rarely rectangular and the magnitude of 
the initial out-of-straightness is also unknown. In addition, residual stresses that are 
formed during the manufacture of the column are present, but are not easily quantifiable. 
The column strengths given in national standards are therefore based on Eq. 8.5, but 
they have been calibrated against test results and also against advanced numerical 
solutions that incorporate a variety of cross-sections, geometric imperfections and 
residual stresses. By doing this, the imperfection parameter 1"1 may be determined 
empirically as a function of the slenderness ratio ~, = L/r (where r is the radius of 
gyration about the axis of buckling) and also as a function of the type of cross-section, 
which categorizes its residual stress pattern. When this is simplified, the strength of 
steel columns are categorized by their slenderness and their cross-sectional type. For 
example, in the Eurocode 2, Eq. 8.5 is written as 

Ncol - X Nsq (8.8) 

where Nco ~ is the strength of the steel column, N is its squash load and the slenderness 
parameter Z is a function of the slenderness ratio ~, = L/r and also of the empirically 
determined imperfection parameter 1"1. 

If we write the term NE/Nq that occurs in Eqs. 8.5 and 8.6 as 

N E Ir2Es I 1 Ir2Es (8.9) 

Ns q L2as f  y ~2 f y 



Slender columns 125 

then clearly N~/N is inversely proportional to the slenderness ratio squared. 
The result of this is t~aat the column curve concept expresses the slenderness parameter 
X as a function of the slenderness ratio k. In the Eurocode 2, four column curves 
are given as illustrated in Figure 8.3, and these curves are denoted a,b,c and d. Column 
'a' is used for sections that are free from residual stresses, which calibration of Eq. 8.5 
with tests show have a very low value of 11 and hence have the highest strength. On the 
other hand, the column curve labelled 'd' is used for sections with thick plates, which 
experimental calibration shows that 11 is quite large, and so the corresponding strength 
is lower. The curves labelled 'b' and 'c' apply to cross-sections whose residual stresses 
and out-of straightness due to fabrication have been found to be between those 'a' and 
'd'. It is worth noting that the British steel standard also presents four column curves, 
while the Australian standard presents five. 

8.2.1.4 Effective lengths 
The length of the column L in the derivation of the column curve was taken as that 
between simple supports as shown in Figure 8.4(a). The elastic buckling load N~, of a 
perfect column depends on what is termed the effective length of the column. For example, 
if the column of length L was not simply supported at each end, but in fact was fully 
built-in at each end as in (d), then its buckling load can be shown to be 4n2EI/L 2 or 4N~, 
that is the buckling load of the portion of the column or idealized column shown as L 
that resembles the simply supported Euler column. It is most usual to express the end 
conditions of a column by referring to its effective length L,  so that 

Ncrit - 

E2 E[ 

X 

(8.10) 

1.0 I II II I 

0.5 

i 

~ a (free from residual stress 

i " " . , , . ~ : ~ ! . ' , . . . , . . ~  ~ and low values of 11) 

[ d ~ ' " ' " ] 2 ~ ~ : 2 ! ~  (c~176 c~ 

! (sections w i t h  " " . , , . , , . ~ " . . . . ; ~  
[ thick plates) c ".,. "''o 
i _= I . o ~ l ~ l  

[ 

i 
1 

i . . . . . . . . . . . . . . . . . . . . . . . .  I,,, I 
0.2 ~ 1.0 1.4 

Figure 8.3 Illustration of column curves used in the Eurocode (not to scale) 
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which merely replaces the length L in the Euler formula by the effective length L .  
Further, it is common to express the effective length of a column of length L in 
terms of its effective length factor k by 

Le = k e L  (8.11) 

Further examples of effective length factors for idealized conditions of column 
restraint are given in Figure 8.4. 

Generally, a column in a building does not have the idealized end restraints shown 
in Figure 8.4, but is part of a rigid frame so that the end condition is intermediate 
between fully built-in at both ends and simply supported at both ends. In addition, the 
effective length is influenced by whether or not the frame of which the column is a 
part is free to sway. The determination of the effective length factor k in these cases 
is beyond the scope of this book, but is explained for elastic columns in Ref. 1. 
Guidance for determining the effective length factor is generally given in chart or 
nomogram form in most national steel (and concrete) standards, in which the effective 
length is a function of the stiffness of restraining beams and columns at each end of 
the column under consideration. 

The concept of the effective length is important, as the slenderness ratio is given 
more generally, not as L/r, but as 

_ L e (8.12) 

r 

This slenderness ratio is again used in the column curves, in which the column 
effective length L e merely replaces the simply supported length L. 

E x a m p l e  8 .2  Strength o f  a restrained concentrically loaded steel bar 
Let us consider the steel bar that was analysed in Example 8.1, but this time it shall 
be assumed that the bar is fixed rigidly at both ends. As in Example 8.1, we shall 
make recourse to first principles and not to any national design standard. 

From Figure 8.4(d), the effective length factor is k e = 0.5, so that L = 0.5 x 468 
= 234 mm and the elastic buckling load is Ncr~, = ~2x 200 x 133 x 103/2342 
-- 4795 kN. Again assume ~ = 5 mm, so that 11 - 1.50 as before. The parameter 

= ((1 + (1 + 1.5) x 4795/1200)/2 = 5.49, and so from Eq. 8.5 Ny = (5.49 - ~/(5.492 
- 4795/1200)) x 1200 - 452 kN. It can thus be seen by comparison with Example 
8.1 that increasing the restraint of the column from simply supported ends to built- 
in ends increases the elastic buckling load by a factor of four, but the effects of 
yielding result in an increase in failure strength of 452/377 or 20%. Nevertheless, 
this 20% increase cannot be ignored in design, and so the effective length factor k 
should be used. This is particularly so when k > l (as in columns in frames that are 
free to sway), as the strength of the slender column derived assuming k - 1 (Eq. 
8. l) will be unconservative. 
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Figure 8.4 Effective length factors for idealized end restraints 

8.3End moments  
8.3.1 Secondary effects 
Let us consider a simply supported column that is subjected to end moments 
Mm~ and Mm2 that bend the column into single curvature as shown in Figure 8.5(a). In 
concrete and composite terminology, this is still referred to as a column, while in steel 
design it is referred to, perhaps more correctly, as a beam-column. Although we are 
discussing steel members here, we will however refer to the member as a column. 

The effect of the end moments  Mmt and Mm2 is to bend the column into single 
curvature, as shown in Figure 8.5. This bending curvature gives rise to additional 
deflections u, and so an additional moment of Nu is generated along the member. 
The total moment at any cross-section where the deflection is Uo is M m + Nuo, this 
moment causes a curvature (M m + NUo)/EI, and so we can calculate a new deflection 
u~, a new moment (M m + Nu~)/EI, a revised deflection u 2 and so on. Finally, the 
bending moment converges to M m + Nu. As shown in Figure 8.5, the constant moment 
M m is referred to as the primary moment, while the additional moment Nu is referred 
to as the secondary moment. The maximum value of the second order moment, the 
sum of the primary and secondary moments, is denoted Mm~, and it is this moment 

capacity at a given axial compression N that must be established. 
Fortunately for elastic analysis a closed form solution for the maximum value 

Mm," exists, and a derivation is given in Ref. 1. However, material nonlinearities and 
cracking in composite columns preclude expressing Mm~ x in a closed form, and so 
approximations have to be made. If for the present we ignore these material 
nonlinearities that are germane to the concrete component of a composite column 
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and consider again a steel column, in lieu of the complex closed form solution for 
Mma x a suitable linear interaction between the moment Mma x and axial compression 
N to cause failure of a steel column is 

M N max = 1-  
Mp Nco I 

(8.13) 

where Mp is the plastic moment for bending about the weaker axis. 
In Eq. 8.13, the moment Mm, is the maximum second order moment obtained from 

the closed form solution. As this closed form solution is complex even for steel, and 
indeed does not exist for composite columns, the following approximation is used. 

Mma_._..___~x = Cm (8.14) 

Mml 1 _ N 

Ncrit 

where N is the axial force, Ncrit is given by Eq. 8.10, and the factor C m is intended to 
take account of the different moments MinI and Mm2 applied at the ends of the member 
shown in Figure 8.5. If Mint is chosen as the larger moment and Mm2 is chosen as the 
smaller, then the moment gradient 13 is given by 

f l _  Mm2 (8.15) 
Mml 

primary 
bending 
moment 

Mml Mini 

/ maximum value of e 
il ........ c ond order mom n 

i !iiiill: ~ ~ e ~  ~ t 
\ 

tq, Mm2 bending 
Mm2 moment 

(a) (b) 

Figure 8.5 Primary and secondary moments in compression members 
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where 13 is negative if the end moments bend the column into single curvature and is 
positive if the end moments bend the column into reverse curvature. Using this 
definition of the moment gradient, a commonly used expression for c m is 

c m = 0 . 6 6 - 0 . 4 4 f l  _> 0.44 (8.16) 

Hence in Eq. 8.14, the coefficient c accounts for the benign effect of the moment 
gradient, while the denominator,mwhich is less than unity, accounts for the 

amplification of the moment due to nonlinear effects. 

8.3.1.1 E x a m p l e  8.3 Moment capacity of  a steel square column section 
Let is again consider the column of Example 8.2, but this time the column is subjected 
to an axial load N = 300 kN which has a moment applied at its top and none at its 
bottom. The moment gradient is thus I~ = 0 and so from Eq. 8.16, c m = 0.66. We will 
use the column strength as determined from first principles rather than that implicit 
in codes of practice, so that No = N = 452 kN The rigid plastic moment M for 

c~l ., " p 

bending about the weaker axis is 300x202x200/4 Nmm = 6.00 kNm. The second 
order moment to cause failure from Eq. 8.13 is Mm, ~ = (1 -300 /452)x6  
= 2.02 kNm. Substituting this value of Mm~ into Eq. 8.14 produces Mm~ = 2.02 x 
(1-300/452)/0.66 = 1.03 kNm. This end moment would correspond to a load 
eccentricity at the top of the column of 1030/300 = 3.4 mm. 

8.3.2 Graphical interpretation 
The provision of Eq. 8.13 may be explained conveniently in graphical form. This is 
introduced here for steel columns, because it forms the basis of the Eurocode 2 
approach for composite columns described in Section 8.4. 

Figure 8.6 shows the interaction between compression and bending for a steel 
column that is similar to Figure 7.4. The moments are plotted dimensionally as m = 
M ho,/M and the loads as n = Nshort/Nsq, where Mp is the plastic moment a n d  Nsq is its 
squash lPoad. The section failure envelope is taken in most national codes as the 
straight line m = 1 - n, as shown. 

Now consider the point at A in Figure 8.6 where n = N ./N and m = 0, this point 
c col sq 

corresponds to the pure compressive load to cause failure of the column when loaded 
concentrically, as would be determined from the relevant column curve. In terms of 
Eq. 8.8, n is identical to Z. If section failure, that is failure of the material such as 
that given in Figure 7.7, was the relevant limit state, then the column loaded to n 
could support the moment mA. B drawn in Figure 8.6. Of course, the limit state is 
failure by buckling, so that the column cannot resist any of the moment mA. B, as it 
buckles at n without any moment being applied. At the origin when there is no axial 
force, the column can of course resist the full plastic moment m = 1 at point C. 

Let us now draw a line (which we will assume to be straight) between B and 0 in 
Figure 8.6. For any non-dimensional load n~ = Ni/Nsq between n c and 0 as shown in 
Figure 8.6, the triangular region A-B-0 represents the moment that cannot be 
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supported owing to slenderness or buckling effects. Hence, for a load N~ that is non- 
dimensionalized as n~ as shown in the figure, the moment mD. E cannot be resisted by 
the column, but the reserve of capacity m~.~ can be resisted by the column and it is 
this reserve capacity mE. F that is available to resist Minx in Figure 8.5. By noting that 
the failure envelope for the interaction between n and m is a straight line, and that 
the region A-B-0 is a triangle, it can be shown from similar triangles that m~.F 
= 1 - n~/n c. This construction of the reserve capacity mE. ~ leads to an equation for 
the capacity of a column under a load N _< No ~ that is identical to Eq. 8.13. The 
m o m e n t  MrJ1Vlp, where Mre s is the reserve moment capacity, represented by E-F 
must, of course, be transformed back to end moments in accordance with Eqs. 8.14 

to 8.16 as MRs is the second order moment Mm~ x in Eq. 8.14. 

8.4 Moment capacity of slender composite columns 
8.4.1 Concentrically loadedcolumns 
8.4.1.1 Critical or buckling load 
The most widely accepted approach for determining accurately the bending capacity 
of a composite column is that used in the Eurocode 2, and follows very closely the 
same arguments presented in Section 8.3 for steel columns. In the previous section, 
the second order moment was quantified fairly accurately by an approximation based 
on a knowledge of the buckling strength Nco ~ of a steel column. The same rationale 
is used in composite columns, in that Eq. 8.14 is used to magnify the maximum end 
moment Mm~ that has been determined from a first order linear analysis. However, 
in the Eurocode approach, the 'buckling' load Non t is written as 

n 

(Sshort]Nsq) 

1.0 T mA-a cross-sectional 
~ . . .  failure m + n = 1 

< \ 

nc ~!!i 
n l ::i~ili i!!i)i I iiil ~ii~ii:"~E F i 

ii !  i!:j i 

0 1.0 
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Figure 8.6 Graphical interpretation of moment capacity at a given load for a steel column 
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Ncrit = 
ff2 ( El ) e (8.17) 

where the effective flexural rigidity is taken as 

(8.18) 
(EI) e = Es l  s + 0.8Ecl c 

Presumably the factor 0.8 in Eq. 8.18 is intended to account for concrete cracking 

and other material nonlinearities in an approximate way. 

8 .4 .1 .2  E x a m p l e  8.4 'Buckling load' of  a composite column 
The buckling or critical load for the column shown in Figure 7.5(a) and which buckles 
about the major axis will be determined. As Eq. 8.18 is approximate, we can justifiably 
ignore the steel in calculating the concrete properties. Hence I = 9003x500/12 
= 30.4x 109 mm 4. Similarly for the steel component we may obtain I s - (10x7003/12) 
+ (2x300xlSx357.52) = 1436x106 mm 4. Assuming that E c = 25 kN/mm 2, E s 
= 200 kN/mm: and that the effective length of the column is L e = 25 m, from Eq. 
8.18 (EI) e = (200x1436x109) + (0.Sx25x30.4x1012) kNmm 2 = 895x10 ~: Nmm :, and 
from Eq. 8.17, No, t = g~x895x1012/25,0002 N = 14,133 kN. 

8.4.1.3 Column curve for  composite columns 
It was shown in Section 8.2.1.3 that the slenderness ratio L = L/r is proportional to 
~/(N q/N~). This may be extended to composite columns of effective length L by 
writing a modified slenderness 

'~'*= I Nsq 
N__~r/t (8.19) 

where Nc~ t is given by Eq. 8.17 and N is the squash load given by the sum of Eqs. 7.2 
and 7.3. The strength N o~ of a concentrically loaded composite column may be 
determined from the modified slenderness g* and the relevant steel strength curve 
(curve 'b' in Figure 8.3) of the Eurocode. The slenderness factor X* is tabulated in the 
Eurocode directly as a function of g* and the relevant column curve. Hence by analogy 
with Eq. 8.8 for a steel column, 

Ncol = ,~, , N s q (8.20) 

for a composite column. 

8 .4 .1 .4  Example 8.5 Strength of  a concentrically loaded column 
For the column considered in Example 8.4 that was also analysed in Example 
7.1, L* = ~/(16,275/14,133) = 1.07. Hence from curve 'b' of the Eurocode, X =0.58 
and so the column strength of the slender composite member is 0.58 x 16,275 = 
9440 kN which is the maximum concentric load that can be applied to the column. 
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8.4.2 Second order effects 
8.4.2.1 General 
Second order effects caused by axial compression and bending in composite columns are 
treated in exactly the same way as was described in Section 8.3.1 for steel columns. Hence, 
the maximum moment in the slender column is obtained from the maximum end moment 
Mint and the moment gradient [3 by amplifying the maximum end moment by c/(1 - N/ 
N~t), where c m is given by Eq. 8.16, N~t by Eq. 8.17 and where N is the axial compression. 

Example 8.6 Moment amplification factor for a slender column 
Suppose now that the column in Example 8.4 is subjected to a moment M~ at one 
end and M , / 2  at the other end that bend the column in single curvature. Hence 

= -0.5 and from Eq. 8.16 c m = 0.66 + 0.44 x 0.5 = 0.88. The maximum moment 
within the column M is therefore obtained by amplifying the end moments by the 
fight hand side of Eq. 8.14. If the applied load N = 6000 kN, then this amplification 
is 0.88/(1 - 6000/14,133) = 1.53, that is M = 1.53 Mm~. 

8.4.3 Moment capacity for a given load 
8.4.3.1 General 
When a composite column is subjected to a given axial compression N, the Eurocode 
approach allows us to calculate the bending capacity in an analogous manner to that 
described for steel beam-columns. Instead of the straight line from n = 1 to m = 1 that 
describes the cross-section strength in Figure 8.6, the cross-section strength is determined 
using the methods described in Chapter 7 by either first principles, or the rigid plastic 
method applied in the Eurocode that was described in Section 7.4. We can again illustrate 
this method graphically in Figure 8.7, where m is the moment M ~  non-dimensionalized 
with respect to the pure bending capacity of the composite column M,, and n is the 
compressive force Nsho, non-dimensionalized with respect to the squash load N q. 

Under the action of an axial compression, we determine first the column strength 
described in Section 8.4.1.3, which non-dimensionally is the slenderness parameter 

in the Eurocode 2 and which is shown in Figure 8.7. Following the same technique 
for steel beam-columns, the line AB is drawn to intersect the strength envelope 
(mshort, nshort) at B, and the line OB constructed. The axial force N is non- 
dimensionalized to produce n a = N/Nq, which clearly must be less than Z. This axial 
force is plotted on the vertical axis, and the line CF drawn to intersect the strength 
interaction envelope at F and the line BO at E. The dimensionless moment EF is 
thus the bending capacity that is allowed at the level of axial compression N. 

This approach is a little conservative, and larger capacities than EF are achievable 
under higher values of moment gradient. This can also be shown to be true for steel 
beam-columns. The Eurocode allows for this by extending the line OB up the vertical 
axis to a point G whose dimensionless capacity is Z ,  in which 

!i 

(1-/3) 
Zn=  4 z <- nd 

(8.21) 
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Using the construction in Figure 8.7, 

ha -%.) 
P = lad -l~k X - X n  

(8.22) 

and if the section failure envelope is drawn according to Section 7.4 assuming rigid 
plastic assumptions then 

M res = 0.9/ZM p (8.23) 

8.4.3.2 Example 8.7 Bending capacity of a composite column 
The failure envelope for the column considered in Example 8.6 was determined in 
Examples 7.2 to 7.4 and is shown in Figure 7.9. At a value of X = 0.58, the 
dimensionless point of intersection with the strength envelope developed in Chapter 
7 is l.t k = 1.05. It is worth noting that for a composite column the dimensionless 
moment m can be greater than unity owing to the concavity of the cross-section 
failure envelope. The point F in Figure 8.7 corresponding to the load n d = 6000/ 
16,275 = 0.37 is la d = 1.41 where N = 16275 kN from Example 7.4. In addition, 
from Eq. 8.21, g, = 0.58 x (1 + 0.5)~ = 0.22 < 0.37, so g, = 0.22. Hence from Eq. 
8.22, I.t = 1.41 - 1.05 x (0.37 - 0.22)/(0.58 - 0.22) = 0.97, and since the cross- 
sectional strength envelope was generated making rigid plastic assumptions, M = 
0.9 x 0.97 x 1666 kNm = 1450 kNm where M = 1666 kNm from Example 7.2. p 
This moment is the maximum moment in the cross-section, amplified from the end 
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Figure 8.7 Design procedure for compression and bending 
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moments according to Eq. 8.14. Hence from Example 8.6, the end moments that 
can be resisted by this column are 1454/1.53 = 950 kNm and 950/2 = 475 kNm. These 
moments correspond to eccentricities of the end load of 6000 kN of 950/6000 m = 158 
mm and 158/2 = 79 mm. 
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9 Composite beams with 
service ducts 

9.1 Introduction 
Passing the building services through ducts in the webs of the composite beams in 
buildings can allow a considerable reduction to the storey height and, hence, reduce 
the overall height of the building and foundations. The rigid plastic analysis 
procedures developed in Chapter 4 are used throughout this chapter to assess the 
effect of inserting a service duct into the web of an existing composite beam and to 
assess the effect of strengthening the ducted region. It needs to be emphasized that 
the simplicity of both the ensuing analyses and examples is solely due to the fact 
that rigid plastic assumptions have been used. 

The general analysis procedures ~4 first developed by Redwood and Darwin are 
described in Sections 9.2 to 9.6 where a service duct is inserted into an existing beam 
in a region where flexure predominates. The analysis is then extended in Section 9.7 
to determine the enhancement of the strength due to the shear capacity of the slab, 
and in Section 9.8 to determine the effect of strengthening the ducted region by 
plating. The procedure is then applied in Section 9.9 to the insertion of a duct in a 
region of a composite beam where shear predominates. Finally in Section 9.10, methods 
are proposed for determining whether local embedment failure of the shear connectors 
will occur due to the insertion of the duct. 

9.2 Outline of general analysis procedure 
A composite beam with a service duct is shown in Figure 9.1. The duct can be 
visualized as partitioning the composite beam into the three distinct regions shown, 
that is the support region A-B, the ducted region B-C and the mid-span region C-D. 
The section at C will be referred to as the high moment end of the duct and that at D 
as the low moment end. The insertion of the duct in Figure 9.1 not only weakens the 
composite beam by reducing the cross-sectional area of steel in the ducted region to 
(A)duc t as shown, but can also reduce the longitudinal shear forces in all three regions, 
that is (F h)A. B, (F h)̂ _ c and (Fh)^. D. The overall flexural capacity of the existing 
composite beam with a duct and in particular the effect that the duct has on the 
flexural capacity at the position of maximum moment, is covered in Section 9.3. 

The ducted region in Figure 9.1 is shown in Figure 9.2 where it can be seen that the 
beam now consists of an inverted steel T-section at the bottom of the composite 
beam and a composite T-section at the top. These T-sections have to resist 
combinations of the applied shear forces V as well as the applied moments M. 
Instead of trying to analyse the ducted region for combinations of these stress 
resultants that is extremely complex, the following analysis procedure is used: 
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136 Composite beams with service ducts 

(As)duct 

support low high 
, moment end mo~_ent end ~ a 
;A ;B ;C 

(a) (b) 
\ "  , \ \  \ 

service opening 

maximum 
moment 

D 

C critical section 

Figure 9.1 Composite beam with service duct 

�9 First of all, the pure flexural capacity of the ducted region is determined in Section 
9.4, that is the flexural capacity of the section ignoring the effect of vertical shear. 

�9 The pure shear capacity is then determined in Section 9.5, that is the ability of the 
T-sections to resist vertical shear in a region of very low applied moment. 

�9 Finally, the interaction between the applied shear V a and the applied moment M a 
is dealt with in Section 9.6, using experimentally derived failure envelopes. 

It will be shown in the following analyses that the critical region of the ducted 
composite beam, in both the ensuing shear analyses and flexural analyses, occurs at 
the high moment end of the duct at section C in Figures 9.1 and 9.2. 
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9.3 Maximum flexural capacity of ducted beam 
9.3.1.1 E x a m p l e  9.1 Flexural capacity of ducted beam at mid-span 
(a) Effect  of  t ransverse ribs 
The composite beam in Figure 4.3 in Chapter 4 was previously analysed in Figure 4.4 in 
Section 4.2.2.2 with full shear connection and with a solid slab. In this analysis, the 
strength of the steel component was weaker than that of the concrete component and, 
hence, Psh = P = 2300 kN at the position of maximum moment. Let us now assume that the 
solid concrete slab is replaced with a profiled slab with transverse dove-tailed fibs of 
height 50 mm as shown in Figure 9.3. In the full shear connection analysis in Figure 4.4, 
the depth of the concrete in compression n = 30.9 mm that is less than the depth of 80 mm 
of the solid concrete above the transverse ribs in Figure 9.3. Therefore, the transverse 
fibs in the composite beam in Figure 9.3 will not reduce the maximum flexural capacity of 
the beam in Figure 4.4 and the strength will remain at Mrs ~ = 702 kNm. 

(b) Insert ion of  a service duct  
Let us now insert a service duct into the beam in Figure 4.3 in the region of high 
moment near the mid-span of the beam as shown in Figure 9.3. It will be assumed in 
the following analyses that the stud shear connectors are uniformly distributed 
along the length of the beam so that the degree of shear connection at any section is 
directly proportional to the distance of that section from the nearest support. The 
high moment end of the duct, such as at section C-C in Figure 9.1, is a critical section 
in the analysis because, at this section, the reduced cross-sectional area of the steel 
component (As)duct is subjected to the largest longitudinal shear force (Fsh)A. c. Hence, 
let us start the analysis at this section. 

At the critical section C-C in Figure 9.3: 

the strength of the concrete component (Pc)c-c = A fy =3500x80x21.3 
= 5964 kN 

All units in N and mm unless shown 
uniformly distributed connectors 

... 1750 ~j 1750 > 1 ] = 0 ~  T 1=0.86 ) 
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I 
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Figure 9.3 Duct inserted into an existing composite beam 
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�9 the strength of the steel component (P,)c-c = (As)duetf = 2 x ((50x10x250) 
+ (160 x18x250)) = 1690 kN 

�9 and as the degree of shear connection rl = 4.3/5 = 0.86, 
�9 the strength of the shear connectors that can impose a thrust on section C-C is 

(P~h)c-c = rl(P,h)o.t, = 0.86 x 2300 = 1978 kN in which from Example 4.1 
(Psh)fsc = 2300 kN 

The weakest of the three components (P)c-c. (P)c-c and (P,h)c-c that are listed above 
is the strength of the steel component and, hence, the resultant force in the shear 
connectors in region A-C in Figure 9.3 is (Fsh)^. c = (P)cx: = 1690 kN. Therefore, the 
connectors in region A-C are not fully loaded because the weak steel section now 
controls the design. However, the connectors in region C-D remain fully loaded. As the 
degree of shear connection within this region C-D is 1 - 0.86 = 0.14, the strength of the 
shear connectors within region C-D is 0.14 x 2300 = 322 kN. Therefore, the maximum 
thrust that the connectors can impose at mid-span is (F h)^~: + (Ph)c-D = 1690 + 322 = 
2012 kN that is less than the requirement for full shear connection of 2300 kN, so the mid- 
span now has partial-shear-connection due to the insertion of the duct. 

The partial shear connection analysis at mid-span is shown in Figure 9.4. The analysis 

procedure that is depicted has been fully described in Chapter 4 and in brief consists of: 

�9 The cross-sectional properties of the section shown in (a). 
�9 The axial strengths P of the three components of the composite beam in (b), 

which are derived from (a) and from the force in the connectors in the shear span 
under consideration in Figure 9.3 which in this case is the half span. 

�9 The weakest of the three components in (b) controls the force in each component 
and, hence, the resultant force in each component in (c) is, in this case, the force 
in the shear connectors of 2012 kN. 

�9 An equivalent stress distribution has been used in (d) to simplify the analysis, 
where the sum of the stresses in the steel component gives the real stress distribution. 

3500 P(kN) C(kN) (~equiv. F(kN) y(mm) 
< :> ~ . . . . . . . . .  

80[ili!~!~i~ !i~|i~3 ~!iiii!!! iiii iiiii!!!!!!i!!i!iiiii!i!iiiii ! I 5964 ._~~_~2(~i'2--- . I  ' ~ ' - 2 0 1 2  13.5 
............. .............................. ........................................ . . . . . . . . . . . . . . . . . . . . .  

............... l0 
344 - - ~  860 /2300 . - ~  2 0 1 2 / - - ~ 2 3 0 0  320 

fy = 250 ~ | ........... 

(a) (b) (c) (d) (e) (f) 

Figure 9.4 Flexural capacity of ducted beam at mid-span 
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In this case, the neutral axis is in the top steel flange and, hence, the real stress in the 

steel component above the neutral axis is 500--- 250 = 250 N/mm ~ compression and 
that below the neutral axis is 250 N/mm 2 tension. 

�9 As the steel component is not fully yielded in tension as shown in (b) and (c) where 
the force 2012 kN is less than the strength of 2300 kN, part of the steel component must 
be in compression as shown in (e). The compressive force 
of 288 kN is such that the sum of forces in the steel component in (e), that is 2300 kN 

- 288 kN, is equal to the resultant force in the steel component in (c) of 2012 kN. 
�9 Knowing the resultant forces in (e), the cross-sectional widths over which they 

act in (a), and the equivalent stresses in (d), the distance of these resultant forces 
from the top fibre can be derived and are shown in (f) 

�9 Taking moments about the top fibre using (e) and (f), gives the capacity at mid- 
span  (Mpsc)o. D = 671 kNm. This can be compared to the capacity without the duct 
from Example 4.1 of 702 kNm. Hence, the effect of inserting the duct is to reduce 

the flexural capacity at mid-span by a small amount of only 4%. 

9.4 Pure flexural capacity of ducted region 
9.4.1 Flexural behaviour 
The ducted region in Figure 9.1 is shown subjected to flexure in Figure 9.5. In deriving 
the flexural capacity within the ducted region, the following standard assumptions are 
made: the steel and concrete components have the same curvature ~: as shown; and a 
slip-strain (ds/dx)~,te r exists at the interface between the steel and concrete components. 
However, in analysing the ducted region for flexure, it will also be assumed that the top 
steel T-section is in full interaction with the bottom inverted steel T-section, so that the 
strain profile in the top steel T-section is in line with that of the bottom steel T-section 
as shown, that is (ds/dx)~uct = 0. Hence, the rigid plastic analysis procedures developed 
in Chapter 4 can be applied directly to the composite ducted section. 

high compression I~ tensile cracking 
: 

top steel 

h 0 ! 

ao ! 

bottom inverted i 
steel T-section i 

Figure 9.5 Ducted region subjected to flexure 
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Figure 9.6 Pure flexural capacity at high moment end of duct 

9.4.1.1 E x a m p l e  9.2 Pure flexural capacity at high moment end 
of ducted region 
The analysis for the pure flexural capacity of the ducted region at the high moment 
end of the duct, at section C-C in Figure 9.3, is shown in Figure 9.6. The strength of 
the concrete component is listed in (b) as 5964 kN, the strength of the individual 
rectangular elements of the steel component sums to 1690 kN, and the strength of 
the shear connectors between the high moment region of the duct and the support is 
shown as 1978 kN. Hence, the weakest component in (b) is the steel component that, 
therefore, controls the forces in the components as shown in (c). It can now be seen 
by comparing (c) with (b) that the connectors in the shear span A-C in Figure 9.3 are 
now not fully loaded due to the presence of the duct, which will also affect the 
flexural strength at the low moment end of the duct. As the strength of the steel 
component controls the force distribution, the steel component is fully yielded in 
tension as shown in Figure 9.6(d) so that there is no need to use the equivalent 
stress distribution in this analysis. From (e) and (f), the pure flexural capacity at the 
high moment end of the duct comes to  (Mduct)h = 522 kNm. 

9 .4 .1 .2  E x a m p l e  9.3 Pure flexural capacity at low moment end 
(a) Pure  flexural  capaci ty  at low m o m e n t  end 
It was shown in Example 9.2 that the shear connectors in shear span A-C in Figure 9.3 are 
now no longer fully loaded but are resisting a force of (Fsh)A_ c = 1690 kN. It will be assumed 
that this force is uniformly distributed along the shear span A-C so that at the low moment 
end of the duct at section B-B, the shear connector force (Fsh)A.B = (Fsh)A_C 
X LA_B/LA~ = 1690 X 3.3/4.3 = 1297 kN. This is shown as the strength of the shear connectors 
in Figure 9.7(b) in the analysis at the low moment end. From (e) and (f) in Figure 9.7, the 
pure flexural capacity at the low moment end (Md~) t = 477 kNm. 

(b) Pure  flexural capaci ty  of  ducted region 
It can be assumed that the pure flexural capacity at mid-span of the duct, which is 
needed in the analysis in Section 9.6, is the average of that at the high and low 
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Figure 9.7 Pure flexural capacity at low moment end of duct 

moment ends, that is (Mpure)duc t -- [(Mduct)h + (Mduct)t]/2---- 500 kNm. Alternatively, the 
pure flexural capacity can be derived directly following the procedures already outlined 
for the low moment end. 

9.5 Pure shear capacity of ducted region 
9.5.1 Mechanism of shear transfer 
The shear deformation of the ducted region under an applied shear force V is shown 
in Figure 9.8. As the low moment end is subjected to negative or hogging curvature 
whilst the high moment end is subjected to positive or sagging curvature, it can be 
seen that a point of contraflexure exists within the ducted region. Hence, the duct 
spans across a point of zero flexure so the applied moment M, that is in the vicinity 
of the duct in Figure 9.8, will be small and can be ignored in this analysis of the pure 
shear capacity. It is also worth noting that at the high moment end of the duct at 
section C-C in Figure 9.8, the concrete is in compression at the top of the slab, 
however and in contrast, at the low moment end of the duct at section B-B, the 
concrete is in compression at the soffit of the slab. This transfer of the position of the 
resultant compressive force in the slab across the ducted region needs to be allowed 
for in the analysis. Furthermore, it is also worth noting that the shear V is transferred 
across the duct by a mechanism within the bottom steel inverted T-section and also 
by a mechanism within the top composite T-section. 

The mechanism by which the applied shear V is transferred across the ducted 
region in Figure 9.8 is shown in Figure 9.9. In the preceding flexural analysis, the steel 
T-sections were assumed to act together as shown in Figure 9.5 by (ds/dX)d,ct 
= 0. In contrast in this pure shear capacity analysis, the T-sections are assumed to 
act independently of each other. As the applied moment M in Figure 9.8 is assumed 
to be very small, the axial force F in both of the T-sections in Figure 9.9 are, therefore, 
assumed to be zero as shown. 

Let us first consider the bottom steel T-section in Figure 9.9. Equilibrium occurs when 

Mb h + Mb I = Vbao (9.1) 
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Hence the shear force V b induces a moment across the duct of Vba ~ that has to be 
resisted by local moments at the ends of the T-section of Mbh and Mbr It can be seen 
that the shear force is transferred across the duct by a mechanism of local moments. 
These moments have been referred to as 'local' as they do not resist the applied 
moment M but are only there to resist the moment induced by the shear forces. As 
the shear force is increased, the ability of the T-section to resist flexure diminishes as 
the flexural capacity of the steel material is reduced by the shear stresses as given by 
Eq. 4.2. The analysis procedure consists of determining the maximum shear force V b 
that can be applied, such that the remaining local flexural capacity can just resist the 
moment induced by this shear force. 

For the top composite T-section in Figure 9.9, 

Mt h + Mt I -Vtao (9.2) 

The analysis procedure follows the same principles as that of the bottom 
T-section, but in this case the capacity to resist the shear V depends on the local flexural 
capacities of the composite T-section that will be shown to have partial shear connection. 

The pure shear capacity of the ducted section is then equal to the sum of the 
individual capacities of the T-sections. 

= Vt +Vb 
(9.3) 

9.5.2 Pure shear capacity of steel t-section 
9.5.2.1 Example 9.4 Pure shear capacity of bottom steel inverted 
T-section 
(a) lterative approach 
Von Mises' yield criterion, given in Eq. 4.2, will be used to allow for the interaction 
between the shear stresses induced by V b in Figure 9.9 and the flexural stresses 
induced by M b. Because of this interaction, the equivalent yield strength of the steel 
fly depends on the shear stress x w that is unknown at the start of the analysis, so that 
an iterative approach is required to find a solution. Hence, the first step in the 
analysis is to guess a reasonable value for the shear force V b. 

(b) Material shear capacity 
It will be assumed in these analyses that only the web of the steel section resists 
shear. Some approaches assume that the extension of the web into the flange can 
also resist the shear and this can be easily allowed for as shown elsewhere 4. It will 
also be assumed in these analyses that the shear stress x w is uniformly distributed 
over the web area Aw, b, that is x w = Vb/Awe b. 

The maximum shear stress that the steel material can resist can be derived from Eq. 4.2 
as f/~/3 by inserting f~ = 0. Hence, the material shear strength of the web is given by 

Aweb f y (9.4) 
(v l a, : 
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which is an upper bound to the shear force that can be applied to the T-section. 
For the bottom inverted steel T-section in Figure 9.3, (Vb)ma , = 50 X 10 X 250/~]3 

= 72 kN. Hence, let us start our iterative analysis by applying a shear force of 25 kN. 

(c) V b = 25 k N  
Consider the bottom T-section at the high moment end of the duct in Figure 9.3. For V b 
= 25 kN, x w = 25,000/500 = 50 N/mm z and, hence, from Eq. 4.2 the flexural strength of the 
web is fly = ~/(2502 - 3x5tY) = 235 N/mm 2. The axial strengths of the rectangular elements 
of the T-section can now be determined as shown in Figure 9.10(b). It can be seen in (c) 
and (d) that the flexural strength of the steel is now either fly = 235 N/mm 2 o r f  = 250 N/ 
mm 2. The resultant forces are shown in (e) where 602 = Pna, ge - Pweb = 720 -- 118. As we 
are dealing with the high moment end of the duct, the forces shown in (e) are those that 
are external to the ducted region that is shown hatched. From (e) and (f), the external 
moment to the duct is Mbh = +7.1 kNm, where the positive sign signifies an anti-clockwise 
moment. 

The analysis depicted in Figure 9.10 can also be applied to the low moment end of the 

duct. This gives Mb/= +7.1 kNm, which is exactly the same moment capacity as at the 
high moment end of the duct because the T-section is steel throughout. Considering 
equilibrium of the T-section in Figure 9.9(b) gives Mb/+ Mbh = 14.2 kNm and Vba 
=-25  X 1 = -25 kNm. Hence, the moment induced by the shear force Vba ~ exceeds the 
remaining flexural capacity M~+ Mbh, SO that the shear load has to be reduced. 

(d) Graphica l  representa t ion o f  results  
Equilibrium of the bottom T-section is shown graphically in Figure 9.11. The 
results of analyses that fall below the 'equilibrium line' are safe as the remaining local 
flexural capacity Mbt + Mbh exceeds the moment induced by shear Vba o. In 
the preceding analysis, the available local moment  capacity is shown as 
May t = 14.2 kNm and that required to resist the shear is shown as Mrq d = 25 kNm. 
Hence in the next analysis, the applied shear load is reduced to 15 kN. 

10 P(kN)  Oreal Oequiv. F(kN) y(mm) 

fy= 250 m ,~ - . . . . . . . . . . . .  ~ . . . . . . . . . .  : [ ~ i [  . . . . . . .  ~ . . . . . . . . . . . .  
nange  .~i~ 

~ ! !  118 118 N 
~ ~ 1  / [ ~ ]  ~ |  ~l 602 5 3.8 

18 720 ~ 500 ~ ~ _ _ : ~ 7 2 ~  59 

(a) (b) (c) (d) (e) (f) 

Figure 9.10 Local flexural capacity at high moment end at 25 kN 
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Figure 9.11 Shear capacity of bottom steel T-section 

(e) V b = 15 kN 
The analysis at a shear load of 15 kN is shown in Figure 9.12. From this analysis Mbt 
+ Mbh= 14.7 kNm and Vbao= 15xl = 15 kNm that is shown as point B in Figure 9.11, 
which is very close to the 'equilibrium line'. Using a linear extrapolation of points A 
and B to intersect the equilibrium line shows that equilibrium occurs at Vba ~ = 14.9 
kNm, that is V b = 14.9 kN as a = 1 m. 

9.5.3 Pure shear capacity of composite t-section 
9.5.3.1 E x a m p l e  9.5 Pure shear capacity of top composite T-section 
(a) Local flexural capacity at high moment  end (V = 50 kN) 

In the beam in Figure 9.3, the duct has been placed at thetmid-depth of the web, so 
that the steel web above and below the duct are the same size. Hence, the material 
shear capacity of the web of the top T-section is the same as that of the bottom steel 
section, that is ( V m a t )  t -'- 72 kN. As the top composite T-section is substantially 
larger that the bottom steel T-section, let us start with a shear load ofV t = 50 kN. The 
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Figure 9.12 Local flexural capacity at high moment end at 15 kN 

analysis is shown in Figure 9.13, from which the flexural capacity is 
Mth - + 111.3 kNm. It is worth noting that at this high moment end, the top portion of 
the concrete slab is in compression as shown in Figure 9.8 and, hence, standard 
flexural strength analysis procedures can be followed. 
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Figure 9.13 Top composite T-section at high moment end at 50 kN 

(b) Loca l  f lexural  capaci ty  at low m o m e n t  end (V = 50 kN)  
It can be seen in the analysis at the high moment end in ~igure 9.13 that the shear 
connectors are not fully loaded but resist a shear load of 810 kN. By assuming that 
this shear load is uniformly distributed over the shear span A-C in Figure 9.3, the 
shear connector force in the shear span A-B is (Fsh)A_B = 810 X 3.3/4.3 = 622 kN, which 
is shown in the analysis in Figure 9.14 as the strength of the shear connector 
component in the profile entitled P. This component force controls the resultant 
forces as shown in profile C. 

Care should now be taken at this stage of the analysis. It can be seen in Figure 9.8 
that at the low moment end of the duct, the concrete compression zone lies near the 
bottom of the slab. This can only be achieved with the strain distribution shown in 
Figure 9.14(d) that requires a very large slip strain and, hence, is peculiar to composite 
sections with mechanical shear connectors. The real stress distribution associated 
with this unusual strain distribution is shown in (e). It can be seen that the concrete 
component is now in compression at the bottom of the solid part of the slab, that is 
above the transverse ribs in the profiled sheeting. Furthermore, the steel component 
is now in tension at its top and in compression in its lower parts. The equivalent 
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Figure 9.14 Top T-section at low moment end at 50 kN 

stress system is shown in (f) and the forces associated with this equivalent stress 
distribution in (g) where the hatched region signifies the ducted region. 

The tensile force of 1432 kN in Figure 9.14(g) is derived from the fact that the 
resultant force in the steel component in (g) is 622 kN (-  1432- 720-  90) as shown in 
(c). Alternatively it can be derived from the forces in (g) summing to zero, that is 622 
+ 720 + 90 = 1432 kN. From (f), the equivalent tensile stress in the steel flange is 2f = 
500 N/mm 2 and, hence, the maximum tensile force in the steel flange y' is 
2 x 720 = 1440 kN. As the tensile force required of 1432 kN is less than the tensile 
strength of 1440 kN, the neutral axis must lie in the steel flange as shown in (f). The 
forces in (g) are the forces external to the low moment end of the duct in Figure 9.8 and, 
hence, have been shown to the left of the duct region shown hatched. The direction of 
these forces is extremely important and should be shown as the forces external to the 
duct. The position of these resultant forces is shown in (h). Taking moments from (g) 
and (h), with anti-clockwise moments being positive, gives Mtt =-36.2 kNm, that is the 
moment at the low moment end is now acting in a clockwise direction. It is worth noting 
that unlike the local moment at the high moment end Mth that remains constant in 
direction, the direction of the moment at the low moment end can change, as it depends 

on the position of the duct along the length of the composite beam. 

(c) Shear capacity ( V  t - 50 KN) 
From Eq. 9.2, M~ + Mu= 111.3 - 36.3 = 75 kNm, however, Vta= 50 x 1 = 50 kNm. Hence, 
the available flexural capacity of 75 kNm is more than sufficient to resist the moment 
induced by the shear load of 50 kNm. The result is shown as point A in Figure 9.15. In 
this graphical presentation of the results, the shear load is plotted along the ordinate 
and the local flexural capacity as the abscissa, so that the slope of the line that represents 
equilibrium is a function of the length of the duct a as shown. 

(d) Shear  capaci ty  (V t - Vma t - 72 kN)  
As point A in Figure 9.15 lies below the equilibrium line for the beam with a duct 
length of ao = 1 m, the shear force can be increased. Let us try the maximum shear load 
that the steel web can resist, that is V = Vm, t --- 72 kN, and hence fry = 0 for the web. The 
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Figure 9.15 Shear capacity of top composite T-section 

analysis for the high moment end is shown in Figure 9.16, where it can be seen that 
the strength of the web shown in the strength profile P is shown as zero. The local 
moment capacity comes to Mth = +96.6 kNm 

It can be seen in Figure 9.16 that at the high moment end of the duct the shear 
connectors are not fully loaded but resist a force of 720 kN. Therefore at the 
low moment end of the duct, the force exerted by the shear connectors (Fsh)A. B 
= 720 X 3.3/4.3 = 553 kN, as shown in the analysis of the low moment end in Figure 
9.17 from which Ma =-33 .4  kNm. 

3500 . P(kN) 

8-0 i z!!~i:i:~ ~i: iil ~ ~ii:~!~. i,i~!!:.i !~i ii~:! ~f~i =~2 I,!31 5964 "<- ' -720 

; 0  .............................. ~/13(J ..... 1~60 ...... j i 9 7 8  ~ .  '~_~__720 "-- ' i  
" ~ i ~  ~ " ~  . . . . . . . . . . . . . . . . . . . . . . . .  �9 . . . . . . .  _ _ ,  . . . . . . . .  _7  _ 2 _ 0  . . . . . .  _ 7 _ 2 _ 0 .  - - - _ 

......................... ~ ~ - -  10 0 
50 fy = 250 
...................................... ~ . . o . . . .  . . . . . . . . . . . . . . . .  , . . , .  . . . . . . . . . . .  .,. . . . . . .  

C(kN) O(N/mm 2) F(kN) y(mm) 

Figure 9.16 Top composite T-section at high moment end at 72 kN 
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Figure 9.17 Top composite T-section at low moment end at 72 kN 

Frb~rn the preceding calculations Mth + Mtt = 96.6 - 33.4 = 63.2 kNm when 
Via ~ -- 72 kNm. This coordinate is shown as point B in Figure 9.15. The linear 
interpolation between points A and B intersects the equilibrium line at V t --- 66 kN that 
is, therefore, the shear capacity of the top composite T-section. It is worth noting 
that the shear capacity of the bottom steel T-section, which had an identical steel 
component as the top T-section and hence an identical Vma t, was previously shown 
to be 15 kN. The increase in the shear capacity from 15 kN to 66 kN is due to the 
composite action of the top steel T-section with the slab and has nothing to do with 
the shear capacity of the slab which was not considered in this analysis; the 
contribution of the shear capacity of the slab is considered in Section 9.7. 

(e) Pure shear capacity of ducted region 
From Example 9.4, the pure shear capacity of the bottom T-section was derived as V b - 15 
kN, whereas, from Example 9.5 the pure shear capacity of the top T-section is V t = 66 kN. 
Hence, the pure shear capacity of the ducted region (Vpu~)duct = 15 + 66 -- 81 kN. 

(f) Variation in the duct size a 
O 

The variation A-B in Figure 9.15 was derived for a duct size of a = 1 m. Increasing the 
duct size to ao = 1.5 m will lower the equilibrium line as shown. Although the analyses 
that were used to determine the results A and B are not directly applicable to a duct 
size of 1.5 m, as they were derived for a duct size of 1 m, the linear extrapolation of 
these points to intercept the new equilibrium line of ao = 1.5 m will give the engineer 
a very good indication of the effect of increasing the duct size by 0.5 rn. It can be seen 
that increasing the duct size from 1 m to 1.5 m will reduce the pure shear capacity from 
66 kN to 49 kN. 

In contrast, reducing the duct size to 0.5 m in Figure 9.15 will raise the equilibrium 
line as shown and, thereby, allow increased shear loads. As point B was determined 
at Vma t --" 72 kN, that is at the largest shear force that can be applied to the web of the 
composite T-section, the applied shear force cannot be increased to find a point that 
intercepts the new equilibrium line. In fact it is not necessary, as point B lies on the 
safe side of the equilibrium line at ao = 0.5 m, that is the local restraining moment 
capacity of 63 kNm (point B) is more than adequate to resist the moment induced by 

shear of Vta ~ = 72 x 0.5 = 36 kNm (Point C). 
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9 . 6  Interact ion between shear  and flexure 
9.6.1 Failure envelope 
The analyses in Section 9.4 dealt with the derivation of the pure flexural capacity of 
the ducted region Mpure and that in Section 9.5 derived the pure shear capacity Vp,.  
These results can be visualized are just two points on the extremities of a failure 
envelope of the combination of stress resultants acting at a Section that cause 
failure, as shown at points A and B in Figure 9.18. 

In a statically determinate beam, as the load is gradually increased the combination 
of the applied stress resultants at the ducted region M a and V a follows the linear load 
path O-C in Figure 9.18. The intercept of this load path O-C with the failure envelope 
A-C-B at point C is the combination of the stress resultants Min t and V~, t that causes 
failure. Darwin 2 derived the following failure envelope experimentally. 
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which for a statically determinate beam can be written in the following form 
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Figure 9.18 Failure envelope of stress resultants 
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where M and V are the applied moment and shear force at the ducted region and 
Mint is the flexural capacity of the ducted region that allows for the reduction in 
strength due to V~.,. 

9.6.1.1 Example 9.6 Flexural capacity of ducted region 
The mid-span of the duct in Figure 9.3 occurs at a distance of Ld,ct = 3.8 m from the 
nearest support. In Examples 9.2 and 9.3, the pure flexural capacity at Lduc, = 3.8 m was 
derived as (Mp~)d,r = 500 kNm and in Examples 9.4 and 9.5, the pure shear capacity was 
derived as ( V )  ~ = 81 kN Let us assume that the simply supported beam in Figure 9.3 ~,ure du~t 
is supporting a uniformly distributed load w kN/m. From simple statics, the ratio of the 
applied stress resultants at Ld,~t = 3.8 m is given by (M)dJ(V )duct = 11.7W/I.2w = 9.8 
m. Applying these results to Eq. 9.6 gives Mint = 0.93Mpare = 0.93 x 500 = 465 kNm. It can 
be seen that the shear force at the ducted region has reduce the flexural capacity at the 
ducted region from 500 kN to 465 kNm, that is by 7%. 

9.7 Enhanced shear strength due to the shear 
resistance of the slab 
9.7.1 Contribution of slab 
In the derivation of the pure shear capacity of the top composite T-section in Example 
9.5, it was assumed that the web of the steel component resisted all the vertical shear 
force, which is definitely a safe assumption but probably also a reasonable assumption 
when the slab does not have longitudinal reinforcing bars. Let us now assume that the 
slab has at least some nominal longitudinal reinforcing bars, so that the slab can now 
also resist vertical shear forces. The simplest solution to determining the enhanced 
shear capacity of the ducted region due to the shear resistance of the slab V c is to 
assume that the slab reduces the shear in the steel web of the top composite T-beam to 
V s as shown in Figure 9.19. 

It can be seen in Figure 9.19 that V t = V c + V s. The composite T-section has still to 
resist the moment induced by shear Vta through the local moments Mth + Mtr The 
effect of resisting at least part of the vertical shear by the slab, is to reduce the shear 
stress in the web and, thereby, increase its effective flexural strength fry that will increase 
the local moment capacity and, thereby, increase the overall shear capacity. 

slab ~ longitudinal bars 

Tv T . . . . .  T ~ T  "~ = "I J'~ T,~IPT , I/:'='~'r H ] ; Vc th 

Vt 
Mt k 

Figure 9.19 Shear resisted by slab in top composite T-section 
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9.7 .1 .1  E x a m p l e  9 .7  Slab resists 26 kN of  the vertical shear force 
Let us now determine the pure shear capacity of the beam in Figure 9.3 by allowing 
for the enhancement in strength due to the shear resistance of the slab. The first 
problem is to estimate the shear resistance of the slab. 

(a) S h e a r  r e s i s t ance  o f  s lab ove r  duc t ed  r eg ion  
It would appear to be unreasonable to assume that the full width of slab of 
3.5 m in Figure 9.3 could transfer the shear across the ducted region of only 1 m 
length. Instead, let us just consider the top composite T-section in Figure 9.19 as 
acting as a beam of span L = ao = 1 m. For guidance, we can use methods for 
estimating the effective width of beams w ff, such as those described in Section 2.2.2, 
for estimating the effective width of this composite T-beam of span a o. For example, 
codes often use wef f ~ 0.25L, as in Eq. 2.3, which in this example gives (w ff)do~,= 
0.25x1(1~ = 250 mm. 

The shear resistance of the width of slab of (w ff)auc,= 250 mm can be 
derived from the shear resistance of beams or slabs without stirrups as given 
in national standards. Alternatively and as a guideline, the shear strength of 
an initially cracked section that is given by Eq. 6.1 could be used, as in the 
following example: 

�9 The weakest section of the slab in Figure 9.3 occurs above the profiled sheeting 
where the depth of the solid slab is d o~i d = 80 mm deep. 

�9 Hence,  the area of slab that resists the vert ical  shear As~ab= (Weff)du c 
xd ol~= 250><80 = 20,000 mm 2. 

�9 The minimum shear resistance from Eq. 6.1 is 0.66f c Hence for f t = 2 N/mm 2, the 
minimum shear resistance of the slab V --0.66x2x20,000 = 26.4 kN. 

�9 It should be noted that to achieve the minimum shear resistance of 0.66f, in Eq. 
6.1, a minimum strength of bars 4 crossing the shear plane is required of 
Pfr = 0"66ft, where p is the cross-sectional area of the reinforcing bars as a 
proportion of the area of the shear plane. For f = 400 N/mm 2 and f, = 2 N/mm 2, the 
minimum requirement gives p = 0.33%. 

�9 Hence V >  26.4 kN when there is at least 0.33% of longitudinal reinforcing bars in 
the solid portion of the slab. 

(b) Pure  shear  c apac i t y  o f  top c o m p o s i t e  T - s e c t i o n  

Let us assume that the slab over the ducted region in Figure 19.9 can resist V c = 26 
kN, and let us start our iterative analysis with V s = 50 kN so that V t = 50 + 26 = 76 
kN and, hence, Vta ~ = 76 x 1 = 76 kNm. As V s = 50 kN, the analyses in Figures 9.13 
and 9.14 apply directly and, hence, M,,~ + Mr/= 111.3 - 36.2 = 75 kNm. The results 
are plotted as point E in Figure 9.15 and as this point lies above the equilibrium 
line, we will reduce the shear force at our second attempt to V = 40 kNm. The 
second analysis at the high moment end is depicted in Figure 9.20 and that at the 
low moment end in Figure 9.21. 
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Figure 9.20 High moment end at V = 40 kN 

From Figure 9.20, M~ -- + 113.5 kNm and from Figure 9.21 (where it has been assumed 
that the neutral axis is at the web/flange interface because the required force of 1456 kN 
is very close to the 'flange strength' of 1440 kN), Mtt =-36.6 kNm and, hence, Mth + Mo 
= 76.9 kNm. As V s = 40 kN and V c = 26 kN, V t -  66 kN and Vta= 66 x 1 = 66 kNm. The 
results are plotted as point D in Figure 9.15. The linear interpolation of points E and D 
intersects the equilibrium line at V --- 74 kN. It can be seen that the inclusion of the 

pure 

shear resistance of the slab of 26 kN has increased the pure shear capacity by 8 kN, from 
66 kN to 74 kN. Hence, the analysis is not sensitive to the shear capacity of the slab. This 
is because no matter what the shear capacity of the slab is, the moment induced by the 
shear force V,a has still to be resisted by the local moments Mth + Mo at the ends of the 
duct. This phenomenon is further illustrated in the next example where it is assumed that 
the slab resists all of the shear force. 
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Figure 9.21 Low moment end at V = 40 kN 

9.7 .1 .2  E x a m p l e  9.8 Slab resists all the vertical shear force 
If the slab over the ducted region in Figure 9.3 resists all of the vertical shear, 
then shear stresses will not be present in the web of the top T-section, which will now have 
its full yield strength of fly -- f - 250 N/mm 2. The analyses for the local moment capacities 
are shown in Figures 9.22 and 9.23 from which M~ - + 116.9 kNm and Ma =-37.3 kNm that 
gives a local moment capacity ofM~ + Mu= 80 kNm. Equating this local moment capacity 
to the moment induced by the shear gives M~ + Mu = 80 = Vta. As a = 1 m, this gives the 
upper bound to the pure shear capacity of (Vt)upp~ --- 80 kN. 

The upper bound to the shear resistance, (Vt)upp~ r -- 80 kN, is shown as point 
J in Figure 9.15. Hence, the maximum increase in the pure shear capacity is 
80 - 66 = 14 kN. This maximum increase cannot be exceeded no matter how strong 
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Figure 9.22 High moment end when slab resists all the shear 

the shear resistance of the slab. In this example, the maximum shear strength required 
of the slab is 80 kN as any further increase would not increase the pure shear capacity 
of the ducted region. It is worth emphasizing further, that even if the slab could resist 
all the shear load of 80 kN, the maximum increase in the pure shear capacity is only 14 
kN that is only 21% of the shear capacity with the web taking all of the shear. Hence, 
the analysis is not sensitive to the shear capacity of the slab so that any reasonable 
estimate should suffice. 
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Figure 9.23 Low moment end when slab resists all the shear 

9.8 Strengthening ducted regions by plating 
9.8.1 Plating 
If the previous calculations had shown that inserting a duct would not allow the 
ducted beam to withstand the required design loads, then the ducted region could 
be strengthened by welding or bolting steel plates to the steel beam, as illustrated in 
the following examples. 

9 .8 .1 .1  E x a m p l e  9 .9  Flange plate attached to bottom steel T-section 
A plate can be welded or bolted to the bottom flange to increase the pure shear 
capacity of the bottom steel T-section, such as shown in Figure 9.24. In this example, 
the area of the attached flange plate is equal to the area of the bottom flange. The 
analyses at two values of shear load, V b = 25 kN and at V b = 35 kN, are shown and 
they are applicable to both the high and low moment ends. At V b = 25 kN, M~ + Mb/ 
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Figure 9.24 Bottom T-section strengthened with an additional flange plate 

= 34.4 kNm and at V b = 35 kN, Mbh + Mbt = 33.8 kNm. It is worth noting that there is 
only a very small reduction in the local moment capacity from 34.4 kNm to 33.8 kNm 
(that is 2%) when the shear load is increased from 25 kN to 35 kN (that is 40%). This 
emphasizes the insensitivity of the local flexural capacity to the shear force assumed 
to be resisted by the steel webs. 

The results of the analyses in Figure 9.24 are shown as points D and E in 
Figure 9.11. It can be seen that the addition of the flange plate has substantially 
increased the pure shear capacity of the bottom steel T-section from 14.9 kN (at Vba ~ 
= 14.9 kNm) to 33.7 kN (at Vbao= 33.7 kNm). 

9.8.1.2 E x a m p l e  9.10 Flexural capacity at mid-span 
It was shown in Example 9.1 that the insertion of the duct into the beam in Figure 9.3 
would reduce the flexural capacity at mid-span by 4%. This reduction can be overcome, 
if required, by attaching a plate to the flange. In this example, the cross-sectional area 
of the plate that is to be attached to the flange needs to be greater than or equal to the 
cross-sectional area of the plate that was removed from the web to form the duct, 
such as that shown in Figure 9.24. Furthermore, the plate should be placed over the 
full length of the ducted region. The addition of this plate will allow all the connectors 
in the composite beam in Figure 9.3 to be fully loaded and, hence, it will maintain the 
flexural capacity at mid-span. 

9.8.1.3 E x a m p l e  9.11 Web plates attached to top composite T-section 
The addition of web plates has been used in Figure 9.25 to increase the pure shear 
capacity of the top composite T-section. The additional web plate is of equal area to 
the original web plate. The analysis for the high moment end is given in Figure 9.25 
and that at the low moment end in Figure 9.26. 

At V t = 90 kN (Vtao = 90 kNm), Mth + Mtt = 128.2 - 41.7 = 86.5 kNm, and at 
Vt= 80 kN (Vtao = 80 kNm), Mth + M~= 130.3 -42.6 = 87.7 kNm. These results are 
plotted as points F and G in Figure 9.15. It can be seen that the addition of the side 
webs has substantially increased the pure shear capacity from 66 kN to 86 kN. 
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Figure  9.26 Additional web plates, low moment end 

9.9 Service duct near supports 
9.9.1 General 
The duct in Figure 9.3 was placed in a high moment region, let us now look at the 
effect of placing the duct in a low moment region as shown in Figure 9.27. In this 
region, shear is more likely to predominate than flexure. 

9.9.1.1 E x a m p l e  9.12 Flexural capacities 
The composite beam in Figure 9.27 was originally designed with full shear connection 
in which Psh = 2300 kN. The degree of shear connection at the high moment end of the 
duct is 11 = 1.7/5 = 0.34 and, hence, the strength of the shear connection at the high 
moment end is (Psh)A.C = 0.34 x 2300 = 782 kN. Furthermore, it has been shown in 
previous examples such as in Figure 9.6, the strength of the steel component (Ps)duct 
= 1690 kN. As the strength of the steel component in the ducted region (Ps)duct is 
greater than (P~h)A-C' the connectors are fully loaded in shear span A-B and, hence, 
they are fully loaded throughout the length of the beam. Therefore, the flexural 
capacities in shear span C-D are not affected by the insertion of the duct and remain 
unchanged. As the connectors are fully loaded throughout the length of the beam, 
standard rigid plastic analysis procedures described in Chapter 4 can be used to 
predict the pure flexural capacities throughout the shear span A-D. 
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Figure 9.27 Service duct in low moment region 

9.9.1.2 Example  9.13 Pure shear capacity 
( a )  Bottom T-section 
The pure shear capacity of the bottom T-section is not affected by the position of 
the duct and, hence, it is given by the analyses depicted in Figures 9.10 and 9.12 with 
the results plotted in Figure 9.11. 

(b) Top T-section 
The analyses for the pure shear capacities of the top composite T-section at the high 
moment end and at a shear load of 50 kN is shown in Figure 9.28, from which Mth = 
+ 107.9 kNm. It can also be seen in Figure 9.28 that the connectors are fully loaded, so 
they are also assumed to be fully loaded in the analysis of the low moment end in 
Figure 9.29, where (Psh)A-B = (0.7/5) (Psh)A-t, = 0.14(Ph)A.D = 0.14 X 2300 = 322 kN. From 
Figure 9.29, M, = -  15.2 kNm. Hence, Mth + Mtt -- 107.9 - 11.6 = 96.3 kNm when Vta ~ -- 
50 kNm, and this coordinate is shown as point H in Figure 9.15. As this point lies on 
the safe side of the equilibrium line, the shear force has been increased to Vat  in the 
next attempt at equilibrium. 

In this second attempt, let us apply the maximum shear force of Vat = 72 kN. The 
analyses are shown in Figures 9.30 and 9.31 where it is worth noting that the 
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Figure 9.29 Pure shear capacity at low moment end at V = 50 kN 
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Figure 9.31 Pure shear capacity at low moment end at Vma t 

connectors are now not fully loaded at the high moment end (720 kN in Figure 9.30) 
and, hence, the force in the connectors at the low moment end (Figure 9.31) is 
(0.7/1.7)x720 = 296 kN. From Figures 9.30 and 9.31, Mth + Ma= 96.6-15.4 = 81 kNm 
when V a = 72 kN, and this result is shown as point I in Figure 9.15. It can be seen that 
even when the maximum shear is being applied, the local moment capacity is sufficient, 
so that the pure shear capacity is Vma , = 72 kN. 

(c) Reversal in moment direction at low moment end 
In the analyses of the ducted beam in Figure 9.3, shown in Figures 9.14 and 9.17, the 
local moment capacity at the low moment end acted in a clockwise direction and had 
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a magnitude of Mtt ~--34 kNm. When the duct was moved towards the supports as in 
Figure 9.27, the local moment capacity, as shown in the analyses in Figure 9.29, still 
acted in a clockwise direction but reduced to Mtt -- -13 kNm. It can be seen that as the 
low moment end of the duct shifts towards the supports, the magnitude of the 
moment at the low moment end diminishes. 

As the low moment end of the duct approaches the support, the force in the shear 
connectors over shear span A-B in Figure 9.27, (Fh)A. a --> 0. The analysis when(Fh)g. 
B = 0, is shown in Figure 9.32. There is now no longer any force in the concrete as the 
resultant force in each component C = 0, so that the strain distribution now induces a 
positive moment, which is in the reverse direction to those previously calculated. The 
positive moment is now benefiting the transfer of shear as can be seen in Figure 9.9 and 
Eq. 9.2, where a positive Mtz assists the positive M~ to transfer Vta. 

FA.a = 0 compression tens.~ compressi tension F 

::ii:i:i:iii:iii:iii:ii ....... i::i::iiiiiiiiiii:iii:ii::i:iZ" 

I ............................... IiI.......IIII.III.IIIII, Z .......... 
anti-clockwise 

Figure 9.32 Reversal in moment at low moment end of duct 

9 . 1 0  E m b e d m e n t  fa i lure  
9.10.1 General 
The shear distortion of the ducted region of the composite beam that is shown in 
Figure 9.8 causes the concrete component to lift away from the steel component at 
the high moment end of the beam. This separation induces tensile axial forces in the 
shear connectors that can cause them to pull out of the slab. Another way of 
visualizing this problem is to consider the longitudinal forces in the slab in the top 
c o m p o s i t e 
T-section in Figure 9.8 when it is subjected to pure shear, as shown in Figure 9.33. 

The longitudinal compressive force H at each end of the ducted region is shown 
in Figure 9.33. At the high moment end of the duct, H acts within the upper regions 
of the solid portion of the slab of depth d=oHd at point A, whereas, at the low moment 
end of the duct H acts in the lower regions of the solid slab at point B. The transfer 
of the longitudinal compressive force H from A to B has to be balanced by the normal 
forces shown a s  Npure. 

At the low moment end of the duct in Figure 9.33, the normal force Np,~ induces 
compression across the interface, between the steel and concrete component, which is 
resisted by the slab bearing against the flange. However, the tension force across the 
interface at the high moment end can only be resisted by axial tension in the shear 
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Figure 9.33 Embedment forces in shear connectors 

connectors adjacent to the high moment end. The resultant normal force across the 
interface is zero and, hence, the overall or global longitudinal shear strength of the shear 
connectors in the composite beam is unaffected. However, the interface tensile force at 
the high moment end may cause local embedment failure of the shear connectors, which 
would destroy the composite action of the top T-section and, thereby, destroy its ability 
to resist shear. In fact, embedment failure would reduce the pure shear capacity of the 
top composite T-section to that of the top steel T-section. 

9 .10.1.1 E x a m p l e  9.14 Embedment failure of duct in high moment region 
Let us consider the duct in Figure 9.3 and the longitudinal forces within the duct as 
shown in Figure 9.33. An estimate of the longitudinal force at point A can be derived 
from Figures 9.13 and 9.16, from which Hth -- 745 kN and acts at y = 5 mm from the top 
fibre. Let us now assume that there are no shear connectors within the ducted region 
in Figure 9.33, so that at the low moment end H,t= H,h = 745 kN and, therefore, acts at 
5 mm from the bottom fibre of the solid concrete slab. Then from simple geometry of 
the forces within the solid slab of depth 80 mm and length 1000 mm, tan0 = hffta = (80 
- 5 - 5)/1000 = 0.070. From simple statics at node A, the normal tensile force Np~,, 
which is the normal force when the duct is subjected to the pure shear capacity Vp, r~, 
is given by Npu~, = Hthtan0 = 52 kN. 

The tensile normal force N is the maximum tensile force that occurs when the 
pure 

maximum shear force Vpo ~ is acting. In a composite beam, the ducted region is subjected 
to an applied shear load of V. If N is the normal tensile force induced by V,  then as a 
guide to the magnitude of N it is suggested that N = (VJVp.~e)XNp~ =. From Example 9.6, 
Min t = 465 kNm which would allow a uniformly distributed load of w= 39.5 kN/m to be 
applied to the composite beam. For this applied load, the shear force at the duct 
V = 47.5 kN. As Vp~ = 81 kN, then N = ( V / V p ~ ) x N  = (47.5/81)x52 = 30 kN and it is 
necessary to ensure that the connectors adjacent to the high moment region can resist 
this embedment force. Shear connectors in solid slabs are usually shaped to have a high 
resistance to embedment failure and can usually safely resist axial forces of up to 25 % 
of the shear strength 4. However, profiled slabs are more prone to embedment failure 
particularly if the concrete element is a profiled slab with trapezoidal ribs transverse to 
the beam as shown in Figure 5.3. 
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9.10.1.2 E x a m p l e  9.15 Embedment failure of duct in high shear 
region 
Consider now the ducted beam in Figure 9.27 that is subjected to a uniformly 
distributed load so that the duct is in a low moment and high shear region. The forces 
in Figure 9.28 can be used as an estimate of the longitudinal compressive force in the 
slab, from which N = 55 kN and which is virtually the same as that of the duct in the 

pure 

low moment region in Example 9.14. 
If the beam is subjected to the same uniformly distributed load as in Example 9.14, 

the applied shear force at the duct V = 150 kN that exceeds the pure shear capacity 
of V = 72 + 15 = 87 kN. The ducted beam could be strengthened by plating the 

p u r e  . 

flange and the webs as in Examples 9.9 and 9.11 and this would increase the pure 
shear capacity to V = 86 + 34 = 120 kN which would still require the applied load to 
be reduced to w = (120/150) • 39.5 = 31.6 kN/m. I f  the load were reduced, then V = 
V so that N = N = 55 kN. It can be seen that shifting the duct towards the pure a pure 

supports increases the probability of embedment failure. 
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10 Local splitting 

10.1 Introduction 
Splitting is probably the most common form of shear connection failure in a composite 
beam, and often occurs where there is only a small amount of side cover to the shear 
connectors, such as in composite L-beams and in composite haunched beams. The 
mechanisms that cause splitting are described first in this chapter. Fundamental analysis 
techniques are then applied to the derivation of the splitting resistance of a wide 
variety of the cross-sectional shapes of the concrete component of the composite 
beam. If it is found that splitting has occurred or is likely to occur, then the pos t  
splitting dowel strength of the shear connectors can be estimated from Chapter 11. 

10.2 Mechanisms of splitting 
Each individual shear connector in a composite beam, such as the stud shear connector 
in Figure 10.1, imposes a highly concentrated load P~h onto the concrete component that 
is dispersed longitudinally, vertically and transversely as shown by the arrows marked 
D. The ability of the slab to resist the longitudinal component of the dispersal, through 
the formation of the diagonal shear cracks that are shown in (b), has already been dealt 
with in Chapter 6. However, the transverse dispersal D of the concentrated load in (b) 
requires the transverse tensile force T to maintain equilibrium. This transverse force can 
cause a longitudinal sprit along the line of connectors that can reduce the dowel strength 

of the shear connectors. 

The shear connector in Figure 10.1 can be visualized as a patch load that is being 
applied to a concrete prism, as shown in Figure 10.2. When the connector is close to 
the transverse edge of the concrete slab as in Figure 10.1(b), the dispersal of the 
dowel force induces the transverse stresses in Figure 10.2(a). This is a well known 
stress distribution m that is often used in the analysis of the anchorage zones of post- 
tensioned members. When the connector is placed well away from the transverse 
edge, as is the case for most shear connectors, then the transverse stress distribution 

tranverse edge of slab 
steel flange .x~ ~ h e a r  crack x splittingcrack x~ 

v 

(a) longitudinal and vertical dispersal (b) longitudinal and transverse dispersal 

Figure 10.1 Dispersal of concentrated load 
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Figure 10.2 Transverse stress distributions 

in (c) occurs, that is peculiar to mechanical shear connectors 2 in composite beams. It 
can be seen in (c) that the transverse tensile stresses in front of the shear connector 
are balanced by an identical distribution of compressive stresses behind the 
connector, so that the resultant of the transverse forces (Ft)cm p and (Ft)te" is zero. It 
can also be seen that the length of the transverse tensile and transverse compressive 
stress distributions x t is a function of the width of the prism b c. 

A single longitudinal line of connectors in a composite beam is shown in Figure 10.3. 
Let us assume that there is a linear variation in the shear flow q as shown, so that the 
connector force (Fsh) ~ is greater than (Fsh) 2, in which case the lateral stresses will reduce 
to the left as shown. Beating in mind that the extent of the transverse stress x t in Figure 
10.2 is a function of the width of the prism b ,  it can be seen in Figure 10.3 that when the 
longitudinal spacing of the connectors L o ' >> b:  then the interaction between the 
transverse tensile and compressive stresses is minimum. In this case, splitting is a 
function of the forces in an individual connector that is referred to as local splitting. 

When in Figure 10.3, Lco ' << b ,  then there is substantial overlap of the transverse 
stress distributions of the individual connectors. This interaction between the local 
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stress distributions of the individual connectors can reduce the overall transverse 
tensile stress in parts of the composite beam but it can also increase the tensile 
stresses in other parts. This interaction is referred to as global splitting as it depends 
on the distribution of the connectors throughout the beam, and is generally only a 
problem when the beam is subjected to longitudinally moving loads. 

Local splitting of flexible stud shear connectors is dealt with in this chapter. Local 
splitting of stiff connectors, such as block connectors, and the global splitting of all 
types of connectors are dealt with elsewhere 2. 

10.3 Splitting resistances of slabs with rectangular 
cross-sections 
10.3.1 Splitting resistance to individual connectors 
In Figure 10.1, a stud shear connector of shank diameter dsh is acting concentrically 
on the concrete element or concrete prism of a composite beam of width b c and 
height h.  The mean splitting resistance 2 of the concrete prism to the dowel force 
from an individual stud shear connector is given by the following equation. 

Pone = 3"4d2shfcb 
dsh(1-dshl2-~-c ) I 1- 

2 I I 0"9dsh I 0"9dsh (10.1) 

where fb = Brazilian tensile strength of the concrete that can be assumed to be equal 
to 0.5~/f when f is measured in N/mm 2 as suggested in Section 1.3.5. Furthermore, 
the characteristic splitting strength, in which 5% of the test results fall below, can be 
obtained from Eq. 10.1 by substituting the coefficient 3.4 with 2.6. 

The first term in the bracket on the fight hand side of Eq. 10.1 gives the resistance 
to splitting of the prism when the concentrated load is dispersed in the longitudinal 

variation of q -'-, ................... tension ~ ..... .~..-~- ..... 

...... ........... e l  f l  \ " " shear c o n n ~  .... ~ ~ t e  a n g ~  ~ 'c 

compression M/ i ~ / - - ~ - - - ~  
concrete slab ---.) ~-'con ~ 

F i g u r e  10.3 Interaction between transverse tensile and compressive stresses 
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and transverse directions, that is in two-dimensions only as shown in Figure 10.1 (b). 
It can be seen in this term that the splitting resistance increases with the width of the 
prism b.  The second term in the bracket gives the increase in the splitting resistance 
due to the vertical dispersal of the concentrated dowel force into the third dimension 
as pictured in Figure 10. l(a). It should be noted that in this second term, an upper 
bound of 8. l d ,  is placed on the height of the prism h to limit the increase in strength 
due to the vertical dispersal; when h > 8.1 d ,  then it can be assumed that h c - 8. I d h. 
It can be derived 2 from Eq. 10.1 that the minimum splitting resistance to an individual 
stud shear connector occurs when the width of the prism is 

bc ) min-one = 3d sh 
(lo.2) 

and that the minimum splitting resistance is given by 

(Pnfin)~ = 3"4d2shfcb 2.~+ I . .  

0.9dsh 
hc )_< 8.1d sh 

2 -1 

I 0.9dsh 
(hc)<_8.1dsh 

(10.3) 

10.3.2 Effective widths of prism 
The splitting resistances given in Eqs. 10.1 and 10.3 were derived for concentrically 
loaded prisms of width b c. Eccentrically loaded prisms, such as those shown in 
Figure 10.4, can be analysed using an effective width concept that is often used in 
the design of the anchorage zone of post-tensioned members ~. The effective width 
of the prism is the portion of the width of the eccentrically loaded prism that can be 
assumed to be loaded concentrically. 

Examples of the effective widths of prisms are given in Figure 10.4 where the equivalent 
concentrically loaded prism of area bcxh is shown shaded. Each stud shear connector 
acts concentrically on a prism of width b c, where be/2 is the distance from the centre-line 
of the stud to the nearest free edge of slab or edge of the effective width of the slab as 
s h o w n 
It can be seen in (a) that stud A acts on a prism that has a greater effective width than 
stud B so that the splitting resistance to an individual stud connectors will governed 
by stud B. Similarly, in the composite L-beam in (b), the splitting resistance to stud D will 
be weaker than that to stud C, because the effective with of the former is smaller. 

It is worth bearing in mind that it is the lateral dispersal of the load that causes 
splitting. Therefore, in the hybrid beam in Figure 10.4(d), the effective widths b are 
determined by the distance to the nearest horizontal edge and the effective height 
h is now the horizontal distance from the base of the stud that must not exceed 
8.1 dsh. It is also worth bearing in mind that the dowel force is concentrated at the 
base of the stud. Hence, dispersal of this force will cause splitting to start at the 
base of the stud, so that the effective width at the level of the base of the stud tends 
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Figure 10.4 Effective prism widths for individual connectors 

to control the splitting resistance as shown in the haunched beam in (c). 

10.3.2.1 E x a m p l e  10.1 Splitting resistance to an individual connector 
The stud shear connector in Example 5.2 has a diameter d h = 19 mm and a maximum 
dowel strength of D.~ = 100 kN. The slab in which it is embedded has a depth of 
h c = 130 mm and concrete strength of f = 25 N/mm 2, so that the tensile strength 
fb = 0"5~/25 = 2.5 N/mm 2. These stud shear connectors are to be used in a composite 
L-beam such as that in Figure 10.4(b) and it is necessary to determine the minimum 
effective width (b)o/2 in (b) that will allow the dowel strength to be reached. 

(a) M e a n  split t ing res is tance 
As the depth of the slab h c = 130/19 = 6.8dsh < 8. I d h, the full depth of the slab can be 
used in Eq. 10.1 which becomes 

Pone 3069 1 ( b c )  = + 10.08 
- 1 9  2 

9 1-~-~- c 

kN 

Furthermore from Eq. 10.3, (Pmin)oae = 52 kN when, from Eq. 10.2, (bc).i.~.~ = 57 mm. 
These results are plotted in Figure 10.5 as the curve (Po~)3o; the suffix 3D refers to the fact 
that the concentrated load is being dispersed in three-dimensions. It can be seen that the 
intercept with D ~ =  100 kN occurs at b --- 390 mm. Hence, (b)D/2 = 195 mm in Figure 
10.4(b), so that the side cover required to the shank is c - (390-19)/2 - 185 mm. 

(b) Character is t ic  split t ing res is tance 
Splitting of plain concrete is a brittle mechanism that can lead to rapid failure if an 
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alternative mechanism is not present to transfer the transverse forces after splitting. If it 
is necessary to prevent splitting, then it may be advisable to base the design on the 5% 
characteristic strength that tests have shown occurs at 76% of the mean values given in 
Eqs. 10.1 and 10.3. These results are plotted as (Po,~)r in Figure 10.5, from which 
be - 590 mm, that is a side cover of c = 285 mm would be required to prevent splitting, 
However if transverse reinforcement is supplied across the splitting zone as stipulated 
inChapter 11, then failure can be considered to be ductile so that design could be based 
on a value close to the mean strengths: as in the previous calculation. 

(C) Dispersal  of  concent ra ted  load 
The transverse component of the splitting resistance in Eq. 10.1 is shown in Figure 
10.5 as (Po.e)2t,; where the suffix 2D refers to the fact that the concentrated load is 
being dispersed in only two directions. It can be seen that this is a lower bound to 
the three dimensional resistance (Po,)3t,' It is also worth noting that the difference 
between (Pone)3O and (Po.)m is constant and, therefore, vertical dispersal has its 
greatest benefit at low values of the effective width be. 

(d) M i n i m u m  splitting resistance 
The minimum splitting resistances shown in Figure 10.5, as given by Pm~, in Eq. 10.3, 
occur at an effective width of prism of 57 mm, as given by (b)m~" in Eq. 10.2. For effective 
widths less than (b)m~, = 57 mm in Figure 10.5, the splitting resistance increases rapidly 
and is asymptotic to b c - d h = 19 mm as shown. This increase in the splitting resistance 
at br < (bc)mi" should be ignored in practice, so that when be < (b)mi,, then it should be 
assumed that the splitting resistance Psflit = Pmin as shown in Figure 10.5. This limitation 
is unlikely to occur with individual connectors because it would require a side cover of 
less than the diameter of the stud. However, it is worth noting that it can apply when 
dealing with groups of blocks of connectors as discussed in Section 10.4. 
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Figure 10.5 Splitting resistance of slab to individual connectors 
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(e) M i n i m u m  side cove r  to ach ieve  the dowe l  s t rength 
Stud shear connectors require a minimum side cover of 

Cd ~ = 2.2dsh (10.4) 

to achieve the triaxial restraint to the concrete that is necessary to attain the maximum 
dowel strength Dm~ x. The effective width from this cover is shown as (bc)do = 5.4dsh = 103 
mm in Figure 10.5. Effective widths less than (b)d ~ should not be used in practice as 
crushing of the concrete may precede the splitting resistance. For example, the splitting 
resistance (P,e)3D in Figure 10.5 intercepts (bc)do = 5.4 d h = 103 mm, at point A at  Psplit = 

56 kN. Hence, if it is not required to achieve the maximum dowel strength Dma x = 100 kN, 
then the side cover to the stud can be reduced to 2.2 d h, that is b c = 5.4 d h, when splitting 
will occur at a load of 56 kN prior to dowel failure. 

10.4 Effective dimensions for groups of connectors 
Stud shear connectors can often be grouped together as in Figure 10.6(a). In this example 
the concrete prism is subjected to one lateral row of connectors that is positioned in 
three longitudinal lines as shown. The prism can split due to the concentrated load from 
an individual connector or from the combined effect of a group of connectors. It is, 
therefore, necessary to check for the splitting resistance to all possible combinations, 
however, engineering judgement can be used to minimize the number of checks required. 

Each individual connector of the n connectors in the group in Figure 10.6(a) can 
cause the slab to split but as the connector in line 1 has the smallest effective width, the 
resistance of the concrete prism to this individual connector will be the least. Hence, it 
is only necessary check the splitting resistance to this individual connector using the 
procedure described in Section 10.3.1. It is worth noting that this individual connector 
acts as a concentric patch load of width (ba) ~ = d h on the prism of width (b)~. Furthermore, 
the pair of connectors in lines 1 and 2 in Figure 10.6(a) act as a concentric patch load of 
width (b)p = t + d h on the prism of width (be) p, where (b ) /2  is measured from the centre- 
line of the patch to the nearest side or effective side. Similarly, the group of n connectors 
act as a patch of width (b), = t~ + dsh on the prism of width (b)., where ( b ) / 2  is 
measured from the centre of the patch to the nearest effective side. 

10.5Pairs of connectors 
10.5.1 Splitting resistance to pairs o f  connectors 
The mean splitting resistance of a concrete prism to a pair of connectors is given by 

[C 2 ] Ppair = 3.4(t p + dsh)dsh fcb bc + 1 - 0.9dsh 0.9dsh (10.5)  

(tp +dsh -bc " -"  

where the minimum splitting resistance is given by 
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Figure 10.6 Effective dimensions for combinations of connectors 
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and which occurs at an effective width of 

(bc)min_pair = 2(tp + dsh) (10.7) 

The main difference between Eqs. 10.5 and 10.1 is that the square in the denominator 
of the first term in Eq. 10.1 does not occur in Eq. 10.5. It is also worth noting that Eqs. 
10.5 and 10.6 give the resistance of the slab to a force P imposed by a pair of connectors 
and, hence, these strengths P should be divided by two to determine the force per 
connector to cause splitting. 

10.5.1.1 Example 10.2 Resistance to a pairs of connectors 
The connectors in the slab in Example 10.1 are to be placed in pairs. In order to be 
able to achieve the maximum dowel strength Dma x, the connectors are spaced at the 
minimum lateral spacing of stud shear connectors, that is L T = 4dsh as shown in 
Figure 5.3. Placing the pairs of connectors at this lateral spacing gives tp = 4dh = 76 
mm and applying this to Eq. 10.5 gives 

-767 '  ,008 

which is plotted, in terms of the load per stud and side cover c in Figure 10.6(b), 



170 Composite beams with service ducts 

as line B in Figure 10.7. The minimum strength can be derived from Eq. 10.6 as (Pi.)p~r 
= 108 kN/stud which exceeds the max imum dowel strength required of 
Dm~ ' = 100 kN so that there is no problem with splitting. 

If the lateral spacing is reduced to tp = 2d  h, then Eq. 10.5 becomes 

 717: c I 
+ 10.08 kN 

which is shown as line D in Figure 10.7 and, hence, a minimum side cover of 270 mm 
would be required to achieve a dowel strength of Dm~ = 100 kN. 

10.6Groups of connectors 
10.6.1 Splitting resistance to groups of connectors 
The mean splitting resistance of a concrete prism to the group of n connectors in 
Figure 10.6(a) is given by 

Pgroup = 3"4(tn + d sh )d sh fcb b c 
(tn +dsh(l- tn +dsh ) 2 b e  " 

which has a minimum splitting strength of 

+ 1 -  0 .9dsh 0.9dsh 

(he)<-8.'dsh (at) ~.'dsh 

(lo.8) 

 +II' 
when 

0.9dsh 
hc )<_8.1ds h 

2 I I I 0,9dsh 
(hc )<_8.1dsh 

(10.9) 
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Figure 10.7 Splitting resistance to groups of connectors 
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( bc )m in-group = 3(tn + dsh ) 

171 

(lO.lO) 

10.6.1.1 E x a m p l e  10.3 Resistance to groups of connectors 
Let us place the connectors in Example 10.1 in groups of three with the minimum 
recommended lateral spacing of L r = 4d,  so that the spread of connectors, in Figure 
10.6(a), t =  152 mm. Applying Eq. 10.8 gives 

(( Psplit )tn--Sdsh ) per stud = 9206 
171( 1- 171)2bc } 

+ 10.08 kN 

that has a minimum splitting resistance of 154 kN/stud and which is plotted as line C 
in Figure 10.7. As with the two studs at L r--- 4dsh in Figure 10.7, the minimum splitting 
resistance of the group of three studs exceeds the dowel strength so that splitting 
will also not be a problem. 

The results from the splitting resistance of individual connectors, from Figure 
10.5, are also plotted in Figure 10.7 as line A. It can be seen that the splitting resistance 
to the individual connector controls the analysis for all the cases when the minimum 
recommended lateral spacing of L r = 4dsh is adhered to. 

10.7Blocks of connectors 
10.7.1 Blocks of stud shear connectors 
Occasionally it may be necessary to concentrate the stud shear connectors in blocks as in 
Figure 10.6(b); this may be necessary in open composite truss girders or in composite stub 
girders. Let us define a block of connectors as several groups of connectors in which the 
longitudinal spread of the connectors df is much less than the effective width of the 
prism b c as shown in (b). When df is of the same order of magnitude as b c then we 
have the problem of global splitting which is dealt with elsewhere 2. 

The block of connectors in Figure 10.6(b) can cause the slab to split through a single 
line of connectors and through combinations of these lines. In estimating the splitting 
resistance of the block of 9 connectors in (b), let us assume that the three lines shown 
are coincident with the three lines of connectors in (a), that is they are at the same 
distance from the effective side. As the effective width for the connector in line 1 in (a) 
is exactly the same as the effective width of the connectors in line 1 in (b), the splitting 
resistance of the concrete prism will be exactly the same. The same can be said for the 
pair of connectors in (a) and (b) and the group of n connectors in (a) and (b). 

10.7.1.1 E x a m p l e  10.4 Resistance to a block of connectors 
The stud shear connectors in Example 10.1 are to be used in an open truss girder 
where they are to be placed in blocks of 9 connectors as shown in Figure 10.6(b). The 
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lateral spacing between individual connectors is to be maintained at L r = 4dh. The 
splitting resistances to one row of this group as in (a) have already been determined 
and the results are given in Figure 10.7 (where the result for two studs at L r = 2dh is 
not applicable to this analysis). As there are three rows of studs in Figure 10.6(b), the 
splitting resistance per stud is one-third of the splitting resistance per stud in (a). In 
other words, the splitting resistance per stud for the block of connectors in (b) is one- 
third of the strengths given in Figure 10.7 and which are shown in Figure 10.8. 

It can be seen in Figure 10.8 that the splitting resistance to all 9 connectors, that is 
the curve labelled '3 lines and 3 rows', now controls the strength and a side cover of 
1660 mm is required to allow the total dowel force of 900 kN to be applied to the slab. It 
is worth comparing this analysis with that in Figure 10.7 where the strength of the 
individual connector controlled the design for all the cases except where L v = 2dh. 

10.8 Prisms with non-rectangular cross-sections 
The previous sections dealt with splitting of rectangular prisms such as those 
shown in Figure 10.4. The procedure is now applied to prisms that have sloping 
sides and haunches. 

10.8.1 Upper and lower bound solutions 
Consider the non-rectangular prisms in Figure 10.9 in which the lower width is b i, the 
upper width is b o, the height of the prism h c < 8.1 dsh, and the sides slope at an angle of 
0 degrees to the vertical. 

The non-rectangular prisms in Figure 10.9 can be considered to be bound by a 
pseudo inner rectangular prism of width b = bi, that is shaded, and a pseudo outer 
rectangular prism of width b = bo, that is hatched. As the cross-section of the 
pseudo inner rectangular prism falls within the perimeter of the non-rectangular 
prism, the splitting resistance of the inner prism (Psptit) i wil l  give a lower bound to the 
splitting resistance of the non-rectangular prism. Conversely, as part of the outer 
pseudo rectangular prism falls outside the non-rectangular prism, the strength of the 
pseudo outer rectangular prism (Psplit) ~ wil l  form an upper bound to the strength. 
These upper and lower bounds can be determined from the splitting resistance of 

rectangular prisms already described. 

=Dm~100 l~line~d3row ................................................................................................................. ..... " ~  ....... 

! 
5o i 

0 1000 e (nun) 1660 2000 

Figure 10.8 Splitting resistance to blocks of connectors 
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Figure 10.9 Standard non-rectangular sections 

It is also worth noting that when 0 -- 0 in Figure 10.9, the inner rectangular prism 
gives the correct strength and when 0 = 90 ~ the outer rectangular prism gives the 
correct strength. Tests have shown that the splitting resistance of the non-rectangular 
prism (Pspl~t)a is given by the following linear interpolation between the strengths of 
the pseudo inner and outer prisms. 

(Psplit)o = (Psplit)i+((Psplit)o-(Psplit)i) 0-~ (10.11) 

10.8.2 Equivalent prism concept 
In order to determine the splitting resistance of a non-rectangular prism, it is necessary to 
simplify its shape to one of the standard non-rectangular prisms in Figure 10.9. For example, 
consider the haunched prism in Figure 10.10. The non-rectangular section can be represented 
by an equivalent prism that is created with effective sloping sides such as the one shown 
shaded. As this equivalent prism falls within the cross-section of the slab, the splitting 
resistance of the equivalent prism will be a lower bound to the true resistance. 

The range of effective sides that can be chosen to create the equivalent prism in 
Figure 10. l0 varies from b , -  (bc)m~" when the effective width of the inner prism is the 
shaded equivalent prism shown, to b, = b h = bo that is the equivalent prism is a rectangle 
of width b h. It is a question of finding the effective side that gives the maximum splitting 
resistance. However even if the optimum side had not been chosen, the result would be 
a lower bound to the splitting resistance and, hence, safe. A simple design procedure 
would be to check the splitting resistances at the two extremities: when b i = (b)~, so 
that bo is a function of the geometry of the slab and (b)~,; and when b~ = bo = b h. 

The procedure used in Figure l 0.10, where a range of effective sides can be used 
to determine the maximum splitting resistance, can also be applied to the haunched 
beam with sloping sides in Figure 10.11. Alternatively, the equivalent prism shown 
shaded, that follows the slope of the haunch, can be used to determine a lower 
bound to the splitting resistance. 

The equivalent prism concept can also be used to determine the splitting resistance 
of composite beams with composite slabs, such as the composite slabs with dove- 
tail ribs or trapezoidal fibs in Figure 10.12. 
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Figure 10.10 Effective sides 

10.8.2.1  E x a m p l e  10 .5  Haunched beam with vertical sides 

(a) Single line 
The stud shear connectors in Example 10.1 are placed in a single line in the haunched 
beam in Figure 10.13; the haunch has been inserted so that the height of the slab can 
be varied. It is required to find the variation of the strength of the shear connection 
with the depth of the rib of the haunch hdb" 

The side cover c = 100 nun, in Figure 10.13, exceeds c~-- 2.2d~--42 mm (Eq. 10.4), hence, 

the dowel strength Dm~ x = 100 kN can be achieved when splitting is prevented. We will use 
the equivalent prism shown shaded in Figure 10.13 to derive at least a lower bound to the 
strength. The equivalent prism has been chosen so that the inner prism has the minimum 
allowable splitting width of 3dsh (Eq. 10.2) and, furthermore, the sides touch the top edge 
of the haunch as shown. Equations 10.1 and 10.3 are subjected to an upper bound of h =  
8.1 d ,=  154 mm, hence, we will assume that hri b a 24 mm so that h a 154 mm. Hence, for h =  
154 nun, from Eq. 10.3, (P~t), = 56 kN and from Eq. 10.1 

Po = 3069 
bo 

+ 11.39 kN 

i~i!~ii~i~::!:i~:i):i/:i-;!!ii~!::!iii:iX:il) "-~ ; bl;~,?i.i: :]ii)) .D~:,:s L!'.!~:: i"- i 
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Figure 10.11 Haunched beam with sloping sides 
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Figure 10.12 Effective sides of prisms in composite slabs 

where from the geometry of the equivalent prism bo = (2x154x81)/hri b + 57 
= (24,948/hab) + 57 mm. 

Applying Eq. 10.11 for various values of h,b gives the variation in strength in 
Figure 10.14 which is asymptotic to the minimum splitting resistance of 56 kN. It can 
also be seen in Figure 10.14 that the dowel strength of 100 kN can be achieved when 
h,b < 56 mm and, therefore, for any larger values of h,b the shear connector strength 
is reduced to that of the splitting resistance. 

(b) Double  line 
Let us replace the single line of studs in Figure 10.13 with a pair of studs that has a 
lateral spacing L T = 4dsh - 76 mm. Furthermore, let us increase the width of the 
haunch by 76 mm, to 295 mm, so that the side cover to the studs remains at 100 mm. 
The splitting resistance to an individual connector remains unchanged as that 
shown in Figure 10.14. However, it is now necessary to check for the splitting 
resistance to the pair of connectors. The weakest prism is probably a rectangle with 
a width equal to that of the haunch of 295 mm. Applying Eq. 10.5 gives the splitting 
resistance per stud of 7671• + 11.39] - 123 kN, that exceeds the dowel strength 
as shown in Figure 10.14 and, hence, splitting induced by the pair of connectors 
does not affect the strength of the shear connection. 

10.8.2.2 E x a m p l e  10.6 Haunched beam with sloping sides 
The shear connectors in Example 10.1 are to be placed in a haunch of depth 150 mm as 
shown in Figure 10.15. It is necessary to make the base of the haunch as narrow as 
possible so that the side cover has been reduced to Cdo = 2.2dsh = 42 mm. It is required to 
determine the slope of the haunch that will allow the dowel strength of the shear 
connection to be achieved. 

. . . . . . . . . .  . . . . . . . . . . . . . . .  
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~-- 1013-#19k-- 100--~ 

Figure 10.13 Varying depth of haunch 
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Figure 10.14 Variation in haunch height 

An equivalent prism that follows the sides of the haunch has been chosen as shown in 
Figure 10.15. The splitting resistance ofthe inner prism P i = 3069 [8.15 + 11.39] =60 kN and 
that of the outer is given by the equation in Example 10.5 where, from the geometry of the 
haunch, b = 103 + (2x154) tan 0 mm. The results are plotted in Figure 10.16 where it can be 
seen that it is necessary for the slope of the haunch to be greater than 55 ~ for the dowel 
strength of 100 kN to be achieved. 
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Figure 10.15 Haunched beam with sloping sides 
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11 Post cracking dowel strength 

II.I Introduction 
The stud shear connector of shank diameter d h = 19 mm in Example 5.2 has 
a maximum dowel strength of Dm~ = 100 kN when encased in concrete of compressive 
strength f = 25 N/ram 2. As can be seen in Figure 5.1, the stud bears against 
the concrete in a small zone that is adjacent to the base of the stud. If we assume 
that the area of the bearing zone is d h x d h, then the mean bearing stress is 
277 N/ram 2 = I I f, that is considerably greater than the cylinder compressive strength of 
the concrete. The concrete in the bearing zone can only sustain this magnitude of stress 
because it is restrained triaxiaUy by the stud and the adjacent flange. It can be seen that if 
the triaxial restraint is reduced, with the consequential reduction in the triaxial compressive 
strength, then the dowel strength of the stud shear connection will also reduce. 

A longitudinal crack that extends through the bearing zone in Figure 5. I, that may 
have been induced by transverse positive moments in the slab of a composite beam 
or by splitting as described in Chapter I0, can reduce the triaxial restraint in the 
bearing zone and, hence, reduce the post-cracking dowel strength. For example, in 
the absence of any transverse reinforcement bridging the splitting crack in 
Figure I0. I (b), the concrete elements on either side will separate so that the post- 
cracking dowel strength D k = 0. However, tests have shown that judicious 
placement of transverse reinforcement across the crack plane can substantially 
increase the post-cracking dowel strength and, if required, allow the maximum dowel 
strength D to be achieved. 

The effect of transverse reinforcement on the post-cracking dowel strength of 
stud shear connectors is dealt with in this chapter. The transverse reinforcement has 
the following very important functions after longitudinal cracking has occurred in 
the vicinity of the stud shear connectors' 

�9 The transverse reinforcement maintains equilibrium by resisting the transverse 
tensile force (Ft)te" in Figure 10.2, that were originally resisted by the uncracked 
concrete; this is covered in Section 11.4. 

�9 Confines the concrete in the beating zone in Figure 5.1 so that the dowel action 
can be maintained and which is covered in Sections 11.2 and 11.3. 

�9 Inhibits or arrests the propagation of the longitudinal crack'. 
�9 Allows a ductile mode of failure after splitting. 

11.2 Hooped reinforcing bars 
Composite L-beams such as that shown in Figure 10.4(b) are prone to longitudinal 
splitting along the line of the outer stud D. When the cover c is very small it may be 
impractical if not impossible to anchor straight reinforcing across the crack plane. This 

177 
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Figure 11.1 Hooped reinforcement 

may be overcome by bending the transverse reinforcement around the outer stud as 
shown in Figure 11.1 where the transverse reinforcement has the dual role of confining 
the concrete and transferring the longitudinal shear into the concrete slab. This form 
of construction can be used in precast slabs for composite beams where pockets are 
left in the precast slabs at the positions of the shear connectors. After placing the 
precast slab on the steel beam, the pockets can then be grouted with a much stronger 
concrete than the slab, to enhance the dowel strength of the shear connection. 

11.2.1 D o w e l  strength of  studs with hooped  re inforcement  
Figure 11.1 illustrates a pair of studs that are close to the side of a composite 
L-beam and in which splitting has occurred along the longitudinal plane 
indicated. Tests have shown that the hooped reinforcement confines a cone of concrete 
around the outer stud as shown shaded, so that the longitudinal shear is transferred by 
dowel action into the reinforced concrete cone and thence by longitudinal shear action 
into the concrete slab. It is worth noting that the dowel strength of the inner stud is not 
affected by the longitudinal crack and, hence, can be assumed to be unchanged at Dm~ x. 

It has been explained previously using Figure 5.1 that the dowel strength of a 
stud shear connector depends on the eccentricity e of the resultant force Fj; the 
smaller the eccentricity the larger the dowel strength. The position of the resultant 
force F I in the outer stud in Figure 11.1 depends on the height of the transverse 
reinforcement hcentand, therefore, the strength of this outer stud after splitting, D r~k, 

is a function of he., as shown in the following empirically derived equation. 

0.4hcent ) 
Dcrac k = Dma x 1.6- ds h 

(11.1) 

where h n, is measured from the centroid of the transverse reinforcement to the base 
of the stud and in which Dcrac k < Dma x. 
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To achieve the dowel strength Dcrac k in Eq. 11.1, it is necessary to provide sufficient 
triaxial restraint to the concrete and this can be achieved by ensuring that 

(O ra , ) 
A h > - - . - - - -  - n Dmax - 0.4 (11.2) 

where A h is the cross-sectional area of both arms of the hoop as shown in Figure 
11.1 (a) and n is the modular ratio E / E .  Equation 11.2 applies when 

dh > 3dsh (11.3) 

where d h is the internal diameter of the bend of the hoop. Triaxial restraint is also 
maintained by the following equations that ensure that the hooped reinforcement 
does not yield and the concrete does not crush within the bend of the hoop. 

Ah f yr > 0 ' 2 4 d 2 f c  (11.4) 

h r > 0.16dh (11.5) 

where f is the yield strength of the hooped reinforcement, that has to be fully 
anchore~[ within the slab, and h is the depth of the hooped reinforcement as shown 
in Figure 11.1. 

11.2.1.1 E x a m p l e  11.1 Hooped transverse reinforcement 
The stud shear connectors in Example 5.1 are to be placed in a composite 
L-beam such as in Figure 10.4(b) where the cover c to the outer connector is 
100 mm. The stud shear connection has the following properties: Dma x = 1 1 3  kN; 
f = 25 N/mm2; fcb----" 2.5 N/mm2; E c = 25 kN/mm2; E s = 200 kN/mm2; hence n = 8; and f 
= 400 N/mm 2. Y' 

From Figure 10.5, the splitting resistance of the slab to the outer connector is 
Psplit = 56 kN which is considerably less than the required dowel strength of 
113 kN. As there is very little room to anchor the transverse reinforcement across the 
splitting plane, hooped reinforcement will be used. It is worth noting that as splitting may 
occur at serviceability loads, as Pm << Dmax' it may still be necessary to place nominal 
reinforcement across the splitting plane just to hold the concrete in place after splitting. 

From Eq. 11.3, we will choose d h = 4dsh = 76 mm to allow for some construction 
tolerance. Inserting D k = Dm~ ' into Eq. 11.2, as we require the maximum dowel 
strength, and d h = 76 mm and n = 8, gives Ah/2 = 195 mm 2 which converts to two 
12 mm diameter bars or one 16 mm diameter bar. From Eq. 11.5, h r > 12.2 mm so for all 
intents and purposes we can use either the two 12 mm diameter bars or the one 16 mm 
diameter bar. Inserting Dcrac k = Dma x into Eq. 11.1, as we require the maximum dowel 
strength, gives hen, < 1.5dh = 29 ram. Hence, if the 16 mm bar is being used then the 
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maximum cover c b = hcent-  hi2 = 29 - 16/2 = 21 mm, whereas, if the two 12 mm bars are 
being used then c b = 29 - 12 = 17 mm. 

11.3 Post-cracking confinement of concrete 
The following confinement rules were determined empirically from tests on 
the dowel strength of stud shear connectors in longitudinally split slabs in which 
straight transverse reinforcement crossed the cracked plane. An example of the 
configuration of these tests is shown in Figure 11.2 where the reinforcing bars are 
transverse to the direction of thrust from the connectors. In these tests the main purpose 
of the transverse reinforcement was to confine the concrete in order to enhance the 
dowel strength, however, it is worth noting that the transverse reinforcement also resisted 
the transverse forces after splitting had occurred. Hence, the transverse reinforcement 
had the dual role of confining the concrete and resisting the transverse forces. 

11.3.1 Dowel strength with straight transverse bars 
The post-cracking dowel strength of stud shear connectors in longitudinally cracked 
slabs with straight transverse reinforcing bars is given by the following equation 

Dcrack 
0.93Ab Lcon I 

Dma x 0.60 + 2 
dsh 

(11.6) 

where Leo" is the longitudinal spacing of the connectors as shown in Figure 11.2, A b 
is the area of the bottom transverse reinforcement per unit length, D a~k <_ Dm~ x, and 
in which the characteristic strength, below which 5% of the results fall, can be 
obtained by replacing the coefficient 0.6 with 0.55. Equation 11.6 can be applied 
when A b exceeds the following minimum requirement 

A b > 
0.065d2h 

Lcon 
(11.7) 
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Figure 11.2 Transverse confinement reinforcement 
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It is worth noting that Eqs. 11.6 and 11.7 are dimensionally correct as A b is the area 
per unit length and hence has the unit of length. 

The following detailing rules ensure that the transverse reinforcement adequately 
confines the concrete in the stud shear connection bearing zone. 

dr < 0.72ds h (11.8) 

hcen t < 3.1dsh (11.9) 

Ls p > 20ds h (11.10) 

where d r is the diameter of the transverse reinforcement as shown in Figure 11.2, hce,t 
is the distance from the centroid of the transverse reinforcement to the base of the 
stud, and L is the spread of the transverse reinforcement on either side of the 
concentrate~ load as shown in Figure 11.2. 

It is worth noting that because the primary purpose of this transverse 
reinforcement is to confine the concrete, it does not need to be fully anchored. It is 
suggested that an anchorage length sufficient to achieve a stress of 250 N/mm 2 is 
adequate for confinement purposes. 

11.3.1.1 E x a m p l e  11.2 Individual connector concrete confinement 
Let us consider the composite beam in Example 5. I where Dm~ ' --" 113 kN and d h = 19 mm. 

(a) Des ign  of  a s ingle line o f  connec tors  

From Example 5.1, Leo" = 238 mm and we wish to place confinement reinforcement so 
that the post-cracking dowel strength Dcrsc k - Dma x = 113 kN. From Eq. 11.6, 
A b = (0.4 x 192)/(0.93 x 238) = 0.65 mm2/mm = 0.65 mm, which would require 8 mm bars 
at a longitudinal spacing of L r -- (~x82/4)/0.65 - 77 mm centres. From Eq. 11.7, the 
minimum requirement for A~ -- O.065x19V238 = 0.099 mm which is less than the 
requirement of 0.65 mm. From Eq. 11.8, dr< 0.72x 19 --- 14 mm, so that the 8 mm bars can 
be used. From Eq. 11.9, h t < 3. I x 19 --- 59 mm so that the 8 mm transverse reinforcement 
has to be placed within a distance of 57 mm from the base of the slab. From Eq. 11.10, 
Lsp _ 20x19 -- 380 mm and as this is greater  than 
Leo" = 238,the 8 mm bars can be spread uniformly throughout the slab. 

(b) D o u b l e  line o f  connec to rs  

When there is a double line of connectors, the longitudinal spacing is twice that 
in the previous section (a) so that L o, = 2x238 = 476 mm. From Eq. 11.6 and 
in order to ensure that Dr k = Dm~, A b = (0.4x 192)/(0.93x476) = 0.33 mm, which would 
require 8 mm bars at 154 mm centres which is simply double the spacing in the preceding 
analysis (a). Thus having two lines of connectors reduces the required amount of 
confining reinforcement, as each bar confines each line of connectors. 
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(c) Assessment of an existing structure 
Let us now assume that the composite beam already exists, that the transverse 
reinforcement had been designed for the transfer of longitudinal shear as in Chapter 
6, and that a longitudinal split has occurred in the beam. It is required to determine 
whether this split has weakened the composite beam. 

In Example 6.5, the composite beam was designed with a double line of connectors and 
the amount of transverse reinforcement required for longitudinal shear was 
A b = 0.49 mm. In part (b) above, the amount of transverse reinforcement required for 
confmement is 0.33 mm and as this is less than that already provided, the shear connectors 
should reach their maximum dowel strength even though splitting has occurred. 

It can be deduced from Example 6.5 that if there were a single line of connectors, 
then the composite beam would have been designed for longitudinal shear with the 
minimum reinforcement requirement of A b = 0.363 mm. This is less than the confinement 
requirement in part (a) of this example of 0.65 mm and, hence, the maximum dowel 
strength cannot be achieved. Substituting A b = 0.363 into Eq. 11.6 gives Dc~ck = 0.60 
+ (0.93X0.363X238/192) = 0.82Dma x = 0.82X 113 = 93 kN. Hence, splitting has reduced 
the strength of the shear connection by 18%, so that the strength of the composite 
beam will have to be reassessed using the partial shear connection procedures in 
Chapter 4. 

11.3.1.2 Example 11.3 Confinement of a block of connectors 
Let us now design the confinement steel for the block of nine 19 mm diameter 
connectors in Example 10.4 which are shown in Figure 10.6(b), so that the post- 
cracking dowel strength Ocrac k is equal to the maximum dowel strength Dma ~. It will be 
assumed that the connectors are spaced at the recommended minimum longitudinal 
spacing of L L - 5dsh in Figure 5.3(c). Hence Lo, = 5 d s h  - 95 mm. Applying Eq. 11.6 gives 
A b = (0.4x192)/(0.93x95) = 1.63 mm which is much larger than the minimum requirement 
of 0.065x192/95 =0.25 mm from Eq. 11.7; furthermore from Eq. 11.8, dr< 14 mm. Hence 
we could use 10 mm bars at L r = (~x102/4)/1.63 = 48 mm within the group of connectors 
in Figure 10.6(b) and 12 mm bars at L r = 69 mm extending either side of the group by 
L p = 380 mm. The bars should be placed within a distance of hcent = 59 mm from the 
soffit of the slab. 

11.4  Pos t - sp l i t t ing  t ransverse  forces  
Section 11.3 dealt with the transverse reinforcement required to confine the concrete 
in the vicinity of the shear connectors, in order to achieve either the maximum dowel 
strength or at least a reasonable dowel strength. After splitting, the concentrated 
load has still to be dispersed into the concrete slab and this can be achieved if 
transverse reinforcement is available to transmit the transverse forces. 

It can be seen in Figure 10.2(a) and (c) that the concentrated load induces both 
transverse tensile forces and transverse compressive forces of equal magnitude. 
Hence, the resultant force across a splitting plane is zero which means that the 
transverse forces do not affect the global behaviour of the slab. Therefore, transverse 
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flexural reinforcement that crosses the splitting plane can contribute to resisting the 
transverse splitting force (Ft)te n. 

An alternative way of viewing the problem is shown in Figure 11.3 where the local 
stress resultants are shown in a region of the slab where there is a local transverse 
tensile force F t due to splitting, such as in the slab below the patch load in Figure 10.2(c). 
Let us assume that the transverse hogging moment applied to the slab of the composite 
beam has yielded the reinforcement so that transverse tension due to flexure across the 
cracked plane is F,e" = Ff-- A , f  as shown in Figure 11.3. Hence for equilibrium along the 
cracked plane, the transverse compressive force F = F - F In order to simplify the 

crop f t '  

illustration of this mechanism we will assume that F, is in line with Fmp. 
Let us start by assuming that the slab in Figure 11.3 is not subjected to splitting 

forces but is only resisting the full flexural capacity so that F t = 0 and, hence, 
Fte" = Fcmp = Fr= Atfyr' As the splitting force F t i s  i n c r e a s e d ,  Fte n remains the same as 
the top steel is fully yielded so that the compressive force Fcm p reduces. However, 
the resultant force at the bottom of the slab F m p - F t remains unchanged at Ff = Atfr, 
so that the moment capacity is being maintained. It can be seen that the transverse 
tensile force has not affected the moment capacity, which means that the transverse 
reinforcing bars provided for flexure also act in resisting splitting and which also 
means that additional reinforcement is not required. This situation remains stable 
whilst F t < F f  = Atf ,. When F, > Atf, then additional reinforcement will have to be 
provided so that the strength of the transverse reinforcement is now governed by 
the splitting force F t . 

It is worth noting that the mechanism illustrated in Figure 11.3 requires that the top 
flexural reinforcement is ductile, as it first extends to resist flexure and then further 
extends to resist the splitting forces. If there are problems with the ductility of the 
reinforcement, then it may be necessary to add more reinforcement. 

11.4.1 Transverse splitting forces 
A conservative estimate of the tensile splitting force T in Figure 10.1 is to assume 
that none of the concentrated load is dispersed vertically as shown in (a) but all of 

Ften = Ff = A, tf,yr~ /Ften = Ff = Atfyr 
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Figure 11.3 Local distribution of stress resultants 
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the concentrated load is dispersed longitudinally and transversely as in (b). For this 
case the transverse tensile force F,, which is shown as T in Figure 10.1, is given by 

_ba] esplit 1 -~c ) (11.11) 
Ft - Jr 

where Psplit is the concentrated force; and where for individual lines of connectors, such 
as those shown in Figure 10.6, b a = dsh; for two adjacent lines of connectors b a = (tp + dsh) 
and the exponent 2 should be replaced by 1; and for n lines of connectors b = ( t  + dsh). 

It is necessary to ensure that the transverse reinforcement that is provided to 
resist F is fully anchored. The distribution of the transverse tensile stresses prior to 
splitting is shown in Figure 10.2, where it can be seen that the longitudinal spread is 
a function of the effective width b c and that it is concentrated near the patch load. 
Hence, it is suggested that the transverse reinforcement required to resist F, is spread 
in front of the connector, that is in front of the thrust, and over a length of 
approximately 0 .5b from the connectors. It is still necessary to supply transverse 
reinforcement in front of and behind the connectors to confine the concrete. 

11.4.1.1 E x a m p l e  11.4 Splitting force for block connectors 
In the block of 9 stud shear connectors in Example 10.4 (that have already been analysed 
for confinement in Example 11.3), eplit = 9 0 0  k N ,  b a -" 9dsh = 171 mm, c = 1660 mm and, 
hence, b = 2x 1660 + 171 = 3491 mm. Inserting these values into Eq. 11.11 gives F t = 
(900/~)( 1-171/3491)2 = 259 kN which has to be placed in the splitting zone of length 
0.5b - 1.7 m in front of the block; 8 mm bars of f = 400 N/mm 2 at longitudinal spacing 
o f L  = (1700/259x I lY) x(rc82/4)x400= 132 mm will suffice. 

11.4 .1 .2  E x a m p l e  11.5 Splitting force for individual connector 
Let us continue the analysis in Example 11.2 where the stud shear connector force 
i s  Dma x = 113 kN and where the transverse reinforcement for a single line of connectors 
was determined to be A b = 0.65 mm and which was spread uniformly throughout 
the slab. As L o" = 238 mm, the strength of the confining reinforcement per stud is 
F t = 0.65 x 236 x 250 = 38 kN (it has been assumed that the minimum bond strength 
has been used for this confinement reinforcement, that is it will allow a stress of 250 
N/mm2). It can be seen in Eq. 11.11 that an upper bound to the lateral tensile force is 
Psplit/~ = Dmax/~ = 113/~ = 36 kN/stud which is less than the strength of the confining 
reinforcement of 39 kN/stud and, hence, extra reinforcement is not required. 

11.5 Reference 
1. Oehlers, D. J. and Bradford, M. A. (1995). Composite Steel and Concrete 

Structural Members: Fundamental Behaviour. Pergamon Press, Oxford. 



12 Rigid plastic analysis of 
continuous composite beams 

12.1 Introduction 
The previous chapters have presented enough material to enable a static analysis of 
simply supported composite beams to be carried out, either with the elastic 
assumptions of Chapter 3 or the rigid plastic assumptions of Chapter 4. The analysis 
based on either assumption is straightforward, since simply supported beams 
subjected to gravity loads experience sagging bending throughout and are statically 
determinate. In the elastic analysis of these beams with full shear connection, we 
may use the full-interaction flexural rigidity based on the transformed cross-section 
E I for the whole length of beam. Furthermore, it was demonstrated in Chapter 4 
that rigid plastic analyses of simply supported beams, even with partial shear connection, 
are not difficult. This chapter will extend the rigid plastic analyses of Chapter 4 to 
continuous composite beams, and will highlight that with certain conditions being 
met, the assumptions made in the rigid plastic model lead to a method of analysis that 
is extremely efficient and allows considerable increases in the loads that the beam can 
resist above those that are determined from an elastic analysis. 

Continuous beams are statically indeterminate, and experience hogging or negative 
moments over the internal supports as well as sagging or positive moments within 
the spans. It was shown in Section 3.3.2 that the elastic analysis of these beams is 
not straightforward, as the points of contraflexure are not known in advance because 
of the different flexural rigidities in the sagging and hogging regions. An iterative 
solution is therefore required to solve for the redundant actions using either standard 
stiffness or flexibility methods of structural analysis. This difficulty can be overcome 
by use of a rigid plastic analysis, and the failure loads of a continuous composite 
beam may be determined quite readily by this method. Not only is rigid plastic 
analysis much easier than elastic analysis of continuous composite beams, but it is 
also more efficient as the shape factors, which are the ratio of the fully plastic moment 
to the moment to cause first yield, in both sagging and hogging are quite high, and 
this leads to an increase in failure loads above those determined from elastic analysis. 

Rigid plastic analysis was initially developed some fifty years ago for mild steel 
beams, where it was demonstrated that the rigid plastic assumptions resulted in an 
increase in the failure load over that based on an elastic analysis with first yield, 
significantly so in some cases. The main assumption in a rigid plastic analysis is that the 
cross-section is ductile, and can experience large curvatures before failure, as was 
indicated in Section 2.3.3. It is perhaps logical to introduce the concepts of plastic 
analysis in continuous uniform steel beams first, and then to extend these concepts to 
composite beams, which of course have different moment capacities in sagging and 
hogging bending. There are also different ductility requirements for sagging bending 
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of composite beams to those for steel beams, since the ductility of composite beams 
depends on the crushing of the concrete component. The following analysis presented 
in Section 12.2 for steel beams is merely to illustrate primarily the concepts of plastic 
hinges and moment redistribution. There is a proliferation of standard textbooks that 
treat plastic analysis and design in steel beams and frames fully (and are cited in Ref. 1), 
that include theorems and other aspects that are beyond the scope of this book. The 
reader should make recourse to these texts for a full understanding of the plastic analysis 
and behaviour of steel beams. 

12.2 Continuous steel beams 
12.2.1 The plastic hinge 
Real  momen t - cu rva tu r e  response  

Consider the mild steel I-section beam shown in Figure 12.1 (a), where the actual stress- 
strain curve for the steel is shown in Figure 1.8, that is subjected to increasing curvature 
~: and which is free from residual stresses. We will make the usual engineering assumption 
that plane sections remain plane, so that the strain distribution varies linearly throughout 
the section as in (b). The response is initially elastic until the strain at the outermost 
fibre of the section reaches the yield strain ey = f/E, at the moment to cause first yield 
M = f Z, where Z is the elastic section modulus. As the curvature further increases, so 

y y 

too do the strains at the top and bottom of the section increase beyond the yield strain, 
so that yielding spreads down the section at f as in Figure 12.1 (c). When the curvature 
produces a strain at the extreme fibres of the section equal to the strain hardening 
strain est, most of the section has yielded and on increasing the curvature still further 
the beam enters the strain hardening region, so that the stresses increase in the highly 
strained regions of the section, as in (d). Theoretically increasing the curvature still 
further will finally produce failure when the strain reaches that to cause fracture in 
tension or inelastic local buckling in compression. 

It is convenient to model the stress distribution in Figure 12.1 (d) with the fully- 
plastic stress block shown in (e). Although the small elastic zone near the centroid is 
assumed to be fully yielded, this unconservative assumption is negated by ignoring 
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Figure 12.1 Strains and stresses on a bare steel I-section with increasing curvature 
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the real stresses in the outermost portions of the cross-section that are in the strain 
hardening zone and thus exceed fy. 

By increasing the curvature in steps, the bending moment may be obtained by 
taking the moment of the stresses over the area of the section, and which are of the 
shape depicted in Figures 12.1 (c) and (d), producing the actual moment-curvature 
response shown in Figure 12.2. The moment of the idealized stress block shown in 
Figure 12.1(e) is of course the fully plastic moment M - f S s, where S is the plastic ps y 
section modulus, and which is shown in Figure 12.2 along with My. I~t can be seen 
that the difference between the actual moment and the plastic moment at the strain 
hardening curvature test is minuscule, since the elastic zone is very small and located 
close to the centroid of the section. 

12.2.1.2 Idealized moment-curvature  responses 
In lieu of generating the real moment-curvature relationship which is arithmetically 
involved (although not significantly so), and because the real curve is not required 
to determine the collapse loads in the rigid plastic analysis, two idealizations of this 
real curve will be made for use subsequently. Firstly we can assume that the moment 
curvature response is linear elastic with flexural rigidity EI  until the plastic moment 
M is attained, and is then constant at a plateau at M as the curvature tends to ps ps 
infinity, as shown in Figure 12.2. Secondly, if the rigid plastic idealization of the rigid 
plastic stress-strain curve for the steel shown in Figure 1.13 is adopted, no elastic 
curvatures develop and the curvature is zero until M is reached. The moment then ps 
remains constant at Mps as shown in Figure 12.2. Although the rigid plastic idealization 
forms the basis of the analysis of continuous beams, the elastic-perfectly plastic 
moment curvature idealization will be used in Section 12.2.3 to demonstrate the 
concept of moment redistribution upon which plastic analysis is based. 

12.2.1.3 Plastic hinge in a steel member 
A simply supported steel beam is shown in Figure 12.3(a) subjected to a central 
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Figure 12.2 Real and idealized moment-curvature relationships for a bare steel I-section 
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concentrated load W. The bending moment diagram is known from statics and has a 
maximum value of WL/4, as shown in (b). If the load W is sufficiently large to 
produce moments that extend well into the inelastic range, the real moment-curvature 
response shown in Figure 12.2 may be used in conjunction with the bending moment 
diagram in Figure 12.3(b) to generate the curvature diagram that consists of elastic, 
plastic and strain hardened portions, as shown in (c). The curvature may be integrated 
to produce the variation of beam slope 0 as in (d), and this may be in turn integrated 
to produce the variation of deflection v, as in (e). 

Several related observations may be made from the real variations of curvature, 
rotation and deflection shown in Figures 12.3(c) to (e) respectively. Firstly it can be 
seen from (c) that when the beam is loaded well into the inelastic range the elastic 
curvatures are very small in comparison with the inelastic (plastic and strain hardened) 
curvatures. This is then reflected in the rotation of the beam in (d), which remains 
nearly constant in the elastic range at +0 on each side of the load as shown in (e), 
except adjacent to the load point where it varies very rapidly from +0 to -0  as in (d). 
Finally, as the slope is nearly constant except near the concentrated load, the 
distribution of deflection is close to linear (meaning that the beam deflects as a near 
to straight bar) except in the vicinity of the loading point. 

The real behaviour shown in Figures 12.3(a) to (e) may be replicated closely if we 
adopt the rigid-plastic assumptions for the steel beam shown in Figure 12.2. Because 
the curvature in the real beam is small except close to the region of the concentrated 
load, this curvature is taken as zero and infinite at the load position, as shown in 
Figure 12.3(g). This assumption then leads to the rotations being constant at +0 
either side of the load, as in (h), so that the beam deflects linearly as rigid bars on 
either side of the load point, as in (i). Under the load there is thus a 'kink' of angle 20 
which is shown in (i). 

Because the curvature under the load is infinite, the corresponding moment is the 
maximum moment the beam can resist, Mp~, and the beam will fail when WL/4 = Mp~ or 
when WcoHaps e = 4MJL.  The plastic region shown in Figure 12.3(a) is now assumed 
concentrated directly under the load as shown in (f) and a hinge forms under the 
load. This plastic hinge is associated with the 'kink' under the load shown in (i). In 
this case, the rotation at the plastic hinge cannot be determined explicitly by the 
rigid-plastic idealization, but once the load reaches W otJap ~ the beam is assumed to 
reach a mechanism condition. In this sense, the plastic hinge is analogous to a 
'structural hinge', except that in the latter case the moment is zero while at a plastic 
hinge the moment is Mp. It is worth reiterating that the underlying assumption of the 
plastic hinge concept is that the steel is ductile. 

12.2.2 Requirements for plastic analysis of steel beams 
The major requirement for plastic analysis of steel (or composite) beams is that 
plastic hinges can form, as will be illustrated in Section 12.2.3. This of course is a 
ramification of the ductility of the cross-section. Although as a material mild steel is 
ductile, the required rotations at plastic hinges may not be achieved due to premature 
failures associated with buckling. Local buckling may be prevented my ensuring that 
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the section classification in Section 2.3.3 is at least compact. The geometric limits 
placed on the elements of a compact steel section ensure that inelastic local buckling 
will occur at large curvatures well into the inelastic range, and that the plastic moment 
is at least achievable before failure caused by inelastic local buckling. Statically 
indeterminate beams require a quantifiable amount of rotation at a plastic hinge to be 
achieved prior to inelastic local buckling occurring at the hinge, and such beams 
require the more stringent plastic classification (Section 2.3.3.2) which allows higher 
curvatures to be obtained. 

The other requirement is that lateral-torsional buckling does not take place prior to 
collapse based on rigid-plastic analysis. This requirement is achieved by ensuring that the 
spacing of lateral restraints or braces satisfies specified limits in codes of practice ~. However, 
Chapter 13 will demonstrate that the lateral-distortional buckling introduced in Section 
1.6.2 that is associated with composite beams is far harder to quantify than lateral-torsional 
in plain steel members, but nevertheless must be prevented from occurring. 

12.2.3 Plastic analysis of continuous steel beams 
12.2.3.1 Genera l  
In continuous beams, at least two plastic hinges must form to produce a collapse 
mechanism in which the beam is able to deflect freely by rotating freely at the plastic 
hinges. Associated with the formation of this collapse mechanism is the concept of 
moment redistribution, that we will see in Section 12.3 is very important in composite 
beams. The analysis of a continuous steel beam will be carded out by means of a 
numerical example in Section 12.2.3.2, where the simplicity of calculating the collapse 
load will be shown ultimately. 

12.2.3.2 E x a m p l e  12.1 Analysis of two-span steel beam 
Consider a continuous steel beam whose dimensions are shown for the steel 
component in Figure 4.3 that is simply supported at the ends and over an internal 
support. Each span is of length 6 m, and subjected to concentrated loads at midspan 
of magnitude W. The symmetry of this problem allows us to analyse only one span, 
which must be modelled as a propped cantilever as shown in Figure 12.4(a). The 
properties of the cross-section are I = 222.8x106 mm 4, Z = 1.173 x 10 6 m m  3 and S s = 
1.338 x 106 mm 3 with E = 200 kN/mm 2 and f = 250 N/mm 2. 

The flexural rigidity of this uniform steel beam is constant along the length 
(unlike a composite beam) and the relevant moments in the elastic bending moment 
diagram shown in Figure 12.4(b) are given in structural engineering handbooks as 
Mhog = -6WL/32 and M ag = 5WL/32. The maximum (elastic) moment is thus in the 
hogging region. The first yield moment is My = 250 x 1.173 x 106 Nmm = 293.3 kNm, so 
that first yield will occur when W = (293.3 x 32)/(6 x 6) = 260.7 kN. We will now use the 
elastic-perfectly plastic assumption shown in Figure 12.2 that assumes the beam is 
elastic until a plastic hinge forms, which will be at the internal support (modelled as 
the root of the propped cantilever shown as position A in Figure 12.4(a)). Hence 
using Mp~ = 250 x 1.338 x 10 6 Nmm = 334.5 kNm, the load to cause a first hinge to form 
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is W = (334.5 x 32)/(6 x 6) = 297.3 kN. Note that this is an increase of 297.3/260.7 or 
14% above the first yield load. In addition, the moment under the load is Msag = 5 x 
297.3 x 6/32 = 287.7 kNm. 

When a plastic hinge forms at the interior support (modelled as the root of the 
fight hand span in Figure 12.4(a)), it is obvious that the span has not reached a 
collapse mechanism, but now resembles a simply supported beam (but with a moment 
of-Mps at the interior support). The beam can now be analysed when W is increased 
above its first hinge value of 297.3 kN by the elastic-perfectly plastic model assumed, 
and the bending moment diagram for this condition is shown in Figure 12.4(c). In this 
elastic analysis we must note that Mhog remains constant at-Mp~, and most importantly 
that the beam is free to rotate 0,og at the interior support. Although the analysis is still 
elastic, the ramifications of the latter behaviour is that M g no longer equals 5WL/32, 
as this 'elastic solution' is derived on the assumption that the beam is built-in at the 
root, that is 0,og = 0. The elastic analysis must therefore be modified as follows to 
allow 0,og to be non zero. 

The beam is shown in Figure 12.4(d) when W > 297.3 kN, with the reaction at the 
right hand simple support being denoted R. The bending moment diagram 
corresponding to this state is shown in (e) where the moment at mid-span is 3xR (the 
reaction R times the lever arm of 3 m) and the static moment is WL/4. Clearly the 
distribution of moment M along the beam is given by 

M = E s I  
d2v 

dx 2 
- ( W - R ) x - 3 3 4 5 - W ( x - 3 )  

which upon successive integrations produces 

(12.1) 

x 2 W 
EslO = ( W -  R)--2- - 3345x-  - ~ ( x -  3) 2 + a  1 

(12.2) 

x 3 
EsI v = ( W -  R)'-~- 167.25x 2 W - - - - ~ - ( x -  3)  3 + a lx  + a 2 

(12.3) 

in which a t and a 2 are constants of integration, x is measured from the root of the 
propped cantilever as show, and ( ) represent Macaulay brackets 2, that is the term 
in the bracket is ignored when negative. The constants a t and a 2 may be determined 
by imposing the boundary conditions of zero deflection at the two ends, viz. v(0) = 
v(6) - 0, producing a 2 = 0 and 

a I = 1004  + 6 R  - 5 .25W (12.4) 

It is worth noting again that the condition 0(0) = 0 does not hold as the beam is free 
to rotate at the plastic hinge at x = 0 with its moment remaining at - M  . If we sum ps 
moments about the internal support (or root of the propped cantilever ~dealization) 
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then from equilibrium in Figure 12.4(d) 3W - 334.5 + 6R. Substituting this into Eq. 
12.4 and then into Eq. 12.2 and putting x - 0 produces the rotation at the hogging 
plastic hinge as E I0(0) = E I0hog = a~, or 

Oho 8 = 50.5 X 10 -9 (297.3- W) (radians) (12.5) 

where W is in kN. 
As W is increased above its first hinge value of 297.3 kN, a (negative) rotation 0ho 8 

develops at the internal support and the moment under the concentrated load shown 
in Figure 12.4(e) increases until finally M g = M when 3R = 334.5 kNm, or R = 111.5 
kN. Therefore, as it has already been shown that 3W = 334.5 + 6R then 3Wcollapse -- 
334.5 + (6 x 111.5), that is Wcot~apse = 334.5 kN. The continuous beam (or propped 
cantilever model) has now been loaded until it forms a plastic mechanism as in (f) at 
a collapse load of W .... . .  = 334 5 kN In order to achieve this collapse mechanism, 

""l l"v'" " * 9 

from Eq. 12.5 the hogging hinge has been required to rotate 50.5 x 10- x (297.3 - 
334.5) or-1.88x10 -6 radians. However, once Wco,aps e has been attained, both the 
hogging and sagging hinges are free to rotate as a mechanism with an undetermined 
(but theoretically large) magnitude. 

This example has illustrated a number of concepts that are unique to plastic 
analysis. Firstly, the load to cause plastic collapse of the continuous beam is 334.5/ 
297.3 or 13% greater than that to produce a first hinge, so that the beam strength is 
not fully utilized when based on a first hinge analysis. Secondly, to reach failure a 
quantifiable rotation is required at the position of the hinge that forms first. Thirdly, 
and most importantly, the calculation of the collapse load is very easy. Although 
performed slightly differently in the previous calculations, it can be seen 
directly from the variation of the bending moment diagram in Figure 12.4(e) that at 
the position of the applied load W, that the static moment at collapse = WL/4 
= Wcou~p=L/4 = Mps + Mp/2 producing Wco,~ps ~ = (4 x 1.5 x 334.5)/6 = 334.5 kN, 
a calculation which is greatly simpler than that for elastic analysis of a statically 
indeterminate beam. Finally, it can be seen from the bending moment diagram in 
(e) that the shape of the bending moment distribution changes constantly as W 
is increased from its value to form a first hinge to that which causes collapse 
when a mechanism is reached. At the first hinge load, the sagging moment 
Ms~g = 287.7 kN as noted earlier, but as the load is increased above its first hinge value, 
Muo 8 remains constant while moment is redistributed to the positive bending region, so 
that ultimately there is a moment redistribution 334.51287.7 or 16% in the sagging region. 
This moment redistribution is a characteristic of plastic analysis, and is pemdtted by the 
ability of the plastic hinges to rotate freely due to their ductility. 

12.3Continuous composite beams 
12.3.1 General 
The presentation of plastic analysis in Section 12.2 for bare steel beams illustrated 
the simplicity and economy of design based on such analysis. Plastic analysis may 
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also be used for composite beams, and the same benefits that are achieved in steel 
design also accrue to continuous composite beams. There are two major differences 
with composite beams compared with uniform steel beams. Firstly the plastic moments 
of resistance in composite beams are different in hogging and bending regions. The 
second difference relates to the ductility of the sagging region in particular, and this 
must be ensured by the requirements outlined in Section 12.3.2 so that the rigid-plastic 
assumptions of Chapter 4 that are used to calculate the plastic moment are valid. 

12.3.2 Composite plastic hinges 
12.3.2.1 Hogging behaviour 
Under hogging bending, the real moment-curvature response is similar to that 
shown in Figure 12.2 for a steel beam, since the concrete cracks at low curvatures 
when the stress exceeds ft in Section 1.3.5.1, and the cross-section comprises of a 
'steel' section consisting of the steel component and the reinforcement, as discussed 
in Chapter 3. In composite plastic analysis, we may make the usual rigid plastic 
assumptions unreservedly that were made in Section 12.2, provided of course that 
local buckling is prevented prior to a collapse mechanism developing, and that 
lateral-distortional buckling is also prevented. The local buckling provision is 
enforced by ensuring that the cross-section is compact or plastic, while the 
possibility of lateral-distortional buckling can be checked by the design models 
given in Chapter 13. The plastic hinge concept is thus the same as that for a bare 
steel cross-section, where at the plastic moment (Mp)hog the cross-section is allowed 
to rotate freely. 

12.3.2.2 Sagging behaviour 
The real moment-curvature relationship may be generated by modifying the 
model described for a bare steel section described in Section 12.2.1.1. However, 
under certain conditions the moment-curvature curve may reach the sagging plastic 
moment (Mo)sag and then decrease at relatively low curvatures owing to premature 
crushing of the concrete. Indeed, in some cases the value of (Mp)sag may not even be 
attained as the concrete stress-strain curve, as shown in Figure 1.10, is not ductile. 
Typical real moment-curvature responses of composite cross-sections subjected to 
a sagging moment are shown in Figure 12.5. 

If the sagging hinge forms first, it must be ductile enough to allow sufficient 
rotation for the next hinge to form, as was quantified for the interior support region 
in Example 12.1, although this was a hogging hinge. In conventional reinforced 
concrete analysis 3, a singly reinforced beam is assumed to be ductile if the steel 
reinforcement yields before the concrete crushes at a strain e .  Based on an extensive 
parametric study, Rotter and Ansourian 4 proposed a similar ductility requirement for 
composite beams in sagging bending (that implicitly assumed full shear connection), 
except that the ductility requirement was that the bottom fibres of the steel component 
reach the strain hardening strain e, prior to crushing of the concrete component. 
This ductility requirement was modified for rigid plastic stress blocks in Ref. 5, and 
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Figure 12.5 Moment-curvature response of a composite beam in sagging bending 

expressed as 

Z > I  

in which the ductility parameter ~ is expressed as 

(12.6) 

0.85 f cbceu D (12.7) 

Asfy (eu + est ) 

where b c is the width of the concrete component, D is the total depth of the composite 
beam that is h c + h s, and A s is the cross-sectional area of the steel component. 

The requirement of Eq. 12.6 has been found to be unconservative in situations 
where severe rotation is required at the sagging plastic hinge of a composite beam. 
Based on tests performed by Ansourian 6 on continuous beams which required 
substantial rotation capacity for the moments to redistribute and ultimately form a 
plastic mechanism, it has been suggested 5,6 that the ductility requirement 

Z > 1.6 (12.8) 

be satisfied. This allows for curvatures well into the strain hardening region, and 
allows the rigid plastic assumption of the curve shown in Figure 12.5 to be used. 

12.3.2.3 E x a m p l e  12.2 Calculation of ductility parameter 
The cross-section shown in Figure 4.3(a) is assumed to have a strain hardening 
strain est = 1 ley= (11 x 250)/(200 x l03) = 0.01375 and the ultimate strain E u in 
the concrete is taken as s 0.0033. The area of the steel component is A s = 9200 mm 2. 
Hence from Eq. 12.7, ~ = (0.85 x 25 x 3500 x 0.0033 x (130 + 380))/(9200 
x 250 x (0.0033 + 0.01375)) = 3.2 > 1.6, and this cross-section may thus undergo large 
rotations at the plastic hinge in order for other hinges to develop and lead to 
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a collapse mechanism. 

12.3.3 Plastic analysis of continuous composite beams 
12.3.3.1 General 
The advantages of plastic analysis in bare steel continuous beams were made 
obvious in Section 12.2. These advantages are even greater for continuous composite 
beams, and follow the same arguments that were presented in Section 12.2. In 
the latter section, an elastic analysis was used to calculate the first-hinge collapse load, 
but it was demonstrated in Chapter 3 that such an elastic analysis is difficult for a 
continuous composite beam. Since we seek to calculate the collapse load, a fh'st-hinge 
analysis is unnecessary as it does not produce a mechanism condition 
in the beam. Hence only the final collapse mechanism need be chosen, and with the 
values of (Mp)~g and (Mp)hog which are easily calculated for a cross-section, determining 
the collapse load is usually straightforward. It is worth noting again that the basis of the 
method of plastic analysis is the rigid plastic analyses of a beam with full shear connection 
discussed in Chapter 4, which of course depends on the ductility of the cross-sections. 
Since the collapse mechanism is selected at the outset using the sagging and hogging 
plastic moments, it is often not obvious whether the sagging hinge will form first unless 
an elastic analysis is undertaken. Of course, the advantage of plastic analysis is that an 
elastic analysis is not needed, so to safeguard against loss of ductility of the sagging 
hinge should this form first and require severe rotation capacity to achieve a collapse 
mechanism, the cross-section should satisfy Eq. 12.8. 

12.3.3.2 Example 12.3 Analysis of a two-span continuous composite beam 
The continuous composite beam whose cross-section is shown in Figure 4.3(a) and 
which has the same 6 m spans with central concentrated loads that was considered in 
Example 12.1 will now be analysed plastically. When the beam has full shear connection, 
it was shown in Section 4.2.2.2(a) in Example 4.1 that (Mp)sag = 702 kNm and in Example 
12.2 that this section satisfies the sagging ductility criterion of Eq. 12.8. 

Let us suppose in the hogging region (whose extent can be determined at failure 
from the bending moment diagram) that the concrete component has 0.6% 
reinforcement of yield strength fr = 400 N/mm 2 positioned 50 mm from the top, so 
that P = 0.006 x 130 x 3500 x 400 N = 1092 kN. Noting A s = 9200 mm 2, the rigid plastic 
strength of the steel component is 9200 x 250 = 2300 kN > Pr, so the neutral axis must 
lie in the steel component. It can be shown easily using the rigid plastic analysis 
techniques described in Chapter 4 and illustrated in Figure 12.6 that the plastic 
neutral axis lies in the top flange (so all the concrete has cracked and does not 
contribute to the strength) at a distance n = 145.1 mm from the top of the composite 
beam and that the plastic moment is (Mp)hog = 515 kNm. 

From the bending moment diagram in Figure 12.7, W o, awL/4 = (Mp)hog/2 + (Mp)~g, so 
Wco, apse = 4 x (515/2 + 702)/6 = 640 kN. It is worth noting that the collapse 
load of the steel beam acting by itself was shown in Example 12.1 to be 334.5 kN. Hence 
the composite action has increased the strength by a factor of 640/334.5 that is by 91%. 
It is also worth noting that the length of the hogging region in the beam is given by A- 
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Figure 12.6 Rigid plastic analysis of composite beam in hogging region 

B in Figure 12.7 as 3 x 515/(515 + 720) --- 1.25 m and that the strength of the shear 
connection required in this shear span A-B is 1092 kN as shown in Figure 2.6(c). 
Furthermore, the strength of the shear connection required in the full sagging region 
span B-C in Figure 12.7 is 2 x 2300-  4600 kN as can be derived in the analysis in Figure 
4.4(d). Therefore, the strength of the shear connectors required in the propped cantilever 
of span A-C is 4600 + 1092 + 5692 kN. 

Finally, the section classification must be checked. For the compression 
flange outstands, be= (160-10)/2 = 75 and (b/tf)~/(f/250) = (75/18)xl.0 = 4.2 < 8 (Eq. 
2.14) and so the flange is plastic. In the web from Figure 2.8 and 12.6, Yc - 510-18 - 145.1 
= 346.9 and so ~ = 346.9/(344/2) = 2.0 (Eq. 2.18). Hence using Eq. 2.19, 82/(0.4 + 0.6~) - 
82/(0.4 + 0.6x 2.0) = 51.3 > (dw/t)~/(f/250) = (344/10) x 1.0 = 34 and the web is also plastic. 
The hogging region hinge is therefore free to form and rotate. Note that the lateral- 
distortional buckling capacity (Chapter 13) has not been checked. 

Moment 

(Mp)hog = 515 k N m  
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(positive) 

(Mp)sag = 702 k N m  

" . . . . . .  Wcoua,seL/4 = (Mo)hou/2 + (Mo)sa~ 
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T 

3m 3m 
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Figure 12.7 Collapse bending moment diagram for Example 12.3 
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13 Lateral-distortional buckling 

13.1 Introduction 
The concept of lateral-distortional buckling was introduced in Section 1.6.2. As has 
been noted earlier, buckling arises when portions of the steel component are subjected 
to compression. Lateral-distortional buckling is therefore associated with negative 
bending regions in composite beams, as would occur over an internal support in a 
continuous beam or in the region of a rigid beam to column connection. In steel structures, 
it is necessary to design against lateral-torsional buckling t, and preventing this mode of 
failure occupies significant portions of national structural steel standards. There have 
been literally thousands of studies made of lateral-torsional buckling in steel beams, 
and it is widely accepted that the phenomenon can be predicted quite accurately. Although 
related to lateral-torsional buckling, the lateral-distortional buckling that occurs in 
composite beams is much more difficult to predict, and recourse needs to be made to 
advanced computer software to model it. In this chapter we will consider the concept of 
lateral-distortional buckling of composite beams, and consider two design approaches 
with the aid of examples to illustrate prediction of the buckling strength. 

Lateral-distortional and lateral-torsional buckling take place when a steel 
section is loaded in its stronger plane, and a point is reached when the steel moves to a 
more favourable equilibrium position by deflecting sideways (or laterally) and twisting. 
The region of the beam over which this buckling takes place is usually quite long. 
Lateral-torsional buckling in hogging bending is shown in Figure 13.1(a), and the 
underlying assumption is that the cross-section remains rigid and does not distort during 
buckling. On the other hand, lateral-distortional buckling, as shown in Fig 1.19(a) and 
again in Figure 13.1 (b) must be accompanied by distortion of the cross-section, since in 
negative bending the concrete component (although cracked) restrains the top tensile 
region of the steel component, and the bottom flange may only displace laterally and 
twist when the web element distorts in the plane of its cross-section. This distortional 
buckling is difficult to analyse, and the reader is directed to Ref. 2 for a review of 

/.--- rigid cross 
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distorted 
eb 

(a) Lateral-torsional (b) Lateral-distortional 

Figure 13.1 Lateral-torsional and lateral-distortional buckling modes 
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its experimental and theoretical research, and the various approaches that have 
been adopted. 

13.2 Steel component behaviour 
13.2.1 General 
In familiar limit states terminology, lateral-distortional buckling represents an ultimate 
limit state, and when it occurs in a composite beam it is accompanied by catastrophic 
failure or so-called strain-weakening. In elastic design as in Chapter 3, it is therefore 
important to ascertain that the maximum negative moment in a beam is less than the 
strength of the composite beam as determined by lateral-distortional buckling. 
Generally speaking, the lateral-distortional buckling strength is not directly related 
to the classification of the cross-section based on local buckling that was considered 
in Section 2.3.3, except that it is used in its prediction of the strength of the cross- 
section, which is needed to determine the distortional buckling strength. 

This book has considered rigid plastic analyses of cross-sections, which were 
introduced initially in Chapter 4. It was shown that a necessary requirement for 
rigid plastic analysis was that every cross-section is able to achieve the full plastic 
moment. Hence the steel component must not buckle locally, and this is controlled 
by proportioning the steel component to be at least compact, as in Section 2.3.3. 
This analysis philosophy must also be fulfilled by ensuring that premature lateral- 
distortional buckling does not occur in negative moment regions, so that the beam 
must be analysed for lateral-distortional buckling, and the buckling strength must 
not be less than the full plastic moment if a rigid plastic analysis is to be valid. In 
Chapter 12 we saw that rigid plastic analysis of continuous composite beams relies 
on moment redistribution, and it was noted that in such an analysis that lateral- 
distortional buckling must be prevented if this moment redistribution is to be achieved. 

13.2.2 Des ign  by buck l ing  analys is  

D e s i g n  p h i l o s o p h y  and c o m p l e x i t y  
Designing against lateral-distortional instability is usually based on procedures 
for steel structures, in that an elastic analysis is carded out to determine the actions in 
the steel portion or steel component of a cross-section subjected to negative bending. 
One of the complications of this analysis is that the steel component is subjected to 
combined negative moments and compression; the latter being in equilibrium with the 
tensile force in the reinforcement. The buckling strength of the steel component is then 
calculated, and this is used in determining the strength of the composite cross-section. 

The composite section shown in Figure 13.2(a) is subjected to a negative or hogging 
moment. In order to demonstrate the complexity of this buckling problem, let us consider 
the results of a rigid plastic analysis, which is described in detail in Section 12.3.3, and 
which are depicted in Figures. 13.2(b) and (c). It can be seen that the resultant compressive 
force in the steel component Fore p is equal to the tensile strength of the reinforcing bars 
Fte" = P = A f .  The force F is resisted by the compressive stresses adjacent to the r yr comp 

centroid of the steel component as shown in (c) which leaves the stresses in the rest 
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of the steel component to resist the moment in the steel component Mste, ~ as shown. 
It can therefore be seen in (b) that the steel component is subjected to a moment and 
axial force both of which vary along the length of the beam and both of which vary 
according to the variation of the degree of shear connection rl along the length of the 
beam, as described in Chapter 4. These variations make the buckling problem in 
composite beams much more complicated than in a steel beam. 

13.2.2.2 Elast ic  buckl ing  paramete rs  Mod and Nod 
The first step in a thorough elastic analysis of lateral distortional buckling is to 
determine the moment Mstee w in Figure 13.2(b) which will cause buckling when the 
compressive force Fcomp is not present. This moment capacity is referred to as the 
elastic lateral-distortional buckling moment in the steel section Moo, and its derivation 
is computationally difficult. Fortunately, there are design methods that can be used 
either directly for this calculation, or which make use of the lateral-distortional 
buckling moment Mod implicitly, and these will be treated in Section 13.3. 

As was noted in Section 13.2.2.1 and in Figure 13.2(b), the steel component is 
also subjected to an axial compressive force F that equilibrates the tension in the 

comp 

reinforcement. The force Fore p tO cause buckling in the absence of Mstee ! in (b) also 
needs to be determined in an accurate distortional buckling analysis. This force is 
referred to as the elastic lateral-distortional buckling compressive load Nod. The 
simplified design method of Section 13.3.2 allows this load to be calculated, but 
rigorous incorporation of the effects of the axial force is often omitted as the stresses 
induced in the bottom compressive flange due to bending are'usually much larger 
than those induced by the axial compression 3, as will be shown subsequently. 

13.2.2.3 Strengths in bending and compression M d and N d 
In the method of 'design by buckling analysis' I, the elastic buckling moment Moo 
and the elastic buckling load Noo for the steel component are converted into strengths 
using relevant strength curves in national standards. Typical illustrations of these 
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Figure 13.2 Composite beam subjected to a negative or hogging moment 
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Figure 13.3 Buckling curves in bending and compression 

curves are shown in Figures. 13.3(a) and (b), where the non-dimensional slenderness 
is written as ~/(Ms/Mo0) for bending and ~/(N/Nod) for compression, where M s is the 
cross-section strength of the steel component in bending (which is its plastic moment 
Mps if the cross-section is compact) and N s is the cross-section strength of the steel 
component in compression (which is its squash load N q if the cross-section is free 
from local buckling effects). It is worth noting that these curves resemble the complex 
interaction between buckling and non-linear material behaviour in steel columns 
as shown in Figure 8.1. Hence as in the failure envelope for the steel columns in 
Figure 8.1, these curves relate the pure axial strength and pure flexural strength 
with both the elastic and rigid plastic strengths. 

Once these slendemesses have been determined using the elastic distortional 
buckling moment Mod and load Nod, the bending strength of the steel in the absence 
of compression M d and the compressive strength of the steel in the absence of bending 
Nsa may be determined from national standards. For example, we saw in Section 
8.2.1.3 that the strength of the steel component in compression in accordance with 
the Eurocode was 

Nsd = Z Ns (13.1) 

for an appropriate column curve in which X is a function of No~, while in the 
Australian AS4100 steel standard the bending strength of the steel component is 
written as 

M sd = 0.6 Mo d + 3 -  Mod M, 
(13.2) 

It must be noted at this stage that Eqs. 13.1 and 13.2 were developed for lateral- 
torsional beam buckling and flexural column buckling. Their use for lateral- 
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distortional buckling is questionable, but they are considered to be conservative and 
their use will therefore be recommended. 

13.2.2.4 Interaction between axial load and flexure Mar 
Finally, the bending strength must be reduced for the effects of axial compression if an 
'accurate' analysis is being performed by treating the steel component as a beam- 
column. Because we are determining the buckling moment of a steel cross-section, the 
compression in the steel component is not known at the outset. Although an elastic 
analysis is being undertaken for the buckling analysis, it is conservative to use the 
yield strength of the reinforcement fyA in the concrete component as the compression 
in the steel component. Hence and in accordance with national steel standards, the 
steel member strength M~ can be determined by reducing M d according to 

: Ar r 
(13.3) 

It is worth reiterating firstly that the calculation of the lateral-distortional buckling 
moment and load are based on very approximate design models in lieu of complex 
finite element modelling, and secondly that the member strengths that are based on 
combined elastic buckling and yielding are derived from lateral buckling results, and 
their applicability to lateral-distortional member strengths is questionable. Because of 
this, design may often be simplified by ignoring the effects of compression. In Sect. 
13.3.2, the U-Frame Method will be used to show in principle how compression may 
be incorporated into the buckling analysis, while in the Alternative Method in Sect. 
13.3.3 it will be ignored. 

13.3 Design models 
13.3.1 General 
There are a number of ways of treating lateral-distortional buckling in composite 
beams, and advanced finite element software that can in principle handle the 
phenomenon is now becoming available. However, this software is only a research 
tool, and it is easier and more appropriate to use design equations. The so-called 
Inverted U-frame Method and an alternative method based on finite element studies 
will be considered in this section. 

13.3.2 Inverted u-frame approach 
13.3.2.1 Elastic buckling 
The Inverted U-frame Approach is based on the design philosophy for half-through 
girder bridges. Consider the inverted U-frame shown in Figure 13.4. The compression 
flange is modelled as a uniformly compressed strut restrained elastically against 
flexural buckling by the stiffness of the web. The web is treated as a cantilever, and 
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its stiffness may be determined by applying the fictitious unit horizontal forces shown. 
In addition, the unit horizontal forces may cause bending of the composite beam 
between the webs of the beams, so a rotational stiffness at the top or tension flange/ 
web junction of 2(EI)sJL b, in which (EI)stab is the flexural rigidity of the slab and L b 
is the length of the slab between the webs of the parallel beams as shown, may be 
included. However, this effect is fairly small and may be ignored. 

Figure 13.5 shows the strut buckling model, in which the flange strut is subjected 
to an elastic restraint of stiffness (x t per unit length that produces a distributed restoring 
force of o~,u t per unit length, where u, is the buckling deformation which is assumed 
to be a sine curve. It can be shown readily that the elastic critical value of the force 
in the strut to cause buckling Nc, is 

ff2 E sI F o~t L2 
+ ~ (13.4) 

Ncr = L2 tr 2 

where I F is the second moment of area of the flange about the web. The relationship 
between N and L in Eq. 13.4 is of a garland shape, and the minimum value of Ncr 
may be determined by setting dNc/dL to zero. Hence, 

(Ncr )min = 2~/EslFOtt 
(~3.5) 

The conversion of (Ncr)min tO determine Mo~ for the steel component and then to a 
composite member strength will be illustrated in the following example. 

13.3.2.2 Example 13.1 Beam strength using the Inverted U-Frame 
Approach 

(a) Fcomp = A f r yr 
Consider the beam analysed in Example 3.3 and shown in Figure 3.2 when subjected 
to negative bending. The slab in this example had 0.6% reinforcement (A = 1170 

1 I  . / lil / 
"[~ '~ tension-flange Iiil /d. 
I~!i compression web junction [~!i / 

if: flange iit!l I 
Figure 13.4 Inverted U-frame 
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Figure 13.5 Strut model 

mm2). We will assume that the web acting as a cantilever has a length of 300 + 12/ 
2 -- 306 mm. Applying a unit force of 1 N/mm length to the centroid of the bottom 
flange produces a deformation in the web acting as a cantilever (whose second 
moment of area is 73/12 = 28.58 mm4/mm length) of 3063/(3x200x103x28.58) = 
1.67 ram. The stiffness o~ t is the force (1 N/ram) divided by the deformation (1.67 
mm), so that tx t = 0.598 N/mm 2. The second moment of area of the bottom flange is 
If= 1703x12/12 = 4.913x106 mm 4, and so substituting into Eq. 13.5 produces (N)mj" 
= 2~/(200x103x4.913x106x0.598) N = 1533 kN. 

The elastic critical load of (Nc)m~ . = 1533 kN in the compression flange 
must now be converted to the buckling strength of the steel component Msd by 
firstly calculating the elastic distortional buckling moment Mod. Firstly, this load produces 
a stress in the compression flange of (Nc) , JA t = (1533xl 03)/( 170xl 2) = 752 N/ram 2, 
and using from Figure 13.6 the value of I s = 115.1xl06 mm 4 produces (from simple 
linear elastic beam theory M = t~I/y) an elastic buckling moment of Mod = 
(752x 115.1 x 106)/(150+6) Nmm = 554.8 kNm. Secondly, we require the cross-section 
strength M s for the steel component. It can be shown (although the position of the 
neutral axis for the composite section is needed to determine the web parameter ~ in 
Eq. 2.19) that the steel component is compact, and has a plastic section modulus about 
its major axis, using the procedure illustrated in Figure 4.5, of S s = 794x103 mm 3. For 
the yield stress f = 300 N/mm 2 (as assumed in Example 3.4), Ms= fS  s = 300x794x103 
Nmm = 238.2 kNm and substituting into Eq. 13.2 produces M d = 0.6 X (~/((238.2/ 
5 5 4 . 8 )  2 + 3) -- (238.2/554.8)) x 238.2 = 193.7 kNm. 

Finally, we will assume that the reinforcement (positioned 35 mm below the top 
surface as in Example 3.3 and Figure 13.6) is at yield at f = 400 N/mm 2 which results 
in a tensile force of Fte" = A f = 1170 x 400 N = 468 kN. q~e stress resultants across the 
composite section have the distribution shown in Figure 13.6(b) which is the same as 
that shown in Figure 1.16(d) except that the signs are reversed because we are dealing 
with a negative region instead of the positive region depicted in Figure 1.16. Hence 
taking moments about the centroid of the steel component in Figure 13.6(b) produces 
the moment capacity of the composite section when governed by distortional buckling 
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Figure 13.6 Composite beam subjected to lateral-distortional buckling 

as M = 193.7 + (130 - 35+12+300/2) x 468/1000 = 314.0 kNm. Note that this crnp 
buckling moment is greater than the first yield moment of 266.2 kNm determined in 
Example 3.4 for the composite beam in hogging bending, so that first yield is attainable 
prior to lateral-distortional buckling. We have also assumed full shear connection. 

(b) Fcomp f r o m  l inea r  e las t ic  ana lys i s  

Using the more accurate linear elastic method of Example 3.3 and 3.4, at buckling 
of the steel component the stress in the bottom fibre is o b = MsdY/ls = 193.7 X 106 
X (150 + 12)l(115.1 X 106) = 272.6 N/mm 2 for which the curvature (from Example 
3.4) is ~: = Ob/E nb = 272.6/(200 X 103X 203) = 6.71 X 10 .6 mm -~ and which results in 
a moment in the composite beam of M tee , = E Is~: = 200 X 103X 180.1 X 106X 6.71 
X 10 .6 Nmm = 241.7 kNm. The 30% disparity between the moment of 241.7 kNm 
that was based on the linear elastic analysis of Examples 3.3 and 3.4 and the moment 
of 314.0 kNm that was determined assuming that the reinforcement was at yield 
illustrates the unconservatism of the latter assumption, although the calculation is 
easier than the linear elastic method. It is worth noting that at the curvature of 
6.71 x 10 6 mm-' at which the beam buckles in a lateral-distortional mode, the stress 
in the reinforcement is 6.71 x 10-6x (454 - 35 - 203) x 200 x 103 = 291.2 N/mm 2 
which is significantly less than the yield value of 400 N/mm 2 assumed. 

It is also worth noting from the linear elastic analysis and the lateral-distortional 
buckling analysis of the steel component, that the stress in the bottom flange at 
buckling is 272.6 N/mm 2. The tensile stress in the reinforcement at buckling (initially 
assumed to be zero in the buckling analysis) also produces a compressive stress in 
the bottom flange of 291.2 x A / A  = 291.2 x 1170/6180 = 55.1 N/mm 2. This additional 
axial stress is 20% of the bending stress at buckling based on pure bending of the 
steel component, and illustrates that an accurate analysis must treat the steel 
component as a beam-column. Although recourse could be made to Eq. 13.3 to 
allow for the additional compression in the steel component that equilibrates with 
the tension in the reinforcement, the highly conservative assumptions of the Inverted 
U-Frame Approach probably do not justify the additional effort. 
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13.3.3 Empirical approach 
13.3.3.1 Inelast ic finite e lement  solut ions 
The use of Eq. 13.2 showed that the governing variable for determining the buckling 
strength of the steel component in hogging bending was ;Z d = ~/(M/Mod), and we 
have demonstrated already the difficulty in calculating Mod accurately. Of course, 
the section strength M s of the steel component is readily obtainable. A sophisticated 
finite element analysis that incorporated geometric and material nonlinearities was 
undertaken to determine the strength of the steel component of a composite beam 
when governed by lateral-distortional buckling by Weston, Nethercot and Crisfield 4. 
Their study was restrictive, owing to the immense computational prowess that was 
needed to obtain numerical solutions. Bradford 5 also analysed the inelastic lateral- 
distortional buckling of steel beams restrained by a slab, using a computer program 
that required less computing effort than the study ofWeston et al. Bradford's solutions 
compared favourably with those of Weston et al. when their modified slenderness 
Xd was adjusted slightly to 

~,~w ,] - 0 . 4 0  (13.6) 
~ry ) 

and the strength was predicted by modifying Eq. 13.2 to 

(13.7) 

in which L is the length of the beam between supports, r is the minor axis radius of 
d ., 

gyration of the compression flange, and d and t w are the depth and thickness of the 
web respectively. The solutions were obtained with the yield stress fy in the range 
250 N/mm 2 to 400 N/mm 2 for which the prediction of the modified slenderness in 
Eq. 13.6 was found to be virtually independent of M s and hence f .  The use of Eqs. 
13.6 and 13.7 should therefore be limited to steel elements whose yield stresses are 
in the range indicated, and implicit in the statement of Eq. 13.6 is the value of the 
elastic distortional buckling of the steel component Mod. 

13.3.3.2 E x a m p l e  13.2 Beam strength using the Empirical Approach 
The beam analysed in Example 13.1 will now be analysed using Eqs. 13.6 and 13.7. 
It was shown in the Inverted U-Frame method that the buckling moment was 
independent of the beam length, so here we will assume L d - 7 m. Thus If= 4.913x 106 
mm 4, Af= 170x12 = 2040 mm 2, ry = ",/(4.913x10~/2040) - 49.1 mm, and kd -- 0.018 

1/2 1/3 • (7000/49.1) (300/7) -0.40=0.352. Hence from Eq. 13.7 and using Ms= 238.2 
kNm (from Example 13.1), Msd =0.8 x (('~/(0.3524 + 3)-0.3522) • 238.2 = 307.3 > 
M: and so M d - 238.2 kNm and the steel component and hence the composite beam 
is unaffected by lateral-distortional buckling. 
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Finally, we may make the simple assumption, albeit unconservative, that the 
reinforcement has reached yield at 468 kN, so that M = 238.2 + (130-  35 + 12 

cmp 

+ 300/2) x 468/1000 = 358.5 kNm. The buckling capacity of the steel component 
using the Empirical Method is thus 238.2/193.7 or 23% greater than that of the 
Inverted U-Frame Method, and the corresponding composite beam bending strength 
is 358.5/314.0 or 14% greater. The comparisons are somewhat arbitrary, however, 
as the Empirical Approach depends on the beam length and the Inverted U-Frame 
Approach does not. It is worth noting that in this example the latter model is more 
conservative than the former, and this is generally the case for practical beams. 

13.4 Recommendations 
The discussion and examples presented in this chapter have illustrated the 
substantial difficulties that arise when modelling lateral-distortional buckling in composite 
beams. Nevertheless, a necessary requirement is that this mode of buckling must be 
prevented if a rigid plastic analysis of continuous composite beams is to be carried out. 

Although there are a number of approaches to the problem, it is recommended 
that the Inverted U-Frame Approach illustrated in Example 13.1 be used to determine 
the bending capacity of the steel component through the use of Eq. 13.2 by firstly 
converting Ncr in Eq. 13.4 to the elastic distortional moment Mod. The neutral axis 
can be determined by the elastic methods of Chapter 3 and the curvature at buckling 
then calculated from the strain in the bottom compressive flange of the steel section 
at buckling. The capacity of the composite beam is then simply the product of its 
elastically-determined flexural rigidity and the curvature, which is conservative. 
The recommended method described above does not allow for the destabilizing 

compressive force in the steel member that equilibrates with the tension in the 
reinforcement. In theory this effect, which lowers the buckling moment, can be 
included by treating the steel component as a beam-column with respect to buckling. 
However, this is not considered necessary as any lack of conservatism produced by 
ignoring the compressive force is more than compensated for by the assumption in 
the U-Frame Model that the flange is a uniformly compressed strut, when in fact the 
compression in the flange-strut idealization varies in accordance with the bending 
moment distribution along the composite beam. 

13.5 References 
1. Trahair, N.S. and Bradford, M.A. (1998). The Behaviour and Design of Steel 

Structures to AS4100. 3rd edn., E&FN Spon, London. 
Bradford, M.A. (1992). 'Lateral-distortional buckling of steel I-section 
members'. Journal of Constructional Steel Research, Vol. 23, 97-116. 
Bradford, M.A. and Ronagh, H.R. (1997). 'Generalised elastic buckling of restrained 
I-beams by the FEM'. Journal of Structural Engineering, ASCE, Vol. 123, No. 12, 
1361-1367. 
Weston, G., Nethercot, D.A. and Crisfield, M. (1991). 'Lateral buckling in continuous 
composite bridge girders'. The Structural Engineer, Vol. 69, No. 5, 79-87. 
Bradford, M.A. (1989). 'Buckling strength of partially restrained I-beams'. 
Journal of Structural Engineering, ASCE, Vol. 115, No. 5, 1272-1276. 

, 



14 General fatigue analysis 
procedures 
14.1 Introduction 
Composite beams in buildings and particularly in bridges are often required to resist 
continuous repetitions of applied loads such as those imposed by the traversal of 
vehicles or cranes. Although these fatigue loads are small in comparison with the 
ultimate strength of the structure, the tensile component of the stresses induced by 
these fatigue loads can cause cracks to initiate and propagate that can eventually lead 
to failure of the structure at serviceability loads. It is, therefore, necessary for the engineer 
to ensure that the remaining strength or residual strength of the structure during the 
whole design life of the structure is greater than the maximum possible design overload. 

In this chapter, generic fatigue analysis procedures and behaviours are described 
that can be applied to any type of component. It is assumed throughout that the 
composite beam behaves in a full interaction linear elastic fashion. General forms of 
the fatigue material properties are first described, followed by methods for quantifying 
the numerous applications of load and the cyclic stress resultants that they induce, 
and finally a genetic form of the fundamental fatigue equation is developed. In 
Chapter 15, the generic fatigue equation is applied specifically to the assessment 
and design of stud shear connectors in composite beams. 

14.2 General fatigue properties 
14.2.1 General 
There are two fundamental properties that are required for fatigue analysis which are 
the endurance and the residual strength of the structural component. The endurance 
is a measure of the rate of fatigue damage, such as crack initiation or crack propagation, 
whereas, the residual strength is a measure of the effect of the fatigue damage on the 
remaining static strength of the structure. 

14.2.2 Fatigue endurances 
The endurance of a structural component E, that is the number of cycles to failure, 
depends on the range R of the cyclic load that induces tensile stresses in the 
component. The dependence of the endurance on the range of the cyclic load is 
usually determined experimentally and the relationship derived from a linear regression 
of the logarithm of the variables as shown in Figure 14.1. To allow for the scatter of 
the test results, design is usually based on the characteristic endurance at 2 standard 
deviations, that is at a 2.3% probability of failure, which is given by the following 
equation 

209 
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Figure 14.1 Fatigue endurance 

Ec h = 10 H - 2 D R  -m (14.1) 

where m is the slope of the regression line in Figure 14.1, H the intercept with the 
y-axis and D is the magnitude of one standard deviation. 

14.2.2.1 Example 14.1 General fatigue endurance equation 
(a) Material component parameter m 
It can be seen in Eq. 14.1 that the endurance is inversely proportional to R m. The 
exponent m is a material property that varies from 3 for welded steel components to 
about 20 for concrete, with stud shear connectors having a value of about 5. The 
exponent m defines the susceptibility of the component to changes in the cyclic range 
R. For example, halving the range of the cyclic load that is applied to a welded steel 
component will increase the endurance by a factor of 23 = 8. Whereas, halving the cyclic 
range that is applied to a concrete component will increase the endurance by a factor of 
22o -- 1,000,000. Hence, a concrete component is much more sensitive to changes in the 
applied range than welded steel components as it has a larger value of the exponent m. 

(b) Component detail parameter H 
It can also be seen in Eq. 14.1 that the mean endurance is directly proportional to 10 n 
where the intercept-constant H in Figure 14.1 defines the susceptibility of the structural 
component detail to fatigue failure. For example for a steel flange plate with a smoothly 
varying cross-sectional shape, l0 n -- 2 x l0  ~5 when the stress is measured in N/mm 2. 
However, when a small hole is inserted into this flange, then the stress concentrations 
caused by the hole reduce the constant to 10 n - 4 x 10 ~2, that is the endurance has 
reduced by a factor of (2 x 10~5)/(4 x 10 ~2) = 500. Furthermore, welding a stud shear 
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connector to the flange will not only induce stress concentrations but also cause 
minute cracks and residual stresses that reduce the constant to 10" = 2 x 10 t2 and, 
hence, reduce the fatigue life of the original flange by a factor of about 1000. 

(c) Standard deviat ion D 
It is also worth noting that the scatter associated with predicting fatigue endurances 
is very large. For example for steel components, the characteristic endurance as a 
proportion of the mean endurance that is 10"-2D/10 H --- 0.4. This means that a component 
that is designed for a mean fatigue life of 100 years has a 4.6% probability of failing 
at less than 40 years or more than 250 years. 

14.2.3 Residual strength 
14.2.3.1 Accumula ted  damage  laws 
TWo forms of residual strength envelopes are shown in Figure 14.2, where P is the static 
strength of a component prior to cyclic loading, P is the remaining or residual strength 
after cyclic loading, N k is the number of cycles of load of range R k that have been 
applied, and E k is the endurance of the component at the range R k. The residual strength 
variation marked 'B' will be referred to as the 'crack initiation approach'; this variation 
assumes that there is no reduction in strength until N k > E k and is applicable to steel 
components, particularly when a large number of cyclic loads are required to initiate a 
crack. In contrast, the residual strength variation marked 'A' assumes a linear reduction 
in the strength as soon as cyclic loads are applied and will be referred to as the 'crack 
propagation approach'. This approach is applicable to stud shear connectors where 
tests have shown that minute cracks in the weld zones are propagated immediately 
cyclic loads are applied and cause an immediate reduction in strength. 

(a) Crack  p ropaga t ion  approach  
Let us first consider the crack propagation linear residual strength envelope 'A' in 
Figure 14.2. When the number of applied cycles of load N k -- 0, the residual strength 
Pc is equal to the static strength P, that is, the strength prior to cyclic loading. 
Furthermore when N k = E k, then the residual strength Pc --" 0. The residual strength 
envelope is, therefore, given by Nk/E k = 1 - PJP.  It can be shown ~ that because the 
residual strength envelope is linear, it can be applied to combinations of ranges of 
cyclic loads and, furthermore, that the sequence in which the cyclic loads are applied 
does not affect the reduction in strength. In which case, the linear residual strength 
failure envelope is given by the following equation with an inequality. 

k=ZN k p 
~_~E ~: < 1  ...... c 
k=l  k Ps 

(14.2) 

where there are a total of z magnitudes of the ranges of applied loads. 
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(b) Crack initiation approach 
The crack initiation approach failure envelope 'B' in Figure 14.2 is a special case t of 
Eq. 14.2 because when 

k=ZNk 
E-i- 
k=l k 

< 1 (14.3) 

then Pc = Ps" 

(c) Fatigue damage  
Equations 14.2 and 14.3 are also referred to as accumulated damage laws. The parameter 
Nk/E k on the left hand side of these equations can be considered to be the fatigue 
damage that the cyclic loads have induced. Whereas, the fight hand side of these 
equations is the fatigue damage that can be sustained. Once the left hand side exceeds 
the fight hand side then the structure fails as the residual strength can no longer resist 
the applied load. It is also worth noting that the fatigue damage term Nk/E k in Eq. 14.2 is 
proportional to NkR m, as E ,,~ R -m in Eq. 14.1. Hence, the fatigue damage is directly 
proportional to both the number of cycles applied and the magnitude of the range of the 
cyclic load. 

14.2.3.2 Fatigue analysis procedures 
The accumulated damage laws of Eqs. 14.2 and 14.3 are fundamentally different, and 
this difference affects their application in the design or assessment of composite 
bridge beams. These fundamental analytical differences are demonstrated by 
considering the fatigue design of the shear connection in a simply supported 
composite beam in Figure 14.3(a) that is subjected to the longitudinal traversal of a 
point load. 

The longitudinal traversal of a point load across a simply supported composite 
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bridge beam produces the shear flow envelope shown in Figure 14.3(a). At a design 
point such as at 'A', the shear connectors are subjected to uni-directional shear flow 
forces of (qr)l and (qr)2 and, hence, a total cyclic range of qt = (q,)l + (q)2' For this 
example of a point load moving across a simply supported beam, the total range of the 
shear flow force q, is constant throughout the span of the beam and equal to the 
maximum uni-directional shear flow force at the supports qv' Furthermore, the uni- 
directional shear flow force at mid-span is equal to half of the uni-directional shear flow 
force at the supports, that is qv/2. As we are dealing with stud shear connections, it will 
be assumed that the endurance is a function of the total range qt as will be shown in 
Section 15.2. 

(a) Overload 
Irrespective of whether the crack initiation or crack propagation procedure is being 
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applied, the engineer has to ensure that the maximum static design load or maximum 
overload can be resisted. Tb.erefore, shear connectors have to be distributed along 
the beam in proportion to the variation along the beam of the maximum uni-directional 
shear flow force. This is shown in Figure 14.3(b) as the shear flow resistance Qo that 
is required to resist the maximum overload. The static strength Qo is proportional to 
qv at the supports and proportional to qv/2 at mid-span. 

(b) Crack initiation procedure 
The crack initiation approach, as given by the accumulated damage law of Eq. 14.3 
and illustrated in Figure 14.2 as line B, assumes that there is no reduction in strength 
until the fatigue endurance of the component is exceeded when N k > E k. It is, therefore, 
necessary to ensure that the fatigue endurance is never exceeded, that is N k < E k at 
any position of the beam. It will be shown in Section 14.6 how Eqs. 14.1 and 14.3 can 
be developed to determine the shear flow strengths of the shear connectors Qf in 
order to ensure that the fatigue cyclic loads do not cause failure of the shear 
connectors during the design life. As the total range qt causes fatigue damage in 
shear connectors and as this is constant over the length of the beam as shown in 
Figure 14.3(a), then the shear flow strength required to ensure fatigue failure does 
not occur is also constant along the length of the beam as shown by Qf in Figure 
14.3(b). 

The engineer still has to ensure that the maximum static load can be resisted, so 
that the shear flow strength of the shear connectors must be equal to or exceed Qo in 
Figure 14.3(b). Therefore, the upper bound of Qo and Qf is used in the crack initiation 
design procedure. It can be seen in Figure 14.3(b) that for this analysis, the static 
strength requirement governs the design near the supports, whereas, the fatigue 
requirement governs the design near mid-span. 

(c) Crack propagation procedure 
The crack propagation procedure that is given by the accumulated damage law of 
Eq. 14.2 and illustrated by line A in Figure 14.2, assumes that the residual strength 
is dependent on the fatigue loads. In this approach, the static strength requirement 
Qo in Figure 14.3(b) is increased to Qof to allow for the anticipated reduction in 
strength due to the fatigue damage during the design life of the structure. Hence, 
the shear flow strength Qof is the strength required when the structure is first built 
and Qo is the anticipated strength at the end of the design life that is sufficient to 
resist the maximum overload. The difference Qof- Qo is the anticipated reduction in 
strength due to fatigue damage during the design life. 

In summary, the crack initiation approach requires two completely separate and 
independent analyses for strength and endurance that assume that fatigue loads do not 
affect the static strength until the fatigue endurance has been reached. In contrast, the 
crack propagation approach requires one analysis in which the strength and endurance 
are integrally related. 

14.3 Applied loads on bridges 
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14.3.1 General 
A composite bridge beam must be able to resist the maximum overload or ultimate 
strength design load that may occur infrequently, such as once in a design life time or 
not at all. The composite bridge beam must also be able to sustain the fatigue damage 
induced by all of the working or serviceability vehicular loads that can be applied to the 
composite beam as frequently as several times a minute. Furthermore, it is necessary to 
ensure that the residual strength of the composite beam, after any' reduction in strength 
due to fatigue damage, can resist the maximum overload during the whole design life of 
the composite beam. 

There is an enormous variety of shapes of vehicles, an enormous variety of weights of 
these vehicles, and an enormous variety of combinations of these weights and shapes. It 
would be impossible to determine the stress resultants from each individual combination. 
Therefore, the problem is simplified by designing for a specific number of vehicle traversals, 
using standard vehicular shapes (that is standard fatigue vehicles), and standard 
combinations of weights (that is load spectrums). The problem is further simplified by 
assuming the structure behaves in a linear elastic fashion which will allow the principle of 
superposition to be used; this is a reasonable assumption as fatigue damage is induced by 
working or serviceability loads. A further assumption that is often used for composite 
bridge beams is to assume that there is full interaction between the concrete and steel 
components; this assumption simplifies the determination of the stress resultants but 
tends to overestimate the shear flows and underestimate the flexural stresses. 

14.3.2 Frequency of fatigue vehicles 
A bridge may be subjected to vehicles that range in weight from cars of a few kN to 
commercial vehicles weighing 4000 kN. It was shown in Section 14.2.3.1 that the fatigue 
damage is proportional to Nk Rm. As we are assuming linear elastic behaviour, the range 
of the cyclic load R is directly proportional to the weight of the fatigue vehicle W~. 
Therefore, the fatigue damage is proportional to NFv(W~) m where N~ is the number of 
traversals of a fatigue vehicle of weight W w and the exponent m can range from 3 to 6. 
Even though cars occur much more frequently than commercial vehicles, the fatigue 
damage that they induce is much less than that induced by commercial vehicles and, 
therefore, cars are generally ignored in a fatigue analysis which is usually restricted to 
the traversal of commercial vehicles. 

14.3.2.1 E x a m p l e  14.2 Load traversals 
A bridge may be subjected to 2.5 million commercial vehicle traversals per 
year from one lane, 2 million traversals per year in an adjacent lane, and may 
be required to last 120 years. Hence, a component in a beam that is loaded from 
both lanes will be subjected to a total number of fatigue vehicle traversals of 
T = (2.5x 120) + (2x 120) = 540 million. Furthermore, as each vehicle traversal can induce 
serval ranges of cyclic load, as will be shown in Section 14.4, the component may have to 
be designed to resist over a billion cycles of stress. It can now be seen that structural 
components in bridges can be subjected to an enormous number of cyclic stresses, which 
is the reason fatigue failure is the most common form of failure in bridges. 
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Figure 14.4 Standard fatigue vehicle 

14.3.3 Standard fatigue vehicles 
A typical example 2 of the axle distribution of a standard fatigue vehicle that is used 
to represent all the fatigue vehicles that traverse the composite beam is shown in 
Figure 14.4. The shape of the vehicle, that is the number of axles and their distribution, 
should be chosen to induce the same fatigue damage as the fatigue vehicles of the 
same weight. If necessary, several shapes of standard fatigue vehicles can be used 
to represent the myriad shapes of fatigue vehicles. 

A typical weight of a standard fatigue vehicle z is 20 kN per wheel, which for the 
standard fatigue vehicle in Figure 14.4 gives a weight OfWsF v = 320 kN. The actual 
weight of the standard fatigue vehicle WSF v that is used in the fatigue analysis is not 
important as variations in the weight can be allowed for in a load spectrum that is 
described in the following section. The standard fatigue vehicle can be used to 
traverse the bridge to determine the theoretical cyclic stress resultants as described 
in Section 14.4. As the bridge is assumed to be behaving in a linear elastic fashion, 
the traversal of the standard fatigue vehicle can be used to determine the fatigue 
damage for all the fatigue vehicles as described in Section 14.6. 

14.3.4 Load spectrum 
Each standard fatigue vehicle can be used to represent a group of fatigue vehicles of 
varying weights. It is useful practice to represent the variation in the fatigue vehicle 
weights WFV as a proportion of the weight of the standard fatigue vehicle WSF v. This is 
shown as W in column 2 in Table 14.1, where there are 'i' weights of fatigue vehicles as 
shown in column 1. The weight of a fatigue vehicle at level x is, therefore, (WFv) ~ = 
W WsF v. The probability of occurrence of each weight of vehicle at each of the 'i' levels in 
Table 14.1 is given as B in column 3, such that the summation of B is unity. Therefore, the 
number of fatigue traversals at level x is B T, where T is the total number of load traversals 
from all of the fatigue vehicles associated with the standard fatigue vehicle. 

Columns 2 and 3 in Table 14.1 are often referred to as a load spectrum. The fatigue 
damage has already been shown in Section 14.3.2 to be proportional to NFv(WFv) m. 
As the number of vehicle traversals at level x is N = B T and the weight of the vehicle 
(WFv) ~ ~ W x, then the fatigue damage is proportional to B W m which is given in 
column 4 in Table 14.1. 
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14.3.4.1 Example 14.3 Frequency of fatigue loads 
Let us assume that: the weight of the standard fatigue vehicle is WsF v = 320 kN; the 
load spectrum is given by columns 2 and 3 in Table 14.2, which is similar to 
Table 14.1 Format ofload spectrum 

i~evel ( 'x)  Weight i'W) . . . . .  Probability '(B) 

(1) (2) (3) 

1 W 1 B 1 

2 W 2 B 2 

BW m 

(4) 

B1Wlm 

B2W2m 

i W i B i BiWi m 

X =  1 e = 1 Lf = E B W  m 
i - i m i l e  ii i i i i i i  i i i i i i I i  ii i i i i  i 

that applied to a British motorway2; the design life of the bridge is 120 years; 
and that the structure in which the component is located is subjected to T = 240 
million applications of fatigue vehicle traversals during its design life. 

From Table 14.2, the weights of the fatigue vehicles range from 6.5 x 320 
-- 2080 kN at level 1 to 0.2 x 320 = 64 kN at level 6. The number of load traversals at 
level 1 for the vehicle of weight 2080 kN is B ,T = 4800 which is just over three per 
month. In contrast, the number of load traversals for the lightest fatigue vehicle of 
weight 64 kN at level 6 is 144 million which is just over two per minute. 

Table 14.2 Load spectrum 
. . . . . .  , , , , 

Level W B BW 3 BW I 
welded non-welded 

components components 
. , . .  , , . . , ,  , . .  . , ,  , .  . 

(1) (2) (3) (4) % (5) % 

Bw51 
stud shear 
connectors 

, , ,  , ,  , 

(6) % 

Bw2b 
concrete 

(7) % 

1 6.5 0.00002 0.006 2 0.036 9 

2 5.0 0.00010 0.013 5 0.063 15 

3 2.0 0.01000 0.080 29 0.160 39 

4 1.0 0.13988 0.140 51 0.140 34 

5 0.5 0.25000 0.031 11 0.016 4 

6 0.2 0.60000 0.005 2 0.001 0 

0.280 

0.367 

25 363x109 97 

32 lOxlO 9 3 

0.140 12 0 0 

0.007 1 0 0 

0.000 0 0 0 

0.343 30 0 0 
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Ws~= 320kN E--0.274 = Lf Z=0.415 = L r I;=1.14 = Lf 

14.3.4.2 E x a m p l e  14,4 Distribution of fatigue damage in a load spectrum 
It was shown in Section 14.3.4 that the fatigue damage is proportional to BxW m. For the 
load spectrum of columns 2 and 3 in Table 14.2, the fatigue damage at each level of the load 
spectrum is shown in column 4 for the case of a welded component where m = 3. The sum 
of the fatigue damage terms in column 4 is 0.274 as shown in the bottom row. The fatigue 
damage terms in column 4 are also given as a proportion of the total fatigue damage of 
0.274 in the adjacent column. Similar analyses have been applied to a non-welded component 
in column 5 where m = 4, stud shear connectors in column 6 where rn = 5.1, and to a 
concrete component in column 7 where it is assumed that m = 20. 

By comparing columns 4 to 7 in Table 14.2, it can be seen that as the exponent m 
increases the greatest fatigue damage occurs at greater fatigue vehicle weights. For 
example for the welded component in column 4 in which m = 3, 51% of the fatigue 
damage occurs for vehicles of weight 1 x WsF v. However when m = 20 in column 7, 97% 
of the fatigue damage occurs for vehicles of weight 6.5 x Ws~. In other words, the 
weight of vehicle that causes the maximum fatigue damage depends on 'm' and this 
weight increases as 'm' increases. Another way of viewing this distribution of fatigue 
damage is to consider the effect of placing a weight restriction on the bridge that 
eliminates levels 1 and 2, that is the fatigue vehicles of weight 6.5WsF v 
and 5WsF v are prevented from crossing the bridge. For the welded component in which 
m = 3, placing the weight restriction will only reduce the fatigue damage by 2 + 5 = 7% 
which can be considered to be insignificant. However for stud shear connectors in 
which m = 5.1, the same weight restriction will reduce the fatigue damage by 25 + 32 = 

57% which would significantly increase the fatigue life of the structure. 

14.4Cyclic stress resultants 
14.4.1 General 
So far in this chapter, it has been shown how the numerous fatigue vehicles that traverse 
the bridge can be represented by a standard fatigue vehicle and a load spectrum. The 
variation of the stress resultants that the standard fatigue vehicle induces on a 
component, as it traverses the bridge, are determined in this section using influence 
lines. These influence lines are then converted to equivalent ranges of cyclic forces that 
are used to form a force spectrum, that is analogous to the load spectrum already 
described, and which is required for the fatigue analysis procedure developed in Section 
14.6 

14.4.2 Influence line diagrams 
To illustrate a simple influence line analysis, let us move the standard fatigue vehicle 
in Figure 14.5(a) that has an axle length of L/4 and axle weight of V across the simply 
supported beam in (b) of span L. We will determine how the vertical shear force 
varies at a design point which is located at the quarter-span at section D in (b). The 
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variation of these vertical shear forces could be used to design the shear connection 
at this design point. 

The procedure adopted here is to determine influence lines for each loaded 
axle and then to combine these influence lines to determine the influence line when 
the vehicle is fully loaded. The analysis when the rear axle is loaded is shown 
in Figures 14.5(c) to (i) where the standard fatigue vehicle is moved up to the beam in (c), 
in steps of L/4 along the beam in (d) to (h), and off the beam in (i). The distribution along 
the beam of the vertical shear force is plotted at each analysis step. From these 
distributions, the vertical shear force at the design point at section D can be seen. It is 
important that analyses are conducted when the loaded axle is just to the left of the 
design point and then just to the fight of the design point as in (e) and (f), as this 
movement causes a step change in the vertical shear force. 

The vertical shear force at the design point at section D of the beam in Figure 14.5(b) 
can be obtained from Figures 14.5(c) to (i) for different positions of the vehicle. These 
vertical shear forces are plotted as an influence line in Figure 14.6(b) where the front axle 
has been used as the reference point for the position of the vehicle. For example, when 
the front axle is just to the left of section E in Figure 14.5(e), then the shear force at the 
design point at D is 0.25V which is shown as point (1) in Figure 14.6(b). However when 
the front axle moves to the fight of section E in Figure 14.5(0, then the vertical shear 
force at the design point reverses in direction to 0.75V which is shown as point (2) in 
Figure 14.6(b). 

The same procedure has been used to determine the influence line when the front 
axle is loaded and the results are plotted in Figure 14.6(c). Combining (b) and (c) 
gives the influence line when both axles are loaded in (d), which is the variation in the 
vertical shear force at the quarter-span design point as the standard fatigue vehicle 
traverses the beam. This influence line variation will be converted in Section 14.4.3 to 
cyclic ranges of shear force for use in the fatigue analysis procedure that is developed 
in Section 14.6. 

14.4.2.1 E x a m p l e  14.5 Shear flow influence lines along length of beam 
A standard fatigue vehicle consisting of two axles is moved across a simply supported 
composite beam such as that shown in Figure 14.6(a). The load imposed by an 
axle of the standard fatigue vehicle V -- 180 kN, the longitudinal spacing of 
the axles is 8 m, and the span of the beam is 32 m. The shear flow force acting at 
the interface between the steel and concrete components of the composite beam 
is given by the following well known equation which is also given in slightly different 
terms in Eq. 3.3. 

Acyc ) 
q = V in c = VK 

(14.4) 

where V is the vertical shear force, A c is the cross-sectional area of the concrete 
element, Yc is the distance between the centroid of the concrete element and the 
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centroid of the transformed concrete section of the composite beam, and Ir is the 
second moment of area of the composite section transformed to a concrete section. 
For the 32 m beam in this example, it will be assumed that, from the cross-section of 
the composite beam, the parameter in Eq. 14.4 of Acyr r = K = 0.5 x 10 .3 mm -t. 

Table 14.3 Influence lines at quarter-span 

, , , , , ,  , ,  

Position: C D E F G H 
, ,  , , i  

(1) q (KV) 0 

(2) q (N/mm) 0 

(qdo without friction) 

(3) Qfric (~tVFL) 0 

(4) Qfric (N/mm) 0 
(5) qdo(With friction) 

N/mm 0 

�9 n 

+0.25 -0.75 -0.25 -1.25 

+22,5 -67.5 -22.5 -113 

O.33 3 1.33 4 

1.3 11.8 5.3 15.8 

+21.2 -55.7 -17.2 -96.7 

-0.75 -0.75 -0.25 -0.25 0 

-67.5 -67.5 -22.5 -22.5 0 

1.33 1.33 0 .33  0.33 0 

5.3 5.3 1.3 1.3 0 

-62.2 -62.2 -21.2 -21.2 0 

As the axle spacing of the standard fatigue vehicle, in this example, is a quarter 
of the span of the beam, the previous analyses depicted in Figures 14.5 and 14.6 
apply directly to this beam when the design point is at a quarter-span. The results 
of the influence line analysis in Figure 14.6(d) are listed in row 1 in Table 14.3. 

Applying Eq. 14.4 with the appropriate values for K and V, gives the shear flow 
forces in row 2 in Table 14.3; these are the shear flow forces that the dowel action of 
the mechanical shear connectors have to resist Cho when there is no other mechanism 
for shear transfer such as interface friction The same analytical procedure was 
applied to determining the influence lines for design points at both the support at 
section C in Figure 14.5(b) and at mid-span at section E, and the results are given in 
rows 1 and 2 in Tables 14.4 and 14.5. These influence line diagrams, at all three 
design points, are plotted in Figure 14.7. 

14.4.3 Equivalent range o f  cyclic forces 
The influence line diagram in Figure 14.6(d) quantifies the variation of the vertical 
shear force at the design point but does not quantify the magnitude of the cyclic 
range that causes fatigue damage. Hence, the influence line diagram has to be 

Table 14.4 Influence lines at support 
, , , , 

Position: C D 
, , , , ,  

E F G 
, , ,  , | ,  

H 

(1) q (KV) -1 -0.75 -1.75 

(2) q (N/mm) -90 -67.5 -158 

(qdo without friction) 

(3) Qfric (lxV/L) oo 3 oo 

(4) Qfric (N/mm) oo 11.8 oo 

(5) qdo 0 -55.7 0 

N/mm (with friction) 

-1.25 -1.25 -0.75 -0.75 -0.25 -0.25 

-113 -113 -67.5 -67.5 -22.5 -22.5 

4 4 1.33 1.33 0 .33  0.33 

15.8 15.8 5.3 5.3 1.3 1.3 

-96.7 -96.7 -62.2-62.2 -21.2 -21.2 
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Table 14.5 Inf luence lines at mid-span  
. . . . . . . . . . .  | , , ,  | i i i i  

Position: C D E F 

(I) q (KV) 0 +0.25 +0.25 +0.75 -0.25 +0.25 -0.75 -0.25 

(2) q (N/mm) 0 +22.5 +22.5 +67.5 -22.5 +22.5 -67.5 -22.5 

(qdo without friction) 

(3) Qfric (pV/I.,) 0 0.33 0.33 1.33 1.33 1.33 1.33 0.33 

(4) Qfric (N/mm) 0 1.3 1.3 5.3 5.3 5.3 5.3 1.3 

(5) qdo 0 +21.2 +21.2 +62.2-17.2 +17.2-62.2 -21.2 

N/mm (with friction) 
., , , .. , , ,,. , , .  , , , ,. . ,, , ,,..,u . | , , 
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Figure 14.7 Shear flow force influence line diagrams 
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Figure 14.8 Equivalent range using reservoir method 

converted to equivalent ranges of cyclic stress resultants for use in the fatigue 
analysis procedure developed in Section 14.6. 

The reservoir approach 2 can be used to convert the influence line diagram in Figure 
14.6(d) into equivalent cyclic ranges as illustrated in Figure 14.8. In this approach, two 
of the same influence line diagram are placed adjacent to each other as shown in (a) and 
(b). This diagram can now be visualized as the cross-section of a reservoir that must be 
emptied by successively draining from the lowest point that contains water. The 
procedure is repeated at the different drainage points at the parts of the reservoir that 
contain water until the reservoir is completely empty. The depth from the water surface 
at the commencement of drainage to a drainage point is an equivalent cyclic range R. 

When the total range of the stress resultant is required, as in the fatigue design of 
stud shear connectors and other welded components, then the positive and negative 
shear forces have to be combined as in Figure 14.8(a). In this case, the equivalent 
cyclic ranges are R~ and R E. When the uni-directional range is required as may occur 
in the fatigue analysis of an unwelded steel component, then the positive and negative 
portions need to be considered independently as in Figure 14.8(b), where it can be 
seen that there are now three cyclic ranges. 

14.4.3.1 E x a m p l e  14.6 Equivalent range of cyclic forces 
Applying the reservoir approach to the influence line diagrams listed in rows 2 of 
Tables 14.3 to 14.5, and which are plotted in Figure 14.7, gives the cyclic shear flow 
ranges in rows 1 and 2 in Table 14.6 where each range occurs once, that is the 
frequency f = 1. It is worth noting that Figure 14.7 depicts the variation in the shear 
flow for unpropped construction where the steel beam resists all the dead load and 
the composite beam resists all the live load due to the vehicular traversals. The effect 
of propped construction is to maintain the same shape of the influence line diagram 
but to displace the origin of the ordinate. Hence propped construction will not affect 
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the total range, as required for the analysis of the shear connection, but will affect 
the uni-directional range. 

Also of interest is the maximum uni-directional peak shear flow that can also be 
derived from the influence line diagrams and which is tabulated as (qs)max in row 3 in 
Table 14.6. This is the maximum static shear flow force imposed by the traversal of 
the standard fatigue vehicle and is an indication of the maximum static strength 
required of the shear connectors. For example, if the maximum overload Wo is a 
vehicle that has the same shape as the standard fatigue vehicle but is say 9 times its 
weight, that is W ~ = 9WsF v, then the static shear flow strength of the shear connectors 
qo must be at least 9(qs)m~ as tabulated in row 4. It has been assumed in this analysis 
that the beam has been constructed using unpropped construction, that is the shear 
connectors only resist the live load due to the traversals of the vehicles. If propped 
construction had been used, then this maximum uni-directional shear flow would 
have to be superposed on that due to the dead load. A comparison of the methods 
of analysis for propped and unpropped construction is given in Section 3.5. 

14.4.4 Force spectrum 
From the influence line analyses, the magnitudes of the ranges of the cyclic stress 
resultants R and the frequencies f at which they occur can be tabulated as a force 
spectrum as shown in columns 2 and 3 in Table 14.7. In Section 14.2.3.1 (c), it was 

Table 14.6 Shear flows 

(1) . . . . . . .  (2) Support . . . . .  (3) ~ -span (4) Mid-span 
(N and ram) (N and ram) (N and ram) 

No Friction: 

(1) (qt) t (f= 1) 158-0=  158 113+23= 136 68+68=136 

(2) (qt) 2 (f = 1) 9 0 -  68 = 22 68 -- 23 - 45 23 + 23 --- 46 

(3)(q)m~ x 158 113 68 

(4) qo (9(qs),~) 1422 1017 612 

f5) Ff (xl09) 163 76 76 

With Friction: 

(6) (q,)t (f= 1) 97 +0=97  97 + 21 = 118 62 +62= 124 

(7) (qt)2 (f= 1) 56+0=  56 56-17  = 39 17 + 17 = 34 

(8) (qs)ma x 97 97 62 

(9) Ff (x 109) 14 37 48 
i i i i  i i  i ii i i ii i i i ii i i i i i i  iii i i i  i i  i i i i i  i ii i i 
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Table 14.7 Format of Force Spectrum 

, ,, , �9 | 

Level (k) Range (R) frequency (jO fR m 
(1) (2) (3) (4) 

PN f, f, Rim 

RE f2 f:REm 

Z R Z f z  f z R z  m 

Ff = fR m 

shown that the fatigue damage term NJE k in Eqs. 14.2 and 14.3 is proportional to 
NkR m. As the number of cycles N of range R are also proportional to the frequency f 
at which they occur during the traversal of a standard fatigue vehicle, it can be seen 
that the parameter fR m in column 4 in Table 14.7 is also a fatigue damage parameter. It 
has already been shown that the fatigue damage in a load spectrum is given by the 
parameter BW m in column 4 of Table 14.1. Hence, the force spectrum in Table 14.7 is 
analogous to the load spectrum in Table 14.1, as both are a measure of the fatigue 

damage that the cyclic loads induce. 

14.4.4.1 E x a m p l e  14.7 Distribution of fatigue damage in a force spectrum 
The magnitudes of the ranges and frequencies of the cyclic loads in Figure 14.7, 
which were derived from the influence line analysis of the beam in Figure 14.5(b), are 
listed as force spectrums in Table 14.8 for design points at the support, quarter-span 
and mid-span. The fatigue damage term fqt m has been calculated for stud shear 
connectors where m = 5.1. It can be seen that at each of the design points, the fatigue 
damage is dominated by the largest cyclic range. This is because the frequency of 
the smaller range is equal to that of the larger range, that is f~ = f2 = 1, so that the 
distribution of the fatigue damage is now directly proportional to qt m. This is why it 
is common practice to base the fatigue analysis purely on the larger cyclic range. 

14.5 Frictional shear flow resistance 
14.5.1 General 
The shear flow forces on the mechanical shear connectors in a composite beam 
are reduced by the friction that acts at the interface between the concrete and 
steel components and, hence, the friction extends the fatigue life of the mechanical 
shear connection. A procedure is described here for quantifying the frictional shear 
flow resistance in a form that can be used in the fatigue analysis procedure developed 
in Section 14.6 and which is then used in Chapter 15 for the assessment of the 
strength and endurance of existing composite bridge beams. 
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Table 14.8 Variation in the Force Spectrum along beam 

Level 
i i  i i J  ii i 

q, 
~ )  (xlO g) ( ~  (xlO ~) ~ )  

1 158 1 163.4 136 1 76.0 136 

2 22 1 0.037 45 1 0.27 46 

Support Quarter- span Mid-span 
i ii i i i i iN i I l l l l l  II I IIII I I I I I  I I I 1 I I - 

f fqS.r qt f fq, 5"1 qt f fq, 5.1 

(xl0~ 
1 76.0 

1 0.30 

~=163=Ff ~=76=Ff ~=76=Ff 

14.5.2 Frictional resistance 
The effect of interface friction is illustrated in Figure 14.9 by considering the traversal 
of a point load of magnitude V across the top surface of a simply supported beam as 
shown in Figure 14.9(a). From the load paths shown an'owed in (a), it can be seen that 
normal force across the steel/concrete interface of the shear span of length L~ 
is the shear force in that shear span of V~, from which, the interface frictional 
resistance in this shear span of length L~ is laV~, where la is the coefficient of 
friction between the steel and concrete components at the interface. Therefore, 
the mean frictional shear flow resistance in the shear span of length L~ is 
(Qf, c), = #.tV/LI. Similarly, the mean frictional shear flow resistance in the shear span 
of length L 2 is (Qr,~c)2 = ~tVJL2" 

The shear flow force resisted by the dowel action of the mechanical shear connectors 
qdo is the shear flow force acting at the interface q less the mean frictional shear flow 
resistance Qf,~c' The shear flow force at the steel/concrete interface q is given by Eq. 
14.4, therefore, the shear flow force resisted by the dowel action of the shear 
connectors is given by 

AcYc 
(qd~ =Vn Inc 

(14.5) 

where (qdo), is the shear flow force on the connectors in a span designated n of 
length L ,  V is the vertical shear force in shear span n, and #.t is the coefficient of 
friction between steel and concrete that can be taken as about 0.7. It should be noted 
that when the bracket in Eq. 14.5 becomes negative in theory, this means that the 
frictional shear flow resistance Qf, c is greater than the shear flow force q,ow" In this 
case, the mechanical shear connectors do not slip so that the term in the bracket in 
Eq. 14.5 should be equated to zero, that is qdo = 0. 

Equation 14.5 can be used to derive the effect of friction on the shear flow force 
envelope for the point load moving across the beam in Figure 14.9(a). For example, 
line A I is the envelope for the shear flow forces q in shear span L t which is given by 
the first term in the bracket on the right hand side of Eq. 14.5 and line A 2 is the 
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Figure 14.9 Shear flow envelopes 

load path 

shear span tends to zero�9 To complete the picture, the shear flow frictional resistance 
when the design point is at section E at the mid-span in Figure 14.6(b)  is given in row 
3 in Table 14.5. 

14.5 .3 .1  E x a m p l e  14 .8  Shear flow frictional resistance 
(a) Influence lines 
Let us continue the analysis in Example 14.5 in Section 14.4.2.1 in which a simply supported 
beam of span L = 32 m was traversed by a standard fatigue vehicle that had two axles of 
spacing 8 m and a load per axle of 180 kN. The only additional information required, to 
that already given in Example 14.5, for determining the shear flow frictional resistance is 
the coefficient of friction which will be assumed to be ~t = 0.7. 

For the axle spacing and beam length chosen in this problem, the shear flow frictional 
resistances have already been determined as a function oflxV/L in rows 3 in Tables 14.3 to 
14.5. These resistances have been converted to shear flow frictional resistances in rows 4 
of these tables. Rows 2 of these tables gives the shear flow force acting at the interface. 
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envelope in shear span L 2. Line B~ is the shear flow frictional resistance Qr,~ in shear 
span L~ which is given by the second term in Eq. 14.5. Therefore, the hatched region 
is the shear flow force qdo acting on the connectors. The sum of both components of 
the hatched regions, that is (qdo)~ + (qdo)2' is the total range of the cyclic shear flow 
force acting on the mechanical shear connectors. It can be seen that the 
frictional resistance has the greatest benefit adjacent to the supports where in this 
case qdo ---- 0 and has the least effect at mid-span where qdo is at its maximum. 

14.5.3 Frictional resistance influence line diagrams 
The shear flow frictional resistance can be derived from the influence line analyses 
that are used to determine the ranges of shear flows at a design point, such as the 
analysis illustrated in Figure 14.5 that has already been described in detail in Section 
14.4.2. Take for example the distribution of vertical shear in Figure 14.5(e): the design 
point occurs in the right hand side shear span D-G of length 0.75L; the vertical shear 
force at the design point is 0.25V which is the normal force across the interface along 
the right hand shear span; hence, the interface frictional force is ~t0.25V; and as the 
interface frictional force acts over a shear span of length 0.75L, the mean shear flow 
frictional resistance is ~t0.25V/0.75L as listed on the fight hand side of the figure. 
When the rear axle is moved to the fight of the design point as in (f): the design point 
now lies along the left hand shear span of length 0.25L; the vertical shear force at the 
design point is now 0.75V; so that the mean shear flow frictional resistance at the 
design point is Ia0.75V/0.25L. 

It is worth emphasizing the point that the shear flow frictional resistance is not 
dependent on the sign of the vertical shear force, as the shear flow frictional resistance 
simply resists movement. A convenient approach in the analysis is to attach the 
appropriate sign of the vertical shear force to V in Eq. 14.5. The terms within the 
bracket now depend only on the geometric and material properties of the beam and, 
as a further reminder, when this bracket is negative it should be assumed to be zero. 
The shear flow frictional resistances listed on the fight hand side of Figure 14.5 are 
plotted as an influence line diagram in Figure 14.10(a) using the front axle as the 
reference point for the position of the vehicle on the beam. The results marked (1) 
and (2) in Figure 14.10(a) correspond to the analyses in Figure 14.5(e) and (f) where 
kt x 0.25V/0.75L = 0.33~tV/L, and ~ x 0.75W0.25L = 3~V/L. It can be seen that even 
though the sign of the vertical shear force at the design point changed in the analyses 
in Figures 14.5(e) and (f), both frictional shear flow resistances are shown as positive 
in the influence line diagram in Figure 14.10(a). 

The shear flow frictional resistance for when the rear axle is loaded has been 
derived using the same procedure and is shown in Figure 14.10(b). Adding (a) to (b) 
gives the shear flow frictional resistance in (c) when both axles are loaded and which 
applies to the design point at a quarter-span. The results are tabulated as Qf,~ in row 
3 in Table 14.3. The shear flow frictional resistance when the design point is at the 
support at section C in Figure 14.6(b) is listed in row 3 in Table 14.4 and plotted in 
Figure 14.11. It can be seen that the frictional resistance tends to infinity when the 
axle loads are adjacent to the design point at the supports because the length of the 
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Reducing the magnitude of rows 2 in these tables by the magnitude of rows 4 of these 
tables gives row 5, which is the shear flow force acting on the mechanical shear connectors. 
The results are plotted in Figure 14.7 as the broken line labelled 'with friction'. 

The differences in Figure 14.7 between the shear flows 'without friction' and the 
shear flows 'with friction' are the reductions due to friction of the shear flow forces 
resisted by the mechanical shear connectors. It can be seen that the effect of friction 
is large at the supports but relatively small at mid-span. 

(b) Equivalent range of  cyclic shear flow forces 
Applying the reservoir technique described in Section 14.4.3, to the influence line diagrams 
'with friction' in Figure 14.7, gives the results in rows 6 to 8 in Table 14.6. Let us compare 
these results 'with friction' to the results in rows 1 to 3 in which there was no friction. At 
the supports, the beneficial effect of friction has reduced the maximum cyclic range from 
158 to 97 N/mm that is by 39% and the peak uni-directional load by the same amount, 
which means that the shear connectors at the supports can resist a higher static load and 
will last much longer than originally anticipated. At mid-span, the maximum range and 
peak uni-directional load has only reduced from 136 to 124 N/mm that is by 9% and, hence, 
at mid-span the beneficial effect of friction is fairly minor. 

14.6 Generic fatigue equation 
14.6.1 General 
So far in this chapter, we have discussed general methods for representing: the 
fatigue material properties; the fatigue vehicular loads; and the cyclic stress resultants 
that induce fatigue failure. A generic fatigue equation will now be developed that 
incorporates all these general representations and which will be used in Chapter 15 
for the design and assessment of the shear connection composite bridge beams. 

14.6.2 Generic fatigue material properties 
Both the crack propagation accumulated damage law of Eq. 14.2 and the crack initiation 
accumulated damage law of Eq. 14.3 can be written in the following generic form. 

N 
E "~- = A (14.6) 

The general form of the endurance given by Eq. 14.1 can be represented by the 
following genetic form. 

(14.7) 

It is often convenient in fatigue analyses to represent the cyclic stress resultant as 
the ratio R/X in Eq. 14.7. For example in the design of a fillet weld, R could be the 
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shear flow force derived from the analysis of the beam and X the unknown transverse 
width of the weld to be determined in the design, so that R/X is the shear stress x in 
a design procedure where the endurance of the fillet weld is given in terms of the 
shear stress x. However in the assessment of an existing weld of known dimensions, 
R could represent the shear stress x so that X - 1. 

14.6.3 Fatigue damage analysis 
14.6.3.1 Cyclic stress resultants 
The generic fatigue equation will be derived by considering the following very simple 
fatigue problem: a composite beam is subjected to a total ofT traversals of fatigue vehicles; 
the fatigue vehicles can be represented by one standard fatigue vehicle; there are only 
two weights of fatigue vehicles as listed in Table 14.9; the traversal of the standard fatigue 
vehicle produces two ranges of the stress resultant as listed in Table 14.10. 

From Tables 14.9 and 14.10, it can be deduced that there are only four ranges of 
the stress resultants which are: W~R~ that occurs B~Tf~ times; W~R 2 that occurs 

B~Tf 2 times; WER ~ that occurs B2Tf ~ times; and W2R 2 that occurs B2Tf 2 times. 

14.6.3.2 Fatigue damage 
Let us consider the fatigue damage due to the first cyclic range WtRt from Section 
14.6.3.1 which in terms of the parameter X can be written as WtR~/X. Substituting 
this range into the generic endurance of Eq. 14.7 gives the endurance for the first of 
the cyclic range WtRt as 

E first = CW{ -m R~m X m (14.8) 

Table 14.9 Load spectrum with two weights of vehicles 
i |  , i 

(1) Level (x) (2) Weight (W) 

1 W i 

2 W 2 

(3) Probability (B) (4) B W m 
i i i  i i i 

B i BiWlm 

B 2 B2W2 m 

E = 1 Lf= EBW m 
i , 

Table 14.10 Force spectnnn with two ranges 

i i  m l  

(1) Level (k) (2) Range (R) 

1 R~ f~ 

2 R 2 f: 

(3) frequency (~ 
| , l l  

(4)fR ~ 

flRi m 

Ff= ~ f R  m 
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The number of cycles of the first range W,RI from Section 14.6.3.1 has been shown to be 
Nr~ = BtTf I. Substituting the values for Nr~ t and En~ t into the generic accumulated damage 
law of Eq. 14.6 gives the fatigue damage Ar~ t due do the first of the cyclic ranges WtRI as 

A1~rs t = C-' (B , Wim)(f  IR, m) TX  'm (14.9) 

The same procedure can be applied to the remaining three cyclic ranges of W,R2, 
W2R ~ and W~R 2 to give the following fatigue damage terms. 

A,.~o.d = C-I(BI WIm)~R2")TX -'' (14.10) 

Ath,,n = C-I (B2 W2m)(f lRIm) TX-m (14.11) 

A ,hi,d = C-I(B2 W2m)(f 2R2") TX -" (14.12) 

Summing the fatigue damage in Eqs. 14.9 to 14.12, as required in Eq. 14.6, gives the 
total fatigue damage 'A' as 

A = T(B, W," + B2W~')~R I- +f2R~")X-'C -' 
(14.13) 

14.6.4 Generic fa t igue  equation 
14.6.4.1 Load  constant  
The parameter (B ~W~ m + B2W2 m) in Eq. 14.13 is the sum of the fatigue damage terms 
in column 4 of the load spectrum in Table 14.9. This fatigue parameter will be referred 
to as the load constant and will be denoted by the symbol Lf. Hence, the load 
constant L r is given by the following equation 

x-i 

x-, (14.14) 

where there are T levels in the load spectrum as in Table 14.1. The derivation of Lf is 
also shown in column 4 of Table 14. I. 

14.6.4.2 Force constant  
The fatigue parameter (fiR1 m + f2R2 m) in Eq. 14.13 will be referred to as the force 
constant Ff and can be obtained from the force spectrum in Table 14.10. Hence, this 
fatigue parameter can be derived from the following equation 

k --z 

Ff= ,~kR~") (14.15) 
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k = l  

where there are z levels in the force spectrum as shown in Table 14.7 and where the 
force constant is also derived in column 4 of this table. 

14.6.4.3 Generic fatigue equation 
Substituting the fatigue damage terms Lf and Ff in Eqs. 14.14 and 14.15 into Eq. 14.13 
gives the following generic fatigue equation. 

AC AC (14.16) 
X - m  = = 

y=l 

The parameters TFL in the denominator of Eq. 14.16 quantifies the fatigue damage that 
the component is subjected to. For convenience in the fatigue analysis, we will define a 
fatigue zone as a period of T traversals of fatigue vehicles during which both Ff and Lf are 
constant. As it has been shown in Section 14.2.3.1 that the accumulated damage laws are 
based on a linear variation in the residual strength, the sequence at which the fatigue 
zones occur does not affect the overall damage m, so that the fatigue damage due to each 
fatigue zone can be summed as shown in Eq. 14.16 where there are j fatigue zones. 

14.6.4.1 Example 14.9 Load constant and force constant 
Examples of the derivation of the load constant Lfare given in Table 14.2 for different 
values of the fatigue exponent m. It is fairly obvious that Lf increases as m increases. 
The variation in the force constant fatigue damage term Ff is shown in Table 14.6 for 
the beam analysed in Example 14.5 in Section 14.4.2.1. The beneficial effect of friction 
is ignored in the fatigue design of new composite beams and, hence, the results in 
row 5 of Table 14.6 would be used in the design of new bridges. It can be seen that 
the greatest fatigue damage along the length of the beam occurs to the shear 
connectors adjacent to the supports where Ff ~ 163. 

In contrast to the design of new structures in the previous paragraph, in the 
fatigue assessment of an existing composite beam it may be a requirement to determine 
a realistic residual strength and residual endurance. In this case the effects of friction 
could be included as in the analyses in row 9 of Table 14.6. It can be seen in row 9 that 
friction at the support has reduced the fatigue term by an order of magnitude from Ff 

163 to Ff ~ 14. Furthermore, the greatest fatigue damage now occurs adjacent to 

the mid-span where Ff~: 48. 
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15 Fatigue analysis of stud shear connections 

15.1 Introduction 
The fatigue behaviour of composite steel and concrete beams with mechanical 
stud shear connectors is unique. The concrete slab of the composite beam exhibits the 
usual well known time dependent characteristics of creep and shrinkage. However, 
tests have shown conclusively that the shear connection reduces in strength 
and stiffness immediately cyclic loads are applied, which means that both the degree of 
interaction and the degree of shear connection of the composite bridge beam changes 
each time a fatigue vehicle traverses the bridge. Hence, the strength and stiffness of an 
existing composite beam that is subjected to fatigue loads is continually changing with 
time, which makes the fatigue design and assessment a very intei'esting problem. 

In Chapter 14, standard procedures were described for determining the 
cyclic stress resultants that cause fatigue damage, and for using these stress resultants 
to determine the residual strength and endurance of a component of a structure. 
These standard procedures were described in a form that can be applied in theory 
to any type of stress resultant and any type of structural component. This chapter 
will concentrate on the fatigue design and assessment of the stud shear connectors 
in composite bridge beams, and will deal with the shear flow forces that act on stud 
shear connectors q and the shear flow strengths Q that they require for strength and 
endurance. It is worth reiterating that even though the fatigue limit state is an ultimate 
limit state, the analysis is elastic, in contrast to the ultimate limit state of strength 
that is often governed by the upper bound rigid plastic analysis. 

The crack initiation and crack propagation fatigue material properties of 
stud shear connectors are first described in Section 15.2. This is then followed in 
Section 15.3 by the details of a composite beam that are used in Sections 15.4 and 
15.5 to illustrate the crack initiation approach and crack propagation approach of 
the fatigue design of new bridge beams, and the fatigue assessment of existing bridge 
beams. Finally in Section 15.6, the crack propagation fatigue approach is applied to 
assessing the strength and endurance of composite beams in buildings that are 
subjected to cyclic loads. 

15.2 Stud shear connector fatigue material properties 
Endurance equations for stud shear connectors have the general form shown in Eq. 
14.1 and can be categorized in terms of whether they follow the crack initiation 
approach described in Section 14.2.3.1(b) or the crack propagation approach 
described in Section 14.2.3.1 (a). 

15.2.1 Crack initiation properties 
The following two equations are examples ~ of crack initiation fatigue endurance 
equations for stud shear connectors. 

235 



236 Fatigue analysis of stud shear connections 

Ech = 10 " 4~n) Ash (15.1) 

where the units and in N and mm, and 

227 070 ( )-5.4 
Ech = 10 - - ~ - n  R (15.2) 

Dmax 

where Ech refers to the characteristic endurance at two standard deviations, n is 
the number of connectors in a group within the composite beam that can be assumed 
to fail together, R is the magnitude of the range of a cyclic shear load acting on a 
stud shear connector, Ash is the cross-sectional area of the shank of the stud shear 
connector, and Dma x is the static strength of the stud shear connector, that is its 
strength prior to cyclic loading. 

The fatigue parameter that controls the endurance is often assumed to be R/Ash as 
shown in Eq. 15.1 The fatigue term R/Ash is a pseudo shear stress that is supposed to be 
acting on the shank of the stud shear connector; it is a pseudo shear stress as it ignores 
the shear forces resisted by the weld-collar of the stud shear connector as shown in 
Figure 5.1. However, this approach allows stud shear connectors to be designed using 
the same standard procedures as are used for other welded metal components. It should 
be remembered that endurance equations of this form are dimensionally incorrect, that 
is the constant of the equation depends on the units being used and, hence, the requirement 
of N and mm for Eq. 15.1. Another common form of the endurance equation is shown 
in Eq. 15.2 where the fatigue parameter now depends on R/D . This form of endurance 
equation is dimensionally correct and published statistical analyses I of fatigue endurances 
have shown that the fatigue parameter R / D  x gives the least scatter of results. 

In the analysis of composite beams it is often more convenient to deal with shear 
flow forces and shear flow strengths as these are derived directly from the analysis 
of the composite beam, and are not dependent on the choice of the mechanical shear 
connector. In which case, Eq. 15.2 can be written in the following form 

Ech 
0/227 070 ( qt )_5.4 

1 ~n) QD 
(15.3) 

where qt is the range of the cyclic shear flow force, and QD is the shear flow strength 
of the stud shear connectors prior to cyclic loads, that is the static strength Dm~ of 
the stud shear connectors per unit length. 

The accumulated damage law for the crack initiation procedure is given by the 
following equations 
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k=z Nk 
...... < 1  
ek k-1  

(15.4a) 

E k =f(q,) (15.4b) 

where there are z magnitudes of the cyclic shear flow ranges % N k applications of 
range (qt)k' and in which the shear connection when subjected to a range of magnitude 
(qt)k has an endurance E k which is a function of qt such as that given by Eq. 15.3. 

15.2.2 Crack propagation properties 
The crack propagation fatigue endurance ~ for stud shear connectors is given by 

Ech = 10 ~ ) 

that can be written in the following form in terms of the shear flows 

(15.5) 

(3.12-  0"70) ( q t ) - 5 " 1  

Ech = 10 ~ ) ~ ,QD} 

for which the following accumulated damage law is applicable 

(15.6) 

k=z Nk qo 
. < 1 -  

~-~ Ek QD k=l  

(15.7a) 

E k =f(q,) (15.7b) 

where qo is the maximum uni-directional shear flow force that the stud shear 
connection has to resist, which could be the maximum uni-directional shear flow 
force induced by the maximum overload that the composite beam has to resist, and 
Eq. 15.7b has been included to remind the reader that the endurance E k is a function 
of the cyclic shear flow range qt' 

15.3 Details of composite beam 
The composite bridge beam that was analysed in detail in Chapter 14 will also be 
used in this chapter to illustrate the design and assessment procedures in Sections 
15.4 and 15.5. The details of the beam and the results of the analyses in Chapter 14 
that are required in this chapter are summarized in this section. 

The simply supported composite beam in Figure 15.1 has a span of L = 32 m, the 
cross-section of the composite beam when transformed to concrete has a value of K 
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= A YJInc = 0.5 x 10 .3 mm ~, and the coefficient of friction between the concrete slab 
and steel beam has a value of la = 0.7. The beam has been analysed at the three design 
points shown in Figure 15.1, that is at the support, at the quarter-span and at the mid- 
span. It will be assumed that the beam has been constructed using unpropped construction, 
so that the stud shear connectors only resist the live load imposed by the fatigue vehicles. 

The standard fatigue vehicle that is used to represent the fatigue vehicles that cross 

the beam has a weight Ws~ v = 320 kN, and consists of two axles that have a spacing of 
I./4 = 8 m and which are equally loaded at V = 160 kN. The load spectrum associated 
with this standard fatigue vehicle is shown in columns 2 and 3 in Table 15.1 and the 
load spectrum has a value of the load constant of Lf= 1.14 as shown in column 4. 

The force spectrums at each design point that was derived from the longitudinal 
traversal of the standard fatigue vehicle across the beam is shown in Table 15.2. The 
results in the 'No friction' part are the shear flow forces at the interface, all of which 
has to be resisted by the mechanical shear connectors, as the beneficial effect of 
friction is ignored in this analysis. In contrast, the results in the 'With friction' part 
are the shear flow forces acting on the stud shear connectors, that allows for the 
beneficial effect of friction. The force constants Ff for each force spectrum are also 
listed in Table 15.2. The values in Table 15.2 are slightly different from the results 
of the original analyses in Table 14.8 due to rounding off errors that occurred in 
demonstrating the technique in Chapter 14. 

The maximum uni-directional shear flow forces (q)m~ acting on the stud shear 
connectors when the standard fatigue vehicle traverses the beam are given in rows 1 
and 3 in Table 15.3. It will be assumed that the maximum overload is a vehicle with 
the same shape of axle configuration as the standard fatigue vehicle, and that the 
weight of this overload vehicle W ~ = 9WsF v = 2880 kN. Hence, the maximum uni- 
directional shear flow force that has to be resisted by the stud shear connectors qo is 
9 times that induced by the standard fatigue vehicle and which is given in rows 2 
and 4. It needs to be emphasized that this is the maximum uni-directional shear flow 
force when unpropped construction was used, otherwise the connectors would be 
subjected to an additional shear flow force due to the dead weight of the structure 
acting on the composite beam. Hence if propped construction had been used, then 
the uni-directional shear flow due to the dead load would have to be superposed on 
that due to the live load to obtain qo as explained in Section 3.5. 

design points 
sup~~.__.i~// ~ s p a n  ~ mid-span 

�9 El 

Figure 15.1 Composite beam used in the analyses 



Fatigue analysis of stud shear connections 239 

Table 15.1 Load spectrum 
II II I I II I I I l l  I I l l  I I I I II l l l  I I  II I I I l l  I I II II 

(1) (2) (3) (4) (5) (6) (7) (8) 
Level W B BIk e'l W B BBv.I 

1 6.5 0.00002 0.280 6.5 0.00002 0.280 - 

2 5.0 0.00010 0.367 5.0 0.00010 0.367 - 
3 2.0 0.01000 0.343 2.0 0.01000 0.343 2.0 

4 1.0 0.13988 0.140 1.5 0.13988 1.106 
5 0.5 0.25000 0.007 0.5 0.25000 0.007 0.5 

6 0.2 0.60000 0.000 0.2 0.60000 0.000 0.2 
. . . .  i i I I i i  i i  I l i l l l l l  II  

EB = 1 Lf=l.14 YB = i Lf=2.10 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i i l l l l l  i ill i i i  

i l l  l i ii i 

(9) (10) 
W B BI~ "! 

0.01000 0.343 

1.5 0.13990 1.106 
0.25003 0.007 

0.60007 0.000 
i i  i i i  i i l l  i l l  i l l  i i i  i 

YB=l L,=1.46 
I iI I i l  I II I I I I I 

Table 15.2 Force Spectrum for m - 5.1 
i l l l  i l l  i l l  ii i ill i i i  i i l l l l  i i l l  i i i  i i  i l l  i ii 

Level Support 
- -  i l l  i i  i i i i i 

(1) (2) (3) 
qt f fqt 5'| qt f 
(N/mm) (x]O 9) (N/mm) 

. . . .  ii i i i i l  i l i l l  i i i l  i 

Part 1: No friction ( 11 = 0): 
I I I I Ill II I I I II I i I I l l  

1 158 1 163.4 135 1 
2 23 1 0.009 45 1 

Ff=163 

Part 2: With friction ( 11 = 0.7): 

1 97 1 13.6 118 1 
2 56 1 0.82 39 1 

Ff= 14 
i i i i  i i i i l i  i i i i i i  i 

Quarter- span 
i i i  i ii i i i i  i i i m l l i  

(4) (5) (6) 
qt 5.t 

(x]O 9) 
i i i i i  ii i i i i i i  

I I I I  

15.4 Crack initiation approach 

Mid-span 

(7) (8) (9) 
qt f fqt 5'' 
(N/mm) (xl&) 
i i i iii Ill 

i i , i  , , 

73.2 135 1 73.2 
0.27 45 1 0.27 
Ff =73 Ff =73 

i i 

36.9 124 1 47.5 
0.13 34 1 0.65 
F r = 37 Fr=48 

i i i i i i i i  i i  i i i i 

In this section, the genetic fatigue equation of Eq. 14.16 is developed specifically 
for the crack initiation approach for stud shear connectors. It is written in both a 
design mode and an assessment mode. 

15.4.1 Des ign  mode  

15.4.1.1 Crack  init iat ion fat igue des ign equat ions  
Equation 14.16 was derived from the generic form of the accumulated damage law 
in Eq. 14.6 and the genetic form of the endurance Equation 14.7. Comparing Eqs. 
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Table 15.3 Uni-directional shear flow forces 
,i 

(1) (2) Support 
(N and mm) 

Part 1: No Friction 

(1) (qs)m~x 158 

(2) qo = 9(qs)m~ = Qo 1418 

Part 2: With Friction: 

(3) ~-span (4) Mid-span 
(N and mm) (N and ram) 

l l | l  

113 68 

1013 608 

(3) (q)m~x 97 

(4) qo = 9(qs)m~x 870 
i i i 

97 62 

870 560 
ii i i i  

14.6 and 14.7 with their crack initiation counterparts for stud shear connectors in 
Eqs. 15.4 and 15.3, it can be seen that genetic fatigue equation of Eq. 14.16 can be 

written in the following form. 

Of= 
AC 

y=l 

1 

y=l Y 

1 

5.4 

(15.8) 

where Qe is the shear flow strength of the stud shear connectors that depends purely 
on the fatigue endurances, and Ff = f(qt ) that is the force constant is to be derived 
from the cyclic shear flow forces qt" 

15.4.1.2 E x a m p l e  15.1 Fatigue design based on mean properties 
Even though the crack initiation approach does not allow directly for the gradual 
reduction in the strength of stud shear connectors during cyclic loading, this approach 
is commonly used in practice as factors of safety and the use of characteristic 
properties can cater indirectly for reductions in strength. 

The composite beam in Figure 15.1 will be designed for T = 300 million traversals 
of fatigue vehicles that occurs over a period of 100 years. In Eq. 15.8, the exponent 
m = 5.4 and this has been used to derive both the force constants in Table 15.4, at the 
various design points, and the load constant Lf= 1.654 in column 4 in Table 15.5. 
Furthermore, it will be assumed in Eq. 15.8 that n ---> oo, that is we will designing 
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using the mean material properties. Again units of N and mm are used throughout 
this analysis and also in the ensuing analyses unless stated otherwise. 

(a) Shear  f low strengths  
At the support design point in Figure 15.1, the variables in Eq. 15.8 are: T = 300 x 
106; Lf= 1.654 from column 4 in Table 15.5; Ff= 746 x 10 9 from column 3 in the no 
friction part in Table 15.4; and n ~ ~. From w h i c h  (Qf)support - 2447 N/mm which is 
shown as point A in Figure 15.2. Applying the same analysis at the quarter-span and 
mid-span design points in Figure 15.1, where the only change in the variables is Ff 

= 320 x 109 from columns 6 and 9 in Table 15.4, gives (Qf)u4 sp~, = (Qf)mid-spa. -- 2092 
" " and N/mm that are shown as points B and C in Figure 15.2. Also plotted as A ,  B" 

C" in Figure 15.2 are the shear flow strengths Qo that are required to resist the 

maximum overload that are listed in row 2 in Table 15.3. 

Table 15.4 Force Spectrum for m = 5.4 
i i i 

Level Support Quarter- span 
" ii i i i i i l l  i ii i i i  i i i i i i 

(1) (2) (3) (4) (5) 
qt f fqt ~'4 qt f 
(N/mm) (x 109) (N/mm) 

i i i  I l L  I II I [ 

Mid-span 

(6) (7) (8) (9) 
fqt ~'4 qt f fqS.4 
( •  9 ) (Y/mm) (xl&) 

Part 1: No friction (11 = O) 

1 158 1 746.0 
2 23 1 0.002 

Ff = 746 

Part 2: With friction (It = O. 7) 

135 1 
45 1 

319.0 135 1 319.0 
0.85 45 1 0.85 
Ff -- 320 Ff= 320 

1 97 1 
2 56 1 

53.5 118 1 
2.8 39 1 
F r = 56 

i i  i ii iii i i i  i i  i i  i i 

154.2 124 1 201.6 
0.39 34 1 0.19 
F r = 155 Ff = 202 

i i i i  i i 

Table 15.5 Load Spectrum with m = 5.4 

..... . . . . . .   '3i 
Level W B 

i i  i 1 , , 1 1  i 

(4) 
BWS.* 

i i  i 

(5) ...... (6) (7)' 
W B BW 5"~ 

i i i  i 

1 6.5 

2 5.0 

3 2.0 

0.00002 

0.00010 

0.01000 

0.491 

0.595 

0.422 

6.5 0.00002 0.491 

5.0 0.00010 0.595 

2.0 0.01000 0.422 

1.0 

0.5 

0.13988 

0.25000 

0.140 

0.006 

1.5 0.13988 1.249 

0.5 0.25000 0.006 

0.2 0.60000 

I~B= 1 
i i ii | . ,  i l l  i i 

0.000 

Lf = 1.654 
i i  i HI  I 

0.2 0.60000 0.000 

]~B = 1 Lf = 2.763 
i i i 
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It can be seen in Figure 15.2 that, in this example, Qf is greater than Qo throughout 
the length of the beam and, hence, the endurance controls the design of this beam 
throughout its length. The relative positions of the fines Qfand Qo depend on T and Wo. 
For example, doubling Qo as shown by the line marked 2Qo would make the static 
strength control the design over about half of the beam that is adjacent to the supports. 
Conversely reducing T would lower Qc 

(b) Distribution of stud shear connectors 
Let us assume that 19 x 100 mm studs are being used in this composite beam, that 
these shear connectors have the strengths given by Eq. 5.4, and that inserting the 
appropriate material properties of the stud shear connections into Eq. 5.4 gives the 
static or dowel strength as 

Oma : / (15.9) 

where the strength is in N. 
When n --) oo in Eq. 15.9, the mean dowel strength of the stud shear connector is 

(Dm~)n~a, = 117.5 kN. The longitudinal spacing of the stud shear connectors, if they 
were placed in one single line, is Lsi--- Dmax/Qf, that at the supports comes to (L i)suppoN 
= 117500/2447 = 48 mm and at the other design points has the value (L ~),14.~p,n = 
(L i)mid.,pa, = 117500/2092 = 56 mm. 

15.4.1.3 Example 15.2 Characteristic material properties 
(a) Number of connectors n that fail as a group 
Stud shear connectors fail as a group both because they have a ductile plateau as 
described in Chapter 5 and shown in Figure 5.2 and because of the incremental set 2, 

Q 
(N/ram) 

3000 

2000 

lO00 

i ........ ~ 2 Q o  " Q f ' ~  i 
A~ ~  

. . . . . . . .  . . . . . . . . . . . .  

! i ..................... i 
A"O . . . . .  

i ...................... ,c, 
T ,, , ,  , 

support quarter-span mid-span 

Figure 15.2 Shear flow strengths from crack initiation approach 
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that is the permanent set that occurs during cyclic loading. Hence, their characteristic 
strength and endurance is a function of the number of connectors n that can be 
assumed to fail as a group, as given by Eqs. 15.8 and 15.9. 

In the ultimate strength design of composite beams in Chapter 4 it was a simple 
matter to define n as the number of connectors in a shear span, that is between the 
position of maximum moment and the support, as all of these connectors are required 
to resist the thrust at the ultimate load. Defining n in the fatigue design of an 'elastic' 
composite bridge beam is much more difficult as there are generally more connectors 
than required for equilibrium and the extent of the redistribution of shear due to the 
incremental set has not been quantified. It will be assumed in this analysis that only 
the connectors that are spread over a length equal to twice the depth of the beam, 
Lsp = 2D, can be assumed to fail as a group. It will be assumed that L p -  2D -- 3 m 
for the beam being analysed. 

(b) Spac ing  of  connec to r s  as a func t ion  o f  their  character is t ic  s t rengths  

and e n d u r a n c e s  
As both the characteristic endurance and characteristic static strength depend on n in 
Eqs 15.8 and 15.9, an iterative procedure will have to be used to quantify n. Let us start 
by determining the spacing of the connectors at the quarter-span and mid-span regions 
where Ff is the same. This analysis uses the same variables as in Example 15.1 except 
that n now varies. From Eqs. 15.8 and 15.9 with n --~ oo, Qf = 2092 N/mm and Dm~ = 
117,500 N, from which n = Q f L J D  = 53.4 mm for Lp = 3000 mm. Now repeating 
the analyses with n = 53.4 in Eqs. 15.8 and 15.9 gives Qf = 2179 N/mm and Dm~ x = 
13,379 N from which n -- QrLo~./D.....~ = 57.7. Continuing with n = 57.7 gives Qt = 2176 
N/mm, Dm~ - 113,550 N from which n = Q f L J D m r  t - 57.5. It can be seen that the 
number of connectors n converges rapidly. The spacing required is, therefore, L~ --- 
3000/57.5 = 52.2 mm. A similar iterative analysis at the supports gives L i = 44.9 mm. 

(c) Sens i t iv i ty  o f  des ign  to n 
The variation of the longitudinal spacing Ls~ with the number of connectors that can 
be assumed to fail as a group n is shown in Figure 15.3. When n -- I in Eqs. 15.8 and 
15.9, we are dealing with the characteristic endurance and strength of an individual 
connector, this gives a longitudinal spacing of L~-  32 mm at n --- 1 as shown. When 
n ---> oo, L~ ---> 56 mm which is shown as the asymptote in Figure 15.3. It can be seen 
in Figure 15.3 that as n increases L~ rapidly converges to the asymptote. It can also 
be seen that when n exceeds about 40 then there is very little change in L~. Therefore, 
it is suggested that, as in most composite bridge beams where n is fairly large, the 
design is based on the mean endurance and strength as given in Example 15.1. 

15.4.2 Assessment mode 
15.4.2.1 Fa t igue  a s s e s s m e n t  equa t ion  
In the assessment of an existing composite bridge beam, the shear flow strength of the shear 
connection Qfis  already known, so that the variable to be determined is the residual endumr~ 
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Lsi 
(mm) 

56 

40 

20,  : 
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I 

. . . . . . . . . .  n based  on character is t ic  proper t ies  

. . . . . . . . . . . . .  a s y m p t o t e  at n tending  to inf ini ty  

o I I , 
1 40 

n 

Figure 15.3 Number of connectors that fail as a group 

I 
80 

that can be measured in terms of the remaining fatigue vehicle traversals T. Therefore, Eq. 
15.8 can be rearranged into the following form that is convenient for assessment. 

0 (I~ 2.27 - 0.70 

(TFf Lf )I +(TFf Lf )2+ ..... +(TFf Lf )j = I ~n JQsf.4 (15.10, 
where there are j fatigue zones (as defined in Section 14.6.4.3 as when Ff and Lf are 
constant), and only one unknown value of T in these j fatigue zones. 

15.4.2.2 Example 15.3 Fatigue assessment of an existing composite 
bridge beam 
Suppose that the composite beam that was designed in Example 15.1 for a total of 
300 million fatigue vehicle traversals has now been subjected to T~ = 150 • 106 
fatigue vehicle traversals. Furthermore that during this fatigue zone ofT, = 150 x 106, 
the load spectrum has remained constant so that the load constant has the original design 
value of (Lf)~ = 1.654, and the force spectrums has also remained constant so that the 
force constant remains at (Ff), = 320 • 109 at both mid and quarter spans and at (Ff)~ = 
746 • 109 at the supports. Let us now assume that the weights of the commercial vehicles 
have been allowed to increase which has caused level 4 in column 2 in Table 15.5 to 
increase from WFv = 1 • WsF v to WFv = 1.5 x Ws~ as shown in column 5. This has 
increased the load constant to (Lf) 2 = 2.736 as shown in column 7. It is required to 
determine the fatigue effect of increasing the commercial vehicle weights. 

Let us at first apply Eq. 15.10 at the quarter-span and mid-span design points 
where the force constant Ff is the same. From Example 15.1, Qf= 2092 N/mm. In 
the first fatigue zone, T 1 = 150 • 106, (Ff)l = 320 • 109 and (Lf)~ = 1.654. In the 
remaining fatigue zone, the force constant remains unchanged at (Ff) 2 = 320 x 109, 
as the standard fatigue vehicle and the cross-sectional properties of the bridge are 
unchanged, however, the load constant has increased to (Lf) 2 = 2.736. Hence, the 
only unknown in Eq. 15.10 is the number of fatigue vehicle traversals T 2 in the 
second fatigue zone which comes to 91 million traversals. As the bridge was 
originally designed for 300 million traversals over 100 years and as the number of 
traversals to cause failure has reduced to 150 + 91 = 241 million. The bridge will 
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last (241/300) x 100 = 80 years in total or a further 30 years, from the increase in 
the commercial vehicle weights, assuming the rate of loading remains unchanged. 
A similar analysis applied to the supports will give exactly the same result because 
the same change in Lf has occurred at all the design points. 

15.4.2.3 Example 15.4 Fatigue assessment with friction 
If the endurances in Example 15.3 are not considered to be satisfactory, then a more 
accurate analysis would be to include the effect of friction in applying Eq. 15.10. 
The force constants with friction are given in Table 15.4. At the mid-span: Qf= 2092 
N/mm from Example 15.1; the first fatigue zone is given by T~ = 150 • 106, ( F f )  ! = 

202 x 109 from column 8 in the friction part of Table 15.4; and (Lf)t = 1.654 from 
column 4 of Table 15.5. In the second fatigue zone the force, (Ff) 2 = 202 • 109 and 
the load constant is(Lf) 2 = 2.763 from column 7 of Table 15.5. Solving Eq. 15.10 
gives T 2 = 195 million load traversals and, hence, friction has extended the endurance 
of the stud shear connectors from 90 million, in Example 15.3, to 195 million 
traversals and, hence, this section of the beam will last a further 65 years. Applying 
the same analysis to the quarter-span design point gives T 2 = 282 million which is 
equivalent to a further 94 years, and to the support design points gives T 2 = 2,304 
million traversals which is equivalent to a further 768 years. It can be seen that 
friction has an enormous beneficial effect at the supports. 

15.5 Crack propagation approach 
The generic fatigue equation of Eq. 14.16 is adapted in this section to the crack 
propagation approach for stud shear connectors, in both a design mode and an 
assessment mode. Because the crack propagation approach allows for the direct 
interaction between strength and endurance, it is ideally suited for assessment. 

15.5.1 Design mode 
15.5.1.1 Crack propagation fatigue design equations 
Comparing the generic fatigue material properties of Eqs. 14.6 and 14.7 with the 
stud shear connection crack propagation material properties in Eqs. 15.7 and 15.6 
and substituting the corresponding values into the genetic fatigue equation of Eq. 
14.16, gives the following crack propagation fatigue equation. 

1 -  1o ~ 1 -  1o ' ,/g 

(Qo: -- f(n))-'" = (Q.o: q~ = (Qo: qf(n)) (|5.1 |) 

y-I 

where qo is the shear flow force due to the maximum overload, and Qor is the shear flow 
strength of the stud shear connection when the structure is first built and which is 
required to resist not only the maximum overload Clo but also the reduction in strength 
due to fatigue loads. The function Ff -- f(qt) in Eq. 15.11 is to remind the reader that the 
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force spectrum must be derived in terms of shear flow forces, and the function Qof = 
fin) is to remind the reader that the number of connectors required depends on their 
characteristic strength and, hence, the number n that can be assumed to fail as a group. 

Equation 15.11 can be written in the following design form that is based on the 
mean material properties. 

Q o f  "-- 

( q~ / 1318 1 - ~-of 

"T 1 ooo (Ff )1 (Lf )1 4- T2(F f )2 (Lf )2+.. .+Tj(Ff )j(Lf )j 

1 

5.1 

(15.12) 

The aim of the design procedure is to determine the shear flow strength of the stud 
shear connectors when the structure is first built Qof" It can be seen in Eqs. 15.11 and 
15.12 that the parameter Qof occurs on both sides of the equation, hence, an iterative 
approach has to be used. 

It is worth noting that in general one standard fatigue vehicle with its associated 
load spectrum and force spectrum is used to represent all the fatigue vehicles, and 
therefore there is usually only one fatigue zone (TFL) I in Eq. 15.12. However, if 
two standard fatigue vehicles are required to represent all the fatigue vehicles, then 
the second standard fatigue vehicle and its associated values of T~, (Lf) 2 and (Ff)~ 
would form a second fatigue zone in Eq. 15.12. Similarly, if the same standard 
fatigue vehicle was moved across different lanes that crossed the bridge, then a 

fatigue zone would be created for the traversal across each lane. 

15.5.1 .2  E x a m p l e  15.5 Fatigue design based on mean properties 
Let us apply Eq. 15.12 to the design of the composite bridge beam in Figure 15.1 in 
which T = 300 million. At the support design point: Ff= 163 x 109 from column 3 of 
the no friction part of Table 15.2; Lf= 1.14 from column 4 in Table 15.1; qo = 1418 
N/mm from column 2 of the no friction part of Table 15.3. Hence TFL = 5.575 x 
10 ~9 and, therefore, Eq. 15.12 becomes 

Equation 15.13 has to be solved iteratively. For example, as we know that Qof 
must be greater than qo = 1 4 1 8  N/mm, we could start with Qof- 2000 N/mm which 
will make the fight hand side equal to 2318 N/mm, which could then be used as the 
second estimate of Qof for insertion into Eq. 15.13 in the next cycle of the calculation. 
The solutions converge fairly rapidly to Qof = 2220 N/mm; the calculations being 
achieved readily on a spreadsheet program. 
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At the quarter-span design point: F r= 73 x 109 (Table 15.2); L t = 1.14 (Table 
15.1); qo = 1013 N/ram (Table 15.3); Qof-- 1555(1 - 1013/Qof)~ which gives 
Qof= 1820 N/mm. Finally at the mid-span design point: Ff= 73 x 109; Lf = 1.14; 
qo = 608 N/mm; Qof= 1555(1 -608/Qof)'~ which gives Qof= 1700 N/mm. 

The shear flow strengths are plotted in Figure 15.4 as Qof. The difference between 
Qof and Qo, that is shown hatched, is the reduction in strength due to the fatigue 
damage during the design life of the structure. The strength when the structure is 
first built has to be at least Qof, so that at the end of the design life, the strength will 
not have reduced to less than Qo, that is just sufficient to resist the maximum overload. 
Hence, Qor will always be larger than the static requirement of Qo, unless fatigue 
loads are not applied to the bridge in which case Qof = Qo' 

At the supports TFL --- 5.57 x 1019 and at mid-span TFL = 2.50 x 10 '9, therefore, 
the greater fatigue damage occurs at the supports. However, it can be seen in Figure 
15.4 that the increase in strength due to fatigue damage Qof- Qo is less at the supports 
than at mid-span. This is because the fatigue damage term TFL depends on the 
cyclic range qt, whereas, the actual damage depends on the cyclic range as a proportion 
of the static strength, that is qt/Qor Therefore, the increase in strength Qof- Qo that is 
required at the supports is less than that at mid-span because the static strength 
requirement is larger at the supports. 

15.5.1.4 Example 15.6 Varying the static strength requirement 
Let us consider the effect of varying the static strength requirement qo of the composite 
bridge beam whilst maintaining the same fatigue damage, that is the same value of 
TFL. For example, it may be required to add more connectors to counteract the 
effects of creep, shrinkage or thermal gradients, or reduce slip at the concrete-slab/ 
steel-beam interface. 

Applying Eq. 15.13 for different values of qo at the supports gives the variation in 
Figure 15.5, where the ordinate is the proportional increase in strength required for 
fatigue. The variation in the proportional increase is asymptotic to the line 
Qo/qo = 1, because when qo >> qt the fatigue damage (q/Qof)5.~ __> O. This means that 
if the static strength requirement is very large then the additional strength of 
connectors required for fatigue will be relatively small. 
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Figure 15.4 Shear flow strengths from crack propagation approach 
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Figure 15.5 Variation of the static strength requirement 

Another way of visualizing the effect of increasing the minimum static strength 
requirement is to double the static strength requirement in Example 15.5. Equation 
15.13, that applies to the support, now becomes Qof = 1820(1 - 2836/Qof) ~ which 
gives Qof= 3050 N/mm at the support. At the quarter-span Qof= 1555(1 - 2026/Qof)- 
0.~9~ = 2325 N/mm and at mid span Qof= 1555(1 - 21216/Qof) ~ = 1900 N/mm. 

The results are plotted as the lines labelled 2Qo and Qof= f(2Qo) in Figure 15.6. 
Hence, the shaded region within points B is the increase in the shear connection strength 
that is required because of fatigue loads when the static strength is doubled. The partly 
hatched region within points A is the increase in strength for the original static strength 
from Figure 15.4. It can be seen that doubling the minimum static strength requirement 
has considerably reduced the additional connectors required for fatigue damage. 

15.5.2 Assessment mode 
15.5.2.1 Crack propagation fatigue assessment equations 
The crack propagation design equation of Eq. 15.11 can be written in the following 
form that is suitable for assessment. 
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Figure 15.6 Doubling the static strength requirement 
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Q~t 5.1 = 

0.70 0.70 

),(,., ),+ ....... ), 
y=l 

(15.14) 

where Q~t is the shear flow strength of the stud shear connectors prior to cyclic 
loading that can be taken as the strength when the structure was first built Qof, Q,~, is 
the residual or remaining strength after cyclic loading, and TFL are the fatigue zones 
that have or will occur. For assessment purposes, the unknown in Eq. 15.14 is either 
the residual strength Q,, or the residual endurance Tj after cyclic loading. 

Assuming n ---> o. in Eq. 15.14, gives the following assessment equation for deriving 
the mean residual strength 

Qres = QstIl_ Q~t5.1~TFL . . . . . . .  (5.15) 

that can be rearranged in the following form in order to determine the mean residual 
endurance Tj. 

) y=j-1 
1318Q5i 1 1 -  Qres _ E(TFL)y 

Qst y=l  
Tj = FiLi (15.16) 

It can be seen in the assessment equations of Eqs. 15,15 and 15.6, that the residual 
strength Q~, varies linearly with the fatigue damage parameter TFL. Therefore, the 
iterative solution required for the design of new structures in Section 15.5.1 is no 
longer required in this assessment mode. 

15.5.2.2 E x a m p l e  15.7 Assessing the remaining strength and endurance 
Let us now assess the performance of the composite bridge beam that was designed in 
Example 15.5. We will ignore the beneficial effect of friction and assess the performance 
throughout the whole design life at the mid-span design point. The original design 
parameters were: T = 300 million fatigue vehicle traversals during a design life of 100 
years; Qo= 608 N/mm from Table 15.3; Qof= 1700 N/mm from Example 15.5; Ff= 73 
x 109 from Table 15.2; and Lf = 1.14 from row Table 15.1. 

(a) Assessment equat ions  
As Q,t = Qof = 1700 N/mm, Eqs. 15.15 and 15.16 can be written as 

Q,,, = 170o - (4 .318xlO-~Tx~TFL)  (15.17) 



250 Fatigue analysis of stud shear connections 

and 

Tj = (3.937• 1019 (1- (Qres 11700))- ~_~ TFL) I Fj Lj 
where the units again are N and mm. 

(15.18) 

(b) Initial reduction in strength 
Let us assume that the number of vehicle traversals during the first 30 years is T t = 
150 x 106 that far exceeds the original anticipated rate of vehicle traversals of 300 
million over 100 years. However, the distribution of the fatigue vehicle weights is 
as expected in the original design, so that the load constant remains unchanged at 
(Lf)~ = 1.14. Furthermore, as no structural changes have been made to the bridge 
beam, the force constant also remains unchanged at (Ff)~ = 73 x 109. 

The first fatigue zone is, therefore, given by (TFL)~ = 150x106 • 73x109 x 1.14 = 
12.48 x 10 ~s. Inserting this value into Eq. 15.17 and bearing in mind that there is only 
one fatigue zone at this stage, gives Qre~ = 1154 N/mm which is shown as point B in 
Figure 15.7. An alternative way of determining the residual strength is to remember 
that 150 million vehicle traversals have been applied of the original design number 
of 300 million. Therefore, as the residual strength varies linearly in a fatigue zone, 
the reduction in strength is given by (Qs,-Qo) x (150/300) = 546 N/mm and, hence, 
the residual strength is 1700 - 546 = 1154 N/mm. 

(c) Increasing the allowable commercial vehicle weights 
We will now assume that the maximum weight of commercial vehicles has been 
allowed to increase. It is anticipated that level 4 in the load spectrum in column 2 in 
Table 15.1 will increase rapidly by 50%, so that the new load spectrum is given by 
columns 5 to 6 where the load constant has now increased to (Lf) 2 = 2.10. 

The effect of the change in the commercial vehicle weights on the remaining 
endurance can be derived from Eq. 15.18. It is now required to determine the 
endurance when: the residual strength reduces to the minimum strength required to 
resist the maximum overload, that is Qre~ = Qo = 608 N/mm; ~TFL = (TFL)~ 
= 12.48 x 10~a; (Lf) 2 = 2.10; and the force constant remains unchanged at (Ff) 2 = (Ff) I 
= 73 x 109. Inserting these values into Eq. 15.18 gives T 2 = 84 x 106 fatigue vehicle 
traversals which is shown as point D in Figure 15.7 and, hence, the increase in the 
weights of the commercial vehicles has reduced the remaining design life from a 
further 150 million traversal to 84 million traversals. 

Let us now assume that 60 million of these fatigue vehicle traversals have 

been allowed to occur, so that the second fatigue zone (TFL) 2 = 60x106 x 73x109 
x 2.1 = 9.20x10 ~s and, hence, ]~TFL = (TFL)~ + (TFL)2= 12.48x10 Is + 9.20x10 ~s 
= 21.68 x 10 Zs. Applying Eq. 15.17 gives Q~ = 762 x 106 which is shown as point C 
in Figure 15.7. Figure 15.7 clearly shows how the rate of the residual strength 
reduction due to the increase in the commercial vehicle weights has increased from 

fatigue zones 1 to 2. 
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(d) P l a c e m e n t  of  a we igh t  res t r ic t ion  
Because of the rapid reduction in strength induced by the increase in the commercial 
vehicle weights, let us now assume that a weight restriction has to be placed on the 
bridge that eliminates levels 1 and 2 in Table 15.1 as shown in column 8. This will 
change the distribution of the probabilities as they have to be increased in proportion 
so that they sum to 1, as shown in column 9. Furthermore, the load constant in 
column 10 is now (Lf) 3 = 1.46. 

Applying Eq. 15.18 with (Ff) 3 = 73 x 109, Q~, = Qo = 608 N/mm and ETFL = 21.68 
x 10 ~8, gives T a = 34 x 106 which is the number of cycles required for the strength to 
reduce to the minimum requirement. This is shown as point E in Figure 15.7 and occurs 
after a total of 244 million fatigue vehicle traversals. If the rate of fatigue vehicle traversals 
remains constant at 150 million every 30 years, as occurred in the first fatigue zone, 
then the bridge will last a total of (244/150) x 30 = 49 years. 

(e) R e m e d i a l  measu re s  
At this stage, the strength of the stud shear connectors is at the minimum requirement 
of the strength to resist the maximum overload. The only way to increase the design 
life without reducing the maximum overload requirement, is to strengthen the bridge 
so that the shear flow forces are reduced. Let us assume that a plate is welded to the 
bottom flange of the composite beam, and that the addition of this plate reduces the 
original cross-sectional property of A y/I  in Eq. 14.4 by 20%. Hence, the addition 
of the plate reduces K in Example 14.5 to 0.4 x 10 .3 mm -I and, therefore, reduces the 
shear flows to 80% of their original values prior to plating. 

Reducing the shear flows to 80% of the original value, reduces the shear flows 
with no friction qt in Table 15.2 by the same factor. Hence the force constant reduces 
by a factor of 0.85~ = 0.320, so that at mid-span (Ff)  4 = 0.320 x 73x109 = 23x109. 
Furthermore, the shear flow due to the maximum overload also reduces by 20% to 
Qo -- 0.8 x 608 --- 486 N/mm. The fatigue damage in the third fatigue zone that was 
previously analysed is (TFL) a = 34x106 x 73x109 x 1.46 = 3.61x1018, so that the 
total fatigue damage of the first three zones is now ~TFL --- 25.29 x 10 ~s. Applying 
Eq. 15.18 with Q~s = Qo = 486 N/mm, ~TFL = 25.29 x 10 tS, (Ff) 4 -- 23 x 10 9, 

and with the value of the load factor prior to the weight restriction (Lf) 4 - 2.10, gives 
T~ -- 58 x 106 which is shown as point F in Figure 15.7. The remedial work has, 
therefore, extended the life of the bridge to a total of 302 million traversals, that at 
the present rate of vehicle traversals will give a total design life of 60 years. 

15.5.2.3 E x a m p l e  15.8 Assessing the beneficial effect of friction 
The beneficial effect of friction is illustrated in this example by redoing the analyses in 
Example 15.7 with the effect of friction. It was shown in Example 15.4 that friction had 
the least effect on the endurance at the mid-span design point, so the analysis of this 
region will demonstrate the least benefit of friction on this beam. The effect of friction 
is to reduce the force constant from (Ff) = 73x109 in column 9 in the no friction part of 
Table 15.2 to (Ff)= 48x109 in column 9 in the with friction part. 
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Figure 15.7 Variation in the residual strength 

At zone 1 in Figure 15.7, (TFL)~ = 150x106x48x109xl.14 = 8.21x10 iS, hence 
from Eq. 15.17, Qres = 1700 - (8.21x10~Sx4.318x10 -~7) = 1346 N/mm as shown at 
point B' in Figure 15.5. At zone 2, (TFL) 2 = 60x106x48x109x2.10 = 6.05x10 t8, 
therefore, ~ T F L  = 8.21x10 ~8 + 6.05x10 ~8 = 14.26x10 t8, hence, Qres = 1700-  
(14.26x10~8x4.318x10 -~7) = 1084 N/mm as shown at point C'. At zone 3, (TFL) 3 = 
34x 106x48x 109x 1.46 = 2.38x 10 ~8 , therefore, ~TFL = 16.63x 10 ~8, hence, Q,~s = 1700 
- (16.63 x 10~8x4.318x10 -iT) = 982 N/mm as shown at point E'. Finally at zone 4, 
(TFL) 4 = 58x10%<0.32x48x109 x 2.10 = 1.89x10 ~8, therefore, ~TFL  = 18.52x10 ~8, 
hence, Q~s = 1 7 0 0 -  (18.52x10~8x4.318x10 ~7) = 900 N/mm as shown at point F'. It 
can be seen in Figure 15.7 that friction can substantially increase the residual strength 

and that friction provides a factor of safety against failure. 

1 5 . 6  C o m p o s i t e  b u i l d i n g  b e a m  
15.6.1  General 
Composite building beams can be subjected to fatigue loads such as those imposed 
by the traversal of cranes or fork lift trucks. 

15 .6 .1 .1  E x a m p l e  15 .9  Assessment of  a composite beam in a building 
Let us consider the effect of the continuous applications of loads from the traversal 
of a fork lift truck as shown in Figure 15.8(a). It will be assumed that the fork 
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lift truck does not cross the beam longitudinally but transversely and in line with 
the mid-span of the beam, so that the distance from the wheel loads V to the 
supports remains equal. It will also be assumed that the width between wheels 
remains constant at 1.6 m. 

The composite beam spans 10 m and the material and geometric properties are given 
in Figure 4.3. The beam has already been designed in Example 4.1 in Section 4.2.2.2 
using ultimate strength rigid plastic theory. In these analyses, the beam was designed 
with full shear connection, it had a flexural capacity of Mr~ = 702 kNm, and the strength 
of the shear connection in a half span was 2300 kN. Hence, the shear flow strength Qst 
--- 2300 x 103/5000 --- 460 N/mm which is shown in Figure 15.8(b). 

The elastic properties of the beam are given in Figure 5.4 in Section 5.3.5.2, 
where it was assumed that the beam was subjected to a long term load of 
w. - 20 kN/m. It will be assumed in this analysis that the only short term loads are 

lag 
the fork lift trucks. It will also be assumed that propped construction was used, so 
that all of the uniformly distributed dead load is resisted by the long term properties 
of the beam, and that all of the fork lift truck loads are resisted by the short term 
properties. From Figure 5.5, the long term value of K in Eq. 14.4 is K~,~ = (AcYc/I~) 
= (28270 x 62)/716 x 106 = 2.49 x 10 .3 and the short term value is K~ng = (AcyJI,) 
= (57450 x 35)/819 x 106 = 2.46 x 10 -3. 

(a) Minimum shear flow strength requirement 
Assume that the beam must be able to resist a maximum overload that consists of a 
fork lift truck of 97 kN. This truck would induce a shear load of 48.5 kN and, hence, 
a short term shear flow force of 48,500 x 2.46 x 10 .3 = 119 N/mm. The long term 
uniformly distributed load of 20 kN/m induces a maximum shear load of 100 kN at 
a support and, hence, a maximum long term shear flow force of 100 x 103x 2.49 x 
10 -3 - 249 N/mm. Therefore, the maximum overload shear flow force qo which is 
also the minimum strength requirement Qo - 119 + 249 = 368 kN and occurs at the 
support as shown in Figure 15.8(b). 

(b) F o r m a t i o n  o f  a force  and load  s p e c t r u m  
Let us assume that the weights W ~  and frequencies f of the fork lift trucks were 
measured over a day and the results are listed in columns 2 and 3 in Table 15.6. 
These weights have been converted to shear flow forces using the short term 
properties of the beam and are listed in column 4. Because of the loading 
arrangement, qt is both the peak and range of the cyclic shear flow force induced by 
the lateral traversal of a vehicle. 

A simple way to visualize the problem is to assume that columns 3 and 4 in 
Table 15.6 are the ranges and frequencies induced by a standard fatigue vehicle 
that has taken one day to traverse the beam. In which case, the force constant can 
be calculated as Ff= 1.974 x 10 ~2 in column 5. The load constant Lf= 1, as only one 
vehicle equal to the weight of the standard fatigue vehicle is assumed to have 
traversed the beam 
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Table 15.6 Force spectrum for building beam 
i 

(1) 
Level 

(2) (3) 
Wry f 
(kN) (per day) 

1 80 100 

2 50 400 

3 10 300 

(4) (5) 
q, fqS.l 

(N/mm) (• 

Without friction 

98.2 1.445 

61.4 0.527 

12.3 0.002 

Ff= 1.974x10 ~2 

(6) (7) (8) 
Q/ric qdo fqd: "t 

(N/mm) (N/mm) (• 

With friction 

4.8 93.4 1.119 

3.0 58.4 0.408 

0.6 11.7 0.000 

Ff= 1.527x 1012 

and, hence, B = 1 and W = 1 in the load spectrum in Table 14.1, that will now only 
have one level. Furthermore T is now equal to the number of days, as it took the 
standard fatigue vehicle one day to cross the beam. 

An alternative procedure for acquiring the force spectrum would have been to 
strain gauge the beam and record the variations in the strains for a fixed period. 
Columns 3 and 4 could have been derived from the magnitude and variations of 
the strain readings and T would now be the length of the period during which the 
strains were recorded. 

(c) E n d u r a n c e  
Applying Eq. 15.16 in which Qst - 460 N/mm, Q~ = Qo = 368 N/mm, Ff= 1.974xl 0 ~2 
and Lf = 1 gives T = 5080 days. Hence after 5080 days, the shear flow strength of all 
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Figure 15.8 Composite building beam 
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the connectors in the shear span has reduced to Qre~ -- 368 N/mm as shown in Figure 
15.8(b). The strength of the shear connectors at the support will be just sufficient to 
resist the maximum overload. However in the rest of the shear span there is a reserve 
of strength of Q~ - Qo as can be seen in Figure 15.8(b). Therefore, this endurance 
can be considered to be a lower bound. 

(d) Residual flexural strength 
As the cyclic shear flow forces are the same throughout the beam, because of the 
loading configuration shown in Figure 15.8(a), the strengths of all the connectors in 
a shear span reduce by the same amount, so that they will all have the same residual 
strength of 368 N/mm. Hence, the shear flow strength has reduced from 460 to 368 
N/mm, that is the shear flow strength is 368/460 = 80% of the strength when first 
constructed. As the beam was originally designed with full shear connection, the 
degree of shear connection is now rl,~ = 0.8. It was shown in Example 4.6 in Section 
4.2.4.2 that this beam with a degree of shear connection of 80%.has an ultimate rigid 
plastic strength of 653 kNm. Therefore, the fatigue loads will have reduced the 
flexural capacity of the composite from 720 kNm to 653 kNm in 5080 days. 

(e) Beneficial effect of friction 
Equation 14.5 has been used to determine the effect of friction. It has been assumed 
in the analyses that ~t--- 0.5. The shear flow frictional resistances are given in column 
6 in Table 15.6. This reduces the shear flows acting on the stud shear connectors 
from those in column 4 to those in column 7, from which Ft= 1.527• ~2. Applying 
Eq. 15.15 in which Qst = 460 N/mm, T = 5080, Ff= 1.527x10 I~ and Lf = 1, gives Qres 
- 389 N/mm. Hence, the degree of shear connection is now 389/460 = 85% which 
means that friction has increased the degree of shear connection by 5%. 
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Shape factor 185 
Shear 

lag 21-27 
transfer 141-143 

Shear connection 
degree of 13,15,47,64,67,70,84,138 
full 14,17,55,137 
no 57 
partial 12-16,47-48,55,57,64 
shape 76 

Shear connectors 
characteristic strength 78 
configurations 76,78,81,I 68-172 
deformations 40 
detailing 75-77,78 
distribution 52,70,72,76 
77,82,83,90-93,96,242 

uniform 70 
fracture 53,66,78 
mechanical 1,74-93 
spacing 76-77 
stud (see also Dowel) 1,3 

diameter 74 
head 1,74 
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height 74,76 
shank 1,77,79 
weld collar 1,74,76,80 
welded 232 

stiffness 39,40 
Shear flow 21 

forces 74,95-97,222,235 
envelope 213,228 

on connectors 51-52,235,238 
planes 95-106 
strength 54,70,83,214,235,242- 
242,247,253 

generic 97-98 
mean 72 

Shear force 77 
longitudinal 95 
transfer 95-106 

Shear plane 
encompassing shear connector 104-106 
through depth of slab 99 

Shear span 54,63,78 
Sheeting 

profiled 3,4,25,80,100-102 
thickness 3 

Shrinkage 9,235 
strains 9,48 

Slabs 
profiled 60,100,137 
shear resistance 151-154 

Slenderness 202-203,207 
limits 28-38 
parameter 124,132-134 
ratio 124-125 

Slip 16,40,74,75,85 
distribution 16 
excessive 70-75 
maximum 86-88,90 
strain 16,17,40 

Splitting 58,77 
design philosophy 58 
global 164 
local 162-176 
longitudinal 97 
plane 179 
post 64,182-184 
strength 164-168 
zone 162 

Squash load 122-124 
Standard deviation 5,211 
Statically indeterminate 5,185 
Steel 

column 121-127 
elastic modulus 7,40 
fracture 11 
mild 7 
yielding 7,40,54 

Steel decking 8 
Stiffness 12 
Strain distribution 12,110-111,139 

Strain hardening 7,11,186,195 
Strains 

elastic 10 
instantaneous 9 
yield 7 

Strength 13 
characteristic of dowel 51 
concrete component 54 
design 6 
mean of dowel 77,80,84 
shear connection 54-57 
shear connectors 12,14,57,74,168-172 
steel component 33,56,55 
ultimate 11 

Stress 
biaxial 7 
flexura123,49-50 
proof 7 
resultants 13 
shear yield 7 
tensile 209 
uniaxial yield 6 

Stress distributions 12,34,64,68 

Transformed area 40-44,83,109 
Transverse flexure 99,104-105 
Transverse reinforcement 100-106,177 
Triaxial confinement 177-179 

Ultimate strength 
analysis 39 

Understress 51 

Vehicles 
traversa1209 

Voids 62,80,102 

Warping displacements 21 
Webs 

openings 135-161 

Yield 
moment 33,185,186 
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