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About this Book

This book deals in a modern manner with a family of problems from an old and
mature subject, classical elasticity.

Classical elasticity studies linearly elastic, isotropic material bodies; its goal is
to find the displacement field induced in such bodies by the applied loads and the
imposed confinement conditions; such goal is achieved by solving the Navier
equations, in the form they were given by Cauchy in 1828.

In the problems we deal with—the first and most important of which bears the
name of Lord Kelvin, who wrote about it in 1848—a point or a line load induces a
singular stress field in an unbounded body occupying the whole of a
N-dimensional space (with N = 3 or 2) or half of it; the strength of the singularity
is q–(N-1), for q the distance from the point where the load is applied.

My attention for this problem class is fairly recent: it dates from an accidental
inspection of the solution of one of them (Flamant’s, in its two-dimensional
formulation), from which I managed to dig out a first example of concentrated
contact interaction. Since the occurrence of concentrated contact interactions was
not contemplated in continuum mechanics, I felt like a naturalist who steps into a
new species. In search of more examples, I turned to all problems in the class and,
to push myself through the abundant relative literature, I made them the subject of
an advanced undergraduate course in elasticity for students in civil engineering
that I imparted in the fall of 2005. From my reading and teaching, I gradually
became persuaded that all those problems could be solved in a simple, systematic,
and constructive, new manner. The notes I prepared formed the first draft of this
book, which I begun to refer to by its present facetious title because its contents,
that the subtitle details, do cover the body of knowledge of linearly elastic
geomechanics, and more.

Antonino Favata, my co-author, was one of the students sitting in my 2005
course; he showed an unusual interest in the subject and worked out some
nontrivial exercises. Six years later, when I resumed my notes for a second
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delivery of that course, Favata had just defended his Ph.D. thesis, and held a post-
doctoral position in my department. He not only helped me in many ways all along
the course but also produced on his own a substantial amount of new material—
chiefly, in theme of the Kelvin, Melan, and Mindlin, problems—that has been
incorporated where appropriate.

Rome, October 2012 Paolo Podio-Guidugli
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Preface

The problems we are going to study are all named: those after Kelvin, Boussinesq,
and Cerruti, all three-dimensional, were solved explicitly during the second half of
the nineteenth century (Cerruti’s paper [7] appeared in 1882, long after the 1848
paper by Kelvin [18], the papers by Boussinesq [3, 4, 5, 6] between 1878 and
1892; in the same year 1892, a use of Boussinesq’s solution in the guise of a Green
kernel allowed for the solution of the Flamant Problem [9]). Two other problems
in the same class were solved in the twentieth century: Melan’s in 1932 [13];
Mindlin’s, the three-dimensional version of Melan’s, in 1936 and 1953 [14, 15].

All those problems were first dealt with by trying to solve the Navier equations
for a displacement field having the representation constitutively implied by a
tentative representation of the stress field in terms of a scalar potential. Such
displacement field, in the absence of diffused volume loads, was the one induced
by a concentrated force (or a doublet; see [14], Sect. 44 and 51–53; see also [4],
Sect. 13.12).

When applied at an inner point, as in Kelvin’s problem of a body occupying the
whole space, a concentrated force was regarded as a special type of distance force.
In modern terms, the Kelvin Problem can be rephrased as the problem of finding
the Green function for the Navier equations in the whole space. A similar
rephrasing fits both the Mindlin Problem [14, 15] and the Melan Problem [13],
where a concentrated force is applied at an inner point of a half-space having
dimension 3 and 2, respectively. Boussinesq, Cerruti, and Flamant considered
instead concentrated forces applied to half-spaces, that is to say, they solved a
boundary-value problem with a special assignment of tractions on the accessible
part of the boundary. All these authors could not help to regard a concentrated
force as an approximation: in the words of Love, the general problem under study
was ‘‘[t]he problem… of the transmission into a solid body of force applied locally
to a small part of its surface’’; in short, ‘‘the problem of transmission of force’’ (see
Love’s ‘‘Historical Introduction’’, pp. 15 and 16 of [11]).

The original papers we quoted make an interesting and instructive reading, but
generally not an easy one. Accounts at various levels of completeness and clarity
are found in many textbooks, among which we mention, in addition to the quoted
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treatise by Love [11], those by Sokolnikoff [17], Malvern [12], Gladwell [10],
Benvenuto [2], Davis and Selvadurai [8] (whose title inspired ours), Barber [1],
and Sadd [16].

We propose a different approach where the basic equations of an elasticity
problem—namely, balance, constitutive, and compatibility equations—are not
combined into one partial differential equation for displacement, as Navier did, but
instead used sequentially, in a heuristic fashion that is guided by the symmetries in
the stress and displacement fields intrinsic to the problem at hand and justified a
posteriori by appealing to the uniqueness theorem of classical linear elasticity.

Symmetries are the qualitative features of a problem that an educated intuition
detects. When given an appropriate mathematical form, they dictate the choice of a
priori representations for the unknown fields; such representations simplify sub-
stantially the solution process: think, for example, of the simplifications in solving
St. Venant’s problem induced by the a priori representation for the stress field he
chose. In mechanics, the intuitive symmetries are those that the traction and dis-
placement fields have, in duality, as a consequence of symmetries in the geometric,
constitutive, and load, data; needless to say, symmetries in tractions entrain
symmetries in stresses, while symmetries in strains are entrained by symmetries in
displacements.

In this book, our discussion of each problem begins precisely with a careful
examination of the prevailing symmetries. Here is the procedure we follow: we
first look for a general solution in terms of stress of the balance equation; as a rule,
what we find is a parametric family of solutions, among which we choose the only
one turning out to be geometrically compatible when a linearly elastic and iso-
tropic strain response to stress is postulated; accordingly, our choice is made by
selecting the parameters so as to satisfy the compatibility equation written in terms
of stresses. Next, we find the strain field from the stress field by a direct use of the
constitutive equation; and, finally, we construct the displacement field by an
explicit integration of the strain field.

It is important to realize that the strain and displacement fields we arrive at are
those the applied loads induce in material bodies whose response to stress is
modeled as it was almost invariably done in the nineteenth century, the golden age
of classical elasticity. Now, the way most materials of geotechnical interest behave
is far from being linearly elastic. Yet, it so happens that some, if not all, of the
information embodied in the balanced stress states we determine do not depend on
the material response, and hence play a direct and central role in designing, say,
structure/foundation interactions.

In Chap. 1, our general plan of action is exemplified in an elementary
one-dimensional case, where technical difficulties are minimal and yet the main
conceptual ingredients are preserved. In higher dimensions, certain technical
features are encountered that are different depending on whether a three- or two-
dimensional version of the same problem is dealt with. This prompted us to begin
by a preparatory Part I, consisting of two chapters. In Chap. 2, the basics of linear

viii Preface

http://dx.doi.org/10.1007/978-3-319-01258-2_1
http://dx.doi.org/10.1007/978-3-319-01258-2_1
http://dx.doi.org/10.1007/978-3-319-01258-2_2


elasticity are reviewed, with special attention to the key features of classical plane
elasticity. In Chap. 3, a quick account is given of curvilinear coordinates—a
geometric tool that, when properly used, enhances the advantages of a preliminary
inspection of symmetries—and of how differential operators are represented in
non-Cartesian bases.

Part II, the bulk of this book, consists of three chapters, dedicated to, the
Flamant, Boussinesq, and Kelvin Problems, respectively. In Chap. 4, the Flamant
Problem is first dealt with in its simpler two-dimensional formulation; among other
things, this leads to consideration of the Airy stress function. It is in this chapter
that we individuate a number of significant examples of concentrated contact
interactions, and we show how to give them an unambiguous mechanical status
via the finite power expenditure they entrain. Chapter 5 begins with a discussion of
a set of symmetry requirements for Boussinesq Problem that, although at first sight
plausible, turn out to be geometrically inappropriate. It is then shown that, once the
correct symmetries are stipulated, not only the solution is found, but also a number
of related problems can be quickly solved by exploiting the superposition principle
of linear elasticity, that is to say, by recognizing that the Boussinesq solution can
serve as the Green function for those problems. In Chap. 6, we first show that
solving Kelvin Problem by juxtaposition with seamless suture of two anti-mirror
symmetric Boussinesq problems is possible only when the material is deemed
incompressible; then, the two- and three-dimensional Kelvin problems are solved
for compressible materials. In Chap. 7, the first of Part III, we tackle Melan’s and
Mindlin’s problems (the former being the two-dimensional version of the latter) by
the method of superposition and restriction introduced in Sect. 7.4 for their
common one-dimensional version. Finally, in Chap. 8, we deal with a problem,
Cerruti’s, that has different symmetries and hence must be solved afresh.

Support information for various parts of the book are found in the final
Appendix. In our intention, the matters surveyed there and in Part I can somehow
clean up and complement the bag of knowledge of the audience we target, that is,
advanced undergraduate and graduate students in engineering and applied
mathematics. In consideration of the thorough discussion of physical motivations,
the detailed presentation of heuristic arguments, and the unabridged treatment of
the mathematical developments, we are convinced that teaching out of our book
would be easy and rewarding. It seems to us that the book, although slim, is fairly
well self-contained: the only prerequisites are a reasonable familiarity with linear
algebra (in particular, manipulation of vectors and tensors) and with the usual
differential operators of mathematical physics (gradient, divergence, curl, and
laplacian); the few nonstandard notions are introduced with care.

Finally, to our knowledge, an equally exhaustive, compact, and consequential
exposition of the classical problems listed in the subtitle is not found anywhere
else. Thus, we hope our booklet will also serve as a reference for students in
elasticity.
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Chapter 1
One-Dimensional Paradigms

In this introductory chapter, we work in a one-dimensional (1-D) setting. Firstly, we
exemplify the nonstandard integration method we are going to use systematically in
Part II. Secondly, we exemplify the Green-kernel integration method to be exploited,
in particular, for the problems collected in Part III. Finally, we use these two integra-
tion methods to solve the 1-D versions of Kelvin’s and Mindlin’s problems. We invite
the reader to return to this chapter after studying the developments in Part II and III,
so as to experience the subtle pleasure of looking at a mathematically elementary
subject from a superior point of view.

Our notations are those widely used in engineering mechanics, but we make a
systematic effort to suggest, through the use of the standard terminology of continuum
mechanics, the kinship between the 1-D objects we here manipulate and their 3-D
counterparts to be introduced in the next chapter.

1.1 Integration Methods, Standard and Not

Consider a linearly elastic straight beam, of length l, cross-section area A, and Young
modulus E , whose axial stiffness EA may depend on the axial coordinate z: see
Fig. 1.1, where both ends are shown hinged, a choice irrelevant to the substance of our
developments to come. The applied axial load q (a distance force, in the terminology
of continuum mechanics) is diffused; it induces an internal stress measured by the
normal force N , the 1-D counterpart of the stress tensor S. The axial deformation
is denoted by ε, the axial displacement by w; their 3-D counterparts are the strain
tensor E and the displacement vector u, respectively.

The beam’s equilibrium problem is ruled by the following field equations:

N ′ + q = 0, (balance eq.) (1.1)

ε = w′, (compatibility eq.) (1.2)

N = (E A)ε, (constitutive eq.) (1.3)

P. Podio-Guidugli and A. Favata, Elasticity for Geotechnicians, Solid Mechanics 1
and Its Applications 204, DOI: 10.1007/978-3-319-01258-2_1,
© Springer International Publishing Switzerland 2014



2 1 One-Dimensional Paradigms

Fig. 1.1 A doubly-hinged beam subject to a diffused axial load

(a prime signifies differentiation); the following boundary equations reflect the
presence of the end hinges:

w(0) = 0 = w(l), (boundary eq.s) (1.4)

According to the standard method of solution, the field equations are combined so
as to arrive at a single equation for w; since this equation is differential, one speaks
of an integration method. Here is the flow chart:
firstly, the constitutive and compatibility equations are combined;

N = (E A)w′; (1.5)

secondly, this last relation is substituted in the balance equation, yielding:

((E A)w′)′ + q = 0; (1.6)

two successive integrations introduce two constants, that are determined by the use
of the boundary conditions.

The integration method we are going to use is different, in that it produces a
solution by taking into account the equations of system (1.1)–(1.4) in a different
order.

The first step consists in integrating the balance Eq. (1.1), whose general solution:

N (z) = N (0) −
∫ z

0
q(s)ds (1.7)

depends on the parameter N (0). Now, a normal force field is compatible if, by making
use of the inverse of the constitutive relation (1.3):

ε = (E A)−1 N ,

it can be associated with an axial deformation field from which a displacement field
w can be constructed according to the compatibility Eq. (1.2); that is to say, a normal
force field is compatible if it induces a displacement field of the following form:
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w(z) = w(0) +
∫ z

0
ε(ζ)dζ = w(0) +

∫ z

0

N

E A
(ζ)dζ . (1.8)

Hence, the minimal compatibility requirement for a field N having the representation
(1.7) is that the function

ζ �→ N

E A
(ζ)

be integrable over the interval (0, l); this requirement is easy to guarantee, whenever
the axial stiffness is reasonably smooth, given that relation (1.7) implies the continuity
of the normal force.

Once the needed smoothness is ascertained, the second step consists simply in
combining (1.8) with (1.7), so as to arrive at

w(z) = w(0) +
∫ z

0

1

E A(ζ)

(
N (0) −

∫ ζ

0
q(s)ds

)
dζ;

finally, the imposition of the boundary conditions (1.4) determines uniquely the
values of parameters w(0) and N (0).

Remark 1.1 The normal force field corresponding to the solution of problem (1.1)–
(1.4) is obtained by substituting into (1.7) the value of N (0) satisfying the condition
that both ends of the beam under study do not move, namely,

0 =
( ∫ l

0

1

E A(ζ)
dζ

)
N (0) −

∫ l

0

( 1

E A(ζ)

∫ ζ

0
q(s)ds

)
dζ.

For general assignments of the data, this is the best we can do. But, it is not rare that
information of this sort can be read off from the posing of the problem at hand: for
example, if both axial stiffness and load are constant-valued, then it is easy to see,
by symmetry, that

N (0) = 1

2
ql.

Throughout this book, to ease the solution process of all 2- and 3-D equilibrium
problems we deal with, we shall be making a systematic use of symmetries in the
data assignment.

Remark 1.2 The success of our integration method hinged on the invertibility of
the constitutive equation (which is induced by assuming that EA(z) > 0 for z ∈
[0, l] , so as to guarantee the model’s physical plausibility) and on the assumed
smoothness of the data (both functions q and (EA)−1 must be integrable over the
interval (0, 1)). Such conditions have direct counterparts in the case of elasticity
problems in dimension greater than 1. However, when we exploit our integration
method for anyone of those problem, it so happens that the compatibility requirement
for an equilibrium stress field S does not consist only in asking that it is conveniently
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smooth, but also that it satisfies a second-order partial differential equation. A 1-D
context is too poor to keep track of all the complications we are going to face in
dimension 2 or 3. Similarly, in such a context there is a scarce or null chance of
illustrating in an adequate manner another characteristic trait of our method, that is,
the just mentioned preliminary examination of intrinsic symmetries that often allows
for an explicit parametric representation of the unknown fields.

Remark 1.3 Formulation (1.6) is the so-called strong formulation of the problem
we considered. With such a formulation, very regular solutions of the problem are
sought: e.g., in the case of the boundary-value problem depicted in Fig. 1.1, we
seek w ∈ C2(]0, l[) ∩ C([0, l]); this condition becomes even stricter, namely, w ∈
C2(]0, l[) ∩ C1(]0, l]), if the hinge at the right end is replaced by a simple support
where a force P in the axial direction is applied, because in this case the homogeneous
Dirichlet-type boundary condition w(l) = 0 is replaced by the inhomogeneous
Neumann-type boundary condition N (l) = P , or rather, in view of (1.5), by (EA
w′)(l) = P .

1.2 Green-Kernel Integration

Let us consider again the beam we studied in Sect. 1.1, this time subject to an axial
force f = f e applied in the section of abscissa z0, with 0 < z0 < l (Fig. 1.2), and
assume that the axial stiffness EA is constant. Our purpose is to find an analytic
expression for the axial displacement w = w(z, z0; f ).

To this end, we observe that the boundary reactions ( −af at z = 0 and −bf at
z = l, with both a and b positive) are determined by the balance equation:

a + b = f (1.9)

and the continuity condition at z = z0 for the displacement:

a z0 = b(l − z0); (1.10)

the solution of system (1.9)–(1.10) is:

Fig. 1.2 A doubly-hinged beam subject to a concentrated axial load
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a = f
(

1 − z0

l

)
, b = f

z0

l
.

The left part of the beam, where the strain is (EA)−1a, lengthens, by (EA)−1az0 units;
the right part shortens, by (EA)−1b(l − z0) units; the total length cannot change.
Consequently, the normal force is piece-wise constant:

N (z) = f
(

1 − z0

l

)
for 0 ≤ z < z0,

= − f
z0

l
for z0 < z ≤ l ,

and the same is true for the axial strain

ε = N

E A
.

Hence, to satisfy the compatibility condition

ε = w′,

we find that

w(z, z0; f ) = f

E A

(
1 − z0

l

)
z for 0 ≤ z < z0,

= f

E A

(
1 − z

l

)
z0 for z0 ≤ z ≤ l .

(1.11)

Remark 1.4 Note that

f

E A

(
1 − z

l

)
z0 = f

E A

(
1 − z0

l

)
z0 − f

E A

z0

l
(z − z0),

an expression in terms of (1.11) of the identity of

w(z, z0; f ) = w(z0, z0; f ) − (
w(z, z0; f ) − w(z0, z0; f )

)
.

Note also that
w(z, z0; f ) = w(z0, z; f ), (1.12)

i.e., that the displacement induced at z by a force applied at z0 equals the displacement
induced at the latter point when the same force is applied in the former, an elementary
manifestation of a basic result in 3-D linear elasticity, the Reciprocity Theorem of
Enrico Betti (1823–1892).

Let us now rewrite the expression (1.11) for the axial displacement in a compact
form:
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w(z, z0; f ) = f

E A

((
1 − z0

l

)
z − H(z − z0)(z − z0)

)
, 0 ≤ z ≤ l,

where H is the restriction to the interval [0, l] of Heaviside’s step function (Sect. A.1):

H(z − z0) = 0 per 0 ≤ z ≤ z0,

= 1 per z0 < z ≤ l .

By definition, the displacement Green function for the boundary-value problem under
examination is:

Gw(z, z0) := w(z, z0; 1) = 1

E A

((
1 − z0

l

)
z − H(z − z0)(z − z0)

)
. (1.13)

This function can be regarded as the solution of the linear differential problem

L[w] = δ(z, z0) f, L[w] := −(E A)w′′,

where δ is the Dirac delta (Sect. A.1), when the boundary conditions are:

w(0) = 0 = w(l). (1.14)

If the beam is subject to a diffuse axial load q, the corresponding displacement
field is given by the formula:

w(z; q) =
∫ l

0
Gw(z, ζ)q(ζ) dζ.

We can interpret formally this result as an implicit definition of the linear integral
operator L−1 that inverts the linear differential operator L under the boundary
conditions (1.14); and we can write:

w = L−1[q] =
∫ l

0
Gw(z, ζ)q(ζ) dζ, (1.15)

where the Green function is the so-called kernel of the integral representation for
L−1. Moreover, the normal force field due to the diffuse load q can be written as
follows:

N (z) =
∫ l

0
G N (z, ζ)q(ζ) dζ, G N (z, ζ) = 1 − ζ

l
− H(z, ζ),

where the stress Green function G N is the kernel of the integral operator that inverts
formally the equilibrium differential operator

L̃[N ] := −N ′.

http://dx.doi.org/10.1007/978-3-319-01258-2_A.1
http://dx.doi.org/10.1007/978-3-319-01258-2_A.1
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Remark 1.5 The displacement Green function is symmetric:

Gw(z1, z2) = Gw(z2, z1),

because the operator L is self-adjoint, that is, satisfies the following condition:

< u, L[v] > :=
∫ l

0
u(ζ)L[v(ζ)] dζ =

∫ l

0
v(ζ)L[u(ζ)] dζ =< v, L[u] >,

for all pairs of regular fields u, v defined over [0, l] that obey the prescribed boundary
conditions.

Self-adjointness of operator L is the crucial property for the validity of Betti’s
Reciprocity Theorem. In fact, let the beam in Fig. 1.2 be loaded by a unit force
applied at z2 first, then at z1, with z1 < z2. With a use of Green representation (1.15)
for the inverse operator, we find:

w(z1, z2; 1) =
∫ l

0
Gw(z1, ζ)δ(z2, ζ) dζ = Gw(z1, z2) =

(
1 − z2

l

)
z1,

w(z2, z1; 1) =
∫ l

0
Gw(z2, ζ)δ(z1, ζ) dζ = Gw(z2, z1) =

(
1 − z2

l

)
z1

(cf. (1.12) and (1.13)).

1.3 The One-Dimensional Kelvin Problem

In this section, we deal with a problem which can be regarded as the 1-D version
of the Kelvin problem to be tackled in Chap. 5, i.e., the equilibrium problem of an
infinite linearly elastic rod, subject to an axial load applied at a point, which we
identify with the origin of the coordinates (Fig. 1.3).

Our intention is to solve this problem by the same sequence of operations we shall
use for its 2- and 3-D versions.

In order to underline this similitude as much as possible, we give the elastic state
in the beam a redundant representation, beginning with the normal force, that we
represent in tensorial form as a dyad1:

Fig. 1.3 An infinite beam
subject to a concentrated
axial load

1 The dyadic product of two vectors a, b is defined as follows:

(a ⊗ b)v := (b · v)a, for all vectors v.

http://dx.doi.org/10.1007/978-3-319-01258-2_5
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N(z) = N (z)e ⊗ e .

We require the field N to satisfy, in the sense of distributions on the real line R, the
differential equation:

div N + f = 0, f = f δ(0)e, (1.16)

an equation that can be rewritten in the form:

(
N ′ + f δ(0)

)
e = 0,

where the divergence operator is reduced to the differentiation operator. For v =
v(z)e a test function with compact support, Eq. (1.16) assumes a more meaningful
form: ∫

R
(
N ′ + f δ(0)

)
e · v dz =

∫
R

(
N ′ + f δ(0)

)
v dz = 0,

or rather, and better, the distributional form:

∫
R

Nv′dz = f v(0) if 0 ∈ supp(v), N ′ = 0 otherwise. (1.17)

On denoting with N (0±) the values that the piece-wise constant function z �→ N (z)
assumes on the half-lines R±, the first of equations (1.17) can be written in the final
form:

[[N ]]0 + f = 0, (1.18)

where the divergence operator in (1.16) is replaced by the jump operator:

[[N ]]z := N (z+) − N (z−), (1.19)

evaluated at z = 0.2

In conclusion, here is how the normal force field looks like:

N(z) = −1

2
f sgn (z) e ⊗ e, z 	= 0 (1.20)

(the sgn function is defined in Sect. A.1.) the relative Green function is:

G N (z, ζ) = −1

2
sgn (z − ζ) .

2 To obtain (1.18), it is sufficient to note that
∫

R
Nv′dz = N (0−)

∫
R−

v′dz + N (0+)

∫
R+

v′dz = −v(0)
(
N (0+) − N (0−)

)
,

http://dx.doi.org/10.1007/978-3-319-01258-2_A.1
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The normal-force field plays here the role of Kelvin’s 3-D stress field. It is interesting
to see that a concentrated load induces at the point where it is applied a discontinuous
normal force in dimension 1, and a singular stress in dimension 2 or 3.

We complete the determination of the elastic state in the beam by oberving that
the inverse constitutive equation yields:

E(z) = (EA)−1N(z);

the displacement field u = u e can be found by integration of the differential equation:

(
u′ ⊗ e = E ⇔

)
u′ = − f

2 EA
sgn (z), z 	= 0,

with the transmission condition [[u]]0 = 0. Integration yields:

u(z) = u(0) − f

2 EA
|z| ; (1.21)

u(0) denotes a rigid translation which remains arbitrary, since no kinematic constraint
is available to determine it.

Remark 1.6 Solving the Kelvin problem is important not only in itself but also
because it allows to construct by differentiation or integration an arbitrary number of
strain nuclei, that is to say, of singular solutions associated with load systems consist-
ing of more than one concentrated force. By a suitable combination of deformation
nuclei, followed at times by an operation of restriction to the domain of interest,
many classical problems in linear elasticity can be solved, where the applied loads
are not necessarily concentrated, as for example the problem considered by Lamé of
a pressurized cavity in an infinite medium.

In a 1-D context, there is only one type of deformation nucleus, to which both
3-D nuclei called double force and compression/dilatation center reduce; we now
proceed to construct it.

Let us apply to the elastic beam of infinite length we have been considering in
this section both a force h−1 f e at the point of abscissa z = +h/2 and the force
−h−1 f e at z = −h/2. By linearity, anyone of the fields f c(z, h) of which the
elastic state of the beam consists can be evaluated at any typical point z in terms of
the corresponding field f cK (z) obtained by solving the Kelvin problem, by means
of the following formula:

c(z, h) = h−1cK (z − h/2) − h−1cK (z + h/2) = −cK (z + h/2) − cK (z − h/2)

h
,

whence
lim
h→0

c(z, h) = −c′
K (z).
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Fig. 1.4 A visualization of the graph of the mapping h �→ (sgn (z + h/2) − sgn (z − h/2))/2h for
h smaller and smaller

In case we take cK to be the field f −1N specified by (1.20), we have:

h−1 N (z −h/2)−h−1 N (z +h/2) = 1

2

sgn (z + h/2) − sgn (z − h/2)

h
−→
h→0

δ(z),

where the limit process is the well-known one suggested by Fig. 1.4. In case cK is
identified with the displacement field (1.21), we have:

h−1u(z − h/2) − h−1u(z + h/2) = 1

2 E A

|z + h/2| − |z − h/2|
h

−→
h→0

sgn (z) .

All in all, we say that a dilatation center is found at the origin when the normal force
and displacement fields have the following form:

N DC (z) = f δ(z) e ⊗ e, uDC (z) = f sgn z e

(needless to say, the first of these relations must be interpreted in the sense of distri-
butions on R).

1.4 The One-Dimensional Mindlin Problem

In this section, we consider a problem that can be regarded as the 1-D version of the
Mindlin problem (Sect. 7.3): a semi-infinite linearly elastic beam, subject to an axial
load, applied at an internal point; the reader is referred to Fig. 1.5 for notations.

http://dx.doi.org/10.1007/978-3-319-01258-2_7
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Fig. 1.5 A semi-infinite beam
subject to an axial load applied
at an internal point

We look for a normal force field

N = N (z)e ⊗ e

on the half-line R+, such as to satisfy the equilibrium equation

(
N ′ + f δ(a)

)
e = 0

and the boundary condition
(

N(0)e = 0
)

⇔ N (0) = 0. (1.22)

A weak formulation of this problem is: to find a piece-wise continuously differen-
tiable function N defined over R+, such that, for all test functions v = v(z)e with
compact support in R+,

[[N ]]a + f = 0 if a ∈ supp(v), N ′ = 0 otherwise.

It is not difficult to see that the solution is:

N(z) = − f H(z − a) e ⊗ e,

where H is the restriction to [0,+∞) of the Heaviside function. The associated strain
field is:

E(z) = − f

E A
H(z − a) e ⊗ e.

With a view toward constructing the relative displacement field, we note that

u′(z) = u′(z)e = E(z)e = − f

E A
H(z − a) e ⇒ u′(z) = − f

E A
H(z − a).

To integrate the last relation, we recall that

H(t) = 1

2

(
1 + sgn t

)
,
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Fig. 1.6 The 1-D Mindlin’s problem as a superposition of problems

and that the sign function is the distributional derivative of the modulus function.
With the use of these facts, we deduce that

u(z) =
(

u(a) − f

E A

(
H(z − a)|z − a|))e .

Remark 1.7 In preparation for the study of the higher-dimensional situation to be
dealt with in Chap. 7, it is instructive to arrive at the solution of the 1-D Mindlin prob-
lem by superposition, with an iterated use of Kelvin solution (1.20). The procedure
we propose is visualized in Fig. 1.6. Here are the steps:

(i) in a infinite beam subject to a load f e applied at z = a, the normal-force field
is, to within an origin translation, Kelvin’s:

N

̂
(z) = −1

2
f sgn (z − a) e ⊗ e, z 	= a; (1.23)

(ii) likewise, when the load − f e is applied at z = −a, Kelvin’s normal-force field
is:

N̂(z) = 1

2
f sgn (z + a) e ⊗ e, z 	= −a; (1.24)

(iii) superposing these two fields on R yields the field:

N

̂
(z) + N̂(z) = −1

2
f
(
sgn (z − a) − sgn (z + a)

)
e ⊗ e,

whose restriction to the half-line R+ is:

Ñ(z) = f
(
1 − H(z − a)

)
e ⊗ e, z ≥ 0;

http://dx.doi.org/10.1007/978-3-319-01258-2_7
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(iv) finally, to satisfy the boundary condition (1.22), we add to Ñ the constant field

N(z) = − f e ⊗ e,

that is, the normal-force field in the lowest beam in Fig. 1.6.

We anticipate that the last step turns out to be fairly more difficult to take in the
3-D case, when the construction of an adscititious field guaranteeing fulfilment of
the free-boundary condition will be performed by having recourse to a Green-kernel
integration.



Part I
Preliminaries



Chapter 2
Elements of Linear Elasticity

In this chapter we give a short and yet fairly complete exposition of the elemental
features of classic elasticity having relevance to our subject matters. This archetypal
theory, probably the most successful and best well-known theory of continuum
mechanics, has been given many excellent and exhaustive expositions. Among the
textbooks including an ample coverage of the problems we deal with in this book we
cite those by Love [8], Sokolnikoff [17], Malvern [9], Gladwell [5]; we also take from
the Handbuch article by Gurtin [6], whose use of direct notation we find appropriate
to avoid encumbering conceptual developments with component-wise expressions,
and from [11]. Interestingly, no matter how early in the history of elasticity the con-
sequences of concentrated loads were studied, some of those, namely, the occurrence
of concentrated contact interactions between adjacent body parte, went overlooked
until recently [12–16].

2.1 Displacement, Strain, Compatibility

The problems in linear elasticity we are interested in are formulated over an
unbounded region R of an Euclidean space E N of dimension N = 2 or 3, R being
either a half-space or the whole of E N ; as a rule, in the following we take N = 3.
Points x of R have a position vector

x := x − o

with respect to a chosen point of E N , the origin o; the components of x in an ortho-
normal Cartesian basis ei (i = 1, 2, 3) are the Cartesian coordinates xi :

x = xi ei .

P. Podio-Guidugli and A. Favata, Elasticity for Geotechnicians, Solid Mechanics 17
and Its Applications 204, DOI: 10.1007/978-3-319-01258-2_2,
© Springer International Publishing Switzerland 2014
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In this formula, we used Einstein’s convention, consisting in leaving tacit the
summation operation over the index range whenever in a monomial term an index is
repeated twice: here, for example, this convention allows us to avoid the use of the
more cumbersome notation

x =
3∑

i=1

xi ei .

Here and henceforth in this book we drop the qualifier ‘orthogonal’ for the only type
of Cartesian coordinates we use.

In a deformation, a typical point x ∈ R is displaced to a position

y = x + u(x);

here, u is the vector field that describes the displacement from x to y ∈ E N . The
displacement gradient is the tensor field whose value at x is by definition the outcome
of taking the following limit:

lim
ε→0

ε−1(u(x + εh) − u(x)) =: (∇u(x))h, ∀ h ∈ V, (2.1)

where V is the N -dimensional vector space associated with E N . If h is a unit vector
(that is, if |h| = 1), the left side of the last relation defines the directional derivative
of u in the direction h:

∂hu := (∇u)h.

On representing vector u in the chosen basis:

u = ui ei ,

an application of definition (2.1) yields the cartesian components of ∇u:

(∇u)i j = ui, j,

where ,‘ j ’ denotes differentiation with respect to coordinate x j :

ui, j = ∂ui

∂x j
.

Just as every other second-order tensor, ∇u can be uniquely decomposed into the
sum of its symmetric part E and its skew-symmetric part W:
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∇u = E(u) + W(u),

E(u) := 1
2

(∇u + ∇uT
)
,

W(u) := 1
2

(∇u − ∇uT
)
.

(2.2)

The strain tensor E is a linear measure of the strain field associated with a
given displacement field: its equal-index components (E11 = u1,1 etc.) mea-
sure dilatation of fibers aligned with the Cartesian axes; the other components
(E12 = 1/2(u1,2 + u2,1 ) etc.) measure changes in the angle between fibers aligned
along different axes; more generally, if a are b two mutually orthogonal unit vectors,
Ea ·a measures the dilatation of a fiber aligned with a, and Ea ·b(= Eb ·a) measures
the change in angle between fibers in the directions a and b.1

The rotation tensor W furnishes a linear measure of the vorticity field associated
with a given displacement field. The role of W is made clearer if the operation of
taking the curl of u is introduced: this operation defines a vector field, denoted by
curl u, such that

W(u)a =: 1

2
curl u × a, ∀ a ∈ V. (2.3)

It follows from this definition that the Cartesian components of curl u are:

(curl u)i = ei jkuk, j , (2.4)

where ei jk is Ricci’s symbol.2 We set:

1 For more information about the role of E and, more generally, about the local analysis, both exact
and approximate, of a deformation see [11], Chap. I
2 In terms of the vectors composing the orthonormal Cartesian basis we chose, Kronecker’s symbol
δi j is given by

δi j := ei · e j,

whence

δi j =
{

1 if i = j
0 if i �= j

;
moreover, relation

ei jk := ei × e j · ek

defines Ricci’s symbol, so that

ei jk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+1 if all indices i, j, k are different and, in addition,
their sequence is an even-class permutation of 1, 2, 3;

0 if at least two of the indices i, j, k are equal;
−1 if all indices i, j, k are different and, in addition,

their sequence is an odd-class permutation of 1, 2, 3.

Ricci’s and Kronecker’s symbols are linked by the following relation:

ei jkelmk = δilδ jm − δimδ jl . (2.5)

By repeated saturation of pairs of free indices, two easy and often useful consequences of (2.5) are
obtained:
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w(u) := 1

2
curl u;

this definition identifies w as the vector associated with W by the well-known one-
to-one correspondence between V and Skw, the collection of all skew-symmetric
second-order tensors, namely,

V � v ↔ V ∈ Skw ⇔ Va = v × a, ∀ a ∈ V. (2.6)

It is not difficult to show that

Vik = ei jkv j , vi = 1

2
ei jk Vk j .

In view of definition (2.1), we write:

u(x) = u(x0) + E(x0)(x − x0) + W(x0)(x − x0) + O2(|x − x0|)
= u(x0) + w(x0) × (x − x0) + E(x0)(x − x0) + O2(|x − x0|),

where E(x0) = E(u(x0)) etc. The last equality makes clear what is meant by local
linear approximation of a given displacement field u, that is, by the approximation
of u to within terms of order O2(|x −x0|) in a neighbourhood of an arbitrarily chosen
interior point x0 of R): it consists of the sum of a rigid displacement

urig(x) := u(x0) + w(x0) × (x − x0),

made up of a translation u(x0) and of a rotation about x0 of vector w(x0), and of a
nonrigid displacement

ude f (x) = E(x0)(x − x0),

the only part of u inducing what in everyday language is called a ‘small deformation’.
In fact, E is often called the infinitesimal strain tensor, the modifier ‘strain’ being an
alternative to ‘deformation’ and the modifier ‘infinitesimal’ being used to distinguish
E = sym(∇u) from other local measures of deformation that, being exact, depend
nonlinearly on ∇u.

We introduce here some more notions to be used in what follows.
Lin is the space of all second-order tensors, regarded as linear transformations of V
into itself; Sym and Skw are two complementary subspaces of Lin, respectively, the

(i) formal multiplication of both sides by δ jm yields:

ei jkel jk = 2 δil ;
(ii) one more saturation gives:

ei jkei jk = 6 .
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subspace of symmetric (A = AT ) and skew-symmetric (A = −AT ) tensors. When
dim(V) = 3, dim(Lin) = 9, dim(Sym) = 6 and dim(Skw) = 3; when dim(V) = 2,
dim(Lin(2)) = 4, dim(Sym(2)) = 3 and dim(Skw(2)) = 1.

Remark 2.1 With the use of (2.6), it can be shown that the vector associated with
the skew-symmetric tensor (a⊗b−b⊗a) is b×a .3 Every skew-symmetric tensor
can be represented as the linear combination of the following tensors:

W1 = −e2 ⊗ e3 + e3 ⊗ e2,

W2 = −e3 ⊗ e1 + e1 ⊗ e3,

W3 = −e1 ⊗ e2 + e2 ⊗ e1,

(2.7)

where
W i ↔ ei .

Remark 2.2 The divergence of a vector field u is the scalar field

div u := tr (∇u);

it follows from this definition that

div u = tr E(u) = Eii = ui ,i .

Note that
div curl u = 0,

and that, for ϕ a scalar field,

curl ∇ϕ = 0 and div ∇ϕ = Δϕ. (2.8)

These two identities help to interpret a classical result in vector calculus, Helmholtz’s
Decomposition Theorem:

given any sufficiently smooth field u over a bounded regular region R, there are a
scalar field ϕ and a divergenceless vector field w over R such that

u = ∇ϕ+ curl w;

if u ∈ C(R̄) ∩ C M (R), M ≥ 1, then both ϕ and w are of class C M (R).
Note that a straightforward application of (2.8) yields:

curl u = curl curl w and div u = Δϕ.

3 Recall that the symbol ⊗ signifies dyadic product, a notion introduced in the first footnote of
Sect. 1.3; the second-order tensor a ⊗ b is defined by specifying its linear action on vectors.

http://dx.doi.org/10.1007/978-3-319-01258-2_1
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2.1.1 Compatibility

With each displacement field u of class C1(R) we can always associate a continuous
deformation field E such that

2 E = ∇u + ∇uT ; (2.9)

in components,
2Ei j = ui , j + u j ,i . (2.10)

This relation can also be regarded as the tensorial equation ruling the problem of
finding a displacement field u associated with a given strain field E. This problem
is overdetermined, because the three unknown fields ui are restricted by the six
scalar equations (2.10). Not that problems of this type have necessarily no solution.
However, for them the well-posedness issue (a. Are there solutions? b. If answer
to a is yes, how many are they? c. Do solutions depend continuously on data?)
can be discussed only after having checked that the assigned data satisfy certain a
priori solvability conditions called compatibility conditions. We now deduce such
conditions for the case of our current interest.

To begin with, we have to put together a curl notion for tensor-valued fields. We
do so by exploiting the definition given in (2.3) for vector-valued fields:

(curl A)a := curl (AT a), ∀ a ∈ V;

in components,
(curl A)i j = eipq A jq ,p.

If we now apply formally the operator curl on both sides of (2.9), we find4:

2 curl E = curl (∇u) + curl (∇uT ) = curl (∇uT ) = 2∇w. (2.11)

Taking the curl of (2.11), we arrive at the sought-for compatibility condition:

curl curl E = 0; (2.12)

in components,

4 That curl (∇u) = 0 follows from the definitions of (the two involved operators and) Ricci symbol:

(curl (∇u))i j = eipq (∇u) jq,p = eipq (u j,q ),p = eipq u j,qp = 0.

Furthermore, in view of (2.4),

(curl (∇uT ))i j = eipq (uq, j ),p = eipq uq, j p = (eipq uq,p), j = 2 wi, j .
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ei jkelmn E jm,kn = 0. (2.13)

If region R is simply connected, for each given symmetric-valued field E of class
C K (R), K ≥ 2 there is a class C K+1(R) displacement field u, which satisfies (2.9).5

The field u can be constructed by means of Cesàro’s formula:

ui (x) =
∫ x

x0

Ui j (y, x)dy j , Ui j (y, x) := Ei j (y)+(xk − yk)(Ei j ,k (y)− Ekj ,i (y)),

(2.14)
where the integral does not depend on the path that has been chosen in R to connect
a given point x0 with the typical point x . Needless to say, this formula determines u
to within an arbitrary rigid displacement.

Remark 2.3 The representation (1.8) for the displacement field in an elastic beam
subject solely to axial loads can be regarded as a minimal version of this general
formula: for e a unit vector parallel to the axis, the strain field is

E(z) = w′(z)e ⊗ e,

whence, by (2.14), U(z, ζ) ≡ E(ζ) and

u(z) =
∫ z

z0

(U(ζ)e) dζ =
(∫ z

z0

w′(ζ)dζ
)

e.

2.1.2 Plane Displacement Fields

A displacement field u is called plane whenever there is a Cartesian reference with
respect to which u admits the representation:

uα = uα(x1, x2), α = 1, 2, u3 ≡ 0, (2.15)

at any point x ∈ R.6 The corresponding strain state is:

Eαβ = 1

2
(uα,β + uβ,α ), E3i ≡ 0

(compare with (2.10)).

5 For a proof of this result, which is due to the great Italian elasticist Eugenio Beltrami (1835–1900),
who established it in 1889, see [6], Sect. 14, where various other results included in this section are
also proved.
6 When Greek indices are used, it is understood that they take the values 1 and 2; the range of Latin
indices is the set {1, 2, 3}.

http://dx.doi.org/10.1007/978-3-319-01258-2_1
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Remark 2.4 For an example of plane displacement field, consider the rigid displace-
ment:

v = t + αW3 x = t + α e3 × x, t = tαeα, x = xαeα, (2.16)

consisting of a rotation ofα radians about an axis of unit vector e3 and of a translation
t in the plane perpendicular to e3. It is easy to see that each field v of type (2.16)
solves the following differential system:

v1,1 = 0, v2,2 = 0, v1,2 + v2,1 = 0; (2.17)

as a matter of fact, in components relations (2.16) read:

v1 = t1 − α x2, v2 = t2 + α x1. (2.18)

If a rigid plane field whatsoever is added to any plane deformation field, the relative
strain state stays the same.

2.1.3 Plane Strain Fields

A strain field E is called plane whenever its component representation in a suitable
Cartesian reference is:

Eαβ = Eαβ(x1, x2), E3i ≡ 0. (2.19)

For such a field, the tensorial compatibility condition (2.12) shrinks to one scalar
relation:

2 E12,12 = E11,22 + E22,11; (2.20)

interestingly, of the six conditions (2.13) this is the one obtained when both free
indices are taken equal to 3.

Remark 2.5 For plane strain fields, Cesàro’s formula gives:

uα(x) =
∫ x

x0

Uαβ(y, x)dyβ,

Uαβ(y, x) = Eαβ(y) + (xγ − yγ)(Eαβ,γ (y) − Eγβ,α (y)).

The strain field associated with a plane displacement field is plane. We proceed
to give a direct proof of the converse statement. To begin with, a displacement field
u satisfying the last three relations (2.19) must be such that

u3,α + uα,3 = 0 (2.21)
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and that
u3,3 = 0,

that is, such that u3 be independent of x3:

u3 = u3(x1, x2). (2.22)

Relations (2.21) and (2.22) imply that

uα,33 = 0,

or rather, equivalently, that

uα = ûα(x1, x2) + x3 v̂α(x1, x2). (2.23)

On combining this preliminary representation for uα with what the first three relations
(2.19) require (namely, that each of the components Eαβ of E be indipendent of x3),
we infer that the vector field v must obey the differential relations (2.17), and hence
that it must have the form (2.18); we then set:

v1 = a1 − b x2, v2 = a2 + b x1. (2.24)

At this point, we insert representations (2.22), (2.23) and (2.24) into relations (2.21),
so as to obtain:

u3,1 + a1 − b x2 = 0, u3,2 + a2 + b x1 = 0, (2.25)

whence by differentiation we deduce that

u3,12 − b = 0, u3,21 + b = 0,

that is,
b = 0, u3,12 = 0.

With the use of the first result, we achieve a preliminary representation, more precise
than (2.23), for functions uα:

uα = ûα(x1, x2) + aαx3;

The definitive form we choose for such representation is:

u1 = u
̂

1(x1, x2) + t1 − a3 x2 + a1x3,

u2 = u
̂

2(x1, x2) + t2 + a3 x1 + a2x3, (2.26)
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where u
̂

, the part of û responsible for shape and/or volume changes, is distinguished
from the rigid part, the latter being of type (2.18). It is easy to check that the plane
field E(u

̂
) satisfies (2.20).

Now, given that b = 0, relations (2.25) have the following consequences:

(u3,1 +a1 = 0 ⇒) −a1x1 + c1(x2) = u3 = −a2x2 + c2(x1) (⇐ u3,2 +a2 = 0).

This double expression for u3 holds true for arbitrary values of the independent
variables x1, x2 provided

a1x1 + c2(x1) = a2x2 + c1(x2) = t3,

with t3 an arbitrary constant; hence,

u3(x1, x2) = t3 − (a1x1 + a2x2).

This expression is found compatible with (2.21) and (2.26) if a1 = a2 = 0.
In conclusion, given a plane strain field as in (2.19), the corresponding displace-

ment field consists of a plane field u
̂

such that

u
̂
α,β + u

̂
β,α = 2Eαβ

and of a rigid displacement field featuring an arbitrary translation and an arbitrary
small rotation about the third axis:

r = t + Ax, A = −AT , x = xαeα, (2.27)

where, on recalling (2.7)3, A = −a3(e1 ⊗ e2 − e2 ⊗ e1) = a3W .

2.2 Forces, Stress, Equilibrium

In continuum mechanics, a body is generally thought of as subject to distance and
contact actions on the part of its environment. No matter in what placement in
physical space a body is observed, both types of actions are customarily modeled as
diffuse: those at a distance as forces per unit volume, just as is done in the familiar
case of gravity; contact actions as forces per unit surface, on the basis of examples
like the pressure exerted by a fluid on a body immersed into it (the wind on a sail)
or containing it (the water on a glass).

In most cases, distance actions between disjoint parts of the same body are
neglected, as are the distance actions of a part on itself (e.g., self-gravitation). Dis-
tance actions at a typical interior body point x are specified by the value taken at

that point by an assigned vector field d̂; they are customarily split into inertial and
noninertial parts:
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d̂(x) = d̂
in

(x) + d̂
ni

(x), d̂
in

(x) := −ρ(x)ẍ,

where ρ(x) is the current mass density, and ẍ the acceleration, at x . In this book,
we shall never consider bodies in motion, and hence there will be no need to worry
about inertial forces.

In all cases, in addition to contact interactions of a body with its environment, adja-
cent body parts are presumed to have diffuse contact interactions, which are thought
of as accounting for the short-range forces between neighboring particles envisaged
by discrete mechanics. Mathematically, such contact interactions are described by
a vector field ĉ(·, ·) defined over the Cartesian product of the body’s closure times
the sphere of unit vectors: when evaluated at a point x of a common boundary surface
oriented by the unit normal n̂(x), such so-called stress-vector field is interpreted as
delivering the force ĉ(x, n̂(x)) per unit area exerted either by the environment over
the body or by the part lying on the positive side of the boundary surface over the
adjacent part.7

Concentrated external actions, under form of forces applied at interior or boundary
points, have also been considered; their mechanical effects are of central interest in
this book. As we shall see, when applied at a boundary point—as is the case with the
Flamant Problem we study in Chap. 4—they were regarded as limits of distributions
of contact actions localized in a surface neighborhood of that point, which was
made to shrink to null; similarly, when applied to an interior point, as in the case of
Kelvin Problem to be studied in Chap. 5, they were regarded as limits of distributions
of distance actions localized in a volume neighborhood of that point. Surprisingly
enough, the occurrence of concentrated contact interactions between adjacent body
parts went noticed until recently, when Flamant’s and other problems of the same
type were re-examined [12] (see also [13]).8

2.2.1 Cauchy’s Notion of Stress

A body acted upon by a force system (d, c) is said to occupy an equilibrium placement
B when it so happens that

7 It appears that the concept of diffused contact interactions between internal adjacent body parts
begun to condensate in Cauchy’s mind on the basis of a similarity with standard examples of diffused
contact loads exerted on a body by an environment of a different nature, such as the hydrostatic
pressure of a fluid on an immersed solid [3]. Cauchy’s model of internal contact interactions has
been applied without changes to contact interactions of a body with its exterior, with the stress-
vector mapping accounting for both. An implicit drawback of this practice is that no difference is
made between geometrical surfaces obtained by ideal cuttings and fabricated surfaces obtained by
actual cuttings [4]; moreover, the issue of boundary compatibility of a (body,environment) pair is
completely overlooked [1, 2].
8 The construction of an interaction theory general enough to allow for concentrated contact interac-
tions between adjacent body parts has been undertaken by Schuricht [15, 16]; among the intriguing
features of such a theory is the rethinking it involves of the body-part notion. In [14], examples are
given of interactions in cuspidate bodies that concentrate at the cusp point, regarded as a body part.

http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_5
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∫
P

d · r +
∫
∂P

c · r = 0, (2.28)

for all parts P of B and for all rigid fields r as in (2.27) (here, as anticipated, d stands
for the noninertial distance force). By virtue of Cauchy’s Stress Theorem (see, e.g.,
[7], Sect. 14), it follows from (2.28), when written for an arbitrary translation t, that
the stress-vector mapping can be represented as follows:

ĉ(x, n) = Ŝ(x)n. (2.29)

in terms of a stress-tensor field Ŝ defined over the closure of B: the affine action of
Ŝ(x) over the sphere of unit vectors yields the stress vector on the triple infinity of
oriented planes through x . Conversely, given the stress-vector mapping ĉ(x, ·) at a
typical body point x and three mutually orthogonal unit vectors ni , the construct

Ŝ(x) =
3∑

i=1

ĉ(x, ni ) ⊗ ni (2.30)

defines the value at x of the stress-tensor field. Thus—and this is the main thrust
of Cauchy’s result—the information carried by the stress-vector and stress-tensor
mappings ĉ and Ŝ textitare essentially equivalent.

It follows from (2.28) and (2.29) that

∫
P

d +
∫
∂P

Sn = 0, ∀P ⊂ B,

whence, granted regularity,

div S + d = 0 in B. (2.31)

Moreover, it follows from (2.31) and (2.28), when written for an arbitrary rotation
A, that the stress field is symmetric-valued:

S = ST .

2.2.2 Free-Body Diagrams, Diffuse and Concentrated Forces

A feature of the equilibrium statement (2.28)—namely, that whatever part of an
equilibrated body must be in equilibrium as well—would be hardly contended by
anybody. The widespread and fruitful use of free-body diagrams in mechanics is
based on this assumption, and on the accompanying presumption that a body part,
when ideally isolated from the rest by a so-called Euler cut, would be in equilibrium if
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it were acted upon by external forces reproducing faithfully the forces, both external
and internal, it directly experiences in reality. Usually, the subbodies whose equi-
librium is characterized in this manner are imagined to have an everywhere smooth
boundary. Not always so in this book, where consideration of sharp-cornered parts
is at times necessary to exhibit the concentrations of contact forces that at times may
occur (see e.g. Fig. 4.8).

Concentrated forces, regarded as convenient idealizations of diffused loads
applied to a small part of a body’s boundary, are of common use in engineering
mechanics. To quote from a popular textbook, “the free-body diagram is the most
important single step in the solution of problems in mechanics” ([10], p. 104); “mod-
eling the action of forces” “exerted on the body to be isolated, by the body to be
removed” (ibid., p. 105; italics as in the original text) is a mandatory, preliminary
step; and those forces, especially but not exclusively in statics, are for most practical
purposes modeled as concentrated.

Strictly speaking, the equivalence in information content of (2.30) and (2.29)
holds true for diffused contact force and regular stress fields. In the next chapters, we
display and discuss situations when concentrated contact forces and singular stress
fields are in order. Precisely, first by inspection of a problem of pure statics, which is
the two-dimensional counterpart of the Flamant problem, then by inspection of the
three-dimensional problem Flamant solved, as well as those solved by Boussinesq,
Cerruti and Kelvin, we demonstrate per exempla that partwise equilibrium of a simple
continuous body may require that adjacent body parts exchange concentrated contact
forces.

We have seen that diffused contact loads are germane to contact interactions
between adjacent body parts, so much so that they are customarily described by one
and the same vector-valued mapping. Concentrated loads, applied at interior and
boundary points, have been often considered in continuum mechanics, and carefully
modeled mathematically (for the class of linearly elastic bodies, see [6], Sect. 52). We
see no reason why the germane notion of concentrated contact interactions should not
be introduced. They are not ubiquitous; in fact, they are a rather rare necessity. Let
us revert for a moment to engineering mechanics for guidance. A judicious practice
there is to make sure that the free-body diagram features all possible forces applied
to the isolated body; at times, we find out that balance and/or symmetry conditions
require that some of those forces be null. Likewise, in continuum mechanics, we
should contemplate concentrated contact interactions by default, because there are
cases, no matter how few, when they turn out to be crucial to guarantee partwise
equilibrium.

If concentrated contact interactions are considered, an interesting problem to
tackle is the conjectural equivalence in information of contact forces, regular and
singular, and the accompanying, somewhere singular, stress field. Luckily, concen-
trated forces occur ‘naturally’ in weak formulations of force-balance laws, be they
idealizations of applied loads or of contact interactions. In fact, in such formula-
tions, concentrated loads are as ‘natural’ as edges and vertices in the domain where
a boundary value problem is formulated. There is no need today to justify consid-
eration of concentrated forces, as was done over a century ago, by thinking of them

http://dx.doi.org/10.1007/978-3-319-01258-2_4
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as limits of smooth distributions of volume or surface forces, just as there is no
need to round off a domain’s corners. In addition, weak formulations relieve us from
dealing with a delicate issue arising when sequences of approximating problems are
employed, namely, to investigate under what hypotheses an associated sequence of
smooth solutions has a unique limit.

2.3 The Stress Response to Strain

In classical elasticity, the stress response to strain is described by a linear mapping
of the collection of all symmetric tensors into itself:

Sym � E �→ S ∈ Sym, S = CE (Si j = Ci jhk Ehk), (2.32)

where the elasticity tensor C has the following index-pair symmetries:

Ci jhk = C j ihk = Ci jkh, Ci jhk = Chki j .

Collectively, these symmetries guarantee that

(i) all of the 34 = 81 Cartesian components of C are expressible in terms of only
21 of them, in general mutually independent;

(ii) there is a quadratic scalar-valued function defined over Sym:

Sym � E �→ σ ∈ R, σ = σ(E) = 1

2
E · CE = 1

2
Ci jhk Ei j Ehk, (2.33)

referred to as the strain energy per unit referential volume, such that

∂Eσ(E) = CE.

It follows from (2.32) and, respectively, (2.33) that, S = 0 and σ = 0 for E = 0.
It is when both the stress and the strain energy are null at a point—that is, when
the material is in a natural state at that point—that classical elasticity studies the
local response of a linearly elastic material to the various causes of deformation. For
reasons of physical plausibility, the strain energy is assumed to be positive definite,
i.e., such that

σ(E) ≥ 0, σ(E) = 0 ⇔ E = 0. (2.34)

This assumption is more than sufficient to guarantee that the constitutive mapping
(2.32) be invertible:

E = C
−1S. (2.35)
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2.3.1 Isotropic Materials

When a material’s response is “the same in whatever direction”, that material is said
isotropic. The elasticity tensor of an isotropic linearly elastic material is completely
determined by two parameters only, the so-called Lamé’s moduli λ and μ; the stress-
strain law has the following form:

S = 2μE + λ(tr E)I, Si j = 2μEi j + λ(Ehh)δi j (2.36)

(here I denotes the identity tensor), while the strain energy reads:

σ(E) = μ |E|2 + 1

2
λ(tr E)2 = μ Ei j Ei j + 1

2
λ(Ehh)2;

for (2.34) to hold, it is necessary and sufficient that

μ > 0, 3λ+ 2μ > 0. (2.37)

It is not difficult to determine the form taken by the inverse constitutive equation
(2.35). Firstly, on taking the trace of (2.36), one obtains that

tr S = (3λ+ 2μ)tr E; (2.38)

next, in view also of (2.37), one arrives at:

E = 1

2μ

(
S − λ

3λ+ 2μ
(tr S)I

)
. (2.39)

Remark 2.6 For isotropic materials, the equilibrium equation (2.31) can be written
in terms of displacement as Louis Navier (1785–1836) did first:

μΔu + (λ+ μ)∇(div u) + d = 0. (2.40)

In this equation, three differential operators appear: laplacian and divergence of a
vector field, and gradient of a scalar field. On recalling how these operators look like
in Cartesian components9:

(Δv)i = vi, j j , div v = vi,i , and (∇ϕ)i = ϕ,i,

9 The laplacian of a vector field v is the vector field that obtains by taking the divergence of the
gradient of v:

Δv = div (∇v);
its Cartesian components have the form just shown because (∇v)i j = vi, j and because, for V a
second-order tensor field, (div V)i = Vi j, j .
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the component version of Navier equation is easy to write:

μui , j j + (λ+ μ)u j , j i + di = 0.

Remark 2.7 Let the distance forces be null. Then, on taking the divergence of Navier
equation, one finds:

(λ+ 2μ)Δ(div u) = 0,

whence, given that
div u = tr E(u)

and that it follows from (2.37) that

λ+ 2μ > 0,

one obtains
Δ(tr E(u)) = 0.

But, if tr E(u) has to be a harmonic function (that is, a function whose laplacian is
null), then tr S(u) must be harmonic as well, because of (2.38).10 We shall deduce this
condition again, in a different manner, in Sect. 2.4, where we study the compatibility
issue in terms of stresses.

2.3.2 Mechanical Interpretation of the Elastic Moduli

The role of the elastic moduli is clarified when one imagines to perform some typical
experiments, in each of which the one or the other modulus enters in a perspicuous
manner. In the first two experiments we are going to consider, we record what stress
accompanies a given strain according to the constitutive relation (2.36); in the third
one, the stress is assigned, and the corresponding strain is computed with the use of
(2.39).

(a) Simple shearing
For a, b two orthogonal vectors,

E = τ (a ⊗ b + b ⊗ a) ⇒ S = τ 2μ(a ⊗ b + b ⊗ a);

therefore,

2μ := b · Sa
b · Ea

,

10 Here, S(u) := 2μE(u) + λ(tr E(u))I .
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the shear modulus, measures the shear stress necessary to sustain a unit shearing
strain.

(b) Uniform dilatation

E = τI ⇒ S = τ (3λ+ 2μ)I;

hence, the dilatation modulus:

3λ+ 2μ := S · I
E · I

(2.41)

is proportional to the pressure 1/3(S · I) accompanying the volume change E · I.
(c) Uniaxial stress

Again, let a e b be two orthogonal vectors. Then,

S = τa ⊗ a ⇒ E = τ
1

2μ

(
a ⊗ a − λ

3λ+ 2μ
I
)

.

The Young’s modulus

E := a · Sa
a · Ea

= μ(3λ+ 2μ)

λ+ μ

measures the axial stress necessary to cause a unit axial strain. The Poisson’s
modulus (also known as the lateral-contraction modulus)

ν := −b · Eb
a · Ea

= λ

2(λ+ μ)

measures the transverse-to-axial strain ratio in an experiment where an axial
stress state is induced. The moduli E , ν and

G := μ

are those currently used in the (geo)technical applications of linear and isotropic
elasticity. We also note for later reference another expression for the dependence
of volume changes on pressure:

tr E = 1 − 2ν

E
tr S (2.42)

(cf. (2.41)).

Remark 2.8 As Lamé’s constitutive equation shows, two moduli characterize com-
pletely the response of an isotropic material. In fact, it is not difficult to see that the
three technical moduli are linked by the consistency condition
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E = 2(1 + ν)G. (2.43)

Remark 2.9 The positivity inequalities (2.37) imply that

E, G > 0, −1 < ν < 1/2 . (2.44)

Therefore, linearly elastic and isotropic materials that contract transversely when
axially extended (that is, materials for which 0 < ν < 1/2 ) have an E/G ratio
strictly included between 2 and 3; and, for those whose ν ∈ (−1,−1/2), to have
a Young’s modulus smaller (even much smaller) that their shear modulus does not
forbid the strain energy to be positive definite.

Remark 2.10 It is easy to express the Lamé moduli in terms of the technical moduli:

λ = 2ν

1 − 2ν
G = ν

(1 − 2ν)(1 + ν)
E, μ = G = 1

2(1 + ν)
E .

In particular, it follows from these relations that

3λ+ 2μ = 1

1 − 2ν
E .

With the use of the technical moduli, the inverse constitutive equation (2.39) reads:

E = 1

E

(
(1 + ν)S − ν(tr S)I

)
= 1

2G

(
S − ν

1 + ν
(tr S)I

)
. (2.45)

Consequently, the equal-index components of E are exemplified by

E11 = 1

E

(
S11 − ν(S22 + S33)

)
,

and the components with different indices by

E12 = 1

2G
S12,

all the other components being obtained via a cyclic permutation of indices.
Continuing to use the technical moduli, the direct constitutive equation (2.36) and
the strain energy read, respectively,

S = E

1 + ν

(
E + ν

1 − 2ν
(tr E)I

)
= 2G

(
E + ν

1 − 2ν
(tr E)I

)
(2.46)

and

σ̃(E) = E

2(1 + ν)

(
|E|2 + ν

1 − 2ν
(tr E)2

)
. (2.47)



2.3 The Stress Response to Strain 35

Remark 2.11 When the extensional rigidity is constant, the differential Eq. (1.6) for
the axial deformations of a beam is:

w′′ + q

E A
= 0.

It is instructive to demonstrate the mutual consistency of the 3- and 1-D theories of
elasticity by ‘deducing’ (1.6) from Navier equation. This can be done as follows. As
in Remark 2.3, restrict attention to displacement fields of the form:

u(x) = w(x3)e3. (2.48)

Then,
Δu = w′′e3, div u = w′ ⇒ ∇(div u) = w′′e3,

and hence Eq. (2.40) reduces to

(λ+ 2μ) w′′e3 + d = 0.

At this point, to conclude the announced deduction, it is enough to choose

d = q

A
e3

and to set
λ+ 2μ = E . (2.49)

It remains for us to convince ourselves that the last position makes sense. Now, it is
easy to see that, whenever the strain state

E = τe3 ⊗ e3

corresponding to a displacement field (2.48) is induced in a linearly elastic isotropic
material, the stress state is

S = τ
(
(λ+ 2μ)e3 ⊗ e3 + λ(e1 ⊗ e1 + e2 ⊗ e2)

)
.

Thus, the relative Young’a modulus:

E = e3 · Se3

e3 · Ee3

has just the expression (2.49).

http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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2.3.3 Plane Stress Fields

A stress field S is said plane if there is a Cartesian frame where its representation
fulfills a set of conditions formally identical to the conditions (2.19) defining a plane
strain field, namely,

Sαβ = Sαβ(x1, x2), S3i = 0; (2.50)

therefore, it has the form:

S = S11(x1, x2)e1 ⊗ e1 + S12(x1, x2)(e1 ⊗ e2 + e2 ⊗ e1) + S22(x1, x2)e2 ⊗ e2.

A plane stress field is balanced for null distance forces if its divergence is null:

div S = 0, (div S)α = Sαβ,β = 0. (2.51)

In Sect. 4.2, we shall construct a general representation for those fields S that solve
(2.51).

In a linearly elastic isotropic body, a plane stress field induces a strain field that
is not plane in general, as an application of the response law (2.45) shows:

E11 = 1

E

(
S11 − νS22

)
, E22 = 1

E

(
S22 − νS11

)
, E12 = 1

2G
S12,

E3α = 0, E33 = − ν

E

(
S11 + S22

)
.

Quite similarly, a plane strain field does not induce a plane stress field in general,
because relations (2.36) and (2.33) imply not only that

S3α = 0, (2.52)

but also that

S33 = λ(E11 + E22) = νE

(1 + ν)(1 − 2ν)
(E11 + E22) �= 0, in general.

Note for later use that the last relation, when written in terms of stress components
and technical moduli, reads:

S33 = ν(S11 + S22). (2.53)

http://dx.doi.org/10.1007/978-3-319-01258-2_4
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2.3.4 Plane Strain Fields Associated with Plane Stress Fields

Given a plane strain field, it is at times convenient to write the inverse constitutive
relation delivering its nonnull components in a fashion formally identical to (2.3.3):

E11 = 1

E0

(
S11 − ν0S22

)
, E22 = 1

E0

(
S22 − ν0S11

)
, E12 = 1

2G
S12, (2.54)

where

E0 := E

1 − ν2 , ν0 := ν

1 − ν
(2.55)

and hence11

E0 = 2(1 + ν0)G. (2.56)

A comparison with (2.54) permits to regard the plane strain state (2.3.3) as a part of
the strain state induced by a plane stress state in a body made of an isotropic material
whose technical moduli are E0, ν0, and G.

Given the plane stress {S11, S22, S12} and the component S33 associated with it
by the use of recipe (2.53), the corresponding plane strain is delivered by formulas
(2.54)–(2.55). Such a construction is going to be of the essence to solve the 2-D
version of Flamant problem with the method we propose.

Remark 2.12 Relation (2.54) can be given a version free from the specialty inherent
to the use of Cartesian components and formally identical to (2.45)1:

E = 1

E0

(
(1 + ν0)S − ν0(tr S)I(2)

)
, (2.57)

where S is, as anticipated, a plane stress field and I(2) denotes the two-dimensional
identity tensor.

11 For example, let us show how the first of (2.54) is arrived at: from (2.33)1,2 we have that

S11 = E

1 + ν

(
E11 + ν

1 − 2ν
(E11 + E22)

)
, S11 + S22 = E

(1 + ν)(1 − 2ν)
(E11 + E22);

consequently,

E11 = 1 + ν

E
S11 − ν

1 − 2ν

(1 + ν)(1 − 2ν)

E
(S11 + S22) = 1 + ν

E

(
S11 − ν(S11 + S22)

)
etc.
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2.4 Compatibility in Stress Terms

2.4.1 The Three-Dimensional Case

When the response mapping of a linearly elastic material is invertible, the compat-
ibility condition (2.12) is written in stress terms in a straightforward manner, with
the use of (2.35):

curl curl (C−1S) = 0. (2.58)

When an equilibrium problem is formulated in stress terms, the symmetric-valued
fields S to be inserted in (2.58) must satisfy the equilibrium equation (2.31). In the
applications we are interested in, three conditions hold, which make special and easy
to handle the compatibility condition (2.58):

(i) the material is supposed to be isotropic, and hence, in view of (2.45)2,

C
−1S = 1

2G

(
S − ν

1 + ν
(tr S)I

)
; (2.59)

(ii) the bodies under examination are supposed homogeneous, hence the elastic
moduli are spatially constant;

(iii) distance actions are supposed to be null, and hence

div S = 0. (2.60)

We now proceed to determine the form of condition (2.58) under these circumstances.
Firstly, it follows from (2.58), (2.59), and assumption (ii), that

curl curl S − ν

1 + ν
curl curl

(
(tr S)I

) = 0. (2.61)

To move further, we observe that each smooth symmetric-valued tensor field A
satisfies identically the differential condition:

curl curl A = −ΔA − ∇(∇(tr A)) + ∇(div A)

+ (∇(div A))T + (Δ(tr A) − div (div A))I (2.62)

(cf. [6], Sect. 14); in components,

ei jkelmn A jm,kn = −Ail , j j −A j j ,il +Ai j , jl +Al j , j i +(A j j ,kk −A jk, jk )δil .

(2.63)
Consequently,

tr
(
curl curl A

) = Δ(tr A) − div (div A); (2.64)

moreover, for A = αI, (2.62) yields:
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curl curl
(
αI

) = (Δα)I − ∇(∇α), (2.65)

hence, in particular,
tr

(
curl curl

(
αI

)) = 2Δα. (2.66)

Thus, if a field S satisfying (2.60) is compatible, then necessarily it must be such
that

Δ(tr S) = 0, (2.67)

a relation that is arrived at by taking the trace of (2.61), with the use of (2.64) and
(2.66) and of the constitutive inequalities restricting the admissible values of ν (recall
Remark 2.7). Due to this partial result, we deduce from (2.62) that

curl curl S = −ΔS − ∇∇(tr S),

and from (2.65) that
curl curl

(
(tr S)I

) = −∇∇(tr S);

On taking the two last relations into account, (2.61) becomes the sought-for compat-
ibility condition in stress terms:

ΔS + 1

1 + ν
∇∇(tr S) = 0. (2.68)

Remark 2.13 Once a general representation has been found for all solutions of the
equilibrium equation (2.60), we are going to use condition (2.68) to select those
associable with strain and stress fields consistent with the constitutive behavior of the
material under consideration. Remarkably, this behavior affects (2.68) only through
the Poisson’s modulus. A universal stress field—that is, a stress field being balanced
and compatible for whatever isotropic material—must satisfy, in addition to (2.60),
a system even more stringent than (2.68), namely,

ΔS = 0, ∇∇(tr S) = 0.

2.4.2 The Two-Dimensional Case

An assigned plane strain field whose Cartesian components are E11, E22, E12 is
compatible if condition (2.20) holds; we repeat it here for the reader’s convenience:

2 E12,12 = E11,22 + E22,11.

This condition can be written in terms of stresses with the use of the constitutive
relations (2.54)–(2.56). One begins by finding:
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1

G
S12,12 = 1

E0

(
S11,22 + S22,11 − ν0

(
S11,11 + S22,22

))
,

a relation that can be given the intermediate form

S12,12 = 1

2(1 + ν0)

(
(S11 + S22),11 + (S11 + S22),22 −(1+νo)(S11,11 + S22,22 )

)
,

and then the final form
Sαα,ββ = (1 + ν0)Sαβ,αβ .

When the field S is plane, the last condition can be witten more compactly:

Δ(tr S) = (1 + ν0) div (div S).

A consequence of this result, of paramount importance in certain developments to
come, is the condition that a plane stress field, balanced for null distance forces, must
satisfy to be compatible. In view of (2.50) and (2.51), that condition is:

Δ(tr S) = 0. (2.69)

It is not difficult to check that the same condition guarantees the compatibility of the
three-dimensional stress field

S̃ = S + S33e3 ⊗ e3, S33 = νSαα. (2.70)

Such a stress field, by way of the constitutive relations (2.54), is associable with a
compatible plane strain field, which in turn is associated with a plane displacement
field.
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Chapter 3
Geometric and Analytic Tools

The problems in classical elasticity we tackle have intrinsic symmetries that are best
exploited with the use of ad hoc coordinate systems, because the associated vector
and tensor bases allow for convenient representations of the fields of interest and
their transformations under the action of differential operators. In this chapter we
collect a modicum of basic material from differential geometry and analysis.

3.1 Curvilinear Coordinates, Covariant and Contravariant Bases

Let x any chosen point in E N , whose position vector with respect to a chosen origin
o ∈ E N is, we recall, x = x − o. Alongside with its Cartesian coordinates xi , we
associate to x one or more sets of curvilinear coordinates ζ i , that is, of ordered
N -tuples of real numbers, each of which is such that the following mappings are all
bijective:

(ζ1, . . . , ζN ) ↔ x ↔ x ↔ (x1, . . . , xN ).

Two sets of N basis vectors are defined at each point x ∈ E N , those composing
the covariant basis:

gi := ∂ζi x = ∂ζi x (3.1)

and those composing the contravariant basis:

gi := ∇ζ i ; (3.2)

while neither type of basis is in general orthogonal or consists of unit vectors, it
follows from definitions (3.1) and (3.2) that

gi · gk = δik .

P. Podio-Guidugli and A. Favata, Elasticity for Geotechnicians, Solid Mechanics 43
and Its Applications 204, DOI: 10.1007/978-3-319-01258-2_3,
© Springer International Publishing Switzerland 2014
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Two equivalent dyadic representations in terms of basis vectors can be given for the
identity tensor I, namely,

I = gi ⊗ gi = gi ⊗ gi .

For v any vector, this relation implies that

v = Iv = (gi · v)gi = (gi · v)gi ; (3.3)

the covariant and contravariant components of v are, respectively,

vi := v · gi and vi := v · gi ,

whence
v = vigi = vig

i . (3.4)

Now, the operation of taking the Cartesian components of a vector has no effect
on physical dimensions, because all vectors of a Cartesian basis are dimensionless.
Instead, when general curvilinear coordinates are used, the physical dimensions of
vi and vi may be neither all the same nor the same as v, because one or another of the
basis vectors may have non-zero dimensions.1 In applications, this fact may blur the
physical perception of a quantity undergoing algebraic or differential manipulations.
In the next section we show how this potential difficulty is removed.

3.2 Orthogonal Coordinates, Physical Bases

What type of curvilinear coordinates to use is suggested by the symmetries inherent
to the problem at hand. We begin by the simplest instance of polar coordinates, to be
used in the study of the plane Boussinesq-Flamant Problem (Sect. 4.3).

3.2.1 Polar Coordinates

Let N = 2, and choose
ζ1 = ρ, ζ2 = ϑ

(Fig. 3.1).

1 It follows from (3.1) and (3.2) that, for each index i , vectors gi and gi have inverse physical
dimensions:

dim(gi ) = (
dim(gi )

)−1
.

Thus, in particular, the identity tensor is dimensionless, as required implicitly by (3.3)1; moreover,
in view of (3.4),

dim(vi ) = (
dim(vi )

)−1
.

http://dx.doi.org/10.1007/978-3-319-01258-2_4
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Fig. 3.1 The Flamant half
plane: coordinates, basis
vectors and applied load

The position vector of a point x ∈ E2 is

x = xα eα = ρ̂e(ϑ),

where
x1 = ρ cosϑ, x2 = ρ sin ϑ,

so that, in particular,
ê(ϑ) = cosϑe1 + sin ϑe2;

and where
ρ2 = x2

1 + x2
2 = x · x, tan ϑ = x2

x1
= x · e2

x · e1
. (3.5)

On applying (3.1) and (3.2), we find:

g1 = ∂ρx = ê(ϑ),

g2 = ∂ϑx = ρ̂e ′(ϑ),

for the covariant basis, and

g1 = ∇ρ = ∂ρ

∂xα
eα = ê(ϑ),

g2 = ∇ϑ = ∂ϑ

∂xα
eα = ρ−1̂e ′(ϑ),

(3.6)

for the contravariant basis; consequently, the 2-D identity tensor has the following
representations2:

2 On differentiating the first of (3.5), we find that

2ρ∇ρ = 2x ⇒ ∇ρ = ρ−1x, with ρ = |x|;
on differentiating the second, that

1

cos2 ϑ
∇ϑ = (x · e1)e2 − (x · e2)e1

(x · e1)2 , con cosϑ = ρ−1(x · e1), sin ϑ = ρ−1(x · e2),

whence (3.6)2.
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I(2) = gα ⊗ gα = gα ⊗ gα = e ⊗ e + e′ ⊗ e′.
Remark 3.1 The case of polar coordinates exemplifies the general situation, where,
with the exception of Cartesian coordinates, covariant and contravariant bases both
differ and depend on the point. In a way, the price to pay for the advantage of
representing vector and tensor fields in geometrically convenient bases is that those
bases must be adjourned according to the point in space where the representation is
sought: usually, the game is worth the candle.

Polar coordinates are said orthogonal, because such are the vectors of each of
the two bases. The basis vectors g1 and g1 have unit length and are dimensionless;
not so the vectors g2 and g2, because dim(g2) = L and hence, dim(g2) = L−1

(recall the contents of the footnote at the end of Sect. 3.1). To avoid representations
where the dimensions of all components are not the same, in this and in all cases
when the coordinate system at hand is orthogonal, one customarily introduces the
physical basis

g<i> : = |gi |−1gi = |gi |−1gi (index i unsummed).

Accordingly, for polar coordinates the physical basis is

g<1> = ê ′(ϑ), g<2> = ê(ϑ)

In this book, we shall employ exclusively orthogonal curvilinear coordinates and
physical bases. Therefore, neither superscript indices nor the symbol 〈·〉 will be
needed: components will be distinguished only by subscript indices.

3.2.2 Cylindrical Coordinates

For N = 3, we consider two types of cylindrical coordinates:

(i) ζ1 = ρ, ζ2 = ϑ, ζ3 = x3 and
(ii) ζ1 = z, ζ2 = r, ζ3 = ϕ,

with
z2 + r2 = ρ2, z−1r = tan ϑ, sinϕ = x3

ρ sin ϑ

(see Fig. 3.2). We make use of coordinates of the former type for the Flamant Problem
(Chap. 4), of the latter for the Boussinesq Problem (Chap. 5).

With reference to Fig. 3.2, in terms of the cylindrical coordinates z, r,ϕ, the
Cartesian coordinates of a point x with respect to the origin o are:

x1 = z, x2 = r cosϕ, x3 = r sinϕ.

http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_5
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Fig. 3.2 The cylindrical
coordinates (ρ,ϑ, x3) and
(z, r,ϕ)

Consequently, the position vector of x with respect to o is:

x = ze1 + r ĥ(ϕ), with z, r ≥ 0, ϕ ∈ [0, 2π),

where
ĥ(ϕ) = cosϕ e2 + sinϕ e3.

The mutually orthogonal contravariant basis vectors are

g1 = e1,

g2 = h, (3.7)

g3 = r−1h′;

the covariant basis vectors are:
g1 = e1,

g2 = h,

g3 = rh′;

the physical basis is the following triplet of unit vectors: (e1, h, h′).3 The associated
physical basis for the space of symmetric tensors is the following sextuple of dyads:

3 To derive (3.7), recall that:

g1 := ∇z, z = x · e1; g2 := ∇r, r2 = (x · e2)
2 + (x · e3)

2; g3 := ∇ϕ, tanϕ = x · e3

x · e2
.
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e1 ⊗ e1, h ⊗ h, h′ ⊗ h′,
1√
2
(e1 ⊗ h + h ⊗ e1),

1√
2
(e1 ⊗ h′ + h′ ⊗ e1), (3.8)

1√
2
(h ⊗ h′ + h′ ⊗ h);

in particular, the identity tensor has the representation:

I = e1 ⊗ e1 + h ⊗ h + h′ ⊗ h′.

3.2.3 Spherical Coordinates

Spherical coordinates:
ζ1 = ρ, ζ2 = ϑ, ζ3 = ϕ, (3.9)

with
(ρ,ϑ,ϕ) ∈ [0,+∞) × [−π,+π) × [0,π),

(see Fig. 3.3) are best for the Kelvin Problem (Sect. 6.3).
In terms of spherical coordinates, the Cartesian coordinates of a point x with

respect to the origin o are:

x1 = ρ cosϑ, x2 = ρ sin ϑ cosϕ, x3 = ρ sin ϑ sinϕ; (3.10)

Fig. 3.3 The spherical coordinates (ρ,ϑ,ϕ)

http://dx.doi.org/10.1007/978-3-319-01258-2_6
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the reader is advised to check that, for ϕ = 0, these formulas (as well as other in this
subsection) reduce to the corresponding formulas for polar coordinates. It follows
from (3.10) that the position vector of x is:

x = ρ̂r(ϑ,ϕ), (3.11)

where

r := r̂(ϑ,ϕ) = cosϑ e1 + sin ϑ ĥ(ϕ), h := ĥ(ϕ) = cosϕ e2 + sinϕ e3.

The contravariant basis vectors are4:

g1 = r,

g2 = ρ−1(− sin ϑe1 + cosϑh) = ρ−1r,ϑ ,

g3 = (ρ sin ϑ)−1h′ = (ρ sin2 ϑ)−1r,ϕ . (3.12)

It is easy to check that these vectors are mutually orthogonal, as are the covariant
basis vectors:

g1 = x,ρ = r,

g2 = x,ϑ = ρr,ϑ = ρ(− sin ϑe1 + cosϑh),

g3 = x,ϕ = ρr,ϕ = (ρ sin ϑ)h′;

with this, one finds that

I = gi ⊗ gi = g j ⊗ g j = r ⊗ r + r,ϑ ⊗ r,ϑ + h′ ⊗ h′,

a representation of the identity tensor where the vectors (r, r, ϑ, h′) of the physical
basis appear.

Remark 3.2 Note the following relationships between the cylindrical and spherical
coordinates of a given point:

z = ρ cosϑ, r = ρ | sin ϑ|; ρ2 = z2 + r2, | tan ϑ| = r

z
.

4 To derive (3.12), recall that:

g1 = ∇ρ, ∇(x · x) = ∇(ρ2), ρ = |x|;
g2 = ∇ϑ, e1 = ∇(x · e1) = ∇(ρ cosϑ) = (cosϑ)∇ρ+ ρ∇(cosϑ) = cosϑ r − ρ sin ϑ∇ϑ;
g3 = ∇ϕ,

cosϕe3 − sinϕe2

ρ sin ϑ cos2 ϕ
= (x · e2)e3 − (x · e3)e2

(x · e2)2 = ∇(x · e3

x · e2

) = ∇(tanϕ) = 1

cos2 ϕ
∇ϕ .
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Fig. 3.4 The area element
of the coordinate surface Sρ

Remark 3.3 The outer normal n = r,ϑ × h′ to any coordinate surface Sρ := {x | |x−
o| = ρ} coincides with the unit vector r; the oriented area element of such a surface
has the expression:

n(ϑ,ϕ)da = ρ2r(ϑ,ϕ)| sin ϑ| dϑdϕ

(Fig. 3.4). Needless to say, the area of Sρ is

ρ2
∫ π

0

(∫ +π

−π
| sin ϑ| dϑ

)
dϕ = 4πρ2;

and, as is intuitively true, the average of the normal field over Sρ is null, because

ρ−2
∫
Sρ

n(ϑ,ϕ)da = a e1 + b e3,

∫ π

0
h(ϕ)dϕ = 2e3,

a := π

∫ +π

−π
cosϑ | sin ϑ| dϑ = 0, b := 2

∫ +π

−π
sin ϑ | sin ϑ| dϑ = 0.

By the same token, we find that

ρ−2
∫

1
2 Sρ

n(ϑ,ϕ)da =
(
π

∫ +π/2

−π/2
cosϑ | sin ϑ| dϑ

)
e1 = π e1,

where 1
2Sρ denotes the half of Sρ below the coordinate plane x1 = 0. It will be

important for certain developments to come to realize that, whenever a given function
f is even,

∫
1
2 Sρ

f (ϑ)n(ϑ,ϕ)da = π

(∫ +π/2

−π/2
f (ϑ) cosϑ | sin ϑ| dϑ

)
e1, (3.13)

whereas
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∫
1
2 Sρ

f (ϑ)n(ϑ,ϕ)da = 2

(∫ +π/2

−π/2
f (ϑ) sin ϑ | sin ϑ| dϑ

)
e3

whenever f is odd.

3.3 Representations of Differential Operators

Differential operators have coordinate-dependent representations, but one and only
one intrinsic definition. Conceptually, only the latter counts, but operationally it is
expedient to know, problem by problem, the most effective representation of the
former type.

In our developments to come, the first differential operator to be introduced is the
gradient of a scalar field ϕ = ϕ̃(x), whose intrinsic definition is:

∇ϕ̃(x) · h := lim
ε→0

ϕ̃(x + εh) − ϕ̃(x)

ε
. (3.14)

This definition delivers a vector field, which has the following Cartesian representa-
tion:

∇ϕ
̂

(x1, x2, x3) = ϕ
̂

,i (x1, x2, x3)ei ,

where
ϕ
̂

(x1, x2, x3) := ϕ̃(x), x = x
̂
(x1, x2, x3).

For a generic system of curvilinear coordinates, one sets:

ϕ̂(ζ1, ζ2, ζ3) := ϕ̃(x), ζ i = ζ̃ i (x),

whence the representation

∇ϕ̂(ζ1, ζ2, ζ3) = ϕ̂,ζ i (ζ1, ζ2, ζ3)∇ζ i (x), x = x̂(ζ1, ζ2, ζ3);

in short, in view of definition (3.2),

∇ϕ := ϕ,i gi . (3.15)

where vectors gi compose the contravariant basis.
On exploiting the notion of gradient of a scalar field, one can easily build the

definition of gradient for a vector field v: it is enough to choose ϕ = v · a in (3.14),
with a an arbitrary vector; then, the gradient of a vector field v is:

∇v = v,i ⊗ gi . (3.16)
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With the use of this relation, the divergence of a vector field v is defined to be:

div v := tr (∇v) = ∇v · I = v,i · gi .

In turn, when the last definition is used for the vector field v = VT a (with a, as usual,
an arbitrary constant vector), the definition of divergence of a tensor field V is:

div V = V,ig
i . (3.17)

Remark 3.4 For polar coordinates, (3.15) becomes:

∇ϕ = ϕ,α gα = ϕ,ρ e + ρ−1ϕ,ϑe′,

while (3.17) becomes:

div V = V,α gα = V,ρ e + ρ−1V,ϑ e′. (3.18)

Lastly, by posing v = ∇ϕ in (3.16), it is not difficult to deduce from that relation
that

∇(2)ϕ = (∇ϕ),α ⊗ gα = ϕ,ρρ e ⊗ e + ρ−1(ϕ,ρ + ρ−1 ϕ,ϑϑ)e
′ ⊗ e′

+ ρ−1(ϕ,ρϑ − ρ−1 ϕ,ϑ)(e ⊗ e′ + e′ ⊗ e),

�ϕ = tr (∇(2)ϕ) = ϕ,ρρ + ρ−1 ϕ,ρ + ρ−2 ϕ,ϑϑ.

(3.19)



Part II
Three Classical Problems: Flamant’s,

Boussinesq’s, and Kelvin’s



Chapter 4
The Flamant Problem

In 1892 [6], the French mechanist Alfred-Aimé Flamant (1839–1914) posed and
solved the equilibrium problem of a linearly elastic, isotropic and homogeneous
body occupying a half-space acted upon by a perpendicular line load of constant
magnitude per unit length and infinitely long support (Fig. 4.1). In this chapter, we
solve the Flamant Problem by a method different from his. Our method is semi-
heuristic, in that its point of departure is a provisional representation for the solution
fields that is suggested directly by physical intuition.

Although Flamant’s line load mimics well the load exerted by a railroad track or
a long foundation beam, in these and other applicative situations it is unrealistic to
presume that the soil response be linearly elastic and isotropic. However, as we shall
see, the Flamant’s stress field does not depend on the material’s constitution, and is
therefore associable with whatever constitutive model is considered fit, in order to
evaluate strains and displacements.

4.1 A Priori Representations of Displacement, Strain, and Stress

As a rule, finding the data �→ solution mapping for a given problem is made easier
when the data have implicit symmetries that the solution must reflect. Flamant’s
is a problem in 3-D classical elasticity where certain peculiar symmetries in the
assignment of data do allow for an a priori parametric representation of the solution,
which is then reduced to its explicit final form with ease.

Flamant’s data are in many ways special: because of the geometry of the domain
where the problem is formulated, the half-space

HS+ := {x | (x − o) · e1 ≥ 0};

because of the type of load, a force per unit length f = f e1 which is uniformly
distributed along the x3 axis (Fig. 4.1); because of the material response, which is
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Fig. 4.1 The Flamant
Problem

linearly elastic and isotropic. These peculiarities of the data induce our physical
intuition to prefigure the qualitative features of both the displacement field and the
stress field balancing the applied load: all we have to do is to give this prefigurement
a convenient mathematical form.

As to the displacement field, we see that none of its components can depend on
the coordinate x3, because the load does not and the domain is unbounded; hence,
the origin can be arbitrarily chosen on the x3 axis:

ũ(·, ·, x3) = ũ(·, ·, x3 + t) for each real number t.

In particular, u3, the component parallel to the load line, must be null all over the
plane x3 = 0, hence identically null all over HS+. Thus, the solution displacement
must be plane and independent of coordinate x3:

u = ũα(x1, x2)eα. (4.1)

But this is not all: our physical intuition also suggests that we can limit ourselves to
look for displacement fields being mirror-symmetric with respect to plane x2 = 0:

ũ1(x1, x2) = ũ1(x1,−x2), ũ2(x1, x2) = −ũ2(x1,−x2) (4.2)

(therefore, in particular,
ũ2(x1, 0) = 0

whatever the value of x1, that is to say, at whatever distance from the surface of the
half-space HS+).

Given that the displacement field (4.1) is plane, the Flamant strain field must
be plane; consequently (recall the developments in Sect. 2.3.3), it must have the

http://dx.doi.org/10.1007/978-3-319-01258-2_2
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following form:

Sαβ = S̃αβ(x1, x2), S3α ≡ 0,

S33 = S̃33(x1, x2) := ν
(
S̃11(x1, x2) + S̃22(x1, x2)

)
.

Both strain and stress fields must also inherit the mirror symmetry of the displacement
field, detailed in (4.2).

Remark 4.1 The symmetry properties of the Flamant displacement field can be
expressed also with the use of the cylindrical coordinates (ρ,ϑ, x3) introduced in
Sect. 3.2.2. Let us choose, for simplicity, x3 = 0, and set:

u = û(ρ,ϑ) := ũ(x1, x2),

for ρ = (x2
1 + x2

2 )1/2 ∈ (0,+∞) and ϑ = arccos(x1/ρ) ∈ [−π/2,+π/2] the coor-
dinates of a typical point of the half-plane

HP+ := {x | (x − o) · e3 = 0, (x − o) · e1 ≥ 0}.

We see that we must have:

û(ρ,ϑ) · ê(ϑ) = û(ρ,−ϑ) · ê(−ϑ),

û(ρ,ϑ) · ê ′(ϑ) = −û(−ϑ) · ê ′(−ϑ), (4.3)

where the unit vectors e and e′ are defined to be:
{

e = ê(ϑ) := cosϑ e1 + sin ϑ e2,

e′ = ê′
(ϑ) := − sin ϑ e1 + cosϑ e2

(4.4)

(Figure 4.2).

Fig. 4.2 Symmetries of Fla-
mant’s displacement field

http://dx.doi.org/10.1007/978-3-319-01258-2_3
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Fig. 4.3 Symmetries of Fla-
mant’s contact interactions

Remark 4.2 A representation in terms of cylindrical coordinates is better suited than
a Cartesian representation to predict the form of the stress field. Consider the cylindric
Euler cut, of radius ρ and axis x3, whose cross section is visualized in Fig. 4.3. The
part of half-space HS+ singled out by the cut, an infinite half-cylinder, must be in
equilibrium under the combined action of the applied load and a distribution c of
diffused contact actions exerted by the complementary part of HS+ at the common
boundary, where

n̂(ϑ) = ê(ϑ);

the stress field Ŝ associated with such distribution according to (2.29) must be such
that:

ĉ(ρ,ϑ; n̂(ϑ)) = Ŝ(ρ,ϑ)̂e(ϑ),

and our physical intuition suggests that the mapping ĉ be given the same form restric-
tions that (4.3) details for û.

4.2 Plane Stress Fields Balanced for Null Distance Forces

In this section, as a preliminary to our solution of the Flamant Problem, we construct a
representation formula for plane stress fields such as those encountered when solving
the plane versions not only of that problem but also of other similar problems, such
as the plane Kelvin Problem studied in Sect. 6.2 and the Cerruti Problem studied in
Chap. 8.

We know from Sect. 2.3.3 that a plane stress field Ŝ is termed balanced for null
distance loads whenever it is divergenceless. We represent Ŝ as follows:

S = Ŝ(ρ,ϑ) = α̂(ρ,ϑ) ê (ϑ) ⊗ ê(ϑ) + β̂(ρ,ϑ) ê ′(ϑ) ⊗ ê ′(ϑ)

+ γ̂(ρ,ϑ)( ê(ϑ) ⊗ ê ′(ϑ) + ê ′(ϑ) ⊗ ê (ϑ)). (4.5)

http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_6
http://dx.doi.org/10.1007/978-3-319-01258-2_8
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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Then, in view of formula (3.18) for the divergence operator in polar coordinates, we
find after some manipulations that, for Ŝ to be divergenceless in a plane region R, the
scalar fields in the representation (4.5) must satisfy the following system of PDEs:

(ρα),ρ = β − γ,ϑ ,

(ργ),ρ = −β,ϑ −γ, (4.6)

at each point of R. On adopting a heuristic attitude, we look for solutions of this
system in the following separable form:

α̂(ρ,ϑ) = α0 ρ
−1â(ϑ), γ̂(ρ,ϑ) = γ0 ρ

−1ĉ(ϑ), (4.7)

with the blanket assumption that functions â and ĉ be as smooth as necessary for
the developments to come to make sense. Under these hypotheses, system (4.6)
reduces to:

β − γ,ϑ = 0, β,ϑ + γ = 0,

implying that
γ,ϑϑ + γ = 0,

or rather—equivalently, under the circumstances—that

γ0
(̂
c ′′(ϑ) + ĉ(ϑ)

) = 0.

Hence,

ĉ(ϑ) = c1 cosϑ+ c2 sin ϑ and β̂(ρ,ϑ) = γ0 ρ
−1(−c1 sin ϑ+ c2 cosϑ).

Summing up, there is a family of divergenceless plane stress fields having the
following separable representation of type (4.5):

ρ̂S(ρ,ϑ) = α0 â(ϑ) ê(ϑ) ⊗ ê(ϑ)

+ γ0

(̂
c′(ϑ) ê ′(ϑ) ⊗ ê′(ϑ) + ĉ(ϑ)

(̂
e(ϑ) ⊗ ê ′(ϑ) + ê ′(ϑ) ⊗ ê(ϑ)

))
,

(4.8)
a family parameterized by the three constants α0, γ0c1, γ0c2 and by the scalar func-
tion â.

Remark 4.3 In the next section we shall show that the stress field solving the plane
Flamant Problem obtains from (4.8) on choosing

γ0 = 0, (4.9)

whence
Ŝ(ρ,ϑ) = α0 ρ

−1â(ϑ) ê(ϑ) ⊗ ê(ϑ). (4.10)

http://dx.doi.org/10.1007/978-3-319-01258-2_3
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The reason why γ0 is taken null is that otherwise it would be impossible to satisfy
the null-traction condition at all points but the origin of the straight line that bounds
the half-plane HP+. Indeed, with reference to Fig. 4.3, for ρ > 0 and by continuity
up to ϑ = ±π/2, (4.8) yields the stress field:

ρ̂S(ρ,±π/2) = α0 â(±π/2) e2 ⊗ e2

+ γ0
(̂
c′(±π/2) e1 ⊗ e1 − ĉ(±π/2)(e2 ⊗ e1 + e1 ⊗ e2)

)
= α0 â(±π/2) e2 ⊗ e2 ∓ γ0

(
c1 e1 ⊗ e1 + c2(e2 ⊗ e1 + e1 ⊗ e2)

)
,

and hence, the traction vector is:

c(ρ,±π/2; e1) = −Ŝ(ρ,±π/2)e1 = ±γ0ρ
(
c1 e1 + c2 e2

)
.

Hence,
c(ρ,±π/2; e1) ≡ 0 (ρ > 0) ⇔ γ0 = 0.

4.3 The 2-D Boussinesq–Flamant Problem

In 1878 [2], Joseph Valentin Boussinesq (1842–1929)—he too a student of Saint-
Venant’s, just as Flamant—had considered the case of a point-concentrated load
perpendicular to a half-space, a problem he was to return to repeatedly later in [3–5].
We shall study the Boussinesq Problem in the next chapter. A glance to Figs. 5.1 and
4.1 is enough to conclude that the 2-D versions of that problem and Flamant’s are
no different. For this reason, we name after both Boussinesq and Flamant the plane
equilibrium problem we study in this section.

4.3.1 Divergenceless Plane Stress Fields

We denote by r := x − o the position vector of point x ∈ HP+ with respect to o;
moreover, we set ρ := |r|, e := ρ−1r, ϑ := arcsin(e1 × e · e3), whence, in particular,
(4.4)1 follows. Our first goal is to find out what stress fields balance the applied force
f = f e1.

One may ask why the separate-variable representations we chose in the preceding
section for the parameter functions α̂ and γ̂ featured a first-order singularity in ρ at
the origin. With a view toward motivating this choice, we propose to start from the
following Ansatz:

S = σ̂(ρ,ϑ) ê(ϑ) ⊗ ê(ϑ), (4.11)

with σ̂(ρ, ·) an even function of ϑ. As a matter of fact, at the periphery of the half-disk
HDρ of radius ρ depicted in Fig. 4.4, where the exterior normal coincides with the

http://dx.doi.org/10.1007/978-3-319-01258-2_5
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Fig. 4.4 The half-disk HDρ

unit vector e, our physical intuition suggests that the stress field (4.11) induces the
contact interaction

ĉ(ρ,ϑ; n) = Ŝ(ρ,ϑ)n = (n · ê(ϑ))̂σ(ρ,ϑ)̂e(ϑ), σ̂(ρ,ϑ) = σ̂(ρ,−ϑ), ∀ ρ > 0;

in particular, over the half-circumference

HCρ := {x | x − o = ρ̂e(ϑ), ϑ ∈ (−π/2,+π/2)},

the vector field ĉ is radial:

ĉ(ρ,ϑ; n) = σ̂(ρ,ϑ)̂e(ϑ),

while it is null over the segment

Iρ := {x | x − o = σe2, σ ∈ (+ρ, 0) ∪ (0,−ρ)}.

It follows from (4.11) that

div S = (σ,ρ + ρ−1σ)e,

whence

σ,ρ + ρ−1σ = 0; ⇔; σ̂(ρ,ϑ) = ρ−1τ̂ (ϑ), with τ̂ (ϑ) = τ̂ (−ϑ).

Thus, the Ansatz (4.11) is further specified by giving it the form (4.10), with â even:

S = α0ρ
−1â(ϑ)̂e(ϑ) ⊗ ê(ϑ), â(ϑ) = â(−ϑ). (4.12)

Remark 4.4 If function α̂ in (4.8) is chosen as in (4.7)1, then system (4.6) becomes:
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−β + γ,ϑ = 0,

γ,ρ + ρ−1(β,ϑ + 2γ) = 0.

From the first equation we deduce that, if a separate-variable representation is sought
for function γ̂, then a similar representation must hold also for function β̂, with an
identical dependence on ρ. Moreover, by combining the two equations in the system,
we see that function γ̂ must be such that

(ργ),ρ + γ,ϑϑ + γ = 0.

From this last relation we infer that γ̂, to have a separate-variable representation,

must be of the form (4.7)2. Therefore, due to (4.6)1, β̂ must be of the form (4.7)2 as
well.

4.3.2 Compatible and Divergenceless Plane Stress Fields

We now wish to find out for which choice of the parameter function â a divergenceless
plane stress field of type (4.12) is compatible, that is, induces a plane strain field in
the half-plane HP+ when that half-plane is comprised of a linearly elastic isotropic
material. To this end—we know from Sect. 2.4.2—it is sufficient that the field Ŝ
satisfies Eq. (2.69):

Δ(tr S) = 0,

that is, in the present instance,

tr S = α0ρ
−1â(ϑ).

Hence, on recalling (3.19)3, function â must such that

Δ(ρ−1â(ϑ)) = ρ−2( â ′′(ϑ) + â(ϑ)) = 0.

To conclude without omitting to satisfy also (4.12)2, we must choose

â(ϑ) = cosϑ,

that is, the solution (unique to within an inessential multiplicative constant) to the
following problem:

a′′(ϑ) + â(ϑ) = 0, â(ϑ) = â(−ϑ), ϑ ∈ (−π/2,+π/2).

http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_3
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4.3.3 Compatible and Divergenceless Plane Stress Fields
that Balance the Applied Force

To complete our construction of the balanced plane stress field that solves the
Boussinesq-Flamant Problem we have to find the value of the constant α0. This
we do by an imposition of part-wise equilibrium.

For any fixed ρ > 0, we consider the half-disk HDρ depicted in Fig. 4.4: on its
boundary, it follows from (4.12) that the stress vector field is null at points of Iρ and
is

Se = α0ρ
−1 cosϑ e (4.13)

at points of HCρ. Therefore, HDρ is in equilibrium if

∫
HCρ

Se + f = 0.

Now,

∫
HCρ

Se = α0

∫ +π/2

−π/2

(
ρ−1 cosϑ(cosϑe1 + sin ϑe2)

)
ρ dϑ

= α0

( ∫ +π/2

−π/2
cos2 ϑdϑ

)
e1 = α0

π

2
e1 and f = f e1;

hence,

α0 = −2 f

π
.

In conclusion, the Boussinesq-Flamant stress field in HP+ is:

SB F = Ŝ
B F

(ρ,ϑ) := −2 f

π
ρ−1 cosϑ ê(ϑ) ⊗ ê(ϑ), (4.14)

for all (ρ,ϑ) ∈ (0,+∞) × [−π/2,+π/2].1

Remark 4.5 The appropriate restriction of the field Ŝ
B F

solves the equilibrium prob-
lem for a wedge

Wϑ0 := {x | x − o = ρ̂e(ϑ), ê(ϑ) · e3 = 0, |̂e(ϑ) · e1| ≤ | cosϑ0|},

whatever the vertex angle 2ϑ0 ∈ (0, 2π) (Fig. 4.5); the stress field in the wedge turns
out to be:

1 See Sect. A.3.1 for an exposition of the classical Airy method to construct balanced and compatible
plane stress fields.

http://dx.doi.org/10.1007/978-3-319-01258-2_3


64 4 The Flamant Problem

Fig. 4.5 A symmetrically-loaded wedge of opening 2ϑ0

Fig. 4.6 All along the locus of constant stress-magnitude, contact interactions are exclusively
diffused (this figure is taken from [8])

SW = − f

ϑ0 ρ
cosϑ ê(ϑ) ⊗ ê(ϑ), (ρ,ϑ) ∈ (0,+∞) × [−ϑ0,+ϑ0].

Remark 4.6 The magnitude of SB F is constant at those points of HP+ where

ρ−1 cosϑ = (2c)−1 = a positive constant;

it is not difficult to see that those points lie on the circumference Cc of a circle of
center (c, 0) and radius c (Fig. 4.6).2 At a point of Cc, the outer unit normal is

n = cosϑe + sin ϑe′

(see Fig. 4.7). Hence, the stress vector turns out to be

2 This circumference has the Cartesian equation

c2 = (x1 − c)2 + x2
2 = (ρ cosϑ− c)2 + (ρ sin ϑ)2 = ρ2(1 − (2c)ρ−1 cosϑ+ c2/ρ2).

In the geotechnical literature, this locus is called the pressure bulb.
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Fig. 4.7 The outer normal at a
typical point of circimference
Cc

SB Fn = − f

πc
cosϑe. (4.15)

We think of the part of HP+ bounded by Cc as being balanced under the combined
action of the diffused force (4.15) and the concentrated load f ; consistently, we think
of the complementary part as subject to diffused contact interactions only (Fig. 4.6).

4.4 Digression

(This section is taken almost verbatim from [8].)

4.4.1 A Weak Formulation of the Boussinesq–Flamant Problem

The stress field Ŝ
B F

satisfies point-wise the force balance equation:

div SB F = 0 (4.16)

in all of HP+ \ {o}; we now consider in what sense it satisfies the accompanying
traction boundary conditions, for the half-space and for its parts.

We propose to interpret the force f concentrated at o as a Dirac traction tρ applied
over the segment Iρ:

f =
∫
Iρ

tρ, tρ(x) := f δ(x − o)e1, x ∈ Iρ;

with this interpretation, the relation
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∫
HCρ

SB Fe +
∫
Iρ

tρ = 0

expresses the balance of contact actions, internal and external, applied to part HDρ,
whatever ρ > 0. Moreover, it follows from a formally stated divergence theorem and
(4.16) that

∫
HDρ

div SB F =
∫
HCρ

SB Fe +
∫
Iρ

SB Fe1 =
∫
Iρ

(−tρ + SB Fe1) = 0. (4.17)

We regard the last relation as an appropriate weak version of the traction boundary
condition prevailing over the segment Iρ [7].

The last equality in (4.17) shows that, over the straight line boundingHP+, the sur-
face traction SB Fn = −SB Fe1 is in the parlance of integration theory a measure, con-
centrated at the point o where the external contact force f is applied [11]. Suppose now
that the field S̃

B F
is continuously extended to null to the upper half-plane H−, and let

S̃
B F

denote such extended field over the plane P = HP+ ∪HP−. Interestingly, the
field S̃

B F
has divergence measure in P , equal to −δ(x−o)f , x ∈ P .3 To interpret the

latter result along the same lines we have interpreted the former, i.e., as a consequence
of a force balance, we may consider a disk-shaped part Dρ of P , of center o and radius
ρ, and imagine it as subject to an external distance force f applied at o, balanced by dif-
fused tractions being identically null over ∂Dρ∩HP− and equal to SB Fe over ∂Dρ∩
HP+. Continuum mechanics provides us with a unifying format for balance state-
ments that allows for a further, precise interpretation of these two analytical findings:
A pair

(
(c, d), S

)
, formed by contact and distance force fields c and d and a stress

field S over a region Ω with boundary ∂Ω , is weakly balanced whenever the stress
working equals the distance working plus the contact working, i.e., whenever

∫
Ω

S · ∇v =
∫

Ω

d · v +
∫
∂Ω

c · v, for all smooth test fields v;

moreover, in view of a standard differential identity,

∫
Ω

S · ∇v =
∫

Ω

(−div S) · v +
∫
∂Ω

(Sn) · v,

so that we can regard −div S as the distance force, and Sn as the contact force,
associated to a given stress field S. If we apply this balance format to the parts HDρ

of HP+ and Dρ of P , we find that

∫
HDρ

SB F · ∇v −
∫
HCρ

SB Fe · v = f · v(o) =
∫
Dρ

S̃
B F · ∇v −

∫
HCρ

SB Fe · v;

3 A. Musesti, private communication, June 2004.
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in plain words, that the working of the external force applied at o equals the difference
between the stress working and the contact working over HCρ. In the case of Pρ, we
may write

f · v(o) =
∫
Iρ

(SB Fn) · v = the contact working over Iρ;

in the case of Dρ,

f · v(o) =
∫
Dρ

(−div S̃
B F

) · v = the distance working over Dρ.

4.4.2 Concentrated Contact Interactions

That concentrated contact interactions are in order between adjacent parts of the
Boussinesq-Flamant half-plane is easily demonstrated by the use of free-body dia-
grams.

Consider the quarter-disk QDρ sketched in Fig. 4.8. When part QDρ is ideally
cut away from the rest of HP+, then it must be in equilibrium under the action of:
(i) the concentrated force 1/2 f e1; (ii) the diffused contact force SB Fe exerted by
the right adjacent part Q(r) (the same as the internal contact interaction between the
two parts before the cut!), which, in view of (4.13), is equipollent to the concentrated
force ∫

1
2 HCρ

SB Fe = −1

2
f e1 − 1

π
f e2,

Fig. 4.8 For a quarter-disk,
a concentrated contact inter-
action is needed to balance
the applied load (this figure is
taken from [8])
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applied at o; (iii) the contact action exerted by the left adjacent part Q(l). Now, the
diffused contact force −SB Fe2 exerted by Q(l) on QDρ is everywhere null along
their common boundary:

Ŝ
B F

(σ, 0)e2 ≡ 0 for σ ∈ [0, ρ] ,

just as their internal contact interaction is before the cut. Then, to guarantee the free-
body equilibrium of QDρ, we are driven to admit that the cut operation brings into
evidence an internal concentrated contact interaction

f̂ (QDρ,Q(l)) = −̂f (Q(l),QDρ) = 1

π
f e2

at point o.4 For another example of concentrated contact interactions, see Remark 8.1.

Remark 4.7 This result is neither dependent on the parameter ρ nor on whichever
curve from point (ρ, 0) to point (0, ρ) we pick to bound a body part alternative to
QDρ. Indeed, if r = r(ϑ)e(ϑ) is the position vector of a typical point x on such a
curve, denoted by C in Fig. 4.9, then the vectors r′ = r ′e + re′ and n = |r′|−1r′ × e3
are, respectively, tangent and normal to C; in particular, then, e · n = |r′|−1r . The
total contact action exerted along any chosen portion of the curve C is then the same
as the contact action exerted on the corresponding portion of 1

2HCρ:

∫
[C]ϑ1

ϑ0

SB Fn =
∫ ϑ1

ϑ0

(e · n)SB Fe|r′|dϑ =
∫ ϑ1

ϑ0

SB Fe rdϑ =
∫

[ 1
2 HCρ]ϑ1

ϑ0

SB Fe .

Thus, the concentrated contact force arising at point o is a local effect, in the sense that
it is a manifestation (in this case, the only manifestation) of the interaction between
any two adjacent body parts sharing the segment {x | x − o = σe1, σ ∈ [0, ρ]} as a
common boundary, whatever ρ > 0. Note also that this effect concentrates at a point
that belongs to the topological boundary of part Pρ, but not to its reduced boundary.5

Remark 4.8 Assuming that the vertical external force on part QDρ be 1/2 f may
seem arbitrary and ponderous, but in fact it is not. To see this, imagine to ideally
cut the half-disk of Fig. 4.4 into two identical quarter-disks, with a view toward
sketching a free-body diagram for each of the latter: symmetry then requires that the
concentrated external force is split equal.

Remark 4.9 That the concentrated interaction forces at the vertex of the right angle,
both in part HDρ and in its complement, should be those shown in Fig. 4.8 can be

4 Here f̂ (A, B) denotes the total contact force exerted by part B over part A along their common
boundary.
5 Roughly speaking, the reduced boundary of a set—a measure-theoretic notion carefully intro-
duced, e.g., in [1], p. 154—is the subset of all points of the topological boundary where a (inner)
normal is well defined.
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Fig. 4.9 The concentrated
contact interaction is the same
whatever the curve C joining
(ρ, 0) to (0, ρ) (this figure is
taken from [8])

Fig. 4.10 Free-body diagram
for a part of the Boussinesq-
Flamant half-plane in the form
of a “nosed piece of pie” (this
figure is taken from [8])

seen also by a limit argument suggested by R. Fosdick.6 With reference to Fig. 4.10,
we let

g(ρ̄, ϑ̄) = −
∫

[Cρ]ϑ̄− π
2

SB Fe

denote the total force equipollent with respect to point o to the diffused interaction
force exerted by the “nosed” part on the right over its complement along the common
boundary curve through points a, b, and c; and we compute

g(ρ̄, ϑ̄) = 1

2
f
(

1 + 2

π

(
ϑ̄+ sin ϑ̄ cos ϑ̄

))
e1 − 1

π
f
(
1 − sin2 ϑ̄

)
e2.

Not surprisingly, in the light of Remark 4.7, this force is independent of the parameter
ρ̄, and reduces to the expected vector for ϑ̄ = 0.

Remark 4.10 Once again, it is appropriate here to attract the reader’s attention on
two papers by F. Schuricht, were the construction of an interaction theory general

6 Private communication, August 2004.
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enough to allow for concentrated contact interactions between adjacent body parts
has been undertaken [9, 10].

4.5 The Flamant Elastic State

As repeatedly anticipated, our approach to solving the Flamant Problem is different
from the standard one, where the strain and stress fields are computed after the
displacement field has been found. Instead, we proceed in reverse order, and derive
the stress field first, then the deformation field, lastly the displacement field.

4.5.1 The Stress Field

To guarantee that the 3-D strain and displacement fields both come out plane, we
add to the plane stress field SB F given by (4.14)—that is, to the stress field that
solves the 2-D Boussinesq-Flamant Problem—a stress field having only one nonnull
component, namely,

S33 = ν tr SB F

(cf. 2.70). The result is the 3-D stress field:

S = S̃
F
(ρ,ϑ, x3) = −2 f

π
ρ−1 cosϑ

(̂
e(ϑ) ⊗ ê(ϑ) + νe3 ⊗ e3

)
. (4.18)

We see at once that this field is balanced for everywhere null distance forces:

div S = 0;

that, over all the x1 = 0 plane minus the line where the load is applied,

Sn = −Se1 ≡ 0;

and that
lim

ρ→+∞ S̃
F
(ρ,ϑ, x3) = 0, whatever (ϑ, x3).

4.5.2 The Strain Field

There are two ways to obtain the plane strain field that solves the Flamant Problem:
on inserting the plane stress field SB F into the inverse constitutive Eq. (2.57), one
finds that

http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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E = 1

E0

(
(1 + ν0)SB F − ν0(tr SB F)I(2)

)
; (4.19)

alternatively, one can move from the 3-D stress field (4.18) and make use of (2.45).
Combination of (4.19) and (4.14) gives:

E = − 2 f

πE0
ρ−1 cosϑ

(
(1 + ν0)e ⊗ e − ν0I(2)

)
,

where
I(2) = e ⊗ e + e′ ⊗ e′;

hence,

E = Ẽ
F
(ρ,ϑ, x3) = − 2 f

πE0
ρ−1 cosϑ

(
e ⊗ e − ν0e′ ⊗ e′).

We see that the strain field consists of a radial contraction

Eρρ = Ee · e = − 2 f

πE0
ρ−1 cosϑ, (4.20)

accompanied by an additional deformation:

Eϑϑ = Ee′ · e′ = ν0
2 f

πE0
ρ−1 cosϑ, (4.21)

that turns out to be a circumferential dilatation if the Poisson’s modulus is positive.7

Both radial contraction and circumferential dilatation decay with distance from the
point where the load is applied; as is obvious in view of the problem’s symmetries,
there is no change in angle between radial and circumferential fibers:

Eρϑ = Eϑρ = Ee · e′ = 0.

Finally, we observe that the area change in the plane perpendicular to e3 is:

Eρρ + Eϑϑ = − 2 f

πE0
ρ−1 cosϑ(1 − ν0) < 0,

and measures a contraction of the typical region depicted in Fig. 4.11; Since E33 = 0,
changes in volume and area the same.

7 In view of (2.54), the bounds (2.44)2 on ν, that descend from the positivity requirement for the
density of elastic energy, translate into the following equivalent bounds for ν0:

−1

2
< ν0 < 1.

http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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Fig. 4.11 A typical area
element, when polar coordi-
nates are used

Remark 4.11 The strain field is everywhere null at the surface, that is, forϑ = ±π/2.
Moreover, whatever ϑ ∈ (−π/e,+π/2),

lim
ρ→+∞ E(ρ,ϑ) = 0;

thus, at large distances from the origin the displacement field tends to become rigid.

4.5.3 The Displacement Field

The displacement field, we recall, must solve the partial differential equation

∇u + ∇uT = 2E. (4.22)

When general curvilinear coordinates are used,

∇u = u,i ⊗ gi ,

so that, in the present circumstances,

∇u = u,ρ ⊗ e + ρ−1u,ϑ ⊗ e′;

hence,

Ee · e = (∇u)e · e = u,ρ · e = (u · e),ρ ,

Ee′ · e′ = (∇u)e′ · e′ = ρ−1u,ϑ · e′ = ρ−1((u · e′),ϑ + u · e); (4.23)

in addition, we must insist that

2 Ee · e′ = (∇u)e · e′ + (∇u)e′ · e = u,ρ · e′ + ρ−1u,ϑ · e

= (u · e′),ρ +ρ−1((u · e),ϑ −u · e′) = 0. (4.24)
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Juxtaposition of (4.20) and (4.21) with, respectively, (4.23)1 and (4.23)2 yields
two first-order PDEs:

uρ,ρ = − 2 f

πE0
ρ−1 cosϑ, (4.25)

uϑ,ϑ + uρ = ν0
2 f

πE0
cosϑ, (4.26)

in the unknowns

uρ := u · e = ûρ(ρ,ϑ), uϑ := u · e′ = ûϑ(ρ,ϑ). (4.27)

Our plan is to integrate (4.25) and (4.26), in the order, so as to find a displacement
field

û(ρ,ϑ) = ûρ(ρ,ϑ)̂e(ϑ) + ûϑ(ρ,ϑ)̂e ′(ϑ),

that (i) has the necessary symmetries discussed in Sect. 4.1, that is, satisfies

ûρ(ρ,ϑ) = ûρ(ρ,−ϑ), ûϑ(ρ,ϑ) = −ûϑ(ρ,−ϑ), (4.28)

(recall relations (4.3)), and (ii) satisfies condition (4.24) as well.

Remark 4.12 The Cartesian components of the displacement field have the following
expressions in terms of the physical components (uρ, uϑ):

u1 = u · e1 = (uρe + uϑe′) · e1 = uρ cosϑ− uϑ sin ϑ,

u2 = u · e2 = (uρe + uϑe′) · e2 = uρ sin ϑ+ uϑ cosϑ.
(4.29)

Thus, for each ρ fixed, the first component is an even function of ϑ, and the second
is odd.

Integrating Eq. (4.25) yields:

ûρ(ρ,ϑ) = − 2 f

πE0
ln ρ cosϑ+ v̂(ϑ), (4.30)

with v̂ a function, to be determined later on, that must be even to obey the first of the
parity conditions (4.28). With the use of this partial result, we can pass to integrating
Eq. (4.26); we find:

ûϑ(ρ,ϑ) = 2 f

πE0
ln ρ sin ϑ− V̂ (ϑ) + ν0

2 f

πE0
sin ϑ, (4.31)

where V̂ is a promitive of v̂, hence an odd function.
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Remark 4.13 One might think that representation (4.31) for ûϑ should be completed
by addition of an arbitrary function of ρ. However, this would contradict condition
(4.28)2, according to which function ûϑ(ρ, ·) has to be odd.

At this point, it remains for us to determine function v̂. We note preliminarly that,
with the notations introduced in (4.27), condition (4.24) reads:

uϑ,ρ + ρ−1(uρ,ϑ − uϑ) = 0.

After substitution of the expressions for uρ and uϑ given in (4.30) and (4.31), and mod-
ulo appropriate cancellation and rearrangement of some terms, this relation becomes:

2(1 − ν0) f

πE0
sin ϑ+ v̂′(ϑ) + V̂ (ϑ) = 0, with v̂ necessarily even. (4.32)

This simple first-order integrodifferential equation is solved by

v̂(ϑ) = v0 cosϑ− (1 − ν0) f

πE0
ϑ sin ϑ;

hence, to within an inessential constant,8

V̂ (ϑ) = v0 sin ϑ+ (1 − ν0) f

πE0
(ϑ cosϑ− sin ϑ).

In the light of these results, the Flamant displacement field can be given the
following form:

ûF
ρ (ρ,ϑ) = v0 cosϑ− 2 f

πE0
ln ρ cosϑ− (1 − ν0) f

πE0
ϑ sin ϑ,

ûF
ϑ (ρ,ϑ) = −v0 sin ϑ+ 2 f

πE0
ln ρ sin ϑ− (1 − ν0) f

πE0
ϑ cosϑ+ (1 + ν0) f

πE0
sin ϑ;
(4.33)

8 To find this result, (i) differentiate (4.32), and get:

2(1 − ν0) f

πE0
cosϑ+ v̂′′(ϑ) + v̂(ϑ) = 0;

(ii) recall that the well-known homogeneous equation associated with this second-order ODE admits
a family of even solutions:

v̂h(ϑ) = v0 cosϑ;
(iii) confirm that function

v̂p(ϑ) = − (1 − ν0) f

πE0
ϑ sin ϑ

is a particular integral of the complete equation.
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in Cartesian components, upon using (4.29), we have:

ûF
1 (ρ,ϑ) = v0 − 2 f

πE0
ln ρ− (1 + ν0) f

πE0
sin2 ϑ,

ûF
2 (ρ,ϑ) = − (1 − ν0) f

πE0
ϑ+ (1 + ν0) f

πE0
sin ϑ cosϑ.

(4.34)

Vector v0 = v0e1 represents an arbitrary vertical translation of the Flamant half-
space. Such an indetermination was to be expected, in the absence of conditions
bearing directly on the displacement’s boundary trace. Note that the arbitrariness
inherent to solving the geometric compatibility problem (4.22), which is ruled by
a linear operator whose kernel is the collection of all rigid displacements, is in the
present case mitigated by the imposed side requirements of symmetry: v0 is the only
rigid displacement compatible with those requirements. To dispose of the residual
arbitrariness by one or another choice of the constant v0 can be regarded as a sort of
completion of the boundary conditions.9

To have a closer look at these matters, we firstly restrict attention to the plane that
limits Flamant’s half-space HS+, where

ρ = |x2|, ϑ = (sgn x2)
π

2
; uρ = v0 + (sgn x2)u2, uϑ = −(sgn x2)u1.

Then, after some manipulations of formulae (4.33) and (4.34), we find that
Flamant’s surface displacement field is:

u
̂

1(x2) = v0 − 2 f

πE0

(
ln |x2| + 1

2
(1 + ν0)

)
,

u
̂

2(x2) = − (1 − ν0) f

2E0
sgn x2.

(4.35)

We see that, on each of the two half-planes that compose the x1 = 0 plane, the
horizontal displacement has constant value, is parallel to the x2 axis, and is directed
towards the x3 axis: those two half-planes should then interpenetrate by a mutual

sliding of
(1 − ν0) f

2E0
length units.

Next, we restrict (4.33) to the x1 axis by taking ϑ = 0, so that

ûF
1 (ρ, 0) = v0 − 2 f

πE0
ln ρ,

ûF
2 (ρ, 0) ≡ 0.

(4.36)

9 As a rule, when a boundary-value problem is formulated over an unbounded domain, the con-
sequent lack of boundary conditions is compensated by posing on the solution a convenient set of
conditions at infinity. This is not doable for the Flamant Problem, where the behavior at infinity of
the elastic state is not tunable.
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We see that the logarithmic singularity imposes that the vertical displacement be
infinite both at the origin and at infinite distance from it, switching from downwards
to upwards at unit distance. This last observation prompts us to choose v0 so as to
have the vertical displacement null at a point of the x1 axis placed at a given distance
ρ0 from the origin, that is, to set

0 = v0 − 2 f

πE0
ln ρ0.

With this measure, relations (4.33) become:

ûF
ρ (ρ,ϑ) = − 2 f

πE0
ln
ρ

ρ0
cosϑ− (1 − ν0) f

πE0
ϑ sin ϑ,

ûF
ϑ (ρ,ϑ) = − 2 f

πE0
ln
ρ

ρ0
sin ϑ− (1 − ν0) f

πE0
ϑ cosϑ+ (1 + ν0) f

πE0
sin ϑ.

(4.37)

Moreover, relations (4.35)1 and (4.36)1 become, respectively,

u
̂

1(x2) = − 2 f

πE0

(
ln

ρ0

|x2| + 1

2
(1 + ν0)

)
and ûF

1 (ρ, 0) = 2 f

πE0
ln
ρ0

ρ
.

On deciding to accept Flamant’s solution only for ρ ≤ ρ0, we somewhat reduce the
disquiet of our physical intuition, that, however, could not by any means be dissipated
completely.

Remark 4.14 The incurable discrepancy between mathematical predictions and
physical expectations that an analysis of the Flamant elastic state brings to light
signals an intrinsic limitation of the linear theory of elasticity, a macroscopic theory
that does not incorporate two minimal physical requirements like impenetrability
and orientation preservation of matter. In nonlinear continuum mechanics, these
two requirements are guaranteed locally by insisting that the deformation gradient
F = I + ∇u has a positive determinant:

det F > 0,

a condition that evaporates under a linearization process based on the smallness
of |∇u| (we return on this issue in Sect. A.4 of the Appendix; see, in particular,
Sect. A.4.1). This comment should not be taken as a criticism to linear elasticity,
though: one should not expect any theory to have built-in applicability detectors, it
is for other more encompassing theories to falsify, à la Popper, its predictions.

http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_4


References 77

References

1. Ambrosio L, Fusco N, Pallara D (2000) Functions of bounded variation and free discontinuity
problems. Oxford University Press, New York

2. Boussinesq J (1878) Équilibre d’élasticité d’un sol isotrope sans pesanteur, supportant différents
poids. CR Acad Sci 86:1260–1263

3. Boussinesq J (1885) Application des Potentiels à l’Étude de l’Équilibre et du Mouvement des
Solides Élastiques. Gauthiers-Villars, Paris

4. Boussinesq J (1888) Équilibre d’élasticité d’un solide sans pesanteur, homogène et isotrope,
dont les parties profondes sont maintenues fixes, pendant que sa surface éprouve des pressions
ou des déplacements connus, s’annullant hors d’une région restreinte où ils sont arbitraires.
CR Acad Sci 106(1043–1048):1119–1123

5. Boussinesq J (1892) Des perturbations locales que produit au-dessous d’elle une forte charge,
répartie uniformément le long d’une droite normale aux deux bords, à la surface supérieure
d’une poutre rectangulaire et de longueur indéfinie posée de champ soit sur un sol horizontal,
soit sur deux appuis transversaux équidistants de la charge. CR Acad Sci 114:1510–1516

6. Flamant A (1892) Sur la répartition des pressions dans un solide rectangulaire chargé transver-
salement. CR Acad Sci 114:1465–1468

7. Marzocchi A, Musesti A (2004) Balance laws and weak boundary conditions in continuum
mechanics. J Elast 74(3):239–248

8. Podio-Guidugli P (2004) Examples of concentrated contact interactions in simple bodies.
J Elast 75:167–186

9. Schuricht F (2007) A new mathematical foundation for contact interactions in continuum
physics. Arch Rat Mech Anal 184:495–551

10. Schuricht F (2007) Interactions in continuum physics. In: Šilhavý M (ed) Mathematical model-
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Chapter 5
The Boussinesq Problem

The Boussinesq Problem (Joseph Valentin B., 1842–1929; v. [1–3]) consists in
finding the elastic state in a linearly elastic isotropic half-space, subject to a concen-
trated load applied in a point of its boundary plane and perpendicular to it (Fig. 5.1).

Among the problems we deal with in this book, Boussinesq’s is the one with the
widest geotechnical applications [4, 5, 10]. As a matter of fact, a crucial feature in
designing a foundation is that it transfers the service loads to the soil with a predictable
and modest vertical settlement of the latter. To estimate foundation settlements by a
direct use of the Boussinesq displacement solution, it would be important to assign
reliable values to the elastic parameters; but, during settlement, changes are observed
in the soil’s mechanical response, that can compromise its bearing capability. This
is why, at least for a preliminary design, the soil is generally thought of as if it were
maintained in oedometric conditions, that is, if lateral deformations were prevented:
under oedometric conditions, as we shall see, the Boussinesq vertical stress does not
depend on the constitutive response, and can therefore be computed independently
of the material response; the settlement accompanying that vertical stress is then
computed by adopting more sophisticated constitutive models than isotropic linear
elasticity.

It is worth noticing that a foundation is meant to spread loads, at definite variance
with the concentrated force of the Boussinesq Problem. However, once the stress
field induced by a concentrated load is found, the solution can be used as a Green
function (recall the 1-D example given in Sect. 1.2), so as to determine the stress field
induced by general load distributions; in Sect. 5.7, we exemplify how to do this.

5.1 Preliminary Symmetry Considerations

We have already observed that the 2-D versions of the Boussinesq Problem and
the Flamant Problem coincide. This fact not withstanding, for the former problem
dimension reduction entails a radical change of symmetries: while both the 2-D

P. Podio-Guidugli and A. Favata, Elasticity for Geotechnicians, Solid Mechanics 79
and Its Applications 204, DOI: 10.1007/978-3-319-01258-2_5,
© Springer International Publishing Switzerland 2014
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Fig. 5.1 The Boussinesq Problem

Fig. 5.2 Cylindrical symmetries in Flamant and Boussinesq Problems

Boussinesq-Flamant Problem and the Flamant Problem have cylindrical symmetry
with respect to an axis parallel to e3, the Boussinesq Problem has cylindrical symme-
try with respect to an axis parallel to e1 (see Fig. 5.2). Boussinesq’s is a genuinely 3-D
problem, in the sense that it does not admits as a solution a plane displacement field.
Our attack strategy then will be different from the one used so far: firstly, we shall
determine the analytic form common to all those 3-D stress fields having the ‘right’
symmetries; then, we shall pick among these stress fields the only one compatible,
by means of the 3-D compatibility equation.

To recognize the right symmetries is now much less immediate than it was in the
case of the Flamant Problem. In the next section, we exhibit certain stress fields that,
although balanced and compliant with the boundary conditions, are not compatible.
Their incompatibility descends from having symmetries that imply a counterintu-
itive behaviour of the accompanying deformations. The lesson to learn is that, in
an elasticity problem, it is not sufficient to identify plausible static symmetries and
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reflect them into a representation of the stress fields candidate to solve the problem:
only those static symmetries count that, given the body’s constitution, turn out to be
coherent with the kinematic symmetries implied by the data.

In the case of Flamant Problem, this golden rule was not evaded, even if the
procedure to construct the solution left the importance of respecting the intrinsic
kinematics symmetries in the background.

5.2 Inexistence of Center-Symmetric Solutions

In order to definitively convince ourselves of the importance of detecting all the
relevant symmetries, we begin our study of the Boussinesq Problem by looking for
a solution with plausible static symmetries, of center-symmetric kind. We show that
there are such fields, which are balanced and satisfy both the boundary conditions
and a necessary compatibility condition; and that, nevertheless, none of these fields
is compatible.

5.2.1 Balanced Center-Symmetric Stress Fields

We look for divergenceless stress fields of the form:

S = σr ⊗ r, σ = σ̂(ρ,ϑ), with σ̂(ρ,ϑ) = σ̂(ρ,−ϑ). (5.1)

For such stress fields, the stress vector is radial at any point of any hemisphere 1
2Sρ

(Fig. 5.3), where the outward normal n = r and hence

Sn = (σr ⊗ r)r = σr;

moreover, the stress vector is null at all points of the boundary plane (where r = h
and n = −e1, and hence Sn = 0), except at the origin, where, however, it is not
susceptible of a classical definition, due to the unavoidable singularity of the stress
field.

That the stress fields (5.1) should be singular at the origin is indicated by laying
down the requirement that the integral over 1

2Sρ of the stress vector balances the
applied load f = f e1:

0 = f e1 +
∫

1
2 Sρ

σ̂(ρ,ϑ)̂r(ϑ,ϕ)ρ2| sin ϑ| dϑdϕ. (5.2)

On recalling (3.13), we see that this vectorial equation is in fact equivalent to the
scalar equation

http://dx.doi.org/10.1007/978-3-319-01258-2_3
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Fig. 5.3 Equilibrium of a
hemispherical part

f + πρ2
( ∫ +π/2

−π/2
σ̂(ρ,ϑ) cosϑ| sin ϑ| dϑ

)
= 0, for all ρ > 0. (5.3)

Now, for

lim
ρ→+∞ ρ2

( ∫ +π/2

−π/2
σ̂(ρ,ϑ) cosϑ| sin ϑ| dϑ

)

to be finite, as required by (5.2), it is necessary that

σ̂(ρ,ϑ) = ρ−2τ̂ (ϑ) + o(ρ−2).

Note that the singularity in the stress field must have ‘strength’ 2, as a consequence
of the genuine three-dimensionality of the problem at hand (the strength is 1 in
Flamant’s case, as is in the case of the Cerruti Problem to be studied in Chap. 8,
because those two problems are not genuinely three-dimensional, in that they admit
a plane displacement solution).

To validate and sharpen this prediction, recall that the divergence operator in
curvilinear coordinates has the general expression (3.17). Combining Eqs. (3.12)
and (3.17) with Eq. (5.1), we find that1

div S = (σ,ρ + 2ρ−1σ)r (5.4)

1 The information items needed for this calculation are:

Sg1 = σr, Sg2 = Sg3 = 0, Sh = (sin ϑ)σr; r,ϑϑ = −r, r,ϕϕ = −(sin ϑ)h.

With this, one finds:

S,ρ g
1 + S,ϑ g

2 + S,ϕ g
3 = (Sg1),ρ + (Sg2),ϑ −ρ−1Sr,ϑϑ + (Sg3),ϕ −(ρ sin2 ϑ)−1Sr,ϕϕ

= (σr),ρ + ρ−1σr + (ρ sin2 ϑ)−1(sin ϑ)Sh,

whence (5.4) easily follows.

http://dx.doi.org/10.1007/978-3-319-01258-2_8
http://dx.doi.org/10.1007/978-3-319-01258-2_3
http://dx.doi.org/10.1007/978-3-319-01258-2_3
http://dx.doi.org/10.1007/978-3-319-01258-2_3
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Hence, for a stress field of the form (5.1) to be divergenceless, the scalar field σ
must satisfy

σ,ρ + 2ρ−1σ = 0, (5.5)

and hence have the form2

σ̂ = ρ−2τ̂ (ϑ), with τ̂ (ϑ) = τ̂ (−ϑ).

In conclusion, we have determined a whole family of center-symmetric stress
fields balancing the given boundary load, of the form:

Ŝ(ρ,ϑ,ϕ) = ρ−2τ̂ (ϑ)̂r(ϑ,ϕ) ⊗ r̂(ϑ,ϕ); (5.6)

such family is parameterized by the even function τ̂ .

5.2.2 Incompatibility of Center-Symmetric Stress Fields

To solve Boussinesq’s problem, the function τ̂ must be chosen so as to satisfy the
compatibility condition in stress terms. For the homogeneous and isotropic linearly
elastic materials contemplated by classical elasticity, when the distance loads are
null, this condition has the form (2.68), reproduced here for convenience:

ΔS + 1

1 + ν
∇∇(tr S) = 0;

a general consequence of (2.68) is relation (2.67):

Δ(tr S) = 0.

For stress fields of the form (5.6), (2.67) reads:

Δ(ρ−2τ̂ (ϑ)) = 0.

It is not difficult to give this equation the form:

sin ϑ τ ′′ + cosϑ τ ′ + 2 sin ϑ τ = 0, (5.7)

2 On differentiating (5.3) with respect to ρ, we quickly find that

∫ +π/2

−π/2

(
2σ̂(ρ,ϑ) + ρσ̂,ρ (ρ,ϑ)

)
cosϑ dϑ = 0.

We are then driven to choose a mapping σ̂ that satisfies the partial differential equation (5.5).

http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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nor it is difficult to show that the only regular fundamental solution of this homoge-
neous second-order ODE is3:

τ̂ (ϑ) = τ0 cosϑ. (5.8)

Unfortunately, the only stress field of the form

S = τ0S̃, S̃ := ρ−2 cosϑ r ⊗ r (5.9)

which solves (2.68) is the uninteresting everywhere null field.4 In the next section,
we turn our attention to stress fields with cylindrical symmetry about an axis parallel
to e1.

3 Point ϑ = 0 is the only one in the interval (−π/2,+π/2) where Eq. (5.7) is singular. The other
fundamental solution of this equation being singular at that point is:

τ
̂
(ϑ) = 1 + cosϑ log tan

ϑ

2
.

Here is a method to construct this solution. It is not difficult to show that (5.7) is equivalent to

(sin ϑW (ϑ))′ = 0,

where
W (ϑ) = cosϑ τ ′̂(ϑ) + sin ϑ τ

̂
(ϑ)

is the wronskian of τ̂ and τ
̂

. Hence, modulo a constant,

W (ϑ) = 1

sin ϑ
,

and the combination of the last two relations yields the following first order ODE for τ
̂

:

τ ′̂ + sin ϑ

cosϑ
τ
̂

= 1

sin ϑ cosϑ
,

which can be re-written in the form( 1

cosϑ
τ
)̂′ = 1

sin ϑ cos2 ϑ
.

The last bit of information needed is:
∫

1

sin ϑ cos2 ϑ
= 1

cosϑ
+ log tan

ϑ

2
.

4 In an attempt to satisfy (2.68) with the field (5.9), it is found that

ΔS̃ + 1

1 + ν
∇∇(tr S̃) �= 0.

http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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5.3 Balanced Stress Fields with Cylindrical Symmetry

By a stress field with e1-cylindrical symmetry we mean a stress field whose physical
components are all independent of the angle ϕ.

Consider a cylindrical part of the Boussinesq half-space, of arbitrary height z
and radius r (Fig. 5.4). The rotational balance of such a part about the vertical axis
involves the stress components Sϕr := (Sh) · h′ and Sϕz := (Se1) · h′ only; since the
latter are both assumed to be independent of ϕ, that balance reads as follows:

∫ r

0
t2Sϕz(z, t) dt + r2

∫ z

0
Sϕr (s, r) ds = 0, for all positive r, z. (5.10)

We shall now show that this balance condition is satisfied, because both Sϕr and
Sϕz are null, due to the symmetries that a displacement field solving the Boussinesq
problem must have.

Our physical intuition tells us that a displacement field with cylindrical symmetry
is such that

uϕ ≡ 0 and, in addition, both uz and ur are independent of ϕ; (5.11)

Fig. 5.4 Rotational equilibrium about the vertical axis of a cylindrical part
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such a priori restrictions on the representation of u are precisely those accepted when
a solution to the Boussinesq Problem is sought. On the other hand, in view of the
definition of the strain measure E, we have that

2 Eϕr = ((∇u)h) · h′ + ((∇u)h′) · h = u,r · h′ + r−1u,ϕ · h

= uϕ,r + r−1(ur ,ϕ −uϕ)

and
2 Eϕz = ((∇u)e1) · h′ + ((∇u)h′) · e1 = u,z · h′ + r−1u,ϕ · e1

= uϕ,z + r−1uz,ϕ,

whatever the symmetries of the field u.5 Now, it is not difficult to see that both
strain components Eϕr and Eϕz are null if (5.11) prevail. But then, given that the
Boussinesq half-space is comprised of an isotropic, linearly elastic material, both
stress components Sϕr and Sϕz must also be null; hence, in particular, the balance
condition (5.10) is satisfied.

The two conditions:

Sϕr ≡ 0 and Sϕz ≡ 0 in HS+

add to the purely static condition that a stress field solving Boussinesq Problem
should have e1-cylindrical symmetry. Our first conclusion is that, with the use of the
physical basis (3.8), the class of stress fields of interest has the representation:

S = σ1e1 ⊗ e1 + σ2h ⊗ h + σ3h′ ⊗ h′ + σ4(e1 ⊗ h + h ⊗ e1), (5.12)

parameterized by the four scalar-valued mappings σ̂i , with

σ̂1(z, r) = Szz = S · e1 ⊗ e1,

σ̂2(z, r) = Srr = S · h ⊗ h,

σ̂3(z, r) = Sϕϕ = S · h′ ⊗ h′,
σ̂4(z, r) = Szr = S · e1 ⊗ h.

Given that, in cylindrical coordinates,

5 To obtain the last two relations, it is useful to recall that

∇u = u,z ⊗ e1 + u,r ⊗ h + r−1u,ϕ ⊗ h′,

and that the physical components of u are:

uz := u · e1, ur := u · h, uϕ := u · h′.

http://dx.doi.org/10.1007/978-3-319-01258-2_3
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div S = (Se1),z + (Sh),r + r−1(Sh′),ϕ + r−1Sh,

a stress field of type (5.12) is balanced for null distance forces if

0 = r(σ1e1 + σ4h),z + (
r(σ2h + σ4e1)

)
,r + (σ3h′),ϕ

= (
rσ1,z +(rσ4),r

)
e1 + (

rσ4,z +(rσ2),r −σ3
)
h.

The choice of parameter mappings is therefore restricted to those obeying the fol-
lowing partial differential equations:

rσ1,z + (rσ4),r = 0, (5.13)

rσ4,z + (rσ2),r −σ3 = 0. (5.14)

5.3.1 Boundary Conditions

A further restriction on the choice of parameter mappings comes from the need to
satisfy the boundary condition of null traction at all points of the plane z = 0, origin
excluded. This condition is:

Ŝ(0, r,ϕ)e1 = 0, r > 0, (5.15)

or rather, in terms of the representation (5.12),

σ̂1(0, r) = σ̂4(0, r) = 0, r > 0. (5.16)

The boundary condition prevailing on the whole plane z = 0 may be written in the
weak form

S̃(x)e1 = δ(x − o) f e1 for all x such that (x − o) · e1 = 0. (5.17)

In addition to (5.11), another symmetry condition prevails, namely,

lim
r→0+ ur (z, r) = 0;

as we shall see later on, this last condition works in all respects as a boundary
conditions.

5.3.2 A Kinematic Condition

A consequence of the symmetry condition (5.11) we have not yet discussed is that

∇u = uz,z e1 ⊗ e1 + ur ,z h ⊗ e1 + r−1ur h′ ⊗ h′ + uz,r e1 ⊗ h + ur ,r h ⊗ h;
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it follows that

Ezz = uz,z , Err = ur ,r , Eϕϕ = r−1ur , Ezr = 1

2

(
uz,r + ur ,z

)
,

whence, in particular, that
Err = (r Eϕϕ),r . (5.18)

In view of the inverse constitutive equation (2.45), this consistency condition of
representation (5.11) can be rewritten as:

σ2 − (rσ3),r + ν rα,r = 0. (5.19)

Condition (5.19) is related to the compatibility equation

curl curl E = 0.

In fact, given the noted symmetries in the displacement and deformation fields, it is
not difficult to see that the (e1 ⊗ e1)-component of curl curl E is given by:

curl curl E · e1 ⊗ e1 =: (curl curl E)zz = 0 = r−1 Err,r − Eϕϕ,rr − 2r−1 Eϕϕ,r ,

or rather, equivalently,
Err,r = (r Eϕϕ),rr ,

a direct consequence of (5.18).

Remark 5.1 It is not difficult to obtain the following balance of the contact actions
on a cylindrical part, whose axis is the coordinate axis x2 = x3 = 0, of radius r and
height (z − z0):

∫ r

0
t
(̂
σ1(z, t)− σ̂1(z0, t)

)
dt + r

∫ z

z0

σ̂4(s, r)ds = 0, per ogni z > z0 > 0, r > 0.

(5.20)
On differentiating this relation with respect to r , we obtain

r
(̂
σ1(z, r) − σ̂1(0, r)

) +
∫ z

z0

σ̂4(s, r)ds + r
∫ z

z0

σ̂4,r (s, r)ds = 0;

a further differentiation, this time with respect to z, yields:

rσ1,z + σ4 + rσ4,r = 0,

that is the differential equilibrium condition (5.13). On the other hand, it is obvious
that it is possible to obtain (5.20), a part-wise condition, by integrating (5.13), a
local condition valid in each point of HS+. Not surprisingly, we conclude that both

http://dx.doi.org/10.1007/978-3-319-01258-2_2
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Fig. 5.5 Radial equilibrium of a portion of cylindrical sector

relations have coherent mechanical interpretation, but different cogency. As a matter
of fact, at equilibrium it has to be null the vertical component of the resultant of the
actions exerted on: an arbitrary part, in the case of (5.13); a cylindrical part of the
indicated kind, in the case of (5.20).

Remark 5.2 To find the mechanical interpretation of the equilibrium relation (5.14)
is also not too difficult a task: one differentiates the condition expressing the balance
of contact actions on the part of cylindrical sector shown in Fig. 5.5: and observes
that the outcome prescribes that the radial actions exerted on the surface of that sector
sum up to null at equilibrium. Indeed, the resultants of those contact actions are:

(i) on faces parallel to the coordinate plane x1 = 0,

∫ r

r0

∫ ϕ

ϕ0

((̂
σ1(z, s) − σ̂1(z0, s)

)
e1 + (̂

σ4(z, s) + σ̂4(z0, s)
)
h(ψ)

)
s ds dψ;

(ii) on vertical faces,

∫ z

z0

∫ r

r0

(̂
σ3(t, s)h′(ϕ) − σ̂3(t, s)h′(ϕ0)

)
dt ds;

(iii) on the two remaining faces,

∫ z

z0

∫ ϕ

ϕ0

(
r
(̂
σ2(t, r)h(ψ) + σ̂4(t, r)e1

) + r0
(̂
σ2(t, r0)h(ψ) + σ̂4(t, r0)e1

))
dt dψ.

Summing up and differentiating with respect to ϕ, we obtain the vector equation:



90 5 The Boussinesq Problem

( ∫ r

r0

(̂
σ4(z, s) + σ̂4(z0, s)

)
s ds

)
h(ϕ) −

( ∫ z

z0

∫ r

r0

σ̂3(t, s) dt ds
)

h(ϕ)

+
( ∫ z

z0

(
r σ̂2(t, r) + r0σ̂2(t, r0)

)
dt

)
h(ϕ) = 0,

from which, this time differentiating with respect to r , it follows that:

r σ̂4(z, r) −
∫ z

z0

σ̂3(t, r) dt +
∫ z

z0

(
r σ̂2(t, r)

)
,r dt = 0;

finally, on differentiating with respect to z, we reproduce (5.14).

Remark 5.3 We collect here some formulas of repeated use in what follows.
Let α = α̂(z, r) be a scalar field of class C2. Then,

∇α = α,z e1 + α,r h; (5.21)

∇2α = α,zz e1 ⊗ e1 + α,rr h ⊗ h + r−1α,r h′ ⊗ h′

+ α,zr (e1 ⊗ h + h ⊗ e1); (5.22)

Δα = α,zz +α,rr + r−1α,r . (5.23)

We also record, again in view of a later use, a consequence of definition (5.23):

Δ(rα) = rΔα+ 2α,r + r−1α. (5.24)

Remark 5.4 From relations (5.13) and (5.14) a differential condition follows, involv-
ing functions σ̂1, σ̂2 e σ̂3 and to be useful in the following. Here it is.

Given that an application of (5.21) yields:

∇(rσ4) = −((rσ2),r −σ3)e1 − rσ1,z h, (5.25)

we have that

−∇2(rσ4) = ((rσ2),r −σ3),z e1 ⊗ e1 + rσ1,zz h ⊗ e1

+ ((rσ2),r −σ3),r e1 ⊗ h + (rσ1,z ),r h ⊗ h + σ1,z h′ ⊗ h′. (5.26)

To guarantee the indispensable symmetry of this second gradient (or, if one so
prefers, to guarantee that curl ∇(rσ4) = 0), functions σ̂i , i = 1, 2, 3 must fulfill the
following condition6:

6 For an alternative way to deduce this condition, one writes (5.13) and (5.14) in the form:

(rσ4),r = −rσ1, z, (rσ4), z = σ3 − (rσ2),r ;
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rσ1,zz − (rσ2),rr + σ3,r = 0.

Remark 5.5 A further consequence of (5.26) is that

∇2(rσ4) · I = Δ(rσ4) = −r(σ1 + σ2),zr − (2σ1 + σ2 − σ3),z .

On the other hand, if (5.24) is written for α = σ4, it is found that:

Δ(rσ4) = rΔσ4 + 2σ4,r + r−1σ4.

A combination of the last two relations gives7:

Δσ4 + 2r−1σ4,r + r−2σ4 = −(σ1 + σ2),zr − r−1(2σ1 + σ2 − σ3),z ,

Δσ4 − r−2σ4 = −(σ1 + σ2 + σ3),zr − r−1(σ2 − (rσ3),r ),z . (5.27)

5.3.3 Balanced and Compatible Stress Fields

First of all, we record two useful differential identities, holding for sufficiently smooth
but otherwise arbitrary scalar and vector fields. The first identity is:

Δ(αa ⊗ a) = (Δα)a ⊗ a + 2(a ⊗ (∇a(∇α)) + (∇a(∇α)) ⊗ a)

+ α(a ⊗ Δa + Δa ⊗ a + 2∇a∇aT ); (5.28)

the second is:

Δ(α(a ⊗ b + b ⊗ a)) = (Δα)(a ⊗ b + b ⊗ a) + 2(b ⊗ (∇a(∇α))

+ (∇a(∇α)) ⊗ b) + α(b ⊗ Δa + Δa ⊗ b), (5.29)

where b is a constant-valued vector field. It is not difficult to see that these two
identities follow from the more general identity:

Δ(αa ⊗ b) = (Δα)a ⊗ b + 2(a ⊗ (∇b(∇α)) + (∇a(∇α)) ⊗ b)

+ α(Δa ⊗ b + 2∇a∇bT + a ⊗ Δb).

(Footnote 6 continued)
differentiates the first equation with respect to z, the second with respect to r : and finishes by
eliminating (rσ4),zr .
7 To take the last step in the calculation, use has been made of the following alternative version of
(5.13):

r−1σ4,r + r−2σ4 = −r−1σ1, z.
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With a view toward determining the implications of the tensorial compatibility
condition (2.68) on the choice of the functions σ̂i in a representation of type (5.12)
for the stress field, we observe that

ΔS = Δ(σ1e1 ⊗ e1) + Δ(σ2h ⊗ h) + Δ(σ3h′ ⊗ h′) + Δ(σ4(e1 ⊗ h + h ⊗ e1)).

On applying repeatedly first (5.28) and then (5.29), and on taking into account
the following properties of the fields h and h′:

∇h = r−1h′ ⊗ h′, Δh = −r−2h;
∇h′ = r−1h ⊗ h′, Δh′ = −r−2h′.

we find:

Δ(σ1e1 ⊗ e1) = (Δσ1)e1 ⊗ e1;
Δ(σ2h ⊗ h) = (Δσ2)h ⊗ h − 2r−2σ2(h ⊗ h − h′ ⊗ h′);

Δ(σ3h′ ⊗ h′) = (Δσ3)h′ ⊗ h′ + 2r−2σ3(h ⊗ h − h′ ⊗ h′);
Δ(σ4(e1 ⊗ h + h ⊗ e1) = (Δσ4 − r−2σ4)(e1 ⊗ h + h ⊗ e1).

Then,

ΔS = (Δσ1)e1 ⊗ e1 + (
Δσ2 − 2r−2(σ2 − σ3)

)
h ⊗ h

+ (
Δσ3 + 2r−2(σ2 − σ3)

)
h′ ⊗ h′ + (Δσ4 − r−2σ4)(e1 ⊗ h + h ⊗ e1).

Thus, on applying (5.22) for

α := (1 + ν)−1tr S = (1 + ν)−1(σ1 + σ2 + σ3), (5.30)

we have that

ΔS + 1

1 + ν
∇2(tr S) = (Δσ1)e1 ⊗ e1 + (Δσ2 − 2r−2(σ2 − σ3)h ⊗ h

+ (Δσ3 + 2r−2(σ2 − σ3)h′ ⊗ h′ + (Δσ4 − r−2σ4)

(e1 ⊗ h + h ⊗ e1)

+ α,zz e1 ⊗ e1 + α,rr h ⊗ h + r−1α,r h′ ⊗ h′ + α,zr

(e1 ⊗ h + h ⊗ e1).

With this, we see that the four scalar consequences of the compatibility condition
(2.68) are:

Δσ1 + α,zz = 0,

Δσ2 − 2r−2(σ2 − σ3) + α,rr = 0,

Δσ3 + 2r−2(σ2 − σ3) + r−1α,r = 0,

Δσ4 − r−2σ4 + α,zr = 0

(5.31)

http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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(cf. formulas (g), on p. 346 of [11]).
An inspection of system (5.31) leads to the following observations:

– on adding the first three equations, and on remembering (5.23), it is easy to check
that Δ(tr S) = 0; thus, in virtue of (5.23) itself,

− α,zz = α,rr + r−1α,r ; (5.32)

– with the use of (5.32), summation of the second and third equations yields:

Δ(σ2 + σ3) − α,zz = 0; (5.33)

– on combining the fourth equation with (5.27), and on using (5.30)2, we find, after
some manipulations,

(σ2 − (rσ3),r + ν rα,r ),z = 0

(cf. (5.19)).

In the light of these observations, we propose the following sequential procedure
to solve (5.31):

1. to determine, a multiplicative constant apart, an appropriate solutionα = α̂(z, r)

of the Laplace equation;
2. to integrate (5.31)1 for σ1:

σ1 = −Δ−1[α,zz ] + c1α, (5.34)

in a form where Δ−1 denotes the integral operator that formally inverts the
laplacian, and where c1 is a constant to be determined;

3. to integrate (5.31)4 for σ4;
4. to determine the fields σ̂2 and σ̂3, by solving the system of (5.31)2 and (5.19):

σ2 + σ3 = Δ−1[α,zz ] + c2α,

σ2 − (rσ3),r +ν rα,r = 0,
(5.35)

where the constant c2 is such that8

c1 + c2 = 1 + ν. (5.36)

We shall take these steps in the next two sections.

Remark 5.6 (cf. Remark 2 in [6].) For an alternative procedure, note the following
consequence of (5.13) and (5.14):

∇(rσ4) = −((rσ2),r −σ3)e1 − rσ1,z h. (5.37)

8 This condition is arrived at by adding (5.34) and (5.35)1 and by taking into account of (5.30).
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Were Step 4 taken right after Steps 1 and 2, the field σ̂4 could be determined by inte-
grating Eq. (5.37) along any regular curve C, arc-length parameterized, with tangent t,
and going from a fixed point x0 to the variable point x :

(rσ4)|xx0
= −

∫
C
((rσ2),r −σ3)e1 + rσ1,z h) · t, ds. (5.38)

Remarkably, given the extreme points, the choice of the joining curve is irrelevant,
due to a well known result in the theory of differential forms: for R a star-shaped
open region, and for ω := ω1e1 + ω2e2 + ω3e3 a vector field of class C1(R), the
differential form ω = ω1dx1 + ω2dx2 + ω3dx3 is exact if and only if curlω = 0 in
R.9 In our case, the differential form and associated vector field under scrutiny are:

ω = (
(rσ2),r − σ3

)
dz + rσ1,z dr, ω = (

(rσ2),r −σ3
)
e1 + rσ1,z h;

consequently,
curlω = (

σ1,zz − ((rσ2),r − σ3),r
)
h′.

Now, by differentiating (5.13) with respect to z and (5.14) with respect to r , and by
subtracting the resulting relations, we obtain:

σ1,zz − ((rσ2),r − σ3),r = 0;

this result allows us to conclude that curlω = 0, and hence that the differential form
ω is exact.

5.3.4 The Trace of the Stress Field

To determine the stress field solving the Boussinesq Problem, Step 1 consists in
choosing (to within a constant) its trace, i.e., a harmonic field α = α̂(z, r) defined
over the half-space HS+.

We begin by observing that the four functions of the cylindrical coordinates (z, r),
involved in the representation (5.12) of the stress field, can be substituted by an equal
number of functions of the spherical coordinates (ρ,ϑ):

σ̂i (z, r) = σ̂i (ρ cosϑ, ρ| sin ϑ|) =: σ̃i (ρ,ϑ), σ̃i (ρ,ϑ) = σ̃i (ρ,−ϑ), ∀ ρ > 0.

(5.39)

Let us imagine to repeat the computation carried out in Sect. 5.2.1 to determine the
equilibrium condition of the half-ball of radius ρ subject to the concentrated load
shown in Fig. 5.3, this time for the stress field (5.12). It is convenient to write the
outward normal to the hemisphere 1

2Sρ in the form:

9 R is star-shaped if there is a point p0 ∈ R such that the line segment from p0 to any point p ∈ ∂R
intersects ∂R only at p itself.
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n̂(ρ,ϑ,ϕ) = cosϑe1 + | sin ϑ| h(ϕ), (ϑ,ϕ) ∈ (0,+π/2) × (0, 2π);

with this, the surface traction has the expression:

Sn = (cosϑσ1 + | sin ϑ|σ4)e1 + (| sin ϑ|σ2 + cosϑσ4)h.

In view of the boundary condition (5.17), we have that:

f e1 = −
∫

1
2 Sρ

Sn da = −ρ2
∫ +π/2

0

( ∫ 2π

0
Sn dϕ

)
| sin ϑ| dϑ

= −2πρ2
( ∫ +π/2

0
(cosϑ σ̃1(ρ,ϑ) + | sin ϑ|̃σ4(ρ,ϑ))| sin ϑ|dϑ

)
e1, (5.40)

whatever ρ > 0. Thus, for the right side to remain finite when ρ is chosen arbitrarily
large, it is necessary that

σ̃1(ρ,ϑ) = ρ−2τ̃1(ϑ) + o(ρ−2);
σ̃4(ρ,ϑ) = ρ−2τ̃4(ϑ) + o(ρ−2).

This result, when combined with the parity conditions formulated in (5.39), suggests
the following Ansatz:

σ̃i (ρ,ϑ) = ρ−2τ̃i (ϑ), τ̃i (ϑ) = τ̃i (−ϑ) (i = 1, . . . , 4). (5.41)

As a consequence, we have for tr S the following preliminary representation

tr S = ρ−2τ̃ (ϑ), τ̃ (ϑ) = τ̃ (−ϑ). (5.42)

Now, we know from Sect. 5.2.2 that, for such a field to be harmonic, the function τ̃
must have the form (5.8). In conclusion, we are induced to choose:

tr S = τ0 ρ
−2 cosϑ, (5.43)

with τ0 a constant to be determined, proportional to the applied load.

Remark 5.7 A further motivation for Ansatz (5.41) comes from the following con-
siderations. Let us suppose to confine our anticipation to choosing only σ̃1, in the
form σ̃1(ρ,ϑ) = ρ−2τ̃1(ϑ). Then,

Δσ1 = ρ−4(2τ1 + cot ϑ τ ′ + τ ′′
1 ) (5.44)

(cf. (5.7)). On the other hand, if α = α̂(ρ,ϑ), we find that
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α,zz = cos2 ϑα,ρρ + 2ρ−2 sin ϑ cosϑα,ϑ + ρ−1 sin2 ϑα,ρ

− 2ρ−1 sin ϑ cosϑα,ρϑ + ρ−2 sin2 ϑα,ϑϑ . (5.45)

Then, in order to satisfy the first of compatibility relations (5.31) whatever the value
of ρ, we are once again induced to choose for tr S the preliminary representation
(5.42). Having done this, to satisfy (5.33) identically we are induced to choose for
the functions σ̃2 and σ̃3 the representations in (5.41). Finally, the necessity of the
representation for σ̃4 follows from (5.38).

Remark 5.8 (This Remark is based on Appendix 2 of [6].) In cylindrical coordinates,
and for α independent of ϕ, the Laplace equation reads:

Δα = α,zz + α,rr + r−1α,r = 0. (5.46)

A method to solve (5.46) consists in looking for solutions, if any, of the form

α̂(z, r) = ρazbrc,

where exponents a, b, c are to be determined later. Given that

ρ,z = z

ρ
, ρ,r = r

ρ
,

we easily find that:

r−1α,r = aρa−2zbrc + cρazbrc−2,

α, rr = a(a − 2)ρa−4zbrc+2 + a(2c + 1)ρa−2zbrc + c(c − 1)ρazbrc−2,

α, zz = a(a − 2)ρa−4zb+2rc + a(2b + 1)ρa−2zbrc + b(b − 1)ρazb−2rc−2,

whence

Δα = ρa−2zbrc
(

a(a + 2b + 2c + 1) + b(b − 1)ρ2z−2 + c2ρ2r−2
)
.

Thus, for the field α̂ to be harmonic in HS+, it is necessary that

a(a + 2b + 2c + 1) + b(b − 1)ρ2z−2 + c2ρ2r−2 = 0, ∀ z, r > 0.

This condition is equivalent to the following system of algebraic conditions on
exponents a, b, c:

c = 0, b(b − 1) = 0, a(a + 2b + 2c + 1) = 0.

Then,
(i) if b = 0, either a = 0 or a = −1; in the first instance, we obtain the solution:
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α̂1(z, r) = cost.,

in the second, the solution:
α̂2(z, r) = ρ−1;

(ii) if b = 1, then either a = 0 or a = −3; in the first instance, we obtain the solution:

α̂3(z, r) = z;

in the second, the solution:
α̂4(z, r) = ρ−3z.

In conclusion, the desired field must have the following form:

â(z, r) = α0
z

ρ3 + α1
1

ρ
+ α2z + α3. (5.47)

The reader should notice that

α3,z = α1; α2,z = −α4.

These results help to exemplify a general property: if α̂(z, r) is harmonic (i.e., in
this context, if it satisfies Laplace equation in cylindrical coordinates), then α̂,z is
harmonic as well.

The general representation (5.47) is parameterized by four constants, whose
choice is made on the basis of the conditions prevailing at the boundary of the
region of interest. In our case, both constants α2 and α3 must be taken null, so as to
comply with the physical palusibility requirement that the stress field—and hence
its trace—vanish at infinity. The same must be done for α1, this time on the basis of
an application of a result due to Antonio Signorini (1888–1963), that we now recall
in a version appropriate to our present context (see [8, Sect. 18]).

Signorini’s Lemma. Let S be a stress field that balances the distance and contact
forces d and c acting on a domain R with smooth boundary ∂R:

div S + d = 0 in R, Sn = c on ∂R.

Moreover, let w be a smooth vector field on R ∪ ∂R. Then,

∫
R
(∇w)S dv =

∫
R

w ⊗ d dv +
∫
∂R

w ⊗ c da. (5.48)

We specialize (5.48) for R ≡ Bρ, a half-ball of radius ρ centered at the point of
application of the load, d ≡ 0, and w = x. Taking the trace of the resulting identity,
we obtain:
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∫
Bρ

tr S dv =
∫
∂Bρ

ρn · Sn da.

Now, the right side of this integral identity is of order O(ρ), because we have
from (5.40) that ∫

∂Bρ

Sn da = O(1).

As to the left side, we have that

∫
Bρ

tr S dv = 2π(1 + ν)

∫ ρ

0

∫ π

0
(α0 cosϑ+ sα1) dϑ ds;

for it to be of order O(ρ) as well, α1 must be set equal to 0. We conclude that (5.47)
reduces to

α = â(z, r) = α0
z

ρ3 ; (5.49)

in spherical coordinates, representation (5.49) translates into

α = α̃(ρ,ϑ) = α0 ρ
−2 cosϑ. (5.50)

(cf. (5.43)).

Remark 5.9 A different way to look for harmonic functions with cylindrical sym-
metry consists in using a preliminary representation with separate variables:

α̂(z, r) = Z(z)R(r).

In this case, the unknown functions Z and R have to satisfy the differential relation:

R′′

R
+ r−1 R′

R
= − Z ′′

Z
= −κ2, ∀ z, r > 0,

which is equivalent to the following ODEs:

R′′ + r−1 R′ + κ2 R = 0, Z ′′ − κ2 Z = 0.

The first is Bessel equation, whose solutions are the zero-order Bessel and Neu-
mann functions J0(κr) and N (κr) = (2/π)J0(κr) ln r ; the second has the solutions
exp(±κz).
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5.4 The Boussinesq Stress Field

On arriving at the alternative representations (5.47) and (5.50), the first of the four
steps in the sequential procedure laid down when closing Sect. 5.3.3 was completed.
We now take the remaining steps.

5.4.1 Step 2

This step consists in solving for σ1 Eq. (5.31)1, that we here reproduce:

Δσ1 + α,zz = 0.

With the use of representations (5.41)1 and (5.50) for σ1 and α, and on accounting
for both (5.44) and (5.45), Eq. (5.31)1 takes the following form:

τ ′′
1 + cot ϑ τ ′

1 + 2τ1 + 3α0 cosϑ(2 cos2 ϑ− 3 sin2 ϑ) = 0,

a inhomogeneous second-order ODE with non constant coefficients. A particular
solution can be obtained, for example, with the variation-of-constants method, given
that fundamental solutions and wronskian of the associated homogeneous equation
are known to us.10 We find:

τ̃1(ϑ) = 3

2
α0 cos3 ϑ.

By addition of a multiple of cosϑ, that is, of an even solution of the homogeneous
equation, we end up with:

σ̃1(ρ,ϑ) = ρ−2
(3

2
α0 cos3 ϑ+ β0 cosϑ

)
. (5.51)

5.4.2 Step 3

The representation of function τ̃4 is determined by the ODE:

τ ′′
4 + cot ϑ τ ′

4 + (1 − cot2 ϑ)τ4 + 3α0| sin ϑ|(4 cos2 ϑ− sin2 ϑ) = 0;

for ϑ ∈ (−π/2, 0) ∪ (0,+π/2), a particular solution is:

τ̃4(ϑ) = 3

2
α0 cos2 ϑ | sin ϑ| (5.52)

10 Revert to the footnote in Sect. 5.2.2.
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(the proof of the pudding is in the eating), while the even solution of the associated
homogeneous equation is | sin ϑ|. Thus,

σ̃4(ρ,ϑ) = ρ−2
(

3

2
α0 cos2 ϑ| sin ϑ| + γ0| sin ϑ|

)
. (5.53)

We are now in a position to show that, for equilibrium, both constants β0 in (5.51)
and γ0 on (5.53) must be null. Firstly, we observe that:

σ̂1(z, r) = 3

2
α0

z3

(z2 + r2)
5
2

+ β0
z

(z2 + r2)
3
2

,

σ̂4(z, r) = 3

2
α0

z2r

(z2 + r2)
5
2

+ γ0
r

(z2 + r2)
3
2

.

Consequently, the balance equation (5.13)1 is satisfied (if and) only if

β0 = γ0.

Secondly, we observe that σ̂4(0, r), and hence γ0, must be null, in order to satisfy
the second of conditions (5.16) (recall that (5.16) expresses the requirement that the
traction-vector field be null over the load-free boundary plane). We conclude that
β0 = γ0 = 0.

We can now take up again (5.40), and deduce from it that11

α0 = − f

π
.

In conclusion,
α̃(ρ,ϑ) = f

π
ρ−2 cosϑ, (5.54)

and then, on recalling (5.30),

tr S = − f

π
(1 + ν)ρ−2 cosϑ.

Moreover, (5.51) becomes:

σ̃1(ρ,ϑ) = −3 f

2π
ρ−2 cos3 ϑ. (5.55)

11 On taking both (5.51) and (5.52) into account, (5.40) becomes:

f = −2π
∫ +π/2

0
(cosϑ τ̃1(ϑ) + | sin ϑ|̃τ4(ϑ))| sin ϑ|dϑ = −πα0.



5.4 The Boussinesq Stress Field 101

5.4.3 Step 4

It follows from (5.34), (5.35)1, and (5.36), that

σ2 + σ3 = −σ1 + (1 + ν)α;

and, on reverting to cylindrical coordinates, (5.55) and (5.54) yield:

σ̂1(z, r) = −3

2

f

π

z3

ρ5
, α̂(z, r) = − f

π

z

ρ3 .

Thus, we have that

σ2 = −σ3 + 3

2

f

π

z3

ρ5
− f

π
(1 + ν)

z

ρ3 . (5.56)

Substituting this expression for σ2 into the second of (5.35), for each fixed value of
z we arrive at the following ODE for σ3 as a function of r :

σ3 + (rσ3),r = 3

2

f

π

z3

ρ5
− f

π
(1 + ν)

z

ρ3 − 3 f

π
ν

r z

ρ5
, (5.57)

whose solution is:

σ̂3(z, r) = f

2π
(1 − 2ν)

z(z2 + 2r2)

r2ρ3 + g(z)

r2 , (5.58)

where g is an arbitrary function; finally, by substituting (5.58) into (5.56) we have:

σ̂2(z, r) = 3

2

f

π

z3

ρ5
− f

π
(1 + ν)

z

ρ3 − (1 − 2ν)
f

2π

z(z2 + 2r2)

r2ρ3 − g(z)

r2 . (5.59)

Remark 5.10 We find it important to point out a difference between the Flamant
Problem, where the stress field can be completely determined irrespectively of the
constitutive response, and the Boussinesq Problem, where the stress field is deter-
mined to within a bit of information, the function g in (5.58) and (5.59), whose
determination requires the imposition of a kinematic symmetry condition that, as we
shall see in the next section, to be effective must be formulated with the use of the
inverse constitutive law (2.45)2. The condition in question is:

lim
r→0+ ur = 0, (5.60)

requiring that, on whatever horizontal plane, the radial displacement component
vanishes with the distance from the origin. We shall see that it implies that

http://dx.doi.org/10.1007/978-3-319-01258-2_2
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g(z) ≡ − f

2π
(1 − 2ν). (5.61)

In conclusion, on taking (5.61) into account, the solution of system (5.31) is:

(2π f −1) σ̂B
1 (z, r) = −3

z3

(z2 + r2)5/2
,

(2π f −1) σ̂B
2 (z, r) = (1 − 2ν)

1

(z2 + r2)1/2((z2 + r2)1/2 + z)
− 3

zr2

(z2 + r2)5/2
,

(2π f −1) σ̂B
3 (z, r) = (1 − 2ν)

( z

(z2 + r2)3/2 − 1

(z2 + r2)1/2((z2 + r2)1/2 + z)

)
,

(2π f −1) σ̂B
4 (z, r) = −3

z2r

(z2 + r2)5/2
(5.62)

(cf. [9, p. 565], [11, p. 364, eq. (201)]), so that the related stress field is

SB(z, r,ϕ) = σB
1 e1 ⊗ e1 + σB

2 h ⊗ h + σB
3 h′ ⊗ h′ + σB

4 (e1 ⊗ h + h ⊗ e1), (5.63)

where
σB

1 = SB
zz, σB

2 = SB
rr , σB

3 = SB
ϕϕ, σB

4 = SB
rϕ = SB

ϕr . (5.64)

Alternatively, with the use of (5.39), we can write the solution of system (5.31) as

(2π f −1)ρ2σ̃B
1 (ρ,ϑ) = −3 cos3 ϑ,

(2π f −1)ρ2σ̃B
2 (ρ,ϑ) = (1 − 2ν)

1

1 + cosϑ
− 3 sin2 ϑ cosϑ,

(2π f −1)ρ2σ̃B
3 (ρ,ϑ) = (1 − 2ν)

(
cosϑ− 1

1 + cosϑ

)
,

(2π f −1)ρ2σ̃B
4 (ρ,ϑ) = −3| sin ϑ| cos2 ϑ.

Remark 5.11 We see at a glance that boundary conditions (5.16) are satisfied.

5.5 Digression

5.5.1 Concentrated Contact Interactions

One may ask whether concentrated contact interactions arise in Boussinesq’s prob-
lem. Guided by the experience gained with the Flamant Problem, where the overall
symmetries of the stress field are very similar, we check the translational equilibrium
in the e2-direction of a half of the hemisphere 1

2Sρ (Fig. 5.6). Our understanding is
that, in case a concentrated contact interaction f c = fce2 were needed to guarantee
that equilibrium, it would be found at the origin.
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Fig. 5.6 Equilibrium of half
of a hemispherical part

Now, in the plane whose outer normal is e2, the e2-component of the traction
vector is:

SBe2 · e2 = (
σ2 cos2 ϕ+ σ3 sin2 ϕ

)|ϕ=±π/2 = σ3;

its resultant is null:

∫ ρ

0

∫ +π/2

−π/2
σ3(t,ϑ)tdϑdt =

∫ ρ

0

∫ +π/2

−π/2
t−1

(
cosϑ− 1

1 + cosϑ

)
dϑdt = 0,

whereas the e2-component of the resultant traction on the spherical part of the bound-
ary is not:

(∫ 3π/2

π/2

∫ π/2

0
S̃

B
(ρ,ϑ)n(ϑ,ϕ)ρ2| sin ϑ| dϑdϕ

)
· e2

=
(∫ 3π/2

π/2

∫ π/2

0
(| sin ϑ|σ2 + cosϑσ4)ρ

2| sin ϑ|h(ϕ)

)
· e2

= −2
∫ π/2

0
(| sin ϑ|σ2 + cosϑσ4)ρ

2| sin ϑ| = f

2π

(
4 − π + 2ν(π − 2)

)
.

We conclude that, in order to assure the equilibrium of the body part under exami-
nation when isolated from the rest by an Euler cut, a concentrated interaction arises
at the point where the stress field is singular, namely,

f c = − f

2π

(
4 − π + 2ν(π − 2)

)
e2.

Interestingly, unlike with Flamant’s and Cerruti’s problems (see, respectively, Chap. 4,
Sect. 4.4.2 and Chap. 8, Remark 8.1), both intensity and orientation of such a con-
centrated interaction depend on the material, through the value of its Poisson ratio;
in particular, it points in the opposite direction of the e2-axis for ν ∈ (−(4 − π)/2
(π − 2), 1/2).

http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_8
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5.5.2 How to Find Flamant’s Stress Field Having Found
Boussinesq’s

Knowledge of the elastic state that solves Boussinesq’s problem makes the solu-
tion of Flamant’s problem an easy exercise.12 The procedure is identical to the one
sketched in our introductory Chap. 1 for a beam subject to axial loads: Boussinesq’s
displacement or stress fields are given the role of Green functions (Boussinesq’s
‘potentials’) for the corresponding Flamant’s fields.

Suppose, for example, that we are asked to find a component of Flamant’s stress
tensor SF – SF

11, say – starting from the knowledge of the same component of SB ,
that for convenience we represent provisionally in Cartesian coordinates:

SB
11(x1, x2, x3) = −3 f

2π

x3
1

(x2
1 + x2

2 + x2
3 )5/2

.

Just as we did in Remark 1.5, we think of a unit concentrated load applied at a point
of the x3-axis of coordinates (0, 0, ζ); consequently,

SB
11(x1, x2, x3; ξ) = − 3

2π

x3
1

(x2
1 + x2

2 + (x3 − ξ)2)5/2
.

The effect of the Flamant line loading is reproduced by superposition, at the expenses
of computing a Cauchy’s integral over the x3-axis:

SF
11 =

∫ +∞

−∞
SB

11(x1, x2, x3; ξ)dξ = − f

2π

x3
1

(x2
1 + x2

2 )2

× lim
n→∞

(
3(x2

1 + x2
2 )+ 2(x3 − n)2

(x2
1 + x2

2 + (x3 − n)2)
(x3 − n)+ 3(x2

1 + x2
2 )+ 2(x3 + n)2

(x2
1 + x2

2 + (x3 + n)2)
(x3 + n)

)

= −2 f

π

x3
1

(x2
1 + x2

2 )2
= −2 f

π
ρ−1 cos3 ϑ.

Needless to say, the result is the one expected.

5.6 The Boussinesq Strain and Displacement Fields

On making use of the inverse constitutive equation (2.45)2 and relation (2.43) between
the technical moduli, we have that:

12 In [7], Flamant himself recognizes his debts to Boussinesq.

http://dx.doi.org/10.1007/978-3-319-01258-2_1
http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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Ezz = 1

2G

(
Szz − ν

1 + ν
(Szz + Srr + Sϕϕ)

)
,

Err = 1

2G

(
Srr − ν

1 + ν
(Szz + Srr + Sϕϕ)

)
,

Eϕϕ = 1

2G

(
Sϕϕ − ν

1 + ν
(Szz + Srr + Sϕϕ)

)
,

Ezr = 1

2G
Szr , Ezϕ = Eϕr = 0.

Combining these relations with (5.64) and (5.62), we find:

Ezz = f

4πG

(
− 3

z3

ρ5
+ 2ν

z

ρ3

)
,

Err = f

4πG

(
4(1 − ν)

zr2

ρ5
+ (1 − 2ν)

z5

r2ρ5
+ 2(1 − 3ν)

z3

ρ5

)
− 1

2G

g(z)

r2 ,

Eϕϕ = f

4πG

(
2(1 − ν)

z

ρ3 + (1 − 2ν)
z3

r2ρ3

)
+ 1

2G

g(z)

r2 ,

Ezr = − 3 f

4πG

z2r

ρ5
, (5.65)

where, we recall, ρ2 = z2 + r2 .
Now, we know from (5.11) that the displacement field we seek must have the

form:
u = û(z, r,ϕ) = uz(z, r)e1 + ur (z, r)h(ϕ),

which implies that

∇u = uz,z e1 ⊗ e1 + ur ,z h ⊗ e1 + r−1ur h′ ⊗ h′ + uz,r e1 ⊗ h + ur ,r h ⊗ h.

With this, given the definition (2.2)2 of E, we arrive at:

Ezz = uz,z , Err = ur ,r , Eϕϕ = r−1ur , Ezr = 1

2

(
uz,r + ur ,z

)
. (5.66)

An expression for ur is found via the algebraic combination of (5.65)3 and (5.66)3:

ur = f

4πG

(
2(1 − ν)

zr

ρ3 + (1 − 2ν)
z3

rρ3

)
+ 1

2G

g(z)

r
; (5.67)

from this, we see that, to satisfy (5.60), g must be chosen as specified in (5.61).
Hence,

û B
r (z, r) = f

4πG

( zr

ρ3 − (1 − 2ν)
r

ρ(ρ+ z)

)
. (5.68)

http://dx.doi.org/10.1007/978-3-319-01258-2_2
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Next, given that (5.66)4 implies that

uz =
∫

(2Erz − ur ,z )dz,

we compute ur ,z from (5.68) and use of (5.65)4, so as to obtain:

uz = f

4πG

( z2

ρ3 + 2(1 − ν)
1

ρ

)
+ h(z).

A computation of uz,z based on this expression is consistent with:

uz,z = f

4πG

(
− 3

z3

ρ5
+ 2ν

z

ρ3

)

– that is, with the combination of (5.66)1 and (5.65)1 – only if h(z) ≡ 0. We conclude
that

û B
z (z, r) = f

4πG

( z2

ρ3 + 2(1 − ν)
1

ρ

)
. (5.69)

Remark 5.12 Formulas (5.68) and (5.69) correspond, respectively, to formulas (203)
and (204) at p. 365 of [11]. They can be rewritten in a form:

u B
r = f

4πG
ρ−1| sin ϑ|

(
cosϑ− (1 − 2ν)

1

1 + cosϑ

)
,

uB
z = f

4πG
ρ−1

(
cos2 ϑ+ 2(1 − ν)

)
, (5.70)

that highlights the behaviour of the displacement field near the origin, where a
first-order singularity occurs, and at infinity, where the displacement field vanishes.
Similarly, writing (5.65) in the form:

ρ2 E B
zz = f

4πG
(−3 cos3 ϑ+ 2ν cosϑ),

ρ2 E B
rr = f

4πG

(
(1 − 2ν)

1

1 + cosϑ
− 3 cosϑ sin2 ϑ+ 2ν cosϑ

)
,

ρ2 E B
ϕϕ = f

4πG

(
cosϑ− (1 − 2ν)

1

1 + cosϑ

)
,

ρ2 E B
zr = f

4πG
(−3| sin ϑ| cos2 ϑ),

(5.71)

highlights both the order of singularity at the origin—the same as for the stress
field—and the fact that the strain field is null at infinity.
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Remark 5.13 An alternative expression for the radial displacement is:

u B
r = f

8πG
ρ−1

(
| sin 2ϑ| − 2(1 − 2ν) tan

ϑ

2

)

= f

4πG
ρ−1

(
cos2 ϑ+ cosϑ− (1 − 2ν)

)
tan

ϑ

2
.

We see that the locus of points whose horizontal displacement is null is the cone
about the x1 axis of aperture

ϑ = arccos
(1

2

( − 1 + √
1 + 4(1 − 2ν)

));

the points outside this cone tend to approach the axis, those inside move away from
it.

Remark 5.14 On the boundary plane of HS+, the Boussinesq displacement field
has the following form:

ûB(0, r,ϕ) = f

4πG
r−1(2(1 − ν)e1 − (1 − 2ν )̂h(ϕ)

)
, (5.72)

whence, in particular,
lim

r→+∞ ûB(0, r,ϕ) = 0.

We read from (5.72), just as physical intuition suggests, that the vertical displacement
has the direction and orientation of the load, while the radial displacement is directed
toward the origin; and that, as pointed out in Remark 5.12, both components of the
displacement vector have a first-order singularity in the origin. Since the component
ratio does not depend on r , on each half-line through the origin the direction of
the surface displacement is constant, while the absolute value goes as r−1; the two
half-lines become the hyperbola shown in Fig. 5.7.

Finally, if we integrate the displacement field along the boundary of a surface disk
of radius r , centered at the origin, we find:

∫ 2π

0
û(0, r,ϕ) rdϕ = (1 − ν) f

G
e1.

Hence, the average radial displacement is null, and the average vertical displacement
has constant value.
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Fig. 5.7 The deformed shapes of two half-lines of the boundary plane through the point where the
load is applied

5.7 Exploiting the Boussinesq Solution

In this section we discuss some simple problems, all of them of interest in applica-
tions, that can be solved explicitly with a more or less direct use of the solution to
the Boussinesq Problem.

5.7.1 The Pressure Bulb

As in the case of the Flamant Problem (recall Remark 4.6), it is of interest for
geotechnical applications to find the locus of points where the stress has a magnitude
of given constant value, that is to say, the surface whose equation is |SB |2 = c2.
A simple computation yields:

9 cos6 ϑ+ (1 − 2ν)2
(

cosϑ− 1

1 + cosϑ

)2

+ 9 cos4 ϑ sin2 ϑ

+
(

1 − 2ν

1 + cosϑ
− 3 cosϑ sin2 ϑ

)2

= c2,

a revolution surface about the x1-axis, whose trace on a typical plane through that
axis is sketched in Fig. 5.8.
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Fig. 5.8 The shape of the
pressure bulb for the Boussi-
nesq Problem

5.7.2 Displacements in a Half-Space Subject to a Diffused Load

Both this example and the one dealt with in the next subsection are taken from Section
124 of [11]. In both cases, the half-space HS+ is subject to a uniform diffused load
p over a circle of radius r0, centered at the origin. Our goal is to compute the vertical
displacement of a typical point x of the region of plane z = 0 exterior to the load
circle.

Let r := |x − o|, and let ψ0 denote half the aperture of the angle formed by
the tangents to the circle passing through x (Fig. 5.9). Moreover, let s := |y − x |
be the distance from x of a point y on the half-line through x forming an angle
ψ ∈ [−ψ0,+ψ0] with the half-line passing through x and o; it is not difficult to
see that length of the chord the half-line of angle ψ intercepts with the circle is
2(r2

0 −r2 sin2 ψ)1/2. Now, we have from (5.72) that the vertical displacement induced
at x by a vertical unit force applied at a distance r from it is:

u1 = 1 − ν

2πG
r−1; (5.73)

therefore, the vertical displacement at x due to an infinitesimal force p da =
ps dψ ds concentrated at y is:

d u1 = 1 − ν

2πG
p dψ ds.

Consequently, in view of the linearity of the Boussinesq Problem, the displacement
induced by the whole applied load is:
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Fig. 5.9 The load circle on plane x = 0

u1 = 1 − ν

2πG
p

∫ +ψ0

−ψ0

∫ 2
√

r2
0 −r2 sin2 ψ

0
dψ ds = 2(1 − ν)

πG
p

∫ +ψ0

0

√
r2

0 − r2 sin2 ψ dψ;

a change of variable suggested by the geometric relation:

r0 sin ϑ = r sinψ, ϑ ∈ [0,π/2],

permits to lend this expression a form more convenient for computations:

u1 = 2(1 − ν)

πG
pr

[∫ π/2

0

(
1− r2

0

r2 sin2 ϑ
)1/2

dϑ−
(

1− r2
0

r2

)∫ π/2

0

(
1− r2

0

r2 sin2 ϑ
)−1/2

dϑ
]

(5.74)

(cf. relation (206) at p. 367 of [11], which is obtained by an use of (2.43)).
For the vertical displacement of a boundary point of the load circle, formula (5.74)

gives:

u1(p, r0) = 2(1 − ν)

πG
pr0,

a value that one may wish to compare with

u1( f, o) = (p(πr2
0 ))

1 − ν

2πG
r−1

0 = 1 − ν

2G
pr0,

that is, according to (5.73), the displacement due to a force

f = p
(
πr2

0

)

http://dx.doi.org/10.1007/978-3-319-01258-2_2
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concentrated at the origin: the ratio is 4/π. These values can be compared with the
value of the vertical displacement at the origin due a diffused circle load of intensity
p, which turns out to be:

u1 = 1 − ν

G
pr0,

(see the cited section of [11]), that is, π/2 times the vertical displacement at the
origin.

These results may serve to estimate the displacement at the bottom of a circular
flexible foundation applying a reasonably uniform load to the underlying soil (think
of an inflatable swimming pool, filled up with water, in the absence of a bunch of
kids jumping up and down).

5.7.3 Displacements in a Half-Space Subject to a Diffused Load

To evaluate the stress field induced at a typical point (z, 0, 0) of the vertical axis by
the same diffused load as in the previous subsection, we consider the infinitesimal
load portion over the ring between radius s and radius s + ds (Fig. 5.10), whose
effect is:

dS = ( f −1SB(z, s,ϕ))ps dϕ ds,

Fig. 5.10 A center-symmetric infinitesimal portion of a diffused vertical load
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for the field SB specified by (5.62) and (5.63). On recalling that

∫ 2π

0
h(ϕ) dϕ = 0 and

∫ 2π

0
h(ϕ) ⊗ h(ϕ) dϕ = π(I − e1 ⊗ e1),

we find that

S(z, 0, 0) =
( ∫∫

dS
)

(z,0,0)
= s1(z)e1 ⊗ e1 + s2(z)(I − e1 ⊗ e1),

where the proper values of tensor S(z, 0, 0), the one simple the other double, are:

s1(z) := 2π

f

∫ r0

0
σ̂B

1 (z, s) ds = −p

(
1 − z3

(r2
0 + z2)

3
2

)
,

s2(z) := π

f

∫ r0

0
(̂σB

2 (z, s) + σ̂B
3 (z, s)) ds = − p

2

(
1 + 2ν − 2(1 + ν)z

(r2
0 + z2)

1
2

+ z3

(r2
0 + z2)

3
2

)
.

The maximal tangential stress—the stress parameter on which soil subsidence
depends—is found for planes at an angle π/4 with the vertical axis; its value at
z is:

τmax (z) = 1

2
|s1(z) − s2(z)|,

and its maximum is found at

z =
(2(1 + ν)

7 − 2ν

) 1
2
r0 ≈ 2

3
r0.

Remark 5.15 It is not difficult to check that

lim
r0→0+ s1(z) = σ̂1(z, 0), lim

r0→0+ s2(z) = σ̂2(z, 0) = σ̂3(z, 0), σ̂4(z, 0) = 0,

and hence that
lim

r0→0+ S(z, 0, 0) = SB(z, 0, 0).

5.7.4 Horizontal Surface Displacements in the Flamant Problem

We wish to show how to evaluate the horizontal component at the surface of the Fla-
mant displacement starting from the corresponding information for the Boussinesq
Problem, that is, starting from

u
̂

B
h (r,ϕ) = − f

4πG
(1 − 2ν) r−1ĥ(ϕ) (5.75)
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Fig. 5.11 A point of the
x2 axis where the effects of
loads concentrated at points
(0, 0,±x3) are superimposed

(cf. (5.72)). With reference to Fig. 5.11, we imagine to superimpose at point (x2, 0)

the effects of loads f dx3 concentrated at points of abscissa ±x3 of the Flamant load
line. With the use of (5.75), we find that:

du
̂

F
h = −( f dx3)

1 − 2ν

4πG
r−1( ĥ(ϕ) + h(−ϕ)

)
,

whence, given that

ĥ(ϕ) + h(−ϕ) = 2 cosϕ e2, cosϕ = x2

r̂(x3)
, r̂2(x3) = x2

2 + x2
3 ,

we end up with

u
̂

F
h (x2) = − f

1 − 2ν

2πG
x2

( ∫ +∞

0

1

x2
2 + x2

3

dx3

)
e2 = − f

1 − 2ν

4G
sgn (x2)e2,

that is, to within a change of elastic moduli based on (2.55) and (2.56), the hori-
zontal surface displacement expected on the basis of relation (4.35) for the Flamant
Problem13.

5.8 An Alternative Representation of the Boussinesq Elastic State

A good old-fashioned manner to represent the Boussinesq elastic state is found
via a general representation in terms of harmonic functions for the displacement
solution of the Navier equation (2.40) in the absence of distance forces. This latter

13 This result follows from the fact that
∫

1

x2
2 + x2

3

dx3 = |x2|−1 arctan
x3

|x2| .

http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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representation, that is named after Boussinesq himself, Piotr Fiodorovitch Papkovitch
and Heinz Neuber (see Appendix A.5), is:

2Gu = ψ − 1

4(1 − ν)
∇(x ·ψ + ϕ), x := x − o, (5.76)

where both the scalar potential ϕ and the vector potentialψ are harmonic. On recall-
ing formulas (5.68) and (5.69), it is not difficult to verify that the potentials fitting
Boussinesq displacement field uB are:

ψB = ψBe1 = 1

2πρ
e1, ϕB = 1 − 2ν

2π
log(x1 + ρ), ρ2 := x2

1 + x2
2 + x2

3 .

Once uB is expressed in terms of ψB and ϕB , a sequential use of the compatibility
equation (2.9) and the constitutive law (2.46) yields EB first, then SB . We record here
for later use the form of component SB

11 in terms of ψB and ϕB :

SB
11 = 1

1 − ν

(
2(1 − ν)ψB

,1 − ϕB
,11 − x1ψ

B
,11

)
. (5.77)
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Chapter 6
The Kelvin Problem

Lord Kelvin (William Thompson, 1824–1907) solved the problem that was later
named after him in 1848 [6].1 The problem consists in finding the equilibrium state
of a linearly elastic, isotropic material body occupying the whole space and being
subject to a point load (Fig. 6.1).

6.1 Solution by Juxtaposition

The plane version of Kelvin’s problem we study in the next section is a problem
formulated on a plane orthogonal to a uniform line load (Fig. 6.2). As far as the
applied loads are concerned, both the Kelvin Problem and its plane version can be
regarded as the juxtaposition of two anti-mirror symmetric problems: two Boussinesq
problems in the case of the 3-D Kelvin Problem, either two Boussinesq-Flamant or
two plane Cerruti problems in the case of the 2-D Kelvin problem (Fig. 6.3; the
Cerruti Problem is treated in Chap. 8).

6.1.1 Continuity Conditions at Sutures

Unfortunately, superposition of elastic states does not yield the desired Kelvin state,
because it does not guarantee a ‘seamless suture’ over the common boundary. For
this, two continuity conditions should be satisfied pointwise, the one for the traction
field, the other for the displacement field2:

[[Sn]] = 0, [[u]] = 02.

1 An exposition of Kelvin’s solution tailored after Love’s [2] is found in the Appendix, Sect. A.6.
2 Consistent with definition (1.19), here [[Ψ ]] := Ψ + − Ψ − denotes the jump of the field Ψ at a
suture plane, in terms of the limits Ψ ± of Ψ when the point of interest is attained from one or the
other part of that plane.

P. Podio-Guidugli and A. Favata, Elasticity for Geotechnicians, Solid Mechanics 115
and Its Applications 204, DOI: 10.1007/978-3-319-01258-2_6,
© Springer International Publishing Switzerland 2014
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Fig. 6.1 The Kelvin Problem
(this figure is taken from [1])

Fig. 6.2 The plane Kelvin
problem

Juxtaposition of anti-mirror symmetric elastic states complies with the first condition
trivially, because tractions are null all over the common boundary. On recalling
the form of Flamant and Boussinesq displacement fields at z = 0, specified by,
respectively, (4.35) and (5.72), we see that, while in both cases continuity of vertical
displacements is gratis, horizontal components do jump:

http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_5
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B-F

Fig. 6.3 Juxtaposition of loads and stress fields for two plane anti-mirror symmetric Boussinesq-
Flamant and Cerruti Problems (this figure has been adapted from [4])

[[
uF · e2

]]
z=0

= −(1 − 2ν)
f

E0(1 − ν)
sgn x2 ,

[[
uB · h

]]
z=0

= −(1 − 2ν)
f

2πG
r−1;

thus, solving the Kelvin Problem by juxtaposition is impossible.
Nevertheless, we notice that, in both cases, continuity of horizontal components

could be achieved for ν = 1/2. This limit situation is excluded by the third of the
inequalities (2.44), guaranteeing positivity of the elastic energy density stored by a
compressible linearly elastic isotropic material. We see from (2.42) that, given the
stress field and then tr S, the corresponding volume dilatation, measured by tr E,
approaches zero when ν → 1/2, i.e., in the so-called incompressibility limit.3 This
fact prompts the expectation that, for incompressible linearly elastic materials, the
Kelvin Problem be solvable by juxtaposition of two anti-mirror symmetric Boussi-
nesq Problems for materials in the same class. We leave for the reader a task that is
easy, after we solve the Boussinesq Problem for incompressible materials in the next
subsection.

6.1.2 Conditional Solvability: The Boussinesq Problem
for Incompressible Materials

An elasticity problem is solved when the relative elastic state—that is, the triplet
(u, E, S) of displacement, deformation and stress fields—is known. When an internal
constraint prevails—that is, an a priori limitation on admissible deformations is
posed—it would be desirable to deduce the elastic state from the elastic state of the

3 We also see from (2.47) that, under the same circumstances, for the stored energy to stay finite
the volume changes must become smaller and smaller as ν approaches 1/2.

http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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corresponding unconstrained problem. In the present case, incompressibility is the
internal constraint we deal with, and we would like to give a precise meaning to the
following formal writing:

(u, E, S)inc = lim
ν→1/2

(u, E, S).

Now, the solution of a linear elasticity problem depends with continuity on data,
that is, on the information we have about: (i) the geometry of the region on which
the problem is formulated; (ii) the nature of the material filling that region; (iii) the
applied loads; (iv) the boundary conditions. The value of the Poisson modulus is a
datum, on which the solution depends in general with continuity, as it is possible to
see, for instance, in (4.37) and (5.70). Therefore, it makes sense to expect that the
displacement field for the incompressible Boussinesq Problem be obtained by taking
the limit for ν → 1/2 of the same field in the compressible case, which is:

uB
inc = f

4πG
ρ−1((cos2 ϑ + 1)e1 + | sin ϑ| cos ϑ h). (6.1)

Moreover, given that the operations of taking a spatial gradient and the incompress-
ibility limit commute, we have from (5.71) that

(E B
inc)zz = f

4πG
ρ−2 cos ϑ(−3 cos2 ϑ + 1),

(E B
inc)rr = f

4πG
ρ−2 cos ϑ(−3 sin2 ϑ + 1),

(E B
inc)ϕϕ = f

4πG
ρ−2 cos ϑ,

(E B
inc)zr = − 3 f

4πG
ρ−2 cos2 ϑ| sin ϑ|.

It is easily checked that
tr EB

inc = 0;

thus, the strain field EB
inc is deviatoric:4

EB
inc = dev EB

inc.

On recalling that cos ϑ = ρ−1z, it is equally easy to see that, for z = 0,

4 Needless to say, the same developments follow by an application of definition (2.2)2 to the field
(6.1). Recall that each symmetric tensor A can be additively split into uniquely defined deviatoric
and spheric parts:

A = dev A + sph A, sph A := 1

3
tr A, dev A := A − sph A.

http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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EB
inc(0, r) ≡ 0, (6.2)

Finding Sinc requires something more than taking a limit: an ad hoc modeling
assumption is needed.

The constitutive Eq. (2.46)2 for a compressible isotropic material can be written
as follows:

S = 2G
(

dev E + 1 + ν

1 − 2ν
sph E

)
. (6.3)

In the incompressibility limit, the value of G is kept fixed, while both (1 − 2ν) and
sph E tend to null; it is then necessary to give the limit of (1−2ν)−1sph E a meaning.
We assume that a finite limit exists:

lim
ν→1/2

1 + ν

1 − 2ν
sph E = πI,

with the scalar-valued field π constitutively indetermined. Accordingly, we replace
(6.3) by the constitutive equation:

S = 2G dev E + πI,

describing the mechanical response of a incompressible isotropic material, and we
write, provisionally,

SB
inc = 2G dev EB

inc + πI.

The equilibrium pressure field is determined by requiring that the stress field SB
inc be

divergenceless in the interior of HS+, a condition that reads:

∇π̂(z, r) = −2G div Ê
B
inc(z, r) for z, r > 0,

and by satisfying the boundary condition (5.15), which, in view of (6.2), reduces to:

π(0, r) = 0, r > 0.

Remark 6.1 A material is constrained whenever some deformations are deemed
constitutively impossible by requesting that the strain measure E satisfy an algebraic
limitation of the following type:

V · E = 0, (6.4)

for a given constraint tensor V ∈ Sym. For a constrained material, it is customary
to decompose the stress tensor additively:

S = S(A) + S(R),

http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_5
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with the active stress S(A) determined by a tensor-valued constitutive function,
defined on A := {E | V · E = 0} , the subspace of Sym composed by all admis-
sible deformations, and with the reactive stress S(R) (i.e., the stress necessary to
maintain the stipulated kinematic constraint), characterized by the condition that the
work spent on whatever admissible deformation be null:

S(R) · E = 0, ∀ E ∈ A.

This last condition is equivalent to the following representation of the reactive stress:

S(R) = σ(R)V,

where σ(R) a constitutively indeterminate scalar multiplier (e.g., for V = I, σ(R) =
π).5

Remark 6.2 The response symmetry of a constrained material is affected by the
nature of the internal constraints, if any. The internal constraints compatible with
isotropy are three: two are nontrivial, incompressibility and shape preservation, for
which it is required that dev E = 0; one is trivial, rigidity, in which case the choice
of a constraint tensor in (6.4) is arbitrary, and hence E = 0; for a rigid material, the
active stress is null, all stress is of reactive nature.

6.2 The 2-D Kelvin Problem

Suppose that a constant line load f = f e1 (with dim( f ) = FL−1) is applied along
the x3-axis (Fig. 6.2). To find the relative equilibrium state, our plan is:
(i) to individuate a large class of two-dimensional balanced stress fields, that is to
say, stress fields of the form (4.8) that solve the distributional equilibrium equation

div S(x) + f δ(o)e1 = 0 for x ∈ H; (6.5)

(ii) to add to each of such stress fields an auxiliary stress field:

S(aux) = S33e3 ⊗ e3, S33 = ν(S11 + S22), (6.6)

so as to obtain a family of three-dimensional stress fields, among which to choose,
by means of condition (2.69), those compatible with the existence of a state of plane
strain and deformation in the whole space;
(iii) to construct such strain and deformation states.

5 More about internal constraint in linear elasticity is found in [3], Chapter III, Sections 17 and 18.

http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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6.2.1 Balanced Stress Fields

We recall that a locally integrable stress field S being divergenceless over H \ o is
said to solve equation (6.5) in the sense of distributions over H if

∫
H

S · ∇v = f v(o) · e1 for all test vector fields v ∈ C∞
c (H,V(2)); (6.7)

here, as the notation suggests, a test vector field is a C∞ field with compact support,
defined over H and taking its values in the 2-D vector space V(2), the translation
space of H. The direct mechanical interpretation of a condition of this type is that,
for a stress field to balance the applied loads, the stress working must equal the load
working, for whatever test velocity field.6 We shall now derive a version of this
condition that allows for a different and more specific mechanical interpretation.

For each fixed test field v, let Dρ be a disk of radius ρ centered at o and containing
the support of v, and let Dε be a smaller disk, also centered at o. Then,

∫
H

S · ∇v =
∫
Dρ

S · ∇v =
∫
Dε

S · ∇v +
∫
Dρ\Dε

S · ∇v.

Given that S is integrable and ∇v is smooth,

lim
ε→0

∫
Dε

S · ∇v = 0.

Moreover, in view of the identity

S · ∇v = div (ST v) − v · div S,

the divergence theorem, the fact that supp(v) ⊂ Dρ, and the fact that div S is null
over H \ o, we have that

∫
Dρ\Dε

S · ∇v =
∫

∂(Dρ\Dε)

Sn · v −
∫
Dρ\Dε

v · div S = −
∫

∂Dε

Sn · v.

Therefore, for each admissible test field, condition (6.7) can be given the provisional
form

lim
ε→0

( ∫
∂Dε

Sn · v
)

+ f v(o) · e1 = 0.

Note that

6 Alternative terminological choices are ‘power’ (or ‘power expenditure’) for ‘working’ and ‘virtual’
for ‘test’; an alternative version of the italicized sentence above would read: the stress power equals
the load power for whatever virtual velocity field.
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∫
∂Dε

Sn · v =
∫ +π

−π
εS(o + ε̂e(ϑ))̂e(ϑ) · v(o + ε̂e(ϑ)) dϑ.

Thus, if the following condition holds:
(A) the vector field ϑ 
→ ε̂S(o + ε̂e(ϑ))̂e(ϑ) is independent of ε,
then

lim
ε→0

( ∫
∂Dε

Sn · v
)

=
( ∫ +π

−π
ε̂S(ε,ϑ)̂e(ϑ) dϑ

)
· v(o),

and (6.7) can be given the final form

∫
∂Dε

Sn + f e1 = 0.

The mechanical interpretation of this condition on the stress field—that the diffused
contact force over the periphery of any disk balances the concentrated force applied
at its center—can be seen as a counterpart of the mathematical interpretation of
condition (6.5)—that the corresponding balanced stress field has divergence measure
supported at the point where the concentrated force is applied.

It is not difficult to see that each stress field of the one-parameter family

S = Ŝ(ρ,ϑ; e1) = ρ−1(α0 cos ϑ ê(ϑ) ⊗ ê (ϑ) + γ0 cos ϑ ê ′(ϑ) ⊗ ê ′(ϑ)

+ γ0 sin ϑ( ê(ϑ) ⊗ ê ′(ϑ) + ê ′(ϑ) ⊗ ê (ϑ))), α0 − γ0 = − f

π
, (6.8)

fulfills condition (A) and balances the applied load. In particular, the second of (6.8)
follows from the balance of a body part in the form of a disk centered at the origin,
of arbitrary radius ρ: since

ρSe = α0 cos ϑe + γ0 sin ϑe ′, (6.9)

an easy calculation shows that

∫
∂Dρ

Se = − f e1 (6.10)

(cf. e.g., [5], Section 78).

Remark 6.3 With the use of (6.8)2, it is not difficult to transform (6.9)2 into

Ŝ(ρ,ϑ; e1)e(ϑ) = ρ−1
(
α0̂e(2ϑ) + f

π
sin ϑ ê ′(ϑ)

)
,

which allows for an easier visualization of the stress vector at any point of ∂Dρ; note
that the first addendum does not contribute to the integral in (6.10).
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Remark 6.4 The stress fields (6.8) have the form (4.8). Condition (4.9) has been
dropped, because it makes no sense for the full-plane domain where Kelvin problem
is formulated. The choices of â and ĉ reflect the expected parities of these two
functions. Choosing â(ϑ) = sin ϑ = ĉ(ϑ) leads to the Kelvin stress fields for the
load f = f e2, namely,

Ŝ(ρ,ϑ; e2) = ρ−1(α0 sin ϑ ê(ϑ) ⊗ ê(ϑ) − γ0 sin ϑ ê ′(ϑ) ⊗ ê ′(ϑ)

+ γ0 cos ϑ(̂e(ϑ) ⊗ ê ′(ϑ) + ê ′(ϑ) ⊗ ê(ϑ))), α0 + γ0 = − f

π
.

6.2.2 Compatible Stress Fields

As anticipated, we now seek what stress fields of the type (6.8) satisfy the compati-
bility condition (2.69). This is quickly done. Firstly, from (6.8) we deduce that

tr S = (α0 + γ0)ρ
−1 cos ϑ.

Then, with the use of the last of (3.19), we find that

Δ(ρ−1 cos ϑ) = 0.

We then conclude, by taking (6.6) into account, that each of the stress fields of the
one-parameter family

S̃ = S + ν(tr S)e3 ⊗ e3,

is compatible with a state of plane strain and plane displacement, to be determined
in the next subsection.

6.2.3 Strain and Displacements Fields

The strain field solving the plane Kelvin problem is obtained by inserting the stress
field (6.8) into the inverse constitutive equation (2.57). One finds:

E = 1

E0
ρ−1((α0 − ν0γ0) cos ϑ e ⊗ e + (γ0 − ν0α0) cos ϑ e′ ⊗ e′

+ (1 + ν0)γ0 sin ϑ(e ⊗ e′ + e′ ⊗ e)).

To determine the displacement field, one has to solve the following system of
PDEs:

http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_2
http://dx.doi.org/10.1007/978-3-319-01258-2_3
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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uρ,ρ = ρ−1 α0 − ν0γ0

E0
cos ϑ,

uϑ,ϑ + uρ = γ0 − ν0α0

E0
cos ϑ, (6.11)

uϑ,ρ + ρ−1(uρ,ϑ − uϑ) = ρ−1 2(1 + ν0)

E0
γ0 sin ϑ,

where the unknown fields

uρ := u · e = ûρ(ρ,ϑ), uϑ := u · e′ = ûϑ(ρ,ϑ),

must satisfy the intrinsic symmetry conditions of the plane Kelvin problem and
therefore be such that

ûρ(ρ,ϑ) = ûρ(ρ,−ϑ), ûϑ(ρ,ϑ) = −ûϑ(ρ,−ϑ). (6.12)

The integration of (6.11)1 yields:

ûρ(ρ,ϑ) = α0 − ν0γ0

E0
log ρ cos ϑ + v̂(ϑ), (6.13)

with v̂ an arbitrary even function, so as to satisfy condition (6.12)1. With this provi-
sional representation for ûρ, integration of (6.11)2 yields:

ûϑ(ρ,ϑ) = −α0 − ν0γ0

E0
log ρ sin ϑ − V̂ (ϑ) + γ0 − ν0α0

E0
sin ϑ, (6.14)

where V̂ is a primitive of v̂, and hence is odd. The addition of an arbitrary function
of ρ to this expression of ûϑ is forbidden by condition (6.12)2. Moreover, the third
of (6.11) determines v̂: on inserting (6.13) and (6.14) into it, we find that

−α0 − ν0γ0

E0
sin ϑ + v̂′(ϑ) + V̂ (ϑ) − γ0 − ν0α0

E0
sin ϑ = 2(1 + ν0)

E0
γ0 sin ϑ,

or rather, after differentiation and term rearrangement,

v̂′′(ϑ) + v̂(ϑ) = (3 + ν0)γ0 + (1 − ν0)α0

E0
cos ϑ.

The even solutions of this equation are:

v̂(ϑ) = v0 cos ϑ + 1

2E0
((3 + ν0)γ0 + (1 − ν0)α0)ϑ sin ϑ;

their primitives are:
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V̂ (ϑ) = v0 sin ϑ − 1

2E0
((3 + ν0)γ0 + (1 − ν0)α0)(ϑ cos ϑ − sin ϑ). (6.15)

In addition to the parity requirements specified by (6.12), the displacement field
must obey the ‘glueing condition’:

u(ρ,−π) = u(ρ,+π),

which, upon fiddling a bit with relations (6.13)–(6.15), is found equivalent to the
scalar condition V̂ (π) = 0 , or rather:

(3 + ν0)γ0 + (1 − ν0)α0 = 0;

together with (6.8)2, this condition allows to determine the two constants α0 and γ0:

α0 = − f

4π
(3 + ν0), γ0 = f

4π
(1 − ν0).

In conclusion, the plane Kelvin problem is solved by the displacement field:

u = ûρ(ρ,ϑ)e(ϑ) + ûϑ(ρ,ϑ)e′(ϑ),

with

ûρ(ρ,ϑ) = f

4π E0
(3 + ν2

0 ) log ρ cos ϑ,

ûϑ(ρ,ϑ) = f

4π E0

( − (3 + ν2
0 ) log ρ + 1 + ν0 + 3ν2

0

)
sin ϑ

(we have disposed of the rigid displacement:

urig = v0
(

cos ϑe(ϑ) − sin ϑe′(ϑ)
) = v0 e1

by setting to null the constant v0); the corresponding stress field is:

S = Sρρ(ρ,ϑ) ê(ϑ) ⊗ ê(ϑ) + Sϑϑ(ρ,ϑ) ê ′(ϑ) ⊗ ê ′(ϑ)

+ Sρϑ(ρ,ϑ)
(̂
e(ϑ) ⊗ ê ′(ϑ) + ê ′(ϑ) ⊗ ê(ϑ)

)
, (6.16)

with

Sρρ = − f

4π
(3 + ν0)ρ

−1 cos ϑ,

Sϑϑ = f

4π
(1 − ν0)ρ

−1 cos ϑ, (6.17)

Sρϑ = f

4π
(1 − ν0)ρ

−1 sin ϑ.
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Remark 6.5 In the expression (4.37) for the displacement field of the Flamant
Problem, there is a term proportional to ϑ cos ϑ, that is, of the same kind of the
term we just eliminated by imposing the ‘glueing condition’. Actually, in that prob-
lem, this condition does not apply, because all (displacement, strain, stress) fields
are defined for ϑ variable in the interval [−π/2,+π/2]. This remark prompts us
to underline a relevant difference in the posing of the Boussinesq-Flamant Problem
and the plane Kelvin Problem. Although the equilibrium equations are the same, the
domains on which the two problems are formulated are different. On the one hand,
the need to satisfy the boundary conditions prevailing on the plane z = 0 reduces
the class of balanced and compatible stress fields for the Flamant Problem to a sub-
class of that for the Kelvin Problem; on the other hand, in the latter problem, the
larger freedom in the choice of stress fields is compensated by an additional kine-
matic constraint, the glueing condition, allowing for the determination of the unique
solution.

6.3 The Kelvin Elastic State

6.3.1 The Stress Field

The Kelvin Problem is similar to Boussinesq’s in that it enjoys the same cylindrical
symmetry. Once again system (5.31) must be solved for a compatible stress field of
the form (5.12):

S = σ1e1 ⊗ e1 + σ2h ⊗ h + σ3h′ ⊗ h′ + σ4(e1 ⊗ h + h ⊗ e1),

with the sequential procedure introduced on Sect. 5.3.3; in particular, the first three
steps of that procedure allow to determine the expressions for the stress trace and the
stress components σ1, and σ4, that we here recall for the reader’s convenience:

α̃(ρ,ϑ) = α0 ρ−2 cos ϑ,

σ̃1(ρ,ϑ) = ρ−2 (̃τ1(ϑ) + β0 cos ϑ) , τ̃1(ϑ) = 3

2
α0 cos3 ϑ (6.18)

σ̃4(ρ,ϑ) = ρ−2 (̃τ4(ϑ) + β0| sin ϑ|) , τ̃4(ϑ) = 3

2
α0 cos2 ϑ | sin ϑ|.

What makes the difference are the values to assign to constants α0,β0. We begin to
gain information on this point by imposing that a ball centered at the origin be in
equilibrium:

f = −2π

∫ π

0
(cos ϑ τ̃1(ϑ) + | sin ϑ| τ̃4(ϑ))| sin ϑ| dϑ,

http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_5
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whence

α0 + 2β0 = − f

2π
. (6.19)

We also record an alternative way of writing (6.18):

α̂(z, r) = α0
z

ρ3 ,

σ̂1(z, r) = 3

2
α0

z3

ρ5
+ β0

z

ρ3 , (6.20)

σ̂4(z, r) = 3

2
α0

z2r

ρ5
+ β0

r

ρ3 .

The stress components σ2 and σ3 can be determined in the same way as for the
Boussinesq Problem. To take step 4 (Sect. 5.4.3), we replace (5.56) by

σ2 = −σ3 − σ1 + (1 + ν)α = −σ3 − 3

2
α0

z3

ρ5
+ (α0(1 + ν) − β0)

z

ρ3 , (6.21)

with which the differential Eq. (5.57) is replaced by:

σ3 + (rσ3),r = −3

2
α0

z3

ρ5
+ (α0(1 + ν) − β0)

z

ρ3 + 3α0 ν
r2z

ρ5
,

whose solution is:

σ̂3(z, r) = −(
α0(1 − 2ν) − β0

) z

ρ3 − (
α0(1 − 2ν) − 2β0

) z3

2r2ρ3 + g(z)

r2 ;

combining this with (6.21)2, we also have that

σ̂2(z, r) = −3

2
α0

z3

ρ5
+ (α0(1 + ν) − β0)

z

ρ3

+ (
α0(1 − 2ν) − β0

) z

ρ3 + (
α0(1 − 2ν) − 2β0

) z3

2r2ρ3 − g(z)

r2

(cf. the last two equations in Sect. 3.4 of [1]). It remains for us to complete the
determination of constants α0, β0, and to find the form of function g. We do it in a
manner completely similar to what we did for the same purpose in Sect. 5.6.

Firstly, by using the inverse constitutive law (2.45)2 and (6.20), we find that:

Eϕϕ = − 1

2G

((
α0(1 − ν) − β0

) z

ρ3 + (
α0(1 − 2ν) − 2β0

) z3

2r2ρ3 − g(z)

r2

)
.

http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_3
http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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Secondly, with this and (5.66)3, we obtain the following provisional expression for
the radial displacement of points on any chosen horizontal plane:

ur = r Eϕϕ = − 1

2G

((
α0(1 − ν) − β0

) zr

ρ3 + (
α0(1 − 2ν) − 2β0

) z3

2rρ3 − g(z)

r

)
.

(6.22)

Thirdly, we impose again the kinematic symmetry condition (5.60):

lim
r→0+ ur (z, r) = 0,

and deduce from it that:

α0(1 − 2ν) − 2β0 = 0, g(z) = 0; (6.23)

relations (6.19) and (6.23)1 imply that:

α0 = − f

4π(1 − ν)
, β0 = − f (1 − 2ν)

8π(1 − ν)
. (6.24)

In conclusion, the Kelvin stress components turn out to have the following expres-
sions:

σ̂K
1 (z, r) = − f

8π(1 − ν)

(
3

z3

ρ5
− (1 − 2ν)

z

ρ3

)
,

σ̂K
2 (z, r) = − f

8π(1 − ν)

(
3

zr2

ρ5
+ (1 − 2ν)

z

ρ3

)
,

σ̂K
3 (z, r) = f (1 − 2ν)

8π(1 − ν)

z

ρ3 , (6.25)

σ̂K
4 (z, r) = − f

8π(1 − ν)

(
3

z2r

ρ5
− (1 − 2ν)

z

ρ3

)

(cf. Equations (40) in [1]).

6.3.2 The Strain and Displacement Fields

To deduce the strain field in Kelvin’s problem, we combine the inverse constitutive
Eq. (2.45) with (6.25), and find:

http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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Ê K
zz(z, r) = − f

16πG(1 − ν)ρ5

(
4(1 + ν)z3 + (1 − 4ν)zr2),

Ê K
rr (z, r) = f

16πG(1 − ν)ρ5

(
z3 − 2zr2),

Ê K
ϕϕ(z, r) = f

16πG(1 − ν)

z

ρ3 , (6.26)

Ê K
zr (z, r) = − f

16πG(1 − ν)ρ5

(
2(2 − ν)z2r + (1 − 2ν)r3)

(cf. equations (41) in [1]). As to the displacement field, it is the matter of a straight-
forward calculation to substitute (6.24) into (6.22), to obtain, in view also of (6.23)2,
that

ûK
r (z, r) = f

16πG(1 − ν)

zr

ρ3 . (6.27)

Moreover, (5.66)1 and (6.26)1 imply that

uz = f

16πG(1 − ν)

(
2(1 − 2ν)

ρ
+ 1

ρ
+ z2

ρ

)
+ h(r).

To determine function h, we turn to (5.66)4, rewrite it in the form:

ur ,z = 2Ezr − uz,r ,

and observe that, for this relation to be consistent with both (6.26)4 and (6.27),
function h must have constant value. We take it null. In fact, vector h0 = h0e1
would represent an arbitrary translation of the whole space in the vertical direction,
the only rigid displacement compatible with the symmetries of the problem and an
inevitable indeterminacy, in the absence of Dirichlet boundary conditions, that we
lightheartedly dispose of. In conclusion,

ûK
z (z, r) = f

16πG(1 − ν)

(
2(1 − 2ν)

ρ
+ 1

ρ
+ z2

ρ

)
. (6.28)
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Part III
Three Other Problems: Melan’s,

Mindlin’s, and Cerruti’s



Chapter 7
The Melan and Mindlin Problems

This chapter is devoted to solve the equilibrium problem of a linearly elastic isotropic
half-space, subject to a load concentrated at an interior point. The two-dimensional
version is named after Ernst Melan (1890–1963), who solved it in 1932 [1]; the three-
dimensional version was studied and solved in 1936 [2] by Raymond D. Mindlin
(1906–1987), who returned to it some years later [3, 4].

We concentrate of the case of paramount interest in geomechanics, when the load
is directed orthogonally to the boundary plane and the Mindlin elastic state is used
to compute stresses and soil settlements due to one or more foundation piles. As we
shall see, the stress field depends on constitutive choices; no doubt, ordinary soil
is far from being elastic and isotropic, and yet Mindlin solution is widely used to
estimate footing settlements [5].

7.1 Solution by Superposition

The method we use to solve Melan’s and Mindlin’s problems is the same, and differs
from the methods used by those authors: essentially, as exemplified in the last section
of Chap. 1, we proceed by superposition/restriction/super-position.

Our first and main concern is to determine the stress field. This we do in four
steps. Preliminarily, we consider a space S (two-dimensional in Melan’s case, three-
dimensional in Mindlin’s) and we choose an origin o ∈ S and a direction e1, so that
it makes sense to consider the half-spaces HS± = {x ∈ S | ± (x − o) · e1 > 0}.
Then,

(i) we determine the Kelvin stress S

̂
induced in S by a concentrated load f applied

at x = o + ae1, a > 0;
(ii) we determine the Kelvin stress Ŝ in the same space, this time due to a load −f

concentrated at x = o − ae1;

P. Podio-Guidugli and A. Favata, Elasticity for Geotechnicians, Solid Mechanics 133
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(iii) we consider the restriction S̃ to HS+ of the point-wise superposition of the
stress fields S

̂
and Ŝ, and compute the traction vector s̃ = −S̃e1 on the plane

boundary of HS+;
(iv) we superpose to S̃ a stress field S in HS+ such that the resulting boundary

traction −(̃S + S)e1 is null. The stress field solving the M problem at hand is
SM := S̃ + S.

We shall go through this sequence of four steps twice, in Sect. 7.2.1 for Melan’s
problem and in Sect. 7.3.1 for Mindlin’s.

Since each of the stress fields we consider is compatible, such is the field SM .
Having found SM , finding the strain and displacement fields is the matter of routine
computations, completely similar to those we made in Chaps. 5 and 6 for the same
purposes.

7.2 The Melan Problem

7.2.1 The Stress Field

Preliminarly, we use relations (6.16)–(6.17) to write the components of the stress field
for the plane Kelvin problem in a Cartesian frame with the same origin (Fig. 7.1).
These components are:

S11 = − f

4π

x1

(x2
1 + x2

2 )2

(
(3 + ν0)x2

1 + (1 − ν0)x2
2

)
,

S22 = f

4π

x1

(x2
1 + x2

2 )2

(
(1 − ν0)x2

1 − (1 + 3ν0)x2
2

)
,

S12 = − f

4π

x2

(x2
1 + x2

2 )2

(
(3 + ν0)x2

1 + (1 − ν0)x2
2

)
. (7.1)

Fig. 7.1 The Melan Problem

http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_6
http://dx.doi.org/10.1007/978-3-319-01258-2_6
http://dx.doi.org/10.1007/978-3-319-01258-2_6
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Fig. 7.2 Superposition of mirror-symmetric concentrated loads applied at mirror-symmetric points
of half-planes HP+ and HP−

7.2.1.1 Steps (i) and (ii)

We use formulas (7.1) twice, to determine the stress fields S

̂
and Ŝ induced in HS

by, respectively, a load f = f e1 applied x = o + ae1 and a load f = − f e1 applied
x = o − ae1 (Fig. 7.2); all we have to do are two changes in origin. We find:

S

̂
11(x1, x2) = − f

4π

x1 − a

((x1 − a)2 + x2
2 )2

(
(3 + ν0)(x1 − a)2 + (1 − ν0)x2

2

)
,

S

̂
22(x1, x2) = f

4π

x1 − a

((x1 − a)2 + x2
2 )2

(
(1 − ν0)(x1 − a)2 − (1 + 3ν0)x2

2

)
,

S

̂
12(x1, x2) = − f

4π

x2

((x1 − a)2 + x2
2 )2

(
(3 + ν0)(x1 − a)2 + (1 − ν0)x2

2

)
, (7.2)

and

Ŝ11(x1, x2) = f

4π

x1 + a

((x1 + a)2 + x2
2 )2

(
(3 + ν0)(x1 + a)2 + (1 − ν0)x2

2

)
,

Ŝ22(x1, x2) = − f

4π

x1 + a

((x1 + a)2 + x2
2 )2

(
(1 − ν0)(x1 + a)2 − (1 + 3ν0)x2

2

)
,

Ŝ12(x1, x2) = f

4π

x2

((x1 + a)2 + x2
2 )2

(
(3 + ν0)(x1 + a)2 + (1 − ν0)x2

2

)
. (7.3)
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7.2.1.2 Steps (iii) and (iv)

Component-wise summation of (7.2) and (7.3), followed by restriction to x1 ≥ 0,
yields the stress field S̃ over the closure of HP+. We quickly see that the traction
vector s̃ = −S̃(0, x2)e1 is not null, contrary to Melan’s prescription that the traction
vector be zero all over the boundary of HP+. Instead, we have:

s̃(x2) = −S̃11(0, x2)e1,

S̃11(0, x2) = − f

4π

2a
(
(3 + ν0)a2 + (1 − ν0)x2

2

)
(a2 + x2

2 )2
. (7.4)

Therefore, the issue is to find another stress field S over the closure of HP+, such
that

(̃S(0, x2) + S(0, x2))e1 ≡ 0.

We construct S by using the Boussinesq-Flamant stress field as a stress Green func-
tion (a notion we introduced in the simpler context of Sect. 1.2).

The Cartesian components of the Boussinesq-Flamant plane stress field can be
easily deduced from (4.14); they are:

SBF
11 (x1, x2) = −2 f

π

x3
1

(x2
1 + x2

2 )2
,

SBF
22 (x1, x2) = −2 f

π

x1x2
2

(x2
1 + x2

2 )2

SBF
12 (x1, x2) = −2 f

π

x2
1 x2

(x2
1 + x2

2 )2
.

The components of the Green tensor G BF are obtained from those of SBF by setting
f = 1 and replacing x2 by (x2 − ξ), that is, relocating the origin on the plane x1 = 0
(see Fig. 7.3). These measures yield:

ĜBF
11 (x1, x2; ξ) = − 2

π

x3
1

(x2
1 + (x2 − ξ)2)2

,

ĜBF
22 (x1, x2; ξ) = − 2

π

x1x2
2

(x2
1 + (x2 − ξ)2)2

,

ĜBF
12 (x1, x2; ξ) = − 2

π

x2
1 x2

(x2
1 + (x2 − ξ)2)2

.

We are now in position to determine the tensor S:

http://dx.doi.org/10.1007/978-3-319-01258-2_1
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Fig. 7.3 The origin relocation
that permits to deduce GB F

from SB F

S(x1, x2) =
∫ +∞

−∞
p̂(x1, ξ)Ĝ

BF
(x1, x2; ξ) dξ,

where the load function p̂ is the negative of the surface traction (7.4) that we want
to eliminate:

p̂(x1, ξ) := f

4π

2a

(a2 + ξ2)2

(
(3 + ν0)a

2 + (1 − ν0)ξ
2).

Finding S is the matter of a nontrivial computation, whose development is the same
for all components; we here sketch it for the first component, details are found in
Appendix A.7.

To begin with, we have that

S11(x1, x2) =
∫ +∞

−∞
p̂(x1, ξ)Ĝ11(x1, x2; ξ) dξ

= −a f x3
1

π2

(
a2(3 + ν0)I1 + (1 − ν0)I2

)
, (7.5)

with

I1 :=
∫ +∞

−∞
1

(a2 + ξ2)2(x2
1 + (x2 − ξ)2)2

,

I2 :=
∫ +∞

−∞
ξ2

(a2 + ξ2)2(x2
1 + (x2 − ξ)2)2

.
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A lengthy computation based on the methods of residues yields:

I1 = 2π

4a3x3
1

(x1 + a)3(x2
1 + 3ax1 + a2) + (a3 + x3

1)x2
2(

(x1 + a)2 + x2
2

)3 ,

I2 = π

2ax3
1

x2
1 (x1 + a)3 + (x1 + a)(x2

1 + 5ax1 + a2)x2
2 + ax2

2(
(x1 + a)2 + x2

2

)3 . (7.6)

Substituting (7.6) into (7.5) we arrive at:

S11(x1, x2) = − f

2π
(
(x1 + a)2 + x2

2

)3

(
(3 + ν0)

(
(x1 + a)3(x2

1 + 3ax1 + a2)

+ (a3 + x3
1)x2

2

) + (1 − ν0)
(
x2

1 (x1 + a)3

+ (x1 + a)(x2
1 + 5ax1 + a2)x2

2 + ax4
2

))
.

With this, we are ready to write the first component of the Melan stress tensor:

ŜMe
11 (x1, x1) = S̃11 + S11

= − f

2π

(
(1 + ν0)

(
(x1 − a)3

ρ4
1

+ (x1 + a)
(
(x1 + a)2 + 2ax1

)
ρ4

2

− 8ax1(a + x1)x2
2

ρ6
2

)

+ 1 − ν0

2

(
x1 − a

ρ2
1

+ 3x1 + a

ρ2
2

− 4x1x2
2

ρ4
2

))
,

where

ρ1 :=
√

(x1 − a)2 + x2
2 , ρ2 :=

√
(x1 + a)2 + x2

2 .

The other two components are found in a completely analogous manner. Their expres-
sions are:

(2π f −1)ŜMe
22 (x1, x2) = −

(
(1 + ν0)

(
(x1 − a)x2

2

ρ4
1

+ (x1 + a)(x2
2 + 2a2) − 2ax2

2

ρ4
2

+ 8ax1(a + x1)x2
2

ρ6
2

)
+ 1 − ν0

2

(
− x1 − a

ρ2
1

+ x1 + 3a

ρ2
2

+ 4x1x2
2

ρ4
2

))
,

(2π f −1)ŜMe
12 (x1, x2) = −x2

(
(1 + ν0)

(
(x1 − a)2

ρ4
1

+ x2
1 − 2ax1 − a2

ρ4
2

+ 8ax1(a + x1)
2

ρ6
2

)
+ 1 − ν0

2

(
1

ρ2
1

− 1

ρ2
2

− 4x1(a + x1)

ρ4
2

))
.
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7.2.2 The Strain and Displacement Fields

As we have done systematically so far, we obtain the Melan strain field by inserting
the stress field we just obtained in the inverse constitutive law (2.57). After some
manipulations, we have:

(2πE0 f −1) ÊMe
11 (x1, x2)

= −(1 + ν0)

(
(x1 − a)3 − ν0(x1 − a)x2

2

ρ4
1

+ (x1 + a)
(
(x1 + a)2 + 2ax1

) − ν0
(
(x1 + a)(x2

2 + 2a2) − 2ax2
2

)
ρ4

2

− (1 + ν0)8ax1(a + x1)x2
2

ρ6
2

)
+ 1 − ν0

2

(
(1 + ν0)(x1 − a)

ρ2
1

+ 3x1 + a − ν0(x1 + 3a)

ρ2
2

− (1 − ν0)4x1x2
2

ρ4
2

)
, (7.7)

(2πE0 f −1) ÊMe
22 (x1, x2)

= −(1 + ν0)

(
(x1 − a)x2

2 − ν0(x1 − a)3

ρ4
1

+ (x1 + a)(x2
2 + 2a2) − 2ax2

2 − ν0(x1 + a)
(
(x1 + a)2 + 2ax1

)
ρ4

2

(1 + ν0)
8ax1(a + x1)x2

2

ρ6
2

)
+ 1 − ν0

2

(
−(1 + ν0)

x1 − a

ρ2
1

+ x1 + 3a − ν0(3x1 + a)

ρ2
2

− (1 − ν0)
4x1x2

2

ρ4
2

))
, (7.8)

(2πE0 f −1) ÊMe
12 (x1, x2) = −(1 + ν0)x2

(
(1 + ν0)

(
(x1 − a)2

ρ4
1

+ x2
1 − 2ax1 − a2

ρ4
2

+ 8ax1(a + x1)2

ρ6
2

)
+ 1 − ν0

2

(
1

ρ2
1

− 1

ρ2
2

− 4x1(a + x1)

ρ4
2

))
.

In order to determine the displacement field, we have to solve the following system
of PDEs:

u1,1 = EMe
11 , u2,2 = EMe

22 , u1,2 + u2,1 = 2 EMe
12 , (7.9)

subject to the symmetry conditions:

û1(x1, x2) = û1(x1,−x2), û2(x1, x2) = −û2(x1,−x2). (7.10)

http://dx.doi.org/10.1007/978-3-319-01258-2_2


140 7 The Melan and Mindlin Problems

With the use of (7.7) and (7.8), integration of 7.91 and 7.92 yields:

ûMe
1 (x1, x2) =

∫ x1

x̄1

ÊMe
11 (s, x2) ds + ĝ1(x2)

= − f

8πE0

(
2(1 + ν0)x2

2

ρ2
1

− 2(1 + ν0)
(
2ax1(1 + ν0) − (3 − ν0)x2

2

)
ρ2

2

+ 8a(1 + ν0)
2x1x2

2

ρ4
2

+ (3 − ν0)(1 + ν0) log ρ1

+ (
5 − (2 − ν0)ν0

)
log ρ2

)
+ ĝ1(x2), (7.11)

ûMe
2 (x1, x2) =

∫ x2

x̄2

ÊMe
22 (x1, s) ds + ĝ2(x1)

= f

4πE0

(
(1 + ν0)(x1 − a)x2

(
1 + ν0

ρ2
1

+ 3 − ν0

ρ2
2

)

+ 4a(1 + ν0)2x1x2(x1 + a)

ρ4
2

− 4(1 − ν0) arctan

(
x2

x1 + a

))
+ ĝ2(x1).

(7.12)

Note that the symmetry condition (7.10)2 implies that

ĝ2(x1) ≡ 0. (7.13)

To determine function ĝ1, we insert in (7.9)3 relations (7.11) and (7.12) (with (7.13)
taken into account), and find out that:

( ∫ x1

x̄1

ÊMe
11 (s, x2) ds

)
,2 +

( ∫ x2

x̄2

ÊMe
22 (x1, s) ds

)
,1 −2 ÊMe

12 (x1, x2) = 0 = ĝ′
1(x2).

Hence, function ĝ1 must be constant-valued; we dispose of the residual irrelevant
indeterminacy by taking the relative constant null.

7.3 The Mindlin Problem

To solve this problem (Fig. 7.4), we take once more the four steps listed sequentially
in Sect. 7.1, this time with considerable analytical complications.
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Fig. 7.4 The Mindlin
Problem

7.3.1 The Stress Field

7.3.1.1 Steps (i) and (ii)

To determine the fields S

̂
and Ŝ over the whole space S, we make use of the solution

of the 3-D Kelvin Problem. From (6.25), with two appropriate changes in origin, we
deduce that

S

̂
zz(z, r) = − f

8π(1 − ν)

(
3
(z − a)3

ρ5
1

− (1 − 2ν)
z − a

ρ3
1

)
,

S

̂
rr (z, r) = − f

8π(1 − ν)

(
3
(z − a)r2

ρ5
1

+ (1 − 2ν)
z − a

ρ3
1

)
,

S

̂
ϕϕ(z, r) = f (1 − 2ν)

8π(1 − ν)

z − a

ρ3
1

,

S

̂
zr (z, r) = − f

8π(1 − ν)

(
3
(z − a)2r

ρ5
1

− (1 − 2ν)
z − a

ρ3
1

)
,

and

Ŝzz(z, r) = f

8π(1 − ν)

(
3
(z + a)3

ρ5
1

− (1 − 2ν)
z + a

ρ3
2

)
,

Ŝrr (z, r) = f

8π(1 − ν)

(
3
(z + a)r2

ρ5
2

+ (1 − 2ν)
z + a

ρ3
2

)
,

Ŝϕϕ(z, r) = − f (1 − 2ν)

8π(1 − ν)

z + a

ρ3
2

,

http://dx.doi.org/10.1007/978-3-319-01258-2_6
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Ŝzr (z, r) = f

8π(1 − ν)

(
3
(z + a)2r

ρ5
2

− (1 − 2ν)
z + a

ρ3
2

)
,

where
ρ1 :=

√
(z − a)2 + r2, ρ2 :=

√
(z + a)2 + r2. (7.14)

Component-wise summation plus restriction to the half-space HS+ yield the field
S̃; at the boundary of HS+, the associated traction vector is:

s̃ = −S̃11(0, x2, x3)e1,

S̃11(0, x2, x3) = − f

4π

a
(
2a2(2 − ν) + (

x2
2 + x2

3

)
(1 − 2ν)

)
(1 − ν)

(
a2 + x2

2 + x2
3

) 5
2

(7.15)

(cf. (7.4)).

7.3.1.2 Steps (iii) and (iv)

To eliminate the effect of the undesired surface traction (7.15), we have to superim-
pose to S̃ a stress field

S(x1, x2, x3) =
∫ +∞

−∞

∫ +∞

−∞
p̂(η, ζ)Ĝ

B
(x1, x1, x3; η, ζ) dηdζ,

where GB is the stress Green function associated with the Boussinesq stress SB , and
where

p̂(η, ζ) := f

4π

a
(
2a2(2 − ν) + (

η2 + ζ2
)
(1 − 2ν)

)
(1 − ν)

(
a2 + η2 + ζ2

) 5
2

, (7.16)

(cf. (7.15)). Hereafter, we exemplify the construction of S, a cumbersome task indeed,
by undertaking it for the component S11.

The integral in question is:

S11(x1, x2, x3) =
∫ +∞

−∞

∫ +∞

−∞
p̂(η, ζ) Ĝ B

11(x1, x1, x3; η, ζ) dηdζ. (7.17)

where, in view of (5.62)1,

Ĝ B
11(x1, x1, x3; η, ζ) = − 3

2π

x3
1(

x2
1 + (x2 − η)2 + (x3 − ζ)2

) 5
2

.

http://dx.doi.org/10.1007/978-3-319-01258-2_5
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We have been unable to come up with an explicit evaluation for long, until we found
the following circuitous route.1

We recall from Sect. 5.8 that the Boussinesq stress field can be given the
Boussinesq-Papkovitch-Neuber representation (A.16) in terms of two harmonic func-
tions ψB and ϕB . In particular, component SB

11 admits the representation (5.77), that
we here recall for the reader’s convenience:

SB
11 = 1

1 − ν

(
2(1 − ν)ψB

,1 − ϕB
,11 − x1ψ

B
,11

)
,

where

ψB = 1

2πρ
, ϕB = 1 − 2ν

2π
log(x1 + ρ), ρ2 := x2

1 + x2
2 + x2

3 .

Accordingly, the associated stress Green function G B
11 turns out to be:

G B
11 = 1

1 − ν

(
2(1 − ν)γ1,1 − γ2,11 − x1γ1,11

)
,

where

γ1 = γ̂1(x1, x2, x3; η, ζ) := ψ̂B(x1, x2 − η, x3 − ζ),

γ2 = γ̂2(x1, x2, x3; η, ζ) := ϕ̂B(x1, x2 − η, x3 − ζ).

And, the stress component S11 we are looking for can be given the following form:

S11 = 1

1 − ν

(
2(1 − ν)ψ,1 − ϕ,11 − x1ψ,11

)
,

where the harmonic functions ψ and ϕ have the following expressions in terms of
the harmonic functions γ1 and γ2:

ψ =
∫
∂H+

p̂(η, ζ) γ̂1(x1, x1, x3; η, ζ) dηdζ,

ϕ =
∫
∂H+

p̂(η, ζ) γ̂2(x1, x1, x3; η, ζ) dηdζ. (7.18)

Thus, in place of the awkward integral (7.17), our task is to compute the inte-
grals (7.18). This is doable, with the use of certain well-known properties of harmonic
functions.

1 We are indebted to Professor G. Tarantello for many useful conversations on the matters; our
techniques are akin to those used in [4] and [6].

http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_5
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To begin with, recall (from [7], say) Green’s second identity:

∫
�

uΔv − vΔu =
∫
∂�

u
∂v

∂n
− v

∂u

∂n
, (7.19)

where u and v are scalar fields defined over region �, whose boundary ∂� has an a.e.
well-defined outward normal n. We apply this identity for � ≡ HS+, u a harmonic
function, and v the solution Γ of the boundary-value problem:

{
ΔΓ̂ (x1, x2, x3) = δ(x1 + a, x2, x3) in HS+,

Γ̂ (x1, x1, x3) = 0 on ∂HS+,
(7.20)

where δ(x1 + a, x2, x3) is the Dirac delta function (see Sect. A.1) centered at point
x = o + ae1, namely,

Γ = Γ̂ (x1, x2, x3) := 1

4π

⎛
⎝ 1√

(x1 − a)2 + x2
2 + x2

3

− 1√
(x1 + a)2 + x2

2 + x2
3

⎞
⎠ .

we find:

û(x1 + a, x2, x3) =
∫
∂HS+

û(x1, η, ζ)
∂Γ̂

∂x1
(x1, η, ζ). (7.21)

Moreover, function p̂ in (7.16) can be written as follows in terms of the normal
derivative of Γ :

p̂(η, ζ) = f

2(1 − ν)

(
2(1 − ν)

∂Γ̂

∂x1
(x1, x2, x3) − a

∂2Γ̂

∂a∂x1
(x1, x2, x3)

) ∣∣∣
(0,η,ζ)

.

With this, integrals (7.18) take the convenient form:

ψ(x1, x2, x3) = − f

2(1 − ν)

(
2(1 − ν)

∫
∂H+

γ̂1
∂Γ̂

∂x1
− a

∂

∂a

∫
∂H+

γ̂1
∂Γ̂

∂x1

)

(7.22)

and

ϕ(x1, x2, x3) = − f

8(1 − ν)

(
2(1 − ν)

∫
∂H+

γ̂2
∂Γ̂

∂x1
− a

∂

∂a

∫
∂H+

γ̂2
∂Γ̂

∂x1

)
.

(7.23)

To evaluate the integrals in the right sides of (7.22) and (7.23), we make use of (7.21)
and find:

http://dx.doi.org/10.1007/978-3-319-01258-2_1
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∫
∂H+

γ̂1
∂Γ̂

∂x1
= ψ̂B(x1 + a, x2, x3),

∫
∂H+

γ̂2
∂Γ̂

∂x1
= ϕ̂B(x1 + a, x2, x3),

whence

ψ = − f

2π

(
a(x1 + a)

2ρ3
2

+ 1 − ν

ρ2

)
,

ϕ = − f

2π

(
a(x1 + a)

2ρ3
2

+ (1 − 2ν) log(x1 + a + ρ2

)
.

All in all, the first component of the stress tensor field solving the Mindlin Problem
is:

SMi
11 = f

8π(1 − ν)

(
− (1 − 2ν)(x1 − a)

ρ3
1

+ (1 − 2ν)(x1 − a)

ρ3
2

− 3(x1 − a)2

ρ5
1

− 3(3 − 4ν)x1(x1 + a)2 − 3a(x1 + a)(5x1 − a)

ρ5
2

− 30ax1(x1 + a)3

ρ7
2

)

(7.24)

(ρ1 and ρ2 are defined in (7.14)).
At the expenses of completely similar long computations, the remaining stress

components are found to be:

SMi
rr = f

8π(1 − ν)

(
(1 − 2ν)(z − a)

ρ3
1

− (1 − 2ν)(z + 7a)

ρ3
2

+ 4(1 − ν)(1 − 2ν)

ρ2(ρ2 + z + a)

− 3r2(z − a)

ρ5
1

+ 6a(1 − 2ν)(z + a)2 − 6a2(z + a) − 3(3 − 4ν)r2(z − a)

ρ5
2

− 30ar2z(z + a)

ρ7
2

)
,

SMi
ϕϕ = f (1 − 2ν)

8π(1 − ν)

(
(z − a)

ρ3
1

+ (3 − 4ν)(z + a) − 6a

ρ3
2

− 4(1 − ν)

ρ2(ρ2 + z + a)

+ 6a(z + a)2

ρ5
2

− 6a2(z + a)

(1 − 2ν)ρ5
2

)
,
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SMi
zr = f r

8π(1 − ν)

(
−1 − 2ν

ρ3
1

+ 1 − 2ν

ρ3
2

− 3(z − a)2

ρ5
1

− 30az(z + a)2

ρ7
2

− 3(3 − 4ν)z(z + a) − 3a(3z + a)

ρ5
2

)
. (7.25)

Note that, the Boussinesq stress (5.62) is recovered for a = 0.

7.3.2 The Strain and Displacement Fields

The Mindlin displacement strain field is found by insertion of the stress represen-
tations (7.24) and (7.25) into the inverse constitutive equation (2.45). After some
algebraic manipulations, one finds:

(−16πG(1 − ν)(1 + ν) f −1)E Mi
zz

= 3(z − a)
(
a2 − 2az − νr2 + z2

)
ρ5

1

+
(

30az(a+z)
(
a2+2az−νr2+z2

)
ρ7

2

− 3

ρ5
2

(
a3

(
4ν2 − 1

)
+ a2

(
12ν2z + z

)

+ a
(
ν(4ν − 3)r2 +

(
8ν2 + 4ν − 1

)
z2

)
+ (4ν − 3)z

(
z2 − νr2

))

+ (2ν − 1)

(
a

(
4ν2 + 10ν − 1

) + (
4ν2 − 2ν + 1

)
z
)

ρ3
2

)
−

(
4ν2 − 1

)
(z − a)

ρ3
1

,

(16π(1 − ν)G f −1)E Mi
rr

= −6a2(a + z) − 3(4ν − 3)r2(a − z) + 6a(1 − 2ν)(a + z)2

ρ5
2

+ 3r2(a − z)

ρ5
1

− 30ar2z(a + z)

ρ7
2

+ 4(ν − 1)(2ν − 1)

ρ2 (a + ρ2 + z)
+ (2ν − 1)(a − z)

ρ3
1

+ (2ν − 1)(7a + z)

ρ3
2

− ν
(
3(a − z)

(
a2 − 2az + r2 + z2

))
(ν + 1)ρ5

1

+ ν
(
30az(a + z)

(
a2 + 2az + r2 + z2

))
(ν + 1)ρ7

2

+ ν
(
3

(
a3(4ν+1)+a2(8ν − 5)z+a

(
(4ν − 3)r2 − 3z2

) − (4ν − 3)z
(
r2 + z2

)))
(ν + 1)ρ5

2

− ν ((2ν − 1)(a(4ν + 11) + (4ν − 3)z))

(ν + 1)ρ3
2

+ (2ν − 1)(a − z)

(ν + 1)ρ3
1

,

http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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(16π(1 − ν)G f −1)E Mi
ϕϕ

= (1 − 2ν)

(
−6a2(a + z)

ρ5
2

+ 4(ν − 1)

ρ2 (a + ρ2 + z)

+ (3 − 4ν)(a + z) − 6a

ρ3
2

+ 6a(a + z)2

ρ5
2

+ z − a

ρ3
1

)

− 3ν(a − z)
(
a2 − 2az + r2 + z2

)
(ν + 1)ρ5

1

+ 30νaz(a + z)
(
a2 + 2az + r2 + z2

)
(ν + 1)ρ7

2

+ 3ν
(
a3(4ν + 1) + a2(8ν − 5)z + a

(
(4ν − 3)r2 − 3z2

) − (4ν − 3)z
(
r2 + z2

))
(ν + 1)ρ5

2

− 3ν(2ν − 1)(a(4ν + 11) + (4ν − 3)z)

(ν + 1)ρ3
2

− ν(2ν − 1)(a − z)

(ν + 1)ρ3
1

,

and

(16πG(1 − ν)(1 + ν) f −1)E Mi
zr

= −3
(a − z)

(
a2ν + a(νr + r − 2νz) + νr2 − (ν + 1)r z + νz2

)

ρ5
1

+
3

(
a3ν(4ν+1)+a2((ν + 1)r + ν(8ν − 5)z)+aν

(
(4ν − 3)r2 + 4(ν + 1)r z − 3z2

))

ρ5
2

+
3

(
−(4ν − 3)z

(
νr2 − (ν + 1)r z + νz2

))

ρ5
2

+
30az(a + z)

(
a2ν − a(νr + r − 2νz) + νr2 − (ν + 1)r z + νz2

)

ρ7
2

− (2ν − 1)(ν(a(4ν + 11) + (4ν − 3)z) + (ν + 1)r)

ρ3
2

+ (2ν − 1)(−aν + νr + r + νz)

ρ3
1

.

Note that, if a = 0, the deformation field reduces to Boussinesq’s, as given by (5.65).
To find the displacement field, we could follow a by now familiar course, and

exploit the compatibility equation (2.9) as we did in SubSect. 7.2.2. However, we
prefer to perform this task by employing the same procedure we adopted for the
stress field, namely,

(i) we superimpose the Kelvin displacements u
̂

and û corresponding to the stress
fields S

̂
and Ŝ defined in Sect. 7.3.1;

http://dx.doi.org/10.1007/978-3-319-01258-2_5
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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(ii) we consider the restriction ũ to HS+ of the above point-wise superposition,
and we further superimpose to it the displacement field u, that we determine by
means of (7.18) and (5.76).

The outcome is the Mindlin displacement field, in cylindrical coordinates:

uMi
z = f r

16π G(1 − ν)

(
z − a

ρ3
1

+ (3 − 4ν)(z − a)

ρ3
2

− 4(1 − ν)(1 − 2ν)

ρ2(ρ2 + z + a)

+ 6az(z + a)

ρ5
2

)
,

uMi
r = f

16π G(1 − ν)

(
3 − 4ν

ρ1
+ 8(1 − ν)2 − (3 − 4ν)

ρ2
+ (z − a)2

ρ3
1

+ (3 − 4ν)(z + a)2 − 2az

ρ3
2

+ 6az(z + a)2

ρ5
2

)
.
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Chapter 8
The Cerruti Problem

The equilibrium problem solved by Valentino Cerruti (1850–1909) concerns a
linearly elastic isotropic half-space acted upon by a concentrated load, tangent to
the boundary plane [1].

Recall that the load is perpendicular to the boundary plane in both Boussinesq’s
and Flamant’s problems, concentrated in the former and diffused over a line in the
latter. Load tangency, no matter if concentrated or diffused, brings about a different
type of symmetries. We exemplify them by taking up a version of the original Cerruti
Problem, where a diffused tangent load f = f e2 is applied, with constant magnitude
per unit length and infinitely long support (Fig. 8.1).

We solve this problem by adopting the same strategy as for the Flamant Problem
(Chap. 4), that is, by exploiting its intrinsic symmetries to determine, in the first
place, a divergenceless plane stress field balancing the applied load and compatible
with the construction to follow of a plane displacement field, having the forecasted
symmetries.

8.1 Displacement and Stress Symmetries

For the diffused-load version of the Cerruti Problem we here study, intuition suggests
that, in the closure of the half-space HS+, the displacement field must be plane and
independent of coordinate x3:

u = ûα(ρ,ϑ)eα,

an anticipation that can be argued just as we did in Sect. 4.1 for the Flamant Problem.
However, the parities induced by a tangent applied load are not the same as when
the load is perpendicular to the plane boundary of HS+.

A short reflection suggests the following prediction:

û1(ρ,ϑ) = −û1(ρ,−ϑ), û2(ρ,ϑ) = û2(ρ,−ϑ) (8.1)

P. Podio-Guidugli and A. Favata, Elasticity for Geotechnicians, Solid Mechanics 149
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Fig. 8.1 The Cerruti Problem

(Fig. 8.2). Here is how we argue this. At a a typical point of coordinates (ρ,ϑ), let us
agree that the displacement components have the direction shown; accordingly, were
the load reversed, the displacement components at the mirror point of coordinates
(ρ,−ϑ) would be:

û1(ρ,−ϑ;− f ) = û1(ρ,ϑ; f ), û2(ρ,−ϑ;− f ) = −û2(ρ,ϑ; f ).

Now, by linearity, we must have that

û1(ρ,−ϑ;− f ) = −û1(ρ,−ϑ; f ), û2(ρ,−ϑ;− f ) = û2(ρ,ϑ; f ).

Fig. 8.2 Displacement sym-
metries in the Cerruti problem
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In conclusion, whatever the load direction and intensity, (8.1) must hold. Alter-
natively, with the use of the physical basis (e, e′, e3), those conditions can be written
as follows1:

ûρ(ρ,ϑ) = −ûρ(ρ,−ϑ), ûϑ(ρ,ϑ) = ûϑ(ρ,−ϑ). (8.2)

Finally, intuition suggests to expect that the Cerruti stress field SC satisfies the
following condition:

Ŝ
C
(ρ,ϑ)̂e(ϑ) · ê(ϑ) = −Ŝ

C
(ρ,−ϑ)̂e(−ϑ) · ê(−ϑ). (8.3)

8.2 The Stress Field of the 2-D Cerruti Problem

In this section, just as we did when we dealt with the Flamant Problem, we consider
the 2-D version of the Cerruti Problem, that is, the problem of a concentrated tangent
load applied at a boundary point of a half-plane.

The balanced stress field for this problem obtains by picking

α0 = −2 f

π
and â(ϑ) = sin ϑ (8.4)

in representation (4.10); therefore, it has the form:

Ŝ
C
(ρ,ϑ) = −2 f

π
ρ−1 sin ϑ ê(ϑ) ⊗ ê(ϑ), for ρ ∈ [0,+∞), ϑ ∈ [−π/2,+π/2]

(8.5)
(note that this field satisfies condition (8.3)).

Here is how we reason to justify the choices in (8.4). We saw in Sect. 4.3.2 that,
for stress fields of type (4.10), the compatibility condition (2.69) translates into the
request that function â verifies a well-known ODE:

a′′ + a = 0, (8.6)

whose general solution in the interval (−π/2,+π/2) consists in a linear combination
with arbitrary coefficients of the even solution âe(ϑ) = cosϑ and the odd solution
âo(ϑ) = sin ϑ. Moreover, in Sect. 4.3.3, we have formulated the equilibrium con-
dition for the equilibrium of the half-disk Sρ, a vector condition that in the present
circumstances reads:

1 Recall that

uρ = e · (uαeα) = u1 cosϑ+ u2 sin ϑ,

uϑ = e′ · (uαeα) = −u1 sin ϑ+ u2cosϑ,

http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_4
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Fig. 8.3 Equilibrium of portions of a Cerruti half-plane, in the shape of a half-disk and a quarter-disk
(this figure is taken from [2])

α0

∫ +π/2

−π/2

(
ρ−1â(ϑ)(cosϑe1 + sin ϑe2)

)
ρ dϑ+ f e2 = 0,

and it is therefore equivalent to the scalar conditions:

∫ +π/2

−π/2
â(ϑ) cosϑ dϑ = 0 and α0

∫ +π/2

−π/2
â(ϑ) sin ϑ dϑ+ f = 0,

the first of which is satisfied automatically if we pick an odd solution of (8.6), as we
are obliged to do in order to satisfy (8.3), while the second implies that

α0 = −2 f

π
.

Thus, relation (8.5) is established.2

Remark 8.1 In analogy to what we observed for the Flamant Problem in Sect. 4.4.2,
we can use formula (8.5) to represent the contact interaction on the boundary of parts
having the shape of a half-disk, when thought as isolated from their complement with
respect the half-plane itself, and in equilibrium (Fig. 8.3). Once again, we see that
concentrated contact interactions may be necessary for part-wise equilibrium.

Remark 8.2 A linear combination of Flamant’s and Cerrruti’s 2-D stress fields yields:

2 A plane Cerruti stress field can be constructed also by an ad hoc use of the Airy method (see
Sect. A.3.2).

http://dx.doi.org/10.1007/978-3-319-01258-2_4
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ŜFC(ρ,ϑ) = − 2

π
ρ−1(f ·̂e(ϑ)) ê(ϑ)⊗ê(ϑ), for (ρ,ϑ) ∈ [0,+∞)×[−π/2,+π/2].

This everywhere divergenceless stress field solves the equilibrium problem of a half-
plane loaded by a concentrated force f , whatever its relative inclination. Moreover,
the stress field in a wedge Wϑ0 with vertical angle 2ϑ0 is obtained by computing the
constant α0 in formula (4.10) so as to guarantee the equilibrium of a wedge slice of
arbitrary radius; it is found that

Ŝ
FC
W (ρ,ϑ) = − 1

ϑ0
ρ−1(f · ê(ϑ)) ê(ϑ)⊗ ê(ϑ), for (ρ,ϑ) ∈ [0,+∞)×[−ϑ0,+ϑ0].

Remark 8.3 A glance to (8.5) is enough to see that a constant-magnitude locus of
that stress field is any set of points whose polar coordinates satisfy

ρ−1 sin ϑ = a given constant.

Now, a circumference of radius |c| centered at point (x1 = 0, x2 = c) has the
Cartesian equation:

c2 = x2
1 + (x2 − c)2 = (ρ cosϑ)2 + (ρ sin ϑ− c)2 = ρ2(1− (2c)ρ−1 sin ϑ+ c2/ρ2),

or rather, in polar coordinates,

ρ−1 sin ϑ = (2c)−1.

For each value of |c|, there are two such circumferences, shown in Fig. 8.4; the plane
Cerruti stress tensor has constant magnitude at each point of these circumferences
with x1 ≥ 0 .

Fig. 8.4 Locus of constant
stress-magnitude

http://dx.doi.org/10.1007/978-3-319-01258-2_4
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8.3 The Diffused-load Cerruti Problem

8.3.1 The Stress and Strain Fields

The compatible 3-D stress field associated with the stress field (8.5) is:

S = S̃
C
(ρ,ϑ, x3) = −2 f

π
ρ−1 sin ϑ

(̂
e(ϑ) ⊗ ê(ϑ) + ν e3 ⊗ e3

)

(cf. the equally interrelated fields (4.18) and (4.14)). Again, it is quickly checked
that:

• div S = 0 at interior points of HS+;
• Sn = −Se1 ≡ 0 on the x1 = 0 plane, except over the line where the load is

applied;

• lim
ρ→+∞ S̃

C
(ρ,ϑ, x3) = 0, per ogni scelta di (ϑ, x3).

Remark 8.4 Both in Flamant’s and Cerruti’s problem, the dimensions of stress
depend on the dimensions of the space; in their 2-D versions, the load factor f
has the dimension of a force (dim( f ) = F), and then dim(S) = FL−1; in the 3-D
case, dim( f ) = FL−1, and then dim(S) = FL−2.

To obtain the strain field, we combine the plane stress field (8.5) with the inverse
constitutive relation (2.57):

E = Ẽ
C
(ρ,ϑ, x3) = − 2 f

πE0
ρ−1 sin ϑ

(
e ⊗ e − ν0 e′ ⊗ e′).

As expected, the behaviour of the deformation and stress fields at infinity is the same;
when ρ grows big, the displacement field tends to become rigid. Just as in the Flamant
case, the change in angle of radial and circumferential material fibers is null:

Eρϑ = 0.

Given that

Eρρ = − 2 f

πE0
ρ−1 sin ϑ,

radial fibers shorten for ϑ ∈ (0,π/2], lengthen for ϑ ∈ [−π/2, 0); moreover, since

Eϑϑ = ν0
2 f

πE0
ρ−1 sin ϑ,

circumferential fibers lengthen for ν0 sin ϑ > 0, shorten for ν0 sin ϑ < 0. Finally,
the change in area in the plane perpendicular to e3 is:

http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_2
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Eρρ + Eϑϑ = − 2 f

πE0
ρ−1 sin ϑ(1 − ν0);

therefore, the typical region represented in Fig. 4.11, becomes smaller if 0 < ϑ ≤
π/2, larger if −π/2 ≤ ϑ < 0.

8.3.2 The Displacement Field

To construct the displacement field in the fashion of Sect. 4.5.3 , we have to integrate
the differential system:

uρ,ρ = − 2 f

πE0
ρ−1 sin ϑ,

uϑ,ϑ + uρ = ν0
2 f

πE0
sin ϑ, (8.7)

uϑ,ρ + ρ−1(uρ,ϑ − uϑ) = 0,

for functions ûρ and ûϑ endowed with the symmetries (8.2).
The first equations yields:

ûρ(ρ,ϑ) = − 2 f

πE0
ln ρ sin ϑ+ v̂(ϑ); (8.8)

to satisfy (8.2)1, v̂ must be odd:

v̂(ϑ) = −v̂(−ϑ).

From the second equation we obtain that

ûϑ(ρ,ϑ) = − 2 f

πE0
ln ρ cosϑ− V̂ (ϑ) − 2 f

πE0
ν0 cosϑ+ ŵ(ρ), (8.9)

where V̂ is a primitive of v̂, necessarily an even function. The condition determining
functions v̂ and ŵ comes from the third of (8.7): by substituting into it the preliminary
representations (8.8) and (8.9), we find, after some manipulations, that

− 2 f

πE0
(1 − νo) cosϑ+ v′ + V = −ρw′ + w. (8.10)

Now, the left side of this equation is a function of ϑ, the right side of ρ; hence, the
equation itself is equivalent to two ODEs, namely,

http://dx.doi.org/10.1007/978-3-319-01258-2_1
http://dx.doi.org/10.1007/978-3-319-01258-2_4
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(ρw′ − w)′ = 0,

v′′ + v = − 2 f

πE0
(1 − ν0) sin ϑ.

The general solution of the first equation is:

ŵ(ρ) = w0 + w1ρ. (8.11)

As to the second, it is easy to verify that

v̂1(ϑ) = f

πE0
(1 − ν0)ϑ cosϑ

is a solution with the desired parity; the general solution has the form:

v̂(ϑ) = v0 sin ϑ+ f

πE0
(1 − ν0)ϑ cosϑ. (8.12)

On taking into account (8.11) and (8.12), we find from (8.10) that

V̂ (ϑ) = −v0 cosϑ+ f

πE0
(1 − ν0)(cosϑ+ ϑ sin ϑ) + w0. (8.13)

In conclusion, with the use of (8.11), (8.12), and (8.13), the representations (8.8) and
(8.9) of the displacement components are found to be:

ûρ(ρ,ϑ) = − 2 f

πE0
ln ρ sin ϑ+ f

πE0
(1 − ν0)ϑ cosϑ+ v0 sin ϑ,

ûϑ(ρ,ϑ) = − 2 f

πE0
(1 + ln ρ) cosϑ+ f

πE0
(1 − ν0)(cosϑ− ϑ sin ϑ)

+ v0 cosϑ+ w1ρ.

The rigid part of this field is:

ûC
rig(ρ,ϑ; v0, w1) = v0 sin ϑ ê(ϑ) + (v0 cosϑ+ w1ρ)̂e′(ϑ),

= v0 e2 + w1e3 × r̂(ρ,ϑ), r̂(ρ,ϑ) = ρ ê(ϑ);

it consists of a translation parallel to e2, parameterized by v0, and a rotation about
the coordinate axis parallel e3, parameterized by w1. With no surprise we see that
this rigid field is the general solution of the homogeneous problem associated with
problem (8.7), when it is completed by the parity conditions (8.2). If we dispose of
the rigid part, we remain with:
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ûC
ρ (ρ,ϑ) = − 2 f

πE0
ln ρ sin ϑ+ f

πE0
(1 − ν0)ϑ cosϑ, (8.14)

ûC
ϑ (ρ,ϑ) = − 2 f

πE0
(1 + ln ρ) cosϑ+ f

πE0
(1 − ν0)(cosϑ− ϑ sin ϑ),

the strain-inducing displacement field that solves the diffused-load Cerruti Problem.

Remark 8.5 In the same spirit as Remark 4.14, we note that the deformation mapping

x 
→ y = x + ûC (x) = o + (ρ+ ûC
ρ (ρ,ϑ))̂e(ϑ) + ûC

ϑ (ρ,ϑ)̂e′(ϑ)

does not enjoy local invertibility at all points of HS+; we return on this issue in
Subsect. A.4.2 .

Remark 8.6 Instead of discarding rigid displacements altogether, we might request
that the displacement of point x = o + ρ0e1 be null, by setting

v0 = f

πE0
(1 + ν0 + 2 ln ρ0),

and that the rotation be null as well. We then obtain the Cartesian representation

û1(ρ,ϑ) = f

πE0
((1 − ν0)(ϑ+ (1 + ν0) sin ϑ cosϑ)),

û2(ρ,ϑ) = 2 f

πE0
ln
ρ0

ρ
+ f

πE0
(1 + ν0) sin2 ϑ.

We can see that the displacement on the boundary of the Cerruti half-plane looks
like:

û1(x2) = f

2E0
(1 − ν0) sgn x2,

û2(x2) = 2 f

πE0
ln

ρ0

|x2| + f

πE0
(1 + ν0).
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Postface

In retrospect, we believe we have given our reader sufficient evidence of the
advantages of the unusual integration method we systematically adopted to solve
the classic problems in linear isotropic elasticity we considered, all involving con-
centrated loads and all formulated over unbounded domains.

Our method, we repeat, hinges on an educated use of physical intuition to guess a
preliminary parametric representation for the admissible elastic states, a representa-
tion that incorporates all the symmetries dictated by a careful inspection of the body
of data. Another characteristic feature of our method is that we do not formulate
the problems we solve in terms of displacement. Instead, we reverse the standard
order in which a solution state is sought: firstly, we try and determine, for as much
as is possible, all compatible stress fields that balance the applied load; then, the
corresponding strain fields; and, finally, the solution displacement field, which, as
customary in linear elasticity, turns out to be unique to within, at times, an insignifi-
cant translation.

We have followed this path in the case of the two-dimensional Boussinesq-Flamant
Problem, where not only the solution stress is especially easy to find—a welcomed
didactic facilitation—but also turns out to be independent of material response—
a rare situation. These are not the only reasons why we considered that problem
first: a third reason—this one of fundamental nature—is that a careful inspection of
the traction field induced by the solution stress reveals the necessity of unexpected
concentrated interactions between certain adjacent body parts.

To find compatible and balanced stress fields is much harder in the case of the three-
dimensional Boussinesq Problem, we now know that. But we also know that, having
solved that mostly complicated problem, the two other major problems enjoying
cylindrical symmetry we study, Kelvin’s and Mindlin’s, become relatively easy to
tackle with our method, as browsing Mindlin’s papers demonstrates by contrast.
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Appendix A

In this Appendix, we collect information complementary to several parts of the main
text; sections are numbered according to the first occurrence of a reference to their
contents.

In the first section, we recall, briefly and informally, the definitions of the absolute-
value, sign, Heaviside, and Dirac, functions. In Sect. A.2, as a complement to
Sect. 2.3.1, we list the constitutive equations of an isotropic linearly elastic mate-
rial, in terms of both Lamé’s and technical moduli.

The Airy stress function is the subject of Sect. A.3, both in general and in the
forms it takes for the Boussinesq-Flamant Problem and the plane version of Cerruti
Problem studied in Chap. 8.

In Sect. A.4, we take up an issue that is legitimately posed within an exact nonlinear
local analysis of deformation: whether or not, given a smooth displacement field, local
invertibility is guaranteed; we discuss this issue with reference to the equilibrium
displacement fields solving Flamant’s and Cerruti’s problems.

In Sect. A.5, we record two classical representation results for Navier equa-
tion (2.40), namely, the Boussinesq-Papkovitch-Navier and Boussinesq-Somigliana-
Galerkin representations. These representations are included for the sake of making
our booklet reasonably complete, given that they play a central role in the classical
solution of elasticity problems of interest in geomechanics. In the same spirit, in
Sect. A.6, we give an exposition of the solution of Kelvin Problem, as it is presented
in the old-fashioned and yet timeless classic by A.E.H. Love [5].

Section A.7, our last, contains a cumbersome computation subsuming some
knowledge of complex analysis, of importance to complete the construction of the
Melan stress field.
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A.1 Absolute-Value, Sign, Heaviside, and Dirac, Functions

These well-known special functions, whose common domain is the real line, are
often linked the one to the other by differentiation operations that, as a rule, are to
be intended in a distributional sense.

To begin with, the absolute-value function is defined to be:

x �→ |x | ;

its derivative is the sign function:

sgn x :=
⎧⎨
⎩

+1 for x > 0,

0 for x = 0,

−1 for x < 0

(although defining sgn at x = 0 is often inessential, here a convenient definition is
given). The Heaviside function is defined by means of the sign function:

H(x) := 1

2
(1 + sgn x).

Finally, the Dirac function is the linear operator that restitutes the value in a chosen
point—the origin of coordinates, say—of each given test field over the real line:

δ[v] := v(0);

this operator may be represented by an use of the Heaviside function that identifies
δ as the distributional derivative of H :

δ[v] = −
∫
R

v′(t)H(t) dt.

A.2 Constitutive Relations for an Isotropic Linearly
Elastic Material

• (Stress-strain laws and strain energy in terms of Lamé moduli)

S = 2μE + λ(tr E)I ,

E = 1

2μ

(
S− λ

3λ+ 2μ
(tr S)I

)
,

σ(E) = μ |E|2 + 1

2
λ(tr E)2.
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• (Stress-strain laws and strain energy in terms of technical moduli)

S = E

1 + ν

(
E + ν

1 − 2ν
(tr E)I

)
= 2G

(
E + ν

1 − 2ν
(tr E)I

)
,

E = 1

E

(
(1 + ν)S − ν(tr S)I

)
= 1

2G

(
S − ν

1 + ν
(tr S)I

)
,

σ̃(E) = E

2(1 + ν)

(
|E|2 + ν

1 − 2ν
(tr E)2

)
= G

(
|E|2 + ν

1 − 2ν
(tr E)2

)
.

• (Technical moduli in terms of Lamé moduli)

(Young m.) E = μ(3λ+ 2μ)

λ+ μ
,

(Poisson m.) ν = λ

2(λ+ μ)
, (shear m.) G = μ .

A.3 The Airy Stress Function

In 1862, George Biddel Airy (1801–1892) devised a method to construct a represen-
tation of a balanced and compatible plane stress field in terms of one scalar potential
function [1].

Airy’s method is fairly flexible: as we are going to show, it works for the
Boussinesq-Flamant and the plane Cerruti problems, provided their different sym-
metries are suitably accounted for; its general traits are summarized here below.

In the absence of distance forces, the Cartesian version of the 2-D equilibrium
equations reads:

S11,1 +S12,2 = 0, (A.1)

S12,1 +S22,2 = 0,

two PDEs holding in a simply connected domain R. The Airy functionϕ = ϕ̂(x1, x2)

is a single-valued scalar function of class C3(R), such that

S11 = ϕ,22 ,

S22 = ϕ,11 , (A.2)

S12 = −ϕ,12 .

It is easy to check that a stress field having the representation (A.2) satisfies the
balance equations (A.1) identically; and that it satisfies identically the compatibility
equation (2.69) as well, provided the Airy function is chosen biharmonic:

ΔΔϕ = 0.

http://dx.doi.org/10.1007/978-3-319-01258-2_2
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A.3.1 Boussinesq-Flamant Stress

With a view toward exploiting the built-in symmetries of the Boussinesq-Flamant
problem, we express the field ϕ in plane polar coordinates:

ϕ = ϕ̃(ρ,ϑ), ϕ̃
(
ρ(x1, x2),ϑ(x1, x2)

) := ϕ̂(x1, x2).

Then, by a straightforward use of (3.19)2, the equation to solve for ϕ takes the form:

(ΔΔϕ =) ϕ,ρρρρ + 2ρ−2ϕ,ρρϑϑ +ρ−4ϕ,ϑϑϑϑ +2ρ−1ϕ,ρρρ +
− 2ρ−3ϕ,ρϑϑ −ρ−2ϕ,ρρ +4ρ−4ϕ,ϑϑ +ρ−3ϕ,ρ = 0. (A.3)

Moreover, we express the components of the stress tensor in the physical basis (e, e′)
in terms of the Airy representation (A.2):

Sρρ := S · e ⊗ e = S11 cos2 ϑ+ S22 sin2 ϑ+ 2S12 sin ϑ cosϑ

= ϕ,2 cos2 ϑ+ ϕ,11 sin2 ϑ− 2ϕ,12 sin ϑ cosϑ,

Sϑϑ := S · e′ ⊗ e′ = S11 sin2 ϑ+ S22 cos2 ϑ− 2S12 sin ϑ cosϑ (A.4)

= ϕ,11 cos2 ϑ+ ϕ,22 sin2 ϑ+ 2ϕ,12 sin ϑ cosϑ,

Sρϑ := S · e′ ⊗ e′ = −S11 sin ϑ cosϑ+ S22 sin ϑ cosϑ+ S12 cos 2ϑ

= −ϕ,11 sin ϑ cosϑ+ ϕ,22 sin 2ϑ cosϑ− 2ϕ,12 cos 2ϑ,

where

ϕ,αβ = ∂2

∂xα∂xβ
ϕ̃
(
ρ(x1, x2),ϑ(x1, x2)

)
, (α,β = 1, 2).

On noting that

ϕ,β = ∇ϕ · eβ, ϕ,αβ = ∇(∇ϕ · eβ) · eα = ∇(2)ϕ · eα ⊗ eβ,

with the use of (3.19), we find:

ϕ,11 = S22 = ϕ,ρρ cos2 ϑ+ (ρ−1ϕ,ρ +ρ−2ϕ,ϑϑ ) sin2 ϑ− (ρ−1ϕ,ρϑ −ρ−2ϕ,ϑ ) sin 2ϑ.

ϕ,22 = S11 = ϕ,ρρ sin2 ϑ+ (ρ−1ϕ,ρ +ρ−2ϕ,ϑϑ ) cos2 ϑ+ (ρ−1ϕ,ρϑ −ρ−2ϕ,ϑ ) sin 2ϑ,

ϕ,12 = −S12 = (ϕ,ρρ −ρ−1ϕ,ρ −ρ−2ϕ,ϑ ) sin ϑ cosϑ− (ρ−2ϕ,ϑ −ρ−1ϕ,ρϑ ) cos 2ϑ.

In conclusion, relations (A.4) become:

Sρρ = ρ−1ϕ,ρ +ρ−2ϕ,ϑϑ ,

Sϑϑ = ϕ,ρρ , (A.5)

Sρϑ = −(ρ−1ϕ,ϑ ),ρ .

http://dx.doi.org/10.1007/978-3-319-01258-2_3
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We now look for solutions by variable separation, if any, of Eq. (A.3):

ϕ̃(ρ,ϑ) = ξ(ρ)η(ϑ).

Consistent with this supposition, we write Eq. (A.3) as follows:

ξ′′′′η + 2ρ−2ξ′′η′′ + ρ−4ξη′′′′ + 2ρ−1ξ′′′η+
− 2ρ−3ξ′η′′ − ρ−2ξ′′η + 4ρ−4ξη′′ + ρ−3ξ′η = 0;

and we write Eq. (A.5) as

Sρρ = ρ−1ξ′η + ρ−2ξη′′,
Sϑϑ = ξ′′η, (A.6)

Sρϑ = ρ−2ξη′ − ρ−1ξ′η′.

For the order of singularity of all addenda to be the same in (A.6)1 and (A.6)3, we
must choose

ξ(ρ) = ξ0ρ,

with ξ0 an arbitrary constant. Accordingly, the stress components become:

Sρρ = ξ0 ρ
−1(η(ϑ) + η′′(ϑ)),

Sϑϑ = Sρϑ = 0,

and (1.3.1) reduces to:
η′′′′ + 2η′′ + η = 0,

an equation whose general solution is:

η(ϑ) = η1 cosϑ+ η2ϑ cosϑ+ η3 sin ϑ+ η4ϑ sin ϑ, (A.7)

where four arbitrary constants ηi appear. For the stress field to be even in the variable
ϑ, we must take η2 = η3 = 0; hence,

S = Sρρe ⊗ e, Sρρ = 2ξ0η4ρ
−1 cosϑ. (A.8)

Finally, to balance the forces applied to a half-disk of contour C⊂ whatever its radius,
that is, to have that: ∫

Cρ
Se + f = 0,

the constant in (A.8)2 must have the value

http://dx.doi.org/10.1007/978-3-319-01258-2_1


166 Appendix A

η4 = − f

πξ0
, (A.9)

so that the stress field in (A.8) takes the form (4.14).
As to the Airy function, we provisionally have:

ϕ̃(ρ,ϑ) = ξ0ρ(η1 cosϑ+ η4ρϑ sin ϑ) = ξ0

(
η1x1 + η4 arctan

x2

x1
x2

)
.

But, given that Airy’s recipe (A.2) for stress ignores whatever linear part ϕ may
have, we take η1 = 0 and, by taking (A.9) into account, we eventually write the Airy
function for the Boussinesq-Flamant Problem as follows:

ϕB F(ρ,ϑ) = − f

π
ρϑ sin ϑ.

A.3.2 Cerruti Stress

Finding the Airy stress function for the 2-D Cerruti Problem dealt with in Sect. 8.2
is immediate. Given the prevailing symmetries, (A.7) reduces to:

η(ϑ) = η2ϑ cosϑ+ η3 sin ϑ;

the correspondent stress is:

Sρρ = −2ξ0η2ρ
−1 sin ϑ;

moreover, again by imposing the equilibrium of a half-disk, we find that constant ξ0η2
must have the value f/π. All in all, the Airy function of the 2-D Cerruti problem is:

ϕC (ρ,ϑ) = f

π
ρϑ cosϑ,

where the linear part has been disposed of by setting η3 = 0.

A.4 Local Invertibility of the Deformation Mapping

Let
u = û(ρ,ϑ)

be a plane displacement field. Then, the deformation mapping is

http://dx.doi.org/10.1007/978-3-319-01258-2_4
http://dx.doi.org/10.1007/978-3-319-01258-2_8
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x �→ y = x + û(x) = o + (ρ+ ûρ(ρ,ϑ))̂e(ϑ) + ûϑ(ρ,ϑ)̂e ′(ϑ).

The deformation gradient is:

F = I + ∇u = (1 + uρ,ρ )e ⊗ e + uϑ,ρ e′ ⊗ e + ρ−1(uρ,ϑ −uϑ)e ⊗ e′

+ (1 + ρ−1(uϑ,ϑ +uρ))e′ ⊗ e′ + e3 ⊗ e3;

its determinant is:

det F = ρ−1
(
(1 + uρ,ρ )(1 + ρ−1(uϑ,ϑ +uρ)) − uϑ,ρ (uρ,ϑ −uϑ)

)
.

We want to show how the loss-of-invertibility condition:

det F = 0 (A.10)

looks like in the case of Flamant and Cerruti problems.

A.4.1 Flamant Deformation

The displacement field has the form (4.37). We compute:

1 + uρ,ρ = 1 − 2 f

πE0
ρ−1 cosϑ;

1 + ρ−1(uϑ,ϑ +uρ) = 1 + ρ−1 2 f

πE0
ν0 cosϑ;

uϑ,ρ = 2 f

πE0
ρ−1 sin ϑ

uρ,ϑ −uϑ = − 2 f

πE0
sin ϑ.

Hence, the condition we look for is:

(
1 − αρ−1 cosϑ

)(
1 + αν0ρ

−1 cosϑ
)

= −α2ρ−2 sin2 ϑ,

or rather, (
ρ− α cosϑ

)(
ρ+ αν0 cosϑ

)
= −α2 sin2 ϑ, (A.11)

where

α := 2 f

πE0
= (1 − ν) f

πG
> 0 (A.12)

http://dx.doi.org/10.1007/978-3-319-01258-2_4
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Fig. A.1 Region of local
non-invertibility

and where

αν0 = ν f

πG
.

Note that the right side of (A.11) is never positive, and that

p1(ρ,ϑ) := ρ− α cosϑ = 0

is the equation of the pressure bulb of radius α. Thus, for

p2(ρ,ϑ) := ρ+ αν0 cosϑ,

on recalling that −1 < ν < 1/2, we see that,

(i) if 0 ≤ ν < 1/2, then p2 > 0, and hence the loss-of-invertibility locus, a pear-like
region, must be included within the pressure bulb (p1 ≤ 0) (see Fig. A.1);

(ii) if −1 < ν < 0, then a point (ρ,ϑ) of the loss-of-invertibility locus belongs to
the pressure bulb if p2(ρ,ϑ) > 0, is external to it otherwise.

A.4.2 Cerruti Deformation

The displacement field is now given by Eq. (8.14). We compute:

http://dx.doi.org/10.1007/978-3-319-01258-2_8
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1 + uρ,ρ = 1 − 2f

πE0
ρ−1 sin ϑ;

1 + ρ−1(uϑ,ϑ +uρ) = 1 + 2f

πE0
ρ−1ν0 sin ϑ;

uϑ,ρ = − 2f

πE0
ρ−1 cosϑ

uρ,ϑ −uϑ = 2f

πE0
cosϑ,

and then the condition (A.10) reads:

(
1 − 2f

πE0
ρ−1 sin ϑ

)(
1 + 2f

πE0
ρ−1ν0 sin ϑ;

)
= −

(
2f

πE0

)2

ρ−2 cos2 ϑ,

or, rather better,

(ρ− α sin ϑ)(ρ+ αν0 sin ϑ) = −α2 cos2 ϑ, (A.13)

with α given by (A.12). The second member of (A.13) is never positive. and

p1(ρ,ϑ) := ρ− α sin ϑ = 0

is the equation of the pressure bulb of radius α. For

p2(ρ,ϑ) := ρ+ αν0 sin ϑ,

we have that:

(i) if 0 ≤ ν < 1/2, then p2 > 0, and then the loss-of-invertibility locus must be
included within the pressure bulb (p1 ≤ 0) (see Fig. A.2)

(ii) if −1 < ν < 0, then a point (ρ,ϑ) of the loss-of-invertibility locus belongs to
the pressure bulb if p2(ρ,ϑ) > 0, is external to it otherwise.

Fig. A.2 Region of local
non-invertibility in Cerruti’s
problem
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A.5 Representations of Solutions to Navier Equation

Let us write Navier equation (2.40) in the following form:

Δu + (1 − 2ν)−1∇(
div u

) + μ−1d = 0, (A.14)

with a view towards arriving at a representation of the datum �→ solution map d �→ u
in terms of suitable potentials, as is classical.

A possibility is to give u a Helmholtz representation:

u = ∇ϕ+ curl w, div w = 0 (A.15)

(see [5], Chap. VIII; see also Remark 2.2). However, inserting (A.15) in (A.14) does
not lead to a generally solvable system of equations for (ϕ,w); the only easy-to-find
representations are incomplete, in the sense that they hold only for certain special
assignments of the datum d. There are, however, at least two complete representations
of class-C4(Ω) solutions (see [4], Sect. 44), namely, the

• Boussinesq-Papkovitch-Neuber representation

2GuBPN = ψ − 1

4(1 − ν)
∇(x ·ψ + ϕ), x := x − o, (A.16)

where the scalar potential ϕ and the vector potential ψ are both of class C3(Ω)

and depend on the datum as follows:

Δψ = −2d, Δϕ = 2x · d;

and the
• Boussinesq-Somigliana-Galerkin representation

2GuBSG = Δg − 1

2(1 − ν)
∇(div g),

where the vector potential g ∈ C4(Ω) solves the equation

ΔΔg = 2d.

Mindlin [6] observed that the Boussinesq-Somigliana-Galerkin representation gen-
erates Boussinesq-Papkovitch-Neuber’s, provided that

ψ = ∇g, ϕ = 2div g − x · Δg.

http://dx.doi.org/10.1007/978-3-319-01258-2_2
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A.6 Kelvin Solution According to Love

(This section is taken almost verbatim from [3].)
In his paper [8], Kelvin does not disclose the details of the technique he adopts to
solve the problem named after him: in little more than two pages, he just proposes the
solution, stressing the similarity with the problem in the theory of thermal conduction,
where a point heat source parallels the role of a strain source under form of a
concentrated load. We now give a quick account of Kelvin problem and its solution,
modeled after the account given by Love [5].1

Consider again Navier equation for the displacement field, this time written in the
form

(λ+ μ)∇(div u) + μΔu + d = 0. (A.17)

Let the displacement and the distance force field be given a Helmholtz representation
in terms of potential pairs:

u = ∇ϕ+ curlw, d = ∇ψ + curlb, with div w = div b = 0 (A.18)

(cf. Sect. A.5). Moreover, let the distance force be taken null in H \ Bρ, where H
is the whole 3-D space and Bρ ⊂ H denotes a sphere of radius ρ about the point o
where the concentrated load f is applied.

On recalling that

Δ∇(·) = ∇Δ(·) and Δcurl(·) = curlΔ(·),

Eq. (A.17) can be written as:

∇(
(λ+ 2μ)Δϕ+ ψ

) + curl
(
μΔw + ∇ψ + b

) = 0. (A.19)

A solution of (A.19) can be obtained by solving the following two equations, both
set over H \ Bρ:

(λ+ 2μ)Δϕ+ ψ = 0, μΔw + b = 0; (A.20)

the solutions ϕρ and wρ of (A.20) are:

ψρ(x) = − 1

4π

∫
Bρ

d(ξ) · ∇ξ(γ
−1(x, ξ))dv(ξ),

bρ(x) = − 1

4π

∫
Bρ

d(ξ) × ∇ξ(γ
−1(x, ξ))dv(ξ),

1 Love’s procedure is essentially the same adopted by those authors who solved problems of the
same type of Kelvin’s after him; while the flow is clear, mathematical developments are at times
skipped. We warn the reader that the notation we use is rather different from the original one, and
that some slight changes in presentation have been found either necessary or simply convenient.
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where, for γ(x, ξ) := |x − ξ|, (4π γ)−1 is the Green kernel of the laplacian.
The potential pair yielding the representation (A.18)1 of the solution to (A.17) is

found by taking the limits of ϕρ and wρ for ρ → 0; these limits are:

ϕ = 1

8π
f · ∇ρ, w = 1

8π
f × ∇ρ, ρ(x) := |x − o| , (A.21)

where the concentrated load f has to be intended as the limit of d.2

Given the vector d, we can determine two fields ψ, b satisfying the Helmholtz
decomposition (A.18)2, in two steps.

1. On applying the divergence operator to Eq. (A.18), we obtain the Poisson equa-
tion:

Δψ = div d, (A.22)

whose solution has the well-known representation:

ψ(x) = −
∫
Br

G(x, ξ) div d(ξ) dv(ξ), x ∈ H,

(see, e.g., [2]), where

G(x, ξ) = (
4πρ(x, ξ)

)−1
, ρ(x, ξ) := |x − ξ| .

On recalling the identity:

div (ϕv) = ϕdiv v + v · ∇ϕ,

and on using the divergence theorem, we obtain:

ψr (x) = − 1

4π

∫
Br

d(ξ) · ∇ξ(ρ
−1(x, ξ)) dv(ξ).

2. On taking the curl of d, we obtain:

curld = curlcurlb = ∇(div b) − Δb = −Δb.

2 From a classical point of view, a concentrated force is the limit of a distance force field having
a shrinking support; according to the precise definition found in [7], a sequence {dn} of distance
force fields defined on an open neighborhood R of a point o tends to the load f concentrated at o if:

(i) dn ∈ C2(R);
(ii) dn = 0 su R \ Brn (o), where {Brn (o)} is a sequence of spheres of radius rn such that rn → 0

when n → ∞;

(iii) lim
n→∞

∫
R

dn = f ;

(iv) the sequence {∫R |dn |} is bounded.
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Thus, there is another Poisson equation to solve:

−Δb = curld;

its solution is:

b(x) = 1

4π

∫
Br

G(x, ξ)curld(ξ) dv(ξ).

When combined with the identity

curl(ϕv) = ϕcurlv + ∇ϕ× v,

an application of Stokes theorem yields:

br (x) = − 1

4π

∫
Br

d(ξ) × ∇ξ(ρ
−1(x, ξ))dv(ξ).

We now compute the limits of ψr and br for r → 0, under the assumption that

lim
r→0

∫
Br

d(x) dv(x) = f .

We find:

ψ(x) = − 1

4π
f · ∇(r−1), b(x) = − 1

4π
f × ∇(r−1), r(x) := |x − o| ,

or rather, since 2∇(r−1) = Δ∇r ,

ψ(x) = − 1

8π
Δ

(
f · ∇r

)
, b(x) = − 1

8π
Δ

(
f × ∇r

)
.

We can now write system (A.20) as follows:

Δ

(
ϕ− 1

8π
f · ∇r

)
= 0,

Δ

(
w − 1

8π
f × ∇r

)
= 0,

and arrive at the particular solution (A.21).
Finally, the displacement vector is determined by inserting (A.21) in (A.18)1. For

e2, e3 two unit vectors completing an orthonormal triplet with the direction e1 of the
applied load, we find:
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u1 = − (λ+ μ) f

8πμ(λ+ 2μ)

∂2ρ

∂x2
1

+ f

4πμρ
= f

16πG(1 − ν)

(
2(1 − 2ν)

ρ
+ 1

ρ
+ x2

1

ρ3

)
,

u2 = (λ+ μ) f

8πμ(λ+ 2μ)

∂2ρ

∂x1x2
= f x1x2

16πG(1 − ν)
,

u3 = (λ+ μ) f

8πμ(λ+ 2μ)

∂2ρ

∂x1x3
= f x1x3

16πG(1 − ν)
,

where ui := u · ei .

A.7 Computing Two Integrals by the Method of Residues

To compute the integrals I1, I2 encountered in Sect. 7.2.1, we introduce the complex-
variable function

f1(z) := 1

(a2 + z2)2(x2
1 + (x2 − z)2)2

, z ∈ C,

and we determine its poles (i.e., the points where f1 becomes singular). We find that
the solutions of equation

(a2 + z2)2(x2
1 + (x2 − z)2)2 = 0,

are:
z1,2 = ±ai, z3,4 = x2 ± i x1,

each one with algebraic multiplicity 2. It follows that f1 can be written as:

f1(z) = 1

(z − ai)2(z + ai)2(z − x2 − i x1)2(z − x2 + i x1)2 .

Let C be a closed integration path consisting of the union of interval (−R,+R)

and a circumference γ whose radius R is big enough to encompass the poles of f1(z)
having positive imaginary part (Fig. A.3). According to the residues theorem,

∮
C

f1(z)dz =
∫ +R

−R
f1(x)dx +

∫
γ

f1(z)dz = 2πi
n∑

j=1

(Res f1)(z j ),

where n is the number of poles of f1; this result is a consequence of the fact that
f1(z) = O(R−8), and hence

lim
R→∞

∫
γ

f1(z)dz = 0.

http://dx.doi.org/10.1007/978-3-319-01258-2_7
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Fig. A.3 The integration
path C

Thus,
I1 = 2πi

(
(Res f1)(ai) + (Res f1)(x2 + i x2)

)
.

The computation of residues yields:

(Res f1)(ai) = lim
z→ai

d

dz

(
(z − ai)2 f1(z)

)

= 6ax2 + i(x2
1 + x2

2 − 5a2)

4a3(a − x1 + i x2)3(a + x1 + i x2)3 ,

(Res f1)(x2 + i x2) = lim
z→x2+i x2

d

dz

(
(z − x2 − i x2)

2 f1(z)
)

= − i(a2 − 5x2
1 + 6i x1x2 + x2

2 )

4x3
1(a2 − (x1 − i x2)2)3

;

and hence,

I1 = 2π

4a3x3
1

(x1 + a)3(x2
1 + 3ax1 + a2) + (a3 + x3

1)x2
2(

(x1 + a)2 + x2
2

)3 .

Quite similarly, to compute I2 we introduce the complex-variable function

f2(z) = z2

(z − ai)2(z + ai)2(z − x2 − i x1)2(z − x2 + i x1)2 ,

having the same poles as f1(z); then,

I2 = 2πi
(
(Res f2)(ai) + (Res f2)(x2 + i x2)

)
.

Computing residues yields:
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(Res f2)(ai) = lim
z→ai

d

dz

(
(z − ai)2 f2(z)

) = i(3a2 + x2
1 + 2aix2 + x2

2 )

4a(a − x1 + i x2)3(a + x1 + i x2)3 ,

(Res f2)(x2 + i x2) = lim
z→x2+i x2

d

dz

(
(z − x2 − i x2)

2 f1(z)
)

= −i
x2

1 (x1 + a)3 + (x1 + a)(x2
1 + 5ax1 + a2)x2

2 + ax4
2

4ax3
1

(
(x1 + a)2 + x2

2

)3 ;

consequently,

I2 = π

2ax3
1

x2
1 (x1 + a)3 + (x1 + a)(x2

1 + 5ax1 + a2)x2
2 + ax2

2(
(x1 + a)2 + x2

2

)3 .

References

1. Airy GB (1863) On the strains in the interior of beams. Phil Trans R Soc Lond 153:49–80
2. Evans LC (2010) Partial differential equations. American Mathematical Society, Providence
3. Favata A (2012) On the Kelvin problem. J Elast 109:189–204
4. Gurtin ME (1972) The linear theory of elasticity. In: Flügge S (ed) Handbuch der Physik, vol

VIa/2. Springer, Berlin.
5. Love AEH (1927) A treatise on the mathematical theory of elasticity. Cambridge University

Press, Cambridge
6. Mindlin RD (1936) Note on the Galerkin and Papkovitch stress functions. Bull Am Math Soc

42:373–376
7. Turteltaub MJ, Sternberg E (1968) On concentrated loads and green’s functions in elastostatics.

Arch Ration Mech Anal 29:193–240
8. Thompson W (Lord Kelvin) (1848) Note on the integration of the equations of equilibrium of

an elastic solid. Camb Dublin Math J 3:87–89



Index

A
Airy function, 63, 152, 161, 163, 166

B
Basis

contravariant b., 43
contravariant b. vectors, 47, 49
covariant b., 43
covariant b. vectors, 47, 49
physical b., 46, 47, 49, 164

Bessel function, 98
Boundary

reduced b., 68
topological b., 68

Boundary conditions
Dirichlet-type b.c., 4, 129
Neumann-type b.c., 4

C
Cauchy’s Stress Theorem, 28
Cesàro’s formula, 23
Compatibility, 22

c. in stress terms, 38
Compatibility conditions, 22
Contact actions

concentrated, 30, 67
concentrated c.a., 27, 29, 67–70, 102, 103
diffused c.a., 26

Contact interactions
concentrated c.i., 27, 29, 152
diffused c.i., 27

Coordinates
curvilinear c., 43, 72, 82
cylindrical c., 46, 57, 58, 86, 94, 96, 97,

101, 148
orthogonal c., 44
polar c., 44, 59, 72, 153, 155, 164

spherical c., 48, 94, 98
Curl

of a tensor field, 22
of a vector field, 19

D
Dilatation modulus, 33
Dirac delta, 6, 65, 144, 162
Directional derivative, 18
Displacement, 17, 18

d. gradient, 18
plane d., 23
rigid d., 20

Distance actions, 26
inertial d. a., 26

Divergence
d. measure, 66
d. of a tensor field, 52
d. of a vector field, 52

Dyadic product, 7

E
Elasticity tensor, 30
Euler cut, 29, 58, 103

F
Free-body diagram, 29, 67, 68
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Green (cont.)
G. function, 1, 4, 6, 7, 9, 13, 79, 104, 136,
142, 143, 172
G.’s second identity, 144

H
Heaviside function, 6, 11, 162
Helmholtz’s Decomposition Theorem, 21

H. representation, 170–172

I
Internal constraints, 117

incompressibility, 117
rigidity, 120
shape preservation, 120

J
Jump operator, 8, 115

K
Kronecker’s symbol, 19

L
Lamé’s moduli, 31, 34, 162, 163
Laplace equation, 93, 96, 97
Laplacian, 31
Local invertibility, 157, 161

loss-of-invertibility locus, 168, 169

N
Navier equation, 31, 32, 35, 113, 161, 170, 171
Neuman function, 98

O
Oedometric conditions, 79

P
Poisson

P. equation, 173
P. modulus, 33, 118

Pressure bulb, 108, 109, 168, 169

R
Reciprocity Theorem, 5
Residues, 174
Ricci’s symbol, 19
Rotation tensor, 19

S
Shear modulus, 33
Sign function, 9, 12, 75, 161, 162
Signorini’s Lemma, 97
Strain, 17

infinitesimal s. tensor, 20
plane s. field, 24
s. energy, 30, 31, 34, 35, 71, 162, 163
s. nuclei, 9
s. tensor, 19

Stress, 28
active s., 120
plane s., 36
reactive, 120
s. tensor, 28
s. vector, 27
universal s. field, 39

Strong formulation, 4

V
Virtual velocity, 121

W
Weak formulation, 11, 30, 65
Well-posedness, 22
Working

contact w., 66
distance w., 66
load w., 121
of a concentrated force, 67
stress w., 66, 121

Y
Young modulus, 33
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