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FOREWORD

I am delighted to recommend the book entitled Elastic Beam Calculations Handbook for
engineering instructors, students, and engineers alike. This handbook is a very useful
addition to the arsenal of engineering education tools, to civil and mechanical engineer-
ing in particular. I believe that it fills a gap and helps students learn critical thinking in
the age of information technology. The book covers an important area of analytical
competence in the form of formulation of elastic beam problems and closed form
solutions. This will surely help students acquire the critical analytical thinking which has
sadly been not adequate in the age of Internet search for knowledge.

An engineering practitioner concerned directly with structural analysis of elastic
beam problems will find many examples of useful and neat solutions and the ratio-
nale for their validity in the standard terminology of structural engineering. The
author has brought together in a unified manner so much of the beam solutions that
until now were made available only to a few in engineering practice who, like Dr.
Jih-Jiang Chyu, contributed fruitful ideas and techniques for obtaining comprehen-
sive solutions.

W.F. Chen
Member of the U.S. National Academy of Engineering
Member of Academia Sinica in Taiwan
Honolulu, Hawaii
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PREFACE

As a comprehensive analytic treatment on elastic beam problems, with balanced
emphasis on both the theoretical and the practical, this book is a vastly expanded
version of the author’s Goldenbrook’s Little Red Book (2004) both in spirit and in style
and with the same approach I call open-mindedness. The previous book was written
primarily for students. The prevailing trend in education advocates critical thinking
and promotes continuing education, as exemplified by the requirements for Profes-
sional Engineer licensing. Therefore, this book is intended for students and their
teachers, as well as all structural engineers and applied mathematics professionals.

The present work entitled Elastic Beam Calculations Handbook is a resource book
with insights to answer in sufficient detail the pivotal questions “when,” “what,”
“how,” and “why.” Furthermore, because of the content, as well as the manner of
treatment, which uses a rigorous deductive approach (from general to special cases),
this book can effectively supplement textbooks on mechanics of solids for engineer-
ing and can enrich applied mathematics curricula through applications in engineer-
ing. In either case, it is designed to help the reader achieve his or her optimal
educational goals.

In view of the current educational curriculum and professional training, this
kind of book is needed now more than ever, especially in the context of computer
applications. In fact, because computers are popular and indispensable nowadays
(and will continue to be, of course), an engineering book that takes a rigorous and
yet user-friendly analytic approach to the endeavor of revealing the hidden physical
significance of solutions to elastic beam problems is invaluable. This is because this
approach provides guidelines for the effective planning and execution of numerical
work involved in a complicated project. Moreover, it can expedite the successful
completion of the otherwise formidable task of embarking on such a giant project.

ixJ. Ross Publishing; All Rights Reserved



Numerous important and interesting topics are included herein, each one treated
in detail, with cross-references to related topics pointed out clearly in order to
delineate interconnectedness among various topics.

The author hopes that the reader finds this handbook inspiring, interesting, and
useful. Last, but not least, any comments on any part of this book are welcome; these
comments will be acknowledged, reviewed, and incorporated in the second printing
as appropriate.
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1

1
BASIC THEORY

This book uses innovative analytic approaches that combine tactful applications of
mathematics with structural engineering, thereby helping the reader gain insight into
the physical implications of the formulae presented. This means that an effective
analytic treatment of the elastic beams will shed light on how the numerical work
can best be planned and executed with clarity and optimal results, as well as a
minimum of time, effort, and cost.

The writing philosophy of this book leads to a presentation at once both simple
and logical, so that many important and interesting problems can be solved as
corollaries of a general theorem. In this way, the reader will be able to see not only
the trees but also the forest; this “big picture” approach is intended to be both
enjoyable and inspirational.

It is not feasible to present all the important cases, and there is no need to make
an effort to do that either, because by following the general approach presented here,
the reader can easily extend the results by the principle of superposition. This is one
of the reasons why we take the approach of starting with a general problem and later
reducing it to simpler special cases. This approach is especially significant for multi-
span beams.

Both solved problems with explanatory remarks and illustrative examples are
presented throughout the book. For some problems, the actual solution process is
purposely left to the reader in order to spur curiosity as well as to develop a capacity
for exploration.

As its title implies, this book is a mathematically rigorous treatment of beam
design problems based on elastic theory. Consequently, all the usual assumptions,
principles, methods, procedures, etc. within the framework of linear elastic behavior
of materials are either explicitly cited or implicitly utilized, in addition to the new
approaches and methods developed and presented in this book.
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For the sake of effective development of the subject matter, fundamental theory
utilized in this book is delineated into two major parts: (1) universal guiding prin-
ciples and (2) subject-specific approaches.

1.1. UNIVERSAL GUIDING PRINCIPLES
First, we will discuss the theory that is used throughout the book—the universal
guiding principles. Here the key is to adhere to the utmost generality while perform-
ing mathematical derivations to the extent that is commensurable with feasibility as
well as effectiveness and clarity of presentation. In this context, there are basically
five aspects to be attended to: loads, the principle of superposition, materials and
geometric properties, the solutions, and parametric investigations of the solutions.
However, these are not individual entities separate from each other. In fact, they are
interrelated, as will be seen later.

In principle, an applied load can be any load that is well defined in one way or
another. One of the most useful and efficient ways to define a general load is by
function of a real variable in mathematics, although it is by no means necessary to
follow this approach. However, we will use the concept of mathematical function in
our development for the simple reason that it is exact, convenient, and is, therefore,
an efficient tool for achieving our goal of probing, with mathematical rigor, the
structural behavior under any conceivable loading.

The most general load is expressed by a load intensity function. The independent
variable here, depicted as the horizontal longitudinal beam axis x, indicates the
location of the load intensity. For both theoretical and practical considerations, it is
sufficient to use functions of a real variable that are piecewise continuous. We know
that we can treat a piecewise continuous function as a string of continuous functions
with a finite number of distinctive points of “jump.” Thus, we can do our integration
region by region, with one string corresponding to one region, by using a smooth
and easy process. Moreover, the vast majority of beam problems of practical impor-
tance, and even most topics of theoretical interest for that matter, can lend them-
selves to treatment by means of elementary functions, which can be integrated with
relative ease. Notable examples of such functions are polynomials and trigonometric
functions. The coefficients of these functions can be any real numbers without any
restrictions whatsoever. In other words, no matter how complicated a load case is,
we can figure out a function tailored to the needs of the particular problem at hand.
Once this is done, we are in business. That is the beauty of a general load intensity
function.

In an effort to achieve the optimal scope of applicability of the results and at the
same time to reveal the intriguing interrelationships among special cases, we will also
apply the concept of generality to entities associated with a load intensity function.

J. Ross Publishing; All Rights Reserved



Basic Theory � 3

These include, among other things, the extent of the loaded regions and the begin-
ning and the end of such regions. As a result, a fully loaded span can be considered
as a special case of a partially loaded span, and the solution to the (original) special
problem is extremely simple once the general problem is solved.

There are two basic approaches to the general load problems. One is to treat
them strictly as such from beginning to end by using integration during the course
of the solution-seeking procedure. The other is to make use of the solution results
for the problem of a concentrated force, henceforth called the generic problem for
the obvious reasons demonstrated later, and obtain the desired solution through
integrating the solution to the generic problem.

Certain important problems frequently encountered in practice can be solved
either through the general approach outlined above or by a more direct and prob-
lem-specific procedure. One such example is the case of uniform load over an ar-
bitrary area. Thus, we see that there is room for flexibility in choosing a method for
or an approach to a solution.

The principle of superposition provides a powerful and handy tool for obtaining
solutions to new problems through solutions to old ones by considering (1) different
loads in the same region for all problems at hand, (2) loads in different regions for
the old problems, or (3) a combination of the two.

Moreover, the method of integration is also an efficient application of the prin-
ciple of superposition for solving a given problem under a distributed load of any
type, including, of course, the one specified by a general load intensity function.

The modulus of elasticity and section properties of a beam are constant within
a span, but any one of them can vary from span to span. Also, span length is an
interesting and important parameter to be used for probing the behavior of the beam
in terms of reactions, bending moments, shear forces, and deflections. Other useful
and important parameters that can and will be used in the analytical investigation
include the various characteristics of the load intensity functions, the extent as well
as the end points of the loaded area, material and section properties of the beam,
etc. Any of these characteristics can be quite general and/or specific, thus yielding
a great number of topics of interest. Here again, the concept of generality is funda-
mental to developing the procedure and results for a solution.

The solutions to beam problems are obtained by various methods for different
problems and are usually mathematical expressions for reactions, bending moments,
shear forces, and deflections. These expressions contain all the relevant information
about the beam and its supports or foundation. Therefore, any change in any one of the
entities involved in a solution formula will have an impact on the solution. If we can
keep track of the effects that the variation of the chosen entity has on the resulting
solution and can ascertain with mathematical precision and rigor, then we are on our
way to the successful completion of performing an efficient parametric investigation.
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When we decide which entity in the solution formula will be the parameter u
for our study, we are treating this formula as a real-valued function f (u) of one real
variable u. Then we can perform the usual task of determining the conditions for
f(u) to be an increasing or decreasing function of u and the corresponding domain
for u; the conditions for f (u) to have maximum or minimum values, together with
the associated values of u and f (u); as well as the conditions of determining points
of inflection and the corresponding values of u and f (u). This will entail the appli-
cation of first and second derivatives of f (u) in general. The defining conditions just
mentioned often tie many other entities in the original solution formula in a very
interesting and physically meaningful way. This is where the whole undertaking of
parametric investigation pays its handsome dividend. Besides their usefulness, the
process and the end results of investigations are very interesting in their own right.

The procedure to carry out this plan is to start with the newly obtained solution,
which is a formula that explicitly expresses a reaction, deflection, or whatever the
solution is for, and focus on one entity at a time in a manner described above. Then
we consider the solution as a function of the chosen parameter in order to perform
a mathematical analysis of a real-valued function of a real variable by the standard
methods of calculus.

Throughout the book, in addition to the use of a common method to solve as
many problems as feasible, different methods are also used to solve some problems.
The point is to show the diversity of methods available while expanding the reader’s
horizon.

1.2. SUBJECT-SPECIFIC APPROACHES
Chapter 2 is preparatory in nature and outlines in detail methods and procedures
specific to a topic. One of its goals is to give the reader experience using the general
approach and procedure in preparation for tackling more advanced problems in later
chapters. Chapter 2 also includes a rich collection of deflection formulae not readily
available in other books.

The general principles usually applied for simply supported beams are those
from statics for obtaining solutions in terms of moments and shear forces. A handy
and convenient method for obtaining the deflection formulae is the method of
conjugate beams. This is not only for special load cases but also for much more
complicated and general load cases. These statements also apply for cantilevers,
which are discussed in Chapter 5.

Chapter 3 deals with two- and three-span continuous beams. The treatment of
two-span continuous beams employs a complete display of the following four cat-
egories of results for a given type of load: (1) general span lengths, materials, and
section properties; (2) equal span lengths; (3) constant materials and section prop-

J. Ross Publishing; All Rights Reserved



Basic Theory � 5

erties for all spans; and (4) constant materials and geometric characteristics through
all the spans. There are four cases under each category. For three-span continuous
beams, a different approach is taken in order to demonstrate an alternative way to
organize and present results.

For topics covered under continuous beams, the standard method of least work
based on energy considerations is used first to obtain the redundant reaction(s) for
the statically indeterminate structure. This is followed by the application of statics
to obtain the remaining reactions. The remainder is the same as solving a problem
in statics as far as member forces are concerned.

For beams on elastic foundations, solving ordinary differential equations of the
fourth order is the starting point. The general solution is then applied to various
specific problems via the given boundary conditions under the prescribed loads. This
solution is usually the deflection at an arbitrary point on the beam. However, in
some problems, bending moments are also sought. In either situation, we will begin
an analytic study by varying one parameter at a time to see its effect on the resulting
solution. This parameter is, in most cases, a factor of the independent variable of the
deflection or the bending moment function. Note that the product of this factor
(which itself typically is a rather complicated function of material characteristics of
both the beam and the underlying foundation, as well as the section modulus of the
beam) and the horizontal location of the beam section under consideration is the
independent variable of the solution function. There are many ways to reach this
given value of this chosen parameter; hence, we see the opportunity for computer-
aided study regarding these characteristics. The “multi-level matrix approach,” as
outlined below, was originally devised for analytical study and is one of the many
possible ways to tackle the project with ease and efficiency.

The “multi-level matrix approach,” which is a special term coined here for
convenience and lack of a better name, is employed extensively in Chapter 6 and to
a certain extent in other chapters for the exploration of a given solution function for
a reaction, deflection, or bending moments. First of all, this is not exactly mathemati-
cal matrix analysis; rather, it has, in essence, the spirit of the matrix and goes beyond
that by allowing us to handle the matrix concept level by level, both philosophically
and methodically, to achieve our goal.

The multi-level matrix approach starts off with the given solution. An example
would be a reaction as a function of the parameter of our choice only. This function
may be a polynomial, a fractional function, or a combination of the two. It also may
be some other function. We will call this solution function the original function for
convenience of use in the following.

The entire collection of entities in the original function consists of not only this
parameter but also many other entities. Each of these entities is related to some
others in one of many complicated ways. Furthermore, members of the whole class
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of these relationships interact with each other, displaying explicitly or implying im-
plicitly the physical significance in their own right. These members appear as indi-
vidual terms, coefficients, or functions themselves, all within the realm of the given
original function, so we begin our parametric study by focusing on one main pa-
rameter at a time. Thus, in essence, we are dealing with families of functions, and
sometimes relatively large ones. It is not surprising that we see families that encom-
pass three generations, and that is why the approach is called “multi-level.”

Each of these new functions contains several variables within the original func-
tion, which itself may be a coefficient in the original function R , and is a function
F of only one real-valued variable when the rest of the entities in this new function
F are held constant. We may choose one particular entity in F as the new parameter
to study its effects on F . The first step is to discern whether F is unconditionally
positive or negative. If that is the case, we will immediately assess its impacts on R
regarding its functional form and related aspects. If not, we will see the significance
of the sign of F from the results via precise specifications of conditions under which
F will be positive, negative, or zero. Consideration will be given to all possibilities
and each condition will be explored in its own right first, followed by the assessment
of consequences for the satisfaction of each such condition, including further prob-
ing into the mathematical results obtained thus far as well as the timely interpreta-
tion of influences on R in terms of both functional form and physical significance.
If any of these cases is not possible, we will prove it and give reasons delineating why
not. Moreover, we will state what the effects of any one of these situations are on
the function R regarding several important aspects.

Once we treat F as a subject of exploration, we can find F ′ and F ″, the first and
the second derivatives of F with respect to the chosen parameter, and use these to
determine the extreme values and stationary values of F, if any, and the associated
values of the parameter giving rise to these extreme values and stationary values of
F. We will also assess the effects of each of these conditions on the function R and
determine the corresponding physical significance.

We can take a similar approach to F using another entity as the parameter. This
is for one member of the family of functions under the original function R. We can
treat other members of the family R that are siblings of F as well as the function R
itself in a similar manner. That sums up the “multi-level matrix approach” in a
nutshell.

An alternative way to obtain solutions to problems resulting from two- and four-
span continuous beams with symmetry is shown at the end of Chapter 6. This is of
special interest both theoretically and practically. Finally, possible future extensions
of the present work and more examples that show the applications of the principle
of superposition are suggested.
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1.3. MATHEMATICAL THEOREMS
We now turn our attention to something entirely different in nature, something purely
mathematical: an important, useful lemma which will be cited frequently in Chapter 6
for solving interesting problems of both theoretical and practical significance.

Lemma
Consider a set of entities of real numbers defined by

E
e a

j
jj

j j

= − =, , , ,2 3 4 5 (1.1)

with

e = a + b (1.2)

a > 0 or a = 0 (1.2A)

b > 0 and b ≠ 0 (1.2B)

where e is not equal to zero. Then, we have the following conclusions

Ej > aEk (1.3)

where

k = j – 1 (1.4)

and

Ej = aEk = 0 for j = 2, 3, 4, 5 if e = a (1.5)

Proof
First, let us consider the most general category where the entities e and a are not
equal by looking at each of the four values of j separately, as follows.

Case 1. j = 2. Formula (1.1) becomes

E
e a

e a
e a

e a a2

2 2

2 2
= − = − + > −( ) ( ) (1.6)

This is because

(e + a) > 2a (1.7)

which is the result of

e > a (1.8)
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obtained from the given premise that e and a are not equal as expressed in (1.2),
(1.2A), and (1.2B).

Note that (e – a) = E1 appears in (1.6). Thus, Expression (1.6) says the following

E2 > aE1 (1.9)

which is Formula (1.3) for j = 2.

Case 2. j = 3. Formula (1.1) becomes

E
e a

3

3 3

3
= −

(1.10)

Thus,

E aE
b

e a e a3 2
2

6
2− = 





− + [ ( )] (1.11)

However, from the given premise that e and a are unequal as expressed in (1.2),
(1.2A), and (1.2B), we have

e > a (1.12)

Therefore,

2e2 > 2ae > a(e + a) (1.13)

Substituting (1.13) into (1.11), we obtain Formula (1.3) for j = 3.

Case 3. j = 4. Formula (1.1) becomes

E
e a

4

4 4

4
= −

(1.14)

Thus,

E aE
b

e ae a e a4 3
3 2 2 3

12
3− = 





− − − [ ] (1.15)

Again, however, e and a are unequal via the given premise in (1.2), (1.2A), and
(1.2B), so we have

e3 > ae2, e3 > a2e, e3 > a3 (1.16)

Thus, from (1.15) and (1.16) we obtain Formula (1.3) for j = 4.

Case 4. j = 5. Formula (1.1) becomes

E
e a

5

5 5

5
= −

(1.17)
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Hence,

E aE
b

e e a e a ea a5 4
4 3 2 2 3 4

20
4− = 





− − − − [ ] (1.18)

Again, however, e > a because of the given premise in (1.2), (1.2A), and (1.2B),
so we have

e 4 > e3a, e 4 > e 2a2, e 4 > ea3, e 4 > a4 (1.19)

and from (1.19) we obtain

4e4 > e 3a + e2a2 + ea3 + a4 (1.20)

Thus, from (1.18) and (1.20), we obtain Formula (1.3) for j = 5.

Case 5. e = a. We have, from Formula (1.1), the result

E
a a

j
j

j j

= − = 0 (1.21)

and also

Ej = 0 and aEk = 0 (1.22)

when e = a is the case.
Therefore, the lemma is proved.
As mentioned above, the purpose of presenting this lemma in its present form

and content is for its frequent application to solve problems in Chapter 6; as such,
the domain of the subscript j in the entity Ej , tailored to suit the actual need there,
is naturally very limited.

Note that, then, from a universal point of view, the lemma specified above is
actually a special case of a more general theorem. We could have stated and proved
this general theorem first and then let the subscript j take its value required at a
particular instance of application. However, by doing so, not only is it inconvenient
and indirect for practical applications, but also we would miss the sharp contrast
between the special case and the general situation by deliberately displaying the
special case before the general one. We know that this is out of the ordinary in that
we usually stick to the practice of doing the most general case first and then reducing
it to individual special cases when solving a problem that calls for the intense treat-
ment of many intricate cases which are, in most instances, even under several major
categories.

Other reasons for doing what we are doing now are to arouse the reader’s interest
by changing the order of presentation (when that does not mean losing the charm of
seeing the whole picture when an unusual sequence of displaying things suddenly takes
place) and to leave more room for the reader to ponder other ways to achieve the same

J. Ross Publishing; All Rights Reserved
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goal. For example, the reader may want to figure out the feasibility of utilizing a different
method for proving the general theorem. In fact, in this connection, in addition to the
proof presented below, the reader might suggest that we could do a proof by the principle
of mathematical induction. However, we will soon realize that it is not necessary to
embark on such a monstrous task. Such a task is planned mainly for the subscript j to
increase without bound, which we do not really need when we compare it with the easy
and clean direct proof of the theorem given below.

General Theorem
Consider any real numbers Ej , a, e with the properties specified in Formulae (1.23–
1.26) below:

E
e a

j
j

j j

= −
(1.23)

a > 0 or a = 0 (1.24)

b > 0 or b = 0 (1.25)

e = a + b (1.26)

where e is nonzero and j is any positive integer.
We have, in general, when e and a are unequal, the result

Ej > aEk (1.27)

j = k + 1 (1.27A)

for all positive integers k without any restrictions, but only for positive integers j that
satisfy (1.27A).

Additionally, when e = a, we have

Ej = 0 = Ek (1.28)

for all positive integers j, k stipulated above.

Proof
Let us consider the general situation where e and a are unequal first. Then, from
Formulae (1.24–1.26), where e is nonzero, we have immediately

b > 0 (1.29)

which means, in conjunction with (1.26), that

e > a (1.30)
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Now consider A defined by

A = Ej – aEk (1.31)

Then, upon using (1.27A), we have

A
b

jk
k e G ja

G

a

b

jk
ke k j G

b

jk
ke G

k k

k

=






+ − 













 =







+ −

=






−

  

 

( ) [ ( ) ]

( )

(1.32)

where

G = e k–1a + ek–2a2 + … + ak (1.33)

Next

en > an (1.34)

for any positive integer n. Therefore,

ek > ek–1a

ek > ek–2a2

�
(1.35)

ek > ak

Now, adding up the left- and right-hand sides of each of the formulae respec-
tively in (1.35), we obtain

kek > G (1.36)

Therefore,

A > 0 (1.37)

This completes the proof for the general theorem.
Finally, for the special case where e = a, direct substitution of this defining

condition into (1.23) will yield the desired result immediately. Q.E.D.
In summary, this chapter, as its title implies, paves the way for the development

of topics presented in this book.

Remark Regarding the Notations
The symbol e has absolutely nothing to do with the base of natural logarithm; all
the other symbols and notations utilized in this book are defined where they first
appear in the appropriate context.
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2
SIMPLE BEAMS: AN INTRODUCTION
TO THE GENERAL APPROACH

In conformance with the general approach to the procedure for dealing with beams
of various degrees of complexity and for convenience and clarity of presentation, we
will begin with simple beams and in particular with a single concentrated force, so
that the reader can, in addition to easy access to a detailed account of certain parts
of the solution that are usually omitted from other books, get a feel for the general
approach and be well prepared for more complex topics.

2.1. A CONCENTRATED FORCE AT AN ARBITRARY POINT
ON THE SPAN
General Case
The beam with its loading is shown in Figure 2.1.

FIGURE 2.1. A concentrated force at an arbitrary point on a simple beam

R1 R2

PX

a

L

c

Z
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The reactions are

R
Pc

L
R

Pa

L
1 2= =, (2.1)

The bending moments are

M = (R1)x for 0 < x < a (2.2)

M = (R2)z for 0 < z < c (2.3)

The maximum moment is M0 = Pac/L, at x = a, the point of application of the
concentrated force.

Note that in the above, a single horizontal axis x could be used throughout.
However, for easier derivation and simpler presentation of results, especially for later
chapters, the use of two horizontal axes is warranted. Now, for the sake of consis-
tency, we will be using this approach from the onset, even though the advantage of
doing so for a simple problem like the present one is not so obvious.

In the following, we will denote the modulus of elasticity by E and the moment
of inertia of the cross section of a beam with respect to the horizontal principal axis
by I.

The deflections are

Y
EI

M
x

C
x

a
x a= −









 < <1

6
3 00

2

( )     for  (2.4)

Y
EI

M
z

D
z

c
z c= −









 < <1

6
3 00

2

( )     for  (2.5)

where

C
L c

D L C= + = −
3

, (2.6)

The maximum deflection is

max [ ]Y
EI

aM C a c= >1

3 0
2 3 ½ when  (2.7)

and is

max Y
EI

cM D c a= >1

3 0
2 3[ ] when  ½ (2.8)

The location of the maximum deflection corresponding to (2.7) is

x = (aC)½ (2.9)
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The location of the maximum deflection corresponding to (2.8) is

z = (cD)½ (2.10)

Special Case. a = c = L/2
The reactions are

R R
P

1 2
2

= = (2.11)

The bending moments are

M = (R1)x when 0 < x < a (2.12)

The maximum bending moment is

M
PL

x a
L

0
4 2

= =at   = (2.13)

The deflections are given by (2.4), with

C
L=
2

(2.14)

The maximum deflection is

max ( )Y
EI

M L= 1

12
0

2 (2.15)

or equivalently

max Y
EI

PL= 1

48
3 (2.16)

located at x = L/2.

2.2. UNIFORM LOAD
General Case
The beam with its loading is shown in Figure 2.2. The reactions are

R wb
c

b

L
1

2=
+

(2.17)

R wb
a

b

L
2

2=
+

(2.18)
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The bending moments are

M = R1x for 0 < x < a (2.19)

M R x w
x a

a x e e a b= − − < < = +( )
( )

,1

2

2
for   with  (2.20)

M = (R2)z for 0 < z < c (2.21)

with R1 and R2 given by (2.17) and (2.18) respectively.
The deflections are

Y
EI

S x R x x a= − 













 < <1 1

6
01 1

3  for  ( ) (2.22)

Y
EI

S x R x w x a a x e= − 





+ 





−








 < <1 1

6

1

24
1 1

3 4  for  ( ) ( ) (2.23)

Y
EI

S z R z z c= − 













 < <1 1

6
02 2

3 for  ( ) (2.24)

where

S C
D

L
1 = − (2.25)

S
D

L
2 = (2.26)

with

C R
e

R
c wb= + −( ) ( )1

2

2

2 3

2 2 6
(2.27)

FIGURE 2.2. Uniform load on a simple beam
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c
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and

D R
e

R c
L c wb

b a= + − −






+( ) ( ) ( )1

3

2
2

3

3

3 2

6 24
3 4 (2.28)

The maximum Y for the region a < x < e can be obtained by solving a general
third-degree algebraic equation for the purpose of investigating parametric charac-
teristics before plunging everything into the ocean of numerical data.

The maximum Y for another region is

max ( )( ) ( )( )Y
EI

S x R x x a= − 













 < <1 1

6
01 0 1 0

3 for  (2.29)

with

x
S

R
0

1

1

6=










( )

( )

½

(2.30)

Special Case 1. a = 0
The reactions are

R

wb L
b

L
1

2
=

−





(2.31)

R
wb

L
2

2

2
= (2.32)

The bending moments are

M R x
wx

x b= − < <( )1

2

2
0for  (2.33)

M = (R2)z for 0 < z < c (2.34)

The deflections are given by (2.23) for 0 < x < e with a = 0 and are given by
(2.24) for 0 < z < c , with S1 and S2 given by (2.25) and (2.26) respectively and R1

and R2 by (2.31) and (2.32) respectively.
However, here we have

C R
b

R c
wb= + −( ) ( )1

2

2
2

3

2 6
(2.35)

D R
b

R c
L c wb= + − −( ) ( )1

3

2
2

4

3

3 2

6 8
(2.36)
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Note that we can let c = 0 in the general case to obtain the same result for the
special case if we prefer to have a simpler C, D and a somewhat more involved (2.23)
which is using the independent variable x.

Special Case 2. Uniform Load on the Entire Span
The purposes of presenting this very simple case are to show its relationships to the
general case in the above, thereby enhancing the interconnectedness of problem-
solving strategies through actual examples, as well as placing this important case in
the proper context.

The reactions are

R
wL

R1 2
2

= = (2.37)

The bending moments are

M R x
wx= −( )1

2

2
(2.38)

The maximum bending moment is

max M
wL

x
L= =

2

8 2
at  (2.39)

The deflections are

Y
EI

S x R x
wx= − +











1 1

6 24
1 1

3
4

( ) ( ) (2.40)

where

S
wL

1

3

24
= (2.41)

and R1 is given by (2.37) above. Note that (2.40) is of exactly the same form as the
corresponding formula in the general case presented earlier.

The maximum deflection is

max Y
EI

wL x
L= 





=1 5

384 2
4 at  (2.42)

2.3. TRIANGULAR LOAD ON PART OF THE SPAN
General Case
The beam with its loading is shown in Figure 2.3.
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A triangular load can be represented by

p q rx q
wa

b
r

w

b
= + = − =with  , (2.43)

where w = maximum intensity of the triangular load.
The reactions are

R q b
E

L
r E

E

L
1

2
2

3= −





 + −






 (2.44)

R
L

q E r E2 2 3
1= 





+[ ( ) ( )] (2.45)

with

E
e a

E
e a

e a b2

2 2

3

3 3

2 3
= − = − = +, , (2.46)

The bending moments are

M1 = (R1)x for 0 < x < a (2.47)

M2 = (R1)x – B for a < x < e (2.48)

where

B x a
q r

x a= − + 





+








( ) ( )2

2 6
2 (2.49)

M3 = (R2)z for 0 < z < c (2.50)

The deflections are

FIGURE 2.3. Triangular load on a simple beam
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Y
EI

S x
R

x x a1 1
1 31

6
0= − 













 < <( ) for  (2.51)

Y
EI

S x
R

x q
x a

r x a
x a

a x e

2 1
1 3

4
41

6 24

4

120
= − 





+ − + − +









< <

( )
( )

( )    

             for  

(2.52)

Y
EI

S z
R

z z c3 2
2 31

6
0= − 













 < <( ) for  (2.53)

Note that Formulae (2.51) and (2.53) are the same in form as the ones for the
corresponding regions in the general case in Section 2.2, except that R1 and R2 are
given by (2.44) and (2.45) respectively and S1 and S2 are

S C
D

L
1 = − (2.54)

S
D

L
2 = (2.55)

respectively, where

C
R e R c wab

wb
b a= + + − +( )

( )1
2

2
2 2

2

2 6

4

24
(2.56)

D R
e

R c
L c

wab
a b

wb
a ab b

= + − + +

− + +

( ) ( )

( )

1

3

2
2 2

2
2 2

3

3 2

6

4 3

24

5 5

30
  

(2.57)

It is interesting to note also that Formula (2.52) in this section has some terms
which are similar to those in Formula (2.23) in Section 2.2. In fact, the first three
terms are exactly the same in form as before.

Special Case 1. a = 0
The reactions are

R wb
L b

L
1

3 2

6
= −

(2.58)

R
wb

L
2

2

3
= (2.59)
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The bending moments are

M R x x
w

b
x b2 1

3

6
0= − 





< <( ) for  (2.60)

M3 = (R2)z for 0 < z < c (2.61)

The maximum bending moments for the two regions are

max ( )( ) ( )M R x x
w

b
x b

R

w
2 1 0 0

3
0

1

6
2= − 





= 





at  

½

(2.62)

max M3 = c(R2) at z = c (2.63)

The deflections are

Y
EI

S x R
x w

b

x
x b2 1 1

3 51

6 120
0= − + 













( ) ( ) for  < <  (2.64)

Y
EI

S z R
z

z c3 2 2

31

6
0= −









( ) ( ) for  < <  (2.65)

with simplified

C wb
b c= +2 4

24
(2.66)

D R
b

R c
L c wb= + − −( ) ( )1

3

2
2

4

3

3 2

6 30
(2.67)

The maximum deflections for the two regions are

max ( )Y
EI

h S R
h w

b

h

x h x b

2 1 1
2

41

6 120

0

= − + 















= < <

 

at    for  

(2.68)

where

h f g f
R

r
g

R r S

r
2 1 1

2
16 2

9 6= − = = −
, ,

[ ( ) ( )]½
(2.69)

max ( )( ) ( )
( )

 at  

for  

Y
EI

S z R
z

z
S

R

z c

3 2 0 2
0

3

0
2

2

1

6
2

0

= −








 =











< <

½

(2.70)
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Special Case 2. c = 0
The reactions are

R
wb

L
1

2

6
= (2.71)

R w
L aL a

L
2

2 22

6
= − −

(2.72)

The bending moments are given by (2.47–2.49). Note that (2.50) is out in this
case.

The deflections are given by (2.51) and (2.52) with e = L, and with R1 and R2

given by (2.71) and (2.45) respectively and

C wb
L b= −2 2

24
(2.73)

D wb
L ab b= − −2

2 220 15 12

360
(2.74)

Note that the general Formulae (2.54) and (2.55) for S1 and S2 respectively still apply
here, but with C and D given by (2.73) and (2.74) respectively.

2.4. TRIANGULAR LOAD ON THE ENTIRE SPAN
The reactions are

R
wL

1
6

= (2.75)

R
wL

2
3

= (2.76)

The bending moments are

M R x
w

L
x= − 





( )1
3

6
(2.77)

The maximum bending moment is

max
( ) ( )

M
wL

x
L= =

2

9 3 3½ ½
at  (2.78)

The deflections are
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Y
EI

wx

L
x Lx L= 





− +1

360
3 10 74 2 4 [ ( ) ] (2.79)

where R1 and R2 are given by (2.75) and (2.76) respectively, and S1 = C – D/L, S2

= D/L as in the general case, but with

C
wL=

3

24
(2.80)

D
wL=

4

45
(2.81)

2.5. GENERAL LOAD INTENSITY FUNCTIONS
AND APPLICATIONS
Consider an arbitrary load intensity function p(x). For most practical applications,
it is sufficient to deal with elementary functions of a real variable (e.g., polynomials,
trigonometric functions). In fact, in order to use the approach presented here for
effective derivations of the formulae, p(x) can be any function that can be integrated.
The beam with a general load intensity function p(x) is depicted in Figure 2.4.

Let

A xp x dx P p x dx e a b
a

e

a

e

= = = +∫ ∫( ) , ( ) , (2.82)

The reactions are

R P
A

L
1 = − (2.83)

R
A

L
2 = (2.84)

FIGURE 2.4. General load on a simple beam
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The bending moments are

M1 = (R1)x for 0 < x < a (2.85)

M2 = (R1)x – B for a < x < e (2.86)

M3 = (R2)z for 0 < z < c (2.87)

where

B x t p t dt
a

x

= −∫ ( ) ( ) (2.88)

Let

C R xdx R x B dx R zdz
a

e ca

= + − +∫ ∫∫ ( ) [( ) ] ( )1 1 2

00

  (2.89)

D R x dx x R x B dx L x R zdz
a

a

e c

= + − + −∫ ∫ ∫( ) [( ) ] ( )( )1
2

1 2

0 0

(2.90)

Then deflections are given by (2.91–2.93), with B, C, and D specified in (2.88– 2.90)
respectively.

Y
EI

S x R x x a1 1 1
31 1

6
0= − 













 < <( ) ( ) for  (2.91)

Y
EI

S x R a
x

a
x u M u du

a x e

a

x

2 1 1
2

2

1 2
3

2

= − − − −



















< <

∫( ) ( ) ( )( )( )

for  

(2.92)

Y
EI

S z R z z c3 2 2
31 1

6
0= − 













 < <( ) ( ) for  (2.93)

Note that (2.91) and (2.93) are exactly the same as the corresponding formulae
for uniform and triangular load, over part of the span, which are special cases of the
present section. Even Formula (2.92) bears some resemblance with the correspond-
ing formulae for these load cases.

Note also that in the general case in Section 2.3 we see the same formal solution
for deflections with the C, D functions for that particular load, namely triangular
load. Similar remarks can be made about the uniformly distributed load over part
of the span.
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The general approach presented in this section is simple and efficient. The concept
of general load intensity function can be and will be developed and applied to other
beams including multi-span continuous beams to tackle classes of interesting and
important problems.

2.6. A CONCENTRATED COUPLE AT AN ARBITRARY POINT
ON THE SPAN
The beam with its loading is shown in Figure 2.5.

The reactions are

R
M

L
1

0= − (2.94)

R
M

L
2

0= (2.95)

The bending moments are

M = (R1)x for 0 < x < a (2.96)

M = (R2)z for 0 < z < c (2.97)

The maximum moment is

max M = (R1)a if a > c (2.98)

max M = (R2)c if c > a (2.99)

The deflections are

Y
EI

M
x

L
B

x
x a= 





+






< <1

6
00

2

( ) for  (2.100)

FIGURE 2.5. A concentrated couple at an arbitrary point on a simple beam
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Y
EI

M
z

L
C

z
z c= 





+






< <1

6
00

2

( ) for  (2.101)

where

B
EI L

c
a c

a

= −
+























1 1

3

3

2

3
2

(2.102)

C
L a

B= − −
2 2

2
(2.103)

The deflection at the point of application of the concentrated couple is

Y
EI

a
M

L

B a= 







−1

6
0

2

(2.104)

or

Y
EI

c
M

L

C c= 







−1

6
0

2

(2.105)

2.7. THE PRINCIPLE OF SUPERPOSITION AND
LOAD COMBINATIONS
Many important and useful load combinations are made available through the prin-
ciple of superposition. The interested reader can formulate his or her own beam
problems. This effective and simple approach will also be utilized for other types of
structures including multi-span beams.

Example
Let us consider the beam shown in Figure 2.6. This is the load combination from
the general cases in Sections 2.2 and 2.3. Here, the value of Ri in the resultant case
is the algebraic sum of Ri in parts (1) and (2) shown in the figure for i = 1, 2.

2.8. EXPLORATIONS AND OBSERVATIONS
Section 2.1. The following remarks are offered regarding Section 2.1. The first
interesting result for this simple problem is about deflections. We know that deflec-
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FIGURE 2.6. A simple beam example using the principle of superposition
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tion is proportional to applied load naturally. Formula 2.4 shows that for the general
case, deflection is also proportional to the maximum bending moment M0 in the
beam.

Next, the maximum deflection for the general case is proportional to, in addition
to the factor 1/(EI), the following three factors: (1) the maximum bending moment,
(2) a linear function of span length and location of applied load, as well as (3) the
location of the maximum deflection. In this last statement, the first factor is very easy
to see and comprehend. In fact, it is a natural extension of the general deflection
mentioned in the last sentence of the previous paragraph. However, for the rest of
the factors, it is not so obvious to see. Note also that these three factors listed above
all have a common feature, namely that they are all of the dimension “length.”

Moreover, again in the general case, the location of the maximum deflection
does not coincide with the point of application of the concentrated force, as one
might be inclined to think. It does so only when the single concentrated force is
applied at mid-span. Another interesting thing to note is that the location of the
maximum deflection depends only on span length and location of the applied load.

When a structure and applied load are given, the deflection, X = A(xB), is a
third-degree polynomial with A = M0/(EI ), whereas B is a quadratic expression that
consists of a constant and a second-degree term of the independent variable x. In
other words, the quadratic expression does not contain a pure first-degree term of
x . The amazing thing is that, as we will see later, this interesting phenomenon xB
keeps on appearing in many other problems. This is true for the cases of a third-
degree polynomial deflection function, a fourth-degree one, as well as a fifth-degree
one. In fact, we will encounter one next.

Section 2.2. Several points are noted here. For the problem of a simple beam with
a uniform load on one part of the span, deflection formulae for the loaded region
and the rest of the span possess something in common. This amazing phenomenon
is that they all have exactly the same third-degree polynomial characteristic men-
tioned in the general case, namely type xB. Of course, entity B here is the same for
all regions in this section, and it is not identical to that in the general case. However,
it is the same type that we are emphasizing. The difference between these regions for
the same beam, as far as deflection is concerned, is that for the loaded region the
deflection function is a fourth-degree polynomial in x, whereas for the rest of the
span it is a third-degree one, the type of which is just as in Section 2.1. Note the
similarity between the two sections in this regard. The additional term in the expres-
sion for deflection in the loaded region in this section signifies the “smoothing”
effects of uniform load on the shape of the deflection curve.

From the above, we note that the third-degree polynomial characteristic xB
mentioned above is significant in at least two aspects. First, it ties together loaded

J. Ross Publishing; All Rights Reserved



Simple Beams: An Introduction to the General Approach � 29

and unloaded regions of the beam in Section 2.2 in the manner just described.
Second, it connects unloaded regions for both Sections 2.1 and 2.2 in the following
way. Deflection functions for these regions all contain the fundamental ingredient,
namely the xB-type polynomial. Furthermore, even for both the case of uniform load
on the entire span and the case with only one unloaded region (for example, the case
where a = 0), deflection functions for loaded regions are of the same form, namely
a product xF of the independent variable x and a three-term third-degree polynomial
F in x . Note that the interesting thing here is that F again does not contain a first-
degree term of x either, just as mentioned before.

Section 2.3. For the problem of a simple beam with a triangular load on one part
of the span, deflection functions for unloaded regions look exactly the same, in
form, as in the previous two sections. This may be surprising to some people. As
for loaded regions, a deflection function has one more term that represents a fifth
degree in x, with the rest of the expression taking the same form as before in Section
2.2.

Consider the case of a load with the only unloaded region near the highest load
intensity and the case of an entire span being loaded; the deflection function for the
loaded region in each case is xG, the product of x and a fourth-degree polynomial
G of the independent variable x. Interestingly enough, we see that G, following suit
with B and F, does not contain a first-degree term of x either. By now, we see the
interesting trend that deflection functions for different problems may have rather
striking similarities after all.

Additionally, it is amazing to note that Formulae (2.51) and (2.53) themselves
are of the same functional form when we review deflections in unloaded regions in
the same problem.

Now let us return to the observation about bending moments for the case of a
partially loaded span just cited. It is easy to see that the maximum bending moment
in the loaded region as well as its location all depend on the reaction near the loaded
region, the highest load intensity, and the length of the loaded region.

Section 2.4. This section deals with an important special case of a triangular load
on the entire span. Concerning the deflections, the same remarks can be made as
in Section 2.3 for a loaded region. However, the location of the maximum bending
moment is a function of span length only. This is in sharp contrast to the slightly
more general case, a = 0, where the location of the maximum bending moment
depends on reactions, load characteristics, length of the loaded region, and other
geometric features. Naturally, the contrast with the most general case is even more
dramatic. Now, we get a feel for the effects of extent and location of load on the
results of the solution to a problem.
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Section 2.5. This section treats the general load intensity functions on the basis of
the principle of superposition by using integration of results obtained from the case
of a single concentrated force. The concept and approach as well as the notations
remain essentially the same as in the problem presented in Section 2.1. Results for
the special case with only one unloaded region can be obtained easily from the
general case by letting the length of one of its unloaded regions be zero. This will
simplify all formulae, especially those for deflections. For the case where the entire
span is loaded, further simplification of results can be achieved and will be left to
the reader to fill in the details.

Section 2.6. This section covers the topic of a simple beam with a concentrated
couple at an arbitrary point. Some surprising things are noted. Deflection formulae
have the form of the product of x2 and a quadratic expression in x consisting of a
constant term and x squared with a multiplier only. We note immediately that, as
was seen before for an unloaded region of the beam, the polynomial has x as a factor.
This universality property among various types of the so-called simple beams is very
interesting.

Section 2.7. This section is about the principle of superposition, which facilitates
finding many ways to obtain solutions to new problems from results of old problems.
Some examples of different types of superposition are as follows.

One example is seen very often in practical applications. It is for a situation
where the two original problems have the same given set of specified loaded regions.
Thus, two different problems with their own loads are combined together naturally
to form a new problem. The solution to the new problem is simply the algebraic sum
of the solutions to the original problems.

There may be situations where loaded regions of one original problem are dis-
joint from those of the other original problem. Then the solution to the new problem
to be obtained from superposition is simply the union of the solutions to the two
original problems. There is, of course, superposition by integration as well as by
combinations of types of superpositions mentioned above.

Naturally, there may be yet another load pattern in which the loaded region in one
problem neither coincides with that in the other problem, nor are the loaded regions
in the two given problems completely disjoint. Then, the way to deal with the situation
is simply to break down the regions if needed and do our superposition task region by
region so that we have either the first kind or the second kind in any one given region,
where first kind or second kind means coincidence of the corresponding loaded regions
in the two problems or being completely disjoint respectively.

J. Ross Publishing; All Rights Reserved



3
CONTINUOUS BEAMS

3.1. TWO-SPAN CONTINUOUS BEAMS
3.1.1. A Concentrated Force at an Arbitrary Point on the Beam
Consider a two-span continuous beam with a concentrated force at any location, as
shown in Figure 3.1. This is a statically indeterminate structure with one redundant
reaction.

We will call this problem formally the “generic problem.” The reason for it will
be obvious as we develop the solution to this problem and see its implications and
significance. Note also that we actually did make use of this idea in Chapter 2.

For convenience, we will take the exterior support reaction R of the loaded span
as the unknown to be determined from the principle of strain energy or directly from

31

FIGURE 3.1. A concentrated force at an arbitrary point on a two-span continuous
beam
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the method of least work. Following the standard procedure in that method, we have
the results as outlined below.

Noting that, from the solution to the problem, the reaction is proportional to
the applied load P. We have

R = gP, R1 = eP, R2 = fP (3.1)

where

e f g e
gL s

L

f
b gL

L
L L L b L s

+ + = = −

= − = + = +

1 2

1

0

2
0 1 2 1

, ,

, ,

(3.2)

The bending moments for the three regions of the structure are

M1 = ePx for 0 < x < L1 (3.3)

M2 = P[(gL0 – b) + (1 – g)x] for L1 < x < b (3.4)

and

M3 = gP(L0 – x) for b < x < L0 (3.5)

We can rewrite R as

R
AP

B
= − (3.6)

where

A
s

J
L b

L b
L b X L L

J

J
=







+ + − + −










2
0

1
0 1 2

2

12 3
 ( ) ( ) ( )( ) (3.7)

B
s

J
L L L b X L

L

J

c

J
=







− − + +
2

0 2 0 1
2

2

1

3

23 3
 [ ( ) ( )] ( )

( )
(3.8)

with

s + c = L2, b = L1 + s (3.9)

X
b b L L= + +2

1 1
2

3

( ) ( )
(3.10)

Moreover, J1 and J2 are the product of Young’s modulus and moment of inertia for
spans 1 and 2 respectively.

Formulae (3.6–3.10) constitute the solution to the problem of finding the reac-
tion R. With this and Formulae (3.1–3.5) we can obtain reactions R1 and R2 and the
bending moments anywhere in the structure. Also, as usual, the determination of
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shear forces after bending moments are obtained is a simple matter of application
of statics again.

Note that from Formulae (3.1) and (3.6) we have

g
A

B
= − (3.11)

It turns out that using g instead of R is expedient as long as the load P remains
constant.

Illustrative Example
Let’s explore the solutions given above. The reason that we keep both formulae in
(3.9) is simply for future reference when selecting the convenient (and also effective)
parameters for further probing of the problem.

Note that both A and B are polynomials of the third degree in b, the location
of the concentrated force with respect to the farthest exterior support for the given
geometry. As long as the span lengths are fixed, it does not matter which one of the
location designations b, c, and s shown in Figure 3.1 is selected as the parameter for
further study. Observe also that A and B can be viewed as polynomials of the third
degree in either c or s when L1, L2, J1, and J2 are given.

The next question is naturally something like this: What do Formulae (3.6–3.8)
mean? To answer this question, first we will examine what the location parameter
b can do to affect the reactions and, thus indirectly, the bending moments and shear
forces. Applying the standard techniques of calculus for a continuous function of a
real variable b, we note that we need to examine the function in (3.11).

As was mentioned above, A and B are both third-degree polynomials in b (or
c or s). Which one of these three symbols to choose is entirely up to us. Observe that
if we pick s as the variable to work with, then A is the product of s and a quadratic
polynomial in s, while B will remain as a full-fledged third-degree polynomial with
four terms. Let us do the analysis by utilizing the variable denoted by s as depicted
in Figure 3.1. We have

A = s(hs2 + js + k) (3.12)

with coefficients h, j , and k looking very appealing. One of the reasons for taking
this approach is that we are pretty comfortable with the product of the independent
variable and a simple quadratic polynomial in the same variable as opposed to a
general third-degree polynomial with four terms. So, let’s decide to stick with this
choice.

The next thing to do is to rewrite

B = ms3 + ns2 + ps + q (3.13)

where m, n, p, and q are independent of s.
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Thus, we have here a little project of investigating, mathematically, the ratio of
two polynomials of the third degree with the numerator being of Formula (3.12).
How do we go about doing this?

One way is to consider the function

F
A

B
= (3.14)

and see under what conditions we will have an increasing or decreasing function or
if we will have a maximum or minimum. If so, where? We can use our knowledge
of calculus and set up the conditions for each of these considerations first and then
write a mini-program and run it with results plotted in graphs if we so desire.

We deliberately define our function to be studied to look like what is given in
(3.14), which just happens to be the negative of g given by (3.11). Therefore, we have
to convert the results at the end by noting this. If we prefer, we could go ahead with
the function g and name all coefficients of the polynomials accordingly to take care
of the minus sign. No matter what choice we make, we are fine as long as we are
consistent and careful in keeping track of all the details.

Now, can we see other features in the solution of R? We spot immediately the
product of the moment of inertia and Young’s modulus, the span lengths. Let’s take
care of J1 and J2 first. Let

r
J

J
= 1

2
(3.15)

for convenience, and we will choose at this time, for exploration, g as a function of
r only. Thus

g
A

B

ru t

rv w
= − = +

+
(3.16)

where, t, u, v, and w are independent of J1 and J2 and thus also r. Thus, we are
investigating g directly.

This is much easier than the calculation we did when the variable was s. We have
the ratio between two linear algebraic functions. A purely analytic approach will do
the job. We see that

dg

dr
wu tv rv w= − + −( )( ) 2 (3.17)

and it is positive, negative, or zero depending on whether

N = (wu – tv) (3.18)

is positive, negative, or zero respectively.
Let us examine the packages t, u, v, and w and see what we have. We go back

to Formulae (3.6), (3.7), and (3.15), and obtain
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u sL
L= 1

2

3
(3.19)

v L
L= ( )

( )
1

2
2

3
(3.20)

which are positive because L1 and L2 are, whereas the other two packages t and w
are

t bL X b L
b L

s= + − + +





0 0

1

2
( ) (3.21)

w L L bL X s
c= − − +[ ( )]1 2 0

3

3
(3.22)

Now let’s see under what conditions N will be greater than, less than, or equal to
zero.

We note that the expression N contains three parameters: L1, L2, and the location
of the concentrated force. This location indicator can be represented by any one of
the three symbols b, c, and s, depending on convenience in operation. Of course, they
are interdependent as indicated in (3.9). Now, based on this set of information
pieces, we can set up a program to determine the effects of r while holding L1, L2,
and b constant. Note that we could use s instead of b, but do not have to.

We know when g will be an increasing function of r. Similarly, we can determine
when g will be a decreasing function if there is such a case. Finally, what can we say
about the possible extreme value of g? We look at N = 0 and its implications. This
means that we solve the equation N = 0 for a specific parameter and check the results.
We can do this easily by a simple program, which is nice. However, as it turns out,
we can take an alternative approach by putting the solution to g  into a different form,
as illustrated in the next section.

3.1.2. An Alternative Approach to the Problem of
Concentrated Force
Reference is made to Figure 3.1. Let us use as many new symbols as needed and start
afresh. R = gP is the same as before.

Recognizing the important lesson that we learned from using r above, let us be
even more ambitious now. Let’s define

m
L

L
= 1

2

(3.23)

n
J

J
= 1

2

(3.24)

J. Ross Publishing; All Rights Reserved



36 � Elastic Beam Calculations Handbook

for the reasons that we want to treat span #2 as the basis for comparison and we want
to do things differently from what we did earlier.

Once we have our minds set, we do manipulations carefully by keeping pack-
aging “airtight” and obtain the rather naive-looking result

g
ns m p

m n L
= +

+
( )

( ) 2

(3.25)

where

p
s L s

L
= −( )3

2
2

2
2

(3.26)

It is interesting to note that p is a functions of L2 and s only. The exciting thing
is that L2 shows up in the definition of m and not as an independent entity anymore.
This is a great advantage over the previous approach.

Let’s rewrite g as

g
nf s

L m n
=

+
( )

( )( )2

(3.27)

where

f (s) = s(m + p) (3.27A)

is regarded as a function of s only.
Something that is still more exciting is happening! g is in fact the product of two

factors. One of them is f (s), and the other is

Q
n

L m n
=

+( )( )2

(3.28)

which is clear of s. But what is Q ? It is the ratio of T and L2, where

T
n

m n
=

+
(3.29)

Look at this new creature T. It is the ratio of n and (m + n), and we have a very
compact and meaningful package. This not only makes our work for computer
applications much easier to do but also facilitates interpreting the results regarding
physical significance.

On top of all that, we note that the function f (s) is the product of s and a
quadratic polynomial in s, because m is independent of s while p is itself the product
of s and a linear function of s. In other words, f (s) is a very special and simple third-
degree polynomial. At this point, we can execute our program or pursue it a bit
further analytically. The procedure for the latter is similar to what we did before, at
least in principle and general directions. Either way, the total picture in front of us
is very clear now.
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For the sake of satisfying our curiosity, let us look at the special case specified
by m = 1 and n = 1. We have, after some manipulations, the result

R Ps
L c L c

L
= − +4

4

2

3

( )
(3.30)

where c = L – s, and L1 = L2 is called L here.
What happens if one of the distances a and c is zero or both are zero? Let us

look at the results for several important special cases, as follows.

Special Case 1. L1 = L2 = L
We have simplifications immediately, with

m = 1 (3.31)

and p is affected only by the fact that L2 is replaced by L in (3.26). Therefore,

g ns
p

n L
= +

+
1

1( )
(3.32)

Furthermore, if s = 0, then

g = 0 (3.33)

If s = L, then

g
n

n
=

+
2

1
(3.34)

If s = L/2, then

g

n

n
=

+

13
16

1
(3.35)

Special Case 2. J1 = J2 = J
Here

n = 1 (3.36)

p remains unchanged.
Hence,

g s
m p

m L
= +

+( )1 2

(3.37)

Furthermore, if s = 0, then
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g = 0 (3.38)

If s = L2, then

g = 1 (3.39)

If s = L2/2, then

p g
m p

m
= = +

+
5

8 2 1
,

( )
(3.40)

Special Case 3. J1 = J2 = J and L1 = L2 = L
This means that both m = 1 and n = 1. Thus

g s
p

L
= +1

2
(3.41)

where p remains unchanged, as shown in (3.26).
Furthermore, if s = 0, then

g = 0 (3.42)

If s = L, then

g = 1 (3.43)

If s = L/2, then

p = 5

8
(3.44)

g = 13

32
(3.45)

3.1.3. Generic Problem, Arbitrary Load, and the Principle
of Superposition: A Regression
Let us look at the principle of superposition by focusing on a list of some commonly
used concentrated force cases:

1. Two or more concentrated forces on the same span
2. One concentrated force on each span
3. Two or more concentrated forces on each span

Let us extend the results just obtained for a concentrated force on a span to a
few more cases of importance suggested above by the principle of superposition. In
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all cases, as far as the solution up to the level of all the reactions is concerned, this
amounts to just simple algebraic addition of the solutions from the “parent” prob-
lems. “Algebraic addition” is mentioned because we may have upward vertical loads
sometimes as well as the usual gravity loads when dealing with a horizontal beam.
Moreover, we may want to study the beam behavior of a structural member which
is not horizontally oriented and which is subjected to loads of a nature that may
reverse direction.

What do we do about bending moments and shears? We have to be careful about
the regions in which the formulae for moments, and hence shears, are valid. In other
words, we have to watch out for the limits of validity of the formulae for bending
moments and shear forces.

Speaking of the principle of superposition, we know that integration comes in
handy when we are dealing with an arbitrary loading which is represented by a nice
function. A “nice” function means that it is reasonably easy to handle. Thus, a nice
function is necessarily continuous or at least piecewise continuous for our purposes
here. Some examples are polynomials and sine and cosine functions, among many
others. The functions represented by these examples can adequately represent the
vast majority of the characteristics of the load intensity functions encountered in
practical applications. What if for some reason we need to deal with discontinuous
functions as our load intensity functions? We can break up the given function into
several piecewise continuous functions. Each piece is continuous in a specific region.
Then we can deal with the problem region by region, and in each region we have
our nice function to work with, so there is no difficulty at all.

As to the terminology “generic problem,” it simply means the following. It is a
fundamental beam problem with its load type in the form of a single concentrated
force at an arbitrary point on a span of a beam with one or more spans. We have
seen a few examples before and will see more in the future, and that is why it is
helpful to coin a term for it. The solution obtained from this generic problem forms
the basis and starting point for solving the general or more complex problems with
arbitrary load represented by a nice function as mentioned above. We will see an
example below to elaborate further.

Illustrative Example: Arbitrarily Distributed Load and Revisiting
the Problem in Section 3.1.2
By now, the reader may wonder how we proceeded to tackle the problem in Section
3.1.2 or, for that matter, having done several cases with arbitrarily distributed load
since Chapter 2, may be curious about the answer to the same question just posed.
Since our motivation is by now very strong, it appears that this is a good place and
time to probe a little further along the same line. Let’s start from the beginning.
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Suppose we have an arbitrarily distributed load (see Figure 3.2). What that
means is the following. The intensity, the extent, and the location of the loading are
rather general but specified. In other words, we can deal with not only uniformly
distributed load or linearly distributed load, but also many conceivably rather com-
plicated load intensity functions.

Let’s take a preview of the problem that we are going to solve to illustrate the
point by going back to the core of the problem. We need to handle the integration
of the function f (s)q(s), where both f (s) and q(s) are considered as functions of s
for our purpose here and now. As mentioned in Section 3.1.2, f (s) is a simple third-
degree polynomial in s. Now it is obvious that if we want to do the integration, we
need q(s) to be nice. Everything else in the expression g consists of factors indepen-
dent of s and hence is merely a multiplier of the integration just indicated.

We now proceed to deal with the case of an arbitrary load on one span of a two-
span continuous beam, given the load intensity function q(s) of the arbitrary load.
We look at the solution for a single concentrated force on a span (Section 3.1.2): R
= gP. Now g as given by (3.27) in Section 3.1.2 is the product of T/L2 and f (s). Thus,
for the present case, the integration to be carried over gq(s) is in effect carried over
f (s)q(s) with a multiplier T/L2 as forecast above.

We can see that the uniform load case is the case of q(s) = w, a constant. A
triangular-shaped load intensity q(s) is a linear function of s with a nonzero slope,
with q(s) = 0 at a special point of the region of the load. Also, q(s) equals a prescribed
value at the end(s) of the region of the load. If someone can give us a nice q(s), then
we can provide an analytic solution in a few minutes. It is as simple as that once we
have the solution to the “generic problem.” But, of course, if we were to use a
different form of the solution to the problem in Section 3.1.2, we might not be so
lucky as to have an easy problem in this section. We realize the importance of doing

FIGURE 3.2. An arbitrarily distributed load on one span of a two-span continuous
beam
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mathematical operations efficiently. We also feel strongly that an effective innovative
analytic treatment can really enhance our computer work substantially. To be sure,
the amount of work is reduced and relevant parameters are revealed, with their
significance easily assessed, clearly organized and displayed, ready for our use.

3.1.4. Uniform Load on One Span: General Case
The beam with its loading is shown in Figure 3.3. From the arbitrary load conditions,
we can obtain the results for a uniform load over part of a span by setting q(s) =
w, a constant, as follows

R

L L
A
J

B
J

D
= −

+1 2
1 2

3

(3.46)

where

A wb c
b

L= + 





−








2

2 (3.47)

B wb

L b c
c b

L b c

b c
b

=
−

− +
+ +

− +

− +



















2
3 3

2
2 2

2

3
2

4

3 4
24

( )
( )

( )

( )  
 
(3.48)

D L
L

J

L

J
= +





2

2 1

1

2

2

(3.49)

FIGURE 3.3. Uniform load on one span of a two-span continuous beam

R1 R

Z
a c

X
b

S

L1

J1

R2 L2

J2

w

J. Ross Publishing; All Rights Reserved



42 � Elastic Beam Calculations Handbook

The other reactions are obtained by the equations of equilibrium in statics as

R
A RL

L
1

2

1

= +
(3.50)

R wb
A FR

L
F L L2

1
1 2= − + = +with  (3.51)

Then the bending moments are obtained region by region in the usual manner.
For 0 < x < c

M = Rx (3.52)

For c < x < (b +c)

M Rx w
x c= − −( )2

2
(3.53)

For b + c < x < L2

M Rx wb x c
b= − − −



2

(3.54)

For 0 < z < L1

M = R1z (3.55)

Special cases of importance under the general category of this section are covered
as follows.

Case 1. c = 0
This means that the load starts somewhere away from the interior support of the
span but extends to the exterior support of the loaded span. Therefore, a + b = L2.

By setting c = 0 in the solution for the general uniform load problem, we have
immediately the simple results

A wb
b

L= −



2

2 (3.56)

B wb
L b

b
L b b= −

−
+

−
−









2

3 3
2
2 2 3

3 4 8
(3.57)

D remains unchanged.
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The other reactions are simplified from the corresponding expressions for the
general uniform load over part of the span and are left to the reader to work out
as exercises.

The bending moments are also simplified from the general uniform load prob-
lem as a direct result of setting c = 0.

Case 2. a = 0
This means that the loaded region starts from the interior support and ends at a
point in the loaded span. Consequently, b + c = L2.

Setting a = 0, we have the results

A
wb= −

2

2
(3.58)

B L c
wb= − +( )3
24

2

3

(3.59)

D remains unchanged.
The bending moments are obtained by setting a = 0 in the corresponding ex-

pressions in the general uniform load case above.

Case 3. a = c = 0
This is the case where the entire span with length L2 is uniformly loaded. The results
can be obtained from combining cases 1 and 2 and noting b = L2:

R

wL
L

J

L

J

L

J

L

J

=

+






+






2
1

1

2

2

1

1

2

2

4 3

8

(3.60)

R1 and R2 are given by (3.50) and (3.51) respectively.
The bending moments are also further simplified compared with cases 1 and 2

above. For 0 < x < L2

M Rx
wx= −

2

2
(3.61)

For 0 < z < L1

M = R1z (3.62)
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3.1.5. Uniform Load on One Span: Special Case with
Equal Span Lengths
Reference is made to Figure 3.3, with the special provision that L1 = L2 = L. In other
words, the material and section properties are still quite general in that J1 and J2 are
different.

The results are

R

L A
J

B
J

D
=

− +
2

1 2

3

(3.63)

where

A wb c
b

L= + −



2

(3.64)

B

L b c
c b

L b c

b c
b

wb=
− − + + + − +

− +



















3 3 2 2

2

3
2

4

3 4
24

( )
( )

( )

( ) 

(3.65)

D L
J J

= +






3

1 2

1 1
(3.66)

R
A RL

L
1 = +

(3.67)

R wb
A LR

L
2

2= − +
(3.68)

The bending moments remain unchanged from those in Section 3.1.4, but with
R and R1 given by results from this section.

Special cases of importance under the general category of this section are covered
as follows.

Case 1. c = 0

B wb
L b

b
L b b= − − + − −











3 2 2 3

3 4 8
(3.69)

A and D remain unchanged from case 1 in Section 3.1.4.

J. Ross Publishing; All Rights Reserved



Continuous Beams � 45

R

L A
J

B
J

D
= −

+
2

1 2

3

(3.70)

R1 and R2 are given by (3.67) and (3.68) respectively, with R given by (3.70).

Case 2. a = 0

A
wb= −

2

2
(3.71)

B L c
wb= − +( )3
24

3

(3.72)

D remains unchanged. R, R1, and R2 are given by (3.63), (3.67), and (3.68)
respectively.

Case 3. a = c = 0

R wL
J J

J J

=
+

+






4 3

8
1 1

1 2

1 2

(3.73)

R1 and R2 are given by (3.67) and (3.68) respectively where

A
wL

B
wL= − = −

2 4

2 8
, (3.74)

The bending moments are also further simplified compared with cases 1 and 2
above. For 0 < x < L

M Rx
wx= −

2

2
(3.75)

For 0 < z < L

M = R1z (3.76)

3.1.6. Uniform Load on One Span: Special Case with
Constant Material and Section Properties
Reference is made to Figure 3.3 again. This time, the special provision is J1 = J2 =
J. Note that here no restrictions are imposed on the magnitude of L1 and L2. There-
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fore, the results are the same as the general case in Section 3.1.4, except that J1 and
J2 are to be replaced by J.

The interested reader can, out of curiosity, write out the explicit expressions of
the resulting solutions by following the guidelines mentioned above. To facilitate
checking the results of self-study, an example is provided below. This simple but
important example can also serve the additional purpose of arousing interest on the
part of the reader to actively engage in probing with optimal efficiency. Thus, this
brief section provides an opportunity to do so at a suitable point in our development
of topics.

For the special case where a = 0 = c, and thus b = L2, we have

R wL
L L

L L
= +

+2
1 2

1 2

4 3

8( )
(3.77)

R1 and R2 are given formally by (3.50) and (3.51) respectively in Section 3.1.4
with simplified expressions

A
wb

B
wb= − = −

2 4

2 8
, (3.78)

The formulae for bending moments remain the same as in Section 3.1.4.

3.1.7. Uniform Load on One Span: Special Case with
Constant Material and Geometric Characteristics
The results are

R
L A B

JD
= − +2 3

(3.79)

where

A wb c
b

L= + −



2

(3.80)

B

L b c
c b

L b c

b c
b

wb=
− − + + + − +

− +



















3 3 2 2

2

3
2

4

3 4
24

( )
( )

( )

( ) 

(3.81)

D
L

J
= 2 3

(3.82)
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The other reactions are given formally in Section 3.1.4, and the bending mo-
ments are the same as in Section 3.1.4.

Special cases of importance under the general category of this section are covered
as follows.

Case 1. c = 0

A wb
b

L= −



2

(3.83)

B wb
L b

b
L b b= − − + − −











3 3 2 2 3

3 4 8
(3.84)

D remains unchanged as shown in (3.82). R is given by (3.79). R1 and R2 are
given formally by (3.50) and (3.51) respectively in Section 3.1.4.

Case 2. a = 0

A
wb= −

2

2
(3.85)

B L c
wb= − +( )3
24

3

(3.86)

D remains unchanged. R is given by (3.79). R1 and R2 are given formally by
(3.50) and (3.51) respectively in Section 3.1.4.

Case 3. a = c = 0

R
wL= 7

16
(3.87)

R
wL

1
16

= −
(3.88)

R
wL

2
5

8
= (3.89)

The bending moments are the same formally as in Section 3.1.4.
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3.1.8. Triangular Load on One Span: General Case
The beam with its loading is shown in Figure 3.4. From the arbitrary load conditions,
we can obtain the results for a triangular load over part of a span by setting q(s) to
be a linear function of s, or we can derive the formulae for the solution directly.

The results are

R

L L A

J
B

J

D
= −

+1 2

1 2

3

(3.90)

where

A wb
c

b
L

=
+ −2

3
2

2

(3.91)

B

b c
L b c L b c

b c
b

wb=
+ − + − − +

− −



















( )
( ) ( )

( )

2 3
12 6

4 5
120

2
2 2

2
3 3

2

 
 
(3.92)

D L
L

J

L

J
= +





2

2 1

1

2

2

(3.93)

Note that both A and B contain only the entities w, b, c, and L2, while the expression
D contains L2 as well as the relative flexibilities L1/J1 and L2/J2 for the two spans.

The other reactions are obtained by the equations of equilibrium in statics and
are

R
A RL

L
1

2

1

= +
(3.94)

FIGURE 3.4. Triangular load on one span of a two-span continuous beam
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R
wb A RF

L
F L L2

1
1 2

2
= − + = +with  (3.95)

Then, the bending moments are obtained region by region in the usual manner
as follows. For 0 < x < c

M = Rx (3.96)

For c < x < (b + c)

M Rx w
x c

b
= − −( )3

6
(3.97)

For b + c < x < L2

M Rx wb

x c
b

= −
− +





2
3

2
(3.98)

For 0 < z < L1

M = R1z (3.99)

Special cases of importance under the general category of this section are covered
below.

Case 1. c = 0
This means that the load starts somewhere away from the interior support of the
span and extends to the exterior support of the loaded span. Therefore, a + b = L2.

By setting c = 0 in the solution for the general uniform load problem, we have
immediately the simple results

A

wb
b

L

=
−





2
3

2

2

(3.100)

B b
L b L b b

wb= − − − −








2

2 2
2
3 3 3

6 6 30
(3.101)

R is given by (3.90). D remains unchanged. The other reactions are simplified
from the corresponding expressions above for the general triangular load over part
of the span and are left to the reader to work out as exercises.

The bending moments are also simplified from the general triangular load prob-
lem as a direct result of setting c = 0.
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Case 2. a = 0
This means that the loaded region starts from the interior support and ends at a
point in the loaded span. Consequently, b + c = L2.

Setting a = 0, we have the results

A
wb= − 2

6
(3.102)

B b c
wb= − −( )4 5
120

3

(3.103)

D remains unchanged. R, R1, and R2 are given by (3.90), (3.94), and (3.95)
respectively.

The bending moments are obtained by setting a = 0 in the corresponding ex-
pressions in the general triangular load case above.

Case 3. a = c = 0
This is the case where the entire span with length L2 is under triangular load. The
results can be obtained from combining cases 1 and 2 and noting b = L2:

R

wL
L

J

L
J

L

J

L

J

=
+







+






2
1

1

2

2

1

1

2

2

5 3

30

(3.104)

R1 and R2 are given by (3.94) and (3.95) respectively with

A
wL

B
wL

= − = −2
2

2
4

6 30
, (3.105)

The bending moments are as follows. For 0 < x < L2

M Rx
wx

L
= −

3

26
(3.106)

For 0 < z < L1

M = R1z (3.107)

3.1.9. Triangular Load on One Span: Special Case with
Equal Span Lengths
Reference is made to Figure 3.4 with the special provision of L1 = L2 = L.
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R

L A
J

B
J

D
= −

+
2

1 2

3

(3.108)

where

A wb
c

b
L

=
+ −2

3
2

(3.109)

B

b c
L b c L b c

b c
b

wb=
+ − + − − +

− −



















( )
( ) ( )

( )

2 3
12 6

4 5
120

2 2 3 3

2

 

(3.110)

D L
J J

= +






3

1 2

1 1
(3.111)

The other reactions are obtained by the equations of equilibrium in statics and
are

R
A RL

L
1 = +

(3.112)

R
wb A RL

L
2

2

2= − +
(3.113)

The bending moments are given by (3.96–3.99) in Section 3.1.8, with R and R1

given by (3.108) and (3.112) respectively.
Special cases of importance under the general category of this section are covered

as follows.

Case 1. c = 0

A

wb
b

L

=
−





2
3

2
(3.114)

B b
L b L b b

wb= − − − −










2 2 3 3 3

6 6 30
(3.115)

D remains unchanged and is shown in (3.111). R is formally as shown in (3.108),
with A and B given by (3.114) and (3.115) respectively.
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Case 2. a = 0

A
wb= −

2

6
(3.116)

B b c
wb= − −( )4 5
120

3

(3.117)

D remains unchanged. R, R1, and R2 are given formally in (3.108), (3.112), and
(3.113) respectively, with A and B given in (3.116) and (3.117) respectively.

Case 3. a = c = 0
This is the case where the entire span #2 (length L) is under triangular load. The
results can be obtained from combining cases 1 and 2 and noting b = L.

R wL
J J

J J

=
+

+






5 3

30
1 1

1 2

1 2

(3.118)

R1 and R2 are given formally by (3.112) and (3.113) respectively, with A and B
given by

A
wL

B
wL= − = −

2 4

6 30
, (3.119)

The bending moments are as follows. For 0 < x < L

M Rx
wx

L
= −

3

6
(3.120)

For 0 < z < L

M = R1z (3.121)

3.1.10. Triangular Load on One Span: Special Case with
Constant Material and Section Properties
Reference is made to Figure 3.4, with the special provision of J1 = J2 = J. The results
are

R
L L A B

JD
= − +1 2 3

(3.122)
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with A and B given by (3.91) and (3.92) respectively in Section 3.1.8.

D L
L

J

L

J
= +



2

2 1 2 (3.123)

Note that both A and B contain only the entities w, b, c, and L2, while the
expression D contains L2 as well as the relative flexibilities L1/J and L2/J for the two
spans.

The reactions R1 and R2 are given by (3.94) and (3.95) respectively in Section
3.1.8, with R given by (3.122).

The bending moments are given by expressions in Section 3.1.8, with R and R1

given by expressions in this section.
Special cases of importance under the general category of this section are covered

as follows.

Case 1. c = 0
The results are obtained from case 1 in Section 3.1.8 by letting J1 = J2 = J.

Case 2. a = 0
The results are the same, formally, as in case 2 in Section 3.1.8 except that R and
R1 are given by expressions in this section.

Case 3. a = c = 0

R wL
L L

L L
= +

+2
1 2

1 2

5 3

30( )
(3.124)

R1 and R2 are given formally by (3.94) and (3.95) respectively, with A and B given
by (3.105) in Section 3.1.8.

The bending moments are given formally by Formulae (3.106) and (3.107) in
Section 3.1.8.

3.1.11. Triangular Load on One Span: Special Case with
Constant Material and Geometric Characteristics
Reference is made to Figure 3.4 with the special provision of J1 = J2 = J and L1 =
L2 = L.

The results are
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R
L A B

JD
= − +2 3

(3.125)

where

A wb
c

b
L

=
+ −2

3
2

(3.126)

B

b c
L b c L b c

b c
b

wb=
+ − + − − +

− −



















( )
( ) ( )

( )

2 3
12 6

4 5
120

2 2 3 3

2

 

(3.127)

D
L

J
= 2 3

(3.128)

Note that both A and B contain only the entities w, b, c, and L, while the expression
D contains L as well as the relative flexibility L/J for the two spans.

The other reactions are obtained by the equations of equilibrium in statics and
are

R
A RL

L
1 = +

(3.129)

R
wb A RL

L
2

2

2= − +
(3.130)

Then, the bending moments are obtained region by region in the usual manner
as follows. For 0 < x < c

M = Rx (3.131)

For c < x < (b + c)

M Rx w
x c

b
= − −( )3

6
(3.132)

For b + c < x < L

M Rx wb

x c
b

= −
− +





2
3

2
(3.133)

For 0 < z < L

M = R1z (3.134)
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Special cases of importance under the general category of this section are covered
as follows.

Case 1. c = 0
This means that the load starts somewhere away from the interior support on the
span and extends to the exterior support of the loaded span. Therefore, a + b = L.

By setting c = 0 in the solution for the general problem, we have immediately
the simple results

A

wb
b

L

=
−





2
3

2
(3.135)

B b
L b L b b

wb= − − − −










2 2 3 3 3

6 6 30
(3.136)

D remains unchanged and is shown in (3.128). R is formally as shown in (3.125),
with A and B given by (3.135) and (3.136) respectively.

The other reactions are simplified from the corresponding expressions above for
the general problem with varying span lengths as well as material and section prop-
erties and are left to the reader to work out as exercises.

The bending moments are also simplified from the general problem as a direct
result of setting c = 0 in the expressions for R and R1 which enter into the expressions
for bending moments.

Case 2. a = 0
This means that the loaded region starts from the interior support and ends at an
interior point on the loaded span. Consequently, b + c = L.

Setting a = 0, we have the results

A
wb= −

2

6
(3.137)

B b c
wb= − −( )4 5
120

3

(3.138)

D remains unchanged. R, R1, and R2 are given formally in (3.125), (3.129), and
(3.130) respectively, with A and B given in (3.137) and (3.138) respectively.

The bending moments are obtained by using R and R1 just obtained in the
corresponding expressions for bending moments in the general case above in this
section.
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Case 3. a = c = 0
This is the case where the entire span #2 (length L) is under triangular load. The
results can be obtained from combining cases 1 and 2 and noting b = L

R
wL= 2

15
(3.139)

R1 and R2 are given formally by (3.129) and (3.130) respectively, with A and B
given by

A
wL

B
wL= − = −

2 4

6 30
, (3.140)

The bending moments are also further simplified compared with cases 1 and 2
above. For 0 < x < L

M Rx
wx

L
= −

3

6
(3.141)

For 0 < z < L

M = R1z (3.142)

3.1.12. A Concentrated Couple at an Arbitrary Point on a Span
As shown in Figure 3.5, the exterior end reaction R for the loaded span is taken as
the unknown in the equation resulting from the method of least work. The solution
is given by

R
AM

D
= 0 (3.143)

FIGURE 3.5. A concentrated couple at an arbitrary point on a two-span continuous
beam

R1 R

a c

M0

L1

J1

R2 L2

J2
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where

A
C L L c

J
= + −







3

3 2
1 2 2

2 2

2
(3.144)

D = L2
2(C1 + C2) (3.145)

with

C
L

J
ii

i

i

= =, ,1 2 (3.146)

Note that the definitions for D and Ci are as before in this chapter, as they should
be.

It is apparent from (3.143) and (3.144) that the effects of c on R can be seen by
looking at the function

R = k – hc2 (3.147)

where k and h are independent of c .
It is easy to see that when c = 0, R has one extreme value of

S
C L C L M

D
1

1 2 2 2 03
3 2

= +





(3.148)

Also, when c = L2, the reaction R has the other extreme value of

S
C L M

D
2

1 2 0= −
(3.149)

We observe from (3.143) that R is directly proportional to the applied load,
namely the concentrated couple.

As for the effects of C1, C2 and those of L2 and J2 separately, we can run simple
programs using a spreadsheet approach to obtain meaningful results. The interested
reader can use Formula (3.143) as a start and get involved right away.

Once again, the other reactions as well as the bending moments and shear forces
can be obtained easily from the equations of statics and are therefore left to the
interested reader to pursue.

3.2. THREE-SPAN CONTINUOUS BEAMS
3.2.1. A Concentrated Force at an Arbitrary Point on
an Exterior Span
The beam with its loading is shown in Figure 3.6. Just as with two-span continuous
beams, this load case is important for two reasons. First, it is an adequate and useful
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representation of an actual situation. Second, its solution serves the additional pur-
pose of constructing solutions for a large class of important load cases via the prin-
ciple of superposition in its broadest sense, which includes the method of integration
for obtaining solutions for arbitrarily distributed loads.

By selecting reactions R1 and R4 as the unknowns in the system of simultaneous
equations resulting from the method of least work, we have the following solutions

R Z sT KL
P

D
1 3= +( ) (3.150)

R Z sL KG
P

D
4

2
3= − +( ) (3.151)

where

Z
L L

J
= 1 2

26
(3.152)

T C C
L

= +( )2 3
3
2

3
(3.153)

K s

s
J

sC C L

=
− −

2

3
3 2 33 2

6
(3.154)

G C C
L

= +( )1 2
1
2

3
(3.155)

C
L

J
ii

i

i

= =, , ,1 2 3 (3.156)

FIGURE 3.6. A concentrated force at an arbitrary point on an exterior span of a
three-span continuous beam

R1 R4

S
P

L3

J3

R3L2

J2
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D
L L

C C C C C C= 





+ + +1 3
2

2
2

1 3 2 1 3
6

3 4 4[ ( ) ] (3.157)

The denominator D in R1 and R4 characterizes the structure in terms of material
and section properties and span lengths, or in plain language, it is a measure of the
capability of the structure, and it will appear again in other three-span continuous
beam problems. Recall that in Section 3.1, we saw a similar thing, also called D there,
which is simpler in form than the present one.

For convenience in future applications, we may rewrite R1 and R4 as

R As BK
P

D
1 = +( ) (3.158)

R Us GK
P

D
4 = −( ) (3.159)

where A, B, D, G, and U are independent of s, with

A = ZT, B = ZL3, U = –Z 2L3 (3.160)

Note that G and D are defined in (3.155) and (3.157) respectively, while K, as
defined in (3.154), is a third-degree polynomial and is a product of s and a quadratic
polynomial of s.

Let us look at some interesting and important special cases.

Case 1. Equal Span Lengths
Using L1 = L2 = L3 = L in the solutions for the general case, we obtain R1 and R4

as shown in (3.150) and (3.151) respectively, with

Z
L

J
=

2

26
(3.161)

T C C
L= +( )2 3

2

3
(3.162)

K s

s
J

sC C L

=
− −

2

3
3 23 2

6
(3.163)

G C C
L= +( )1 2

2

3
(3.164)

C
L

J
ii

i

i

= =, , ,1 2 3 (3.165)
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D L
C C C C C C= + + +4 2

2
1 3 2 1 33 4 4

36

( )
(3.166)

The other reactions are simplified accordingly also.

Case 2. J1 = J2 = J3 = J

Z
L L

J
= 1 2

6
(3.167)

T C C
L= +( )2 3

3
2

3
(3.168)

K s

s
J

sC C L
=

− −
2

3 2 33 2

6
(3.169)

Formulae (3.155) and (3.157) in the general case hold formally here. However,
Formula (3.156) becomes

C
L

J
ii

i= =, , ,1 2 3 (3.170)

The reactions R1 and R4 are as shown in (3.150) and (3.151) respectively, with
components given in (3.167–3.170) above.

Case 3. L1 = L2 = L3 = L and J1 = J2 = J3 = J
We have

Z
L

J
=

2

6
(3.171)

T
L

J
= 2

3

2

(3.172)

K s

s
J

Cs CL
=

− −
2

3 2

6
(3.173)

G
L

J

CL= =2

3

2

3

3 2
(3.174)

C
L

J
= (3.175)
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D L

L
J L C=







=15
36

15

36
4

2

4 2

(3.176)

Illustrative Example
So far in this section, we have seen two different forms of solution to the same
problem of a single concentrated force on one span. We call this problem the generic
problem also because of its capability by which we can derive or construct solutions
to other problems systematically. Each solution form has its particular features and
thus particular charms and power. Once several forms are available, we can choose
one of them for future use, depending on what we want to achieve.

Formulae (3.158) and (3.159) are of the form

R
NP

D
= (3.177)

where

N = As + BK for R1 (3.178)

N = Us – GK for R4 (3.179)

and D is given by (3.157).
We note that D contains two factors. One is (L1L3/6)2, and the other is the sum

of quadratic terms of Ci , i =1, 2, 3.
The solution to a two- or three-span continuous beam problem has basically two

parts. One part F specifies the load-related information, and the other part H has
to do with material and section properties as well as other geometric characteristics.
Hence, for the theme of this chapter, we have

R = FH (3.180)

Here H itself takes the form of a ratio of two entities, as will be seen below.
Comparing (3.177) with (3.180), we see that

PN FQ
Q

D
H= =, (3.181)

Thus,

R
FQ

D
= (3.182)

Of course, we can see directly from the onset that R = FQ/D also.
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Which one of these approaches we should take is a matter of personal preference
and convenience. We are liberal about our choice even in mathematical matters.
Naturally, it has to be within reason. After all, mathematics entails adherence to and
application of logical reasoning. There is freedom of choice, but after the choice is
made, we must stick to it all the way for consistency and correctness.

Note that F depends on the magnitude and location of load. What we do to
derive the solution to a problem with any type of distributed load is to treat F from
the generic problem as we have already seen in a few examples.

Let’s use the form of solution in (3.182). Then

R
F Q

D
1

1 1= (3.183)

R
F Q

D
4

4 4= (3.184)

where

F P s
B

A
K

B

A

L

L
1

3

2
3

3= + 













 =with (3.185)

F P s
G

U
K4 = − 













 (3.186)

Q1 = A (3.187)

Q4 = U (3.188)

with A, B, G, K, and U defined earlier.
F1 and F4 are products of s and a quadratic polynomial in s, as we observed

earlier using different notations.

3.2.2. Arbitrarily Distributed Load on an Exterior Span
The beam with its loading is shown in Figure 3.7. For convenience and consistency,
let’s continue to use the notations

R
F Q

D
1

1 1= (3.189)

R
F Q

D
4

4 4= (3.190)

where F1 and F4 depend on load, while Q1, Q4, and D are independent of load.
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F1 and F4 are obtained from integrating the effects of load intensity function q(s)
over the loaded region by the method illustrated earlier. Note that, in the process
of integration indicated above, Q1/D and Q4/D are simple factors of multiplication.

The specific expressions for component factors of the solutions are

F f s q s ds
a

e

1 1= ∫ ( ) ( ) (3.191)

F f s q s ds
a

e

4 4= ∫ ( ) ( ) (3.192)

where

f s s
KB

A
1( ) = + (3.193)

f s s
KG

U
4( ) = − (3.194)

with A, B, G, K, U, Q1, Q4, and D defined in Section 3.2.1.
Let us look at some interesting and important special cases in the class of arbi-

trary load intensity functions. The formal solutions are still given by Expressions
(3.189) and (3.190), with Q1 and Q4 given earlier in this chapter. However, the
expressions for F1 and F4 are simplified as follows.

Case 1. a = 0
Here, e = a + b = b.

FIGURE 3.7. An arbitrarily distributed load on an exterior span of a three-span
continuous beam

R1 R4

a cb
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R2 L2
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F f s q s ds
b

1 1

0

= ∫ ( ) ( ) (3.195)

F f s q s ds
b

4 4

0

= ∫ ( ) ( ) (3.196)

Case 2. c = 0
Here, a + b = L3 and e = L3.

F f s q s ds
a

e

1 1= ∫ ( ) ( ) (3.197)

F f s q s ds
a

e

4 4= ∫ ( ) ( ) (3.198)

Case 3. a = 0 and c = 0

F f s q s ds
e

1 1

0

= ∫ ( ) ( ) (3.199)

F f s q s ds
e

4 4

0

= ∫ ( ) ( ) (3.200)

Thus far in this section, we have dealt with the general situation for two catego-
ries: (1) material and section properties and (2) span lengths. Now we can consider
special cases where we have constant material and section properties, or constant
span lengths for the whole structure, or the combination of uniformity in both
categories by directly incorporating the defining properties of each of these cases in
the expressions above.

Case 4. L1 = L2 = L3 = L
Under this category for the general case where a and c are both nonzero, F1 and F4

are given formally by Formulae (3.191) and (3.192) respectively.
If a = 0, then F1 and F4 are given formally by Formulae (3.195) and (3.196)

respectively. If c = 0, then F1 and F4 are given formally by Formulae (3.197) and
(3.198) respectively. If both a = 0 and c = 0, then F1 and F4 are given formally by
Formulae (3.199) and (3.200) respectively.
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Case 5. J1 = J2 = J3 = J
This case can be treated in the same manner.

Case 6. L1 = L2 = L3 = L and J1 = J2 = J3 = J
This case can be treated in the same manner.

3.2.3. Uniform Load on an Exterior Span
The beam with its loading is depicted in Figure 3.8. The formal solutions are still
given by (3.189) and (3.190) in Section 3.2.2, with Q1, Q4, and D given by (3.187),
(3.188), and (3.157) respectively in Section 3.2.1. F1 and F4 can be obtained from
Section 3.2.2 by setting q(s) = w, a constant. However, for the sake of experiencing
diversified forms of solutions, we will use the notations introduced in Section 3.2.1.
The results are given below.

R
h E h E h E

D
1

1 2 2 3 3 4= + +
(3.201)

R
k E k E k E

D
4

1 2 2 3 3 4= + +
(3.202)

where

h Z T
C L

1
2 3

2

3
= −







(3.203)

h
C L Z

2
3 3

2
= −

(3.204)

h
ZL

J
3

3

36
= (3.205)

FIGURE 3.8. Uniform load on an exterior span of a three-span continuous beam
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k
GC L

Z L1
2 3 2

3
3

= − (3.206)

k
GC

2
3

2
= (3.207)

k
G

J
3

36
= −

(3.208)

E
e a

2

2 2

2
= −

(3.209)

E
e a

3

3 3

3
= −

(3.210)

E
e a

4

4 4

4
= −

(3.211)

D is as defined in Section 3.2.1. e is as defined in previous sections, namely e =
a + b.

A list of special cases is given below with simplified results.

Case 1. a = 0
Here, e = b.

E
b

2

2

2
= (3.212)

E
b

3

3

3
= (3.213)

E
b

4

4

4
= (3.214)

R1 and R4 are given formally by (3.201) and (3.202) respectively, with E2, E3, and
E4 given by (3.212–3.214) respectively.

Case 2. c = 0
This means that e = L3. Hence

E
L a

j
jj

j j

= − =3 2 3 4, , , (3.215)
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The formal solutions R1 and R4 are given by (3.201) and (3.202) respectively,
with simplified Ej ( j = 2, 3, 4) given by (3.215).

Case 3. a = c = 0
This means that b = L3. Hence, e = L3 and

E
L

j
jj = =3 2 3 4, , , (3.216)

The formal solutions R1 and R4 are given by (3.201) and (3.202) respectively,
with simplified Ej ( j = 2, 3, 4) given by (3.216).

We have treated the most general case of a uniform load on an exterior span.
Let us look at the special cases by following the same format of presentation as in
Section 3.2.2.

Case 4. L1 = L2 = L3 = L
For the general case under this category, the solutions R1 and R4 are given formally
by (3.201) and (3.202) respectively, with simplified h1, h2, h3, k1, k2, and k3 given
above in this section. This simplification is due to geometry and is not related to
loads. We can get the information on the location and extent of load from E2, E3,
and E4 given in cases 1, 2, or 3 above as appropriate. That is, we still have the three
major special cases regarding the location and extent of load under the category of
equal span lengths.

Case 5. J1 = J2 = J3 = J
The formal solutions R1 and R4 are again given by (3.201) and (3.202) respectively,
with simplified hj, kj ( j = 1, 2, 3) obtained as in Section 3.2.1 from setting J1 = J2

= J3 = J.
Regarding the effects of location and extent of load on the reactions, exactly the

same remarks as given in case 4 can be made here.

Case 6. L1 = L2 = L3 = L and J1 = J2 = J3 = J
The formal solutions R1 and R4 are still given by (3.201) and (3.202) respectively.
We use the appropriate expressions from Section 3.2.1 for all entities involved in hj,
kj ( j = 1, 2, 3) in this section in computing hj , kj ( j = 1, 2, 3) and use the remarks
in case 4 regarding Ej ( j = 2, 3, 4).
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For the special case when a = 0 = c, the results are as follows:

R
wL

1
60

= (3.217)

R
wL

2
10

= −
(3.218)

R
wL

3
13

20
= (3.219)

R
wL

4
13

30
= (3.220)

3.2.4. An Alternative Treatment of the Problem of
Uniform Load on an Exterior Span
Consider again the general three-span continuous beam with all hinged supports as
shown in Figure 3.8 in Section 3.2.3.

The reactions are

R
Qw

D
f E f E f E1 1 2 2 3 3 4= 





+ + [( )( ) ( )( ) ( )( )] (3.221)

R
R L R A

L

E

L
w2

4 3 1

2

2

2

= − −






( )( ) ( )
(3.222)

R w b
E

L

R L R B

L
3

2

2

1 1 4

2

= +






+ −( )( ) ( )
(3.223)

R
w

D
g E g E g E4 1 2 2 3 3 4= − 





+ + [( )( ) ( )( ) ( )( )] (3.224)

The bending moments are

M1 = (R1)x for 0 < x < L1 (3.225)

M2 = (R1)x + (R2)[x – (L1)] for L1 < x < A (3.226)

M3 = (R4)z for 0 < z < c (3.227)

M R z
w

z c c z b c4 4
2

2
= − 





− < < +( ) ( ) ( ) for  (3.228)

M R z wb z
b c

b c z L5 4 3
2

2
= − − +





+ < <( ) ( ) ( )for  (3.229)
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max     for )  at  M R c
R

w
M z c

R

w
= +





= +( ) (4
4

4
4

2
(3.230)

where

A = L1 + L2 (3.231)

B = L2 + L3 (3.232)

C
L

J
ii

i

i

= =, , ,1 2 3 (3.233)

D C C C C C C C L
L= + + + 





[ ( ) ( )( ) ( )( ) ( )( )] ( )3 4 4 4
6

2
2

1 2 2 3 3 1 1
3

2

 (3.234)

e = a + b (3.235)

G C C
L= +[( ) ( )]

( )
1 2

1
2

3
(3.236)

H Q L L L
L

J
= =( ) ( )( )

( )
3 1 2

3

26
(3.237)

Z C C
L= +









[( ) ( )]

( )
2 3

3
2

3
 (3.238)

E
e a

E
e a

E
e a

2

2 2

3

3 3

4

4 4

2 3 4
= − = − = −

, , (3.239)

f L
C

f L
C

f
L

J
1 3

2 3
2 3

3
3

3

33 2 6
= = − =( ) , ( ) ,

( )
(3.240)

g L Q G
C

g G
C

g
G

J
1 3

2 2
2

3
3

33 2 6
= 





= − =( ) , ,
( )

 (3.241)

Q L
L

J
= ( )

( )
1

2

26
(3.242)

Some special cases are displayed below.

Case 1. a = 0
The results can be simplified as follows:

R
R L R A

L
B

w

L
2

4 3 1

2

2

22
= − −( )( ) ( )

[ ] (3.222A)
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R w b
b

L

R L R b

L
3

2

2

1 1 4

22
= +









 + −( )( ) ( )

(3.223A)

Formula (3.228) remains but with b + c = L3. Formula (3.229) is out. Formula
(3.235) becomes e = b. Formulae in (3.239) become

E
b

E
b

E
b

2

2

3

3

4

4

2 3 4
= = =, , (3.239A)

The rest of the formulae in the general case remain the same.

Case 2. c = 0
The results in the general case can be simplified as follows. Formula (3.227) is out.
Formula (3.228) becomes

M R z
wz

z b4 4

2

2
0= − < <( ) for  (3.228B)

Formula (3.229) becomes

M R z wb z
b

b z L5 4 3
2

= − −





< <( ) for  (3.229B)

Formula (3.230) becomes

max M
R

w
M z

R

w
= =4

4
4

2
for    at  (3.230B)

All other formulae remain unchanged.

Case 3. L1 = L2 = L3 = L
The results in the general case can be simplified as follows. Formulae (3.225–3.228)
remain the same except here Li = L (i = 1, 2, 3), A = 2L, and b + c = L.

Formulae (3.230–3.233) become

A = 2L (3.230C)

B = 2L (3.231C)

C
L

J
ii

i

= =, , ,1 2 3 (3.232C)

D
J J J J J J J

L= + + +








3 4 4 4

362
2

1 2 2 3 3 1

6

( ) ( )( ) ( )( ) ( )( )

( )
(3.233C)
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Also, here

f
L

J
f

L

J
f

L

J
1

3

3
2

2

3
3

33 2 6
= = − =,

( )
,

( )
(3.239C)

g
J J

L

J
g L

T

J

g L
T

J

1
1 2

5

2
2

4

3

3
3

3

4 3

36 6

18

= − +








 = −

=

 
( )

, ( )
( )

,

( )
( )

(3.241C)

where

T
J J

= +1 1

1 2
(3.241C′)

The rest of the formulae remain the same as in the general case.
Let us consider the interesting situation when a = 0. Expressions for E2 and E3

reduce to b2/2 and b3/3 respectively as in case 1, with the resulting simplified for-
mulae contained therein, in addition to the simplified formulae in case 3 above.

Similarly, the important and interesting situation of c = 0 can be viewed in light
of the results of cases 2 and 3.

Case 4. J1 = J2 = J3 = J
The results in the general case can be reduced as follows. Formulae (3.221–3.238)
remain the same, while (3.240) and (3.421) become

f
L

J
f

L

J
f

L

J
1

3
3

2
3

2

3
3

3 2 6
= = − =( )

,
( )

, (3.240D)

g L L L
L L

J
g A L

L

J

g A
L

J

1 1
2

2 3
1 2

2 2 1
2 3

2

3
1

2

2

4 3

36 6

18

= − + = −

=

( ) ( )( )
( ) ( )

( )
, ( )

( )
,

( )
(3.241D)

Again, the two situations a = 0 only and c = 0 only can be dealt with in the same
manner as before.

Case 5. L1 = L2 = L3 = L and J1 = J2 = J3 = J
The results in the general case can be further simplified to the following. Formulae
(3.221–3.228) remain valid, while (3.240) and (3.241) become
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f
L

J
f

L

J
f

L

J
1

3

2

2

3
3 2 6

= = − =, , (3.240E)

g
L

J
g

L

J
g

L

J
1

5

2 2

4

2 3

3

2

7

6 3 9
= − = − =

( )
, , (3.241E)

respectively.
Once again, the important problems arising from setting a = 0, c = 0, or a =

c = 0 can be dealt with in exactly the same manner as described above in other parts
of this section.

Case 6. a = 0 and c = 0
The results can be further simplified as follows:

R
R L R A

L

B w

L
2

4 3 1

2

2

22
= − −( )( ) ( ) ( )

( )
(3.222F)

R w L
L

L

R L R B

L
3 3

3

2

1 1 4

2

1
2

= +








+ −
( )

( )

( )( ) ( )
(3.223F)

Formulae (3.227) and (3.229) are out, while Formula (3.228) becomes

M R z
wz

z L4 4

2

3
2

0= − < <( ) for  (3.228F)

with

max at  M
R

w
z

R

w
4

4
2

4

2
= =( )

(3.230F)

e = b = L3 (3.234F)

E
L

E
L

2
3

2

3
3

3

2 3
= =( ) ( )

, (3.239F)

All other formulae in the general case remain valid here.

Case 7. L1 = L2 = L3 = L and a = 0 = c
The above formulae in case 6 can be reduced even further now. The simplified results
are

R2 = [(R4) – 2(R1)] – 2wL (3.222G)

R3 = 1.5wL + (R1) – 2(R4) (3.223G)
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e = b = L (3.234G)

E
L

E
L

2

2

3

3

2 3
= =, (3.239G)

Formulae (3.228F) and (3.230F) remain unchanged and all other formulae in the
general case remain valid here. Furthermore, all the formulae in case 3 remain valid
here.

Case 8. J1 = J2 = J3 = J and a = c = 0
The results in both cases 4 and 6 apply.

Case 9. L1 = L2 = L3 = L, J1 = J2 = J3 = J, and a = c = 0
The results in both cases 5 and 6 apply. Thus, explicitly, the reactions are

R
wL

1
60

= (3.221I)

R
wL

2
10

= −
(3.222I)

R
wL

3
13

20
= (3.223I)

R
wL

4
13

30
= (3.224I)

The bending moments are given in case 6 above.

Illustrative Example for a General Three-Span Continuous Beam
with Uniform Load on an Exterior Span: General Characteristics
of the Solution
Consider the general case of a three-span continuous beam with uniformly distrib-
uted load over part of an exterior span (see Figure 3.8). This is a second-order
statically indeterminate structure. We proceed to apply the method of least work to
solve the two unknown reactions from the resulting system of equations. The ques-
tion here is: Out of the four reactions, which two will we pick as the two unknowns
in the equations? The choice will affect the degree of complexity and the extent of
manipulative operations needed to get the final answer. Recall that the entire set of
solutions is the same no matter which reactions are selected as the unknowns in the
system of equations, and we do the naming and labeling of mathematical entities
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systematically before doing anything else to them. With this, upon choosing R1 and
R4 as the two unknowns for the system of equations, we obtain R1 and R4 as shown
in Formulae (3.221) and (3.224) respectively.

The other reactions R2 and R3 are obtained from equations of equilibrium and
are expressions involving the newly obtained R1 and R4 among other things. We look
at the solutions obtained and note that the key to a comprehensive account of what
is happening in the solution set is to examine the expressions for R1 and R4 first and
see what conclusions we can draw from the investigation.

Let us look at R1 now. At first glance, we notice that it is basically a product of
two factors. Thus,

R1 = (A1)(B1) (3.243)

where

A
Qw

D
1 = (3.244)

and

B1 = [( f1)(E2) + ( f2)(E3) + ( f3)(E4)] (3.245)

Using (3.239) and (3.240), we can rewrite

B L L C
E

C
E E

J
1 3 3 3

2
3

3 4

33 2 6
= − +









( ) ( )( ) ( ) (3.246)

Of course, we can also say that R1 is a product of two factors but with the
definitions of A1 and B1 different from the above, or we can even say that R1 is a
product of three factors, with appropriate definitions of the three factors. It can be
seen clearly that there is ample freedom of choice regarding the direction and ap-
proach of exploration. It is interesting to pursue any one of these options and reach
a set of results which possess certain characteristic features of significant physical
applications. What is displayed below demonstrates one particular choice of ap-
proach for exploration. Thus, the point is the following simple statement: We can
make our own choice in any way we want as long as we are consistent and stick to
our choice throughout the course of problem solving or research.

How does R1 vary with A1 or B1? We focus on the definitions of the components
of A1 and B1 and do our analysis as follows. We now deal with A1, which is itself
a product of two factors: Q and w/D. We note that both Q and D have the same
dimension, namely length to the (–2) power. Therefore, A1 has the same dimension
as w. Also, w is harmless and appears in many places. The entity Q, from Formula
(3.242), can be rewritten as

Q L
C= ( )1

2

6
(3.247)
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We observe here that Q has nothing to do with quantities associated with the loaded
span. As we can see from (3.246), the entity B1 has nothing to do with any quantities
associated with the unloaded spans.

What about D ? Well, it has to do with all spans. For example, one of its factors
is a quadratic expression that contains material and section properties of all spans,
and let us call it N. Moreover, we spot that D appears in R4 also. As a matter of fact,
D appears in R2 and R3 as well. Thus, it is critical to get a handle on the behavior
of D before we call upon it to act together with other players and assess the effects
of all these players on R1.

We will make it our project to treat D by identifying its components with the
defining characteristics and to study the effects on D of varying one parameter while
holding the rest constant. For convenience, let’s rewrite the defining formula for D
as shown in (3.234) in the following manner

D = N [(L1)(L3)]2 (3.248)

where

N
C C C C C C C= + + +3 4 4 4

36
2

2
1 2 2 3 3 1( ) ( )( ) ( )( ) ( )( )

(3.249)

Note that D involves Li  and Ji (i = 1, 2, 3) as fundamental independent variables
after replacing Ci , which appears in N, by the definition Ci = Li/Ji (i = 1, 2, 3), as
given in (3.233).

It is clear that, among many possible ways to do things, a spreadsheet approach
will do the job.

Having completed a brief description of A1, let’s do B1. First, we rewrite R1 as

R w
Q

D
L X1 3= 




 ( ) (3.250)

where

X L C
E

C
E E

J
= − +( )( ) ( )3 3

2
3

3 4

33 2 6
(3.251)

Note that

B1 = (L3)X (3.252)

The entity X involves the location and extent of the distributed load expressed
in Ej ( j = 2, 3, 4) as well as the material and section properties and length of the
span in which the load is applied and nothing else. In other words, X has nothing
to do with the other two spans. X appears to be a function of L3, J3, and C3, when
Ej ( j = 2, 3, 4) are held as constants. However, from Formula (3.233), under this
condition, X is a function of L3 and J3, the fundamental independent variables.
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We can take care of the theme on R1 in seven steps, as follows.
Step 1. First, we notice that L3 appears in many places in (3.251) and in fact

xX is our old friend B1 (when we call L3 as x), which we met in (3.252). As before,
if we want to see the effects of varying x on R1, we can hold, in R1, all the entities
other than x as constants and consider R1 as a function of x only. The strategy now
is clear from (3.251) and (3.252) above: Holding Ej ( j = 2, 3, 4) and J3 constant, then
X is a function of x only. Thus, we have

R wx
Q

D
X1 = 



 (3.253)

Here X is a second-degree polynomial in x . However, X is not the sole expression
containing x, not even xX is, as can be seen in (3.255) below. The idea is once again
that we have to look at the whole picture. In other words, we must see both the trees
and the forest.

We rewrite

R1 = YxwX (3.254)

where

Y
Q

D

C

L nx
= = 6 2

1
2( )

(3.255)

and n is a first-degree polynomial in x, resulting from holding all other entities in
N as constants.

Therefore,

R1 = (S1)f (3.256)

where

f
X

nx
= (3.257)

We observe that f is a ratio of two quadratic polynomials in x and collects
everything that involves x, while S1 is a coefficient independent of x. Our task now
is to investigate f. Again, there are many ways to do the job, by computer alone. Of
course, we can also tackle the problem by analytic means. In fact, for the sake of
actively experiencing a much deeper insight into the subject matter, it is worthwhile
to conduct an analytic investigation as outlined below. Note that this approach has
the versatility to accommodate simple computer work at intermediate steps of the
analytical investigation to suit our particular needs and interest. Thus, we will pro-
ceed in this manner.

Now, for convenience and efficiency of operations, we will write
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X = x2(K2) + x(K1) + (K0) (3.258)

where K2, K1, and K0 are independent of x .
We write

xn = x2(d2) + x(d1) (3.259)

where d2 and d1 are independent of x .
Once again, we can proceed in many ways. One approach is to go directly to our

spreadsheets and get the answers. Another way is to use the analytical approach at
first and see what results we can get out of this investigation. We get, after keeping
our packages intact during the process,

f h
h

x
= +( )0

1 (3.260)

where h0 and h1 are independent of x.
From (3.260), it is convenient to start to use spreadsheets if we wish. Let’s go

one step further along the analytic road by noting that f is the sum of two terms.
One of them is a constant and the other is a hyperbola in x .

Looking at this in light of (3.256), we see immediately from another point of
view that R1 is made up of the sum of two ingredients. One is inversely proportional
to x, and the other is a constant when the length of the loaded span is the one and
only independent variable.

Step 2. Next, to see the effects of C2 on the reaction R1, let us call C2 as y for
convenience and look at Formula (3.254). Realizing that x, w, and X are all inde-
pendent of y, we see that y is the parameter that we want to study. Further exami-
nation reveals that we need to consider specifically y/N. Under the conditions just
stated, N is a quadratic polynomial function of y. Thus, our task boils down to
investigating a function F of the form

f
y

N y N y N
=

+ +( ) ( ) ( )2
2

1 0

(3.261)

There are many ways to tackle this problem. Let us look at one method outlined
below.

Using the standard method in calculus, let’s find the first derivative of this
function. First, we observe that all the coefficients are positive. Then we rewrite
Expression (3.261) as

f
N

g=










1

2

(3.262)

where
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g
y

h
h y y b b= = + +,  [ ( ) ( )]2

1 0 (3.263)

Now we concentrate on g as the function to be studied. We obtain

′ = −
g

b y

h

( )

( )
0

2

2
(3.264)

We see that depending on whether [(b0) – y2] is negative or positive, g is a decreasing
or increasing function of y. When g ′ = 0, the test for extreme values of g yields the
result that

y = (b0)½ (3.265)

is the only solution by noting that a negative value of y is physically not admissible.
Further test indicates that we have a maximum value of g at the critical point defined
by (3.265). Thus, we learn a great deal about the function g.

Let’s go back to f defined by (3.262) and find out how f varies as y varies through
the auxiliary variable g. In other words, we have a firm grasp of the behavior of C2

regarding how it can affect R1 analytically.
Step 3. If we want to see the effects of varying C1 on R1, we need to study the

function 1/N mainly. Furthermore, here N is a much simplified expression when we
treat it as a function of C1. Let’s call C1 as z for convenience. Thus,

N = (q1)z + (q0) (3.266)

where q1 and q0 are positive quantities which are independent of z.
Let

f
N

= 1
(3.267)

and f is the function to be examined. We observe that f is a monotone decreasing
function of z, and we can easily plot a graph or do other displays to depict the
behavior of f and consequently that of R1.

Step 4. If we want to see what C3 can do to influence R1, we can look at X/N.
Here, again it is understood that both X and N are treated as functions of C3 only.
We may call C3 by any name under this discussion, so let us call it z. The function
to be studied is

f
X

N
= (3.268)

where

X = (P1)z + (P0) (3.269)
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and

N = (Q1)z + (Q0) (3.270)

This time, we have f as a quotient of two first-degree polynomials in the inde-
pendent variable z. After a straightforward manipulation, we can reach

f
F

z D
F=

+
+1

0
0

( )
( ) (3.271)

where D0, F0, and F1 are independent of z.
We have seen this kind of function earlier. It is one of our old friends, and we

know how to take care of the packages and what the symbols F1 and F0 stand for
in terms of the given information on the structure. Thus far, we have treated Ci as
the independent variable for a specific i under consideration if we choose not to open
up the package Ci for that i . Note that Ci = Li /Ji , where i = 1, 2, 3. Thus, we can
proceed in one of two ways: either keep one of the two entities here constant while
varying the other or vary both Li and Ji . We see that Ci is actually an intermediate
variable. In practical applications, we can get results in either way, depending on the
need and objectives of the investigation.

Let’s count the fundamental independent variables in R1. We have the list: Li,
Ji (i = 1, 2, 3), w, e, and a. Note that Ej ( j = 2, 3, 4) and Ci (i = 1, 2, 3) are intermediate
variables. Let us continue the exploration.

Step 5. We look at the effects of L1, and call L1 as u for convenience. Consider
the function 1/U which will be appearing in R1.

R

C
wX
L

U
1

2
3

6

=
( )

(3.272)

where

U = [(G1)u + (G0)]u (3.273)

and G0 and G1 are entities which are independent of u.
In the expression for R1, the independent variable is u, which is contained

entirely in U. Therefore, the effects of changing u are reflected in U. We can see that
R1 is inversely proportional to U. Now, by investigating U as a function of u by the
standard method in calculus, we see that U is an increasing function of u. Also, the
coefficients G0 and G1 are positive. Of course, we may consider the function 1/U
instead of U in the above and reach the same conclusion. This shows once again the
versatility of approaches available to us for exploration.

Step 6. What about L2? When we are doing C2, we know how to handle a
function of y in the form
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y

N y N y N( ) ( )2
2

1 0+ + (3.274)

When dealing with L2 as the independent variable, we have the same kind of
function. Therefore, mathematically, the problem-solving method can be the same
for both cases.

Step 7. Regarding Ej ( j = 2, 3, 4), we can view each one as a function of two
variables, e and a, and treat it analytically or numerically from that point on. Thus,
information about how these entities Ej ( j = 2, 3, 4) change as a result of varying
one of the two independent variables (e, a) can be gathered systematically. We can
also treat the problem in the following way. Consider the effects of one parameter
at a time in order to get a feel for the whole situation represented by our old friend
X. For example, to see the effects of the independent variable e, we will hold all the
other entities constant and examine the resulting function X of the distance e. Once
again, a spreadsheet approach will be fine.

Commentary

We treated R1 in detail above. We can treat R4 in a similar manner. The lesson from
looking at the form of R1 and R4 is that they have something in common, namely
w/D. Looking at R4 = (A4)(B4), where A4 = –(w/D), B4 = [(g1)(E2) + (g2)(E3) +
(g3)(E4)], we see that A4 is simpler than A1, while B4 appears to be about the same
as B1 in complexity of form, as seen from (3.221), (3.224), (3.240), and (3.241).
However, the defining formulae for gi (i = 1, 2, 3) are more complicated than the
corresponding fi (i = 1, 2, 3) after viewing Formulae (3.240) and (3.241). The prin-
ciple is again, depending on our choice of definitions of the ingredients, that the
entities with which we are working may have different appearances or “looks.” Thus,
we can, if we want, rewrite (3.224) in a different form, but we do not have to.

3.2.5. Triangular Load on an Exterior Span
For the general problem with unequal span lengths Li as well as unequal material
and section properties Ji (i = 1, 2, 3), the three-span continuous beam under a
triangular load on an exterior span is depicted in Figure 3.9.

The triangular load is represented as

q(s) = q0 + q1s (3.275)

with

q
aw

b
0 = −

(3.276)
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q
w

b
1 = (3.277)

The formal solutions are

R Q
f E f E f E f E

D
1

1 2 2 3 3 4 4 5= + + +
(3.278)

R
g E g E g E g E

D
4

1 2 2 3 3 4 4 5= + + +
(3.279)

where

E
e a

j
jj

j j

= − =, , , ,2 3 4 5 (3.280)

f1 = q0A1 (3.281)

f2 = q0A2 + q1A1 (3.282)

f3 = q0A3 + q1A2 (3.283)

f4 = q1A3 (3.284)

g1 = q0D1 (3.285)

g2 = q1D1 + q0D2 (3.286)

g3 = q1D2 + q0D3 (3.287)

g4 = q1D3 (3.288)

with

A
C L

1
3 3

2

3
= (3.289)

FIGURE 3.9. Triangular load on an exterior span of a three-span continuous beam
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A
C L

2
3 3

2
= −

(3.290)

A
C

3
3

6
= (3.291)

D Q L
C L G

1
2

3
2 3

3
= − (3.292)

D
C G

2
3

2
= −

(3.293)

D
G

J
3

36
= (3.294)

Q
L C= 1 2

6
(3.295)

The typical special cases that we examined for other topics can be treated in
exactly the same manner as before and are therefore left to the reader as exercises
for practice.

3.2.6. A Concentrated Couple at an Arbitrary Point on
an Exterior Span
For the general problem with unequal span lengths Li as well as unequal material
and section properties Ji (i = 1, 2, 3), the three-span continuous beam under a
concentrated couple acting at an arbitrary point on an exterior span is shown in
Figure 3.10.

FIGURE 3.10. A concentrated couple at an arbitrary point on an exterior span of
a three-span continuous beam
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The unknowns of the system of equations resulting from the method of least
work are R1 and R4 as usual. The solutions to the system of equations are

R
HK FZ

D
1 = −

(3.296)

R
FN GK

D
4 = −

(3.297)

where

F
L C M= − 1 2 0

6
(3.298)

G L
C C= +

1
2 1 2

3
(3.299)

H L L
L

J
L L

C= =1 2
3

2
1 2

2

6 6
(3.300)

N = H (3.301)

K M

C L
L c

J
= −

+ −

0

3 2
3
2 2

3

2 3

6
(3.302)

Z L
C C= +

3
2 2 3

3
(3.303)

D L L
C C C C C C

=
+ + +

1
2

3
2 2

2
1 3 2 1 33 4 4

36

( )
(3.304)

C
L

J
ii

i

i

= =, , ,1 2 3 (3.305)

Note that, on the one hand, the definitions of Ci, G, H, and D, which are related
to material and geometry only, are as before for the other load cases of the three-
span continuous beams, as they should be. On the other hand, the entities F and K
are directly related to the load. It is interesting to note also that the effect of the
location of the load, namely c , has similar characteristics as in the case of a two-span
continuous beam.

For the special cases of importance and interest under the same categories as
before, we can have exactly the same simplifications in the expressions G, H, Z, D,
and Ci (i = 1, 2, 3).
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The expressions F and K will have their own simplified versions as a result of
applying the attributes of the specific case under consideration as follows. For the
special case of equal span lengths, we have

F
M L

J
= − 0

2

26
(3.306)

K
M L c

J
= − −0

2 2

3

5 3

6

( )
(3.307)

For the special case of constant material and section properties for all spans, we have

F
M L L

J
= − 0 1 2

6
(3.308)

K
M L L L c

J
=

− + −0 2 3 3
2 22 3

6

[ ( )]
(3.309)

For the special case of equal span lengths as well as constant material and section
properties throughout, we have

F
M L

J
= − 0

2

6
(3.310)

K
M L c

J
= − −0

2 25 3

6

( )
(3.311)

Moreover, for this last case, we have

R M L
L c

J D
1 0

3
2 2

2

3

36
= − −

(3.312)

R
M L L c

J D
4

0
3 2 2

2

19 12

36
= −( )

(3.313)

Looking at (3.312) and (3.313), we note that both R1 and R4 are proportional
to

V
M L

J D
= 0

3

236
(3.314)

R4 and M0 always have the same sign. However, R1 and M0 have the same sign
only if L2 – 3c2 < 0, which means L2 < 3c2. In fact, for M0 > 0, R1 may be negative,
positive, or even zero, depending on whether L2 – 3c2 > 0, L2 – 3c2 < 0, or L2 – 3c2

= 0 respectively. Some interesting special values of R1 and R4 are as follows:
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c = 0, R1 = –VL2, R4 = 19VL2 (3.315)

c = L, R1 = 2VL2, R4 = 7VL2 (3.316)

3.2.7. A Concentrated Force at an Arbitrary Point on
the Interior Span
For the general problem with unequal span lengths Li as well as unequal material
and section properties Ji (i = 1, 2, 3), the three-span continuous beam under a
concentrated force on the interior span is shown in Figure 3.11. In order to illustrate
different treatments of the solution results and raise interest on the part of the reader,
the solution to this problem will be presented in the following manner. As usual, we
take R1 and R4 as the two unknowns in the two simultaneous equations resulting
from the method of least work. We have

R1 = VC(A0 + sA1)P (3.317)

where

V s
L s

L J
= −2

2 26
(3.318)

C
L L

D
= 1 3

2

6
(3.319)

with D defined as before.

A0 = –2L2C3 (3.320)

–A1 = (3C2 + 2C3) (3.321)

FIGURE 3.11. A concentrated force at an arbitrary point on the interior span of a
three-span continuous beam
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and

R4 = VC ′(D0 + sD1)P (3.322)

where

′ =






C C
L

L
1

3

(3.323)

D0 = –L2(4C1 + 3C2) (3.324)

D1 = 2C1 + 3C2 (3.325)

with Ci defined as before:

C
L

J
ii

i

i

= =, , ,1 2 3 (3.326)

The other reactions are obtained by equations of equilibrium as follows:

R
R L R A sP

L
2

4 3 1

2

= − +
(3.327)

R
Pt

L

BR R L

L
3

2

4 1 1

2

= − −
(3.328)

where

A = L1 + L2, B = L2 + L3 (3.329)

The bending moments and shear forces can be written down easily using the
reactions obtained above and are left to the reader as exercises.

Formulae (3.317–3.321) indicate that once again R1 is of the same general form
as the corresponding solution for the case where the concentrated force is on an
exterior span. Moreover, R1 is a third-degree polynomial in s, and it is basically the
product of s and a quadratic expression in s. We have seen this same general char-
acteristic before in the case of a concentrated force on an exterior span. The same
remark can be made about R4.

Special cases of interest with simplified results are as follows.

Case 1. L1 = L2 = L3 = L

V s
L s

LJ
= −

6 2

(3.330)

C
L

D
=

3

6
(3.331)
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A0 = –LC3 (3.332)

A1 = –(3C2 + 2C3) (3.333)

C
L

J
ii

i

= −, , ,1 2 3 (3.334)

C ′ = C (3.335)

D0 = –L(4C1 + 3C2) (3.336)

D1 = 2C1 + 3C2 (3.337)

Case 2. J1 = J2 = J3 = J

V
s L s

L J
= −( )2

26
(3.338)

Formulae (3.317–3.326) are simplified mainly due to the reduced

C
L

J
i

i= (3.339)

Case 3. L1 = L2 = L3 = L and J1 = J2 = J3 = J
Formulae (3.330) in case 1 and (3.338) in case 2 are further simplified to

V s
L s

LJ
= −

6
(3.340)

Formulae (3.332), (3.333), (3.336), and (3.337) in case 1 are further simplified
because of

C
L

J
ii = =, , ,1 2 3 (3.341)

Thus,

A
L

J
0

22= −
(3.342)

A
L

J
1

5= −
(3.343)

D
L

J
0

27= −
(3.344)

D
L

J
1

5= (3.345)
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3.2.8 Uniform Load on the Interior Span
The general three-span continuous beam with unequal span lengths and unequal
material and section properties under a uniform load on the interior span is shown
in Figure 3.12. The solutions can be obtained by integration of the results in the
previous section. We have

R1 = wSL3Z1 (3.346)

R4 = wSL1Z4 (3.347)

where

S
L L

J L D
= 1 3

2 236
(3.348)

Z1 = (L2A0 + A1L2
2)E2 – (2A1L2 + A0)E3 + A1E4 (3.349)

Z4 = (L2D0 + D1L2
2)E2 – (2D1L2 + D0)E3 + D1E4 (3.350)

with A0, A1, D0, and D1 defined exactly the same as in the case of concentrated force
earlier and Ej defined in the usual standard way.

The other reactions are again obtained from the equations of equilibrium as

R

R L R A wb
b

c

L
2

4 3 1

2

2
=

− + +





(3.351)

R
wE

L

BR L R

L
3

2

2

4 1 1

2

= − −
(3.352)

Some special cases of interest are as follows.

FIGURE 3.12. Uniform load on the interior span of a three-span continuous beam
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Case 1. a = 0
Then b + c = L2 and e = b. Thus, we have simplified

E
b

j
jj

j= =, , ,2 3 4 (3.353)

and simplified Z1 and Z4 because of this.

Case 2. c = 0
This means that a + b = L2; thus e = L2. Again, only Ej are affected:

E
L a

j
jj

j i

= − =2 2 3 4, , , (3.354)

Case 3. a = 0 and c = 0
This means that the entire interior span is under uniform load. Thus, e = b = L2 and

E
L

j
jj

j

= =2 2 3 4, , , (3.355)

In the above special cases, Formulae (3.346–3.352) hold with simplified Ej for
the individual case at hand to be used in expressions Z1 and Z4.

Case 4. Equal Span Lengths
From the above discussion for the general case, we can obtain the solution for the
special case of equal span lengths by letting L1 = L2 = L3 = L in the formulae. The
formal solution remains the same as in the general case, but with simplified expres-
sions for the components. Thus, we have

R1 = wSLZ1 (3.356)

R4 = wSLZ4 (3.357)

R R R wb

b
c

L
2 4 12 2= − +

+
(3.358)

R
wE

L
R R3

2
4 12= − + (3.359)
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S
L

J D
=

36 2

(3.360)

Z1 = (LA0 + A1L2)E2 – (2A1L + A0)E3 + A1E4 (3.361)

Z4 = (LD0 + D1L2)E2 – (2D1L + D0)E3 + D1E4 (3.362)

The three important special cases where a = 0 only, c = 0 only, and both a and
c are zero are solved by incorporating the corresponding simplified Ej ( j = 2, 3, 4)
into all the formulae affected. Let us take, for example, the special case where the
entire interior span is under uniform load. Here

E
L

j
jj

j

= =, , ,2 3 4 (3.363)

Z C C
L

1 2 3

4

2
4

= − +( ) (3.364)

Z C C
L

4 1 2

4

2
4

= − +( ) (3.365)

Case 5. J1 = J2 = J3 = J
Simplified expressions S, Z1, and Z4 are as follows:

S
L L

JL D
= 1 3

236
(3.366)

Z1 and Z4 are simplified because they contain the reduced expressions for A0, A1, A2,
D0, D1, and D2 as a result of the constant product of Young’s modulus and section
modulus for the entire structure.

Case 6. L1 = L2 = L3 = L and J1 = J2 = J3 = J
Further simplification of the expressions for S, Z1, and Z4 can be obtained as follows:

S
L

JD
=

36
(3.367)

Z1 = L(A0 + A1L)E2 – (A0 + 2A1L)E3 + A1E4 (3.368)

Z4 = L(D0 + D1L)E2 – (D0 + 2D1L)E3 + D1E4 (3.369)

with the simplified

A
L

J
0

22= −
(3.370)
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FIGURE 3.13. Triangular load on the interior span of a three-span continuous beam

A
L

J
1

5= −
(3.371)

D
L

J
0

27= −
(3.372)

D
L

J
1

5= (3.373)

As usual, the special cases where a = 0 only, c = 0 only, and a = c = 0 in cases
5 and 6 can be dealt with in the same manner as before and are left to the interested
reader to pursue.

3.2.9. Triangular Load on the Interior Span
For the general problem with unequal span lengths Li as well as unequal material
and section properties Ji (i = 1, 2, 3), the three-span continuous beam under a
triangular load on the interior span is shown in Figure 3.13.

In order to illustrate the diversity of approaches to solve similar problems, let
us use the following notations. For the same entity V encountered in the case with
a concentrated force, we have

V = sV1 + s2V2 (3.374)

where

V
J

V
L J

1
2

2
2 2

1

6

1

6
= = −

, (3.375)

The load intensity function is

q = q0 + sq1 (3.376)

R1 R4

a cb
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J1

R2 L2

J2
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w

J. Ross Publishing; All Rights Reserved



92 � Elastic Beam Calculations Handbook

with

q
aw

b
q

w

b
0 1= − =, (3.377)

Then

qV = sZ1 + s2Z2 + s3Z3 (3.378)

where

Z1 = q0V1 = –aU (3.379)

Z q V q V
a

L
U2 1 1 0 2

2

1= + = +






(3.380)

Z q V
U

L
3 1 2

2

= = −
(3.381)

with

U
w

J b
=

6 2

(3.382)

Thus,

R1 = C [A0Z1E2 + (A0Z2 + A1Z1)E3 + (A0Z3 + A1Z2)E4 + (A1Z3)E5] (3.383)

R4 = C ′[D0Z1E2 + (D0Z2 + D1Z1)E3 + (D0Z3 + D1Z2)E4 + (D1Z3)E5] (3.384)

where

′ =






C C
L

L
1

3

(3.385)

and A0, A1, D0, D1, and D are as defined in Section 3.2.7; Ej ( j = 2, 3, 4, 5) is defined
in the usual way as before.

We see immediately that the expressions for R1 and R4 are very similar, because
of the approach using the generic problem, among other things.

It is interesting to note that Expression (3.378) lumps all the entities related to
load and that the solution for R1 just comes out in the wash after we perform
integration over s, the result of which is shown within the brackets in (3.383). A
similar remark can be made for R4.

The notations Z1, Z2, and Z3 in this section have nothing to do with the Z ’s in
Section 3.2.8. Of course, we could use different symbols even in different sections.

Regarding the special cases, we can handle them in the same manner as in the
previous sections. Even there, they vary somewhat from problem to problem. For
the sake of demonstrating the diversity of approaches, we can define a four-by-four
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matrix with the following four categories: (1) general span lengths and general ma-
terial and section properties (i.e., the lengths as well as the material and section
properties for the three spans are different), (2) only the span lengths for the three
spans are the same, (3) only the products or material and section properties for the
three spans are the same, and (4) the three spans all have the same length as well
as the product of material and section properties. Under each of these categories
there are four cases: (a) distances a and c are both nonzero, (b) a = 0 only, (c) c =
0 only, and (d) a = 0 and c = 0. It is left to the interested reader to fill in the details
of the layout of his or her own choice.
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4
BEAMS ON ELASTIC FOUNDATIONS

4.1. BEAMS OF INFINITE LENGTH
4.1.1. A Concentrated Force on the Beam
A concentrated force of magnitude P acts on an elastic beam on elastic foundations
of infinite length, with elastic modulus k.

The deflection is given by

Y = CG[cos by + sin bx] (4.1)

where C = P/(8b3J) is a constant and

G = exp(–bx) (4.2)

b
k

J
= 



4

¼

(4.3)

J = EIz (4.4)

with E = Young’s modulus and Iz = moment of inertia of the beam of constant cross
section with respect to the horizontal principal axis z.

We want to see the effects of varying b on the deflection. Therefore, we treat Y
as a function of b only while holding all other entities as constants. Thus, we take
the first partial derivative of Y, denoted by Y ′ purely for convenience, with respect
to b and obtain

Y ′ = –2CGx sin bx + A (4.5)

where
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A Pb G
bx bx

J
= − +−3

8
4 cos sin

(4.6)

Note that from Expressions (4.5) and (4.6) above

sin bx > 0 and cos bx > 0 (4.7)

together constitute a set of sufficient conditions for Y ′ < 0. This means that for a
fixed x  and for the values of b taken from the domain of definition satisfying (4.7),
we have Y as a decreasing function of b. By the same token, the simultaneous
satisfaction of

sin bx < 0 and cos bx < 0 (4.7A)

constitutes a set of sufficient conditions for Y ′ > 0. Remarks similar to those made
regarding Y as a decreasing function of b above can be made concerning Y as an
increasing function of b.

We observe from the expressions for Y and Y ′ that both of them contain G and
are proportional to G. Regarding Y, it is proportional to two additional factors,
namely C and f , where f stands for (sin bx + cos bx), to which we will refer frequently
below.

Now, can we say something about the sign of Y and the possibility of Y being
zero?

� Y = 0 when f = 0, which means tan bx = 1, or equivalently bx = 3π/4 + nπ.
� Y < 0 or Y > 0 when f < 0 or f > 0 respectively, which means tan bx < 0 or

bx > 0 respectively. Thus, f is an indicator regarding Y  being positive or
negative.

It is interesting to view Y from a rather unusual perspective, namely from look-
ing for an upper bound for Y regardless of the actual b, x values. Hence, consider
f as a function of b. The function f has a maximum value of 2½ when tan bx = 1.
Thus, Y has an upper bound 2½CG. Therefore, f serves not only as an indicator
mentioned above, but also as a scale for an upper bound for Y.

Let us examine the behavior of CG as a function of b only. We see that CG, as
a decreasing function of b, has an upper bound C because G < 1 except when bx
= 0, in which case G = 1. For C to be meaningful practically, b should be nonzero.
We can see that both 2½C and 2½CG can serve as upper bounds for Y, but CG is
a more precise upper bound for all nonzero x values. Of course, for x = 0, we have
CG = C.

Expression (4.5) can be rewritten as

′ = −
Y

PGN

k2
(4.8)
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where

N = (2bx + 3) sin bx + 3cos bx (4.9)

Note that from (4.8), Y ′ = 0 when G = 0 or N = 0. The former means that bx
is approaching infinity, and for finite b in usual cases of practical applications this
implies that the point of interest is at infinity where Y = 0 regardless of b, as can
be seen from the expression for Y. This leads to

tan bx
bx

= −
+

3

3 2
(4.10)

which corresponds to N = 0 mentioned above and which covers two cases:

� Y has a minimum value when cos bx > 0, with (4.10) satisfied.
� Y has a maximum value when cos bx < 0, with (4.10) holding true.

From (4.8), we see that N determines the sign of Y ′:Y ′ > 0 when N < 0 and vice
versa. Thus, from (4.9), we have Y ′ < 0 when

tan bx
bx

> −
+

3

3 2
(4.11)

which specifies the condition for a decreasing Y.
Y ′ > 0 when

tan bx
bx

< −
+

3

3 2
(4.12)

which describes the condition for an increasing Y.
Next, let us consider Expression (4.13) for the bending moment as a function

of b only:

M PG
bx bx

b
= − −sin cos

4
(4.13)

Looking at (4.13), we see that M < 0, = 0, or > 0 when g < 0, = 0, or > 0
respectively, meaning when tan bx < 0, = 0, or > 0 respectively.

We have

′ =M
PGD

4
(4.14)

where

D = (ag – f ) (4.15)

with
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a
bx

b
= + 1

2
(4.16)

f = cos bx + sin bx (4.17)

g = sin bx – cos bx (4.18)

Now

D = (a – 1) sin bx – (a + 1) cos bx (4.19)

and we see that D determines not only the sign of M ′, but also the magnitude of
M ′. Moreover, M ′ = 0 when D = 0, and this happens when (a – 1) sin bx = (a +
1) cos bx , meaning

tan
( )

bx
a

a

bx b

bx b
= +

−
= + +

+ −
1

1

1

1

2

2
(4.20)

Even if a = 1, meaning b = [x + (x2 + 4)½]/2, we have cot bx = 0, implying bx
= π/2 + nπ. Therefore, (4.20) is valid for all possible values of the entity a.

Note that the fractional function in b on the right-hand side of (4.20) is an
increasing function of b. Of course, tan bx itself also is an increasing function of the
variable b in the regions defined.

Note that M ′ > 0 when D > 0 and that M ′ < 0 when D < 0. Thus, M is an
increasing function of b when D > 0 and vice versa.

4.1.2. Uniform Load on the Beam
Here the deflection is given as

Y w
bn bn bm bm

k
= − − − −2

2

exp( ) cos exp( ) cos
(4.21)

where w is the uniform load intensity, and m and n are the beginning and end
locations of the load along the beam. Again, we take Y as a function of b only, holding
all the other entities as constants. We will use Y ′ to denote the first partial derivative
of Y with respect to b for convenience and simplicity. Thus,

′ = +
Y w

A B

k2
(4.22)

where

A = m exp(–bm) [cos bm + sin bm] (4.23)

B = n exp(–bn) [cos bn + sin bn] (4.24)

and k is treated as a constant even though k is involved in the definition of b. We
will come back to this point later.
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For now, let us note that a sufficient condition for Y ′ > 0 is the simultaneous
satisfaction of the two conditions A > 0 and B > 0. This means

cos bm + sin bm > 0 (4.25)

and

cos bn + sin bn > 0 (4.26)

at the same time. Expressions (4.25) and (4.26) can be rewritten as

tan bm > –1 (4.25A)

tan bn > –1 (4.26A)

respectively.
Similarly, a sufficient condition for Y ′ < 0 is the simultaneous satisfaction of

both A < 0 and B < 0, meaning

tan bm < –1 (4.27)

and

tan bn < –1 (4.28)

at the same time.
Of course, a sufficient condition for Y ′ = 0 is to have

A = B = 0 (4.29)

leading to

tan bm = tan bn = –1 (4.30)

The last formula may look odd, but it is a perfectly legitimate statement by
noting the following fact: tan u = tan v does not necessarily imply u = v. We know
that bm is not equal to bn, but it is perfectly alright to have (4.30) in view of the
point just made above.

It was mentioned above that we would come back to the discussion of treating
k as a constant while using b as the parameter in our study. What this really means
is that, in this context, b is a function of J only. Note that db/dJ < 0 from the
definition of b given earlier in the last section. Thus,

[Y,J ] > 0 if [Y,b] < 0 (4.31)

and conversely.
Also,

[Y,J ] < 0 if [Y,b] > 0 (4.32)

and conversely.
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Note that in the above and in the future, [Y,u] is used to denote the first partial
derivative of Y with respect to u for convenience. Also, we have been using ordinary
derivative notations all along when we mention ahead of time that we are dealing
with only one variable in that particular discourse.

Enough for the remarks so far. Let us look at things from another point of view.
If we start with b4 = k/(4J), taking J as a constant and k as a function of b, then

[Y,k] > 0 if [Y,b] > 0 (4.33)

and conversely.
Also we have

[Y,k] < 0 if [Y,b] < 0 (4.34)

and conversely.
An important special case is when m = n = mL/2. Here

Y w

bL bL

k
=

− −











1
2 2

exp cos

(4.35)

Thus,

[ , ] exp cos sinY b
w

k
L

bL bL bL= 





−











+ 





















2 2 2

 (4.36)

We see from (4.36) that [Y,b] > 0 when

cos sin
bL bL

2 2
0







+ 





> (4.37)

or

tan
bL

2
1







> − (4.37A)

Similarly, we have [Y,b] < 0 when

cos sin
bL bL

2 2
0







+ 





< (4.38)

or

tan
bL

2
1







< − (4.38A)

Naturally, we have [Y,b] = 0 when
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cos sin
bL bL

2 2
0







+ 





= (4.39)

That is, when

tan
bL

2
1







= − (4.39A)

Let us check Y ″. After some mathematical operations, we obtain

′′ =
− −











Y

wL
bL bL

k

2

2 2
exp sin

(4.40)

We evaluate sin(bL/2) at the bL/2 value that satisfies (4.39A) for bL/2 = 3π/4
+nπ to reach the result

sin
bL

2
0







> (4.41)

and note exp(–bL/2) > 0 along with w, L, and k being all positive to conclude from
(4.40) that Y ″ < 0. Therefore, Y has a maximum here. We know that there are many
values of bL/2 that satisfy (4.39A). As a result, there are just as many values of b that
yield the same maximum value of Y for a given L. The problem can be viewed from
other perspectives with individual interpretations reached. For example, we can take

bL
n

2

7

4







= +π π (4.42)

and obtain

sin
bL

2
0







< (4.43)

while still satisfying (4.39A), thereby reaching the conclusion that we have

Y ″ > 0 (4.44)

which means that Y has a minimum here.
Let us consider the possibility of Y being negative or zero. We note that exp(–bL/

2) > 1 except when b = 0, in which case exp(–bL/2) = 1. Immediately we see that when
b = 0, both exp(–bL/2) = 1 and cos(bL/2) = 1 hold. Substituting these values into the
expression for Y, we obtain Y = 0. But in actual situations, b = 0 is not likely to happen.
By observation of (4.35), we know that Y is nonnegative. Also, we can reach the same
conclusion by applying the result from Y ′ to the domain of b that is of interest to us
here.
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4.2. BEAMS OF SEMI-INFINITE LENGTH
4.2.1. A Concentrated Force and Moment Acting at
the End of the Beam
Adopting the notation G = exp(–bx), we have the deflection as

Y
G

b L
P bx FbM= 





+
2 3 0 ( cos ) (4.45)

where

F = sin bx – cos bx (4.46)

and P and M0 are the applied concentrated force and bending moment respectively.
If we ask whether Y can be zero or negative, the answer is yes. We have

Y = 0

when

P cos bx + FbM0 = 0 (4.47)

In other words, Y is zero when the ratio between M0 and P is equal to –(cos bx)/
(bF), for bF being nonzero if we want to view it that way. Here we use the ratio
M0/P and not its inverse. The reason is that we like the nice dimension of “length”
provided to us through M0/P. However, we can use P/M0 if we want to (see below).

For the case where bx = 0 and b is nonzero, meaning x = 0, (4.47) becomes

P + FbM0 = 0, with F = –1 (4.48)

This means that P and M0 are proportional to each other, with P/M0 = b.
For the trivial and impractical case where x = 0 and b = 0 simultaneously, we

have, from (4.47),

P = 0 (4.49)

Now, what can we say about Y > 0 and Y < 0? Y > 0 when

P cos bx + FbM0 > 0 (4.50)

or

P

M
bx b

0

1> −( tan ) (4.51)

if we so desire, as long as we are careful about the many kinds of behaviors of cos
bx and sin bx, at different bx values, regarding positive, negative, or zero values and
their implications when we come to do mathematical operations involving divisions
and inequality. A naive interpretation of (4.50) is to take all the entities on the left-
hand side of (4.50) as positive; then we surely automatically satisfy (4.50). When P
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and M0 are given as positive, then all it takes to do the trick is to keep both cos bx
and F positive, and this is a sufficient condition for ensuring Y > 0.

As for Y < 0, the required condition is naturally

P cos bx + bFM0 < 0 (4.52)

or

P

M
bx b

0

1< −( tan ) (4.53)

From (4.52), we see that a sufficient condition for Y < 0 is for both F and cos bx
to be negative simultaneously, given that M0 and P are both positive.

Furthermore, F is of critical importance, since first of all

F < 0 implies 1 – tan bx > 0 (4.54)

F > 0 signifies 1 – tan bx < 0 (4.55)

have far-reaching consequences as will be exemplified below. Second,

F = 0 means tan bx = 1 (4.56)

which is a very special and important case to be explored in detail below.
Regarding Y > 0, the requirement is (4.51). If F < 0, then (4.51) may be satisfied

under certain conditions. If F > 0, comparing (4.55) and (4.51), we see that (4.51)
is unconditionally satisfied as long as P/M0 > 0.

The requirement for Y < 0 is (4.53). We see that F < 0 is compatible with (4.53).
When F > 0 is the case, then (4.53) may be satisfied if P/M0 < 0.

Now let us look at the special case where F = 0. This means from (4.56) that

bx n= +π π
4

(4.57)

The consequences are threefold. First, Formulae (4.45), (4.47), (4.50), and (4.52) are
all reduced to much simpler formulae, each of which consists of only one term, with
the M0 term missing. Second, Formula (4.50) is simplified to

P > 0 (4.58)

which is free of M0. Finally, Formula (4.52) is simplified to

P < 0 (4.58A)

which is, again, independent of M0.
Now let us look at an interesting special case, namely x = 0. Here

Y
P bM

b J
= − 0

32
(4.59)

Thus,
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[ , ]Y b
bM P

Jb
= −2 3

2
0

4
(4.60)

from which we see that [Y,b] < 0 when

2bM0 – 3P < 0 (4.61)

and [Y,b] > 0 when

2bM0 – 3P > 0 (4.62)

Finally, in relation to the determination of extreme values of M, we find that
[Y,b] = 0 when

2bM0 – 3P = 0 (4.63)

That is, when

b
P

M
= 3

2 0

(4.64)

for nonzero M0.
Now we check the second derivative of Y with respect to b and find that it is

positive if M0 is positive and vice versa. Thus, for M0 > 0, the value of b that satisfies
(4.64) gives Y a minimum value, and of course, for M0 < 0 we have a negative second
derivative of Y with respect to b and hence a maximum value for Y.

Last but not least, we check Y < 0, Y > 0, and Y = 0 conditions. Y = 0 occurs
when

P = bM0 (4.65)

Y < 0 is the case when

P < bM0 (4.66)

Y > 0 holds when

P > bM0 (4.67)

It is interesting to note that b = P/M0 in (4.65), but b = 3P/(2M0) in (4.64).

4.2.2. Uniform Load on the Beam with a Simply Supported End
The reaction is

R
w

b
=

2
(4.68)

which is inversely proportional to b.
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Looking into the elements in b, we see that R is inversely proportional to the
fourth root of k and directly proportional to the fourth root of J.

The deflection is

y
w

k
bx bx= 





− −[ exp( ) cos ]1 (4.69)

This expression is of exactly the same mathematical form as in a special case,
specified by m = n = L/2, of the problem for a beam of infinite length under uniform
load. Therefore, similar conclusions are expected. Thus, we have

[ , ] [cos sin ]Y b
wGx

k
bx bx= 





+ (4.70)

from which we have [Y,b] < 0 when

cos bx + sin bx < 0 (4.71)

and [Y,b] > 0 when

cos bx + sin bx > 0 (4.72)

Finally, [Y,b] = 0 when

cos bx + sin bx = 0 (4.73)

or

tan bx = –1 (4.74)

The second derivative of Y with respect to b evaluated at the bx that satisfies (4.74)
is negative, so Y has a maximum here.

When will we have Y = 0? This happens when

exp(–bx) cos bx = 1 (4.75)

There are two cases to consider.

Case 1. x = 0
As a result of this defining condition, one possibility is cos bx = 1, exp(–bx) = 1
simultaneously. Thus, bx = 0, 2π…. The other possibility is exp(–bx) = 1/cos bx.

Case 2. x = Nonzero
We have exp(–bx) ≠ 1, exp(bx) > 1, and exp(–bx) < 1. We need cos bx > 1 to satisfy
(4.75). But this is not possible because of the property of cosine function. Therefore,
this case does not exist. In other words, this case does not have physical meaning.
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Next, when will we have Y > 0? This happens when

1 > exp(–bx) cos bx (4.76)

meaning

1

G
C C bx G bx> = = −, cos , exp( )with  (4.77)

But

G > 1 (4.78)

in general and

G = 1 (4.79)

only when bx = 0, which is excluded from (4.76). Thus, (4.76) or (4.77) is estab-
lished, meaning C < 1, as the defining condition for Y > 0.

What about Y < 0? This requires

1 < GC (4.80)

meaning

1

G
C< (4.81)

But this is not possible, for two reasons. First, we have 1/G > 1, except bx = 0, in
which case we have Y = 0 already and is, therefore, excluded from our consideration
here. Second, we know that C can never be greater than 1. Then how can C be greater
than 1/G ? Therefore, (4.80) is not satisfied, and it is not possible to have Y < 0.

4.2.3. Uniform Load on the Beam with a Fixed End
It is interesting to note that the reaction here is twice that in the case of a simply
supported end. That is,

R
w

B
= (4.82)

Naturally, it has all the characteristics described in the last section about R.
Let us look at the bending moment

M
b Jw

k
= −2 2

(4.83)

which is negative.
Since b, k, and J are related via
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b
k

J
= 



4

¼

(4.84)

we may rewrite (4.83) as

M w
J

k
= − 




½

(4.85)

Thus, we observe from (4.85) that in addition to being directly proportional to the
uniform load intensity w, the bending moment M is directly proportional to the
square root of J and inversely proportional to the square root of k .

We see also from the definition of b in terms of J, k that there are many ways
to go about varying b, depending on our goals and plans. For example, we may keep
J constant and vary k systematically, do the opposite, or even change both J and k
simultaneously in a specific manner of choice. This can be done numerically using
a computer or can be pursued further analytically to suit individual needs. This is
just an example. There are many other problems that can be approached in this way,
and the procedure outlines and methodology have been indicated previously.

Let us come back to the study of M. For keeping k as a constant, we have

M
w

b
= −

2 2
(4.86)

which is inversely proportional to the square of b. For letting k vary with b via

k = 4Jb2 (4.87)

we have also the expression for M as shown in (4.86).
For our study of beams on elastic foundations, most of the subjects are consid-

ered as functions of one independent variable b, while all other entities are viewed
as constants, including the longitudinal axis x. However, we know from the defini-
tion of b that b is dependent on two other entities, J and k. This point was touched
upon above and will be elaborated on a little more now.

In order to assess the effects of the independent variables J and k on a subject
under study, we may, first of all, obtain the results from considering the subject as
a function of b only, as we did for most of the topics earlier. Then we may consider
b as function of two variables J and k and obtain first and second partial derivatives
of b with respect to J and k separately. Finally, we use the principles of calculus,
including the chain rule, to obtain all the necessary partial derivatives of the subject
function with respect to J and k, including the so-called mixed second partial de-
rivatives, and evaluate the possible maximum and minimum values of subject func-
tions using the information thus collected.
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Based on the remarks just presented, the following is provided. Considering b
as a function of two independent variables, J and k, we have the first partial derivative
of b with respect to J as

[ , ]b J
k

J= −











−1

4 4

¼
⁄  (4.88)

which is always negative (never zero or positive), signifying b as a decreasing function
of J.

The second partial derivative of b with respect to J is

[ , ]b JJ
k

J= 











−5

16 4

¼
⁄ (4.89)

which is positive.
Now, we have

[b,k] = A(k)–¾ (4.90)

where

A
J

= 1

4 4( )¼
(4.91)

Note that [b,k] is positive, and its value decreases as J increases and/or k increases,
although at different rates, with the latter being the higher one.

Next we have

[ , ] ( )b kk A k= −





−3

4
 

⁄ (4.92)

which is negative, and its “absolute” value decreases as either J or k increases, with
k being the stronger player again.

Finally, a so-called mixed second partial derivative of b is

[ , ] ( )b Jk J k= −





− −1

4
4 

 ⁄ ¾ (4.93)

which is negative also.
From (4.90) and (4.93), it is interesting to see that

[ , ]
[ , ]

b Jk
b k

J
= −

4
(4.94)

Of course, we can also rewrite (4.93) as

J. Ross Publishing; All Rights Reserved



Beams on Elastic Foundations � 109

[ , ] ( )b Jk J
k= −











−
−

1

64 4
  

 ⁄
¾

(4.95)

Thus, we have another interesting result:

[ , ]
[ , ]

b Jk
b J

k
=

4
(4.96)

Note that here we have

[b,Jk] = [b,kJ ] (4.97)
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5
CANTILEVERS

5.1. UNIFORM LOAD ON PART OF THE SPAN
For the general case under the theme of this section, with nonzero a and c as shown
in Figure 5.1, the results are as follows. The reaction is

R = wb (5.1)

The bending moments are

M1 = Rx – M0 for 0 < x < a (5.2)

M Rx M w
x a

a x d2 0

2

2
= − − − < <( )

for  (5.3)

M3 = 0 for d < x < L (5.4)

R

X
a

L

cb

wM0

FIGURE 5.1. Uniform load on a cantilever
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where

d = a + b (5.5)

The moment at the fixed end is

− = − +





M wb a
b

0
2

(5.6)

The deflections are

Y
EI

M x Rx
x a= 





− +








 < <1

2 6
00

2 3

 for  (5.7)

Y
EI

M a Ra
x a= 





− +








 =1

2 6
0

2 3

 at  (5.8)

Y
EI

A B x a R
x a M

w
x a

a x d

= 





+ + − + − − −

















< <

1 2

6 2 24
2 0

2

   

for  

( )
( )

(5.9)

where

A M a x
a

B Ra

x
b

= − −





=
−























0
2

2

2

3

2
, (5.10)

Y
EI

C D b R
a b M wb

x d= 





+ + + − −


















=1 3

6 2 24
2 0

2

 at  (5.11)

where

C M a
a

b D Ra

a
b

= +





=
+















0
2

2
3

2
, (5.12)

Y
EI

Fx G d x L= 





+ < <1
 for  [ ] (5.13)

Y
EI

FL G x L= 





+ =1
 at  [ ] (5.14)
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where

F
Ra

M a
wb= − −

2

0

3

2 6
(5.15)

G
Ra M a

wb a b= − + + +
3

0
2

3

3 2
4( ) (5.16)

Some important special cases are as follows.

Case 1. a = 0
First of all, note that A = B = C = D = 0 because a = 0. The reaction is

R = wb (5.17)

The bending moments are

M1 = Rx – M0 for 0 < x < b (5.18)

M Rx M
wx

b x L2 0

2

2
= − − < <for  (5.19)

The moment at the fixed end is

− = −
M

wb
0

2

2
(5.20)

The deflections are given by (5.9–5.16) with simplified results and

d = b (5.21)

F
wb= − 3

6
(5.22)

G = wb4 (5.23)

Thus, the deflections are

Y
EI

M Rx wx
x x b= 





− + −








 < <1

2 6 24
00

2
2 for  (5.24)

Y
EI

M Rb wb
b x b= 





− + −








 =1

2 6 24
0

2
2 at  (5.25)

Y
EI

Fx G b x L= 





+ < <1
 for  [ ] (5.26)
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Y
EI

FL G x L= 





+ =1
 at  [ ] (5.27)

with F and G given by (5.22) and (5.23) respectively.

Case 2. c = 0
The reaction is

R = wb (5.28)

The bending moments are

M1 = Rx – M0 for 0 < x < a (5.29)

M Rx M w
x a

a x L2 0

2

2
= − − − < <( )

for  (5.30)

The moment at the fixed end is

− = − +





M wb a
b

0
2

(5.31)

The deflections are given by (5.7–5.12) with d = L.

Case 3. a = 0, c = 0, and b = L = d
The reaction is

R = wL (5.32)

The bending moments are

M = Rx – M0 for 0 < x < L (5.33)

The moment at the fixed end is

− = −
M

wL
0

2

2
(5.34)

The deflections are

Y
EI

M Rx wx
x x L= 





− + −








 < <1

2 6 24
00

2
2 for  (5.35)

with

max Y
EI

wL
x L= 





−








 =1

8

4

 at  (5.36)
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5.2. TRIANGULAR LOAD ON PART OF THE SPAN
For the general case with nonzero a and c as shown in Figure 5.2, the results are as
follows. The reaction is

R
wb=
2

(5.37)

The bending moments are

M1 = Rx – M0 for 0 < x < a (5.38)

M Rx M w
x a

b
a x d2 0

3

6
= − − − < <( )

for  (5.39)

M3 = 0 for d < x < L (5.40)

where

d = a + b (5.41)

The moment at the fixed end is

− = − +





M R a
b

0
2

3
(5.42)

The deflections are

Y
EI

M x Rx
x a= 





− +








 < <1

2 6
00

2 3

 for  (5.43)

Y
EI

M a Ra
x a= 





− +








 =1

2 6
0

2 3

 at  (5.44)

FIGURE 5.2. Triangular load on a cantilever
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X
a

L

cb

wM0

J. Ross Publishing; All Rights Reserved



116 � Elastic Beam Calculations Handbook

Y
EI

Rd
x d M x

w
x a

b

a x d

= 





− − − −









< <

1 3 2

6 2 120
0

2 5

 

for  

2 ( )

(5.45)

Y
EI

Rd M d wb
x d= 





− −








 =1

6 2 120
0

2 4

 at  
3

(5.46)

Y
EI

F wb
x a b

d x L= 





− − −







< <1 5 4

120
3 for  

( )
(5.47)

Y
EI

G H x L= 





=1
 [ + ] at  (5.48)

where

F x
a Ra

M a x
a= −





− −





2

3 2 2
0

2

(5.49)

G wab
a ab L a b= + − +2 2 3 4

12

( )
(5.50)

H wb
L a b= − − −3 5 4

120

( )
(5.51)

Some important special cases are as follows.

Case 1. a = 0 and d = b
The reaction is given by (5.37). The bending moments are

M Rx M
wx

b
x b1 0

3

6
0= − − < <for  (5.52)

M2 = 0 for b < x < L (5.53)

The moment at the fixed end is

− = −
M

Rb
0

2

3
(5.54)

The deflections are

Y
EI

Rb
x b M x wx

b
x b= 





− − −








 < <1 3 2

6 2 120
02 0

2 5

 for  (5.55)
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Y
EI

Rb M b wb
x b= 





− −








 =1

6 2 120

3
0

2 4

 at  (5.56)

Y
EI

wb
x b

b x L= 





− −





< <1 5 4

120
3 for  (5.57)

Y
EI

wb
L b

x L= 





− −





=1 5 4

120
3 at  (5.58)

Case 2. c = 0
By definition, we have a + b = d = L. The reaction is given by (5.37). The bending
moments are given by (5.38) and (5.39). Note that (5.40) does not appear here. The
moment at the fixed end is given by (5.42).

The deflections are given by (5.43–5.46) with a + b = d = L. Specifically:

Y
EI

RL
x L M x

w
x a

b

a x L

= 





− − − −









< <

1 3 2

6 2 120
2 0

2 5

 

for  

( )

(5.59)

Y
EI

RL M L wb
x L= 





− −








 =1

6 2 120

3
0

2 4

 at  (5.60)

Case 3. a = 0, c = 0, and d = b = L
The reaction is given by (5.37). The bending moments are

M Rx M
wx

b
x L= − <0

3

6
for  0 < (5.61)

The moment at the fixed end is

− = −
M

RL
0

2

3
(5.62)

The deflections are

Y
EI

RL
x L M x wx

L
x L= 





− − −








 < <1 3 2

6 2 120
02 0

2 5

 for  (5.63)

with

max Y
EI

M RL wL
L x L= 





− + −








 =1

2 6 120
0

2

 at  2 (5.64)
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5.3. GENERAL LOAD INTENSITY FUNCTIONS WITH
APPLICATIONS
Consider an arbitrary load intensity function denoted by p(x). The beam under such
a load is depicted in Figure 5.3.

The reaction is

R p x dx
a

e

= ∫ ( ) (5.65)

The end moment is

M xp x dx
a

e

0 = −∫ ( ) (5.66)

where

e = a + b (5.66A)

The bending moments are

M1 = Rx + M0 for 0 < x < a (5.67)

M2 = Rx – B + M0 for a < x < e (5.68)

M3 = 0 for x > e (5.69)

FIGURE 5.3. General load on a cantilever (for general theory)
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where

B x t p t dt
a

x

= −∫ ( ) ( ) (5.70)

For convenience of operations in the following development regarding deflec-
tions, let us define

C M t dt M t dt
a

ea

= + ∫∫ 1 2

0

( ) ( ) (5.71)

D L t M t dt L t M t dt
a

a

e

= − + −∫ ∫( ) ( ) ( ) ( )1 2

0

(5.72)

J = EI (5.73)

The deflection Y for each region can be obtained from the following. The de-
flection is considered to be positive when it is downward. For the region 0 < x <
a

JY x t M t dt
x

= −∫ ( ) ( )1

0

(5.74)

For the region a < x < e

JY x t M t dt x t M t dt
a

a

x

= − + −∫ ∫( ) ( ) ( ) ( )1 2

0

(5.75)

For the region e < x < L

JY = C(x – c) (5.76)

where

c L
D

C
= − (5.77)

Note that D defined by Expression (5.72) is the deflection at the tip of the
cantilever with a multiplier J. For the purpose of determining the entity c needed
in (5.76), we could use other approaches. For example, we could define G, an ex-
pression similar to D, such that c = G/C . However, then the entity G so defined does
not have the physical significance revealed by D, even though G has a little bit
simpler look and may lead to a simpler expression for the distance c.

Some special cases of interest are as follows.
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Case 1. a = 0
The immediate consequences are that e = b, M1 disappears, and the entities C and
D are simplified as

C M t dt
b

= ∫ 2

0

( ) (5.78)

D L t M t dt
b

= −∫ ( ) ( )2

0

(5.79)

where M2 is still given by Formula (5.68) but with

R p x dx
b

= ∫ ( )
0

(5.80)

M xp x dx
b

0

0

= −∫ ( ) (5.81)

B x t p t dt
x

= −∫ ( ) ( )
0

(5.82)

The deflections Y for the two regions can be obtained in the following manner.
For the region 0 < x < b

JY x t M t dt
x

= −∫ ( ) ( )2

0

(5.83)

For the region b < x < L, the formal formula for the general case still applies but
with a simplified C and c with which to work.

Case 2. a + b = L and a ≠ 0
We have, as a result of the defining condition, first of all, e = L, then M1 and M2

are as before in the general case formally but with the region corresponding to M3

disappearing. Therefore, we have the reaction

R p x dx
L

= ∫ ( )
0

(5.84)
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while the bending moments as well as the deflections formulae for the first two
regions are as in the general case except that the entity e is replaced by the span length
L. Additionally, we have

M xp x dx
L

0

0

= −∫ ( ) (5.85)

The third region defined by e < x < L drops out and so do Formulae (5.76) and (5.77)
for this particular case. Here, D is as given by Formula (5.72) in the general case but
with the entity e replaced by the span length L.

Case 3. a = 0 and b = L
This is a further simplification from case 2 by setting a = 0 in all the formulae in
that case. As a result of this simplification, we have the following interesting situ-
ation. The bending moment M1 disappears along with the first region, and so does
the third region, whereas the second region occupies the entire span. In other words,
this important case corresponds to a cantilever with the entire span being loaded.
Thus, we have the reaction

R p x dx
L

= ∫ ( )
0

(5.86)

and the end moment

M xp x dx
L

0

0

= −∫ ( ) (5.87)

The entity B is still formally given by Formula (5.82), whereas

C M t dt
L

= ∫ 2

0

( ) (5.88)

with M2 given formally by Formula (5.68).
Finally, we have the following two important formulae

D L t M t dt
L

= −∫ ( ) ( )2

0

(5.89)

and
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JY x t M t dt
x

= −∫ ( ) ( )2

0

(5.90)

The former signifies the deflection at the tip of the cantilever with a multiplier J,
while the latter represents the general expression for deflection, with the same
multiplier J .

A remark on the approach taken here is in order. Another way to solve the same
problem is by resorting to utilization of the results of a single concentrated force and
subsequent integration.

Illustrative Examples
Let us change pace in order to arouse the reader’s interest by taking a slightly
different approach. The load intensity function will be defined by a local coordinate
system t as shown in Figure 5.4, which is presented mainly for symbols and notations
and not for the actual shape of the load intensity function. The following are illus-
trative examples presented with details.

Example 1
The load intensity function is a general quadratic polynomial of the form

p(t) = at2 + bt + c (5.91)

where a, b, and c are constants independent of t .

FIGURE 5.4. General load on a cantilever (for the illustrative examples)
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We note immediately that the solution to this problem can also be obtained from
superposition of the two problems specified below. One is the problem associated
with the general linear load intensity function presented previously. The other is the
one corresponding to the load intensity function q(t) = gt2, where g is a constant
independent of t. However, we will stick to the load intensity function represented
in (5.91) in order to examine another view of the problem and its solution. The
results from both of these approaches are, of course, exactly the same.

The reaction is

R
a

f
b

f cf= 





+ 





+
3 2

3 2 (5.92)

and the end moment is

M eR
a

f
b

f
c

f0
4 3 2

4 3 2
= + 





+ 





+ 





(5.93)

We see that both R and M0 are increasing functions of the variable f , the extent of
the loaded region, when the constants a, b, and c are all positive as a sufficient
condition and when e is fixed. Also, it is very interesting to observe the following.
When we put

M0 = RX (5.94)

where

X = e + nf (5.95)

with

n

a
f

b
f

c
f

a
f

b
f c

=







+ 





+ 











+ 





+

4 3 2

3 2

3 2

2

(5.95A)

then we have the first derivative of M0 with respect to f as

M ′0 = (e + f )R ′ (5.96)

where

R ′ = af 2 + bf + c (5.97)

which is exactly the value of the load intensity function at t = f ; that is,

R ′ = p(f ) (5.98)

From (5.96), M ′0 is directly proportional to both R ′ and the distance (e + f ) and
is always positive for positive a, b, and c. The last statement confirms the observation
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made earlier about M0. The case where some of the constants a, b, and c are negative
can be explored in a similar fashion as follows.

Since R is of fundamental importance and many other entities, for example
bending moments, depend on R directly, it is expedient to deal with the investigation
of R first. Thus, we will proceed in the following manner.

There exist conditions under which R ′ may become zero or negative when some
of the constants a, b, and c are not positive. Let us examine the situation in which
R ′ = 0. This happens when

af 2 + bf + c = 0 (5.99)

We conclude immediately that

f
b b ac

a
= − ± −( )2 4

2

½
(5.100)

For definiteness and consistency in the following development, let us define

Q = (b2 – 4ac)½ (5.100A)

and call the two roots in (5.100) separately as

f
b Q

a
1

2
= − + (5.100B)

f
b Q

a
2

2
= − − (5.100C)

In order for f1 or f2 to have the positive real value required by the physical
considerations of the problem, we have, first of all,

b2 – 4ac > 0 (5.101)

or

b2 – 4ac = 0 (5.102)

Let us focus on the case defined by Expression (5.101) first and consider the most
general situation, namely where c is nonzero. For the sake of clarity and being
systematic, we will proceed with our investigation category by category as follows.

Category A. a > 0
This means that the coefficient of the highest term in the expression for R ′ is positive.
Here we need to consider four cases separately to gain insight into the defining
conditions for revealing the underlying physical significance.

Case 1. a > 0 and b > 0. The defining property of this case dictates that
Equation (5.99) can have only one positive real root, and this occurs when Q > b.
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This requires that 4ac < 0. However, since a > 0 is given, we must have c < 0. We
have one such root, f1.

Case 2. a > 0 and b = 0. Once again, in view of Q and the requirement of
a real and positive root, it is necessary that 4ac < 0. Therefore, a and c must have
opposite signs. Since it is given that a > 0, it follows that c < 0. In this case, we also
have only one positive real root, f1.

Let us consider the situation where a > 0 and b < 0 by trying to follow suit from
above. It is interesting to discover that the task is not as simple as the two cases just
encountered. Rather, we have the following. Depending on whether c is negative or
positive, we have two different cases. Note that the case c = 0 will be dealt with
separately later.

Case 3. a > 0, b < 0, and c < 0. As before, only one root, f1, is admissible,
because Q > –b is required.

Case 4. a > 0, b < 0, and c > 0. This implies that Q < –b. Note that –b >
0 and we have two positive real roots, f1 and f2, available.

Category B. a < 0
Here, as in category A above, we will consider four cases

Case 5. a < 0, b > 0, and c < 0. We have Q < b. This is because a < 0 and
c < 0. Thus, ac > 0 and b2 > b2 – 4ac. By examining the expressions for f1 and f2,
we see that we can have two positive real roots.

Case 6. a < 0, b > 0, and c > 0. In this case, we have Q > b due to the fact
that ac < 0. This leads to –b + Q > 0, which, together with the given condition that
a < 0, will render –b + Q/(2a), a negative value for x. However, this is not what we
want. Therefore, only one root, f2, is admissible.

Case 7. a < 0, b = 0, and c > 0. For Q to have a real value, it is necessary
that ac < 0. However, a < 0 is given, so we must have c > 0, and this leads to just
one root, f2. The other root is not admissible based on considerations of physical
meaning of the roots of the equation to be solved.

Case 8. a < 0, b < 0, and c > 0. This corresponds to the condition where
Q > –b > 0 and only one root, f2, is admissible. Note that we might play with the
case a < 0, b < 0, and c < 0 and see what is happening. We may be surprised to find
that there is not even one root that is admissible.

Thus far, we have examined the most general category which corresponds to a
nonzero c . There are eight cases in this category. Each of these cases provides us with
information about a critical point or two for a specified range of values of the
coefficients a, b, and c of the load intensity function p or even the reaction R. For
cases 4 and 5, there are two critical points for each. The details of these critical points
and their significance will be given below. This can best be achieved by considering
categories A and B while utilizing the convention adopted for the designation of the
two roots of equation R ′ = 0 in (5.99).
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For category A, defined by a > 0, we have f1 > f2 to signify the relative magnitude
of the two roots of the equation under consideration. Here, R has a minimum value
at f = f1 for all the possible values of b (positive, negative, and zero) and nonzero
c. Moreover, R has the only maximum value at f = f2 when the conditions b < 0 and
c > 0 are satisfied simultaneously.

For category B, defined by a < 0, we have f1 < f2, which shows the relative
magnitude of the two roots of R ′ = 0. In this group, R has a maximum at f = f2 for
all the values of b (positive, negative, and zero) and nonzero c. Moreover, R has the
only minimum value at f = f1 when both the conditions b > 0 and c < 0 are satisfied
simultaneously.

Now let us take a look at the special case where c = 0. Here, the equation to be
solved is simplified to

af 2 + bf = 0 (5.103)

This equation has two roots:

f1 = 0 (5.103A)

and

f
b

a
2 = − (5.103B)

However, the first root does not have any physical meaning. The second one is
physically meaningful only when both conditions b ≠ 0 and –b/a > 0 are satisfied.
This means that the coefficients a and b must have opposite signs. The implication
is that we actually have two cases here, namely case 9 and case 10.

Case 9. c = 0, a < 0, and b > 0. R has a maximum value at f = –b/a.
Case 10. c = 0, a > 0, and b < 0. R has a minimum value at f = –b/a.
If, additionally, a = 0 or b = 0, then we have f = 0, which is a trivial load case.
Thus far, we have examined all the cases in the most general category of nonzero

c under the premise that Q is nonzero. What happens when Q is zero? This question
can be answered in more than one way. We will answer it in a rather unusual way.

Consider the second derivative of R with respect to f and set it to zero. We obtain

2af + b = 0 (5.104)

This will lead to the solution

f
b

a
= −

2
(5.104A)

Now look at the solution to R ′ = 0 presented in (5.100). We see that Formula
(5.104A) corresponds to the situation where Q = 0 in (5.100), but this means that,
from (5.100),
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b2 = 4ac (5.105)

We see that the solution presented in (5.104A) is for both R ′ = 0 and R″ = 0
and therefore is a point of inflection for the function R. Moreover, since both a and
c are nonzero, b2 is also nonzero and positive by virtue of (5.105). Bearing this in
mind and looking at (5.105) again, we observe that there are two cases in this
category specified by (5.104). They are as follows.

Case 11. a < 0, b > 0, and c < 0. R is a decreasing function of the inde-
pendent variable f except at the point of inflection.

Case 12. a > 0, b < 0, and c > 0. R is an increasing function of f, except
at the point of inflection.

It is interesting to note here that whether the highest coefficient in R is positive
or negative actually determines whether R is an increasing or decreasing function of
f respectively. This concludes the investigation of the reaction R.

The bending moments are

M = R(X – x) for x < e (5.106)

When x = 0, we have

M = M0 = RX (5.106A)

When x = e, we have

M = R(nf ) (5.106B)

For the region e < x < e + f

M
a

g
b ay

g
c by

g cyg= 





+ −





+ −





−
4 3 2

4 3 2 1 (5.107)

where

gi = f i – ti, i = 1, 2, 3 (5.108)

and t is the local horizontal axis defined in Figure 5.5 (see Section 5.4).
When x = e, t = 0, we have from (5.108)

gi = f i (5.108A)

with the simplified M = R(nf ), which confirms the result shown in (5.106B), as it
should.

When t = f , x = e + f , we have gi = 0, so

M = 0 (5.109)

For the region x > e + f

M = 0 (5.110)
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The deflections Y can be obtained from the following. The deflection at the tip
of the cantilever is

Y = Y1 + Y2 (5.111)

where

Y
R

J
E ei

i

i
1

1

3

= 



 =

∑ ( ) (5.112)

with

E XL E
L X

E1 2 3
3

1

3
= = − + =, , (5.113)

and the Ei’s have absolutely nothing to do the Ei’s in Chapters 3 and 6 and the
appendices.

Y
J

F fi
i

i
2

1

1

6

= 



 =

∑ ( ) (5.114)

with

F nf RF F nf F
R

F

cF R

F

bF c

1 2

3 4

2

2
3

6 2
4

= = − +

=
+

=
−

, ( ) ,

,

(5.115)

F

aF b

F
a

5 6
12 6

5 72
=

−
= −, (5.116)

Some special cases of interest and practical importance are as follows.

Case 1. e = 0 with General f
R remains the same as in the general case. M0 simplifies to

M nfR m
af bf cf

0

4 3 2

4 3 2
= = = + + (5.117)

with

X
m

R
= (5.118)

and region x < e disappearing.
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Region 0 < x < f . M remains the same as in the general case. At x = 0, M
= M0, as it should be. At x = f , M = 0 as in the general case.

Region x > f . M = 0 as in the general case.

Case 2. f = F
This means that the load is extended to the tip of the cantilever. Hence, R is given
formally as in the general case, with f replaced by F. M0 is also formally given as in
the general case, with f replaced by F. Specifically, we have the following.

Region x < e. Formal expressions for R and M remain the same as in the
general case, with all the f ’s in R,X replaced by F.

Region e < x < e + f . This becomes e < x < L, because here e + F = L and
f = F. M is the same as in the general case, except f is replaced by F.

At x = e, t = 0, and therefore, we have

M
a

F
b

F
c

F= 





+ 





+ 



4 3 2

4 3 2 (5.119)

As for the deflection at the tip, we can obtain it from the general case by replacing
all the f ’s with F.

Case 3. e = 0 and f = F
This means that f = L = F. Therefore, we have

R
a

L
b

L c L= 





+ 





+
3 2

3 2 ( ) (5.120)

M
a

L
b

L
c

L0
4 3 2

4 3 2
= 





+ 



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+ 





(5.121)

M at any section is the same as in the general case, except f is replaced by L. Thus,
at x = 0, M = M0, as shown in (5.121). At x = L, M = 0 as before.

As for the deflection at the tip of the cantilever, part Y1 = 0, because e = 0; part
Y2 is obtained from the general case, with f replaced by L.

Example 2
The load intensity function is a third-degree polynomial of the form

q = a + bt + ct2 + gt3 (5.122)

Once again, in view of the remarks for the previous example of a quadratic
polynomial case, we could just deal with the case of a single third-degree term and
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make use of the results of the previous example and apply the principle of super-
position. However, we will consider the function as shown in (5.122) as our starting
point. Reference in made to Figure 5.5 (see Section 5.4).

By direct integration of (5.122), we have the reaction

R af
b

f
c

f
g

f= + 





+ 





+ 



2 3 4

2 3 4 (5.123)

For the region 0 < x < e, the bending moments are

M1 = R(X – x) (5.124)

where

X
M

R
= 0 (5.125)

with

M0 = K + eR (5.126)

K
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f
b

f
c

f
g
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
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


+ 
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
2 3 4 5

2 3 4 5 (5.127)

Therefore,

M1 = K + (e – x)R (5.128)

For the region e < x < e + f

M2 = A – yB (5.129)

where

A = K – k(t), B = R – r(t) (5.130)

with

k t
a

t
b

t
c

t
g

t( ) = 



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+ 
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
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2 3 4 5 (5.131)

r t at
b

t
c

t
g

t( ) = + 



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+ 



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+ 



2 3 4

2 3 4 (5.132)

It is interesting to note that k(f ) = K and r(f ) = R, where k( f ) and r(f ) are
values of the functions k(t) and r(t) respectively, all evaluated at t = f . Thus

M2 = K – k(t) + tr(t) – tR (5.133)
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These functions k(t) and r(t) are, in essence, characteristic functions derived from
the loading function. As far as the region defined by 0 < x < e is concerned, M1 is
completely determined by K, R, e, and x. With a given load intensity function and
location and extent of the loaded region, M1 is a very simple linear function of x.
Under the same conditions, the bending moments in the loaded region, namely M2,
are quite different and are fifth-degree polynomials of the location of the section
under consideration. For the region x > e + f , M3 = 0.

Now let us look at the deflection Y at the tip. Y can be written as the sum of
three terms. Thus,

Y = Y1 + Y2 + Y3 (5.134)

with JYi from Mi (i = 1, 2, 3) as

JY e LM e
LR M

e
R

1 0
2 0 3

2 3
= − + + 





( ) (5.135)

JY2 = FG – N (5.136)

where F is as shown in Figure 5.4 and

G Kf
R

f
a bf cf gf

f= − 
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3 (5.137)

N
Kf Rf

f
a bf cf gf= − + + + +





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2 3
4

2 3

2 3 8 30 72 140
(5.138)

and as was defined previously, J = EI. Note that Y3 = 0, because M3 = 0.
From Expressions (5.125) and (5.135), we see that JY1 is the product of the

reaction R, the distance e, and a quadratic polynomial in e. Similarly, from Expres-
sions (5.136–5.138), it can be shown easily that JY2 is the product of the extent f of
the loaded area and a sixth-degree polynomial in f . The coefficients in these poly-
nomials involve reaction R, span length L for JY1, and the entities F and R for JY2,
in addition to the given coefficients a, b, c, and g in the load intensity function for
both JY1 and JY2.

We can rewrite G as

G
f a b

f
c

f
g

f= + 




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(5.139)

Similarly, we can rewrite N as

N
f a bf cf gf= + + +











4 2 3

6 4 5 6 7
(5.140)
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5.4. A CONCENTRATED COUPLE AT AN ARBITRARY POINT
ON THE SPAN
The cantilever with a concentrated couple M0 acting at an arbitrary point on the span
is depicted in Figure 5.5. The end moment is equal to M0. The bending moments
for the two regions are as follows. For region 0 < x < c

M = M0 (5.141)

For region x > c

M = 0 (5.142)

The deflections Y are

Y M
x

J
x c= − < <( )0

2

2
0for  (5.143)

Y M c
x

c

J
x c= −

−















>( )0
2 for  (5.144)

provided we take downward deflection as positive and use the usual beam sign
convention. In other words, the applied moment as shown in Figure 5.5 is negative
in value, which, with the minus sign in Formulae (5.143) and (5.144), will render
the deflections positive.

The deflection at the point of application of the concentrated couple is

FIGURE 5.5. A concentrated couple on a cantilever

c

L

M
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Y
M c

J
= −( )0

2

2
(5.145)

The deflection at the tip of the cantilever is

Y

M c L c

J
=

− −





( )0
2

(5.146)

Some interesting special cases are as follows.

Special Case 1. c = L
This is the case where the concentrated couple is at the tip of the cantilever. The
bending moment is M = M0 for the entire beam.

The general deflection formula is

Y
M x

J
x L= − < <( )0

2

2
0for  (5.147)

At the tip, the deflection is

Y
M L

J
= −( )0

2

2
(5.148)

Note that from (5.144), Y is proportional to M0 and c(x – c /2). It is interesting
to probe this a little further, so let us consider Y = –(M0/J) c(x – c/2) as a function
of c by setting

JY ′ = –(M0)x + (M0)c = 0 (5.149)

We have

c = x (5.150)

as the critical point. Formula (5.150) means that when the location of the point of
application of the concentrated couple coincides with the section under consider-
ation, Y  has an extreme value. Now from (5.149) and the given condition about M0,
we obtain

JY ″ = M0 < 0 (5.151)

Thus, we have a maximum value of Y at this critical point:

max
( )

Y
M x

J
= − 0

2

2
(5.152)
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It is very interesting to note that Formula (5.152) looks exactly the same as Formula
(5.147) and even Formula (5.143). Upon a moment’s reflection while looking at
(5.150), it is not surprising at all. Let us look at another special case.

Special Case 2. c = L/2
Here we have

M M x
L= < <0 0
2

for (5.153)

M x
L= >0
2

for  (5.154)
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M x

J
x

L= − < >( )0
2

2
0

2
for  (5.155)
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2

8 2
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and

Y M
L

J
= −







3
8

0

2

( ) (5.158)

at the tip of the cantilever.
It is interesting to observe that the deflections at the tip for the cases where c

= L and c = L/2 are related in the following manner. The ratio of the former to the
latter is 4 vs. 3 only.

Let us compare the deflections at the mid-span, Y1, and at the tip, Y2, for the
two special cases cited here. For the case where c = L, we have Y1/Y2 = 1/4. For the
case where c = L/2, we have Y1/Y2 = 1/3.

5.5. EXPLORATIONS AND OBSERVATIONS
There are some interesting features about deflections of a cantilever under various
loads when we compare results from these problems.

Let us start with Section 5.4, where the expressions for deflections are the sim-
plest. The general expression for the first region defined by 0 < x < c is a single-term
quadratic function of the location of the beam section under consideration, namely
x. The general formula for the region defined by x > c , henceforth called the second
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region, is a two-term linear function of the location of the beam section. This linear
function, expressed in Formula (5.144) of Section 5.4, represents a straight line
which is a tangent to the second-degree curve depicting the deflection for the first
region. The point of tangency is, of course, the point of application of the concen-
trated couple. Moreover, this linear function can be viewed as the product of three
factors: M0, (x – c /2), and c/J. The effects of each one of these factors on the
deflection are obvious to see. Even the effect of x is also very clear, and this fact can
open up another viewpoint about the same formula.

This second viewpoint is to treat the deflection formula as the sum of two terms.
One term is (cM0)x/J, which is proportional to four factors: the location of the beam
section, that of the point of application of the concentrated couple, and the concen-
trated couple itself, as well as 1/J. The other term is –(M0)c2/(2J), which has the
obvious factors and is an entity independent of x. As a result, this constant term
(relative to x) can be interpreted as the contribution to the deflection in the second
region from a source in the first region. The last point is of fundamental importance
when we are linking several problems under different loads in an effort to find
common ground for these seemingly very different problems.

Two examples illustrating the application of the general load intensity function
were presented in Section 5.3. One problem dealt with a general quadratic load
intensity function and the other treated a general third-degree load intensity func-
tion. Deflection at the tip of the cantilever for each of the two examples is expressed
as the sum of two terms, Y1 and Y2. This is done naturally with the added advantage
of clarity. Here, Y1 represents the contribution to the deflection from region x < e,
the first region, whereas Y2 is the contribution from the region defined by e < x <
e + f , the second region.

For the first example, Y2 is a sixth-degree polynomial in f , the extent of the
loaded region, and is the product of f and a fifth-degree polynomial in f. The Fi’s
can be positive, negative, or zero, depending on the given coefficients in the load
intensity function. Moreover, F1 and F2 have something in common in that they both
have R as a factor.

For the second example, Y2 is a seventh-degree polynomial in f and is the product
of f and a sixth-degree polynomial in f. The highest and lowest order terms in Y2

for K ≠ 0 and f ≠ 0 are nonzero, and the other terms may be positive, negative, or
zero, depending on the coefficients in the load intensity function. Here, for Y2, both
examples have the common factor f.

We described Y2 in detail in both problems. What about Y1? It may be surprising
to learn that Y1 for both problems is exactly the same formally. It is a third-degree
polynomial in e, the distance between the face of support and the beginning of the loaded
region when we realize that R, X, and M0 are related by M0 = RX in Section 5.3. Here,
Y1 is the product of e, R, and a quadratic polynomial in e. This is similar to Y2 in that
in both cases Yi contains a factor of the independent variable. From Formula (5.72) in
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the discussion of the development of general load intensity function in Section 5.3, we
see that the contribution to deflection from M1 in the first region is more direct than
from M2 in the second region, at least formally for any load intensity function. “For-
mally” here means mathematically as well as physically. Of course, each problem has its
own reaction, bending moments, etc., and the reaction in one problem is not equal to
that in another one. However, a reaction is a reaction, no matter what load intensity
function we are dealing with, as long as the universe of discourse is the same. The same
remarks apply to Formulae (5.75) and (5.76) in the same section for any point in the
second and third regions respectively.
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6
EXAMPLES OF BEAM FORMULAE:
EXPLORATIONS AND COMMENTARY

6.1. INTRODUCTION
The purpose of this chapter is to exhibit collectively, in sufficient detail, more ex-
amples that illustrate the exploration of beam formulae for revealing the physical
significance of solution results. The approach to the implementation of this project
is as follows. First of all, a formula to be investigated will be chosen. This formula
is an equality that expresses an entity as a function F of several other relevant entities
Vi that will impact the value of the function. Then one of these entities Vi will be
selected as the parameter and we will try to determine the effects of varying only this
parameter on the value of F. After we finish the investigation of one such parameter,
we can do another one. In each of these investigations, we are dealing, at any given
time, with a real-valued function of one real variable only.

6.2. UNIFORM LOAD ON ONE SPAN OF
A TWO-SPAN CONTINUOUS BEAM: GENERAL CASE
Let us look at the general formula for the reaction R at the exterior support of a
loaded span. From Section 3.1.4, we have

R

L L A

J

B

J

D
= −

+1 2

1 2

3

(6.1)

For convenience and efficiency of subsequent operations, let us define the nu-
merator in Formula (6.1) by the symbol C and recall the definition of D presented
in Section 3.1.4. Reference is also made to Figure 3.3 in Section 3.1.4. Thus,
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R
C

D
= (6.2)

Let us examine the ingredients of C first. We see L1, L2, J1, J2, A, and B on the
surface. Upon further inspection, we know from this list that only Li and Ji are
fundamental entities. A and B depend on other entities which are fundamental. Both
A and B contain b, c, and L1 in addition to the common factor wb.

Now we will look at D to find out what it is made of. D contains L1, L2, J1, and
J2. Note that in D, the span length L1 appears only once, whereas the span length
L2 appears in many places. The same is true in the case of C.

6.2.1. Parametric Study of J1

To begin the parametric study, let us consider J1 as the parameter. For convenience
and uniformity in the use of symbols, we will call the parameter under study z.
Therefore, R is now a function of the variable z. In order to gain more insight into
the heart of the matter, let us proceed in two directions. First, we put R in the form

R

e
z

f

g

z
h

=


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
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+





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+
(6.3)

where e, f, g, and h are constants with respect to z. The expression shown in (6.3)
is the result of direct “translation,” in the literary sense, of Formula (6.1) with
application of the definition of D. Now R in Formula (6.3) can be written as

R
h

f
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z
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h

= 
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
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

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 +
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(6.4)

with

G e
f g

h
= − (6.4A)

It can be seen clearly that the absolute value of the second term in the brackets
in the expression for R decreases as z increases. It is also a simple matter to see that
this second term itself, namely G/(z + g/h), is negative, zero, or positive when G is
negative, zero, or positive respectively. Therefore, R is a decreasing or increasing
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function of the independent variable z when G is positive or negative respectively.
Note that both G and z play important roles here.

What about G = 0? Let us obtain the first derivative of R with respect to z as

R ′ = –Gh(hz + g)–2 (6.5)

From (6.5), we see that G and R ′ have opposite signs; G < 0 or G > 0 corresponds
to an increasing or decreasing R respectively. Also, R ′ = 0 if and only if G = 0, since
the other factor in R ′ shown in (6.5) is not equal to zero. We see that G = 0 gives
us the critical point. Furthermore, we have

R″ = (2Gh)2(hz + g)–3 (6.6)

Note that h ≠ 0.
Thus, R″ = 0 if and only if G = 0 too. Therefore, G = 0 gives us a point of

inflection. This is one direction.
Another direction is to proceed directly from the given form of representation

shown in (6.1). We have the following.
Differentiating R with respect to z, we obtain

dR

dz

D
dC
dz

C
dD
dz

D
=







− 





2

(6.7)

From (6.7), we see clearly that dR/dz < 0, dR/dz = 0, and dR/dz > 0 when the
numerator is negative, zero, or positive respectively. This is because of the fact that
the denominator in (6.7), namely D2, is positive. For convenience, we will call the
numerator in (6.7) N. Upon finishing the operations indicated in the definition of
N, we arrive at the simple result

N = (L2
2A – 3B)(L1L2

2)(J 1
2J2) (6.8)

Focusing on (6.8), we see that N is negative, zero, or positive when the expression
(L2

2A – 3B), henceforth called K for brevity, is negative, zero, or positive respectively.
This is due to the fact that L1, L2, J1, and J2 are all positive and (L1L2

2)/(J 1
2J2) is

therefore positive also. Recall that A and B contain wb as a common factor in
addition to the fact that they both contain b, c, and L2 in the remaining portion.
Thus, the characteristics of K, which indicate whether K is negative, zero, or positive,
depend on b, c, and L2 and how they interplay.

The conclusion is the following. R is a decreasing or increasing function of z
when K is negative or positive respectively. R might have a maximum value or
minimum value, or neither, when K is zero. As it turns out, R has neither a maxi-
mum nor a minimum value when K is zero, the critical point. Here, in the case at
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hand, K = 0 corresponds to an inflection point, as was indicated above when we dealt
with one form of representation of R.

In both of these two approaches, we laid out the framework for our probing
endeavor. We want to know what relationships there are among the entities b, c, and
L2 in order for K to be negative or positive in value or zero. Thus, we substitute A
and B with their definitions and do the indicated mathematical operations. As a
result of this, we obtain

K = (m – nL2
2)wb (6.9)

with

m
bc b c c b= + + −18 4 12 3

24

2 2 3 3

(6.10)

n

c
b

=
+



2

2
(6.11)

From (6.9), it is clear that m, n, and L2 completely determine whether K is
negative, zero, or positive. That is,

K < 0 when (m – nL2
2) < 0 (6.12)

K = 0 when (m – nL2
2) = 0 (6.13)

K > 0 when (m – nL2
2) > 0 (6.14)

For a given set of values of (b, c), we can get a corresponding set of (m, n) values
and a corresponding value of L2 in accordance with (6.13) or values of L2 according
to (6.12) or (6.14) depending on the given K value. Or, if we want, we can pick up
any two of the three entities b, c, and L2 as the given entities and determine the third
one as a result. This is a good exercise for the reader to have some fun with the
problem.

Case 1. The Critical Point K = 0
The immediate consequence is AL2

2 = 3B from the definition of K. Let us substitute
this into the expression for R. We have the simple result

R
A

L
= −

2

(6.15)

In (6.15), since A is nonzero and negative and L2 is positive, it follows that R
is nonzero and positive. It is very interesting to note that R here, at least on the
surface, depends on b, c, L2, and w only. This is because of the fact that the entity
A depends on these same entities only. This means that all the other entities includ-
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ing J1, J2, and L1 do not have any influence on R at all. Here, the effects of b, c, w,
and L2 on R are obvious and can be read off from the expression for A. The reaction
R is an increasing function of b and w as well as c, but is a decreasing function of
the span length L2. As mentioned in the statement immediately following (6.14),
there are many possible values of (b, c, L2) that satisfy (6.13). For each of these
possible sets of values, we have an R that is given by (6.15). This last statement has
far-reaching implications when K = 0, as will be seen regarding the relation among
b, c, and L2. Thus, if we put L2 = (m/n)½ in (6.15), then it can be seen that R depends
on b, c, and w only, while L2 disappears altogether from the expression for R.
Furthermore, the other physical meaning derived from K = 0 is that R does not
depend on Ji, along with some other entities mentioned above.

Case 2. K < 0
This is the case when (6.12) holds. There are many values of m that satisfy this. A
sufficient condition for (6.12) to be true is m < 0. Another sufficient condition is
m = 0. Both are interesting in that a rather large c relative to b is required just by
observation. Of course, m = 0 and m < 0 are not necessary conditions for (6.12) to
hold. The meaning of K < 0 has been mentioned above and will not be repeated here.

Case 3. K > 0
See Section 6.2.4 for details.

6.2.2. Parametric Study of J2

If we observe the functional form of R as a real-valued function of a real variable
J2 and compare it with that, viewed as a real-valued function of the other real variable
J1 in the previous section, we will find that these two functions are similar. In fact,
there is a certain degree of “symmetry” in a sense. We follow the same line of
reasoning and the same approach to the exploration and come to the conclusion that
the role played by K in Section 6.2.1 is now played by –K in this section. All the
results derived from K (for example, assertions based on K in Section 6.2.1) can be
so interpreted. In other words, all the statements in Section 6.2.1 hold true here if
K is replaced by –K. In particular, for the case where K = 0, all the statements in
Section 6.2.1 remain unchanged in this section. It goes without saying that the K
mentioned here is one and the same K as in Section 6.2.1.

6.2.3. Parametric Study of L1

If K is so powerful or even magical, will we meet this character again? The answer
is yes. In the study of L1 here, the symbol –K plays the role of K in Section 6.2.1.
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In other words, as far as the effects on the functional behavior of R are concerned,
J1 and L1 have something in common.

With obvious signs of the prominent importance of K appearing here and there,
we are attempting to probe more and deeper into K and trying to uncover further
detail, if any. For example, how much room do we have to expand our projects of
exploration, and what special cases are there that should be addressed? At the same
time, however, we are equally eager to see if the magical K will appear in more places,
like in the study of C1 at least. Thus, let us now proceed to the study of C1 to find
out.

6.2.4. Parametric Study of C1 and the Marvel of the Kernel K
We just predicted that the marvelous K would show up again. Here it is already, with
–K here playing the role of K in Section 6.2.1. The conclusions to be reached here
are obvious in view of what we did in Sections 6.2.2 and 6.2.3. In this connection,
the reader may wonder what the reaction R is when K = 0 in Sections 6.2.2 and 6.2.3
and here. The answer is that in all these sections, as long as K = 0, we invariably have
the result

R
A

L
= −

2

(6.15)

In terms of the fundamental entities, we can write R in (6.15) as

R L c
b wb

L
= − +













2

22
(6.16)

The reader may notice the striking resemblance of the expression in (6.16) to
a very familiar formula for a reaction for a simple beam problem. This is very
interesting. If this is amazing, what about the vast number of possible choices of sets
of (b, c, L2) values that are available under the condition that K = 0 for our explo-
ration? This is only for the case where K = 0 and we already have huge space for
our projects to show their mighty power. We can consider the case where K < 0 and
devise a b-by-c matrix with a controlling set of L2 values and carry out interesting
and useful projects. There is yet another way to explore and that is to pick one of
the three entities (b, c, L2) to be the parameter while holding the other two fixed.
Similarly, we can treat the case where K > 0 with equal ease and efficiency.

Now let us see what values of the entities (A, B, L2) or (b, c, L2) there are to make
the entity K very special and interesting. This will affect, of course, all cases where
K = 0, K < 0, and K > 0.

Reference is made to Figure 3.3 in Section 3.1.4. If a = 0, then
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b c L m L
c b

L c
b

n
L c

+ = = − + +

= +

2 2
2

2

2

2

2

4
3

24

4

, ( ) ( ) ,

(6.17)

If c = 0, then

m
b

n
b= − =

3

8 4
, (6.18)

If a = 0 and c = 0, then

b L m
L

n
L= =

−
=2

2
3

2

8 4
, , (6.19)

Next, let us look at the individual cases as follows.

Case 1. K < 0
Since A is negative and L2 is positive, we have that AL2

2 is negative, and the expression
for K and the condition B > 0 will make K negative. Thus, B > 0 is a sufficient but
not a necessary condition for K < 0. It is very interesting to note that B > 0 will never
make K zero just by observing the definition of K.

Case 2. K = 0
The interesting thing about B is that here it is necessary that B < 0. A proof is as
follows.

Proof

When K = 0, we must have either (a) B < 0 or (b) B = 0. This is because (c) A <
0, L2 > 0, and the definition of K. However, K = 0 and B = 0 simultaneously means
A = 0, which is contrary to the given condition (c), so (b) is not possible. Therefore,
(a) holds.

Case 3. K > 0
Here again, B is an active player. B < 0 is a necessary but not a sufficient condition,
just as in the case where K = 0.

Another interesting question is whether R can be zero or even negative. The
conjecture is the negative answer. But can we prove it? It is definitely worthwhile to
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investigate. One of the best places to start is Formula (6.4). The interested reader is
invited to pursue the task.

Is this the end of the magic power of K ? It is left to the interested reader to find
out.

6.3. TRIANGULAR LOAD ON ONE SPAN OF A TWO-SPAN
CONTINUOUS BEAM: GENERAL CASE
The treatment here will be similar to that in the last section. We will take the reaction
R at the exterior support of a loaded span for the subject of study. This reaction R
was given in Section 3.1.8 as

R

L L A

J
B

J

D
= −

+1 2

1 2

3

(6.20)

Upon examining this formula and the formula for R in the case of a uniform
load, we see that they are identical in form. The only difference is the actual expres-
sions for the entities A and B between the two problems. However, even though there
is this difference, the entities A and B in the two problems have something in
common too. Here, both A and B contain b, c, w, and L2 only, as in the previous
problem. Moreover, as far as the case of studying the parameter L2 is concerned, A
has the same type of function here as in the previous section. This is also true of the
situation with the entity B.

It is interesting to look at the exact content of m and n in the expression for K.
Here

m
bc c b c b= + + +20 10 5 4

40

2 3 2 3

(6.21)

n
b c= +2 3

12
(6.22)

Note that the expression for m is very different from that for the uniform load
problem. First of all, m here is never negative because every term in (6.21) is non-
negative. Some terms may be zero, for example when c = 0, but never will any term
become negative. This means that B is negative, due to the fact that B and m have
opposite signs by definition. As a result of this, all the assertions in the last section
concerning B < 0 will be applicable in the problem of triangular load here. Thus,
the task of exploration is much simpler here for the theme in this section than in
the last section where pioneering work in this aspect was done. We might even expect
the same set of conclusions as in the last section in view of the many statements made
at the beginning of this section which are identical to the corresponding ones in the
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last section. However, there are things that are unique to the triangular load problem.
Some interesting special cases regarding m and n follow.

Special Case 1. c = 0
From Formula (6.22), we have the simplified

m
b=

3

10
(6.23)

n
b=
6

(6.24)

The kernel becomes

K
L b b

wb=
−

+








2

2 3

6 10
(6.25)

Here, K = 0 when

3b2 = 5L2
2 (6.26)

K > 0 when

3b2 > 5L2
2 (6.27)

When we use K directly in association with the study of a particular parameter that
calls for K in order to determine whether the function is increasing or decreasing
or has a stationary value, it is important to pay attention to the following remarks.

Note that both Expressions (6.26) and (6.27) are inadmissible due to the very
definition of L2 and b. This means that neither K = 0 nor K > 0 will be admissible.
Therefore, the only admissible condition for the kernel is K < 0. The requirement
in terms of the relationship between b and L2 under this condition is

3b2 < 5L2
2 (6.28)

This is automatically satisfied by any b and L2 and there are absolutely no
restrictions whatsoever. When the parametric study calls for K as the direct indicator
of the behavior of a function, K < 0 means that the reaction is a decreasing function
of the parameter, for example J1.

For those parametric studies which call for (–K ) instead of K to determine the
behavior of a function in terms of whether it is an increasing or a decreasing func-
tion, we will just have to let (–K ) play the role of K. Thus, here we have that R is
an increasing function of the parameter as the only admissible situation.

The principle for the special case where c = 0 is, then, that we only have K <
0 and no other values of K are possible. Moreover, no matter what the case may be,
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as long as c = 0 is the governing theme, K will never be zero. Once again, we see
the fundamental importance of the kernel K.

Special Case 2. a = 0
We have, by definition, L2 = a + b + c. Thus, a = 0 means L2 = b + c. As a result,
we can obtain m, n as in the general case or can proceed to replace L2 by b + c in
the expression for K. If we take the former approach, we may want to ask the
following questions. First of all, is there anything new here compared to the general
case—anything at all? If so, what is it? Next, when will the kernel be positive, zero,
or negative, if at all possible?

For the kernel K to be positive, we must have

m > nL2
2 (6.29)

This means that L2 must satisfy the following condition:

L
m

n
2 < 




½

(6.30)

Therefore, it appears that positive K is admissible if L2 is small enough.
Similarly, for negative K, we need

m < nL2
2 (6.31)

This means that L2 must satisfy

L
m

n
2 > 




½

(6.32)

Therefore, it seems that negative K is admissible if L2 is big enough.
Now consider the case where K = 0. The requirement is

m = nL2
2 (6.33)

This means that

L
m

n
2 = 




½

(6.34)

Thus, K = 0 is admissible if condition (6.34) is satisfied; that is, when L2 is of
the right size and that particular size is for real. In other words, K = 0 if we could
find some b, c that will render (6.34) valid. However, is the actual situation really
so?

Let us take the other approach mentioned above. The result comes out to be
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K
wb

b bc c= −






+ +
2

2 2

40
8 55 20( ) (6.35)

It is clear from looking at Expression (6.35), where b and c are nonnegative, that

K < 0 (6.36)

Special Case 3. a = 0 and c = 0
This is a further simplification from the case where c = 0 by letting b = L2. Thus,
m = L2

3/10 and n = L2/6. Therefore, all the statements under the case where c = 0
apply here.

6.3.1. Parametric Study of J1, J2, L1, and C1

With the preparation work done thus far, it is a simple matter to take care of the
exploration of J1, J2, L1, and C1. The conclusions regarding the effects of any one of
these parameters on the reaction are exactly the same as the corresponding ones in
the case of a uniform load.

6.3.2. Parametric Study of L2

This case differs from the ones listed above mainly due to the complicated form of
involvement of L2 in the expression for the reaction under investigation. For ex-
ample, L2 appears in A and B in a unique way which makes it very special, as we
will see below. For convenience and diversity in presentation, we will call –R/(wb)
as y and we will work with y in the following. Thus,

y
R

wb
= −

(6.37)

is a function of z, which stands for the parameter L2.
Starting with

A

wb
a z a= +1 0 (6.38)

B

wb
b z b z b= + +3

3
2

2
0 (6.39)

R

wb

C

D
= − (6.40)

where

J. Ross Publishing; All Rights Reserved



148 � Elastic Beam Calculations Handbook

C = e3z3 + e2z2 + e1z + e0 (6.40A)

with

e
b

J
e

b

J C a
e C a e

b

J
3

3

2
2

2

2 1 2
1 1 0 0

0

2

3 3 3= =
+

= −, , , (6.40B)

and

D = z2(d1z + d0) (6.41)

with

d
J

d C1
2

0 1
1= =, (6.42)

we obtain

y
d

e
N

M
=







+





1

1
3 (6.43)

where

M = (z3 + C1J2z2) (6.44)

N
e e d

d
z e z e= −





+ +2 3 0

3

2
1 0 (6.45)

In order to examine the behavior of R/(wb), we make use of the properties of
the function y. Thus, let us look at the first derivative of y with respect to z

′ =y
Q

M 2
(6.46)

where

Q = MN ′ – M ′N = z(g3z3 + g2z2 = g1z + g0) (6.47)

with

g
e d

d
e

b c

J
3

3 0

1
2

2

2 3

4
0= − = − + < (6.48)

g e C
b c

2 1 12
2 3

3
0= − = − + < (6.49)

g C b c
d

d
e1 1

0

1
02 3 3= − + +









( ) (6.50)
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g
e d

d
0

0 0

1

2
0= − > (6.51)

Note that g3, g2, and g0 are nonzero, but it is possible for g1 to be zero under the
condition

18m = C1
2J2

2(2b + 3c) (6.52)

which is very interesting in its own right as we note that the entity m is our old friend
that showed up in the kernel K above.

It is interesting to observe some of the attributes of the g’s by introducing a new
notation F = (2b + 3c). Thus, g3 is proportional to F/J2; the entity g2 contains F and
C1 only; g1 depends on F, C1, J2, and m ; and finally g0 is proportional to mC1.

Now let us return to the main stream of investigating the behavior of the func-
tion y with the aid of Q defined above. We know that y is an increasing function
of the independent variable z when

Q > 0 (6.53)

and y is a decreasing function of z when

Q < 0 (6.54)

Finally, y is stationary when

Q = 0 (6.55)

In the last case, it is possible that y has extreme value(s). Therefore, let us look at
Q = 0.

Since Q defined by Expression (6.47) is the product of z and a third-degree
polynomial in z , with coefficients g ’s, we know that Q must have, in addition to the
one trivial root z = 0, three other roots including at least one real root. Let us call
these three roots z1, z2, and z3. Thus, Expression (6.55) means that

g3(z – z1) (z – z2)(z – z3) = 0 or z = 0 (6.56)

We can proceed to include all the real positive roots and check for possible extreme
values of y by the standard procedure in the usual manner and obtain the results.

For the case where Q < 0, we examine

g3(z – z1) (z – z2) (z – z3) < 0 (6.57)

and note that for the nonzero roots z1, z2, and z3 with the property

z1 < z2 < z3 (6.58)

we may want to use Table 6.1 to facilitate our work in deciding the range of values
to be considered. Similarly, we can treat the case where Q > 0 by using Table 6.2.
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Furthermore, after simplification, we have

e
J

3
2

1

2
= −

(6.59)

e
b c

J

C
2

2

12 3

4 2
= + − (6.60)

e C
b c

1 1
2 3

6
0= + > (6.61)

e
J

bc c b c b0
2

2 3 2 31

40
20 10 5 4= − + + +[ ] (6.62)

It is very interesting to note the following. The entity m that we encountered
before is related to e0. In fact,

m = –e0J2 (6.63)

Another interesting thing is that when N = 0, we have

y
e

d
= = −3

1

1

2
(6.64)

That is to say, here R = wb/2.
It may appear that this is a rather innocent result by looking at a special case

of all the possible values that N can take. However, this result has profound impli-
cations. For one thing, it says that, regardless of how the span length L2 under

TABLE 6.1. Type I

z – z1 z – z2 z – z3

>0 <0 <0
>0 >0 >0
<0 <0 >0
<0 >0 <0

TABLE 6.2. Type II

z – z1 z – z2 z – z3

>0 <0 >0
>0 >0 <0
<0 >0 >0
<0 <0 <0
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investigation varies, the reaction R is always a constant wb/2, which happens to be
the maximum possible value that R can attain, as long as certain conditions are
satisfied. Now the key questions are: What are these conditions and what do they
mean in terms of physical significance?

To facilitate further probing, let us write N as

N = f2z2 + e1z + e0 (6.65)

where

f e
e d

d

b c

J
2 2

3 0

1 2

2 3

4
0= − = + > (6.66)

Now N = 0 implies, for a given set of values of (f2, e1, e0), that z satisfies either one
of the following two conditions:

z
e S

f
z= − +1

2
1

2

½
henceforth  called  (6.67)

z
e S

f
z= − −1

2
2

2

½
henceforth  called  (6.68)

where

S = [e1
2 – 4f2e0] (6.69)

Of course, we want to check that the z’s are admissible. First of all, let us see
whether we have two real roots for N = 0. To do this, we need to see

S > 0 (6.70)

This means that

e1
2 – 4f2e0 > 0 (6.71)

But e1
2 > 0 and f2e0 < 0 are known. Therefore, S > 0 and we do have two real roots

for N = 0.
Next, do we have two positive roots for N = 0? The answer is no. Why not? This

is because –e1 and –S½ are all negative and f2 is positive in the definition of z2.
Therefore, we have only one admissible root for N = 0, namely z1, given by Expres-
sion (6.67).

Another way to look at N = 0 is, for a given z, to find the values of other entities
in the expression for N that make N = 0 valid.

Having dealt with the case where N = 0, it is only natural to raise the question
about the situations where N < 0 and N > 0. Let us take the case where N < 0 first.
This happens when

f2(z – z1) (z – z2) < 0 (6.72)
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Note that we can omit f2 in (6.72) because f2 > 0. Expression (6.72) can be satisfied
when (z – z2) > 0 and (z – z1) < 0 simultaneously.

Finally, for the case where N > 0, one of the following has to hold: (a) both
factors (z – z1) and (z – z2) are positive or (b) both factors (z – z1) and (z – z2) are
negative.

From the definition of y, we see that the sign of N is of crucial importance since
the second term in the formula for the function y has N as the numerator with a
positive denominator. In other words, the sign of N alone determines the sign of the
entire second term in the expression defining y. Note, moreover, that N < 0 means
an increase in the absolute value of R compared with cases where N = 0 and N >
0 when we look at the definitions of y and R. Thus, we gain insight into the behavior
of R with the aid of N in addition to the method using Q mentioned above. Of
course, both methods are closely related and each has its own merits.

6.4. A CONCENTRATED COUPLE AT AN ARBITRARY POINT
ON A TWO-SPAN CONTINUOUS BEAM: GENERAL CASE
A view of the expression for the reaction at the exterior support of a loaded span
reveals that it is of a much simpler form than the ones in the last two sections. From
Section 3.1.12, we have

R
AM

D
= 0 (6.73)

where

A
C L L c

J
= +

−







3

3 2
1 2 2

2 2

2

(6.74)

D = L2
2(C1 + C2) (6.75)

We see that the entity A depends on C1, L2, J2, and c only.
Let us proceed to the parametric study.

6.4.1. Parametric Study of J1

For convenience in subsequent development, we will call R/M0 as y and denote the
parameter under study as z. Then we will express y as a function of z in the following
manner

y

a
z

a

d
z

d

=
+

+

1
0

1
0

(6.76)
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where

a L L a
L c

J
1 1 2 0

2
2 2

2

3

2
= = 





−
, (6.77)

d1 = L1L2
2, d0 = L2

2C2 (6.78)

We can rewrite y as

y
d

a
N

z
d

d

=






+
+



















1

0
0

1

0

  (6.79)

where

N a
a d

d
= −1

0 1

0

(6.80)

Then, we have the first derivative of y with respect to z :

′ = − +






−

y
N

d
z

d

d0

1

0

2

(6.81)

It is clear from (6.81) that N is the controlling factor regarding the behavior of y.
That is,

y ′ < 0 when N > 0 (6.82)

y ′ = 0 when N = 0 (6.83)

y ′ > 0 when N < 0 (6.84)

Now N can be rewritten as

N
L

L
c L= −1

2

2
2
2

2
3[ ] (6.85)

Therefore,

N > 0 when [3c2 – L2
2] > 0 (6.86)

N = 0 when [3c2 – L2
2] = 0 (6.87)

N < 0 when [3c2 – L2
2] < 0 (6.88)

The immediate conclusions from the above are as follows:

1. There is a critical span length for span 2, denoted by L0 = (3)½c , that deter-
mines whether a given L2 will cause N to be positive, negative, or zero, which

J. Ross Publishing; All Rights Reserved



154 � Elastic Beam Calculations Handbook

in turn will decide whether y is a decreasing or increasing function of z or
is stationary respectively.

2. N < 0 denotes a specific domain of L2 values, for a given c, in which all the
L2 values will make y an increasing function of z.

3. N > 0 denotes a specific domain of L2 values, for a given c, in which all the
L2 values will make y a decreasing function of z.

4. N = 0 means that when L2 = L0, function y will have stationary value(s).

If we look at the problem from a different viewpoint, we may want to hold L2

constant and let c vary by doing analogous things to have a direct contrast with the
four conclusions above. We may coin the terminology of a critical location of applied
moment and let it play the active role. This way, we can have four more conclusions
corresponding to the ones just listed.

It is interesting to look at the case where N = 0. The immediate consequence
is a simplified expression for y. Hence, we have

y
L c

L
= 





−3

2
2
2 2

2
3

(6.89)

which can be rewritten as

y
c

L L
= =3 12

2
3

2

(6.90)

because of the very definition of N and the given condition N = 0.
Let us return to the general case of N regarding its sign (whether it is positive,

negative, or zero) and examine the special case where c = 0. We have

N
L L= − 1 2

2
(6.91)

and we are forced to accept the fact that once c = 0 is the case, it is necessary that
N < 0, meaning y ′ > 0.

Let us look at the case where c = L2. We have N = L1L2 > 0, meaning y ′ < 0.
That is to say the following: y is a decreasing function of z.

6.4.2. Parametric Study of J2

Once again, we will denote R/M0 by y and the parameter by z for convenience. Then,
from Formula (6.73), we have the same forms of expression for y as shown in
Formulae (6.76) and (6.79). However, the coefficients are different. Here we have

a L c a C L1 2
2 2

0 1 2
3

2
= 





− = ( ), (6.92)
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d1 = L2
3, d0 = L2

2C1 (6.93)

Moreover,

N
L c

=
−2

2 23

2
(6.94)

Regarding the behavior of y, we can state the following. Since

′ = −






+





−

y
N

d
z

d

d0

1

2

2

 (6.95)

we see right away that

y ′ > 0 when N < 0 (6.96)

y ′ = 0 when N = 0 (6.97)

y ′ < 0 when N > 0 (6.98)

All these may look like mere repetition of Section 6.4.1. However, the N here is
exactly the negative of the N there except for a positive factor. In other words, N
here plays the role of (–N ) in Section 6.4.1.

Now let us look at the case where N = 0. Here, surprisingly enough, we get

y
L

= 1

2

(6.99)

just as we did in Section 6.4.1.
What about the special case where c = 0 when we are focusing on the general

case of N to begin with, that is, regardless of whether N is positive, negative, or zero
in the first place? As we might expect, the answer is simply N > 0, with

N
L

= 2
2

2
(6.99A)

and

y
L

C z
L

C

= +

+






1 1

2
2

1
2

1

(6.99B)

For the sake of satisfying our curiosity, let us look at the case where c = L2. We
get

N = –L2
2 < 0 (6.99C)

and
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y
L C z L

= −
+

1 1

2 1 2

(6.99D)

6.4.3. Parametric Study of L1

The expression for A can be rewritten as a function of the parameter under study,
z, in the following manner

A = a1z + a0 (6.100)

where

a
L

J
a

L c

J
1

2

1
0

2
2 2

2

3
2

= = −
, (6.101)

The expression for D can be rewritten as a function of z in the form

D = d1z + d0 (6.102)

where

d
L

J
d L C1

2
2

1
0 2

2
2= =, (6.103)

The function y = R/M0 now takes the form

y
d

a
N

z
d

d

=






+
+



















1

1
1

0

1

 (6.104)

where

N a
a d

d

L c

J
= − = −

0
1 0

1

2
2 2

2

3

2
(6.105)

Now

′ = −





+










−

y
N

d
z

d

d1

0

1

2

 (6.106)

We see that

y ′ < 0 when N > 0 (6.107)

y ′ = 0 when N = 0 (6.108)

y ′ > 0 when N < 0 (6.109)

since all the factors except N in y ′ are positive, but capped with a minus sign.

J. Ross Publishing; All Rights Reserved



Examples of Beam Formulae: Explorations and Commentary � 157

For N = 0, we have

L2
2 = 3c2 (6.110)

and a simplified expression for y is

y
L

= 1

2

(6.111)

All the remarks about N and critical span length, etc. made in Section 6.4.1 apply
here except that N here plays the role of (–N) there.

Two extreme cases regarding R are of special interest.

Case 1. c = 0
We obtain

N
L

J
= >2

2

22
0 (6.112)

signifying an increasing function for R.

Case 2. c = L2

We have

N
L

J
= − <2

2

2

0 (6.112A)

indicating a decreasing function for R.

6.4.4. Parametric Study of L2

Following the standard procedure for setting up a parametric study, we will write
A as a function of the parameter z in the form

A = a2z2 + a1z + a0 (6.113)

where

a
J

a C a
c

J
2

2
1 1 0

2

2

3

2

3

2
= = = −

, , (6.114)

and we will write D as

D = z2(d1z + d0) (6.115)

where
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d
J

d C1
2

0 1
1= =, (6.116)

The function to be examined is denoted, as usual, as y and

y
A

D
= (6.117)

Its first derivative is

′ = ′ − ′ =
+

y
DA AD

D

N

z d z d2 3
1 0

2( )
(6.118)

where

N = b3z3 + b2z2 + b1z – m0 (6.119)

will be called the critical function for y for convenience in the following develop-
ment, with

b a d
J

3 2 1
2
2

3

2
0= − = − < (6.120)

b a d
C

J
2 1 1

1

2

2
2

0= − = − < (6.121)

b a d a d
c

J
C1 0 1 1 0

2

2
2 1

23
9

2
= − = − (6.122)

m a d
c C

J
0 0 0

2
1

2

2
3= = −

(6.123)

As usual, the key to the problem of understanding the function y is to examine
N, the critical function for y. Since N is a third-degree polynomial in general, we can
follow the same procedure as we did in Section 6.4.1.

In order to pave the way for dealing with two very interesting and important
cases, we will note the following features of the coefficients b1 and m0 in N. Note
that c = 0 when m0 = 0. For other values of c, we have m0 < 0. As for the coefficient
b1, it may be positive, negative, or zero depending on

9

2
0 0 0

2

2
2 1

2c

J
C− > < =, ,  or (6.124)

respectively. The coefficient b1 has the special property

b
c

J
C1

2
2 1

20
9

2
0= − =when 

2

(6.124A)

J. Ross Publishing; All Rights Reserved



Examples of Beam Formulae: Explorations and Commentary � 159

Both b1 and m0 are very important, and it is worthwhile to look into individual
cases.

Case 1. m0 = 0
When m0 = 0, we have

N = (b3z2 + b2z + b1)z (6.125)

That is to say, N is a product of z and a quadratic expression N1 in z, while y ′ is
simplified to

′ =
+

y
N

z d d
1

1 0
2[ ( )]

(6.126)

where

N1 = b3z2 + b2z + b1 (6.127)

Thus, y ′ is positive, negative, or zero when N is positive, negative, or zero respec-
tively. In other words, the function y  will be an increasing function, a decreasing
function, or a function that has a stationary value depending on whether N1 > 0, <
0, or = 0 respectively.

Let us look at N1 closely for a moment. It is clear that if b1 < 0, then because
all the b’s are negative and z is positive, we have N1 < 0.

If b1 > 0, then it is possible that N1 = 0, < 0, or > 0. The case N1 < 0 holds if

b1 < –(b3z2 + b2z) (6.128)

and the case N1 > 0 holds if

b1 > –(b3z2 + b2z) (6.129)

Let us study the roots of N = 0. The nature of the roots depends, to a large extent,
on the sign of b1, the constant term in N1.

If b1 > 0, then N1 has only one positive real root and it is

z
b S

b
S b b b= − − = −2

3
2
2

1 3
2

4with  ( )½ (6.130)

If b1 < 0, then we must first check to see whether N1 = 0 has any real root(s)
at all, whether positive or negative. We already know from a naïve look above.
However, we could also do it differently. Thus, for real roots, we need to have

27
2

2

2
2 1

2c

J
C≥ (6.131)

However, even with this provision, we can only have negative roots and no positive
root(s) at all.
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Regardless of whether b1 < 0 or b1 > 0, we can use the standard procedure in
the previous section regarding a critical quadratic equation and deal with the dif-
ferent domains of z describing an increasing or a decreasing function of z or a
stationary value of the function.

If b1 = 0, then we have another special case to deal with.

Case 2. b1 = 0
This means that there is a specific nice relation among c, C1, and J2, namely:

( )3
2 0

2

2
2 1

2c

J
C− = (6.132)

Also, N becomes

N = b3z 3 + b2z 2 – m0 (6.133)

where m0 becomes

m
C J

0
1
3

22

3
= −

(6.134)

or, in terms of c and C1, we have

m cC0 1
22

3

2
= − 




½

(6.135)

or, in terms of c and J2, we have

m
c

J
0

3

2
2

3
3

2
= − 




½

(6.136)

Case 3. b1 = 0 and m0 = 0
Is this possible? From the definitions of b1 and m0 we know that the answer is
negative. This is due to the fact that m0 = 0 requires c = 0, thereby giving b1 a nonzero
value.

6.5. A CONCENTRATED FORCE AT AN ARBITRARY POINT
ON AN EXTERIOR SPAN OF A THREE-SPAN CONTINUOUS
BEAM: GENERAL CASE
The reaction R1 was given previously as

R As BK
P

D
1 = +( ) (6.137)
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where

A L L C
C C= +

1 3
2

2
2 3

18
(6.138)

B
L L L

J
= 1 2 3

26
(6.139)

In order to raise the reader’s interest and change pace, the material in this section
will be presented in a different order.

6.5.1. Parametric Study of L1

As usual, we will denote the parameter under study as z. Thus, we have

As = az (6.140)

where

a C L C C
s= +





2 3
2

2 3
18

( ) (6.141)

and

BK = bz (6.142)

where

b
L L

J
K=











2 3

26
(6.143)

with K independent of L1.
Note that the coefficient a is an entity that consists of C2, C3, L3, and s only, and

the coefficient b is a product of K and a function of J2, L2, L3, s, and a numerical
factor.

The symbol D can have the following look

D
z L

d d z= +
2

3
2

0 1
36

[ ] (6.144)

where

d 0 = C2(3C2 + 4C3) (6.145)

is a function of C2 and C3 only and

d
J

C C1
1

2 3
4=







+( ) (6.146)

is a function of C2, C3, and J1 only.
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With this introduction, we can rewrite R1 as

R
a b

L z d d z
1

3
2

0 1

36= +
+

( )

( )
(6.147)

We see that R is essentially a function, called y, of the variable z multiplied by a
constant. Thus, let us examine a new function defined as

y
z d d z

=
+
1

0 1( )
(6.148)

The first derivative of y is negative for all values of z and is never zero. This can be
seen from the following:

y ′ = –[z(d0 + d1z)]–2[d1z + d0] < 0 (6.149)

Furthermore, for

y ′ = 0 (6.150)

we must have

z
d

d
= − <0

12
0 (6.151)

However, z is always positive; therefore, it is not possible that (6.150) and (6.151)
hold.

Another way to look at the implication of y ′ is to note that the denominator of
y ′ in all cases is positive, so that the sign of y ′ is determined completely by that of
the numerator, which is –(2d1z + d0) and is negative. Therefore, y is a decreasing
function of z. As a result of this and the definition of R1, we see that R1 is also a
decreasing function of z.

6.5.2. Parametric Study of C2

Here we have for the elements needed in R1

A = a2z2 + a1z (6.152)

where

a
L L

2
1 3

2

18
= (6.153)

a
L L C

1
1 3

2
3

18
= (6.154)

BK = b1z + b2z2 (6.155)

J. Ross Publishing; All Rights Reserved



Examples of Beam Formulae: Explorations and Commentary � 163

with

K = K0 + zK1 (6.156)

b
L L K

1
1 3 0

6
= (6.157)

b
L L K

2
1 3 1

6
= (6.158)

Also,

D
L L

z d z d= 





+ +1 3
2

2
1 0

6
3[ ] (6.159)

with

d0 = 4C1C3, d1 = 4(C1 + C3) (6.159A)

Therefore, with R1 given by (6.137) in mind, we have

As BK

D L L
sa b y

+ = + +12

1
2

3
2 2 2

( )
[ ] (6.160)

where

y
f

g
= (6.161)

with

f = (mz + n) (6.162)

g = (z2 + ze1 + e0) (6.163)

e
d

e
d

0
0

1
1

3 3
= =, (6.164)

m sa b
sa b d= + − +

1 1
2 2 1

3

( )
(6.165)

and

n
sa b d= − +( )2 2 0

3
(6.166)

Considering y as a function of z, we have the first derivative of y as

′ =y
N

g2
(6.167)
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where

N = –mz2 – 2nz + (me0 – ne1) = n2z2 + n1z + n0 (6.168)

We notice that the behavior of y and thus that of R1 hinges on the nature of N,
which in turn depends on the coefficients that appear in N. Therefore, it is both
interesting and important to review m, n, e0, and e1 in this context.

Let us tackle m first. From the way in which m is defined, we see that m can take
positive or negative values or can be zero. We will examine m in these three catego-
ries next.

Category A. m = 0
The immediate consequence is

y
n

g
= (6.169)

This is a much simpler result than in the cases where m is nonzero.
Note that the coefficients in the expression for g are all positive due to the nature

and definition of e0 and e1. Also, recall that n < 0, so we see right away that y is
negative. This means that R1 may be zero or negative. The condition under which
this happens is

b2 + sa2 + y = 0 or < 0 (6.158A)

respectively.
From (6.169) and (6.158A) we have

b sa
n

g
2 2 0 0+ + = < or (6.158B)

respectively.
The reaction R1 may be zero or negative, but the first derivative of y is positive

due to n < 0. In exact form, we have

′ = − +
y

n z e

g

( )2 1
2

(6.170)

Let us ask the question: What does it mean to have m = 0 all by itself? From
the definition of m, we have m = 0 when ei =Q, where Q is defined as

Q
s L C K

sL K
= +

+
( )3 3 0

3 1

3

3
(6.171)

This is a specific relation among e1, C3, L3, s, K0, and K1. Recall that K is an expres-
sion that involves J3, L3, C1, C3, and s. Thus, it is clear that there are many different
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sets of values taken from the (Ci , J3, L3, s) domain where i = 1, 3 that will satisfy
the condition specified in (6.171).

Formula (6.170) says that the bigger the value of –n or (2z + e1) or their product
becomes, the bigger the value of y ′ will get. This means that an increase in C1, C3,
L1, or L3 translates into an increase in y ′. In other words and in more precise terms,
we can say that the rate of increase in y is proportional to the third power of L3 and
the square of L1 and inversely proportional to the product of J1 and J3.

Now looking at Expression (6.169), we see that it is proportional to n, which is
proportional to the product of L1, L3

2C1, and C3. Thus, y is proportional to L1
2L3

3/
(J1J3).

Category B. m < 0
This happens when Q < e1. From the expression for y, we see immediately that the
numerator is negative whereas the denominator remains positive. Thus, y is negative.
Moreover, the bigger the absolute value of m is, the bigger that of y becomes. How-
ever, the situation with y ′ is not so obvious. We need to do more work. In other
words, N could be positive, negative, or zero. For a given n, where n is negative, the
key entity to be concerned with is the constant term in the expression for N, namely
n0. Note that n0 could be positive, negative, or zero. Let us explore these cases one
by one as follows.

Case 1. n0 = 0. Here we have the simplified N as

N = z2n2 + zn1 (6.172)

which is positive for all z > 0 due to the fact that both coefficients in (6.172) are
positive. Since the sign of N determines the sign of y ′, we see that here y ′ > 0 also.
Thus, y is an increasing function of z.

Case 2. n0 > 0. Next, here we have all positive coefficients in (6.172) and conse-
quently N > 0 for positive z. The conclusion in this case is y ′ > 0. Again, y is an
increasing function of z.

Case 3. n0 < 0. Finally, here all the possibilities for N are open. First, N = 0
happens at

z
n n n n

n
0

1 1
2

0 2

2

4

2
= − + −( )½

(6.173)

Note that even though N = 0 has two real roots due to the fact that n0 < 0, one
positive and one negative, only the positive root which is physically meaningful is
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presented here. It can be shown easily that the second derivative of y is positive and
we have a minimum value of y at z0.

Furthermore, the situation N < 0 occurs when 0 < z < z0. Here, we have the not
so common situation where y is a decreasing function still in the category of m <
0.

Finally, of course, N > 0 exists when z > z0.

Category C. m > 0
This category, which occurs when e1 < Q holds, is very similar to category B. Again,
the basic and first thing to do is to look at n0, the constant term in the expression
for N. There are three cases to consider.

Case 1. n0 = 0. Again, N is simplified to a two-term second-degree polynomial,
but with n2 < 0 and n1 > 0. Hence, here it is possible to have N = 0. Thus, for N
= 0

z
n

n
0

1

2

= −
(6.174)

is the nontrivial root that has physical meaning. The second derivative of y is

y ″ = –2Ng –3g ′ + g –2N ′ = g –2(2n2z + n1) (6.175)

by using the given condition N = 0.
Now y ′ could be positive, negative, or zero, unlike the situation in category B

above. First, y = 0 when

(2n2z + n1) = 0 (6.176)

that is, when

z
n

n
= − 1

22
(6.177)

Next, y ″ > 0 when

(2n2z + n1) > 0 (6.178)

Finally, y″ < 0 when

(2n2z + n1) < 0 (6.179)

Note that at z0 we have y″ < 0, so y has a maximum at z0 expressed in (6.174).

Case 2. n0 > 0. The roots of N = 0 can be found in a similar form as in case 3
in category B. Thus,
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z
n n n n

n
0

1 1
2

0 2

2

4

2
=

− − −( )½
(6.180)

is the only admissible root of N = 0 in view of the fact that n0 and n2 have opposite
signs in addition to the relative magnitude of the two terms in the bracket. At this
value z0, we have y ″ < 0. Thus, y has a maximum value (algebraically, of course).
Moreover, due to the given condition n2 < 0, we have the following results: N < 0
when z > z0. This means that y is a decreasing function of z when z is greater than
z0. N > 0 when 0 < z < z0. This means that y is an increasing function when z lies
between 0 and z0. For a nonnegative z, results are the same as z < z0.

Case 3. n0 < 0. N = 0 has two real roots when

S = n1
2 – 4n0n2 > 0 (6.181)

It turns out that we have two positive roots, z1 and z2, here with 0 < z1 < z2. The
roots are

z1 = (–n1 + S½)(2n2) (6.182)

z2 = (–n1 − S½)(2n2) (6.183)

Moreover, y has a minimum at z1 and a maximum at z2. y is a decreasing function
of z when N < 0, requiring z > z2 or z < z1. y is an increasing function when N >
0, which calls for z1 < z < z2.

Why we did so elaborately discuss all the different cases presented above? The
reason is twofold: these cases exist under specific conditions relating to several pa-
rameters, and their combined action has very important physical significance.

6.5.3. Parametric Study of J1

We notice that the expression for R1 contains the entities A, B, and K, which are all
independent of J1; however, the entity D contains J1, which will be called z below.
Thus,

D a
b

z
= + (6.184)

where

a
L L

C C C= 





 +1 3

2

2 2 3
6

3 4[ ( )] (6.185)

b
L L

L C C= 





 +4

6
1 3

2

1 2 3( ) (6.186)
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The reaction R1 is

R
C

a
b

z

1 =
+

(6.187)

where

C = As + BK (6.188)

is a constant as far as the variable z is concerned.
For convenience in future work, let us write

R1 = Cy (6.189)

and consider y. We have the first derivative of y with respect to z as

y ′ = b(az + b)–2 > 0 (6.190)

for all z because both factors of y ′ are positive. From (6.190), we know that y is an
increasing foundation of z . Moreover, from (6.189), R is proportional to both c and
y. We note that y ′ is not only nonzero for finite z, but its value drops very rapidly
as z grows.

The second derivative of y is

′′ = − +

















<
−

y ab z a
b

z
2 0

3

 (6.191)

because a and b are both positive. Note that the entities a, b, and C all have the
common factors L1, L3. From (6.187), we see that this common factor is canceled
out and the resulting expression for R1 is thus simplified.

6.5.4. Parametric Study of J3

As usual, let us denote the parameter as z. Here the entities A, B, D, and K are as
follows. First, we have

A a
b

z
= + (6.192)

where

a
L L C= 1 3

2
2
2

18
(6.193)

b
L L C= 1 3

2
2

18
(6.194)
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Next we see

B
L L C= 1 3 2

6
(6.195)

Note that a, b, and B all have the common factors L1, L3, and C2/18. Then, we notice
that

D c
d

z
= + (6.196)

is similar in form to A, with

c
L L

C C C= 





 +1 3

2

2 2 1
6

3 4[ ( )] (6.197)

d
L L

L C C= 





+1 3
2

3 1 2
6

4[( )( )] (6.198)

Finally

K e
f

z
= + (6.199)

is another entity that bears some resemblance to A, with

e
sC L

f s
s L= − = −2 3 2 3

3

3

6
, (6.200)

Thus,

R
h

z
c

d

z
1 = 





+





 (6.201)

where

h = bs + Bf (6.201A)

We can rewrite R1 as

R
h

c z
d
c

1 =
+





 

(6.202)

Note that h needs not be positive all the time because of the presence of f , which
may have the right value to render h zero or even negative on the one hand and may
take other values that will result in a positive h on the other hand.
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Now from (6.202), we have

′ =
−

+





R

h
c

z
d
c

i 2
(6.203)

The sign of R′ depends on that of h because c is positive by definition. Therefore,
let us work on h as follows.

We can rewrite h as

h
L L C

L L s s= − +1 3 2
3
2

3
2

36
2 3( ) (6.204)

First, we consider h = 0. This happens when

(2L3 – s)(L3 – s) = 0 (6.205)

This means that either 2L3 – s = 0 or L3 – s = 0. The former is physically impossible,
so we are left with L3 – s = 0. That is, s = L3. This gives us R1 = 0 from (6.202).

Next, we try h < 0. This occurs when

(2L3 – s)(L3 – s) < 0 (6.206)

but this implies that these two factor must have opposite signs. Having (2L3 – s) >
0 and (L3 – s) < 0 simultaneously seems to be a good candidate. There is no problem
with the former, but it goes against the grain to accept the latter when we reflect a
little. Therefore, this choice does not work. Switching the signs around, of course,
is not any better. Therefore, h < 0 is not possible.

We see immediately that h > 0 makes good sense. This requires

(2L3 – s) > 0 and (L3 – s) > 0 simultaneously (6.207)

We already excluded (2L3 – s) < 0 and (L3 – s) < 0 simultaneously as candidates
for consideration on the grounds of physical meaning. Let us return to (6.207) now.
It is always the situation and is, therefore, satisfied automatically. We return to
(6.203) and know that R1′ is negative when h > 0, so Ri is a decreasing function of
z and is positive except when h = 0, which corresponds to s = L3 and a zero-valued
R1.

6.5.5. Parametric Study of L3

The ingredients for R1, upon designating the parameter to be studied as z, are
expressed as follows

A = a1z2 + a2z3 (6.208)
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with

a
L C

a
L C

J
1

1 2
2

2
1 2

218 18
= =, (6.209)

The entity B is given by

B = b1z (6.210)

with

b
L C

1
1 2

6
= (6.211)

The entity K is

K = k0 + k1z (6.212)

with

k
s

J
k

s s

J
C0

3

3
1

3
2

6 6

3
2= = − +









, (6.213)

Finally, the entity D is

D
L

z d d s= 





+1
2

2
0 1

6
( ) (6.214)

where

d0 = 3C 2
2 + 4C1C2 (6.215)

d
J

C C1
3

1 2
4= +( ) (6.216)

As a result of this introduction, we obtain

R L
f

d
1 1

2

1

6= ( ) (6.217)

where

f az bz c
d z

d
z= + + +







( )2 0

1

2 (6.218)

with

a = a1s > 0, b = a1s + b1k1, c = b1k0 > 0 (6.219)

The function f can be rewritten as
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f a
ez c

z mz
= + +

+2
(6.220)

with

m
d

d
e b ma= > = −0

1

0, (6.221)

Let

f = a + y (6.222)

Then, as can be seen from (6.222), f is the sum of a fractional function of z, des-
ignated y, and a constant.

Taking the first derivative of f, we have

′ = ′ =
+

f y
N

z mz( )2 2
(6.223)

where

N = –ez2 – 2cz – mc (6.224)

Note that the denominator in (6.223) is positive because each term is positive to
begin with. Hence, the sign of y ′ is determined by that of N. Looking at the coef-
ficients in N, we see that we have to take care of the sign of e first, since c > 0 and
m > 0 from the way they were defined already. Let us do the work case by case as
follows.

Case 1. e > 0
This happens when b > am theoretically at best. But is this possible? The answer is
negative. The reason is demonstrated below.

Proof
Suppose e > 0. Then, for given a > 0, m > 0, we have ma > 0. Since by definition
e = b – ma, it is necessary to have b > 0 in order to achieve b > ma, meaning e >
0. This means

a1s > b1k1 (6.225)

Thus, we have

0
3

3

> s

J
(6.226)
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which is not true, because both s and J3 are positive. Therefore, the supposition e
> 0 is not valid.

Case 2. e = 0
Next we consider the possibility e = 0. This means

b = ma (6.227)

but

b
L s C

J
= − <1

2
2

312
0 (6.228)

and

ma > 0 (6.229)

Putting (6.227–6.229) together, we immediately see a contradiction, so e is nonzero.

Case 3. e < 0
Having eliminated two possibilities out of a total of three, we naturally arrive at this
conclusion. Of course, we also could have reached this conclusion at the outset by
noting that

e
sL C

J
s m= − + <1 2

336
3 2 0( ) (6.230)

The presentation above serves, once again, the purpose of demonstrating alter-
nate way(s) to deal with a given problem and the diversity in devising a problem-
solving strategy when facing more difficult situations.

Let us consider y ′ = 0, which corresponds to N = 0. This happens when

z
c c mce

e
0

2

= − + −( )½
(6.231)

Additionally, N < 0 when z < z0, whereas N > 0 when z > z0. Therefore, y  has
a minimum at z0.

It is interesting to further explore the expression in parentheses in (6.231). It is

Q2 = c(c – me) = p2s2(s + m)(s + 2m) (6.232)

where

p
sL C

J
= 1 2

336
(6.233)
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Note that

Q > 0 and ps(s + m) < Q < ps(s + 2m) (6.234)

Now let us look at y  itself. We can rewrite y  as

y
h

g
= (6.235)

Since g > 0, we know that y is positive, negative, or zero when h is so respectively.
When will y = 0 be the case? This is the case when h = 0 and is at

z
c

e

s

s m
1

2

3 2
= − =

+
(6.236)

Thus, z1 is a critical point in that y < 0 when z < z1, whereas y > 0 when z > z1.

6.6. UNIFORM LOAD ON AN EXTERIOR SPAN
OF A THREE-SPAN CONTINUOUS BEAM: GENERAL CASE
The parametric study of Li , Ci (i = 1, 2, 3) was done in Section 3.2.3. Here we will
pursue another study, namely the effects of the location of the loaded portion of the
span. We take the reaction R1, as presented in that section, in the form

R
w h E h E h E

D
1

1 2 2 3 3 4= + +( )
(6.237)

where

h Z T
C L

1
2 3

2

3
= −









 (6.238)

h
C L Z

2
3 3

2
= −

(6.239)

h
ZL

J
3

3

36
= (6.240)

as defined earlier.
Since the location of the loaded portion appears only in h1, h2, h3, and E2, E3,

E4, we will consider the function f defined as

f = h1E2 + h2E3 + h3E4 (6.241)

where the h’s can be rewritten in terms of the fundamental entities as
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h
L L C C

1
1 3

2
2 3

18
0= > (6.242)

h
L L C C

2
1 3 2 3

12
0= − < (6.243)

h
L C C

3
1 2 3

36
0= > (6.244)

The function f can be put in the following form

f = bg(a) (6.245)

with

g(a) = d3a3 + d2a2 + d1a + d0 (6.246)

as a function of the locator of load being our next target.
The coefficients in the expression for g(a) are defined as

d
L C C

3
1 2 3

36
0= > (6.247)

d
L C C

b L2
1 2 3

3
24

2 0= − <( ) (6.248)

d
L C C

L L b b1
1 2 3

3
2

3
2

36
2 3= − +( ) (6.249)

d
h

b
h

b
h

b0
1 2 2 3 3

2 3 4
= 





+ 





+ 





(6.250)

We have

g ′ = 3d3a2 + 2d2a + d1 (6.251)

where d3 and d2 are positive or negative respectively by noting (6.247) and (6.248),
but the coefficient d1 may be positive, negative, or zero. We will explore this now.

For convenience, let

K = 2L3
2 – 3L3b + b2 (6.252)

We see from (6.249) that d1 and K have the same sign and that d1 = 0 whenever K
= 0.

Now K = 0 when

(L3 – b)(2L3 – b) = 0 (6.253)
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This means L3 = b or 2L3 = b theoretically. However, 2L3 = b is physically not
possible, so only L3 – b is admissible.

Next, K < 0 when (L3 – b) and (2L3 – b) have opposite signs. However, this is
physically impossible.

Finally, K > 0 when

(L3 – b)(2L3 – b) > 0 (6.254)

This is always the case, with the exception of L3 = b, which corresponds to K = 0.
Let us proceed to d0. We find that a good-looking expression for d0 is

d
L C C

Mb0
1 2 3

144
= 





(6.255)

where

M = [4L3
2 – 4L3b + b2] (6.256)

is extremely nice and simple. It is a quadratic expression in either b or L3 for one
thing, and is even a complete squire for another. Note that d0 = 0 whenever M =
0 and that d0 and M have the same sign.

Now M = 0 when (2L3 – b) = 0, but this is not possible on grounds of physical
meaning. It can be seen clearly that M > 0. Thus, d0 > 0. This completes the descrip-
tion of the coefficients in g.

Now let us return to g ′ first. g ′ = 0 when

3a2 + 3Na + K = 0 (6.257)

where

N = b – 2L3 < 0 (6.258)

It is interesting to note that N 2 = M.
The roots of (6.257) are a1 and a2 and they have the appearance

a
N Q

1
3

6
= − + ½

(6.259)

a
N Q

2
3

6
= − − ½

(6.259A)

with

Q = 3(4L2
3 – b2) > 0 (6.260)

and a1 < a2. Both of the roots shown in (6.259) and (6.259A) are positive real and
both are admissible.
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Next, we note that

g ″ = 6d3a + 2d2 (6.261)

and is negative at a1 and positive at a2. Hence, g has a maximum at a1 and a
minimum at a2.

Consequently, f and R1 have a maximum at a1 and a minimum at a2.

6.7. TRIANGULAR LOAD ON AN EXTERIOR SPAN
OF A THREE-SPAN CONTINUOUS BEAM: GENERAL CASE
The usual approach established earlier will be followed in the parametric study
below. First of all, we will review the entities involved in the expressions for the
reactions when considering the effects of a particular parameter on the reactions.
Then we will express each of the entities under study as a function of the parameter.
Utilizing the appropriate method, we will evaluate and draw conclusions from results
of this mathematical analysis.

6.7.1. Parametric Study of J1

In order to maintain uniformity of notations as much as possible, we denote the
parameter to be studied as z , while observing that the entities Q, Ei , and A are
independent of z and are thus constants in the process of mathematical analysis. We
would like to study the effects of z on the reaction R1. There are several entities that
appear in the expression for R1. Therefore, we will, first of all, deal with these entities
and treat them as functions of z .

With the above brief introduction, we have

G = h0 + h1z –1 (6.262)

where

h
L C

h
L

0
1
2

2
1

1
3

3 3
= =, (6.263)

The denominator in the expressions for all reactions is given by

D = d0 + d1z –1 (6.264)

where

d
L L

C C C0
1 3

2

2
2

2 3
6

3 4= 





+( ) (6.265)
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d
L L

L C C1
1 3

2

1 2 34
6

= 





+( ) (6.266)

Other entities can be expressed as follows. For D1, we have the formula

D a
a

z
1 0

1= + (6.267)

with

a L Q
C h

0 3
2 2 0

3
= −





(6.268)

a
L C h

1
3 2 1

3
= −

(6.269)

For D2, we have the formula

D b
b

z
2 0

1= + (6.270)

with

b

C

h
0

3

0

2=

−

(6.271)

b

C

h
1

3

1

2=

−

(6.272)

Finally, for D3, we have the formula

D c
c

z
3 0

1= + (6.273)

with

c
h

J
0

0

36
= (6.274)

c
h

J
1

1

36
= (6.275)

As a result of the above introduction, we have
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R
C

D
1 = (6.276)

where C is a constant as far as z is concerned.
For convenience in subsequent development, we will let

y

d
d

z

=
+

1

0
1

(6.277)

Thus,

R1 = cy (6.277A)

Since d1 > 0, we have

′ = +













 >y d z d

d

z
1 0

1

2

0 (6.278)

Therefore, y is an increasing function of z.
Note that the function y can be rewritten as

y
z

d z d

d

d

z
d

d

d
=

+
=

−
+

















0 1

1

0

1

0

0

1

(6.279)

which is always positive.
Next, let us proceed to the investigation of R4. Let

N = g1E2 + g2E3 + g3E4 + g4E5 (6.280)

Then, using the results presented above for the entities Di  and the definitions
of gi, we have

N n
n

z
= +0

1 (6.281)

where

n0 = a0e1 + b0e2 + c0e3 (6.282)

n1 = a1e1 + b1e2 + c1e3 (6.283)

with ei defined as
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e
w

b
aE E e

w

b
aE E

e
w

b
aE E

1 2 3 2 3 4

3 4 5

= 





− + = 





− +

= 





− +

  

 

( ), ( ),

( )

(6.284)

Thus, we obtain

R
N

D d
n

P

z r
4

0
0

1= =






+
+







 (6.285)

where

r
d

d
= >1

0

0 (6.286)

Again for convenience in subsequent work, we define a new function y as

y
P

z r
=

+
(6.287)

where

P n
n d

d
= −1

0 1

0

(6.288)

Thus,

y ′ = –P(z + r)–2 (6.289)

We see that y ′ > 0 if P < 0, whereas y ′ < 0 where P > 0. Moreover, y ′ = 0 if
P = 0.

It is clear from these statements that P is of fundamental importance. On review-
ing the elements that make up P, we know that a thorough examination of these
elements will prove to be useful and interesting as well, so let us start with n0 and
n1.

Simple algebraic manipulation shows that a0 < 0, a1 < 0, b0 < 0, b1 < 0, c0 >
0, and c1 > 0. It has been proved (see Chapter 1) that

E3 – aE2 > 0, E4 – aE3 > 0, E5 – aE4 > 0 (6.290)

Therefore,

ei > 0 for i = 1, 2, 3 (6.291)

As a result, it is possible that both n0 and n1 may be positive, negative, or zero (not
necessarily at the same time, of course).
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Next, we have the coefficients in D, namely d0 and d1, to be reviewed. Both of
them are positive, and both have to do with C2, C3, L1, and L3 and are increasing
functions of these fundamental entities.

It is very interesting and important to note that the ratio between these two
coefficients in D plays a crucial role in the behavior of P and thus of y and R4, as
will be seen a little later.

Now let us return to the determining component P in both y and y ′. On the
surface, we see that when P = 0, we have y = 0 and y ′ = 0. The former means that
R4 is a constant n0/d0 regardless of the value z. The latter signifies the value of y when
P = 0 is a stationary value.

What about the cases where P > 0 and P < 0? P > 0 means

n1 > n0r (6.292)

or

n

n
r n1

0
0 0> >for  (6.292A)

The case P < 0 holds if and only if

n1 < n0r (6.293)

or

n

n
r n1

0
0 0< >for  (6.293A)

and P = 0 holds when

n1 = n0r (6.294)

or

n

n
r n1

0
0 0= >for  (6.294A)

Note that Formulae (6.292A), (6.293), and (6.294A) all state the significance of
the relative magnitude of two ratios. One is between the coefficients in N, whereas
the other is between those in D. Moreover, there is an interesting lower bound L1/
C2 for r, which is expressed as follows:

r
L

C
> 1

2
(6.295)

Note also that, from (6.292A) and (6.294A), for P > 0 or P = 0 to hold, it is
necessary that n1/n0 > 0 or = 0 respectively, which means that n1 and n0 must be
of the same sign, where n0 is nonzero. Also, only when P < 0 is n1/n0 < 0 possible,
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because r > 0 and the very condition that specifies P < 0. These remarks apply when
n0 is nonzero. In this connection here, if n0 = 0, then we simply have

P = n1 (6.296)

As a result, we have P > 0, < 0, or = 0 when n1 > 0, < 0, or = 0 respectively.
This naturally leads to the question: What are the consequences if n is zero? We then
have

N
n

z
R

d
n

z r
= =







+
1

4
0

1

1

,

 

(6.297)

What if both n0 and n1 are zero? Well, we have N = 0, and D is always positive.
Therefore, it is plausible that R4 = 0 theoretically. But is it possible, mathematically,
that both n1 and n0 are zero at the same time?

That is an interesting question which will invoke an even more interesting in-
vestigation process and eventual answer. It can be left as a future endeavor for the
reader who chooses to skip the next several paragraphs under the heading “The Black
Hole—Or Is It?” This reader probably will get more than he or she bargained for.
Additionally, as was indicated earlier, it is not the intention of this book to encom-
pass answers to all reasonable questions. Rather, the purpose is to show the philoso-
phy, methodology, and approaches, as well as possibility of the existence of new
frontiers and to inspire the reader to do the exploration on his or her own so that
applying this book will be fun and useful.

The Black Hole—Or Is It?
We begin by looking at the definitions of n0 and n1. To do this, we need to display
the definitions of the symbols and the attributes of these concepts defined therein.
The list is as follows:

a
C L L

b
C C L

c
C L

J
0

2
2

2
2

3
0

2 3 1
2

0
2 1

2

312 6 18
=

−
=

−
=, , (6.298)

a
C L L

b
C L

c
L

J
1

2 3 1
3

1
3 1

3

1
1
3

39 6 18
=

−
=

−
=, , (6.299)

After some algebraic manipulations and simplification, we arrive at

n
C L

M0
2 1

2

36
=







(6.300)
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with

M C L e C e
e

J
= − − +3 6

2
2 3 1 3 2

3

3

(6.301)

and

n
L

N1
1
3

36
=







(6.302)

where

N C L e C e
e

J
= − − +4 6

2
2 3 1 3 2

3

3

(6.303)

Pay close attention to the appearance of M and N, because they look very much
like twin brothers. In fact, the only difference is the numerical value of the first
coefficient. In precise terms,

N = M – C2L3e1 (6.304)

Now let us return to our original question: Can both n0 and n1 be zero? For n0

to be zero, we must have M = 0 because the other factor of n0 is positive. From this,
we have

3
2

62 3 1
3

3
3 2C L e

e

J
C e= − (6.305)

For n1 to be zero, N = 0 is required, because once again the other factor of n1 is
positive (and of course nonzero). As a result of this, we have

4
2

62 3 1
3

3
3 2C L e

e

J
C e= − (6.306)

Looking at the right side of both equalities (6.305) and (6.306) first, we see that
they are exactly the same. Having done that, let us look at the left side of these
formulae again. Surprise and surprise—N and M are not perfect twins. Thus, the
principle is that n0 and n1 cannot be zero at the same time. That solves the mystery
we had before digging in the black hole.

Since we are already in, we might just as well go one step further and dig a little
deeper. We have seen the ratio n1/n0 on several occasions where n0 is nonzero and
are naturally very curious about its attributes. Let us call this ratio t. Thus

t
n

n
= 1

0
(6.307)
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which is equal to

t
L N

C M
= 1

2
(6.308)

Note that both C2 and L1 are positive. Hence, t can be positive or negative depending
on the sign of N/M. Furthermore, t is zero when N is zero. Let us look at this matter
case by case as follows.

Case 1. t = 0
This happens when N = 0, as noted before. From the definition of N, this means

2
4 63

3
2 3 1 3 2

e

J
C L e C e= + (6.309)

Another implication of t = 0 is

M > 0 (6.310)

which is the result of N = 0 and M > N [see (6.304) above regarding the relationship
between M and N]. Consequently, n1 = 0 and n0 > 0. From this last statement, we
have via (6.288), upon invoking the definition of r,

P = –n0r < 0 (6.311)

where

n
C L L e

0
2
2

1
2

3 1

36
= (6.312)

From the above, we see that P is directly proportional to r and a very neat, nice-
looking n0, in addition to having a much simpler expression than (6.288) itself. Even
though (6.285) is not much simplified in form, actual expressions for both n0 and
P are much simpler than before, and just because of this we have

R
n

d

r

z r
1

0

0

1=






−
+







 (6.313)

The last formula says that R4 is positive and proportional to the ratio n0/d0,
which is the absolute upper limit of R4. Also, from (6.311) and (6.289), we see that
y ′ > 0. Therefore, y is an increasing function of z and so is R4 by virtue of Formulae
(6.285) and (6.287).

Case 1 appears to be the story of an innocent-looking pair of “pseudo” twin
brothers M and N which are powerful or even magical actors. But they are not
finished with their show yet. In fact, we have only seen one scene, namely t = 0, and
there are two more scenes, t < 0 and t > 0, to go.
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Case 2. t < 0
Again, we look at M and N for clues. This is the case where M and N have opposite
signs. Due to the way they are, this automatically puts M on the positive side and
N on the other side (i.e., M > 0 and N < 0). This means, then, that n0 > 0 and n1

< 0. From the last statement and Formula (6.288), we see immediately that P < 0.
As a result of this and from (6.289), we have y ′ > 0. Thus, y is an increasing function
of z and so is R4 [see (6.285)].

Now we ask: Is it possible for R4 to be zero or negative? The answer is yes. From
(6.285) and (6.288), R4 = 0 requires that

z
n

n
= − 1

0

(6.314)

which is possible because t = n1/n0 is negative in the case under study here.
Of course, the condition for R4 > 0 is, from (6.285) and because d0 > 0, simply

n
P

z r
0 0+

+
> (6.315)

which leads, with the aid of (6.288), to z > –n1/n0. Similarly, the condition R4 < 0
will lead to z < –n1/n0, which is possible for any given n1, n0. Thus, we see that R4

may be positive, negative, or zero depending on the relative magnitude of z and t
specified above.

Case 3. t > 0
Since t = L1N/(C2M) and both L1 and C2 are positive, it follow that the sign of t agrees
with that of N/M. This is the present case when M and N have the same sign. Thus,
there are two possibilities for this to hold. One is when both M and N are positive,
and the other is when M and N are negative at the same time. We will review these
two sources of M and N that have the same sign next.

(a) Both M and N are positive. We note that N/M < 1. Thus,

t
L

C
< 1

2
(6.316)

That is, t has an upper bound L1/C2 > 0.
It is obvious that the cases where t < 0 and t = 0 both satisfy (6.316). So far,

no t can be greater than L1/C2. Let us check the possibilities for P = 0, < 0, or > 0.
First, P = 0 means, from (6.288) and the definition of t, that t = r. However,

we know from (6.293) that r > L1/C2, so P = 0 would bring us to t > L1/C2, which
is not possible in view of (6.316). Therefore, we reach the conclusion that t cannot
be equal to r, as well as the fact that P is nonzero.
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If P > 0, then from (6.288) and (6.307) we have t > r, which means that t > L1/
C2 from the property of r, namely r > L1/C2. But t > L1/C2 is not possible, given the
validity of (6.316). Therefore, P is not positive, so P must be negative, and this easily
can be confirmed by other methods also.

From (6.285), we see that R4 has an upper bound n0/d0 > 0 since n0 is positive
as a result of M, C2, and L1 being positive. Can R4 be zero or negative then? Well,
let us see.

For R4 to be zero, we need

zn0 = –P – rn0 and z > 0 (6.317)

Thus, –P – rn0 > 0, but from (6.288) we have P = n0(t – r). Therefore, we arrive
at –n0t > 0. This means that –n0 > 0 is required. However, it is given that both M
and N are positive, and so is, therefore, n0. Thus, the supposition that R4 can be zero
is not valid. Similarly, if we assume that R4 < 0, then we will reach the logical
conclusion that n0z < –P – n0r. This means that n0z < –n0t < 0. As a result of this,
and n0 > 0 and t > 0, we have z < t < 0, which is not admissible since z is positive.

Based on the above, we conclude that R4 cannot be negative either under the
conditions stipulated above, including both M and N being positive. In other words,
R4 must be positive.

(b) Both M and N are negative. We observe that, in this case, N/M > 0 and
(6.316) still holds, along with the statement that L1/C2 is an upper bound for t. Also,
we have the same conclusion as in (a): R4 can be positive only as proved by several
different approaches. However, there is one big difference between (a) and (b): n0/
d0 is a lower bound for R4 because here in (b), P > 0. If we want to see why P >
0, we simply note that P = n0(t – r) and the fact that here (1) (t – r) < 0 because
r > L1/C2 > t and (2) n0 < 0 because M < 0 is given, and n0 is just M multiplied
by a positive entity C2L1

2/36. This concludes the description of the black hole.

6.7.2. Parametric Study of J2

Let us denote the parameter J2 by z. Here, entities entering the expressions for R1

and R4 have the following features:

Q
L L

z
= 1 2

6
(6.318)

A1, A2, and A3 are independent of z.

G C
L

z

L
= +






1

2 1
2

3
(6.319)
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D
a

z

a

z
a

C L L L
a

L L
1

1 2
2 1

1 1
2

2 3
2

1
2

2
3

9 12
= + =

−
=

−
, , (6.320)

D b
b

z
b

C C L
b

C L L
2 0

1
0

1 3 1
2

1
3 1

2
2

6 6
= + 





= − = −
, , (6.321)

D c
c

z
c

C L

J
c

L L

J
3 0

1
0

1 1
2

3
1

1
2

2

318 18
= + = =, , (6.322)

D = d2z –2 + d1z –1 + d0 (6.323)

where

d
L L L

2
1 2 3

2

2
= ( )

(6.324)

d L
L L

C C1 2
1 3

2

1 34
6

= 





 +( ) (6.325)

d C C
L L

0 1 3
1 3

2

4
6

= 





(6.326)

With this introduction of the necessary notations, we begin our study of R1 as
follows.

R
CQ

D
1 = (6.327)

where

C = f1E2 + f2E3 + f3E4 + f4E5 (6.328)

is independent of z.
Let us define y by

y
Q

D
= (6.329)

Then

y
L L z

H
= 





1 2

6
(6.330)

where

H = (d2 + d1z + d0z2) (6.331)

is positive.
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From (6.330), we see that y is positive also except at

z = 0, meaning y = 0 (6.332)

the impractical case of J2 = 0.
Now

′ = −
y

d d z

H
2 0

2

2
(6.333)

Hence,

y ′ = 0 when d2 – d0z2 = 0 (6.334)

This means that

z
d

d

L

C C
0

2

0

2

1 3

3

2
=







=
½ ½

½( )
(6.335)

Moreover,

y ′ > 0 when z < z0, y ′ < 0 when z > z0 (6.336)

Hence, y has a maximum at z0.
We now proceed to look at R4. Let us introduce a convenient notation N defined

by

N = g1E2 + g2E3 + g3E4 + g4E5 (6.337)

which is equal to

N = D1e1 + D2e2 + D3e3 (6.338)

where ei (i = 1, 2, 3) is as defined in Section 6.7.1.
Let us review the contents of D1, D2, and D3 in some detail. Regarding D1, both

a1 and a2 are negative. For D2, both b0 and b1 are also negative. As to D3, both c0

and c1 are positive. These observations enable us to assert that both D1 and D2 are
negative, whereas D3 is positive. Moreover, all the ei are positive. As a result, we see
that N may be positive, negative, or zero.

We now rearrange the terms of N according to the powers of z as follows.

N = n2z –2 + n1z –1 + n0 (6.339)

where

n2 = a2e1, n1 = a1e1 + b1e2 + c1e3, n0 = b0e2 + c0e3 (6.340)

We can rewrite n0 as a product of two factors, one of which contains e2, e3, and
L3 and the other which does not. We call the former factor K and the latter H for
convenience. Thus,
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n0 = KH (6.341)

where

K = e3 – 3e2L3 (6.342)

H
C L

J
= 1 1

2

318
(6.343)

Noting that e2, e3, and L3 are all positive in the expression for K, and that n0

is directly proportional to K and H, with H being positive, we immediately come to
the following important conclusion: n0 is positive, negative, or zero according to
whether K is positive, negative, or zero respectively. Now

K
e

e
L> >0

3
3

2
3  when  (6.344)

K
e

e
L< <0

3
3

2
3  when  (6.345)

K
e

e
L= =0

3
3

2
3  if  and  only  if  (6.346)

Formulae (6.344–6.346) have this message for us: There is a very special span
length L3, called the critical span length, which determines the fate of n0, the most
influential coefficient in N, as will be seen below.

The expression for R4 is

R
N

D
4 = (6.347)

which can be rewritten as

R
n z n z n

d z d z d
4

0
2

1 2

0
2

1 2

= + +
+ +

(6.348)

The sign of R4 is determined completely by that of the numerator, henceforth
called M for convenience, in (6.348), because the denominator, called D0, is equal
to D, which is positive, multiplied by z 2. Moreover, R4 is zero when M is.

Now we see that the leading coefficient in the numerator in (6.348) is the “prom-
ising” n0 that was mentioned before.

Of special interest is the case where n0 is zero. Here, the original

M = n0z2 + n1z + n2 (6.349)

becomes simply

M = n1z + n2 (6.350)
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If we set M = 0 in (6.350), we have

z
n

n
= − 2

1

(6.351)

which is possible provided n1 and n2 have opposite signs. We know that n2 is negative
because a2 is negative, e1 is positive, and n2 is the product of these two entities. This
leads to the consideration of n1, which must be positive to make (6.351) physically
meaningful.

Next, let us look at the general case where n0 is nonzero. If we set M = 0, then
the roots of this equation are

z
n S

n
1

1

02
= − + ½

(6.352)

z
n S

n
2

1

02
= − − ½

(6.353)

where

S = n1 – 4n0n2 (6.354)

For real roots, it is required that

S > 0 or S = 0 (6.355)

With (6.355) and the condition n0 < 0, we have two cases to consider:

1. n1 < 0 implies that there are no positive roots.
2. n1 > 0 means that there are two positive roots, as given in (6.352) and (6.353).

With (6.355) and the condition n0 > 0, we also have two cases to consider:

1. n1 < 0 signifies that there is only one positive root, given by (6.352).
2. n1 > 0 leads to the same conclusion as for the case just described.

The reaction R4 can be positive, negative, or zero, as mentioned earlier. Thus,

R4 > 0 when n0(z – z1)(z – z2) > 0 (6.356)

R4 < 0 when n0(z – z1)(z – z2) < 0 (6.357)

R4 = 0 when n0(z – z1)(z – z2) = 0 (6.357A)

Note that in (6.356–6.357A) the three factors n0, (z – z1), and (z – z2) are important
and must all be considered because they all contribute to the final results.
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Next, we will examine the first derivative of R4. Once again, for the sake of
keeping with the trend in this section and at the same time changing pace from the
rest of the book, we will do n0 = 0 first.

For the very interesting case where n0 = 0, we have

R
P

D
4 = (6.358)

where

P = p2z2 + p1z + p0 (6.359)

with

p2 = –d0n1, p1 = –2d0n2, p0 = d2n1 – d1n2 (6.360)

Now P = 0 when

z
p T

p
= − +1

22

½
(6.361)

or

z
p T

p
= − −2

22

½
(6.361A)

where

T = p1
2 – 4p0p2 (6.362)

For real roots of P = 0, it is required to have

T > 0 or T = 0 (6.363)

When (6.363) is satisfied, we then check for positive roots as admissible ones.
When P = 0, we check for a possible maximum or minimum of R4. When P > 0,
we know that R4 is an increasing function of z. When P < 0, then R4 is a decreasing
function z.

For the general case where n0 is nonzero, we have

R
d

n
P

D

d

4
0

0
0

0

1=






+



















 (6.364)

where

P = p1z + p0 (6.365)
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with

p n
n d

d
p n

n d

d
1 1

0 1

0
0 2

0 2

0

= − = −, (6.366)

The first derivative of R4 with respect to z is

′ =






+ +



























R
d

r z r z r

D

d

4
0

2
2

1 0
2

1
 (6.367)

where

r
n d

d
n r

n d

d
n r

n d n d

d
2

0 1

0
1 1

0 2

0
2 0

1 2 2 1

0

= − = −






= −
, , (6.368)

It is interesting to note that r2 = –p1 and r1 = –2p0.
R4′ = 0 when the numerator of R4′ is zero. This is when

z
r r r r

r
1

1 1
2

0 2

2

4

2
= − + −( )½

(6.369)

or

z
r r r r

r
2

1 1
2

0 2

2

4

2
= − − −( )½

(6.370)

Again, we check the real positive root(s) requirements for admissibility.
Finally, we have

R4′ > 0 when r2(z – z1)(z – z2) > 0 (6.371)

R4′ < 0 when r2(z – z1)(z – z2) < 0 (6.372)

The above is for nonzero r2. If r2 = 0, then R ′ = 0 requires, for physical meaning,

z
r

r
= − >0

1

0 (6.372A)

6.7.3. Parametric Study of J3

We will replace all J3 with z and examine the entities involved in the expressions for
R1 and R4.

First, we observe that Q, G, and E are independent of z, and we denote the Ai

as
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A
a

z
A

a

z
A

a

z
1

1
2

2
3

3= = =, , (6.373)

with

a
L

a
L

a
L

1
3
3

2
3
2

3
3

3 2 6
= = − =, , (6.374)

Next, we note that

D L L
C C C

1 1
2

3
2
2

1 2

12 9
= +







(6.375)

is independent of z, in contrast to

D
L G

z
D

G

z
2

3
3

2 6
= − =, (6.376)

which are functions of z.
Finally, the denominator in the expressions for R1 and R4 is

D d
d

z
= +0

1 (6.377)

where

d
L L

C C C0
1 3

2

2
2

1 2
6

3 4= 





+( ) (6.378)

d
L L

L C C1
1 3

2

3 1 24
6

= 





+ ( ) (6.379)

Thus, we obtain

R
QN

D
1 = (6.380)

where

N f E f E f E f E
a e a e a e

z

C

z
= + + + = + + =1 2 2 3 3 4 4 5

1 1 2 2 3 3 (6.381)

with

C = (a1e1 + a2e2 + a3e3) (6.382)

as a constant relative to z.
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Let

y
d z d

=
+
1

0 1

(6.383)

Then

y ′ = –d0(d0z + d1)–2 < 0 (6.384)

Therefore, y is a decreasing function of z.
Now let us move to the evaluation of R4. The numerator in the expression for

R4 is

g E g E g E g E n
n

z
1 2 2 3 3 4 4 5 0

1+ + + = + (6.385)

where

n D e n
L G

e
G

e0 1 1 1
3

2 3
2 6

= = −





+ 





,   (6.386)

Thus

R
n

n
z

d
d
z

d
n

P

z
d

d

4

0
1

0
1 0

0
1

0

1=
+

+
=







+
+



















 (6.387)

where

P n
n d

d
= −1

0 1

0

(6.388)

From (6.388), it is clear that

P n
n d

d
= =0 1

0 1

0

  when  (6.389)

P n
n d

d
< <0 1

0 1

0

  when  (6.390)

P n
n d

d
> >0 1

0 1

0

  when  (6.391)

We see that the last four formulae are our old friends from Section 6.7.1.
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Finally, we have

′ = − +






−

R
P

d
z

d

d
4

0

1

0

2

(6.392)

which is zero, negative, or positive when P is zero, positive, or negative respectively.

6.7.4. Parametric Study of L1

The independent variable is again denoted by z. The entities A1, A2, and A3 are free
from z and thus are constants in this investigation. However, Q, G, D1, D2, D3, and
D are functions of z. As a result, we have

R

CC

z d d z
1

2

0 1

6=
+( )

(6.393)

where

C = f1E2 + f2E3 + f3E4 + f4E5 (6.394)

is a constant. The entities d0 and d1 are defined as

d
L

C C C d
L

J
C C0

3
2

2
2

2 3 1
3
2

1
2 3

6
3 4

9
= 





+ =








 +( ), ( ) (6.395)

Let

y
z d d z

=
+
1

0 1( )
(6.396)

Then

R
CC

y1
2

6
= 





(6.393A)

and y ′ < 0 for all z. Therefore, y as well as R1 are decreasing functions of z.
Regarding the reaction R4, we have

R
N

D
4 = (6.397)

where

N = z2(n1z + n0) (6.398)
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with

n a e
C

h e
J

h e1 3 1
3

3 2
3

3 3
2

1

6
= − 





+








 (6.399)

n a e
C

h e
J

h e0 2 1
3

2 2
3

2 3
2

1

6
= − 



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+








 (6.400)

h
C

h
J

2
2

3
13

1

3
= =, (6.401)

Thus,

R
n n z

d d z
4

0 1

0 1

= +
+

(6.402)

which can be rewritten as

R
d

n
P

z
d

d

4
1

1
0

1

1=






+
+



















 (6.403)

where

P n
n d

d
= −0

1 0

1

(6.404)

We see some familiar expressions as follows:

P n
n d

d
< − <0 00

1 0

1

  when  (6.405)

P n
n d

d
= − =0 00

1 0

1

  when  (6.406)

P n
n d

d
> − >0 00

1 0

1

  when  (6.407)

Also,

′ = − +










−

R
P

d
z

d

d
4

1

0

1

2

(6.408)

Hence, R4 is a decreasing or increasing function of z for P > 0 or P < 0 respec-
tively. Moreover, the rate of change is decreasing also. Note that both n0 and n1 can
be positive, negative, or zero.
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6.7.5. Parametric Study of L2

Again, we denote the independent variable by z. Then

R
CQ

D
1 = (6.409)

where

C = f1E2 + f2E3 + f3E4 + f4E5 (6.410)

is a constant and

Q
L

J
z=







1

26
(6.411)

D = d2z2 + d1z + d0 (6.412)

with

d

L L

J
d

L L C C

J

d
L L

C C
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1 3

2

2

1
1 3

2
1 3

2

0
1 3

2

1 3

3 6 4
6

4
6

=



















= 





+

= 





, ,

( )

(6.412A)

It is convenient to consider

Q

D

L

J
y=











1

26
 (6.413)

where

y
z

D
= (6.414)

Then

′ = −
y

d d z

D
0 2

2

2
(6.415)

Note that R1′ and y ′ have the same sign. R1′ = 0 when y ′ = 0, that is, at

z
d

d
=





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0

2

½

(6.416)

and y has a maximum here and so does R1.
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Regarding the reaction R4, we have

R
n z n z n

d z d z d d
n

P
D

d

4
2

2
1 0

2
2

1 0 2
2

2

1= + +
+ +

=






+



















 (6.417)

where

n2 = a2e1 > 0, n1 = a1e1 + b1e2 + c1e3,

n0 = a0e1 + b0e2 + c0e3 (6.418)

Note that n1 and n0 may be positive, negative, or zero.
The entity P is defined as

P = p1z + p0 (6.419)

where

p n
n d

d
p n

n d

d
1 1

2 1

2
0 0

2 0

2

= − = −, (6.420)

Again, p1 and p0 can be positive, negative, or zero.
Taking the first derivative of R4 with respect to z, we obtain

′ =













R
d

N

D

d

4

2

2

2

1

(6.421)

Thus, R4′ and N have the same sign. R4′ = 0 when N = 0, where N is defined as

N p z p z
p d

d

p d

d
= − − + −





1

2
0

1 0

2

0 1

2

2 (6.422)

The roots of N = 0 can be found easily via the quadratic formula. Of course, we
will check for the conditions specifying real positive roots. Once the roots are ob-
tained, we can determine the maximum or minimum value(s) of the reaction and
the corresponding values of the independent variable in the usual manner as pre-
sented earlier. This is a good exercise for the interested reader. Note that p1 = 0 leads
to the condition n1 = n2d1/d2, while p0 = 0 means n0 = n2d0/d2. We can ask the
following questions. First, can both of these conditions be satisfied? If they can, what
does that mean? Is it possible that n0 = 0? If so, when will it happen and what will
its physical significance be? These are interesting and important questions and are
worthwhile to pursue. We will leave them to future endeavors.
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6.7.6. Parametric Study of L3

We denote the parameter as z. The reaction R1 is

R
CN

z d z d
1

1 0

=
+( )

(6.423)

where

C
Q

J
=

6 3
(6.424)

N = 2e1z2 – 3e2z = e3 (6.425)

R1 can be rewritten as

R
C

d
e

P

z f z
1

1
1 2

1

2=








 +

+








 (6.426)

where

f
d

d
P e p z1

0

1
3 1= = −, (6.427)

p1 = 3e2 + 2e1f1 > 0 (6.428)

Note that P < 0, P = 0, or P > 0 when e3 – p1z < 0, = 0, or > 0 respectively.
That is,

P z
e

p
< >0 3

1

  when  (6.429)

P z
e

p
= =0 3

1

  when  (6.430)

P z
e

p
> <0 3

1

  when  (6.431)

R1′ < 0, = 0, or > 0 when T < 0, = 0, or > 0 respectively, where

T = p1z2 – 2e3z – f1e3 (6.432)

T = 0 has two roots, but only one is positive and therefore admissible, namely

z
e S

p
S e p f e= + = +3

1
3
2

1 1 3

½
with  (6.433)

Here R1 has a minimum.
Let us take care of R4 now.

R
n z n

z d z d
4

1 0
2

1 0

= +
+( )

(6.434)
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where

n1 = a1e1 + b1e2 < 0, n0 = D3e3 > 0 (6.435)

with

a Q
C G

b
G

J
1

2 2
1

3
0

2
0= − < = − <, (6.436)

R4′ < 0, = 0, or > 0 when U > 0, = 0, or > 0 respectively, where

U = u2z2 + u1z + u0 (6.437)

with

u2 = –2d1n1, u1 = –(d0n1 + 3d1n0), u0 = –(2d0n0) (6.438)

Note that R4′ = 0 when z = 0 or U = 0. The former source of R4′ = 0 is a trivial
case. The latter means that

z
u V

u
= − +1

22

½
(6.439)

is the only real positive root, and R4 has a minimum here.
In (6.439), the symbol V is defined as

V = u1
2 – 4u0u2 (6.440)

which is greater that zero, in fact greater than u1
2, z, due to the fact that u2 > 0 and

u0 < 0 hold as a result of n1 < 0, d1 > 0, d0 > 0, and n0 > 0.

6.8. A CONCENTRATED COUPLE AT AN ARBITRARY POINT
ON AN EXTERIOR SPAN OF A THREE-SPAN CONTINUOUS
BEAM: GENERAL CASE
From Section 3.2.6 on the same subject, we know that the reaction R1 is

R
HK FZ

D
1 = −

(6.441)

where

HK M C

C L
L c

J
M CA=

+
−









= −0

3 2
3
2 2

3

0

2 3

6
(6.442)

− = + =FZ CL
C C

MCB3
2 3

3
(6.443)
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with

C
L L C= 1 3 2

6
(6.444)

For convenience in future development, consider the expression

Y
R

M
= 1

0

(6.445)

6.8.1. Parametric Study of L1

Y as a function of the parameter z under study is

Y
a

F Gz z
=

+( )
(6.446)

where a, F, and G are constants defined as

a
C L

A B F
L

C C C

G
L

J
C C

= − + =






+

=






+

2 3 3
2

2
2

2 3

3
2

1
2 3

6 36
3 4

9

( ), ( ),

( )

 

 

(6.447)

respectively.
Note that the dependency of R1 on z is in exactly the same way as in the case

of uniform load.

6.8.2. Parametric Study of L2

Here we consider the function

Y
z az b

D
= +( )

(6.448)

where D is a quadratic function of z in the form

D = N(z2 + hz + d) (6.449)

with

h C C J d C C J N
L L

J
= 





+ = 





=4

3

4

3 12
1 3 2 1 3 2

2 1
2

3
2

2
2

( ) , , (6.450)

The constants a and b in (6.448) will be defined later.
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The function Y now takes the form

Y
N

a
f

g
= 





+










1
 (6.451)

where

f = (b – ah)z – ad, g = z2 + hz + d (6.452)

The sign of Y ′ is determined by that of P, where

P = (ah – b)z2 + (2ad)z + bd (6.453)

with

a
L L

J J J
=









 −







1 3
2

2 2 318

1 1
 (6.454)

b
L L

J J
L c= −









 −  1 3

2 3
3
2 2

36
3( ) (6.455)

It is interesting to note that both a and b can be positive, negative, or zero. For
entity a, it is less than, greater than, or equal to zero when J3 < J2, J3 > J2, or J3 =
J2 respectively. Thus, the sign of a is determined by the relative magnitude of J2 and
J3, while the sign of b agrees with that of –(L3

2 – 3c2). The former has something
important to do with the relative magnitude of J values of span numbers 2 and 3
directly, and the latter ties closely to the relationship between the loaded span length
and the location of the applied couple. Because of this and the resulting sign of the
leading coefficient, as well as whether this coefficient is zero, it is also very important
to consider the following categories:

A. ah > b
B. ah = b
C. ah < b

Let us look at category A first.

Category A. ah > b
Under this category, we still have several cases to consider.

Case 1. Both a and b are positive. For this case, which means that 1/J2 > 1/J3

and 3c2 > L3
2 simultaneously, we have R1′ > 0 because all coefficients in R1′ are positive.

Therefore, R1 is an increasing function of z .
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Case 2. a > 0 and b < 0.  For this case, which means that 1/J2 > 1/J3 but 3c2

< L3
2, we have one real positive root of R ′1 = 0 (which is the same as P = 0), and this

root corresponds to a minimum of R1. This root is

z
ad S

ah b
= − +

−

½
(6.456)

where

S = (ad)2 – (ah – b)bd (6.456A)

Case 3. a > 0 and b = 0. P is simplified to

P = ahz 2 + 2adz (6.457)

The roots of Equation (6.457) are z = 0 and z = –2d/h < 0, both of which are not
admissible. In fact, we have P > 0 for any nonzero z, which means that R1 is an
increasing function of z. Also, it is very interesting to observe that the entity a is the
common factor in all terms in the numerator of R1 in the present case.

Case 4. a = 0 and b < 0. We have P simplified to a quadratic equation in the
special form

P = –bz2 + bd (6.458)

Now P = 0 when

z = d ½ (6.459)

and this corresponds to a minimum of R1. Note that here the z given in (6.459)
depends on d only and is independent of b and hence c also.

It is very interesting to look at (6.459) from another perspective. Since d =
4C1C3J 2

2/3, we see that z given in (6.459) can be rewritten as

z = AB (6.459A)

where

A

J

J J
B L L=







=

2

3
2

1 3

1 3

½

½
½

( )
, ( ) (6.459B)

with A as a dimensionless number, the ratio between J2 and (J1J3)½ multiplied by
a numerical factor, and B as the geometric mean of span lengths L1 and L3.

Note that (J1J3)½ is the geometric mean of J1 and J3. We also could look at
(6.459) from yet another point of view and obtain
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z J
C C= 






2

3
2

1 3
½

(6.459C)

where (C1C3)½ is the geometric mean of C1 and C3.

Case 5. a < 0 and b < 0. For this very special case, we still have a full-fledged
quadratic equation P = 0 available. There is only one real positive root

z
ad S

ah b
= − +

−

½
(6.460)

where

S = (ad)2 – (ah – b)bd (6.461)

Category B. ah = b
We take care of category B as follows. First of all, the leading coefficient in P is zero,
so we have a linear expression for P now. Next, a and b must have the same sign
or both must be zero because h > 0.

The special case where a = b = 0 means that J2 = J3 and 3c2 = L3
2. This describes

a specific beam with a specific relationship between the length of the loaded span
and the location of the applied load, with the surprising result that R1 = 0 and P =
0, as well as R1′ = 0, regardless of the magnitude of the applied concentrated couple,
the parameter under study z, geometric configuration, and material properties. Of
course, this is not the only way to make R1 zero, as can be seen from assertions to
be made below.

From the expression for R1, we see that R1 = 0 when

az + b = 0 (6.462)

This means either a and b are zero at the same time or

z
b

a
= −

(6.463)

Formula (6.463) is valid as long as a and b are of opposite signs and a is nonzero.
It is plain that R1 is positive or negative when az + b > 0 or < 0 respectively,

and this is quite easy to realize by playing around with the values of a and b in any
systematic manner. That is why only brief comments were made while doing the
study on P.

Additionally, note the following observations for category B:

J. Ross Publishing; All Rights Reserved



Examples of Beam Formulae: Explorations and Commentary � 205

1. When both a and b are positive, we have P > 0 because a, b, and d are all
positive, and as a result, all the terms in P are positive. Consequently, R1 is
an increasing function of z.

2. When both a and b are negative, we have P < 0, and therefore, R1 is a
decreasing function of z.

Category C. ah < b
We now treat category C where ah < b in the following cases.

Case 1. a > 0 and b > 0. The equation P = 0 has only one real positive root given
by (6.460) and (6.461) formally, with the actual a and b given under the conditions
satisfied by category C.

Case 2. a < 0 and b < 0. The immediate consequence is that P < 0. Hence, R1

is a decreasing functions of z. Also, we see from the expression for R1 that R1 is
negative when both a and b are negative because D is positive.

Case 3. a < 0 and b = 0. R1 is negative and has only one term in the numerator
in the expression for R1. Regarding P, it takes the form

P = ahz2 + (2ad)z (6.464)

Thus, it appears that P = 0 when Z = 0 or

z
d

h
= −2

(6.465)

However, neither of these roots is admissible. Therefore, (6.464) in this case implies
P < 0. Thus, R1 is a decreasing function of z.

Case 4. a < 0 and b > 0. Again, P is of critical importance. Here, P = 0 when

z
ad S

ah b
= − −

−

½
(6.466)

where S is as given by (6.461). The value of z given by (6.466) corresponds to a
maximum R1.

Case 5. a = 0 and b > 0. Once more, P plays the central role. We have

P = 0 when z = d ½ (6.467)
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and this corresponds to a maximum R1. Note that the z given by (6.467) depends
on d only.

The cases discussed under the three main categories A, B, and C are the only
admissible ones.

6.8.3. Parametric Study of L3

We denote the parameter under study by z and consider R1/M0 as the subject. For
convenience, let

R

M
Y1

0

= (6.468)

where

Y
az bz kz

D
= + +2 3

(6.469)

with

a
L C c

J
= 1 2

2

312
(6.470)

being nonnegative,

b

C L C
L
J

=
−





1 1 2

2

3

18
(6.471)

k
L C

J
= − <1 2

336
0 (6.472)

and

D = (d + ez)z (6.473)

We can rewrite Y as

Y
k

e

fz g

z hz
= + +

+2
(6.474)

where

f
b

e

kd

e
g

a

e
h

d

e
= − = =

2
, , (6.475)

Consider
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G
fz g

z hz

N

H
= +

+
=

2
(6.476)

We have

Y
k

e
G= + (6.474A)

′ =G
F

H 2
(6.477)

where

F = –fz2 – 2gz – gh (6.478)

with g nonnegative (due to the entity a being nonnegative, e being positive, and g
= a/e), h = d/e positive (due to d > 0 and e > 0), and thus gh > 0 or gh = 0.

Thus, in order to assess F, we will look into many cases regarding the sign of
f and its consequences. However, it is both interesting and useful to examine the
conditions under which the key player f is positive, negative, or zero and the impli-
cations before getting too busy with the interactions between f and other players.

With this in mind, we will look at f > 0 first. This happens if

b

e

kd

e
− >

2
0 (6.479)

Note that even though b and k have a positive factor in common in addition to the
fact that k < 0, it is plain that b may be positive, negative, or zero. In fact, the
coefficients in the numerator of Y have the factor L1C2/36 in common. Now when
b is nonnegative, we have –kd/(e)2 > –b/e, which is equivalent to (6.479). What
happens if b < 0? Well, (6.479) is still valid. Therefore, by putting these two things
together, we see that (6.479) holds for all values of b.

Let us see what happens if f = 0. This means that

eb = kd (6.479A)

We know that both e and d are positive nonzero entities and k is strictly negative.
The last equality forces us to accept the fact that b < 0. In other words, b can be
neither zero nor positive. Now let us recall the definition of b. We see that b < 0
means that C2 < L2/J3, which can be simplified to 1/J2 < 1/J3. This looks very familiar.
We definitely encountered this condition in an earlier section. The implications here
are quite clear, and it will be left to the reader to fill in the gap.

We will finish up the examination of f by looking into the situation where f <
0. This inequality can be translated to mean

b

e

kd

e
− <

2
0 (6.479B)
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We call –kd/(e)2 by the name K, which is positive. Then, we have b/e + K < 0. Thus,
b/e < –K < 0. Consequently, b/e < 0, and we reached the result b < 0 because of e
> 0.

Let us summarize the results from the last four paragraphs as follows. When f
> 0, we may have all values of b, whereas either f = 0 or f < 0 is possible only when
b is negative, which means that

1 1
0

2 3J J
− < (6.480)

Note that the condition b < 0 is just a necessary condition. Moreover, this last
inequality defines a class of beams, and this class consists of two different types of
beams determined by the criterion f = 0 or f < 0. Formula (6.480) is thus very
powerful and has a huge impact on the results. Let us be specific about this.

For f = 0, the expression for F is simplified to

F = –2gz – gh (6.481)

where g defined earlier is nonnegative and happens to be a common factor for the
right side of (6.481). Thus, F = 0, < 0, or > 0 when –(2z + h) = 0, < 0, or > 0
respectively. Therefore, F = 0 when z = –h/2, and this is meaningful only when h
< 0. However, we know that, by definition, h > 0, so it is impossible to have F =
0. Moreover, because z, g, and h are all positive, we see from the appearance of F
exhibited in (6.481) that F < 0. This means that G is a decreasing function of z and
so is Y, and eventually R1 is a decreasing function of z.

Let us return to f = 0 itself to see the meaning of this situation. It means, first
of all, that b = kd/e. That is,

J

J

A

B
2

3

= (6.482)

where

A C C B C C= + = +12 11 81 2 1 2, ( ) (6.483)

with A and B both positive and simple linear algebraic functions of C1 and C2 only.
Utilizing these notations introduced in (6.483), we may rewrite the statements

for f < 0 and f > 0 separately as follows. For the case where f < 0, we have the defining
property

J

J

A

B
2

3

> (6.484)

For the case where f > 0, we have
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J

J

A

B
2

3

< (6.485)

Thus, from (6.482), (6.484), and (6.485), J2/J3 becomes a convenient index for
handy reference and usage.

Now let us examine all the possible cases regarding the coefficients in F and their
effects on F and Y.

Case 1. f > 0 and g > 0
As a direct result of g > 0 and the given definition of h, we have gh > 0. This means
that all the coefficients in F are negative, in addition to z itself being positive. Thus,
F < 0, G ′ < 0, and Y ′ < 0, and as a result Y is a decreasing function of z. But what
do we mean by g > 0? Since g = a/b by definition and e > 0, we know that g > 0
means a > 0. From the definition of a, the inequality a > 0 means that c is nonzero
and positive of course.

Note that the expression for Y consists of two terms. One is k/e, which is inde-
pendent of z, and the other is G, which is a function of z. We see that k/e < 0 because
of k < 0. The function G, on the other hand, can be positive and is in fact positive
for the present case. Thus, it is conceivable that Y may become zero, negative, or
positive. It would be interesting to explore in more detail along this line.

Case 2. f > 0 and g = 0
From g = 0, we have gh = 0 and F becomes F = –fz2, which is less than zero, signifying
a negative first derivative of G. Thus, G is a decreasing function of z and so is Y. Note
that the function G itself is simplified to

G
fz

z hz
=

+2
(6.486)

which is positive because both f and h are positive, in addition to z itself being
positive.

Once again, for the same reason stated in the last paragraph of case 1, Y can be
positive, negative, or zero depending on the relative magnitude of G and k/e.

Case 3. f = 0 and g > 0
The immediate consequence of g > 0 is gh > 0. Thus, with f = 0, we have F = –2gz
– gh < 0 and G is a decreasing function of z. The fact that f = 0 gives us a simplified
G as
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G
g

z hz
=

+2
(6.487)

which is positive.
The same remarks regarding the sign of Y that appeared in the last paragraph

of case 1 apply here too. Also note the requirement for f = 0 in terms of J2, J3 and
A, B as expressed in (6.482).

Case 4. f = 0 and g = 0
We have immediately F = 0 and G = 0 also. Thus, Y = k/e < 0 and Y is independent
of z.

Note here that a = 0 and b < 0 as a result of g = 0 and f = 0 respectively. Thus,
this is a class of beams with the concentrated couple applied at zero distance from
the interior support of the exterior span with the property stipulated by b < 0.

The same remark embedded in the last sentence of case 3 applies here as well.

Case 5. f < 0 and g = 0
Because of g = 0, we have F = –fz2, which is positive due to the given fact that f <
0. Thus, G is an increasing function of z. Here again, we have a = 0 and b < 0. The
function G is reduced to

G
f

z h
=

+
(6.488)

which is negative, because f is negative, and h and z are positive. The function Y is
therefore always negative and its absolute value increases as z decreases.

Case 6. f < 0 and g > 0
We have gh > 0 and

F = –fz2 – 2gz – gh (6.489)

which can be positive, negative, or zero.
For F = 0, we have the only real positive root

z
g S

f
= +

−

½
(6.490)

where

J. Ross Publishing; All Rights Reserved



Examples of Beam Formulae: Explorations and Commentary � 211

S = g2 – fgh (6.491)

G has a minimum here. Note that again b < 0 here is required by f < 0.

6.8.4. Parametric Study of J1

In order to change pace, let us denote the parameter by 1/x. Thus, for the purpose
of studying R1, let us consider a function Y of x defined by (6.492) below. In other
words, in order to study the effects of J1, henceforth denoted by 1/x, on reaction R1,
it is sufficient to scrutinize R1/M0, represented by the function

Y
C

A Bx
=

+
(6.492)

where A, B, and C are constants defined by

A
L L

C C C= 





 +1 3

2

2
2

2 3
6

3 4[ ] (6.493)

B
L L

L C C= 





+4
6
1 3

2

1 2 3 [ ] (6.494)

C
L L C

S T= 





−1 3 2

6
( ) (6.495)

with

S
L C C= +3 2 3

3

( )
(6.496)

T
C L L c= + −2 3

6
3 2 3

2 2( )
(6.497)

Note that A, B, S, and T are all positive, whereas C may be positive, negative, or zero
depending on the relative magnitude of S and T, since the other factor of C is
positive.

Now

Y ′ = –CB(A + Bx)–2 (6.498)

is positive, negative, or zero when C is negative, positive, or zero respectively due
to the fact that all the other factors of Y ′ are positive, but capped with a minus sign.

From (6.495), we see that C = 0 when S = T, whereas C < 0 when S < T, and
C > 0 when S > T.
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From (6.498), we see that Y ′ = 0 when C = 0. However,

Y ″ = 2CB(A + Bx)–3 (6.499)

so Y ″ = 0 at C = 0. Hence C = 0 is a point of inflection.
When C < 0, we have Y ′ > 0 and Y as an increasing function of x. When C >

0, we have Y ′ < 0 and Y as a decreasing function of x.
Note that S is a function of L3, C2, and C3, while T is a function of L2, L3, C3,

and c. Therefore, the conditions C = 0, C < 0, and C > 0 represent relationships
among C2, C3, L2, L3, and c. We see that C is the key to the behavior of Y represented
by various features of C being zero, positive, or negative and an increasing or de-
creasing function of z or stationary. Moreover, we can pick up one particular entity
and state it in terms of the other entities in an expression resulting from C = 0, C
< 0, or C > 0. By doing so, there exists a huge space for us to explore.

6.8.5. Parametric Study of J2

We will denote 1/J2 by x. Then the function representing R1/M0 is Y defined as

Y
ax bx

D
= +2

(6.500)

where a and b are constants and D is defined as

D = kx2 + (xd) + e (6.501)

with k, d, and e as constants.
We see that (6.500) is basically the same mathematical problem as the one solved

in the study of L2. The only thing that is different is the set of expressions for the
constants a, b, k, d, and e, which are as follows:

a
L L

A= −






 2
2

3

3
(6.502)

b A
L L C

L B= − +





2 3 3
2

3
(6.503)

A
L L

B
L L L c

J
= =

+ −1 3 2 3 3
2 2

36

2 3

6
,

( )
(6.504)

k = 3A2L2
2 (6.505)

d = 4A2(C1 + C3)L2 (6.506)

e = 4A2C1C3 (6.507)
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6.8.6. Parametric Study of J3

We denote the parameter J3 to be studied by 1/x for convenience. The function
representing R1/M0 is Y, which is defined as

Y
ax b

D
= +

(6.508)

where

a A
L

B= −






 3

2

3
(6.509)

b
AL C= >3 2

3
0 (6.510)

D = kx + d (6.510A)

with

k
L L

SL= 





>4
6

01 3
2

3 (6.511)

d
L L

T= 





 >1 3

2

6
0 (6.512)

and

A
L L C= 1 3 2

6
(6.513)

B
L L L c

=
+ −2 3

6
2 3 3

2 2( )
(6.514)

S = C1 + C2 (6.515)

T = 3C 2
2 + 4C1C2 (6.516)

For convenience in future use, we also introduce

T
T

C
1

2

= (6.517)

The function Y can be rewritten as

Y
a

k
F= + (6.518)
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where

F
f

x e
=

+
(6.519)

e
d

k
f

bk ad

k
= = −

,
2

(6.520)

Then, we have

′ = −
+

Y
f

x e( )2
(6.521)

and Y ′ = 0, < 0, or > 0 when f = 0, > 0, or < 0 respectively because the denominator
in (6.521) is positive, capped with a minus sign. That is,

Y ′ = 0 when bk – ad = 0 (6.522)

Y ′ < 0 when bk – ad > 0 (6.523)

Y ′ > 0 when bk – ad < 0 (6.524)

Now bk – ad can be rewritten as

bk ad CC
L C S L

B T− = − −


















2
3
2

2 3
24

3 3
(6.525)

with

C
L L= 





1 3
3

6
(6.525A)

It can be seen clearly from (6.525) that

f = 0 when 4C2L3
2S = (L3

2 – 3B)T (6.526)

f > 0 when 4C2L3
2S > (L3

2 – 3B)T (6.527)

f < 0 when 4C2L3
2S < (L3

2 – 3B)T (6.528)

It is interesting to look at the cases where a = 0, a > 0, and a < 0. For a = 0,
bk – ad = bk = (4/3)CC 2

2L3
2S > 0. This means that f > 0, Y ′ > 0, and Y is a decreasing

function of x. For a > 0, we have L3
2/3 – B > 0. This means that 3c2 > 2L2L3 + L3

2.
Since L3 > c, we have here 3L3

2 > 3c2 > 2L2L3 + L3
2. Thus, L3 > L2. For a < 0, we have

from L3
2/3 – B < 0 the result 3c2 < 2L2L3 + L3

2.
Let us examine (6.526) in greater detail by opening up the package labeled B.

Thus, L3 > L2. The result is

L
S T T L

L
T c

3
2 1 1 2

3
1

24

3 6 3 2
+





+ 





= (6.529)
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which can be solved for L3 in terms of the other entities if we so desire. For con-
venience in future use, let us call the left side of (6.529) by the name L. Thus, (6.529)
is

L
T c= 1

2

2
(6.530)

For the case where f > 0, we have

L
T c> 1

2

2
(6.531)

and the necessary condition for f < 0 to hold is naturally

L
T c< 1

2

2
(6.532)

Now let us review the expression L and see what entities are affecting the value
of L. We see that S, T, L2, L3, and C2 are involved. By definition, S and T are from
D directly and L is an increasing function of these two entities.

Formulae (6.530–6.532) can be rewritten respectively as

4
3

3
2 1SL

T a

A
= (6.533)

4
3

3
2 1SL

T a

A
> (6.534)

4
3

3
2 1SL

T a

A
< (6.535)

We can see clearly from these last three formulae the effects of a/A on the entity
a itself. For (6.533), the entity a can only be positive because all the other factors
in this equality are positive. For (6.535), the left-hand side is positive and is less than
the right-hand side; therefore, the right-hand side cannot be zero or negative. In
other words, the right-hand side must be positive as a start. As for (6.534), the
situation is much more relaxed in that the entity a can be any real number, positive,
negative, or zero.

When we look at the last three formulae from another perspective, we see some-
thing very interesting happening. If we divide both sides of these formulae by the
positive entity T1, we have on the left-hand side 4(S/T1)L3

2, whereas the right-hand
side becomes simply 3a/A. Thus, these formulae provide us with a set of criteria for
comparison purposes. Of course, we could divide both sides of these formulae by
the positive entity S instead of what we just did.

Another interesting point is the effects of the entity a on f . Recall that the entity
a can be positive, negative, or zero and from the way the entity a appears in f , we
see that f is a decreasing function of the entity a. Let us look at f = 0 for possible
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minimum or maximum values of the function Y. We note that the second term of
Y, called F, which contains x, vanishes when f = 0. In fact, both F ′ and F ″ vanish
when f = 0, so we have a point of inflection when f = 0. It is clear from the definition
of Y that Y can be positive, negative, or zero depending on the relative magnitude
of a/k and F as well as the signs of the entities a and f.

6.9. UNIFORM LOAD ON THE INTERIOR SPAN OF
A THREE-SPAN CONTINUOUS BEAM: GENERAL CASE
The subject under study is the reaction R1 given by

R1 = wSL3Z1 (6.536)

where

S
L L

J L D
= 1 3

2 236
(6.537)

D
L L

C C C C C C= 





+ + +1 3
2

2
2

1 3 2 1 3
6

3 4 4[ ( ) ] (6.538)

Z1 = (A0L2 + A1L2
2)E2 – (2A1L2 + A0)E3 + A1E4 (6.539)

with

A0 = –2L2C3 (6.540)

A1 = –(3C2 + 2C3) (6.541)

E
e a

j
jj

j j

= − =, , ,2 3 4 (6.542)

For convenience, S may be rewritten as

S
J L L L K

= 1

2 1 2 3

(6.543)

where

K = [3C 2
2 + 4(C1 + C3)C2 + 4C1C3] (6.544)

Substituting (6.540–6.542) into (6.539), we have

Z1 = –(3C2 + 4C3)L2
2E2 + 6(C2 + C3)L2E3 + A1E4 (6.545)

Substituting (6.543) into (6.536), we obtain

R

w

Z

J L L K
1 1

2 1 2

= (6.546)
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For w = a constant, it is expedient to consider R1/w instead of R1 itself. We see
that R1/w is basically a function of Ji , Li  (i = 1, 2, 3) when e and a are constants.
We also can consider R1/w as a function of Ji , Li  (i = 1, 2, 3) as well as e and a.

6.9.1. Parametric Study of L1

Denoting the parameter by z, we have the following. Z1 is a constant.

L1K = z(a0 + a1z) (6.547)

where

a0 = 3C 2
2 + 4C2C3 > 0 (6.548)

a
C C

J
1

2 3

1

4 0= +





> (6.549)

For convenience, let us denote R1/w by Y. Thus,

Y
A

z a a z
=

+( )0 1

(6.550)

where

A
Z

J L
= 1

2 2

(6.551)

Observing (6.550), we see that Y is a decreasing function of z when A is positive.
That is,

Y ′ = –A[z(a0 + a1z)]–2 B < 0 with B = a0 + 2a1z > 0 (6.552)

when A is positive. But what about the cases where A is zero or negative?
When A = 0, Y ′ = 0. What about Y ″ when A = 0? Well, A = 0 also means that

Y ″ = 0, so A = 0 is a point of inflection. Naturally, when A < 0, we have Y ′ > 0,
meaning that Y is an increasing function of z. As to the detailed descriptions of the
conditions A < 0, A = 0, and A > 0, we will see them below.

Moreover, what are a0 and a1 doing here? We see that the larger the values of
a0 and a1 are, the smaller the value of Y for a given z becomes. Also, from (6.548)
and (6.549), a0 and a1 increase with increasing C2 and C3, in addition to the fact that
a1 is inversely proportional to J1.

Now, what about A? From (6.551), A is proportional to Z1 and inversely pro-
portional to J2 and L2. Thus, for a given z, the larger the values of J2 and L3 are, the
smaller the value of A, and thus that of Y, becomes.

What about Z1? We will pursue it as follows.
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Z1 =  –(L2
2E2m2 + E4m4) + m3E3L2 (6.553)

where

m2 = (3C2 + 4C3) > 0 (6.554)

m3 = 6(C2 + C3) > 0 (6.555)

m4 = (3C2 + 2C3) > 0 (6.556)

By (6.553), we have

Z1 < 0, Z1 = 0, or Z1 > 0 (6.557)

when

m3E3L2 < E2m2L2
2 + E4m4 (6.558)

or

m3E3L2 = E2m2L2
2 + E4m4 (6.559)

or

m3E3L2 > E2m2L2
2 + E4m4 (6.560)

respectively.
Note that depending on the values of L2, L3, J2, J3, and Ej (j = 2, 3, 4), one of

these last three formulae holds for a given situation. Since Z1 and Y are so related
that one is proportional to the other, we see that Y < 0, Y = 0, or Y > 0 if and only
if Z1 < 0, Z1 = 0, or Z1 > 0 respectively. Hence, we can call Z1 the “character
indicator” for Y.

6.9.2. Parametric Study of L2

As usual, we will denote the parameter by z. Again, Z1 is the character indicator. It
is expedient to consider (6.546). We will deal with K first. Thus,

K = k0 + k1z + k2z2 (6.561)

where

k C C k
C C

J
k

J
0 1 3 1

1 3

2
2

2
2

4 0
4

0
3

0= > = + > = >,
( )

, (6.562)

Then we look at Z1 and have

Z1 = b3z3 + b2z2 + b1z + b0 (6.563)

where
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b
E

J
b C E

E

J

b C E
E

J
b C E

3
2

2
2 3 2

3

2

1 3 3
4

2
0 3 4

3
4

6

6
3

2 0

= − = − +

= − = − <

, ,

,

(6.564)

Thus,

R

w
Y

Z

J L M
1 1

2 1

= = (6.565)

where

M = z(k2z2 + k1z + k0) (6.566)

To facilitate the subsequent analysis, we will rewrite Y as

Y
J L k

b
N

z a z a z
=









 +

+ +










1

2 1 2
3 3

2
2

1

 (6.567)

where

N = n2z2 + n1z + b0 (6.568)

with

n b a b n b a b a
k

k
a

k

k
2 2 2 3 1 1 1 3 2

1

2
1

0

2

= − = − = =, , , (6.569)

It is very interesting to note that b2 < 0, = 0, or > 0 if and only if

3
23

2
3 2

E

J
C E< = >,  or, (6.570)

respectively. Also, b1 < 0, = 0, or > 0 when

2 3 3
4

2

C E
E

J
< = >,  or, (6.571)

respectively.
In both (6.570) and (6.571), only C3, J2, and E2, E3, E4 are involved. From

(6.569), we see that

n2 < 0, = 0, or > 0 when b2 <, =, or > a2b3 (6.572)

respectively and

n1 < 0, = 0, or > 0 when b1 <, =, or > a1b3 (6.573)
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respectively. Also, note that aj > 0 for j = 1, 2, but b3 < 0. Therefore,

–a2b3 > 0, –a1b3 > 0 (6.574)

Expressions in (6.574) are important for evaluating n2 and n1 needed in N.
Consider the case where N = 0. This means that

z
n S

n
= − +1

22

½

(6.575)

or

z
n S

n
= − −1

22

½

(6.576)

where

S = n1
2 – 4n2b0 (6.577)

Note that –4n2b0 > 0 in (6.577) if n2 > 0 because it is given that b0 < 0, so S
> 0 and in fact S½ is greater than the absolute value of n1. Therefore, there are two
real roots, but there may be only one that is admissible, and we have to investigate
case by case regarding the sign of n2 and n1. The details about this kind of inves-
tigation can be found in Section 6.3 and will not be repeated here. Rather, we will
see the conditions and implications of the sign of the coefficients of N.

Case 1. n2 = 0
This happens when b2 = a2b3. This condition is equivalent to

− + =






−







4

6 3
3 2

3

2

1

2

2

2

C E
E

J

k

k

E

J
 (6.578)

E
k

k J
C

E

J
2

1

2 2
3

3

2

3
4

6
0−









 + = (6.578A)

It appears that this is perfectly harmless, and it is therefore quite possible to pick up
suitable C2, C3, J2, E2, and E3 to satisfy the equality specified in (6.578A). Further-
more, this is supposed to be valid in general in that N can be positive, negative, or
zero. (Well, is it really so?) However, when N = 0, we have right away N = n1z +
b0 = 0 in the present case, which leads to

z
C E

n
= 2 3 4

1

(6.579)

where
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n C C J E C E
E

J
1 1 3 2 2 3 3

4

2

4 6
3= + − (6.580)

This is beautiful, and it appears that it can take all real values and is, therefore, fine.
Next, let us look directly at

n b a b C E
E

J
2 2 2 3 1 2

3

2

4
6= − = + (6.581)

which is clearly positive in general except when E2 = E3 = 0, meaning a = e, which
is a trivial case.

The moral of the story is that we should have dug a little deeper before we
stopped at (6.578A); then we would have reached (6.581). The above is written
primarily with the beginner in mind; however, even the seasoned reader may benefit
from this in at least two aspects: recreation and precaution.

Since we are studying n2 = 0, we might just as well do n1 = 0 also. We look at
(6.580) and see that this happens when

4 6
3

1 3 2 2 3 3
4

2

C C J E C E
E

J
+ = (6.582)

Let us continue with n1. We note that n1 > 0 when

4 6
3

1 3 2 2 3 3
4

2

C C J E C E
E

J
+ > (6.583)

and n1 < 0 when

4 6
3

1 3 2 2 3 3
4

2

C C J E C E
E

J
+ < (6.584)

Now we return to consideration of N < 0 and N > 0. To this end, let us denote
the two possible roots of N = 0 by z1 and z2 with z1 < z2. Then, since n2 > 0, we
have N > 0 if and only if

(z – z1)(z – z2) > 0 (6.585)

meaning z > z1 and z > z2 simultaneously or z < z1 and z < z2 simultaneously. The
former means that z > z2 and the latter signifies that z < z1.

Similarly, N < 0 if and only if

(z – z1)(z – z2) < 0 (6.586)

meaning z < z2 and z > z1 simultaneously. In other words, we have z1 < z < z2.
The consequence of n1 = 0 is a much more simplified N with its implications:

N = n2z2 + b0 (6.587)
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If N = 0 additionally, then we have

z
b

n

C E

C E
E
J

= −







 =

+



















0

2

3 4

1 2
3

2
2

3

½

½

(6.588)

If N > 0 instead, then we have

z
b

n
> −





0

2

½

(6.589)

If N < 0 is the case, then we have

z
b

n
< −





0

2

½

(6.590)

When we look at (6.567), we notice that Y is the product of two factors, 1/
(J2k2L1) and (b3 + N/F), where

F = z3 + a2z2 + a1z (6.591)

is a third-degree polynomial in a positive variable z with all positive coefficients and
is therefore always positive. N, on the other hand, as we notice from above, may be
positive, negative, or zero, whereas b3 is negative. Hence, negative N will enhance the
negative value of Y along with the intrinsic negative value of b3.

In order to change pace, let us look at some interesting results. If b2 = 0, then

3
23

2
2 3

E

J
E C= (6.592)

and

n2 = –a2b3 > 0 (6.592A)

If b1 = 0, then

2 3 3
4

2

C E
E

J
= (6.593)

and

n1 = –a1b3 > 0 (6.593A)

If both b1 and b2 are zero, then both (6.592) and (6.593) hold, and as a result, we
have

3E4 = (2C2J3)2E2 (6.594)
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For the sake of changing pace and gathering more information, let us explore
the following approach. Consider the equality

N

z z a z a

A

z

Bz C

z a z a( )2
2 1

2
2 1+ +

= + +
+ +

(6.595)

Thus,

n2z 2 + n1z + b0 = A(z 2 + a2z + a1) + (Bz + C)z (6.596)

We have

n2 = A + B , n1 = Aa2 + C , b0 = Aa1 (6.597)

and

A
b

a
B n

b

a
C n

a b

a
= = − = −0

1
2

0

1
1

2 0

1

, , (6.598)

We may do an exploration using a procedure similar to the two-span case outlined
earlier.

6.9.3. Parametric Study of L3

The function to be studied is

Y
Z

J L L K
= 1

2 1 2

(6.599)

where

K = k1z + k0 (6.600)

with z as the independent variable and

k
C C

J
k C C C1

1 2

3
0 2

2
1 24 0 3 4 0= +





> = + > , (6.601)

Also,

Z1 = b1z + b0 (6.602)

where

b
L E L E E

J
1

2
2

2 2 3 4

3

2
2 3

=
− + −







  (6.603)

b0 = 3C2[–L2
2E2 + 2L2J3E3 – E4] (6.604)
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Let us focus on

Z

K k
b

N

M
1

1
1

1=






+





 (6.605)

where

M z
k

k
= + 0

1

(6.606)

N b
b k

k
= −0

1 0

1

(6.607)

Note that

k

k

C C C J

C C
0

1

2 1 2 3

1 2

3 4

4
0= +

+
>( ) ( )

( )
(6.608)

Therefore, M > 0, while N determines the sign of N/M in (6.605).
Note also that increasing z in (6.605) implies decreasing absolute value of N/M

in all the cases to be presented below. Among other things, whether b1 and b0 can
be positive, negative, or zero warrants consideration of the various cases in the
following paragraphs.

Case 1. b1 = 0 and b0 = 0
The immediate consequence is zn = 0, which leads to Z1 = 0 and Y = 0. Moreover,
in terms of case-defining conditions, we have the following.

b1 = 0 means

3L2E3 = E4 + 2L2
2E2 (6.609)

which is an equality connecting L2 and Ej ( j = 2, 3, 4). In other words, it is a simple
quadratic equation in L2, with numerical multiples of Ej ( j = 2, 3, 4) as coefficients
if we want to view it that way.

b0 = 0 means

2L2E3 = (L2
2E2 + E4) (6.610)

It is interesting to note that by combining (6.609) and (6.610) we obtain the
interesting and simple result

E3 = L2E2 (6.611)

which signifies a very special span length L2, namely

L
E

E
2

3

2

= (6.612)
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This span length has an interesting upper bound:

L
e a= +2

3

( )
(6.613)

Moreover, if we combine (6.610) and (6.611), we will obtain

L2E3 = E4 = L2
2E2 (6.611A)

Now let us focus on (6.611A). We see the very interesting result

L
E

E
2

4

3

= (6.612A)

Comparing (6.612) and (6.612A), we arrive at the simple, concise, and wonderful
conclusion that

E

E

E

E
4

3

3

2

= (6.612B)

characterizes this case.

Case 2. b1 = 0 and b0 < 0
It is interesting to observe that only L2 and Ej appear in all the formulae in the
present case except (6.613), where even though L2 and Ej do not show up explicitly,
L2 and the elements that make up Ej are specifically referred to.

The first defining condition of the present case is stated in (6.609), whereas the
second one says

2L2E3 < L2
2E2 + E4 (6.614)

Combining (6.609) and (6.614), we have L2E3 > L2
2E2, which is equivalent to

E3 > L2E2 (6.615)

Here again, (6.615) says that we have case 2 when the actual span length L2 is less
than the special span length defined in (6.612). Therefore, this special span length
is really critical.

What are the impacts of the definition of the present case on the function Y
without resorting to Y ′, the first derivative of Y with respect to z? First, note that
the larger the absolute value of b0 is, the larger the absolute value of N becomes. Since
b1 = 0, we have that Y is proportional to N, which is, in the present case, equal to
b0. Also, of course, Y is negative here because N is. By mere observation, we see that
Y is an increasing function of z due to the fact that N is a negative constant and the
way that the single term z appears in the denominator of the expression for Y.
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A point to emphasize is that Y is proportional to b0. Let us return to the defi-
nition of b0. We see from (6.604) that

b0 = 3C2P (6.616)

where

P = –E2L2
2 + 2E3L2 – E4 (6.617)

will be seen as something of fundamental importance, and that is the reason why
we coin a special symbol for it. From (6.616), we see that C2 and P are proportional
to b0. Let us look at P closely. Here, since C2 > 0, we see that b0 < 0 is due to P <
0.

Now consider U = –P as a function of L2. Thus

U = E2L2
2 – 2E3L2 + E4 (6.618)

and

U ′ = 2E2L2 – 2E3 (6.619)

U ″ = 2E2 > 0 (6.620)

′ = =U L
E

E
0 2

3

2

  when  (6.621)

Hence, L2 defined in (6.621), which is the same as the definition in (6.612), corre-
sponds to a minimum value of U.

We see, then, that for a given set of Ej (j = 2, 3, 4), U and P vary as L2 varies
and P has its maximum at the L2 given in (6.621), where U has its minimum. Note
also that in the present case, only one span length L2 is involved in any of the
formulae here.

Case 3. b1 = 0 and b0 > 0
Using a procedure similar to the one in case 2, we have for the second condition
above, b0 > 0,

2L2E3 > L2
2E2 + E4 (6.622)

which, along with the defining condition of b1 = 0 displayed in (6.609), yields the
simple result

E3 < L2E2 (6.623)

Note that there are big differences too; for example, N > 0 here and so Y > 0.
Remarks similar to those at the end of case 1, without reference to (6.613), apply
here. The rest of the remarks and conclusions are analogous to those in case 2 and
will, therefore, be left for the interested reader to fill in.
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Case 4. b1 > 0 and b0 = 0
The first defining condition means that

3L2E3 > E4 + 2L2
2E2 (6.624)

which, along with the second defining condition displayed earlier in case 1, gives us

E3 > L2E2 (6.625)

The expression N is simplified to

N
b k

k
= − <1 0

1

0 (6.626)

because k0, k0, and b1 are all positive.
As far as the N/M part of Y is concerned, the situation here is quite similar to

that in case 2. However, in view of (6.626) as well as the expression for Y and the
fact that b1 > 0, we see that Y may be positive, negative, or zero.

Remarks similar to those at the end of case 2 apply here.

Case 5. b1 > 0 and b0 < 0
The first and second defining conditions here are given in (6.624) and (6.614) re-
spectively. For direct consequences of these defining conditions, see the appropriate
paragraphs above.

Now the impacts of these conditions on N and, therefore, on Y can be seen from

N b
b k

k
= − <0

1 0

1

0 (6.626A)

because both terms in N are negative. Note again that Y has two terms, one of which
involves N and the other which does not, and that these two terms are of opposite
signs. Hence, Y may be positive, negative, or zero, and the possibilities are just like
the last case.

Case 6. b1 > 0 and b0 > 0
The first defining condition of the case leads to

3L2E3 > E4 + 2L2
2E2 (6.627)

The second defining condition yields

2L2E3 > E4 + L2
2E2 (6.628)

It is very interesting to note the resemblance between these last two inequalities.
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The conclusion here is that N as well as Y may be positive, negative, or zero. Note
that, once again, formulae here involve L2 and Ej only, with j = 2, 3, 4.

Case 7. b1 < 0 and b0 = 0
This happens when

3L2E3 < E4 + 2L2
2E2 (6.629)

and

2L2E3 = L2
2E2 + E4 (6.630)

are satisfied simultaneously.
It is fascinating to note that subtracting (6.630) from (6.629) yields L2E3 < L2

2E2

or simply

E3 < L2E2 (6.631)

which is exactly as (6.623) appeared in case 3. It is incredible to have the same
governing formulae in two different cases where the big difference lies in the sign
of Y, as will be noted below,

Note that Z1 = b1z < 0 because b1 < 0 and b0 = 0, but N = –b1k0/k1 > 0. Thus,
Y < 0, Y = 0, and Y > 0 are all possible. Also, Y ′ < 0 is the situation here, signifying
Y as a decreasing function of z .

Case 8. b1 < 0 and b0 < 0
The defining conditions are

3L2E3 < E4 + 2L2
2E2 (6.632)

2L2E3 < E4 + L2
2E2 (6.633)

respectively. N may be positive, negative, or zero, and this is similar to case 6. As
a result, Y may be positive, negative, or zero.

Case 9. b1 < 0 and b0 > 0
We have seen the defining conditions before in other cases. The effects of these are
that N > 0 and the other term in the expression for Y is negative. Therefore, Y may
be positive, negative, or zero.

In cases 2 through 9, the absolute value of N/M decreases as z increases. A remark
on the expression V defined below for the cases where b1 ≠ 0 and b0 = 0 is in order.
When will V = 0? This happens when
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L
E S

E
2

3

2

3

4
= + ½

(6.634)

L
E S

E
2

3

2

3

4
= − ½

(6.635)

where

S = 9E 3
2 – 8E2E4 (6.636)

Formulae (6.634) and (6.635) define two critical span lengths L2, but what is V ? To
draw our attention in a rather unusual way, we will let it show up later.

For now, let us do something similar to U first. Thus, a similar remark can be
made regarding when U will be zero. This happens when

L
E T

E
2

3

2

= + ½

(6.636A)

or

L
E T

E
2

3

2

= − ½

(6.636B)

where

T = E 3
2 – E2E4 (6.636C)

For the cases where b1 ≠ 0 and b0 = 0, the following is offered regarding L2 as
the variable here.

b
J

V1
3

2= −






(6.636D)

where

V = 2L2
2E2 – 3L2E3 + E4 (6.636E)

Then

V ′ = 4L2E2 – 3E3 (6.636F)

V ″ = 4E2 > 0 (6.636G)

so V has a minimum when

′ = =V L
E

E
0

3

4
2

3

2

  at  (6.636H)
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6.9.4. Parametric Study of J1

The parameter is again denoted by z. Here, Z1 is a constant, while K is given by

K k
k

z
= +0

1 (6.637)

where

k0 = 3C 2
2 + 4C2C3, k1 = 4(C2 + C3)L1 (6.638)

As usual, we consider the function defined by

Y
C

K
= (6.639)

where

C
Z

J L L
= 1

2 1 2

(6.640)

is a constant, with its sign determined by that of Z1.
We can rewrite Y as

Y
C

k

N

z N
=







−
+





0

1 (6.641)

where

N
k

k
= >1

2

0 (6.642)

because k1 > 0 and k0 > 0.
Note that N/(z + N) decreases as z increases and there is a minus sign in the

bracket in the expression for Y. Therefore, Y is an increasing function of z. Note that
Z1 as well as C may be positive, negative, or zero. The factors of Y in (6.641) other
than C are positive, so the sign of C determines that of Y.

6.9.5. Parametric Study of J2

Denoting the parameter by z, we have

K = k2z –2 + k1z –1 + k0 (6.643)

where

k2 = 3L2
2, k1 = 4(C1 + C3)L2, k0 = 4C1C3 (6.644)
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and

Z1 = a1z –1 + a0 (6.645)

where

a1 = 3L2F, a0 = 2C3G (6.646)

with

F = (–L2
2E2 + 2L2E3 – E4), G = (–2L2

2E2 + 3L2E3 – E4) (6.647)

as seen previously on several occasions.
Thus, the function under study is

Y
L L

zZ

P
= 





1

1 2

1 (6.648)

where

P = Kz2 = k2 + k1z + k0z2 (6.649)

Note that k2 > 0, k1 > 0, k0 > 0, L1 > 0, and L2 > 0, whereas a0 and a1 may be positive,
negative, or zero. We will consider the following cases to get to the bottom of this.

Case 1. a0 = 0
Y is simplified to

Y
a

PL L
= 1

1 2

(6.650)

The sign of Y is determined by that of a1 because L1, L2, and P are all positive,
whereas a1 is positive, negative, or zero when F is positive, negative, or zero respec-
tively. It is clear that the absolute value of Y decreases as z increases.

Let us see what a0 = 0 means by itself. This means that G = 0, which leads to

–2L2
2E2 + 3L2E3 – E4 = 0 (6.651)

The roots of this equation, when L2 is considered as the variable, are

L
E Q

E
2

3

2

3

4
= + ½

(6.652)

L
E Q

E
2

3

2

3

4
= − ½

(6.653)

where

Q = 9E 3
2 – 8E2E4 (6.654)
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We recognize that (6.652–6.654) are old friends from Section 6.9.3 on the para-
metric study of L3. Because of G = 0, we have F = –L2E3 from (6.647). Then, by
(6.646), we obtain a1 < 0, meaning Y < 0 and a1 = –3L2

2E3, a nice result.

Case 2. a1 = 0
The sign of Y is the same as that of a0. When a1 = 0, we have F = 0. This means
that

–L2
2E2 + 2L2E3 – E4 = 0 (6.655)

The roots of this equation, when L2 is treated as the unknown, are

L
E S

E
2

3

2

= + ½
(6.656)

L
E S

E
2

3

2

= − ½
(6.657)

where

S = E 3
2 – E2E4 (6.658)

which, along with (6.656) and (6.657), we met in Section 6.9.3 on L3.

Case 3. a0 ≠ 0 and a1 ≠ 0
Next, for the most general case in terms of the values of a1 and a0, we consider

f
a z a

P
= +0 1 (6.659)

as a function of z. Then

′ =f
N

P2
(6.660)

where

N = (a0k2 – a1k1) – 2a1k0z – a0k0z2 (6.661)

is a second-degree polynomial in z.
The various domains of z that correspond to positive-, negative-, or zero-valued

N can be determined by the quadratic formula and a simple procedure which we
used on several occasions in previous sections. As always, we could investigate the
possibilities of maximum or minimum values of f and thus those of Y with the roots
so obtained. Moreover, it appears that, in addition to the roots z1 and z2 of N = 0,
with N being considered as a quadratic equation in z, there is one more way that
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we can realize N = 0 and that is through a choice of all zero coefficients in N. Thus,
we may set a0 = 0 and a1 = 0. In this way, we will have N = 0 regardless of what
value z has. This entails the condition that the span lengths obtained from letting
F = 0 and G = 0 simultaneously are equal. The question remains: Is this possible?
That is very interesting, and the reader is encouraged to pursue it.

Note that since P 2 > 0, we have f ′ < 0, = 0, or > 0 when N < 0, = 0, or > 0
respectively. (In fact, P > 0 itself.)

Let us now consider the interesting special case where a0k2 – a1k1 = 0. Here, N
is simplified to

N = –k0z(2a1 + a0z) (6.662)

which leads to the conclusion that N = 0 when

z
a

a
= −2 1

0
(6.663)

provided

a

a
1

0

0< (6.664)

with a0 ≠ 0.
For (6.664) to hold, a0 and a1 need to be of opposite sign. This means that, at

least on the surface, either

F < 0 and G > 0 (6.664A)

simultaneously or

F > 0 and G < 0 (6.664B)

simultaneously.
Expression (6.664A) is possible by resorting to a straightforward proof. What

about (6.664B)? It is a wake-up call for the interested reader to find the answer by
applying the property of Ej ( j = 2, 3, 4) established earlier or devising something else
that fits.

We just examined the case where N = 0 in detail. Let us take care of N > 0 now.
This happens when

a0z + 2a1 < 0 (6.665)

That is the case when

z
a

a
< −2 1

0

(6.666)

which is possible if (6.664) is satisfied, with the same underlying conditions involving
F and G properly taken care of.
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The case where N < 0 can be dealt with in exactly the same manner, with the
obvious conclusion that here

z
a

a
> −2 1

0

(6.667)

along with the same remarks made about the case where N > 0.
With all the detailed descriptions about N wrapped up, we will return to the

meaning of a0k2 – a1k1 = 0 in the present case where a0 and a1 are nonzero. We can
rewrite this equation as

a

a

k

k
0

1

1

2

= (6.668)

which leads to

C3G = 2F(C1 + C3) (6.669)

Note that F and G are functions of L2, E2, E3, and E4 only, whereas (6.669) is a
relationship between the set of functions F, G and the beam member properties C1,
C3. Since F and G each can be positive, negative, or zero and C1 > 0, C3 > 0, the
implication of (6.669) is that F and G must be of the same sign. Besides, if F is zero,
then G is zero also and vice versa. Furthermore, (6.669) requires that the absolute
value of G be greater than that of F.

Note also that N can be rewritten, with the aid of (6.669), as

N k a z
k

k
z= − +









0 0

2

1

2
 (6.670)

from which we can see clearly that a0 < 0 implies N > 0, whereas a0 > 0 implies N
< 0. Of course, since both z and (2k2/k1 + z) are positive for nonzero a0, which is
the present case, we have nonzero N in view of Expression (6.670), which also shows
that N is proportional to a0. Also, remember that a0 = 2C3G, where G is given in
(6.647).

Note that interesting things happen here: a1 = 0 if and only if a0 = 0 under a0k2

– a1k1 = 0, the premise of the special case.

6.9.6. Parametric Study of J3

The parameter z appears in entities K and Z1 in the following manner.

K = k0 + k1z –1 (6.671)

where

k0 = 3C 2
2 + 4C1C2, k1 = 4(C1 + C2)L3 (6.672)
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and

Z
a

z
a a L G a C F1

1
0 1 3 0 22 3= + = =, , (6.673)

where F and G are as defined in Section 6.9.5.
For the purpose of studying R1 and R4, consider the function defined by

Y
J L L k

a
N

z
k

k

=








 +

+



















1

2 1 2 0
0

1

0

 (6.674)

where

N a
a k

k
= −1

0 1

0

(6.675)

can be rewritten as

N L G
k

k
C F= −







2 33
1

0
2 (6.676)

Now N < 0, = 0, or > 0 when

2 3 0 0 03
1

0
2L G

k

k
C F−







< = > ,  or, (6.677)

respectively. Note that C2, L3, k0, and k1 are all positive.

Case 1. N = 0
This happens when

2 33
1

0
2L G

k

k
C F=







 (6.678)

Here, F and G must have the same sign, and G = 0 if and only if F = 0.
Note that

k

k

C C L

C C C
1

0

1 2 3

2 1 2

4

3 4
0= +

+
>( )

( )
(6.679)

Substituting (6.679) into (6.678), we have

G
F C C

C C
F

C C

C C
F= +

+
< +

+
=6

4 3
6

3 3
21 2

1 2

1 2

1 2

( )
(6.680)
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and

G
F C C

C C
F> +

+
=6

4 4
1 51 2

1 2

( )
. (6.681)

Thus, we see that 2F is an upper bound for G, while 1.5F is a lower bound for G
in the present case.

When N = 0, the sign of Y is the same as that of a0 and

Y
F

J L k
= 3

2
2

1 0

(6.682)

Note that here Y is proportional to F, indicating once again the power of F.
In general, we have

G
F C C

C C
= +

+
< = >6

4 3
0 0 01 2

1 2

( )
,,  or (6.683)

corresponding to N < 0, = 0, or > 0 respectively.
The following are three important special cases.

Case 1. a0 = 0
The results are

N = a1 (6.684)

Y
J L L k

N

z
k
k

=










+ 























1

2 1 2 0 1

0

 (6.685)

It appears that Y is proportional to N, which is a1 now with

a1 = 2L3G (6.686)

where G is reduced to L2E3 because a0 = 0. Thus,

Y
J L k

L E

z
k
k

=










+ 























1 2

2 1 0

3 3

1

0

 (6.687)

The sign of Y agrees with that of N.
Note that N = 0 if and only if Y = 0, but with R3 = 0, a trivial load case.
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Case 2. a1 = 0
The consequences are

N
a k

k
= − 0 1

0

(6.688)

Since N and a0 have opposite signs, N and F do also.
Note that

N = 0 if and only if a0 = 0, i.e., if and only if F = 0 (6.689)

Thus, E3 = 0, and this is the same as in case 1.

Case 3. a0 = a1 = 0
This means

N = 0 and Y = 0 (6.690)
simultaneously, and

G = 0 = F, implying E3 = 0 (6.691)

We also know the story of these situations from Section 6.9.5.
Let’s return to (6.675) and consider Y ′. We know that

Y ′ < 0 for N > 0 (6.692)

Y ′ > 0 if N < 0 (6.693)

Y ′ = 0 when N = 0 (6.694)

Thus, N is the key to understanding the behavior of Y.

6.10. TRIANGULAR LOAD ON THE INTERIOR SPAN OF
A THREE-SPAN CONTINUOUS BEAM: GENERAL CASE
Following the established procedure, we start with the general expression for the
reaction R1 as

R1 = C[A0Z1E2 + (A0Z2 + A1Z1)E3 + (A0Z3 + A1Z2)E4 + A1Z3E5] (6.695)

where

C
L L

D
= 1 3

2

6
(6.696)

with
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D
L L

K= 





1 3
2

6
(6.697)

in which

K = 3C 2
2 + 4(C1 + C3)C2 + 4C1C3 (6.698)

The other entities in (6.695) are as follows:

A0 = –2L2C3, A1 = –(3C2 + 2C3) (6.699)

Z aU Z
a

L
U Z

U

L
1 2

2
3

2

1= − = +








 = −

, , (6.700)

U
w

bJ
=

6 2

(6.701)

We notice that these entities exhibit certain attractive features. First of all, C is
a ratio between L1L3

2 and 6D. Then, we see that A0 and A1 are dependent on L2, L3,
J2, and J3, while Z1, Z2, and Z3 all contain w as a factor through U, which is itself
inversely proportional to bJ2.

For convenience, we rewrite R1 as

R1 = CP (6.702)

where

P = p2E2 + p3E3 + p4E4 + p5E5 (6.703)

with

p2 = A0Z1 = 2aL2C3U > 0 (6.704)

p3 = A0Z2 + A1Z1 = U(–2L2C3 + 3aC2) (6.705)

p A Z A Z U C
a

L

aC

L
4 0 3 1 2 2

2

3

2

3 1
2

0= + = +






+








 < (6.706)

p A Z
U

L
C C5 1 3

2
2 33 2 0= = + >( ) (6.707)

From the last four formulae, we see that each pi contains U as a common factor and
another factor which is specific to that particular pi.

6.10.1. Parametric Study of L1

All the p’s are constants with respect to the parameter z. Other entities involved in
R1 are functions of z and are described below.
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K = a0 + a1z (6.708)

where

a0 = 3C 2
2 + 4C2C3 > 0 (6.709)

a
C C

J
1

2 3

1

4
0= + >( )

(6.710)

will be used in the expression

D z
L

K= 





2 3
2

6
(6.711)

to yield the first factor in R1 as

C
zL

D z a a z
= =

+
3
2

0 16

6

( )
(6.712)

Thus, we have from (6.702) and (6.712)

R
P

z a a z
1

0 1

6=
+( )

(6.713)

where 6P is a constant and P is defined in (6.703).
Next, consider the function

Y
z a a z

=
+
1

0 1( )
(6.714)

We see that

R1 = 6PY (6.713A)

Y ′ = –z –2(a0 + a1z)–2 (a0 + 2a1z) < 0 (6.715)

because

(a0 + a1z)–2 > 0, (a0 + 2a1z) >  0 (6.716)

The same remarks as for the case of uniform load apply here.

6.10.2. Parametric Study of L2

As functions of the parameter z, the pertinent entities are described as follows.

D
L L

K= 





1 3
2

6
(6.717)

with
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K = k0 + k1z + k2z2 (6.718)

where

k C C k
C C

J
k

J
0 1 3 1

1 3

2
2

2
2

4 0
4

0
3

0= > = + > = >,
( )

, (6.719)

Thus,

C
L L

D

L

k k z k z
= =

+ +
1 3

2
1

0 1 2
26

6

(6.720)

Additionally, we have

p2 = 2aUC3z (6.721)

p U C
a

J
z3 3

2

2
3= − +







(6.722)

p U
z

J

a

J

aC

z
4

2 2

33 3 2= − + +






(6.723)

p U
J

C

z
5

2

33 2= +






(6.724)

The following are some interesting observations. C contains a quadratic expres-
sion of z in its denominator, while p2 and p3 are proportional to z . As for p4 and
p5, they both contain the term 1/z and a constant term, with the former depending
on z also.

Rewriting P as

P
A z A z A

z
= + +2

2
1 0 (6.725)

where

A aC E
a

J
C E

E

J
2 3 2

2
3 3

4

2

2
3

2
3= + −







− (6.726)

A
J

aE E1
2

4 5
3= − +( ) (6.727)

A0 = 2C3(–aE4 + E5) (6.728)

we note that A2 is a function of Ej (j = 2, 3, 4), a, C3, and J2, whereas the coefficient
A1 is a function of E4, E5, a, and J2 and the coefficient A0 is a function of C3, a, E4,
and E5.
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Consider the function

Y
L R

k
z A

N

z b z b
= =







+
+ +









1 1

2
2 2

1 06

1
  (6.729)

where

N A A b z A A b b
k

k
b

k

k
= − + − = =( ) ( ), ,1 2 1 0 2 0 0

0

2
1

1

2

(6.730)

It seems plausible that A2 is positive, negative, or zero when

A

U
aC E

aE

J
C E

E

J
2

3 2
3

2
3 3

4

2

2
3

2
3

0 0 0= +






− +






> < =, or, (6.731)

respectively.
Following a similar line of reasoning, it appears natural to state that A1 is posi-

tive, negative, zero when

A

U J
aE E1

2
4 5

3
0 0 0=







− + > < =( ) ,, or (6.732)

respectively and A0 is positive, negative, or zero when

A

U
C aE E0

3 4 52 0 0 0= − + > < =( ) ,,  or (6.733)

respectively. However, is the situation just described really so straightforward and
obvious? Moreover, it is interesting to note that A1 and A0 have a common factor
which determines their sign.

Recall that Ej (j = 2, 3, 4, 5) has some interesting and important attributes which
are very useful as well. These are

E5 – aE4 > 0, E4 – aE3 > 0, E3 – aE2 > 0 (6.734)

Therefore, Formula (6.731), upon rearranging the terms, becomes

A

U
C aE E

J
aE E2

3 2 3
2

3 42
3= − +







−( ) ( ) (6.731A)

which is negative. This means that A2 is negative, because both (aE2 – E3) and (aE3

– E4) are negative, while U, 2C3, and 3/J2 are all positive.
With these findings, from the expression for N, we see that N > 0. When we

return to the expression for Y with this information and A2 < 0, we see that Y may
be positive, negative, or zero.

As to the effects of varying A2, A1, and A0 on N, we can again see from the
expression for N and the sign of A2, A1, and A0 that N increases as the absolute value
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of these Ai increases. The effects of b0 and b1 are similar, even though here the b’s
are all positive. In order to increase the absolute value of A2, A1, and A0, we can
increase the value of one or more of the following: C3, 1/J2, (E5 – aE4), (E4 – aE3),
and (E3 – aE2).

Note that a procedure similar to that used in the problem of an exterior span
being loaded can be applied here. However, the author chose to use a different
approach to raise the reader’s interest and enrich the treatment by showing a diver-
sity of approaches.

6.10.3. Parametric Study of L3

Entities affected by the parameter L3, denoted as z, are described below.

C
L K

= 6

1

(6.735)

where

K = k1z + k0 > 0 (6.736)

with

k
C C

J
1

1 2

3

4
0= + >( )

(6.737)

k0 = 3C 2
2 + 4C1C2 > 0 (6.738)

Also, we have

p
aUL z

J
2

2

3

2= (6.739)

p U
L z

J
aC3

2

3
2

2
3= − +







 (6.740)

p U A A z A C
a

L
A

a

J L
4 0 1 0 2

2
1

3 2

3 1
2= − + = +







=( ), ,with  (6.741)

p
U

L
C

z

J
5

2
2

3

3
2= +







(6.742)

Note that all the p’s are linear functions of z.
Now consider

Y
R L U

k k z
B z B= =

+






+1 1

0 1
1 0

6
 ( ) (6.743)
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where

B
J

L aE E
L

aE E1
2

2 2 3
2

4 5
2 1= − −







−








( ) ( ) (6.744)

B aC E C
a

L
E

E

J
0 2 3 2

2
4

5

2

3 1= − +






+








 (6.745)

Once again, for convenience, we will rewrite Y as

Y
U

k
B

N

z
k

k

= +
+















1

1
0

1

(6.746)

where

N B
B k

k
= −0

1 0

1

(6.747)

We observe that N < 0, = 0, or > 0 when

B
B k

k
0

1 0

1

0 0 0− < = >,  or, (6.748)

respectively. This means that

B

B

k

k
B B0

1

0

1
0 10 0 0− < = >,  or   with  nonzero  , , (6.749)

respectively. Note that B0 as well as B1 may be positive, negative, or zero. Therefore,
we purposefully did not use ratios involving B0 and B1 in (6.747) and (6.748).

Case 1. B0 = 0 and B1 = 0
The first condition says that

aC E
E

J
C

a

L
E2 3

5

2
2

2
41+ = +







(6.750)

The second condition means that

(aE2 – E3)L2
2 = (aE4 – E3) (6.751)

which is an extremely interesting result, as will be seen in greater detail in Sections
6.10.5 and 6.10.6 when this special L3 is called L3c .
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The direct result of these two conditions (6.749) and (6.750) together is N = 0
and Y = 0 simultaneously.

Case 2. B0 = 0
The immediate consequence is N = –B1k0/k1. Here, N > 0 or N < 0 if and only if
B1 < 0 or B1 > 0 respectively.

Additionally, if B1 = 0 also, then it becomes case 1. Thus, B1 here is nonzero.
We have from (6.744)

B L aE E
aE E

L
1 2 2 3

4 5

2

0< − < −





  when  ( ) (6.752)

B L aE E
aE E

L
1 2 2 3

4 5

2

0> − > −





  when  ( ) (6.753)

Note that both aE2 – E3 and aE4 – E5 are negative except for the trivial case e = a,
with zero load on the beam.

From the expression for Y, we see that Y is directly proportional to B1 and the
two terms in Y have opposite signs. Therefore, Y may be positive, negative, or zero.

Case 3. B1 = 0
From the expression for N, we see that N is simplified to N = B0. Thus, N is positive
or negative when B0 > 0 or B0 < 0 respectively. Here,

B aC E
E

J
C

a

L
E0 2 3

5

2
2

2
40 1> + > +







  when  (6.754)

B aC E
E

J
C

a

L
E0 2 3

5

2
2

2
40 1< + < +







  when  (6.755)

Since Y is proportional to N in this case, Y enjoys the same rights as N does. Moreover,
N increases as B0 increases, and the remarks made earlier about the attributes of B0

apply here.

Case 4. B0 < 0 and B1 > 0
The immediate implication is N < 0. This means

B

B

k

k
0

1

0

1

< (6.756)
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In the expression for Y, the two terms are of opposite sign. Hence, it is conceivable
that Y may be positive, negative, or zero.

Case 5. B0 > 0 and B1 < 0
We have here the direct opposite of case 4 in terms of both the premises and the
conclusion regarding the sign of N. However, the conclusion regarding the sign of
Y remains the same as in case 4.

We have the case-defining condition

B B
k

k
0 1

0

1

0−






> (6.757)

Case 6. B0 > 0 and B1 > 0
In this case, N may be positive, negative, or zero, and thus Y may be positive,
negative, or zero. Let us look at the interesting special case where N = 0. This means

B

B

k

k
0

1

0

1

=






(6.758)

and is admissible because B0 and B1 have the same sign and the ratio between them
is positive, as required by k0/k1, which is positive. Now, as a result of N = 0, we have

Y
UB

k
= 1

1

(6.759)

which is independent of z and is proportional to B1 and inversely proportional to
k1. As to the factor U in the expression for Y, it is there in all cases, and of course,
Y is proportional to U without mentioning it in each case.

N > 0 when (6.757) holds, and this is the actual situation here. Note that Y >
0 when N > 0 because both B1 and N in Y are positive.

For N < 0 to hold, the requirement for the sign of B0 and B1 is less stringent,
and the present case still allows N < 0, through (6.756), to happen with the appro-
priate B0 and B1. Here, since B1 > 0 and N < 0, it is possible that Y becomes positive,
negative, or zero.

Case 7. B0 < 0 and B1 < 0
From the definition of N, we see that N may be positive, negative, or zero. The
defining conditions for all these situations are exactly the same as the corresponding
ones in case 6, with most of the remarks there applicable here. However, because B0
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< 0 here as opposed to B0 > 0 in case 6, we have the following statement regarding
N < 0 here: When N < 0, we have Y < 0 in case 7.

Finally, note that N appears in Y in the form

Nf
N

z
k

k

=
+ 0

1

(6.760)

The function f is a decreasing function of z. Hence, Nf and, for that matter, Y are
decreasing functions of z when N > 0 and they are increasing functions of z when
N < 0.

6.10.4. Parametric Study of J1

Here the entities involved in the reaction R1 are described below as functions of the
parameter z = J1.

K k
k

z
= +0

1 (6.761)

where

k0 = 3C 2
2 + 4C2C3, k1 = 4(C2 + C3)L1 (6.762)

will appear in

C
L K

= 6

1

(6.763)

Note that all pi (i = 2, 3, 4) are constants. Hence,

R1 = CG (6.764)

where

G = p2E2 + p3E3 + p4E4 + p5E5 (6.765)

is a constant. pi will be defined below.
We can rewrite R1 as

R
G

L k

N

z N
1

1 0

6
1= −

+






(6.766)

where

N
k

k
= >1

0

0 (6.767)
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from which we can see that R1 depends on G, L1, k0, k1, and z. The last four entities
just mentioned are all positive. Even though G is a constant, it may be positive,
negative, or zero, because in general p2 > 0; p3 may be positive, negative, or zero;
p4 < 0; and p5 > 0. From (6.766), we see also that R1 is directly proportional to G
and inversely proportional to L1k0. Moreover, R1 has an upper bound, namely 6G/
(L1k0).

Now let us go back to G, where the key component is

p3 = U(–2L2C3 + 3aC2) (6.768)

The important question is: When will p3 be positive, negative, or zero and what does
each of these situations mean?

p3 < 0, = 0, or > 0 when 3aC2 – 2L2C3 < 0, = 0, or > 0 (6.769)

respectively. Each one of these three is a relation among L2, C2, a, and C3. Specifically,

p
a

L

C

C
3

2

3

2

0
3 2< <  when (6.770)

p
a

L

C

C
3

2

3

2

0
3 2= =  when (6.771)

p
a

L

C

C
3

2

3

2

0
3 2> >  when (6.772)

It is interesting to observe that the left-hand side of each of these formulae is the
ratio between the loaded length and the length of the loaded span with a numerical
multiplier, whereas the right-hand side is twice C3/C2. When (6.770) holds, we have
p3 < 0, p4 < 0 and p2 > 0, p5 > 0. When (6.771) holds, we have p4 < 0 and p2 > 0,
p5 > 0. When (6.772) is valid, then we have all pi > 0 except p4 < 0.

It appears that there are two factors G, H in the reaction R1 that control the sign
of R1, where

H
N

z N
= −

+
1 (6.773)

However, it can be shown easily, by noting N > 0, z > 0, that we have H > 0.
Therefore, G determines the sign of R1 in addition to the following.

R1 = 0 when G = 0. G = 0 means

p2E2 + p3E3 + p4E4 + p5E5 = 0 (6.774)

Note that H is an increasing function of z because N > 0 renders H ′ > 0.
Additionally, 0 < H < 1, so 0 < R1 < 6G/(L1k0).
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Finally, it is interesting to note that when p3 = 0, all the other p’s are simplified
because of the defining condition for p3 = 0, namely EL2 = 3aC2/(2C3). Thus,

p a C U p U C C
C

C

p
C U

aC
C C

2
2

2 4 2 3
3
2

2

5
3

2
2 3

3 3 2
4

3

2

3
3 2

= = − + +










= +

, ,

( )

(6.775)

6.10.5. Parametric Study of J2

Entities appearing in R1 take the following forms as functions of the parameter J2,
which is denoted by z.

U
w

bz
=

6
(6.776)

K = k2z –2 + k1z –1 + k0 (6.777)

where

k2 = 3L2
2, k1 = 4(C1 + C3)L2, k0 = 4C1C3 (6.778)

and

C
L K

= 6

1

(6.779)

Thus,

R1 = C(p2E2 + p3E3 + p4E4 + p5E5) (6.780)

with

p
w

bz
aL C2 2 3

6
2= ( ) (6.781)

p
w

bz
L C

aL

z
3 2 3

2

6
2

3= − +





(6.782)

p
w

bz
L

a
L

z

aC

L
4 2

2 3

26
3

1
2= −

+
+

















(6.783)

p
w

bzL

L

z
C5

2

2
3

6

3
2= +





(6.784)
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Therefore, we can write

p E p E p E p E
a

z

a

z
2 2 3 3 4 4 5 5

1 2
2

+ + + = + (6.785)

where

a
w

b
aL E L E

aE

L

E

L
C1 2 2 2 3

4

2

5

2
3

3
= − − +







(6.786)

a
w

b
aL E L

a

L
E E2 2 2 2

2
4 5

2
1= − +







+








 (6.787)

Hence, we have

R
L

a a z

k k z k z
1

1

2 1

2 1 0
2

6=






+
+ +

(6.788)

Note that a1 = 0 when

( )aE E L
aE E

L
2 3 2

4 5

2

− = −
(6.789)

and a0 = 0 when

(aE3 – E4)L2 = aE4 – E5 (6.790)

Moreover, R1 and a2 + a1a have the same sign. For the case where a1 = 0, entities
R1 and a2 have the same sign, and for the case where a2 = 0, entities R1 and a1 have
the same sign.

For convenience, let

P = k2 + k1z + k0z2 (6.790A)

T = a2 + a1z (6.790B)

Then

Y
T

P
= (6.790C)

and

′ =Y
N

P 2
(6.790D)

where

N = (a1k2 – a2k1) – 2a2k0z – a1k0z2 (6.790E)
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Thus,

R
Y

L
1

1

6= (6.790F)

Note that the same remarks as for the case of uniform load apply here, with a1

and a2 playing the roles of a0 and a1 there respectively.
It is clear from (6.790A) that we see

P > 0 (6.790G)

From (6.790B), we know that T may be positive, negative, or zero when

a2 + a1z > 0, < 0, or = 0 (6.790H)

respectively. We observe from (6.790C) and (6.790G) that Y and T have the same
sign and also Y = 0 if and only if T = 0.

From (6.790D), we see that

Y ′ < 0, = 0, or > 0 when N < 0, = 0, or > 0 (6.790I)

respectively.
Note that N as shown in (6.790E) is a quadratic equation in the variable z, with

coefficients involving a1, a2, k0, k1, and k2.

6.10.6. Parametric Study of J3

Entities entering the expression for R1 as functions of the parameter J3 designated
as z are displayed below:

K k
k

z
k C C C k C C L= + = + = +0

1
0 2

2
1 2 1 1 2 33 4 4, , ( ) (6.791)

C
L K

= 6

1

(6.792)

p
aUL L

z
2

2 32= (6.793)

p U
L L

z
aC3

2 3
2

2
3= − +





 (6.794)

p U C
a

L

aL

L z
4 2

2

3

2

3 1
2= − +







+








 (6.795)

p
U

L
C

L

z
5

2
2

33
2= +





(6.796)
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Thus,

R C p E p E p E p E
U

L k
a

N

z
k
k

1 2 2 3 3 4 4 5 5
1 0

0
1

0

6= + + + = +
+



















( ) (6.797)

where

a L aL E L E
a

L
E

E

L
1 2 2 2 2 3

2
4

5

2

2= − −






+








 (6.798)

a C aE
a

L
E

E

L
0 2 3

2
4

5

2

3 1= − +






+








 (6.799)

and

N a
a k

k
= −1

0

0

(6.800)

We observe from (6.797) that R1 is proportional to U and inversely proportional to
L1 and k0.

Since U = w/(bJ2) > 0, L1 > 0, k0 > 0, and k1 > 0, we know that a1, a0, and N
can be positive, negative, or zero and will look into individual cases. A note is in
order before we embark on this undertaking: Ek – aEj > 0 ( j = 2, 3, 4; k = 3, 4, 5).
This is important because expressions of this kind appear quite often and we need
to emphasize this point right now.

Category A. a1 = 0
This happens when L2 = Lc1, where Lc1 is defined through

L
aE E

aE E2
2 4 5

2 3

0= −
−

> (6.801)

Because of its premier importance and frequent occurrence, we will call

L
aE E

aE E
c 1

4 5

2 3

= −
−






½

(6.801A)

the critical span length of the first kind.
We note that for this category, N and a0 have opposite signs. Also, we observe

that both N and R1 are proportional to a0, while N itself is proportional to k1/k0.
Note that the span length to be defined by (6.802) below is not only beautiful

and interesting but also very useful, and we will call it the critical span length, Lc 2,
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of the second kind, with the property a0 < 0, = 0, or > 0 when Lc 2 < L2, = L2, or
> L2 respectively.

Case 1. a0 = 0. This happens when L2 = Lc 2, where Lc2 is defined by

L
aE E

aE E
c 2

4 5

3 4

= −
−

(6.802)

Some consequences of a0 = 0 and a1 = 0 are N = 0 and R1 = 0.

Case 2. a0 < 0. This happens when

aE
E

L

a

L
E3

5

2 2
41+ < +







(6.803)

with the consequence that N > 0. Therefore, R1 may be positive, negative, or zero
because the two terms of R1 are of opposite signs.

Case 3. a0 > 0. The defining condition is

aE
E

L

a

L
E3

5

2 2
41+ > +







(6.804)

with the effect that N is rendered negative. Once again, R1 may be positive, negative,
or zero for the same reason as in the last case.

Category B. a1 < 0
This happens when

L
aE E

aE E
2
2 4 5

2 3

> −
−

(6.805)

Case 1. a0 = 0. The defining condition is (6.794), with the result that N = a1 <
0 and R1 < 0. Moreover, R1 is proportional to N, which is a1. We see from the
definition of a1 that R1 here is proportional to L3 also.

Case 2. a0 < 0. The defining condition is (6.803). The consequences are as follows.
First, N may be positive, negative, or zero when a1 – a0k1/k0 > 0, < 0, or = 0
respectively. Second, R1 may be positive, negative, or zero.

A quick check is provided here for the first conclusion. a1/a0 > 0 because a0 and
a1 have the same sign. Given k1/k0 > 0, it is possible that one positive quantity is less
than, greater than, or equal to the other.
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Case 3. a0 > 0. The defining condition is (6.804) or equivalently Lc 2 > L2. In this
case, N < 0, but R1 may be positive, negative, or zero because the two terms in the
expression for R1 are of opposite signs.

Category C. a1 > 0
The defining condition is

L
aE E

aE E
2
2 4 5

2 3

< −
−

(6.806)

Case 1. a0 = 0. This is the case where Lc 2 = L2, and the results are N = a1 > 0,
with R1 proportional to N and thus also to a1.

Case 2. a0 < 0. The defining condition is Lc 2 < L2, with the result that N > 0 and
R1 < 0, = 0, or > 0 is possible.

Case 3. a0 > 0. The defining condition is Lc 2 > L2. Here, N < 0, = 0, or > 0 when

a
a k

k
1

0 1

0

0 0 0− < = >,  or, (6.807)

respectively. Since k1/k0 > 0 and a1/a0 > 0, we see that all the situations are admissible.
Note that in all cases where N = 0, z has no effect on R1. Also, with nonzero N,

the reaction R1 is a decreasing or increasing function of z when N > 0 or N < 0
respectively.

Table 6.3 is a summary table showing all the different cases. There are three
possible ways to render N = 0 and five possible ways to realize N < 0, with yet another
five ways to achieve N > 0.

6.11. A CONCENTRATED FORCE AT AN ARBITRARY POINT
ON AN EXTERIOR SPAN OF A THREE-SPAN CONTINUOUS
BEAM: CONSTANT J
The reaction R1 is given by

R As BK
P

D
1 = +( ) (6.808)

where

A L L L
L L

J

a

J
= +





=1 2 3
2 2 3

2
1
218

(6.809)
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B
L L L

J
= 1 2 3

6
(6.810)

K
s

J
Q=

6
(6.811)

with

Q = (s2 – 3L3s – 2L2L3) (6.812)

in (6.811) for convenience in future use, and finally

D
d

J
=

2
(6.813)

with

d
L L

F F L L L L L L= 





= + + +1 3
2

2
2

1 3 2 1 3
6

3 4 4, ( ) (6.814)

Thus,

R a s a
P

d
1 1 2= +( ) (6.815)

where

a L L L
L L

1 1 2 3
2 2 3

18
= +

(6.816)

TABLE 6.3. Classification of Cases

a0 a1

N = 0 0 0
< 0 < 0 and a1/a0 = k1/k0

> 0 > 0 and a1/a0 = k1/k0

N < 0 > 0 0
0 < 0

> 0 < 0
< 0 < 0 and a1/a0 < k1/k0

> 0 > 0 and a1/a0 < k1/k0

N > 0 < 0 0
< 0 < 0 and a1/a0 > k1/k0

0 > 0
< 0 > 0
> 0 > 0 and a1/a0 > k1/k0
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a
L L L sQ

2
1 2 3

36
= (6.817)

Note that from (6.814–6.817) R1 is free of J , and this is very important. Also note
that a2 may be positive, negative, or zero depending on whether sQ > 0, < 0, or =
0 respectively.

However, it is given that a1 > 0. As a result, the sign of (a1s + a2) depends on
the relative magnitude of a1 and a2 in any particular situation. Therefore, it is con-
ceivable that R1 need not be positive all the time.

Now let us proceed to the study of R4 expressed as

R Us GK
P

D
4 = −( ) (6.818)

where

U
L L

J
L= − 





 1 2
2

3
6

(6.819)

G
L L L

J
= +( )1 2 1

2

3
(6.820)

D and K are as defined earlier in this section.
Thus,

Us GK b b
s

J
− = −( )1 2 2

(6.821)

where

b
L L L

1
1
2

2
2

3

36
0= − < (6.822)

b
L L L Q

2
1 2 1

2

18
=

+( )
(6.823)

and R4 is given by

R b b
sP

d
4 1 2= −( ) (6.824)

We note from (6.824) that R is free of J also. Note that b1 < 0, but b2 may be
positive, negative, or zero depending on whether Q > 0, = 0, or < 0 respectively.
However, it is clear from (6.824) and (6.823) that Q > 0 will give us R4 < 0. Only
when Q is negative and has a large enough absolute value will it be possible to render
R4 zero or positive via b1 and b2 alone. Why did we say the last several words in the
last sentence? Well, it is interesting to note that R4 has an outstanding factor, namely
s, which can make R4 vanish along with it.
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6.12. A CONCENTRATED FORCE AT AN ARBITRARY POINT
ON AN EXTERIOR SPAN OF A THREE-SPAN CONTINUOUS
BEAM: CONSTANT SPAN LENGTH
Pertinent entities involved in the expression for R1 = P(As + BK )/D are described
as follows.

A L
J J

J
=

+













5 2 3

2

1 1

18
 (6.825)

B
L

J
=

3

26
(6.826)

D = L6d (6.827)

where

d
J J J J J J

= + +






+










1

36

3
4

1 1 1 4

2
2

1 3 2 1 3

(6.828)

K s

s
J

Ls
J

L
J

=
− −





2

3 3

2

2

3 2

6
(6.829)

Thus

R s
a

L

a

L

P

d
1

1 2
3

= +





 (6.830)

Let x = 1/L and define

Y = a1x + a2x3 (6.831)

where

a
J J

J
1

2 3

2

1 1

18
=

+
(6.831A)

a
K

J
2

236
= (6.831B)

We have

R
PsY

d
1 = (6.831C)

J. Ross Publishing; All Rights Reserved



Examples of Beam Formulae: Explorations and Commentary � 257

and

Y ′ = a1 + 3a2x2, Y ″ = 6a2x (6.832)

as well as

Y ″ = 0, < 0, or > 0 when a2 = 0, < 0, or > 0 (6.833)

respectively.
For y ′ = 0, we have

x
a

a
2 1

23
0= − > (6.834)

However, a1 > 0, so (6.834) is possible when a2 < 0. Here, Y ″ = 6a2x < 0 and we
have a maximum for Y.

When a2 < 0 we have, from (6.831B), K < 0. This means that

s

J

Ls

J

L

J

2

3 3

2

2

3 2
0− − < (6.835)

Consider the special case where a2 = 0 corresponds to K = 0 and Y ′ = a1 > 0,
with Y ″ = 0. Moreover, Y is positive and proportional to a1 and x, while R1 is positive
also and proportional to a1, s, and x. Note that the key thing here is the entity K.
When will K be zero? The answer is when the span length is equal to

L

s
J

S

J

=

− +3

4
3

2

½

(6.836)

where

S
s

J

s

J J
= +9 82

3
2

2

2 3

(6.837)

The span length shown in (6.836) is a critical span length, as we have just witnessed.
We see that R1 = 0, < 0, or > 0 when Y = 0, < 0, or > 0 respectively. For nonzero

a2, let us ask: When will Y = 0? The answer is

Y = 0 when a1 + a2x2 = 0 (6.831D)

that is, when

x
a

a
2 1

2

0= − > (6.831E)

where a1 and a2 must be of opposite signs. Since a1 > 0 by definition we are left with
a2 < 0, which means, by (6.831B),

K < 0 (6.831F)
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Furthermore,

Y x
a

a
> > − >0 02 1

2

  when  (6.831G)

Y x
a

a
< < − >0 02 1

2

  when  (6.831H)

Let us do R4 now. R4 is given by

R Us GK
P

D
4 = −( ) (6.838)

where

U = L5(36J 2
2) (6.839)

G
J J

L= +






1 1

31 2

2

(6.840)

and K as well as P are as shown earlier in this section.
Thus,

R s
b

L

b

L

P

D
4

1 2
3

= −





(6.841)

where

b
J

1
2
2

1

36
0= − < (6.842)

b
J J

K
2

1 2

1 1

18
= +







(6.843)

Note that b2 < 0, = 0, or > 0 when K < 0, = 0, or > 0 respectively. We realize the
power of K again.

Let 1/L = x and consider the function

X = b1x – b2x3 (6.844)

Then

R
sX

d
4 = (6.845)

Consider X ′ = b1 – 3b2x 2 and x ″ = –6b2x . We have X ′ = 0 when

x
b

b
2 1

23
= (6.846)
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is positive, for which we need b2 < 0. This means that K < 0 and X ″ > 0. Thus, the
x value in (6.846) corresponds to a minimum X.
The special case where b2 = 0 means that X ′ = b1 < 0, X ″ = 0, K = 0, X < 0, and
R4 is negative and proportional to sxb1.

The special case where b2 > 0 means that X ′ < 0, X ″ < 0, X < 0, R4 < 0, and
K > 0. Note that in all cases, R4 has a factor sx , which means that R4 is always
proportional to sx .

For nonzero b2, let us see when R4 will be zero or positive or negative. First, we
notice that from (6.845) R4 and X have the same sign; one is equal to zero when the
other is. From (6.844), X = 0 when

x
b

b
=







1

2

½

(6.847)

where b2 < 0 is needed for x in (6.847) to be a real number, because b1 < 0, and the
use of b2 < 0 means K < 0, of course. From (6.844), again we have X > 0 when

b b x x
b

b
1 2

2 1

2

> <






or
½

(6.848)

Similarly, we obtain X < 0 when

b b x x
b

b
1 2

2 1

2

< >






or
½

(6.849)

In both (6.848) and (6.849), b2 < 0 is required because b1 < 0 and we need b1 and
b2 to have the same sign in order to obtain b1/b2 > 0 called for in (6.848) and (6.849),
just as in (6.847).

6.13. UNIFORM LOAD ON AN EXTERIOR SPAN OF
A THREE-SPAN CONTINUOUS BEAM: CONSTANT J
The reaction R1 is given as

R
h E h E h E

D
1

1 2 2 3 3 4= + +
(6.850)

where

h
L L L

J
1

1 2 3
3

218
= (6.851)

h
L L L

J
2

1 2 3
2

212
=

−
(6.852)

J. Ross Publishing; All Rights Reserved



260 � Elastic Beam Calculations Handbook

h
L L L

J
3

1 2 3
236

= (6.853)

D
d

J
=

2
(6.854)

d
L L

L L L L L L= 





+ + +1 3
2

2
2

1 2 2 1 3
6

3 4 4[ ( ) ] (6.855)

Thus, we have

R
L L L

d

L E L E E
1

1 2 3 3
2

2 3 3 4

18 12 36
= 





− +






(6.856)

which is independent of J.
Note that R1 = 0 when

L E L E E3
2

2 3 3 4

18 12 36
0− + = (6.857)

theoretically. But is it possible for (6.857) to have physical meaning? We will solve
(6.857) as a quadratic equation of L3. Thus,

L
E S

E
31

3

2

3

4
= + ½

(6.858)

L
E S

E
32

3

2

3

4
= − ½

(6.859)

where

S = 9E 3
2 – 8E2E4 (6.860)

It can be shown easily, from the definitions of E2, E3, and E4, that S > 0 in general
and S = 0 only when a = e or a = 0. Therefore, we have two real roots of (6.857)
and both of them are positive, because S < 9E 2

3. Thus, we have two span lengths L31

and L32 given by (6.858) and (6.859) at which R1 = 0. Moreover, when L3 < L32 or
L3 > L31, we have R1 > 0, while L32 < L3 yields R1 < 0. We can even examine a factor
of R1 as a function of L3, henceforth called Y for convenience, a step further.

Let

R Y
L L L

d
1

1 2 3

36
= 






 (6.861)

Y = a1x2 + a2x + a3 (6.862)

where
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a1 = 2E2, a2 = –3E3, a3 = E4 (6.863)

Thus,

Y ′ = 2a1x + a2 (6.864)

For Y ′ = 0, we have

x
E

E
= 3

4
3

2

(6.865)

At this point, Y ″ = 2a1 > 0, so Y has a minimum here. It is interesting to note that
x has an upper bound (e + a)/2.

Let us do R4 now. We have, from Section 3.2.3 on the general solution,

R
k E k E k E

D
4

1 2 2 3 3 4= + +
(6.866)

where

k L L L L L
J

1 1
2

2 3 1 2 2
4 3

1

36
− +( ) (6.867)

k L L
L L

J
2 1 2

1
2

3

26
= +( ) (6.868)

k L L
L

J
3 1 2

1
2

218
= − +( ) (6.869)

Thus,

R
L

d
L L L L E L L L E

L L E

4
1
2

2 3 1 2 2 1 2 3 3

1 2 4

36
4 3 6

2

= + + +

− +

[ ( ) ( )

( ) ] 

(6.870)

Note that R4 is independent of J also.
From (6.870), we see also that R4 may be positive, negative, or zero when the

expression in brackets in (6.870) is positive, negative, or zero respectively.
Also from (6.870), we see that R4 has an upper bound RU and a lower bound

RL

R
L

d
PU U=







1
2

36
(6.871)

R
L

d
PL L=







1
2

36
(6.872)

where
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PU = (L1 + L2)[4L2L3E2 + 6L3E3 – 2E4] (6.873)

PL = (L1 + L2)[3L2L3E2 + 6L3E3 – 2E4] (6.874)

Note that RU may be positive, negative, or zero when PU is positive, negative, or zero
respectively.

Also,

RL > 0, < 0, or = 0 (6.875)

when

PL > 0, < 0, or = 0 (6.876)

respectively.

6.14. UNIFORM LOAD ON AN EXTERIOR SPAN OF A
THREE-SPAN CONTINUOUS BEAM: CONSTANT SPAN
LENGTH
The reaction R1 is given by

R
h E h E h E

D
1

1 2 2 3 3 4= + +
(6.877)

where

h
L

J J
1

5

2 318
= (6.878)

h
L

J J
2

4

2 312
= −

(6.879)

h
L

J J
3

3

2 336
= (6.880)

Thus,

R
Y

dJ J
1

2 336
= (6.881)

where

Y = 2E2x – 3E3x2 + E4x3 (6.882)

with

x
L

= 1
(6.883)
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Then,

Y ′ = E2 – 6E3x + 3E4x2 (6.884)

Thus, Y ′ = 0 when

x
E S

E
1

3

4

3

3
= + ½

(6.885)

or

x
E S

E
2

3

4

3

3
= − ½

(6.886)

where

S = 9E 3
2 – 6E2E4 (6.887)

must be nonnegative in order to have real roots. This means that

3E 3
2 – 2E2E4 ≥ 0 (6.887A)

which is shown to be true in Appendix B. We have two positive real roots of Y ′ =
0 given by (6.885) and (6.886), with x2 < x1. Note that Y ′ > 0 when x > x1 or x <
x2, while Y ′ < 0 if x2 < x < x1.

Let us check Y ″ = –6E3 + 6E4. We have Y ″ < 0 at x = x2, meaning a maximum
Y here, but Y ″ > 0 at x = x1, signifying a minimum Y at the location given by (6.885).

Next, let us look at Y itself. Can Y = 0? Yes, at least Y = 0 at x = 0, which is a
trivial case meaning infinitely long spans. The other values of x at which Y = 0 are
obtained via

2E2 – 3E3x + E4x2 = 0 (6.888)

as

x
E T

E
3

3

4

3

2
= + ½

(6.889)

x
E T

E
4

3

4

3

2
= − ½

(6.890)

where

T = 9E 3
2 – 8E2E4 (6.891)

The interested reader is encouraged to assess the admissibility of (6.889) and
(6.890) as real roots of (6.888) using the strategies employed in solving the corre-
sponding problem associated with Y ′ = 0 or some other method.

Next, we do R4, which is given by
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R
k E k E k E

D
4

1 2 2 3 3 4= + +
(6.892)

where D is as in the case for R1 in this section and

k

L
J J

J
1

5

1 2

2

4 3

36
=

+





(6.893)

k

L
J J

J
2

4

1 2

3

1 1

6
=

+





(6.894)

k

L
J J

J
3

3

1 2

3

1 1

18
=

− +





(6.895)

Thus,

R
Y

d
4

36
= (6.896)

where

Y a x a x a x x
L

= + + =1 2
2

3
3 1

, (6.897)

with

a
J J

E

J
1

1 2
2

2

4 3

0=
+





> (6.898)

a
J J

E

J
2

1 2
3

3

6

1 1

0=
+





> (6.899)

a
J J

E

J
3

1 2
4

3

2
1 1

0=
− +





< (6.900)

Now,

Y ′ = a1 + 2a2x + 3a3x2 (6.901)
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so Y ′ = 0 when

x
a S

a
1

2

33
= − + ½

(6.902)

x
a S

a
2

2

33
= − − ½

(6.903)

where

S = a2
2 – 3a1a3 (6.904)

Note that even though S > 0, thereby guaranteeing real roots of Y ′ = 0, only one
root is positive and, therefore, admissible. This root is given by (6.903). Also, Y ″ =
2a2 + 6a3x < 0 at x2, so Y has a maximum there. Additionally, Y ′ < 0 when x > x2,
and Y ′ > 0 if x < x2.

Let us deal with Y = 0 now. This mean that R4 = 0 also and happens when x
= 0 or V = a1 + a2x + a3x2 = 0. V = 0 means

x
a T

a
1

2

32
= − + ½

(6.905)

or

x
a T

a
2

2

32
= − − ½

(6.906)

where

T = a2
2 – 4a1a3 (6.907)

is greater than zero, because a1a3 < 0 and thus –4a1a3 > 0. However, only one root,
given by (6.906), is positive. Again, Y < 0 when x > x2 and Y > 0 if x < x2. Of course,
R4 > 0 when Y > 0 and vice versa, as can be seen from (6.896).

It is also very interesting to note in passing that Y and, for that matter, R4 have
a rather beautiful upper bound. First of all, we see 0 < a1 < 4(1/J1 + 1/J2)E2/J2. Then
we observe that a2 and a3 have a common factor (1/J1 + 1/J2). Thus, we have

Y
J J

E

J

E

J
x

E

J
x x B< +







+






−














 =2

1 1 2 3

1 2

2

2

3

3

4

3

2 (6.908)

and

R
B

d
4

36
< (6.909)
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Here, B stands for “beautiful,” and we have seen something like it, at least in math-
ematical form, before and maybe on several occasions. Additionally, Y ″ = B ″. When
we have a maximum for Y at x, we have also a maximum for B in the neighborhood
and similarly for a minimum. The domains of increasing function behavior for B and
Y are the same. The same statement can be made regarding decreasing function
characteristics.

6.15. TRIANGULAR LOAD ON AN EXTERIOR SPAN OF
A THREE-SPAN CONTINUOUS BEAM: CONSTANT J
The reaction R1 is given by

R
Q

D
F1 = 





(6.910)

where

Q
L L

z
D

d

z
= =1 2

26
, (6.911)

F = (f1E2 + f2E3 + f3E4 + f4E5) (6.912)

with

d
L L

L L L L L L= 





 + + +1 3

2

2
2

1 3 2 1 3
6

3 4 4[ ( ) ] (6.913)

and

f

L q

z

a

z
1

3
3

0

13= = (6.914)

f

L q L q

z

a

z
2

3
2

0 3
3

1

22 3=

−
+

= (6.915)

f

L q L q

z

a

z
3

3 0 3
2

1

36 2=
−

= (6.916)

f

L q

z

a

z
4

3 1

46= = (6.917)
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As a result of substituting these entities involved into (6.910), we have

R1 = BH (6.918)

where

B
L L

d
H a E a E a E a E= = + + +1 2

1 2 2 3 3 4 4 5
6

, (6.919)

We observe that B and H are free of z ; R1 is the product of B and H. The
conclusions of these simple observations are that R1 is independent of z and is
proportional to B and H. Since B is proportional to both L1 and L2 and is inversely
proportional to d, so is R1. Note, of course, that the L’s are in d also and they are
not independent of each other; the last statement is for figurative comparison pur-
poses only.

From (6.918) and (6.919), we see that if H < 0, = 0, or > 0, then R1 < 0, = 0,
or > 0 respectively. Note that H is proportional to L3 because all the ai’s have this
factor in common.

Next, we will study R4, expressed as

R
G

D
4 = (6.920)

where

G = (g1E2 + g2E3 + g3E4 + g4E5) (6.921)

with

g
d q

z

b

z
1

1 0
2

1
2

= = (6.922)

g
d q d q

z

b

z
2

2 0 1 1
2

2
2

= + = (6.923)

g
d q d q

z

b

z
3

3 0 2 1
2

3
2

= + = (6.924)

g
d q

z

b

z
4

3 1
2

4
2

= = (6.925)

and

d
L L L

L L1
1
2

2 3
1 2

36
4 3 0= −







+ < ( ) (6.926)

d
L L L L

2
1
2

3 1 2

6
0= − + <( )

(6.927)
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d
L L L

3
1 2 1

2

18
0= + >( )

(6.928)

Thus,

R
b E b E b E b E

d
4

1 2 2 3 3 4 4 5= + + +
(6.929)

We observe that all the terms in the numerator of (6.929) have the factor L1 in
common and d has a factor L1, so they cancel each other out, and we have a sim-
plification there when we carry out the calculations. Note again that R4 is indepen-
dent of z.

An examination of the above formulae reveals that R4 < 0, = 0, or > 0 if G <
0, = 0 or > 0 respectively.

6.16. TRIANGULAR LOAD ON AN EXTERIOR SPAN
OF A THREE-SPAN CONTINUOUS BEAM: CONSTANT
SPAN LENGTH
Pertinent entities involved in the expression for reactions R1 and R4 are expressed
as functions of the parameter designated as z below.

G
J J

z= +






1 1

31 2

3

(6.930)

D L d
B B B B B B

=
+ + +

( )
( )6 2

2
1 3 2 1 33 4 4

36
(6.931)

B
J

ii
i

= =1
1 2 3, , , (6.931A)

Q
z

J
=

2

26
(6.932)

A
z

J
A

z

J
A

z

J
1

3

2
2

2

3
3

33 2 6
= = =, , (6.933)

D d z
J J

J
z1 1

5 1 2

2

5

4 3

36
= = −

+

















(6.934)
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D d z
J J

J
z2 2

4 1 2

3

4

1 1

6
= = −

+

















(6.935)

D d z
J J

J
z3 3

3 1 2

3

3

1 1

18
= =

+

















(6.936)

Thus, we have the elements for R1 as

f A q
q

J
z1 1 0

0

3

3

3
= = (6.937)

f A q A q
q

J
z

q

J
z2 2 0 1 1

1

3

3 0

3

2

3 2
= + =









 −









 (6.938)

f A q A q

q

J
z

q

J
z3 3 0 2 1

1

3

2 0

3

2
6

= + =

−

















+ (6.939)

f A q
q

J
z4 3 1

1

36
= = (6.940)

and the elements for R4 as

g1 = D1q0 = d1q0z5 (6.941)

g2 = D2q0 + D1q1 = d2q0z4 + d1q1z5 (6.942)

g3 = D3q0 + D2q1 = d3q0z3 + d2q1z4 (6.943)

g4 = D3q1 = d3q1z3 (6.944)

Hence, we have

R
Q

D
f E f E f E f E

z J d
a z a z a z

1 1 2 2 3 3 4 4 5

4
2

3
3

2
2

1
1

6

= 





+ + +

=








 + +

 

 

( )

( )
[ ]

(6.945)
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For convenience of operations, let

Y
z

a z a z a= 





+ +1
3 3

2
2 1 [ ] (6.946)

and let 1/z = z. Then we have

Y = a1x3 + a2x2 + a3x (6.947)

where a1, a2, and a3 may be positive, negative, or zero depending on q0, q1, and Ej .
But is this so?

Consider a3. It can be shown to be positive in at least two ways. Let us play
around a little bit in the following manner first. Suppose a3 is zero. Then

q0E2 + q1E3 = 0 (6.948)

which leads to

q

q

E

E
0

1

3

2

= −
(6.949)

However, q0/q1 = –a; thus, from (6.949) we have

E

E
a3

2

= (6.950)

Invoking the definitions of E2 and E3 in (6.950), we have

a
e ea a

e a
= + +

+
2

3

2 2( )

( )
(6.951)

which yields ae + a2 > 2e2. Since by definition e = a + b and a > 0, b > 0, we have
e > 0. The only possible root of (6.951) as a quadratic equation in e is e = a, which
corresponds to the trivial load case where the loaded length b = 0 (i.e., zero load on
the beam).

Suppose a3 < 0. Then

q0E2 + q1E3 < 0 (6.952)

which means a > E3/E2, or equivalently

ae + a2 > 2e2 (6.953)

However, this is impossible, because by definition a < e or a = e at most. Therefore,
unless a = e is the case and thus a3 = 0, we have a3 > 0 in general.

Another proof is via the properties of Ej ( j = 2, 3, 4, 5) established earlier. One
of these properties is Ej+1 – aEj > 0 in general except when e = a, in which case Ej+1

– aEj = 0.
Next, we claim that a2 < 0 except in the trivial case when e = a with zero load.

J. Ross Publishing; All Rights Reserved



Examples of Beam Formulae: Explorations and Commentary � 271

Proof
It is given that

a
J

q E q E2
3

0 3 1 4
1

2
= − +( ) (6.954)

which is equal to

a
J

q aE E2
3

1 3 4
1

2
= − − +( ) ( ) (6.955)

because q0/q1 = –a.
Since (–aE3 + E4) > 0 and q1 > 0, we have from these two facts and (6.955) the

result a2 < 0.
Similarly, we can show that a1 > 0 by using the established Ej property Ej+1 –

aEj > 0 for all general cases excluding the trivial case e = a (with zero load on the
beam).

With the signs of all the aj established, we are ready to tackle

Y ′ = a3 + 2a2x + 3a1x2 (6.956)

The roots of the equation Y ′ = 0 are

x
a S

a
1

2

13
= − + ½

(6.957)

x
a S

a
2

2

13
= − − ½

(6.958)

and they are real and distinctive if

S = a2
2 – 3a1a3 > 0 (6.959)

which means

3(q0
2E3

2 + q1
2E 4

2) + 4q0q1E3E4 > 2(q0
2E2E4 + q1

2E3E5 + q0q1E2E5) (6.960)

Regrouping the terms in (6.960) and dividing each term by the positive quantity q1
2,

we have

a2(3E 3
2 – 2E2E4) – a(4E3E4 – 2E2E5) + (3E 4

2 – 2E3E5) > 0 (6.961)

We have in (6.961) basically three terms and will concentrate on them one at
a time as follows. For the first term, consider A = (3E 3

2 – 2E2E4). Substituting the
definitions of the appropriate Ej , we obtain

A
e a

e e a e a ea a

b K
e a b

= −







 + + + +

= > − =

( )
[ ]

,

2
4 3 2 2 3 4

2

12
2 6 2

12
0

 

(6.962)
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Next, we consider B = 4E3E4 – 2E2E5 and obtain

B e a e a ea e a= 





+ + + + >1

15
2 7 04 4 3 3 2 2 [ ( ) ] (6.963)

Finally, we look at C = 3E4
2 – 2E3E5 and find

C e a e a ea e a= 





+ − 





− 





+










13

240

3

8

2

15
8 8 3 3 2 2 ( ) ( ) (6.964)

which is pretty messy. However, we can make a nice estimate of C while proving C
> 0. The trick is to note that (e – a)2 = e2 + a2 – 2ea > 0, thereby obtaining the desired
inequality. Thus,

2
2

15

2

15
2

3

16
2

3

3 5
8 8 3 3 2 2

8 8 4 4

8 8 4 4

4
2

E E e a e a e a

e a e a

e a e a

E

= 





+ − +

< 





+ −

< 





+ −

=

 

 

 

[ ( )]

[ ]

[ ]

(6.965)

and a nice estimate of C is possible by noting (16/15)E4
2 > E3E5.

It is interesting to note, in passing, that

E 3
2 < E2E4 (6.965A)

A sketch of the proof of (6.965) is as follows. We start off with

4e2a2 – 2ea(a2 + e2) < 4e2a2 – 2ea(2ea) = 0 < (e2 – a2)2 (6.966)

to get

6e2a2 < e4 + a4 + 2ea(a2 + e2) (6.967)

which leads to

8(e4 + a4 + 2e 3a + 2ea3 + 3e 2a2)

< 9[e4 + a4 + 2(e 2a2 + e 3a + ea3)] (6.968)

and eventually the desired result in (6.965).
This proof was purposefully done in a manner different from the usual approach

to add some spice to the treatment in order to raise interest. There are, of course,
other approaches to devising a proof.

Let us return to the main stream of development, namely (6.959) and (6.961),
by saying that
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S = a2A – aB + C > 0 or S = 0 (6.969)

is the necessary condition for Y ′ = 0 to have real roots. Note, however, that we did
not say that Y ′ has real roots, nor did we say the contrary either. We note that A,
B, and C as well as the dimension a are all positive.

This should wrap up the story of R1 and let us move on to R4 given by

R
g E g E g E g E

D
4

1 2 2 3 3 4 4 5= + + +
(6.970)

where the numerator can be written as b1z5 + b2z4 + b3z3, and the denominator is

D = z6d (6.971)

where

d = 3B 2
2 + 4(B1 + B3)B2 + 4B1B3 (6.972)

with Bi (i = 1, 2, 3) given by (6.931A).
Thus,

R
b z b z b z

d
4

1
1

2
2

3
3

= + +− − −
(6.973)

where

b1 = d1(q0E2 + q1E3) < 0 (6.974)

b2 = d2(q0E3 + q1E4) < 0 (6.975)

b3 = d3(q0E4 + q1E5) > 0 (6.976)

with the signs of the b’s determined by those of the d ’s.
Now we introduce a new variable x = 1/z and consider the function

Y = b1x + b2x2 + b3x3 (6.977)

We have

Y ′ = b1 + 2b2x + 3b3x2 (6.978)

Thus, the roots of Y ′ = 0 are

x
b S

b
1

2

33
= − + ½

(6.979)

x
b S

b
2

2

33
= − − ½

(6.980)

where

S = b2
2 – 3b1b3 (6.981)
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Since b1b3 < 0, we have S > 0 and two real roots of Y ′ = 0. However, because S½

> b2, we have only one positive root given by (6.979). Moreover, Y ″ = 2b2 + 6b3x
and Y ″ > 0 at x1, so Y has a minimum at x1. From (6.973) and (6.977), we know
that Y is proportional to R4. Therefore, R4 has a minimum at x1 also.

6.17. A CONCENTRATED COUPLE AT AN ARBITRARY POINT
ON AN EXTERIOR SPAN OF A THREE-SPAN CONTINUOUS
BEAM: CONSTANT J
The reaction R1 is

R
HK FZ

D
1 = −

(6.982)

where

H
L L L

J
= 1 2 3

6
(6.983)

K M

L L

J

L c

J
= −

+ −





0

2 3 3
2 22

3

6
(6.984)

F
L L M

J
= − 1 2 0

6
(6.985)

Z
L L L

J
=

+3
2

2 3

3

( )
(6.986)

D
d

J
d

L L
L L L L L L= = 





+ + +
2

1 3
2

2
2

2 1 3 1 3
6

3 4 4with  [ ( ) ] (6.987)

Substituting the entities given by (6.983–6.987) into (6.982), we obtain

R
M L L L c L

T
1

0 2 1 3
2

3
23

=
−( ) ( )

(6.988)

where

T = 3L2
2 + 4L2(L1 + L3) + 4L1L3 (6.989)

Note that, strictly and even pedantically speaking, given the sign of M0, the entity
(3c2 – L3

2) determines the sign of R1 since all the other factors in the expression for
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R1 are positive. (3c2 – L3
2) is a critical factor because it dictates whether R1 is zero

as well. Thus, we will call this span length L3, which renders R1 zero as the critical
span length. Thus, for M0 > 0, we have the following situation: R1 < 0, = 0, or >
0 when

3c2 – L3
2 < 0, = 0, or > 0 (6.990)

respectively.
We can look at (6.990) from at least two aspects. One is to hold L3 fixed and

see which value or values of c will satisfy the first or last of the three relations in
(6.990), with the second relation in (6.990) defining the critical span length. The
other aspect is to hold c fixed and see which span lengths L3 fit the category where
R1 < 0 and which ones fit the category where R1 > 0. We could, of course, do an
entirely analogous analysis and correspondingly draw a set of conclusions similar to
the above.

Additionally, it is interesting to note that the absolute value of R1 decreases as
the value of L3 increases through the contributing factors.

Let us move on to R4, which is displayed in (6.991) as

R
FN GK

D
4 = −

(6.991)

where

N H
L L L

J
= = 1 2 3

6
(6.992)

F
L L M

J
= − 1 2 0

6
(6.993)

G
L L L

J
=

+1
2

1 2

3

( )
(6.994)

Substituting (6.992–6.994) into (6.991) and simplifying, we obtain

R
M S

L T
4

0

3
2

= (6.995)

where

S = 4L1L2L3 + 6(L1 + L2)(L3
2 – c2) + 3L2

2L3 (6.996)

and is given in Formula (6.989).
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Note that R4, like R1, is again independent of J. However, unlike R1, the reaction
R4 is nonzero unless M0 = 0. Moreover, R4 < 0 or R4 > 0 depends on M0 < 0 or
M0 > 0 respectively, since S and T are both strictly positive. From (6.995) and
(6.996), we see that as c increases, R4 decreases. When c = 0,

S = 4L1L2L3 + 6(L1 + L2)L3
2 + 3L2

2L3 (6.997)

and this is a maximum S and R4 when c is viewed as the variable. When c = L3, the
entity S is simplified to

S = 4L1L2L3 + 3L2
2L3 (6.998)

which corresponds to a minimum S and R4 when c is the variable.

6.18. A CONCENTRATED COUPLE AT AN ARBITRARY POINT
ON AN EXTERIOR SPAN OF A THREE-SPAN CONTINUOUS
BEAM: CONSTANT SPAN LENGTH
Here, R1 = (HK – FZ )/D and R4 = (FN – GK )/D are given as in the last section
formally. However, the entities have different characteristics. Hence,

D L d d
J

J J

J J J
= = 





+
+





+



















6

2
2

1 3

2 1 3

1

36

3
4

1 1

4
, with   (6.999)

F
L M

J
= − 2

0

26
(6.1000)

G L
J J

=
+





3 1 2

1 1

3
(6.1001)

H
L

J
N= =

3

26
(6.1002)

K
M

J
L c= − −0

2

2 2

6
5 3( ) (6.1003)

Z L
J J

=
+





3 2 3

1 1

3
(6.1004)

and
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R

a

L

a

L

d
1

1 2

3
=

+





(6.1005)

where

a M
J J

J
1 0

2 3

2

2 3

36
=

−





(6.1006)

a
M c

J J
2

0
2

2 312
0= > (6.1007)

Let x = 1/L and R1 = Y/d and consider Y as a function of x :

Y = a1x + a2x3 (6.1008)

Then

Y ′ = a1 + 3a2x2 (6.1009)

Examining a1, we find that a1 < 0, = 0, or > 0 when

2J3 – 3J2 < 0, = 0, or > 0 (6.1010)

respectively.
Note that a2 > 0, so Y ″ = 6a2x > 0. Let us look at Y ′ = 0. This happens when

x
a

a
2 1

23
= −

(6.1011)

which must be positive because x2 > 0 for any real x1, not to mention x = 1/L and
L > 0. Hence, a1 < 0 is required and from (16.1010) we have

2J3 < 3J2 (6.1012)

as the condition to be met. Here, x = (–a1/3a2)½ and Y has a minimum.
For a1 which does not satisfy (6.1012), we have Y ′ > 0. This is because of the

following. When a1 = 0, the condition Y ′ = 0 implies that x = 0, which is a trivial
case, meaning Y ′ = 3a2x > 0 in general. Now when a1 > 0, both terms of Y ′ are
positive. As a result, Y ′ > 0. In short, Y is an increasing function of x when (6.1012)
is not satisfied.

Next, we look at R4. Using a similar approach as we did for R1, we have

R
X

d
4 = (6.1013)

where
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X = a1x + a2x3 (6.1014)

with

x
L

a
M J J

J J

a M c
J J

J

= = 





+













−

















= −
+















1

36
10

1 1
1

1 1

6

1
0 1 2

3 2
2

2 0
2 1 2

3

, ,  

(6.1015)

Note that a1 < 0, = 0, or > 0 when

10 1 1 1
0 0 0

3 1 2 2
2J J J J







+






− < = > ,  or, (6.1016)

respectively.
As for a2, we have a2 < 0 for M0 > 0 and a2 > 0 for M0 < 0.
Let us look at X ′ = a1 + 3a2x2 = 0 in the following manner.

Case 1. a1 > 0
X ′ = 0 is possible at x2 = –a1/(3a2) > 0 because a2 < 0 when M0 > 0. X ″ = 6a2x <
0. Hence, at x = [–a1/(3a2)]½, X has a maximum, and so does R4.

Case 2. a1 = 0
Here, X = a2x3, X ′ = 3a2x2, and X ′ = 0 when x = 0, which is meaningless. Both X
and X ′ have the same sign as that of a2. Thus, when M0 > 0, we have X as a decreasing
function of x and therefore an increasing function of L, and of course, when M0 <
0, the opposite is true.

Case 3. a1 < 0
In this case, X ′ = a1 + 3a2x2 < 0 if M0 > 0 and X is a decreasing function of x. If,
however, M0 < 0, then a2 > 0 and X ′ may be positive, negative, or zero. If X ′ = 0,
then x2 = –a1/(3a2) and at this point X ″ = 6a2x > 0, yielding a minimum for X1 and
for R4 also.
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6.19. A CONCENTRATED FORCE AT AN ARBITRARY POINT
ON THE INTERIOR SPAN OF A THREE-SPAN CONTINUOUS
BEAM: CONSTANT J
The reaction R1 is given by

R1 = VC(A0 + A1s)P (6.1017)

where

V s
L s

J L
= −







 2

2 26
(6.1018)

C = L1L3
2(6D) (6.1019)

A
L L

J
0

2 32= −
(6.1020)

A
L L

J
1

2 33= − +
(6.1021)

D
d

J
=

2
(6.1022)

with

d
L L

L L L L L L= 





 + + +1 3

2

2
2

1 3 2 1 3
6

3 4 4[ ( ) ] (6.1023)

For constant P, consider

R

P
FBL1

3= (6.1024)

where

F s L s
L L

L d
= −( )2

1 3
2

236
(6.1025)

B = –2L2L3 – s(3L2 + 2L3) (6.1026)

are all independent of J. The ratio R1/P is, therefore, also free of J.
Now let us look at R4/P, given by

R

P
VC D D s4

0 1= ′ +( ) (6.1027)
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where

′ =






=C C
L

L

L L

D
 1

3

1
2

3

6
(6.1028)

D L
L L

J
0 2

1 24 3= − +





(6.1029)

D
L L

J
1

1 22 3= +
(6.1030)

Thus,

R

P
FGL4

1= (6.1031)

where

G = –L2(4L1 + 3L2) + s(2L1 + 3L2) (6.1032)

is independent of J.
Note that F may be zero or positive. F = 0 when s = L2, in which case both R1

and R2 are zero. Note also that B < 0. Thus, R1 < 0 when F is nonzero.
Can we have G = 0? Suppose we do. G = 0 when

s L
L L

L L
L= +

+






>2
1 2

1 2
2

4 3

2 3
(6.1033)

which has no physical meaning. Therefore, the only possibilities are G < 0 or G >
0. However, the latter is not possible in view of (6.1033), so G < 0. This means that
R4 < 0, except that it is zero when F = 0, in which case R1 = 0 also.

To summarize, we know that both R1 and R4 are in general negative except when
F = 0, in which case they are both zero at s = L2.

6.20. A CONCENTRATED FORCE AT AN ARBITRARY POINT
ON THE INTERIOR SPAN OF A THREE-SPAN CONTINUOUS
BEAM: CONSTANT SPAN LENGTH
Again, we are considering R1/P in the form presented in (6.1017) in the last section.
However, the entities involved in R1/P have different elements. Thus,

V
s L s

J L
= −( )

6 2

(6.1034)

C
L

D
=

3

6
(6.1035)
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A
L

J
0

2

3

2= −
(6.1036)

A L
J J

1
2 3

3 2= +






(6.1037)

Thus,

R

P
a L a L1

1
2

2
3= +− − (6.1038)

where

a
K

J
1

3

2= −
(6.1039)

a sK
J J

2
2 3

3 2= − +






(6.1040)

with

K
s L s

J d
= −( )

36 2

(6.1041)

which is nonnegative. Note that K = 0 only when s = L or s = 0, with the result a1

= 0, a2 = 0, and R1 = 0.
Let R1/P = Y and 1/L = x and consider Y as a function of x. Thus,

Y = a1x2 + a2x3 (6.1042)

and

Y ′ = 2a1x + 3a2x3 (6.1043)

Y ′ = 0 implies x = 0 or 2a1 + 3a2x = 0. The latter means

x
a

a
= −2

3
1

2

(6.1044)

which is not admissible, because the ratio 2a1/(3a2) in (6.1044) is positive and a
minus sign in front of it renders x negative. Note that the case where s = 0 renders
K = 0, and hence a1 = 0, a2 = 0, as well as R1 = 0, is, therefore, excluded from
consideration when dealing with (6.1044) with regard to the admissibility of x given
in (6.1044).

Another way to look at Y ′ = 0 is to focus on a1 = 0 and a2 = 0, which yield Y ′
= 0 regardless of the value of x. However, a1 = 0 and a2 = 0 at the same time means
that K = 0 and thus s = 0, Y = 0, and R1 = 0 also.

In short, a1 < 0 and a2 < 0 except when K = 0. It is clear from the expression
for Y ′ that Y ′ < 0 for all x, and the same statement can be made about Y and thus
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R1 for that matter. Even Y ″ < 0 holds for nonzero a1 and a2, and once again, when
a1 = 0 and a2 = 0 at the same time, we have Y ″ = 0 also, along with Y ′, Y, and R1.

Let us do

R

P
VC D D s b L b L4

0 1 1
2

2
3= ′ + = +− −( ) (6.1045)

where

b K
J J

1
1 2

1 3
0= − +







< (6.1046)

b Ks
J J

2
2 3

2 3
0= +







> (6.1047)

in general except when K = 0, in which case they both are zero and so is R4. Thus,
for nonzero K, we have, by letting 1/L = x and X = b1x2 + b2x1

3, the result

X ′ = 2b1x + 3b2x2 (6.1048)

We see that X ′ = 0 when x = 0 or

x
b

b
= −2

3
1

2

(6.1049)

which is possible to be positive because the entities b1 and b2 are of opposite signs
for nonzero K.

We have X″ = 2b1 + 6b2x, so X″ > 0 at the value of x given by (6.1049). Therefore,
X has a minimum there, and everything else regarding an increase or a decrease of
function X falls into place. When will R4 be positive, zero, or negative? Well, X =
0 implies R4 = 0 and b1 + b2x = 0, and the latter means either b1 = b2 = 0 when K
= 0 or

x
b

b
= − 1

2

(6.1050)

for nonzero K. Note that (6.1050) is admissible because here b1 and b2 are of opposite
signs.

Naturally, X > 0 when x > –b1/b2 and X < 0 when x < –b1/b2.

6.21. UNIFORM LOAD ON THE INTERIOR SPAN OF
A THREE-SPAN CONTINUOUS BEAM: CONSTANT J
The reaction R1 is given by

R1 = wSL3Z1 (6.1051)
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where w is the uniform load and

S
L L

JL D
= 1 3

236
(6.1052)

Z A L A L E A A L E A E
X

J
1 0 2 1 2

2
2 0 1 2 3 1 4

12= + − + + = −
( ) ( ) (6.1053)

with

A
L L

J
0

2 32= −
(6.1054)

A
L L

J
1

2 33 2= − +( )
(6.1055)

D
d

J
=

2
(6.1056)

X1 = L2
2(3L2 + 4L3)E2 – 6L2(L2 + L3)E3 + (3L2 + 2L3)E4 (6.1057)

and d is as defined in Section 6.13 on the same structure regardless of load type.
As a result of the above, we have

R
wL L X

L d
1

1 3
2

1

236
= (6.1058)

Note that X1 is independent of J and so is R1. Moreover, X1 has an upper bound X1U

and a lower bound X1L as:

X1U = (L3 + L2)[4L2
2E2 – 6L2E3 + 3E4] (6.1059)

X1L = (L2 + L3)[3L2
2E2 – 6L2E3 + 2E4] (6.1060)

From the expression for X1, it is conceivable that X1 = 0, < 0, or > 0 for certain
choices of L2 and L3 for a given entity a, and we can treat X1 as a function of L2 or
L3 only and get results.

Note that R1 may be positive, negative, or zero through X1; also, R1 may have
its upper bound or lower bound through those for X1.

Now we can do something similar to R4.

R wSL Z
wL L X

L d
4 1 4

1
2

3 4

236
= = (6.1061)

where

X4 = –2L1L2
2E2 – 3L2

2E3 + (2L1 + 3L2)E4 (6.1062)

is independent of J and so is R4. Again, it is conceivable that X4 = 0, < 0, or > 0 and
the same remarks apply to R4.
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Similar to what we did for X1 above, we can obtain an upper bound X4U and
a lower bound X4L for X4 as follows:

X4U = –L2
2(2L1E2 + 3E3) + 3(L1 + L2)E4 (6.1063)

X4L = –3L2
2(L1E2 + E3) + 2(L1 + L2)E4 (6.1064)

Naturally, R4 will have its upper and lower bounds through those for X4. Again,
we can treat X4 as a function of either L1 or L2 only and obtain useful and interesting
results. Similar treatment of X4U or X4L can be done with ease also.

Note that we can obtain other upper and lower bounds for X4 and X1 for that
matter as the need warrants.

6.22. UNIFORM LOAD ON THE INTERIOR SPAN
OF A THREE-SPAN CONTINUOUS BEAM:
CONSTANT SPAN LENGTH
The reaction R1 is given as

R1 = wSL3Z1 (6.1065)

where

S
L

J D
=

36 2

(6.1066)

Z
J J

L E
J J

L E
J J

LE1
2 3

3
2

2 3

2
3

2 3
4

3 4
6

1 1 3 2= − +






+ +






− +






(6.1067)

Thus,

R
wY

J d
1

236
= (6.1068)

where

Y a x a x a x x
L

= + + =1 2
2

3
3 1

, (6.1069)

with

a E
J J

1 2
2 3

3 4= − +






(6.1070)

a E
J J

2 3
2 3

6
1 1= +







(6.1071)
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a E
J J

3 4
2 3

3 2= +






(6.1072)

Note that in general a1 < 0, a2 > 0, and a3 < 0, and they are zero only when Ej

= 0, which means that e = a, signifying a trivial case with zero load. It is interesting
to see that Y has an upper bound YU and a lower bound YL:

Y x
J J

E xE x EU = +






− + −1 1
3 6 2

2 3
2 3

2
4 [ ] (6.1069A)

Y x
J J

E xE x EL = +






− + −1 1
4 6 3

2 3
2 3

2
4 [ ] (6.1069B)

Consider Y ′ = a1 + 2a2x + 3a3x2 and Y ″ = 2a2 + 6a3x . We see that Y ′ = 0 when

x
a S

a
= − +2

33

½
(6.1073)

or when

x
a S

a
= − −2

33

½
(6.1074)

where

S = a2
2 – 3a1a3 (6.1075)

For the real roots of Y ′ = 0, we need

a2
2 – 3a1a3 ≥ 0 (6.1076)

We have two positive roots given by (6.1073) and (6.1074). For the first one, we have
Y ″ > 0, so Y has a minimum there. For the second one, we have Y ″ < 0, so Y has
a maximum there.

Note that Y = 0 at x = 0, or a1 + a2x + a3x2 = 0. The former means that L is
infinitely long, which is not admissible. The latter is satisfied when

x
a T

a
= − +2

32

½
(6.1077)

or

x
a T

a
= − −2

32

½
(6.1078)

where

T = a2
2 – 4a1a3 (6.1079)
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must be nonnegative for real roots. The question is: Can T > 0 or = 0? It is worth-
while to explore.

We now proceed to work on R4, which is expressed as

R wSLZ
w

J d X
4 4

236
= =

( )
(6.1080)

where

X b x b x b x x
L

= + + =1 2
2

3
3 1

, (6.1081)

with

b
E

J
1

2

1

2
0= − < (6.1082)

b
E

J
2

3

2

3
0= − < (6.1083)

b E
J J

3 4
2 2

2 3
0= +







> (6.1084)

Now

X ′ = b1 + 2b2x + 3b3x2 (6.1085)

X″ = 2b2 + 6b3x (6.1086)

so X ′ = 0 when

x
b U

b
1

2

33
= − + ½

(6.1087)

or

x
b U

b
2

2

33
= − − ½

(6.1088)

where

U = b2
2 – 3b1b3 (6.1089)

is positive because b1b3 < 0 and ensures that we have two real roots for X ′ = 0.
However, only the one root given by (6.1087) is positive. At this x, we have X ″ >
0; therefore, X has a minimum here.

Let us look at X = 0. This happens when x = 0, which is a trivial case, or when

x
b V

b
1

2

32
= − + ½

(6.1090)
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or

x
b V

b
2

2

32
= − − ½

(6.1091)

is satisfied where

V = b2
2 – 4b1b3 (6.1092)

is positive, as required for real roots. Again, only one root given by (6.1090) is
positive and therefore admissible. Also, when x > x1 given in (6.1090), we have X
> 0 and R4 > 0. Naturally, when x < x1, we have X < 0 and R4 < 0.

6.23. TRIANGULAR LOAD ON THE INTERIOR SPAN
OF A THREE-SPAN CONTINUOUS BEAM: CONSTANT J
Here we have

A
L L

J

a

J
0

2 3 02
0= − = < (6.1093)

A
L L

J

a

J
1

2 3 13 2
0= − + = <( )

(6.1094)

D
L L L

J

d

J
0

2 1 2 04 3
0= − + = <( )

(6.1095)

D
L L

J

d

J
1

1 2 12 3
0= + = > (6.1096)

U
w

bJ

u

J
= = >

6
0 (6.1097)

D
d

J
= >

2
0 (6.1098)

Thus,

Z aU
z

J
1

1 0= − = < (6.1099)

Z
a

L
U

z

J
2

2

21 0= +






= > (6.1100)

Z
U

L

z

J
3

2

3 0= − = < (6.1101)

where
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z
aw

b
1

6
0= − < (6.1102)

z
a

L

w

b
2

2

1
6

0= +








 > (6.1103)

z
w

bL
3

26
0= < (6.1104)

Also,

C
L L J

d
kJ= = >1 3

2 2
2

6
0 (6.1105)

C ′ = k ′J 2 > 0 (6.1106)

where

k
L L J

d
= >1 3

2

6
0 (6.1107)

′ =






>k k
L

L
1

3

0 (6.1108)

Thus,

R1 = k[b1E2 + b2E3 + b3E4 + b4E5] (6.1109)

where

b1 = a0z1 > 0 (6.1110)

b2 = a0z2 + a1z1 (6.1111)

b3 = a0z3 + a1z2 (6.1112)

b4 = a1z3 > 0 (6.1113)

Similarly,

R4 = k ′[f1E2 + f2E3 + f3E4 + f4E5] (6.1114)

where

f1 = d0z1 > 0 (6.1115)

f2 = d0z2 + d1z1 < 0 (6.1116)

f3 = d0z3 + d1z2 > 0 (6.1117)

f4 = d1z3 < 0 (6.1118)
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Note that k, k ′, and all the b’s, f ’’s, and E ’s are independent of J and so are R1

and R4.

6.24. TRIANGULAR LOAD ON THE INTERIOR SPAN OF
A THREE-SPAN CONTINUOUS BEAM: CONSTANT SPAN
LENGTH
The reaction R1 is given by

R U
b x b x b x

d
1

2 1
2

0
3

6
= + +





(6.1119)

where

x
L

= 1
(6.1120)

b
aE E

J
2

2 3

3

2
0= − <( )

(6.1121)

b
aE E

J
1

3 4

2

3
0= − <( )

(6.1122)

b
J J

aE E0
2 3

4 5
3 2

0= − +






− > ( ) (6.1123)

Let

Y = c1x + c2x2 + c3x3 (6.1124)

with

c1 = b2, c2 = b1, c3 = b0 (6.1125)

Consider

Y ′ = c1 + 2c2x + 3c3x2 (6.1126)

Y ′ = 0 when

x
c S

c
1

2

33
= − + ½

(6.1127)

or

x
c S

c
2

2

33
= − − ½

(6.1128)
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where

S = c 2
2 – 3c, c3 (6.1129)

Note that both roots of Y ′ = 0 are positive real ones and are thus admissible.
Now consider Y ″ = 2c2 + 6c3x. We have Y ″ > 0 when (6.1127) is satisfied,

corresponding to a minimum Y. Y ″ < 0 when (6.1128) is satisfied, signifying a
maximum for Y here.

Note that Y can be positive, negative, or zero, and so can R. We see that Y =
0 when x = 0, which is a trivial case without physical meaning or

c1 + c2x + c3x2 = 0 (6.1130)

the roots of which are given by

x
c T

c
1

2

32
= − + ½

(6.1131)

x
c T

c
2

2

32
= − − ½

(6.1132)

where

T = c 2
2 – 4c1c3 (6.1133)

However, only the root given by (6.1131) is admissible. Moreover, Y < 0 when x <
x1, and Y > 0 when x > x1. The former corresponds to R1 < 0, while the latter
corresponds to R1 > 0.

Now we move on to R4, which is given, from Section 6.10, as

R4 = C(f2L2 + f1L + f0) (6.1134)

where

f2 = d0U(E3 – aE2) < 0 (6.1135)

f1 = (d1 – d0)U(E4 – aE3) > 0 (6.1136)

f 0 = d1U(aE4 – E5) < 0 (6.1137)

with

d
J J

d
J J

0
1 2

1
1 2

4 3
0

2 3
0= − +







< = +






>, (6.1138)

Let

1
2 1

2
0

3

L
x Y f x f x f x= = + +, (6.1139)

Then,
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Y ′ = f2 + 2f1x + 3f0x2 (6.1140)

and Y ′ = 0 when

x
f S

f
= − +1

03

½
(6.1141)

x
f S

f
= − −1

03

½
(6.1142)

where

S = f 1
2 – 3f0 f2 (6.1143)

We need S > 0 or S = 0 for real roots of Y ′ = 0. Do we have it? It is something
worthwhile to pursue and is very similar to two problems: (1) when the load is on
an exterior span and (2) uniform load on an interior span. The interested reader is
encouraged to tackle this.

Let us pause for a moment and turn to Y. To this end, we rewrite Y as

Y = f0(x3 + g1x2 + g0x) = xf0V (6.1144)

The roots of V = 0 are

x
g T

1
1

2
= − + ½

(6.1145)

x
g T

2
1

2
= − − ½

(6.1146)

where

T = g1
2 – 4g0 (6.1147)

However, these two roots given by (6.1145) and (6.1146) are negative even if they
are real roots. Hence, V is nonzero also except at x = 0, which has no physical
meaning. In fact, Y is negative because V > 0 and f0 < 0 with x nonzero (and positive
too).

In order to promote the reader’s interest and learning efficiency, we will change
pace as follows. Sections 6.25 and 6.26 are designed as exercises for the reader to find
out whether the proposed approaches will give the correct solutions.

6.25. TWO-SPAN CONTINUOUS BEAM WITH SYMMETRY
An alternative way to treat the problem of a two-span continuous beam with sym-
metry (see Figure 6.1) is to consider the corresponding problem of a beam with a
fixed end and a simply supported end as shown in Figure 6.2. The loads and material
and section properties as well as the other structural characteristics are such that the
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FIGURE 6.2. A concentrated force on a single-span beam with a fixed end and a
simple supported end

problem of the structure represented by Figure 6.2 and its mirror image with the
fixed end as the line of symmetry is equivalent to the problem in Figure 6.1.

Looking at Figure 6.1, the solution can be found from the discussion in Appen-
dix F. Thus, all we have to do is first to identify which problem in Appendix F
corresponds to a given two-span continuous beam problem with symmetry and then
write down the answer. Since many different kinds of loads can be handled with
Appendix F, just as many two-span continuous beams with symmetry can be taken
care of.

Because of the nature of the problem of a two-span continuous beam with
symmetry, the material and section properties as well as span lengths are constants
for the whole structure. This is different from the corresponding problem for the case
of a four-span continuous beam with symmetry, as will be seen next.

FIGURE 6.1. Two concentrated forces on a two-span continuous beam with symmetry

R1 R1

(SYMM.)

P

L

J

2R2L

J

P
a a

R2

a

L

P

M0

R1

J
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FIGURE 6.4. A concentrated force on a two-span beam with an exterior end fixed
and the other supports hinged

FIGURE 6.3. Two concentrated forces on a four-span continuous beam with symmetry

6.26. FOUR-SPAN CONTINUOUS BEAM WITH SYMMETRY
Basically, the problem of a four-span continuous beam with symmetry can be solved
in a manner similar to a two-span continuous beam with symmetry in principle.
Thus, we look at Figures 6.3 and 6.4 and observe immediately that the problem
depicted in Figure 6.3 can be dealt with by considering Figure 6.4, which represents
a second-degree statically indeterminate structural problem. Thus, for the two-span
beam shown in Figure 6.4, we can take the two reactions at the two hinged supports
as the unknowns for the system of equations resulting from the method of least work.
As far as the material and section properties and the span lengths for this two-span
structure are concerned, there are no restrictions. As a result of this generality, it is
not necessary for the four-span structure depicted in Figure 6.3 to have constant

R1 R1

(SYMM.)

P

2R3

P
a a

L1

J1

L2

J2

L2

J2
R2

L1

J1
R2

R3

a
P

R1

L2

J2

L1

J1

R2
M0
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material and section properties or constant span lengths. As long as the symmetry
condition is satisfied, we have the right problem with the right solution. Thus, the
categories regarding the material and section properties as well as span lengths men-
tioned before still apply here, and we have numerous interesting special cases in the
usual way.

6.27. PRINCIPLE OF SUPERPOSITION
The principle of superposition is a fantastic way to generate or obtain solutions to
new problems through solutions to old problems. Figures 6.5–6.7 are several inter-
esting examples that show the application of the principle of superposition.

6.28. POSSIBLE DIRECTION FOR FUTURE WORK
Obviously, several important topics or problems are not included in this book. Some
examples are (1) the various load cases for single-span beams with fixed ends and
(2) a concentrated couple (a) on a single-span beam with a fixed end and a simply
supported end and (b) on the interior span of a three-span continuous beam.

J. Ross Publishing; All Rights Reserved



Examples of Beam Formulae: Explorations and Commentary � 295

(a)

(b)

(c)

(c) = (a) + (b)

FIGURE 6.5. A two-span continuous beam illustrating the principle of superposition
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FIGURE 6.6. A three-span continuous beam illustrating the principle of superposi-
tion: Example 1
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FIGURE 6.7. A three-span continuous beam illustrating the principle of superposi-
tion: Example 2
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APPENDIX A.
SOME PROPERTIES OF Ej – aEk

For the purpose of paving the way for future exploration, it is helpful to present some
of the properties of several mathematical expressions which either are likely to occur
(for example, for general j values) or we have already seen (for example, in cases
where j = 2, 3, 4, 5) in functions involved in a parametric study or similar under-
taking. Therefore, let us consider the following entities Ak of real numbers defined
as

Ak = Ej – aEk (A.1)

where

E
e a

j
j

j i

= −
(A.2)

with

k = j – 1 (A.3)

where j is a positive integer greater than 1, and

e = a + b (A.4)

where e is nonzero, and

a > 0 or a = 0 (A.5)

b > 0 or b = 0 (A.6)

Then, Ak has the properties listed below, in addition to the ones presented in Chapter
1 concerning Ej – aEk .
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First, Ak is proportional to several factors, namely b, Ck, ek, and Gk, in a manner
specified by Expressions (1.7–1.13), which were established utilizing different nota-
tions in Chapter 1 regarding Ej – aEk. Thus,

Ak = CkbekGk (A.7)

where

C
jk

k = 1
(A.8)

Gk = k – (r + r 2 + … + r k) (A.9)

with

r
a

e
= (A.10)

It is both interesting and important to note the following. From (A.4– A.6), we
see that

0 < r < 1 (A.11)

in general while

r = 1 (A.12)

if and only if a = e and b = 0.
Also, from (A.9), we have Gk > 0 when (A.11) is satisfied, whereas we obtain Gk

= 0 when (A.12) is satisfied. In other words, Gn > 0 in general except when r = 1
and we have Gn = 0.

Second, Ak can be rewritten as

Ak = Ck(1 – r)e jGk (A.13)

Third, Gk can be rewritten as

Gk = (1 – r)Fk (A.14)

where

Fk = k + (k – 1)r + (k – 2)r2 + … + rk–1 (A.15)

Finally, Gk can further be rewritten as

Gk = k – Sk (A.16)

with

S r
r

r
k

k

= −
−

1

1
(A.17)

J. Ross Publishing; All Rights Reserved



Appendix A. Some Properties of Ej – aEk � 301

upon using Formula (A.18) for the first k term partial sum Pk of a geometric series
in the form

c + cr + cr2 + … + cr k–1 (A.18)

which is, with c = r in our case, equal to

P c
r

r
k

k

= −
−

1

1
(A.19)

Note that for 0 < r < 1 (emphasizing that r is not equal to 1) when k is sufficiently
large, then for all practical purposes we can approximate the exact value of Pk by

Q
c

r
=

−1
(A.20)

or we can treat Q as an upper bound for Pk with the property that the larger the value
of k is, the closer the difference between Pk and Q becomes.

Next, we can start our exploration by keeping e fixed and considering Ak as a
function of r for a given k.

We can also show that Ak is a decreasing function of r for r ≠ 1. The proof is
as follows.

Proof
Looking at (A.13) and paying special attention to the factors (1 – r) and Gk in
addition to the fact that both factors Ck and e j are positive, we define

Dk = (1 – r)Gk (A.21)

as a function of r and take the first derivative of Dk with respect to r. Thus,

D ′k = –j(1 – r) (A.22)

We see from (A.22) that

D ′k < 0 for 0 < r < 1 (A.23)

which means that Dk is a decreasing function of r when r ≠ 1. Additionally, we have

D ′k = 0 if r = 1 (A.24)

It is very interesting to note that if r = 1, then in addition to Expression (A.24)
having something to do with zero, we also have Dk = 0 from Expression (A.21), Gk

= 0 from as early as Expression (A.14), and even Ak = 0 from as early as Expression
(A.13). We could trace this even further back if we choose to, but the point has been
made and there is really no purpose in going any further back than Expression
(A.13).
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For application in the investigation of the behavior of beams under loads, the
general case where 0 < r < 1 is of interest for both practical usefulness and theoretical
significance, whereas the special case where r = 1 corresponds to a trivial case of zero
load on a beam.

Finally, let us revisit the special cases where k = 2, 3, 4 which we encountered
frequently in Chapter 6. Thus,

A2 = E3 – aE2 (A.25)

A3 = E4 – aE3 (A.26)

A4 = E5 – aE4 (A.27)

are all members of a big family Ak, where k denotes the size of the family and can
run from 1 all the way up to as high as one wants.
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APPENDIX B.
SOME RELATIONS AMONG Ej (j = 2, 3, 4, 5)

Given the definitions of Ej as per Formula (A.1) in Appendix A, we have the follow-
ing theorems.

THEOREM B.1
3E 4

2 > 2E3E5 for e ≠ a (B.1)

Proof
From the definition of Ej , we have

E
e a e a

4
2

8 8 4 42

16
= + −

(B.2)

E E
e a e a e a e a e a

e a e a e a

3 5

3 3 5 5 8 8 5 3 3 5

8 8 3 3 2 2

15 15

15

= − − = + − −

= + − +

( )( )

( ) (B.3)

However,

e2 + e2 > 2ae (B.4)

so

e3a3(e2 + a2) > 2a4e4 (B.5)

J. Ross Publishing; All Rights Reserved



304 � Elastic Beam Calculations Handbook

2 2
15

2
2

15

3
2

16
3

3 5

8 8 3 3 2 2 8 8 4 4

8 8 4 4

4
2

E E
e a e a a e e a e a

e a e a
E

= + − + < + −

< + − =

( )

(B.6)

Therefore, we have (B.1) as a result of noting (B.6).

Corollary
For the special case where e = a, we have from the definition of Ej that 3E4

2 = 0 =
2E3E5 immediately.

THEOREM B.2
E2E5 < 2E3E4 for e ≠ a (B.7)

Proof

30
32 5

2 2
4 3 2 2 3 4E E

e a
e a e e a e a ea a

−
= − + + + +( )( ) (B.8)

60E3E4(e2 – a2) = 5[(e3 – a3)(e2 – a2)]

= 5(e – a)(e2 + ea + a2)(e2 + a2)

= 5(e – a)[e4 + e 3a + 2e2a2 + ea3 + a4] (B.9)

Comparing (B.8) and (B.9), we have (B.7) immediately.

Corollary 1
5E2E5 < 6E3E4 (B.10)

Proof
Let

M = e4 + e3a + e2a2 + ea3 + a4 (B.11)

N = e4 + e3a + 2e2a2 + a3 + a4 (B.12)

Then, we see from (B.11) and (B.12) that

M < N (B.13)
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In fact,

N = M + e2a2 (B.14)

Also, from (B.8) and (B.11), we have

10E2E5 = (e2 – a2)(e – a)M (B.15)

and from (B.9) and (B.12), we obtain

12E3E4 = (e2 – a2)(e – a)N (B.16)

Additionally, (B.13) means

10E2E5 < 12E3E4 (B.17)

so (B.10) is proved.

Corollary 2
A convenient and interesting way to calculate E2E5 and E3E4 is via Formulae (B.18)
and (B.19) respectively. Thus,

E E
e a e a M

2 5

2 2

10
= − −( )( )

(B.18)

E E
e a e a N

3 4

2 2

12
= − −( )( )

(B.19)

Alternatively, we can relate E2E5 and E3E4 by P and Q as follows.

E E

e a
P2 5

−
= (B.20)

E E

e a
Q3 4

−
= (B.21)

where

P
e a M= −( )2 2

10
(B.22)

Q
e a N= −( )2 2

12
(B.23)

THEOREM B.3
E 3

2 < E2E4 (B.24)

See Chapter 6 for the proof.
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THEOREM B.4
3E 3

2 > 2E2E4 (B.25)

See Chapter 6 for the proof.

Corollary
3E2E4 > 3E 3

2 > 2E2E4 (B.26)

Proof
This is a direct result of applying Theorem B.3 and Theorem B.4 simultaneously. In
other words, putting Theorem B.3 and Theorem B.4 together literally, we have this
corollary.
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APPENDIX C.
PROOF OF S > 0:
UPPER AND LOWER BOUNDS FOR
THE ENTITY S IN SECTION 6.22

THEOREM
S as defined in Section 6.22, with e > a and e ≠ a, is positive.

Proof
By the definition given in Section 6.22,

S = a2
2 – 3a1a3 = 3Q (C.1)

where

Q = (12E 3
2k2

2 – E2E4k1k3) (C.2)

with

k
J J

k
J J

k
J J

1
2 3

2
2 3

3
2 3

3 4 1 1 3 2= + = + = +, , (C.3)

Claim
9k2

2 > k1k3 > 8k2
2 (C.4)

To show that (C.4) is true, we just observe that
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k k k
J

1 3 2
2

3
2

9
1= − (C.5)

and

k k k
J J J

1 3 2
2

2
2

2 3

8
1 2= + + (C.6)

by applying the definitions of k1, k2, and k3 and noting that all the Ji’s are positive.
As a result of (C.5) and (C.6), we have

(12E3
2 – 9E2E4) < Q < (12E 3

2 – 8E2E4) (C.7)

Note that for the proof here, we do not really need the part k1k3 > 8k2
2 in (C.4) or

the part (12E 3
2 – 8E2E4) in (C.7), but we will keep them in for completeness and

future use regarding the properties of S.
Now consider the entity D, defined as

D = 12E 3
2 – 9E2E4 (C.8)

Applying the definitions of the Ej’s, we obtain

D e a
e e a e a ea a= − + + + + >( )2

4 3 2 2 3 45 10 42 10

24
0 (C.9)

because e > a and e ≠ a from the given premises.
By (C.7) and (C.8), we see that D < Q. Invoking (C.9), we see that this means

0 < D < Q (C.10)

but by definition from (C.1)

S = 3Q (C.11)

From (C.10) and (C.11), we have S > 0. Thus, the theorem is proved.
Next, we will see an upper bound and a lower bound for S by looking at two

expressions above. For convenience, let us define

U = 12E 3
2 – 8E2E4 (C.12)

Then, from (C.1), (C.4), and (C.12), we see immediately that

3D < S < 3U (C.13)

This means that S has 3D and 3U as a lower bound and an upper bound respectively.
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APPENDIX D.
UPPER AND LOWER BOUNDS
FOR T IN SECTION 6.22

The entity T, by the definition given in Section 6.22, is

T = a2
2 – 4a1a3 (D.1)

which is, after some algebraic operations, equal to

T = 4(9E 3
2k2

2 – E2E4k1k3) (D.2)

where k1, k2, and k3 are as defined in Appendix C.
From (C.4) in Appendix C, we have immediately

T > 36k2
2(E 3

2 – E2E4) = L (D.3)

and

T < 4k2
2(9E 3

2 – 8E2E4) = U (D.4)

We see from (D.3) and (D.4) that T has L and U as a lower bound and an upper
bound respectively.

Furthermore, U can be rewritten, upon applying the definitions of the Ej’s, as

U = 4k2
2(e – a)2a2e2 (D.5)

It is interesting to note that L < 0 but U > 0 and the difference between U and L
is

D k e a
B= −4
82

2 2( ) (D.6)
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where

B = [e4 + 2ea(e2 + ea + a2) + a4] (D.7)

is a nice and neat function of e and a . In fact, (D.7) is a fourth-degree homogeneous
polynomial in e and a.

Moreover, B is a positive real-valued function of the positive real-valued e and
a, with the following additional properties. For fixed e, entity B is an increasing
function of the nonnegative variable a. As a result of this, B has its absolute smallest
possible value B1 within the domain of definition of the variable a when a = 0; that
is,

B1 = e4 (D.8)

It is interesting to see what happens if e = a, which corresponds to a trivial load
case when we apply it to beam problems as was done in Chapter 6. Thus, we obtain
the other extreme of the value of B, namely

B2 = 8e4 (D.9)

and we see that

B2 = 8B1 (D.10)

What a difference!
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UPPER AND LOWER BOUNDS
FOR R4 IN SECTION 6.23

From the expression for R4 in Section 6.23, we see that it is expedient to deal with
upper and lower bounds for the fi’s first. An upper bound for f1 is

u L L L
aw

b
1 2 1 22

3
0= + 





>( ) (E.1)

An upper bound for f2 is

u L L L z
aw

b
2 1 2 2 23

3
0= − + + 













<( ) (E.2)

An upper bound for f3 is

u L L
w

b
z3 1 2 2

2

3
3 0= + +





>( ) (E.3)

An upper bound for f4 is

u
L L w

bL
4

1 2

23
0= − + <( )

(E.4)

Hence, an upper bound for R4 is

U = k ′[u1E2 + u2E3 + u3E4 + u4E5] (E.5)
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Next, we do a lower bound for R4 via lower bounds for the fi ’s, as follows. A
lower bound for f1 is

n
L L L aw

b
1

2 1 2

2
0= + >( )

(E.6)

A lower bound for f2 is

n L L L z
aw

b
2 1 2 2 24

2
0= − + +





<( ) (E.7)

A lower bound for f3 is

n L L
w

b
z3 1 2 2

2
2 0= + +





>( ) (E.8)

A lower bound for f4 is

n L L
w

bL
4 1 2

22
0= − +









 <( ) (E.9)

Hence, a lower bound for R4 is

N = k ′[n1E2 + n2E3 + n3E4 + n4E5] (E.10)

Note that z2 is used in the above in the expressions for u3 and n3 purely for
brevity, where z2 stands for

z
a

L

w

b
2

2

1
6

= +






(E.11)

which is also Formula (6.1103) in Section 6.23.
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APPENDIX F.
SINGLE-SPAN BEAMS WITH A FIXED END
AND A SIMPLY SUPPORTED END

UNIFORM LOAD
Refer to Figure F.1. The reactions are

R wb

D L d

L
1

3 3

3

3
2=

+ −













(F.1)

R2 = wb – R1 (F.2)

FIGURE F.1. Uniform load on a single-span beam with a fixed end and a simply
supported end

R1 R2

a

L

cb

w
M2
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where

D b
a b

L d
a d

d a b= + − − + = +2 2 24 3

12 2
( ) , (F.3)

The end moments are

M1 = 0 (F.4)

M R L wb L a
b

2 1
2

= − − +













 (F.5)

The deflections are

Y
EI

Fx
R x

x a= 





−





 < <1

6
01 3 for  (F.6)

Y
EI

Fa
R a

x a= 





−








 =1

6
1

3

 at  (F.7)

Y
EI

Fx
R x w x a

a x a b= 





− + −







 < < +1

6 24
1

3 4

 for  
( )

(F.8)

Y
EI

a b F R
a b wb

x a b= 





+ − + +








 = +1

6 24
1

3 4

 at  ( )
( )

(F.9)

Y
EI

R L wb L e wb R z
z

a b x L

= 





− − + −

+ < <

1
3

6
1 1

2

 

for  

{ [ ] }( ) ( )
(F.10)

where

F
R L

wb
c b c b= − + +1

2 2

2

3

6

( )
(F.11)

z L x e a
b= − = +,
2

(F.12)

Some important special cases are as follows.

Case 1. a = 0
The reactions are given by (F.1) and (F.2), with

D b
b L= −3 2

4

2 2

(F.13)
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The end moments are given by (F.4) and (F.5), with a = 0. The deflections are given
by (F.8–F.12), with a = 0.

Case 2. c = 0 and d = L = a + b
The reactions are given by (F.1) and (F.2), with

D b
a b= +2 4 3

12
(F.14)

The end moments are given by (F.4) and (F.5). The deflections are given by (F.6–
F.9) and (F.11), with c = 0.

Case 3. a = 0 and c = 0
The reactions are

R
wL

1
3

8
= (F.15)

R
wL

2
5

8
= (F.16)

The end moments are given by (F.4) and (F.5), with a = 0 = c and b = L. The
deflections are given by (F.8), (F.9), and (F.11), with a = 0 = c and b = L.

TRIANGULAR LOAD
Refer to Figure F.2. For the general case with nonzero a and c, the results are as
follows. The reactions are R1 and R2, with

R1 = A + B + D (F.17)

FIGURE F.2. Triangular load on a single-span beam with a fixed end and a simply
supported end

R1 R2

a

L

cb

w2 M2

X
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where

A w
b

L

a b
B wb

d
L

= 





+ =
− 



3

3

5 4

40

1

2
, (F.17A)

D wb a b

d
L

L
d a b= − +

− 





= +( ) ,3 2
1

4

2

(F.17B)

R
wb

R2 1
2

= − (F.18)

The end moments are

M1 = 0 (F.19)

M R L wb

L a b

2 1

2
3

2
= −

− +





(F.20)

The deflections are

Y
EI

Fx
R x

x a= 





−








 < <1

6
01

3

 for  (F.21)

Y
EI

Fa
R a

x a= 





−








 =1

6
1

3

 at  (F.22)

Y
EI

Fx
R x

w
x a

b
a x a b= 





− − −







 < < +1

6 120
1

3 5

 for  
( )

(F.23)

Y
EI

F a b R
a b wb

x a b= 





+ − + −








 = +1

6 120
1

3 4

 at  ( )
( )

(F.24)

Y
EI

wb R
z

R L wbc
z

a b x L

= 





− + −










+ < <

1
2

12
2

4
1

3

1

2

 

for  

( ) ( )
(F.25)

where

z = L – x (F.26)

F
R L wb

wbc
b c= − − +1

2 3

2 24

2 3

12
(F.27)

Some important special cases are as follows.
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Case 1. a = 0
The reactions are given by (F.17) and (F.18), with simplified A, B, and D due to a
= 0. The end moments are given by (F.19) and (F.20), with a = 0. The deflections
are given by (F.23–F.27), with a = 0 and L = b + c.

Case 2. c = 0 and L = a + b
The reactions are given by (F.17) and (F.18), with B = 0 and D = 0 due to c = 0
and L = a + b. The end moments are given by (F.19) and (F.20), with c = 0. The
deflections are given by (F.21–F.23) and (F.27), with c = 0.

Case 3. a = 0, c = 0, and b = L
The reactions are

R
wL

1
10

= (F.28)

R
wL

2
2

5
= (F.29)

The end moments are

M1 = 0 (F.30)

M
wL

2

2

15
= −

(F.31)

The deflections are

Y
EI

Fx
R x wx

b
x L= 





− −










1

6 120
01

3 5

 for  < < (F.32)

with

max Y
EI

F
R u wu

b
u x u= 





− −








 = +1

6 120
1

2

 at  ½ ½ (F.33)

where

F
R L wb= −1

2 3

2 24
(F.34)

u
b

w

R wF

b

R= +








 −













12

4 6 2
1
2

1
½

(F.35)
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This appendix touches upon the treatment of a very simple type of statically
indeterminate beam. Exploration is always beneficial, and there are at least two tasks
that the interested reader can do to further explore this topic. One task is to write
out in detail, according to the guidelines given here, all the formulae mentioned for
the special cases of importance and compare the results among the cases. The other
is to set up a project using the expression for R1 (or R2) to investigate the effects of
a selected parameter on R1 (or R2).
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INDEX

Basic theory, 1–11
mathematical theorems, 7–11
subject-specific approaches, 4–6
universal guiding principles, 2–4

Beams
continuous

three-span, see Three-span
continuous beam

two-span, see Two-span continuous
beam

on elastic foundations, see Elastic
foundations, beams on

four-span, 293–294
simple, see Simple beam

Cantilevers, 111–136
concentrated couple at an arbitrary

point on the span, 132–134
explorations and observations, 134–136
general load intensity functions with

applications, 118–131
triangular load on part of the span,

114–117
uniform load on part of the span,

111–114

Ej ( j = 2, 3, 4, 5), some relations among,
303–306

Ej – aEk, some properties of, 299–302
Elastic foundations, beams on,

beams of infinite length, 95–101
concentrated force on the beam, 95–98
uniform load on the beam, 98–101

beams of semi-infinite length, 102–109
concentrated force and moment acting

at the end of the beam, 102–104
uniform load on the beam with a

fixed end, 106–109
uniform load on the beam with a

simply supported end, 104–106

Guiding principles, universal, 2–4

Infinite length, beams of, 95–101

Mathematical theorems, 7–11

R4, upper and lower bounds for, 311–312

S > 0, proof of, upper and lower bounds
for entity S , 307–309

Semi-infinite length, beams of, 102–109
Simple beam, introduction to the general

approach, 13–30
concentrated couple at an arbitrary

point on the span, 25–26
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concentrated force at an arbitrary point
on the span, 13–15

explorations and observations, 26,
28–30

general load intensity functions and
applications, 23–25

superposition and load combinations,
26, 27

triangular load on the entire span,
22–23

triangular load on part of the span,
18–22

uniform load, 15–18
Single-span beam with a fixed end and a

simply supported end, 313–318
Subject-specific approaches, 4–6
Superposition, 26, 27, 38–41, 294–297

T, upper and lower bounds for, 309–310
Three-span continuous beam

alternative treatment of the problem of
uniform load on an exterior span,
68–80

arbitrarily distributed load on an
exterior span, 62–65

concentrated couple at an arbitrary
point on an exterior span, 82–85

constant J , 274–276
constant span length, 276–278
general case, 200–216

concentrated force at an arbitrary point
on an exterior span, 57–62

constant J , 253–255
constant span length, 256–259
general case, 160–174

concentrated force at an arbitrary point
on the interior span, 85–87

constant J , 279–280
constant span length, 280–282

triangular load on an exterior span,
80–82

constant J , 266–268

constant span length, 268–274
general case, 177–200

triangular load on the interior span,
91–93

constant J , 287–289
constant span length, 289–291
general case, 237–253

uniform load on an exterior span, 65–68
constant J , 259–262
constant span length, 262–266
general case, 174–177

uniform load on the interior span, 88–91
constant J , 282–284
constant span length, 284–287
general case, 216–237

Two-span continuous beam
alternative approach to the problem of

concentrated force, 35–38
concentrated couple at an arbitrary

point on a span, 56–57
general case, 152–160

concentrated force at an arbitrary point
on, 31–35

generic problem, arbitrary load, and
superposition, 38–41

with symmetry, 291–292
triangular load on one span

constant material and geometric
characteristics, 53–56

constant material and section
properties, 52–53

equal span lengths, 50–52
general case, 48–50, 144–152

uniform load on one span
constant material and geometric

characteristics, 46–48
constant material and section

properties, 45–46
equal span lengths, 44–45
general case, 41–43, 137–144

Universal guiding principles, 2–4
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