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Preface

When V. Jones introduced his celebrated polynomial invariant, the Jones polyno-
mial, in 1985, very few relations to topology were known. It originally came from
operator algebra, and soon after another definition using the Kauffman bracket
appeared. Thanks to Kauffman’s approach, the Jones polynomial is now regarded
as a topic that should be put in the first chapter of a textbook of knot theory.
The Kauffman bracket uses planar diagrams combinatorially to define the Jones
polynomial; it uses no homotopy or homology. Even though it proves a classical
conjecture, Tait conjecture, saying that a reduced alternating diagram gives the
minimum number of crossings for the corresponding knot, the Jones polynomial
remained to be a mysterious invariant for knot theorists.

In 1989, E. Witten proposed a physical approach by using the so-called path
integral. Roughly speaking, his “definition” of the Jones polynomial is to integrate
the Chern–Simons action over “all” possible connections. Mathematically, it is an
integral over an infinite dimensional space, and (so far) no rigorous definition is
known. However, the idea is beautiful, and it also provides a way to construct a
three-manifold invariant using the Jones polynomial.

On the other hand, in 1995, R. Kashaev used quantum dilogarithm to define a
complex-valued knot invariant depending on an integer N ≥ 2. He also conjectured
that for the large asymptotic with respect to N , his invariant determines the
hyperbolic volume of any hyperbolic knot.

In 1999, J. Murakami and the first author proved that Kashaev’s invariant is
nothing but a specialization of the colored Jones polynomial. More precisely, it
coincides with the N -dimensional colored Jones polynomial evaluated at the N -
th root of unity. They also proposed a conjecture generalizing Kashaev’s one: the
volume conjecture. It conjectures that for any knot the large N asymptotic of
Kashaev’s invariant gives the simplicial volume of the knot compliment. Here the
simplicial volume is a generalization of the hyperbolic volume.

Soon after, Kashaev and O. Tirkkonen proved the volume conjecture for torus
knots, whose simplicial volumes are known to be zero. The conjecture is also proved
for the figure-eight knot, the simplest hyperbolic knot by T. Ekholm.
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vi Preface

The volume conjecture fascinated not only knot theorists but also physicists.
The aim of this book is to study the volume conjecture from a mathematical

viewpoint.
Chapter 1 contains preliminaries, describing basic facts about knots including

the satellite construction of a knot, the torus decomposition of a knot complement,
and braids. In Chap. 2 we describe how to construct topological invariants of a knot.
In Sect. 2.1 a braid description is used to define the colored Jones polynomial and
the Kashaev invariant. We also use a diagrammatic approach to them in Sect. 2.2.
The volume conjecture is introduced in Chap. 3. It is proved for the cases of the
figure-eight knot and a family of torus knots. In Chap. 4 we describe why we
think that the volume conjecture is true. In Chap. 5 we prepare some facts about
representations of the fundamental group of a knot complement to the Lie group
SL(2;C). We also define the Chern–Simons invariant and the Reidemeister torsion,
both of which are associated with such a representation. In Chap. 6 the volume
conjecture is generalized to a conjecture that is “twisted” by a representation.

We try to include as many examples as we can so that the readers can easily
follow us.
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Chapter 1
Preliminaries

Abstract In this chapter we describe fundamental definitions and theorems. For
details, see for example Burde et al. (Knots, extended ed., De Gruyter studies
in mathematics, vol 5. De Gruyter, Berlin, 2014. MR 3156509), Lickorish (An
introduction to knot theory. Graduate texts in mathematics, vol 175. Springer, New
York, 1997. MR 98f:57015), and Rolfsen (Knots and links. Mathematics lecture
series, vol 7. Publish or Perish, Inc., Houston, 1990; Corrected reprint of the 1976
original. MR 1277811 (95c:57018)).

1.1 Knot

A knot is a circle smoothly embedded in the three-sphere S3. Two knots are
equivalent if and only if there exists a diffeomorphism of S3 to itself taking one to
the other. Usually we take orientation(s), of the circle and/or S3, into account. See
Fig. 1.1 for examples of knots (these pictures were drawn by Mathematica [89]).

It is often useful to consider R3 rather than S3, regarding S3 as the one-point
compactification of R3, that is, S3 = R

3 ∪ {∞}.
If a knot is given in R

3, then we can project it to the plane R
2 ⊂ R

3. We assume
that the image does not have tangencies or multiple points except for double points.
We draw the image on the plane so that at each double point the ‘lower’ one is
broken as in Figs. 1.2 and 1.3. If a knot is oriented, we indicate it by an arrow
(Fig. 1.4).

We call the image together with over/under information at each crossing a
diagram of the knot (Figs. 1.3 and 1.4). If a diagram has no crossings, the
corresponding knot is called the unknot (Fig. 1.1).

Of course there are infinitely many knot diagrams for a knot. However two knot
diagrams of a knot can be transformed to each other by some simple ‘moves’ [74].

Definition 1.1 (Reidemeister moves) The following local moves are called Reide-
meister moves I (Fig. 1.5), II (Fig. 1.6), and III (Fig. 1.7), respectively.

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2018
H. Murakami, Y. Yokota, Volume Conjecture for Knots, SpringerBriefs in
Mathematical Physics 30, https://doi.org/10.1007/978-981-13-1150-5_1
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2 1 Preliminaries

Fig. 1.1 The unknot, the trefoil, and the figure-eight knot

Fig. 1.2 A crossing is
indicated by breaking one of
the lines

Fig. 1.3 A knot diagram

Fig. 1.4 An oriented knot

Fig. 1.5 Reidemeister move I
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Fig. 1.6 Reidemeister move
II

Fig. 1.7 Reidemeister move
III

The following theorem is well known.

Theorem 1.1 (Reidemeister’s theorem) If two knot diagrams present equivalent
knots, then they can be transformed to each other by a finite sequence of Reidemeis-
ter moves I, II, and III.

For a proof see for example [14, 1.C].

1.2 Satellite

In this section we show several ways to construct knots from other knots.
See for example [76] for more details.

Definition 1.2 (satellite) Let C be a knot (in S3) and P a knot in a solid torus
T ∼= D2 × S1. If e : T → S3 is an embedding and the image e(T ) is a tubular
neighborhood of C in S3, then the image e(P ) is a knot (in S3), called a satellite of
C. We call C a companion and P a pattern of e(P ) (Fig. 1.8).

Note that even if C and P ⊂ T are given, there are different ways to construct a
satellite (see Fig. 1.9).

If there exists an embedded disk in T so that it intersects P with one point, then
the satellite is called the connected sum of C and P , denoted by C�P (Fig. 1.10). It
can be shown that C�P is uniquely determined.

Definition 1.3 (cable) If the pattern P is on the boundary of T , a satellite e(P ) is
called a cable of C. Since a non-trivial closed curve on a torus, the boundary of
T , is parametrized by a pair of coprime integers (p, q), we denote by C(p,q) the
satellite of C with pattern P that travels p times along the knot and q times around
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Fig. 1.8 Pattern P (left) and companion C (right)

Fig. 1.9 Two satellites of C with pattern P given in Fig. 1.8

Fig. 1.10 Connected-sum of
the trefoil and the figure-eight
knot

the knot.1 Here a closed curve on a torus is called trivial if it bounds a disk in the
torus. Note that we allow (p, q) = (0, 1) and (p, q) = (1, 0). In the former (latter,
respectively) case it presents the meridian (longitude, respectively). We call C(p,q)

the (p, q)-cable of the knot C. Figure 1.12 is the (2, 3)-cable of the trefoil, since it
crosses the longitude three times in the positive direction.

1Precisely speaking, p counts how many times P intersects with the meridian (a circle on the
torus that bounds a disk inside T ) and q counts how many times P intersects with the longitude
(a circle on the torus that is null-homologous outside T ). The dotted circle in Fig. 1.11 shows the
longitude of the trefoil. Observe that the linking number between the two circles is 0, since the
dotted line goes under the solid line three times in the positive direction and three times in the
negative direction.
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Fig. 1.11 A longitude of the
trefoil

Fig. 1.12 (2, 3)-cable of the
trefoil

Fig. 1.13 T (3, 5) drawn by
Mathematica

Fig. 1.14 T (3, 5) on an
unknotted torus, also drawn
by Mathematica

Note that C(1,q) is equivalent to C.

Definition 1.4 (torus knot) For coprime integers (p, q) with p > 1, the torus knot
of type (p, q), denoted by T (p, q), is the satellite knot U(p,q), where U is the
unknot. The knot T (2, 3) is the trefoil knot and T (3, 5) is indicated in Fig. 1.13.
So a torus knot is a knot that can be drawn on an unknotted torus. See Fig. 1.14.
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Definition 1.5 (simple knot) If a knot K is not a satellite of any knot other than
the unknot, then K is called simple.

The following theorem is well known.

Theorem 1.2 (W. Thurston) A simple knot is either a torus knot or a hyperbolic
knot.

Here a knot is called hyperbolic if it possesses a complete hyperbolic structure with
finite volume.

If K is not simple, there exists an incompressible2 and non-boundary-parallel
torus3 in the complement S3 \ K . Considering a ‘maximal’ set of such tori we can
decompose the knot complement into several pieces in a unique way.

Theorem 1.3 (Jaco–Shalen–Johannson decomposition [35, 36]) LetK be a knot
in S3. There exists a maximal set of incompressible tori in S3 \ K . Here ‘maximal’
means that there are no pair of parallel tori nor boundary-parallel torus.

This decomposition is called the Jaco–Shalen–Johannson decomposition or torus
decomposition.

By using this decomposition we can define the simplicial volume of a knot.

Definition 1.6 (simplicial volume) Let K be a knot and consider its Jaco–Shalen–
Johannson decomposition

(
S3 \K) \T , where T is a maximal set of incompress-

ible tori. Then each of its connected components is either

• hyperbolic, that is, it possesses a complete hyperbolic structure with finite
volume, or

• Seifert fibered, that is, it is a circle bundle over a surface with singularities.

The simplicial volume Vol(S3 \ K) is defined to be the sum of the hyperbolic
volumes of the hyperbolic pieces.

Remark 1.1 The volume in Definition 1.6 coincides with the Gromov norm up to
multiplication by a constant [28, 80]. Note that the Gromov norm of a Seifert fibered
space is 0.

Remark 1.2 For a prime,4 closed, oriented three-manifold, Thurston’s geometriza-
tion conjecture (now a theorem by G. Perelman) says that after suitable decompo-
sition like the JSJ decomposition above, each piece possesses one of the following
eight geometries: (1) hyperbolic, (2) spherical, (3) Euclidean, (4) R×S1, (5) R×H

2,
(6) Nil, (7) Sol, (8) S̃L(2;R). See [57, 81] for details.

2A surface S in a three-manifold M is incompressible if the inclusion π1(S)→ π1(M) is injective.
3Two tori are parallel if they bound a thickened torus (S1 × S1 × [0, 1]) and a torus in a knot
complement is called boundary-parallel if it is parallel to the boundary of a tubular neighborhood
of the knot in S3.
4A closed three-manifold is called prime if it cannot be a connected-sum of two three-manifolds,
none of which is the three-sphere.
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Fig. 1.15 The (2, 1)-cable of
the figure-eight knot

Fig. 1.16 Figure-eight knot

Example 1.1 (hyperbolic knot) Since a hyperbolic knot K is simple, the JSJ
decomposition of S3\K is just itself. So the simplicial volume of K is its hyperbolic
volume.

Example 1.2 (torus knot) Since a torus knot T (p, q) is simple, the JSJ decomposi-
tion of S3 \ T (p, q) is itself as in the previous case. On the other hand its simplicial
volume is 0.

Example 1.3 Let E (2,1) denote the (2, 1)-cable of the figure-eight knot E . It is
depicted in Fig. 1.15. Compare it with the figure-eight knot (Fig. 1.16).

Figure 1.17 shows a torus embedded in the knot complement S3 \ E (2,1). If we
remove the torus from S3 \ E (2,1), then the complement is decomposed into the
figure-eight knot complement S3 \E (the left part of the right hand side) and a solid
torus (D2 × S1) minus a knot going around it twice (the right part of the right hand
side) as in (1.1).

= ∪

(1.1)
It is known that S3 \ E is hyperbolic and that the other piece is Seifert fibered.
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Fig. 1.17 The complement
of the (2, 1)-cable of the
figure-eight knot

Fig. 1.18 A 3-braid

Therefore Vol
(
S3 \ E (2,1)

) = V(S3 \ E ), which equals 6Λ(π/3) = 2.02988 . . .
because it is well known that S3 \ E can be decomposed into two ideal regular
tetrahedra. Here we use the Lobachevsky function:

Λ(θ) := −
∫ θ

0
log |2 sin x| dx. (1.2)

It is well known that the volume of an ideal hyperbolic tetrahedron with dihedral
angles α, β, γ is Λ(α)+Λ(β)+Λ(γ ) (see for example [60] for details).

1.3 Braid

In this section we introduce fundamental facts about braids. See [12, 42] for more
details.

Let I the closed interval [0, 1]. An n-braid consists of n strings in I 3 such that
each string connecting a point I 2 × {1} and a point in I 2 × {0} monotonically. We
assume that the i-th string connects (i/(n + 1), 1/2, 1) and (τ (i)/(n + 1), 1/2, 0)
(i = 1, 2, . . . , n), where τ is an element in the symmetric group with n letters.

Figure 1.18 is a three-braid with τ =
(

1 2 3
2 3 1

)
. Two braids are equivalent if they are

isotopic to each other fixing the endpoints.
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Fig. 1.19 The closure of
Fig. 1.18

Fig. 1.20 The i-th generator
σi

i1 i−1 i+1 i+2 n

i1 i−1 i+1 i+2 n

Given a braid, one can construct a knot (or a link, several circles in S3) by closing
it.

Definition 1.7 (closure of a braid) Let β be a braid. Then its closure β̂ is obtained
by connecting (i/(n+ 1), 1/2, 0) and (i/(n+ 1), 1/2, 1) as in Fig. 1.19.

Any knot can be presented as the closure of a braid.

Theorem 1.4 (Alexander’s theorem [1]) Any knot is equivalent to the closure of
a braid.

For example the knot in Fig. 1.16 is equivalent to the closure of the braid shown in
Fig. 1.18 (see Figs. 1.18 and 1.19).

The set of all the n-braids forms a group in the following way. The product of
two n-braids β1 and β2 is defined by putting β1 on β2, and shrink them vertically so
that they fit in I 3. Then the braid consisting of n straight strings is the identity and
the inverse of a braid is given by reflecting it vertically (put a mirror horizontally).
Denote this group of n-braids by Bn.

It is know that the group Bn has the following presentation.

Theorem 1.5 (Artin [8]) Let σi (i = 1, 2, . . . , n − 1) be the n-braid depicted in
Fig. 1.20. The braid group Bn has the following presentation.

Bn = 〈σ1, σ2, . . . , σn−1 | σiσj = σjσi (|i − j | > 1), σiσi+1σi = σi+1σiσi+1

(i=1,2,. . . ,n-2)〉. (1.3)
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Fig. 1.21 The braid relation
σiσi+1σi = σi+1σiσi+1

i i+1 i+2

=

i i+1 i+2

For example the braid in Fig. 1.18 is presented as σ1σ
−1
2 σ1σ

−1
2 . See Fig. 1.21 for

the braid relation σiσi+1σi = σi+1σiσi+1.

Remark 1.3 In [12], σi is exchanged for σ−1
i .

Note that the braid relation corresponds to the Reidemeister move III and σiσ
−1
i = 1

is the Reidemeister move II.
Two braids β1 ∈ Bn and β2 ∈ Bm may give equivalent knots (or links) as

closures. Two such braids are related by a sequence of Markov moves.

Theorem 1.6 (Markov’s theorem [54]) Let β1 ∈ Bn and β2 ∈ Bm be braids,
and β̂1 and β̂2 be their closures respectively. If β̂1 and β̂2 are equivalent then they
are transformed to each other by a sequence of the following two moves (Markov
moves).

• conjugation: αβ ⇔ βα,

β

α
⇔

α

β

• (de)stabilization: β ∈ Bn ⇔ βσ±1
n ∈ Bn+1.

β ⇔ β



Chapter 2
R-Matrix, the Colored Jones Polynomial,
and the Kashaev Invariant

Abstract In this chapter we give definitions of the colored Jones polynomial. To do
that we use a braid presentation and a knot diagram. Kashaev’s invariant is obtained
as a specialization of the colored Jones polynomial.

2.1 A Link Invariant Derived from a Yang–Baxter Operator

2.1.1 Yang–Baxter Operator

Let V be an N -dimensional vector space over C. For homomorphisms R : V ⊗V →
V ⊗V , μ : V → V and non-zero complex numbers a, b, the quadruple (R,μ, a, b)
is called an enhanced Yang–Baxter operator [83] if the following three equalities
hold:

(R ⊗ IdV )(IdV ⊗R)(R ⊗ IdV ) = (IdV ⊗R)(R ⊗ IdV )(IdV ⊗R), (2.1)

R(μ⊗ μ) = (μ⊗ μ)R, (2.2)

Tr2(R
±(IdV ⊗μ)) = a±1b IdV . (2.3)

Here IdV is the identity on V and Trk : End(V⊗k)→ End(V⊗(k−1)) is the operator
trace defined as

Trk(f )(ei1⊗ei2⊗· · ·⊗eik−1) : =
N−1∑

j1,j2,...,jk−1,j=0

f
j1,j2,...,jk−1,j

i1,i2,...,ik−1,j
(ej1⊗ej2⊗· · ·⊗ejk−1⊗ej ),

where {e0, e1, . . . , eN−1} is a basis of V and the f j1,j2,...,jk−1,j

i1,i2,...,ik−1,j
are defined as

f (ei1 ⊗ ei2 ⊗ · · · ⊗ eik ) =
N−1∑

j1,j2,...,jk−1,jk=0

f
j1,j2,...,jk
i1,i2,...,ik

(ej1 ⊗ ej2 ⊗ · · · ⊗ ejk ).

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2018
H. Murakami, Y. Yokota, Volume Conjecture for Knots, SpringerBriefs in
Mathematical Physics 30, https://doi.org/10.1007/978-981-13-1150-5_2
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12 2 R-Matrix, the Colored Jones Polynomial, and the Kashaev Invariant

Note that the definition of Trk does not depend on the choice of bases and that Tr1
is the usual trace on matrices.

Equation (2.1) is called the Yang–Baxter equation [10, 11, 91] and R is called
the R-matrix.

Given a knot K , let β be an n-braid such that its closure β̂ is equivalent to K . If
β is presented as a product of generators given in (1.3) and their inverses, then we
replace each σ±1

i with

Id⊗i−1
V ⊗R±1 ⊗ Id⊗n−i−1

V : V⊗n → V⊗n,

where Id⊗jV means the j -fold tensor of IdV . Then we have a homomorphism
Φ(β) from V⊗n to itself. For example the braid given in Fig. 1.18 defines a
homomorphism (R ⊗ IdV )(IdV ⊗R−1)(R ⊗ IdV )(IdV ⊗R−1) : V ⊗ V ⊗ V →
V ⊗ V ⊗ V as shown in Fig. 2.1. Note that the homomorphism is from the top
to the bottom.

By taking Trn,Trn−1, . . . ,Tr1 of Φ(β) successively we can define a knot
invariant.

Definition 2.1 ([83]) Let (R,μ, a, b) be an enhanced Yang–Baxter operator. For a
knot K presented by the closure of an n-braid β, define

T(R,μ,a,b)(K) := a−w(β)b−n Tr1(Tr2(· · · (Trn(Φ(β)μ
⊗n)))) ∈ C. (2.4)

Here w(β) is the sum of the exponents in β. Then this scalar is an invariant of links,
that is, the right hand side does not depend on braids that present the knot K .

For example, if β = σ1σ
−1
2 σ1σ

−1
2 as in Fig. 2.1, the right hand side of (2.4) can be

depicted in Fig. 2.2. Note that closing a string corresponds to taking Trk . To prove
the well-definedness, one needs to check that T(R,μ,a,b) is invariant under the braid
relation, the conjugation, and (de)stabilization from Theorem 1.6. The invariance
under the braid relation follows from (2.1):

Fig. 2.1 The homomorphism
defined by Fig. 1.18

R

R

R

R
V V V

V V V

Φ
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Fig. 2.2 The invariant
T(B,μ,a,b) defined by Fig. 1.18

R

R

R

R
mmm

a-w(β)b-n

R

R

V V V

V V V

R =

R

R

V V V

V V V

R .

The invariance under the conjugation follows from (2.2):

Φ(β)

m m m

Φ(α)

=

Φ(β)

m m m

Φ(α)

= Φ(α)

m m m

Φ(β)

,

where the first equality holds since Trk is invariant under conjugation. The invari-
ance under (de)stabilization follows from (2.3):
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m m m

Φ(β)

R

m

1+_ =

m m m

Φ(β)

.

2.1.2 Colored Jones Polynomial

We give an enhanced Yang–Baxter operator for each integer N ≥ 2 that gives the
N -dimensional colored Jones polynomial.

Let V be the N -dimensional complex vector space CN . We define R : V ⊗V →
V ⊗ V and μ : V → V as follows [45, 46]. Let {e0, e1, . . . , eN−1} be the standard
basis of V . For a complex parameter q, we define {m} := qm/2−q−m/2 and {m}! :=
{m}{m− 1} · · · {2}{1}. We put

R(ek ⊗ el) :=
N−1∑

i,j=0

R
ij
klei ⊗ ej

with

R
ij
kl :=

min(N−1−i,j)∑

m=0

δl,i+mδk,j−m
{l}!{N − 1− k}!

{i}!{m}!{N − 1− j}!
× q(i−(N−1)/2)(j−(N−1)/2)−m(i−j)/2−m(m+1)/4.

(2.5)

Here δi,j is Kronecker’s delta. We also put

μ(ej ) :=
N−1∑

i=0

μi
j ei

with

μi
j := δi,j q

(2i−N+1)/2.
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Then it can be proved that (R,μ, q(N
2−1)/4, 1) is an enhanced Yang–Baxter

operator.
Now for a knot K , we define the N -dimensional colored Jones polynomial

JN(L; q) as follows:

JN(K; q) := {1}
{N}T(R,μ,q(N2−1)/4,1)

(K). (2.6)

Then this is a knot invariant. Note that we normalized it so that the colored Jones
polynomial of the unknot U is 1 because

T
(R,μ,q(N

2−1)/4,1)
(U) = Tr1(μ) =

N−1∑

i=0

q(2i−N+1)/2 = {N}
{1} .

When N = 2, the matrix R is presented as follows with respect to the basis
{e0 ⊗ e0, e0 ⊗ e1, e1 ⊗ e0, e1 ⊗ e1}:

R =

⎛

⎜⎜
⎝

q1/4 0 0 0
0 q1/4 − q−3/4 q−1/4 0
0 q−1/4 0 0
0 0 0 q1/4

⎞

⎟⎟
⎠ .

The matrix μ is given as follows with respect to the basis {e0, e1}:

μ =
(
q−1/2 0

0 q1/2

)
.

Therefore we have the following equality:

q1/4R − q−1/4R−1 = (q1/2 − q−1/2) IdV ⊗ IdV . (2.7)

Taking w(β) into account we have the following skein relation:

qJ2( ;q)−q−1J2( ;q) = (q1 /2 −q−1 /2)J2( ; .q)

Therefore the 2-dimensional colored Jones polynomial coincides with the original
Jones polynomial V (K; q) [37].
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2.1.3 Kashaev’s R-Matrix

Kashaev introduced the following R-matrix [38].
Put (x)n =∏n

i=1(1− xi) for n ≥ 0. Define θ : Z→ {0, 1} by

θ(n) =
{

1 if N > n ≥ 0,

0 otherwise.

For an integer x, we denote by res(x) ∈ {0, 1, 2, . . . , N − 1} the residue modulo N .
Now Kashaev’s R-matrix RK is given by

(RK)
cd
ab

=Nξ1+c−b+(a−d)(c−b) θ(res(b − a − 1)+ res(c − d))θ(res(a − c)+ res(d − b))

(ξ)res(b−a−1)(ξ−1)res(a−c)(ξ)res(c−d)(ξ−1)res(d−b)
,

where ξ := exp(2π
√−1/N). Putting (μK)

i
j := −ξ1/2δi,j+1, the quadruple

(RK, μK,−ξ1/2, 1) is also an enhanced Yang–Baxter operator. In [66], it is proved
that replacing q with ξ , (R,μ, q(N

2−1)/4, 1) defines the same knot invariant with
the one defined by (RK, μK,−ξ1/2, 1).

2.1.4 Example of Calculation

As an example, we will calculate the colored Jones polynomial of the figure-
eight knot E . Put β := σ1σ

−1
2 σ1σ

−1
2 . Then its closure is equivalent to E

(Fig. 1.19). We will calculate JN(E ; q) by using the enhanced Yang-Baxter operator
(R,μ, q(N−2−1)/4, 1).

By Definition 2.1 and (2.6), we have

JN(E ; q) = {1}
{N} Tr1(Tr2(Tr3(Φ(β)μ

⊗3)))

since w(β) = 0. However it is easier to calculate Tr2(Tr3(Φ(β)(IdV ⊗μ ⊗ μ))) ∈
End(V ), which coincides with S × IdV for a scalar S by Schur’s lemma (see [45,
Lemma 3.9] for a proof). See Fig. 2.3.

Then since Tr1(Tr2(Tr3(Φ(β)μ
⊗3))) = S × Tr1(μ) = {N}

{1} S, we have
JN(L; q) = S.

More explicitly, the scalar S becomes

∑

b,c,d,e,f,g,h

R
a,b
c,d (R

−1)
d,e
f,g R

c,f
a,h (R

−1)
h,g
b,e μ

b
b μ

e
e, (2.8)
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Fig. 2.3 We close all the
strings except for the first one

⇒

Fig. 2.4 Labels a, b, . . . , h
assigned to arcs a

d

b

c
e

h

a

f
g

eb

which does not depend on a. This can be depicted in Fig. 2.4. Here we associate the
R-matrix or its inverse to each crossing as follows.

⇒ Ri j
kl , ⇒ (R−1)i jkl

Note that the inverse of the R-matrix is given by

(R−1)
ij
kl =

min(N−1−i,j)∑

m=0

δl,i−mδk,j+m
{k}!{N − 1− l}!

{j}!{m}!{N − 1− i}!

× (−1)mq−
(
i−(N−1)/2

)(
j−(N−1)/2

)
−m(i−j)/2+m(m+1)/4

.

(2.9)

Since (2.8) does not depend on a, we put a := N − 1 (Fig. 2.5).
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Fig. 2.5 Put a := N − 1
N−1

d

b

c
e

h

f
g

eb

N−1

From Kronecker’s deltas in (2.5) and (2.9), we ignore labelings which do not
satisfy the following rules:

(+). At a positive crossing, the top-left label is less than or equal to the bottom-
right label, the top-right label is greater than or equal to the bottom-left label.
Moreover the sum of the top two labels equals the sum of the bottom two
labels (see (2.5)).

: i+ j = k+ l, l ≥ i,k ≤ j,

(−). At a negative crossing, the top-left label is greater than or equal to the bottom-
right label, the top-right label is less than or equal to the bottom-left label.
Moreover the sum of the top two labels equals the sum of the bottom two
labels (see (2.9)).

: i+ j = k+ l, l ≤ i,k ≥ j.

Now look at Fig. 2.5. From Rule (+), we have d = N − 1 and c = b (Fig. 2.6).
Applying Rule (−) to the second crossing, we have N − 1 + e = f + g and so
f = N − 1 + e − g (Fig. 2.7). Applying Rule (+) to the third crossing, we have
N−1+e−g+b = N−1+h and so h = e−g+b (Fig. 2.8). From the inequalities
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Fig. 2.6 d = N − 1, c = b
N−1

b

b
e

h

f
g

eb

N−1

N−1

Fig. 2.7 f = N − 1+ e− g
N−1

b

b
e

h
g

eb

N−1

N−1

N−1+e−g

of Rule (+), we have N − 1 + e − g ≥ N − 1 and b ≤ e − g + b. Therefore we
have g = e (Fig. 2.9) and (2.8) becomes

∑

b≥e
R
N−1,b
b,N−1 (R

−1)
N−1,e
N−1,e R

b,N−1
N−1,b (R

−1)
b,e
b,e μ

b
b μ

e
e

=
∑

b≥e
(−1)N−1+b {N − 1}!{b}!{N − 1− e}!

({e}!)2{b − e}!{N − 1− b}!

× q(−b−b2−2be−2j2+3N+6Nb+2Ne−3N2)/4,

(2.10)

where we use Rule (−) at the fourth crossing to get the inequality b ≥ e.
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Fig. 2.8 h = e − g + b
N−1

b

b
e

g

eb

N−1

N−1

N−1+e−g

e−g+b

Fig. 2.9 g = e
N−1

b

b
e

e

eb

N−1

N−1

N−1

b

It is sometimes useful to regard a knot as the closure of a (1, 1)-tangle1 as shown
in Fig. 2.10.

In this case we need to follow Rules (+), (−) and

(

�

) Put μ at each local minimum where the arc goes from left to right,
(�) Put μ−1 at each local maximum where the arc goes from left to right.

See [45, Theorem 3.6] for details.

1A properly embedded string in I 3 with one endpoint in I 2 × {0} and the other in I 2 × {1}. Note
that we allow maxima or minima.
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Fig. 2.10 The figure-eight
knot can also regarded as the
closure of a (1, 1)-tangle

Fig. 2.11 (1, 1)-tangle with
labels 0

i j

0

i+j

0

j
0

i

If we put 0 at the top and the bottom, the other labelings become as depicted in
Fig. 2.11. So we have

JN(E ; q)
=

∑

0≤i≤N−1,0≤j≤N−1
0≤i+j≤N−1

R
i,0
0,i (R

−1)
i,j

i+j,0 R
0,i+j
i,j (R−1)

j,0
0,j (μ

−1)ii μ
j
j

=
∑

0≤i≤N−1,0≤j≤N−1
0≤i+j≤N−1

(−1)i
{i + j}!{N − 1}!

{i}!{j}!{N − 1− i − j}!q
−(N−1)i/2+(N−1)j/2−i2/4+j2/4−3i/4+3j/4.
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Putting k := i + j , this becomes

JN(E ; q)=
N−1∑

k=0

{N − 1}!
{N − 1− k}!q

k2/4+Nk/2+k/4

(
k∑

i=0

(−1)i
{k}!

{i}!{k − i}!q
−Ni−ik/2−i/2

)

.

Using the formula (see [66, Lemma 3.2])

k∑

i=0

(−1)iqli/2 {k}!
{i}!{k − i}! =

k∏

g=1

(1− q(l+k+1)/2−g),

we have the following formula with only one summand, which is originally due to
K. Habiro [30] and T. Lê.

JN(E ; q) = 1

{N}
N−1∑

k=0

{N + k}!
{N − 1− k}! . (2.11)

2.2 Colored Jones Polynomial via the Kauffman Bracket

2.2.1 Kauffman Bracket

There is another way to calculate the colored Jones polynomial. Given an unoriented
link diagram |D|, one can define the Kauffman bracket 〈|D|〉 by using the following
two axioms.

= A +A−1

Uc = (−A2 −A−2)c,

,

where Uc is the trivial c component link diagram [44]. The 2-dimensional colored
Jones polynomial J2(K; t) of a knot K with a diagram D is defined as

(−A3
)−w(D) 〈|D|〉

−A2 − A−2

∣∣∣∣
q:=A4

,
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where |D| is the unoriented diagram obtained from D by forgetting the orientation,

and w(D) is the writhe of D (the sum of the signs of D; positive for and

negative for ).
Now define the Jones–Wenzl idempotent [87] by the following recurrence

relation.

n+1

n+1

:=

n

n

1

1

− n−1

n

n

n

n−1
D
D

1

1

,

where an integer beside an arc is the number of parallel copies of the arc and Δn :=
(−1)n A

2(n+1)−A−2(n+1)

A2−A−2 . The N -colored Jones polynomial is defined as

D

(−1

.

)N−1AN2−1
−w(D)

N−1
|D|

N−1
q:=A4

See, for example, [56] or [53, Chapter 14] for more details.
For actual calculation the following formulas are useful:

b b

=
d

∑
c=0

Δ2c

θ(b,b, 2c)

b b

b b

2c ,

(2.12)

a

b

c = (−1)(a+b−c)/2Aa+b−c+(a2+b2−c2)/2

a

b

c ,

(2.13)
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where θ(a, b, c) is defined as

θ(a,b,c) := a b c

(2.14)

and a trivalent vertex means

a

b

c :=

a

b

c

x

y
z

with a = y + z, b = z + x and c = x + y. A precise formula for θ(a, b, c) can be
found in [56].

2.2.2 Example of Calculation

In this subsection we calculate the colored Jones polynomial of the torus knot
T (2, 2a + 1) (a > 0) (Fig. 2.12) by using the Kauffman bracket.

We first calculate the Kauffman bracket of the diagram that is obtained by
replacing the knot diagram in Fig. 2.12 with the Jones–Wenzl idempotent. We have

Fig. 2.12 Torus knot
T (2, 2a + 1)

2a+1
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N−1

=
(2.12)

N−1

∑
c=0

∆2c

θ(N−1,N−1, 2c)
N−1

N−1

N−1

N−1

2c

=
(2.13)

N−1

∑
c=0

∆2c

θ(N−1,N−1, 2c)
(−1)c−N+1A−2(N−1)+2c+2c2−(N−1)2 2a+1

×
N−1

N−1

N−1

N−1

2c

(2.15)
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Therefore the colored Jones polynomial equals

JN(T (2, 2a + 1); q)

= (−1)N−1q−(2a+1)(N2−1)/4

qN/2 − q−N/2

×
N−1∑

c=0

(−1)cq(2a+1)(2c2+2c−N2+1)/4
(
q(2c+1)/2 − q−(2c+1)/2

)

= (−1)N−1q−(2a+1)(N2−1)/2

qN/2 − q−N/2

N−1∑

c=0

(−1)cq(2a+1)(c2+c)/2
(
q(2c+1)/2 − q−(2c+1)/2

)
.

(2.16)
A formula for a general torus knot can be found in [61, 77].



Chapter 3
Volume Conjecture

Abstract In Kashaev (Lett Math Phys 39(3):269–275, 1997. MR 1434238),
Kashaev proposed a conjecture that his invariant 〈K〉N defined in Kashaev (Mod
Phys Lett A 10(19):1409–1418, 1995. MR 1341338) would grow exponentially
with respect to N and that its growth rate would give the hyperbolic volume of
the complement of a hyperbolic knot. If we replace the parameter q in the colored
Jones polynomial with exp(2π

√−1/N), we can regard it as a function of a natural
number N ≥ 2. In Murakami and Murakami (Acta Math 186(1):85–104, 2001.
MR 1828373), J. Murakami and the first author proved that this coincides with
Kashaev’s invariant. The volume conjecture states that this function would grow
exponentially with respect toN and its growth rate would give the simplicial volume
of the knot complement. In this section we describe the volume conjecture and give
proofs for the figure-eight knot and for the torus knot T (2, 2a + 1).

3.1 Volume Conjecture

Let 〈K〉N be the link invariant defined by using Kashaev’s enhanced Yang–Baxter
operator (RK, μK,−ξ1/2, 1) for a knot K (see Sect. 2.1.3) [38]. In [39] Kashaev
conjectured that the following equality holds for any hyperbolic knot,

lim
N→∞

1

N
log |〈K〉N | = V

(
S3 \K)
2π

,

where V(S3 \ K) denotes the hyperbolic volume. J. Murakami and the first author
proved in [66] that Kashaev’s invariant 〈K〉N coincides with the colored Jones
polynomial JN(K; q) evaluated at q = exp(2π

√−1/N). We also generalized his
conjecture for any knot.

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2018
H. Murakami, Y. Yokota, Volume Conjecture for Knots, SpringerBriefs in
Mathematical Physics 30, https://doi.org/10.1007/978-981-13-1150-5_3
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Conjecture 3.1 (Volume Conjecture) The following equality would hold for any
knot K .

2π lim
N→∞

log
∣∣JN(K; exp(2π

√−1/N))
∣∣

N
= Vol(S3 \K). (3.1)

Here Vol(S3\K) is the simplicial volume of the knot complement S3\K defined
in Definition 1.6.

So far the volume conjecture is known to be true for the following knots and
links.

• torus knots (Kashaev and Tirkkonen [40]),
• (2, 2m) torus links (Hikami [32]),
• the figure-eight knot (Ekholm; See Sect. 3.2 for the proof),
• hyperbolic knot 52 (Kashaev and the second author [41], T. Ohtsuki [71]),
• hyperbolic knots 61, 62, and 63 (Ohtsuki and Yokota [72]),
• (2, 2m+ 1) cable of the figure-eight knot (Lê and A. Tran [52]),
• Whitehead doubles of torus knots (H. Zheng [96]),
• twisted Whitehead links (Zheng [96]),
• Borromean rings (S. Garoufalidis and Lê [25]),
• Whitehead chains (R. van der Veen [84]).

3.2 Figure-Eight Knot

In this section we follow Ekholm to give a proof of the volume conjecture for the
figure-eight knot E (Figs. 1.19 and 1.16).

From (2.11), we have

JN(E ; q) = 1

{N}
N−1∑

j=0

{N + j}!
{N − 1− j}!

=
N−1∑

j=0

j∏

k=1

(
q(N−k)/2 − q−(N−k)/2

) (
q(N+k)/2 − q−(N+k)/2

)
.

(3.2)

Replacing q with exp(2π
√−1/N) we obtain

JN(E ; exp(2π
√−1/N)) =

N−1∑

j=0

gN(j), (3.3)

where gN(j) =∏j

k=1 4 sin2(kπ/N). Since a graph of y = 4 sin2(πx) is as Fig. 3.1,
we have the following:
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Fig. 3.1 Graph of
y = 4 sin2(πx)
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• When 0 < j < N/6, gN(j) decreases,
• when N/6 < j < 5N/6, gN(j) increases, and
• when 5N/6 < j < N , gN(j) decreases.

Therefore we see that max0≤j<N {gN(j)} is attained at j = �5N/6�. Since gN(j) >
0 we have

gN(�5N/6�) <
N−1∑

j=0

gN(j) < NgN(�5N/6�).

Taking log and divide by N , we have

log gN([5N/6])
N

<
log

(∑N−1
j=0 gN(j)

)

N
<

logN

N
+ log gN(�5N/6�)

N
.

Since limN→∞ logN
N

= 0, we have

lim
N→∞

log
(
JN(E ; exp(2π

√−1/N))
)

N
= lim

N→∞
log gN(�5N/6�)

N

= lim
N→∞

�5N/6�∑

j=1

2 log
(
2 sin(jπ/N)

)

N

= 2

π

∫ 5π/6

0
log(2 sin x) dx = − 2

π
Λ(5π/6),

where Λ(θ) is the Lobachevsky function (see (1.2)). The following formulas are
well known (see for example [60]):
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Λ(z+ π) = Λ(z),

Λ(−z) = −Λ(z),
Λ(2z) = 2Λ(z)+ 2Λ(z+ π/2).

Therefore we have

Λ(5π/6) = Λ(π −π/6) = −Λ(π/6) = −Λ(π/3)/2+Λ(2π/3) = −3Λ(π/3)/2.
(3.4)

So we finally have

lim
N→∞

log
∣∣∣JN(E ; e2π

√−1/N )

∣∣∣

N
= 3

π
Λ(π/3) = Vol(S3 \ E )

2π
,

proving the volume conjecture for the figure-eight knot.

3.3 Torus Knot

In this section we prove the volume conjecture for the torus knot T (2, 2a + 1).
To do this, we study the asymptotic behavior of the colored Jones polynomial
JN
(
T (2, 2a + 1); e2π

√−1/N
)

for large N .
Let ξ be a complex variable near 2π

√−1. Multiplying by qN/2 − q−N/2 and
replacing q with exp(ξ/N) in (2.16), we have

(eξ/2 − e−ξ/2)JN(T (2, 2a + 1); eξ/N )

=(−1)N−1 exp

(−(2a + 1)(N2 − 1)ξ

2N

)

×
(
N−1∑

c=0

(−1)c exp

((
(2a + 1)(c2 + c)+ 2c + 1

)
ξ

2N

)

−
N−1∑

c=0

(−1)c exp

((
(2a + 1)(c2 + c)− 2c − 1

)
ξ

2N

))

=(−1)N−1 exp

(−(2a + 1)(N2 − 1)ξ

2N

)
exp

(
− ξ

4N

(
2a + 1

2
+ 2

2a + 1

))

(Σ+(ξ)−Σ−(ξ)),

where

Σ±(ξ) :=
N−1∑

c=0

(−1)c exp

(
(2a + 1)ξ

2N

(
c + 1

2
± 1

2a + 1

)2
)

.
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Now we use the following formula:

√
α

π

∫

Cθ

exp(−αx2 + px) dx = exp

(
p2

4α

)
,

where Cθ is the line {t exp(θ
√−1) | t ∈ R}. We choose θ so that

Re(α exp(2θ
√−1)) > 0 to make the integral converge.

Putting α := N
2(2a+1)ξ , p := c + 1

2 ± 1
2a+1 , and θ := π/4, we have

Σ±(ξ)

=
√

2N

2(2a+1)ξπ

N−1∑

c=0

(−1)c
∫

Cπ/4

exp

( −N
2(2a+1)ξ

x2+
(
c+1

2
± 1

2a + 1

)
x

)
dx

=
√

N

2(2a + 1)ξπ

∫

Cπ/4

exp

( −N
2(2a + 1)ξ

x2 + x

2
± x

2a + 1

)(N−1∑

c=0

(−1)c exp(cx)

)

dx

=
√

N

2(2a+1)ξπ

∫

Cπ/4

exp

( −N
2(2a+1)ξ

x2
)

exp

( ±x
2a+1

)(
1−(−1)NeNx

ex/2 + e−x/2

)
dx.

Therefore we have

Σ+(ξ)−Σ−(ξ)

=
√

N

2(2a + 1)ξπ

×
⎛

⎝
∫

Cπ/4

sinh
(

x
2a+1

)

cosh
(
x
2

) exp

[ −N
2(2a + 1)ξ

x2
]
dx

− (−1)N
∫

Cπ/4

sinh
(

x
2a+1

)

cosh
(
x
2

) exp

[ −N
2(2a + 1)ξ

x

]
exp(Nx) dx

⎞

⎠

= −(−1)N
√

N

2(2a + 1)ξπ

∫

Cπ/4

sinh
(

x
2a+1

)

cosh
(
x
2

) exp

( −N
2(2a + 1)ξ

x2 +Nx

)
dx,
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since the integrand of the first integral is an odd function. So we have

(eξ/2 − e−ξ/2)JN(T (2, 2a + 1); eξ/N )

= exp

(−(2a + 1)(N2 − 1)ξ

2N

)
exp

(
− ξ

4N

(
2a + 1

2
+ 2

2a + 1

))√
N

2(2a + 1)ξπ

×
∫

Cπ/4

sinh
(

x
2a+1

)

cosh
(
x
2

) exp

( −N
2(2a + 1)ξ

x2 +Nx

)
dx.

(3.5)
Taking the derivative with respect to ξ at 2π

√−1, we have

JN(T (2, 2a + 1); e2π
√−1/N )

=(−1)N+1 exp

(
π
√−1

2N

(
2(2a + 1)− 2a + 1

2
− 2

2a + 1

))√
N

4(2a + 1)π2
√−1

×
∫

Cπ/4

sinh
(

x
2a+1

)

cosh
(
x
2

)
N

2(2a + 1)(2π
√−1)2

x2

exp

( −N
2(2a + 1)2π

√−1
x2 +Nx

)
dx

=(−1)N exp

(
π
√−1

2N

(
2(2a + 1)− 2a + 1

2
− 2

2a + 1

))

N3/2

16(2a + 1)3/2π3eπ
√−1/4

×
∫

Cπ/4

sinh
(

x
2a+1

)

cosh
(
x
2

) x2 exp

( −N
4(2a + 1)π

√−1
x2 +Nx

)
dx,

(3.6)
since the derivative at ξ = 2π

√−1 of the integral in the right hand side of (3.5)
should vanish.

Now we will use a special case of the saddle point method (see for example [55,
Theorems 7.2.9]).

Theorem 3.1 For a non-zero complex number a and a real number θ with
Re
(
a−1 exp(2θ

√−1)
)
> 0, we have

∫

Cθ

g(x)e−Nx2/a dx =
√
aπ

N
g(0)+O(N−1),

when N →∞.

Note that the assumption Re
(
a−1 exp(2θ

√−1)
)

> 0 is to make the integral
converge.
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Using Theorem 3.1 we will calculate the integral in (3.6). We have

∫

Cπ/4

x2 sinh
(

x
2a+1

)

cosh
(
x
2

) exp

( −N
4(2a + 1)π

√−1
x2 +Nx

)
dx

=(−1)N
∫

Cπ/4

x2 sinh
(

x
2a+1

)

cosh
(
x
2

) exp

( −N
4(2a+1)π

√−1

(
x−2(2a+1)π

√−1
)2
)
dx.

Let C̃π/4 be the line {t exp(π
√−1/4) + 2(2a + 1)π

√−1 | t ∈ R}. Then by the
residue theorem we have

∫

Cπ/4

x2 sinh
(

x
2a+1

)

cosh
(
x
2

) exp

( −N
4(2a + 1)π

√−1

(
x − 2(2a + 1)π

√−1
)2
)
dx.

=
∫

C̃π/4

x2 sinh
(

x
2a+1

)

cosh
(
x
2

) exp

( −N
4(2a + 1)2π

√−1

(
x − 2(2a + 1)π

√−1
)2
)
dx

+ 2π
√−1

×
∑

k

Res

⎛

⎝
x2 sinh

(
x

2a+1

)

cosh
(
x
2

) exp

( −N
4(2a + 1)π

√−1

(
x − 2(2a + 1)π

√−1
)2
)
;

x = (2k + 1)π
√−1

)

=
∫

C̃π/4

x2 sinh
(

x
2a+1

)

cosh
(
x
2

) exp

( −N
4(2a + 1)π

√−1

(
x − 2(2a + 1)π

√−1
)2
)
dx

+ 2π
√−1

2a∑

k=0

(−1)k+12
√−1

(
(2k + 1)π

√−1
)2 sinh

(
(2k + 1)π

√−1

2a + 1

)

× exp

( −N
4(2a + 1)π

√−1

(
(2k + 1)π

√−1− 2(2a + 1)π
√−1

)2
)

=
∫

C̃π/4

x2 sinh
(

x
2a+1

)

cosh
(
x
2

) exp

( −N
4(2a + 1)π

√−1

(
x − 2(2a + 1)π

√−1
)2
)
dx

+4π3
2a∑

k=0

(−1)k+1(2k+1)2 sinh

(
(2k + 1)π

√−1

2a + 1

)

exp

(
(4a − 2k + 1)2πN

4(2a + 1)
√−1

)
,

where Res(f (x); x = x0) is the residue of f (x) at x0.
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Putting y := x − 2(2a + 1)π
√−1 the integral becomes

−
∫

Cπ/4

(y + 2(2a + 1)π
√−1)2 sinh

(
y

2a+1

)

cosh
( y

2

)

exp

( −N
4(2a + 1)π

√−1
y2
)
dy = O(N−1)

from Theorem 3.1. Therefore we finally have the following equality.

JN
(
T (2, 2a + 1); e2π

√−1/N )

= exp

(
π
√−1

2N

(
2(2a + 1)− 2a + 1

2
− 2

2a + 1

))
N3/2

4(2a + 1)3/2eπ
√−1/4

×
2a∑

k=0

(−1)k+1(2k + 1)2 sinh

(
(2k + 1)π

√−1

2a + 1

)

exp

(
(4a − 2k + 1)2πN

4(2a + 1)
√−1

)

+O(N1/2).

(3.7)
This means that JN

(
T (2, 2a + 1); e2π

√−1/N
)

grows polynomially and so we have

lim
N→∞

log
∣∣∣JN

(
T (2, 2a + 1); e2π

√−1/N
)∣∣∣

N
= 0.

Since it is known that the complement of any torus knot is Seifert fibered, the volume
conjecture for T (2, 2a + 1) follows.



Chapter 4
Idea of “Proof”

Abstract In this chapter, for a hyperbolic knot K , we explain an idea of a possible
proof of the Volume Conjecture by using Kashaev’s invariant 〈K〉N of K , which is
known to be the N -colored Jones polynomial JN(K, q) evaluated at

q = exp
2π
√−1

N

after the work of Murakami and Murakami (Acta Math 186(1):85–104, 2001. MR
1828373). By using 〈K〉N rather than JN(K, q), we can observe the correspondence
between the algebraic structure of 〈K〉N and the geometric structure of the comple-
ment of K more clearly. Throughout this chapter, we set q as above. In the first
section, following Yokota (Interdiscip Inf Sci 9(1):11–21, 2003. MR MR2023102
(2004j:57014)), we explain how to compute the invariant and how to reduce it.
In the second section, following Kashaev and Yokota (On the volume conjecture
for 52, Preprint, 2012), we explain how to compute the asymptotic behavior of
an integral expression of the invariant. In the third section, following Yokota
(Interdiscip Inf Sci 9(1):11–21, 2003. MR MR2023102 (2004j:57014)) again, we
explain the relationship between the hyperbolic structure of the knot complement,
and a “potential” function which we obtain in the second section. In the fourth
section, we sort the remaining tasks.

4.1 Algebraic Part

For simplicity, we put N = {0, 1, . . . , N − 1} and

θ
ij
kl =

{
1 if [i − j ] + [j − l] + [l − k − 1] + [k − i] = N − 1,

0 otherwise

for i, j, k, l ∈ N , where [ν] ∈ N denotes the residue of ν modulo N . Note that

[i − j ] + [j − l] + [l − k − 1] + [k − i] ≡ −1 mod N

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2018
H. Murakami, Y. Yokota, Volume Conjecture for Knots, SpringerBriefs in
Mathematical Physics 30, https://doi.org/10.1007/978-981-13-1150-5_4
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and that both [i − j − 1] + [k − l] and [i − l] + [k − j ] are less than N if and only
if θijkl = 1, that is,

θ
ij
kl = θ([i − j ] + [k − l − 1]) · θ([j − l] + [k − i]).

Thus, if we define the q-factorials (q)ν and (q̄)ν by

(q)ν = (1− q)(1− q2) · · · (1− q[ν]), (q̄)ν = (1− q̄)(1− q̄2) · · · (1− q̄[ν]),

the R-matrices in Sect. 2.1.3 can be rewritten as

(RK)
ij
kl =

Nq− 1
2+i−kθ ijkl

(q)i−j (q̄)j−l (q)l−k−1(q̄)k−i
,
(
R−1

K

)ij

kl
= Nq

1
2+j−lθ ijkl

(q̄)i−j (q)j−l (q̄)l−k−1(q)k−i
,

where we used (q)ν = (−1)νqν(ν+1)/2(q̄)ν . Then, Kashaev’s invariant 〈K〉N of K
is obtained by contracting the tensors

(RK)
ij
kl ,

(
R−1

K

)ij

kl
, −q− 1

2 δk+1,l , q
1
2 δi−1,j

associated to the critical points, which are depicted in Fig. 4.1, of the (1,1)-tangle
presentation of K respectively.

Example 4.1 Let K denote the knot 61 depicted in Fig. 4.2, where the broken edge
is labeled 0. Then, we only consider the labelling satisfying

θ(i+1)0
an · θacij · θnmcd · θ(b+1)d

l(m+1) · θ lkbe · θje0(k+1) �= 0,

that is,

6(N − 1) = ([i + 1] + [a − i − 1] + [n− a − 1] + [−n])
+ ([a − c] + [i − a] + [j − i − 1] + [c − j ])
+ ([n−m] + [c − n] + [d − c − 1] + [m− d])
+ ([b + 1− d] + [l − b − 1] + [m− l] + [d −m− 1])

i j

k l

i j i j

k l k l

Fig. 4.1 Critical points of a (1,1)-tangle presentation of K
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Fig. 4.2 A (1,1)-tangle
presentation of 61

a

j k

b

mci

n

d

l

e

+ ([l − k] + [b − l] + [e − b − 1] + [k − e])
+ ([j − e] + [−j ] + [k] + [e − k − 1]).

The right hand side can be rewritten as

[i + 1] + [j − i − 1] + [−j ]
+ [a − i − 1] + [i − a]
+ [n− a − 1] + [c − n] + [a − c]
+ [d − c − 1] + [c − j ] + [j − e] + [e − b − 1] + [b + 1− d]
+ [m− d] + [d −m− 1]
+ [l − b − 1] + [b − l]
+ [k − e] + [e − k − 1]
+ [k] + [l − k] + [m− l] + [n−m] + [−n]
≥ [i + 1] + [j − i − 1] + [−j ] + 6(N − 1)

+[k] + [l − k] + [m− l] + [n−m] + [−n],

where each line in the left hand side corresponds to each face of Fig. 4.2, and so we
have

[i + 1] + [j − i − 1] + [−j ] = 0 = [k] + [l − k] + [m− l] + [n−m] + [−n],
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that is, i + 1 = j = k = l = m = n = 0, and

N − 1 = [a] + [−1− a]
= [−a − 1] + [c] + [a − c]
= [d − c − 1] + [c] + [−e] + [e − b − 1] + [b + 1− d]
= [−d] + [d − 1]
= [−b − 1] + [b]
= [−e] + [e − 1],

which implies 0 ≤ c ≤ a < N and c < d ≤ b + 1 ≤ e ≤ N . Therefore, we
can ignore the q-factorials corresponding to the corners in the unbounded regions in
Fig. 4.2, and 〈K〉N is given by

〈K〉N =
∑

c≤d ′≤b

Nq
1
2+d ′

(q̄)b−d ′(q)d ′(q)N−1−b
· Nq

1
2−d ′−1

(q)N−1−d ′(q̄)d ′−c(q)c

×
(
N−1∑

a=c

Nq− 1
2−a

(q)N−1−a(q̄)a
· Nq− 1

2+a+1

(q)a−c(q̄)c(q̄)N−1−a

)

×
(
N−1∑

e′=b

Nq
1
2+e′

(q)e′(q̄)N−1−e′
· Nq

1
2−e′−1

(q)N−1−e′(q̄)e′−b(q)b

)

,

where we put d ′ = d − 1 and e′ = e − 1. Then, we apply the following lemma due
to [66].

Lemma 4.1 For any ν ∈ N , we have (q)ν(q̄)N−1−ν = N . Furthermore,

∑

α≤ν≤β

1

(q)β−ν(q̄)ν−α
= 1,

where 0 ≤ α ≤ β < N .

By using Lemma 4.1, we can further eliminate the q-factorials around the edges
labeled a and e in Fig. 4.2, and 〈K〉N is equal to

∑

c≤d ′≤b

Nq
1
2+d ′

(q̄)b−d ′(q)d ′(q)N−1−b
· Nq

1
2−d ′−1

(q)N−1−d ′(q̄)d ′−c(q)c
· N2

(q̄)c(q)b

= N4
∑

c≤d ′≤b

1

(q̄)b−d ′(q)d ′(q)N−1−b(q)N−1−d ′(q̄)d ′−c(q)c(q̄)c(q)b
.
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Fig. 4.3 The twist knot with
n+ 3 crossings

.....

k

k

kn

Similarly, Kashaev’s invariant of the twist knot with n + 3 crossings, which is
depicted in Fig. 4.3, is given by

Nn+1
∑

0≤k1≤···≤kn<N

1

(q̄)k1(q)kn

n−1∏

ν=1

1

(q)kν (q̄)kν+1−kν (q)N−1−kν+1

.

As Example 4.1 suggests, in general, Kashaev’s invariant of a knot K in S3

can be written as a sum of products of q-factorials each of which corresponds to
a corner, which is not in the unbounded regions or not around the edges located at
the “entrance” and the “exit”, of a (1,1)-tangle presentation of K .

4.2 Analytic Part

In this section, we explain how to compute the asymptotic behavior of Kashaev’s
invariant. In the first subsection, we replace the q-factorials in the invariant with
quantum dilogarithm functions due to L. Faddeev [23], and give an integral
expression of the invariant by using the residue theorem. In the second subsection,
we explain the asymptotic behavior of quantum dilogarithm functions, and derive a
“potential” function from the invariant. In the third subsection, we explain how to
apply the saddle point method to the integral expression of the invariant.
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4.2.1 Integral Expression

We define Faddeev’s quantum dilogarithm function by

ψN(z) = exp
1

4

∫ ∞

−∞
e(2z−1)t dt

t sinh t · sinh tN−1

in the strip |Re (2z − 1)| < 1 + N−1, where the singularity at t = 0 is put below
the contour of integration, which can be extended to a meromorphic function on C

by the functional equation

ψN(z+ 1)

ψN(z)
= 1

1+ e2π
√−1Nz

.

Note that the sets of poles of ψN is given by {pk : k ≥ N} and the set of zeroes of
ψN is {pk : k < 0}, where we put

pk = 2k + 1

2N
.

In the first place, in [23], ψN is given as a solution to the functional equation

ψN(z+ p0)

ψN(z− p0)
= 1

1− e2π
√−1z

, (4.1)

which implies the important identities

1

(q)k
= ψN(p1)

ψN(p0)
· · · ψN(pk)

ψN(pk−1)
= ψN(pk)

ψN(p0)
,

1

(q̄)k
= ψN(1− p0)

ψN(1− p1)
· · · ψN(1− pk−1)

ψN(1− pk)
= ψN(1− p0)

ψN(1− pk)

for our purpose. In fact, the left hand side is equal to

exp
1

2

∫ ∞

−∞
e(2z−1)t

t sinh t
dt = exp

1

2

{

2π
√−1

∞∑

k=1

Res
t=kπ√−1

e(2z−1)t

t sinh t

}

= exp

{ ∞∑

k=1

(e2π
√−1z)k

k

}

= exp
{

log(1− e2π
√−1z)

}
,

where we used

Res
t=kπ√−1

e(2z−1)t

t sinh t
= lim

t→kπ
√−1

e(2z−1)t (t − kπ
√−1)

t sinh t
= (e2π

√−1z)k

kπ
√−1

.
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Note also that ψN(p0) and ψN(1− p0) are explicitly given by

ψN(p0) =
√
N exp

N

2π
√−1

(
π2

6
− π2

2N
+ π2

6N2

)
,

ψN(1− p0) = 1√
N

exp
N

2π
√−1

(
π2

6
− π2

2N
+ π2

6N2

)
.

(4.2)

Then, we can rewrite Kashaev’s invariant by using quantum dilogarithm functions.

Example 4.2 If K is the twist knot with n+ 3 crossings, 〈K〉N is equal to

Nn+1
∑

k1≤···≤kn

ψN(1− p0)

ψN(1− pk1)

ψN(pk)

ψN(p0)

n−1∏

ν=1

ψN(pkν )

ψN(p0)

ψN(1− p0)

ψN(1− pkν+1−kν )
ψN(1− pkν+1)

ψN(p0)
.

Since ψN(1− pkν+1−kν ) = ∞ if kν+1 < kν , we can write

〈Kn〉N = N
3−n

2

N−1∑

k1=0

· · ·
N−1∑

kn=0

ΨN(pk1 , . . . , pkn),

where ΨN(z1, . . . , zn) is given by

e
N(n−1)
2π
√−1

(
− π2

6 + π2
2N − π2

6N2

)
ψN(zn)

ψN(1− z1)

n−1∏

ν=1

ψN(zν)ψN(1− zν+1)

ψN(1− zν+1 + zν − p0)
.

As Example 4.2 suggests, in general, Kashaev’s invariant of a knot K in S3 can
be written as

〈K〉N = N
3−n

2

N−1∑

k1=0

· · ·
N−1∑

kn=0

ΨN(pk1, . . . , pkn),

where ΨN(z1, . . . , zn) is a product of quantum dilogarithm functions each of which
corresponds to a corner, which is not in the unbounded regions and not around the
edges located at the “entrance” and the “exit”, of a (1,1)-tangle presentation of K .
Then, by the residue theorem, we have

〈K〉N = (−1)nN
n+3

2

∫

C

dz1

1+QN
1

· · ·
∫

C

dzn

1+QN
n

ΨN(z1, . . . , zn),

where we put Qν = e2π
√−1zν and C = {z ∈ C : |z − 1

2 | = 1
2 }. Furthermore, if we

decompose C into

A = {z ∈ C : Im z ≥ 0} , B = {z ∈ C : Im z ≤ 0} ,
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we can observe
∫

C

dzν

1+QN
ν

=
∫

A

dzν

1+QN
ν

+
∫

B

dzν

1+QN
ν

=
∫ 0

1
dzν −

∫

A

QN
ν

1+QN
ν

dzν +
∫

B

Q−Nν
1+Q−Nν

dzν

=
∫ 0

1
(1−QN

ν −Q−Nν )dzν+
∫

A

Q2N
ν

1+QN
ν

dzν−
∫

B

Q−2N
ν

1+Q−Nν
dzν = · · ·

and, roughly speaking, we can write

〈K〉N = (−1)n
∑

ε1,...,εn

〈K; ε1, . . . , εn〉N,

where we put

〈K; ε1, . . . , εn〉N = N
n+3

2

∫ 1

0
dz1 · · ·

∫ 1

0
dzn ΨN(z1, . . . , zn)

n∏

ν=1

(−QN
ν )

εν .

In practice, for our purpose, a finite expansion of 〈K〉N is sufficient.

4.2.2 Potential Function

The asymptotic behavior of ψN is described by Euler’s dilogarithm

Li2(z) = −
∫ z

0

log(1− t)

t
dt.

In fact, we can observe that

ψN(z) = exp
1

4

∫ ∞

−∞
Ne(2z−1)t

t2 sinh t
· tN−1

sinh tN−1
dt

= exp
1

4

{∫ ∞

−∞
Ne(2z−1)t

t2 sinh t
dt +O(N−1)

}

= exp
1

4

{

2π
√−1

∞∑

k=1

Res
t=kπ√−1

Ne(2z−1)t

t2 sinh t
+O(N−1)

}

,

where

Res
t=kπ√−1

e(2z−1)t

t2 sinh t
= lim

t→kπ
√−1

e(2z−1)t (t − kπ
√−1)

t2 sinh t
= (e2π

√−1z)k

−k2π2 ,
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and that

ψN(z) = exp

{
N

2π
√−1

∞∑

k=1

(e2π
√−1z)k

k2 +O(N−1)

}

= exp

{
N

2π
√−1

Li2(e
2π
√−1z)+O(N−1)

}

if Im z ≥ 0. Similarly, if Im z < 0, we have

ψN(z) = exp
1

4

{

−2π
√−1

∞∑

k=0

Res
t=−kπ√−1

Ne(2z−1)t

t2 sinh t
+O(N−1)

}

= exp

{
N

2π
√−1

(

Res
t=0

Ne(2z−1)t

t2 sinh t
−

∞∑

k=1

(e2π
√−1z)−k

k2

)

+O(N−1)

}

= exp

{
N

2π
√−1

(
2π2z(z− 1)+ π2

3
− Li2(e

−2π
√−1z)

)
+O(N−1)

}
.

Consequently, by the functional equation above, we can observe

ψN(z) = exp

{
NL (z)

2π
√−1

+O(N−1)

}
(4.3)

for any z ∈ C− {(−∞, 0) ∪ (1,∞)}, where

L (z) =
{

Li2(e2π
√−1z) if Im z ≥ 0,

−Li2(e−2π
√−1z)+ 2π2z(z− 1)+ 1

3π
2 if Im z < 0.

Note that L (z) is analytic in C− {(−∞, 0] ∪ [1,∞)}.
Example 4.3 Suppose K is the twist knot with n+ 3 crossings. Since

ψN(z± p0) = exp

{
NL (z)

2π
√−1

∓ 1

2
log(1− e2π

√−1z)+O(N−1)

}
,

we have

ΨN(z1, . . . , zn) =

exp

{
NH(z1, . . . , zn)

2π
√−1

− 1

2

n−1∑

ν=1

log(1− e2π
√−1(1−zν+1+zν))+O(N−1)

}

,
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where H(z1, . . . , zn) is defined by

L (zn)−L (1−z1)+
n−1∑

ν=1

{L (zν)−L (1− zν+1 + zν)+L (1− zν+1)}−1

6
(n−1)π2.

As Example 4.3 suggests, in general, ΨN which appears in the integral formula
of Kashaev’s invariant can be written as

ΨN(z1, . . . , zn) = exp

{
NH(z1, . . . , zn)

2π
√−1

+ T (z1, . . . , zn)+O(N−1)

}
,

where T (z1, . . . , zn) is a sum of logarithms and H(z1, . . . , zn), called potential
function in what follows, is a sum of Euler’s dilogarithms each of which corresponds
to a corner, which is not in the unbounded regions and not around the edges located
at the “entrance” and the “exit”, of a (1,1)-tangle presentation of K .

4.2.3 Saddle Point Method

To estimate 〈K; ε1, . . . , εn〉N , we are going to find a domain Ωε1,...,εn ⊂ [0, 1]n
such that, under some assumptions,

〈K〉Ωε1,...,εn
N = N

n+3
2

∫

Ωε1,...,εn

ΨN(z1, . . . , zn)

n∏

ν=1

(−QN
ν )

εν dz1 · · · dzn

is asymptotically equal to

N
3
2 exp

NHε1,...,εn(ζε1,...,εn)

2π
√−1

,

where ζε1,...,εn denotes a critical point of a branch of the potential function

Hε1,...,εn(z1, . . . , zn) = H(z1, . . . , zn)− 4π2(ε1z1 + · · · + εnzn)

whose imaginary part is denoted by fε1,...,εn(z1, . . . , zn) for simplicity.
A candidate of Ωε1,...,εn is the set Δε1,...,εn of (ξ1, . . . , ξn) ∈ [0, 1]n such that

lim
η2

1+···+η2
n→∞

fε1,...,εn(ξ1 + η1
√−1, . . . , ξn + ηn

√−1) = ∞

and that fε1,...,εn(z1, . . . , zn) is smooth at (z1, . . . , zn) = (ξ1, . . . , ξn). Note that we
can compute Δε1,...,εn explicitly because
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Im L (z) ∼ α(yz)(xz − π)

if |yz| → ∞, where we put xz = Re 2πz, yz = Im 2πz and define α : R→ R by

α(y) = 1

2
(y − |y|).

Example 4.4 Suppose K is the twist knot with 6 crossings. Then,

fε1,ε2,ε3(z1, z2, z3) ∼ −2π(ε1yz1 + ε2yz2 + ε3yz3)

+α(yz3)(xz3 − π)− α(−yz1)(x1−z1 − π)

+α(yz1)(xz1 − π)− α(yz1−z2)(x1−z2+z1 − π)+ α(−yz2)(x1−z2 − π)

+α(yz2)(xz2 − π)− α(yz2−z3)(x1−z3+z2 − π)+ α(−yz3)(x1−z3 − π)

= α(yz1)(xz1 − π − 2πε1)+ α(−yz1)(xz1 − π + 2πε1)

+α(yz1−z2)(xz2−z1 − π)+ yz2(xz2 − π − 2πε2)

+α(yz2−z3)(xz3−z2 − π)+ yz3(xz3 − π − 2πε3)

when |yz1 | + |yz2 | + |yz3 | → ∞. If we put ε23 = ε2 + ε3 and ε123 = ε1 + ε2 + ε3,
the right hand side is further equal to

α(yz1)(xz1+z2+z3 − 3π − 2πε123)+ α(−yz1)(xz1−z2−z3 + π + 2πε123)

along the line yz2−z1 = yz3−z2 = 0,

α(yz2)(xz2+z3 − 2π − 2πε23)+ α(−yz2)(x−z1−z3 + π + 2πε23)

along the line yz1 = yz3−z2 = 0, and

α(yz3)(xz3 − π − 2πε3)+ α(−yz3)(x−z2 + 2πε3)

along the line yz1 = yz2−z1 = 0. Therefore, (ξ1, ξ2, ξ3) ∈ Δε1,ε2,ε3 must obey

ξ1 + ξ2 + ξ3 − 3

2
− ε123 < 0, ξ1 − ξ2 − ξ3 + 1

2
+ ε123 < 0,

ξ2 + ξ3 − 1− ε23 < 0, −ξ1 − ξ3 + 1

2
+ ε23 < 0,

ξ3 − 1

2
− ε3 < 0, −ξ2 + ε3 < 0,

and so we can observe Δε1,ε2,ε3 = ∅ unless ε1 = ε2 = ε3 = 0. In fact, we have

ε3 = 0, ξ3 <
1

2
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from the fifth and the sixth inequalities first,

ε23 = 0,
1

2
− (ξ1 + ξ3) < 0 < 1− (ξ2 + ξ3)

from the third and the fourth inequalities second, and

ε123 = 0,
1

2
− (−ξ1 + ξ2 + ξ3) < 0 <

3

2
− (ξ1 + ξ2 + ξ3)

from the first and the second inequalities.
On the other hand, ImL (1− zν+1 + zν) is smooth at (z1, z2, z3) = (ξ1, ξ2, ξ3)

if and only if ξν < ξν+1, and so Δ0,0,0 is the set of (ξ1, ξ2, ξ3) ∈ [0, 1]3 satisfying

1

2
< −ξ1 + ξ2 + ξ3 < 1 < ξ1 + ξ2 + ξ3 <

3

2
,

1

2
< ξ1 + ξ3 < ξ2 + ξ3 < 2ξ3 < 1.

In what follows, we use a natural projection p : Cn → R
n defined by

p(z1, . . . , zn) = (Re z1, . . . ,Re zn).

Then, for each (ξ1, . . . , ξn) ∈ Δε1,...,εn , the function

(fε1,...,εn)|p−1(ξ1,...,ξn)
: p−1(ξ1, . . . , ξn)→ R

must have a global minimum by definition. Therefore, there exist a decomposition

Δε1,...,εn = Δ(1)
ε1,...,εn

∪ · · · ∪Δ(m)
ε1,...,εn

and smooth sections

s(μ)ε1,...,εn
: Δ(μ)

ε1,...,εn
→ p−1(Δ(μ)

ε1,...,εn
),

where 1 ≤ μ ≤ m, such that, for (ξ1, . . . , ξn) ∈ Δ
(μ)
ε1,...,εn , the function

(fε1,...,εn)|p−1(ξ1,...,ξn)
has a global minimum at s

(μ)
ε1,...,εn(ξ1, . . . , ξn). Then, any

critical point of

fε1,...,εn ◦ s(μ)ε1,...,εn
: Δ(μ)

ε1,...,εn
→ R

is a critical point of Hε1,...,εn , which must be a local maximum of fε1,...,εn ◦ s(μ)ε1,...,εn

by the Cauchy-Riemann equation. Without loss of generality, we can suppose

fε1,...,εn ◦ s(1)ε1,...,εn
, . . . , fε1,...,εn ◦ s(l)ε1,...,εn



4.2 Analytic Part 47

have local maxima, where fε1,...,εn ◦ s(1)ε1,...,εn has the largest one at a critical point
ζε1,...,εn of Hε1,...,εn , and

fε1,...,εn ◦ s(l+1)
ε1,...,εn

, . . . , fε1,...,εn ◦ s(m)ε1,...,εn

have no local maxima. Then, we define

Ωε1,...,εn =
{
Δ
(1)
ε1,...,εn if l ≥ 1,

∅ if l = 0.

If Ωε1,...,εn �= ∅, we denote s(1)ε1,...,εn by sε1,...,εn .

Example 4.5 Suppose K is the twist knot with 6 crossings. Then, we have

∂H

∂z1
= 2π

√−1

{
− log

(
1− 1

Q1

)
+ log

(
1− Q1

Q2

)
− log(1−Q1)

}
,

∂H

∂z2
= 2π

√−1

{
− log

(
1− Q1

Q2

)
+ log

(
1− 1

Q2

)
− log(1−Q2)

+ log

(
1− Q2

Q3

)}
,

∂H

∂z3
= 2π

√−1

{
− log(1−Q3)− log

(
1− Q2

Q3

)
+ log

(
1− 1

Q3

)}
.

If we fix (ξ1, ξ2, ξ3) ∈ Δ0,0,0, a critical point (η1, η2, η3) of (f0,0,0)|p−1(ξ1,ξ2,ξ3)

must satisfy

0 = arg(1− 1/Q1)− arg(1−Q1/Q2)+ arg(1−Q1),

0 = arg(1− 1Q1/Q2)− arg(1− 1/Q2)+ arg(1−Q2)− arg(1−Q2/Q3),

0 = arg(1−Q3)+ arg(1−Q2/Q3)− arg(1− 1/Q3),

which is equivalent to

(1− 1/Q1)(1−Q1)

1−Q1/Q2
,

(1−Q1/Q2)(1−Q2)

(1− 1/Q2)(1−Q2/Q3)
,
(1−Q3)(1−Q2/Q3)

1− 1/Q3
> 0,

that is,

(1− 1/Q1)(1−Q1)Q2Q3, Q3(Q2 −Q1), Q2 −Q3 > 0.
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Therefore, (η1, η2, η3) is a solution to

0 = Im (1− 1/Q1)(1−Q1)Q2Q3

= 2e−2π(η2+η3)X{cosπ(ξ1 + ξ2 + ξ3)− e2πη1 cosπ(−ξ1 + ξ2 + ξ3)},
0 = ImQ3(Q2 −Q1)=e−2π(η2+η3) sin 2π(ξ2 + ξ3)− e−2π(η1+η3) sin 2π(ξ1 + ξ3),

0 = Im (Q2 −Q3) = e−2πη2 sin 2πξ2 − e−2πη3 sin 2πξ3,

where we put

X = −e−2πη1 sinπ(ξ1 + ξ2 + ξ3)+ sinπ(−ξ1 + ξ2 + ξ3).

On the other hand, Re (1− 1/Q1)(1−Q1)Q2Q3 is equal to

2e−2π(η2+η3)(e−2πη1X2 − e−2πη1 + 2 cos 2πξ1 − e2πη1),

which is negative if X = 0. Thus, (f0,0,0)|p−1(ξ1,ξ2,ξ3)
has the global minimum at

η1 = 1

2π
log

cosπ(ξ1 + ξ2 + ξ3)

cosπ(−ξ1 + ξ2 + ξ3)
,

η2 = 1

2π
log

sin 2π(ξ2 + ξ3) cosπ(ξ1 + ξ2 + ξ3)

sin 2π(ξ1 + ξ3) cosπ(−ξ1 + ξ2 + ξ3)
,

η3 = 1

2π
log

sin 2πξ3 sin 2π(ξ2 + ξ3) cosπ(ξ1 + ξ2 + ξ3)

sin 2πξ2 sin 2π(ξ1 + ξ3) cosπ(−ξ1 + ξ2 + ξ3)

for each (ξ1, ξ2, ξ3) ∈ Δ0,0,0 and we can observe Ω0,0,0 = Δ0,0,0 in this case.

In what follows, by Λ, we denote the n× n matrices

(
∂2Hε1,...,εn

∂zi∂zj

)

evaluated at ζε1,...,εn . The goal of this subsection is the following.

Lemma 4.2 Suppose Ωε1,...,εn �= ∅. Suppose also that there exists a homotopy

h : ∂Ωε1,...,εn × [0, 1] → E

between the identity and sε1,...,εn |∂Ωε1,...,εn
, where

E = f−1
ε1,...,εn

((−∞, fε1,...,εn(ζε1,...,εn))) ∩ p−1(Ωε1,...,εn).
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Then, if Λ is non-singular,

〈K〉Ωε1,...,εn
N = N

3
2 exp

NHε1,...,εn(ζε1,...,εn)

2π
√−1

·O(1)

when N is large.

Proof Let Φt be the flow on p−1(Ωε1,...,εn) generated by the gradient vector field
of fε1,...,εn , that is,

d

dt
Φt (z1, . . . , zn) =

(
∂fε1,...,εn

∂z̄1
, . . . ,

∂fε1,...,εn

∂z̄n

)
,

and put

Iε1,...,εn = {(z1, . . . , zn) ∈ p−1(Ωε1,...,εn) : lim
t→∞Φt(z1, . . . , zn) = ζε1,...,εn}.

Note that ReHε1,...,εn is constant on Iε1,...,εn because

ReHε1,...,εn

dt
=

n∑

ν=1

Re

{
∂(ReHε1,...,εn)

∂zν
· dzν
dt

}

=
n∑

ν=1

Re

{√−1 · ∂(ImHε1,...,εn)

∂zν
· dzν
dt

}

=
n∑

ν=1

Re

{√−1 · ∂fε1,...,εn

∂zν
· ∂fε1,...,εn

∂z̄ν

}
= 0.

Note also that ζε1,...,εn is a critical point of fε1,...,εn whose Morse index is n as Λ is
non-singular and that, for small ε > 0,

E+ = f−1
ε1,...,εn

((−∞, fε1,...,εn(ζε1,...,εn)+ ε]) ∩ p−1(Ωε1,...,εn)

is obtained from

E− = f−1
ε1,...,εn

((−∞, fε1,...,εn(ζε1,...,εn)− ε]) ∩ p−1(Ωε1,...,εn)

by attaching an n-handle W whose core is Īε1,...,εn ∩ W , where Īε1,...,εn denotes
the closure of Iε1,...,εn . As f |Īε1,...,εn is concave while f |p−1(ζε1,...,εn )

is convex near
ζε1,...,εn , we can suppose that, if (ξ1, . . . , ξn) belongs to

U = {(ξ1, . . . , ξn) ∈ Ωε1,...,εn : |(ξ1, . . . , ξn)− p(ζε1,...,εn)| < N−γ },
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where 1/3 < γ < 1/2, p−1(ξ1, . . . , ξn) intersects Īε1,...,εn ∩W transversely in one
point, say σε1,...,εn(ξ1, . . . , ξn). Note that, if we put (ξ̂1, . . . , ξ̂n) = (ξ1, . . . , ξn) −
p(ζε1,...,εn) and

J (ξ̂1, . . . , ξ̂n) =
(
σε1,...,εn

∂ξ1
· · · σε1,...,εn

∂ξn

)
,

Hε1,...,εn(σε1,...,εn(ξ1, . . . , ξn)) is equal to

Hε1,...,εn(ζε1,...,εn)+ (ξ̂1, . . . , ξ̂n) · tJ (0)ΛJ (0) · t(ξ̂1, . . . , ξ̂n)+O(N−3γ ).

Thus, by putting (λij ) = tJ (0)ΛJ (0) and (ξ̌1, . . . , ξ̌n) = N
1
2 (ξ̂1, . . . , ξ̂n), we have

N
n+3

2

∫

σε1,...,εn (U)

ΨN(z1, . . . , zn)

n∏

ν=1

(−QN
ν )

εν dz1 · · · dzn

=N
n+3

2 e
N

2π
√−1

Hε1,...,εn (ζε1,...,εn )+T (ζε1,...,εn )
∫

U

e
− N

2π

∑n
i,j=1 λij ξ̂i ξ̂j+O(N1−3γ )|J (ξ̂1, . . . , ξ̂n)|dξ̂1 · · · dξ̂n

=N
3
2 e

N

2π
√−1

Hε1,...,εn (ζε1,...,εn )+T (ζε1,...,εn )|J (0)|
∫

ξ̌2
1+···+ξ̌2

n<N
1−2γ

e
− 1

2π

∑n
i,j=1 λij ξ̂i ξ̂j+O(N1−3γ )

dξ̌1· · ·dξ̌n

=N
3
2 e

N

2π
√−1

Hε1,...,εn (ζε1,...,εn )+T (ζε1,...,εn )|J (0)| ·
√

(2π2)n

|tJ (0)ΛJ (0)| · {1+O(N1−3γ )}.

This completes the proof because Ωε1,...,εn is homotopic to

h(∂Ωε1,...,εn × [0, 1]) ∪ sε1,...,εn(Ωε1,...,εn \ U) ∪ g(∂U × [0, 1]) ∪ σε1,...,εn(U),

where g : U × [0, 1] → p−1(U) is a homotopy between sε1,...,εn and σε1,...,εn , and

h(∂Ωε1,...,εn × [0, 1]) ∪ sε1,...,εn(Ωε1,...,εn \ U) ∪ g(∂U × [0, 1])

is contained in E.

Remark 4.1 By using Lemma 4.2, the asymptotic behavior of Kashaev’s invariant
of the knot 52, the twist knot with 5 crossings, is computed in [41]. Lemma 4.2 can
be also applied to the invariant of the knot 61, the twist knot with 6 crossings, but
cannot be applied to the invariants for the other twist knots because the values of
the potential functions at ∂[0, 1]n exceed the critical values. On the other hand, in
[71], Ohtsuki computed the asymptotic expansion of Kashaev’s invariant of the knot
52 more precisely by using the Poisson summation formula, which is generalized to
the invariants of the knots with 6 crossings in [72].
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4.2.4 Remaining Tasks

From now on, we suppose K is hyperbolic and denote the complement of K by M .
First of all, we have to show

Conjecture 4.1 There exists (ε1, . . . , εn) ∈ Z
n such that Ωε1,...,εn �= ∅.

In what follows, we assume Conjecture 4.1. Note that the second assumption
in Lemma 4.2 can be confirmed if ∂Ωε1,...,εn ⊂ E and fε1,...,εn |p−1(ξ1,...,ξn)

has a
unique critical point on p−1(ξ1, . . . , ξn) for each (ξ1, . . . , ξn) ∈ ∂Ωε1,...,εn as in
Example 4.5. However, this condition is too strong, and we had better to show the
following in general.

Conjecture 4.2 There exist an extension ŝε1,...,εn : [0, 1]n → E of sε1,...,εn and a
homotopy

ĥ : ∂[0, 1]n × [0, 1] → p−1([0, 1]n)

between the identity and ŝε1,...,εn |∂[0,1]n such that

lim
N→∞

2π

N
· log

∣∣∣∣∣

∫

ĥ(∂[0,1]n×[0,1])
ΨN(z1, . . . , zn)

n∏

ν=1

(−QN
ν )

εν dz1 · · · dzn
∣∣∣∣∣

is less than fε1,...,εn(ζε1,...,εn).

On the other hand, we are interested in the geometrical meaning of
fε1,...,εn(ζε1,...,εn). Recall that, for a representation

ρ : π1(M)→ PSL(2;C) � Isom+H3,

the volume Vol(ρ) of ρ is defined as the volume of the image of the fundamental
domain under the ρ-equivariant map from the universal cover of M to H

3.

Conjecture 4.3 There exists a representation ρε1,...,εn : π1(M) → PSL(2;C) such
that

Vol(ρε1,...,εn) = fε1,...,εn(ζε1,...,εn).

Conjecture 4.3 is true at least for alternating knots. In the next section, we will
explain how to prove it. Note that, if Conjectures 4.3 is true, the non-singularity
of Λε1,...,εn follows from the existence of the deformation of ρε1,...,εn and that, if
Conjecture 4.2 is also true, we have

〈K; ε1, . . . , εn〉N ∼ N
3
2 exp

NHε1,...,εn(ζε1,...,εn)

2π
√−1
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by Lemma 4.2. Therefore, to prove the volume conjecture, we further need the
following.

Conjecture 4.4 There exists (ε1, . . . , εn) ∈ Z
n such that ρε1,...,εn is discrete and

faithful.

4.3 Geometric Part

In this section, following [79, 92], we observe how the complement M of a
hyperbolic knot K in S3 decomposes into ideal tetrahedra which correspond to the
q-factorials in Kashaev’s invariant of K , and relate the potential function of K to the
hyperbolicity equations for the triangulation, the hyperbolic volume of M , and the
other geometric invariants. Good references for such ideal triangulations of cusped
hyperbolic three-manifolds are [70] and [86].

Recall that the 3-dimensional hyperbolic space H
3 is the upper half space of R3

endowed with the metric

ds2 = dx2 + dy2 + dz2

z2 ,

where the group of orientation preserving isometries is PSL(2;C). Then, a knot
K in S3 is said to be hyperbolic if there is a discrete, torsion-free subgroup Γ of
PSL(2;C) such that the complement M of K is homeomorphic to H

3/Γ .

4.3.1 Ideal Triangulation

A tetrahedron in H
3 whose four vertices are placed in ∂H3 = C ∪ {∞} is called

ideal. See Fig. 4.4. The shape of such a tetrahedron is determined by a complex
number z associated to a pair of opposite edges, called modulus, and its volume is
given by the Bloch-Wigner function

Fig. 4.4 Moduli associated
to the vertical edges

z

z

z

z
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Fig. 4.5 The octahedron
between the overpass and the
underpass

D(z) = Im Li2(z)+ log |z| arg(1− z).

For simplicity, we suppose K has an alternating diagram D. First, we put an
octahedron between the overpass and the underpass of K corresponding to each
crossing of D as shown in Fig. 4.5, which is divided into four tetrahedra around the
vertical axis referred as crossing edge. Next, we glue the red edges at the vertical
edge between K and the north pole +∞, and glue the blue edges at the vertical
edge between K and the south pole −∞, which makes each tetrahedron as shown
in Fig. 4.6. In what follows, the edge of each tetrahedron connecting the two poles,
which is opposite to the crossing edge and corresponds to a face of D, is referred as
face edge. Finally, we can glue the octahedra corresponding to the ends of each edge
ofD as shown in Fig. 4.7, and we obtain an ideal triangulation T of S3\(K∪{±∞})
which is not hyperbolic however.

Let e be an edge of D and Θe the intersection of the octahedra corresponding to
the ends of e. Then, we obtain an ideal triangulation S of M from T by collapsing
Θe to a point on K , where the tetrahedra of T touching Θe are collapsed. First,
the tetrahedra corresponding to the four corners around e, which intersect Θe in 2-
cells, degenerate to crossing edges in S . Second, the tetrahedra corresponding to
the corners in the two faces of D incident to e, which intersect Θe in face edges,
degenerate to triangles in S . Third, the tetrahedra corresponding to the corners
around the edge located at the “entrance” and “exit” of D, which intersect Θe in
1-cells other than face edges, degenerate to triangles in S . See Fig. 4.8.
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Fig. 4.6 Four tetrahedra after gluing

Fig. 4.7 The edges with the
same color are identified

Fig. 4.8 Tetrahedra
corresponding to the corners
with stars are collapsed
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It should be noted that the corners of D corresponding to the tetrahedra collapsed
above exactly coincide with the corners of D corresponding to the q-factorials
which are eliminated algebraically when we compute Kashaev’s invariant from the
(1,1)-tangle presentation of K obtained from D by cutting e.

4.3.2 Cusp Triangulation

In what follows, we denote the regular neighborhoods ofK, +∞, −∞, ∂Θ, K∪Θ
in S3 by

N(K), N(+∞), N(−∞), N(∂Θ), N(K ∪Θ)

respectively. Let S1, . . . , Sm denote the tetrahedra in S and w1, . . . , wn their
moduli associated to crossing edges, and so to face edges, which we assign to the
corners ofD corresponding to S1, . . . , Sm. In this subsection, to understand the ideal
triangulation S of M , we are going to write down the triangulation of ∂N(K ∪Θ)

induced by S explicitly.
Notice that, before the collapsing, each octahedron intersects ∂N(K) in two

“rings” and intersects ∂N(±∞) in two “bows” as shown in Fig. 4.9. Therefore,
the triangulation ∂0T of ∂N(K) induced by T can be obtained by gathering these
rings. See Fig. 4.10, where we assign wμ to each cut-end of Sμ near the cut-ends
of its crossing edge in the right hand side. Similarly, the triangulation ∂+T of
∂N(+∞) induced by T can be obtained by gathering the upper bows, and the
triangulation ∂−T of ∂N(−∞) induced by T can be obtained by gathering the
lower bows. See Figs. 4.11 and 4.12, where we assign wμ to each cut-end of Sμ
near the cut-end of its face edge in the right hand side.

Eventually, ∂+T and ∂−T are obtained from D and its mirror image by star-
subdividing their faces respectively.

Now, we are going to describe the cell decomposition ∂T of ∂N(K∪Θ) induced
by T which will be deformed to the triangulation of ∂N(∂Θ) induced by S .

First, the cell decomposition ∂±T of the torus ∂N(∂Θ) induced by T is easily
obtained by tubing ∂+T and ∂+T with the boundary of the tubular neighborhood
of ∂Θ in S3 \ N(±∞) as shown in Fig. 4.13. Second, the cell decomposition ∂T
of the torus ∂N(K ∪Θ) induced by T is obtained by gluing ∂0T and ∂±T along
the two ends of the bicollar neighborhood of Θ in S3 \ {N(K) ∪N(∂Θ)} as shown
in Fig. 4.14.

Note that ∂T consists of a cell decomposition of an annulus corresponding to
∂N(∂Θ), the left hand side of Fig. 4.14, and a cell decomposition of an annulus
corresponding to ∂N(K), the right hand side of Fig. 4.14.

Finally, the triangulation ∂S of ∂N(K∪Θ) induced by S can be obtained from
∂T by collapsing the cut-ends of the degenerate tetrahedra as indicated in Fig. 4.14.
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Fig. 4.9 Bows and rings

4.3.3 Hyperbolicity Equations

If the hyperbolic structures of S1, . . . , Sm determined by w1, . . . , wm fit together,
the product of the moduli around each edge of S should be 1, which is called
the edge relation. Furthermore, if the structure of M is complete, the product
of the moduli along any meridian of K should be 1, which is called the cusp
condition. Such conditions are called the hyperbolicity equations for M . Curious
to say, such equations are related to the potential function which appears in the
integral expression of Kashaev’s invariant.

Theorem 4.1 The hyperbolicity equations forM can be obtained from the potential
function H(z1, . . . , zn), that is,

exp

{
1

2π
√−1

∂H

∂z1

}
= 1, . . . , exp

{
1

2π
√−1

∂H

∂zn

}
= 1,

where the moduli w1, . . . , wm are given as the ratios of zν’s.

The following example describes the proof.

Example 4.6 Let K be the knot depicted in Fig. 4.15. Then, as in Example 4.3, the
potential function is given by

H(z1, z2, z3) = −L (1− z1)+L (z1)−L (z1 − z2)+L (1− z2)

−L (z2)+L (z2 − z3)−L (1− z3)+L (z3).
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Fig. 4.10 A development of
∂N(K), where each
horizontal line represents a
meridian of K and each
vertical line represents a
longitude of K
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Fig. 4.11 A development of ∂N(+∞) with two vertices corresponding to the unbounded regions
of D removed, where the edges at the top and the bottom are identified
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Fig. 4.12 A development of ∂N(−∞) with two vertices corresponding to the unbounded regions
of D removed, where the edges at the top and the bottom are identified

Fig. 4.13 A development of
∂N(∂Θ), where the edges at
the top and the bottom are
identified
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Then, the edge relations around the face edges can be easily read from the left
hand side of Fig. 4.16, that is,

w1w2w6 = 1 = w4w5w7.

Similarly, the edge relations around the crossing edges can be easily read from the
right hand side of Fig. 4.16, that is,

w2w3w4 = 1 = w6w7w8.
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Fig. 4.14 A development of ∂N(K ∪Θ), where the dotted edges are contracted

Fig. 4.15 The variables of
the potential function are
assigned to the edges of D

z

z

z

The cusp conditions along two meridians between the both sides of Fig. 4.16 can be
read easily, that is,

w1

w8
= 1 = w3

w5
.

These equations suggest to write the moduliw1, . . . , w8 as the ratios of the variables
Q1,Q2,Q3 corresponding to the edges of D assigned z1, z2, z3, that is,

w1 = Q1, w8 = Q1, w6 = Q2

Q1
, w7 = 1

Q2
, w3 = Q3, w4 = Q2

Q1
, w2 = 1

Q2
,

w5 = Q3.
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Fig. 4.16 Simple cusp conditions

Fig. 4.17 Essential equations
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The other equations can be read from the right hand side of Fig. 4.16. In fact,
by taking the product of the moduli along the annuli indicated in Fig. 4.17, which
corresponds to the edges of D assigned z1, z2, z3, we have

1 = 1− 1/w6

(1− 1/w1)(1− w8)
= 1−Q1/Q2

(1− 1/Q1)(1−Q1)
,
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Fig. 4.18 Fundamental
domain of M

w w

w

w w

w

w

w

1 = (1− 1/w6)(1− w4)

(1− w7)(1− 1/w2)
= (1−Q1/Q2)(1−Q2/Q1)

(1− 1/Q2)(1−Q2)
,

1 = 1− w4

(1− 1/w3)(1− w5)
= 1−Q2/Q1

(1− 1/Q1)(1−Q3)
.

The right hand sides exactly coincide with

exp

{
1

2π
√−1

∂H

∂z1

}
, exp

{
1

2π
√−1

∂H

∂z2

}
, exp

{
1

2π
√−1

∂H

∂z3

}

if we put Qν = e2π
√−1zν .

Remark 4.2 Figure 4.18, a part of Fig. 4.16, gives a nice view of the fundamental
domain of M in H

3 from ∞. If the edges of S are homotopically non-trivial, each
solution to the equations in Theorem 4.1, such as ζε1,...,εn in the previous section,
determines the shape of this domain and a holonomy representation of π1(M) into
PSL(2;C). In particular, there must exists a solution corresponding to the discrete
faithful representation.

If D is alternating, the edges of S is known to be essential [27, 78], and Conjec-
ture 4.3 is true by Theorem 4.2 below. However, we cannot confirm Conjecture 4.4
because the solution corresponding to the discrete faithful representation may not
coincide with ζε1,...,εn .
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4.3.4 Complex Volumes

In this subsection, we study the critical value of the potential function at the
geometric solution to the equations in Theorem 4.1. Let Vol(M) be the hyperbolic
volume of M and cs(M) the Chern–Simons invariant of M , that is,

cs(M) = 1

8π2

∫

s(M)

tr(A ∧ dA+ A ∧ A ∧ A) ∈ R/Z, (4.4)

where A and s denote the connection and a section of the orthonormal frame bundle
of M . Since M is a cusped hyperbolic three-manifold, cs(M) is only defined modulo
1/2. See [58] for detail. Then, we define the complex volume of M by

cv(M) = −2π2 cs(M)+√−1 Vol(M) mod π2. (4.5)

Theorem 4.2 Suppose that (z1, . . . , zn) = (ζ1, . . . , ζn) is the geometric solution to
the hyperbolicity equations and that

1

2π
√−1

∂H

∂zν
= 2π

√−1 · εν,

where εν ∈ Z. Then, we have

cv(M) ≡ H(ζ1, . . . , ζn)− 2π
√−1

n∑

ν=1

εν log ζν mod π2.

Proof We prove the imaginary part of the equality only. See [94] for the proof of
the real part. From the definition of Bloch-Wigner function, we can observe that

Im Li2(z/w) = D(z/w)+ log |z| · Im
{
z
∂ Li2(z/w)

∂z

}

+ log |w| · Im
{
w
∂ Li2(z/w)

∂w

}
.

and that

ImH(z1, . . . , zn) =
m∑

μ=1

D(wμ)+
n∑

ν=1

log |zν | · Im
{

1

2π
√−1

∂H

∂zν

}
.
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Since D(wμ) gives the volume of Sμ at (z1, . . . , zn) = (ζ1, . . . , ζn), we have

ImH(ζ1, . . . , ζn) = Vol(M)+
n∑

ν=1

2πεν log |ζν |.

This proves the imaginary part of the equality.

Remark 4.3 Theorem 4.2 can be generalized to a formula for the complex volumes
of the representations corresponding to the other solutions. See [97] for the Chern–
Simons invariant of representations.



Chapter 5
Representations of a Knot Group, Their
Chern–Simons Invariants, and Their
Reidemeister Torsions

Abstract In this chapter, we describe representations of the fundamental group of
a knot complement to SL(2;C) by giving examples. We also give the definitions
of the Chern–Simons invariant and the Reidemeister torsion associated with such a
representation. We also give examples of calculation. We will explain relations of
these invariants to the asymptotic behavior of the colored Jones polynomial in the
next chapter.

5.1 Representations of a Knot Group

5.1.1 Presentation

We consider the complement of a knot S3 \K in the three-sphere S3. Let us denote
by π1(K) the fundamental group π1(S

3 \K; x0) with appropriate basepoint x0.1 We
sometimes call π1(K) the knot group.

Given a knot diagram we can present the knot group in the following way. As
in Fig. 5.1, we assign a loop with endpoints at ∞ to each arc of the diagram. Here
the diagram is cut by crossings into several segments, each of them is called an arc.
Then around a positive crossing we have the relation

yxz−1x−1 = 1

as we can read off from Fig. 5.2. Similarly around a negative crossing we have the
relation

xyx−1z−1 = 1

1Usually we regard S3 as the one-point compactification of R3, that is S3 = R
3 ∪ {∞}, and put

x0 := ∞.

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2018
H. Murakami, Y. Yokota, Volume Conjecture for Knots, SpringerBriefs in
Mathematical Physics 30, https://doi.org/10.1007/978-981-13-1150-5_5
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Fig. 5.1 Generator ∞

Fig. 5.2 Relation at a
positive crossing

x

x

y

z

Fig. 5.3 Relation at a
negative crossing

y

z

x

x

as we can see from Fig. 5.3. So if there are n crossings in the diagram we have the
following presentation for π1(K):

〈x1, x2, . . . , xn | r1, r2, . . . , rn〉,

where the ri are relations as above. Note that one relation, say rn, is unnecessary
because a small loop around a crossing can be shrunk through the point at infinity
in S2. Therefore we have the following presentation for π1(K).

Definition 5.1 (Wirtinger presentation) If a knot K has a diagram with n cross-
ings, we have the following presentation for π1(K).

π1(K) = 〈x1, x2, . . . , xn | r1, r2, . . . , rn−1〉.

We call it the Wirtinger presentation.

Let N(K) ⊂ S3 be the tubular neighborhood of K in S3 and ∂N(K) be its
boundary. Note thatN(K) is homeomorphic to a solid torusD2×S1 and that ∂N(K)

is homeomorphic to a torus S1 × S1.
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Definition 5.2 (median) A simple closed curve μ on ∂N(K) that is nullhomotopic
in N(K) and oriented so that lk(μ,K) = 1 is called the meridian, where lk denotes
the linking number.

Choose a path γ connecting ∞ and a point in μ. We also call the homotopy
class [γμγ−1] ∈ π1(K) the meridian of K . Note that the meridian is defined up to
conjugation.

Definition 5.3 (longitude) A simple closed curve λ on ∂N(K) that is parallel to K
in N(K) and nullhomologous in S3 \ IntN(K) is called the longitude.2

For a path γ connecting ∞ and a point in λ, the homotopy class [γ λγ−1] ∈
π1(K) is also called the longitude of K . It is defined up to conjugation.

Example 5.1 (Figure-eight knot) Let x, y, z, and w be the generators of π1(E )
indicated in Fig. 5.4. Then we have

π1(E ) = 〈x, y, z,w | xyx−1z−1, zwz−1x−1, zyw−1y−1〉.

Note that we do not write the relation around the bottom-right crossing.
From the first relation, we have z = xyx−1, and from the second relation we

have w = z−1xz = xy−1xyx−1. So we have the following presentation with two
generators and one relation.

π1(E ) = 〈x, y | ωx = yω〉, (5.1)

where we put ω := xy−1x−1y.
We can choose x as the meridian.

Fig. 5.4 Generators of
π1(E )

x

x

y

z

z w

w

2It is often called the preferred longitude. Sometimes any simple closed curve on ∂N(K) that
is parallel to K in N(K) is also called the longitude. Our (preferred) longitude λ satisfies
lk(λ,K) = 0.
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Fig. 5.5 Generators of
π1(T (2, 2a + 1))

2a+1

y

x

Choosing a simple closed curve from the top-right along the knot, the longitude
is

wx−1yz−1 = xy−1xyx−2yxy−1x−1. (5.2)

Example 5.2 (Torus knot of type (2, 2a + 1)) It would be a good exercise to check
that π1(T (2, 2a + 1)) has the following presentation:

π1(T (2, 2a + 1)) = 〈x, y | (xy)ax = y(xy)a〉,

where x and y are generators indicated in Fig. 5.5. We can choose x as the meridian
and the longitude is

(xy)axy−a(xy)ax−3a−1 = y(xy)2ax−4a−1 (5.3)

if we choose a simple closed curve from the top-right. Note that we need to multiply
by x−3a−1 to make the linking number 0.

5.1.2 Representation

A homomorphism ρ : π1(K)→ SL(2;C) is called a representation to SL(2;C). In
this book a representation to SL(2;C) is simply called a representation.
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Definition 5.4 (Abelian representation) A representation ρ is called Abelian if
Im(ρ) forms an Abelian subgroup of SL(2;C). A representation that is not Abelian
is called non-Abelian.

Since H1(S
3 \ K) ∼= Z and it is generated by the meridian, the Abelianization of

π1(K) is Z generated by the median α([μ]), where α : π1(K)→ H1(S
3 \K) is the

Abelianization map. Therefore the image of an Abelian representation is generated
by the image of the meridian.

So an Abelian representation is either ρA
z sending the meridian to

(
z 0
0 z−1

)
(z �=

0) or ρA
0,± sending the meridian to ±

(
1 1
0 1

)
, up to conjugation. Note that ρA

z is

conjugate to ρA
z−1 .

Definition 5.5 (Reducible representation) A representation ρ is called reducible
if there exists a one-dimensional subspace V ⊂ C

2 such that ρ(g)(V ) ⊂ V for
any g ∈ π1(K). Note that this is equivalent to say that there exists a non-singular
2 × 2 matrix S such that S−1ρ(g)S is upper-triangular for any g ∈ π1(K). A
representation that is not reducible is called irreducible.

Definition 5.6 (Affine representation) A reducible, non-Abelian representation
is sometimes called an affine representation since it corresponds to the affine
transformation z �→ az+ b.

Suppose ρ is such a representation. Up to conjugation we can write the image of

xi as

(
pi qi

0 p−1
i

)
, where the xi are generators given in Definition 5.1. Then from the

relation rj , we have pi = p1 for any i, and

(p2 − 1)qj − p2qk + qi = 0 when the crossing is positive,

(p2 − 1)qj − p2qi + qk = 0 when the crossing is negative,

where we put p := p1, xj := x, xi := y, and xk := z. This is a system of
(n− 1) linear equations with n indeterminates. Comparing this with the Alexander

matrix
(
α
(
∂ rj
∂ xi

))j=1,2,...,n−1

i=1,2,...,n
, one can conclude that if p2 is a zero of the Alexander

polynomial3 there is an affine representation. Here ∂
∂ xi

is the Fox derivative4 and

α : Z[π1(K)] → Z[t, t−1] is the Abelianization map sending xi to t . See [13, 18].
See also [51, 2.4.3. Corollary] and [43, Exercise 11.2].

In the following we exhibit irreducible representations for the figure-eight knot and
the torus knot of type (2, 2a + 1).

3The Alexander polynomial is det
(
α
(
∂ rj
∂ xi

))j=1,2,...,n−1

i=1,2,...,n−1
.

4See Sect. 5.3.1.
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Example 5.3 (Figure-eight knot) Since π1(E ) has the presentation (5.1), it is
enough to give ρ(x) and ρ(y) such that ρ(ω)ρ(x) = ρ(y)ρ(ω).

For a complex number m (m �= 0) let ρm,± be the non-Abelian representation
defined as follows:

ρm,±(x) :=
(
m 1
0 m−1

)
,

ρm,±(y) :=
(
m 0
d± m−1

)
,

(5.4)

where

d± = 1

2

(
−m2 −m−2 + 3±

√
(m2 +m−2 + 1)(m2 +m−2 − 3)

)
. (5.5)

It can be proved that any non-Abelian representation is conjugate to ρm,± for some
m [75]. Note that ρm−1,± is conjugate to ρm,±. Note also that ρm,+ and ρm,− are
not conjugate if d± �= 0, because

ρm,±(xy) =
(
m2 + d± m−1

d±m−1 m−2

)

and they have different traces.
The longitude (5.2) is sent to

(
�(m)±1 ∓(m+m−1)

√
(m2 +m−2 + 1)(m2 +m−2 − 3)

0 �(m)∓1

)

,

where

�(m) :=
(
m4 −m2 − 2−m−2 +m−4

)

2
− (m2 −m−2)

2
√
(m2 +m−2 + 1)(m2 +m−2 − 3). (5.6)

Note that �(m) is a solution to the following equation.

�− (m4 −m2 − 2−m−2 +m−4)+ �−1 = 0, (5.7)

which coincides with the A-polynomial of the figure-eight knot [17].
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If d± = 0, then ρm,± becomes reducible, giving affine representations. They are
given by

ρaffine± (x) :=
(
(
√

5+ 1)/2 1
0 (

√
5− 1)/2

)
,

ρaffine± (y) :=
(
(
√

5+ 1)/2 0
0 (

√
5− 1)/2

)

when m = (
√

5+ 1)/2 and

ρaffine± (x) :=
(−(√5+ 1)/2 1

0 −(√5− 1)/2

)
,

ρaffine± (y) :=
(−(√5+ 1)/2 0

0 −(√5− 1)/2

)

when m = −(√5+ 1)/2.
When m = 1, ρ1,± gives the holonomy representations. The images of the

meridian and the longitude are

(
1 1
0 1

)
and

(−1 ∓2
√

3
√−1

0 −1

)
, respectively. If

we regard SL(2;C) (precisely speaking PSL(2;C)) as the group of orientation
preserving isometries of the upper half hyperbolic space H

3, it gives translations
z �→ z+ 1 and z �→ z± 2

√
3
√−1 on ∂H3 = C. Since the pair (1, 2

√
3
√−1) gives

the positive orientation in H
3, the representation ρ1,+ gives the complete hyperbolic

structure with positive volume and ρ1,− gives the one with negative volume.

Example 5.4 (Torus knot of type (2, 2a+1)) For a complex number m (m �= 0) and
an integer j (0 ≤ j ≤ a − 1), put

ρm,j (x) :=
(
m 1
0 m−1

)
,

ρm,j (y) :=
(

m 0

2 cos
(
(2j+1)π

2a+1

)
−m2 −m−2 m−1

)

.

Then ρm,j is a non-Abelian representation. It is known that any non-Abelian
representation is conjugate to ρm,j for some m and j [75]. Note that ρm−1,j is

conjugate to ρm,j . Since Tr ρm,j (xy) = 2 cos
(
(2j+1)π

2a+1

)
, ρm,j is not conjugate to

ρm,j ′ if j �= j ′.
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The longitude (5.3) is sent to

(
−m−2(2a+1) m2(2a+1)−m−2(2a+1)

m−m−1

0 −m2(2a+1)

)

. (5.8)

Note that l = −m−2(2a+1), that is, lm2(2a+1) + 1 = 0 is the A-polynomial of
T (2, 2a + 1).

If m = ± exp
(
(2j+1)π

√−1
2(2a+1)

)
, then the representation becomes reducible and

defines an affine representation.

5.2 The Chern–Simons Invariant

5.2.1 Definition

Let W be a oriented closed three-manifold and ρ : π1(W) → SL(2;C) be a
representation.

Then there is a flat connectionA onW×SL(2;C) that induces ρ as the holonomy
representation. Here a flat connection is an sl2(C)-valued 1-form on W satisfying
d A+ A ∧ A = 0. The SL(2;C) Chern–Simons function csW is defined by

csW
([ρ]) := 1

8π2

∫

W

tr

(
A ∧ d A+ 2

3
A ∧ A ∧ A

)
∈ C (mod Z), (5.9)

where [ρ] is the conjugacy class. It is known that the representations modulo
conjugation is in one-one correspondence to the flat connections modulo gauge
equivalence.

If W is hyperbolic, ρ0 is the holonomy representation associated with the
complete hyperbolic metric, and cs(W) is the Chern–Simons invariant defined by
using the Levi–Civita connection (see (4.4)), then T. Yoshida [95, Lemma 3.1]
proved

csW
([ρ0]

) = cs(W)−
√−1

π2 Vol(W).

See also [47, P. 554]. Therefore the complex volume cv(W) defined in (4.5)
coincides with −π2 csW

([ρ0]
)

in this case.
In [47], P. Kirk and E. Klassen introduced the Chern–Simons invariant for a

three-manifold whose boundary consists of tori. They also gave a way to calculate
the Chern–Simons invariant of a three-manifold obtained by pasting two such
manifolds.
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Let M be an oriented three-manifold with boundary ∂M . For simplicity we
assume that ∂M is a torus. The SL(2;C) character variety X(L) of a manifold L is
the set of the traces of representations from π1(L) to SL(2;C).

First, we study the character variety X(∂M). Consider a map p : Hom(π1(∂M),

C)→ X(∂M) defined by

p(κ) :=
[

γ �→
(
e2π

√−1κ(γ ) 0

0 e−2π
√−1κ(γ )

)]

for γ ∈ π1(∂M), where the square brackets mean the equivalence class in X(∂M).
Now fix a generator system (μ, λ) of π1(∂M) ∼= Z ⊕ Z, and take its dual basis

(μ∗, λ∗) of Hom(π1(∂M),C). Then we see that p is invariant under the following
actions on Hom(π1(∂M);C):

x · (α, β) := (α + 1, β),

y · (α, β) := (α, β + 1),

b · (α, β) := (−α,−β),

where (α, β) is the element αμ∗ + βλ∗ ∈ Hom(∂M,C). These actions form the
group

G := 〈x, y, b | xyx−1y−1 = bxbx = byby = b2 = 1〉.

Note that the quotient space Hom(π1(∂M),C)/G is identified with the SL(2;C)
character variety X(∂M).

Let G act on Hom(π1(∂M),C)× C
∗ in the following way.

x · (α, β; z) := (α + 1, β; z exp(−8π
√−1β)),

y · (α, β; z) := (α, β + 1; z exp(8π
√−1α)),

b · (α, β; z) := (−α,−β; z).

We denote the quotient space (Hom(π1(∂M),C) × C
∗)/G by E(∂M). So if we

denote by [α, β; z] the representative, then we have

[α, β; z] = [α + 1, β; z exp(−8π
√−1β)]

= [α, β + 1; z exp(8π
√−1α)]

= [−α,−β; z].
(5.10)

Then q : E(∂M) → X(∂M) (q : [α, β; z] �→ [α, β]) becomes a C
∗-bundle,

where [α, β; z] ([α, β], respectively) is the equivalence class of (α, β; z) ((α, β),
respectively) in E(∂M) (X(∂M), respectively).
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The Chern–Simons function cM is a map from X(M) to E(∂M) such that the
following diagram commutes, where i∗ is the restriction map.

E(∂M)

X(M) X(∂M)

q
cM

i∗

Suppose that an oriented closed three-manifoldW is given asM1∪M2, whereM1
and M2 are manifolds with torus boundaries. We give the same basis for π1(∂M1)

and π1(−∂M2). For a representation ρ of π1(W), let ρi be its restriction to π1(Mi)

(i = 1, 2). Then we have

e
2π
√−1 csW

(
[ρ]
)
= z1z2,

where cMi ([ρi]) = [α, β, zi] with respect to the common basis [47, Theorem 2.2].
If M = S3 \ IntN(K) for a knot K , then we can define the SL(2;C) Chern–

Simons invariant as follows.
Let μ and λ be the meridian and the longitude, respectively. Up to a conjugation

we may assume that a given representation ρ satisfies the following:

ρ(μ) =
(
eu/2 ∗

0 e−u/2

)
and ρ(λ) =

(−ev/2 ∗
0 −e−v/2

)

becauseμ and λ commute. Note the minus signs in ρ(λ). We put these signs because
it is known that for a hyperbolic knot the trace of the image of the longitude by the
holonomy representation is −2 (see [15]).

Then the SL(2;C) Chern–Simons function cM has the following form.

cM
([ρ]) =

[
u

4π
√−1

,
v

4π
√−1

; exp

(
2√−1π

CSu,v([ρ])
)]

. (5.11)

We call CSu,v([ρ]) the SL(2;C) Chern–Simons invariant of [ρ] associated with
(u, v). Note that CSu,v([ρ]) is defined modulo π2

Z. Note also that CS0,0([ρ0]) =
cv(M) for a hyperbolic three-manifold M with ρ0 the holonomy representation.

5.2.2 How to Calculate

The following theorem is useful to calculate the Chern–Simons invariant.
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Theorem 5.1 (Kirk–Klassen’s theorem [47]) Let ρt : π1(M) → SL(2;C) be a
path of representations (0 ≤ t ≤ 1). We assume that the images of μ and λ have the
following form.

ρt (μ) =
(
eut /2 ∗

0 e−ut /2

)
,

ρt (λ) =
(−evt /2 ∗

0 −e−vt /2

)

up to conjugation.
Suppose that cM is given as

cM([ρt ]) =
[

ut

4π
√−1

,
vt

4π
√−1

; zt
]
.

Then we have

z1

z0
= exp

[√−1

2π

∫ 1

0

(
ut
d vt

d t
− vt

d ut

d t

)
dt

]

.

Example 5.5 (Hyperbolic knot) Let H be a hyperbolic knot and put MH := S3 \
IntN(H ), where N(H ) is the regular neighborhood of H . Let ρ0 : π1(MH ) =
π1(H )→ SL(2;C) be the representation associated with the complete hyperbolic
structure. We can deform the complete structure of S3 \ H by a small complex
parameter u. Let ρu be the representation associated with u. So ρu determines an
incomplete hyperbolic structure if u �= 0. By conjugation we assume

ρ(μ) =
(
eu/2 ∗

0 e−u/2

)
,

ρ(λ) =
(−ev(u)/2 ∗

0 −e−v(u)/2

)
,

where μ and λ are the meridian and the longitude of π1(H ), respectively. We
choose v(u) so that v(0) = 0. See for example [70].

We assume that ρut (0 < t ≤ 1) defines an incomplete hyperbolic structure. We
can write

cMH ([ρut ]) =
[

ut

4π
√−1

,
v(ut)

4π
√−1

; zt
]

for some zt �= 0. From Theorem 5.1 we have
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z1

z0
= exp

[√−1

2π

∫ 1

0

(
ut
d v(ut)

dt
− v(ut)

d (ut)

dt

)
dt

]

= exp

[√−1

2π

([
utv(ut)

]1

0
− 2u

∫ 1

0
v(ut) dt

)]

= exp

[√−1

2π

(
uv(u)− 2

∫ u

0
v(s) ds

)]

.

Since z0 = exp
[

2
π
√−1

cv(MH )
]
, where cv(MH ) is the hyperbolic volume defined

in (4.5), we have

CSu,v(u) ([ρu]) = cv(MH )+ 1

2

∫ u

0
v(s) ds − 1

4
uv(u). (5.12)

Example 5.6 (Figure-eight knot) We study the figure-eight knot E more precisely.
Since �(1) = −1, we need to define v(u) as

v(u) = 2 log �(eu/2)− 2π
√−1 (5.13)

so that v(0) = 0 (see Example 5.3). We know that cv(ME ) =
√−1 Vol(S3 \E ) and

so we have

CSu,v(u) ([ρu]) =
√−1 Vol

(
S3 \ E

)
+
∫ u

0
log �(es/2) ds − 1

2
u log �(eu/2)

− 1

2
uπ
√−1

(5.14)
from (5.12).

Next we show another way to calculate the Chern–Simons invariant.
Put κ := log((3 +√5)/2) and assume that u is a real number with 0 ≤ u ≤ κ .

Let αt (0 ≤ t ≤ 1) be a path of Abelian representations defined by

αt (x) = αt (y) :=
(
eκt/2 0

0 e−κt/2

)

and βt (0 ≤ t ≤ 1) be a path of non-Abelian representations defined by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

βt (x) :=
(
eut /2 1

0 e−ut /2

)

,

βt (y) :=
(

eut /2 0

d+
∣∣
m:=eut /2 e

−ut /2

)

,
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where we put ut := (1− t)κ + tu. Then the paths of representations αt and βt have
the following properties:

(i) α0 is trivial,
(ii) α1 and β0 share the same trace because β0 is upper-triangular, and

(iii) β1 = ρeu/2,+.

From (i) we know that cM([α0]) is trivial and from (ii) we have cM([α1]) =
cM([β0]).

We regard x as the meridian μ and the longitude λ is given in (5.3). From
Theorem 5.1 we can write

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cM([αt ]) :=
[

κt

4π
√−1

, 0;wt

]
,

cM([βt ]) :=
[

ut

4π
√−1

,
2 log �(eut /2)− 2π

√−1

4π
√−1

; zt
]

,

since

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

αt (λ) =
(

1 0

0 1

)

,

βt (λ) =
(
�(eut /2) ∗

0 �(eut /2)−1

)

from Example 5.3 (see also (5.13)). Then Kirk–Klassen’s theorem (Theorem 5.1)

shows that
w1

w0
= 1 and

z1

z0
= exp

(√−1

2π

∫ 1

0

(

ut × d
(
2 log �(eut /2)−2π

√−1
)

d t
−(u−κ)(2 log �(eut /2)−2π

√−1)

)

dt

)

.

Since cM([α1]) = cM([β0]) from Property (ii) and w1 = w0 = 1 from Property (i),
we have

[
κ

4π
√−1

, 0; 1

]
=
[

κ

4π
√−1

,
2 log �(eκ/2)− 2π

√−1

4π
√−1

; z0

]

=
[

κ

4π
√−1

,−1

2
; z0

]
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since �(eκ/2) = 1. However, from the equivalence relation (5.10),5 we have

[
κ

4π
√−1

, 0; 1

]
≈
[

κ

4π
√−1

,−1

2
; e−κ

]
.

So we have z0 = e−κ and

z1 = exp

(

−u+
√−1

π

∫ 1

0

(
ut × d log �(eut /2)

d t
− (u− κ) log �(eut /2)

)
dt

)

.

Therefore we finally have

CSu,v(u)([ρeu/2,+])

= −1

2
uπ
√−1− 1

2

∫ 1

0

(
ut × d log �(eut /2)

d t
− (u− κ) log �(eut /2)

)
dt

modulo π2
Z. Since we calculate

∫ 1

0

(
ut × d log �(eut /2)

d t
− (u− κ) log �(eut /2)

)
dt

=
[
ut log �(eut /2)

]1

0
− 2(u− κ)

∫ 1

0
log �(eut /2) dt

=u log �(eu/2)− 2
∫ u

κ

log �(es/2) ds,

where we put s := ut = (1− t)κ + tu in the integral, we have

CSu,v(u)([ρeu/2,+]) =
∫ u

κ

log �(es/2) ds − 1

2
uπ
√−1− 1

2
u log �(eu/2) (5.15)

modulo π2
Z.

Using the dilogarithm function Li2(z) := −
∫ z

0

log(1− x)

x
dx, we put

S(u) := Li2(e
u−ϕ(u))− Li2(e

u+ϕ(u))− uϕ(u) (5.16)

5In (5.10), β can be shifted only by integers but here we use −1/2. We would need to work in
PSL(2;C) rather than SL(2;C) .
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with

ϕ(u) := log

(
1

2
(2 cosh u− 1−√

(2 cosh u+ 1)(2 cosh u− 3))

)
. (5.17)

Here the square root is taken so that its imaginary part is positive (note that
(2 cosh(u)−1)(2 cosh(u)−3) < 0 since 0 < u < log

(
(3+√5)/2

) = arccosh(3/2))
and the branch of log is the usual one, that is, its imaginary part is between −π and
π . Note that ϕ(u) satisfies

2 cosh u = 2 cosh(ϕ(u))+ 1. (5.18)

Note also that ϕ(u) is purely imaginary since
∣
∣∣ 1

2 (2 cosh u− 1−√
(2 cosh u+ 1)(2 cosh u− 3))

∣∣ = 1 and that −π
3 < Imϕ(u) < 0.

Now we have

d S(u)

d u
= log(1− eu+ϕ(u))− log(1− eu−ϕ(u))− ϕ(u),

and so we have

exp

(
d S(u)

d u

)
= cosh(2u)− cosh u− 1− sinh u

√
(2 cosh u+ 1)(2 cosh u− 3),

which coincides with �(eu/2) from (5.6). Since
d S

d u
(0) = π

√−1 = log �(eu/2), we

see that

log �(eu/2) = d S(u)

d u

and so we have

v(u) = 2
d S(u)

d u
− 2π

√−1 (5.19)

from (5.13). We also have from (5.15)

CSu,v(u)([ρeu/2,+]) = S(u)− 1

2
uπ
√−1− 1

4
u
(
v(u)+ 2π

√−1
)

= S(u)− uπ
√−1− 1

4
uv(u)

(5.20)

since ϕ(κ) = 0.

Example 5.7 (Torus knot of type (2, 2a + 1)) Put M := S3 \ IntN(T (2, 2a + 1)).
Recall the definitions in Examples 5.2 and 5.4.
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Let αt (0 ≤ t ≤ 1) be a path of Abelian representations defined by

αt (x) = αt (y) :=
⎛

⎝
exp

(
(2j+1)π

√−1
2(2a+1) t

)
0

0 exp
(
− (2j+1)π

√−1
2(2a+1) t

)

⎞

⎠

and βt (0 ≤ t ≤ 1) be a path of non-Abelian representations defined by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

βt (x) :=
(
eut /2 1

0 e−ut /2

)

,

βt (y) :=
⎛

⎝ eut /2 0

2 cos
(
(2j+1)π

2a+1

)
− 2 cosh ut e−ut /2

⎞

⎠ ,

where we put ut := (1− t)(2j + 1)π
√−1

2a + 1
+ tu for a complex number u. Then the

paths of representations αt and βt have the following properties:

(i) α0 is trivial,
(ii) α1 and β0 share the same trace because β0 is upper-triangular, and

(iii) β1 = ρeu/2,j .

From (i) we know that cM([α0]) is trivial and from (ii) we have cM([α1]) =
cM([β0]).

We regard x as the meridian μ and the longitude λ is given in (5.3). From
Theorem 5.1 we can write

⎧
⎨

⎩

cM([αt ]) :=
[
(2j+1)t
4(2a+1) , 0;wt

]
,

cM([βt ]) :=
[

ut
4π
√−1

,
−2(2a+1)ut+4lπ

√−1
4π
√−1

; zt
]

for an integer l, since

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

αt (λ) =
(

1 0

0 1

)

,

βt (λ) =
⎛

⎝−e−(2a+1)ut sinh
(
(2a+1)ut

)

sinh(ut /2)

0 −e(2a+1)ut

⎞

⎠

from Example 5.4. Then Kirk–Klassen’s theorem (Theorem 5.1) shows that
w1

w0
= 1

and
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z1

z0

= exp

(√−1

2π

∫ 1

0

(
ut×

(
−2(2a+1)

d ut

d t

)
−(−2(2a+1)ut+4lπ

√−1)× d ut

d t

)
dt

)

= exp

(

2l

(

u− (2j + 1)π
√−1

2a + 1

))

.

Since cM([α1]) = cM([β0]) from Property (ii) and w1 = w0 = 1 from Property (i),
we have

[
2j + 1

4(2a + 1)
, 0; 1

]
=
[

u0

4π
√−1

,
−2(2a + 1)u0 + 4lπ

√−1

4π
√−1

; z0

]

=
[

2j + 1

4(2a + 1)
, l − 2j + 1

2
; z0

]
.

However, from the equivalence relation (5.10), we have

[
2j + 1

4(2a + 1)
, 0; 1

]
≈
[

2j + 1

4(2a + 1)
, l − 2j + 1

2
; exp

(
2(2j + 1)(l − j)π

√−1

2a + 1

)]

.

So we have

z0 = exp

(
2(2j + 1)(l − j − 1/2)π

√−1

2a + 1

)

and

z1 = exp

(

2lu− (2j + 1)2π
√−1

2a + 1

)

.

Therefore we finally have

CSu,v(u)([ρeu/2,j ]) = luπ
√−1+ (2j + 1)2π2

2(2a + 1)
(mod π2

Z) (5.21)

with v(u) := −2(2a + 1)u + 4lπ
√−1. Note that this depends on the choice of an

integer l.
The Chern–Simons invariant of a general torus knot is given in [22, Proposi-

tion 4].
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5.3 Twisted SL(2;C) Reidemeister Torsion

In this section, we study the Reidemeister torsion associated with a representation.
It is defined as the torsion of a certain chain complex twisted by the representation.

5.3.1 Definition

To define the Reidemeister torsion we consider a compact three-manifold MK :=
S3\IntN(K) instead of an open three-manifold S3\K . Note that π1(K) = π1(MK)

and we have a presentation of it as described in Sect. 5.1.1. Write Π for π1(K) and
let ρ : Π → SL(2;C) be a representation. Let 〈x1, x2, . . . , xn | r1, r2, . . . , rn−1〉 be
a Wirtinger presentation of Π (Definition 5.1).

Let us consider the universal cover M̃K of MK . The chain complex C∗(M̃K) with
integer coefficients can be regarded as a Z[Π ]-module by the deck transformation.
The Lie algebra sl2(C) can also be regarded as a Z[Π ]-module by using the adjoint
action of ρ(x) for x ∈ Π . Here the adjoint action Ad ρ(x) on sl2(C) is defined as
Ad ρ(x)(g) := ρ(x)−1gρ(x) for g ∈ sl2(C). Then we have the following chain
complex:

C2(M̃K)⊗Z[Π ] sl2(C)
∂2−→ C1(M̃K)⊗Z[Π ] sl2(C)

∂1−→ C0(M̃K)⊗Z[Π ] sl2(C).

Note that here we regard MK as a 2-dimensional CW-complex with 2-cells
{r1, r2, . . . , rn−1}, 1-cells {x1, x2, . . . , xn} and a 0-cell p following the Wirtinger
presentation above.6 The associated homology group is denoted by H∗(MK ; ρ).

Let ci := {ci,1, ci,2, . . . , ci,li } be a basis of Ci := Ci(M̃K) ⊗Z[Π ] sl2(C), bi :=
{bi,1, bi,2, . . . , bi,mi

} be a set of vectors such that {∂i(bi,1), ∂i(bi,2), . . . , ∂i(bi,mi
)}

forms a basis of Bi−1 := Im ∂i , hi := {hi,1, hi,2, . . . , hi,ni } be a basis of Hi :=
Hi(MK ; ρ), h̃i,k be a lift of hi,k in Zi := Ker ∂i , and h̃i := {h̃i,1, h̃i,2, . . . , h̃i,ni }.
Then ∂i+1(bi+1)∪ h̃i ∪ bi forms a basis of Ci (Fig. 5.6). For two bases u and v of a
vector space W , let [u | v] be the determinant of the basis change matrix from u to
v. We define the Reidemeister torsion as

6We start with a bouquet with n loops x1, x2, . . . , xn sharing the point p. Then we attach n−1 disks
r1, r2, . . . , rn−1 according to the words rj . It is known that this CW-complex is simple homotopy
equivalent to MK .
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Fig. 5.6 Chain complex and
its basis

∂1∂2
C2 C1 C0

Z 2

Z 1 Z 0} }}} }
}}

}
b2 }

∂2(b )2

b1 }
∂1(b )1

h2
~

h1
~ h0

~

Tor(C∗, c∗,h∗) :=
2∏

i=0

[
∂i+1(bi+1) ∪ h̃i ∪ bi

∣
∣∣ ci

](−1)i+1

=
[
∂2(b2) ∪ h̃1 ∪ b1

∣
∣∣ c1

]

[
∂1(b1) ∪ h̃0

∣∣
∣ c0

] [
h̃2 ∪ b2

∣∣
∣ c2

] ∈ C
∗.

(5.22)

Note that this does not depend on the choices of bi nor the choices of lifts of hi
(see for example [82]). Since the Reidemeister torsion depends only on the simple
homotopy type (see [73, p. 10, Remarque (b)], [59]) and the Whitehead group of
a knot exterior is trivial [85], we can calculate the torsion regarding MK as a CW-
complex as above.

Following [73, Définition 0.4], we choose geometric bases for C∗ as follows.
Let p̃ be a lift of p, x̃i a lift of xi (i = 1, 2, . . . , n), and r̃j a lift of rj (j =
1, 2, . . . , n−1). Put E :=

(
0 1
0 0

)
, H :=

(
1 0
0 −1

)
and F :=

(
0 0
1 0

)
. Then {E,H,F }

is a basis of sl2(C). We choose {p̃⊗E, p̃⊗H, p̃⊗F } as a geometric basis for C0,
{x̃1 ⊗ E, x̃1 ⊗H, x̃1 ⊗ F, x̃2 ⊗ E, x̃2 ⊗H, x̃2 ⊗ F, . . . , x̃n ⊗ E, x̃n ⊗H, x̃n ⊗ F }
as a geometric basis for C1, and {r̃1 ⊗ E, r̃1 ⊗ H, r̃1 ⊗ F, r̃2 ⊗ E, r̃2 ⊗ H, r̃2 ⊗
F, . . . , r̃n−1 ⊗ E, r̃n−1 ⊗H, r̃n−1 ⊗ F } as a geometric basis for C2.

Since the Euler characteristic ofMK is zero, (5.22) does not depend on the choice
of geometric bases [73, Définition 0.5].

Definition 5.7 Let ρ be a representation of π1(K). Given a basis h∗ of Hi(MK ; ρ),
the torsion Tor(C∗, c∗,h∗) is denoted by T

K
h∗(ρ). We call it the twisted Reidemeister

torsion of ρ associated with h∗.

With respect to the geometric bases, the differentials ∂2 : C2 → C1 and ∂1 : C1 →
C0 are given by the Fox free differential calculus (see [53, Chapter 11] for example).
Let ∂

∂ xj
be the Fox derivative [24], which is defined by the following rules:
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• for words u and v in the xj , ∂ (uv)
∂ xj

= ∂ u
∂ xj

+ u ∂ v
∂ xj

,

• for the empty word 1, ∂ 1
∂ xj

= 0,

• ∂ xi
∂ xj

= δij , where δij is Kronecker’s delta.

Note that since 0 = ∂ (x·x−1)
∂ x

= 1+ x · ∂ x−1

∂ x
, we have ∂ x−1

∂ x
= −x−1.

The differential ∂2 is given by the following 3(n− 1)× 3n matrix:

∂2 =

⎛

⎜⎜⎜
⎝

Ad ρ
(
∂ r1
∂ x1

)
· · · Ad ρ

(
∂ rn−1
∂ x1

)

...
. . .

...

Ad ρ
(
∂ r1
∂ xn

)
· · · Ad ρ

(
∂ rn−1
∂ xn

)

⎞

⎟⎟⎟
⎠
,

noting that each Ad ρ
(
∂ rj
∂ xi

)
is a 3 × 3 matrix. The differential ∂1 is given by the

following 3× 3n matrix:

(
Ad ρ (x1 − 1) · · · Ad ρ (xn − 1)

)
.

Note that ∂1 ◦ ∂2 is a 3× 3(n− 1) zero matrix, since its (1, k)-entry as a 3× 3 block
matrix is

Ad ρ(x1 − 1)Ad ρ

(
∂ rk

∂ x1

)
+ · · · + Ad ρ(xn − 1)Ad ρ

(
∂ rk

∂ xn

)
,

which vanishes from the fundamental formula of the free differential calculus [24,
(2.3)].

Example 5.8 (Abelian representation) We calculate the Reidemeister torsion of the
Abelian representation ρA

z defined in Definition 5.4.

We denote by C2
∂2−→ C1

∂1−→ C0 the associated chain complex, and by Hi its
homology.

Put X := Ad ρA
z (xi). Then since we have

ρA
z (xi)

−1EρA
z (xi) =

(
0 z−2

0 0

)
,

ρA
z (xi)

−1HρA
z (xi) =

(
1 0
0 −1

)
,

ρA
z (xi)

−1FρA
z (xi) =

(
0 0
z2 0

)
,
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X is given by the three by three matrix

⎛

⎝
z−2 0 0
0 1 0
0 0 z2

⎞

⎠ with respect to the basis given

before.
Therefore ∂1 is of the form

∂1 =

⎛

⎜
⎜⎜
⎝

z−2 − 1 0 0
∣∣∣ z−2 − 1 0 0

∣∣∣
∣∣∣ z−2 − 1 0 0

0 0 0
∣
∣∣ 0 0 0

∣
∣∣ · · ·

∣
∣∣ 0 0 0

0 0 z2 − 1
∣∣∣ 0 0 z2 − 1

∣∣∣
∣∣∣ 0 0 z2 − 1

⎞

⎟
⎟⎟
⎠
.

Let A(t) be the n × (n − 1) matrix with (i, j)-entry α

(
∂rj

∂xi

)
, where

α : Z[π1(K)] → Z[t, t−1] is induced by the Abelianization π1(K) → Z. Then
∂2 is given by the 3n × 3(n − 1) matrix A(X) obtained from A(t) by replacing t

with X. It is easy to prove

H2 = {0},
H1 = C (generated by

[
x̃1 ⊗H

]
),

H0 = C (generated by
[
p̃ ⊗H

]
).

Moreover if we put

b2 := 〈r̃1 ⊗ E, r̃1 ⊗H, r̃1 ⊗ F, . . . , r̃n−1 ⊗ E, r̃n−1 ⊗H, r̃n−1 ⊗ F 〉 ,
h̃1 := 〈x̃1 ⊗H 〉 ,
b1 := 〈x̃1 ⊗ E, x̃1 ⊗ F 〉 ,
h̃0 := 〈p̃ ⊗H 〉 ,

we see that b2 forms a basis of C2, that b1 ∪ h̃1 ∪ ∂2(b2) forms a basis of C1, and
that h̃0 ∪ ∂1(b1) forms a basis of C0.

Therefore the Reidemeister torsion of ρA
z associated with these bases is
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T
K
μ (ρ

A
z ) = ±

∣∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣

1 0 0
0 0 1
0 1 0
0 0 0
0 0 0
0 0 0
...

0 0 0
0 0 0
0 0 0

∣∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣

A(X)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣
∣∣

det(I3n−3)

∣∣∣∣
∣∣

0 z−2 − 1 0
1 0 0
0 0 z2 − 1

∣∣∣∣
∣∣

= ± detǍ(X)

(z− z−1)2
,

where Ǎ(X) is the 3(n− 1)× 3(n− 1) matrix obtained from A(X) by removing the
first three rows.

Denote by Ǎ(t) the (n−1)× (n−1) matrix obtained from A(t) by removing the
first row. Then the (unnormalized) Alexander polynomial Δ̃(K; t) of K is det Ǎ(t)
(up to a multiplication of ±tk). So we have

det Ǎ(X) = det Ǎ(z−2) det Ǎ(1) det Ǎ(z2)

= Δ̃(K; z−2)Δ̃(K; 1)Δ̃(K; z2)

= Δ(K; z2)2,

where Δ(K; t) is the normalized Alexander polynomial.7

Note that we use [μ̃ ⊗ H ] as the generator of H1 and [p̃ ⊗ H ] as the generator
of H0, where μ is the meridian of K . Note also that the element H ∈ sl2(C) can be
characterized as the vector that is invariant under the adjoint action of ρA

z (μ). Since
the choices of p and H are natural we use T

K
μ (ρ

A
z ) instead of T K

{[μ̃⊗H ],[p̃⊗H ]}(ρ
A
z ).

So we prove the following proposition that should be well known to experts.

Proposition 5.1 (Folklore) The twisted Reidemeister torsion of ρA
z associated with

the meridian is given by

7It is normalized so that Δ(K; 1) = 1 and that Δ(K; t−1) = Δ(K; t).
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T
K
μ (ρ

A
z ) = ±

(
Δ(K; z2)

z− z−1

)2

.

As in the Abelian case above, we need to specify bases hi for i = 0, 1, 2. We
only consider the following case.

Definition 5.8 ([31]) An SL(2;C) representation ρ is called regular if it is irre-
ducible and dimH1(MK ; ρ) = 1.

If a representation ρ is irreducible, then it is easy to prove that H0(MK ; ρ) = 0.
So we have dimH2 = dimH1 = 1 for a regular representation since the Euler
characteristic of MK is 0.

So for a regular representation we need to fix bases for H1 and H2. To do that we
need another regularity.

Definition 5.9 ([73, Définition 3.21] (see also [21])) Let γ be a simple closed
curve on ∂MK . An irreducible representation is called γ -regular if and only if

• The inclusion γ ↪→ MK induces a surjective map H1(γ ; ρ) � H1(MK ; ρ), and

• if tr(ρ(π1(∂MK))) ⊂ {2,−2}, then ρ(γ ) �= ±
(

1 0
0 1

)
.

It can be proved that any γ -regular representation is regular.
We fix an element P ∈ sl2(C) that is invariant under the adjoint action of ρ(x)

for any x ∈ π1(∂MK). Then we choose i∗ ([γ̃ ] ⊗ P) and i∗
(
[∂̃MK ] ⊗ P

)
, called

reference generators, as bases of H1 and H2 respectively, where [γ ] ∈ H1(∂MK) is
the homology class of the curve γ , [∂MK ] ∈ H2

(
∂MK

)
is the fundamental class,

and i : ∂MK → MK is the inclusion map.
The twisted Reidemeister torsion T

K
γ (ρ) of ρ associated with γ is defined as

Tor(C∗, c∗,h∗) defined in (5.22) for these bases [73].

5.3.2 How to Calculate

If one wants to calculate the twisted Reidemeister torsion from the definition, we
need to calculate the determinants of huge matrices. In this subsection we will
describe an easier way following [21]. See [73], [34, § 4], and [31] for more
details.

Let α : Π → H1(MK) ∼= Z be the Abelianization map. For a representation
ρ, put ρ̃ := Ad ρ ⊗ α, that is, (Ad ρ ⊗ α)(x) := α(x)ρ(x) ∈ SL(2;C) for x ∈
π1(MK). Let T K(ρ̃; t) be the Reidemeister torsion of ρ̃, where t is a multiplicative
generator of H1(MK). Since the chain complex associated with ρ̃ is acyclic if ρ is
λ-regular [90, Proposition 3.1.1], the corresponding Reidemeister torsion is well-
defined, where λ is the longitude of a knot K . Then the twisted Reidemeister torsion
of a λ-regular representation ρ can be calculated by using T K(ρ̃; t).
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Theorem 5.2 ([90, Theorem 3.1.2]) If a representation ρ is λ-regular, then the
twisted Reidemeister torsion T

K
λ (ρ) of ρ associated with λ is given as

T
K
λ (ρ) = − lim

t→1

T K(ρ̃; t)
t − 1

.

Remark 5.1 From [49, Theorem A] T K(ρ̃) coincides with the twisted Alexander
polynomial of K associated with ρ̃.

From Theorem 5.2 and Remark 5.1, we have the following theorem (see also [48]).

Theorem 5.3 For a λ-regular representation ρ, we have

T
K
λ (ρ) = ± lim

t→1

det ρ̃
(
∂ri
∂xj

)

(t − 1) det ρ̃(xl − 1)
.

Remark 5.2 We can determine the sign in the formula above. See [21] for details.

If one wants to calculate the twisted Reidemeister torsion associated with the
meridian μ, the following formula [73, Théorème 4.1 (ii)] is useful.

Theorem 5.4 ([73, Théorème 4.1 (ii)]) Suppose that a representation ρ sends the

meridian μ to

(
eu/2 ∗

0 e−u/2

)
and the longitude λ to

(
ev(u)/2 ∗

0 e−v(u)/2

)
with u a

complex parameter. Then we have

T
K
μ (ρ) = ±

T
K
λ (ρ)

d v(u)/d u
.

Example 5.9 (Figure-eight knot) We calculate T
E
μ(ρeu/2,±), where E is the figure-

eight knot. Note that in [73, p. 113] J. Porti calculated it in a sophisticated way. See
also [20, § 6.3].

From Example 5.1, we have π1(S
3 \ E ) = 〈x, y | xy−1x−1yx = yxy−1x−1y〉.

In this case there is only one relation r := xy−1x−1yxy−1xyx−1y−1 and we have

∂ r

∂ x
= 1− xy−1x−1 + xy−1x−1y + xy−1x−1yxy−1 − xy−1x−1yxy−1xyx−1,

∂ r

∂ y
= −xy−1 + xy−1x−1 − xy−1x−1yxy−1 + xy−1x−1yxy−1x

− xy−1x−1yxy−1xyx−1y−1.

The adjoint actions of ρeu/2,±(x) are given as follows:

Ad ρeu/2,±(x)(E) := ρ−1
eu/2,±(x) · E · ρeu/2,± =

(
0 e−u
0 0

)
,
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Ad ρeu/2,±(x)(H) =
(

1 2e−u/2

0 −1

)
,

Ad ρeu/2,±(x)(F ) =
(−eu/2 −1

eu eu/2

)
.

So with respect to the basis {E,H,F }, Ad ρeu/2,±(x) is given by the 3× 3 matrix

X :=
⎛

⎝
e−u 2e−u/2 −1

0 1 −eu/2

0 0 eu

⎞

⎠ .

Similarly, Ad ρeu/2,±(y) is given by

Y :=
⎛

⎝
e−u 0 0

−e−u/2d± 1 0
−d2± 2eu/2d± eu

⎞

⎠

with respect to the same basis.
We also have

Ad ρeu/2,±
(
∂ r

∂ x

)

=I3 −X−1Y−1X + YX−1Y−1X + Y−1XYX−1Y−1X

−X−1YXY−1XYX−1Y−1X,

where I3 the 3 × 3 identity matrix. Note that we need to reverse the order of the
multiplication.

Put ρ̃eu/2,± := Ad ρeu/2,± ⊗ α. Since ρ̃eu/2,±(x) = tX and ρ̃eu/2,±(y) = tY , we
have

ρ̃eu/2,±
(
∂ r

∂ x

)

=I3 − t−1X−1Y−1X + YX−1Y−1X + Y−1XYX−1Y−1X

− tX−1YXY−1XYX−1Y−1X

and Mathematica tells us

det ρ̃eu/2,±
(
∂ r

∂ x

)

= −t−3e−2u(t − 1)2(t − eu)(teu − 1)
(
eu + t (−2+ (t − 1)eu − 2e2u)

)
.
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Since det ρ̃eu/2,±(y − 1) = (te−u − 1)(t − 1)(teu − 1), we have

T
E
λ

(
ρeu/2,±

) = lim
t→1

det ρ̃eu/2,±
(
∂ r
∂ x

)

(t − 1) det ρ̃eu/2,±(y − 1)
= 4 cosh u− 1

from Theorem 5.3.
Now we apply Theorem 5.4. From (5.2), we have

d v(u)

d u
=± 2

d

d u
log

(
cosh(2u)− cosh u−1− sinh u

√
(2 cosh u+1)(2 cosh u−3)

)

= ± 2(1− 4 cosh u)√
(2 cosh u+ 1)(2 cosh u− 3)

.

Therefore we finally have

T
E
μ

(
ρeu/2,±

) = T
E
λ

(
ρeu/2,±

)

d v(u)/d u
=
√
(2 cosh u+ 1)(2 cosh u− 3)

2

up to a sign.

Example 5.10 (Torus knot) We calculate T
T (2,2a+1)
μ (ρeu/2,j ).

It is known that any irreducible representation of π1
(
S3 \ T (p, q)) is λ-regular

and μ-regular (see [20, Example 1]). So the representation ρeu/2,j given in

Example 5.4 is λ-regular and μ-regular unless u = (2k+1)π
√−1

2a+1 .
Putting r := (xy)ax(xy)−ay−1, we have

∂ r

∂ x
=

a−1∑

i=0

(xy)i + (xy)a

(

1− x(xy)−a
(
a−1∑

i=0

(xy)i

))

.

For z ∈ π1
(
S3 \ T (2, 2a + 1)

)
, put ρ̃eu/2,j (z) := α(z)Ad ρeu/2,j (z). We also put

X := ρ̃eu/2,j (x) and Y := ρ̃eu/2,j (y). Then we have

X = t

⎛

⎝
e−u 2e−u/2 −1

0 1 −eu/2

0 0 eu

⎞

⎠ ,

Y = t

⎛

⎜
⎜
⎝

e−u 0 0

e−u/2
(

2 cos
(
(2j+1)π

2a+1

)
− 2 cosh u

)
1 0

−
(

2 cos
(
(2j+1)π

2a+1

)
− 2 cosh u

)2 −2eu/2
(

2 cos
(
(2j+1)π

2a+1

)
− 2 cosh u

)
eu

⎞

⎟
⎟
⎠ ,

and
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ρ̃eu/2,j

(
∂ r

∂ x

)
=

a−1∑

i=0

(YX)i +
(

I3 −
(
a−1∑

i=0

(YX)i

)

(YX)−aX
)

(YX)a.

By Mathematica we have

det ρ̃eu/2,j

(
∂ r

∂ x

)
= (t2a+1 − 1)2(t2a+1 + 1)(teu − 1)(te−u − 1)

(t + 1)(t2 − ω2)(t2 − ω−2)

with ω := exp
(
(2j+1)π

√−1
2a+1

)
. Since

det ρ̃eu/2,j (y − 1) = (t − 1)(teu − 1)(te−u − 1),

we have

T
T (2,2a+1)
λ

(
ρeu/2,j

) = ± lim
t→1

det ρ̃eu/2,j

(
∂ r
∂ x

)

(t − 1) det ˜ρeu/2,j (y − 1)
= ±

⎛

⎝ 2a + 1

2 sin
(
(2j+1)π

2a+1

)

⎞

⎠

2

.

Since d v(u)/d u = −2(2a + 1) from (5.8), we have

T
T (2,2a+1)
μ

(
ρeu/2,j

) = T
T (2,2a+1)
λ

(
ρeu/2,j

)

d v(u)/d u
= 2a + 1

8 sin2
(
(2j+1)π

2a+1

) (5.23)

up to a sign.



Chapter 6
Generalizations of the Volume
Conjecture

Abstract In this chapter we show various generalizations of the volume conjecture.
Firstly, we introduce the complexification of the conjecture by studying the imagi-
nary part of log JN(K; exp(2π

√−1/N)). We expect the (SL(2;C)) Chern–Simons
invariant to appear. Secondly, we refine the conjecture by considering more precise
approximation of the colored Jones polynomial. We conjecture that the Reidemeister
torsion would appear. Lastly, we perturb 2π

√−1 in exp(2π
√−1/N) slightly and

see what happens to the asymptotic expansion of the colored Jones polynomial. The
corresponding topological phenomenon is to perturb the hyperbolic structure of the
knot complement, provided the knot is hyperbolic. If the knot is non-hyperbolic we
expect various representations of the fundamental group of the knot complement to
SL(2;C).

6.1 Complexification

What happens if we remove the absolute value sign in the left hand side of (3.1)?
J. Murakami, M. Okamoto, T. Takata, and the authors proposed the following
generalization of the Volume Conjecture in [67] and checked it for several knots
by using computer.

Conjecture 6.1 (Complexification of the Volume Conjecture) For any knot K , we
would have

2π lim
N→∞

log JN(K; exp(2π
√−1/N))

N

= Vol(S3 \K)+ 2π2
√−1 cs(S3 \K) (mod π2

√−1Z).

Here cs is the (SO(3)) Chern–Simons invariant associated with the Levi–Civita
connection (see (4.4)) when K is hyperbolic. In general the Chern–Simons invariant
is defined for a representation of the fundamental group of a three-manifold to

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2018
H. Murakami, Y. Yokota, Volume Conjecture for Knots, SpringerBriefs in
Mathematical Physics 30, https://doi.org/10.1007/978-981-13-1150-5_6
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1150-5_6&domain=pdf
https://doi.org/10.1007/978-981-13-1150-5_6
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SL(2;C) and here we also conjecture that there would exist a canonical representa-
tion (the holonomy representation for a hyperbolic knot) even if K is not hyperbolic.
We can also think that cs is defined by the left hand side.

It would be interesting to use an argument similar to Chap. 4 following [69] and
[97] to get a relation to the Chern–Simons invariant.

6.2 Refinement

In this section we try to get a better approximation of JN(K; exp(2π
√−1/N)) for

large N . We start with the figure-eight knot E .

6.2.1 Figure-Eight Knot

In this subsection we follow [2] to give a rough sketch.
To do this, we use the quantum dilogarithm ψN(z) defined in Chap. 4 (see also

[2, 23, 39]). Putting z := k/N and 1− k/N we have

1− e2kπ
√−1/N = ψN(k/N − 1/(2N))

ψN(k/N + 1/(2N))

and

1− e−2kπ
√−1/N = ψN(1− k/N − 1/(2N))

ψN(1− k/N + 1/(2N))

from (4.1). Therefore we have

j∏

k=1

(
1− e2kπ

√−1/N
) (

1− e−2kπ
√−1/N

)

= ψN(1/(2N))

ψN((2j + 1)/(2N))

ψN(1− (2j + 1)/(2N))

ψN(1− 1/(2N))

and so we have

JN(E ; exp(2π
√−1/N)) = ψN(1/(2N))

ψN(1− 1/(2N))

N−1∑

j=0

ψN(1− (2j + 1)/(2N))

ψN((2j + 1)/(2N))
.
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Since
ψN(1/(2N))

ψN(1− 1/(2N))
= N from (4.2), we have

1

N
JN(E ; exp(2π

√−1/N)) =
N−1∑

j=0

gN

(
2j + 1

2N

)
,

where we define

gN(z) := ψN(1− z)

ψN(z)
. (6.1)

Note that gN(z) is defined for z with − 1
2N < Re z < 1+ 1

2N .
For 0 < ε < 1/(4N), let Cε be the rectangle in the complex plane with vertices

ε+√−1, ε−√−1, 1−ε−√−1, and 1−ε+√−1 with counterclockwise orientation.
Let C+ε (C−ε , respectively) be the polygonal line from 1 − ε to ε (from ε to 1 − ε,
respectively) along Cε. Note that the domain of gN(w) contains Cε.

Since the set of the poles of tan(Nπz) inside Cε is {(2j + 1)/(2N) | j =
0, 1, 2, . . . , N − 1} and the residue of each pole is −1/(Nπ), we have

1

N
JN(E ; exp(2π

√−1/N)) =
√−1N

2

∫

Cε

tan(Nπz)gN(z) dz

from the residue theorem. Using the fact that tan(w) is close to
√−1 (−√−1,

respectively) when Im(w) " 0 (−| Im(w)| " 0, respectively),1 we can approx-

imate
∫

C±ε
tan(Nπz)gN(z) dz by ±√−1

∫

C±ε
gN(z) dz. In fact we can show that

∫

C±ε
tan(Nπz)gN(z) dz = ±

√−1
∫

C±ε
gN(z) dz+O(N−1).

See [2, Equation (4.7)].
Since gN(z) is analytic inside Cε we have

1

N2 JN(E ; exp(2π
√−1/N)) =

∫

P

gN(z) dz+O(N−1), (6.2)

where P is any path connecting ε and 1− ε inside the rectangle Cε.

1 The first author learned it from Kashaev. Writing Rew = x and Imw = y, tanw =
cosh y sin x+√−1 sinh y cos x
cosh y cos x−√−1 sinh y sin x

. So tanw→√−1 when y →∞ and tanw→−√−1 when y →−∞.
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Next we approximate this integral. From (4.3) we see that gN(z) converges to

exp

(
N

2π
√−1

(
L (1− z)−L (z)

))
.

In fact, we can prove the following (see [2, Equation (4.9)]], [64, Proposition 3.2],
and (6.5) below).

∫

P

gN(z) dz =
∫

P

eNΦ(z) dz+O

(
log(N)

N
× eMP×N

)
, (6.3)

where

Φ(z) := 1

2π
√−1

(
Li2

(
e−2π

√−1z
)
− Li2

(
e2π

√−1z
))

and MP is the maximum of ReΦ(z) along the path P .
Since Li2 is analytic in the region C \ (1,∞), the function Φ is analytic in the

region {0 < Re z < 1}.
We will study the asymptotic behavior of

∫

P

eNΦ(z) dz for large N . To do that

we apply the following version of the saddle point method due to Ohtsuki.

Proposition 6.1 ([71, Proposition 3.2]) Let Υ (w) be a holomorphic function of
the form Υ (w) = aw2 + ∑

i≥3 biw
i in a neighborhood of 0 with a �= 0. The

domain {w ∈ C | ReΥ (w) < 0} has two connected components D0 and D1 in a
neighborhood of 0. Choose p0 ∈ D0 and p1 ∈ D1 and let C be a path from p0 to
p1.

Then we have

∫

C

eNΥ (w) dw =
√
π√−a√N +O(N−1),

where we choose
√−a so that Re(p1

√−a) > 0.

Since we have

d Φ(z)

d z
= log(2− e2π

√−1z − e−2π
√−1z),

and

d2 Φ(z)

d z2 = 2π
√−1(e2π

√−1z + 1)

e2π
√−1z − 1

,
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the function Φ(z) has the following Taylor expansion around z = 5

6
:

Φ(z) = Φ

(
5

6

)
−√3π(z− 5

6
)2 + · · · .

Note that

Φ(5/6) = −2

π
Λ(5π/6) = Vol(S3 \ E )

2π
= 0.323 · · · > 0 (6.4)

from the following identities (see for example [60]):

Li2(z
−1) = −Li2(z)− π2

6
− 1

2
(log(−z))2, (6.5)

Li2(e
2
√−1θ ) = π2

6
− θ(π − θ)+ 2

√−1Λ(θ) (0 ≤ θ ≤ π) (6.6)

and (3.4).

If we put Υ (w) := Φ
(
w + 5

6

)
− Φ

(
5
6

)
, then Υ (w) satisfies the condition

of Proposition 6.1 with a = −√3π . See Figs. 6.1 and 6.2. We choose C as the line
segment [ε, 1−ε], and put p0 := ε− 5

6 and p1 := 1
6−ε. Then from Proposition 6.1,

we have
∫

C

eNΥ (w) dw = 1

31/4
√
N
+O(N−1).

Since we have

∫ 1−ε

ε

eNΦ(z) dz = eΦ(5/6)N
∫

C

eNΥ (w) dw,

we have

∫ 1−ε

ε

gN(z) dz = eΦ(5/6)N

31/4
√
N
+O

(
logN

N
× e(maxε≤z≤1−ε ReΦ(z))×N

)

= eΦ(5/6)N

31/4
√
N
+O

(
logN

N
× eΦ(5/6)N

)
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Fig. 6.1 Contour graph of ReΥ (w). The blue lines indicate the set {w ∈ C | ReΥ (w) = 0}
(Plotted by Mathematica)
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Fig. 6.2 3D plot of Fig. 6.1 (Plotted by Mathematica)
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Fig. 6.3 Graph of ReΦ(z) plotted by Mathematica. It takes the maximum at z = 5/6

from (6.3). See Fig. 6.3. Therefore from (6.2) and (6.4) we have

JN(E ; exp(2π
√−1/N))

=3−1/4N3/2 exp

(
Vol(S3 \ E )

N

2π

)
+O

(
N logN × eVol(S3\E ) N2π

)
,

which is due to J. Andersen and S. Hansen [2, Lemma 4]. Putting T0 :=
√

2√−3
and

S0 :=
√−1 Vol(S3 \ E ) we can re-write the formula above as follows:

JN(E ; exp(2π
√−1/N))

=2π3/2T0

(
N

2π
√−1

)3/2

exp

(
N

2π
√−1

× S0

)
+O

(
N logN × eVol(S3\E ) N2π

)
.

From Example 5.6 we know that
√−1S0 is the Chern–Simons invariant of the

holonomy representation. We also know from Example 5.9 that (T0)
−2 is the twisted

Reidemeister torsion of the holonomy representation associated with the meridian,
up to a sign.

We expect a similar result holds for any hyperbolic knot [29, 71].

Conjecture 6.2 (Refinement of the Volume Conjecture for hyperbolic knots) Let K
be a hyperbolic knot. Then we have the following asymptotic equivalence as N →
∞:

JN(K; exp(2π
√−1/N))

∼
N→∞2π3/2T0

(
N

2π
√−1

)3/2

exp

(
N

2π
√−1

× S0

)
,
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where (T0)
−2 is the twisted Reidemeister torsion of the holonomy representation

associated with the meridian, and
√−1S0 is the SL(2;C) Chern–Simons invariant

of the holonomy representation.

So far the conjecture is proved for the hyperbolic knots 41 [2], 52 [71], 61, 62, and
63 [72].

6.2.2 Torus Knot

Next we consider the torus knot of type (2, 2a + 1).
In Sect. 3.3, we calculate the asymptotic behavior of the colored Jones polyno-

mial of the torus knot T (2, 2a + 1). The formula (3.7) can be written as follows.

JN
(
T (2, 2a + 1); e2π

√−1/N )

= π3/2

4(2a + 1)

(
N

2π
√−1

)3/2
(

2a∑

k=0

(−1)k(2k + 1)2Tk exp

(
N

2π
√−1

× Sk

))

+O(N1/2),

where

Tk =
2
√

2 sin
(
(2k+1)π

2a+1

)

√
2a + 1

,

and

Sk = ((2k + 1)− 2(2a + 1))2π2

2(2a + 1)
.

Note that Sk coincides with the Chern–Simons invariant of the representation ρ0,k
modulo π2

Z and that T −2
k is the twisted Reidemeister torsion of ρ0,k associated

with the meridian up to sign.

6.3 Parametrization

In Sect. 3.3 we calculate the asymptotic behavior of JN(T (2, 2a+1); e2π
√−1/N ) but

the reader may find that it would be easier to calculate it in the case where 2π
√−1

is replaced with ξ for generic ξ . In this section we consider the asymptotic behavior
of JN(K; eξ/N ) with ξ �= 2π

√−1. We start with the torus knot of type (2, 2a+1).
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6.3.1 Torus Knot

In (3.5) we calculate

(eξ/2 − e−ξ/2)JN(T (2, 2a + 1); eξ/N )

= exp

(−(2a + 1)(N2 − 1)ξ

2N

)
exp

(
− ξ

4N

(
2a + 1

2
+ 2

2a + 1

))√
N

2(2a + 1)ξπ

×
∫

Cϕ

sinh
(

x
2a+1

)

cosh
(
x
2

) exp

( −N
2(2a + 1)ξ

x2 +Nx

)
dx

for any ξ ∈ C. We can apply the saddle point method (Theorem 3.1) again to obtain
the asymptotic behavior of the formula above, which is easier than the case where
ξ = 2π

√−1. The integral becomes

e(2a+1)ξN/2
∫

Cϕ

sinh
(

x
2a+1

)

cosh
(
x
2

) exp

( −N
2(2a + 1)ξ

(x − (2a + 1)ξ)2
)
dx.

Put C̃ϕ := {t exp(ϕ
√−1)+ (2a + 1)ξ | t ∈ R}. By the residue theorem we have

∫

Cϕ

sinh
(

x
2a+1

)

cosh
(
x
2

) exp

( −N
2(2a + 1)ξ

(x − (2a + 1)ξ)2
)
dx

=
∫

C̃ϕ

sinh
(

x
2a+1

)

cosh
(
x
2

) exp

( −N
2(2a + 1)ξ

(x − (2a + 1)ξ)2
)
dx

+ 2π
√−1

∑

k

Res

⎛

⎝
sinh

(
x

2a+1

)

cosh
(
x
2

) exp

( −N
2(2a + 1)ξ

(x−(2a+1)ξ)2
)
; x = (2k+1)π

√−1

⎞

⎠

=
∫

C̃ϕ

sinh
(

x
2a+1

)

cosh
(
x
2

) exp

( −N
2(2a + 1)ξ

(x − (2a + 1)ξ)2
)
dx

+ 2π
√−1

∑

k

(−1)k2 sin

(
(2k + 1)π

2a + 1

)
exp

( −N
2(2a + 1)ξ

((2k + 1)π
√−1− (2a + 1)ξ)2

)
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(Putting y := x − (2a + 1)ξ)

=
∫

Cϕ

sinh
(
y+(2a+1)ξ

2a+1

)

cosh
(
y+(2a+1)ξ

2

) exp

( −N
2(2a + 1)ξ

y2
)
dx

+ 2π
√−1

∑

k

(−1)k2 sin

(
(2k + 1)π

2a + 1

)
exp

( −N
2(2a + 1)ξ

((2k + 1)π
√−1− (2a + 1)ξ)2

)

=
√

2(2a + 1)ξπ

N

sinh ξ

cosh
(
(2a+1)ξ

2

)

+ 2π
√−1

∑

k

(−1)k2 sin

(
(2k + 1)π

2a + 1

)
exp

( −N
2(2a + 1)ξ

((2k + 1)π
√−1− (2a + 1)ξ)2

)

+O(N−1),

where we use Theorem 3.1 in the last equality. Here the summation is over k such
that (2k + 1)π

√−1 is between Cϕ and C̃ϕ . Therefore we have

2 sinh(ξ/2) exp

(
ξ

4N

(
2a + 1

2
+ 2

2a + 1
− 2(2a + 1)

))
JN(T (2, 2a + 1); eξ/N )

= sinh ξ

cosh
(
(2a+1)ξ

2

)

+ 2π
√−1

√
N

2(2a + 1)ξπ

×
∑

k

(−1)k2 sin

(
(2k + 1)π

2a + 1

)
exp

( −N
2(2a + 1)ξ

((2k + 1)π
√−1− (2a + 1)ξ)2

)

+O(N−1/2)

= −2 sinh(u/2)

Δ
(
T (2, 2a + 1); exp u

) +√−π
∑

k

(−1)kTk

(
N

2π
√−1+ u

)1/2

exp

(
N

2π
√−1+ u

Sk(u)

)

+O(N−1/2),

where

Sk(u) := −((2k + 1)π
√−1− (2a + 1)(2π

√−1+ u)
)2

2(2a + 1)

Tk :=
2
√

2 sin
(
(2k+1)π

2a+1

)

√
2a + 1

.



6.3 Parametrization 103

Observe that

• T −2
k coincides with the twisted Reidemeister torsion T

T (2,2a+1)
μ (ρeu/2,k)with ξ =

2π
√−1+ u up to sign.

• Sk(u)−π
√−1u− 1

4
uvk(u) coincides with the Chern–Simons invariant of ρeu/2,k

with vk(u) := 2
d Sk(u)

d u

∣∣∣
ξ :=2π

√−1+u − 2π
√−1 when we put l := k − 2a − 1

and j := k in (5.21).

•

( −2 sinh(u/2)

Δ(T (2, 2a + 1); exp u)

)−2

is the twisted Reidemeister torsion of the Abelian

representation ρA
eu/2 (Proposition 5.1).

Similar results are known for (2, 2b+1) cable of the torus knot of type T (2, 2a+
1) [65].

6.3.2 Figure-Eight Knot

As in the case of the torus knots, we now change exp(2π
√−1/N) to

exp((2π
√−1 + u)/N) for a complex parameter u in the case of the figure-eight

knot. We expect in the large N asymptotic, the Chern–Simons invariant and the
twisted Reidemeister torsion appear.

As in Chap. 4, we define

ψN,u(z) := exp

(
1

4

∫ ∞

−∞
e(2z−1)t

t sinh(t) sinh(γ t)
dt

)

for a real number u with 0 < u < log
(
(3+√5)/2

)
, where we put γ := 2π−√−1u

2πN .
The integral is defined for z with |Re(2z − 1)| < 1 + 1/N . Note that ψN(z) =
ψN,0(z).

We have the following formula as (4.1):

ψN,u(z− γ /2)

ψN,u(z+ γ /2)
= 1− e2π

√−1z.

Using this formula we have

JN(E ; exp(ξ/N))

= ψN,u(γ /2−√−1u/(2π))

ψN,u(1−γ /2−√−1u/(2π))

N−1∑

k=0

e−ku ψN,u(1−
√−1u/(2π)−(2k + 1)γ /2)

ψN,u(−
√−1u/(2π)+(2k + 1)γ /2)

.
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Since we can prove (see [64]2)

ψN,u(γ /2−√−1u/(2π))

ψN,u(1− γ /2−√−1u/(2π))
= euπ/γ − 1

eu − 1
,

we have

JN(E ; e(2π
√−1+u)/N ) = e2πu

√−1N/ξ − 1

2 sinh(u/2)

N−1∑

k=0

gN,u

(
2k + 1

2N

)
,

where we put

gN,u(z) := e−Nuz ψN,u(1−
√−1u/(2π)+√−1ξz/(2π))

ψN,u(−
√−1u/(2π)−√−1ξz/(2π))

,

with ξ := 2π
√−1+u. Note that gN,u(z) is defined in the strip {z ∈ C | − 2π Re z

u
−

π
Nu

< Im z < − 2π Re z
u

+ 2π
u
+ π

Nu
}.

In a way similar to the case where u = 0, we can prove that

2 sinh(u/2)

N(e2πu
√−1N/ξ − 1)

JN(E ; exp(ξ/N)) =
∫

P

gN,u(z) dz+O(N−1)

for any path P from ε to 1− ε with 0 < ε < 1
4N . Putting

Φu(z) := 1

2π
√−1+ u

(
Li2(e

u−(2π√−1+u)z)− Li2(e
u+(2π√−1+u)z)

)
− uz,

we can also prove

∫

P

gN,u(z) dz =
∫

P

eNΦu(z) dz+O

(
logN

N
× eMP×N

)
,

where MP is the maximum of ReΦu(z) on P .
Now we would like to apply the saddle point method to the integral. We put

z0(u) := ϕ(u)+ 2π
√−1

2π
√−1+ u

,

where ϕ(u) is defined in (5.17). Note that z0(u) is in the first quadrant because ϕ(u)
is purely imaginary and −π/3 < Imϕ(u) < 0 (see Example 5.6).

2The proof in [64] is wrong but the statement remains true, which was informed by Ka Ho Wong.
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Since we have

d Φu(z)

d z
= log(1− eu−(2π

√−1+u)z)+ log(1− eu+(2π
√−1+u)z)− u,

we see that d Φu(z0(u))
d z

= 0. Moreover we have

ξΦu(z0(u)) = Li2(e
u−ϕ(u))− Li2(e

u+ϕ(u))− u(ϕ(u)+ 2π
√−1)

and

d2 Φu(z0(u))

d z2 = ξ
√
(2 cosh(u)+ 1)(2 cosh(u)− 3)

from (5.18). So we can write Φu(z) in the following form:

Φu(z) =S(u)− 2π
√−1u

ξ
+ 1

2
ξ
√
(2 cosh(u)+ 1)(2 cosh(u)− 3)(z− z0(u))

2

+O((z− z0(u))
3),

where we put

S(u) := Li2(e
u−ϕ(u))− Li2(e

u+ϕ(u))− uϕ(u)

as (5.16). We can prove that Re S(u)−2π
√−1u

ξ
> 0. See [64, Lemma 3.5].

Putting Υu(w) := Φu(w + z0(u))− S(u)−2π
√−1u

ξ
, we have

Υu(w) = 1

2
ξ
√
(2 cosh(u)+ 1)(2 cosh(u)− 3)w2 +O(w3).

Now we can apply Proposition 6.1 to Υu(w), p0 := ε− z0(u), p1 := 1− ε− z0(u).
See Figs. 6.4 and 6.5. We choose a path P ′ so that it starts at p0, ends at p1 and it
passes though z0(u). Then we have

∫

P ′
eNΥu(w) dw =

√
2

e−π
√−1/4

√
ξ ((2 cosh u+ 1)(3− 2 cosh u))1/4

√
π

N
+O(N−1),

where we choose the square root according to Proposition 6.1. Since Φu(z) =
Υu(z− z0(u))+ (S(u)− 2π

√−1u)/ξ , we have
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Fig. 6.4 Contour graph of ReΥu(w) with u := 1/2. The blue lines indicate the set {w ∈ C |
ReΥu(w) = 0} (Plotted by Mathematica)

2 sinh(u/2)JN(E ; eξ/N )

=NeNS(u)/ξ (1− e−2πuN/ξ )

∫

P ′
eNΥu(w) dw +O

(
logN

N
× e

S(u)
ξ
×N

)

=eπ
√−1/4√π

√
2√

(2 cosh u+ 1)(3− 2 cosh u)

√
N

ξ
eNS(u)/ξ

+O

(
logN

N
× e

S(u)
ξ
×N

)
,

since Υu(w) takes its maximum at z0(u).
Therefore we finally have

JN
(
E; exp(ξ/N)

)=
√
π

2 sinh(u/2)
T (u)

√
N

ξ
exp

(
N

ξ
S(u)

)
+O

(
logN

N
×e S(u)

ξ
×N

)
,
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Fig. 6.5 3D plot of Fig. 6.5 (Plotted by Mathematica)

where

T (u) := eπ
√−1/4

√
2√

(2 cosh u+ 1)(3− 2 cosh u)
.

From Example 5.9, we see that T (u)−2 equals the twisted Reidemeister torsion of
ρu,± associated with the meridian up to a sign.

From Example 5.6 we see that

• v(u) = 2
d S(u)

d u
− 2π

√−1,

• S(u)− π
√−1u− uv(u)

4
equals CSu,v(u)([ρeu/2,+]).

If u is not real, we can prove a similar result but only for the Chern–Simons
invariant when |u| is small and not purely imaginary. See [68] for details.

We expect a similar result for any hyperbolic knot K .

Conjecture 6.3 (Parametrization of the Volume Conjecture [19, 29]) Suppose that
K is hyperbolic. If |u| (u �= 0) is sufficiently small and not purely imaginary, the
following asymptotic equivalence holds.
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JN

(

K; exp

(
2π
√−1+ u

N

))

∼
N→∞

√
π

2 sinh(u/2)
T (u)

√
N

2π
√−1+ u

exp

(
N

2π
√−1+ u

S(u)

)
.

Here

• T (u)−2 is the Reidemeister torsion of an irreducible representation ρu associated
with the meridian,

• if we put v(u) := 2
d S(u)

d u
− 2π

√−1, then the ratio of the eigenvalues of the

image of the meridian by ρu is ± exp u, and that of the longitude is ± exp v(u),
and

• S(u)− π
√−1u− 1

4uv(u) equals the Chern–Simons invariant CSu,v(u)([ρu]).

6.4 Miscellaneous Results

In this section we describe miscellaneous results about the asymptotic behaviors of
the colored Jones polynomials of a knot. We will not give proofs.

First of all we consider the figure-eight knot E . Let θ be a real number and
we study the asymptotic behavior of the N -dimensional colored Jones polynomial
evaluated at exp(θ/N). If θ > arccosh(3/2) = log

(
(3 + √5)/2

)
, we can apply a

technique similar to Sect. 3.2 to prove the following.

Proposition 6.2 ([62]) If θ > log
(
(3+√5)/2

)
, then we have

lim
N→∞

log JN(E ; exp(θ/N))

N
= S̃(θ)

θ
,

where we put

S̃(θ) := Li2(e
−ϕ̃(θ)−θ )− Li2(e

ϕ̃(θ)−θ )+ θϕ̃(θ)

with

ϕ̃(θ) := arccosh

(
cosh(θ)− 1

2

)

= log

(
1

2

(
2 cosh(θ)− 1+√

(2 cosh(θ)+ 1)(2 cosh(θ)− 3)
))

.

Note that we do not need to worry about the branches of the square root, the
logarithm, or the dilogarithm (just use the usual ones), since θ ≥ arccosh(3/2).
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When |θ | = arccosh(3/2), we can prove that JN(E ; exp(θ)/N) grows polyno-
mially. In fact the following proposition holds.

Proposition 6.3 ([33]) Let Γ (z) be the gamma function. We have

JN(E ; exp(± arccosh(3/2)/N)) ∼
N→∞

Γ (1/3)
(
3 arccosh(3/2)

)2/3N
2/3.

This would correspond to an affine representation. See Definition 5.6 and Exam-
ple 5.3. In fact for a torus knot, the colored Jones polynomial also has polynomial
growth for affine representations [33]. Let T (p, q) be the (p, q)-torus knot, where
p and q are coprime and greater than or equal to 2. Then we have

JN
(
T (p, q); exp(±2π

√−1/(pqN))
) ∼
N→∞

sin(π/p) sin(π/q)√
2 sin

(
π/(pq)

)
exp(±π√−1/4)

N1/2.

Note that exp(±2π
√−1/(pq)) is a zero of the Alexander polynomial of T (p, q).

See Example 5.4 for p = 2.
When |θ | < arccosh(3/2), then JN(E ; exp(θ/N)) converges.

Proposition 6.4 ([63]) If |θ | < arccosh(3/2), we have

lim
N→∞ JN(E ; exp(θ/N)) = 1

Δ(E ; θ) .

In general, the following holds for any knot.

Theorem 6.1 ([26, 63]) For any knot K there exists an open neighborhood UK ⊂
C of 0 such that if a ∈ UK , then we have

lim
N→∞ JN

(
K; exp(a/N)

) = 1

Δ(K; exp a)
,

where Δ(K; t) is the Alexander polynomial of K , which is normalized so that
Δ(K; t−1) = Δ(K; t) and Δ(K; 1) = 1.

Theorem 6.1 would correspond to an Abelian representation (Definition 5.4).

6.5 Final Remarks

In this last section we summarize the volume conjecture and its generalizations.

• When K is a hyperbolic knot, then we conjecture that JN
(
K; exp(ξ/N)

)

– grows exponentially when ξ is close to 2π
√−1. Moreover the asymptotic

expansion determines the SL(2;C) Chern–Simons invariant and the Reide-
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meister torsion, both associated with a representation that corresponds to a
hyperbolic structure of the knot complement. In particular, if ξ = 2π

√−1 it
corresponds to the complete hyperbolic structure.

– converges to 1/Δ(K; exp ξ) when ξ is close to 0, where Δ(K; t) is the
Alexander polynomial of the knot K . Moreover ξ corresponds to an Abelian

representation μ �→
(

exp(ξ/2) 0
0 exp(−ξ/2)

)
, where μ is the meridian, and

– diverges polynomially when exp ξ is a zero of the Alexander polynomial (and
ξ is close to 0).

as a function of N .
• When K is not a hyperbolic knot, then we conjecture that the asymptotic

expansion of JN
(
K; exp(ξ/N)

)

– splits into summands each of which corresponds to a representation from
π1(S

3 \ K) to SL(2;C). Moreover each summand determines the SL(2;C)
Chern–Simons invariant and the Reidemeister torsion, both associated with
the representation.

– converges to 1/Δ(K; exp ξ) when ξ is close to 0, where Δ(K; t) is the
Alexander polynomial of the knot K . Moreover ξ corresponds to an Abelian

representation μ �→
(

exp(ξ/2) 0
0 exp(−ξ/2)

)
, where μ is the meridian, and

– diverges polynomially when exp ξ is a zero of the Alexander polynomial (and
ξ is close to 0).

as a function of N .

Remark 6.1 Let M be a closed oriented three-manifold. Due to Witten [88], the
Witten–Reshetikhin–Turaev invariant Zk(M) of level k is defined as follows:

Zk(M) =
∫

e2π(k+2)
√−1 csM(A)DA,

where the integral is the path integral, that is, “integral over all SU(2) connections”,
and csM(A) is the Chern–Simons invariant defined as in (5.9). By the saddle point
method, we can expect that this “integral” is approximated as the sum over all flat
connections:

∑

α:flat connection

constant×√
Tα(M)e2π

√−1(k+2) csM(Aα)

for large k, where Tα(M) is the Reidemeister torsion associated with the irreducible
representation induced by the flat connectionAα . See [88, Section 2], [9, Chapter 7]
and [50, Section 3.2] for details.
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We will compare this physical idea with our situation. As explained so far we
expect that the N -dimensional colored Jones polynomial JN

(
K; exp((2π

√−1 +
u)/N)

)
can be approximated as

∫
eNF(z)dz,

where z is a set of parameters. Then by using the saddle point method, this can be
further approximated as

∑

α

(polynomial in N)×√
H(zα)eNF(zα)

for large N , where the zα are the saddle points.
Using Witten’s idea as described above, we expect

• the set {zα} corresponds to the set of irreducible representations from the
fundamental group of the knot complement to SL(2;C),

• F(zα) is (a multiple of) the Chern–Simons invariant associated with the irre-
ducible representation corresponding to zα , and

• H(zα) is the Reidemeister torsion associated with the irreducible representation
corresponding to zα .

Remark 6.2 Recently other types of ‘volume conjectures’ were proposed [3–
5, 16].

• A conjecture for a link invariant JM,K(h̄, x) based on the Teichmüller Topolog-
ical Quantum Field Theory by Andersen and Kashaev. Here K is a knot in a
closed, oriented three-manifold M , h̄ is a positive real number and x is a real
number. It says that

lim
h̄→0

2πh̄ log |JM,K(h̄, 0)| = −Vol(M \K)

if M \ K possesses a complete hyperbolic structure. Note that this conjecture is
true for (S3, 41) and (S3, 52).

See also [6, 7] for further developments.
• A conjecture for quantum invariants of three-manifolds by Q. Chen and T. Yang

[16]. Here they use roots of unity other than usually used in the Turaev–Viro
invariants and Witten–Reshetikhin–Turaev invariants, and conjecture that these
invariants grow exponentially with growth rate given by the volume. Note that
the TV and the WRT invariants grow only polynomially when we use usual roots
of unity.
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