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Preface

Dynamics of Coupled Structures represents one of ten volumes of technical papers presented at the 34th IMAC, A Conference
and Exposition on Structural Dynamics, organized by the Society for Experimental Mechanics and held in Orlando, Florida,
January 25-28, 2016. The full proceedings also include volumes on nonlinear dynamics; dynamics of civil structures;
model validation and uncertainty quantification; sensors and instrumentation; special topics in structural dynamics; structural
health monitoring, damage detection, and mechatronics; rotating machinery, hybrid test methods, vibro-acoustics, and laser
vibrometry; and shock and vibration, aircraft/aerospace, energy harvesting, acoustics and optics, and topics in modal analysis
and testing.

Each collection presents early findings from experimental and computational investigations on an important area within
structural dynamics. Coupled structures or substructuring is one of these areas.

Substructuring is a general paradigm in engineering dynamics where a complicated system is analyzed by considering the
dynamic interactions between subcomponents. In numerical simulations, substructuring allows one to reduce the complexity
of parts of the system in order to construct a computationally efficient model of the assembled system. A subcomponent
model can also be derived experimentally, allowing one to predict the dynamic behavior of an assembly by combining
experimentally and/or analytically derived models. This can be advantageous for subcomponents that are expensive or
difficult to model analytically. Substructuring can also be used to couple numerical simulation with real-time testing of
components. Such approaches are known as hardware-in-the-loop or hybrid testing.

Whether experimental or numerical, all substructuring approaches have a common basis, namely, the equilibrium of the
substructures under the action of the applied and interface forces and the compatibility of displacements at the interfaces
of the subcomponents. Experimental substructuring requires special care in the way the measurements are obtained and
processed in order to assure that measurement inaccuracies and noise do not invalidate the results. In numerical approaches,
the fundamental quest is the efficient computation of reduced order models describing the substructure’s dynamic motion.
For hardware-in-the-loop applications, difficulties include the fast computation of the numerical components and the proper
sensing and actuation of the hardware component. Recent advances in experimental techniques, sensot/actuator technologies,
novel numerical methods, and parallel computing have rekindled interest in substructuring in recent years leading to new
insights and improved experimental and analytical techniques.

The organizers would like to thank the authors, presenters, session organizers, and session chairs for their participation in
this track.

Madison, WI, USA Matt Allen
Albuquerque, NM, USA Randall L. Mayes
Garching, Bayern, Germany Daniel Rixen
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Chapter 1
Verification of Experimental Component Mode Synthesis in the Sierra
Analysis Framework

Brian C. Owens and Randall L. Mayes

Abstract Experimental component mode synthesis (CMS) seeks to measure the fundamental modes of vibration of
a substructure and develop a structural dynamics model of an as-built structural component through modal testing.
Experimental CMS has the potential to circumvent laborious and costly substructure model development and calibration
in lieu of a structural dynamics model obtained directly from experimental measurements. Previous efforts of interfacing an
experimental CMS model with a production finite element code proved cumbersome. Recently an improved “Craig-Mayes”
approach casts an experimental CMS model in the familiar Craig-Bampton form. This form is easily understood by analysts
and more readily interfaced with non-trivial, discrete finite element models. The approach/work-flow for interfacing an
experimental Craig-Mayes CMS model with the Sierra analysis framework is discussed and the procedure is demonstrated
on a verification problem.

Keywords Component mode synthesis ¢ Craig-Bampton ¢ Substructure ¢ Sierra ¢ Finite elements

Nomenclature

CMS Component mode synthesis
FE Finite element(s)

M Mass matrix

TS Transmission simulator

1.1 Introduction

The concept of experimental component mode synthesis (CMS) seeks to measure the fundamental modes of vibration of a
substructure and develop a structural dynamics model of a component or subsystem which may be inserted into an analytical
model of a higher-level system. Strengths of experimental CMS allow for one to circumvent laborious and costly substructure
model development and calibration in lieu of a structural dynamics model obtained directly from experimental measurements.
Furthermore, experimental CMS allows for a better modelling capability of as-built structural components.

This work will interface an experimentally derived “Craig-Bampton” like substructure with a discrete finite element
model within Sandia National Laboratories Sierra analysis framework [1, 2]. A previously developed transmission simulation
approach is employed to match interface locations with a discrete system level finite element model. Previous efforts will
be discussed and strengths of the current approach in streamlining the use of experimentally derived substructures will be
highlighted. This approach will be discussed and verification exercises will be presented.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy National Nuclear Security Administration under Contract DE-AC04-94AL85000.

B.C. Owens (P<) » R.L. Mayes
Sandia National Laboratories, P.O. Box 5800 — MS0346, Albuquerque, NM 87185, USA
e-mail: bcowens @sandia.gov; rlmayes @sandia.gov
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1.2 Craig-Mayes Experimental Sub-Structuring Method

The Craig-Mayes experimental dynamic sub-structuring method improves upon previous experimental sub-structuring
methods by representing the substructure system matrices (mass, stiffness, and damping) in a Craig-Bampton [3] like
form. This form contains structural matrices with generalized/modal and interface degrees of freedom. This approach uses a
transmission simulator to model the interface of the sub-structure to the remainder of the system. The transmission simulator
approach requires an accurate discrete finite element model of the transmission simulator/fixture to accurately recover the
interface degrees of freedom in an experimental substructure. The Craig-Mayes experimental sub-structuring method and
transmission simulator approach are discussed in references [4, 5].

1.3 Interface of Experimental CMS Model to Sierra

Previous efforts of coupling experimental CMS models within the Sierra framework employed multi-point constraints
and a non-Craig-Mayes CMS representation. This approach proved overly cumbersome for all but the simplest model
configurations, and was prone to numerical conditioning issues. The Craig-Mayes format provides a readily realizable
interface to a high fidelity structural dynamics model with an interface similar to CMS or “super element” model derived
purely from analytical methods. The experimental CMS model is typically provided by experimentalists as a collection of
Craig-Bampton like mass, stiffness, and damping matrices [4]. Note that the damping matrix is not required to define a
baseline experimental CMS model, but is readily available from experimental measurements.

The Craig-Bampton like matrices are p X p in dimension, such that p = m + n. Here, m is the number of modes retained
in the CMS reduction, and » is the number of interface degrees of freedom in the CMS model. The required form of these
equations is shown in Eq. (1.1). Note that the form of the mass matrix is shown, but identical forms are required for the
stiffness and damping matrices. These matrices are symmetrical in nature. M defines couplings between the generalized
(modal) degrees of freedom in the CMS model (this matrix should be diagonal in nature), M defines couplings between the
interface degrees of freedom, and M defines the couplings between generalized and interface degrees of freedom.

(1.1)

MCMS — [mem meil}

NT —
M mXn M nXxn
An r x 3 coordinate array is also required that defines the coordinates of the r interface points. In addition to interface point
coordinates an n x I map array is required that specifies the “local” degrees of freedom of the interface degrees of freedom.
The order of this array should be consistent with the ordering of the coordinate array.

In summary, the following data is required to accompany an experimentally derived CMS model:

¢ Number of modes retained in the CMS reduction (m)
* Number of interface degrees of freedom (n)
 Interface point coordinate array

e CMS mass matrix

e CMS stiffness matrix

 Interface degree of freedom map array

¢ CMS damping matrix (optional)

This information can be provided to the MATLAB based “CMS Toolkit” to create a Sierra super element of the
experimental CMS model. The CMS toolkit creates two files. First, an Exodus finite element mesh is created defining the
geometry of the super element. This includes the coordinates of the interface nodes for the n-node super element. Next, the
formulation of this super element (mass, stiffness, and damping) are characterized in a NetCDF binary file. The super element
Exodus file is inserted into a discrete finite element model using GJOIN [6] or a similar mesh joining utility. From here, the
super element NetCDF file is referenced in a Sierra input deck and subsequent modal, vibration, or transient analysis accounts
for the coupling between the discrete finite element model and the experimentally derived Craig-Mayes substructure. This
workflow is depicted in Fig. 1.1.
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Experimental CMS
Craig-Mayes Mass, Stiffness, & SIERRA Super Element
Damping Matrices Custom super element definition
# Modes in model CMS Toolkit Exodus file (nodes, coordinates, etc.)

Interface Coordinates Super element formulation netCDF

Interface Point/DOF Map file (element matrices)

SIERRA
Analysis Combine discrete FE

model & CMS Model

Fig. 1.1 Workflow for interfacing an experimentally derived CMS model in Sierra analysis

1.4 Demonstration

This section presents a demonstration of the aforementioned process for interfacing an experimentally derived Craig-Mayes
substructure to a discrete finite element modal for Sierra-SD analysis. First the model/test configuration is described followed
by results of the exercise.

1.4.1 Configuration

A 2-D simple beam configuration documented in reference [4] was considered for a proof of concept analysis for interfacing
an experimentally derived CMS substructure model with Sierra-SD analysis. The configuration is shown in Fig. 1.2. Two
beams are connected together over a specified region of overlap. The left beam is to be modeled by finite elements, whereas
the dynamics of the right beam are measured experimentally and an experimental CMS model is derived. This is done
using a “transmission simulator” shown as “TS Beam” in Fig. 1.2. Details of the transmission simulator are elaborated on
in references [4, 5]. The transmission simulator essentially allows one to generate interface degree of freedom responses at
discrete locations from those measured from a modal test. This is a very convenient means for interfacing an experimentally
derived CMS model to discrete points of a finite element model.

Note that there are five nodes in the overlap between the left finite element beam and the right experimental CMS
beam. Thus, the transmission simulator approach was used to derive an experimental CMS model with five interface
points (coincident with the finite element nodes). Each interface point had 3 degrees of freedom (axial translation, bending
translation, and rotation). Therefore, a total of 15 interface degrees of freedom exist in the model. Three modes were retained
in the CMS reduction. This resulted in CMS mass, stiffness, and damping matrices that had dimension of 18 x 18.

1.4.2 Results

The Craig-Mayes substructure model of the beam was interfaced to the discrete “FE Beam” model in Sierra-SD described
in Sect. 1.2. Results show good agreement between the “truth model” described in reference [4] and the Sierra-SD
implementation. Table 1.1 presents a comparison of modal frequencies. The first five modes have 1 % error or less and
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FE Beam

: s Experimental Beam

Final System Beam \ TS Beam ——>

Fig. 1.2 2D beam configuration [4]

Table 1.1 Comparison of Sierra-SD sub-structured modal frequency vs. truth

frequency
Truth frequency (Hz) [4] | Sierra-SD sub-structured frequency (Hz) | Error (%)
212.0 2104 —0.7
574.6 568.6 —-1.0
1121.0 1132.0 1.0
1867.3 1863.9 —0.2
2750.2 2767.6 0.6
3341.7 3383.9 1.3
3949.6 4003.2 1.4
5115.9 5105.0 —0.2
5965.5 5945.8 —0.3

1st Bending Mode
—— 2nd Bending Mode
3rd Bending Mode
4th Bending Mode

_1? i i i i i i

Fig. 1.3 Comparison of “truth” and Sierra-SD sub-structured lower bending mode shapes (solid line = truth model, circle = sub-structured model)

the 6th—-9th modes have at most 1.4 % error. Bending mode shape comparisons of a discrete finite element model of the
entire system and those of the discrete “FE beam” coupled with the Craig-Mayes experimental beam are shown in Figs. 1.3
and 1.4. Solid lines represent the finite element results of the complete system while markers represent the mode shape of
the discrete left beam coupled with the Craig-Mayes right beam. Overall, good agreement is seen between the “truth” FEM
mode shapes and those of the discrete finite element model of the left beam coupled to the Craig-Mayes substructure of
the right beam. Some differences are apparent for the 4th—7th bending mode shapes in the vicinity of the interface to the
Craig-Mayes substructure. This may be due to some artifacts of the transmission simulator approach providing an increased
stiffening effect at this location.
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Fig. 1.4 Comparison of “truth” and Sierra-SD sub-structured higher bending mode shapes (solid line = truth model, circle = sub-structured
model)

1.5 Conclusions

This paper has presented the motivation for using experimentally derived substructures within the Sierra analysis framework.
The Craig-Mayes sub-structuring approach allows for a straightforward interface of an experimental CMS model with a
discrete finite element model by using a representation similar to the Craig-Bampton CMS approach. This allows for the
experimental CMS model to be treated virtually the same way as a numerically derived Craig-Bampton “super element”,
although the experimental model may be prone to some numerical conditioning issues as a result of flaws in measurement
data and mathematical operations being performed on that data. The work-flow of interfacing a Craig-Mayes model with the
Sierra analysis framework was discussed and the process was demonstrated successfully on a proof-of-concept application.

Future work will consider more complicated substructures. This may include sub-structures generated from actual
experimental data or substructures derived from “virtual” modal testing with the Sierra-SD analysis software. The concept
of virtual modal testing allows for more idealized accelerometer data to be considered within the general process of an
experimental sub-structuring method while allowing control of the imperfections in the test data through the introduction of
measurement noise or other flaws.
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Chapter 2
Multi-DoF Interface Synchronization of Real-Time-Hybrid-Tests Using
a Recursive-Least-Squares Adaption Law: A Numerical Evaluation

Andreas Bartl, Johannes Mayet, Morteza Karamooz Mahdiabadi, and Daniel J. Rixen

Abstract Cyber Physical Testing or Real Time Hybrid Testing is a Hardware-In-The-Loop approach allowing for tests
of structural components of complex machines with realistic boundary conditions by coupling virtual components. The
need to actuate the physical interface makes the tests on structural systems challenging. In order to deal with stability and
accuracy issues, we propose the use of an Adaptive Feed-Forward Cancellation approach with a Recursive Least Squares
(RLS) adaption law for interface synchronization of harmonically excited systems. The interface forces are generated from
multiple harmonic components of the excitation force. A RLS adaption law sets the amplitudes and phases of the harmonic
interface force components and minimizes the interface gap. One major practical advantage of using a RLS adaption law is
that only one forgetting factor has to be chosen compared to other adaption algorithms with various tuning parameters. As a
consequence, it is possible to test systems with multiple interface DoF. In order to illustrate the performance and robustness
of the proposed testing algorithm, the contribution includes a numerical investigation on a lumped mass system.

Keywords Hybrid testing * Hardware-in-the-loop ¢ Real-time substructuring ¢ Interface synchronization ¢ Recursive
least squares

2.1 Introduction

Real Time Hybrid Testing, Cyber Physical Testing or Hardware-in-the-Loop for structural systems is a testing approach
connecting experimental test rigs (experimental component) with simulation models (virtual component) in a real time test
(see Figs. 2.1 and 2.2). In contrast of testing the experimental component by applying fictitious load cases, realistic boundary
conditions are provided in these test procedures. The approach is always valuable were neither full experimental tests nor
full simulations are applicable. Real Time Hybrid Testing was applied in engineering of earthquake save civil structures in
[3, 12, 17]. A testing example on a full wind turbine nacelle is presented in [6] and an automotive application is given in [18].

The objective of the interface synchronization control in Real Time Hybrid Testing (RTHT) is to satisfy equilibrium and
compatibility constraints within the desired frequency range. Consider for example structural applications with commonly
low damping of the overall system. Controlling a system with poles close to the imaginary axis can cause instability of the real
time test due to small control errors and inaccuracies in measurement or actuation. The problem of interface synchronization
is closely linked to actual compensation methods. The performance of actuator compensation methods is compared in
[5]. The authors of [15, 21] present frameworks for the development of RTHT controllers. A Linear-Quadratic-Regulator
controller framework is presented in [22]. In the contribution [7] the Real Time Hybrid Testing problem is analyzed with
conventional control theory. As in many applications the dynamics of the experimental substructures are unknown, Model
Reference Adaptive Control (MRAC) is proposed as a control strategy in [19, 23]. A widely used approach is based on
polynomial forward prediction used in [8, 12] for compensation of the actuator dynamics. The authors of [24] extend this
approach by gain and phase estimation. More recently neuronal network feedforward compensation for the use in Real Time
Hybrid Testing were proposed in [16]. Model Predictive Control is proposed as a control strategy for RTHT in [20].

In [1] we presented a adaptive feedforward algorithm with a harmonic regressor (see e.g. [2, 4, 10]) applied to RTHT. The
adaption is based on a gradient algorithm. This approach is closely linked to fxLMS Algorithm as presented in [14]. However,
in case of multiple DoF interfaces the choice of the adaption gain matrix, which defines the stability of the algorithm, is
getting impractical. The entries of the adaption gain matrix can vary within several orders of magnitude and wrong choices
may cause instability of the test. Therefore, we propose in this contribution an adaptive feedforward filter with harmonic

A. Bartl (<) « J. Mayet « M.K. Mahdiabadi ¢ D.J. Rixen
Technical University of Munich, Boltzmannstrae 15, D-85748 Garching, Germany
e-mail: andreas.bartl@tum.de
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——
® = W= + — -
Overall System Experimental Component Virtual Component
(Numerical Model)

Fig. 2.1 The overall system is split into a virtual and an experimental component

0

Fig. 2.2 The test rig is coupled with sensors and actuators to the virtual component running on a real time computer

regressor based on a Recursive Least Squares (RLS) adaption law with only a single tuning parameter. The fact that the user
has only to choose one tuning parameter makes the suggested approach applicable to carry out various tests on systems with
a multi DoF interface.

2.2 Hybrid Testing Problem Formulation

The objective of the RTHT control is to satisfy compatibility (Eq.(2.1)) and equilibrium (Eq. (2.2)) constraints between
virtual and experimental components. The Boolean matrices Gy and G are selecting the interface forces and displacements
(see [9] for details). y, , and y, ; are the interface displacement vectors. The interface gap is denoted as e. f, and f, ; are
the interface force vectors

Gyu —Gru=y,y —y,p =€ =10 2.1
Gvfyy + Gefrp =0 (22)

In principal two distinctive ways for setting up an control scheme do exist. One possibility is to define the interface
displacements as compatible and controlling the interface forces in order to achieve equilibrium. In contrast one can define
the interface forces as forces with equal magnitude and opposite sign, controlling the interface gap. In this contribution, we
use the latter one, which is comparable to the to the dual formulation in substructuring (see [9] for details). In practice, this
foregoing is absolutely meaningful since one will end up with forces as controller setpoint rather than gaps which would
necessarily require inner-loop actuator control algorithms. The applied forces A are subsequently measured and applied to
the virtual subcomponent with opposite sign. The dynamics of both components are given by Eq. (2.3).

. N T
My 0 am Dy 0 v, Ky 0 ||uy n G¥ Azfv 2.3)

0 ME Uur 0 DE ur 0 KE ur _GE E
The objective of an interface synchronization controller will be to apply A such that the interface gap e is closed. The
assumptions of the control strategy are an harmonic excitation and steady-state system behaviour. The block diagram of the
overall control system is given in Fig. 2.3. Before deriving the algorithm the hybrid testing problem is reformulated such that

it can be used for an adaptive feedforward compensator in this section. The corresponding state space formulations are given
in Egs. (2.4) and (2.5).
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virtual
component

harmonic excitation

disturbances A

harmonic excitation Sensors

Tdisturbances

experimental
component

generate

harmonics

Fig. 2.3 The block diagram shows the hybrid test with adaptive feedforward compensation. Harmonic excitation on both the experimental and
virtual component are possible. The actuator is exciting the experimental and contrariwise the virtual component in the present of real and virtual
harmonic excitations. The controller adapts phase and gain of the harmonic inputs to the actuator such that the interface gap e is closed. (adapted
from [1])

0 1 0 0
Xy = _ _ xy+ | _ A+
! [_leKV _MVIDV:| ! [MVIG‘T/:| |: vli|fv

N——— S——
Ay By Ey 2.4)
yy = Gyuy = [GV 0] Xy
N——
Cy
. 0 I } [ 0 } [ 0 ]
Xg = _ _ XEg — _ A+ _ f
|:—ME1KE —M3;'Dg M;'Gh M |7 E
———— N——
Ar Br Ep (2.5)
yr = Gpug = [Gg 0] xp
~——
Ce
The interface responses can be written as
t t
yy = / Cye*" " IByAdr  + / Cye " Eyfudt  +  Cye"xy(ty) (2.6)
1 fo N—

contribution of initial conditions

contribution of interface excitation  contribution of external excitation
with transfer function Hy (jw)

t t
yp = / Cp*"IBAdT  + / Ce* IR fdT + Ce " xp(1o) .7)
to D e——

fo
contribution of initial conditions

contribution of interface excitation  contribution of excitation
with transfer function Hg(jw)

Assuming harmonic excitations and steady state behavior, the contribution of initial conditions are neglected. The interface
forces can be expressed as a combination of harmonic functions:

A= Wi(1)0;
igl: 2.8)

Wi(t) = [L, cos(a;) L, sin(e)]  with  W; € R
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In Eq. (2.8) the regressor matrix W;(f) contains the amplitudes for the cosine and sine part of the interface forces and thus the
phase angle o; = fot w;(t)dr and frequency w;(t), which are allowed to vary slowly. The important parameter vector 8 ; defines
the phases and amplitudes of the interface forces. Since we assume steady state behavior y,, and y; can now be rewritten as

Y= WiPvibi+  Wildmy,  =WOPv6 + ) Wiy, 2.9)
=1 %/_/ . %,_/ =1
s xR G e
ye=) WiOPeibi+ Wihme;  =WOPO + Y Wit)me,, (2.10)
N—— N——

i=1 influence influence external i=1

interface forces excitation (disturbance)

where the matrices Py; and Pg; are created using transfer function Hy (jw;) and Hg(jw;) respectively (see Fig.2.3 and
Eqgs. (2.11) and (2.12)). These matrices basically apply a phase shift and gain to the parameter vector . The vectors wy; and
7 g; define phase and amplitude of the contributions of the external forces to the interface displacements.

Py = [ Re(HV({wi)) Im(HV(J.a)i))iI _ [ Pry,; Pl,v,l} with Py, € R2 @.11)
—Im(Hy(jw;)) Re(Hy (jw;)) —Pryv; PRy,

Py = |: Re(HE(].a)i)) Im(HE(].a)i))] _ |: PR, PI,E,[] with Pp; € R 2.12)
—Im(Hg(jw;)) Re(Hg(jw;)) —Prg; PrE,

2.3 Adaptive Feedforward Algorithm

In order to couple virtual and experimental components, the parameter vector # has to be chosen such that the interface gap
e is closed. In order to adapt € online, the use of a recursive least squares algorithm (see e.g. [11, 13]) is proposed, which
minimizes the integral cost functional J defined in Eq. (2.13). Note that for the derivation of the adaption law, the above
mentioned functions are used in their time discretized form. Here we use brackets to indicate a specific time instance. The
cost functional includes a forgetting factor 1 € [0, 1], which enables a decreasing weighting of old values of e’ [ile[i] at
ith time instances. The phase and gain matrices Pg and Py as well as P4, which characterizes the actuator dynamics, are
combined to P.

k
T = e [ile[d]
i=0 (2.13)
with e[i] = yg[i] —yyl[i]l = WI[i] (Pg — Pyv)P4 0[i] + W[i](mgli] — 7y [i])

Starting point for deriving the adaption law for the hybrid testing problem is the solution of the least squares problem, which
is then rearranged as recursive algorithm:

k
0 =§;—[[kk]] = ; 2p5 (PTWIi)" WP [K] + PT Wi Wil [i]) (2.14)
k "
0[k] = (Z ;Lk_iPTW[i]TW[i]P) (Z —u"_iPTW[i]TW[i]n[i]) (2.15)
i=0 i=0

RIK
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The solution of the least squares problem for the next time step k + 1 is arranged as follows:

R[k+1]

-1

Sk

Il
S

Olk+ 1] = ( pWTEPTWTWEIP + PTWIk + 11T W[k + I]P)

l

>~

( — ) PTWT W []] — PTWik 4+ 1] W[k + 1= [k + 1])
=0

Applying the Woodbury matrix identity allows to replace the inverse of the regressor matrix:

RIk+1]

-1
Ok +1] = (%R[k] — %R[k]PTW[k + 17 (1 + %W[k + 1]PR[K]P" W[k + 1]7) Wik + I]PR[k]) ,

k
(Z —u T PTWI Wi [i] — PTWIk + 17 Wik + 1= [k + 1])
i=0

Further simplification of the equations finally yields the recursive least squares adaption law:

ylk+1] = %(R[k]PTW[k + 10T + %W[k + 1PR[KP"WT Tk + 1])~! (2.16)

Ok + 1] = 0[k] + y[k + 1] (W[k + 1]PO[k] + W[k + 1]z [k + 1]) (2.17)
e/ [k+1]

Rk+1] = %(R[k] — y[k + 1]W[k + 1]PR[K]) (2.18)

Note that e’ is the a-priori gap, which can be measured, whereas e is the a-posteriori interface gap, which is used in the cost
functional J. The RLS algorithm allows the practical application of adaptive feedforward compensation in Real Time Hybrid
Testing with multiple DoF interfaces as a single forgetting factor  has to be chosen. Note that the phase and gain matrix P
characterizing plant dynamics are used in the adaption law. P can be identified prior to the adaption process by exciting each
actuation DoF separately or with uncorrelated noise.

2.4 Numerical Case Study

The algorithm is applied to a simple lumped mass problem with a two DoF interface. The arrangement of the masses
is illustrated in Fig.2.4. The mass and stiffness parameters are given in Table 2.1. Proportional damping with a stiffness
proportional coefficient « = 0.01 and a mass proportional coefficient § = 0.001 is used, which confers a modal damping of
0.5 % to the submodels. The models and the interface synchronization control were implemented in Matlab® Simulink®. The
excitation force fy o = Z?:l = A; sin w;t was applied on mass 1. The excitation frequencies were w; = 20&, wy = 30%,
w3 = 50% and w4 = 60@. The amplitudes A} = 4N, A, = 10N, A3 = 10N and A4 = 20 N. The forgetting factor for the
RLS algorithm was chosen as i = 0.99 The identification was running for 10 s with an excitation of 5s on each actuation
DoF. The adaption with the RLS algorithm starts at # = 10s.

Figures 2.5 and 2.6 show the interface synchronization for both interface DoF. In the investigated case the algorithm
adapts within 2s and is then accurately ensuring compatibility. The adaption time is depending on the properties of the
coupled components. Figure 2.7 shows the comparison of the displacement of mass 4 with the reference overall system.
After the adaption process the reference system is simulated accurately. In all of our numerical studies the algorithm was
found to be very robust. As indicated by Fig. 2.8 noisy force and displacement signals have little impact on adaption time

and stability issues in this numerical case study which indicates a good feasibility for practical implementation.
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Simulated Overall System
Fig. 2.4 Arrangement of the lumped mass system used for numerical studies

Table 2.1 System parameters

- ; Virtual component (V)
used in the numerical case study

Stiffness (N/m) Mass (kg)
ky.1 25,000,000 | my 10
ky.12 10,000,000 | my 3
ky.13 10,000,000 | my3 3
ky 24 10,000,000 | my 4 3
ky3s 10,000,000 | my s 3
ky.as 10,000,000 | my 2
ky 53 500,000 | my; 2
ky .46 20,000,000 | myg 4
ky.67 20,000,000

Test specimen (EXP)

Stiffness (N/m) Mass (kg)
kexpis | 2,500,000 | mgxp; | 2
kE)(P’zg 2,000,000 MExp2 4
kexpsa | 10,000,000 | mgxps | 8
kexpa | 10,000,000 | mgxpa | S

2.5 Conclusion

In this paper we propose an adaptive feedforward technique with harmonic regressor for interface synchronization in Real
Time Hybrid Testing. The approach makes use of the assumption of harmonic excitation and steady state. It addresses
stability and accuracy issues in cases where the simulated overall system is a structural system with low damping. Multiple
DoF interfaces are necessary in many applications. As the choice of adaption gain parameters is getting a complex task for
tests with multiple DoF interfaces, we propose the use of a recursive least square algorithm for the adaption of the harmonic
parameters with only a single parameter for the controller design. Future work will include the experimental validation on
a test rig with a multiple DoF interface as well as the comparison with other interface synchronization techniques for Real
Time Hybrid Testing.
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Fig. 2.5 Interface synchronization for the first interface DoF: the left hand figure shows the adaption process, the right hand figure shows the

synchronization in the adapted state
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Fig. 2.6 Interface synchronization for the second interface DoF: the left hand figure shows the adaption process, the right hand figure shows the
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Fig. 2.7 Displacement of mass 4 during the adaption process compared with the reference overall system
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Fig. 2.8 Interface synchronization for the first interface DoF with added noise on force and displacement signals: the left hand figure shows the
adaption process, the right hand figure the synchronization in the adapted state
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Chapter 3
Controls Based Hybrid Sub-Structuring Approach
to Transfer Path Analysis

Joseph A. Franco, Rui M. Botelho, and Richard E. Christenson

Abstract In the design of mechanical systems, there are constraints imposed on the vibration of mechanical equipment to
limit the vibration transmission into its support structure. To accurately predict the coupled system response, it is important
to capture the coupled interaction of the two portions, i.e., the mechanical equipment and the support structure, of the
mechanical system. Typically during a design, the analysis of the full mechanical system is not possible because a large part
of the system may be non-existent. Existing methods known as Transfer Path Analysis and Frequency Based Substructuring
are techniques for predicting the coupled response of vibrating mechanical systems. In this paper, a control based hybrid
substructuring approach to Transfer Path Analysis is proposed. By recognizing the similarities between feedback control
and dynamic substructuring, this paper demonstrates that this approach can accurately predict the coupled dynamic system
response of multiple substructured systems including operating mechanical equipment with a complex vibration source. The
main advantage of this method is that it uses blocked force measurements in the form of a power spectral density matrix
measured uncoupled from the rest of the system. This substructuring method is demonstrated using a simplified case study
comprised of a two-stage vibration isolation system and excited by operating mechanical equipment.

Keywords Transfer path analysis * Frequency based substructuring ¢ Hybrid substructuring ¢ Feedback control ¢ System
level vibration analysis

3.1 Introduction

Vibration of mechanical equipment can result in fatigue, detection, and/or environmental concerns for a structural system. A
critical aspect of the design of systems that include mechanical equipment is quantifying the level of transmitted vibration
energy through the supporting structure. The system design typically consists of strict constraints imposed on the vibration
transmission of the mechanical equipment through the support structure. During the design phase of a system, the mechanical
equipment is pre-existing either from previous designs or they are commercially available components purchased from a
vendor. The support structure is typically non-existent and is designed and optimized using Computer Aided Design (CAD)
software. This makes testing of the full mechanical system, impossible. For these reasons, the analysis of the mechanical
system normally requires the combination of multiple quantifications of dynamics of various substructures of the mechanical
system.

Existing methods known as Transfer Path Analysis (TPA) are frequency response functions (FRF) based techniques that
describe the dynamics of the mechanical system by the multiplication of the FRFs of the system substructures. This method
can also be used to combine theoretical (FEM) models and experimental measurements of system substructures. Some of
these methods were developed by Plunt [1, 2] for the automotive industry and Darby [3] for the marine industry. However,
the disadvantage of these TPA methods is that they do not always consider the dynamic coupling between the receiving and
exciting substructures. This limitation becomes critical at low frequencies due to the interaction between the modes of the
individual substructures.

Variations of TPA methods are known as Frequency Based Substructuring (FBS) methods which allow for the calculation
of the entire mechanical system dynamic response based on the FRFs of the system substructures using various methods.
Primary developments of FBS methods are Crowley et al. [4], Jetmundsen et al. [5], Imregun and Robb [6] and later on
Gordis [7] and de Klerk [8]. Generally, this work demonstrated a wide variety of methods to couple substructures based on
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either numerically computed or experimentally measured FRFs. However, a large drawback of these methods is that they
generally require that the vibratory excitation be known and be able to be quantified; de Klerk [9] did significant work to
develop methods to identify and quantify these excitation sources. However, this can be fairly difficult and labor intensive in
areal life experimental environment.

Real-time hybrid substructuring (RTHS) is a relatively new test method, recently made more practical because of advances
in computer power, digital signal processing hardware/software, and hydraulic control hardware that is used for vibration
testing for calculating the dynamic performance of a mechanical system by partitioning a mechanical system into physical
and numerical substructures and then interfacing them together in real-time similar to hardware-in-the-loop testing. Early
developments of RTHS include Horiuchi et al. [10], Nakashima and Masaoka [11], and Darby et al. [12]. As in FBS methods,
RTHS is also a hybrid method, which takes advantage of both experimental methods along with numerical computational
methods of system substructures. This method allows the dynamic excitation of the system to be unknown since it is
represented in the physical substructure. However, this system is highly dependent on the performance of the actuator system
that is used to transmit the displacement feedback from the numerical substructure to the physical substructure. For low
frequencies, this is typically a hydraulic system which can be difficult to get accurate reference tracking performance.

In this paper, a practical control based hybrid experimental-numerical approach referred to Transfer Path Hybrid
Substructuring (TPHS) is proposed. This approach was developed out of recognition of the similarities of techniques in
both the feedback control and the dynamic substructuring fields. Botelho [13] provides an excellent comparison of the
mathematically similar formulations for both feedback control theory and dynamic substructuring. By identifying these
similarities, it allows the leveraging of elementary feedback control theory, to the Transfer Path Analysis and Frequency
Based Substructuring fields. This paper, leverages these similarities in order demonstrates that this new TPHS method can
be used to accurately predict the coupled dynamics of multiple substructures of a mechanical system. This method is also
a hybrid approach which allows for each of the system substructures to be represented by either experimentally obtained
or numerically computed FRFs. This paper will demonstrate in a simplified case study how a power spectral density (PSD)
matrix can be used as input to the substructuring procedure.

3.2 Real Time Hybrid Substructuring

Real Time Hybrid Substructuring (RTHS) is a test method that provides the capability to isolate and physically test the
more advanced critical mechanical equipment of a mechanical system at the design phase of the system while including
the dynamic interaction with a numerical representation of the remainder of the support structure. This is advantageous
over more traditional substructuring techniques because the portion of the system that makes up the physical substructure
is not required to be dynamically quantified. A typical RTHS test is made up of the numerical substructure, the physical
substructure as well as the actuator system required to command calculated displacements from the numeric substructure to
the physical substructure. Figure 3.1 shows this typical RTHS test layout displayed as a control based block diagram.

[T T T T T T s s s 1 Physical
" Transfer System I lLoadIng
! :
{
Numerical I !
Loading = ical Xn I Xc Servo- | Xm Bitesicd F
— L EROE #1 Controller + Hydraulic L YoIce >
Substructure | Substructure
| Actuator I
! 1
: I
5 L ___________________
Force Feedback
Xy, - humerical displacement Xm - measured actuator displacement

X - commanded actuator displacement F,. - restoring force

Fig. 3.1 Control block diagram of a typical RTHS test
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The main disadvantage of RTHS is the dependence on this transfer system’s dynamics. At low frequencies, where dynamic
coupling of system substructures is necessary, this transfer system is typically a servo-hydraulic actuator system. Servo-
hydraulic actuator systems tend to have significant frequency dependent magnitude attenuation and time delay. A large
portion of the research done concerning RTHS is compensating and controlling these frequency dependent dynamics.

The mechanical system of interest in this paper is that which consists of mechanical equipment, which is the vibration
source, and its support structure. The mechanical portion of the system lends itself well to the physical substructure of the
RTHS layout. This mechanical equipment typically have complex dynamics and acoustic excitations which are difficult to
model with classic numerical methods also possibility because of non-linarites and time-variant properties of the mechanical
equipment. The support structure, on the other hand, lends itself well to the numerical substructure of the RTHS layout
shown in Fig. 3.1. This paper’s interest is the system excitation source’s that come from the mechanical component, i.e., the
physical substructure and is not interested in vibratory excitations that come from the support structure, i.e., the numerical
substructure. Therefore, the numerical loading shown in Fig. 3.1 will be ignored for this paper.

The physical loading shown in Fig. 3.1 is analogous to what is known in the controls field as a system disturbance. In
this case, the disturbance is the excitation of the physical substructure and it is the interest of this paper to quantify how that
excitation affects the system dynamics as well as how the excitation is transmitted through the system. Spite the difference
in the desired outcome of the analysis, controls based analysis methods and tools can be leveraged to analyze the system.

3.3 Controls Approach to Transfer Path Hybrid Substructuring

This paper attempts to use the RTHS control diagram shown in Fig. 3.1 and simple control diagram analysis to develop a
new approach to substructuring referred to Transfer Path Hybrid Substructuring (TPHS). From the block diagram shown in
Fig 3.1 (not including the numerical loading), the equation for the closed loop control diagram is given by

F, = —PANF, + P 3.1

Where P is the physical substructure, N is the numeric substructure, A is the transfer system, and P; is the excitation load on
the system, referred to here as the physical loading. Rearranging Equation (3.1) in terms of the reactant force, F, gives the
fundamental equation of TPHS shown below

1
Fo=|—|P (3.2)
1 + PAN

This simple equation gives the formula for solving for the coupled reactant force of the numerical and physical substructures
at the interaction points between the two substructures.

One portion of the control diagram shown in Fig 3.1 that is not necessary with this method is the actuator dynamics
transfer function. Specifically, when the physical substructure is tested, the input signals to the FRF calculations either
could be x., or the measured displacements, x,,. If x. is used as the physical substructure input signals, then the measured
transfer function will include the actuator transfer function which is the quantification of the transmission of the x,, to the
actual x,,, of the actuators. With servo-hydraulic actuators this can be a significant level of frequency dependent magnitude
attenuation in addition to frequency dependent time delay. However, if x,, is used as the physical substructure input signal,
then the measured transfer function does not include these additional actuator dynamics and the measured performance of
the physical substructure is calculated in terms of a normalized input. If it is assumed that we have perfect actuator tracking,
i.e., X, is equal to x,, then the numerical and physical substructures have like terms and can be multiplied together and the A
transfer function can be removed from Eq. (3.2). This is a significant advantage of this method over RTHS. A large portion of
the complication of RTHS is compensating for the frequency dependent actuator dynamics which can be substantial. TPHS
bypasses this complication by assuming ideal actuator reference tracking. This simplifies the governing equation of TPHS
even further to

F,=[I+ PN]"'P; (3.3)

Equation (3.3) calculates the coupled reactant forces at the interaction points between the two substructures; however, this is
not the metric of interest. To calculate the force at the base of the full system, the reactant force is then multiplied by a force
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Fig. 3.2 Control diagram representing the TPHS method

transmissibility transfer function which is equal to the numeric substructure multiplied by the base isolator stiffness, K,N.
The TPHS equation for the base forces of the full system is

F, = K,N[I + PN]"'P; (3.4)

where F}, is the force at the base of the full system. Figure 3.2 shows Eq. (3.4) as a simple feedback control diagram.
Figure 3.2 shows that the critical part of this analysis method is the feedback loop. Without it, the open-loop solutions is
given by

F), = K,NP; (3.5)

and by comparing this to Eq. (3.4), it is shown that this critical feedback loop is represented by the [/ + PN]™! term. The
difference between the closed-loop and open-loop analysis will be investigated further later on.

3.3.1 Physical Loading Using Auto Power Spectral Densities

In most cases, mechanical systems have many complex excitations and it may be very difficult to quantify them. Therefore,
mechanical equipment vibration is typically quantified in power spectral densities (PSD). This is a main disadvantage of most
transfer path and frequency base substructuring methods; the source of the dynamics is needed in order to experimentally
measure transfer functions of the physical substructure used in these hybrid methods.

This is the main advantage of Transfer Path Hybrid Substructuring. The controls based approach allows the physical
excitation of the system to be in the form of a PSD (or a PSD matrix for the MDOF case). In the case of MDOF, the power
spectral density matrix consists of auto power spectral densities along the diagonal of the matrix and cross power spectral
densities in the off-diagonal terms between the two respective signals. The form of this PSD matrix is given below

Gi1 Gio - Gy
Goi Gy -+ Gy,

Gpp, = S (3.6)
Gnl Gn2 e Gnn

Where G, is the PSD matrix of the physical loading and 7 is the number of signal locations. The diagonal terms, Gy, G2z,
. Gy, are the auto power spectral densities while all other off diagonal terms, Gi», G»;, ... terms are the cross power
spectral densities.
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3.4 Numeric Example

In order to demonstrate this method numerically, each of the substructures, as well as the physical loading, must be quantified.
One complication of quantifying each of these quantities is that they are frequency dependent. The simplest solution to
this issue is to use Laplace domain or s-domain transfer functions to represent the frequency dependent response of the
substructures. The following is a simplified example of this approach.

The numeric substructure, as shown in Fig. 3.2, has a force input and a displacement output. In dynamics, this is known
as flexibility. The equation for the system flexibility is derived starting with the equation of motion

[Ms* + Cs+K]x=F (3.7)

where M, C and K are the substructures’ mass, damping and stiffness properties, F' is the excitation force, x is the system
displacement and s is the Laplace constant. The flexibility equation of the numerical substructure, in the s-domain, is then
derived by rearranging Equation (3.7) into

X 1

- - 3.8
F Ms?+Cs+K (3.8)

The physical substructure, as shown in Fig. 3.2 has an input base displacement and a resultant base force. This transfer
function is derived using the following rigid body diagram shown in Fig. 3.3.
where F}, is the reactant force at the base due to the input base displacement, x;,. The characteristic equation of motion of
this system is Eq. (3.7) where the input force is calculated by
[Cs+ K]|x, =F 3.9
Therefore, the equation of motion becomes

[Cs + K] xp = [Ms® + Cs + K] x (3.10)

Rearranging this equation to solve for the system displacement due to base input displacement gives

X Gtk Gl
xp, Ms>+Cs+K '
Using Eq. (3.11) in the equation for the reactant force of the spring-damper shown below
Fp, = [Cs + K] (xp — x) 3.12)
Fig. 3.3 Rigid body diagram of ====|n put ........ Output
a single DOF system with a base
displacement input
K — X
-—— X b
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Fig. 3.4 Rigid body diagram of - N p ut seeeeees (9] utp ut
a single DOF system with a

displacement input

gives the s-domain transfer function for the physical substructure

(3.13)

F K
—”=[cs+1<](1 Cst )
Xp

 Ms2+ Cs+K

This is the equation for the reactant base force due to a base displacement excitation, also sometimes known as dynamics
stiffness.

Lastly, the physical loading needs to be realized using s-domain transfer functions. For this simple example it is assumed
that the physical loading is a commanded displacement excitation. The transfer function of the physical loading is reactant
force due to an input displacement excitation. This transfer function is derived using a rigid body diagram shown in Fig. 3.4.

where x; is the input displacement. The characteristic equation of motion of this system is Eq. (3.7) where the input force
is calculated by

Ms2x,- =F (3.14)
Therefore, the equation of motion becomes
[Ms® + Cs + K] {x} = Ms’x; (3.15)
Rearranging this equation to solve for the system displacement due to base input displacement gives

X Ms?
= (3.16)
xi Ms2+Cs+K

From this equation, to get the reactant forces, we multiply by the characteristic equation of the system’s spring/damper
shown in

F, Ms?
b (Cs+K) 3 (3.17)

X; Ms? 4+ Cs+ K

In order to verify that TPHS is an accurate method, it was compared to the traditional dynamic substructuring approach to
solve a simple uni-axial two DOF system. Figure 3.5 shows a diagram of this example two DOF uni-axial system.

For this example the displacement excitation is applied to M; and both the TPHS and traditional dynamic substructuring
is used to solve for the reactant force at the connection between the two substructures similar to what is shown in Fig. 3.2.
The equations of motion of this system are given by the following system of equations.

{F‘} =[Ms2+Cs+K]{il} (3.18)
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two DOF uni-axial system
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Fig. 3.6 Comparison of dynamic substructuring vs. transfer path hybrid substructuring

where
M= [ﬁgl 1132] (3.19)
C= [ —Clcl cl_flcz] (3.20)
K= [ _K;(l Kl_f‘KJ (3.21)

The same equation for reactant force due to displacement excitation shown in Eq. (3.17) can be applied here but replacing
the SDOF scalars with MDOF matrices.

{F,}
i}

The results from Eq. (3.22) and the results from the TPHS using Eq. (3.2) are compared in Fig 3.6.

These results show that the TPHS method can accurately substructure two substructures together in the same manner
as dynamic substructuring. This example shows that the fundamental theory of TPHS is equivalent to the more traditional
method of dynamic substructuring.

= (Cs+K) M2 [Ms> + Cs + K| (3.22)
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3.5 Experimental Example

Because of the realization that the controls based closed loop equation, shown in Eq. (3.4), can be solved discretely
in the frequency domain, it is observed that TPHS leads itself well to similar Frequency Based Substructuring (FBS)
methods. These methods allow the calculation of the entire mechanical system dynamic response based on the FRFs of the
system substructures. FBS methods are usually a hybrid method, which means that they incorporate both experimentally
measured system dynamics as well as numerically computed system dynamics. Using FBS techniques, experimental
results can be used interchangeably with respective numerical results. Therefore, FBS methods allow the substructuring of
numerical substructures with other numerical substructures, the substructuring of experimental substructures with numerical
substructures, as well the substructuring of experimental substructures with other experimental substructures. The same multi
degree of freedom (MDOF) test case used in Franco et al. [14] was used to verify the TPHS method using a combination
of both numerical and experiment substructures to accurately predict the dynamics of a mechanical system. This system is
shown in Fig. 3.7.

As in previous work, this mechanical system was separated into a physical substructure which consisted of the Quanser
Shake Table, its bedplate and its four spring isolators, and a numerical substructure which consisted of the support structure
and its four spring isolators. Figure 3.8 shows both these physical and numerical substructures.

The same numerical lumped parameter model of the numerical substructure as used in previous work and the physical
substructure were tested. The full system, shown in Fig 3.7, was also tested as experimental verification of the TPHS method.
The full system experiment was excited in the horizontal direction with the Quanser Shake Table which was commanded a
random white noise displacement signal. The output of the experiment was the tri-axial force sensors below the isolators at
the base of the system for a total of 12 forces.

Fig. 3.7 MDOF test case
mechanical system

9EENE |gERaeD

]
-

Fig. 3.8 (a) Numerical substructure (b) Physical substructure
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Fig. 3.9 Six degree of freedom Shore Western shake table

For the TPHS method to work, the physical loading of the full system needs to be quantified so that it is the force due to
the physical loading at the interaction point between the physical and numerical substructures. In this test case the physical
loading is the displacement excitation of the Quanser Shake Table. This was measured by testing the physical substructure
with the Quanser Shake Table excitation with the output being tri-axial force sensors below the physical substructure’s
isolators at the base, which is the interaction point between the numerical and physical substructures.

Lastly, the physical substructure was experimentally tested. In the TPHS arrangement, this is a reactant force due to a
base displacement excitation. To experimentally measure this relationship, a six degree of freedom (6DOF) Shore Western
Shake Table, shown in Fig 3.9, was used.

The physical substructure was excited with a band-limited white noise (BLWN) displacement from O to 20 Hz in all six
Cartesian directions. Similar to when the physical loading was recorded, the physical substructure had tri-axial force sensors
below its isolators at the base to record the reactant force. This arrangement allowed for the direct measurement of the desired
physical substructure transfer function.

To experimentally verify the TPHS calculation using a PSD matrix as the physical loading, the numerical substructure
model and the physical substructure experimental test were coupled together using Eq. (3.4) and then compared to the
experimental full system which was constructed and tested. Figure 3.10 shows the comparison of the TPHS method vs. the
experimental measurement of the mechanical systems base force PSDs. Being able to calculate the PSDs of the coupled
systems response is typically more advantageous because it is measure of the actual levels of response instead of transfer
function calculations which are normalized measurements of the mechanical systems response.

This comparison shows that TPHS is a viable substructuring method that can use PSDs of mechanical system excitation
to calculate the coupled dynamics of the mechanical system. This is the major advantage of this method.

3.6 Conclusion

This paper demonstrated a new frequency based substructuring method referred to as Transfer Path Hybrid Substructuring.
It was demonstrated that this method is mathematically equivalent to traditional dynamic substructuring. In addition, it
was shown that this method can be used to accurately couple physical loading with unknown vibration excitation, with the
dynamics of a numerically modeled support structure. This is the main advantage of this method over other substructuring
methods since typically it is very difficult to quantify the exact source of the system excitation.

This method does have required conditions. The physical loading should be measured with the physical substructure
having a perfectly rigid interface to the test base in the frequency range of interest. This method also requires that the
physical substructure transfer function (reactant force due to an applied base motion excitation) can be measured using linear
signal processing techniques. This obviously assumes that this substructure is a stationary, ergodic system. In the case study
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Fig. 3.10 Comparison of TPHS vs. full system test PSDs

presented in this paper, this was true and the physical substructure transfer function was able to be measured because of the
availability of a 6DOF shake table which could be used to apply a base motion and record the reactant forces of the physical
substructure. This will typically be cost and time prohibitive so other methods to achieve this transfer function could be a
subject of further research.
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Chapter 4
Force Identification Based on Subspace Identification Algorithms
and Homotopy Method

Zhenguo Zhang, Xiuchang Huang, Zhiyi Zhang, and Hongxing Hua

Abstract This paper addresses an inverse problem to determine dynamic forces acting on a structure from response data.
Data-driven subspace algorithms and the linear regression are used to facilitate the estimation of the state sequences and
system parameters. The force identification model is then reasonably established on the basis of the estimated system model.
A weighted algorithm based on the homotopy analysis method is employed to discretize the well-known ill-posed problems.
Moreover, a criterion based on L-curves is adopted for choosing the level of regularization. Finally, laboratory experiments
are presented to demonstrate robustness and effectiveness of the proposed solution technique.

Keywords Force identification * Inverse problem ¢ The homotopy method ¢ Subspace algorithm ¢ Regularization

4.1 Introduction

Accurate knowledge of dynamic force characteristics acting on structures is essential for the reliable prediction of structural
vibrations, which generally provides a crucial premise of mechanical design, optimization and control. However, it may not
always be possible to perform direct measurements or calculations of external forces in realistic situations (such as propeller
forces of ships or wind loads acting on buildings) due to number of practical difficulties. An applicatory, and in some cases,
the only feasible approach may be to indirectly determine loads from response data by force identification technique.

Several different methods, which are either frequency domain based or time domain based, have been currently utilized for
force identification [1, 2]. Frequency domain techniques commonly have severe ill-conditioning at frequencies with regard
to natural frequencies of the system, and might not be feasible for nonstationary or transient phenomena [3]. Therefore,
time domain based techniques are recently receiving more and more attention. Liu [4] applied Kalman filter with a recursive
estimator for input force estimation of a mechanical grey-box model. By degenerating the force identification problem to
a parameter identification problem, Lu et al. [5] presented a method based on sensitivities of dynamic response in the time
domain to identify input forces. Hwang et al. [6] developed an analytical procedure based on the Kalman filtering for modal
wind load identification from across-wind load responses, where the Kalman filter gain in modal space was derived for
different types of measured data solving the Riccati equation. Mao et al. [7] identified the input force of non-linear structural
systems based on the combination of the extended Kalman filter and a recursive least-squares estimator.

The force identification problem is generally ill-conditioning due to inversion process as well as the white noise in
measured data, which may result in the instability of solutions. Truncated singular value decomposition was primely used to
deal with ill-conditioning problem, but discarding of the smallest singular values may reduce the identification accuracy [8].
Jacquelin et al. [9] utilized the regularization methods to solve the force identification problem and different regularization
methods were discussed. Choi et al. [10] employed Tikhonov regularization to improve the conditioning of the matrix
inversion, and some available methods for selection of the optimal regularization parameter were compared. Recently,
the homotopy method has been widely employed in heat conduction problems [11] and shown to be an efficient matrix
regularization technique. However, the application of the homotopy method in the force identification problem is limited
[12]. In this work, an extended inverse method comprising the subspace algorithm and the homotopy method is developed
to estimate input forces acting on structural systems from measured dynamic responses. The robustness and accuracy of the
proposed method are verified with laboratory tests on a scale model of a civil ship.
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4.2 System Identification Based on Subspace Identification Algorithm

For a linear system, a combined deterministic-stochastic discrete-time state-space model can be written as [13]:

Xi+1 = AX; + BF + wy, @.1)
Y, = CXy + DF; + v '
where X; € R" and F; € R™ are the state vector and the force vector in the state space. A € R™", B € R™", C € R*"
and D € R™™ denote the system matrix, input influence matrix, output influence matrix and direct transmission matrix,
respectively. wy and vy, refer to the process noise and the measurement errors.
Subspace identification algorithms [13] based on input—output measurements is employed to obtain the unknown matrices
(A, B, C and D). The measured input data can be grouped into the block Hankel matrix as follows:

FO Fl Fj—l FO F1 Fj—l
F, F, -- F; BB F
Uari 1 = F,, F, - Fi, = (%) - T e = U_;_ 4.2)
0[2i—1 F, Fiy - Fiyj Us Fiy1 Fipo .- Fy; Uf_ .
Fix1 Fiyp -+ Fiy Fiyr Fiys -+ Figjy
Friy Fy -+ Fatjo Fyioy Fai oo Faigj

[

where “7” is a user defined index with respect to the maximum order of the system to be identified, and j > i. The output
block Hankel matrices Y, Yy, Y;’ and ¥, can be constructed similarly. The block Hankel matrices collected by inputs and
outputs are defined as:

Wi =W =Yy BT W =T T (43)

Secondly, defining O; the oblique projection of the row space of Y along the row space of Uy on the row space of W, the
singular value decomposition (SVD) of the weighted oblique projection can be expressed as:

S, 0 (v}
WOW, =W, (Y/y,W,) Wa = (U, Us) [ 0‘ 0] (VIT) =US, V! 4.4)
2

where W, and W, are user defined weighting matrices and rank(W,) = rank(W,W,) and W, has full rank. The extended
observability matrix can be accordingly given as:

r;, = w;'u,s;”? (4.5)
The sequence of reference-based Kalman filter can then be determined as [13]:
5(\'1» = rj‘oi, Z;, = I',)?i +H§1Uf (4.6)

where H¢ is the block triangular Toeplitz matrix. The substitution of Eq. (4.6) into the reference-based forward innovation
model and manipulation, leads to the following relation:

—1
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After the estimate of A, C with least-squares solution of Eq. (4.7) and the recalculation of the observability matrix with
obtained A, C, one may determine B, D with the linear regression by solving a set of linear equations:

2

_ (fé ) Tz, — K (B,D) Uy (4.8)

F

.\ Ziy
B,D = i
arg min| |y

i|i

4.3 The Force Identification Model

Resorting to Eq. (4.1) and stacking the input and output data for various discrete-time instants, the force identification model
can be readily given as follows:

Y, C D 0 v 07 (Fo
Y, CA CB D e 0| | Fy

Y=4¢ . /-7 . Xo= . ) . . ¢ =HF (4.9)
Yy CAF cA*'B cA¥?’B --- D] | F,

Once the system matrices (A, B, C and D) have been determined, the system transfer matrix H is correspondingly determined,
and then the input forces can be reasonably calculated with Eq. (4.9). However, the measurement noise and the process
errors cannot generally be neglected, thus the force identification problem can be viewed as an optimization problem with
the following optimal object function:

min/ = |le||; = |[¥ — HF|}; (4.10)

A weighted algorithm based on the homotopy method is employed to discretize the ill-posed problems and the homotopy
function is defined as follows [13]:

n}inT (x,A) = AK(x) + (1 — 1) G(x) 4.11)

where G(x) and K(x) correspond to the equation set of difficult and simple solutions, respectively. A is the homotopy
parameter with 0<A < 1. In the category of the force identification problem, letting G(x) = ||e||§ = |Y—-HF ||§ and
Kix) = ||F||§, Eq. (4.10) can be rewritten as a cost function:

minJ = AFYF + (1= 1) (¥ - HF)" (Y — HF) 4.12)

where the superscript “H” indicates Hermitian transpose. To minimize Eq. (4.12), the first derivative of J with respect to F
must be zero:

g_;zz(l—A)HH(HF—Y)—l—ZAF:O (4.13)

The optimal solution to minimize the error amplification in force reconstruction is then found to be:
F=[(1-A\)H'H+ ] (1-1)HY (4.14)
Moving and merging the terms of Eq. (4.12), the following relationship can be obtained:
F =Y —HF|} + X IFI3 - |Y - HF}] (4.15)

Finally, the L-curve criterion is employed to select an appropriate homotopy parameter in order to obtain the optimal force,
where the norm of ||Y — HF|| is plotted against ||F ||§ — Y —HF ||§ as A is varied. The point at the “corner” of L-curve that
has maximum curvature should be chosen as the optimal homotopy parameter value.
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4.4 Practical Application

As an application of the present algorithm, laboratory experiments for the propeller force identification of a scale model
of a civil ship shown in Fig. 4.1 have been considered to demonstrate robustness and effectiveness of the method. The test
structure mainly consists of a hull structure and a propeller-shaft system, which are connected through two journal bearings
and one thrust bearing. The whole system is supported by three sets of isolation air springs to prevent transmission of
vibrations from the supporting structure to the hull. The test structure was instrumented with an array of accelerometers,
power amplifier, and linear variable accelerometers, while all sampling data were simultaneously collected through a 16-
channel LMS data acquisition system.

In this study, the measured response data from one longitudinal acceleration channel at the pedestal of the thrust bearing
and the input force measured at the propeller hub were used. The force transducer (B&K 8200) was connected to a shaker
(HEV-200) with a stinger. The scene drawing of the exciting device and the location of the accelerometer (HD-YD-216) are
shown in Figs. 4.2 and 4.3, respectively. The entire verification process to be performed is organized as follows:

(1) Construction of the state-space model: To determine the matrices A, B, C and D, the system is firstly excited by a zero-
mean Gaussian random input with the sampling frequency 2048 Hz. The measured acceleration signal is transformed
to a displacement signal (Fig. 4.4) by frequency-domain integral equation solvers to allow the direct application of the

Force n‘a;‘VACCCICYOHlCtCY
I = T » T 5 T » T

I [ [ l

Stinger

Scaled
model
Shake
= a2 Ix
L N ]
Charge
Power amplifier] Aol Air spring system
r 3
Y
Signal generator » LMS Test.Lab » PC

Fig. 4.1 Schematic diagram of the experimental apparatus

Fig. 4.2 Scene drawing of the exciting system
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Fig. 4.3 The mounting of the accelerometer
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Fig. 4.4 The displacement response at the pedestal
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subspace identification algorithms. In the current study, a Hankel matrix is formed using the input—output data with 50
block-rows when the window length of 2 s is used. From the singular value plot, the model order is specified as n =8
due to a big jump between model order 8 and 9, as shown in Fig. 4.5. Thereafter the state matrices can be identified
according to Sect. 4.2.

Identification of sinusoidal excitation forces: Considering cases of sinusoidal excitation forces at 60 Hz and 80 Hz
applied on the structure, the forces can be identified with Eq. (4.15) from the measured responses. Figure 4.6 shows the
comparison of the identified results and the real forces. The curve of identified force is found to be slightly overlap the
true force curve, which checks the validity and good robustness of the proposed method.

Identification of random excitation forces: Considering the case of Gaussian random excitation force applied on the
structure, the identified result is shown in Fig. 4.7. Although some fluctuation can be found from the curve of identified
force, it is consistent well with the real curve overall at a reasonable accuracy. The result illustrates the good performance
of anti-interference with respect to the proposed method.
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Fig. 4.6 Time histories of the estimated and measured sinusoidal force: (a) 60 Hz and (b) 80 Hz

4.5 Conclusions

An efficient inverse method combining the subspace identification algorithm and the homotopy method has been successfully
used to estimate dynamic forces acting on structures from measured dynamic responses. The data-driven subspace algorithm
is utilized to facilitate the estimation of state space model of the system. Meanwhile, the homotopy method based on the
L-curve criterion is employed to discretize the ill-posed problems due to the inversion process. The feasibility of the present
method is verified with laboratory experiments on a scale model of a civil ship. The comparisons of the measured and
estimated results have demonstrated the effectiveness of the proposed technique for the identification of excitation forces.
The present approach is expected to be extended to force identification problems of the nonlinear systems in the future work.
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Fig. 4.7 Time histories of the estimated and measured random force
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Chapter 5
Response DOF Selection for Mapping Experimental Normal
Modes-2016 Update

Robert N. Coppolino

Abstract A modified Guyan reduction strategy for response degree-of-freedom (DOF) selection to map experimental
normal modes is described and demonstrated. The method employs static load patches, rather than point loads, in regions
defined by 3-D elastic elements and other problematic zones on a highly detailed finite element model (FEM). Three
key benefits are realized by the methodology, namely (1) definition of a well-posed test-analysis mass (TAM) matrix,
(2) application of a previously published residual kinetic energy matrix for definition of appropriate measurement DOFs,
and (3) elimination of irrelevant modes from the measured mode set. Improved qualities of the modified Guyan reduction
strategy are demonstrated with a problematic spacecraft-type FEM, which cannot be readily treated using classical Guyan
reduction methodology.

5.1 Introduction

The United States Air Force Space Command [1] and NASA [2] maintain standards for the proper execution of spacecraft
and launch vehicle modal tests, which require measured mode shapes satisfying strict orthogonality criteria. Modal vector
orthogonality, based on the fundamental energy principles owing to Ritz [3], require a test-analysis mass (TAM) matrix that
is most often developed by employment of the Guyan reduction method [4]. The TAM matrix, generally developed as part of
the modal test planning process, is defined on the basis of proposed instrumented (accelerometer) degrees of freedom (DOF),
which are a subset of a corresponding (often highly detailed) finite element model (FEM).

Advances in computers and software resources and ever increasingly detailed FEMs rendered selection of an adequate
instrumentation array and TAM matrix quite challenging. Development of a residual kinetic energy (RKE) method [5]
provided a path for automated completion of an initially deficient instrumentation array and TAM matrix (employing
Guyan reduction as the underlying principle). However, additional difficulties owing to (a) displacement pattern (Boussinesq)
singularities for models based on 3-D finite elements [6] and (b) breathing modes of shells [7] rendered the popular Guyan
reduction method to be deficient in such situations. In response to these challenges, a “modified” Guyan reduction strategy
employing load patches [8], rather than concentrated point loads (implicitly) used in “classical” Guyan reduction, appears to
remedy this situation.

The present paper revisits the “modified” Guyan reduction method and introduces a generalized RKE procedure for
reliable definition of an instrumentation array and TAM matrix. In addition, the generalized RKE procedure appears to be
useful for other model order reduction strategies such as SEREP [9], modal sensitivity vector augmentation [10], and others.
The generalized Guyan-RKE methodology is demonstrated on an aerospace-type branched shell configuration, which was
previously studied [8]. Results of the demonstration indicate that (1) “classical” Guyan reduction produces a TAM matrix
that fails to satisfy strict orthogonality criteria, (2) “modified” Guyan reduction produces TAM matrices satisfying strict
orthogonality criteria (without the need for additional instrumentation degrees of freedom), and (3) RKE is a useful metric
for discrimination of “body” and shell “breathing” modes as well as a means for improvement of the instrumentation array.
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5.2 Nomenclature

Symbol Matrix or Array Symbol Variable
{F} [Force i Imaginary Number
1) Identity n Structural Damping
K] Stiffness 2 Eigenvalue
{KE} [Modal Kinetic Energy ® Circular Frequency
™M) [Mass h Frequency Response
Mz] |[TAM Mass
[M.s] |Modal Effective Mass Symbol Subscript
[OR] [Orthogonality a analysis or "instrumented” dof
[P]  |Modal Participation Factor b base dof
[R] Residual Displacement c "Classical” Guyan
[RKE] |Residual Kinetic Energy f free dof
{SE} |Modal Strain Energy ] "General”
[©] |Modes m "Modified" Guyan
1] Force Allocation n Mode "n"
[¥] |Displacement Shapes 0 "Omitted” or "Other” dof
{q}  |Generalized Displacements q "Generalized" dof

{u}  |Physical Displacements

5.3 Understanding Normal Modes

A vital step in the modal test planning process involves development of a thorough, quantitative understanding of predicted
dynamic characteristics of the subject structural system. Detailed characteristics of the subject system’s normal modes
are revealed, not only from modal frequencies and “geometric” mode shapes, but from modal kinetic and strain energy
distributions (which are sorted in terms of overall direction and substructure groups). When the subject test article is a
component of a larger, complete system, the relative significance of a subset of modes within a predetermined frequency
band is evaluated on the basis of modal effective mass. This section of the paper presents mathematical details of important
modal kinetic and strain energies and modal effective mass.

The fundamental set of matrix equations describing forced response of a linear structural dynamic FEM (in the frequency
domain with uniform structural damping) are

M]{ii ()} + (1 4 in) [K] {u (w)} = {F (w)}. (6.1

For the case of undamped free vibration, the orthonormal mode transformation and properties with respect to system mass
and stiffness are

{u} = [®{a}, [®]"M][®] =01, [®]"[KI[P]=[N]. (5.2)
The distributions of kinetic and strain energies in one particular mode are the following respective term-by-term products:

DOF

{KE}n = {[M] {q)}n} ® {CI)}H, KETOT,H = Z KE;j, =1 (53)
i=1
DOF

{SE}n = {[K] {q)}n} ® {q)}n’ SETOT,D = Z SEin = )\-n‘ (54)

i=1

The individual terms in each of these “energy” vectors are directly associated with the dynamic system degrees of freedom.
As such, they provide appropriately weighted metrics for kinetic and strain energy distributions that are not indicated by the
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geometric modes shape (e.g., “heavier” degrees of freedom have greater kinetic energy than “lighter” degrees of freedom
with equivalent modal displacements). Further insight into the character of individual modes is gained by summations of
subgroups according to (a) subcomponents and/or (b) activity directions.

In the case of a supported (e.g., base-fixed) system, the displacement degrees of freedom are partitioned into interior (or
free) and boundary (or fixed) degree of freedom subsets, as shown below.

M My, | | i; | Ki Kip [ wi| | Fi(®)
|:Mbi Mbb:| { ﬁb} (i) |:Kbi Kbb] { Mb} B { Fb“)% ©:3)

The Craig-Bampton [11] modal transformation describes the interior degrees of freedom in terms of boundary fixed modes
and “constraint modes” associated with unit boundary displacements.

Lt = Lo = Lo ) 5
up, 0pgq Iy, up Opg Ipp | (up

It should be noted that when the boundary is statically determinate, the “constraint modes” are rigid body vectors, referenced
at the boundary. When the above transformation is applied, the resulting Craig-Bampton component dynamic equations are

Iqq qu ] { q } . 2 Oip, % q } oL qu { F; }
— W A+ 4_ =|_H , 5.7
[qu My | ( b ( il Opi Kpp | (up Ul Lo, | | Fb ©7

The boundary mass and stiffness matrix partitions reduce to (a) the 6 x 6 rigid body mass matrix and (b) a null 6 x 6 boundary
stiffness matrix, respectively, if the boundary is statically determinate. It is of interest to consider the response of such a
system to simple harmonic boundary accelerations. The modal accelerations in this situation are:

2
. . —(®W/Wp
i (©) =~y (@) [Prs] iy (@)}, By (@) = —— O 58
1+ my = (O‘)/wn)
And the boundary reaction loads, for a statically determinate boundary, are:
N
{Fp, (w)} = |:Mbb =Y [PouPub] by (oo):| {iip, (@)} . (5.9)
n=1

The modal participation products are called modal effective mass matrices (one per mode), which when summed are
approximately the total system rigid body mass (equal only if the boundary is massless). Modal effective mass is a modal
metric that indicates direction of modal activity as well as degree with which the boundary reacts to modal response:

N
[Meff], = [Pon] [Pub], Z [Meft],, ~ [Mpy] . (5.10)

n=1

5.4 Model Order Reduction Strategies

While many authors have developed and refined dynamic finite element model reduction procedures since the late 1960s,
Guyan reduction [4] endures as the industry preferred strategy. In 2011, a modified Guyan reduction strategy [5] was
introduced in order to alleviate difficulties encountered with large-order, problematic finite-element models.

5.4.1 Classic Guyan Reduction

The underlying idea that defines Guyan reduction is static condensation...and Guyan’s monumental formulation was
published as a one-half page technical note! The “free” degrees of freedom describing a structural dynamic system are
first separated into “analysis” and “omitted” subsets, which lead to the partitioned matrix equations (ignoring damping):
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[Mg] {iie} + [Kg] {us} = {F¢} — [ﬁ"‘d ﬁao] { Ed} + [Eaa an} { Ea§ = { Ed} . (5.11)

If only the “analysis” partition of the mass matrix were non-zero, and external forces were only applied to “analysis” degrees
of freedom, the relationship between “analysis” and “omitted” degrees of freedom would be

TR ot i [ R R AR 6.12

-1
0 00 Koa

In that situation, the reduction transformation in Eq. (5.12) would be exact. When the “omit” partitions of the mass matrix
are non-zero, the reduction transformation is approximate (its columns are Ritz [3] shape functions). Application of the
reduction transformation, in a symmetric manner following the Ritz method, yields the “classical” Guyan reduction TAM
mass matrix,

[Maale = [Wrall [Mat] [Wal.. (5.13)

It should be noted that the reduction transformation matrix columns (in Eq. 5.12) are physically consistent with deflection
shapes associated with application of individual unit “analysis” set loads.

5.4.2 Modified Guyan Reduction

When the Guyan reduction method was introduced in 1965, the majority of matrix structural dynamic models were assembled
using finite elements based on technical theories (e.g., beams, plates and shells). Deformation shapes for technical theory
based structural models, subjected to point loads, are generally smooth resulting in “well-behaved” Ritz shape functions.
As finite element technology continued to evolve, elements based on 3-D elasticity theory matured to the point that many of
today’s highly refined finite element models incorporate 3-D elastic elements. Dynamic models using 3-D elastic elements
are generally quite accurate and effective, except for situations in which reduced models are required (e.g., preparation of test-
analysis models or TAMs). Since highly refined 3-D elastic models closely follow exact mathematical behavior, deformations
associated with point loads are extreme (infinite in the limit, as in the case of the Boussinesq problem [6]), producing Ritz
shape functions that do not resemble normal modes. Thus application of Guyan Reduction on dynamic models composed of
3-D elements, as well as several types of one and two dimensional elements (especially shells), is inappropriate.
Consider the general distribution of static loads described by the matrix equation,

{Ft} = [[ra] {Fa}, (5.14)

where [['s,], represents the collection of unit load patterns (or load patches). The static displacement shapes due to unit load
patches are

[Wr] = [Kg] ' [[a], which implies that, {u;} = [Wga] {Fa}. (5.15)
Pre-multiplication of this result by the transpose of unit loadings yields,
{0} = [l " Kal ™ (1] {Fa} (5.16)
Substitution of this result into Eq. (5.15) yields the modified Guyan reduction transformation,
fue} = [Wra] [P "K' W] {a} = [Wro] ) (5.17)
Unlike the reduction transformation defined by classic Guyan reduction, which provides a direct relationship between “free”

and “instrumented” DOFs, the above transformation requires further development. This is accomplished by first focusing on
a partition that relates “instrumented” and generalized DOFs, i.e.,

{ua} = [Waq ] {a}, (5.18)
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where [W,q] is the rectangular partition of [Wg,] corresponding to measured DOFs. The least-squares inverse transformation
(assuming there are more {u,} DOFs than {q} DOFs) is finally

-1
{a) = [YaqWaa]  [Wao] (00} = [Waa] {ua} - (5.19)
Thus the modified Guyan reduction transformation relating “free” and “instrumented” DOFs is

() = [Wo] [Waa] (0a) = [Wral, {Ua)- (5.20)

Application of the reduction transformation, in a symmetric manner, yields the “modified” Guyan reduction TAM mass
matrix

Mool = [Wrali [Ma] [$ral - (5.21)

5.4.3 General Model Order Reduction
The general model order reduction transformations for any assumed set of Ritz vectors (e.g. SEREP and others [9, 10]) are:

{ur} = [\ijq]g {af = {ua} = [\I’aq]g {a} = {a} = [‘Iqulpaq]g_l [qqu]g {ua) = [‘Ijqa]g {ua) — {ur} = [‘ijq]g[qjqa]

fua} = [, {0}

g

(5.22)

Application of the reduction transformation, in a symmetric manner yields the “general” reduction TAM mass matrix

Madl, = [W], [My] [5], (5.23)

5.5 Reduced Order Model Orthogonality and Residual Kinetic Energy

The three above types of model order reduction serve as alternatives for development of a TAM mass matrix to be employed
in experimental mode evaluations conforming to U.S. Air Force and NASA standards [1, 2]. For the purposes of modal test
planning, the adequacy of a selected instrumentation (accelerometer) array may be evaluated by taking the “instrumented”
subset partition, [®,], of the predicted “free” modal set, [D¢], and estimating test mode orthogonality,
[OR] = [@a]" [Maa] [®a]. (5.24)
The simulated “expanded” modes, calculated as,
[®ra] = [Via] [Pa], (5.25)
are then employed to form a residual error matrix,
[R] = [®¢] — [Pra] = [Ps] — [Wra] [Pa] - (5.26)
The residual modal kinetic energy matrix [5] is therefore,

[RKE] = [MgR] ® [R]. (5.27)

The summed residual kinetic energy for a particular mode ([RKE] column) ideally has an upper bound of 1.0 (or 100 %).
This is the case for “classical” Guyan reduction, which has a direct (non-least squares) relationship between “free” and
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“instrumented” DOFs (see Eq. 5.12). For “modified” Guyan reduction and “general” reduction, an indirect, least-squares
approximation is utilized (see Eqgs. 5.17 and 5.22), and an inherent singularity causes residual kinetic energy to have an
upper bound that may exceed 1.0. Nevertheless, when “instrumented” DOFs are adequate to map modes of interest, the
[RKE] column sums will be substantially below 1.0 (or 100 %). When the “instrumented” DOFs do not adequately map a
mode of interest, the non-negligible terms of the particular [RKE] column indicate DOF locations required to complete the

mapping.

5.6 Branched Shell Illustrative Example

5.6.1 Model Description and Dynamic Characteristics

The shell structure, shown in Fig. 5.1, serves as the illustrative example in this paper. It consists of five substructures,
namely (1) a lower cylindrical skirt (fully fixed at its base), (2) a lower hemispherical bulkhead, (3) lower cylindrical section,
(4) upper cylindrical section, and (5) upper hemispherical bulkhead. The overall dimensions of the aluminum structure are
length, L = 100 inches, radius, R = 20 inches, and wall thickness, h = 0.4 inches.

Fig. 5.1 Multi-segmented shell structure

The shell’s finite element model, fixed at the lowest skirt station, is described in terms of 5616 “free” degrees of freedom
(936 grid points). The lowest 146 normal modes of the model includes 22 modes characterized by “body” and “n=0, 1

{“?53‘3‘ :
- ;

Skirt Lower Dome

Syitem Fost

+  Subttucture Poing
© Substnucturs Boundary Point

Shell 1

Shell2  Upper Dome

breathing” modes, whose characteristics are summarized below in Tables 5.1 and 5.2.

Table 5.1 Shell “body” and “n =0, 1 breathing” mode substructure energy characteristics

R.N. Coppolino

Body System o Kinetic Energy (%) Strain Energy (%)

Mode | Mode | DeSCTPion | FREQ (H2) = ime T s et TSHELL1 [SHELLZ| DOME2| SKIRT | DOME 1] SHELL1]SHELLZ] DOME2
1 1 Y-Bending | 122.2 1 1 1 36 51 65 0 27 8 1
2 2 XBending | 122.2 1 1 11 36 51 65 0 27 8 1
3 11 | RzTorsion | 316.9 4 6 22 43 26 59 0 31 9 0
4 14 | Y-Bending | 377.6 12 36 28 9 16 67 5 15 11 2
5 15 | XBending | 377.6 12 36 28 9 16 67 5 15 11 2
6 24 Z-Axial 469.4 3 7 18 35 37 56 1 29 11 3
7 49 | Y-Bending | 708.9 3 37 14 27 19 10 21 37 23 9
8 50 | XBending | 709.3 3 37 15 27 19 10 21 37 23 9
9 63 | Rz-Torsion | 851.9 19 5 35 38 3 11 12 37 34 6
10 76 | Y-Bending | 1005.7 17 19 27 25 13 20 14 29 35 1
11 77 | XBending | 1011.5 18 18 27 25 11 20 14 30 35 1
12 86 |N=0Domes| 1036.2 8 52 10 4 27 24 28 11 20 17
13 103 N=1 1228.2 19 2 36 36 6 20 4 35 35 7
14 104 N=1 1228.3 19 4 36 36 & 20 4 35 34 7
15 111 N=1 1244.3 0 0 46 53 0 0 0 46 53 0
16 112 N=1 1244.3 0 0 46 53 0 0 0 46 53 0
17 121 | N=0Skit | 1302.3 9% 0 2 1 0 95 1 2 1 0
18 128 N=1 1378.2 2 1 46 49 1 3 2 45 48 2
19 129 N=1 1378.4 2 1 46 49 1 3 2 45 48 2

20 140 N=1 1475.4 14 23 19 21 23 15 22 19 22 23
21 141 N=1 1476.0 13 20 22 22 23 14 19 23 23 22
22 146 | N=0 Shells | 1507.2 8 2 44 43 2 8 4 43 43 3
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Table 5.2 Shell “body” and “n =0, 1 breathing” mode directional kinetic energy and modal effective mass

Body System - Kinetic Energy (%) Modal Effective Mass (%
Mode | Mode | Descrption |FREQ(Hz) Y Z X N Z RX RY RZ
1 1 Y-Bending 122.2 96 4 62 98

2 2 X-Bending 122.2 96 4 62 98
3 11 RZ-Torsion 316.9 50 50 82
4 14 Y-Bending 377.6 91 9 30

5 15 X-Bending 377.6 91 9 30

6 24 Z-Axial 469.4 99 81

7 49 Y-Bending 708.9 1 90 10 1

8 50 X-Bending 709.3 90 1 9 1

9 63 RZ-Torsion 851.9 50 50 1

10 76 Y-Bending 1005.7 2 61 37

11 77 X-Bending 1011.5 63 2 35

12 86 N=0 Domes 1036.2 8 8 85 8

13 103 N=1 1228.2 46 53

14 104 N=1 1228.3 50 50

15 111 N=1 1244.3 50 50

16 112 N=1 1244.3 50 50

17 121 N=0 Skirt 1302.3 50 50

18 128 N=1 1378.2 50 50

19 129 N=1 1378.4 50 50

20 140 N=1 1475.4 35 35 30 1

21 141 N=1 1476.0 14 68 18

22 146 N=0 Shells 1507.2 50 50
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The first 12 “body” modes (especially “body” modes 1-6) possess significant modal effective mass, which indicates
that they may be easily excited by base acceleration motions. The low modal effective mass associated with “body” modes
13-22 suggests that they are “self-equilibrated” and not excitable by base acceleration motions. All 124 remaining modes
are characterized by higher harmonic, n > 2, “breathing” deformations; in general such modes are of secondary interest for

estimation of overall structural dynamic loads, unless vibro-acoustic responses and loads are sought.

It is well-known that higher harmonic breathing modes of thin cylindrical shells generally occur in a frequency band
below that associated with doubly curved shells (such as domes) [7]. Therefore, stimulation of the 22 “body” modes (without
significant excitation of higher harmonic “breathing” modes) is effected by applied forces on the upper dome, as illustrated
below in Fig. 5.2.

Applied Excitation Forces

IFRFI

Theoretical Drive Point FRFs

Drive Point FRF-X |
Drive Point FRF-Y |/
Drive Point FRF-Z

Hz

10°

Fig. 5.2 Drive point frequency responses associated with applied upper dome forces

5.6.2 Allocation of instrumented DOFS (Accelerometers)

An array consisting of 103 instrumented grid points (separated by 90° at each shell station), each having a triaxial (X, Y, Z

directed) accelerometer (total of 309 DOF) is selected for evaluation, as illustrated below in Fig. 5.3.
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Fig. 5.3 Triaxial accelerometer array

Triaxial Accelerometer Locations

+ Grid Point

© Triax Accel

R.N. Coppolino

It should be noted that for situations in which n = 0 shell bulge modes are not of interest, accelerations normal to the shell
surface are often not allocated in order to suppress mapping of such modes. In the present example, however, the normal
accelerations are included [Note that in fluid-filled shell situations (not the present example), the n = 0 shell “bulge” modes
are generally of primary importance].

5.6.3 TAM Definition Using “Classical” Guyan Reduction

Application of “classical” Guyan reduction, employing the above described instrumentation array results in a TAM mass
matrix, produces predicted test mode orthogonality (for the 22 “body” modes) and residual kinetic energy (summed for each
mode) as summarized below in Table 5.3.

Table 5.3 Predicted test mode orthogonality and summed residual kinetic energy for a “classical” Guyan reduction TAM

’\Bﬂz‘;i Smse"‘ Freq (Hz) | Description | Sum(RKE) Orthogonality Check
1 1 1222 | Y-Bending 0 100 9 24 2 16 4 10 26
2 2 1222 | XBending 0 100 -9 24 2 16 14 10 26
3 1 315.2 RZ-Torsion 0 100
4 14 377.2 | Y-Bending 1 -9 100 -4 19 -16 6 1 1
5 15 377.2 | %Bending 1 -9 100 4 19 -16 6 g i
6 24 467.8 | Z-Axial 0 100 -8 -6
7 49 706.7 | Y-Bending 16 24 -4 100 17 28 2 -1 -45
8 50 706.7 | XBending 16 24 4 100 17 -28 2 12 -45
9 63 841.3 | RZ-Torsion 5 100
10 76 997.5 | Y-Bending 24 2 19 17 100 -1 2 7 -18
1 77 997.5 | XBending 24 2 19 7 100 -1 26 7 18
12 86 1029.9 | N=0 Domes 2 100 ) 20
13 103 | 1169.6 N=1 38 16 16 28 ET 100 2 -33
14 104 | 1169.6 N=1 38 16 -16 -28 11 100 - 33
15 111 | 12235 N=1 64 14 6 5 26 100 7 -8
16 112 | 12235 N=1 64 14 -6 2 -26 100 -6 -8
17 121 | 12734 | N=0 Skirt 8 -8 ) 100 1
18 128 | 1368.3 N=1 61 -10 1 1 7 2 7 100 -10 g
19 129 | 1368.4 N=1 61 10 - 12 7 - -6 100 10
20 140 | 1402.8 N=1 29 26 1 45 -18 -33 -8 -10 100
21 141 | 1402.8 N=1 29 26 - 45 18 33 -8 -10 100
22 146 | 1440.4 | N=0 Shells 40 -6 20 1 100

The predicted test mode orthogonality associated with the “classical” Guyan reduction TAM mass matrix is unacceptable
with respect to U.S. Air Force and NASA standards (off-diagonal terms greater than 10 %). This is attributed to the fact that
many of the shape functions, [W,¢]., are the result of concentrated normal point loads that cause cross-sectional distortions
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(not purely n = 0, 1 shapes). It is also noted that non-negligible summed RKE corresponds to unsatisfactory predicted modal
orthogonality (off-diagonal terms greater than 10 %).

5.6.4 TAM Definition Using “Modified” Guyan Reduction

The load patch distribution selected for the present sample consists of a set of six (6) or seven (7) unit load patterns per axial
(Z) station, which are illustrated below in Fig. 5.4.
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Fig. 5.4 “Modified” Guyan reduction selected load patches

Two separate reduction schemes and TAM mass matrices are evaluated herein, namely:

(1) Six load patches per axial station (excluding the seventh “bulge, FR” patch)
(2) Seven load patches per axial station.

Application of “modified” Guyan reduction (scheme 1), employing the same instrumentation array used for “classical”
Guyan reduction results in a TAM mass matrix, produces predicted test mode orthogonality (for the 22 “body” modes) and
residual kinetic energy (summed for each mode) as summarized below in Table 5.4.
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Table 5.4 Test mode orthogonality and summed residual kinetic energy for “modified” Guyan reduction TAM (scheme 1)

R.N. Coppolino

S‘gjye Sm‘;;“ Description | Sum(RKE) Orthogonality Check
1 1 Y-Bending 0 100 1 2
2 2 X-Bending 0 100
3 11 RZ-Torsion 0 100
4 14 Y-Bending 0 100 2
5 15 X-Bending 0 100
6 24 Z-Axial 0 100 2 2
7 49 Y-Bending 0 100 -1 1 -3
8 50 X-Bending 0 100
9 63 RZ-Torsion 0 100
10 76 Y-Bending 0 100 2
11 77 X-Bending 0 100
12 86 N=0 Domes 1 100
13 103 N=1 0 100 1 1
14 104 N=1 0 100
15 111 N=1 0 100 -1
16 112 N=1 0 100
17 121 N=0 Skirt 5] 2 100 3
18 128 N=1 1 -1 100 1 £S5
19 129 N=1 1 100 0
20 140 N=1 1 -1 1 1 1 100 3
21 141 N=1 1 100
22 146 N=0 Shells 40 2 2 2 -3 2 1 il 3 o 3 100

The predicted test mode orthogonality associated with the “modified” Guyan reduction TAM mass matrix is acceptable
with respect to U.S. Air Force and NASA standards (off-diagonal terms less than 10 %). This is attributed to the fact that
many of the shape functions, [W,¢]m, accentuate cross-sectional nearly rigid body displacement patterns. The non-negligible
summed RKE in the 22nd “body” mode, while 40 %, is not associated with unsatisfactory predicted modal orthogonality.
However, study of this mode’s deformation, kinetic energy distribution, and RKE distribution provides some indication of
regions of the structure requiring further TAM definition, as illustrated below in Fig. 5.5.
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Fig. 5.5 Evaluation of “modified” Guyan reduction adequacy for body mode 22 (scheme 1)
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The above results indicate RKE deficiency focusing on the two cylindrical shell regions (substructures 3 and 4), which
have significant n = 0 breathing activity that is not represented in the “scheme 1” load patches.
Application of “modified” Guyan reduction (scheme 2), employing the same instrumentation array used for “classical”
Guyan reduction results in a TAM mass matrix, produces predicted test mode orthogonality (for the 22 “body” modes) and
residual kinetic energy (summed for each mode) as summarized below in Table 5.5.
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Table 5.5 Test mode orthogonality and summed residual kinetic energy for “modified” Guyan reduction TAM (scheme 2)

Body System - .
Mode Mode Description | Sum(RKE) Orthogonality Check
1 1 Y-Bending 0 100 3
2 2 X-Bending 0 100
3 11 RZ-Torsion 0 100
4 14 Y-Bending 0 100
5 15 X-Bending 0 100
6 24 Z-Axial 0 100
7 49 Y-Bending 0 100 -1 1
8 50 X-Bending 0 100
9 63 RZ-Torsion 0 100
10 76 Y-Bending 0 100
11 77 X-Bending 0 100
12 86 N=0 Domes 0 100
13 103 N=1 0 100 -1 1
14 104 N=1 0 100
15 111 N=1 0 -
16 112 N=1 0 -
17 121 N=0 Skirt 0 100
18 128 N=1 1 1 1 100 1 1
19 129 N=1 1 100
20 140 N=1 1 1 1 1 1 100 ’
21 141 N=1 1 100
22 146 N=0 Shells 0 1 1 100

Addition of “bulge” load patches in scheme 2 removes the RKE deficiency in body mode 22 as indicated below in
Table 5.6.

Table 5.6 Evaluation of “modified” Guyan reduction adequacy
for body mode 22 (schemes 1 and 2)

RKE (%)
Substructure | Description | KE (%) | Scheme 1 | Scheme 2
1 Skirt 11.85 2.69 0.01
2 Lower dome | 4.13 0.49 0.00
3 Shell 1 33.88 16.64 0.01
4 Shell 2 24.69 19.53 0.01
5 Upper dome | 15.70 0.76 0.00

5.6.5 Further Reflections on “Modified” Guyan Reduction Results

Employment of the particular family of load patches (see Fig. 5.4) yields particularly informative modal vectors described in
terms of generalized cross-sectional centerline displacements and “radial” bulge degrees of freedom. Moreover, exploitation
of the generalized modal vectors and a corresponding generalized TAM mass matrix produces orthogonality and residual
kinetic energy matrices that do not suffer from singularities noted in Sect. 5.5 of this paper. These matters are discussed in
Appendix.

5.7 Concluding Remarks

Quantitative understanding of a system’s modal characteristics is gained by review of the detailed finite element model’s
modal kinetic and strain energy distributions, and modal effective mass (in addition to modal frequencies and geometric
mode shapes that are commonly referenced). Utilization of these metrics facilitates selection of the significant subset of
“target” modes (e.g., “body” modes) to be identified in a modal test, while ignoring or suppressing the many “insignificant”
breathing modes that commonly occur in shell-type structures. The modal kinetic and strain energy, and modal effective
mass metrics address the NASA criterion [2], which specifically notes that, “The goal of the modal survey test shall be to
measure and correlate all significant modes . ..”. It should be noted that the Air Force modal test criterion [1] calling for
measurement of all modes in the 070 Hz band is often relaxed through negotiation based on system complexities.
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Alternatives to “classical” Guyan reduction may improve quality of the analytically derived TAM mass matrix.
Specifically, the “modified” Guyan reduction process, employing load patches, produces a TAM mass matrix that satisfies
the generally accepted mode orthogonality criterion (less than 10 % off-diagonal coupling) for a selected “instrumentation”
DOF array. Other more general reduction strategies [9, 10], possibly the subject of a future paper, may also produce TAM
mass matrix improvements that are relatively insensitive to parametric uncertainties.

The concept of residual kinetic energy (RKE), introduced in an earlier paper [4], has been expanded for application
to the “modified” Guyan reduction and more general reduction strategies. RKE applied to the branched shell illustrative
example in this paper (a) appropriately separates significant “body” and shell breathing mode subsets, and (b) identifies
“instrumentation” and TAM mass matrix deficiencies and remedies.

A.1 Appendix: Exploitation of Generalized Modal Data

The modified Guyan reduction transformation relating “free” and “instrumented” DOFs, presented in Eq. (5.20), combines
two levels of coordinate transformation, namely,

{ur} = [Wro] {a} = [Wio] [Waa) (e} = [Wraly {ua) - (5.28)
And it is recalled that the explicit relationship between “instrumented” DOFs and “generalized” DOFs (see Eq. 5.19) is
fab = [ Wao] ™[9] {0} = [Waa] ). (5.29)
Employing the above transformation, the relationship between “instrumented” and “generalized” DOF structural modes is
[®a] = [Waa] [®a]- (5.30)
The “generalized” TAM mass matrix (based on Eq. 5.28),
[Moq] = [Pra]" Ml [Wi,]. (5.31)

does not have singularities that are present in [M,,]n, (see Eq. 5.21).
Therefore, the orthogonality check matrix, which is mathematically equivalent to the result in Eq. (5.24), is

[OR] = [CDQ]T [Mqq] [®] - (5.32)

In order to define modal kinetic energy and RKE relationships in terms of the “generalized” DOFs, the “free” DOF modes,
[®¢], must be expressed in terms of “generalized” DOFs. This is accomplished by noting from Eq. (5.28) that,

(] = [¥r] [ @] (5.33)
Solution for [®4] by weighted least squares is accomplished by the following manipulation
—1 T
[®a]; = [Maa]  [Wia]  [Me] (@], (5.34)
which is a more accurate representation than Eq. (5.30). The “generalized” residual error matrix is therefore,
[Rq] = [®a]; = [®a] (5.35)
and the modal kinetic energy and RKE in terms of “generalized” DOF are,
[KEq] = [Mgq®q] ® [®q].  [RKEq] = [MqRq] ® [Rq] (5.36)

The columns of [KE,] and [RKE,] are bounded by 1.0 (100 %) due to the fact that [M] is not singular.
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The generalized DOFs associated with the seven load patches per axial station for the branched shell structure represent
the following physically equivalent displacements: Centerline “X”, “Y”, “Z”, “©Ox”, “Oy”, “®7” (Torsion), Radial “Bulge”.
Tabular displays for six representative branched shell modes, expressed in terms of modal kinetic energy components are
presented below in Tables 5.7, 5.8 and 5.9.

Table 5.7 Branched shell kinetic energies for modes 1 (Y) and 2 (X)

Location Mode 1 (Lateral Y) Mode 2 (Lateral X)

Componer]t Station R Z Lateral X[ Lateral Y| Axial Z | Torsion | Bulge | Lateral X] Lateral Y| Axial Z | Torsion [ Bulge
1 20.00 0.00 0.68 0.68
2 20.00 -3.00 0.49 0.49
Skirt 3 20.00 | -10.00 0.34 0.34
4 20.00 | -17.00 0.12 0.12
5 20.00 | -24.00 0.01 0.01
6 20.00 | -27.00 0.00 0.00
7 19.60 -4.00 0.46 0.46
Lower 8 17.60 -9.50 0.38 0.38
Dome 9 1320 | -15.00 0.19 0.19
10 7.60 -18.50 0.06 0.06
11 2.00 -19.90 0.01 0.01
12 20.00 3.00 0.92 0.92
13 20.00 10.00 2.06 2.06
Shell 1 14 20.00 17.00 317 317
15 20.00 24.00 3.18 3.18
16 20.00 27.00 2.30 2.30
17 20.00 30.00 4.42 4.42
18 20.00 37.00 8.04 8.04
Shell 2 19 20.00 44.00 10.34 10.34
20 20.00 51.00 9.07 9.07
21 20.00 54.00 7.10 7.10
22 19.60 58.00 10.72 10.73
Upper 23 17.60 63.50 14.10 14.10
Dome 24 13.20 69.00 12.73 12.74
25 7.60 72.50 7.30 7.30
26 2.00 73.90 1.81 1.80

SumKE | 0.00 100.00 0.00 0.00 0.00 100.00 [ 0.00 0.00 0.00 0.00

Table 5.8 Branched shell kinetic energies for modes 11 (Torsion) and 24 (Z)

Location Mode 11 (Torsion) Mode 24 (Axial Z)
Componerjt Station R Y4 Lateral X| Lateral Y| Axial Z [ Torsion Bulge Lateral X| Lateral Y | Axial Z Torsion | Bulge
1 20.00 0.00 2.09 2.28
2 20.00 -3.00 1.60 1.40
Skirt 3 20.00 -10.00 1.21 1.03
4 20.00 -17.00 0.43 0.27
5 20.00 -24.00 0.04 0.02
6 20.00 -27.00 0.00 0.00
7 19.60 -4.00 1.92 1.02
Lower 8 17.60 -9.50 1.83 1.89
Dome 9 13.20 -15.00 0.88 1.80
10 7.60 -18.50 0.17 1.00
11 2.00 -19.90 0.01 0.23
12 20.00 3.00 2.58 1.89
13 20.00 10.00 4.93 3.86
Shell 1 14 20.00 17.00 6.46 5.19
15 20.00 24.00 5.63 4.58
16 20.00 27.00 3.72 2.96
17 20.00 30.00 6.75 5.45
18 20.00 37.00 10.69 8.75
Shell 2 19 20.00 44.00 11.87 9.80
20 20.00 51.00 9.10 7.66
21 20.00 54.00 6.53 5.02
22 19.60 58.00 8.63 7.84
Upper 23 17.60 63.50 8.20 10.38
Dome 24 13.20 69.00 3.94 9.31
25 7.60 72.50 0.77 5.14
26 2.00 73.90 0.03 1.19
Sum KE 0.00 0.00 0.00 100.00 0.00 0.00 0.00 99.96 0.00 0.00
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Table 5.9 Branched shell kinetic energies for modes 86 (bulge) and 146 (bulge)

Location Mode 86 (Axial+Bulge) Mode 146 (Axial+Bulge)
Component Station R Y4 Lateral X| Lateral Y| Axial Z | Torsion Bulge [ Lateral X| Lateral Y| Axial Z | Torsion Bulge
1 20.00 0.00 0.84 0.35 3.81 1.68
2 20.00 -3.00 417 0.01 1.21 1.08
Skirt 3 20.00 -10.00 3.02 0.20 0.88 2.1
4 20.00 -17.00 0.64 0.32 -0.01 1.51
5 20.00 -24.00 -0.10 0.06 -0.10 0.15
6 20.00 -27.00 0.00 0.00 0.00 0.00
7 19.60 -4.00 2.09 0.53 0.90 1.38
Lower 8 17.60 -9.50 10.23 0.26 0.40 1.15
Dome 9 13.20 -15.00 20.58 0.02 2.26 0.16
10 7.60 -18.50 13.87 0.00 4.50 0.00
11 2.00 -19.90 3.15 0.00 1.02 0.00
12 20.00 3.00 2.85 0.18 2.01 0.81
13 20.00 10.00 2.7 0.11 4.18 0.00
Shell 1 14 20.00 17.00 1.81 0.14 2.74 5155
15 20.00 24.00 0.61 0.15 0.33 9.77
16 20.00 27.00 0.17 0.15 0.00 9.74
17 20.00 30.00 0.12 0.19 0.16 9.33
18 20.00 37.00 0.01 0.24 2.04 5.94
Shell 2 19 20.00 44.00 0.30 0.24 3.61 0.31
20 20.00 51.00 0.85 0.32 2.22 0.35
21 20.00 54.00 -0.32 0.44 1.38 0.90
22 19.60 58.00 1.73 0.41 1.91 1.56
Upper 23 17.60 63.50 6.06 0.16 0.61 1.35
Dome 24 13.20 69.00 11.13 0.01 2.56 0.18
25 7.60 72.50 7.36 0.00 5.19 0.00
26 2.00 73.90 1.66 0.00 1.18 0.00
Sum KE 0.00 0.00 95.53 0.00 4.47 0.00 0.00 44.98 0.00 55.02
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Chapter 6
Experimental Modal Substructuring with Nonlinear Modal Iwan
Models to Capture Nonlinear Subcomponent Damping

Matthew S. Allen, Daniel Roettgen, Daniel Kammer, and Randy Mayes

Abstract This work proposes a means whereby weak nonlinearity in a substructure, as typically arises due to friction in
bolted interfaces, can be captured experimentally on a mode-by-mode basis and then used to predict the nonlinear response
of an assembly. The method relies on the fact that the modes of a weakly nonlinear structure tend to remain uncoupled so
long as their natural frequencies are distinct and higher harmonics generated by the nonlinearity do not produce significant
response in other modes. Recent experiments on industrial hardware with bolted joints has shown that this type of model can
be quite effective, and that a single degree-of-freedom (DOF) system with an Iwan joint, which is known as a modal Iwan
model, effectively captures the way in which the stiffness and damping depend on amplitude. Once the modal Iwan models
have been identified for each mode of the subcomponent(s) of interest, they can be assembled using standard techniques
and used with a numerical integration routine to compute the nonlinear transient response of the assembled structure. The
proposed methods are demonstrated by coupling a modal model of a 3DOF system with three discrete Iwan joints to a linear
model for a 2DOF system.

Keywords Reduced order modeling ¢ Friction ¢ Interface * Nonlinear modes * Complexification and averaging

6.1 Introduction

Experimental-analytical substructuring allows one to couple an experimentally derived model for a structure that is difficult
to model, with a finite element model for the rest of the assembly in order to predict the system’s response. While there
are countless compelling industrial applications, many of the systems that are most difficult to model, and hence where
experimental-analytical substructuring would be most beneficial, contain many interfaces with bolted joints. Interfaces in
built up structures are responsible for much of the damping in the assembly, and are the most common source of nonlinearity.
This work presents an extension of modal substructuring for this class of structure.

Recent works have shown that bolted interfaces can cause the damping in a system to increase by a factor of two or more
(see, e.g. [1-3]), while the effective natural frequency tends to change relatively little. Furthermore, under the conditions
outlined in [4] (simplistically that the joint forces and their harmonics are distinct from each modal frequency), the modes
of the structure tend to remain uncoupled, so that the structure can be modeled accurately using a collection of uncoupled,
weakly-nonlinear oscillators [5, 6]. This was thoroughly confirmed in [1] for an assembly of automotive exhaust components,
by exciting the structure at multiple locations and various force levels (in the micro-slip regime). A second investigation on
a cylindrical structure with bolted joints and nonlinear contact between foam and an internal structure also highlighted the
usefulness of this approach [7].

In this work we propose to use this class of model (e.g. uncoupled SDOF oscillators) to represent a subcomponent and
then to assemble that subcomponent to the rest of the structure of interest. Specifically, the set of nonlinear oscillators are
assembled using standard finite element assembly techniques. The assembled equation of motion and its Jacobian are then
used in a Newmark integration routine to predict the transient response of the assembled structure. The methods are tested
through simulations on a simple spring mass system. While the method is applicable for a wide range of nonlinear SDOF
oscillator models, this work uses a modal Iwan model for each subcomponent. This type of model accurately captures the
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power-law dependence of damping on amplitude that is frequently observed in experiments [1, 5, 8, 9]. Other SDOF models,
some of which may be simpler or less expensive to use, were evaluated in a recent study by the authors [7].

The paper is organized as follows. Section 6.2 outlines the approach used. In Sect. 6.3 the proposed techniques are
validated by deriving modal Iwan models for the three modes of a 3DOF system, which is then assembled to a linear 2DOF
system. The conclusions are then presented in Sect. 6.4.

6.2 Theoretical Development

In the most general case, the equation of motion for substructure A can be written as follows,

Ny
MUY+ O KA+ Y B (XA’d”ﬁl ' "¢’£Nf> =0 “v

k=1

where M4, C4 and K* are the N x N linear mass, damping and stiffness matrices and the kth scalar joint force,
I (XA, by B N/_) depends on the displacement vector x* and on its internal slider states ¢, ...d),/:N,_. The constant
vector f’}‘,k maps each scalar joint force f‘}‘,k to the points to which the joint is attached. For example, in the example that will
be discussed later, shown in Fig. 6.1 the first Iwan joint is between DOF 1 and ground so f;‘, = [ 10 O]T and the third Iwan

joint is connected between DOF 2 and 3, so f;‘j = [0 1-1 ]T. Similar equations could be written for substructures B, C,
etc. ...

When each mode of the substructure is represented as a modal Iwan model, the matrices M, C and K would be diagonal
and the kth joint force would depend on only one modal displacement.

We shall employ a primal formulation [10] to couple the substructures. Without loss of generality, consider the case
where substructure A will be joined to substructure B. The substructures can be coupled by writing constraint equations of
the following form,

A
B [XB} =0 6.2)
and then eliminating the redundant degrees of freedom using

[X/;] =1Lq (6.3)

X

L = null (B) (6.4)

X, '—»xz '—>x3
k k
N\ m "\ m N\ m > (o)

> Coupling DOF

k
m_/\/\/_m

’_’x4 ’—>x5

Fig. 6.1 Schematic of the discrete system used to validate the proposed substructuring procedure. (fop-left) Substructure A, (bottom-right)
Substructure B. Mass and stiffness proportional damping was added to simulate material damping (dashpots not shown)
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to obtain a set of independent (or unconstrained [11]) coordinates, q. The equations of motion for the coupled system then
become the following in terms of the coordinates q,

i (XA P - ¢1?,N_,-)

-~ e ~ A
Mij + Cq+ Kq+ LT | =1 - [f (t)} 65)

i ( o f,zv,) (1)

where

~ M4 0
M:LT[ OMB}L (6.6)

and similarly for C and K. Further details can be found in [10] or ([11], Chapter 9).

In order to simulate the response of the assembly, the unconditionally stable Newmark algorithm [12] is used (e.g. with
Bn = 0.25 and y = 0.5). This procedure was first developed by Simmermacher as reported in [8]. A Newton iteration loop is
used to adjust the displacement of the joint (and the internal slider states) so that the joint force is in dynamic equilibrium at
each time step. Specifically, if the displacement at the jth time step is denoted q;, then the residual is defined as.

Ny
St (L ol )

~ PN — (s
rj = Mg; + Cq; + Kq; + LT | T - [fB 8} ©D
Z ff,kfjl,;k (L‘lj’ ¢/§,1 e ¢/€N,~>
k=1
Then, the Jacobian is
Ny Ny T
DoUK || Dotk
Jj =M+ yAC + (A | K+ LT | 1 e L (6.8)
D EKT || DTk
k=1 k=1

where K/},k is the instantaneous stiffness of the kth Iwan joint and depends on the corresponding slider states, ¢,21 . ‘/{’f,zv-‘
The estimate of the acceleration, displacement and velocity at this time step are updated as follows. For the first iteration the
same procedure is used, only with r; = 0.

iij,new = qj - erj
qj,new = qj + At(l - V) qj—l j_ Viij,nevtf (69)
Qjnew = 4 + Al‘qj—l + %(At) (1 - 2ﬂN) iij—l + 2/3Niij,new

A A (pA \T
Note that LT |:fj ()k:| and LT |:f1 * (£ ’E)) g:| L, and similarly for substructure B, are simply constant matrices that map each

joint force onto the approprlate degrees of freedom in the assembled system. These matrices, and the assembled system
matrices M C and K are calculated in advance and only the joint forces and stiffnesses need to be updated in each iteration.

6.2.1 Iwan Joint

The preceding discussion is valid for a variety of joint models. In this work the Iwan model is used, so each joint can be
characterized by four parameters F;, Kt, x and B [13]. The first two parameters describe, respectively, the force at which
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the joint slips completely (macro-slip) and the stiffness of the joint when all sliders are stuck. The model exhibits energy
dissipation per cycle, D, that depends on magnitude of the displacement |x| in a power-law fashion as

D = R|x|*t* (6.10)

where R is a constant. By analogy with a linear system, the effective damping ratio { of an SDOF system with mass m and
with an Iwan joint in parallel with a spring of stiffness Kj is the following,

=D/ (manda)n|x|2> (6.11)

where w,?> = (Ko + K1) /m and wg = w,+/1 — ¢2. These relationships together with a Hilbert transform were used to fit an
Iwan model to simulated measurements of each substructure. For further details, see [1, 5].

6.3 Simulated Application

The proposed approach was applied to the system depicted in Fig. 6.1.

Substructure A consists of three masses connected by linear springs of stiffness k in parallel with Iwan elements
with the parameters shown in Table 6.1. The other system parameters are m = 10 kg, k=5 N/m, C* = 0.002(M* + K*),
C? =0.002K5. The goal is to simulate a test on Substructure A to determine modal Iwan models for each mode of that
substructure, and then to utilize modal substructuring to predict the response of the assembly when the masses are joined as
indicated with x3 = x4.

6.3.1 Estimating Modal Iwan Models for Substructure A

The linear mode shapes [¢; ¢» @3] of Substructure A were assumed to be known (e.g. having been measured from a low-
amplitude linear test). Note that in such a test each Iwan joint acts as linear spring with stiffness K. Then, to identify a
nonlinear model for Substructure A, an experiment was simulated in which a half-sine impulse with a 0.1 s long period and
amplitude of 100 N was applied to mass 3. The Newmark routine was used to determine the transient response and then the
response of each mode was estimated using q = ¢ ~'x. Note that the mode matrix used in this calculation corresponds to the
linear, low amplitude modes that include the stiffness of the joints. The FFT Q,(w) = FFT(g,(t)) of each modal response is
shown in Fig. 6.2. A weak nonlinearity, as is typical of a structure with bolted joints, is visible near each peak.

The simulated measurements were then post processed using the procedure outlined in [1] to identify modal Iwan
parameters for each mode. Briefly, each mode’s response was band-pass filtered and a smoothed Hilbert transform was
used to estimate the instantaneous phase and amplitude as a function of time. The derivative of the phase gives the damped
natural frequency, wq &~ wy, as a function of time, and the derivative of the amplitude gives {(f)w,(f), from which the
damping can be determined. Then the frequency and damping were plotted versus amplitude to determine the modal Iwan
parameters. To assure that the power-law behavior was accurately captured, the low-level material damping {, was subtracted
from the estimated damping by visually inspecting the damping versus amplitude curve. Then, a line of the following form

¢ (10:)) = RIQ "' (6.12)

where R and ¥ are constants, was fit to the log damping versus log amplitude using least squares. Note that macro-slip was
not observed in any of these simulations (and must be avoided for the modal Iwan model to retain its validity). Hence, the
joint stiffness cannot be measured and so it was simply assumed to be such that the frequency of each mode shifts by 0.05 Hz

Table 6.1 Parameters of Iwan

o Iwan joint | Fs Kr X B
Joints in Substructure A
x;—ground | ION |5SN/m |—0.5 |0.1
X|—Xp IN 4N/m |—0.2 |0.01

Xo—X3 100N [3N/m |—0.8 |1
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Fig. 6.2 Fast Fourier transform of the modal response of substructure A

Table 6.2 Parameters of modal Iwan models of substructure A, estimated from simulated measure-

ments
Modal Iwan models (substructure A) | (Fs) (K1) | x B fo o
Mode 1 0.886 |0.171 | —0.023 |0.0519 0.0683 | 0.0032
Mode 2 17.7 0.629 | —0.641 |0.132 0.184 | 0.00161
Mode 3 0.508 |0.959 | —0.564 | 0.000833 |0.268 |0.00172

The parameters in parenthesis are not fully relevant since the modal Iwan model is only valid if the
response is low enough to avoid macro-slip

in macro-slip. This and the linear natural frequency were then used to find K, and then these values were used to solve for
a value of Fg and B such that the power law strength, R, in the Iwan model was equal to that obtained from the curve fit.
In essence, the model used is equivalent to a Palmov model [14], since macro-slip is never activated. In all cases the modal
Iwan model was found to fit the measured modal response very well, as illustrated for Mode 1 in Fig. 6.3. The modal Iwan
parameters obtained for each mode are shown in Table 6.2.

The modal Iwan model is a SDOF model that could be integrated in response to an applied load (mapped onto the mode
of interest) to compute the transient response. For example, the 100 N half-sine pulse used to derive the parameters for
Mode 1 was applied to its modal Iwan model and the transient response was computed using the Newmark integrator. The
transient response thus computed is compared to the “measured” modal response q;(t) in Fig. 6.4. While the computed and
“measured” responses do eventually go out of phase due to small frequency errors, the simulation captures the amplitude
and frequency of the “measured” response very well over the entire range of response amplitude. Thus, we can proceed to
use this modal Iwan model with confidence.

The same procedure was repeated for Modes 2 and 3 and the resulting modal Iwan parameters are shown in Table 6.2.
For reference, the true natural frequencies and damping ratios of the linearized system are f,0 e = [0.0686, 0.185, 0.269] Hz
and o e = [0.00255, 0.001532, 0.001548]. The identification procedure has estimated the frequencies quite accurately, but
there are errors of up to 25 % in some of the damping ratios. While these errors could have been reduced by integrating
longer time histories and using a finer time step to improve the accuracy of the Newmark integrator, this level of error is
probably to be expected in a real experiment.
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Fig. 6.3 (blue) Damping ratio and natural frequency estimated using the Hilbert transform, and (black) those of a modal Iwan model fit to the

measurements. (red dash-dot) Curve fit ¢ (|Q,]) = R|Q,| 1 (o the damping ratio vs. amplitude, which was used to estimate the modal Iwan
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Fig. 6.4 (blue) True transient response of Mode 1, g;(#), due to the half-sine impulse f(¢). (green dash-dot) Estimated modal response g (f)
computed using the modal Iwan model and the modal force ¢, Tf(r)

6.3.2 Substructuring Predictions

The substructures were assembled and the low-amplitude, linearized modal properties were calculated by solving an
eigenvalue problem with the assembled mass and stiffness matrices including the linearized joint stiffnesses. The damping
ratios were then calculated using the light damping approximation [11] (preserving the classical real modes) and are
compared with the true values in Table 6.3. Because these modal properties were computed with the joints linearized, they
include only the linear viscous damping that was used to represent the material damping and thus there is no effect from
friction in the joints. The results show that the frequencies were accurately estimated, but the damping ratios show errors that
are of a similar level as the errors in the estimates of the modal damping ratios of Substructure A.
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Table 6.3 Linear natural frequencies and damping ratios predicted by substructuring

True Estimated
Freq. f; Freq. f; Estimated
Mode (Hz) (Hz) % Error True §, & % Error
1 0.04502 0.044842 -0.40 0.00156 0.001948 24.92

0.1287 0.12852 -0.14 ' 0.001185 0.001307 10.31
0.17712 0.17629 -0.47 | 0.001402 0.001465 4.49
0.26524 0.26423 -0.38  0.001524 0.00171 12.19
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Fig. 6.5 Transient response of the 4DOF assembly to a 100 N impulse. (solid lines) True response, (dashed lines) Substructuring prediction, using
the modal Iwan model for Substructure A, (blue) x(t), (green) xs(t). The panes on the left and right show a magnified view near the beginning and
end of the response

The response of the assembly to a 100 N input was then computed, and the responses x; (¢) and xs(¢) are shown in Fig. 6.5.
The substructuring predictions agree very well with the true transient response, both in frequency and damping. Perhaps
further insight can be gained by considering the FFT of the response, projected onto each linearized mode of the assembly,
as shown in Fig. 6.6. This shows that the substructuring predictions contain the correct frequency content for each mode,
including small distortions which cause the modal responses to show slight coupling. (The modal responses shown were
estimated my multiplying the responses with the inverse of the linear, low-amplitude mode shape matrix.)

Most previous research, and industry practice is based on a linear approximation. Hence, it is also informative to consider
whether the predictions shown above improve upon a linear approximation. An example of such a comparison is shown in
Fig. 6.7, for an impulsive input with a 500 N amplitude. The linear approximation greatly overestimates the amplitude of the
vibration, producing a response whose RMS is a factor of two larger (+99 % error) than the true RMS response. Of course,
the level of error incurred by using a linear model depends on the strength of the forcing. For the 100 N impulsive input
mentioned previously the linear model is in error by only 38 %. At higher load levels the errors would be larger.

6.4 Conclusions

This work has proposed to model a nonlinear substructure with strong damping nonlinearities (and weak stiffness
nonlinearity) due to friction at bolted interfaces using a modal approach. The linear modes are assumed to be preserved
and to diagonalize the system, so that each mode’s response depends only on its displacement, velocity, and on the slider
states used to capture its nonlinearity. These nonlinear modal models can then be assembled using standard techniques
and the equations of motion of the assembly can then be integrated using the Newmark algorithm or some other suitable
integrator.

The methods were demonstrated by estimating a modal Iwan model for each mode of a 3DOF system from simulated
transient response measurements due to an impulsive load. Then these modal Iwan models were used to create a nonlinear
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Fig. 6.6 FFT of the transient response of the 4DOF assembly to a 100 N impulse. (solid lines) True response of each mode, estimated from the
true response using q = @, 'x with the linear (low amplitude) modes, (dashed lines) Substructuring prediction, using the modal Iwan model for
Substructure A
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Fig. 6.7 Transient response, xs5(¢), of the 4DOF assembly to a 500 N impulse. (solid blue) Nonlinear substructuring prediction, (dashed red)
Response predicted by linear substructuring

model for the substructure that was then assembled to a linear 2DOF system. The proposed approach was then used to
integrate the assembled equations subject to various impulsive loadings, producing estimates of the response that were found
to be quite accurate. The accuracy seemed to be primarily limited by the accuracy with which the modal Iwan model could
be fit to the simulated measurements. Of course, if the forcing amplitude became so large that one of the joints exhibited
significant macro-slip then the modal approximation breaks down and errors were observed (although, for brevity, no such
cases were reported here).
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Chapter 7
A Modal Model to Simulate Typical Structural Dynamic Nonlinearity

Randall L. Mayes, Benjamin R. Pacini, and Daniel R. Roettgen

Abstract Some initial investigations have been published which simulate nonlinear response with almost traditional modal
models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element
was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal
degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which
exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on
the amplitude of vibration. Use of low level modal test results in combination with high level impacts are processed using
various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then
fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared
with high level experimental data for various nonlinear element assumptions.

Keywords Nonlinear system identification ¢ Nonlinear simulation ¢ Structural dynamics * Modal model

Nomenclature

d(t)  Decay function for damping as function of time

4 Modal damping ratio

1) Frequency in radians per second

¢  Hilbert transform

0(r) Phase as a function of time

X Iwan parameter related to power law damping

7 Modal filter vector

F Subscript for Fourier transform

+ Superscript indicating the Moore-Penrose pseudo-inverse of a matrix
A
c
d

Amplitude
Damping coefficient
Subscript for damped
dof  Degree of freedom
f Frequency in cycles/sec
F Force
FRF Frequency response function
H Frequency response function matrix
k Stiffness coefficient
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K.  Linear stiffness for Iwan model

lin Subscript for linear

n Subscript for natural

nl Subscript for nonlinear

| Modal response matrix

(0] Analytic signal created with use of Hilbert transform

q Modal dof

sdof  Single degree of freedom
t Time

U Known force vector

W Weighting matrix

x Physical displacement dof
P Mode shape matrix

7.1 Introduction and Motivation

A large class of structural dynamic system responses are mildly nonlinear in stiffness (a few percent modal frequency change)
and significantly nonlinear in damping (hundreds of percent damping ratio change) as a function of amplitude of vibration.
We desire to experimentally test in a way to identify such a system and then simulate the nonlinear response analytically.
Such systems will typically be linear at low level excitation. At higher levels of excitation the resonant frequencies typically
decrease slightly and the apparent damping can increase up to 300 %. Structures with joints typically have this softening
behavior. Low level linear models used to simulate the response may over-predict the nonlinear response by tens to hundreds
of percent. Consider a frequency response function (FRF) from the hardware used in this work due to a high level and a
low level impact as shown in Fig. 7.1. The low level FRF peak is almost a factor of 2 greater than the high level FRF peak.
Occasionally the resonant frequency will go up slightly and the apparent damping will go down with an increase in the
amplitude. We desire to be able to simulate both softening and stiffening behavior. Segalman [1] explored the possibility of
utilizing a modal Iwan approach to capture spatially distributed nonlinear energy dissipation with a two degree-of-freedom
(dof) analytical model. Deaner [2] fleshed out the concept with a nonlinear beam model, and with jointed beam hardware.
He used a modal approach with a four parameter Iwan element in parallel with a linear spring and damper to achieve a
satisfactory simulation. We expand on his approach.

Frequency Response Function
9000 T T T

= | 0w Level Impact
®  High Level Impact
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Fig. 7.1 Drive point FRF magnitude—low level vs. high level impact force
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The approach utilizes a pseudo-modal model. We assume that a superposition of the modal responses can be multiplied
by the mode shape matrix to estimate the response at physical dof. Inherent in this approach is the assumption that the
mode shapes do not change with response amplitude, and that the modal dof do not interact. Our approach begins with the
standard modal model using a linear spring and damper for each modal mass. The spring and damper are identified in a
standard low-level modal impact test. Then we assume that nonlinear elements can be connected in parallel with the standard
linear elements. A high level impact test on the nonlinear structure provides data for fitting the nonlinear parameters. Three
different nonlinear elements were examined in this work: (1) a four parameter Iwan in parallel with a linear stiffness and
damper; (2) Feldman’s FREEVIB stiffness and damping; and (3) cubic polynomials of stiffness and damping as a function of
response amplitude. We set these models on approximately the same footing by identifying six parameters in each model for
each mode of vibration. After the elements were identified, we simulated a high level structural response and propagated the
modal responses to all the measured dof and compared simulations to measured responses. A key portion of the success of
this approach comes from a modal filter that can filter out all the modal responses of the structure except the single mode of
interest. The single dof modal filtered response is used to identify the nonlinear parameters. The Iwan and Feldman models
also require that the Hilbert Transform of the modal response be computed as a step in the identification process. The cubic
stiffness/damping model does not have this requirement.

In Sect. 7.2 the test hardware and instrumentation is described along with the test approach. Signal preprocessing of modal
filters, band-pass filters and the Hilbert Transform is presented in Sect. 7.3. Section 7.4 describes the three nonlinear modeling
options and their parameter identification processes. In Sect. 7.5 the simulation results are compared against measured high
level data, and observations associated with each model are given. Section 7.6 provides conclusions.

7.2 Experiment

7.2.1 Hardware Description

A solid model cross-section of the test hardware chosen for this analysis is shown in Fig. 7.2 and some of the physical
hardware is shown in Fig. 7.3. The foam, mass, and compression plate are placed in the cylinder and a hydraulic press is
used to compress these internals to a specified pre-load as measured by three load cells mounted on the mass. The threaded
ring is then screwed in to hold the assembly together. The plate-beam is then mounted on the forward face of the cylinder
using eight bolts. The cylinder and plate-beam are 6061 T6 aluminum, the rigid urethane foam is Coastal Enterprises PBLT-
20 nominal 20 pound/ft3, and the mass is steel.

7.2.2 Test Set-Up

The test hardware shown in Fig. 7.4 was softly suspended using two bungee cords to approximate a free—free boundary
condition and instrumented with 100 mV/g accelerometers. External triaxial accelerometers were mounted at 15 locations
shown in Fig. 7.5. The internal mass was instrumented with ten accelerometer channels to capture its rigid body motion.

Threaded

Cylinder Ring

Plate-Beam ompression

Plate

Foam

Fig. 7.2 Full system solid model
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Load Cells

Fig. 7.3 Physical test hardware

To Support Structure

Fig. 7.4 Test hardware suspension

5001

5003

Fig. 7.5 External geometry, side view

Two series of hammer impact tests were conducted on the hardware described above. The first minimized the nonlinear
response by applying low level inputs with peak forces of approximately 23 N at the three locations shown in Table 7.1.
These data were used to extract parameters for the linear modal model of the hardware. The second set of tests excited
nonlinearities with inputs at these same locations but with much higher peak forces: 180 and 400 N for the radial and axial
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Table 7.1 Excitation information

Input DOF | Description Low level peak force (N) | High level peak force (N)
301Y- Axial input at tip of beam 23 400
5002R- Radial input at aft end of can in the stiff direction of the beam |23 180
5003R- Radial input at aft end of can in the soft direction of the beam |23 180

Table 7.2 Linear modal parameters® ®

Low Level | High Level
Model £ 1 ¢ | fi | ¢
(Hz) | (%cr) | (Hz) | (%ocr)
119 | 0.36 | 116 | 0.95 | -3 | 167 5003R- 1* beam bend in X

160 | 0.21 | 158 | 0.60 | -1 | 190 5002R- 1* beam bend in Z

276 | 246 | 273 | 3.60 | -1 | 46 5002R- | Torsion of internal mass

10 | 282|210 | 280 | 1.92 [ -1 | -9 5003R- Translation in X of internal mass

11 (302] 234 | 298 | 240 | -1 3 5002R- Internal mass off-axis twist

12 | 503 | 0.67 | 491 | 1.23 [ -3 | 84 301Y- Axial mode of beam Y

13 592 | 2.02 | 570 | 291 | -4 | 44 301Y- Rotation of internal mass about Z
14 [635] 2.00 | 630 | 227 | -1 | 14 5002R- Rotation of internal mass about X
15 1699 | 1.26 | 692 | 144 | -1 | 14 301Y- Axial mode of internal mass Y

16 | 734 | 127 | 732 | 138 [ 0 | 9 5003R- | Foam mode X

17 1759 | 1.13 ] 758 | 1.16 | O 3 5002R- Foam mode Z

Afy | B

(%) | (%) Reference Shape Description

#Modes highlighted in green were considered nonlinear
PRigid body modes not shown

hits, respectively. 400 N was not used for the radial inputs because this force level over-ranged the drive point accelerometers.
The high level data was used to first identify which modes were nonlinear (see Sect. 7.2.3) and secondly to extract parameters
for the nonlinear models discussed in Sect. 7.4.

7.2.3 Preliminary Modal Results

The Synthesize Modes And Correlate (SMAC) program by Mayes and Hensley [3] was used to extract two sets of modal
parameters from the low and high level impact data using a real modes approximation in Table 7.2. Rigid body mode shapes
were calculated from solid model mass properties.

The low level modal parameters were used to create the linear modal model used in the later sections of this report.

The high level modal parameters were used to determine which modes should be modeled as nonlinear. Since damping
values extracted from measured data can have 10 % uncertainty, the heuristic used in this work was that any mode with a
damping shift of greater than 30 % was declared nonlinear. Modes 7-9, 12, and 13 were thus selected to be modeled as
nonlinear.

7.3 Signal Processing

To develop a nonlinear modal model, our approach requires the structural response be separated into the individual modal
responses. This requires some type of filter that can transform multiple sensor measurements into modal coordinates. Once
these modal responses are calculated, further processing is required to aid nonlinear parameter identification. The following
sections detail this two-step procedure. Section 7.3.1 describes three different types of modal filters, discusses the advantages
and disadvantages of each, and concludes by selecting the modal filter used for this work. Section 7.3.2 discusses band-pass
filtering and the Hilbert Transform which are then used to extract frequency and damping information from the modally
filtered data that will be later used to calculate parameters for two nonlinear models.
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7.3.1 Modal Filtering

This section describes three modal filters that can be used to transform measurements in physical coordinates to modal
responses. We desire a modal filter such that

V% = g, (7.1)

where ¢; is the i™ modal dof, column vector X contains measured responses, and W is the vector of weights transforming the
measured responses to the modal response. Three modal filters are investigated.

7.3.1.1 SMAC Modal Filter

The SMAC modal filter [4] operates directly on the FRFs. If one operates on (7.1) in the frequency domain and divides by
the input force, then

V' H, = H, (7.2)
where H; is now a vector of measured FRFs and H,; is an analytically calculated single dof (sdof) FRF with frequency and

damping as extracted from the high level impact data. Columns for every frequency line are added to H, and H,; creating a
matrix of H, and a vector of the analytical FRF Hy,. Transposing and isolating the modal filter on the left side yields

¥ = H/*H, (7.3)
where the superscript * represents the pseudo-inverse. Hence, the SMAC modal filter is obtained with the measured FRFs
and an analytical sdof FRF constructed using the extracted frequency and damping from the high level linear modal parameter
extraction.
7.3.1.2 Full Modal Filter
We denote the Full Modal Filter (FMF) as one derived from extracted mode shapes. The modal substitution can be written as

X = ®q (7.4)

where @ is a matrix of all rigid body and elastic extracted mode shapes in the frequency band. By pre-multiplying by the
pseudo-inverse of the mode shape matrix one obtains

otx =7 (7.5)
so one can recognize the set of all modal filters in the ¥ matrix as

v =¢" (7.6)
Thus the full modal filter is derived from extracted mode shapes and rigid body mode shapes. In this work, the elastic mode
shapes were extracted from the low level impact data.
7.3.1.3 Single Modal Filter

The single modal filter (SMF) was derived using only one mode shape in (7.5) as

[ S (1.7)
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FFT of Filtered Response, 13" Mode
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Fig. 7.6 Modal filter results for mode 13 at 592 Hz

so that
V. =, (7.8)

The FMF and SMAC modal filters inherently suppress the response of all modes but one. However, the SMF does not, so it
relies on the frequency being isolated and band-pass filtering to suppress other modes.

7.3.1.4 Modal Filter Results and Comparison

All three modal filters were evaluated for each mode extracted from the experimental system. Consider the results for mode
13 at about 590 Hz shown in Fig. 7.6. Neither the SMF or FMF can remove the effects of the 491 Hz axial mode like the
SMAC modal filter.

However, the SMAC modal filter does not always perform better. Consider the modal filter results for mode 9 at 273 Hz
in Fig. 7.7. Notice the small shoulder in the SMAC modal filter result (cyan) at 282 Hz. The 282 Hz mode was not removed
as well with the SMAC modal filter as with the other two. Note that all three modal filters failed to get rid of the mode at
302 Hz. The effects of these contaminating peaks will be discussed in later sections of this work.

Although it did not perform better for every single mode, the SMAC modal filter generally suppressed all other modes
besides the one desired better than the FMF and SMEF, so it was chosen for this work.

7.3.2 Hilbert Transform and Band-Pass Sensitivity

Once we have obtained a single degree of freedom response from a combination of modal and band-pass filtering, two of
the nonlinear methods require quantifying the damping and frequency as a function of response amplitude. The procedure
for accomplishing this closely follows the work from [5, 6]. In this work, the Hilbert Transform is computed and a cubic
polynomial is fit to the time varying amplitude and phase. This approach fits the modal impulse response, (), to the
following functional form,

§(1) = ¢ cos [0(7)] (7.9)
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Fig. 7.7 Modal filter comparison mode 9

where d(t) and 6(¢) are each cubic polynomials in time and are, respectively, the decay and phase of the time varying response
model. In order to calculate the time-varying natural frequency and damping, the analytic signal, Q(), is used:

O(t) = §(1) + i H (§(1) (7.10)

where 7 represents a Hilbert Transform. The decay, d(¢), is fit to the natural log of the amplitude of the analytic signal,
d(t) =1n |Q(z‘) \, and the phase, 0(¢), is fit to the unwrapped angle, 6(f) = arg [Q(t)]

The phase of the analytic signal gives the oscillation frequency, so the damped natural frequency was defined as its
derivative in [5],

wa() £ 6(1) (7.11)

which one can readily show gives the desired result for a linear time invariant system. Similar expressions can be found for
w, and C.

1
2

on(t) 2 (wda)z +d (r)) 7.12)
a A0
(o 2 20 (7.13)

The nonlinear stiffness and damping of each mode can now be evaluated based on changes in damping ratio and frequency
with respect to time. The instantaneous damping and frequency can be plotted against velocity and displacement amplitude
to bring these parameters into a response based form rather than time based.

It is essential to reduce the signal to a single degree of freedom before completing the above process else the envelope
and instantaneous phase will be distorted by interference of other modes. In order to assist the modal filter in eliminating
unwanted frequency content, a band-pass filter is applied to the modal response. A forward-backward filter was utilized for
this supplemental filter which maintained the timing of the original response signal. A brief sensitivity study was completed to
investigate the influences of various passbands on each mode. In this study, passbands were varied from 310 % of the natural
frequency to as high as £50 %. For each passband and modal response, the time-varying damping and natural frequency (Eqs.
(7.12) and (7.13)) were plotted versus time to determine the consequences of narrower/wider passbands. The objective was
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to find a passband for each mode that successfully eliminated unwanted frequency content without distorting the damping.
For this structure the authors have selected to use a 50 % passband for all modes which was robust for every mode when
using the SMAC modal filter. Note that the passband used here is not universal and might need modification for a different
system.

7.4 Nonlinear Models

This work compared the capabilities of three different models/methods to capture the nonlinear dynamics of the test object:
Iwan, FREEVIB (FV), and Restoring Force Surface (RFS). A brief description of each model is provided in the sub sections
below. As mentioned in Sect. 7.2.3, only those modes that had a damping change greater than 30 % between the low and
high-level input tests were modeled as nonlinear.

In order to have a fair comparison of their capabilities, each of the three aforementioned models were parameterized with
six parameters to capture the dynamics. This quantity was selected as it matches the number of parameters used in the Iwan
model.

7.4.1 Modal Iwan Model

As discussed in [5, 7] each mode can be modeled with a single degree of freedom system as a modal coordinate. Each modal
degree of freedom will be linked to ground with a linear spring and damper. In order to capture the nonlinearity in each mode
we then add a four parameter Iwan element in parallel with the linear spring and damper. This element can be described as a
joint force as shown in Fig. 7.8.

The system is very similar to a standard modal coordinate set-up but with the nonlinear joint force adding complexity due
to the nonlinearity of each mode. The equation of motion for the system now takes the form of

§(1) + Cq(t) + Kooq(t) = @ F oy + F; (7.14)

where the nonlinear force in the joint, Fj, is a function of four parameters, [Fs, K, ¥, B]. Fs is the slip force or the force
required to begin macro-slip. Kr is the stiffness in the joint related to the nonlinear frequency shift from linear conditions to
macro-slip. ¥ is related to the exponent in a power-law relationship between damping and amplitude in the macro-slip regime.
Finally, B defines the shape of the dissipation curve near the transition from micro to macro-slip. These four parameters can
be obtained from experimental measurements as outlined in [5].

In this work data were obtained solely in the linear and micro-slip regimes of response. Thus some of the parameters
became more difficult to estimate. The stiffness in the joint, Kr, is defined as the change in stiffness as shown in (7.15)

Kr = 0> — (0, — Aw,)* (7.15)

Fig. 7.8 Schematic of SDOF for
Iwan model modal coordinate
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Damping vs. Velocity Amplitude
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Fig. 7.9 Damping ratio versus velocity amplitude—mode 7

where w, is the natural frequency when the joint is completely stuck and Aw,, is the shift in natural frequency when the joint
is in macro-slip. Our experiment did not reach macro-slip so this can be used as a bound knowing that Aw, must be larger
than that seen in the experiment or the results will prove dissatisfactory.

The parameter y can be determined directly from the damping ratio versus velocity amplitude curve. ¥ defines the power
law exponent on the dissipation versus velocity amplitude curve. In Fig. 7.9 the blue curve shows the measured damping
ratio calculated using (7.13) from the Hilbert Transform. Using this curve one must then subtract off the linear damping ratio
(depicted in magenta) from the measured curve. This removes the linear damping portion from the damping ratio and leaves
just the nonlinear contribution. This curve can then be fit on a log-log scale in order to determine the slope which is equal to
X+ 1L

As discussed in [8] the damping ratio is fit to the form of (7.16). C, is calculated as the intercept of the power law fit from
Fig. 7.9.

x+1

¢ (q) = Calq| (7.16)
In [7], Segalman defines dissipation in a similar form as shown in (7.17).
Dissipation = R|q|*? (7.17)

In Ginsberg’s text [9], the relationship between damping ratio and dissipation can be used to solve for the coefficient R.

Dissipation
= — (7.18)
m2w wawy|q|
R = C2n0! w0, (7.19)

Based on additional 4-parameter Iwan model definition from [7] one can solve for the remaining unknown parameters j
and F5 using an assumed Kr along with extracted values for x and R. Using these 4-parameters the joint force can now be
calculated and integrated. The identification procedure described above was performed on the nonlinear modes specified in
Sect. 7.2.3 and the results are provided in Table 7.3.
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Table 7.3 Modal Iwan model Mode |y B | Fs Ky Fuin | Cin
parameters 7 —0.65 |0 |245 2.10E+05 | 119 | 0.0036
8 —0.31 |0 | 39 [291E405 | 160 |0.0021
9 —022 |0 | 51 |9.92E405 | 276 |0.0246
12 —0.77 |0 | 52 |9.69E+ 05 | 503 |0.0067
13 —0.79 |0 | 108 |224E+06 | 592 |0.0202
Fig. 7.10 Schematic of SDOF %
for FV modal coordinate %
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7.4.2 FREEVIB

This nonlinear model was developed by Feldman in [10] and bases its theory on the free vibration of a nonlinear system.
Unlike the Iwan model, FREEVIB combines the linear and nonlinear restoring elements as seen in Fig. 7.10.
The governing equation of motion is in the following form:

§(t) +2c (Ag) () + k (Ag) q(1) =0 (7.20)

where ¢ and k are the instantaneous damping and stiffness coefficients as a function of amplitude, A,, which is the Hilbert
envelope of the displacement. Note that, using the nomenclature from Sect. 7.3.2,A;, = ¢?®_ With the assumption that c(Ay)
and k(A,) vary slowly, the Hilbert Transform is utilized to create (7.20) in terms of the analytic signal of ¢(?), i.e.,

O(t) + 2¢ (A,) O(®) + k (A,) O(r) = 0 (7.21)

where Q(t) comes from (7.10). Given that the 1st and 2nd derivatives of the analytic signal can be written in terms of Q(?), the
envelope, and instantaneous phase, a closed-form, nonparametric function can be derived for ¢ and k. Using the definitions
for the envelope and instantaneous phase from Sect. 7.3.2 and ignoring negligibly small terms, the instantaneous damping
and stiffness terms are determined to be:

c(t) = —d(t) — 2621((?) (7.22)
k(1) = wg* (1) (7.23)

where w,4(?) is the instantaneous damped natural frequency defined in (7.11).
Typically, damping is associated with velocity and therefore it is desired to derive an expression for ¢ in terms of velocity.
If small terms are neglected, the velocity envelope, Aq, can be written as

A, = 0, (7.24)
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Now c(#) and k(#) can be plotted against A,(7) and A,(?), respectively, to get amplitude-dependent instantaneous damping and
stiffness coefficients. For the work described herein, it was desired to have all nonlinear models utilize the same number of
parameters. Therefore, instead of conducting the nonlinearity identification step described in [10], the stiffness and damping
were estimated using quadratic polynomials (resulting in linear, quadratic, and cubic terms in the equation of motion).

c(A;) =co+aA, + czAfI (7.25)

k(Ag) = ko + kA, + koA] (7.26)
When implementing FREEVIB in simulation, we calculated the instantaneous damping and stiffness as:

c(q) = co+ 1 || + 24 7.27)

k(gi) = ko + ki |gi| + kagi® (7.28)

where g; and ¢; are the displacement and velocity at time step i. The absolute values are used to preserve the sign of the
signal.

FREEVIB requires that the data used in the nonlinear parameter identification can only include the response after
the excitation is removed. Since the measured force was filtered and never reached a value of identically zero, this was
approximated as when the filtered force had dropped below 0.5 % of its maximum value. Depending on the post-processing
and degree of nonlinearity of the measurements, a significant amount of time may have elapsed prior to this event occurring.
This could result in the exclusion of a significant portion of the nonlinear response from the analysis, reducing the accuracy
of the extracted parameters. This effect can be seen in the results for mode 9.

The identification procedure described above was performed on the nonlinear modes specified in Sect. 7.2.3 and the
results are provided in Table 7.4.

7.4.3 Restoring Force Surface

This method has been extensively researched and refined with several permutations. Reference [11] contains an extensive
synopsis of the past variances and applications of the Restoring Force Surface (RFS) method. Similar to the Iwan model, the
version of the RFS model structure adopted for this work is shown in Fig. 7.11 where the linear elements are in parallel with
the nonlinear ones.

The foundation of RFS is in the Newtonian equation of motion:

§(0) + Fr (q(1),4() = F(1) (7.29)
where F, (q, i]) represents the damping and stiffness forces (called the restoring forces) and F(¢) is the excitation force.

Assuming the acceleration and excitation force are measured, then at every time instant, the restoring force is also known.
We write F, as in the following:

Fr (q(0.4(0) = coq(®) + 1 [4(0)] 4(0) + e24’ (1) + kog(0) + k1 1g(0)] q(1) + ko (1) (7.30)

Table 7.4 FREEVIB damping and stiffness coefficients

Mode | ¢, Cy Co k, ky ko

7 —6.12E+03 | 301 2 2.08E + 13 —1.77TE409 | 5.60E 4 05
8 —1.01E+ 04 |454 043 | 2.63E+ 13 —1.98E+09 |1.01E+ 06
9 —149E406 | 1.15SE404 39 —229E416 | 149E+ 11 2.79E + 06
12 —144 30 24 6.91E+ 13 —1.04E+ 10 |9.80E + 06

13 4.57E + 04 —1.96E 403 | 95 —1.87E+15 | —1.53E+ 10 |1.31E+ 07
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Fig. 7.11 Schematic of SDOF
for RFS modal coordinate
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where ¢y, 3, k1, and k» are constants. Since ¢y and ky are already known from the low level modal tests, (7.29) is rearranged to

(&]

e . C . .
[|q!qq3 Iqlqcf] kzl =F —§—coq—kogq (7.31)

ko

Or

[P] = [U] (7.32)

where the time-dependency associated with each row has been omitted for clarity. Recall that [P] and [U] are processed
measurements and that there is a row for each time sample. Thus (7.32) should be written as

p -0 (7.33)

We obtained the best results by taking the Fourier transform of each column of P and U giving

c
Cy 1
Pr| 2| =Ur (7.34)
1

ky
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Table 7.5 Restoring force surface damping and stiffness coefficients

Mode |c, c Co k, k; ko

7 —1.36E+03 | 367 5 1.69E + 13 | —1.5E+09 |5.56E + 05
8 —3.77E+03 | 579 4 1.52E+ 13 |—1.8E+09 | 1.01E+ 06
9 —1.94E+05 6.63E+03 85 |6.14E+14 |—1.5E+ 10 3.0l1E+06
12 —5.35E+02 | 299 42 |149E4 14 |—1.9E4 10 | 1.00E 4 07
13 —324E+04 |333E+03 150 442E+15 —1.6E+11 | 1.38E+07

Note that in order to yield real coefficients, P must be reconfigured to

_ real (Pr)
Pr= |:imaginary (P}-):| ’ (7.35)

U; must be similarly restructured. Pre-multiplying U by the pseudo-inverse of P; results in the least-squares estimate for
Ci, C2, kl, and kz.

We obtained good results by applying a weighting matrix to (7.34) near resonances. If the weighted bandwidth is taken to
be £5 % of the frequency of the resonance, this method gave better parameters than the time domain results from (7.33).

Cl
(&)}
ki
ko

WP~ =WUr (7.36)

where W is the block diagonal weighting matrix. For the Restoring Force Surface results in Sect. 7.5.1, this weighted
frequency domain approach was utilized with a weight of 100 applied to the narrow resonance bands and 1 elsewhere.

Note that acceleration, velocity, and displacement must all be known (estimated or measured). For this work, acceleration
was obtained from the modal filtered measured accelerations and the other two states were estimated by integrating in the
frequency domain. The first step was to band-pass filter the modal acceleration as prescribed in Sect. 7.3.2. The velocity
and displacement in the frequency domain were then calculated by dividing this acceleration by iw and —w?, respectively,
followed by band-pass filtering using the same filter that was applied to the modal acceleration.

The identification procedure described above was performed on the five nonlinear modes, and the results are provided in
Table 7.5.

7.5 Results and Observations

This section compares the results of each of the three nonlinear modal models to the actual nonlinear measured data. First,
a discussion of the simulations used to create the analytical modal responses for linear and nonlinear modes is presented
followed by a comparison to measured data in physical coordinates. Discussions of features of each method will conclude
this section.

7.5.1 Simulation Results and Observations

The three pseudo-modal models with 17 modes were excited with simulated modal forces corresponding to the measured
high level impacts from the three different locations. The modal responses were extended to the physical dof using the linear
mode shape matrix extracted from low level modal tests using (7.4). These responses were compared against the measured
high level data in the plots below. Note that the line labeled “Linear” is the response of a linear model that used the low-level
linear parameters from Table 7.2 for all 17 modes.

A representative sample of results are presented. Figure 7.12 compares the linear model response with the measured data
by considering the primary singular value of the complex mode indicator function (CMIF). The CMIF compresses all the
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Multi-reference CMIF, Low-Level Linear Model vs Measured Data
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Fig. 7.12 Multi-reference CMIF, linear model versus measured data, max singular value only
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Fig. 7.13 Multi-reference CMIF, nonlinear models versus measured data, max singular value only

responses from all three force impacts into one plot. This plot illustrates that the linear model over-predicts the response from
a high level impact; the three main modes of the system (7, 8, and 12) are over-predicted by almost 100 %. Additionally, the
linear model is slightly too stiff.

Figure 7.13 shows the primary singular value of the multi-reference CMIF of the high-level measured data and the
corresponding predictions of the three nonlinear models. All models are able to predict the high-level test data better than the
linear model, with the exception of FV’s 273 Hz response. Only the Iwan and RFS models will be addressed further, since
the FV model over-predicts two modes. Note that for declared linear modes, the three model results overlay, an expected
result since all three pseudo-modal models were the same for the linear modes.
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Fig. 7.15 Axial drive point response, RFS versus measured

The time history plots of Figs. 7.14, 7.15, 7.16 and 7.17 reinforce the results from Fig. 7.13. The drive point response to
the axial input (Figs. 7.14 and 7.15) is dominated by mode 12. The Iwan model was able to accurately replicate the measured
data in Fig. 7.13, and there is a good agreement in the time response shown in Fig. 7.14. Results are similar for the RFS
approach with cubic springs and dampers in Fig. 7.15.

The Iwan and RFS models comparably predicted the drive point response from the radial input in Figs. 7.16 and 7.17.
Neither achieved the proper amplitude of the initial acceleration spike, but they simulate the rest of the time history well.



7 A Modal Model to Simulate Typical Structural Dynamic Nonlinearity 73

Drive Point Response, 5002R-
T I T

T T T T T T
400 + Measured
== |wan

l

200 - n

-200 - n

-400 - -

Acceleration

-600 - n

-800 - n

-1000 - n

-1200 - n
I I I I I I I I I

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Time (sec)

Fig. 7.16 Radial drive point response, Iwan versus measured
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Fig. 7.17 Radial drive point response, REFS versus measured

7.5.2 Discussion

Although not readily apparent from the figures, it is important to note the significant role of the Hilbert Transform in the
Iwan and FV models. While an extremely valuable and versatile tool that provides great qualitative insight into the frequency
and damping variation, it can also have adverse effects depending on the characteristics of the data. In the presence of step
changes in signal amplitude or frequency, the envelope and instantaneous phase produced by the Hilbert Transform will have
some overshoot and settling time characteristics [12]. Given that this work utilized impact data which has a large step-like
change in amplitude, the envelopes and instantaneous phases extracted from the Hilbert Transform of the measured data were
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distorted during the initial portion of the response. These errors consequently influenced the polynomial fits for the envelope
and instantaneous phase upon which the Iwan and FV models depend.

Another aspect worth mentioning is the interplay of the Hilbert Transform and the quality of the modal filter. In addition
to the transient effects mentioned above, any non-targeted modal peaks that are not adequately attenuated in the modally-
filtered response can produce ripples throughout the entire envelope. These ripples influence the polynomial fits to the Hilbert
Transform and hence the nonlinear parameters of the Iwan and FV models. In extreme cases when the modal filter cannot
eliminate a nearby mode (e.g. mode 9), the envelope and instantaneous frequency (and hence the nonlinear parameters) are
distorted by the non-suppressed mode. This phenomenon contributed to the inaccurate response of mode 9 predicted by FV,
see Fig. 7.13. Note that FV results could be improved with user interaction, see Sect. 7.6.4. The Iwan model avoids these
struggles with mode 9 because the Iwan element is placed in parallel with a known linear spring and damper. Rather than
letting the Hilbert transform fit these linear terms the Iwan element is constrained to be in a reasonable range when the
parameters are being determined. The RFS method can also suffer from non-targeted poorly attenuated modal peaks in the
modally-filtered response, but does not rely on the Hilbert Transform, which eliminates effects from the Hilbert distortions
as well as the extra steps of calculating and fitting the Hilbert Transform.

As one can see from Fig. 7.9, the process for subtracting the linear damping and fitting a line to the log plot of damping
vs. amplitude are not completely straight-forward. Significant trial-and-error was required to iterate to the final high quality
solutions that were achieved.

7.6 Conclusions

The conclusions here will address the model assumptions, test approach, signal pre-processing and the three nonlinear
models.

7.6.1 Nonlinear Pseudo-Modal Model Assumptions

The assumptions that the mode shapes do not change and that the modal degrees of freedom do not interact appear valid to
a reasonable approximation for this hardware testing. The hardware showed the typical structural dynamic nonlinearity of
softening spring and increasing damping with amplitude for at least five modes. Other modes were considered linear enough
that they were approximated as linear. No modes exhibited the hardening spring effect that is occasionally seen in some
hardware.

7.6.2 Nonlinear Pseudo-Modal Model Testing Approach

The testing approach included a low level impact modal test to obtain the normal linear modal parameters from three input
locations. The key effort here was to provide as perfect as possible co-linear force input with the driving point accelerometer
so that the linear experimental modal model is extracted with accurate modal mass and accurate mode shapes scaling. The
low level modal test is a very standard test in the industry and quite tractable for most laboratories. The high level impact is
just a repeat of the low level test at higher levels, and does not require much extra effort once the test is set up. Some care is
required to make sure the sensors do not overload and corrupt the data. The maximum response capability of the drive point
accelerometer was a limiting factor in this test.

7.6.3 Signal Pre-Processing with Modal Filter, Band Pass Filter and Hilbert Transform

The quality of the modal filtering has a direct impact on the quality of the nonlinear parameter identification for all three
nonlinear model forms. When one observes the modal filtered signal in the frequency domain, one can usually discern with
the eye whether modes at other frequencies have been removed. Nonlinear parameter results tend to be very good with a sdof
modal filtered response and worse as more modes are observed in the supposedly filtered response.
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The Full Modal Filter and the SMAC modal filter each had certain modes on which they excelled. The SMAC modal filter
was better at removing extra modes than the Full Modal Filter in general. The Single Modal Filter was much worse than the
other two.

Band-pass filtering was very helpful for improving the Hilbert Transform results. Without band-pass filtering the Hilbert
Transform results were much more oscillatory and nebulous, usually due to other modes that were not completely filtered.
Band-pass filtering was not helpful if the pass band was too narrow (e.g. 5 % of the resonant frequency). It could be tailored
to each mode for optimum results, but generally a band-pass of 30-50 % of the resonant frequency was robust.

The Hilbert Transform is required for the FREEVIB and Iwan approaches to obtain frequency and damping variation
as a function of amplitude. If the modal filtered response was not uni-modal, these functions of frequency and damping
were oscillatory, hampering the fitting. The Hilbert Transform tends to have some early-time oscillations of frequency and
damping at the very high amplitudes. The spurious oscillations at the high amplitude can be problematic, since that is the
region most important to the nonlinear model.

7.6.4 Nonlinear Pseudo-Modal Model Forms

We contend that all three methods would give satisfactory nonlinear simulations with enough user interaction. For these
studies, the Iwan model and the RFS frequency fit model gave satisfying simulation results. The FV model was not quite as
good, but with some user interaction these results could be improved. We did not iterate on the FV fits near as much as the
Iwan fits. Six parameters were chosen for each mode for each method to put them on equal footing. This was initially based
on the Iwan approach, which uses a linear spring and damper and a four parameter Iwan. With this many parameters, any of
the model forms could be used for this nonlinear hardware.

The Iwan model is the most utilized in simulating structural dynamic joint nonlinearities in the recent past. Its form
appeared to be a very good representation for the nonlinearities where damping increased and frequency decreased with
amplitude, which seems to be typical of many joints. We considered the simulations with the Iwan models very good. The
disadvantages we noted with the Iwan were: (1) a great deal of user interaction (and iteration) was required to get good Iwan
parameters; (2) the understanding of those parameters is complex compared to FREEVIB stiffness and damping or cubic
springs and damping; (3) the inability to simulate constant damping with softening or decreased damping with stiffening; (4)
a strong dependence on the quality of the Hilbert Transform results.

The Feldman FREEVIB model is relatively easy to understand. We modified the nonparametric approach by fitting cubic
polynomials to the functions of frequency and damping vs. amplitude to keep it on the same six parameter footing as the other
two model forms. FREEVIB requires free response ringdown data, which works well with impact testing as was performed
on this hardware. Simulation results are very dependent on the results of the Hilbert Transform and the modal filter. We found
that parameters for mode 9 were not well quantified using FV, causing significant over-prediction for this mode. However,
if we removed the band-pass filtering which allowed us to include earlier time data while still maintaining the free-vibration
requirement, we could get better results. Additionally, using the FMF (which performed better for mode 9, see Fig. 7.7)
instead of the SMAC modal filter for this particular mode also resulted in a better prediction of the measured data. We
surmise that capturing the most nonlinear response early in time and eliminating non-target modes is critically important to
FV. We did not include the improved results since the data processing (different modal filter and/or exclusion of band pass
filtering) was inconsistent with the other two nonlinear models.

The cubic springs and dampers as a function of amplitude are easy for an engineer to understand. The RFS approach in
the frequency domain focused on the frequency lines around each resonance gave results on par with the best results from
iterative Iwan fits. The RFS frequency approach also has other significant advantages over the other models because it does
not require the Hilbert Transform or extensive user interaction. Because of the ease of understanding the polynomial type
nonlinearity, elimination of Hilbert Transform step, low user interaction and the final quality of the nonlinear simulation,
RFS with cubic nonlinearities emerged as our favored approach.

Notice This manuscript has been authored by Sandia Corporation under Contract No. DE-AC04-94AL85000 with the U.S.
Department of Energy. The United States Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish
or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
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Chapter 8
Optimal Replacement of Coupling DoF's in Substructure Decoupling

Walter D’Ambrogio and Annalisa Fregolent

Abstract Substructure decoupling consists in the identification of a dynamic model of a structural subsystem, starting from
an experimental dynamic model (e.g. FRFs) of the assembled system and from a dynamic model of a known portion of it (the
so-called residual subsystem). The degrees of freedom (DoFs) of the assembled system are partitioned into internal DoFs
(not belonging to the couplings) and coupling DoFs. To achieve decoupling, a negative structure opposite to the residual
subsystem is added to the assembled system, and compatibility and equilibrium conditions are enforced at interface DoFs.
Interface DoFs can include coupling DoFs only (standard interface), additional internal DoFs of the residual subsystem
(extended interface), subsets of coupling DoFs and internal DoFs (mixed interface), or a subset of internal DoFs only (pseudo
interface). As shown in previous papers, the use of a mixed interface allows to replace some coupling DoFs (e.g. rotational
DoFs) with a subset of internal DoFs. Furthermore, qualitative criteria for an appropriate selection of the internal DoFs
used to replace unwanted coupling DoFs are stated. In this paper, a procedure to optimally replace coupling DoFs with
internal DoFs is developed, using either the Frequency Response Function (FRF) or the transmissibility between internal
and coupling DoFs. The procedure is tested on an assembled structure made by a cantilever column with two staggered short
arms (residual substructure) coupled to a horizontal beam (unknown substructure).

Keywords Optimal DoF selection * Substructure decoupling ¢ Rotational DoFs ¢ Mixed interface ¢ Experimental
dynamic substructuring

8.1 Introduction

Substructure decoupling represents a special case of experimental dynamic substructuring. Specifically, it consists in the
identification of the dynamic behaviour of a structural subsystem, starting from the dynamic behaviour of both the assembled
system and the residual subsystem (the known portion of the assembled system). Decoupling is a need for subsystems that
cannot be measured separately, but only when coupled to their neighboring substructure(s), such as fixtures needed for
testing. In Frequency Based Substructuring, Frequency Response Functions (FRFs) are used instead of modal parameters to
avoid modal truncation problems. A general framework for dynamic substructuring is provided in [1].

A well known issue in experimental dynamic substructuring is related to rotational DoFs: rotational FRFs are quite
difficult to be obtained experimentally, both from translational FRFs [2] and by measuring directly the rotational
responses [3, 4]. However, whilst rotational FRFs are needed when coupling together different subsystems, they are not
essential in substructure decoupling as shown in [5, 6].

To achieve decoupling, a fictitious subsystem that is the negative of the residual subsystem is added to the coupled
system, and appropriate compatibility and equilibrium conditions are enforced at interface DoFs. Interface DoFs may include
coupling DoFs only (standard interface), additional internal DoFs of the residual subsystem (extended interface), subsets of
coupling DoFs and internal DoFs of the residual subsystem (mixed interface), or a subset of internal DoFs of the residual
subsystem only (pseudo interface).

As shown in previous papers [5, 6], the use of a mixed interface allows to replace some coupling DoFs (e.g. rotational
DoFs) with a subset of internal DoFs. In fact, the actions exchanged through the connecting DoFs, and specifically through
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rotational DoFs, are already embedded in each FRF of the assembled system. Furthermore [7], qualitative criteria for an
appropriate selection of the internal DoFs used to replace unwanted coupling DoFs are stated.

In this paper, a procedure to optimally replace coupling DoFs with internal DoFs is developed, using indicators based
either on the Frequency Response Function (FRF) or on the transmissibility between internal and coupling DoFs. Such
indicators are tested with satisfactory results on an assembled structure made by a cantilever column with two staggered
short arms (residual substructure) coupled to a horizontal beam (unknown substructure).

8.2 Direct Decoupling Using Dual Assembly

The unknown substructure U (Ny DoFs) is a portion of a larger structure RU (Ngy DoFs). The known portion of the assembled
structure RU, defined as residual substructure R (Ng DoFs), is joined to the unknown substructure through a number of
couplings (see Fig. 8.1). The degrees of freedom (DoFs) can be partitioned into internal DoFs (not belonging to the couplings)
of substructure U (u), internal DoFs of substructure R (r), and coupling DoFs (c).

The goal is to find the FRF of the unknown substructure U starting from the FRFs of the assembled structure RU and of the
residual substructure R. The dynamic behaviour of the unknown substructure U can be extracted from that of the assembled
structure RU by taking out the dynamic effect of the residual subsystem R. This can be accomplished by considering a
negative structure, i.e. by adding to the assembled structure RU a fictitious substructure with a dynamic stiffness opposite to
that of the residual substructure R and satisfying compatibility and equilibrium conditions. The dynamic equilibrium of the
assembled structure RU and of the negative substructure is expressed in block diagonal format as:

ZRU 0 uRU fRU gRU
= 8.1
where:
o ZRU 7R are the dynamic stiffness matrices of the assembled structure RU and of the negative structure, respectively;
» uRU, uR are the vectors of degrees of freedom of the assembled structure RU and of the negative structure, respectively;

« fRU_{R are the external force vectors on the assembled structure RU and on the negative structure, respectively;
» gRU oR are the vectors of disconnection forces between the assembled structure and the negative structure (constraint

forces associated with compatibility conditions).

Equilibrium of disconnection forces and compatibility must be considered at the interface between the assembled structure
RU and the negative structure: such interface includes not only the coupling DoFs between substructures U and R, but
includes as well the internal DoFs of substructure R (the blue part of the structure in Fig. 8.1). However, it is not required to
consider the full set of these interface DoFs, because it is sufficient that the number of interface DoFs be not less than the
number of coupling DoFs n.. Therefore, several options for interface DoFs can be considered:

 standard interface, including only the coupling DoFs (c¢) between substructures U and R;
» extended interface, including also a subset of internal DoFs (i € r) of substructure R;

Coupling DoFs ¢

Internal DoFs u

Residual
subsystem R

Internal DoFs r _

Assembled

Coupling DoFs ¢
system RU

Unknown subsystem U

Fig. 8.1 Scheme of the direct decoupling problem
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¢ mixed interface, including subsets of coupling DoFs (d C c¢) and internal DoFs (i C r);
» pseudo interface, including only internal DoFs (i C r) of substructure R.

The use of a mixed or pseudo interface may allow to ignore rotational coupling DoFs by substituting them with translational
internal DoFs.

The compatibility condition at the (standard, extended, mixed, pseudo) interface DoFs implies that any pair of matching
DoFs ufU and uR, i.e. DoF [ on the coupled system RU and DoF m on subsystem R must have the same displacement, that is
ufU —uR = 0. Let the number of interface DoFs on which compatibility is enforced be denoted as Nc.

The compatibility condition can be generally expressed as:

[BRU BR] {“RU} -0 (8.2)
C C uR

where each row of B¢ = [BRY B | corresponds to a pair of matching DoFs. Note that B¢ has size N¢ x (Ngy + Ng) and is,
in most cases, a signed Boolean matrix.

It should be noted that the interface DoFs used to enforce the compatibility condition need not to be the same where
equilibrium of disconnection forces is required, provided that compatibility is ensured by disconnection forces applied at
such DoFs. If the compatibility and the equilibrium DoFs are not the same, the approach is called non-collocated [8]. The
traditional approach, in which compatibility and equilibrium DoFs are the same, is called collocated.

Let Ng denote the number of interface DoFs on which equilibrium is enforced. The equilibrium of disconnection forces
implies that their sum must be zero for any pair of matching DoFs belonging to the equilibrium interface, i.e. gtV + gf = 0.
Furthermore, for any DoF k on the coupled system RU (or on the residual subsystem R) not belonging to the equilibrium
interface, it must be gfV = 0 (gf = 0). Overall, the previous conditions can be expressed as:

LR’
{LE}

where the matrix Lg = [LRY LY ] is a Boolean localisation matrix. Note that the number of columns of L, is equal to the
number Ng of equilibrium interface DoFs plus the number Nyg of DoFs not belonging to the equilibrium interface. Note that
Nye = Ngy + Ng — 2Ng: in fact, the number of DoFs belonging to the equilibrium interface must be subtracted once from
Nry and once from Ng. Therefore, the size of Lg is (Ngy 4+ Ng) X (Ngy + Ng — Ng).

By gathering Egs. (8.1)—(8.3), one obtains the so-called 3-field formulation, from which several assembly techniques can
be devised, such as: dual assembly [1, 9] where equilibrium is satisfied exactly by defining a unique set of disconnection
force intensities; primal assembly [1, 10] where compatibility is satisfied exactly by defining a unique set of interface DoFs;
hybrid assembly [11] where both compatibility and equilibrium are satisfied exactly. It can be shown [11] that whenever
N¢ = Ng, i.e. the number of compatibility and equilibrium DoFs is the same, all assembly techniques provide the same
result. In the sequel, only the dual assembly is recalled.

g

gRU
R § =0 (8.3)

8.2.1 Disconnection Force Intensities Provided by Dual Assembly

In the dual assembly, the equilibrium condition gf + gf = 0 at a pair of equilibrium interface DoFs is ensured by choosing

gtV = —A, and gR = A,. If a Boolean matrix B, related to interface equilibrium DoFs is defined similarly to B¢, the overall
interface equilibrium can be ensured by writing the disconnection forces in the form:
T
gRU ~ BRU 5
g® BR' '

where A are Lagrange multipliers corresponding to disconnection force intensities and Bg is a Ng X (Ngy + Ng) matrix.
Since there is a unique disconnection force intensity A, for any pair of equilibrium DoFs, the interface equilibrium is satisfied

automatically for any A, i.e.
LRU7” gRU LRU7” [ grRUT
ER R(~— ER " r |A=0 (8.5)
Lg g Lg BR
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In the dual assembly, the total set of DoFs is retained, i.e. each interface DoF appears twice. Since Eq. (8.5) is always
satisfied, the 3-field formulation reduces to:

ZRU ¢ uRU BEUT fRU
[ 0 —ZR:| k(7| B A:{fR} ®.1%
E
uRU
[BgU Bg] uR} =0 (8.2)
or in more compact form:

Zu+Bg'A =f (8.1%)

Bcu=0 (8.2)

To obtain A, Eq. (8.1*) can be written:

u=-Z"Bg’A +Z7'f (8.6)

i.e., by noting that the inverse of the block diagonal dynamic stiffness matrix Z is:

ZRU o 77 HRU ¢
[ 0 —ZR:| =7Z'=H= [ 0 —HR:| (8.7)
where HRU and HR are the FRFs of the assembled structure and of the residual substructure, Eq. (8.6) becomes:
u=—HBg'A + Hf (8.8)
which substituted in Eq. (8.2) gives:
BcHBg'A = BcHf (8.9)
from which the vector of disconnection force intensities A is found as:
A = (BcHBE") " BcHf (8.10)

To obtain a determined or overdetermined matrix for the generalized inversion operation, the number of rows of B¢ must
be greater or equal than the number of rows of B, i.e.

Nc = Ng = n. (8.11)

8.2.2 FRF and Transmissibility Indicators

The set of disconnection forces is not unique since it depends on the choice of equilibrium and compatibility DoFs. However,
disconnection forces must be able to cancel constraint forces at the coupling DoFs. If coupling DoFs include rotational DoFs,
constraint forces include moments about some given axes. Several sets of disconnection forces can be devised:

* the trivial set, consisting of disconnection forces acting at the coupling DoFs and opposite to the constraint forces;
* non trivial sets of disconnection forces acting at different DoFs but able to cancel the constraint forces at the coupling
DoFs.
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In the former case, disconnection forces may include disconnection moments opposite to the constraint moments. In the
latter case, disconnection moments can be substituted by disconnection forces applied to internal DoFs, but able to provide a
moment about the rotation axes. Therefore, a qualitative criterion for the selection of internal DoFs to replace coupling DoFs
that are difficult to observe, such as rotational DoFs, was proposed as [7]:

Internal DoFs must be such that disconnection forces that are applied to them are able to control coupling DoFs, e.g., if
one of the coupling DoFs is a rotation about a given axis, the line of action of the substituted force must not intersect such
axis.

To devise a quantitative indicator for the optimal selection of a set of disconnection forces, a theoretical model of either
the coupled structure or the residual substructure must be available: in fact, unmeasured DoFs (e.g. rotational DoFs) are
required to set up any such indicator. A model of the residual substructure can be built more easily than a model of the
coupled structure, and it is therefore preferred.

With reference to the case when unmeasured coupling DoFs are rotations, the rotation ¥, at a coupling DoF c¢ due to a
force f; acting at any given internal DoF i and to a moment M, acting at the coupling DoF, can be written as:

¥ = H.f; + H.eM, (8.12)

Possible indicators are:

« the rotation ¥, at an unloaded coupling DoF ¢ (M, = 0) for a force f; at any given internal DoF i, leading to the frequency
response function H,;, which can be denoted as FRF indicator:

= H.i(w) (8.13)

fil®) |y, =

¢ the moment M, at a blocked coupling DoF ¢ (. = 0) determined by a force f; at any given internal DoF i, leading to a
sort of force transmissibility T,;, which can be denoted as Transmissibility indicator:

Hci (60)
" He(o)

= Ti(w) (8.14)

Jfiw)

The FRF indicator can be also evaluated by using a truncated modal expansion, whilst the use of a truncated modal expansion
for the Transmissibility indicator produces bad results around the zeros of H..

The proposed indicators are frequency dependent. However, it is believed that the low frequency range is the most
significant since it accounts for the static behaviour which is at the origin of qualitative criterion stated previously. The
estimation of the static FRF indicator can be performed using a truncated modal expansion:

(")w(’)

H(w = 0) = Z ve (8.15)

61)2

where N, is the number of used modes, wc(-r) is the amplitude of mode r at DoF ¢, m, is r-th modal mass and w, is the r-th
eigenfrequency.
The estimation of the static Transmissibility indicator can also be performed using a truncated modal expansion:

(r)w(r)
r=1 mrwrz

T2
r=1 My @;
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8.2.3 Prediction of the FRF of the Unknown Subsystem

The FRF of the unknown subsystem U can be obtained by back-substituting A in Eq. (8.1%), and by isolating u at the left
hand side:

u= (H — HBg” (BcHBE")" BCH) f (8.17)
which is in the form u = Hf, so that the FRF of the unknown subsystem U is:
HY = H - HBg/ (BCHBET)+ BcH (8.18)

With the dual assembly, the rows and the columns of HV corresponding to compatibility and equilibrium DoFs appear
twice. Furthermore, when using an extended or mixed interface, HY contains some meaningless rows and columns: those
corresponding to the internal DoFs of the residual substructure R. Obviously, only meaningful and independent entries are
retained.

8.3 Test Bed

The assembled system is an aluminium tree structure (Fig. 8.2). The residual substructure R is a cantilever column with two
staggered short arms and the unknown substructure U is a horizontal beam. The horizontal beam is bolted to the top of the
column, involving both translational and rotational DoFs. The geometrical dimensions are shown in Table 8.1. The cross
section is 40 mmx8 mm for all beams, with the short side along the z-direction.

The experimental FRFs of the assembled system RU up to 2000 Hz are obtained by applying impact excitation and
measuring the resulting accelerations along z-direction at seven locations (3, 6, 9, 10, 11, 13, 20), as shown in Fig. 8.3. For

|
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Fig. 8.2 Sketch of the test structure

Table 8.1 Geometrical a b c d e I
dimonsi
imensions (mm) 540 420 |60 100 | 240 | 600
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Fig. 8.3 Assembled system

the residual subsystem R (column) the experimental FRFs are similarly measured at five locations (3, 6, 9, 10, 11), as shown
in Fig. 8.4. Coupling DoFs are: 11z, 113, and 119, that is one translational DoF and two rotational DoFs.

A detail of the bolted junction between the beam and the column is shown in Fig. 8.5. Finally, to check decoupling results,
FRFs are measured also at three locations (11, 13, 20) of the unknown subsystem U (beam), supported by an inflated rubber
tube, shown in Fig. 8.6, giving rigid body eigenfrequencies well separated from the first flexible mode of the beam.

Measurements are performed by placing the accelerometers at the underside of each (sub)-structure. In order to obtain a
complete FRF matrix, as required by the decoupling technique, impact excitation is sequentially provided on all DoFs at the
topside of each (sub)-structure.

To compute the indicators that are required for the optimal selection of the location of disconnection forces, an FE model
of the residual substructure is built using beam elements. The mechanical properties of the structure are: E = 7.0 - 10! N/m?,
p = 2700 kg/m?, modal damping ¢ = 0.005. Inertance FRFs are obtained from the FE model at DoFs 1z-11z, 11%, and
119, shown in Fig. 8.2: among them, DoFs 11z, 11%, and 119, are the coupling DoFs, DoFs 1z—10z are the internal DoFs
of the residual substructure R. Table 8.2 shows the natural frequencies of the residual substructure, obtained from the initial
FE model and identified from the measured FRFs. In order to improve the correlation between experimental and FE natural
frequencies, a simple model updating is performed by tuning the stiffness of two rotational springs acting on DoFs 9, and
vy of the fixed joint. The natural frequencies obtained using the updated model are also shown in Table 8.2: the three lowest
natural frequencies are in perfect agreement, and the agreement between higher natural frequencies is anyway improved.
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Fig. 8.4 Residual subsystem

8.3.1 Analysis of FRF and Transmissibility Indicators

Since rotational DoFs at the junction between the residual subsystem and the unknown subsystem are not measured, an
analysis of FRF and Transmissibility indicators is performed to select the optimal DoFs that should be used to substitute
DoFs 119, and 119,.

Figures 8.7 and 8.8 show the FRF indicators Hyyy,; and Hjyy,; computed by Eq. (8.13), showing the propensity of a force
applied to DoF i to excite a rotation on Dofs 117, and 119, respectively. From Fig. 8.8 it can be noticed that a force should be
applied either to DoF 9z or to DoF 10z in order to excite Dof 11%,: the effect of a force applied to a different DoF is several
order of magnitude lower especially in the low frequency range. By applying a force either to DoF 9z or to DoF 10z, DoF
114, is sufficiently excited, as confirmed by the observation of Fig. 8.7. The same conclusions can be drawn by observing
Table 8.3 which shows the static FRF indicators: in order to excite DoF 114, it is essential to apply a force either to DoF 9z
or to DoF 10z.

Figures 8.9 and 8.10 show the Transmissibility indicators T'19,; and Ty i computed by Eq. (8.14), showing the
propensity of a force applied to DoF i to produce a moment about Dofs 113, and 119, respectively. From Fig. 8.10 it
can be noticed that a force should be applied either to DoF 9z or to DoF 10z in order to produce a moment about DoF 11:
the effect of a force applied to a different DoF is several order of magnitude lower. By applying a force either to DoF 9z
or to DoF 10z, a significant moment about DoF 117, is produced, as confirmed by the observation of Fig.8.9. The same
conclusions can be drawn by observing Table 8.4 which shows the static Transmissibility indicators: in order to produce a
moment about DoF 119, it is essential to apply a force either to DoF 9z or to DoF 10z.
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Fig. 8.5 Detail of the bolted junction

Fig. 8.6 Unknown subsystem

Table 8.2 Natural frequencies of the residual substructure

Mode 1 2 3 4 5 6 7 8 9

Initial model 16.40 | 109.63 | 144.01 | 376.67 | 549.15 | 763.61 | 1219.28 | 1256.53 | 1764.07
Experimental | 13.51|89.04 | 124.56 | 314.65 | 450.22 | 658.82 | 989.98 | 1053.01 | 1507.24
Updated model | 13.51 | 89.03 | 125.65 | 340.22 | 533.96 | 680.65 | 904.98 | 1129.27 | 1637.79

8.3.2 Decoupling

85

The FRFs of subsystem U can be determined by the procedure described previously and summarized in Eq. (8.18), where
compatibility and equilibrium DoFs are defined case by case. A collocated approach is adopted in which compatibility and
equilibrium DoFs are the same. Only mixed interfaces are considered. FRFs to be used in decoupling can be either the raw

FRFs or can be obtained by a curve fitting procedure. Raw FRFs are used.
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The number 7, of coupling DoFs is 3 so that it must be Ng > n, = 3. Some tests using mixed interfaces with No = N = 4
are performed.

First, a mixed interface including the coupling DoF 11z and the internal DoFs 3z, 6z and 9z is used. As shown previously,
a force applied to DoF 9z is able to excite the coupling DoF 11, whilst forces applied to DoFs 3z, 6z and 9z are all able to
excite the coupling DoF 114,. Therefore

RU RU RU RU R R R ,R
Uy, Ug, Ugy Uy, Uz, Ug, Ug, Upyp,

1 0 0 O -1 0 0 O

bo_n |0 1 0 0 0-1 00 ©19)
STl 0 1 ol 0 0-1 0 '
0 0 0 1| 00 0-I
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Table 8..3 .Sta.tic FRE indicators DoFi | Hyy (@ =0) | Hyp (@ = 0)
(values indicating which DoFs | 5 2
should be selected are Z 9e-05 6.8¢-08
highlighted in bold) 2z 9.1e-05 4.9¢-08
3z 1.8e-04 2.4e-08
4z 3.0e-04 1.0e-07
5z 4.5e-04 7.4e-08
6z 6.3e-04 8.6e-08
7z 8.4e-04 1.2e-07
8z 1.1e-03 3.8e-07
9z 1.1e-03 2.5¢-04
10z 8.4e-04 2.3e-04
11z 1.3e-03 5.9e-07
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Fig. 8.9 Transmissibility indicator Ty, ; fori = 1z...11z
Tal?le 8.4 Static t.ran.smi.ssibility DoFi | Typi(@=0) | Tiip.i(w = 0)
indicators (values indicating | o6 '03 3 )05
which DoFs should be selected 2z -be- -5€-
are highlighted in bold) 2z 2.0e-02 9.8e-06
3z 4.0e-02 4.8¢-06
4z 6.7e-02 2.0e-05
5z 1.0e-01 1.5e-05
62 1.4e-01 1.7e-05
7z 1.8e-01 2.4e-05
8z 2.4e-01 7.6e-05
9z 2.4e-01 5.1e-02
10z 1.8e-01 4.7¢-02
11z 3.0e-01 1.1e-04

The FRF of the unknown substructure U is shown in Fig. 8.11: the peak around 1000 Hz is not well described and some

other peaks are shifted towards higher frequencies.

Another mixed interface including the coupling DoF 11z and the internal DoFs 3z, 9z and 10z is used. Forces applied to
DoFs 9z and 10z are able to excite the coupling DoF 114, whilst forces applied to DoFs 3z, 9z and 10z are all able to excite
the coupling DoF 119,. B¢ and Bg are built similarly to the first case. The FRF of the unknown substructure U is shown in
Fig. 8.12: the peak around 600 Hz is shifted forward and the FRF around it is scattered. However, the peak around 1000 Hz

is very well described.
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Fig. 8.12 HIUIZ’“Z: measured (blue solid line), computed using coupling DoF 11z and internal DoFs 3z, 9z, 10z (red astrerisks)

A new set of attempts is performed using mixed interfaces including only 3 DoFs. A mixed interface that includes the
coupling DoF 11z and the internal DoFs 3z and 9z is used. A force applied to DoF 9z is able to excite the coupling DoF 113,
whilst forces applied to DoFs 3z and 9z are all able to excite the coupling DoF 117,. The FRF of the unknown substructure
U is shown in Fig. 8.13: the result is quite clean with no significant drawbacks.

It can be noticed that, although in all previous cases the selected internal DoFs comply with the directions provided by
FRF and Transmissibility indicators, the quality of results is not always the same. This can be ascribed to systematic errors
that affect measured FRFs, and can not be easily estimated.

However, if the selected internal DoFs do not comply with the FRF and a transmissibility indications, results are much
worse. For instance, a mixed interface that includes the coupling DoF 11z and the internal DoFs 3z and 6z is used: in this
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Fig. 8.14 H{ 211;- measured (blue solid line), computed using coupling DoF 11z and internal DoFs 3z, 6z (red astrerisks)

case, the coupling DoF 111, is not sufficiently excited. The FRF of the unknown substructure U is shown in Fig. 8.14. The
result is quite bad as expected: the two peaks around 315 Hz and 615 Hz are shifted forward, a spurious peak appears around
500 Hz, and the peak around 1000 Hz is not well described.

8.4 Concluding Remarks

In this paper, a procedure for an optimal selection of translational internal DoFs used to replace rotational coupling DoFs
is developed. Two families of indicators are proposed, based either on the Frequency Response Function (FRF) or on the
transmissibility between internal and coupling DoFs.

Such indicators are tested with satisfactory results on an assembled structure made by a cantilever column with two
staggered short arms (residual substructure) coupled to a horizontal beam (unknown substructure). This type of coupling
involves both flexural and torsional DoFs, on which rotational FRFs can not be measured. It is found that bad results are
obtained whenever forces applied to the selected internal DoFs are either unable to excite rotational coupling DoFs or unable
to produce a moment about such DoFs. However, even when internal DoFs are optimally selected, the quality of the results
may be affected by systematic errors that are difficult to detect a priori.
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Chapter 9
State-Space Substructuring with Transmission Simulator

Maren Scheel and Anders T. Johansson

Abstract The dynamic substructuring focus group of SEM organizes sessions on experimental substructuring each IMAC
conference and has been doing so for a number of years. Over the last decade, the use of so-called transmission simulators has
trended within the community. Transmission simulators are well-modeled parts that fit to the interface of the substructures to
be coupled to allow distributed interfaces and relaxation of the coupling conditions by the transmission simulator’s analytical
modes at the cost of adding a decoupling step to the substructuring problem. In this paper, the transmission simulator concept
is adapted to state-space substructuring. Experimental-analytical substructuring of the focus group benchmark structure, the
Ampair A600 wind turbine, is used to verify the methodology.

Keywords Dynamic substructuring ¢ Transmission simulator e State-space coupling ¢ Ampair wind turbine e
Experimental dynamics

9.1 Introduction

Dynamic substructuring is the idea of dividing complex structures into simpler components which can be analyzed in more
detail. Then, the dynamics of the substructures are combined to obtain an assembled model. If the substructures are moreover
developed by separate project groups, dynamic substructuring is highly beneficial and widely used for Finite Element (FE)
simulations [1].

While substructuring has been performed with great success in FE applications, comparatively few applications of
experimental substructuring can be found, although recent years have seen an increased interest in the latter. The most
commonly used experimental substructuring techniques are Component Mode Synthesis (CMS) and Frequency Based
Substructuring (FBS). Su and Juang [2] introduced a different approach using first-order state-space systems, which was
further developed by Sjovall [3]. This method was extensively used by Liljerehn (e.g. [4]) who also contributed to the
system identification procedure. Liljerehn concluded that great care has to be taken in deriving physical models from the
measurement data. Particularly, non-passive state-space systems or systems that do not fulfill Newton’s second law may
cause unphysical coupling results [5].

Experimental-analytical coupling causes difficulties connected to the interface. In general, not all degrees of freedom at
the coupling interface can be measured as would be needed to enforce strict compatibility. For some structures, the actual
connection points are not accessible at all.

Another crucial obstacle for experimental-analytical substructuring is the possibly inadequate mode shape basis.
Generally, the experimental model is obtained by measurements with free-free boundary conditions. However, stress at
the interface is not included in free-free mode shapes. Thus, a large number of mode shapes is typically necessary in order to
replicate the interface motion in a coupled configuration. An enlargement of the mode shape basis, e.g. using also constraint
modes, as done in the Craig-Bampton Method [6], is on the other hand infeasible for experimental models since this would
require the application of displacements on distinct degrees of freedom.

To overcome these drawbacks, the transmission simulator was introduced for CMS by Allen et al. [7] and for FBS by
Mayes et al. [8]. The transmission simulator also allows for the inclusion of joint properties in the model if the joints of
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the transmission simulator resemble the actual joints of the coupled system. The method works as follows: A well-modeled
additional structure dubbed transmission simulator is joined with the structure of interest, and the compound system is then
measured. This has the effect of exciting and mass-loading the interface to extract a more suitable mode shape basis. To
obtain a model of the structure of interest, an analytical model of the transmission simulator is used to remove its effect
from the measured system. This is done with dynamic substructuring, but instead of equating the motion of the coupling
degrees of freedom at the interface between transmission simulator and structure of interest, the measurement points on the
transmission simulator are coupled to the exact same points of the negative, analytical transmission simulator model. Thus,
measuring the actual connection points is avoided. The compatibility conditions are fulfilled in a least-squares sense by the
use of the Modal Constraints for Fixture and Subsystem (MCFS) method suggested by Allen et al. [7], and hence, MCFS is
further also capable to compensate for measurement errors.

Dynamic substructuring with the transmission simulator approach has been repeatedly applied to the SEM subtructuring
focus group benchmark structure Ampair A600 wind turbine, as has been presented over the last few IMAC conferences.
Rohe and Mayes [9] used the hub as transmission simulator to couple the rotor to the tower of the wind turbine, whereas
Roettgen and Mayes [10] coupled one blade to the hub three times to obtain a full rotor model, again using the hub as
transmission simulator. The hub is a convenient transmission simulator since it is stiff compared to the blades and can be
modelled fairly easily. Furthermore, the actual joints are used for connecting the interfaces yielding a realistic interface
excitation.

In this paper, the transmission simulator approach is applied to state-space substructuring. To the best of the authors’
knowledge, relaxed compatibility constraints and the inclusion of the transmission simulator in state-space coupling theory
is novel. The methodology is verified on the Ampair A600 wind turbine. In this work, the substructuring task of Roettgen and
Mayes [10] is repeated. However, three different blades are measured in order to account for the spread found in the blades
[11]. Figure 9.1 sketches the coupling scheme. First, the blades labeled with the numbers 790, 828, and 852 are individually
attached to the hub, and these one-bladed hub configurations are measured. Then, a FE model of the hub used as transmission
simulator is subtracted twice. Finally, the three-bladed hub dubbed assembled structure is obtained. To compare the coupled
model, the assembled three-bladed hub is also measured.

The present paper is based on the Master’s thesis of Maren Scheel [12] and is structured as follows: First, MCFES in the
modal domain is briefly reiterated from the paper of Allen et al. [7] followed by the derivation of the transmission simulator
method in state-space in the ensuing theory section. Then, the experimental setup is elaborated on, and the results of the
substructuring are presented. The paper is rounded off by a discussion and final remarks.

9.2 Theory

Removing the influence of one structure from another is equal to adding a negative representation of the first one to the
latter [7]. In the subsequent, this procedure will be dubbed subtraction of a system. Further, the system to remove is denoted
transmission simulator ts and is supposed to be subtracted from the so-called total structure fot. The result is a model for
the structure of interest, which is typically one of the components to make up the assembled structure; see also Fig.9.1.
A negative system has a negative mass, damping, and stiffness [7]. The still uncoupled system of negative transmission
simulator and total structure can be written in compact form using block diagonal matrices [1]. In the modal domain, this is

N o

transmission
blade 790  blade 828 blade 852 simulator assembled structure
(measured) (measured) (measured) (FE) (measured and coupled)

Fig. 9.1 The substructuring task in this paper. Three one-bladed hubs are measured and coupled with two negative FE transmission simulators.
The obtained coupled model of the assembled structure is compared with measurements
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Here, M 104, Vnoa, and K,,,,4 are the modal mass, damping, and stiffness matrices, respectively. If the mode shapes are mass
normalized, M,y = diag(1), Vyoa = diag(2&;w;), and K,y = diag(a)iz) holds. n are the modal coordinates and f,,,4 the

modal forces. The superscripts distinguish the models.
The compatibility condition for MCFS is a modal relaxation of the constraint q,(f,‘ZLX = q%ﬁgs, that is

n(zs) — @ T 09 _ gt T o0 _ g T gon 77([0t)~ 9.2)

meas  Imeas meas Ameas = meas meas

Here, geqs 18 the displacement at the measurement points, ®,,.,s the associated partition of the mode shape matrix, and
¥ indicates the pseudo-inverse. There are as many equations as there are modes in the representation of the transmission
simulator. If fewer modes than measurement points are considered, the constraints do not enforce strict equality of the
displacements but the compatibility condition will be fulfilled in a least-squares sense [7].

Coupling is achieved by enforcing compatibility and equilibrium at the interface, relaxed by the mode shape matrix

+ . . : L
@) ™ as above. In matrix notation, the coupling condition is

(tot)
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Here, the identity matrix I,,.,s has as many rows and columns as there are measurement points, whereas I,,,,; has as many
rows and columns as there are modes in the representation of the transmission simulator.

Next, the influence of one state-space model will be removed from another. To achieve this, a positive and a negative
state-space model will be coupled applying MCFS. A model described by n second order differential equations can be
transformed to a state-space system consisting of 2n first order differential equations. One possible representation of a system

with negative mass, stiffness, and damping is expressed with the state vector x = {q q} and the state-space equations

X =Ax+ Bu
9.4)
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The inputs are forces connected by the relation f = P,u, where the Boolean matrix P, localizes the input locations among
all physical degrees of freedom. The output of a system will be a set of displacements unless stated otherwise, defined by
y = Pyq where P, is again a Boolean selection matrix. In short, a negative system differs from a positive system only by a
negative input matrix B. Note that for displacement outputs, the relation D = 0 for the direct feedthrough matrix holds since
forces have a direct influence on acceleration only according to Newton’s second law.

The MCEFS can be implemented in the state-space domain similar to FBS. The latter was explained in brief by Mayes and
Arviso [13]. In the following, the procedure to obtain a valid model for the structure of interest will be sketched. Starting
with the measurement data of the total structure, a state-space model can be extracted by system identification. In this work,
subspace identification was performed using the command n4sid of Matlab’s system identification toolbox [14]. Next, a
state-space representation of the FE model of the transmission simulator is subtracted from the identified total model.

In an identified state-space system, the states are no longer directly related to physical coordinates but rather arbitrarily
chosen. However, the inputs and outputs are known and can be split. The forces and displacements at the measurement points
on the transmission simulator are denoted u,,.4; and y,,.qs- All other inputs and outputs are dubbed body degrees of freedom
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indicated by the subscript b. The corresponding partitions of the input and output matrices B and C are distinguished by the
same subscripts. The state-space representation of the identified total system is then
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respectively, while the new state-space models are defined as
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Note the minus in front of the transmission simulator input matrix to indicate a negative system. Coupling these models,
the influence of the transmission simulator is removed from the total structure and the system of interest is deduced. The
subsequent steps are the same as for state-space coupling and can be found in [3].

If multiple copies of a system are coupled in one step, the matrix B,,, of this substructure in coupling form must be divided
by the number of copies (see [4] for further explanations of the coupling form). In this case, the term B,, for the coupled
system also changes. The complete derivation can be found in [12].
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9.3 Experiments and System Identification

This section depicts first the used experimental setup, and then, the system identification procedure is sketched, including a
description of the FE models. Finally, the identified models are analyzed.

9.3.1 Experimental Setup

Four measurements were performed (see Fig.9.1). Each blade was assembled to a specific bracket to replicate the
configuration used in the three-bladed hub. The measurements were executed simulating free-free boundary conditions. Thus,
the structure was hung with fishing lines attached to the hub via a metal wire. Moreover, the fishing lines were connected
to the suspending structure with springs. The blades were assembled to the bracket applying a bolt tightening torque of 16
Ibf-ft according to the specifications [15]. Figure 9.2 shows the experimental setup.

The three-bladed hub was equipped with 9 triaxial and 24 uniaxial sensors and the one-bladed hub with 10 triaxial and 25
uniaxial sensors (see Figs. 9.3 and 9.4). From these configurations, the total mass loading was 21 g and 22.5 g, respectively,
which was considered negligible. Great care was taken to align the triaxial sensors with the FE coordinate systems, and all
sensors were glued to the structure. The sensors of the three-bladed hub were distributed over the whole structure such that
the symmetry of the structure was not disturbed. The sensor locations on the blades were chosen among the positions used
by Harvie and Avitabile [16].

The conditioning of the mode shape matrix is greatly influenced by the sensor placement on the transmission simulator
[13]. Therefore, the placement was tested beforehand using numerical models, considering sensor configurations on either
bracket, hub, or both. It was found that the sensor placement in Fig. 9.4 is best with respect to the condition number and the
simulated results considering the number of available sensors. Three triaxial sensors were placed on the front side of each
bracket close to the bolts, and three uniaxial were mounted at the same locations on the opposite side of the bracket.

The structure was excited with a shaker hung in strings. Its threaded nylon stinger was attached via a fastener glued to
the bracket. Great care was taken to align the stinger. The driving-point locations were decided based on preliminary impact
hammer testing results. All tested locations were chosen to be on or close to the bracket. The best input locations were
found to be at the positions 3, 6, and 9 for the three-bladed hub and 1, 4, and 7 for the one-bladed hubs 790, 828, and 852,

Fig. 9.2 Experimental setup for
the one-bladed hub. Both the
structure and the shaker are hung.
The blade and the hub as
transmission simulator are
equipped with sensors. The
shaker is attached to the bracket
as described in Sect. 9.3.1. Note
that the clamp connecting blade
828 with the hub is slightly
deformed
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Fig. 9.3 FE models of the three-bladed and one-bladed hubs with sensor locations as used in the measurements. Sensors 11-19 are mounted on
the back side of the brackets

o< S
- TOREOR
"Wéﬂ'

s

S,

Fig. 9.4 FE model of the hub with sensor locations as used in the measurements. One the front side of the hub, three triaxial sensors are mounted
on each bracket. Nine uniaxial sensors are placed at the same locations on the opposite side

respectively. Since the measurements were performed using a force cell and a set of accelerometers only, the fastener was
mounted next to the sensor position closer to the hub (see Fig. 9.2). Only out-of-plane excitation was applied.

First, the reciprocity feature of the models was checked with impact hammering. Next, chirps with different amplitudes
were generated to find the linear range of the system and ensure repeatability of tests. Low level multisine excitation was
then performed to obtain the lowest noise level possible. The measurements revealed minor deviations around 250 Hz and
pronounced effects between 400 and 600 Hz, as illustrated in Fig.9.5. The measurements shown in Fig.9.5 were taken
directly after each other, altering nothing but the level of excitation. Because of this and since the frequency range of interest
of the three-bladed hub is below 400 Hz, only measurement data up to 400 Hz was used for the system identification.

9.3.2 System Identification and FE Models

At the beginning of the system identification procedure, the measurement data was investigated thoroughly to distinguish
between physical and spurious modes. Following the system identification, Betti’s reciprocity principle was used to obtain
the unmeasured FRFs, and passivity of the system was enforced [4]. To fulfill Newton’s second law, CB = 0 for displacement
outputs must hold. For the identified model, the absolute value of the maximum entry of CB is of order 10~* which was found
to be small enough to obtain physical results after coupling. After analyzing the identified mode shapes, defective sensors on
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Fig. 9.5 Chirp measurements of the one-bladed hub 790 for different amplitude levels. Input at location 1 in z-direction (out-of-plane), output
location 29. Note that the measurements differ between 400 and 600 Hz

Table 9.1 Measured masses and density properties of the FE model

Component Mass in kg | FE density in kg/m?
Hub, brackets 3.707 -
Hub, brackets, bolts 3.980 -

Three bolts, nuts, washers, averaged | 0.03 -
Bracket, bolts, shaft, averaged [19] 0.432 -

Hub 2095
Bracket, shaft - 4050
Bracket, shaft, bolts - 5000

The measurements were performed, using a scale with a precision of 0.1 g,
and the densities are calculated such that the FE models match the measured
weights

the blade were discarded (sensors 24, 27, and 31 on blade 790 and 24, 26, 28, and 31 on blade 828 and 852), and the whole
procedure was redone, which substantially improved the results. Finally, the rigid body modes of the FE models were added
to the models.

In order to add the rigid body modes, the eigenvalue problems for the FE models of all measured structures were solved
in FEMAP v11.1.0 with NX Nastran. The FE blade model, built from a combination of solid and layered composite shell
elements, is calibrated to another available blades [17], while the hub, shafts, and brackets are modeled using isotropic
solid elements. The density of these components is chosen to match measured weights, as listed in Table 9.1. Depending
on the configuration, the density of the bracket changes to account for the mass of the bolts. The interfaces, bracket-blade,
shaft-bracket, and shaft-hub, are modeled as flexible connections using the CWELD element of NASTRAN [18] which
tend to overestimate the stiffness of the actual connection between blade and hub. After solving the eigenvalue problem, the
resonance frequencies and mode shape vectors corresponding to the six rigid body modes were extracted. Since damping is
not included in the FE models, it was chosen to be & = 0.1 % for all rigid body modes.

9.3.3 Identified Models

Figure 9.6 compares the identified model with the measurements for the blade 790 by means of one representative channel.
Further, a MAC value comparison for the first eight flexible modes of the FE model can be found in the same figure. Table 9.2
states the identified resonance frequencies f; = w;/(27) and the modal damping &; for all one-bladed hubs including errors
between the FE model and the identified models. The first four flexible modes are captured well, yet the first resonance
frequency of the measured blades is higher than in the FE model. This stems from the fact that the FE blade model was
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Fig. 9.6 FRF from the measurements and the identified model of the one-bladed hub 852; input at location 7 and output at location 10, both in
z-direction (out-of-plane) as visualized in the sketch. The MAC plot compares the identified experimental flexible mode shapes with the FE mode
shapes

Table 9.2 Identified modal parameters for the one-bladed hubs used in substructuring compared
to the parameters of the FE model
FE One-blade hub 790 One-blade hub 828 One-blade hub 852
fi Ji Error f; | & fi Error f; | & fi Error f; | §;
(Hz) | Hz) | (%) (%) |(Hz) | (%) (%) | (Hz) (%) (%)
30.32 | 33.11 9.2 1.34 | 31.38 3.6 1.33 | 31.51 4.0 1.50
89.72 | 87.57 | —24 1.24 | 89.75 0.3 1.32 | 90.42 1.0 1.22
180.90 | 16527 | —8.6 1.71 | 164.89 | —8.0 1.69 16540 | —7.8 1.59
10 |191.46 | 190.72 | —0.4 230 |176.01 | —8.0 484 17887 | —6.4 3.24
11 1 234.06 |208.83 | —10.8 1.68 | 199.36 | —11.2 1.52 | 201.68 |—10.2 1.48
12 1 330.78 |300.84 | —9.1 1.79 |301.15 | —8.1 2.35 302.01 | —7.8 221
13 1 341.88 31697 | —7.3 1.89 |318.16 | —6.4 1.77 | 31453 | =74 1