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Preface

This book aims at providing the key concepts of educational and psychological
measurement for applied researchers. The authors of this book set themselves to a
challenge of writing a book that covers some depths in measurement issues, but yet
is not overly technical. Considerable thoughts have been put in to find ways of
explaining complex statistical analyses to the layperson. In addition to making the
underlying statistics accessible to non-mathematicians, the authors take a practical
approach by including many lessons learned from real-life measurement projects.
Nevertheless, the book is not a comprehensive text on measurement. For example,
derivations of models and estimation methods are not dealt in detail in this book.
Readers are referred to other texts for more technically advanced topics. This does
not mean that a less technical approach to present measurement can only be at a
superficial level. Quite the contrary, this book is written with considerable stimu-
lation for deep thinking and vigorous discussions around many measurement topics.
For those looking for recipes on how to carry out measurement, this book will not
provide answers. In fact, we take the view that simple questions such as “how many
respondents are needed for a test?” do not have straightforward answers. But we
discuss the factors impacting on sample size and provide guidelines on how to work
out appropriate sample sizes.

This book is suitable as a textbook for a first-year measurement course at the
graduate level, since much of the materials for this book have been used by the
authors in teaching educational measurement courses. It can be used by advanced
undergraduate students who happened to be interested in this area. While the
concepts presented in this book can be applied to psychological measurement more
generally, the majority of the examples and contexts are in the field of education.
Some prerequisites to using this book include basic statistical knowledge such as a
grasp of the concepts of variance, correlation, hypothesis testing and introductory
probability theory. In addition, this book is for practitioners and much of the content
covered is to address questions we received along the years.

We would like to thank those who have made suggestions on earlier versions
of the chapters. In particular, we would like to thank Tom Knapp and Matthias von
Davier for going through several chapters in an earlier draft. Also, we would like

v



to thank some students who had read several early chapters of the book. We benefit
from their comments that help us to improve on the readability of some sections
of the book. But, of course, any unclear spots or even possible errors are our own
responsibility.

Taipei, Taiwan; Melbourne, Australia Margaret Wu
Taipei, Taiwan Hak Ping Tam
Taipei, Taiwan Tsung-Hau Jen
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Chapter 1
What Is Measurement?

Measurements in the Physical World

Most of us are familiar with measurement in the physical world, whether it is
measuring today’s maximum temperature, the height of a child or the dimensions of
a house, where numbers are given to represent “quantities” of some kind, on some
scales, to convey properties of some attributes that are of interest to us. For
example, if yesterday’s maximum temperature in London was 12 °C, one gets a
sense of how cold (or warm) it was, without actually having to go to London in
person to know about the weather there. If a house is situated 1.5 km from the
nearest train station, one gets a sense of how far away that is, and how long it might
take to walk to the train station. Measurement in the physical world is all around us,
and there are well-established measuring instruments and scales that provide us
with useful information about the world around us.

Measurements in the Psycho-social Science Context

Measurements in the psycho-social world are also abound, but perhaps less well
established universally as temperature and distance measures. A doctor may provide
a score for a measure of the level of depression. These scores may provide infor-
mation to the patients, but the scores may not necessarily be meaningful to people
who are not familiar with these measures. A teacher may provide a score of student
achievement in mathematics. These may provide the students and parents with some
information about progress in learning. But the scores will generally not provide
much information beyond the classroom. The difficulty with measurement in the
psycho-social world is that the attributes of interest are generally not directly visible
to us as objects of the physical world are. It is only through observable indicator
variables of the attributes that measurements can be made. For example, currently
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there is no machine that can directly measure depression. However, sleeplessness
and eating disorders may be regarded as symptoms of depression. Through the
observation of the symptoms of depression, one can then develop a measuring
instrument and a scale of levels of depression. Similarly, to provide a measure of
student academic achievement, one needs to find out what a student knows and can
do academically. A test in a subject domain may provide us with some information
about a student’s academic achievement. One cannot “see” academic achievement as
one sees the dimensions of a house. One can only measure academic achievement
through indicator variables such as the performance on specific tasks by the students.

Psychometrics

From the above discussion, it can be seen that not only is the measurement of
psycho-social attributes difficult, but often the attributes themselves are some
“concepts” or “notions” which lack clear definitions. Typically, these psycho-social
attributes need clarification before measurements can take place. For example,
“academic achievement” needs to be defined before any measurement can be taken.
In the following, psycho-social attributes to be measured are referred to as “latent
traits” or “constructs”. The science of measuring latent traits is referred to as
psychometrics.

In general, psychometrics deals with the measurement of any “latent trait”, and
not just those in the psycho-social context. For example, the quality of wine has been
an attribute of interest, and researchers have applied psychometric methodologies to
establish a measurement scale for it. One can regard “the quality of wine” as a latent
trait because it is not directly visible (therefore “latent”), and it is a concept that can
have ratings from low to high (therefore “trait” to be measured) [see, for example,
Thomson (2003)]. In general, psychometrics is about measuring latent traits where
the attribute of interest is not directly visible so that the measurement is achieved
through collecting information on indicator variables associated with the attribute. In
addition, the attribute of interest to be measured varies in levels from low to high so
that it is meaningful to provide “measures” of the attribute.

Before discussing the methods of measuring latent traits, it will be useful to
examine some formal definitions of measurement and the associated properties of
measurement. An understanding of the properties of measurement can help us build
methodologies to achieve the best measurement in terms of the richness of infor-
mation we can obtain from the measurement. For example, if the measures we
obtain can only tell us whether a student’s achievement is above or below average
in his/her class, that’s not a great deal of information. In contrast, if the measures
can also inform us of the skills the student can perform, as well as how far ahead (or
behind) he/she is in terms of yearly progression, then we have more information to
act on to improve teaching and learning. The next section discusses properties of
measurement with a view to identify the most desirable properties. In latter chapters
of this book, methodologies to achieve good measurement properties are presented.
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Formal Definitions of Psycho-social Measurement

Various formal definitions of psycho-social measurement can be found in the lit-
erature. The following are four different definitions of measurement. It is interesting
to compare the scope of measurement covered by each definition.

• Measurement is a procedure for the assignment of numbers to specified prop-
erties of experimental units in such a way as to characterise and preserve
specified relationships in the behavioural domain.
Lord, F., & Novick, M. (1968) Statistical Theory of Mental Test Scores, p.17.

• Measurement is the assigning of numbers to individuals in a systematic way as a
means of representing properties of the individuals.
Allen, M.J. and Yen, W. M. (1979). Introduction to Measurement Theory, p 2.

• Measurement consists of rules for assigning numbers to objects in such a way as
to represent quantities of attributes.
Nunnally, J.C. & Bernstein, I.H. (1994) Psychometric Theory, p 1.

• Measurement begins with the idea of a variable or line along which objects can
be positioned, and the intention to mark off this line in equal units so that
distances between points on the line can be compared.
Wright, B. D. & Masters, G. N. (1982). Rating Scale Analysis, p 1.

All four definitions relate measurement to assigning numbers to objects. The
third and fourth definitions specifically bring in a notion of representing quantities,
while the first and second state more generally the assignment of numbers in some
well-defined ways. The fourth definition explicitly states that the quantity repre-
sented by the measurement is a continuous variable (i.e., on a real-number line), and
not just a discrete rank-ordering of objects.

So it can be seen that the first and second definitions are broader and less specific
than the third and the fourth. Measurements under the first and second definitions
may not be very useful if the numbers are simply labels for objects since such
measurements would not provide a great deal of information. The third and fourth
definitions are restricted to “higher” levels of measurement in that the assignment of
numbers can be called measurement only if the numbers represent quantities and
possibly distances between objects’ locations on a scale. This kind of measurement
will provide us with more information in discriminating between objects in terms of
the levels of the attribute the objects possess.

Levels of Measurement

More formally, there are definitions for four levels of measurement (nominal,
ordinal, interval and ratio) in terms of the way numbers are assigned to objects and
the inference that can be drawn from the numbers assigned. This idea was intro-
duced by Stevens (1946). Each of these levels is discussed below.

Formal Definitions of Psycho-social Measurement 3



Nominal

When numbers are assigned to objects simply as labels for the objects, the numbers
are said to be nominal. For example, each player in a basketball team is assigned a
number. The numbers do not mean anything other than for the identification of the
players. Similarly, codes assigned for categorical variables such as gender
(male = 1; female = 2) are all nominal. In this book, the assignment of nominal
numbers to objects is not considered as measurement, because there is no notion of
“more” or “less” in the representation of the numbers. The kind of measurement
described in this book refers to methodologies for finding out “more” or “less” of
some attribute of interest possessed by objects.

Ordinal

When numbers are assigned to objects to indicate ordering among the objects, the
numbers are said to be ordinal. For example, in a car race, numbers are used to
represent the order in which the cars finish the race. In a survey where respondents
are asked to rate their responses, the numbers 0–3 are used to represent strongly
disagree, disagree, agree and strongly agree. In this case, the numbers represent an
ordering of the responses. Ordinal measurements are often used, such as for ranking
students, or for ranking candidates in an election, or for arranging a list of objects in
order of preferences. While ordering informs us of which objects have more (or
less) of an attribute, ordering does not in general inform us of the quantities, or
amount, of an attribute. If a line from low to high represents the quantity of an
attribute, ordering of the objects does not position the objects on the line. Ordering
only tells us the relative positions of the objects on the line.

Interval

When numbers are assigned to objects to indicate the differences in amount of an
attribute the objects have, the numbers are said to represent interval measurement.
For example, time on a clock provides an interval measure in that 7 o’clock is two
hours away from 5 o’clock, and four hours from 3 o’clock. In this example, the
numbers not only represent ordering, but also represent an “amount” of the attribute
so that distances between the numbers are meaningful and can be compared. We
will be able to compute differences between the quantities of two objects. While
there may be a zero point on an interval measurement scale, the zero is typically
arbitrarily defined and does not have a specific meaning. That is, there is generally
no notion of a complete absence of an attribute. In the example about time on a
clock, there is no meaningful zero point on the clock. Time on a clock may be better
regarded as an interval scale. However, if we choose a particular time and regard it
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as a starting point to measure time span, the time measured can be regarded as
forming a ratio measurement scale. In measuring abilities, we typically only have
notions of very low ability, but not zero ability. For example, while a test score of
zero indicates that a student is unable to answer any question correctly on a par-
ticular test, it does not necessarily mean that the student has zero ability in the latent
trait being measured. Should an easier test be administered, the student may very
well be able to answer some questions correctly.

Ratio

In contrast, measurements are at the ratio level when numbers represent interval
measures with a meaningful zero, where zero typically denotes the absence of the
attribute (no quantity of the attribute). For example, the height of people in cm is a
ratio measurement. If Person A’s height is 180 cm and Person B’s height is 150 cm,
we can say that Person A’s height is 1.2 times of Person B’s height. In this case, not
only distances between numbers can be compared, the numbers can form ratios and
the ratios are meaningful for comparison. This is possible because there is a zero on
the scale indicating there is no existence of the attribute. Interestingly, while “time”
is shown to have interval measurement property in the above example, “elapsed
time” provides ratio measurements. For example, it takes 45 min to bake a large
round cake in the oven, but it takes 15 min to bake small cupcakes. So the duration
of baking a large cake is three times that of baking small cupcakes. Therefore,
elapsed time provides ratio measurement in this instance. In general, a measurement
may have different levels of measurement (e.g., interval or ratio) depending on how
the measurement is used.

Increasing Levels of Measurement in the Meaningfulness
of the Numbers

Ratio

Interval

Ordinal

Nominal

Levels of Measurement 5



It can be seen that the four levels of measurement from nominal to ratio provides
increasing power in the meaningfulness of the numbers used for measurement. If a
measurement is at the ratio level, then comparisons between numbers both in terms
of differences and in terms of ratios are meaningful. If a measurement is at the
interval level, then comparisons between the numbers in terms of differences are
meaningful. For ordinal measurements, only ordering can be inferred from the
numbers, and not the actual distances between the numbers. Nominal level numbers
do not provide much information in terms of “measurement” as defined in this
book. For a comprehensive exposition on levels of measurement, see Khurshid and
Sahai (1993).

Clearly, when one is developing a scale for measuring latent traits, it will be best
if the numbers on the scale represent the highest level of measurement. However, in
general, in measuring latent traits, there is no meaningful zero. It is difficult to
construct an instrument to determine a total absence of a latent trait. So, typically
for measuring latent traits, if one can achieve interval measurement for the scale
constructed, the scale can provide more information than that provided by an
ordinal scale where only rankings of objects can be made. Bearing these points in
mind, Chap. 6 examines the properties of an ideal measurement in the psycho-social
context.

The Process of Constructing Psycho-social Measurements

For physical measurements, typically there are well-known and well-tested
instruments designed to carry out the measurements. Rulers, weighing scales and
blood pressure machines are all examples of measuring instruments. In contrast, for
measuring latent traits, there are no ready-made machines at hand, so we must first
develop our “instrument”. For measuring student achievement, for example, the
instrument could be a written test. For measuring attitudes, the instrument could be
a questionnaire. For measuring stress, the instrument could be an observation
checklist. Before measurements can be carried out, we must first design a test or a
questionnaire, or collect a set of observations related to the construct that we want
to measure. Clearly, in the process of psycho-social measurements, it is essential to
have a well-designed instrument. The science and art of designing a good instru-
ment is a key concern of this book.

Before proceeding to explain about the process of measurement, we note that in
the following, we frequently use the terms “tests” and “students” to refer to “in-
struments” and “objects” as discussed above. Many examples of measurement in
this book relate to measuring students using tests. However, all discussions about
students and tests are applicable to measuring any latent trait.

Wilson (2005) identifies four building blocks underpinning the process of
constructing psycho-social measurements: (1) clarifying the construct, (2) devel-
oping test items, (3) gathering and scoring item responses, (4) producing measures,
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and then returning back to the validation of the construct in (1). These four building
blocks form a cycle and may be iterative.

The key steps in constructing measures are briefly summarised below. More
detailed discussions are presented throughout the book. In particular, Chap. 2
discusses defining the construct and writing test items. Chapter 3 discusses con-
siderations in administering and scoring tests. Chapter 4 identifies key points in
preparing item response data. Chapter 5 explains test reliability and classical test
theory item statistics. The remainder of the book is devoted to the production of
measures using item response modelling.

Define the Construct

Before an instrument can be designed, the construct (or latent trait) being measured
must be clarified. For example, if we are interested in measuring students’ English
language proficiencies, we need to define what is meant by “English language
proficiencies”. Does this construct include reading, writing, listening and speaking
proficiencies, or does it only include reading? If we are only interested in reading
proficiencies, there are also different aspects of reading we need to consider. Is it
just about comprehension of the language (e.g., the meaning of words), or about the
“mechanics” of the language (e.g., spelling and grammar), or about higher-order
cognitive processes such as making inferences and reflections from texts. Unless
there is a clearly defined construct, we will not be able to articulate exactly what we
are measuring. Different test developers will likely design somewhat different tests
if the construct is not well-defined. Students’ test scores will likely vary depending
on the particular tests constructed. Also the interpretation of the test scores will be
subject to debate.

The definition of a measurement construct is often spelt out in a document
known as an assessment framework document. For example, the OECD PISA
produced a reading framework document (OECD 2009) for the PISA reading test.
Chapter 2 of this book discusses constructs and frameworks in more detail.

Distinguish Between a General Survey
and a Measuring Instrument

Since a measuring instrument sometimes takes the form of a questionnaire, there
has been some confusion regarding the difference between a questionnaire that
seeks to gather separate pieces of information and a questionnaire that seeks to
measure a central construct. A questionnaire entitled “management styles of hos-
pital administrators” is a general survey to gather information about different
management styles. It is not a measuring instrument since management styles are
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not being given scores from low to high. The questionnaire is for the purpose of
finding out what management styles there are. In contrast, a questionnaire entitled
“customer satisfaction survey” could be a measuring instrument if it is feasible to
construct a satisfaction scale from low to high and rate the level of each customer’s
satisfaction. In general, if the title of a questionnaire can be rephrased to begin with
“the extent to which….”, then the questionnaire is likely to be measuring a con-
struct to produce scores on a scale.

There is of course a place for general surveys to gather separate pieces of
information. But the focus of this book is about methodologies for measuring latent
traits. The first step to check whether the methodologies described in this book are
appropriate for your data is to make sure that there is a central construct being
measured by the instrument. Clarify the nature of the construct; write it down as
“the extent to which …”; and draft some descriptions of the characteristics at high
and low levels of the construct. For example, a description for high levels of stress
could include the severity of insomnia, weight loss, feeling of sadness, etc.
A customer with low satisfaction rating may make written complaints and may not
return. If it is not appropriate to think of high and low levels of scores on the
questionnaire, the instrument is not likely a measuring instrument.

Write, Administer, and Score Test Items

Test writing is a profession. By that we mean that good test writers are profes-
sionally trained in designing test items. Test writers have the knowledge of the rules
of constructing items, but at the same time they have the creativity in constructing
items that capture students’ attention. Test items need to be succinct but yet clear in
meaning. All the options in multiple choice items need to be plausible, but they also
need to separate students of different ability levels. Scoring rubrics of test items
need to be designed to match item responses to different ability levels. It is chal-
lenging to write test items to tap into higher-order thinking. All of these demands of
good item writing can only be met when test writers have been well trained. Above
all, test writers need to have expertise in the subject area of what is being tested so
they can gauge the difficulty and content coverage of test items.

Test administration is also an important step in the measurement process. This
includes the arrangement of items in a test, the selection of students to participate in
a test, the monitoring of test taking, and the preparation of data files from the test
booklets. Poor test administration procedures can lead to problems in the data
collected and threaten the validity of test results.
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Produce Measures

As psycho-social measurement is about constructing measures (or, scores and
scales) from a set of observations (indicators), the key methodology is about how to
summarise (or aggregate) a set of data into a score to represent the measure on the
latent trait. In the simplest case, the scores on items in a test, questionnaire or
observation list can be added to form a total score, indicating the level of latent trait.
This is the approach in classical test theory (CTT), or sometimes referred to as the
true score theory where inferences on student ability measures are made using test
scores. A more sophisticated method could involve a weighted sum score where
different items have different weights when item scores are summed up to form the
total test score. The weights may depend on the “importance” of the items.
Alternatively, the item scores can be transformed using a mathematical function
before they are added up. The transformed item scores may have better measure-
ment properties than the raw scores. In general, IRT provides a methodology for
summarising a set of observed ordinal scores into a measure that has interval
properties. For example, the agreement ratings on an attitude questionnaire are
ordinal in nature (with ratings 0, 1, 2, …), but the overall agreement measure we
obtain through a method of aggregation of the individual item ratings is treated as a
continuous variable with interval measurement property. Detailed discussions on
this methodology are presented in Chaps. 6 and 7.

In general, IRT is designed for summarising data that are ordinal in nature (e.g.
correct/incorrect or Likert scale responses) to provide measures that are continuous.
Specifically, many IRT models posit a latent variable that is continuous and not
directly observable. To measure the latent variable, there is a set of ordinal cate-
gorical observable indicator variables which are related to the latent variable. The
properties of the observed ordinal variables are dependent on the underlying IRT
mathematical model and the values of the latent variable. We note, however, that as
the levels of an ordinal variable increases, the limiting case is one where the item
responses are continuous scores. Samejima (1973) has proposed an IRT model for
continuous item responses, although this model has not been commonly used.

We note, however, under other statistical methods such as factor analysis and
regression analysis, measures are typically constructed using continuous variables.
But item response functions in IRT typically link ordinal variables to latent
variables.

Reliability and Validity

The process of constructing measures does not stop after the measures are pro-
duced. Wilson (2005) suggests that the measurement process needs to be evaluated
through a compilation of evidence supporting the measurement results. This
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evaluation is typically carried out through an examination of reliability and validity,
two topics frequently discussed in measurement literature.

Reliability

Reliability refers to the extent to which results are replicable. The concept of
reliability has been widely used in many fields. For example, if an experiment is
conducted, one would want to know if the same results can be reproduced if the
experiment is repeated. Often, owing to limits in measurement precision and
experimental conditions, there is likely some variation in the results when experi-
ments are repeated. We would then ask the question of the degree of variability in
results across replicated experiments. When it comes to the administration of a test,
one asks the question “how much would a student’s test score change should the
student sit a number of similar tests?” This is one concept of reliability. Measures of
reliability are often expressed as an index between 0 and 1, where an index of 1
shows that repeated testing will have identical results. In contrast, a reliability of 0
shows that a student’s test scores from one test administration to another will not
bear any relationship. Clearly, higher reliability is more desirable as it shows that
student scores on a test can be “trusted”.

The definitions and derivations of test reliability are the foundations of classical
test theory (Gulliksen 1950; Novick 1966; Lord and Novick 1968). Formally, an
observed test score, X, is conceived as the sum of a true score, T , and an error term,
E. That is, X ¼ T þE. The true score is defined as the average of test scores if a test
is repeatedly administered to a student (and the student can be made to forget the
content of the test in-between repeated administrations). Alternatively, we can think
of the true score T as the average test score for a student on similar tests. So it is
conceived that in each administration of a test, the observed score departs from the
true score and the difference is called measurement error. This departure is not
caused by blatant mistakes made by test writers, but it is caused by some chance
elements in students’ performance on a test. Defined this way, it can be seen that if
a test consists of many items (i.e. a long test), then the observed score will likely be
closer to the true score, given that the true score is defined as the average of the
observed scores.

Formally, test reliability is defined as Var Tð Þ
Var Xð Þ ¼ Var Tð Þ

Var Tð ÞþVar Eð Þ where the variance is
taken across the scores of all students (see Chap. 5 on the definitions and deriva-
tions of reliability). That is, reliability is the ratio of the variance of the true scores
over the variance of the observed scores across the population of students.
Consequently, reliability depends on the relative magnitudes of the variance of the
true scores and the variance of error scores. If the variance of the error scores is
small compared to the variance of the true scores, reliability will be high. On the
other hand, if measurement error is large, leading to a large variance of errors, then
the test reliability will be low. From these definitions of measurement error and
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reliability, it can be seen that the magnitude of measurement error relates to the
variation of an individual’s test scores, irrespective of the population of respondents
taking the test. But reliability depends both on the measurement error and the
spread of the true scores across all students so that it is dependent on the population
of examinees taking the test.

In practice, a reliability index known as Cronbach’s alpha is commonly used
(Cronbach 1951). Chapter 5 explains in more detail about reliability computations
and properties of the reliability index.

Validity

Validity refers to the extent to which a test measures what it is claimed to measure.
Suppose a mathematics test was delivered online. As many students were not
familiar with the online interface of inputting mathematical expressions, many
students obtained poor results. In this case, the mathematics test was not only
testing students’ mathematics ability, but it also tested familiarity with using online
interface to express mathematical knowledge As a result, one would question the
validity of the test, whether the test scores reflect students’ mathematics ability
only, or something else in addition to mathematics ability.

To establish the credibility of a measuring instrument, it is essential to
demonstrate the validity of the instrument. Standards for Educational and
Psychological Testing (AERA, APA, NCME 1999) (referred to as the Standards
document hereafter) describe several types of validity evidence in the process of
measurement. These include:

Evidence based on test content

Traditionally, this is known as content validity. For example, a mathematics test for
grade 5 students needs to be endorsed by experts in mathematics education as
reflecting the grade 5 mathematics content. In the process of measurement, test
content validity evidence can be collected through matching test items to the test
specifications and test frameworks. In turn, test frameworks need to be matched to
the purposes of the test. Therefore documentations from the conception of a test to
the development of test items can all be gathered as providing the evidence of test
content validity.

Evidence based on response process

In collecting response data, one needs to ensure that a test is administered in a “fair”
way to all students. For example, there are no disturbances during testing sessions
and adequate time is allowed. For students with language difficulties or other
impairments, there are provisions to accommodate these. That is, there are no
extraneous factors influencing student results in the test administration process. To
collect evidence for the response process, documentations relating to test admin-
istration procedures can be presented. If there are judges making observations on
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student performance, the process of scoring and rater agreement need to be
evaluated.

Evidence based on internal structure

The relationship (inter-correlation) among test items gives us some indication of the
degree to which the test items “hang together” to reflect a single construct. For
example, if we construct a questionnaire to measure extraversion/introversion in
personality, we may find that “shyness” does not relate highly to “preference to be
alone”, but we may have hypothesised a close relationship when designing the
instrument. The data of item responses from instrument administrations allow us to
check whether the items tap into one construct or multiple constructs. We can then
match the theoretical construct defined in the beginning of the measurement process
and the empirically established constructs. This match will provide evidence of
construct validity.

Standards for Educational and Psychological Testing (AERA, APA, NCME
1999) also include validity evidence based on relations to other variables, and
evidence based on consequences of testing. We refer the readers to the Standards
document. In summary, validity evidence needs to be collected “along the way” of
constructing measures, starting from defining the construct to producing measure-
ment scores. The Standards document places Validity as the opening chapter in the
document, emphasising its importance in psycho-social measurement. A detailed
discussion of validity is beyond the scope of this book. Interested readers are
referred to Messick (1989) and Lissitz (2009) for further information.

Graphical Representations of Reliability and Validity

Frequently, a graphical representation is used to explain the differences between
reliability and validity. Figure 1 shows such a graph.

Not reliable,
Not valid

Reliable,
Not valid

Not reliable.
Valid??

Reliable,
Valid

Fig. 1.1 Graphical representations of the relationship between reliability and validity
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Figure 1 represents reliability and validity in the context of target shooting
where reliability is represented by the closeness of the scores under repeated
attempts by a shooter, and validity is represented by how close the average location
of the scores is to the centre of the target. However, in the contexts of psychological
testing, if an instrument does not have satisfactory reliability, one typically cannot
claim validity. That is, validity requires that instruments are sufficiently reliable. So
the third picture in Fig. 1 does not have validity because the reliability is low.

Summary

This chapter introduces the idea of educational and psychological measurements by
contrasting it with physical measurements. The main definitions of measurement
relate to the assignment of numbers to objects to order, or quantify, some attributes
of objects. Constructed measures have different levels in terms of the amount of
information conveyed by the measured scores: nominal, ordinal, interval and ratio.
Typically in educational and psychological measurements, we aim for ordinal or
interval measures.

The process of constructing measures consists of a number of key steps: defining
the construct, developing instruments, administering instruments and collecting
data, producing measures. After measures are produced, there is an evaluation
process of the measurement through an examination of reliability and validity of the
instrument.

Discussion Points

1. Discuss whether latent variables should have a meaningful zero and why it may
be difficult to define a zero.

2. Given that there could be a meaningful zero for test scores where zero means a
student answered all questions incorrectly, are test scores ordinal, interval or
ratio variables? If test scores are used as measures of an underlying ability, what
level of measurement are test scores?

3. Is the following a “measurement” instrument? If so, what is the construct being
measured?
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Car Survey

“What characteristics led to your decision for the specific model?”
Tick four categories

Customer 1 Customer 2 Customer 3 Customer 4

Economy ✓ ✓

Handling ✓ ✓ ✓

Interior design ✓ ✓

Exterior design ✓ ✓ ✓

Reliability ✓

Price ✓ ✓

Comfort ✓

Safety ✓ ✓

4. Is the following a “measurement” instrument? If so, what is the construct being
measured?

Taxi Survey

Rating taxi rides

Melb airport to kew Taxi 1 Taxi 2 Taxi 3 Taxi 4

Comfortable temperature ✓ ✓ ✘ ✓

Driver’s certificate displayed ✓ ✓ ✘ ✘

Uniform correct ✘ ✓ ✘ ✓

Driver presentation ✓ ✓ ✘ ✓

Pleasant odour ✓ ✘ ✘ ✓

Internal cleanliness ✓ ✓ ✘ ✓

External cleanliness ✓ ✘ ✘ ✓

Vehicle handling ✓ ✓ ✘ ✓

Driver quality ✓ ✘ ✘ ✓

Correct change ✘ ✘ ✘ ✓

Politeness ✓ ✓ ✘ ✓

Peak time ✘ ✘ ✓ ✓

Metered fare $47.10 $48.40 $50.40 $51.00

5. Messick (1989) provided a definition of validity as “an integrated evaluative
judgment of the degree to which empirical evidence and theoretical rationales
support the adequacy and appropriateness of inferences and actions based on
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test scores or other modes of assessment.” Compare and contrast this definition
of validity with what we have discussed in this chapter. Do you think this is a
good definition of validity? Provide reasons for your answers.

Exercises

Q1. The following are some data collected in SACMEQ (Southern and Eastern
Africa Consortium for Monitoring Educational Quality, UNESCO-IIEP 2004). For
each variable, state whether the numerical coding as shown in the boxes provides
nominal, ordinal, interval or ratio measures?

1. PENGLISH
Do you speak English outside school?
(Please tick only one box.)

2. XEXPER
How many years altogether have you been teaching?
(Please round to ‘1’ if it is less than 1 year.)

3. PCLASS
Which Standard 6 class are you in this term?
(Please tick only one box.)

4. PSTAY
Where do you stay during the school week?
(Please tick only one box.)

Discussion Points 15



Q2. Which questionnaire titles in the following list would appear to be about
“measurement” (as opposed to a survey)?

Sports familiarity questionnaire
What are the different management structures of government departments 
in Victoria?
Where can senior citizens find help?
How happy are you?
Proficiency in statistics
Finding out your stress level

Q3. On a mathematics test of 40 questions, Jenny got a score of 14. Eric got a score
of 28. Mary got a score of 30.

We can be reasonably confident to conclude that (write Yes or No in the space
provide)

1. Jenny is not as good in mathematics as Eric and Mary are. [ ]
2. Mary is better at mathematics than Eric is. [ ]
3. Eric got twice as many questions right as Jenny did. [ ]
4. Eric’s mathematics ability is twice Jenny’s ability. [ ]

Q4. A movie guide rates movies by showing a number of stars. For example, a
movie with 3-and-a-half stars is not as good as a movie with 4 stars (★★★★☆).

What is the most likely measurement level provided by this kind of ratings?

Nominal
Ordinal
Interval
Ratio

Q5. In the context of educational testing, the term “measurement error” usually
refers to

The variation in a student's scores, should similar tests be administered
The number of errors a student makes in a test
Errors in the questions of a test, e.g., incorrect questions
Errors in the processing of data, e.g., marker error, data entry error
Careless mistakes made by anyone (e.g., students, test setters and/or 
markers)
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Q6. In the context of educational testing, test reliability refers to

The degree to which the test questions reflect the construct being tested
The degree to which a test is error-free or error-prone
The degree to which test scores can be reproduced if similar tests are 
administered
The extent to which a test is administered to candidates (e.g., the number 
of test takers)

Q7. A student with limited proficiencies in English sat a Year 5 mathematics test
and obtained a poor score due to language difficulties. Is this an issue related to test
reliability or validity?

Q8. In a Grade 5 spelling test, there are 20 words. This is a very small sample of all
the words Grade 5 students should know. If the test is used to measure students’
spelling proficiency in general, which of the following best describes the likely
problems with this test?

There will be a problem with reliability, but NOT validity
There will be a problem with validity, but NOT reliability
There will be a problem with BOTH reliability and validity
We cannot judge whether there will be a problem with reliability or 
validity
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Chapter 2
Construct, Framework and Test
Development—From IRT Perspectives

Introduction

In Chap. 1, the terms “latent trait” and “construct” are used to refer to the psycho-
social attributes that are of interest to be measured. How are “constructs” conceived
and defined? Can a construct be any arbitrarily defined concept, or does a construct
need to have specific properties in terms of measurement? The following is an
example to stimulate some thoughts about constructs.

There is an Australian radio station RPH (Radio for the Print Handicapped) that
read newspapers and books aloud to listeners. To demonstrate the importance of
this radio station, listeners of RPH are constantly reminded that “1 in 10 in our
population cannot read print”. This statement raises an interesting question. That is,
if an instrument is developed to measure people’s ability to read print, how would
one go about doing it? And how does this differ from the ‘reading abilities’ we are
accustomed to measure through achievement tests?

To address these questions, the starting point is to clearly define the “construct”
of such a measuring instrument. Loosely speaking, the construct can be defined as
“what we are trying to measure”. We need to be clear about what it is that we are
trying to measure before test development can proceed.

In the case of the RPH radio station, one’s first impression is that this radio
station is for vision-impaired people. Therefore, to measure the ability to read print
for the purpose of assessing the targeted listeners of RPH is to measure the degree
of vision impairment of people. This, no doubt, is an overly simplified view of the
services of RPH. In fact, RPH can also serve those who have low levels of reading
ability and do not necessarily have vision impairment. Furthermore, people with
low levels of reading achievement but also a low level of the English language
would not benefit from RPH. For example, immigrants may have difficulties to read
newspapers, but they will also have difficulties in listening to broadcasts in English.
There are also people who spend a great deal of time in cars and traffic jams, and
who find it easier to “listen” to newspapers than to “read” newspapers even though

© Springer Nature Singapore Pte Ltd. 2016
M. Wu et al., Educational Measurement for Applied Researchers,
DOI 10.1007/978-981-10-3302-5_2

19

http://dx.doi.org/10.1007/978-981-10-3302-5_1


these people have high levels of reading ability. Thus the definition of “the ability to
read print”, for RPH, is not straightforward to define. What we may want to
measure is the degree to which a person finds it useful to have print materials read
to them. If ever an instrument is developed to measure this, the construct needs to
be carefully examined.

Linking Validity to Construct

The above example illustrates that, in clarifying a construct, the purposes of the
measurement need to be considered. Generally, the notion of a construct in
psycho-social measurements may be somewhat fluid in that definitions are shaped
depending on the contexts and purposes of the measurements. For example, there
are many different definitions for a construct called “reading ability”, depending on
the contexts in which measures are made. In contrast, measurements in the physical
world often are attached to definitions based on scientific theories and the measures
are more clearly defined.

In shaping a psycho-social construct, we need to first consider validity issues.
That is, the inferences made from measurement scores and the use of these scores
should reflect the definition of the construct. Consequently, when constructs are
defined, one should clearly anticipate the ways the scores are intended to be used, or
at least clarify to the users of the instrument the inferences that can be drawn from
the scores.

There are many different purposes for measurement. A classroom teacher may
set a test to measure the extent to which students have learned two science topics
taught in a semester. In this case, the test items will be drawn from the material that
was taught, and the test scores will be used to report the proportion of
knowledge/skills students have acquired from class instructions in that semester.
The construct of this test will be related to how well students grasp the material that
was taught in class. The test scores will not be used to reflect general science
abilities of the students.

In developing state-wide achievement tests, it is often the case that the content,
or curriculum coverage, is used to define the construct for the test. Therefore one
might develop a mathematics test based on the Curriculum Standards Framework or
other official documents. That is, what is tested is the extent to which students have
attained the intended mathematics curriculum. Any other inferences made about the
test scores such as the suitability for course entry, employment, or general levels of
mathematics literacy, will need to be treated with caution.

What if one wants to make inferences about students’ abilities beyond the set of
items in a test? What assumptions will need to be made about the test and test items
so one can provide some generalisations of students’ scores? Consider the PISA
(Programme for International Student Assessment) tests, where the constructs are
not based on school curricula. Can one make statements that the PISA scores reflect
the levels of general mathematics, reading and science literacy? What are the
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conditions under which one can make inferences beyond the set of items in a test?
Clearly, the evaluation of reliability and validity discussed in Chap. 1 plays an
important role. In this chapter, we will take a look at the role Item Response Theory
(IRT) plays in relation to defining a construct.

Construct in the Context of Classical Test Theory
(CTT) and Item Response Theory (IRT)

Under classical test theory and item response theory, there are theoretical differ-
ences in the meaning of the construct, although for all practical purposes the dis-
tinction is not important. Under the approach of the classical test theory, inferences
made are about a person’s score on a test. While there is no explicit generalisation
about the level of a “trait” that a person might possess, the ‘true score’ defined CTT
reflects the construct we are measuring. Under the notion of ‘parallel tests’ in CTT,
a construct can be construed implicitly through the test items in these parallel tests.
In contrast, under the approaches of IRT, there is an explicit latent trait defined in
the model. An instrument sets out to measure the level of the latent trait in each
individual. The item responses and the scores of a student reflect the level of this
trait of the student. The trait is said to be “latent”, because it is not directly
observable. Figure 2.1 shows a latent trait model under the IRT approach.

In Fig. 2.1, the latent variable is the construct to be measured. Some examples of
a latent variable could be proficiency in geometry, asthma severity, support for an
initiative, familiarity with sport, etc. Since one cannot directly measure a latent
variable, “items” will need to be devised to tap into the latent variable. A person’s
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Fig. 2.1 Latent variables and indicator (observable) variables
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response on an item is observable. In this sense, the items are sometimes known as
“observed indicator variables” or “manifest variables”. Through a person’s item
response patterns, some inferences can be made about a person’s level on the latent
variables. The items represent small concepts based on the bigger concept of the
latent variable. For example, if the latent variable is proficiency in geometry, then
the items are individual questions about specific knowledge or skills in geometry.

The arrows (from the latent variable to the observed indicators) in Fig. 2.1
indicate that the level of the latent variable influences the likely responses to the
items. It is important to note the direction of the arrows. That is, the item response
pattern is driven by the level of the latent variable. It is not the other way round that
the latent variable is defined by the item responses. For example, the consumer
price index (CPI) is defined as the average price of a fixed number of goods. If the
prices of these goods are regarded as items, then the average of the prices of these
items defines CPI. In this case, CPI should not be regarded as a latent variable.
Rather, it is an index defined by a fixed set of some observable entities. We cannot
change the set of goods and still retain the same meaning of CPI. In the case of IRT,
since the level of the latent variable determines the likelihood of the item responses,
the items can be changed, for as long as all items tap into the same latent variable,
and we will still be able to measure the level of the latent variable.

In Fig. 2.1, the symbol “ε” indicates “noise” in the sense that items can possibly
be influenced by factors other than the latent variable. It is clearly undesirable to
have large “noises”, since these interfere with the measurement of the latent trait.
The CTT notion of reliability discussed in Chap. 1 relates to the amount of “noise”
the item scores have. The more noise there is, the lower the reliability. Through
item analysis, the relative amount of noise for each item can be identified to
determine the degree to which an item taps into the latent trait being measured.

Under classical test theory, only the right-hand side of the picture (observed
indicators) of Fig. 2.1 is involved, as shown in Fig. 2.2.

Consequently, under classical test theory, inferences about the score on this set
of items (and scores on parallel tests) can be made. The construct being measured is
implicitly represented by the ‘true score’ (defined as the average of test scores of
parallel tests). We can exchange test items in a test in the context of parallet tests.

Under item response theory, the notion of CTT parallel tests is replaced by an
explicitly defined latent trait whereby any item tapping into the latent trait can be used
as potential test items. Consequently, we can exchange items in the test and still
measure the same latent trait. Of course, this relies on the assumption that the items
used indeed all tap into the same latent trait. This assumption needs to be tested
before we can claim that the overall performance on the test reflects the level of the
latent trait. That is, we need to establish whether arrows in Fig. 2.1 can be placed
from the latent variable to the items. It may be the case that some items do not tap into
the latent variable, as shown in Fig. 2.3. As IRT has an underlying mathematical
model to predict the likelihood of the item responses, statistical tests of fit can be
constructed to assess the degree to which responses of an item “fit” the IRT model.
Such fit tests provide information on the degree to which individual items are indeed
tapping into the latent trait. Chapter 8 discusses about IRT fit statistics.
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Unidimensionality in Relation to a Construct

The IRT model shown in Fig. 2.1 shows that there is one latent variable and all
items tap into this latent variable. This model is said to be unidimensional, in that
there is ONE latent variable of interest, and the level of this latent variable is the
focus of the measurement. If there are multiple latent variables to be measured in
one test, and the items tap into different latent variables, the IRT model is said to be
multidimensional. Whenever total scores are computed as the sum of individual
item scores, there is an implicit assumption of unidimensionality. That is, for
aggregated item scores to be meaningful, all items should tap into the same latent
variable. Otherwise, an aggregated score is un-interpretable, because the same total
score for students A and B could mean that student A scored high on latent variable
X, and low on latent variable Y, and vice versa for student B, when there are two
different latent variables involved in the total score. Multidimensional IRT models
are discussed in Chap. 15.

The Nature of a Construct—Psychological Trait
or Arbitrarily Defined Construct?

The theoretical notion of latent traits as shown in Fig. 2.1 seems to suggest that
there exists distinct latent traits (e.g., “abilities”) within each person, and the
construct must reflect one of these distinct abilities for the item response model to
hold. This is not necessarily the case in practice.

Consider the following example. Reading and mathematics are considered as
different latent variables in most cases. That is, a student who is good at reading is
not necessarily also good at mathematics. So in general, one would not administer
one test containing both reading and mathematics items and compute a total score
for each student. Such a total score would be difficult to interpret.

However, consider the case of mathematical problem solving, where each
problem requires a certain amount of reading and mathematics proficiencies to
arrive at an answer. If a test consists of problem solving items where each item
requires the same “proportional amount” of reading ability and mathematics ability,
the test can still be considered “unidimensional”, with a single latent variable called
“problem solving”. From this point of view, whether a test is “unidimensional”
depends on the extent to which the items are testing the same construct, where the
construct can be defined as a composite of abilities (Reckase et al. 1988).

In short, latent variables do not have to correspond to distinct “traits” or “abil-
ities” as we commonly perceive. Latent variables are constructs defined by the
researcher to serve his/her purpose of measurement.
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Practical Considerations of Unidimensionality

In practice, one is not likely to find two items that test exactly the same construct,
since all items require different composite abilities. So all tests with more than one
item are “multidimensional” to different degrees. For example, the computation of
“7 × 9” may involve quite different cognitive processes to the computation of
“27 + 39”. To compute “7 × 9”, it is possible that only recall is required for those
students who were drilled on the “Multiplication Table”. To compute “27 + 39”,
some procedural knowledge is required. However, one would say that these two
computational items are still closer to each other for testing the construct of basic
computational ability than, say, solving a crossword puzzle. So in practice, the
dimensionality of a test should be viewed in terms of the practical utility of the use
of the test scores. For example, if the purpose of a test is to select students for
entering into a music academy, then a test of “music ability” may be constructed. If
one is selecting an accompanist for a choir, then the specific ability of piano playing
may be the primary focus. Similarly, if an administrative position is advertised, one
may administer a test of “general abilities” including both numeracy AND literacy
items. If a company public relations officer is required, one may focus only on
literacy skills. That is, the degree of specificity of a test depends on the practical
utility of the test scores.

Theoretical and Practical Considerations in Reporting
Sub-scale Scores

In achievement tests, there is often a problem of deciding how test scores should be
reported in terms of cognitive domains. Typically, it is perceived to be more
informative if a breakdown of test scores is given so that one can report on students’
achievement levels in sub-areas of cognitive domains. For example, a mathematics
test is often reported by a total score to reflect an overall performance on the whole
test, and also by performances on mathematics sub-strands such as Number,
Measurement, Space, Data, etc. Few people query about the appropriateness of such
reporting, as this is how mathematics is specified in school curriculum. However,
when one considers reporting from an IRT point of view, there is an implicit
assumption that whenever sub-scales are reported, the sub-scales relate to different
latent traits. Curriculum specifications, in general, take no explicit consideration of
latent traits. Furthermore, since sub-scale level reporting implies that the sub-scales
cannot be regarded as measuring the same latent trait, it will be theoretically
incorrect to combine the sub-scales as one measure of a single latent trait. This
theoretical contradiction, however, is generally ignored in practice. One may argue
that, since most cognitive dimensions are highly correlated (e.g., Adams and Wu
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2002), one may still be able to justify the combination of sub-scales within a subject
domain to obtain an aggregate score representing students’ proficiency in the
subject domain.

Summary About Constructs

In summary, the clarification of the construct is essential before test construction. It
is a step towards establishing what is being measured. Furthermore, if we want to
make inferences beyond students’ performances on the set of items in a test,
additional assumptions about the construct need to be made. In the case of IRT, we
begin by relating the construct of a test to some latent trait, and develop a frame-
work to provide a clear explication of this latent trait.

It should be noted that there are two sides of the coin that need to be kept in
mind. First, no two items are likely measuring exactly the same construct. If the
sample size of test takers is large enough, all items will show misfit when tested for
unidimensionality (see Chap. 8 for details). Second, while it is impossible to find
items that measure the same construct, cognitive abilities are highly correlated so
that in practice what one should be concerned with is not whether a test is unidi-
mensional but whether a test is sufficiently unidimensional for the purposes of the
use of the tests. Therefore, it is essential to link the construct to validity issues in
justifying the fairness of the items in relation to how the test scores are used.

Nevertheless, while the assumption of unidimensionality is always only
approximately satisfied, one should always aim to achieve it. Otherwise, there will
be an instrument with items tapping into different constructs, and we will no longer
be able to attach meanings to test scores. In that case, the instrument is no longer
about measurement. Under this circumstance, general survey analysis should be
used instead of methodologies for measurement.

Before closing the discussions on constructs and unidimensionality, one note
should be made about the comparisons between classical test theory and item
response theory. While IRT provides a better model for measurement as it begins
with hypothesising a latent trait in contrast to CTT which focuses on the test items
specific to a test, CTT still holds a notion that the test score reflects a measure on a
construct defined by “similar tests” to the current test. CTT statistics such as test
reliability and item discrimination indices also help with building an instrument
with items correlated with each other (the notion of internal consistency). So, while
there are theoretical differences between IRT and CTT as described in previous
sections, in practice, both IRT and CTT help us with building a good measuring
instrument. Consequently, CTT and IRT should be used hand-in-hand in a com-
plementary way, and one should not discard one approach for another. See Chap. 5
for further information on CTT.
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Frameworks and Test Blueprints

Given the importance of constructs in measurement, the first step in measurement is
to provide a detailed description of the construct to be measured. Such descriptions
are usually written in documents typically known as assessment frameworks and
test blueprints. An assessment framework should cover the purpose of the assess-
ment, the target population to be assessed, assessment methods, and mostly
importantly, the definition of the construct to be measured and the content to be
covered in the assessment. Typically, an assessment framework is written by
subject matter experts, with contributions from all stakeholders of the assessment.
In describing the construct, different aspects/dimensions associated with the con-
struct may be identified. For example, for a mathematics achievement test, the
curriculum content strands (e.g., algebra, number, geometry) can form one
dimension while cognitive skills (e.g., recall, procedural knowledge, reasoning) can
form another dimension. These two dimensions can be further divided into sub-
strands to ensure coverage of the content domain.

Test blueprints are documents with specifications of item characteristics such as
item format (multiple-choice or constructed response), range of item difficulties,
percentages of items under each construct dimension and sub-dimensions. Table 2.1
shows an example of the percentages of items for a mathematics assessment.

Test specifications will be decided by balancing considerations with regard to
the purpose of the test, characteristics of students, content coverage, assessment
duration and other constraining factors.

Taken as a whole, the assessment framework plays the role as the overall plan
that specifies how the test will be developed. Assessment frameworks also serve as
monitoring tools for the content validity of the tests. Examples of assessment
frameworks and test blueprints can be found from large-scale surveys such as PISA
and TIMSS (e.g., OECD 2013; Mullis et al. 2009).

Writing Items

There are many reference materials on the science and art of writing test items (e.g.,
Osterlind 2002; Downing and Haladyna 2006). In this book, we will only describe
briefly the key topics of item writing.

Table 2.1 Percentages of items for a hypothetical mathematics test

Skill content Knowledge Application Reasoning Row total

Number 5 10 10 25

Space 2 10 8 20

Data 5 15 5 25

Measurement 8 15 7 30

Column total 20 50 30 100
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When developing a measuring instrument, it is most important to follow the
framework and test blueprint documents. These documents ensure that the instru-
ment contains balanced content and difficulty levels, as well as reflecting the
constructs being measured. While one needs to bear in mind that items should all
tap into the same construct, items ought to be independent in the sense that there are
not the same question asked in slightly different ways, since we want each item to
provide an independent and additional piece of information about a test taker.
Further, the answer to a question should not be dependent on the answers for
previous questions.

Item Format

There has been much debate about the pros-and-cons of multiple-choice items over
constructed-response items. Clearly, when an item has the multiple-choice format,
there is a possibility of guessing the correct answer. For this reason, constructed-
response items typically have higher discrimination indices than multiple-choice
items. There is also an issue with face validity for multiple-choice items, as typi-
cally in real-life, we need to solve problems and there is rarely a list available to us
with the correct answer among the list. Nevertheless, multiple-choice items can be
machine-scored easily, while constructed-response items often need human scorers,
leading to increased cost. For open-ended items where markers are required to score
the responses, marker agreements are not always good. Variations among marker
harshness also contribute to the unreliability of test scores. Weighing up these
considerations, multiple-choice items are still cost-effective to provide data for
measurement.

There is one note of caution about using the multiple-choice format. Since the
correct answer is among the list presented to the test taker, the cognitive processes
for solving a problem may be changed from those of a constructed-response item.
For example, the following is an item intended to test students’ ability to solve an
equation:

Given � 3xþ 16 ¼ �14;

x equals

A: � 1:5

B: 1:5

C: 10

D: � 10

Since the correct answer is among the list, one can simply substitute the four
possible answers in the equation to check which one satisfies the equation. That is,
instead of re-arranging the terms in the equation to solve for x, the substitution
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strategy can be used. This item is likely to be easier than the following
constructed-response item where the correct answer is not shown to the test taker:

Given � 3xþ 16 ¼ �14

x equals

The following is another example.

Which of the following is the

capital city of Ireland?

A: Dublin

B: Edinburgh

C: London

D: Oslo

The process of elimination can be used to arrive at the correct answer if the test
taker can eliminate some wrong answers and make it easier to choose the correct
answer. The constructed-response item shown below is likely to be more difficult.

The capital city of Ireland is

Consequently, a multiple-choice item may be less difficult than an open-ended
item, even if the content of the item is the same, not only because of the possibility
of guessing, but because a number of strategies can be used to obtain the correct
answer. Multiple-choice items also tend to have lower discrimination indices
because factors other than the intended latent trait also contribute to the chance of
obtaining the correct answer.

As technology is advancing at a great pace and tests can be delivered by the
computers, it becomes more feasible to administer closed constructed-response
items such as the two examples shown above. The computer can score written
responses for these two short-answered questions. Thus, wherever possible,
machine score-able constructed-response items are preferable to multiple-choice
items for increasing item discrimination and overall test reliability.

Number of Options for Multiple-Choice Items

Questions are constantly raised about the number of options required for a
multiple-choice item. Should there be the same number of options for all
multiple-choice items? Should there be at least four options for each item? There
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are no definite answers to these questions. Clearly, when there are fewer options,
the chance of guessing the correct answer is greater. On the other hand, if some
options are “unattractive” and few test takers choose them, it is pointless to include
these options.

Depending on the context of a question, sometimes there is a set of “natural”
options for an item. For example, the following item has seven “natural” options:

If August 6 is a Monday, what day

of the week is August 18?

In contrast, the following item has three “natural” options:

If two classes of students sit a test,

where Class 1 is a class of high

achievers and Class 2 is a class of

students with varying abilities, will

the test reliability for Class 1 be

higher, lower or the same as for

Class 2?

We may be able to find a fourth option for the above item, but few will likely
choose it. In general, it is a waste of time to come up with a fixed number of options
if some options are clearly irrelevant to the question. It will be better to let the
context of a question determine the best number of options rather than to make a
rule for a fixed number of options for all items. While we need to be mindful of
guessing, it may be a waste of test writers’ and test takers’ time to include many
implausible options.

How Many Items Should There Be in a Test?

Clearly, the more information is gathered about a test taker, the more reliable the
measure will be. A five-item mathematics test will not provide a very reliable
measure of a person’s proficiency in mathematics as compared to a 50-item test.
Strictly speaking, it is not the number of items in a test that matters; it is the number
of total score points of a test. For example, if a test has four questions each of which
has a score range between 0 and 5 so the maximum score for the test is 20 score
points, this four-item test provides similar amount of information as a test with 20
dichotomously scored items.

The measurement error associated with a test score decreases as the number of
score points of the test increases. What magnitude of measurement error is
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acceptable? Unfortunately, there is not a simple answer. It depends on the purposes
for which the test scores are used. If the purpose of the test is to determine whether
a student has an average, above average or below average performance in mathe-
matics, a 40-item test (or a 40 score-point test) will be sufficient to provide that
information. If the purpose of the measurement is to estimate the growth of a
student in one year, then two 40-item tests one year apart will not provide very
accurate growth measure. This is because the expected magnitude of yearly growth
is small as compared to the measurement errors of 40-item tests. Chapter3 further
discusses measurement errors.

While we are not able to provide a definitive recommendation on the number of
items (and score points) in a test, the following are some guidelines. For a typical
test of about 40 questions taken in one-hour of test time, the measurement errors are
rather large and the scores can only be used for low-stakes purposes. That is, such
tests provide indicative information about whether a student is struggling or doing
well. If a test is used for entrance examinations or for awarding high-stakes certi-
fication (e.g., qualification for a practising physician), then much longer tests are
required (Wu 2010).

On the other hand, if the purpose of a test is for providing system level infor-
mation such as the proficiency levels of students in a state or in a country, then there
need to be many test items to cover the whole curriculum, but each student can take
only a small portion of the test (say, 10 items). Reliable information can still be
obtained at the system level. Chapter 3 discusses about test design and elaborates on
different ways tests can be arranged and delivered to students for different purposes.

Scoring Items

It may seem appropriate that the correct answer to an item should be given a score
of 1 and an incorrect answer a score of 0. Consider the following item.

What is the area of a rectangular

room measuring 4 m by 6 m?

How should answers such as “24 m2”, “24”, “24 m”, “10 m” be scored?
Clearly, “24 m2” should get a score of 1 and “20 m” should get a score of 0. How
about “24”, 24 m”? We may argue that “24” is a correct answer so should be given
a score of 1; but “24 m” is technically incorrect with the unit of area, so it should be
given a score of 0. This scoring scheme, however, is not consistent with mea-
surement considerations. From a psychometric viewpoint, the score on an item
should reflect the test taker’s level on the latent trait. With respect to this item, a
person answering “24 m” is likely to be higher on the scale than a person answering
“10 m”. But yet we give them the same score (0 score). A person answering “24” is
not necessarily better than a person answering “24 m”, but yet we give the former a
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“1” and the latter a “0” score. From a psychometric viewpoint, it will be better to
give all three answers (“24 m2”, “24”, “24 m”) a score of 1, even though there are
some technically incorrect answers, to distinguish these students from those who
really have no idea about the formula for computing the area of a rectangle.
Measurement is about making the best prediction of a person’s level on a scale. The
scoring scheme of responses to questions should reflect this level on the latent trait.

If subject experts have objections about giving a score of “1” when there are
technically incorrect answers, then the test item should be revised to prevent such
technically incorrect answers. For example, we may provide the unit of area and ask
students to find the number only. If we are interested in testing the use of units, we
may design a question just about units of area.

Awarding Partial Credit Scores

In the example above, when some item responses are “better” than other responses,
there is a possibility of providing partial credit scoring. For example, the answer
“24 m2” may be given a score of 2, “24” and “24 m” a score of 1, and “10 m” a
score of 0. We may also consider giving scores of 1, 0.5 and 0 to these three sets of
responses. How does one decide on the scoring and what are the considerations in
providing partial credit scores?

First, when partial credit scorings are used, increasing scores must correspond to
increasing underlying level of latent trait. For example, the following item is from
an instrument that measures extraversion/introversion of a person.

You have been invited by a good friend to a party but you do not know
anyone other than the host at this party. What would you do? (check one box
only).

• Eagerly accept the invitation and mix with most people at the party.
• Turn down the invitation even though the host is your good friend.
• Accept the invitation but stick next to you friend throughout the party.
• Accept the invitation and hang around with a small group of people with

similar interest.

The four options correspond to different levels on the extraversion/introversion
scale. Respondents choosing the first option are likely to be high (more extraverted)
on the scale while respondents choosing the second option are likely to be low on
the scale. Those respondents choosing the third and fourth options are likely to be
in the middle of the scale. One might propose a scoring scheme of 3, 0, 1, 2 for the
four options respectively, or, 2, 0, 1, 1 if the third and fourth options are deemed
similar. At the stage of the proposal of a scoring scheme, a hypothesis is made
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about the partial credit order based on expert judgement of how the responses match
levels of the latent trait. After data have been collected, the data analysis will help
us verify the scoring schemes (See Chaps. 9 and 10 for more discussions).

Weights of Items

Two principles should be borne in mind when proposing a partial credit scoring
scheme. First, as discussed previously, a higher score should reflect higher
underlying latent trait. Second, be aware that the maximum (highest) score on an
item gives the weight of the item. If Item A has a maximum score of 4 and Item B
has a maximum score of 2, then Item A has twice the weight of Item B. When the
total score is computed for the instrument, you need to be aware that Item A has
more weight (therefore Item A is more “important” for achieving a high score on
the instrument) than Item B.

How should the weights of items be determined? Contrary to a common per-
ception that more difficult items should receive more weight, the weight of an item
should be determined by the discriminating power of the item. For example, if a
partial credit item has a maximum score of four, it suggests that this item can
separate people into five groups (five score groups: 0, 1, 2, 3, 4) with different and
increasing latent trait. Similarly, an item with a maximum score of two can separate
people into three different ability groups. While it is necessary to have increasing
difficulty with increasing scores within an item, there is no reason why a score of
four for Item A should be more difficult to achieve than a score of two for Item B. In
determining whether a partial credit item should have a maximum score of four or
two, one needs to consider whether the item has the discriminating power to divide
people into more groups. One should not allocate more score points simply because
the range of responses have varying degrees of accuracy, as illustrated by the above
example with the computation of areas.

An example can illustrate the difference between item difficulty and item dis-
crimination in terms of their influence on the weight (or score) of an item. Suppose
a multiple-choice item is not worded well and many students are confused. As a
consequence, many students randomly guess an answer, so that only about 35% of
the students obtained the correct answer. The item discrimination for this item is
low, since there was some random guessing. Under these circumstances, we would
want to assign a low weight (score) to the item, if not deleting the item altogether.
We certainly will not give this item a large weight (score) because the item is
difficult (low percent-correct).

Making judgement of item discriminating power is not as easy as making
judgement of item difficulty during test development. Test writers typically have
good ideas about the difficulty levels of items, but it is rarely obvious to test writers
how discriminating an item may be. Information on discrimination needs to come
from item analysis. Scoring schemes can be adjusted based on the empirical dis-
crimination indices obtained after conducting trial tests of items. Alternatively,
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using the two-parameter IRT model (2-PL) will solve the problem of having to
guess the item scores a priori. In the case of the 2PL model, the item scores are
estimated rather than assigned. Chapter 9 discusses the 2PL models. Chapter 3 also
provides further clarification about the scoring of item responses.

Discussion Points

(1) In many cases, the clients of a project provide a pre-defined framework,
containing specific test blueprints, such as the one shown in Fig. 2.4.

These frameworks and test blueprints were usually developed with no explicit
consideration of the latent trait model. So when we assess items from the per-
spective of item response models, we often face a dilemma whether to reject an item
because the item does not fit the latent trait model, but yet the item belongs to part
of the blueprint specified by the clients. How do we reconcile the ideals of mea-
surement against client demands?

(2) To what extent do we make our test “unidimensional”? Consider a spelling
test. Spelling words generally have different discriminating power, as shown
in the following examples.

Spelling word:    Infit MNSQ = 0.85
(heart)                 Disc = 0.82 
Categories        0 [0]     1 [1] 
Count 13        39
Percent (%)       25.0      75.0 
Pt-Biserial      -0.82      0.82 
Mean Ability -0.08      3.63

Spelling word:    Infit MNSQ = 1.29
(discuss)               Disc = 0.49 
Categories        0 [0]     1 [1]
Count               40        42
Percent (%)       48.8      51.2 
Pt-Biserial      -0.49      0.49 
Mean Ability      0.76      2.40

Can we select only spelling words that have the same discriminating power to
ensure we have “unidimensionality”, and call that a spelling test? If we include a
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random sample of spelling words with varying discriminating power, what are the
consequences in terms of the departure from the ideals of measurement?

(3) Can we assume that the developmental stages from year 1 to year 12 form one
unidimensional scale? If not, how do we carry out equating across the year
levels?

Exercises

In the SACMEQ project, some variables were combined to form a composite
variable. For example, the following seven variables were combined to derive a
composite score:

24. How often does a person other than your teacher make sure that you have done
your homework?
(Please tick only one box.)

PHMWKDON

(1) I do not get any homework

(2) Never

(3) Sometimes

(4) Most of the time

Yr 3 Links
3/5 Yr 5 Links

5/7 Yr 7

Number 14 5 16 5 17

Space 8 2 9 2 10

Measurement 8 2 9 2 10

Chance & Data 4 2 6 2 6

Total 34 11 40 11 43

FINAL FORM MATRIX
Fig. 2.4 Example client
specifications for a test
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25. How often does a person other than your teacher usually help you with your
homework?
(Please tick only one box.)

PHMWKHLP

(1) I do not get any homework

(2) Never

(3) Sometimes

(4) Most of the time

26. How often does a person other than your teacher ask you to read to him/her?
(Please tick only one box.)

PREAD

(1) Never

(2) Sometimes

(3) Most of the time

27. How often does a person other than your teacher ask you to do mathematical
calculations?
(Please tick only one box.)

PCALC

(1) Never

(2) Sometimes

(3) Most of the time

28. How often does a person other than your teacher ask you questions about what
you have been reading?
(Please tick only one box.)

PQUESTR

(1) Never

(2) Sometimes

(3) Most of the time
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29. How often does a person other than your teacher ask you questions about what
you have been doing in Mathematics?
(Please tick only one box.)

PQUESTM

(1) Never

(2) Sometimes

(3) Most of the time

30. How often does a person other than your teacher look at the work that you have
completed at school?
(Please tick only one box.)

PLOOKWK

(1) Never

(2) Sometimes

(3) Most of the time

The composite score, ZPHINT, is an aggregate of the above seven variables.
Q1. In the context of IRT, the value of ZPHINT can be regarded as reflecting the

level of a construct, where the seven individual variables are manifest variables. In a
few lines, describe what this construct may be.

Q2. For the score of the composite variable to be meaningful and interpretable in
the context of IRT, what are the underlying assumptions regarding the seven
indicator variables?

Q3. In evaluating the quality of test items, which one of the following is the
most undesirable outcome for an item?

The item is difficult and less than 25% of the students obtained the correct answer

One distractor attracted only 5% of the responses. That is, one distractor is not “working” well

The percentage correct for high ability students is about the same as the percentage correct for
low ability students

A lot of students skipped this question because they don’t know the answer

Q4. In determining the maximum score of an item (e.g., an item is worth two or
four marks), which of the following is the most important consideration?
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The number of steps needed to reach the final answer

The difficulty of the question. The more difficult, the higher the maximum score should be

The range of possible responses. If there are more different responses, there should be more score
points

The extent to which a question can separate good and poor students

Q5. Answer TRUE or FALSE to the following statement:
For an item where the maximum score is more than 1 (e.g., an item with a

maximum score of 3), the scores (0, 1, 2, 3) should reflect increasing difficulties of
the expected responses. That is, the assignment of the scores to responses should
reflect an increasing ability, where a student receiving a higher score is expected to
have a higher ability than a student receiving a lower score on this item.

TRUE/FALSE
Q6. Can you have a think about Questions 4 and 5. Write a short summary about

the considerations of the assignment of partial credit scores within an item, and
across items?

References

Adams RJ, Wu ML (2002) PISA 2000 technical report. OECD, Paris
Downing SM, Haladyna TM (eds) (2006) Handbook of test development. Lawrence Erlbaum

Associates, Mahwah, NJ
Mullis I, Martin M, Ruddock G, O’Sullivan C, Preuschoff C (2009) TIMSS 2011 Assessment

Frameworks. TIMSS & PIRLS International Study Center Lynch School of Education Boston
College, Boston, MA

OECD (2013) PISA 2012 Assessment and analytical framework: mathematics, reading, science,
problem solving andfinancial literacy. OECDPublishing, Paris. doi:10.1787/9789264190511-en

Osterlind SJ (2002) Constructing test items: Multiple-choice, constructed-response, performance,
and other formats, 2nd edn. Kluwer Academic Publishers, New York

Reckase MD, Ackerman TA, Carlson JE (1988) Building a unidimensional test using
multidimensional items. J Educ Meas 25:193–203

Further Reading

Hogan TP, Murphy G (2007) Recommendations for preparing and scoring constructed response
items: what the experts say. Appl Measur Educ 20(4):427–441

Mellenbergh GJ (2011) A conceptual introduction to psychometrics: development, analysis, and
application of psychological and educational tests. Eleven International Publishing, Hague,
Netherlands

Netemeyer RG, Bearden WO, Sharma S (2003) Scaling procedures: issues and applications. Sage,
Thousand Oaks, CA

38 2 Construct, Framework and Test Development—From IRT Perspectives

http://dx.doi.org/10.1787/9789264190511-en


Schmeiser CB, Welch CJ (2006) Test development. In: Brennan R (ed) Educational measurement,
4th edn. Praeger publishers, Westport, CT, pp 307–354

Wu ML (2010) Measurement, sampling and equating errors in large-scale assessments. Educ
Measur: Issues Pract 29(4):15–27

Further Reading 39



Chapter 3
Test Design

Introduction

In this chapter, test design refers to the considerations for the number of items in a
test, the sample size of students to take the tests, the assignment of tests to students,
the arrangement of items in a test and the assignment of markers to test scripts.
However, more generally, the development of the construct, framework and test
blueprint discussed in Chap. 2 are all part of the test design.

The purposes of measurement can vary a great deal. Even if we focus on
achievement tests, there can still be many different objectives. Test design depends
greatly on the purposes of a test. For example, a test can be used for diagnostic
purposes, in which case measures on individual students are the main focus. A test
can be used to gather information for a state, or for a country, in which case the
focus is not on individual students but on the cohort. In the case of cohort statistics,
the focus may be on the percentage of students reaching a minimum standard, or the
focus may be on the shape of the ability distribution and the percentages of students
at different levels. For another test, the focus may be on the items for building an
item bank for future uses rather than on student achievement per se. One might
desire a test that can accomplish multiple purposes. But the costs and practicality of
constructing and administering such tests may not be feasible. Therefore in the
following we consider trade-offs and tensions between different uses of a test, and
the implications of different purposes to test design.

Measuring Individuals

If the purpose of a test is diagnostic for individual students, then the construct
should not be too broad. Since a broad construct calls for many items, and it may
not be practical for a student to sit a very long test.
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Magnitude of Measurement Error for Individual Students

To gauge whether a test provides sufficient accuracy for measuring individuals,
there are two considerations. First, we need to know the accuracy of the ability
estimates. Second, we need to know what accuracy is sufficient for the purposes of
the test. To answer the first question, the computation of measurement error will
inform us of the accuracies of ability estimates. The notion of measurement error
can be explained as the possible variation in a student’s test scores if similar tests
are administered. The variation in scores is due to the fact that each test only
samples a small set of a student’s capabilities reflecting the construct. That is, when
a test is administered, there is some uncertainty associated with the test score, not
because the test contains errors but because a test provides limited information
about a student’s ability in the domain being tested. Should different test developers
write the test (to the same test construct and test blueprint), a student’s score will
likely be different.

It is unfortunate that the word “error” leads some to think that measurement error
is caused by errors in test items or errors made in processing test result. Actually,
the quality of test items is not reflected in the computation of measurement error per
se. It is reflected in the test reliability and validity. To evaluate whether measure-
ment error is large, we need to look at the relative magnitude of the measurement
error compared to the overall spread of the ability distribution, in other words, effect
size.

Measurement error is directly related to the test length. A student’s test scores on
similar tests of 5-items will likely vary a great deal. A student’s test scores on
100-item tests will not vary as much. To get an idea about the magnitude of
measurement error, Fig. 3.1 shows the ability distribution estimated using a
state-wide mathematics test for grade 5 students. Measurement error for this test can
be calculated. We can also predict the measurement error for similar tests with
varying number of items. The 95% confidence intervals of a student’s ability
measure in relation to the spread of the ability distribution are shown in Fig. 3.1
when such a test has 30 items and 60 items. The ability measure is in the logit unit
(see Chap. 7 for the meaning of logit). The derivation of the confidence intervals is
given in Appendix 1.

Fig. 3.1 Ability distribution
and 95% confidence intervals
for ability measures
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Figure 3.1 shows the ability distribution which has been standardised to have a
mean of 0 and standard deviation of 1. The two (red) horizontal lines with arrows
show the width of the 95% confidence intervals for an individual student’s ability
estimate, as a function of test length (value of I). For example, reading from the
graph, if the test length is 30, a student’s ability estimate is likely to vary between
−0.7 and 0.7 should the student sit similar tests of 30 items. Given that the student
only sat one test, one needs to be aware that the ability estimates obtained from
similar tests could vary in a range of 1.4 (i.e., from −0.7 to 0.7). As the test length
increases, the width of the confidence interval becomes smaller, indicating more
accuracy in the ability estimate. However, even for tests of 60 items, the 95%
confidence interval is still quite wide (reading from the graph, about 1.0 in length).
Appendix 1 provides a table of the magnitude of the measurement errors.

While every test is a little different in terms of the relative size of the mea-
surement error to the standard deviation of the ability distribution, our experience
shows that for standardised tests typically used in large-scale surveys, the order of
magnitude of measurement error is similar to those shown in Fig. 3.1. As a rough

guide, a lower bound for measurement error in logit unit is given by
ffiffi
4
I

q
where I is

the number of items (actually, score points) in a test (see Appendix 1) and the 95%

confidence interval for an ability estimate is �2�
ffiffi
4
I

q
. If the 95% confidence

interval needs to have a width of less than 0.5, say, the number of items, I, needs to

be more than 256 (in the equation 0:5 ¼ 2�
ffiffi
4
I

q� �
� �2�

ffiffi
4
I

q� �
, solve for I). It

may take up to 6 h for a student to work through 256 items if it takes 1 h to
complete 40 items. This does not sound feasible in practice. Even then, a confidence
interval of 0.5 may still be too large for some purposes. This leads to the next
consideration of determining what accuracy is sufficient. But before discussing
about how to decide on adequate accuracy, we will first introduce the notion of
standardised units where scores are expressed in standard deviation units to provide
a convenient way for making comparisons of quantities when there are different
units of measurement.

Scores in Standard Deviation Unit

To compare scores from different assessments where the scale factor and the origin
of a measurement scale are arbitrarily set, we will compute statistics in units of the
standard deviation of the distribution of interest, in much the same way as the unit
of effect size. For example, for a 30-item test, the measurement error is around 0.37
in the above example. This corresponds to 0.37 standard deviation units, if the
ability distribution has a standard deviation of 1. In the example below (Fig. 3.2),
student achievement scores have been scaled with a range between 200 and 800.
While this scale is not directly comparable with the scale in Fig. 3.1, scores in
standard deviation units can be compared.
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What Accuracy Is Sufficient?

To determine whether an achieved accuracy is sufficient, we need to assess whether
the aims of the measurement can be met. For example, if we only want to divide
students into three ability groups with roughly the same range, a 30-item test will
provide sufficient precision for that, as shown in Fig. 3.1. But at the same time,
teacher judgements probably can provide us that information with sufficient accu-
racy already. Suppose the purpose of our test is to monitor student growth. We need
to first make a guesstimate of the magnitude of the growth before we can design
instruments to measure that growth with sufficient accuracy. As an analogy, if we
want to measure the amount of baking powder for a cake, we need accuracies to the
nearest gram and we will not use a scale that measures in whole kilograms. To
estimate growth measures, we use some empirical data obtained in a national
assessment of numeracy of students in Australia (NAPLAN 2010). Figure 3.2
shows the ability distributions from NAPLAN tests for Grades 3, 5, 7 and 9 (grey
rectangular boxes showing 95% of each distribution), and the average achievement
at each grade (squares at the centre of the distributions). From this graph, we can
estimate a relative growth rate in relation to the spread of each distribution. The
standard deviation of each distribution is around 70 NAPLAN score points. The
growth rate per year is larger in lower grades than in higher grades. Overall, there is
an increase of 190 NAPLAN score points over 6 years (from Grade 3 to Grade 9),
so the average growth rate per year is 32 points (190 points divided by 6 years).
The growth rate can be expressed in standard deviation unit. In this case, the growth
rate is about 0.46 standard deviation unit (32 divided by 70). In education literature,
yearly growth rate has typically been found to be about 0.5 of a standard deviation
of the ability distribution (e.g., Thissen and Steinberg 1997).

Expressed in standard deviation units, given that the average yearly growth rate
is around 0.5, and the measurement error for a 30-item test is around 0.37 (with
95% confidence interval of the growth measure around 1.4), it is not expected that
two 30-item tests administered one year apart can provide the accuracy to measure
an individual student’s growth with sufficient precision. This is similar to using a
scale calibrated with kilograms to measure a few grams of baking powder. We need
more accurate instruments to measure individual growth. To reduce the 95%
confidence interval of growth measures so that growth (around 0.5 standard devi-
ation unit) can be measured with reasonable accuracy, we need many hundreds of
items!

In general, the technique used to determine sample sizes (whether the number of
items or the number of students) begins with an estimation of the order of mag-
nitude of the statistic to be measured, and then an estimation of the accuracies that
can be achieved with various sample sizes. Appropriate sample sizes can be chosen
to meet the measurement purposes. In general, there is no one single recommen-
dation regarding adequate sample size. Each purpose of measurement has its own
requirement regarding sample size.
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Summary About Measuring Individuals

The main message is that a one-off test does not provide very accurate information
at the individual student level other than an indicative level of whether a student is
below average, at average or above average. This lack of accuracy should not
surprise us. If ever one single test of 30 items is used for high-stakes purposes such
as selection into colleges or awarding certificates, we should be very wary of the
results. This message is particularly relevant in the current climate of the prolif-
eration of standardised tests. Results from these tests have often been
over-interpreted.

Fig. 3.2 Student numeracy
scores distributions
(NAPLAN 2010)
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Measuring Populations

Many assessments are designed to provide information about a cohort of students
rather than about individual students. In this case, considerations for test design are
quite different from those for individuals, particularly about the sampling of stu-
dents. Even if a whole cohort of students are tested rather than a selected sample,
cohort statistics are often regarded as from a sample, and many inferences are made
based on sampling theory. For example, in state-wide or nation-wide tests where all
students in a population are tested, the mean score for the cohort will have no
sampling error associated if it is assumed that the whole population has been
included. Consequently, when trend estimates are computed, any difference
between the mean scores from one year to another will be statistically significant,
since the standard errors for the mean scores are zero, leading to an infinitely small
p-value. This is not very informative in terms of reporting trends. Instead, the
population of students in a calendar year can be regarded as a sample from an
infinite population. In this way sampling errors can still be computed. An evaluation
of trends will then take into account that differences between the mean scores can
be in part due to some chance elements of the composition of the populations from
one year to another.

When a cohort statistic is computed such as the mean score of a group of
students, the accuracy (or margin of error) of the statistic depends on both the
sample size of students (known as sampling error), as well as on how accurately
each student is measured (known as measurement error). For the group mean score,
a lack of accuracy from measuring individual students can be compensated for by
increasing the sample size of students. In general, the sample size of students has a
larger impact on the accuracy of cohort statistics than the test length for each
student. That is, even if each student sits a short test, we are still able to obtain
acceptable accuracy for a cohort statistic provided there are enough students taking
the tests. As an example, we can ask 5000 people their age groups (e.g., age groups
in the range of 0–10, 11–20, 21–30 etc.) so the information on individual person’s
age is not accurate. But if we average the age groups of 5000 people, we can still
obtain an average age that will not be greatly different from the average of
everyone’s actual age.

In the case of state-wide testing, one common purpose is for monitoring student
standards in a subject domain such as mathematics or reading. In this case, the
constructs are broad and the tests need to have a large number of items to cover the
subject domain. This relates to test validity issues. Since it is impractical to
administer a very long test to each student, rotated test booklets are often designed
where each test booklet contains only a small number of items. The test booklets are
randomly distributed to students. In this way, the subject domain is covered by many
items, but at the same time there is not too much burden for each student to take the
tests. The lack of accuracy for individual student’s ability measure is compensated
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by the large number of students taking the tests. The content validity of the
assessment is supported by the inclusiveness of many items in the assessment.

Computation of Sampling Error

The computation of sampling error depends on the sampling design (i.e., how the
sample of students is selected). In the simplest case, if students are randomly
selected, the standard error for the group mean for a statistic X is given by rXffiffi

n
p , where

rX is the standard deviation of X and n is the sample size. For example, if we know
that the standard deviation rX is 1 and we want the standard error to be less than
0.05, the sample size required will be 400 or more. However, in many large-scale
assessments, the sampling method is not simple random sampling. Instead, cluster
sampling method is used (schools are sampled first and then students are sampled
within sampled schools). There are at least two reasons for this. First, for most
countries, if 400 students in a population (e.g., Grade 8 students) are randomly
selected, the 400 students are likely to come from 400 different schools. This could
potentially increase test administration costs if 400 schools need to participate in the
assessment. Second, any analysis at the school level will not likely have sufficient
data if only one student is selected from each school. Consequently, for large-scale
assessment programs, typically, around 150 schools are selected, with one class or
30 students being selected from each sampled school. However, such cluster
sampling reduces the “efficiencies” of the samples in that the standard errors of
sample statistics are typically much larger than the standard errors of simple random
samples. Apart from cluster sampling, the sampling design may include stratifica-
tion of the population and other sampling considerations. In these cases, the
computation of the sampling error becomes complex. These topics are beyond the
scope of this book. Interested readers can refer to technical reports for OECD’s
PISA and IEA’s TIMSS for some examples of complex sampling designs and
methods for computing sampling errors (e.g., OECD 2012; Olson et al. 2008).

Summary About Measuring Populations

For large-scale assessments focusing on the measurement of populations, there need
to be many items to cover a subject domain. Rotated test booklets can be distributed
to students at random, so each student can take just a subset of the items. Typically,
a sample of students from the population can be selected to take the tests. Provided
the sample size is sufficient and the sample design is sound, it is not necessary to
test every student in the population. However, complex sampling requires advanced
techniques in the computation of statistics and their standard errors.
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Placement of Items in a Test

When arranging items in a test, it is often recommended that a test should begin
with easier items so as to alleviate any anxiety the test takers may have. This makes
a great deal of sense. In this section, we will discuss the impact of test taker fatigue
on item difficulties, using the PISA data as an example. (See http://www.oecd.org/
pisa/pisaproducts/pisa2003/.) PISA 2003 has 13 rotated test booklets. For each test
booklet, there are four blocks of test items placed in each booklet. We refer to the
four positions of item sets as Block 1, Block 2, Block 3 and Block 4 in order of their
placement in a test booklet. In PISA 2003, each mathematics item appears in four
test booklets in different Block positions. That is, each mathematics item appears
once in the first position of a booklet, once in the second position, once in the third
position and once in the fourth position of some other test booklets. For example,
Table 3.1 shows the percentages correct of the first five items in the OECD data-
base when the items appear in four different positions.

It can be seen that the percentages correct tend to decrease as the item is placed
in the latter part of a booklet (i.e., numbers in each column of Table 3.1 are
generally decreasing). More notably is the large decrease in percentage correct
when an item is placed in the last part (Position 4) of a test booklet. Figure 3.3
shows the percentages correct graphically. It is quite clear that there is a downward
trend as an item is placed in the latter parts of a test booklet. While it is not clear
whether this is due to the lack of motivation or mental and physical fatigue, we will
term this effect “fatigue effect” for convenience. The difference in percentages
correct between Position 1 and Position 4 range between 5 to 15% for the example
items given. The five items were not specially chosen with decreasing percentages
correct. They were the first five items in the OECD database. Assuming this pro-
vides an indicative range of fatigue effect for the whole assessment, the effect is
considerably large.

Implications of Fatigue Effect

What Fig. 3.3 shows is that the estimation of item difficulties will be influenced by
the position at which an item is placed in a test booklet. The estimated item

Table 3.1 Percentages correct of five mathematics items in four different positions in test
booklets

Percentage correct

View room Bricks Walking Cube painting Growing up

Position 1 72.9 43.9 38.1 61.6 65.2

Position 2 75.6 41.1 37.1 60.6 62.8

Position 3 70.8 35.8 33.1 59.9 60.2

Position 4 67.2 30.1 30.2 49.3 50.4
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difficulty for an item may be quite different if the item appears in another test,
depending on the item position. This has an important implication for equating tests
(see Chap. 12), as the assumption of item invariance needs to be made when
equating is carried out with link items that appear in different tests. For example,
suppose item X appears in both Test A and Test B and is one of the set of link items
used for equating Test A and Test B. Item X appears at the beginning of Test A and
at the end of Test B. If we use the estimated item difficulty for Item X obtained from
Test A data as the item difficulty for Item X in Test B, we under-estimate the item
difficulty in Test B, leading to an under-estimation of Test B students’ abilities.

While this is a complex problem to solve, one way to lessen the impact of fatigue
effect on item difficulty estimation is to have a rotated test booklet design that is
balanced in the sense that an item appears in several different positions in different
test booklets, so that the average item difficulty for the item is computed across the
difficulties at different positions.

Balanced Incomplete Block (BIB) Booklet Design

As an example of a balanced incomplete block booklet design, Table 3.2 shows a
7-booklet test design with 7 clusters (C1 to C7) of items placed in three blocks of
each test booklet. The term “cluster” is used to denote the division of all assessment
items into groups. In this example, there are around 100 items in total. The 100
items are divided into 7 clusters, with each cluster containing around 14–15 items.
Since three clusters are placed in each booklet in the three block positions, each
booklet contains around 40–45 items.

The seven clusters, C1 to C7, are placed in one of three positions (Blocks 1, 2
and 3) in seven test booklets. The design shown in Table 3.2 has the following
characteristics.

Fig. 3.3 Percentages correct
of five items in four positions
of a test
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1. Each cluster appears in each position (Block 1, 2 or 3) once. For example, C1
appears in position 1 in booklet 1, position 2 in booklet 7 and position 3 in
booklet 5.

2. Each possible pair of clusters appears together in a booklet once. For example,
Clusters 4 and 6 appear together in booklet 3. Clusters 3 and 7 appear in
booklet 7.

The above two characteristics show a “balance” in the design. The design is
incomplete in the sense that each booklet does not contain all clusters. Using a BIB
test design greatly enhances the strengths of the links between the test booklets. It
also moderates the impact of fatigue effect as each item appears in different posi-
tions of the test booklets.

There are other examples of BIB designs. In PISA 2003, a 13-booklet BIB
design was used, as shown in Table 3.3 (OECD 2005), showing the placement of
mathematics, science, reading and problem solving item clusters.

Whether a 7-booklet, 13-booklet or other BIB test design should be used
depends on the total number of test items in the assessment and the amount of time
each test taker can take a test. The test length of each cluster and the number of
blocks in a booklet determine the total test length for each test taker. For example,

Table 3.2 7-booklet BIB
design

Booklet Block 1 Block 2 Block 3

1 C1 C2 C4

2 C2 C3 C5

3 C3 C4 C6

4 C4 C5 C7

5 C5 C6 C1

6 C6 C7 C2

7 C7 C1 C3

Table 3.3 PISA 2003 test
design

Booklet Block 1 Block 2 Block 3 Block 4

1 M1 M2 M4 R1

2 M2 M3 M5 R2

3 M3 M4 M6 PS1

4 M4 M5 M7 PS2

5 M5 M6 S1 M1

6 M6 M7 S2 M2

7 M7 S1 R1 M3

8 S1 S2 R2 M4

9 S2 R1 PS1 M5

10 R1 R2 PS2 M6

11 R2 PS1 M1 M7

12 PS1 PS2 M2 S1

13 PS2 M1 M3 S2
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under the 13-booklet design, if each cluster contains 20 items, then each booklet
will have 80 items (4 blocks per booklet). This may be too many for a student to
take. On the other hand, the total number of clusters and the length of each cluster
determine the total amount of materials that can be tested. For example, if there are
13 clusters and each cluster has 20 items, then the total amount of testing material is
260 items (13 × 20). Consequently, the test design needs to take into account the
amount of testing materials in total and the testing duration for each student.

Arranging Markers

For open-ended items such as essays, markers are often required to make judge-
ments on students’ responses. Frequently, steps are taken to minimise marker dif-
ferences. For example, control scripts (e.g., a set of essays used for marker training
and monitoring) are provided so marker variation can be assessed. On-going
monitoring of marker harshness/leniency is also a good quality control practice. The
following is an example of marker differences even when experienced and
well-trained markers were used for marking essays. The data set is from a
state-wide assessment on essay writing. Twenty markers participated in the marking
of essays. Each essay was marked by two markers. The maximum score for each
essay is 7 score points. Figure 3.4 shows the results of an IRT analysis that com-
putes the expected scores of each of the 20 markers as a function of student ability
(see Chap. 13 for details on IRT analysis of markers). For example, for Marker 1,
the average (expected) score for students with an ability of 2 is 4 score points. Each
curve in Fig. 3.4 shows the expected scores curve of one marker.

The curves are increasing with ability (theta), indicating that higher ability
students have higher expected scores. However, the band of curves has a width of
about one score point. That is, the most lenient marker (curve on the top of the
band) and the most harsh marker (curve at the bottom of the band) differ by about
one score point out of seven. This is quite a large difference (more than 10% of the
total mark), even after the markers had training to improve marker consistency.

Carrying out an analysis such as the one shown in Fig. 3.4 has at least two
purposes. First, markers can obtain feedback on their leniency/harshness for future
improvement. Second, an IRT analysis with explicit estimations of rater harshness
(see Chap. 13 on Facets analysis) can make adjustments to students’ ability esti-
mates taking into account of marker harshness. While Chap. 13 discusses the details
of such analyses, in this chapter, we will explain about how to design a marking
scheme so that marker effects can be estimated. Clearly, to reduce marker effect,
each essay could be marked by all markers. But such a marking scheme is likely to
be very costly. Marker effects can be estimated without all markers marking all
essays. The following is an example.

Figure 3.5 shows an excerpt of the data that underlie the results shown in
Fig. 3.4.
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Each row in Fig. 3.5 shows the results for one student. Each student’s essay has
been marked by two markers. The first two columns show marker IDs; the third
column shows the mark given by the first marker; and the fourth column shows the
mark given by the second marker. For example, Marker 11239 gave a score of 2 to
Student 1, while Marker 66532 gave a score of 5. From this one data record, one
might make an initial guess that Marker 11239 is relatively harsher than Marker
66532. For the second student, Marker 11239 gave a score of 4, so did Marker
92060. So both markers seem to have the same leniency. We might then infer that
Maker 66532 is more lenient than Marker 92060, even though these two markers
have not marked any essay in common. Provided there are linkages across all
markers, whether through direct link from marking the same essay, or from indirect
links through other markers, we will be able to compare all markers in terms of their
leniency/harshness. On the other hand, if there are two groups of markers, and
markers in Group A have not marked any essays in common with markers in
Group B, then we will not be able to compare these two groups of markers. If, on
average, Group A markers gave higher scores than Group B markers, we will not be
able to conclude whether this is because Group A markers are lenient, or the
students are of higher ability, since Group A marked different students from
Group B. That is, student ability and marker harshness are completely confounded.

In summary, to be able to carry out marker harshness comparisons, there must be
links across markers when we distribute essays for marking. In the case where every

Fig. 3.4 IRT expected scores
curves for 20 markers

11239   66532 2 5 
11239   92060    4 4
92060   31256    3 5
01884   25181 1 1 
25181 31256 2 0 
66532   66700 2 1 

……………

Fig. 3.5 Excerpt of a data
file of essay marks
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essay is only marked by one marker, it is generally difficult to compare marker
harshness.

Summary

This chapter discusses about the sample size of items, sample size of students, the
placement of items in a test and assignment of markers to test scripts. Sample sizes
need to be sufficient to provide the accuracy required for the purposes of an
assessment. In general, the accuracy of a statistic depends on the number of pieces
of information we have about that statistic. For example, the accuracy of item
statistics depends on the number of students taking each item. The accuracy of
student measures depends on the number of items each student takes. The accuracy
of marker harshness estimates depends on the number of test scripts a marker
marks. For group statistics, the sample size of students has more impact on the
accuracy of measures than the number of items. If statistics for sub-groups are
required (e.g., for a state or for a socio-economic group), then the sample sizes for
the sub-groups are also important considerations. We often compute the required
sample size for a whole cohort and forget that there needs to be sufficiently large
samples for statistics for sub-groups.

In designing tests, whenever possible, apply the principles of “balance” and
“randomisation”: a balanced range of item difficulties in a test; a balanced item
rotation in test booklets, a balanced assignment of markers to essays, etc. When
real-life situations have “unbalanced” characteristics, such as differences between
schools and classes, we can distribute rotated test papers at random within each
class so as to avoid having high performing schools receiving particular test
booklets. Randomisation at the lowest sampling level is typically a good
recommendation.

Finally, we would like to say a word about “fairness”. One common misper-
ception is that students can only be compared if they take the same test. Consider an
example. If we were able to administer all possible Grade 5 mathematics test items
to a student, the student can answer 60% of the items. When 40 items are placed in
a test, say, the student may not obtain exactly 60% (24 items) correct. The student’s
score depends on the particular set of items in the test, as well as his/her perfor-
mance on the day of the test. Should a different set of test items be selected, equally
representing Grade 5 mathematics, the student’s test score could be different, not
because there are errors in the test or in the data processing, but because by chance
the student may know more or less of the content of a particular test. This is the
notion of measurement error. A student’s score on a 40-item test typical could vary
within a 10 score point range. For a given test, Student A could obtain 20 out of 40.
But on another similar test, the same student could obtain 30 out of 40.
Consequently, some tests may “favour” Student A, and some tests may disad-
vantage Student A, so that when every student takes the same test, the test is not
equally “fair” to all students, because a student could do better (or worse) on
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another similar test. If a set of similar tests are randomly distributed to students, and
students take different tests, it is no more unfair than with all students taking the
same test. For this reason, when rotated test booklets are used in an assessment, it is
no more unfair than having a single test for all students.

The issue with administering the same test to students is that there will be a lack
of curriculum coverage. This leads to validity issues as well as problems with
equating tests from year to year because of content differences. In some state-wide
testing programs, the administration of a single test for everyone has greatly limited
the usefulness of the assessment, just because test administrators believe that it is
only fair when all students take the same test.

Discussion Points

1. Stakeholders of assessments have competing demands. Discuss the information
typically desired by students, parents, teachers and education authorities, the
tensions between them, and how different information can be obtained through
assessments.

Exercises

Q1. To increase the precision of each student’s ability estimate, which one of the
following is the most important factor?

Increase the test length (or the score points on a test)

Increase the sample size of students taking the test

Make sure there are no errors in scoring the items

Make sure there are no errors in the test questions

Q2. To increase the precision of cohort statistics, which one of the following is
the most important factor?

Increase the test length (or the score points on a test)

Increase the sample size of students taking the test

Make sure there are no errors in scoring the items

Make sure there are no errors in the test questions
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Q3. If there are 100 items in a test (or, the maximum score is 100), estimate the
95% confidence interval of an ability estimate (use Eq. (3.2) in the
Appendix). What is the effect size of the confidence interval if the ability
distribution has a standard deviation of 1?

Q4. If students are randomly sampled from a population where the ability dis-
tribution has a standard deviation of 1, what is the sampling error of the mean
ability for a sample of 1000 students?

Q5. Ignoring measurement error, what sample size for a simple random sample of
students will lead to a 95% confidence interval of ±0.01 for the mean ability,
if the ability distribution has a standard deviation of 1?

Q6. Design a BIB test booklet rotation scheme for 3 clusters of items. How many
blocks and how many test booklets are needed?
If each student can take 60 min of test materials, what is the total amount of
materials (in terms of test minutes) that can be included in your test design?

Q7. Discuss the following test design in terms of balance and linkages of clusters.

Booklet Block 1 Block 2

1 C1 C2

2 C2 C3

3 C3 C4

4 C4 C5

5 C5 C6

6 C6 C7

7 C7 C1

Q8. Four markers (A, B, C, D) will mark 6 students’ essays. Each student’s essay
will be marked by two markers. The following shows a design of assigning
students’ essays to markers.

Student First marker Second marker

1 A C

2 A C

3 A C

4 B D

5 B D

6 B D

Discuss any advantages or disadvantages of the above marking scheme.
Can you propose any alternative marking scheme that may work better? Give
reasons for why your design may be better.
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Q9. In real-life, it is often too costly to mark each student’s essay more than once.
If every essay is marked only once, what assumptions must be made if the
average mark given by each marker is used to reflect the marker’s
harshness/leniency?

Q10. Given that a group of markers have different harshness/leniency, if test
scripts are randomly distributed to markers, is this “fair” for each student in
the sense that there is no marker bias for individual students? What marking
design can reduce marker bias to make it fairer for individual students?

Appendix 1: Computation of Measurement Error

Suppose a test has I dichotomous items with item difficulties d1; d2; . . .; dI . Let hn
denote the ability of the nth examinee, and ĥn denote the maximum likelihood
estimate of hn. Then, it can be shown that the measurement error is equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var ĥn
� �r

, where

var ĥn
� �

¼ � @2k H Xjð Þ
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Pr Xni ¼ 1; ĥn; d̂i
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¼ T�1

ð3:1Þ

for dichotomous items, where T is the test information function and k HjXð Þ is the
log likelihood function of the item responses.

If we assume that all items have a difficulty value of 0 on the logit scale, and the

ability of a student is also 0 (i.e., well-targeted test), then Pr Xni ¼ 1; ĥn; d̂i
� �

is 1
2 in

Eq. (3.1) in the case of the Rasch model, so that the measurement error is
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where I is the number of items. Equation (3.2) is useful for obtaining the order of
magnitude of measurement error. It provides a lower bound for measurement error
as we have assumed that all item difficulties matched the student’s ability. When
items do not match a student’s ability (e.g., items are too difficult or too easy for a
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student), the measurement error will be large than that estimated by Eq. (3.2).
Table 3.4 shows the magnitude of measurement error as a function of test length.
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Chapter 4
Test Administration and Data Preparation

Introduction

This chapter highlights some steps in test administration and the preparation of data
for test analysis, including data collection, coding and data cleaning. The key to the
success of test administration is careful planning and management. From printing
the test booklets to conducting the test, every step needs to be closely managed and
nothing should be left to chance. For example, there could be security issues related
to test papers, and attendance issues related to participating students. The whole
process calls for competent management skills.

The key to the success of data processing is the development of an automated
procedure that retains flexibility in editing and recoding item response data. We
frequently need to analyse a dataset repeatedly because of errors in the data, change
of scoring rules, deletion of poorly performing items, and many other reasons. It is
essential to develop a set of computer programs to carry out recoding and data
cleaning tasks. One should never make changes to the data in a manual way, as it is
not only time-consuming but also error-prone.

The planning of the collection of data should begin as early as possible, in fact,
at the conception of the assessment. Data collection and preparation should be an
integral part of the assessment design, and it should not be an after-thought when
the tests have already been designed or even after the tests have been administered.

Sampling and Test Administration

If the sample of respondents is a convenience sample and the test is a one-off test, there
perhaps isn’t a great deal to plan for test administration. However, there are limitations
to the use of such tests, as results cannot be generalised to a population and be more
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widely used. Consequently, many assessment programs test a representative sample
of a defined population, or test a whole cohort of students of a population.

Sampling

While sampling is not discussed in depth in this book, in this section we outline the
key elements of sampling in educational assessment contexts for collecting samples
of students to represent a population. Chapter 3 briefly introduces the concept of
cluster sampling. In the following, we assume that cluster sampling is used where
schools are first selected and then students are sampled from selected schools. A list
of steps in sampling is given below.

1. Clearly define the target population of interest. For example, this could be grade
8 students in schools in a region, or year 13 students in schools. Without a clear
population definition, sampling cannot be done to represent the population.

2. Identify all schools in which students in the target population are enrolled. Make
a list of these schools. This list is called a sampling frame. This school sampling
frame will typically contain school name, school information (e.g., address,
school type, geolocation) and the enrolment size for each grade in each school.
Figure 4.1 shows an example school sampling frame.

3. Decide on the degree of accuracy of the results of interests so that sample sizes
can be computed. With a two-stage sampling design where schools are selected
first and then students are sampled from the selected schools, the standard errors
of mean scores are typically much larger than those from simple random
sampling. The magnitude of the standard error depends on the design effect. The
design effect is the factor by which the sample size of a simple random sample
needs to be inflated for a two-stage sampling design, to achieve the same
accuracy for the statistic of interest as for a simple random sample. If a country
has been a participant in international studies such as TIMSS, PIRLS or PISA,
you can get an estimate of the design effect from these studies. Typically, you
can expect the sample size required for a two-stage sampling design to be 3–8
times larger than the sample size for simple random samples, if 30–35 students
are sampled from each selected school. The design effects due to complex

School
ID

School
Name

School
address

State School
type

School
loca on

Grd 1
enrol

Grd 2
enrol

Grd 3
enrol

1001 St Les .. … Pe catholic urban 68 74 70 

1036 Rowan .. … Un govn’t rural 18 17 16 

… …        

Fig. 4.1 An example school sampling frame
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sampling for PISA 2003 Mathematics for 15 year-olds are shown in Table 4.1
(OECD 2009).

4. Use a probability sampling method to select a sample of schools. Probability
sampling means that every school and student in the target population has a
positive probability of being selected, and these probabilities can be computed.
In the simplest case, simple random sampling can be used. To improve sampling
efficiency (i.e., to reduce sampling error), stratified and systematic sampling can
also be used. Stratification typically refers to grouping the schools in the target
population into strata, such as by geographical location or by school types (e.g.,
public, private) to ensure that each stratum has a representative sample of
schools. Standard errors can be reduced by using stratification, provided that the
stratification variables are related to the performance being measured. For
example, a sampling frame may be stratified by geolocation: urban, rural and
remote. If, on average, students in urban regions tend to perform better than
students in rural areas, and a great deal better than students in remote regions,
then, stratifying the sampling frame into geolocations will help us achieve a
more representative sample, since we ensure that schools in all three geoloca-
tions are proportionally selected. If we leave it to chance by using simple
random sample, we may not necessarily have a sample that reflects the pro-
portions of schools in each geolocation.

5. For the selected schools, construct lists of students (sampling frames of students)
in these schools. Note that in step 2, the sampling frame is a list of schools only,
not individual students. This is because it is often too difficult to compile the list
of students in the whole target population. Compiling the list of students in
sampled schools (instead of all schools) can significantly reduce the amount of

Table 4.1 Design effect for PISA 2003 Mathematics (OECD 2009)

Country Design
effect

Country Design
effect

Country Design
effect

Australia 6.25 Hungary 4.19 Norway 2.68

Austria 5.52 Iceland 0.77 Poland 3.25

Belgium 3.75 Ireland 3.08 Portugal 6.94

Canada 11.67 Italy 11.24 Slovak
Republic

3.79

Czech
Republic

8.42 Japan 7.42 Spain 7.64

Denmark 3.57 Korea 6.47 Sweden 3.31

Finland 2.63 Luxembourg 0.43 Switzerland 9.68

France 3.09 Mexico 53.89 Turkey 13.33

Germany 4.86 Netherlands 4.48 United
Kingdom

6.34

Greece 7.89 New
Zealand

2.17 United States 4.87
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work. To find eligible students (i.e., students satisfying the target population
definition) and their background information (e.g., name, gender, age, class), the
selected schools will often need to be contacted, if detailed enrolment data is not
available through other sources.

6. Use a probability sampling method to sample students in selected schools. This
can be just simple random sampling, or cluster sampling by selecting intact
classes, or by selecting classes first and then students in the selected classes.
Typically in international large-scale studies, around 30–35 students are selected
per school, and around 150–180 schools are selected per country, to give an
accuracy of the equivalent of a simple random sample of 400 students.

7. Compute sampling weights. In the above two-stage sampling process (select
schools first and then students), it is important that the probabilities of school
selection and student selection are clearly computed from the sampling design.
Knowing the probability of selection will enable us to compute sampling
weights. For example, if a school has a probability of 0.1 of being selected (i.e.,
one school is selected out of 10), then this school should represent 10 schools
(inverse of the probability of selection, 1/0.1). Therefore the school sampling
weight is 10. Similarly, the inverse of the probability of selecting a student is the
sampling weight of the student. For example, if there are 100 eligible students in
a school and 30 are selected, the student weight is 100/30, being the inverse of
the probability of selection. That is, each student represents 3.3 students in the
school for the target population. The final student weight is the product of the
school weight and the student weight. In the example, the final sampling weight
for a student is 10� 100

30 ¼ 33:3. One can think of sampling weight as the
number of students in the target population represented by a sampled student.

8. In all analysis of student results, it is essential to use sampling weights to weigh
each student’s result so that any aggregation of results can reflect the charac-
teristics of the population.

For a more detailed description of sampling procedures and the computation of
sampling weights, see PISA and TIMSS technical reports (e.g., OECD 2009; IEA
2008).

Field Operations

In some assessments, a pilot test for checking the quality of the test items is first
conducted before a main study is carried out. For pilot tests, there may not need to
be stringent sampling procedures. However, for the main study, the sampling
procedures and test administration process needs to be carefully executed so that the
data collected can reflect the population performance. The following is a list of key
steps in field operations of test administration.
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1. Schools must be contacted about test administration dates so that required
actions can be arranged with ample amount of time. For example, students and
parents may need to be informed and permissions need to be obtained. Test
booklets should be packed with lists of sampled students and sent to schools
prior to test administration. If rotated test booklets are used, assign the booklets
to sampled students when packing the test booklets. Do not leave it to the test
administrators for the assignment of test booklets. The test booklets should be
randomised within a class (if classes are selected). Typically a random booklet
number is drawn (say, 6) and then the booklets are assigned sequentially to
students in a list (e.g., 6, 7, 8,…, 1, 2,…). If the booklets are distributed starting
from booklet 1 each time, there will be more booklet 1 administered than other
booklets.

2. When tests are administered, ensure that attendance lists are filled in. Absent
students must be recorded in addition to any irregular issues such as interrup-
tions to test taking. Student participation forms should be used to record
attendance of students at testing sessions. Frequently, student participation
forms contain student background information (e.g., date of birth, gender) as
well as attendance records. The student participating forms must be returned
with the test booklets. Absentees of sampled students will have an impact on the
sampling weights computation as well as on the overall response rate of par-
ticipation. Typically, a non-response adjustment is made to the sampling
weights when sampled students were not able to take the tests. Figure 4.2 shows
an example student participation form.

3. During test administration, instructions to students must be read from a prepared
script so that test administration procedures are standardised at different testing
locations. This means that test administrators will need to be trained or at least
be well informed of testing procedures. It is common to provide a test admin-
istrator’s manual detailing procedures of conducting the tests. Figure 4.3 shows
an example script for the test administrator to read to students.

Overall, test administration needs to be well managed, coordinated and closely
monitored. Ensure that the same procedures are followed at all test sites.

School ID: 1045 School Name: St Mary Primary School Class Name: Grade
3B

Student
ID

Student
Name

Gender Date of
Birth

Test
booklet

A endance comments

001 Mark Velos M 30/10/95 6 present  

002 Amy Chen F 7/11/95 7 absent  

… …      

Fig. 4.2 An example student participation form
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Data Collection and Processing

Capture Raw Data

The first step in gathering data is planning what data to capture. It is essential to
capture raw data whenever you can. By raw data, we refer to the responses given
by the students before any processing is carried out. For example, for a
paper-and-pen test, we should capture the options students choose for multiple
choice items, rather than capturing the score (correct/incorrect) for each item. We
can carry out distractor analysis if we know which options students have chosen,
and not just whether students chose the correct option. Further, if there is a mis-key
(wrongly specified correct answer), we can easily re-score the data. In most tests we
have analysed, there nearly always have been mis-keys.

For short response items, it will be good to capture the actual responses rather
than scored responses. For example, for a computation item, it will be good to
capture students’ answers, and not just correct/incorrect responses. Again, students’
incorrect answers can often inform us of misconceptions and help teachers plan
remedial lessons.

For extended response items, it may be difficult to apply automatic scoring
procedures, so markers are often employed to categorise the responses. We
deliberately use the word categorise rather than score here, as we emphasise that
the role of the markers is to categorise item responses according to a marking guide,
than to decide on scores. Categorising responses according to a well-written
marking guide is more objective, while deciding on a score is more subjective as
different markers may have different views of giving credits to students. We can
always apply scoring rules to the category codes of item responses using a computer
program. Make sure a comprehensive marking guide is designed. One should err on
the side of providing more coding categories than fewer categories. When marking
guides are developed, consider the different responses students may provide and
how the responses can be grouped into meaningful categories and codings. For
example, in TIMSS, double-digit coding is often used to denote both the score and
the response category. Figure 4.4 shows an example TIMSS item with double-digit
coding (IEA 2009).

This is a mathematics test. There are ten different test booklets, therefore students 
around you may be working on different test booklets. 
Read each question carefully and answer it as well as you can. Answer as many 
questions as you can. If you do not know the answer to a question, move on to the 
next question. You have 60 minutes to work on the test.  
Do not start working through the test questions yet. You will be told when to begin.  
First we will do some practice questions together. There are five types of questions in 
the test. … 

Fig. 4.3 An example test instruction script to the students
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It can be seen from Fig. 4.4 that not only the correct answer is captured, but
different types of incorrect answers are also captured.

Markers should undergo training to ensure consistency across different markers.
Typically, selected student responses to extended-response items, known as control
scripts, are distributed to markers during marker training sessions to provide
guidelines to markers in categorising student responses according to the marking
guide. In Chap. 3, marker harshness/leniency is briefly discussed. Chap. 13 pro-
vides some examples of an analysis of marker consistency.

Of course, in designing marking guides, there is always a trade-off between the
complexity of coding responses and the amount of information captured. Therefore,
a practical approach is to capture as much information as allowed by your available
resources. But remember that information not captured will not be available for
analysis, while information captured can always be recoded or simplified during the
data processing stage. So it is better to err on the side of capturing more information
whenever possible. Of course, in practice, one needs to weigh up cost versus
benefit. Given the advance of technology now and in the future, extensive data
capture and processing will become increasingly cost effective.

Prepare a Codebook

To ensure that there is no ambiguity in capturing data, a codebook should be
prepared ahead of data capture. An example codebook for an assessment is shown
in Fig. 4.5.

A gardener mixes 4.45 kilograms of rye grass seed with 2.735 kilograms of clover 
seed to make a mix for sowing a lawn area. How many kilograms of the lawn mix 
dies he now have? [TIMSS 2007 grade 8 released mathematics item M022046] 

Fig. 4.4 Marking guide for TIMSS released item M022046
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For more example codebooks, see TIMSS and PISA websites where codebooks
for the databases can be downloaded. A typical codebook provides such informa-
tion as variable names, variable labels, value coding and the meanings of the codes,
as well as valid value ranges. A codebook should provide sufficient information
about a data set so that any person analysing the data will know what the data are
and how to access them. The release of a data set will be incomplete without a
codebook. It is industry-standard that each publicly available data set should be
accompanied by a codebook.

Data Processing Programs

There are many ways to edit data. A simple way is to edit data in a spreadsheet such
as EXCEL. For example, if a student’s data need to be deleted, it is easy to
highlight a row in EXCEL and press the DELETE key. This process does not
require a great deal of programming skills, but there are serious drawbacks to such
manual editing of data. First, there is no record of the edits made. Once the data
have been changed, there is no record of what changes have been made. Second, if
the data set is re-supplied (say, there have been data entry errors, or data scanning
errors), which happens frequently, we need to manually repeat the edits all over
again. For these reasons, we highly recommend that a computer program is used to
carry out all edits of data. In fact, in some organisations specialising in the analysis
of assessment data, it has been stipulated that all edits of data must be done using a
program script. The program can be any statistical package, for example, SPSS
syntax file, SAS program, R program, Microsoft VBA or any other computer
language. In the future, there will surely be other programs available. But the key is
that all edits can be easily traced, and all edits can be easily repeated if necessary.
We also highly recommend that two analysts independently carry out data cleaning
and analysis, and compare results. This quality assurance step has proven to be

Variable Name Variable Type Value Value Label
Gender numeric 1 Boy 

2 Girl 
9 Missing 

Age numeric Between 5-18 Age 
99 Missing 

School name string
Math Q1 numeric 1 Option A 

2 Option B 
3 Option C 
4 Option D 
9 Missing 

Fig. 4.5 An example codebook
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most important, and has frequently been stipulated by professional organisations
dealing with data analysis.

Data Cleaning

Data cleaning refers to checking for, and rectifying, anomalies in the data. The
types of checks will depend on the specific assessment program, but there are some
commonly carried out checks.

• Value range checks. Each data field captured will have an expected range of
values. For example, month of birth may take values 1–12; response to a test
question may take values 1–5, and so on. The codebook will provide valid value
ranges for checking. This is one essential use of the codebook.

• Missing values treatment. It is important to deal with missing responses
appropriately. In the context of student testing, there are different types of
missing values. First, if there are rotated test booklets so that a student only
takes a subset of items, there will be missing item responses because some items
are not administered to a student. These missing-by-design responses must not
be treated as incorrect answers. Therefore, the code for not-administered items
must be separated from other types of missing responses. In carrying out an item
analysis, the not-administered items must be treated as missing, and not as
incorrect.
In some assessment programs, a distinction is made between embedded-missing
and not-reached items. Embedded-missing refers to items skipped by students,
while not-reached items refer to the missing responses at the end of a test, with
the possibility that students ran out of time and never had the opportunity to
answer the items at the end of a test. Distinguishing between these two types of
missing allows the analyst to have the option of applying different treatments to
the missing responses. In some cases, not-reached items may be treated as
missing and not as incorrect while item difficulty parameters are calibrated. But
not-reached items are treated as incorrect when student abilities are computed.
In contrast, embedded-missing items are always treated as incorrect. Some
rationale for this approach is given as follows. If not–reached items are treated
as incorrect, there will be an over-estimation of item difficulty, since the students
would answer some correctly had they had the opportunity to answer them.
However, for ability estimates, if not-reached items are treated as missing, then
students can use a strategy whereby they would answer items sequentially until
one item which they do not know the answer. If students stop at this point, and
not-reached items are not counted towards the ability estimate, then most stu-
dents will obtain 100% correct on a test. These are some considerations in
deciding on the treatment of missing responses.

• Duplicate record checks. When data are combined from various test adminis-
tration sites, data could be duplicated inadvertently. On the other hand, data
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could be missing as well. So a cross-check should be carried out against the list
of sampled schools and students.

• Inconsistency checks. Sometimes, there are survey questions that are
inter-linked. For example, in a student questionnaire, there could be a question
about the overall number of hours of homework per week. There could also be a
question on the number of homework hours for a particular subject, which
should not exceed the total number of hours of homework. The relationships
between questions on a survey instrument can be used to check for inconsistent
answers. Similarly, checks can be made on birth dates if a cohort of students
comes from particular grades or age groups. Sometimes, the current year is
mistakenly written as the birth year when questionnaires are filled in.

• Multiple instruments checks. In some surveys, a number of instruments are
administered. For example, there may be a test on mathematics as well as a
student background questionnaire. If these two surveys are placed in separate
files, there must be a mechanism for linking the students in both files (e.g., a
student ID). Cross-checks should be made between files with linking fields. Care
must be taken when files are merged to ensure that merging is carried out
correctly, particularly for students with missing instruments.

• If data are manually entered into the computer, a double-entry procedure is often
necessary to check for data-entry errors.

Following data checks, errors should be rectified. It is essential to use pro-
gramming scripts to make changes to data, rather than using interactive data editors
to make changes.

Frequently, after item analysis has been run, more data editing needs to take
place. For example, a mis-key may be identified from the examination of item
discrimination indices, or recoding needs to be carried out for mis-fitting items.
Consequently, data preparation and item analysis are often carried out iteratively. It
is therefore essential to have an efficient data preparation program in place.

Summary

This chapter lists the key steps in selecting student samples, organising test
administration and preparing data for analysis.

For the selection of a sample to represent a population, probability sampling
should be used. Typically in large-scale educational assessments, a two-stage
sampling procedure is used where schools are first selected and then students are
selected from the sampled schools. Two points should be borne in mind. The first is
that the sample size needs to be a great deal larger for a two-stage sampling method
than for simple random sampling. The second is that the computation and use of
sampling weights are very important in all analyses of results.

As test administration often involves multiple testing sites, the organisation of
test administration is complex. A clear identification of key personnel involved is
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important. For example, school principals, teachers and test administrators should
all be well-briefed, with supporting documents such as manuals detailing the tasks
of each person involved. Test papers need to be printed and delivered, along with
student lists and student participation forms.

To prepare for data capture, a codebook of variables should be prepared in
advance. Data cleaning and data editing should be carried out programmatically,
and not done through interactive data editors. That is, good records need to be kept
at every step of the data processing phase. Typically, range checks and missing
values coding need special attention. Cross-validation checks should also be carried
out. Corrections to data and recoding of variables should all be carried out using
program scripts to allow for verification and record keeping.

Discussion Points

(1) Discuss why a two-stage sampling procedure is a great deal less efficient than
simple random sampling. By less efficient, we mean that a larger sample size is
needed to achieve the same accuracy.

(2) Discuss why stratification may improve the efficiency of sampling? How
should stratification variables be chosen?

(3) In this chapter, a procedure for treating missing values is that not-reached
items are treated as missing when item difficulties are estimated. But
not-reached items are treated as incorrect when abilities are estimated. Discuss
whether this approach will introduce any bias in the results.

(4) With the distribution of rotated test booklets, why shouldn’t we always begin
with test booklet 1 and assign the booklets sequentially? If there are 30 stu-
dents per school, and there are 7 rotated test booklets, what is the average
number of students taking each test booklet

(a) if we start with booklet 1 in each school, and
(b) if we start with a random booklet number between 1 and 7?

(5) Why would absent students have an impact on the computation of sampling
weights? How can the sampling weights be adjusted?

Exercises

Q1. The following is an example school questionnaire.

(a) Design a codebook for the data capture for this questionnaire.
(b) List the data cleaning checks you can perform with this questionnaire.
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School Questionnaire

Q1 What type is your school?

(Put X in one box only)

Private

Government

Q3 Where is your school located?

(Put X in one box only)

In a remote area

In a rural area

In or near a small town

In or near a large town or city

Q4 About how many computers are in the school 
altogether?

Number

(Please write 0 (zero) if there is none.)

Q5 About how many of these computers 
are available for students to use?

Q2 What is the total school enrolment at your school?

(Write in the number on each row. Please write 0 (zero) if there 
is none.)

a) ______________

______________

______________

boys

b) ______________ girls
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Q6 Which of the following does your school have?

(Put X in one box in each row)

No Yes

a)  School assembly hall

b)  First aid room 

c)  Music room

d)  Sports field

e)  School canteen

Q7 How many teachers are there at your school?

Number

(Please write 0 (zero) if there are none.) ____________

Q8 How many of these teachers have been 
at the school for less than 2 years? ____________

Q9 How often do the following problems happen with your 
pupils?

(Put X in one box in each row)

Never Sometimes Often

a) Late arrival

b) Absenteeism 

c) Disturbance and trouble

d) Health problems

e) Vandalism
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Chapter 5
Classical Test Theory

Introduction

Classical Test Theory (CTT), also known as the true score theory, refers to the
analysis of test results based on test scores. The statistics produced under CTT
include measures of item difficulty, item discrimination, measurement error and test
reliability. The term “Classical” is used in contrast to “Modern” test theory which
usually refers to item response theory (IRT). The fact that CTT was developed
before IRT does not mean that CTT is outdated or replaced by IRT. Both CTT and
IRT provide useful statistics to help us analyse test data. Generally, CTT and IRT
provide complementary results. For many item analyses, CTT may be sufficient to
provide the information we need. There are, however, theoretical differences
between CTT and IRT, and many researchers prefer IRT because of enhanced
measurement properties under IRT. IRT also provides a framework that facilitates
test equating, computer adaptive testing and test score interpretation. While this
book devotes a large part to IRT, we stress that CTT is an important part of the
methodologies for educational and psychological measurement. In particular, the
exposition of the concept of reliability in CTT sets the basis for evaluating mea-
suring instruments. A good understanding of CTT lays the foundations for mea-
surement principles. There are other approaches to measurement such as
generalizability theory and structural equation modelling, but these are not the focus
of attention in this book.

Concepts of Measurement Error and Reliability

All measurements come with uncertainty (or measurement error), whether the
measurements are made in the physical sciences or in the social sciences. There are
two types of measurement errors: systematic errors and unsystematic errors. One
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kind of systematic errors is related to validity issues whereby the items in a test
consistently measure some latent traits other than those the instrument has been
developed to assess. For example, if we use a mathematics test written in English to
measure students’ mathematics abilities in a non-native English speaking country,
then the test scores will not only reflect mathematics abilities but also English
proficiencies of non-native English speakers. The test scores from this test will
likely have a systematic bias (or error) of underestimating students’ mathematics
abilities. Another example for possible systematic errors relates to making sub-
jective judgments when scoring students’ responses. In this case, the harshness or
leniency of a scorer could lead to a systematic bias in estimating the students’
abilities.

In contrast, random measurement errors (or unsystematic errors) occur simply
due to chance elements. For example, students may make a careless mistake in
computation, be distracted momentarily, feel fatigued on a particular testing day, or
be lucky in guessing an answer. We also regard the particular set of items selected
for a test as due to chance element whereby a student may know more or fewer
answers in a test had there been different items in a test. Depending on the type of
unsystematic errors, we can assess the degree of variability in test scores due to
these errors in different ways. For example, we can administer the same test to the
same group of respondents on two different occasions and compute the Pearson
correlation coefficient between the two sets of total observed scores. Such a coef-
ficient is known as test-retest reliability. This reliability will capture variations due
to carelessness, fatigue on a day and other random errors due to the testing occa-
sion, but this reliability will not capture the variation in test scores due to the
selection of items in a test. Consequently, there are different types of reliability
measures targeting different sources of random errors.

In this book, we are particularly interested in measurement errors due to the
selection of test items, as we believe this source contributes the most variation in
test scores. We can think of a test as an instrument used to sample students’
knowledge/skills in a subject domain. Because a test has limited number of items,
we typically only obtain a rather small sample of each student’s capabilities through
administering, say, a one-hour test. Should students sit another test with different
items but testing the same construct, the test scores of students are likely to vary
across the two tests. We provide an example to illustrate this below.

Suppose we develop tests to measure grade 5 students’ mathematics abilities.
Imagine there is a large item pool of all possible grade 5 mathematics items. We
take 40 items from this item pool to make up a test (see Fig. 5.1).

David is a grade 5 student. If we have the opportunity to administer all possible
grade 5 mathematics items to David, David can answer 60% of the items correctly.
Of course in real-life we will not likely have the opportunity to do this owing to the
time and effort required. When a test is made up of 40 items, David’s expected
score is 24 (60% of 40). But there is a chance element of the items selected in a test,
so David’s actual test score may not be exactly 24. Suppose three tests are con-
structed (labelled 2008, 2009 and 2010 in Fig. 5.1) by selecting 40 questions from
the item pool. David takes these three tests one day and obtains 20, 28 and 25.
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That is, there is a variation in David’s test scores on similarly constructed tests
known as parallel tests (see a formal definition of parallel tests in the latter part of this
chapter). From our past experience in analysing large-scale assessments, we estimate
that David’s test scores will likely vary between 20 and 30 out of a possible max-
imum of 40, given that David knows 60% of the grade 5 mathematics content.

This variation in David’s test scores on similar tests (or parallel tests) relates to
the concept of measurement error. That is, there is a margin of error in measuring
David’s mathematics ability using a (somewhat short) test. It is unfortunate that the
word “error” is used, since “error” suggests mistakes. Measurement error is not
pertaining to mistakes in setting the test questions or mistakes in scoring the
answers, but measurement error comes from the fact that we have only collected a
small sample of a student’s capabilities when a test is administered. Of course if
there are mistakes in setting the questions and in processing the results, the mea-
surement error will increase. But predominantly, measurement error comes from the
fact that limited number of items in a test is administered.

Suppose there is a group of students who all took the 2008 and 2009 tests (at the
same point in time so student abilities haven’t changed in between taking the two
tests). So each student has a pair of test scores. If we compute the correlation
between the pair of test scores across all students, this correlation reflects the

(c) (-11) + (+3) =

A class 
starts at 
10:30.
The 

Each apple weighs around 160 
grams. How many apples together 
will weigh close to half a kilogram?

Possible Grade 5 Mathematics 
Item Pool – 

Many questions can be asked

2008 test 2009 test 2010 test

40 items selected

David can 
answer 60% of 
the items in the 
large pool

David’s 
score: 20/40

David’s 
score: 28/40

David’s 
score: 25/40

40 items selected

(j) 139.2 ÷ 1000 =

Fig. 5.1 Test scores on parallel tests
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reliability of these tests. The closer the values of each pair of test scores are, the
higher the correlation, so the higher the reliability. That is, if high ability students
tend to have high scores on both tests, and low ability students have low scores on
both tests, then the correlation will be high. In Fig. 5.1, if each student’s test scores
on similar tests are very close to each other, the test reliability will be high.
Therefore, reliability is closely related to measurement error.

As correlation also depends on the spread of test scores in the group, the more
spread out the test scores are in a group, the higher the correlation will be.
Therefore, reliability also depends on the spread (variance) of test scores in a group.

In the following sections, we will provide more formal definitions of test reli-
ability and measurement error.

Formal Definitions of Reliability and Measurement Error

The term reliability was first coined by Charles Spearman in 1904. It has been an
area of active research ever since by measurement researchers in many fields. This
section will give a brief account of reliability from the classical test theory
approach.

Classical test theory makes the assumption that each respondent’s observed
score on a test is the sum of his/her “true score” and an error score, as expressed by
Eq. (5.1):

Xn ¼ Tn þEn ð5:1Þ

where Xn; Tn and En stand for the observed, true and error scores, respectively, The
subscript n refers to the nth respondent. The true score, Tn, is defined as the average
of test scores if a test is repeatedly administered to a student (and the student can be
made to forget the content of the test in-between repeated administrations).
Mathematically, the definition for the true score is E Xnð Þ, the expectation of the
observed scores, where the expectation is taken over repeated administrations of the
same test to the same student. The true score is assumed to be a stable measure
reflecting a student’s level on the construct being measured, while the error score is
assumed to be an unsystematic error or random error.

Assumptions of Classical Test Theory

First, we define X¼ X1;X2; . . .;XNð Þ;T ¼ T1;T2; . . .;TNð Þ and E¼ E1;E2; . . .;ENð Þ as
observed, true and error scores, respectively, across all N students. Five classical
test theory assumptions are listed below.
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(1) The observed score for a student is the sum of the true score and error score
Xn ¼ Tn þEn:

(2) Since by definition, Tn ¼ E Xnð Þ, it follows that E Enð Þ ¼ 0. That is, the
expectation of the error scores over repeated administrations of a test for each
student is zero.

(3) The correlation between the error score and true score is 0. That is,
corr T ;Eð Þ ¼ 0. This means that students with high true scores will not con-
sistently have higher or lower error scores.

(4) Let Test A and Test B be two tests administered to the same students. The true
scores on Test A ðTAÞ is not correlated with the error scores on Test B ðEBÞ.
That is, corr TA;EBð Þ ¼ 0.

(5) Let Test A and Test B be two tests administered to the same students. The
error scores on Test A ðEAÞ is not correlated with the error scores on
Test B ðEBÞ. That is, corr EA;EBð Þ ¼ 0.

Definition of Parallel Tests

Test A and Test B are said to be parallel tests if they have observed scores X and X 0

that satisfy Assumptions 1–5 above, and T ¼ T 0; Var Eð Þ ¼ Var E0ð Þ. Note that in
the introductory sections on reliability in this chapter, we used the term “similar
tests” to illustrate the idea of reliability. These similar tests are meant to be “par-
allel” as parallel tests are defined here.

Definition of Reliability Coefficient

Test reliability can be defined in a number of ways. We will use one definition here
to begin with, and then show that other definitions will follow from this definition
when the above five assumptions are satisfied. We define the reliability of a test as
the correlation between the observed scores on this test and observed scores on a
parallel test. Mathematically, we write

qXX 0 ¼ corr X;X 0ð Þ ð5:2Þ

as the definition for test reliability. Using Assumptions 1–5 above and the definition
of parallel tests, it can be shown that
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qXX 0 ¼ corr X;X 0ð Þ
¼ cov X;X 0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXÞVarðX 0Þp
¼ cov T þE; T 0 þE0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXÞVarðX 0Þp
¼ cov T ; T 0ð Þ þ cov T;E0ð Þ þ cov E; T 0ð Þ þ cov E;E0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXÞVarðX 0Þp
¼ cov T ; T 0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXÞVarðX 0Þp
¼ cov T ; Tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXÞVarðXÞp
¼ Var Tð Þ

Var Xð Þ

ð5:3Þ

That is, another interpretation of test reliability is that it is the proportion of the
variance of the true scores out of the variance of the observed scores.

Further, note that since Xn ¼ Tn þEn,

Var Xð Þ ¼ Var Tð ÞþVar Eð Þþ 2 cov T ;Eð Þ
¼ Var Tð ÞþVar Eð Þ ð5:4Þ

Therefore the test reliability can also be expressed as

qXX 0 ¼ Var Tð Þ
Var Tð ÞþVar Eð Þ ð5:5Þ

When test reliability is high, one would expect that the correlation between the
observed scores and true scores to be high as well. An examination of the corre-
lation between the observed and true scores shows the following:

corr X; Tð Þ ¼ cov X; Tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞVarðTÞp

¼ cov T þE; Tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞVarðTÞp

¼ cov T ; Tð Þþ cov E; Tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞVarðTÞp

¼ Var Tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞVarðTÞp

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Tð Þ
Var Xð Þ

s

¼ ffiffiffiffiffiffiffiffiffi
qXX 0

p

ð5:6Þ
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Consequently,

qXX 0 ¼ corr X; Tð Þð Þ2 ð5:7Þ

That is, the reliability is equal to the square of the correlation between observed
scores and true scores.

So we have four alternative ways of interpreting test reliability as given by
Eqs. (5.2), (5.3), (5.5) and (5.7). For further details on the assumptions and
derivations of classical test theory and reliability, see Allen and Yen (1979) as well
as Brennan (2006).

Computation of Reliability Coefficient

In practice, we do not know the true scores, T. Therefore, the definitions of relia-
bility as given by Eqs. (5.3), (5.5) and (5.7) are not very useful to us for actually
computing the reliability. Equation (5.2) can possibly be used if we construct
parallel tests. Nevertheless it will be quite time-consuming to construct and
administer multiple tests in order to compute the test reliability.

If we have only one set of observed scores, an intuitive treatment is to somehow
split the set of items into two halves, for example using an odd-even item number
split, and then take the Pearson correlation coefficient between the two halves of the
test. This treatment can be regarded as an extension of the idea of parallel test
forms. The resulting coefficient is known as the split-halves coefficient and it
reflects how internally consistent the items of the test are. Since the number of items
of a single test is being divided into two halves of smaller test, the split-halves
coefficient may underestimate the reliability of the test of the original length.
A usual practice is to apply the Spearman-Brown prophecy formula (Spearman
1910; Brown 1910) to project what the coefficient would be if items similar to those
in the original test were added so that the number of items in each half amounts to
the same as in the original test (see Additional Notes).

Since there are many possible ways to split the number of items into two halves
other than the odd-even split, a reasonable idea is to split the test in all possible way
and then take the average of all the reliabilities of each possible split. Though not
being practical if the split-halves are physically carried out, it can be shown that the
Cronbach’s alpha coefficient (Cronbach 1951) serves as a good estimate to the
mean reliability of all possible splits. Cronbach’s alpha coefficient is expressed as

a ¼ I
I � 1

Var Xð Þ �PI
i¼1 Var item score of item ið Þ

Var Xð Þ

 !
ð5:8Þ

where Var Xð Þ refers to the variance of the test scores across students, and I is the
total number of test items. An intuitive way to understand coefficient a is to think of
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PI
i¼1 Var item score of item ið Þ as Var Eð Þ so that Var Xð Þ � Var Eð Þ ¼ Var Tð Þ in

the numerator of the expression in brackets of Eq. (5.8). Then Eq. (5.8) becomes
very similar to Eq. (5.3) for the definition of reliability. It can be shown that
Eq. (5.8) provides a lower bound for the test reliability, qXX 0 . That is, qXX 0 � a.

Interested readers can refer to Cronbach (1951), Nunnally and Bernstein (1994)
for details. Another approach to estimate the mean reliability of all possible splits is
the KR-20 coefficient reported in Kuder and Richardson (1937). It turns out that the
KR-20 coefficient can be regarded as a special case of the Cronbach’s alpha
coefficient when the latter is applied to dichotomously scored data. Specifically, for
dichotomous items,

a ¼ I
I � 1

Var Xð Þ �PI
i¼1 pi 1� pið Þ

Var Xð Þ

 !
ð5:9Þ

where pi is the proportion of students obtaining the correct answer on item i.
The split-halves, the KR-20 and the Cronbach’s alpha coefficients all yield

information about the internal consistency of a test based on a single test
administration.

There is much work done in the area of reliability. For further reading, we
recommend two books. The first one is by Traub (1994), which gives an accessible
introduction account on reliability. The second one is written by Knapp (2009),
which is written under a conversational tone and gives a fairly comprehensible
account on many issues related to reliability.

Additional Notes on Spearman-Brown Prophecy Formula
One important factor influencing measurement error is the test length (i.e., the
number of items in a test). If the test length of a new test is k times the test
length of the original test, then the variance of the error scores for each
student will be 1/k of the error variance of the original test. That is,

Var E0ð Þ ¼ Var Eð Þ
k . It can be shown that the test reliability, qYY 0 , of the new test

can be expressed as the reliability of the original test, qXX 0 , as

qYY 0 ¼ kqXX 0

1þ k � 1ð ÞqXX 0

If a new test is twice the length of an original test, then the reliability of the
new test can be predicted from the reliability of the original test as

qYY 0 ¼ 2qXX 0

1þ qXX 0

The above formula is generally known as the Spearman-Brown split-half
reliability coefficient (Spearman 1910; Brown 1910).
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Standard Error of Measurement (SEM)

From Eqs. (5.3) and (5.4), we can derive an expression for Var Eð Þ in terms of
reliability, qXX 0 :

Since qXX 0 ¼ Var Tð Þ
Var Xð Þ ¼ Var Xð Þ�Var Eð Þ

Var Xð Þ , by re-arranging the terms, we obtain

Var Eð Þ ¼ 1� qXX 0ð ÞVar Xð Þ

Taking square-roots on both sides, we have

standard error of measurement ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Eð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qXX 0ð ÞVar Xð Þ

p
Standard error of measurement can be used to provide a degree of uncertainty in

test scores. For example, if a test has a reliability of 0.8 and the variance of the test
scores across students is 45, then the standard error of measurement isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:8ð Þ � 45
p ¼ 3. If a student’s test score is 20, we can make an inference that
95% of the student’s test scores on parallel tests are likely to be in the range of
20� 2� 3; 20þ 2� 3ð Þ, that is, in the range of (14, 26). Note that the standard
error of measurement computed in this way applies to all observed scores in a test.

Correction for Attenuation (Dis-attenuation) of Population
Variance

Given that qXX 0 ¼ Var Tð Þ
Var Xð Þ, by re-arranging the terms, we obtain

Var Tð Þ ¼ qXX 0 � Var Xð Þ:

So after we have obtained the reliability and computed the variance of the
observed scores, we can estimate the variance of the true scores by multiplying the
reliability to the variance of the observed scores. In this way, we can estimate the
variance of the true scores even though we do not know each student’s true score.
This process is commonly known as correction for attenuation (or dis-attenuation)
of measurement error for the population variance. The variance of the observed
scores is always larger than the variance of the true scores, because the measures are
“attenuated” by measurement error.
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Correction for Attenuation (Dis-attenuation) of Correlation

When each student takes two tests, the correlation between the two test scores
across students will be lower than the correlation of students’ true scores, because
each test score contains measurement error. This observed correlation is said to be
attenuated by measurement error. A correction for the observed correlation can be
made using the test reliabilities of the two tests, as shown below.

corr T1; T2ð Þ ¼ corr X1;X2ð Þffiffiffiffiffiffiffiffiffiffi
R1R2

p ;

where X1;X2 are the observed test scores on Test 1 and Test 2 respectively; T1; T2
are the true scores on the two tests, and R1;R2 are the test reliabilities for Tests 1
and 2 respectively. It can be seen that if the test reliabilities are low, then the
correction factor 1=

ffiffiffiffiffiffiffiffiffiffi
R1R2

p
will be large. On the other hand, if the test reliabilities

are high (i.e., close to 1), then the correlation of observed test scores will be close to
the correlation of true scores.

Other CTT Statistics

In this section, we introduce a number of CTT statistics typically used in item
analysis, including item difficulty and item discrimination measures. To illustrate
these statistics, we use an example data set containing dichotomously scored item
responses to 10 mathematics items from 400 students. The items are shown in
Table 5.1.

Table 5.2 shows the first 9 lines of scored item responses in the data file.

Item Difficulty Measures

Under CTT, item difficulty measures are simply the percentages of students
obtaining the correct answer. In our example, we compute the percentage of a score
of “1” for every column in Table 5.2. The results are given in Table 5.3.

Table 5.3 shows that 63% of the students obtained the correct answer for Q1;
76% for Q2, etc. It can be seen that Q5 is the easiest question on this test, being a
straightforward computation item. In contrast, Q10 is the most difficult item, where
the wording (one-fifth) and the answer format may be unfamiliar to some students.

Under CTT, the item difficulty measure is simply the proportion correct for an
item. This is a very intuitive measure of the item difficulty. When an item has partial
credit scoring, there is a slight modification to the computation of proportion or
percentage correct. Suppose an item has possible scores of 0, 1 and 2. The pro-
portion correct for each score category is shown in Table 5.4.
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Table 5.1 Ten mathematics test items

1 If 2nd of May is a Friday, what day of the week is 20th of May?

2 The scale of a map is 1 cm for 25 km. If the distance on the map
between point A and point B is 3 cm, what is the real distance?

3 The floor of one room is 5 m wide and 7 m long. What is the total floor area?

4 What is the place value of 6 in 26, 344?

5 652 – 184 = ?

6 76 ÷ 4 = ?

7 A farmer has 63 chickens. 7/9 of them are hens and the remaining
are roosters. How many hens are there?

8 Find the value represented by the symbol “?” in the following
equation: 24–8 = 4 × (1 + ?)

9 Which set of numbers is in order from the smallest to the largest:
A. (257, 311, 401); B. (422, 337, 498); C. (265, 322, 299); D. (396, 383, 400)

10 One-fifth of 36 is between: A. 4 and 5; B. 5 and 6; C. 6 and 7; D. 7 and 8

Table 5.2 Excerpt of the item response data for the ten math items

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Test
score

Student 1 1 0 0 1 1 0 0 0 1 0 4

Student 2 0 0 0 0 1 0 0 0 1 0 2

Student 3 0 0 0 0 1 0 0 0 1 0 2

Student 4 0 0 1 0 0 0 0 0 0 0 1

Student 5 0 1 1 1 1 1 1 1 0 0 7

Student 6 1 1 0 1 0 0 1 0 1 0 5

Student 7 0 1 0 0 1 1 0 0 0 0 3

Student 8 1 1 0 0 1 1 1 0 0 0 5

Student 9 0 1 0 1 1 0 0 0 1 0 4

… … … … … … … … … … …

Table 5.3 Proportion correct for the ten items in the example

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

0.63 0.76 0.79 0.79 0.91 0.88 0.65 0.63 0.81 0.37

Table 5.4 Proportion correct for item categories of a hypothetical partial credit item

Score 0 Score 1 Score 2

0.23 0.60 0.17
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Table 5.4 shows that 23% of the students obtained a score of 0 on this item; 60%
obtained 1 and 17% obtained 2. Therefore, the average score on this item is
computed as 0� 0:23þ 1� 0:60þ 2� 0:17 ¼ 0:94. That is, the observed average
score on this item is 0.94 out of a possible maximum of 2. Therefore, expressed as a
“proportion” ranging between 0 and 1, we divide 0.94 by 2. The “percentage
correct” for this item is then 0:94 = 2 ¼ 0:47. This makes sense as we look through
Table 5.4 and find that more than half of the students obtained the middle score;
about one-fifth obtained 0 or 2, so a “percentage correct” for the item should be
around the 50% mark. More generally, to compute the “percentage correct” for a
partial credit item, we can use the formula

percentage correct =

PK
k¼0 knk

K
PK

k¼0 nk
ð5:10Þ

where the capital letter, K, stands for the maximum score for an item; nk is the
number of students in each score category, k. The numerator in Eq. (5.10) is the
observed score on this item summed over all students, while the denominator is
the maximum possible score assuming all students answer the item correctly.

Item Discrimination Measures

Item discrimination is a measure of the relationship between the score on an item
and the overall test score. In the last column of Table 5.2, a test score is computed
for every student. This test score can be regarded as a measure of the underlying
construct; in this case it is the mathematics ability. If students’ scores on an item are
closely related to their mathematics abilities (as measured by the test scores), then a
correlation between the item score and the test score will be high. That is, for
students who have high test scores, their item scores on this item are more likely to
be 1. For students with low test scores, their item scores are more likely to be 0. For
example, if we compute the correlation between column 1 (Q1) and column 11 (test
score) of Table 5.2, we obtain 0.54, indicating that there is a good positive linear
relationship between Q1 score and the total score.

Strictly speaking, when the correlation between item score and test score is
computed, the test score should not include the item under consideration. Since the
test score in column 11 of Table 5.2 includes Q1 score, a correlation between the
two scores will be inflated. Therefore, for Q1, we first compute the test score
excluding Q1. Then, we compute the correlation between this revised test score and
Q1 score. We obtain a correlation coefficient of 0.39. Table 5.5 shows the corre-
lation between item score and test score (excluding item under consideration) for all
10 items.

The correlation coefficients shown in Table 5.5 are also known as the
point-biserial correlation (pbis, or pb). In this book, we will use the term “item
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discrimination index” to refer to the relationship between item score and test score.
It is a measure of how well an item score is associated with test score. Imagine we
ask a question unrelated to mathematics ability in a test, such as “Is blue your
favourite colour?”, and score 1 for yes, 0 for no. If we compute the correlation
between the score on this colour preference question and test score in Table 5.2, we
would expect a correlation close to zero. That is, this question is not related to
measures of mathematics ability. Consequently, we can use the magnitude of the
item discrimination index to assess how well an item is tapping into the latent
construct.

There are at least two possible reasons for poorly discriminating items. The first
is that an item tests something else compared to the majority of items in the test.
The second is that an item is poorly written and confuses students. Whenever we
examine low discrimination items, we should first check whether the wording and
format of the item is problematic, and then check whether the item may be testing a
different construct than that intended for the test.

In our example, we find that there is some variation in item discrimination across
the 10 items. Q1 and Q10 have the lowest discrimination indices while Q7, Q8 and
Q2 have relatively higher discrimination indices. On examining the items, some
conjectures and observations can be made. The wording and answer format of Q10
may confuse students of all ability levels. Q1 appears to be a straightforward
counting problem. But such counting can easily lead to careless mistakes so that
occasionally higher ability students may obtain the wrong answer through a slip in
counting, thus lowering the discrimination index. In contrast, Q7, Q8 and Q2 are
textbook style word problems. They are not too easy or too difficult (percentages
correct are 65, 63 and 76% respectively), but by and large higher ability students are
more likely to obtain the correct answers for these three questions.

Item Discrimination for Partial Credit Items

When an item has partial credit scoring such as 0, 1 and 2, we can still compute the
correlation between item score and test score. In this case, because the item score
has more score points, the correlation will generally be higher. That is, the item
score can divide students into three groups (0, 1 and 2) instead of two groups (0 and
1), potentially providing more power in discriminating students.

When there are more than two item score categories, we can also form a cor-
relation for individual score categories. For example, column 2 of Table 5.6 shows
an example of scored partial credit responses.

Table 5.5 Correlation coefficient between item score and test score (excluding item) for the ten
items in example

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

0.39 0.59 0.52 0.45 0.40 0.48 0.64 0.60 0.51 0.36
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For each score category (0, 1 and 2), we can compute a point-biserial correlation
index by first creating an indicator variable to indicate whether the response is in the
score category or not. Table 5.6 shows an example for creating an indicator variable
for score category 0. We create an indicator variable (third column of Table 5.6)
corresponding to the item scores in column 2. Whenever the item score is 0, we
assign 1 to the indicator variable. For all other score categories (1 and 2 in this
case), we assign 0 to the indicator variable (compare columns 2 and 3 in Table 5.6).
Correlation is then computed between the indicator variable and the test score
(columns 3 and 4 in Table 5.6). Since score category 0 is now recoded to 1 in the
indicator variable, and score categories 1 and 2 are recoded to 0, we expect the
correlation between the indicator variable and the test score to be negative. That is,
when the overall test score is low, we expect the indicator variable to have a value
of 1. When the overall test score is high, we expect the indicator variable to have a
value of 0.

Similarly we can carry out recodes for score category 1 by recoding item
scores of 0 and 2 to 0, and keeping category 1 as 1, then compute the correlation
between the recoded score and test score. For score category 2, we recode the
item score of 2 to 1, and item scores of 0 and 1 to 0. In summary, when we
compute the point-biserial correlation for a score category, we recode that cate-
gory to 1, and all other categories to 0. Table 5.7 shows an example output of
discrimination indices at the item level, and point-biserial correlations at item
response category level.

Table 5.6 Illustration of point-biserial correlation coefficients for item score category 0 in a
partial credit item

Student Item score Indicator variable
for score category 0

Test score

1 0 1 18

2 1 0 20

3 1 0 24

4 2 0 30

5 0 1 15

6 2 0 25

7 1 0 22

Table 5.7 Example item
discrimination and category
point-biserial for a partial
credit item

Item discrimination = 0.70

Item response category Point biserial

0 −0.65

1 −0.06

2 0.60
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Distinguishing Between Item Difficulty
and Item Discrimination

Conceptually, the notion of item difficulty and item discrimination should be clearly
separated. That is, whether an item is difficult or easy, it should be independent of
whether an item is discriminating or not. Although in practice, as CTT item dis-
crimination is computed as a correlation coefficient between item score and test
score, this correlation is related to the item difficulty. For example, if an item is very
easy, then the majority of item score is 1. Consequently, any correlation using the
item score will not likely produce high correlation. Similarly for very difficult items,
the correlation is likely low if most students’ item scores are 0. Therefore, when low
discriminating is observed, one may check whether the item is very easy or very
difficult, which may be a cause for low discrimination. Nevertheless, we would like
to stress interpreting item difficulty and item discrimination as different concepts.

When an item is very easy or very difficult, the item may still be useful to be
included in a test. Depending on the purposes of a test, we may want to include
some very easy and very difficult items. For example, frequently, we place one or
two easy items at the beginning of a test to ease any anxiety on the part of the
students. Further, if a test is an all-purpose test targeting a population with a wide
range of abilities, then there needs to be a wide range of item difficulties to measure
low and high ability students. Therefore, a very difficult item may still have a place
in a test, provided that the handful of students who answered the item correctly are
of high abilities. So that brings us to the notion of discrimination.

It is much more problematic when an item does not discriminate between low
and high ability students, irrespective of the item difficulty. Such an item will lower
the test reliability, increase measurement error, and make the test scores less
interpretable. From the point of view of measurement ideals (discussed in more
detail in Chap. 6), it is highly desirable to include items that discriminate well
between low and high ability students. If we include some poorly discriminating
item in a test because “the items test important concepts”, then we are departing
from the principles of the ideal measurement discussed in this book. In short, you
can have a test consisting of items not highly correlated with each other, but the test
scores will not be easily interpretable, and you will not have desirable measurement
properties valued by many measurement proponents. In such cases, the test con-
struct should be re-examined to consider the division of the test into several tests,
each testing a central construct. This is a recommendation from a theoretical
viewpoint. Of course in practice we are faced with many obstacles in achieving
good measurement. For example, in education a test is typically based on a cur-
riculum. Curricula are not typically designed around measurement principles and
latent constructs. Therefore, we are often faced with the tension between content
validity (what to include in a test to cover the curriculum) and good properties of
measurement (whether test scores reflect a single construct).

To sum up about item difficulty and item discrimination, we will state that item
difficulty is about how many students obtained the correct answer, while item
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discrimination is about which students obtained the correct answer (high or low
ability students). Keeping these two concepts in mind will assist us with making
sense of item statistics.

Discussion Points

(1) Discuss the factors influencing test reliability. Consider factors including the
sample size of respondents, the test length, the quality of the items, the variation
in respondents’ abilities and test targeting.

(2) What is the impact of measurement error on test reliability? Does measurement
error provide the same information as test reliability?

(3) What factors have an impact on the point-biserial correlation coefficients of test
items? How do items with low point-biserial correlations impact on test
reliability?

Exercises

Q1. The following demonstrates a simulated dataset of 20 students’ true scores and
their raw scores on a 10-item test. For example, person #1 with a true score of
0.7 indicates that student #1 can response correctly 70% of the items in a large
item pool. If responses to the 10 items in the test are randomly drawn from the
item pool, then the observed scores for each item for student #1 can be seen as
a random draw from a binomial distribution with a probability of success equal
to 0.7. Carry out such a simulation to generate observed scores for 200 stu-
dents. Compute the correlation between true scores and observed scores. Also
compute Cronbach’s alpha coefficient. Compare the results. Generate another
set of observed scores using the same true scores. Compute the correlation
between the observed scores from both data sets. How does this correlation
coefficient compare with Cronbach’s alpha coefficient?

The raw scores of a 10-item test for 20 students

Student
ID

True
score

Item number Observed
score1 2 3 4 5 6 7 8 9 10

1 0.7 1 1 1 1 1 0 1 1 0 0 7

2 0.8 0 1 0 1 1 1 1 0 1 1 7

3 0.4 0 1 0 1 0 0 0 0 1 1 4

4 0.7 1 1 0 1 1 1 1 1 1 1 9

5 0.9 1 0 1 1 1 0 0 1 1 0 6

6 0.5 0 1 1 1 0 0 0 1 1 0 5
(continued)
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(continued)

Student
ID

True
score

Item number Observed
score1 2 3 4 5 6 7 8 9 10

7 0.3 0 0 0 1 1 0 0 0 1 1 4

8 0.3 0 0 1 0 0 1 0 0 0 0 2

9 0.7 1 0 1 1 1 0 1 0 1 1 7

10 0.8 0 1 1 1 1 1 1 1 0 1 8

11 0.3 1 1 0 0 0 1 1 0 0 0 4

12 0.2 0 0 0 0 0 0 0 0 0 0 0

13 0.2 0 1 1 0 0 0 0 0 0 0 2

14 0.5 1 0 0 1 0 0 0 1 1 0 4

15 0.9 1 1 1 1 1 1 1 1 1 1 10

16 0.2 0 0 1 0 0 0 0 1 0 0 2

17 0.8 1 0 1 1 1 1 0 1 1 1 8

18 0.5 0 1 1 1 1 0 0 1 1 0 6

19 0.1 1 0 0 0 0 1 0 0 0 0 2

20 0.4 0 0 0 1 0 0 1 0 1 0 3

Q2. Use simulation to generate item response data of various test length keeping
the sample size of respondents constant. Compute test reliability as a function
of test length. Plot the graph.

Q3. Use simulation to compute test reliability as a function of sample size of
respondents, keeping the test length constant. Plot the graph.

Q4. Use simulation to compute test reliability for a class of high achievers and for
a class of mixed ability students. Compare the reliabilities for the test taken by
these two classes.
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Chapter 6
An Ideal Measurement

Introduction

When one undertakes the measurement of a latent trait, what are the desirable
properties one would like to have for the measures? Clearly, reliability and validity
are important considerations, as discussed in the preceding chapters. If the measures
are not reliable, we cannot put a great deal of trust in the scores of measurement. If
the measures are not valid, we cannot provide a great deal of interpretation for our
measures. Apart from reliability and validity, what are other properties of good
measurements? Chapter 1 presents a discussion about levels of measurement, and
suggests that if interval or ratio levels of measurement can be achieved, the mea-
sures will be better than ordinal measurement. In this chapter, we take a closer look
at good properties of measurement, and present an approach that will attempt to
achieve several desirable properties of measurement.

An Ideal Measurement

Consider an example where one is interested in measuring students’ academic
ability in a subject domain. Suppose a test is developed for this purpose, one would
like the test scores to be accurate and useful.

By accurate, we mean that the score a student obtains can be “trusted”. That is, if
Tom gets 12 out of 20 on a geometry test, we hope that this score provides a
measure of what Tom can do on this test, and that if similar tests could be
administered, he is likely to get 12 out of 20 again. This notion of “accuracy”
relates to the concept of “reliability” in educational measurement.

We would also like the test scores to be useful for some purpose we have in
mind. For example, if we want to select students for a specialist course, we would
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want our test scores to reflect students’ suitability for taking this course. This notion
of “usefulness” relates to the concept of “validity” in educational measurement.

Furthermore, we would like the test scores to provide us with a stable frame of
reference in comparing different students. For example, if the test scores from one
test tell us that, on a scale of geometry ability from low to high, Tom, Bev and Ed
are located as follows:

If we give Tom, Bev and Ed another test on geometry, we hope that they will be
placed on the geometry ability scale in the same positions relative to each other as
that shown in Fig. 6.1. That is, no matter which geometry test is administered, the
result will show that Bev is a little better than Tom in geometry, but Ed is very
much better than both Tom and Bev. If this can be achieved, the measurement is at
the interval level, where statements about the distances between students can be
made, and not just rank ordering. The measurement also has an “invariance”
property in that the placement of students on the ability line does not change when
different tests tapping into the same construct are administered. In the following
section, we will identify some problems with using test scores as ability estimates,
in relation to the measurement invariance property.

Ability Estimates Based on Raw Scores

Let us consider using raw scores on a test as a measure of ability. The term “raw”
refers to that the test scores have not been transformed in any way. Suppose two
geometry tests are administered to a group of students, where test 1 is easy and test
2 is hard. Suppose A, B, C and D are four students with differing abilities in
geometry. A is an extremely able student in geometry, B is an extremely poor
student in geometry, and C and D are somewhat average students in geometry.

If the scores of students A, B, C and D on the two tests are plotted, one may get
the four points shown in Fig. 6.2.

From Fig. 6.2, one can see that student A, being excellent in geometry, is likely
to score high on both the easy test and the hard test. Student B, being rather poor at
geometry, is likely to score low on both tests. Students C and D are likely to score
somewhat higher on the easy test, and somewhat lower on the hard test.

On the horizontal axis where the scores on the easy test are placed, it can be seen
that A and C are closer together than B and C in terms of their raw scores. However,
on the vertical axis where the scores on the hard test are placed, A and C are further

Geometry ability scale High abilityLow ability

Tom Bev Ed

Fig. 6.1 Locations of Tom, Bev and Ed on the geometry ability scale
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apart than B and C. If both the easy test and the hard test measure the same ability,
one would hope to see the same distance between A and C, irrespective of which
test is administered. From this point of view, we can see that raw scores do not
provide us with a stable frame of reference in terms of the distances between
students on the ability scale. However, raw scores do provide us with a stable frame
of reference in terms of ordering students on the ability scale.

In more technical terms, one may say that, in this example, raw scores provide
ordinal measurement, and not interval measurement. Consequently, at least in some
cases, the ability estimates based on raw scores are dependent on the particular test
administered. This would not be a desirable characteristic of an ideal measurement.

However, the example we provided is quite an extreme case. In practice, if the
test difficulties are similar across different tests and the tests are long, raw scores can
provide near-interval measures, particularly for the ability range in the centre of the
distribution. It may be better to say that raw scores provide measures somewhere
in-between ordinal and interval measurement. For example, from Fig. 6.2, one can
still make the judgement that C and D are closer together in terms of their ability
than B and C, say, whether the easy test or the hard test is administered.

Another observation about Fig. 6.2 is that the relationship between the scores on
the two tests is not linear (not a straight line). That is, to map the scores of the hard
test onto scores of the easy test, there is not a simple linear transformation such as a
constant shift and/or a constant scaling factor. If the relationship between scores on
two tests is a straight line, then comparing two students using either test will give
the same relative distances between students. Item response modelling provides
such a transformation of test scores to make the relationship between scores on two
tests a linear one. We clarify this in the latter part of this chapter.
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Linking People to Tasks

Another desirable characteristic of measurement is that “meanings” can be given to
scores. That is, we would like to know what a student can actually do if the student
obtained a score of, say, 55 out of 100 on a test. Therefore if student scores can be
linked to the items in some ways, then substantive meanings can be given to scores
in terms of the underlying skills or proficiencies. For example, one would like to
make statements such as

Students who obtain 55 out of 100 on this test are likely to be able to carry out two-digit
multiplications and solve arithmetic change problems, but they will typically have diffi-
culties with multi-step word problems.

When raw scores (percentages of correct responses) are used to measure stu-
dents’ abilities and item difficulties, it is not immediately obvious how one can link
student scores to item scores. For example, Fig. 6.3 shows two scales in relation to
a test, one for item difficulty, and one for person ability. The item difficulty scale on
the left shows that for the set of word problems in a test, the average percentage of
correct responses amounted to 25% for a cohort of students. In contrast, 90% of the
students correctly carried out single digit additions.

Next, let us consider the person ability scale which shows students who obtained
90, 70, 50 and 25% correct on the test. The percentages on the two scales are not
easily matched in any way. For example, can the students who obtained 70% on the
test perform arithmetic with fractions? We cannot make any inference if we do not
know what proportions of items are about single digit addition, multi-step arith-
metic, or other types. It may be the case that 70% of the items are single-digit
addition items, so that the students who obtained 70% correct on the test cannot
perform tasks much more difficult than single-digit addition.

Even if we have information on the composition of the test in terms of the
number of items for each type of problems, it is still a difficult job to match student
scores with tasks. The underlying skills for each test score will need to be

Link Raw Scores on Items and Persons?
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Fig. 6.3 Link raw scores on
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examined, and descriptions written for each test score. For example, we need to
examine the common items answered correctly by students with a test score of, say,
25 or 50%, and construct descriptions of skills for these scores. No systematic
approach can be taken. When a different test is administered, a new set of
descriptions will need to be developed, as there is no simple and direct relationship
between student scores and item scores.

Estimating Ability Using Item Response Theory

The problems with using raw scores as discussed above can be solved by using
ability estimates from item response theory (IRT) modelling. The main idea of item
response theory is to use a mathematical model for predicting the probability of
success of a person on an item, depending on the person’s “ability” and the item
“difficulty”. Typically, the probability of success on an item for people with varying
ability is plotted as an “item characteristic curve” (ICC). An example ICC is shown
in Fig. 6.4, where it takes the shape of an elongated letter “S”. The ICC in this
example is a logistic function of the form f xð Þ ¼ ex

1þ ex. An IRT model with a logistic
item response function is called the Rasch model (Rasch 1960). This is the “sim-
plest” IRT model in that the item response function is determined by only one
parameter (the item difficulty parameter). Chapter 7 further explains this mathe-
matical model, and Chaps. 9 and 10 explain two other models. While many dif-
ferent mathematical functions can be used to model the probability of success of a
person on an item, these functions should have three properties. First, the function
should be increasing with ability. That is, if the ability is higher, the probability of
success should also be higher. Second, the function should take on values of x that
ranges between �1 and 1. That is, the ability can range from infinitely low to

Fig. 6.4 An example of an item characteristic curve
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infinitely high, and there is no lower or upper bound. Third, the function should
evaluate to a value between 0 and 1, since it is a probability.

Figure 6.4 shows that, for a high achiever (C), the probability of success on this
item is close to 1. For a low achiever (A), the probability of success on this item is
close to zero. For an average ability student (B), the probability of success is 0.5.
The curve through the points A, B and C shows the probability of success on this
item at each ability level. This curve is called the item characteristic curve.

Under this model, the item difficulty for an item is defined as the level of ability
at which the probability of success on the item is 0.5. In the example given in
Fig. 6.4, the ability level of person B (δ) is also the item difficulty of this item, since
person B has 50% chance of answering the item correctly. Defined in this way, the
notion of item difficulty relates to the difficulty of the task “on average”. Obviously
for a very able person, the item in Fig. 6.4 is very easy, and for a low ability person,
the item is difficult. But the item difficulty (δ) is defined in relation to the ability
level of a person who has a 50–50% chance of being successful on the item.

It is important to emphasise that by definition, an item difficulty is a value on the
ability scale. That is, both item difficulty and ability are on the same scale. This
property is one key difference between item response theory and classical test
theory where raw scores are used.

A note should be made about the interpretation of a student’s probability of
success on an item. How does one explain the stochastic nature of a student’s score
on an item, given that a student either gets an item right or wrong? Under an IRT
model, suppose Tom has a 60% chance (probability) of correctly answering an
item. There are at least two ways to think of the probabilistic nature of item
responses. The first explanation is to postulate that if the item is repeatedly
administered to Tom, then 60% of the time Tom will obtain the correct answer. This
explanation is not so attractive, since one may believe that if Tom knows the answer
to an item, Tom will (nearly) always know the answer. The second explanation of
the probabilistic nature of item responses is to think of groups of items and groups
of students. A 60% probability of success for Tom on an item means that about
60% of students at Tom’s ability level will answer this item correctly. Further, for a
set of items with the same item difficulty, Tom will answer 60% of the items
correctly. This second explanation about probabilities for a group of students and
for a set of items is our preferred one.

Figure 6.5 shows three item characteristic curves with varying item difficulties.
It can be seen that the item with the green ICC (the left-most curve) is the easiest
item among the three, while the item with the blue ICC (the right-most curve) is the
most difficult. The item difficulties for the three items are denoted by d1; d2; d3,
where d1\d2\d3. For the easiest item, everyone has a higher probability of being
successful than for a more difficult item. In this way, the item difficulty parameters,
d1; d2; d3, define a clear order of item difficulty.

As item difficulties are defined in relation to ability levels, we can make state-
ments about a person’s likelihood of success on an item when item difficulty and
ability are known. That is, if we know a student’s ability, we can predict how that
person is likely to perform on an item (without administering the item to the person)
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in terms of probability statements, even though we cannot precisely determine
whether a student will successfully answer a question. Since there is an underlying
mathematical function to model student’s item responses, one can make such
probability statements about the chances of a student obtaining a correct answer.
This is an advantage of using a mathematical function to model the probability of
success. Of course, the mathematical model should actually reflect the patterns of
student response data, or else our predictions will be wrong. This is an assumption
underlying the validity of using a particular mathematical model, and this
assumption needs to be checked.

Figure 6.6 shows an example of using item characteristic curves to find the
probabilities of success on three items if the ability of a person (h) is known.
A vertical line can be drawn in Fig. 6.6 to read off the probability of success on
each of the three items for a person with an ability of 0.9.

By defining item difficulty and person ability on the same scale, interpretations
of person scores can be easily provided in terms of the task demands. Figure 6.7
shows an example. The person ability scale on the left and the item difficulty scale
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on the right are linked through the mathematical function of probability of success.
If a student has an ability of h, one can readily compute this student’s chances of
success on items 1 to 6, with item difficulties δ1, δ2, …, δ6, respectively. As one can
describe the underlying skills required to answer each item correctly, one can easily
describe a student’s level of proficiency once we have located the student on the
scale according to his/her ability. For example, a student located at h in Fig. 6.7 will
typically have a 50% chance of successfully carrying out multi-step arithmetic;
more than 50% chance of performing single-digit multiplication; and less than 50%
chance of performing arithmetic with fractions.

Estimation of Ability Using IRT

To explain about how abilities are estimated under IRT, Figs. 6.8, 6.9, 6.10 and
6.11 present a sequence of illustrated steps.

Given the definition of item difficulties, a student located at h on the ability scale
will typically have a 50% chance of successfully answering an item with difficulty
value at h. Put it another way, for a student with an ability h, we expect the student
to answer about 50% of the items correctly for items with difficulty values around h.
Figure 6.8 shows that about 50% of the items located around the ability of a student
are marked correct, and about 50% marked incorrect (a tick shows an item is
marked correct, and a cross shows incorrect).

Linking Students and Items
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Fig. 6.7 Linking students and items through an IRT scale
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Next, notice that in Fig. 6.9 there is a block of items located below the ability of
a student, and that there are more correct answers than incorrect answers. That is,
there are more ticks than crosses for this block of items for this student.

In comparison, Fig. 6.10 shows that the block of items with difficulties higher
than the student’s ability will typically have more incorrect answers than correct

Pattern of Student Responses
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Fig. 6.8 Items at a student’s ability level—about 50% correct

Pattern of Student Responses
Difficult

Location of a student
(θ)

More able

Less able
Easy

More than 
50% chance

Fig. 6.9 Items located below a student’s ability level—more than 50% correct
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answers, because the chance of answering these items correctly for the student is
less than 50%.

In real-life, what we observe are the item response patterns of a student on a test,
that is, the item correct-incorrect patterns on the right-side of Fig. 6.10. We do not
know a student’s ability. The goal is to use the item response patterns to find the
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Fig. 6.10 Items located above a student’s ability level—less than 50% correct
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Fig. 6.11 Given item response pattern, find student ability
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student’s ability. What we try to identify is the ability region where about equal
numbers of correct and incorrect item responses are located.

Figure 6.11 shows the item response patterns of another student. Can you
estimate where the student’s ability is located?

Examining the item response patterns in Fig. 6.11, we try to find an ability
estimate at which around 50% of the items are correct. In Fig. 6.11, this is close to
the top of the scale. Our guestimate is around the third row of items from the
top. This could be where we locate the student’s ability. Looking for a region where
there are about 50% correct answers is the principle of finding student ability
estimate in IRT. Of course there is an assumption here that the item difficulties are
already known so that we can place item responses at their appropriate places on the
scale. What we have illustrated here is the basic principle of estimation in IRT, but
there are different estimation methods in IRT, and mathematical procedures are
involved rather than the eye-balling procedure as illustrated above.

Invariance of Ability Estimates Under IRT

In an earlier section of this chapter, we discussed about the issues with measure-
ment invariance when raw scores are used. In this section, we illustrate how
measurement invariance is achieved under the IRT framework.

Take the item response pattern in Fig. 6.11 as an example, if easy items have not
been administered, as shown in Fig. 6.12, how would the estimation of ability be
affected?
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Fig. 6.12 Easy items are not administered
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Figure 6.12 is the same as Fig. 6.11 except that the bottom three rows of item
responses are removed, indicating that a more difficult test has been administered. If
raw scores are used, the student obtained 19/32 = 59% on the harder test as shown
in Fig. 6.12, and 29/43 = 67% on the easier test as shown in Fig. 6.11. To deter-
mine ability estimate under the IRT principle for item responses in Fig. 6.12, we
identify a region where about 50% of the items are correct. This region is actually
not changed whether the bottom three rows of items are present or not. Still, in the
region near the top third row, about 50% of the items are correct. From this
example, it can be seen that whether an easy test or a hard test is administered, the
location of the ability estimate is unaffected. This is because IRT uses a probability
model rather than raw scores or percentages of items correct in determining ability
estimates. In this way, measurement invariance is attained.

Computer Adaptive Tests Using IRT

The example above illustrates that the principles of IRT enable the estimation of
student abilities even when students take different sets of items. Consequently, IRT
is particularly useful in computer adaptive testing where items are selected for
individual students depending on the ability level of each student. A high level
student typically gets more difficult questions, and a low level student gets easier
questions. But IRT can provide ability estimates that are comparable across students
who take the computerized test. Refer to Chap. 7 for more information.

Summary

This chapter introduces the desirable properties of an ideal measurement. The
properties include measurement invariance and interpretability of measures.
Measurement invariance refers to the invariance of the placement of students on the
ability scale irrespective of the instruments administered, provided, of course, that
the instruments all tap into the same construct. Interpretability of measures refers to
the attachment of meanings to measures, so that measurement scores can be
interpreted in terms of the underlying skills that the students can perform.

The principles of IRT are discussed conceptually and contrasted with classical
test theory (CTT) to demonstrate how IRT overcomes some shortcomings of CTT.
It should however be noted that the differences between IRT and CTT are con-
ceptual. In practice, the differences between IRT and CTT are not so great when the
difficulties of instruments are well designed to match with students’ abilities. When
test length is long, CTT provides sufficiently good measures with raw scores that
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can be regarded as close to interval measurement. Nevertheless, the good mea-
surement properties of IRT can be applied to build better assessment systems such
as the use of rotated test booklets and computer adaptive testing. CTT is quite
limited to the analysis of single tests.

Additional Notes
IRT Viewed as a Transformation of Raw Scores

The Rasch model is a particular IRT model. The Rasch model can be
viewed as applying a transformation to the raw scores so that distances
between the locations of two students can be preserved independent of the
particular items administered. The curved line in Fig. 6.2 will be “straight-
ened” through this transformation. Figure 6.13 shows an example of this
transformation. Note that the distance between A and C on the easy test
(horizontal axis) is the same as the distance between A and C on the hard test
(vertical axis).

A crude transformation from raw test score to an IRT ability score is

h ¼ log
p

1� p

� �

where h is IRT ability and p is the raw score in percentage (e.g., p = 0.8, if
the raw score is 80% correct on the test).

A number of points can be made about IRT (Rasch) transformation of raw
scores:
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• The transformation preserves the order of raw scores. That is, Rasch
scores do not alter the ranking of students according to their raw scores.
Technically, the transformation is said to be monotonic. If one is only
interested in ordering students in ability, or items in difficulty, then raw
scores will serve just as well. No IRT is needed.

• There is a one-to-one correspondence between raw scores and Rasch
scores if every student is administered the same test. That is the pattern of
correct/incorrect responses does not play a role in determining the Rasch
score (see Chap. 7 for more details). However, if students take different
tests, as illustrated above with easy and hard tests, and within a computer
adaptive testing environment, then the raw scores and Rasch scores will
not have a one-to-one correspondence. The Rasch scores will take the item
difficulties of the overall test into account.

• When students take the same test, the correlation between raw score and
Rasch score will be close to 1, as a result of the property of the Rasch
model. Occasionally, one sees researchers plotting Rasch scores against
raw scores. The high correlation between these two scores has sometimes
been taken as indications of good fit of the data to the model. This is a
misconception. Actually, even if data mis-fit the model, the correlation
between Rasch scores and raw scores will still be close to one.

How About Other Transformations of Raw Scores, for Example,
Standardised Score (Z-Score) and Percentile Ranks? Do They Preserve
“Distances” Between People?

Using classical test theory approach, raw scores are sometimes trans-
formed to z-scores or percentile ranks. For z-scores, a transformation is
applied to make the mean of the raw scores equal to zero, and the standard
deviation equal to 1. This transformation is linear, so the relative distance
between two points will be the same whether raw scores or z-scores are used.
For example, if A and C are further apart than C and B in raw scores, then the
z-scores will also reflect the same relative difference. Consequently, z-scores
suffer from the same problem as raw scores. That is, z-scores on an easy test
and a hard test will not necessarily preserve the same relative distances
between students.

Transforming raw scores to percentile ranks will solve the problem of
producing differing distances between two people on two different tests. This
is because percentile ranks have relinquished the actual distances between
students, and turned the scores to ranks (ordering) only. So, on the one hand,
the percentile ranks of people on two different tests may indeed be the same,
on the other hand, we have lost the actual distances between students. Raw
scores, while not quite providing an interval scale, offer more information
than just ordinal scales.
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Hands-on Practices

Task 1

Use simulation to generate raw scores for students on an easy test and a hard test.

Q1. Plot the two test scores on a graph
Q2. Apply a logistic transformation to the raw scores as follows:

Step 1: Compute percentage correct from the raw scores (raw score divided by
possible maximum score). Let p denote percentage correct.

Step 2: Compute transformed score by applying transformation, log(p/(1 − p)),
where log is the natural logarithm. The ratio, p/(1 − p), is referred to as
an “odds”. The results from the transformation of log(p/(1 − p)) are said
to be in the “log of odds unit” (abbreviated as “logit”)

Step 3: Plot the two transformed scores on a graph

Discuss the shapes of the two graphs in terms of measurement invariance. Which
graph is closer to a straight line?

Note: This hands-on practice is to demonstrate IRT as viewed as a transfor-
mation of the raw scores. However, the actual mathematical modelling of IRT is
at the individual item and individual person level, not at the test score level.
In IRT software programs, often logistic transformations applied to the test scores
or to item scores (percentage of students getting an item right), as shown in this
hands-on practice, are used to provide initial values of person and item
parameters.

Task 2

Investigate the relationship between raw scores and transformed logit scores. For
example, if a test has a maximum score of 30, plot raw scores (between 0 and 30)
against transformed scores. What are your observations in terms of the distances
between raw scores and between logit scores? Is the relationship between raw
scores and logit scores a linear one? If not, is there a range between which the
relationship is approximately linear?
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Discussion Points

(1) For what purposes of measurement would raw scores be sufficient? For what
purposes of measurement should IRT be applied?

(2) Based on the presentation in Chaps. 5 and 6, what do you think are the
differences between classical test theory and item response theory?

(3) The illustration of the principles for estimating ability (as shown from
Figs. 6.8, 6.9, 6.10 and 6.11) relies on a response pattern that shows more
items correct for easy items, and fewer items correct for difficult items. In this
way one can identify the region where there are about equal numbers of
correct and incorrect items. What happens if there is no clear pattern of item
responses, such as a random scattering of incorrect items over the low to high
scale, so that there is no clear region where the student’s ability might be?

Exercises

Q1. As percentages, raw scores have a minimum of 0 and a maximum of 100.
What is the minimum and maximum of logits? (logit is defined as in the
Hands-on Practice section).

Q2. When percentage (p) is 50%, what is the value of the transformed logit?
Q3. Consider two raw scores expressed in percentages, p1 and p2, where p2 is

greater than p1. Let t1 and t2 denote the transformed logit scores of p1 and p2
respectively. Which of the following option(s) do you think are appropriate in
relation to the relative magnitude of t1 and t2?

t1 is greater than t2

t2 is greater than t1

One cannot say which is larger, as it depends on whether t1 and t2 are positive or negative

One cannot say which is larger, as it depends on whether p1 and p2 are below or above average

Q4. The following shows the response pattern of a student. Can you estimate the
student’s ability?
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Chapter 7
Rasch Model (The Dichotomous Case)

Introduction

There are many different IRT models. The simplest model specification is the
dichotomous Rasch model. The word “dichotomous” refers to the case where each
item is scored as correct or incorrect (0 or 1).

The Rasch Model

Item response models typically apply a mathematical function to model the prob-
ability of a student’s response to an item. The probability is a function of the
student’s “ability” level. The graph of the probability function is usually known as
item characteristic curve (ICC), which typically has an “S” shape as shown in
Fig. 7.1.

In the case of the Rasch model (1960), the mathematical function of the item
characteristic curve for a dichotomous item is typically given by

p ¼ P X ¼ 1ð Þ ¼ exp h� dð Þ
1þ exp h� dð Þ ð7:1Þ

where X is a random variable indicating success or failure on the item, with X = 1
indicates success (or a correct response) on the item, and X = 0 indicates failure (or
an incorrect response) on the item.

h is a person-parameter denoting the person’s ability on the latent variable scale,
and d is an item-parameter, generally called the item difficulty, on the same latent
variable scale. The Rasch model is sometimes called the one parameter model
(1PL), since the function in Eq. (7.1), when expressed as a function of the ability h,
has one parameter, namely, the delta (d) parameter.
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Equation (7.1) shows that the probability of success on an item is a function of
the difference between a person’s ability and the item difficulty. When the ability
equals the item difficulty, the probability of success is 0.5.

By re-arranging terms and then taking logarithm on both sides of Eq. (7.1), it is
easy to demonstrate that

log
p

1� p

� �
¼ h� d ð7:2Þ

Equation (7.2) shows that h� d, the distance between a person’s ability and the
item difficulty, is expressed as the logarithm of the odds of success of the person on
the item. The term odds is the ratio of the probability of success over the probability
of failure. As a result, the measurement unit of the scale for ability and item
difficulty is generally known as “logit”, a contraction of “log of odds unit”.

Moreover, if one interprets p as the percentage of items with difficulty d answered
correctly by students with ability h (see Chap. 6 for the interpretations of p), one can

think of log p
1�p

� �
as a transformation of p (percentage correct) and this transformed

score is on the logit scale (=h� d). In this way, the ability score in logits can be
viewed as a transformation of the percentage correct, in much the same way as other
scaled scores which are transformations of the raw scores, as discussed in Chap. 6. In
fact, in some IRT software programs, the initial values for item difficulty estimates

are often set as log p
1�p

� �
where p is the percentage of students who obtained the

correct answer on an item. Similarly, log p
1�p

� �
can be used as initial values for

person ability estimates, where p is a student’s test score expressed as the percentage
of correctly answered items.
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Additional Notes
Many IRT models use the logistic item response function although the logistic
function is not the only function that can be used (e.g., see Embretson and
Reise 2000; van der Linden and Hambleton 1997; Thissen and Steinberg
2009). The choice of the item response function is not simply for mathematical
convenience. There are theoretical reasons why item response data may follow
the logistic model (e.g., Rasch 1960; Wright 1977). It has also been shown
empirically that item response data do generally fit the logistic model (e.g.,
Thissen and Wainer 2001). In addition to logistic functions, the normal ogive
function has also been used (Lord and Novick 1968; Samejima 1977). In
general, the normal ogive model can be approximated by the logistic item
response model (Birnbaum 1968). See Hands-on Practices Task 2 for more
information.

Properties of the Rasch Model

Specific Objectivity

Rasch (1977) pointed out that the model specified by Eq. (7.1) has a special
property called specific objectivity. The principle of specific objectivity is that
comparisons between two objects must be free from the conditions under which the
comparisons are made. For example, the comparison between two persons should
not be influenced by the specific items used for the comparison. To demonstrate this
principle, consider the log odds for two persons with abilities h1 and h2 on an item
with difficulty d. Let p1 be the probability of success of person 1 on the item, and p2
be the probability of success of person 2 on the item. Substituting into Eq. (7.1), we
have

log
p1

1� p1

� �
¼ h1 � d

log
p2

1� p2

� �
¼ h2 � d ð7:3Þ

The difference between the log odds for the two persons is given by

log
p1

1� p1

� �
� log

p2
1� p2

� �
¼ h1 � d� h2 � dð Þ ¼ h1 � h2 ð7:4Þ
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Equation (7.4) shows that the difference between the log odds for two persons
depends only on the ability parameters and not on the item parameter. That is,
irrespective of which items are used to compare two persons, the difference between
the log odds for the two persons is the same.

Similarly, it can be demonstrated that the comparison between two items is
person-free. That is, the difference between the log odds for two items is the same
regardless of which persons took the two items.

Some psychometricians regard this sample-free property of a measurement
model as most important for constructing sound measurements, because statements
can be made about relative item difficulties without reference to specific persons,
and similarly statements can be made about relative proficiencies of people without
reference to specific items. This item- and person-invariance property may not hold
for some IRT models, such as the two-parameter and three-parameter IRT models.

Indeterminacy of an Absolute Location of Ability

Equation (7.1) shows that the probability of success of a person on an item depends
on the difference between ability and item difficulty, h� d. If one adds a constant to
ability h, and then adds the same constant to item difficulty d, the difference
between ability and item difficulty, h� d, will remain the same, so that the prob-
ability of success will remain the same. Consequently, the logit scale does not
determine an absolute location of ability and item difficulty. The logit scale only
determines relative differences between abilities, between item difficulties, and
between ability and item difficulty. This means that, in scaling a set of items to
estimate item difficulties and abilities, one can choose an arbitrary origin for the
logit scale, and that the resulting estimates are subject to a location shift without
changing the fit to the model.

To emphasise further this indeterminacy of the absolute location of ability and
item difficulty estimates, one must not associate any interpretation to the logit value
without making some reference to the nature of the origin of the scale however it
was set. For example, if an item has a difficulty value of 1.2 logits from one scaling,
and a different item has a difficulty value of 1.5 logits from another scaling, one
cannot make any inference about the relative difficulties of the two items without
examining how the two scalings were performed in terms of setting the origins of
the scales and how the two scales are linked. The readers are referred to Chap. 12
on equating for more information on this point.

This indeterminacy of the origin of a scale is not specific to IRT models. It is a
matter of fact that when students take a test, if the test scores are high, we will not
know whether it is because students are able, or if the test items are easy, without
making additional assumptions about the students and/or the test. That is, student
abilities and item difficulties are confounded when test scores are obtained.
Understanding this important point will help greatly with more complex applica-
tions of test analysis, such as making comparisons between groups of students, or
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tracking students over time, or comparing scores across a set of tests. In short, item
difficulty for an item is always with reference to a group of people the item is
administered to, or with reference to a group of items. Consequently, we need to
clarify that the property of specific objectivity is in the context of relative measures
between items, between respondents, and between item and respondent, and NOT
in the individual measures. The term “sample-free” as found in many literature can
be misleading if it is not interpreted appropriately.

Equal Discrimination

Under the Rasch model, the theoretical item characteristic curves for a set of items
in a test are all parallel, in the sense that they do not cross, and that they all have the
same shape except for a location shift, as shown in Fig. 7.2. This property is known
as equal discrimination or equal slope parameter. That is, each item provides the
same discriminating power in separating respondents by their levels on latent trait.

Indeterminacy of an Absolute Discrimination or Scale Factor

Figure 7.3 shows three ICCs corresponding to three items. The ICC for the first
item (blue dotted curve) is rather flat, while the ICC for the third item (green solid
line) is quite steep. Of course, for each ICC, the slope varies along the ability range.
For example, for Item 3, the curve is steep over the middle ability range, and flat
over other parts of the ability range. In the following discussion, we refer to the
slope of an ICC as the slope at around the item difficulty value. When the slope of
an ICC is flat, such as for Item 1, students at low ability levels have similar
probabilities of answering the item correctly as for students at high ability levels.

Theoretical ICCs for Three Items
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Fig. 7.2 Three ICCs with
varying item difficulties but
the same discrimination
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Consequently, the item does not provide much power in discriminating students of
varying abilities. In the extreme case where the ICC is a horizontal line, then the
item cannot distinguish between low from high ability students at all. In summary,
the slope of an item characteristic curve shows an item’s discrimination power.

In terms of the mathematical formulation of the slope parameter, Eq. (7.5) shows
a model that takes the slope into account.

p ¼ P X ¼ 1ð Þ ¼ exp a h� dð Þð Þ
1þ exp a h� dð Þð Þ ð7:5Þ

The value of a in Eq. (7.5) determines the slope of the ICC. In Fig. 7.3, a takes the
values of 0.1, 1 and 3 for Item 1, Item 2 and Item 3 respectively. Note that Eq. (7.5) is
not a Rasch model if the value of a differs for different items, since the Rasch model
assumes all items in a test have the same discrimination and, as a convention, the value
of a is set to 1. Also note that since all items have the same slope under the Rasch
model, the ICCs do not cross each other. Equation (7.5) shows the two-parameter IRT
model (2PL) when each item has a different value of a. A detailed discussion of 2PL
models can be found in Chap. 10.

While the Rasch model stipulates that all items in a test have the same “dis-
crimination” (or the same “slope”), the Rasch model does not specify an absolute
value for the discrimination parameter. The setting of a to 1 is a convention only.
We can set a to any constant. Provided that all items have the same a we have the
Rasch model. (See Hands-on Practices Task 2 for more information.) Since
a h

a � d
a

� � ¼ h� dð Þ, the ability scale can have any scale factor. For example, most
part of the range of ability estimates could be between −3 and 3, or between −300
and 300, or between 100 and 800. The model will fit equally well by
multiplying/dividing a scale constant to all abilities and item difficulties, and setting

Fig. 7.3 Three ICCs with different discrimination but the same difficulty
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an arbitrary origin. Chapter 10 shows how the a parameters can be transformed by a
scale factor.

An additional note: For this reason we do not hold the view that if a is set to 1.7
it is the 1PL model, and if a is set to 1.0, it is the Rasch model. In both cases, the
model is the Rasch model, just with a different scale factor. The scale factor a can
be any number and it is still the same model because of the indeterminacy of the
scale factor. See Hands-on Task 2 for the reason for setting a to 1.7.

Different Discrimination Between Item Sets

As an example to illustrate relative discrimination between items and the setting of
the a parameters, Fig. 7.4 shows two sets of items with different discriminating
power when the two sets of items are administered together to the same group of
people. While items within each set have the same “slope”, Set 2 items (right-side
graph) are more discriminating than Set 1 items (left-side graph).

When each set of items is scaled using the Rasch model in two separate
scaling runs, the slope parameter of the item characteristic curve is set to a “1” as
a convention (i.e., the value of a in Eq. (7.5) is set to 1) in each run, so that the
two sets of items appear to have the same slope pictorially (Fig. 7.5). However,
students taking Set 2 items will have ability estimates that are more spread out.
(See the change in the scale of the horizontal axes of the ICCs from Figs. 7.4 to
7.5.) That is, the variance of the ability distribution using Set 2 items will be
larger than the variance of the ability distribution when Set 1 items are used.
Consequently, the reliability of a test using Set 2 items will be higher, remem-
bering that reliability shows the extent to which a test can separate students (refer
to Chap. 5). To demonstrate the shrinking and expansion of the scale, imagine the
graphs in Fig. 7.4 are re-sized using Windows re-size tool (,). To make the
ICCs steeper in the left-side graph, the sides of the window need to be brought
towards each other. To make the ICCs flatter in the right-side graph, the sides of
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Fig. 7.4 Two sets of items with different discriminating power
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the window need to be pulled further apart. In this way, the scale is shrunken and
expanded respectively. More specifically, the slope parameter is directly related to
the scale factor of abilities.

Irrespective of the scale, since each set of items show parallel ICCs, Set 1 items
fit the Rasch model equally well as the fit of Set 2 items to the Rasch model. But if
the two sets are combined into one test, the items will show misfit to the Rasch
model.

Length of a Logit

The above results show that the length of one unit “logit” does not have an absolute
meaning. A group of students can be close together in terms of their abilities
estimated from one calibration of a test, and be further apart from the calibration of
another test. How far apart a group of people are spread on the ability scale depends
on the discriminating power of the items used. Clearly, less discriminating items
have less power in separating respondents in terms of their abilities, even when the
items fit the Rasch model well. The overall discriminating power of a set of items is
reflected in the test reliability statistics, not in the Rasch model fit. It is possible that
a set of items fit the Rasch model well, but the test reliability is close to zero. That
is, a set of items may contain all poorly discriminating items, but because the items
are “equally poor”, they still fit the Rasch model. In short, good fit to the Rasch
model does not ensure a good test.

It should be noted that, strictly speaking, under the assumptions of the Rasch
model, two sets of items with differing discrimination power as shown in Fig. 7.4
cannot be testing the same construct, since, by definition, all items testing the same
construct should have the same discriminating power, if they were to fit the Rasch
model.
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However, in practice, the notion of equal discriminating is only approximate,
and items in a test often have varying discriminating power. For example,
open-ended items are often more discriminating than multiple-choice items when
both are used to test the same construct. It would seem reasonable to assume that
items could tap into the same construct even if they have different discriminating
power. Under this circumstance, different items have different amount of “noise” in
measuring a construct, analogous to a scenario of target shooting at 50 paces or at
100 paces. Various relaxations of the assumption of the Rasch model regarding
equal discrimination have been made, from allowing different discrimination
parameters for groups of items (Humphry and Andrich 2008), to having integer
item category scores (similar to awarding partial credit scoring as presented in
Chap. 9) (Verhelst and Glas 1995), to the 2PL model where every item has its
discrimination parameter that is not restricted to integer values.

In any case, we should be aware of the implications of issues regarding the
“length” of a logit, particularly when we select items for equating purposes (see
Chap. 12 for equating tests).

Building Learning Progressions Using the Rasch Model

Under the Rasch model, the item characteristic curves (ICC) are “parallel”, as
shown in Fig. 7.2. Having parallel ICCs enables one to clearly discuss the notion of
“item difficulty” across items, since it can be seen from Fig. 7.2 that the relative
difficulties of the three items stay the same for students at all ability levels. Item 3
(the ICC on the right) is the most difficult item while Item 1 (the ICC on the left) is
the easiest item out of the three for all ability values. In contrast, if three items have
ICC such as the ones shown in Fig. 7.3 where the ICCs are not parallel, it becomes
problematic to define “item difficulty order”, since Item 3 is the easiest item for high
ability students, but it is the most difficult item for low ability students.

Researchers have frequently used item response modelling to build learning
progressions (sometimes known as proficiency scales), typically through the use of
item-person maps (also known as Wright maps (Wilson 2011)) as shown in
Fig. 7.6.

In an item-person map, the ability scale is displayed vertically. The items are
placed along the ability scale according to their difficulty values. In Fig. 7.6, it can
be seen that Item 17 is the most difficult item (at the top of the scale), while Item 42
is the easiest item (at the bottom of the scale). Summary statements of skills are
written along the ability scale based on the locations of test items placed on the
scale. These summary statements are descriptions for a learning progression. As
learning progressions typically apply to a population, the placement of the items in
difficulty order should be valid for that population. In the example in Fig. 7.6, Items
17, 34 and 11 are in decreasing difficulty order, not just for students near the top of
the ability scale, but also for all students in this population. In contrast, if items have
ICCs that are not parallel, then the ordering of items by difficulty will not be the
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Item-person map 
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Fig. 7.6 Item-person map
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same for students at different ability levels. So it becomes problematic to construct a
learning progression for a population, since the learning progression will vary
depending on the ability level of a student.

In summary, under the Rasch model, item difficulty order is well defined across
the whole ability range. For this reason, some measurement specialists consider the
Rasch model to have better measurement properties. In practice, however, there are
always degrees of misfit of items and uncertainty in skills audits of items, the
ordering of items by difficulty will not necessarily be too different when other IRT
models are used. Nevertheless, the Rasch model has particular desirable theoretical
properties as compared to some other IRT models when it comes to constructing
learning progressions.

Additional Notes on Item-Person Map
Typically, an item-person map is drawn with the respondents located on the
left-side of the scale according to ability measures (see the symbol of “x” in
Fig. 7.6) and with items located on the right-side according to item difficulty
measures (labelled by item numbers). This is possible since one feature of
IRT is that person ability and item difficulty are calibrated on the same scale.
By definition of item difficulty, students with ability equal to the difficulty of
an item will have 50% chance of being successful on the item. Using Fig. 7.6
as an example, students with ability 1 will have 50% chance of being suc-
cessful on Items 16, 19 and 23.

The following is a list of mis-interpretations of the item-person map.

1. Items located above the distribution of respondents are not answered
correctly by any respondents. For example, Items 17 and 34 in Fig. 7.6 are
located higher than all respondents and therefore no one got these items
right. This is an incorrect interpretation as respondents located close to 2
on the logit scale will have slightly less than 50% chance of obtaining the
correct answer on these two items. In fact, all respondents have a positive
probability of getting these items right, although some of these proba-
bilities could be small.

2. Similarly, a second mis-interpretation is that items located below the
distribution of respondents are answered correctly by every respondent,
for example, Items 41 and 42. This is an incorrect interpretation as
respondents located just above −2 on the logit scale have just slightly over
50% chance of obtaining the right answer on these two items.

3. The expected raw score for a respondent can be obtained by counting the
number of items below the ability of the respondents. For example, in
Fig. 7.6, for respondents with ability zero, there are 28 items located
below zero, so the expected test score for these respondents is 28. This is a
mis-interpretation. The expected score of a respondent at an ability level
depends on the actually item difficulty measures of all items. Take a
simple example. Test 1 has four items all with difficulty values of −1.

Properties of the Rasch Model 119



Test 2 has four items all with difficulty values of −2. A respondent located
at zero ability will be above the four items for both tests. But the expected
score for this respondent on Test 1 will be lower than his expected score
on Test 2 because the four items in Test 1 are more difficult than the four
items in Test 2.

Additional Notes on Response Probability (RP) in relation to Item-Person
Map
On the item-person map shown in Fig. 7.6, items are located by their diffi-
culty and persons are located by their ability. By definition of item difficulty,
students with ability equal to the difficulty of an item will have 50% chance of
being successful on the item. That is, when a person is located next to an item
on the item-person map, the person has 50% chance of answering the item
correctly. When items are matched to a person to describe what the person
can do in relation to the items, it is often felt that, with 50% chance of
answering an item correctly, the probability is too low to warrant a statement
that the person “can” answer the item. Consequently, the stakes are often
raised by increasing the response probability to higher than 50% before
stating that a person can perform the task demand of an item. There are
variations in deciding on the appropriate probability level at which one can
make the statement that a student “can do” an item. Sometimes 65% is used,
sometimes 75–85% are used. That is, it is a somewhat arbitrary decision. The
probability deemed as appropriate to match a person to the items is sometimes
called RP (response probability). Once an RP is decided, the item-person map
is often adjusted by shifting the items up or shifting the persons down the
map, so that when a person is located next to an item, the probability of
success is equal to RP.

For the Rasch model, given that all items have parallel ICCs, it is easy to
compute an adjustment to the ability (or item difficulty) for a given RP. Since

log p
1�p

� �
¼ h� d (see Eq. (7.2)), log RP

1�RP

� �
gives the difference between

ability and item difficult to achieve a probability of RP. For example, if
RP = 0.75, then log 0:75

0:25

� � ¼ 1:1. So to align persons to items on the
item-person map where RP = 0.75, either add 1.1 to all item difficulties, or
subtract 1.1 from all person abilities.

Raw Scores as Sufficient Statistics

Under the Rasch model, there is a one-to-one correspondence between a person’s
estimated ability in logits and his/her raw score on the test. That is, students with the
same raw score will be given the same ability estimate in logits, irrespective of
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which items they answer correctly. Statistically, the raw scores are termed “suffi-
cient statistics” for ability estimates. An explanation for this may be construed as
follows: if all items have the same discriminating power, then each item should
contribute the same amount of information on ability estimation so the items should
have the same weight in determining ability, regardless of whether they are easy or
difficult items.

So if you have found that the correlation is close to 1 between the raw scores and
Rasch ability estimates in a test, be aware that the Rasch model dictates this
relationship. It does not show anything about how well your items worked.

However, if two persons were administered different sets of items, raw scores
will no longer be sufficient statistics for their ability estimates. This occurs when
rotated test booklets are used, where different sets of items are placed in different
booklets, or when computer adaptive tests are administered where each student
takes a different set of items. It is also the case when items with missing responses
are treated as if the items were not-administered, so that people with different
missing response patterns are regarded as being administered different tests. Under
these circumstances, the raw score will no longer be sufficient statistic for the ability
estimate.

How Different Is IRT from CTT?

Given that item difficulty estimates from the Rasch model has a one-to-one cor-
respondence with item scores (percentages of students obtaining the correct
answer), and that ability estimates from the Rasch model has a one-to-one rela-
tionship with students’ test scores, how different is IRT from CTT? Has IRT been
over-promoted as being the “modern” test theory over the “old” (classical) test
theory when the Rasch model and CTT produce the same ordering of item diffi-
culties and person abilities?

Using data from a large-scale statewide assessment, Fan (1998) found that
person and item statistics obtained from CTT and IRT were quite comparable. In
addition, the invariance property of item statistics across samples also appeared to
be similar under the CTT and IRT frameworks. Further, Wainer (2007) made some
interesting remarks in a book review of the fourth edition of Educational
Measurement (Edited by Brennan 2006):

I judge that at least 80% of all psychometric demands at the Educational Testing Service
could be well handled with the material in Gulliksen’s (1950/1978) classic text. Of the
remaining 20% (primarily CAT work that is most gracefully done with IRT), most is
covered in Lord and Novick (1968, p. 485).

In fact, classical test theory provides useful tools for analysing item responses. In
particular, when we are dealing with a single test, item difficulty estimates and item
discrimination index from CTT provide adequate information for test writers to
select items for a test. The CTT discrimination index essentially provides
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comparable information as the residual-based IRT fit statistics (see Chap. 8). Test
scores provide reasonable ability estimates particularly when tests are long (say,
over 50 items).

However, IRT becomes useful when we are dealing with multiple tests where
equating is needed. This could be for monitoring trends over time, or for estimating
achievement differences between grade levels, or for computer adaptive testing, or
for rotated test forms in one test administration. Further, IRT provides a more
convenient way to link ability levels to item difficulties so that learning progres-
sions can be more easily constructed. But CTT statistics should still form an
essential part of the item analysis, and should be used to complement IRT analyses.

Fit of Data to the Rasch Model

The nice properties of the Rasch model discussed so far only hold if the item
response data fit the model. That is, if the data do not fit the Rasch model, by
applying a Rasch scaling, the property of specific objectivity will not hold.
Therefore, to claim the benefit of using the Rasch model, the data must fit the model
to begin with. Applying the Rasch model cannot “fix” problematic items! From this
point of view, the use of the Rasch model for selecting items in the pilot stage of an
assessment is most important. If the item response data from the final form of a test
do not fit the Rasch model, the scale construction will not have sample invariance
properties even when the Rasch model is applied. Chapter 8 discusses the evalu-
ation of item fit to the Rasch model.

Estimation of Item Difficulty and Person Ability Parameters

Chapter 6 discusses the idea of estimating ability when the items are placed in their
difficulty order (e.g., see Fig. 6.10). Essentially, when item difficulties are known, a
student will likely answer around 50% of the items correctly for the set of items
with difficulty at the ability level of the student. That is, given a student’s item
responses, to find a student’s ability, we find the “mostly likely” ability value at
which the observed item responses would occur. This is the notion of the maximum
likelihood estimation method.

There are several different estimation methods to estimate item difficulty and
ability parameters. In the following, we describe the idea of the joint maximum
likelihood estimation (JML) method (e.g. Wright and Panchapakesan 1969; Linacre
1998). Other estimation methods such as conditional maximum likelihood
(CML) and marginal maximum likelihood methods (MML) are also frequently used
(e.g. Molenaar 1995; Baker and Kim 2004; de Ayala 2009).

First, consider the case when item difficulty estimates (di) are known but abilities
are unknown. To find the most likely ability for a student, we can form probability
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statements about the likelihood of observing the set of item responses. For example,
if the ability is h, we can compute the probability of obtaining a particular item
response for various values of h by using the formula

P X ¼ 1ð Þ ¼ exp h� dið Þ
1þ exp h� dið Þ for correct response on Item i; and

P X ¼ 0ð Þ ¼ 1
1þ exp h� dið Þ for incorrect response on Item i:

If we multiply together the individual probabilities for all item responses for the
student on a test, we obtain the probability for the set of item responses. We then
find the h value that will maximise this probability. That is, we find the ability value
that makes the observed item response pattern most likely. This process is repeated
for each student to estimate abilities for the group of students.

Of course the problem with this approach is that initially we know neither the item
difficulty values nor the abilities of students. So initially, we set some “reasonable”

guesses to the item difficulty values, such as using formula log p
1�p

� �
where p is the

percentage of students who obtained the correct answer on an item (see earlier
discussion in this chapter). Using this set of item difficulty estimates, proceed to
estimate abilities as described above. Using the new set of abilities, we can
re-estimate item difficulties using an equivalent process as for ability estimates. That
is, find item difficulty values to maximise the probability (likelihood) of observed
data given the current ability estimates. Once new item difficulty estimates are
obtained, re-estimate abilities using the updated item difficulties, so the iterations
continue until the change in estimated parameter values between iterations is small,
thereby indicating that convergence is achieved.

Weighted Likelihood Estimate of Ability (WLE)

The ability estimates obtained using the JML method as described above are often
referred to as MLE (maximum likelihood estimate). MLE are found to be biased
outwards. To remove this bias, Warm (1989) proposed a correction, and he called
the corrected estimate Weighted Likelihood Estimate (WLE). Most IRT software
programs provide WLE as ability estimates. WLE is also our preferred ability
estimates for individual students. Linacre (2009) provides some comparisons
between WLE and MLE.

The following is a note about zero and perfect scores. When students obtain zero
or perfect scores, the maximum likelihood estimation has no solution, since if a
student obtains no correct answer to any question, the ability of the student could be
“infinitely” low, and there is no information about how low the ability is. Similarly,
a student obtaining perfect score on a test could have a very high ability, and there
is no information about how high the ability could go up. For these reasons, using
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MLE for ability estimates, there often is an arbitrary convention of setting ability
estimates for zero and perfect scores. For the WLE though, the correction made to
MLE overcomes the estimation problem for zero and perfect scores, so that WLE
ability estimates can be computed for zero and perfect test scores.

Local Independence

An important assumption is made in the specification of the Rasch probability
function and the estimation procedure described in the previous section. That is, the

probability of success exp hn�dið Þ
1þ exp hn�dið Þ depends (only) on a person’s ability, hn, and an

item’s difficulty, di. The probability is not influenced by a person’s success or
failure on other items, or by factors other than ability and item difficulty (such as
particular person attribute and item characteristic). When this assumption holds, the
likelihood of a set of observed item responses can be computed as the product of the
probabilities of individual responses. This property is sometimes known as “local
independence”. The term “local” refers to the probability conditional on the values
of hn and di.

Violations of local independence can occur when there is “dependency” between
items. For example, if item A cannot be answered unless the correct answer to item
B is obtained, then the probability of success on item A is 0 if item B is incorrectly
answered. In this case, Eq. (7.2) no longer holds. Testlets (a set of items linked to a
common stimulus) often lead to the violations of local independence. It is likely that
students’ responses are more “similar than the model predict” on the items within a
testlet, because of familiarity or otherwise with the testlet stimulus. So, in com-
parison with items outside the testlet, a student is more (or less) likely to obtain the
correct answer than the probabilities predicted by the model.

Some fit tests are designed to check for the assumptions of local independence,
as discussed in the next chapter.

Transformation of Logit Scores

While the raw score expressed in terms of percentage correct conveys the pro-
portion of questions answered correctly, the logit scale in IRT does not have any
“absolute” meaning in the sense that a logit of 1.5 is quite meaningless by itself.
However, if a comparison is made, e.g., 1.5 logit is the difference between two
students’ abilities, then probability statements can be made about the relative
chances of success of these two students on items. In general, the setting of the
location of zero and the scale factor on a logit scale is quite arbitrary. For example,
for convenience, we may set the average of all item difficulties at the zero point on
the logit scale, or we may set students’ average ability as the zero point on the logit
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scale. For a scale factor, we may constrain the variance of the student abilities to 1
or set the standard deviation to some arbitrary number.

Since logit values do not have any absolute meaning by themselves, and since
logit values can be zero and negative, logits have often been transformed to avoid
mis-interpretations, particularly for zero or negative logits. For example, zero logit
does not mean there is no ability. A negative logit value does not mean worse than
no ability. A logit value of 100 does not mean maximum ability such as 100%
correct. For these reasons, researchers often choose a linear transformation so that
the range of student abilities is typically positive and above 100 so they are less
likely to be confused with percentages of items correct. As an example, in PISA, a
linear transformation of IRT abilities is used so that the mean of student abilities is
set at 500 and the standard deviation is set at 100. In this way, the typical range of
student abilities is between 300 and 700. These values are positive so we don’t need
to explain about negative ability. They are away from zero so there is no
mis-interpretation of zero logit. They are away from 0 to 100 so they won’t be
confused with percentages. As the transformation is linear, the transformation does
not impact on the interval property of the scores.

An Illustrative Example of a Rasch Analysis

The data set for this example comes from a numeracy practice test for Grade 3
students. There are 15 test items and 1199 respondents. The analysis is carried out
with R package TAM (Kiefer et al. 2013). For installing R and the TAM package,
see website

www.edmeasurementsurveys.com/TAM/Tutorials.
The R scripts for this analysis are shown in Table 7.1.

Line 1 of the R script file loads the TAM package for IRT analysis.
Line 2 sets the working directory. The working directory is the default folder for all
files if no full directory path is specified.
Line 3 reads the data file in csv format. The data file is in the working directory.
Line 4 calls the TAM function “tam.jml2” to run a JML analysis. The results of the
run are encapsulated in an R object called “mod1”. All results are accessed via
“mod1” using syntax “mod1$xyz” where “xyz” is a specific variable name of the
IRT output. See TAM pdf documentation of the output variable names from JML.
Line 5 displays the item difficulty parameters (d in Eq. (7.1)), shown in Table 7.2.
Table 7.2 shows that Item 7 is the most difficult item, while Item 1 is the easiest.
Line 6 of the R script displays the WLE ability estimates. An excerpt is shown in
Table 7.3.
As the data file has been sorted in test score order, the first 15 respondents have test
scores of 0, 1 and 2. It can be seen that students with the same test score have the
same WLE ability estimates, illustrating the idea of raw score as “sufficient
statistic” for ability estimate.
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Line 7 of the R script file plots the item characteristic curves (ICC). Four ICCs are
shown as examples in Fig. 7.7.

Each item in Fig. 7.7 shows two ICCs: the smooth curve (blue) is the expected
scores curve while the joined line segments (five segments joining 6 points) show
the observed ICC from empirical data. Item 7 (top right graph) shows a difficult

Table 7.1 R code for an IRT analysis using R package TAM

R script Comment

1 library(“TAM”) Load R library “TAM”

2 setwd(“C:/
G_MWU/IRTBook/Chapter7_RaschModel/data”)

Set working directory. Note
forward slash “/”, not
backward slash “\”

3 resp <- read.csv(“NumeracyA1.csv”) Read data file in csv format

4 mod1 <- tam.jml2(resp) Run IRT analysis using JML

5 mod1$xsi Show IRT item difficulty
estimates

6 mod1$WLE Show IRT ability estimates

7 plot(mod1) Plot ICC

8 ctt <- tam.ctt(resp, mod1$WLE) Classical test theory
statistics

9 ctt Show CTT statistics

10 score <- rowSums(resp) Compute raw scores

11 plot(score, mod1$WLE) Plot raw score against WLE

Table 7.2 Item difficulty
parameter estimates

Item difficulty parameters

1 −3.597902770

2 0.152710768

3 −0.216339997

4 −0.315478176

5 −0.004676182

6 0.269804125

7 2.491833957

8 −2.005791842

9 −0.720173111

10 −0.424414757

11 −0.866854422

12 −1.244359936

13 −1.938983421

14 −0.336291154

15 1.117124898

126 7 Rasch Model (The Dichotomous Case)



item, with ICCs low in the graph, indicating low probabilities of being successful
on this item for all ability levels. Items 4, 9 and 10 are medium level difficulty
items. However, Item 4 shows that the observed ICC matches the expected ICC
well. Item 9 shows the observed ICC flatter than the expected ICC. Item 10 shows
the observed ICC steeper than the expected ICC.

For Item 9 (bottom left graph), low ability students have a higher chance of
obtaining the correct answer than expected, and fewer high ability students obtained
the correct answer than expected, leading to a somewhat flatter observed ICC. In
general, a very flat ICC indicates that the item does not discriminate between high
and low ability students well, since the probability of obtaining a correct answer
does not differ greatly for low and high ability students.

In contrast, Item 10 discriminates low- and high-ability students better than
“what the model expects” in that low ability students are quite likely to answer the
item incorrectly, while high ability students are mostly answering the item cor-
rectly. In short, Item 9 has low discriminating power as compared to the other items
in the test, and Item 10 has high discriminating power as compared to the other
items. Figure 7.8 shows the actual items (Item 9 (top) and Item 10 (bottom)).

Item 9 is a question about the use of terms “left-right” and “top-bottom”. Item 10
is a computation problem where division is involved. One can make conjectures
about why Item 9 has low discrimination and why Item 10 has high discrimination.
Looking through the whole test, Item 11 is also a division problem similar to Item
10 and it also has high discrimination. One may conjecture that computation items
involving division discriminate better between low and high achievers, while using
and understanding of terms such as “left-right-top-bottom” may not be the best
indicator of students’ mathematics abilities. Such content analysis forms part of the
item analysis, and subject experts need to be called on to make these interpretations.

Table 7.3 Excerpt of WLE
ability estimates

Excerpt of WLE ability

1 −4.608557

2 −4.608557

3 −4.608557

4 −4.608557

5 −4.608557

6 −3.700321

7 −3.700321

8 −3.700321

9 −3.700321

10 −3.700321

11 −3.700321

12 −3.700321

13 −3.700321

14 −2.864732

15 −2.864732
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Statistics alone can only inform us of numerical values of variables of interest but
not the implications of these numbers.

To further check the discriminating powers of the items in the test, a classical
test theory function in the TAM package is run. Line 8 of the R script file calls the
CTT function and line 9 prints the results. A summary of the CTT analysis for Items
9, 10 and 11 is shown in Table 7.4.

In Table 7.4, column “AbsFreq” shows the number of students in each item
response category, and column “RelFreq” shows the frequency in percentage.
Column “rpb.WLE” shows the CTT discrimination index. It can be seen that Item 9
has a rpb (point-biserial correlation) of 0.36, while Item 10 has a rpb of 0.54 and
Item 11 has a rpb of 0.55. The column headed “M.WLE” shows the average WLE
ability of students (from IRT analysis) in each item response category. The average
ability of students obtaining the correct answer for Item 9 is 0.28, while the average
abilities for Item 10 and Item 11 are 0.50 and 0.42 respectively. So the CTT
analysis corroborates the results of the IRT analysis.

Fig. 7.7 ICCs for four items
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Lines 10 and 11 of the R script demonstrate the relationships between raw test
score and IRT ability estimates. Line 10 computes test scores for students by adding
the scores across each row of the response matrix, as each row contains the item
scores for each student. Line 11 plots the test scores against the IRT scores. The
graph is shown in Fig. 7.9.

Figure 7.9 shows that there is a one-to-one relationship between test score and
IRT ability estimate. The relationship is not a straight line (i.e., not linear); it is the

Fig. 7.8 Item 9 (top) and Item 10 (bottom) in the example test

Table 7.4 CTT analysis for Items 9, 10 and 11

Item N Categ AbsFreq RelFreq rpb.WLE M.WLE

Item 9 1199 0 418 0.348624 −0.35937 −0.62141

Item 9 1199 1 781 0.651376 0.359374 0.282965

Item 10 1199 0 486 0.405338 −0.54255 −0.82038

Item 10 1199 1 713 0.594662 0.542548 0.504841

Item 11 1199 0 386 0.321935 −0.54992 −0.9894

Item 11 1199 1 813 0.678065 0.549923 0.422085
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shape of a log function. The IRT ability estimates spread out a little more at the
lower and upper ends of the test scores range. Nevertheless, for test scores in the
middle range (say, between 5 and 10), the relationship is close to a straight line.

Summary

This chapter formally introduces the Rasch model for the dichotomous case.
Various properties of the Rasch model are discussed including specific objectivity,
equal item discrimination, difficulty ordering, raw scores as sufficient statistics, and
JML estimation method. The main message is that the Rasch model provides very
desirable measurement properties. The notion of item difficulty under the Rasch
model is clearly defined in the sense that items can be ordered by their item
difficulty parameters and such an ordering is valid for students at all ability levels.
This is not the case for 2- and 3-parameter IRT models. Similarly, the relative
differences between the abilities of students can be made without references to
specific items.

However, while in theory the Rasch model has many good measurement
properties, in practice, classical test theory and other IRT models all have their uses
and provide complementary information. For a broader overview and comparisons
of IRT models, see Thissen and Steinberg (2009).

Fig. 7.9 Plot of test raw
score versus IRT ability
estimate
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Hands-on Practices

Task 1

In EXCEL, compute the probability of success under the Rasch model, given an
ability measure and an item difficulty measure. Plot the item characteristic curve.
Follow the steps below.

Step 1 In EXCEL, create a spreadsheet with the first column showing abilities
from −3 to 3, in steps of 0.1. In Cell B2, type in a value for an item
difficulty, say 0.8, as shown below.

Step 2 In Cell B4, compute the probability of success: Type the following
formula, as shown

¼ exp $A4� B$2ð Þ= 1þ exp $A4� B$2ð Þð Þ
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Step 3 Autofill the rest of column B, for all ability values, as shown

Step 4 Make a XY (scatter) plot of ability against probability of success, as
shown below.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

This graph shows the probability of success (Y axis) against ability (X
axis), for an item with difficulty 0.8.

Q1. When the ability equals the item difficulty (0.8 in this case), what is the
probability of success?

Step 5 Add another item in the spreadsheet with item difficulty of −0.3. In Cell
C2, enter −0.3. Autofill cell C4 from cell B4. Then autofill the column of
C for the other ability values.
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Step 6 Plot the probability of success on both items, as a function of ability
(hint: plot columns A, B and C).

0

0.2

0.4

0.6

0.8

1

1.2

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

Q2. A person with ability −1.0 has a probability of 0.14185 of getting the first item
right. At what ability does a person have the same probability of getting the
second item right?

Q3. What is the difference between the abilities of the two persons where Person
A’s probability of getting the first item right is the same as Person B’s
probability of getting the second item right?

Q4. How does this difference relate to the item difficulties of the two items?
Q5. If there is a very difficult item (say, with difficulty value of 2), can you sketch

the probability curves on the above graph (without computing it in EXCEL)?
Check your graph with an actual computation and plot in EXCEL.
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Task 2. Compare Logistic and Normal Ogive Functions

The following shows an excerpt of an EXCEL spreadsheet.

In column A, set a sequence of abilities from −3 to 3, in steps of 0.1.
In column B, compute the logistic function

exp h� dð Þ
1þ exp h� dð Þ

where h is the person-parameter (ability in column A) and d is zero. More
specifically, type the formula “=exp(A2)/(1 + exp(A2))” in cell B2, and auto-fill
column B.

In column C, compute the normal ogive function (i.e., cumulative normal dis-
tribution with mean 0 and standard deviation 1). Specifically, in column C2, type
the formula “=normdist(A2, 0, 1, 1)”.

In column D, compute the logistic function, but this time, use a scale parameter of
1.7. Specifically, in cell D2, type the formula “=exp(1.7 * A2)/(1 + exp(1.7 * A2))”.

Make a scatter plot of columns A to D on the same graph. You should get a
graph like the following:
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Which two functions overlap with each other?
Since the ability scale has an arbitrary scale factor, it does not matter whether we

use exp h�dð Þ
1þ exp h�dð Þ or

exp 1:7 h�dð Þð Þ
1þ exp 1:7 h�dð Þð Þ.

The latter form is still a Rasch model, and it is very close to the normal ogive
function. For this reason, some software programs set the ability scale with a scale
factor of 1.7 instead of 1. This will not affect the interpretations of IRT results in
any way.

Task 3. Compute the Likelihood Function

To understand the idea of raw score as sufficient statistic for ability estimate, this
hands-on practice shows the comparison between likelihood functions for different
item response patterns with the same raw test score.

We will use EXCEL for this exercise. Figure 7.10 shows an EXCEL
spreadsheet.

In this example, a test has five items where the item difficulties are−2,−1, 0, 1 and 2
(see Row 2 in the spreadsheet in Fig. 7.10). In cells A5 to A17, there is a list of abilities
from−3 to3.Row3contains an item responsepattern. In this example, it is assumed that
a student obtained a score of three by answering Items 1, 3 and 5 correctly. In cells B5 to
F17, compute the probability of the item response with given ability. The EXCEL

Fig. 7.10 Computation of likelihood function
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formula in B5 is “=EXP(B$3 * ($A5 − B$2))/(1 + EXP($A5 − B$2))”. The multi-

plier “B$3” in the formula is the item response. This formula evaluates to exp h�dið Þ
1þ exp h�dið Þ

when the item response is 1, and 1
1þ exp h�dið Þwhen the item response is 0. ColumnG is

the likelihood which is the product of the probabilities in cells B to F.
Scanning down column G, the largest value (maximum) is in row 12, when the

ability is 0.5. This is the ability that “maximises” the likelihood. So the ability
estimate for a response pattern of “10101” (right-wrong-right-wrong-right) will be
around 0.5.

Repeat this computation for a different response pattern but still for a raw score
of 3. For example, use the response pattern “01101” in cells B3 to F3. What is the
maximum likelihood and which ability corresponds to this maximum likelihood?

Plot the likelihood functions for both response patterns “10101” and “01101” as
a function of ability. Figure 7.11 shows such a graph.

Repeat this for another response pattern, say, “11100”, and plot the likelihood
for the three response patterns on the same graph.

Discussion Points

1. In relation to the Hands-on Practices Task 3, discuss the concept of “raw score
as sufficient statistic for ability estimate”. For example, given a raw score, how
do different response patterns affect the estimation of ability? Given a raw score,
compare the likelihood functions for similarities and differences for different
response patterns. Would different response patterns impact on the fit of the
items to the model?

2. From a fairness point of view, do you think the ability estimate should be the
same for the same raw score irrespective of the actual items answered correctly?
If not, how would you score the items? Consider the illustrative example. If
Items 9 and 10 are administered, one student got Item 9 right but Item 10 wrong,

Fig. 7.11 Likelihood as a
function of ability and item
response pattern

136 7 Rasch Model (The Dichotomous Case)



the other student got Item 9 wrong but Item 10 right, so both students got 1 out
of 2. Should they have the same ability estimate?

3. Discuss the concept of “sample-free” in Rasch models. In what ways are esti-
mated statistics sample-free and sample-dependent?
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Chapter 8
Residual-Based Fit Statistics

Introduction

This chapter discusses the commonly used residual-based fit statistics for the Rasch
model. These item- and person-fit statistics are derived to check how well the item
response data fit the Rasch model. We note that these fit statistics do not assess the
overall model fit. Instead, they provide fit indices for each item and for each person.
There has been a great deal of confusion in using these statistics so it is worth
devoting a chapter to describe their appropriate uses. It should be stressed that there
are many different fit indices, some of which check for overall model fit (e.g. see
Maydeu-Olivares (2013) for an overview of different methods), and some fit indices
check for specific violations of the model. For example, there are fit statistics for
checking the violation of the unidimensional assumption (e.g. McDonald and Mok
1995; Hattie 1985). There are also fit statistics for checking the violation of the
assumption of local independence between items (e.g. Liu and Maydeu-Olivares
2013; Chen and Thissen 1997). The residual-based fit statistics presented here are
just one form of fit indices for items and for persons, derived using differences
between the observed item score and the expected item score to form residuals for
each item and for each person.

While the Rasch model described in Chap. 7 has many good measurement
properties, there is no guarantee that the item response data collected will conform
to the mathematical formulation of the Rasch model. If the data collected do not
conform to the Rasch model, the application of the Rasch model will not improve
the measurement properties of the data. That is, unless the data actually fit the
Rasch model, there is little point in using the Rasch model. Therefore, it is
important to assess the extent to which the data fit the Rasch model.

The key feature of the Rasch model is that the probability of success on an item
can be completely determined by two values: an item difficulty, d, and a person
ability, h. Equation (8.1) shows the Rasch model for the probability of success for a
person on an item.
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p ¼ P X ¼ 1ð Þ ¼ exp h� dð Þ
1þ exp h� dð Þ ð8:1Þ

If there are factors other than the item difficulty and person ability that influence
the probability of success for a person on an item, then the assumptions of the
Rasch model are violated. Some of these factors may include the following:

• Guessing. Guessing can occur, particularly for difficult multiple choice items. In
general, we often find that short-constructed items are more “discriminating”
than multiple-choice items.

• Item Dependency. The “local independence” assumption of the Rasch model is
violated when the probability of success on an item depends on the response(s)
to other item(s). For example, an item requires information from the answer of a
previous item, or, one item provides clues to the answer of another item.

• Differential Item Functioning (DIF). DIF occurs when different groups of stu-
dents respond to an item in different ways. For example, boys may perform
better than girls on an item about football because boys are more engaged with
the sport.

• Other Traits. An item may tap into a number of “traits”. For example, a
mathematics item may be testing both conceptual understanding and compu-
tational accuracy. These two “traits” may be different for different individuals.
That is, a person may be high on one trait, but low on the other. This is a form of
a violation of the unidimensionality assumption in the IRT model.

Fit Statistics

The extent to which the Rasch model assumptions are violated can be tested
through “fit statistics”. However, since there are many factors that can affect the
assumptions of the Rasch model, different fit statistics have been designed to detect
different kinds of violations. This is an important point to remember, as too often
we make judgements based on a single fit statistic about whether data fit the Rasch
model. It should be noted that each fit statistic is sensitive only to specific violations
of the model, and may not be sensitive to other violations of the model.

Many fit indices have been developed for testing the adequacy of item response
models and for exploring the properties of test items. Douglas (1982) discussed the
notion of fit, from both statistical and psychometric perspectives. He also presented
a technical review of many of the fit statistics that have been developed, and
compared a number of fit statistics, including Wright and Panchapakesan’s (1969)
between fit statistic, van den Wollenburg’s (1982) Q1 statistic and Andersen’s
(1973) likelihood ratio test. Douglas demonstrated that a number of alternative
statistics are in fact indistinguishable in practice, and concluded the review with the
following observation:
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The most valuable contribution to the area of tests of fit for Rasch models in recent years
has been the recognition by some psychometricians that there is no such thing as a final ‘fit’
of data to the model and hence that no one test is ever likely to be complete (p. 43).

In the years since Douglas’ review, a considerable amount of new development
work on fit statistics has been undertaken (for example, Glas and Verhelst 1995;
Smith 1988). The increased power of computers has enabled more complex com-
putations to be performed and simulation studies have been used to test certain
conjectures and hypotheses. Where analytic derivations have become difficult,
empirically based approaches have been applied to provide better insight into the
properties of some of the fit statistics for which only the theoretical asymptotic
properties are known.

Generally, there are three types of fit statistics:

(1) Chi-square goodness-of-fit tests that are based on comparing observed and
expected counts of various types (e.g., Glas and Verhelst 1995).

(2) Tests that combine standardised residuals to form approximate normal vari-
ates. These tests are based on comparing the observed and expected responses
of individuals to items (Wright and Panchapakesan 1969, Wright 1977).

(3) Exploratory and nonparametric tests that provide diagnostic information about
specific model violations (e.g., Molenaar 1983, DIMTEST (Stout et al. 1996)).

Meijer and Sijtsma (2001) provided a comprehensive overview of various kinds
of person fit statistics.

Residual-Based Fit Statistics

In this chapter, we will focus on one type of fit statistics: the residual-based fit
statistics. This type of fit statistics is reported in a number of IRT software packages
such as Winsteps (Linacre and Wright 2000), RUMM (2001), ConQuest (Wu et al.
1998), TAM (Kiefer et al. 2013). A detailed discussion of residual-based fit
statistics can be found in Wu and Adams (2013).

Wright (1977) proposed several item fit and person fit statistics based on stan-
dardised residuals for the Rasch model. Let Xni be the observed score for person
n on item i, and Pni be the probability of obtaining a correct response for person
n on item i. Xni is the random variable for the (scored) item response for person n on
item i. We use capital letters to denote random variables and small letters to denote
observed values of corresponding random variables. Then the standardised residual
is defined as

zni ¼ xni � E Xnið Þð Þ
Var Xnið Þð Þ12

ð8:2Þ
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where E Xnið Þ is the expected value of the item response, and Var Xnið Þ is the
variance of the item response. In the case of the dichotomous Rasch model,
E Xnið Þ ¼ Pni and Var Xnið Þ ¼ Pni 1� Pnið Þ. The standardised residuals have served
as general diagnostic tools in the assessment of item and person fit. They are mostly
presented as graphical displays to draw attention to problematic items/persons,
rather than used as vigorous statistical tests for the fit of the model.

Squaring zni and summing over n (persons), a statistic is derived that can be used
as a fit index for item i. Squaring zni and summing over i (items), a statistic is
derived that can be used as a fit index for person n (Wright and Masters, 1982). For
item fit, Wright and Masters proposed an unweighted and a weighted statistic
(sometimes called the outfit and infit, or the unweighted total fit and weighted total
fit). The unweighted fit mean-square (outfit) statistic is defined as

Unweighted mean square ðoutfitÞ ¼
P

n z
2
ni

N
¼ 1

N

X
n

xni � E Xnið Þð Þ2
Var Xnið Þ ð8:3Þ

where N is the total number of respondents. The weighted fit mean-square (infit)
statistic is defined as

Weighted mean square (infit) ¼
P

n z
2
niVar Xnið ÞP

n Var Xnið Þ ¼
P

n xni � E Xnið Þð Þ2P
n Var Xnið Þ ð8:4Þ

That is, the standardised residuals, zni, are weighted by Var Xnið Þ, and the
denominator in Eq. (8.4) is the sum of the weights.

When certain assumptions are made, it can be shown that both the unweighted
mean-square (outfit) and the weighted mean-square (infit) have expectations of one.
The variances of the mean-square can also be computed. Wright and
Panchapakesan (1969) indicated that both the weighted and the unweighted
mean-square can be treated as chi-square variates. They also suggested the use of a
cube root transformation (the Wilson-Hilferty transformation) of the mean-square to
obtain a t statistic that has an approximate normal distribution so that a frame of
reference can be established in testing the fit of the model.

Additional Notes
The term “weighted mean-square” is used to indicate that the square of the
standardised residuals are weighted by the variance of the item response (See
Eq. (8.4)). Each z2ni is multiplied by Var Xnið Þ in the numerator of Eq. (8.4).
The denominator is the sum of the weights. In contrast, for unweighted
mean-square (Eq. (8.3)), each z2ni can be considered to have a weight of one
(equal weight), and the denominator, N, is the sum of the weights.

There is a common sense justification for the weight, Var Xnið Þ, used in
weighted mean-square. Essentially, when the item difficulty of an item is
close to the ability of a person, Var Xnið Þ is relatively large. When an item is
“off-target” (too easy or too hard), Var Xnið Þ is relatively small. So one uses a
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larger weight when an item provides more “information” about an item or
student (an on-target item), and one uses a smaller weight when an item does
not provide much “information” about the item or person (an off-target item).

Example Fit Statistics

Figure 8.1 shows an example output showing values of fit mean-square and
t statistics for each item. It can be seen that both the outfit and infit mean-square
values are centred around one, and the t values are centred around zero.

Interpretations of Fit Mean-Square

While it is stated that the fit mean-square value has an expectation of one, we need
to make an assessment of how far away the mean-square value is from one before
we conclude that an item is regarded as a misfitting item. Further, when an item
shows misfit, we need to understand the meaning of “over-fit” (mean-square value
less than one) and “under-fit” (mean-square value greater than one).

Equal Slope Parameter

The mean-square statistic defined in Eq. (8.3) tests whether item i has the same
“slope” as the other items in the test, since the Rasch model makes the assumption
that all items have the same slope, or the same “discrimination” parameter value.

Fig. 8.1 Example output from TAM software showing residual-based fit indices
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It can be shown that, when the observed item characteristic curve (ICC) is “steeper”
than the expected ICC, the fit mean-square value is less than one. When the
observed ICC is “flatter” than the expected ICC, the fit mean-square value is greater
than one. Figure 8.2 shows an example where the observed ICC is flatter than the
expected ICC (infit mean-square = 1.27). Figure 8.3 shows an example where the
observed ICC is steeper than the expected ICC (infit mean-square = 0.90). (See Wu
and Adams (2013) for more detailed mathematical explanations).

Fig. 8.2 Observed ICC is
“flatter” than expected ICC
(under-fit) (infit
MNSQ = 1.27)

Fig. 8.3 Observed ICC is
“steeper” than expected ICC
(over-fit) (infit
MNSQ = 0.90)

144 8 Residual-Based Fit Statistics



We note that the slope of the expected (or theoretical) ICC is the “average” of
the slopes of all observed ICCs. So, in every data set, if some items show
“under-fit”, some items will show “over-fit”.

Not About the Amount of “Noise” Around the Item
Characteristic Curve

Contrary to common belief, the residual-based fit statistics do not provide an
indication of how far away the observed ICC is from the theoretical ICC. That is,
provided that the “slope” of the observed ICC is the same as the slope of the
theoretical ICC, the fit mean-square will not show misfit whether the observed ICC
is close or far away from the theoretical ICC.

Figure 8.4 shows an item where the observed ICC appears to be close to the
theoretical ICC for all ability groups. The weighted fit mean-square is 1.01. By
contrast, Fig. 8.5 shows an item where the observed ICC has a number of points
“far away” from the theoretical ICC, particularly for ability groups in the higher
range. Yet the weighted fit mean-square is still 1.00. These two examples show that
the fit mean-square statistic is not about the amount of “noise” of the observed ICC
as compared to the theoretical ICC. Rather, the fit mean-square statistic is testing
whether the “slope” of the observed ICC is the same as the theoretical ICC.

It is worth stressing the point that the Rasch model does not specify an absolute
value for the discrimination parameter. Therefore, when an item is identified as a
misfitting item, it shows that the item is different from the other items in the same
test. So from this point of view, the “fit” index shows “relative fit” and “absolute

Fig. 8.4 Points of observed
ICC are close to the
theoretical ICC (infit
MNSQ = 1.01)
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fit”. An item showing misfit in one test may very well fit with items in another test.
We expand this point in the latter part of this chapter.

Discrete Observations and Fit

Figures 8.4 and 8.5 demonstrate that the visual impression of the closeness between
the observed and expected ICC does not necessarily reflect the fit of an item to the
Rasch model. This, in part, is due to the discreteness of the response data, namely, 0
and 1, in the case of dichotomous data. While the expected score is a number
between 0 and 1, the observed score is either 0 or 1. If we plot the expected scores
curve together with the actual observed data, we see that the observed data is nearly
always “far away” from the expected scores curve. Figure 8.6 shows such a plot.

The circles in Fig. 8.6 show the observed responses, which are either 0 or 1.
There are fewer 0’s than 1’s at the high end of the ability scale, and there are fewer
1’s than 0’s at the low end of the ability scale. To plot the observed ICC, we
typically group response data into ability groups. The visual appearance of the
observed ICC depends very much on the number of ability groups and the student
sample size. For example, Fig. 8.7 shows the ICC for an item when there are 10
ability groups (left graph) and 6 ability groups (right graph), for the same item.
These two graphs look quite differently in terms of the match between the observed
data with the expected values. When there are fewer groups, the number of
observations in each group is larger so the curve appears smoother. For very large
samples, the curve will be smoother than for smaller samples. The difference in
appearance of the observed ICCs shows that the residual-based fit statistics are not

Fig. 8.5 Points of observed
ICC “far away” from the
theoretical ICC (infit
MNSQ = 1.00)
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the same as the concept of “goodness-of-fit” in the context of regression analysis
where one checks the deviation of each observation from the expected curve.

Distributional Properties of Fit Mean-Square

In the above section about the derivation of the fit mean-square statistic (Eqs. (8.3)
and (8.4)), it is stated that the expectation of these two statistics is one. That is,

Fig. 8.6 Expected scores curve versus raw data

Fig. 8.7 ICCs of an item with 10 ability groups (left) and 6 ability groups (right)
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when the data fit the model, we expect the fit mean-square to be close to one. But
“how close to one” is a judgment call. To assess “how close to one is close
enough”, we will need to know the amount of variation of the mean-square
statistics. More formally, it can be shown that the asymptotic variance of the fit
mean-square is given by 2/N, where N is the sample size of students (see Additional
Notes). This means that if a test is given to a small group of students (i.e. N is
small), we would expect the fit mean-square for each item to fluctuate quite widely
around one, even when the items fit the Rasch model. For example, if the sample
size is 200, we would expect 95% of the mean-square values to be between 0.8 and

1.2 (standard error =
ffiffiffiffiffiffi
2
200

q
¼ 0:1). In comparison, when the same test is given to a

large group of students, the fit mean-square will be very close to one. For example,
if the sample size is 2000, we would expect 95% of the mean-square values to be

between 0.94 and 1.06 (
ffiffiffiffiffiffiffi
2

2000

q
¼ 0:03). Since the variance of the mean-square

statistic depends on the sample size, we need to be careful about applying fixed
limits around one to make an assessment of the fit of an item.

Figure 8.8 shows a fit map of 20 items administered to 100 students for a
simulated data set. It can be seen that the fit mean-square values are generally
between 0.8 and 1.2.

Fig. 8.8 Fit mean squares map when sample size = 100
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In contrast, Fig. 8.9 shows a fit map of the same 20 items administered to 500
students. It can be seen that the fit mean-square values are generally between 0.9
and 1.10. The only difference between the two analyses is the sample size. The
same items were used for both analyses. Since the data were simulated according to
the Rasch model, all items were expected to fit the model. These two examples
demonstrate that an assessment of the magnitude of the fit mean-square statistic
should take into account of the sample size of the test administration.

Additional Notes
The numerator in the unweighted fit mean-square statistic,

P
n z

2
ni, is an

observed value of the sum of squares of random variables Zni with mean 0
and standard deviation of 1. The random variable, Zni, has a discrete distri-
bution, as the observed response can only take values 0 and 1 (in the
dichotomous case). While Zni is not a standard normal random variable, when
N is large,

P
n Z

2
ni can be regarded as having a chi-square distribution with N

degrees of freedom (note that the sum of squares of independently distributed
standard normal random variables has a chi-square distribution with N
degrees of freedom.) The mean of a chi-square distribution with N degrees of
freedom is N, and the variance is 2N. Consequently, the asymptotic variance

of the unweighted fit mean-square is Var
P

n
Z2
ni

N

� �
¼ 1

N2 � 2N ¼ 2
N

Fig. 8.9 Fit mean squares map when sample size = 500
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The Fit t Statistic

The fit t statistic, however, does take sample size into account. Even though it is
called a t statistic, the fit t statistic can be regarded as a normal deviate with a mean
of zero and a standard deviation of one (i.e., a “z” score), as the sample is typically
large enough to use the normal approximation. The fit t statistic is a transformation
of the fit mean-square value, taking into account of the mean and variance of the fit
mean-square statistic.

Additional Notes
To transform the fit mean-squares to a standardised normal statistic so that
one can look up the level of significance easily, the Wilson-Hilferty trans-

formation tunwtt ¼ Fit1=3unwtt � 1þ 2=ð9NÞ
� �

=ð2=ð9NÞÞ1=2 is often used, where

Fit is the mean-square value.
An alternative transformation is given in Wright and Masters (1982) that

uses a cube root transformation of the fit mean-square and its variance:

tunwtt ¼ Fit1=3unwt � 1
h i

� 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Fitunwttð Þp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Fitunwtð Þp

3

Since the fit t statistic can be regarded as a normal deviate, a t value outside the
range of −2.0 to 2.0 (or −1.96 to 1.96, to be more precise) can be regarded as an
indication of misfit, at the 95% confidence level.

On the surface, our problem regarding the lack of a stable frame of reference for
the fit mean-square values seems to have been solved. Unfortunately, this is not the
case.

The problem is, in real-life, no item fits the Rasch model perfectly. When items
do not fit the Rasch model, any misfit, however small, can be detected when the
sample size is large enough. This means that the fit t values will invariably show
significance when the sample size is very large. In some sense, the t values are
telling the “truth”, that there are indeed differences between items, and the items do
not tap into the same construct. However, some of these differences between items
may be minute from a practical point of view.

The following shows an example of how sample size affects the fit t values.
Item response data from the First International Mathematics Study (FIMS) (IEA

study conducted in 1964) for Australia and Japan were scaled using the Rasch
model, first selecting just 500 students at random, and then selecting 2000 students
at random. Finally the full data set with 6371 students was analysed. That is, the
items scaled in all three samples were exactly the same, but the sample analysed
increased in size. Figures 8.10, 8.11, 8.12 show the fit t values for these three
samples.
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From Figs. 8.10, 8.11, 8.12, it can be seen that as sample size increases, the fit
t values became progressively far away from zero so that many items showed
statistically significant misfit.

Item Fit Is Relative, Not Absolute

As we have mentioned, the fit mean-square statistic defined in Eq. (8.3) tests
whether the item has the same “slope” as the other items in the test, since the Rasch
model makes the assumption that all items have the same discrimination. The Rasch
model does not, however, stipulate what the discrimination should be.

outfitItem   outfitItem_t  infitItem infitItem_t
M1PTI1     1.0176412     0.1681252    0.9604863 -0.6563752
M1PTI2     0.8600060 -0.8820403    0.9132830 -1.4011322
M1PTI3     0.8747212 -0.5301774    0.9267337 -0.8653759
M1PTI6     0.8348506 -1.6447400    0.9073273 -2.1574356
M1PTI7     0.5103849 -2.8934127    0.7318945 -3.4068671
M1PTI11    0.7181897 -1.5328399    0.8410477 -2.1687957
M1PTI12    1.2043202     2.0302249    1.1212745     2.5738491
M1PTI14    1.4884776     4.9042209    1.2516368     5.6743577
M1PTI17    1.1407154     1.0991002    0.9672130 -0.5461018
M1PTI18    0.9293927 -0.6623501    0.9005372 -2.3313171
M1PTI19    0.6514076 -2.6648368    0.7768166 -3.6387173
M1PTI21    1.8352155     4.5175900    1.3942578     5.2328157
M1PTI22    1.2055754     1.1699414    1.0063787     0.1092650
M1PTI23    0.9120535 -0.6515327    0.9760430 -0.4367405

Fig. 8.10 Fit t values for a sample of 500 students

outfitItem   outfitItem_t  infitItem    infitItem_t
M1PTI1     1.0617523     0.7379272    1.0214576     0.6765263
M1PTI2     0.7068081 -3.8128545    0.8672650 -4.3360205
M1PTI3     0.8524912 -1.3102948    0.9423666 -1.3888542
M1PTI6     0.8184879 -4.0480032    0.8627173 -6.9696935
M1PTI7     0.7469162 -2.9795967    0.8325752 -4.2399000
M1PTI11    0.7920345 -2.4043510    0.9034710 -2.9044195
M1PTI12    1.4255288     8.0500594    1.2021082     8.1901920
M1PTI14    1.3671890     7.4344970    1.2199722     9.3759386
M1PTI17    1.1176319     1.7561847    0.9639025 -1.1589724
M1PTI18    0.9377125 -1.2471293    0.9689911 -1.4644269
M1PTI19    0.5785473 -6.2854536    0.7602613 -7.1088021
M1PTI21    1.7399073     8.8961978    1.3602378     9.9630739
M1PTI22    0.9774774 -0.2471895    0.9211786 -2.1140544
M1PTI23    0.7957022 -3.3884918    0.9086099 -3.7092765

Fig. 8.11 Fit t values for a sample of 2000 students
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Consequently, items in a test will show good fit (i.e., fit mean-squares around 1) if
the items have similar discrimination, even if the discrimination power is poor. That
is, if all items are equally “bad” (here we use the term “bad” to indicate low
discrimination power), the items will still show good fit, because they have equal
discrimination. Consequently, when there is no mis-fitting item, we might conclude
that the response data fit the Rasch model, we cannot conclude that we have the best
test. The test reliability may still be low. Figure 8.13 shows a comparison of
weighted fit mean-squares and test reliability between two 20-item tests.

The fit mean-squares of both tests show that there is no mis-fitting item, but the
two tests have quite different test reliability.

In the extreme case, if every student randomly guesses answers to all questions,
the items will still fit the Rasch model (items are equally (non-)discriminating). But
the test reliability will be close to zero. Consequently, to check whether the test
instrument as a whole has the capacity to separate students in terms of their abilities,
the reliability index is still a better measure, not the fit statistics. The classical test
theory discrimination index is also a good indicator of item discrimination.

Since the fit statistics test whether the items have equal discrimination, an item
showing mis-fit in a test may very well show good fit in another test. For example,
an “over-fit” item (fit mean-square less than 1) shows that the item is more dis-
criminating than most other items in the test. If we take all highly discriminating
items (fit mean-squares less than 1) in a test and re-run the item analysis, we will
find that some of the items will now show “under-fit” and others will show
“over-fit”, since the fit statistics show the relative discrimination powers of items
within an item set.

In practice, to select items from a trial analysis, it is best not to choose the set of
items with fit statistics around 1 (the best fitting items), since these “good-fit”’ items
are items with “mediocre” discrimination. We recommend selecting the “over-fit”
items (with fit mean-squares less than 1). These items are highly discriminating
items.

outfitItem   outfitItem_t   infitItem   infitItem_t
M1PTI1     1.0772154     1.59714318    1.0182028     1.012313
M1PTI2     0.7127304 -7.01014880    0.8631072 -8.290753
M1PTI3     0.8548437 -2.31343680    0.9401009 -2.554359
M1PTI6     0.8511479 -5.89885727    0.8890838 -9.915885
M1PTI7     0.7157490 -5.61754107    0.8225674 -7.870286
M1PTI11    0.7980984 -4.14518615    0.8942556 -5.626692
M1PTI12    1.3649289    11.26997571    1.1814339    12.419531
M1PTI14    1.3721131    12.92338691    1.2133264    16.153633
M1PTI17    1.0984786     2.55868638    0.9547443 -2.676895
M1PTI18    1.0018899     0.07510419    0.9785618 -1.767476
M1PTI19    0.6063701 -9.90033565    0.7778577 -11.743530
M1PTI21    1.7837242    15.58244351    1.3510149    17.137759
M1PTI22    0.9783801 -0.41760535    0.9138654 -4.053861
M1PTI23    0.8246742 -5.15048395    0.9192772 -5.788562

Fig. 8.12 Fit t values for a sample of 6371 students
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To be more explicit, suppose a set of 40 items have fit mean-squares ranging
between 0.7 and 1.3. Twenty items are selected. Set A consists of items with fit
mean-squares closest to 1 (say, between 0.9 and 1.1). Set B consists of items with fit
mean-squares less than 1 (say, between 0.7 and 1). Both sets of items, when the
item analysis is re-run, will show item fit statistics around 1 (since it’s all relative to
the items in the set). But Set B will have a higher test reliability than Set A.

Summary

To use fit statistics in item analysis, we need to understand the properties of these
statistics. In particular, the impact of the sample size on the fit statistics needs to be
taken into account. If we use fit mean-square values to set criteria for accepting or
rejecting items on the basis of fit, we are likely to declare that all items fit well when
the sample size is large enough. On the other hand, if we set limits to fit t values as a
criterion for detecting misfit, we are likely to reject most items when the sample size
is large enough.

Fig. 8.13 Comparison of fit
MNSQ of two 20-item tests
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Some textbooks or other resources make recommendations on the range of
acceptable mean-square values or t values for residual-based fit statistics. There are
probably no right or wrong answers. You will need to understand the issues with
these fit statistics when you apply rules of thumb.

More importantly, fit statistics should serve as an indication for detecting
problematic items rather than for setting concrete rules for accepting or rejecting
items. Based on the fit statistics, one should examine the items and look for sources
of misfit. Improve or reject items if sources of misfit can be identified. The fit
statistics should not be used blindly to reject items, particularly those that “over-fit”,
as you may remove the best items in your test because the rest of the items are not
as “good” as these items.

Furthermore, when residual-based fit statistics show that items fit the Rasch
model, this is not sufficient to conclude that you have the best test. The reliability of
the test and item discrimination indices should also be considered in making an
overall assessment.

Additional Notes
Figure 8.14 shows the theoretical, or expected, item characteristic curve for
an item, with four points, A, B, C, and D denoting four regions where the
observed ICC may fall. Point A denotes the region above the theoretical ICC,
and to the right of the vertical line where θ = δ, the ability at which there is a
50% chance of obtaining the correct answer. Point B denotes the region
below the theoretical ICC and to the right of the vertical line θ = δ. Point C
denotes the region above the theoretical ICC but to the left of the θ = δ line.
Point D denotes the region below the theoretical ICC and to the left of the
θ = δ line. It can be shown mathematically that the contribution of observed

points in the A and D region to the outfit mean-square, z2ni ¼ xni�E Xnið Þð Þ2
Var Xnið Þð Þ , has

an expectation less than one, while the expectation of z2ni for points in the C
and B regions is greater than one. It is clear then the fit mean-square value
provides a test of whether the “slope” of the observed ICC is the same as the

δ

Item Characteristic Curve
Probability of Success

Very low achievement Very high achievement

0.5

• A 

• B 

• C 

• D 

Fig. 8.14 Expected ICC and
observed ICC points
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theoretical one. Given that the theoretical one can be regarded as an “average”
of all items, the fit mean-square value tests whether the observed ICC for this
item is the same as the slopes of the other items.

When residual-based fit statistics show that items fit the Rasch model, this
is not sufficient to conclude that you have the best test instrument.

Discussion Points

(1) Explain why we say that when the item difficulty of an item is close to the
ability of a person, the corresponding Var Xnið Þ is relatively large?

(2) Consider Fig. 8.6 that shows the expected scores curve versus the observed
responses, which are either 0 or 1, of a typical item. Explain why there are
fewer 0’s than 1’s at the high end of the ability scale, and fewer 1’s than 0’s at
the low end of the ability scale.

(3) Discuss what you would do after you have detected some items with fit mean
squares statistics quite different from the value of 1? Should you simply label
them as bad items? Are there other considerations?

(4) We explain in this chapter that with a larger sample size, the mean-square
statistics of the items will be closer to 1. In a sense, the items could be
considered to “fit” better under a larger sample size. On the other hand, we
also point out that with a larger sample size, more items will be identified to
deviate from 0 in terms of the fit t statistics. In a sense, more items are
considered to “fit” worse under a larger sample size. Explain this apparent
dilemma and why a larger sample size seems to have different effect in terms
of different statistics. Understand how to navigate between these two types of
statistics in practical works in assessment. It is important to remember that the
fit statistics should not be used blindly to reject items.

Exercises

Q1. In TIMSS 2011 student questionnaire for New Zealand Year 9 students, there is
a question about home possession, as show in Fig. 8.15 (TIMSS 2010). These
questions could be measuring the “family wealth” construct. The data set was
downloaded from the TIMSS and PIRLS website.

(Source TIMSS 2011 Assessment. Copyright © 2013 International Association for the
Evaluation of Educational Achievement (IEA). Publisher: TIMSS & PIRLS International
Study Center, Lynch School of Education, Boston College, Chestnut Hill, MA and
International Association for the Evaluation of Educational Achievement (IEA), IEA
Secretariat, Amsterdam, the Netherlands).
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A Rasch analysis was run. Table 8.1 shows summary results of the item anal-
ysis. Based on the item analysis, discuss how well the items measure the construct
of wealth.

Fig. 8.15 TIMSS student questionnaire on home possession (TIMSS 2010)

156 8 Residual-Based Fit Statistics



References

Andersen EB (1973) A goodness of fit test for the Rasch model. Psychometrika 38:123–140
Chen W-H, Thissen D (1997) Local dependence indexes for item pairs using item response theory.

J Educ Behav Stat 22:265–289
Douglas G (1982) Issues in the fit of data to psychometric models. Educ Res Perspect 9:32–43
Glas CAW, Verhelst ND (1995) Testing the Rasch Model. In: Fischer G, Molenaar I (eds) Rasch

models. Springer-Verlag, pp 69–96
Hattie J (1985) Methodology review: assessing unidimensionality of tests and items. Appl Psychol

Meas 9:139–164
Kiefer T, Robitzsch A, Wu M (2013) TAM (Test Analysis Modules)—an R package [computer

software]
Liu Y, Maydeu-Olivares A (2013) Local dependence diagnostics in IRT modeling of binary data.

Educ Psychol Measur 73:254–274. doi:10.1177/0013164412453841
Linacre JM, Wright BD (2000) WINSTEPS: a Rasch computer program. MESA Press, Chicago
Maydeu-Olivares A (2013) Goodness-of-fit assessment of item response theory models.

Measurement 11:71–101
McDonald R, Mok MM-C (1995) Goodness of fit in item response models. Multivar Behav Res 30

(1):23–40
Meijer RR, Sijtsma K (2001) Methodology review: evaluating person fit. Appl Psychol Measur

25:107–135
Molenaar IW (1983) Some improved diagnostics for failure of the Rasch model. Psychometrika

48:49–72
Laboratory RUMM (2001) Rasch unified measurement models. Author, Perth
Smith RM (1988) The distributional properties of Rasch standardized residuals. Educ Psychol

Measur 48:657–667
Stout W, Habing B, Douglas J, Kim HR, Roussos L, Zhang J (1996) Conditional covariance-based

nonparametric multidimensionality assessment. Appl Psychol Measur 20(4):331–354
TIMSS (2010) TIMSS 2010/2011 student questionnaire. TIMSS & PIRLS International Study

Center, Lynch School of Education, Boston College, in conjunction with New Zealand TIMSS

Table 8.1 Summary of item analysis for home possession items

Percent answering
“yes”

Item
difficulty d

CTT
discrimination

Infit mean
squares

Infit t

Q5a 0.96 −3.74 0.30 0.93 −1.14

Q5b 0.86 −2.15 0.26 1.01 0.45

Q5c 0.88 −2.34 0.20 1.05 1.80

Q5d 0.90 −2.57 0.22 1.02 0.74

Q5e 0.91 −2.70 0.38 0.91 −2.39

Q5f 0.68 −0.93 0.20 1.10 6.54

Q5g 0.82 −1.83 0.27 1.03 1.15

Q5h 0.72 −1.12 0.45 0.90 −6.32

Q5i 0.56 −0.27 0.40 0.96 −3.51

Q5j 0.41 0.43 0.19 1.09 7.40

Q5k 0.23 1.48 0.24 1.00 −0.02

Person separation reliability: 0.47
Sample size of students: 5233
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Chapter 9
Partial Credit Model

Introduction

For some measuring instruments, item responses may reflect a degree of correctness
(or a degree of appropriateness in the case of survey questionnaires) in the answer
to a question, rather than being simply classified as correct/incorrect. To model
these item responses, the Partial Credit Model (PCM) (Masters 1982) can be
applied where item scores have more than two ordered categories (also known as
polytomous items).

The partial credit model has been applied to a wide range of item types. Some
examples include the following:

1. Likert type questionnaire items that allow options such as strongly agree, agree,
disagree, strongly disagree.

2. Essay ratings, for example, on a scale from 0 to 5.
3. Items requiring composite processes, such as a problem-solving item requiring

students to perform multiple-step procedures including formulating the problem
and carrying out computation.

4. Items where some answers are more correct than others. For example, if one is
asked to name the capital city of Australia, then “Sydney” is a better answer than
“Auckland”, even though both are incorrect.

5. A “testlet” or “item bundle” consisting of a number of questions relating to one
stimulus. The total number correct for the testlet is sometimes modelled with the
PCM.

Are all of the above item types appropriate for applying the PCM? How does
one interpret the PCM item parameters in relation to the different item types?

Further, there are a number of different ways for the parameterisation of PCM,
and for constructing measures of “difficulty” in relation to a partial credit item.
A clear understanding of the “item difficulty” parameters in PCM is important when
described proficiency scales (or learning progressions) are constructed. The skills
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descriptions along the ability scale are associated with the “item locations” on the
scale.

The Derivation of the Partial Credit Model

It will be helpful to first describe the derivation of the PCM to clarify the underlying
assumptions of a PCM. Masters (1982) derived the PCM by applying the
dichotomous Rasch model to adjacent pairs of score categories. That is, given that a
student’s score is k-1 or k, the probability of being in score category k rather than in
category k-1 has the form of the simple Rasch model.

Consider a 3-category partial credit item, with 0, 1 and 2 as possible scores for
the item.

The PCM specifies that, while conditioning on scoring a 0 or 1 (i.e., we know
the score is either 0 or 1), the probability of a score of zero (X = 0) and the
probability of a score of 1 (X = 1) are given by

p0=0;1 ¼ Pr X ¼ 0=X ¼ 0 or X ¼ 1ð Þ ¼ Pr X ¼ 0ð Þ
Pr X ¼ 0ð Þþ Pr X ¼ 1ð Þ

¼ 1
1þ exp h� d1ð Þ ð9:1Þ

p1=0;1 ¼ Pr X ¼ 1=X ¼ 0 or X ¼ 1ð Þ ¼ Pr X ¼ 1ð Þ
Pr X ¼ 0ð Þþ Pr X ¼ 1ð Þ

¼ exp h� d1ð Þ
1þ exp h� d1ð Þ ð9:2Þ

Equations (9.1) and (9.2) are in the form of the dichotomous Rasch probabilities.
Similarly, conditional on scoring a 1 or 2, the probability of X = 1 and the

probability of X = 2 are given by

p1=1;2 ¼ Pr X ¼ 1=X ¼ 1 or X ¼ 2ð Þ ¼ Pr X ¼ 1ð Þ
Pr X ¼ 1ð Þþ Pr X ¼ 2ð Þ

¼ 1
1þ exp h� d2ð Þ ð9:3Þ

p2=1;2 ¼ Pr X ¼ 2=X ¼ 1 or X ¼ 2ð Þ ¼ Pr X ¼ 2ð Þ
Pr X ¼ 1ð Þþ Pr X ¼ 2ð Þ

¼ exp h� d2ð Þ
1þ exp h� d2ð Þ ð9:4Þ

Equations (9.3) and (9.4) are also in the form of the dichotomous Rasch
probabilities.
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PCM Probabilities for All Response Categories

While the derivation of the PCM is based on specifying probabilities for adjacent
score categories, the probability for each score, when all score categories are
considered collectively, can be derived. The following gives the probability of each
score category for a 3-category (0, 1, 2) PCM.

p0 ¼ Pr X ¼ 0ð Þ ¼ 1
1þ exp h� d1ð Þþ exp 2h� d1 þ d2ð Þð Þ ð9:5Þ

p1 ¼ Pr X ¼ 1ð Þ ¼ exp h� d1ð Þ
1þ exp h� d1ð Þþ exp 2h� d1 þ d2ð Þð Þ ð9:6Þ

p2 ¼ Pr X ¼ 2ð Þ ¼ exp 2h� d1 þ d2ð Þð Þ
1þ exp h� d1ð Þþ exp 2h� d1 þ d2ð Þð Þ ð9:7Þ

More generally, if item i is a polytomous item with score categories 0, 1, 2, …,
mi, the probability of person n scoring x on item i is given by

Pr Xni ¼ xð Þ ¼ exp
Px

k¼0 hn � dikð Þ
Pmi

h¼0 exp
Ph

k¼0 hn � dikð Þ ð9:8Þ

where we define exp
P0

k¼0 hn � dikð Þ ¼ 1, and hence when the score is 0, the
numerator of Eq. (9.8) is 1. The summation index k refers to score categories.

Note that the number of dk parameters is one less than the number of response
categories. For example, if there are three response categories, 0, 1 and 2, then there
are two d parameters, d1 and d2. In the same way as for dichotomous items, when
there are two response categories (e.g., correct and incorrect), there is one item
difficulty parameter, d.

Some Observations

Dichotomous Rasch Model Is a Special Case

Note that the simple dichotomous Rasch model is a special case of the PCM. That
is, when an item has two response categories (dichotomous), Eq. (9.8) is the
dichotomous Rasch model as shown in Chap. 7. For this reason, software programs
that can fit the PCM can generally fit the dichotomous model without special
instructions to distinguish between the dichotomous model and PCM. Dichotomous
and partial credit items can generally be “mixed” in one analysis.
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The Score Categories of PCM Are “Ordered”

The score categories 0, 1, 2, …, m, of a PCM item should be “ordered” to reflect
increasing competence of some trait. Under the PCM, there is an assumption that
students with higher abilities are more likely to score higher for the item.

Consider the lowest two score categories: 0 and 1. Since the simple dichotomous
Rasch model applies if we consider the case where the score categories are only 0
and 1, then students with higher abilities are more likely to achieve a score of 1 than
0. By the same token, if we consider scores 1 and 2, then higher ability students are
more likely to achieve a score of 2 than 1. Consequently, when we consider all
score categories for a partial credit item, higher ability students are expected to
score higher than lower ability students. That is, increasing scores within an item
should reflect increasing difficulty of the task.

PCM Is not a Sequential Steps Model

The derivation of PCM simply specifies the “conditional probability” of two
adjacent score categories. The PCM does not make any assumption that there is an
underlying sequential step process to achieve a score. That is, there is no
assumption that a student must be successful in all tasks for lower score categories
to achieve success in tasks for a higher score. In fact, the Steps model (Verhelst
et al. 1997) should be used for items where students cannot achieve a higher score
unless tasks for lower scores are successfully completed (a sequential step process).

This observation is important for the interpretation of the item parameters, dk . In
the above example where there are 3 score categories, the parameter, d2, does not
reflect the item difficulty of being successful in both “steps”, or for achieving a
score of 2. Nor does d2 reflect the item difficulty for the second “step” as an
independent item.

It is worth noting that the IRT models considered here are probabilistic and not
deterministic. That is, if a student obtains a score of 2 on an item, it does not mean
that it is with certainty that the student can performed the task demands for getting a
score of 1. Under a probabilistic model, the student is likely to perform the task
demands of a score of 1, but there is always a chance that the student cannot
perform all the task demands for a score of 1.

The Interpretation of dk

The derivation of the PCM, based on the simple Rasch model for adjacent score
categories, leads to the misconception that dk is the difficulty parameter for step k,
should step k be administered as an independent item. The interpretation of dk can
be clarified graphically through the item characteristic curves.
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Item Characteristic Curves (ICC) for PCM

Item characteristic curves for a partial credit item are plots of the probabilities of
being in each score category, as a function of the ability, h. Figure 9.1 shows
example item characteristic curves for a 3-category partial credit item.

From Fig. 9.1, it can be seen that as ability increases, the probability of being in
a higher score category also increases.

Graphical Interpretation of the Delta (d) Parameters

Mathematically, it can be shown that the delta (d) parameters in Eqs. (9.1)–(9.4) are
the abilities at which adjacent ICCs intersect. That is, dk is the point at which the
probability of being in category k − 1 and category k is equal.1 This mathematical
fact provides an interpretation for the delta (d) parameters. Figure 9.1 shows the
ICCs of a 3-category partial credit item. It can be seen that the two delta parameters,
d1 and d2, divide the ability continuum into three regions. From �1 to d1, the most
likely single score category is “0”, because the Pr(X = 0) curve is higher than either
of the Pr(X = 1) curve or the Pr(X = 2) curve. Between d1 and d2, the most likely
single score category is “1”. When the ability of a student is above d2, the most
likely single score category is “2”.

Fig. 9.1 Theoretical item characteristic curves for a 3-category partial credit Item

1This probability is not 0.5, but less than 0.5, because the probability of being in categories other
than k − 1 and k is not zero.
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The phrase “the most likely single score category” is used to stress that it is the
most likely score category at an ability level when each individual score category is
considered. For example, in Fig. 9.1, between d1 and d2, score 1 has a higher
probability than either score 0 or score 2. However, the combined probability of
scores 0 and 2 is higher than the probability of score 1. Since the probability of
score 1 is less than 0.5 between d1 and d2, so the combined probability of scores 0
and 2 is more than 0.5 for this example item.

Consequently, if the delta (d) parameters are used as indicators of “item diffi-
culty”, one might say that d1 is a point such that for students with abilities beyond
this point, the probability of achieving a score of 1 is higher than the probability of
achieving a score of 0. Similarly, when ability is higher than d2, the probability of
achieving a score of 2 is higher than the probability of achieving a score of 1. But we
stress that the probabilities at these points are not 0.5, as for the dichotomous case.

Problems with the Interpretation of the Delta (d) Parameters

For some items, the interpretations of the delta parameters may become problematic
as the delta (d) parameters may not be ordered. Figure 9.2 shows an example.

Figure 9.2 shows that the probability curve for the middle category, score 1, is
very flat, indicating that there are few students who are likely to score 1. One might
say that score 1 is not a very “popular” category. In this case, the interpretation of
the ICCs becomes more difficult, as score 1 is never the most likely single category
for any ability level, and the parameters d1 and d2 are not ordered (d1 > d2).
However, d1 is still the ability at which the probability of being in category 1
exceeds the probability of being in category 0, and d2 is the ability at which the

Fig. 9.2 ICC for PCM where the delta parameters are dis-ordered
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probability of being in category 2 exceeds the probability of being in category 1.
Since the derivation of the PCM involves specifying the probabilities for pairs of
adjacent response categories, the PCM does not require the specification of the
order (or prevent the dis-ordering) of the d parameters. In other words, the
dis-ordering of d parameters does not violate any assumptions of the PCM.

Nevertheless, this phenomenon of dis-ordering of the dk parameters is one
disadvantage of using the delta (d) parameters to interpret item responses in relation
to ability. Adams et al. (2012) provide an in-depth discussion on the issues of
dis-ordered thresholds.

Linking the Graphical Interpretation of d to the Derivation
of PCM

Masters and Wright (1997) pointed out that the dis-ordering of the delta (d)
parameters was not necessarily an indication of a problematic item, since the
derivation of the partial credit model did not place any restriction on the ordering of
item parameters, d. When all score categories are considered in an ICC plot such as
those shown in Figs. 9.1 and 9.2, the d parameter is the value at which adjacent
score categories have equal probability. However, the probability is no longer 0.5,
since there is the possibility of being in score categories other than k-1 and k. It can
be seen from Figs. 9.1 and 9.2 that the point of intersection of two adjacent cate-
gories will depend on the relative chances of being in all categories. For example, in
Fig. 9.2, if the probability of being in category 1 is small throughout the whole
ability range (may be due to an easy step “2”), then the point of intersection (equal
probability) between category 0 and 1 is likely to be at a high ability value, and the
intersection point between category 1 and 2 is likely to be at a low ability value. It is
clear then that the delta (d) parameters are dependent on the number of students in
each score category, so d cannot reflect “independent” step difficulty. Rather, the
values of d will depend on the difficulties of all “steps”. See Verhelst and Verstralen
(1997) for an example about the dependence between the delta (d) parameters.

Examples of Delta (d) Parameters and Item Response
Categories

When the PCM is applied to items where score categories correspond to sequential
“steps” to solve a problem, the problem of dis-ordering of d is likely to occur. This
is because that, very often, latter steps are easy steps as compared to earlier steps.
For example, a mathematics item involving a first step of conceptualising the
method (score category 1) and a second step of carrying out computation (score
category 2) will often result in most students being in either the 0 category or the 2
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category. That is, few students who successfully conceptualised the method will
make a computational mistake. As an example, Fig. 9.3 shows a mathematics word
problem that requires formulation of an equation and then carrying out computation
to obtain the result. The item statistics in Fig. 9.3 show that only 4% of students
who used the correct method but made a computational error (score of 1).
Figure 9.4 shows the corresponding item characteristic curves. Category 1 curve is
very flat as very few students are in this response category, so that the probability of
being in this response category is very low. As category 1 is never the most likely
response category across the ability range, dis-ordered d occurs (d1 [ d2). In this
example, d1 is 1.85 and d2 is −2.69.

Notice that dis-ordering of the thresholds indicates that a middle response cat-
egory has few respondents. This in itself is not an indication that the response
categories ought to be combined. In later sections of this chapter, the issue of

Item 5 - pharm
In the Pharmochem company, there are 57 employees. 
Each employee speaks either German or English, or both. 
25 employees can speak German and 48 employees can 
speak English. How many employees can speak both 
German and English?    Show how you found your 
answer.

Item analysis (Item 5 – pharm)
-------------------------------------------
Response Score Count   % of tot  Pt Bis

-------------------------------------------
16*      2    293      61.68    0.43

comp err   1     18       3.79    0.01
Other      0    117      24.63   -0.36

Scoring guide: 
Fully correct answer was given a score of 2. For 
responses with correct method but incorrect 
computation, a score of 1 was awarded.

*Correct answer

Fig. 9.3 Item statistics for a partial credit scoring mathematics item

Fig. 9.4 ICC for a partial credit mathematics item with dis-ordered thresholds
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collapsing categories is discussed. Further, we cannot stress strongly enough that
the dis-ordering of the thresholds does not mean that the scoring needs to be
reversed. That is, if d1 [ d2, it does not mean that score 1 should be labelled 2, and
score 2 should be labelled 1.

In contrast to the above example, when the PCM is applied to holistic scoring
rubrics such as those used for essay marking, the problem of dis-ordering of d is
less likely to occur. Figure 9.5 shows the ICC of a partial credit scoring essay item.

Tau’s and Delta Dot

A variation of the parameterisation of the PCM is the use of s’s (tau’s) and d� (delta
dot). Mathematically, the delta (dik) parameters in Eq. (9.8) can be re-written in the
following way:

Using the notations as in Eq. (9.8) but dropping the index i for simplicity, let

d� ¼
Xm

k¼1

dk=m ð9:9Þ

where m is the maximum score. That is, the total number of response categories of
an item is mþ 1.

Equation (9.9) shows that d� is the average of the delta (dk) parameters for one
item.

Next, let us define sk as the difference between d� and dk. That is,

sk ¼ d� � dk ð9:10Þ

Fig. 9.5 ICC for an essay marking criterion, “Cohesion”, using PCM on a 7-point scale
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Graphically, the relationships among sk, d� and dk are illustrated in Fig. 9.6.
The parameterisation of the PCM using d� and sk is mathematically equivalent to

the parameterisation using dk . Using Eqs. (9.9) and (9.10), one can compute d� and
sk from dk . Conversely, given sk , and d�, one can compute dk as

dk ¼ d� � sk ð9:11Þ

Interpretation of d� and sk

The parameter d� may be thought of as a kind of “average” item difficulty for a
partial credit item. This may be useful, if one wishes to have one indicative diffi-
culty parameter for a partial credit item as a whole. Otherwise, to describe the
difficulty of a partial credit item, one needs to describe the difficulties of individual
score categories within the item, such as using the Thurstonian thresholds described
in the next section.

The sk parameters are more difficult to interpret as stand-alone values. These
need to be interpreted in conjunction with d�. That is, sk, considered as a “step
parameter”, shows the distance of a partial credit score category from the “average”
item difficulty. The sk parameters suffer from the same problem as dk’s, in that the
sk’s can be dis-ordered.

Note that as d� is the average of dk ’s, if we sum up both sides of Eq. (9.11)
across the categories, k, we obtain

Fig. 9.6 Item characteristic curves for a three-category item with tau’s and deltas
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Xm

k¼1

dk ¼
Xm

k¼1

d� � skð Þ

Xm

k¼1

dk ¼
Xm

k¼1

d��
Xm

k¼1
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Xm
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k¼1

Pm
k¼1 dk
m

�
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Xm

k¼1

dk ¼
Xm

k¼1

dk �
Xm

k¼1

sk

Xm

k¼1

sk ¼ 0

ð9:12Þ

In the case of three response categories (0, 1, 2), we have s1 þ s2 ¼ 0 from
Eq. (9.12), so s1 ¼ �s2. In general, the sum of the sk parameters is zero, so there is
a constraint on the sk parameters. In some software programs, only the first m� 1
sk parameters are estimated, and the last sm is set to the negative sum of the other sk
parameters. In general, if the total number of response categories of a PCM item is
K (=mþ 1), then there are K − 2 s parameters estimated. As an example, if a PCM
item has 4 categories, 0, 1, 2, 3, then, using the delta d parameterisation, three d
parameters are estimated. Using the d� and s parameterisation, one d� is estimated,
and two s parameters are estimated. In all, there are still three parameters estimated
as in the case for the delta d parameterisation.

Additional Notes
Mathematically, d� is the intersection point of the probability curves for the
first and last score categories of a partial credit item. For example, if there are
3 score categories as shown in Fig. 9.6, d� is the intersection point of the
curves for category 0 and category 2. In the case of a 3-category partial credit
item, category 0 curve and category 2 curve are symmetrical about d�. That is,
category 0 curve is a reflection of category 2 curve about the line h ¼ d�, and
category 1 curve is symmetrical about the line h ¼ d� (see Fig. 9.6).
Interested readers can prove this property mathematically. However, this is
not usually the case when the number of score categories is more than 3, as
given by the following example for a 5-category partial credit item.
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Thurstonian Thresholds, or Gammas (c)

As was discussed in previous sections, the delta (d) parameters do not necessarily
reflect the difficulty of achieving a score point in a partial credit item. For partial
credit items, to achieve a score of 2, students would generally need to accomplish
more tasks than for achieving a score of 1. To reflect this “cumulative achieve-
ment”, the Thurstonian thresholds are sometimes used as indicators of “score
difficulties”.

The Thurstonian threshold for a score category is defined as the ability at which
the probability of achieving that score or higher reaches 0.50. Graphically, the
Thurstonian thresholds are shown in Fig. 9.7.

Figure 9.7 shows the cumulative probability curves for a 5-category partial
credit item. The curves show the probability of achieving a score of 1 or more, 2 or
more, and so on. Note that the cumulative probability curve for a score of 0 or more
is just the horizontal line at the probability value of 1. Since “0 or more” means
“any response category”. The probability of this event is 1. In the example shown in
Fig. 9.7, Pr(>=4) is the same as Pr(=4), since there is no response category higher
than 4.

Interpretation of the Thurstonian Thresholds

Consider Fig. 9.7. Moving along the horizontal ability scale from �1 to c1, the
probability of achieving a score of 1 or more is less than 0.5 (because the Pr(>=1)
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curve is less than 0.5 in this range). The probability of achieving a score of 0 is
more than 0.5. Therefore one might label the region from �1 to c1 as the “score 0”
region. As the ability increases from c1 to c2, the probability of achieving a score of
1 or more is more than 0.5 (the Pr(>=1) curve), but the probability of achieving 2 or
more is less than 0.5 (the Pr(>=2) curve). So one might label the region from c1 to
c2 as “score 1” region. In the same manner, we can label the “score 2”, “score 3”
and “score 4” regions.

From this point of view, Thurstonian thresholds can be viewed as cutpoints for
dividing up the ability continuum into “score regions”.

So, how do Thurstonian thresholds represent item score difficulties? Is c1 a
suitable measure for the difficulty of score 1, or is the region between c1 to c2 a
better indication of score 1 “difficulty”? Should we use the mid-point between c1 to
c2 as a measure of score 1 difficulty?

Comparing with the Dichotomous Case Regarding the Notion
of Item Difficulty

In the dichotomous case, item difficulty is defined as the ability at which the
probability of success on the item is 0.5. From this point of view, item difficulty for
the dichotomous case is also a threshold, and it divides the ability continuum into
two regions: score 0 and score 1 regions, and the item difficulty is the point where

Fig. 9.7 Cumulative probability curves to show Thurstonian thresholds
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score 1 region starts. Extending this notion to the PCM, the Thurstonian thresholds
can also be regarded as “score difficulties”. That is, c1 is a measure of score 1
difficulty, and c2 is a measure of score 2 difficulty, and so on. For example, if the
Thurstonian thresholds (in logits) for a 3-category item are –1.2 and 2.3, this
suggests that it is relatively easy to receive a score of 1, but relatively difficult to
receive a score of 2. Note that since Thurstonian thresholds are based on cumulative
probabilities where P(X >= k) is always larger than (P(X >= k + 1), Thurstonian
thresholds are never dis-ordered, making them more suitable for the interpretation
of item difficulty for partial credit items.

Compare Thurstonian Thresholds with Delta Parameters

Dichotomous Case

As the dichotomous Rasch model is a special case of the partial credit model, the
notion of Thurstonian thresholds also applies. In the dichotomous case, the
Thurstonian thresholds are equal to the delta (d) parameters.

Partial Credit Case

Depending on whether d or c are used as estimates of item difficulty, different
difficulty measures are obtained. In the case of 3-category items, it can be shown
mathematically that the Thurstonian thresholds are always “wider” than the deltas, if
there are no reversals of the delta values. Figure 9.8 shows an example of com-
parisons between d and c values. Readers can prove this property as an exercise.

-3

-2

-1

0

1

2

3

delta1

delta2

threshold1

threshold2

Fig. 9.8 Comparisons of threshold and delta values for 25 items
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Further Note on Thurstonian Probability Curves

It should be noted that the Thurstonian probability curves such as those shown in
Fig. 9.7 are not “parallel” in that the slopes of these curves are not equal.
Consequently this may pose a problem when making inferences on the probabilities
of the Thurstonian curves. For example, if one wants to know the ability at which
there is a 75% chance of obtaining a score or higher, it is not straightforward to find
the ability from a probability curve. As these curves involve cumulative proba-
bilities, there is no analytical solution to the probability functions to solve for ability
measures. Numerical methods are required to find the abilities for a given proba-
bility on the Thurstonian probability curves. In contrast, when response probability
(RP) is discussed in Chapter Seven, there is a simple formula to compute the ability
for any given probability when the item difficulty is known.

Using Expected Scores as Measures of Item Difficulty

Another measure of item difficulty for partial credit scoring items can be derived by
computing the expected score on an item, as a function of ability. Consider an item
with 3 score categories. The probabilities of scoring a 0, 1 or 2 are given by
Eqs. (9.5)–(9.7). The expected score, E, on this item, as a function of the ability h
and delta parameters d1 and d2, is given by

E ¼ 0� Pr X ¼ 0ð Þþ 1� Pr X ¼ 1ð Þþ 2� Pr X ¼ 2ð Þ ð9:13Þ

Computing E as a function of h, one can construct an Expected Scores Curve,
similar to the item characteristic curve. Figure 9.9 shows an example.

Let E1 be the ability at which the expected score on this item is 0.5. Let E2 be the
ability at which the expected score is 1.5. One might regard the region between E1

and E2 as the “score 1 region”, and the ability continuum below E1 as the “score 0
region”, and the ability continuum above E2 as the “score 2 region”. In this way, E1

could be regarded as an item difficulty parameter for score 1, and E2 could be
regarded as an item difficulty parameter for score 2.

The advantage of using E1 and E2 as indicators of difficulty is that the notion of
expected scores is readily comprehensible to the layman. In the case of Thurstonian
thresholds, the notion of cumulative probability is more difficulty to explain.

In addition, the expected scores curves provide a clearer comparison between the
theoretical model and the observed data, in contrast to the ICCs of a partial credit
model. For example, Fig. 9.10 shows the ICCs (left graph) and the expected scores
curve (right graph) of an item with scores 0, 1 and 2. The expected scores curve
(right graph) clearly shows that the item is not as discriminating as the model
expects, but this is not so obvious from the ICCs (left graph). Consequently, to have
an overview of how an item “performs” in a test, the expected scores curves are
preferable.
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Additional Notes
Sum of Dichotomous Items and the Partial Credit Model

Verhelst and Verstralen (1997) showed that if a set of dichotomous items
fit the Rasch model, then the sum of individual item scores can be modeled
using the partial credit model. However, the converse is not true. Polytomous
item scores fitting the partial credit model cannot always be decomposed into
individual Rasch item scores. Verhelst and Verstralen made the following

Fig. 9.9 Expected scores curve for a 3-category partial credit item

Fig. 9.10 ICCs (left graph) and expected scores curve (right graph) for a PCM item
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statement regarding using sum scores for testlets (Note: A testlet is a set of
items usually based on a common stem):

If the main purpose of the model construction is to determine θ as accurate as
possible, no information with respect to θ is lost if local independence is not vio-
lated; if it is violated, the embarrassing implications are avoided by considering
sums of item scores. (p. 12)

That is, if there is a reason to think that there is dependency between a set
of items, then a better way is to model the set of items as one partial credit
item. The dependency will be taken into account then. However, it will not be
possible to match the item parameters to individual items in the set.

Applications of the Partial Credit Model

The first part of this chapter presents the partial credit model mathematically,
discusses different parameterisations and their relationships, and provides inter-
pretations of the parameters. In the second part of this chapter, we give consider-
ations to applications of the partial credit model, including guidelines for
constructing scoring schemes and identification of mis-fitting items, illustrated with
example analyses on an item.

Awarding Partial Credit Scores to Item Responses

Consider a test paper where there is a mix of multiple-choice and open-ended items.
Each multiple-choice item is dichotomously scored (0 or 1), while each open-ended
item has partial credit scoring (say, out of a maximum of 3 score points per item). In
this case, each open-ended item is “worth” three multiple-choice items, in the sense
that getting one open-ended item right is equivalent to getting three multiple-choice
items right. One may query whether each open-ended item should have three times
the weight of a multiple-choice item. What if the maximum score is 2 or 4? How
was the maximum score of 3 decided? It is likely that it was an arbitrary decision.
How does one check whether this was an appropriate decision?

First, note that if a partial credit item with a maximum score of 3 fits a PCM
model, then the item with a different maximum score will not fit the PCM model.
That is, we cannot arbitrarily set the maximum score of an item and expect that the
item will fit the IRT model. Second, as the maximum score of an item is a weight
for the item in the overall test, the magnitude of this weight should relate to how
“good” this item is. A poorly functioning item in separating low and high ability
students should not receive a high weight (or a high maximum score). In contrast,
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an item that can clearly separate students of different abilities should receive a
higher weight. By this we mean that high ability students will be very likely to
receive a higher score on this item, and low ability students a lower score. This is
precisely the concept of item discrimination. Consequently, the weight of an item,
or the maximum score of an item, should depend on the discrimination power of the
item.

Very often, when a scoring guide is designed, the maximum score for an
open-ended item is set based on a number of criteria which may or may not relate to
the discrimination power of an item. Some examples are given below.

• A mathematics item requires 3 steps to solve it, so the maximum score is set at 3.
• The maximum score depends on the difficulty of an item. The more difficult the

item, the higher the maximum score.
• An item has a number of “naturally” graded categories. For example, there could

be four education levels: primary, secondary, tertiary and post-graduate. So the
maximum score measuring education level is 4.

None of the above examples is the correct way of setting the maximum score of
an item, since these criteria are generally unrelated to item discrimination. Take
item difficulty as an example. For a multiple-choice test, we seem happy to award a
score of 1 for each item. Yet the items typically all have different difficulties. So we
are not awarding more difficult items with higher scores. Then why should it be the
case for partial credit items? For the Rasch model, multiple-choice items all receive
a score of 1 as we assume that the items are equally discriminating (parallel ICCs).
That is the rationale for awarding equal scores for the items, not the difficulty level.
When we have partial credit items, there is an extra degree of freedom for us to set a
maximum score (we don’t have this freedom for multiple-choice items since every
item has a score of 0 or 1). The decision then will need to be based on item
discrimination (loosely speaking, how “good” an item is in separating good and
poor students).

As for the number of “naturally” graded categories, the problem is that there
could be many categories for one item and few categories for another item, leading
to an unbalanced set of weights of the items in the test/questionnaire. As an
example, if we are constructing a scale for measuring socio-economic status
(SES) of households, geo-location may be divided into “urban”, “rural”, “remote”,
three categories, while number of people living in the home could be from 1 to, say,
up to 10. House occupancy could be divided into “owning the home”, “renting the
home” and “other”. If maximum score depends on the response categories, then
some items will have more weight than other items but these weights will not reflect
the relative importance of the items in measuring a construct.

So how does one decide on the maximum score (or weight) of an item? While
item writers can typically gauge the difficulty of an item, it is often hard to estimate
the discrimination of an item. The following are some guidelines.

• How well is the item related to the construct being measured? The more relevant
an item is to the construct, the higher the maximum score should be.
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• How much “information” can an item provide about students’ ability/latent
trait? It is often the case that open-ended items provide richer information about
a student’s capabilities than multiple-choice items do. That information can be
used to separate students into several ability groups. If students’ item responses
can be clearly categorised into several increasing ability groups, then more score
points can be awarded.

It should be noted that once the maximum score of a partial credit item is
decided, score categories within an item must reflect increasing ability levels of
students, and thus reflect increasing difficulties of the task. This may be a point that
causes confusion: that the maximum score of an item relates to discrimination, but
score categories within an item relate to difficulty.

Deciding on the maximum score of a partial credit item still involves a great deal
of guesswork. As for dichotomous items, item statistics need to be checked to
ensure the item responses fit the IRT model. Inappropriate maximum scores of
partial credit items will be reflected in poor item fit statistics.

An Example Item Analysis of Partial Credit Items

The data set for this example came from a mathematics problem solving test for
grade 5 students. The test had 48 questions, arranged in 3 rotated test booklets. In
total, 1086 students took part in the test, but each item had around 500 student
responses. The test had a mix of dichotomously and polytomously scored items.
IRT and CTT analyses were conducted on the data set.

The following shows one example item (“Average”) from the test and corre-
sponding initial proposed scoring scheme:

Item 4: Item “Average”
Megan obtained an average mark of 81 for her four science tests. The fol-
lowing shows her scores for Tests 1, 3 and 4? What was her test score for Test
2? Show how you found your answer.

Test 1 Test 2 Test 3 Test 4 Average mark of 4 tests

84 ? 89 93 81

As students were requested to provide their working in solving the item, stu-
dents’ responses contained a variety of approaches and answers. These responses
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were categorised according to test writers’ views on the quality of the responses. In
summary, an initial scoring guide was developed as shown in Table 9.1.

Item statistics for this item are shown in Table 9.2.
A few observations can be made from the item statistics in Table 9.2. First, very

few students used the correct method but made a computational error leading to an
incorrect answer (score category 2). Similarly, few students used the trial and error
method and obtained the correct answer (score category 3). Second, the point
biserial correlations for categories 2 and 3 are very similar. Third, the average
abilities of students in categories 2 and 3 are very similar. These observations
suggest that categories 2 and 3 can possibly be combined.

The fit statistics for this item are given in Table 9.3. The fact that the fit mean
squares statistics are larger than 1 indicates that the item is not as discriminating as
the model expects for an item with a maximum score of 4. This is further confirmed
by the expected scores curve, as shown in Fig. 9.11. For high ability students, the
observed score is lower than the expected score.

Based on these item statistics, a recoding of the score categories is made by
collapsing categories 2 and 3 into a new category 2, and recoding the current
category 4 as category 3. That is, the item has a maximum score of 3 after recoding.

Table 9.1 Scoring scheme for item “Average”

Response Proposed
score

Correct analytic method and correct answer of 58 4

Trial-and-error method, but still obtained the correct answer 3

Correct analytic method, but computation error, resulting in incorrect answer 2

Computed the average of the three scores, but unable to proceed to produce the
correct answer

1

Other responses 0

Table 9.2 Item statistics for the item “Average”

Score category Frequency Percentage Pt biserial correlation Average ability

0 183 0.33 −0.60 −0.78

1 108 0.19 −0.12 −0.22

2 36 0.06 0.12 0.43

3 23 0.04 0.09 0.40

4 209 0.37 0.57 0.67

Table 9.3 Fit statistics for
item “Average”

Parameter Infit mean squares Infit t

d1 0.99 −0.14

d2 0.96 −0.72

d3 1.18 2.85

d4 1.14 2.34
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The item statistics of the recoded item are shown in Table 9.4. It can be seen that
both the point-biserial correlations and the average abilities show a nice progression
with increasing scores.

The fit statistics after recoding are shown in Table 9.5. The fit statistics have
improved after recoding, as the fit mean squares are closer to 1 and fit t values
closer to 0 than before the recoding.

The expected scores curve after recoding is shown in Fig. 9.12, where the
observed curve matches the expected reasonably well particularly for high ability
students.

Table 9.4 Item statistics for the item “Average”, after recoding

Score Category Frequency Percentage Pt biserial correlation Average ability

0 183 0.33 −0.59 −0.78

1 108 0.19 −0.11 −0.20

2 59 0.11 0.17 0.47

3 209 0.37 0.54 0.66

Table 9.5 Fit statistics for
item “Average”, after
recoding

Parameter Infit mean squares Infit t

d1 0.94 −0.76

d2 0.93 −1.55

d3 0.97 −0.52

d4 1.05 1.08

Fig. 9.11 Expected scores
curve for item “Average”
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The analyses presented above show that the maximum score assigned to a partial
credit item needs to be checked during the item analysis process. Frequently,
recoding of partial credit categories is needed. Further, the perceived progression of
response quality may not actually reflect increasing ability levels of students. In this
example, students who used the correct method but obtained an incorrect answer
through computational errors are of similar ability as students who obtained the
correct answer using a trial-and-error approach. If we simply score the responses on
the basis of correct/incorrect answer, we could have under-estimated the ability of
students who made computational slips. These are all issues to be considered
regarding scoring of item responses.

As an exercise, if we score the item simply based on correct and incorrect
answers (i.e., categories 3 and 4 are recoded to 1; categories 1 and 2 are recoded to
0), we observe a gross overfit of the item. Figure 9.13 shows the expected scores
curve. In this case, the maximum score for this item is 1. The observed curve is
much more discriminating (steeper) than the expected curve, indicating that the
maximum score can be increased. The fit statistics also shows a fit mean squares
value less than 1, and fit t statistics large negative (see Table 9.6), indicating that the
item is more discriminating than that expected of an item with a score of 1
(Fig. 9.13).

Fig. 9.12 Expected scores
curve of item “Average”, after
recoding

Table 9.6 Fit statistics for item “Average”, with dichotomous “correct/incorrect” scoring

Parameter Infit mean squares Infit t

d1 −0.88 −4.12
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The example item presented here demonstrates that when the item responses
provide more “information” about students’ ability levels, partial credit scoring can
be applied. If we only captured students’ final answer, there is limited scope of
dividing the item responses into ability groups.

On the other hand, we should stress that if a score category is found to be not
“attractive” (i.e., few students in the category), this observation alone does not
warrant the collapsing of the categories. If the item fits the IRT model, then col-
lapsing categories will lead to a mis-fit of the item. If there is evidence to show that
the item is not as discriminating as expected, then categories should be collapsed. In
general, the relative frequencies of responses in score categories are unrelated to the
decision of collapsing categories.

Rating Scale Model

In the partial credit model where the item parameters are expressed as d� and s
parameters, as shown in Eq. (9.14),

Pr Xni ¼ xð Þ ¼ exp
Px

k¼0 hn � d� � sikð Þð Þ
Pmi

h¼0 exp
Ph

k¼0 hn � d� � sikð Þð Þ ð9:14Þ

sik are often known as “step parameters”. For the partial credit model, the step
parameters are different across different items. This is the reason for the subscript i

Fig. 9.13 Expected scores
curve of item “Average”, with
“correct/incorrect” scoring
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and k for s where i indicates the item number and k indicates the category number.
A special case of the partial credit model is to constrain sik to be the same across
items. That is, we drop the subscript i so there is only one set of step parameters sk
for all items. In this case the step “structure” for all items is the same. For example,
we may want the “distance” between “strongly agree” and “agree” to have the same
meaning across all items. We therefore use only one set of step parameters, sk, for
all items. Such a model is commonly known as a rating scale model (Andrich 1978;
Andersen 1997). While the rating scale model may have some desirable theoretical
properties for some applications, in real-life, few data sets fit the model, as the
model is much restricted as compared to the partial credit model.

Graded Response Model

A well-known IRT model for fitting data with ordered categories is Samejima’s
graded response model (GRM) (Samejima 1969, 1997). In contrast to the derivation
of the PCM using probabilities for adjacent response categories, the graded
response model is derived using cumulative probabilities for successfully com-
pleting up to step k of an item. If the cumulative probability functions are denoted
by P�

k hð Þ, then the probability of being in category k for a student with ability h is
given by

Pk hð Þ ¼ P�
k hð Þ � P�

kþ 1 hð Þ ð9:15Þ

The cumulative probability function can take the form of the normal ogive
function or the logistic function. The graded response models typically have dis-
crimination parameters as well as item difficulty parameters (category thresholds).
Note that under GRM, the item category thresholds are never disordered.

Generalized Partial Credit Model

A generalization of the partial credit model to include discrimination parameters is
the Generalized Partial Credit Model (GPCM). See Muraki (1992, 1997) for a
description of this model. This model will be briefly discussed in Chap. 10.

Summary

This chapter explains the partial credit model from both theoretical and practical
viewpoints. For the dichotomous model, the notion of item difficulty is clearly
defined as the ability at which there is a 50% chance of obtaining the correct answer
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(or a score of 1). For the partial credit model, the notion of item difficulty becomes
complex since there are several score points within an item. It may be easy to obtain
a lower score for the item, but difficult to obtain a high score for the item so the
concept of an overall difficulty of an item needs to be clarified. The d parameters
have been used as difficulty parameters in some situations, but these parameters
pose problems for interpretation when middle response categories have few
respondents, leading to the reversal of the d parameters (so-called dis-ordered
thresholds). To avoid the problems of the dis-ordering of d, the Thurstonian
thresholds are sometimes preferred as difficulty measures for each score category.

For scoring a partial credit item, it should be noted that the maximum score
assigned for an item is the weight of the item in relation to other items in the test.
The maximum score should not be arbitrarily determined. Instead, the maximum
score of an item should relate to the discriminating power of an item, and not the
difficulty of an item. Various checks should be made to ensure that the maximum
score assigned results in adequate fit of the item to the model. In addition, to
determine the score categories within an item, one should ensure that increasing
item difficulty (hence increasing ability) matches with increasing score categories.
This can be checked by examining the point-biserial correlations and average
abilities for the score categories within the item. Such item statistics are typically
provided through a classical test theory (CTT) analysis and IRT item analysis. Note
that there is only one way of scoring an item that will fit the PCM model, so we
cannot simply assign category scores in any way we would like.

The example provided in this chapter on evaluating the appropriateness of cat-
egory scoring is somewhat complex, as many statistics need to be taken into
account. This is the case since the Rasch model does not provide a discrimination
index for each item. Information on the discriminating power of an item can only be
obtained through plotting the expected scores curve, CTT and fit statistics. If an IRT
model provides direct estimations of item discrimination indices, then we will not
need to take the roundabout way of estimating the discrimination of an item. This is
precisely what a two-parameter IRT model (2PL) does. In fact, when we use the
partial credit model and have the task of assigning a weight (maximum score) to an
item, we are already thinking in the framework of the two-parameter model. The
next chapter explains the two-parameter model and contrasts it with the Rasch
model.

Discussion Points

1. For a partial credit item, there is a requirement that score categories are
“ordered”. Discuss the meaning of “ordered” in this requirement. (You can
consider the meaning of “ordered” in relation to ability, difficulty, expected
score, probability of success, etc.)

2. A serious misconception about the treatment of dis-ordered thresholds is that
when two categories have reversed d, one must reverse-score the categories
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(e.g., code category 2 as 1, and category 1 as 2). Discuss why this should NOT
be done. Under what situations should the scoring be reversed?

Exercises

Q1. Plot the ICC of a 3-category PCM item in a spreadsheet with d1 and d2 as
parameters. For example,

delta1 delta2

-1 1.3

ability pr(0) pr(1) pr(2)
-3 0.879375 0.11901 0.001615

-2.9 0.868198 0.129855 0.001947
-2.8 0.856136 0.141518 0.002345
-2.7 0.843149 0.154029 0.002821
-2.6 0.829199 0.167412 0.003389
-2.5 0.814252 0.181684 0.004064
-2.4 0.79828 0.196853 0.004867
-2.3 0.781263 0.212919 0.005818
-2.2 0.76319 0.229868 0.006941
-2.1 0.744059 0.247676 0.008266
-2 0.723878 0.2663 0.009822

-1.9 0.70267 0.285684 0.011645
-1.8 0.680471 0.305755 0.013774
-1.7 0.657329 0.32642 0.016251

0

0.1
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0.8

0.9

1
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Change the values of d1 and d2 and see how the ICCs change. In particular, try
ordered d1 and d2, and dis-ordered d1 and d2.

An extension of this exercise is to add simulated item responses for each student,
and plot the observed item characteristic curves as well.

Q2. Indicate whether you agree or disagree with each of the following statements

A response category has very few students. So the response category should
be collapsed with an adjacent category

Agree/disagree

Collapsing score categories of an item should have no impact on the fit of
the item

Agree/disagree

Item A has a maximum score of 4. Item B has a maximum score of 2. Item A
must be more difficult than Item B

Agree/disagree

When dis-ordered thresholds are observed, this indicates that the item does
not fit the PCM

Agree/disagree

When dis-ordered thresholds are observed, this indicates that high ability
students have a lower expected score than low ability students

Agree/disagree

When dis-ordered thresholds are observed, we should reverse score the
response categories

Agree/disagree
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Chapter 10
Two-Parameter IRT Models

Introduction

The Rasch model is sometimes also called the one-parameter IRT model in that the
probability of success as a function of the ability h has only one parameter (the item
difficulty parameter) estimated for each item, as shown in Eq. (10.1)

p ¼ P X ¼ 1ð Þ ¼ exp h� dð Þ
1þ exp h� dð Þ ð10:1Þ

The Rasch model assumes that items all have the same discrimination, in that the
item characteristic curves are parallel, as shown in Chap. 7. In contrast, a dis-
crimination parameter can be incorporated into Eq. (10.1) thereby extending it to a
more general mathematical model as seen in Eq. (10.2)

p ¼ P X ¼ 1ð Þ ¼ exp a h� dð Þð Þ
1þ exp a h� dð Þð Þ ð10:2Þ

In Eq. (10.2), the parameter a is called the discrimination parameter (or slope
parameter), in addition to the item difficulty parameter d. This model is usually
known as the 2PL model (2-parameter logistic model). The parameter a is a scale
factor of the ability scale, since it is multiplied to h� dð Þ, where h and d are in logit
unit on the ability scale. Such a multiplying factor has the effect of stretching or
shrinking the ability scale, in the same way as one imagines using the Windows
re-size tool (⇔) to change the horizontal scale of a picture, as illustrated in
Fig. 10.1. Two items with the same item difficulty (d ¼ 0:8) but different dis-
crimination parameters, a ¼ 0:6 and a ¼ 1:7 respectively are shown in the left and
right graphs of Fig. 10.1.

It can be seen from Fig. 10.1 that the larger the value of a, the steeper the ICC,
and the more discriminating an item is. In contrast, a very flat ICC indicates that
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low and high ability students have similar chances of obtaining the correct answer,
so the item is not very discriminating. To make the left-side curve in Fig. 10.1
steeper, we need to shrink the scale. To make the right-side curve flatter, the graph
needs to be stretched horizontally. In this way, it can be seen that highly dis-
criminating items can separate students more than low discrimination items can.

Discrimination Parameter as Score of an Item

In Chap. 9, partial credit item scoring is discussed. In particular, the maximum
score of a partial credit item is a weight of the item in the whole test, and this
maximum score should be set in relation to the item discrimination (not item
difficulty). Recall that in Chap. 9, the probability of scoring a 2 in a 3-category (0,
1, 2) item is

p2 ¼ Pr X ¼ 2ð Þ ¼ exp 2h� d1 þ d2ð Þð Þ
1þ exp h� d1ð Þþ exp 2h� d1 þ d2ð Þð Þ ð10:3Þ

In Eq. (10.3), it can be seen that the maximum score of a partial credit item (in
this case, 2) relates to the multiplier of h (2h in the numerator of Eq. (10.3)), similar
to the a parameter in the 2PL model. In this sense, the a parameter of 2PL model
can be regarded as the score of an item. One difference between the 2PL model and
the partial credit model is that item scores are estimated from the item response data
in 2PL, and not set by the test writer as for the partial credit model.

More generally, item “scores” or item weights in 2PL are estimated for every
item, including dichotomous and partial credit items. The following is an example
of the differences between the Rasch model and the 2PL model for a set of
dichotomously scored items.

Fig. 10.1 2PL ICC with a = 0.6 (left graph) and a = 1.7 (right graph)
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An Example Analysis of Dichotomous Items
Using Rasch and 2PL Models

The data set of this example contains item responses of 2987 students to a math-
ematics test with 13 multiple-choice items. First, a Rasch analysis is carried out. In
this analysis, each item is scored 1 for correct answer and 0 for incorrect answer.
Table 10.1 shows the item statistics for the 13 items from the Rasch and CTT
analyses.

It can be seen from Table 10.1 that at least a few items do not fit the Rasch
model well. For example, item 2 and item 13 have large fit mean squares values and
lower discrimination indices. In contrast, items 4, 5, and 6 “over-fit” the model,
with high discrimination indices. Figure 10.2 shows the ICC of item 2 and item 5 as
two example items.

Figure 10.2 shows that an “under-fit” item corresponds to low discrimination, or
flatter observed ICC, and an “over-fit” item corresponds to high discrimination, or a
steep observed ICC. As discussed in Chap. 8, the residual-based fit statistics reflect
the slope of the observed ICC against the theoretical ICC.

Item 2 and item 5 are shown in Fig. 10.3 to offer some suggestions as to why
one item is not very discriminating while the other one is.

The first observation is that item 2 is a much more difficulty item than item 5 (see
item difficulty estimates in Table 10.1). Item 2 is a word problem, requiring stu-
dents to know the number of days in June and July. Further, it is unclear whether
the two end days should both be counted. That is, if a person arrives on the 1st of
June and leaves on the 2nd, it is unclear whether this is counted as one day or two
days. In this test, the correct answer is 53 days, which includes both end days. In
contrast, item 5 is a computation item. It requires students to know subtraction
procedures without borrowing. There is a clear correct answer. It is not a difficulty
item, but yet this item is more discriminating than item 2. That is, the computation

Table 10.1 Rasch and CTT
item statistics of a set of
dichotomous items

Difficulty Infit MS Infit t Pt-bis corr

M_1 −1.43 1.03 1.24 0.45

M_2 0.80 1.30 13.66 0.32

M_3 −0.44 0.96 −2.37 0.58

M_4 −0.02 0.90 −5.66 0.62

M_5 −0.73 0.88 −6.58 0.62

M_6 0.28 0.92 −4.34 0.61

M_7 −0.28 0.99 −0.31 0.55

M_8 0.13 0.97 −1.70 0.57

M_9 0.46 0.99 −0.49 0.56

M_10 −0.18 0.94 −3.61 0.59

M_11 0.19 1.00 −0.16 0.56

M_12 0.53 0.96 −1.97 0.57

M_13 0.67 1.20 9.72 0.38
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item can separate low and high ability students better than the “number of days in
the calendar” item. One may also conjecture that knowing the number of days in
June and July may not be directly related to a student’s general mathematics ability.

Such a post hoc analysis of items can suggest reasons for item difficulty and item
discrimination. However, prior to the administration of test items, it may be difficult
to guesstimate item discrimination. Test writers can often gauge the item difficulty
from an analysis of cognitive load for an item or from curriculum progression of an
item topic. But item discrimination is not so easy to predict. In general, constructed
response items have higher discrimination than multiple-choice items (irrespective
of item difficulty) because of the chance of guessing in multiple-choice items.

We further note that item difficulty parameter and item slope parameter are two
different and unrelated statistics. Unlike CTT item discrimination/point-biserial
correlation statistics which relate to item difficulty, the IRT d and a parameters are

Fig. 10.2 ICC of two example items showing “under-fit” and “over-fit”

Item 2
Mike reached Sydney on 13th June in the 
morning and le  on 4th August in the 
night.  For how many days did Mike stay 
in Sydney?

(1) 53 days
(2) 52 days
(3) 51 days
(4) 50 days

Item 5
Solve the following

7895
- 5704

______

(1) 1191
(2) 2191
(3) 2101
(4) 1101

Fig. 10.3 Item 2 and item 5 in the example test
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“unrelated” in the sense that an easy or difficult item can have high or low values of
a. Under IRT, the notions of item difficulty and item discrimination are two distinct
concepts. We discuss this distinction further in the latter part of this chapter.

2PL Analysis

A 2PL analysis is carried out on the same data set. Table 10.2 shows estimated item
difficulties, slope parameters and fit indices.

Figure 10.4 shows the ICCs of item 2 and item 5 using the 2PL model to fit the
item responses.

Comparing 2PL model with the Rasch model, a number of observations can be
made. First, the item characteristic curves in Fig. 10.4 show that the theoretical (or
modelled) expected scores curves can have different slopes across different items.
As a result, the theoretical curves from a 2PL analysis fit the observed curves better
than for the Rasch model. Checking the fit statistics in Table 10.2, it can be seen
that all items show good fit. In fact, since the residual-based fit statistics detect
departure of the slope of the observed ICC from the expected ICC, these fit statistics
will necessarily show good fit when the theoretical ICC can have varying slopes to
match the observed ICC. Consequently, residual-based fit statistics are not useful
for checking item fit for 2PL models.

To further demonstrate the relationship between residual-based fit statistics and
item discrimination, the Rasch infit mean squares are plotted against the 2PL slope
parameters across all items. Figure 10.5 shows this plot.

Figure 10.5 shows that the larger the residual-based fit statistic, the lower the
2PL slope parameter. In other words, when an item “under-fits” the Rasch model,
the item is not as discriminating as the Rasch model expects, the 2PL model assigns

Table 10.2 2PL item
statistics of a set of
dichotomous items

Difficulty Slope parameter Infit MS Infit t

M_1 −1.33 1.05 0.99 −0.28

M_2 0.64 0.43 1.00 −0.09

M_3 −0.50 1.61 1.02 0.91

M_4 −0.04 1.94 1.00 −0.11

M_5 −0.95 2.07 0.99 −0.23

M_6 0.32 1.74 1.00 −0.11

M_7 −0.28 1.28 1.00 0.24

M_8 0.13 1.44 0.98 −1.02

M_9 0.47 1.34 1.01 0.50

M_10 −0.20 1.51 1.00 0.16

M_11 0.19 1.33 1.01 0.42

M_12 0.56 1.49 1.00 −0.19

M_13 0.55 0.58 1.00 0.17
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a lower weight (score) for the item. Essentially, what the 2PL model does is to
estimate weights for the items according to the discriminating power of the items.
The “worse” (i.e., little discriminating power) an item is, the smaller the
item weight. In the case of the example, item 5 has a much large weight (score) than
item 2 (see Table 10.2). This makes a great deal of sense. If we believe that item 2
has ambiguous correct answer, lowering the weight of this item is one way to
provide “fairer” scoring. In summary, while each item under the Rasch model
contributes equally towards the total test score, items under the 2PL models con-
tribute differently according to the discriminating power of the items.

A plot of the CTT discrimination index against the 2PL slope parameter for each
item shows again that the slope parameter is a measure of item discrimination. See
Fig. 10.6.

Fig. 10.4 ICC of item 2 and item 5 using 2PL model

Fig. 10.5 Rasch fit statistics plotted against 2PL slope parameter
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To further clarify the relationship between the Rasch model and the 2PL model,
two more plots are shown. The first is a plot of the item difficulty estimates obtained
from the Rasch model and the 2PL model. See Fig. 10.7.

Figure 10.7 shows that the item difficulty parameters obtained from the Rasch
model and the 2PL model correlate well.

Figure 10.8 shows a plot of item difficulty against slope parameter under the 2PL
model.

Figure 10.8 shows that there is no discernible relationship between item diffi-
culty and the discrimination parameter. This observation reinforces the recom-
mendation in Chap. 9 that the maximum score of an item should not be dependent
on the item difficulty. In fact, Fig. 10.8 shows that for two difficult items, their slope
parameters are low and hence their weights (scores) are lowered.

Fig. 10.6 CTT point-biserial correlation plotted against 2PL slope parameter

Fig. 10.7 Rasch item difficulty plotted against 2PL item difficulty
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Finally, to illustrate the difference between the Rasch model and the 2PL model,
a set of theoretical ICCs are plotted in the same graph (i.e., overlay) to show the
parallel and non-parallel nature of the curves for the Rasch and 2PL models
respectively.

Figure 10.9 shows that the Rasch model fits parallel theoretical ICCs irrespective
of the slopes of the observed ICCs, while the 2PL model fits theoretical ICCs with
different slopes to match that of the observed data.

A Note on the Constraints of Estimated Parameters

In the discussion of the Rasch model in Chap. 7, the indeterminacies of the location
and scale of the latent trait measures are explained. For the 2PL model, similar
issues of indeterminacies apply. In particular, the scale factor of the latent trait

Fig. 10.8 2PL item difficulty against 2PL slope parameter

Fig. 10.9 Overlay of theoretical ICCs for the Rasch model (left graph) and the 2PL model (right
graph)
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needs some clarification. As discussed in Chap. 7, for the Rasch model, the dis-
crimination parameter, a, is commonly set to 1 (or 1.7, see Chap. 7 hands-on
Practices Task 2). For the 2PL model, a is estimated for each item so there are
different values of a for different items. The constraint for the scale can be set in a
number of different ways. For example, the average of the set of a parameters can
be fixed. Alternatively, the scale can be set by fixing the variance of the ability
distribution to an arbitrary value, typically 1, in much the same ways as setting the
mean of the ability distribution to 0 for the estimation of the d parameters. Different
software programs will have different ways of setting the scale constraint. So you
need to check the manuals of specific programs for details. We have found that
fixing the variance of the ability distribution leads to better convergence in the
parameter estimation process, although fixing the variance can make comparisons
of item scores more difficult. In any case, the slope parameters can always be
transformed again after estimation. The following is an example.

In Table 10.2, the slope parameters are estimated with the scale constraint of
setting the variance of the ability distribution to 1. The average of the slope
parameters for the 13 items is 1.37. If we want to compare the slope parameters
(i.e., item scores) to the relative Rasch item scores of 1, we can transform the slope
parameters to have an average of 1. In Table 10.3, we divide each slope parameter
by the average of the slope parameters (1.37) so that the transformed slope
parameters have an average of 1. The transformed item scores are particularly
useful for partial credit items, as explained in latter sections of this chapter. Note
that such transformation of the scale parameters is not necessary for model fitting
unless comparisons of the slope parameters across different scaling runs are made.

Consequently, the slope parameters from different scaling runs may not be
directly comparable because of the indeterminacy of the scale unit unless

Table 10.3 Transformed
slope parameters with an
average of 1

Item Slope parameter Transformed slope
parameter

M_1 1.05 0.77

M_2 0.43 0.31

M_3 1.61 1.18

M_4 1.94 1.42

M_5 2.07 1.51

M_6 1.74 1.27

M_7 1.28 0.93

M_8 1.44 1.05

M_9 1.34 0.98

M_10 1.51 1.10

M_11 1.33 0.97

M_12 1.49 1.09

M_13 0.58 0.42

Average 1.37 1.00
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transformations are carried out. To get an idea of the overall discriminating power
of a test instrument, the test reliability index is a better indicator.

A Note on the Parameterisation of Item Difficulty
Parameters Under 2PL Model

In Eq. (10.2), the numerator, exp a h� dð Þð Þ, expresses the slope parameter as a
multiplier of h� dð Þ. The argument of the exponential function can also be
expanded as ah� adð Þ. In some software packages, the item difficulty parameter
reported for 2PL is ad rather than d. Check software documentations for the
parameterisation, as different parameterisations can lead to different interpretations
of the item difficulty parameters.

Impact of Different Item Weights on Ability Estimates

Under the Rasch model, raw scores on a test are “sufficient statistics” for ability
estimates (see Chap. 7). That is, students with the same raw score on a test will have
the same ability estimate, irrespective of which items they answered correctly, since
all items have the same weight in the test. Under the 2PL model, students with the
same raw score may not necessarily have the same ability estimate; it will depend
on the particular set of items a student answered correctly. If the items answered
correctly have more weights, then the ability will be higher. This makes sense in
that if an item does not discriminate students (say, the responses are random guesses
for that item), then obtaining the correct answer on this item does not indicate a
more able student. So this item “counts” less towards the ability estimate. Table 10.
4 shows weighted likelihood ability estimates (WLE) for selected students from the
example data set.

The ability estimates from 2PL models are likely to be closer to students’ “true”
abilities than Rasch ability estimates are, since the estimation takes into account the
amount of “information” provided by each item. However, providing different
ability estimates for the same raw score may pose a problem for examination
officials who may need to explain to the layperson how ability estimates are
derived. In providing such explanations, it is inevitable to acknowledge that items
are of varying “quality” in the test. For high-stake examinations, this issue needs to
be considered.

Table 10.4 Ability estimates
for selected students with a
raw score of 10 out of 13

Student id Rasch WLE ability 2PL WLE ability

15 1.20 0.88

17 1.20 1.16

18 1.20 1.26
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Choosing Between the Rasch Model and 2PL Model

In Chaps. 6 and 7, the desirable measurement properties of the Rasch model have
been presented. So why would one choose the 2PL model over the Rasch model?
Here are some possible reasons. When the Rasch model is used, the good properties
of the model can only be realised if the data fit the model. Given a particular data
set, such as the example provided in this chapter, mis-fitting items do not get
“fixed” by running a Rasch analysis. That is, the properties of the Rasch model are
not attained since the observed ICCs are not “parallel” even though the theoretical
ICCs are (forced to be). Under such circumstances, one may decide to choose a
model that fit the data better, and make the best use of the information available,
since choosing a mis-fitting model will not provide the properties of the model.
Rasch models are useful for the construction of an instrument if there are possi-
bilities of modifying and deleting items. If a test has already been administered and
the data do not fit the Rasch model, there is no gain in using the Rasch model. In
fact, there are some gains in using a model that fit the data.

In real-life, no item response data will fit a theoretical model perfectly, since the
models are mathematical functions. The more parameters a model has, the more
likely the data will fit the model. There is no real-data set that will fit the Rasch
model perfectly (nor a 2PL model, for that matter), so we need to make an
assessment of how good a fit is good enough. From a practical point of view, it
probably makes little difference whether Rasch model or 2PL models are fitted if we
have quality items in a test. If the data fit the Rasch model well, then a 2PL model
fitted to the data set will also have similar slopes across items. Although from a
theoretical point of view, the good properties of measurement should be upheld at
least as a goal to achieve when instruments are constructed. In practice, there needs
not be a clear demarcation when it comes to choosing IRT models, but a good
understanding of the implications of each model and model-fit is important.

2PL Models for Partial Credit Items

An extension of the 2PL to the partial credit items is the generalised partial credit
model (GPCM) (Muraki 1992). As for the dichotomous case, a discrimination
parameter is added to the partial credit model presented in Chap. 9. Eq. (10.3)
shows the GPCM.

Pr Xni ¼ xð Þ ¼ exp
Px

k¼0 ai hn � dikð Þ
Pmi

h¼0 exp
Ph

k¼0 ai hn � dikð Þ ð10:3Þ

Dropping the index i for item number for simplicity, a 3-category partial credit
item has the following probabilities (see Eqs. (10.4)–(10.6)).
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p0 ¼ Pr X ¼ 0ð Þ ¼ 1
1þ exp a h� d1ð Þþ exp a 2h� d1 þ d2ð Þð Þ ð10:4Þ

p1 ¼ Pr X ¼ 1ð Þ ¼ exp a h� d1ð Þ
1þ exp a h� d1ð Þþ exp a 2h� d1 þ d2ð Þð Þ ð10:5Þ

p2 ¼ Pr X ¼ 2ð Þ ¼ exp a 2h� d1 þ d2ð Þð Þ
1þ exp a h� d1ð Þþ exp a 2h� d1 þ d2ð Þð Þ ð10:6Þ

An Example Data Set

As an example, the data set analysed in Chap. 9 is re-run using the generalised
partial credit model. Table 10.5 shows estimates of the slope parameters, a, and the
item difficulty parameters for the first 10 items. The slope parameters have been
transformed (scaled up) so the maximum score on the test is 68, matching that of
the Rasch model.

Under the generalised partial credit model, a slope (or discrimination) parameter is
estimated for every item, despite the number of response categories within the item.
In the example give in Table 10.5, the value of the slope parameter varies across
items in relation to the discriminating power of the item. As an example to illustrate
the differences between the 2PL (GPCM) and the Rasch model (PCM), Fig. 10.10
shows a comparison of the ICCs between the two models for item 23 in the data set.

The slope parameter for item 23 is 0.49, indicating that the weight estimated for
this item under GPCM is smaller than that assigned by the PCM. That is, the item is
not as discriminating as the PCM model assumes. Similar to the 2PL dichotomous
items, a weight is applied to weigh up or down the contribution of a PCM item to
the total score. Within the item though, the weights of the categories are still in
integer multiples, i.e., 1, 2, 3, etc. For example, for item 23, the weight (or score) of

Table 10.5 Slope parameter
and item difficulty parameters

Item a (transformed) d1 d2 d3 d4
1 0.76 −1.58

2 1.04 −1.93

3 0.95 0.70 0.73

4 0.70 0.24 1.03 0.58 −1.88

5 0.55 2.07 −2.76

6 1.14 −1.56

7 0.94 −0.74

8 1.30 −1.88

9 1.04 0.47

10 0.86 0.28 0.42
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category 1 is 0.49 (the slope parameter), the weights of categories 2 and 3 are
2 × 0.49 and 3 × 0.49, respectively. That is, the coefficient of h in Eqs. (10.3)–
(10.6) is akh, where a is the slope parameter and k is the item category number.

For this data set, the test reliability has increased a little from 0.82 for Rasch
model (PCM) to 0.83 for 2PL (GPCM) model. Using 2PL will often increase the
test reliability a little as more weights are assigned to more discriminating items.

A More Generalised Partial Credit Model

For the GPCM, one discrimination parameter is estimated for each item. That is, in
Eq. (10.3), the slope parameter ai has a subscript i for item i. However, if the
subscript of the slope parameter is ik, then aik denotes a slope parameter for cat-
egory k of item i.

Pr Xni ¼ xð Þ ¼ exp
Px

k¼0 aik hn � dikð Þ
Pmi

h¼0 exp
Ph

k¼0 aik hn � dikð Þ ð10:7Þ

In this case, there is a weight (or score) assigned to each score category of an
item, and not just one weight for the whole item. This is a more general model than
the GPCM, since different categories within an item can have different weights.
Such models have been implemented in TAM (Kiefer et al. 2013) and in ConQuest
(Wu et al. 2007) software programs. In this book, we will call this model KPCM for
category level PCM. This model is similar to the idea of Bock’s nominal response
model (Bock 1972).

As an illustration, we use the data set in Chap. 9 and re-analyse using KPCM.
The corresponding results for the first 10 items are shown in Table 10.6.

Fig. 10.10 Item I23 ICC–PCM model (left graph) and GPCM (right graph)
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Table 10.6 shows the slope parameters at item category levels. As discussed, the
parameters are regarded as weights, or scores, for the item categories. To put these
into perspective, we compare the scores of item 4 under the PCM, GPCM and
KPCM models. This item has 5 response categories, 0, 1, 2, 3, 4. Under the partial
credit model, the scores are assigned and not estimated, so the scores for the five
categories are 0, 1, 2, 3, 4. Under the generalised partial credit model, the scores are
(see Table 10.5) 0, 0.70, 1.40 (0.70 × 2), 2.10 (0.70 × 3), 2.80 (0.70 × 4) for the
five categories. Under the KPCM, the scores are estimated separately for the item
categories, and these are (0), 1.12, 3.10, 2.64, 2.95.

In Chap. 9, it is shown that item 4 in the data set shows mis-fit under PCM and
that the item is not as discriminating as the Rasch model expects using the assigned
category scores. Consequently, a collapsing of categories and lowering of the
maximum score lead to a better fit of the item. In this chapter, the estimated scores
under GPCM and KPCM suggest that the maximum score should be lower. In
particular, under KPCM, the scores for categories 2, 3 and 4 are similar. If the PCM
is still the preferred model, then at least KPCM can suggest how the categories can
be collapsed. In contrast, GPCM lowers the maximum score of the item, but keeps
the relative weights at the category levels in integer multiples (i.e., 0, 1, 2, 3, 4).

Since KPCM has more parameters, the model necessarily will provide a better fit
to the data. Figure 10.11 shows the expected scores curve for item 4 under KPCM.

Using KPCM, the reliability has increased slightly to 0.835.

A Note About Item Difficulty and Item Discrimination

Occasionally, there are confusions between the concepts of item difficulty and item
discrimination. In particular, such confusion may arise when item-person maps are
interpreted. Figure 10.12 shows an item-person map for two hypothetical partial
credit items.

The item thresholds are plotted for two partial credit items where 1.1 refers to
item 1, step 1, and 1.2 refers to item 1, step 2, etc. For this example, it does not

Table 10.6 Discrimination
parameters at item category
level under KPCM

Item i ai1 ai2 ai3 ai4
1 0.76

2 0.98

3 0.58 2.18

4 1.12 3.10 2.64 2.95

5 0.84 1.08

6 1.13

7 0.91

8 1.24

9 1.02

10 0.93 1.71
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matter whether we use the dik parameters or cik parameters for step difficulties of a
partial credit item. Note that 1.1 and 1.2 are close together, and 2.1 and 2.2 are far
apart. In this case, some may take this observation to infer that item 2 is more
discriminating than item 1. This is not an appropriate interpretation. The locations
of the item thresholds are item difficulty measures, just like for the dichotomous
case. They do not provide any information about item discrimination. In the
dichotomous case, the locations of items on the item-person map indicate item
difficulty. In fact, if the items fit the Rasch model, then all items have the same
discriminating power. However, the ICC of an item is the steepest at h ¼ d. That is,
an item has more discriminating power for the ability range close to the item
difficulty of an item. But all items have the same overall discriminating power in a
Rasch model. Similarly, for partial credit items, the locations of the thresholds can
indicate the ability range at which the item is most discriminating. But the locations
of the thresholds do not tell us anything about the overall discriminating power of
an item. If we plot the expected scores curves for item 1 and item 2, the curve for
item 1 appears to be steeper than that for item 2 (Fig. 10.13).

The expected scores curves in Fig. 10.13 shows that item 1 is steeper than item 2
at around the ability region of (−1, 0 1). Outside this region, the expected scores
curve for item 2 tends to be steeper. If the two items fit the Rasch model, then, since
the maximum score for both items is 2, the weights of these two items are equal, so
the two items provide the same overall discriminating power. Moreover it can be
observed from the figure that at different ability levels, the two items provide
different discriminating power. Nevertheless, from Fig. 10.13, there is no evidence
that item 2 is a better item just because the thresholds are further apart.

To sum up, the item-person map provides item difficulty information. It does not
show how well an item can discriminate the respondents. To further clarify item

Fig. 10.11 Expected scores
curve for item 4 under KPCM
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Fig. 10.13 Expected scores
curves for two items with
different thresholds

Item-person map 
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Fig. 10.12 Item thresholds of two partial credit items
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difficulty and item discrimination, it should be noted that item difficulty depends on
how many people obtained the correct answer, and item discrimination depends on
who obtained the correct answer (i.e. low or high ability students).

Summary

This chapter presents 2PL models for dichotomously scored items and partial credit
items. The key difference between 2PL and 1PL (Rasch) models is that item scores
are estimated in 2PL, while they are assigned in 1PL. In particular, for 1PL, all item
scores are 1 for dichotomous items, and consecutive integer numbers for partial
credit items.

There are advantages and disadvantages for choosing either 1PL or 2PL model.
An advantage for the 1PL model is that raw scores are sufficient statistics for ability
estimates, whether items are dichotomously or polytomously scored. This means
that students with the same raw test score will have the same ability estimate. In
contrast, with 2PL, because items have different weights in contributing to the
ability estimate, students with the same raw test score will likely have different
ability estimates, depending on which set of items the student answered correctly.
This may pose a difficulty for test administrators to explain to the public.

On the other hand, the 2PL model will always provide better fit to the data. In the
case where items do not fit the 1PL model, results from a 1PL analysis are not valid,
since the data are not matching the theoretical model. In this case, one may decide
to use a model that fit the data better. Generally, 2PL model will results in higher
test reliability, since more item level information is taken into account.

In practice, if one aims to achieve better measurement properties in terms of
making statements of what students can achieve, and in building learning pro-
gressions, one should construct measuring instruments that fit the 1PL (Rasch)
model. However, if the item response data do not fit the Rasch model, then it is
better to use the 2PL model since that will provide better fit to the model so the
results can be consistent with the model being fitted.

Discussion Points

1. Discuss the differences between the Rasch model and the 2PL model. What are
the differences in terms of the mathematical formulations of the models? What
are the differences in interpreting results of the two models? What are the
differences in building measuring instruments?

2. How are the Rasch partial credit model and the 2PL model linked? Why does
Chap. 9 say “In fact, when we use the partial credit model and have the task of
assigning a weight (maximum score) to an item, we are already thinking in the
framework of the two-parameter model?”
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Exercises

Q1. In EXCEL, plot ICCs of 2PL items. Vary the difficulty and slope parameters to
see the differences. For example

Q2. Indicate whether you agree or disagree with each of the following statements

Item response data fitted with the Rasch model will always have better
measurement properties than data fitted with the 2PL model

Agree/Disagree

Residual-based fit statistics are useful for detecting mis-fits of items to the
2PL model

Agree/Disagree

If the slope parameter is 0.6 for Item A and 1.2 for Item B, then, under
2PL, a student who obtained the correct answer for A but incorrect answer
for B will have a lower ability estimate than a student who obtained the
incorrect answer for A but correct answer for B

Agree/Disagree

If the item difficulty parameter is 0.6 for Item A and 1.2 for Item B, then,
under 2PL, a student who obtained the correct answer for A but incorrect
answer for B will have a lower ability estimate than a student who obtained
the incorrect answer for A but correct answer for B

Agree/Disagree

If the item difficulty parameter is 0.6 for Item A and 1.2 for Item B, then,
under the Rasch model, a student who obtained the correct answer for A
but incorrect answer for B will have a lower ability estimate than a student
who obtained the incorrect answer for A but correct answer for B

Agree/Disagree

If more students obtained the correct answer to Item A than to Item B, then
Item A is likely to be more discriminating than Item B

Agree/Disagree

If a set of items fit the Rasch model so the observed ICCs are approximately
parallel, then fitting a 2PL model to the same data will make the observed
ICCs criss-cross each other

Agree/Disagree
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Chapter 11
Differential Item Function

Introduction

For every IRT model, a mathematical function is used to specify the probability of
item responses as a function of the ability (latent trait). The degree to which the
observed data fit the mathematical function needs to be examined since valid results
can only be drawn if the data fit the model. Chapter 8 discusses the use of fit indices
to check for model fit. However, the fit index discussed is only one of many fit
indices that can be used to check various kinds of violations to the model. In
real-life, data rarely fit a mathematical model precisely, so it is important to carry
out such checks.

The term “differential item functioning”, or DIF, suggests that an item functions
differently in different contexts. As an example, consider a group of students with
similar average mathematics abilities for boys and girls. When a mathematics item
with a context about baseball is administered to the students, it is found that the
boys in this group performed considerably better than girls on this item, even
though girls and boys performed similarly on other items. A possible explanation is
that boys are more familiar with the question context than girls are, so boys found
this item easier than girls did. In this case, we say that the item exhibits DIF for the
two gender groups.

In real-life, DIF occurs frequently because every person is an individual and
brings his/her own experience and specific knowledge when responding to test
items. While the probabilistic nature of item response functions takes into account
some variability between individuals, there is often more variability among student
responses than what the models accommodate. However, it would not be likely to
detect DIF at an individual level, mainly because there is usually insufficient data to
do so. DIF is frequently checked for groups such as gender, cultural, geographical
and ethnic groups.

The motivation to check for DIF is to ensure that a test is “fair” to all respon-
dents. The inclusion of DIF items in a test will result in lower (or higher) scores for
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some individuals than what they would otherwise obtain should there be no DIF
items. Further, DIF also throws some light on the differences among groups of
people, such as different strengths and weaknesses between boys and girls. Such
information is useful for planning remedial programs.

This chapter explains the meaning of DIF, introduces some detection methods
for DIF, and discusses how DIF items should be dealt with.

What Is DIF?

In IRT, the probability of success on an item is a function of a person’s ability, h.
Differential item functioning occurs when two groups of people with the same
ability, h, have different probabilities of success on an item. That is, after con-
trolling for ability, the probabilities of success on an item are unequal for the two
groups of people. Such items are said to exhibit DIF, and the existence of DIF items
would violate the assumptions of the IRT model. The important thing to note here is
that the comparison is after “controlling for ability”. Suppose two groups of people
sat a test. Group A obtained an average score of 30 out of 40. Group B obtained an
average score of 20 out of 40. The average scores of the two groups are statistically
significantly different, taking into account of the sample sizes of the two groups. In
this case, one cannot say that there is DIF just because Group A performed better
than Group B, since it is possible that Group A respondents are of higher ability on
average than Group B are. Of course it is possible that all items are “biased” against
Group B so that Group B performed worse than Group A did. But “the average
abilities of the two groups” and “biasedness of the test” are confounded, so that one
cannot conclude there is differential item functioning in this test from just exam-
ining the overall scores of the two groups. Consequently, DIF is often discussed in
relative terms where an item is compared with other items in the test, after overall
abilities (or overall test scores) are controlled for, with the assumption that the test
as a whole is not biased against any group. As a result, whenever we find items
showing DIF favouring one group, we will also find items favouring the other
group, since it is assumed that there is no net bias against one group.

Some Examples

OECD PISA 2009 science data have been used as examples to illustrate DIF. The
mean science scores for Germany and Taiwan are both 520. If there are no DIF
items for these two countries, then one would expect the percentages correct for
both countries on each item to be very similar, subject to some random fluctuation
due to sampling and measurement errors. Figure 11.1 shows a plot of item-by-item
percentages correct for the two countries.
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The first observation about Fig. 11.1 is that, by and large, the percentages correct
for Germany and Taiwan are similar for many items. For example, where an item is
easy or difficult for Germany (e.g., item 1 or item 3), it is also easy or difficult for
Taiwan. That is, the two curves generally move up and down in unison except for a
few items. Given that the two countries had the same country mean score, one
would expect the two curves to be largely overlapping. However, there are some
exceptions. For example, Taiwan students found item 20 more difficult than
German students (percentages correct of 46.8 and 23.9% for Germany and Taiwan
respectively). On the other hand, Taiwan students found items 17 and 18 easier than
German students. Note that although these differences appear to be large visually
from the graphs, we still need to carry out formal statistical significance tests to see
if these differences are beyond what could be expected due to sampling and
measurement errors. Nevertheless, one might conjecture that item 20 shows DIF,
given that the difference in percentages correct between Germany and Taiwan is as
large as 23%.

A second example shows a comparison of item percentages correct for Japan and
Italy on the PISA 2009 Science test. Figure 11.2 shows a plot of item-by-item
percentages correct for the two countries.

Fig. 11.1 Percentages correct of PISA 2009 Science items for Germany and Taiwan

Fig. 11.2 Percentages correct of PISA 2009 Science items for Japan and Italy
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Japan’s PISA 2009 Science mean score is 539 and Italy’s mean score is 489.
That is, on average, Japan performed higher than Italy did. As a result, one would
expect the percentages correct for Italy to be lower than for Japan for all items. This
is largely the case, as Fig. 11.2 shows that the curve for Italy is generally below that
of Japan. There are however some exceptions. For example, on a number of items,
Italy performed as well as Japan did, or even better than Japan (e.g., items 16, 25
and 46). On the other hand, on some items, Italy did quite poorly as compared with
Japan (e.g., items 3, 12 and 24). The fact that Italy performed generally lower than
Japan is not an indication of DIF. However, differential differences in percentages
correct are signs of possible DIF. That is, if there are no DIF items, one would
expect that all percentages correct for Italy to be a little lower than those for Japan.
The fact that there are items where Italy performed as well as Japan did, and items
where Italy performed a great deal worse than Japan, shows that there are possible
DIF items.

Methods for Detecting DIF

There are many statistical methods for detecting DIF. The following provides some
examples. These examples are not comprehensive, and many DIF detecting
methods are not discussed here. In the literature, there are numerous references on
DIF. These include Colvin and Randall (2011), Holland and Wainer (1993),
Osterlind and Everson (2009), Zumbo (2007) and Zwick (2012).

Mantel Haenszel

The Mantel-Haenszel test is originally designed for epidemiological studies in
which the interest is to study the association between two binary variables while
controlling for a confounding variable. More specifically, it studies how stable the
strength of relationship is between two binary factors by means of the odds ratios
across K different strata that constitute the levels of a confounding variable. The
data are presented as a series of 2 × 2 contingency tables formed by the two binary
variables for each value of the confounding variable.

In the 1980s, this test was applied by researchers to study if the status of
answering an item correctly or incorrectly is associated with the groups to which the
respondents belonged after controlling for their abilities (Holland and Thayer
1988). For example, in studying if there is evidence of differential item functioning
(DIF) in a test against the female gender, the female respondents can be regarded as
constituting the focal group while the male respondents the reference group. It is
usual practice to regard the total number of items correct as the confounding
variable, which is frequently collapsed into several, say K, strata that span from the
low to the high performance stratum. Respondents from both groups belonging to
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the same stratum are assumed to have the same ability with respect to the test. The
Mantel-Haenszel test is then applied to each item, with gender as one of the binary
variables and whether the item was answered correctly as the other binary variable.
Since most statistical software has a version of the Mantel-Haenszel test, it has
become a popular approach to detect if DIF exists in some items within a test.

If we can assume that there is a common odds ratio between the reference and
the focal groups across all strata, then we can use the Mantel-Haenszel test to test if
the odds of answering an item correctly for the focal group is the same as that for
the reference group. This is the same as testing whether the common odds ratio
takes on the value of 1.

Table 11.1 is a typical cross-tabulation that summarizes the performances of two
groups with ability at level k on item i. Let us denote the reference and focal groups
as group 1 and 2, respectively. Furthermore, let us denote a correct answer is coded
as 1 and a wrong answer as 0. Let Aik represent the number of respondents in group
1 who answered item i correctly. Likewise, symbols Bik, Cik, and Dik take on their
corresponding meanings. Next, let N1ik and N2ik represent the total number of
respondents with ability k in the reference and focal group, respectively; and M1ik

and M0ik represent the total number of respondents with ability k across the two
groups who answered the item correctly and incorrectly, respectively. Finally, let
Tik denotes the total number of respondents with ability k on item i.

Under this setting, the Mantel Haenszel common odds ratio can be estimated by
using the following formula:

aMH ¼
P

k AikDik=TikP
k BikCik=Tik

In the context of a DIF study, the value of the common odds ratio equal to 1
would indicate that there is no DIF for the two groups on item i. A value greater
than 1 would indicate the item favouring the reference group and a value less than 1
favouring the focal group.

The Mantel Haenszel test is a chi-square test at one degree of freedom which can
be computed by the following formula

v2MH ¼
P

k Aik �
P

k EðAikÞ
�� ��� 0:5
� �2

P
k varðAikÞ

Table 11.1 Performance
table for the two groups with
ability at level k on item i

1 (correct) 0 (incorrect) Total

Group 1 (reference group) Aik Bik N1ik

Group 2 (focal group) Cik Dik N2ik

Total M1ik M0ik Tik
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where EðAikÞ and varðAikÞ represent the expected value and the variance of Aik,
respectively, with

EðAikÞ ¼ N1ikM1ik

Tik

and

varðAikÞ ¼ N1ikN2ikM1ikM0ik

T2
ikðTik � 1Þ

As an example, we will use the performance data of students from Germany and
Taiwan on science items in Booklet 13 of the PISA 2009 study. For this example,
only 18 items were used and the total score of each student from these items was
taken as an indicator of the student’s ability. The numbers of 15-year old students
from Germany and Taiwan working on this booklet amounted to 370 and 461,
respectively. Since the sample size was not very large, we collapsed the range of
total scores into three strata, spanning from low to high abilities. The analysis was
performed using SAS, with Germany’s students being regarded as the reference
group and Taiwan’s students forming the focal group. The common odds ratio for
item S256Q01 amounted to 1.8190 and the Mantel-Haenszel chi-square test
resulted in v2ð1Þ ¼ 6:5607, p = 0.0104. Hence, there is some evidence that this
item favoured Germany’s students more than Taiwan’s students.

There are variations to the above mentioned approach for the purpose of DIF
items detection. For example, Holland and Thayer (1988) developed the MH D-DIF
index, which is defined as

MHD-DIF ¼ �2:35 lnðaMHÞ

For our case, the MH D-DIF for item amounted to −1.41, with the negative
value indicating that the odds of the focal group in obtaining the correct answer to
the item is less than that for the reference group after conditioning on the abilities of
the students. There is a set of procedures if one decides to follow the MH D-DIF
approach. Interested readers are encouraged to read Holland and Thayer (1988),
Dorans and Holland (1993) and other relevant literature for details.

IRT Method 1

The examples given in Figs. 11.1 and 11.2 of this chapter demonstrate that DIF
occurs when an item is easier or more difficult than expected for a group. A simple
way to detect DIF is to carry out an IRT calibration of item difficulties for each
group of respondents separately, and then compare the calibrated item difficulties
across groups. In these calibrations, we note that the origins of the IRT scales in
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separate calibrations need to be set to be equal so the calibrated item difficulties are
comparable. A simple way is to set the average of the calibrated item difficulties to
zero, so the calibrated item difficulties for different groups of respondents are
comparable. See Chap. 7 for setting the locations of IRT scales.

Using the Germany-Taiwan data set in the Section “What is DIF?” as an
example, we calibrated the item difficulties for Germany and for Taiwan separately.
Table 11.2 shows the calibrated item difficulties for the two countries, where the
mean of the item difficulties for each country is zero. If there is no differential item
functioning, then the item difficulty for an item for Germany should be close to the
item difficulty for Taiwan, although these two item difficulties will not be exactly
the same as they are subject to measurement error, as reflected in the standard error
(s.e.) column in Table 11.2. The sixth column in Table 11.2 shows the differences
between the item difficulties of the two countries. A scan down the column shows
that some of these differences are rather large (e.g., item 15).

The magnitude of the differences in item difficulties between the two countries
can be more easily seen through a scatter plot of the item difficulties, as shown in
Fig. 11.3. The solid line in Fig. 11.3 is the identity line (that is, x = y line). It can
be seen that while there is a correlation between the item difficulties of the two
countries (r = 0.77), some points are far away from the identity line.

Statistical Significance Test

For each item, to see whether the difference between the item difficulties for
Germany and Taiwan is larger than expected, a standardised statistic can be
computed by dividing the difference by its standard error. Column seven in
Table 11.2 shows the standardised statistic, obtained through dividing the differ-
ence (column six) by the square root of the sum of squares of the standard errors in
columns three and five. The standardised difference in column seven can be
regarded as a z-statistic, so that a value outside the range of −2 and 2 can be

Fig. 11.3 A plot of item
difficulties for Germany and
Taiwan
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Table 11.2 Item difficulties for Germany and Taiwan, calibrated separately

Item Germany
item
difficulty

s.e. Taiwan
item
difficulty

s.e. Difference between
Germany and Taiwan
difficulties

Standardised
difference

1 −2.15 0.08 −1.72 0.07 −0.43 −3.78

2 −0.54 0.06 −1.06 0.06 0.52 5.84

3 1.40 0.06 1.07 0.05 0.32 3.97

4 0.13 0.06 −0.27 0.05 0.40 4.91

5 −0.55 0.06 −0.29 0.05 −0.26 −3.06

6 −0.51 0.06 0.17 0.05 −0.69 −8.33

7 1.72 0.06 1.25 0.05 0.47 5.60

8 −0.23 0.06 −0.47 0.06 0.23 2.84

9 2.31 0.07 1.27 0.05 1.04 11.46

10 0.03 0.06 0.31 0.05 −0.27 −3.43

11 0.70 0.06 0.08 0.05 0.62 7.91

12 0.23 0.06 0.48 0.05 −0.25 −3.13

13 −0.87 0.07 −0.54 0.06 −0.32 −3.68

14 0.93 0.06 0.28 0.05 0.65 8.22

15 −1.70 0.08 0.33 0.05 −2.03 −20.89

16 −1.15 0.07 −0.16 0.05 −0.99 −11.09

17 0.70 0.06 −0.25 0.05 0.95 11.76

18 0.63 0.06 −0.21 0.05 0.83 10.49

19 0.88 0.06 0.22 0.05 0.66 8.37

20 0.83 0.06 1.81 0.06 −0.98 −11.77

21 −0.52 0.06 −0.92 0.06 0.40 4.53

22 −0.10 0.06 −0.53 0.06 0.43 5.33

23 −0.85 0.06 −1.42 0.07 0.57 6.21

24 0.49 0.06 0.63 0.05 −0.15 −1.89

25 −1.96 0.09 −0.57 0.06 −1.39 −13.29

26 −0.03 0.06 −0.57 0.06 0.54 6.55

27 0.17 0.06 −0.33 0.05 0.50 6.13

28 0.25 0.06 −0.35 0.05 0.60 7.37

29 1.15 0.06 0.63 0.05 0.52 6.55

30 −0.82 0.06 −0.63 0.06 −0.19 −2.31

31 −0.20 0.06 −0.64 0.06 0.44 5.50

32 −1.01 0.06 −1.06 0.06 0.05 0.54

33 1.07 0.06 1.56 0.06 −0.48 −5.91

34 0.15 0.06 1.15 0.05 −1.00 −12.47

35 −0.97 0.07 −0.87 0.06 −0.10 −1.13

36 0.68 0.06 0.79 0.05 −0.11 −1.45

37 1.54 0.06 1.01 0.05 0.53 6.48

38 −0.68 0.07 −1.38 0.07 0.70 7.47

39 −2.01 0.09 −1.43 0.07 −0.58 −5.19
(continued)
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regarded as statistically significant. We note that most of the standardised differ-
ences in column seven are statistically significant.

Effect Size

One problem with statistical significance test is that when the sample size is large,
the data have the power to detect small differences so that statistical tests are likely
to show significance. This is because, in real life, the items are likely to work
slightly differently across different countries, and the significance test checks if the
item difficulties are identical. If the sample size is large, we would nearly always
find significant results for all items. Consequently, in addition to testing for sta-
tistical significance, one may examine the magnitude of the actual difference and
make a judgement of whether the difference is important (similar to the concept of
effect size). For example, for item 5, the difference is 0.26 (logit), and the stan-
dardised statistic shows significance (3.06). If it is deemed that a magnitude of 0.26
is within acceptable range, then one may ignore the statistical significance test. Of
course it is always somewhat arbitrary to choose a cut-off value of logit difference
for considering whether DIF exists or not. In our practical experience, often 0.5
logit has been chosen as a cut-off value. But one can always choose a different
cut-off value. A practical way to approach this is to begin examining the items with
largest DIF, and working back till an adequate set of items are retained.

In this process, take note that first, in real data sets (as opposed to simulated data
sets) all items will exhibit DIF when the sample size is large enough. Second, DIF is
relative in that an item shows DIF in relation to other items. So after removing DIF
items, the comparisons of the remaining items are not quite the same as for the
original set of items. That is, there is no notion of “absolute” DIF in that an item
will show DIF in comparison to any set of items. Since all items will show DIF

Table 11.2 (continued)

Item Germany
item
difficulty

s.e. Taiwan
item
difficulty

s.e. Difference between
Germany and Taiwan
difficulties

Standardised
difference

40 0.68 0.06 0.09 0.05 0.59 7.39

41 −0.17 0.06 −0.90 0.06 0.73 8.47

42 0.01 0.06 0.74 0.05 −0.73 −9.21

43 −0.08 0.06 0.88 0.05 −0.96 −12.09

44 0.33 0.06 1.01 0.05 −0.69 −8.68

45 0.01 0.06 −0.38 0.05 0.39 4.84

46 −2.38 0.10 −2.15 0.08 −0.23 −1.73

47 2.28 0.07 2.62 0.07 −0.34 −3.33

48 0.22 0.06 −0.33 0.05 0.55 6.82

49 −0.02 0.06 1.04 0.05 −1.06 −13.24

Methods for Detecting DIF 215



when sample size is large enough, one is unlikely to find a set of “DIF-free” items.
Therefore, the judgement of the acceptance of a set of items will need to be
practical, bearing in mind that we are not likely to eliminate all DIF items.

Having said that, it should be noted that the presence of DIF items can poten-
tially alter respondents’ results and lead to manipulations of a test in favour or
against a particular group. This is the tension when analysing items for DIF. Such
tensions are frequently encountered when tests are constructed.

IRT Method 2

A second method using IRT is to calibrate the data from both groups of respondents
together in one calibration instead of separate calibrations. In the IRT model,
item-by-group interaction parameters are added to the item difficulty parameters and
ability parameters. More specifically, the probability model as shown in Chap. 7,

p ¼ P X ¼ 1ð Þ ¼ exp h� dð Þ
1þ exp h� dð Þ ð11:1Þ

is modified to include an interaction term, as shown in Eq. (11.2)

p ¼ P X ¼ 1ð Þ ¼ exp hn � di þDgi
� �� �

1þ exp hn � di þDgi
� �� � ð11:2Þ

where g is the group number, i is the item number and n is the respondent number.
Essentially, Eq. (11.2) specifies that the chance of success of a respondent on an
item depends not only on the ability of the respondent and the difficulty of an item,
but also on an adjustment to the difficulty of the item owing to the membership of
the respondent in a group (Dgi). For example, if an item favours group 1 respon-
dents, then Dgi will be negative, making the overall item difficulty lower than the
average difficulty di. On the other hand, if an item is biased against a group of
respondent, then Dgi will be positive, making the item difficulty higher than di for
this group. Note that since the average item difficulty is di, the sum of Dgi across the
groups will be zero. Further, Dgi is an adjustment to item difficulty over and above
the overall performance difference between the two groups. Therefore, the sum of
Dgi across all items for each group is zero, since DIF is not associated with the
overall performance difference between the two groups. Consequently, if there are
items in a test favouring one group, there will be items in that test favouring the
other group. In this way, DIF is measured in the context of the items in a test. If an
item appears in a different test, then that item may or may not exhibit DIF.

Equation (11.2) shows an IRT model known as the “facets model”, in that the
term Dgi is a factor influencing the probability of success, in addition to the typical
item difficulty and person ability parameters. See Chap. 13 for more information on
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facets models. In this case, Dgi is a term attributable to group membership of the
respondents. In other facets models, additional terms in the probability function
could be rater harshness, item format or other factors influencing the probability of
success, over and above the typically modelled ability and item difficulty. In the
context of DIF analysis, Dgi is often referred to as “item-by-group” interaction term.

The data set used for IRT method 1 is re-analysed using IRT method 2 where an
item-by-country interaction is added to the model. The estimates of this interaction
term are given in Table 11.3. In this example, there are two groups (two countries),
so the interaction terms are D1i and D2i, where D1i refers to “item-by-Germany”
interaction and D2i refers to “item-by-Taiwan” interaction. For model identification,
D1i þD2i ¼ 0 since the average item difficulty has already been modelled by di in
Eq. (11.2). Consequently, D1i ¼ �D2i, so that only D1i is estimated, and D2i is set
to �D1i. Table 11.3 shows estimates D1i and its associated standard errors. In this
case, it is the item interaction term for Germany. For example, for item 1, the
average item difficulty, d1, needs to subtract 0.19 to reflect the item difficulty for
Germany, while the item difficulty for Taiwan is d1 þ 0:19 for this item.

To calculate the magnitude of DIF, the difference between the item difficulty for
Germany and item difficulty for Taiwan is computed, that is, D1i � D2i. For item 1,
this is �0:19ð Þ � 0:19ð Þ ¼ �0:38. For item 2, the DIF magnitude is
0:26� �0:26ð Þ ¼ 0:52. Consequently, the magnitude of DIF is twice the magni-
tude of the values in the second column (interaction term) in Table 11.3 (i.e., 2D1i).
To carry out a statistical significance test, the magnitude of the DIF is divided by its
standard error. Since the magnitude of DIF is 2D1i, the standard error is also
2� s:e D1ið Þ. Therefore, 2D1i

2�s:e: D1ið Þ ¼ D1i
s:e: D1ið Þ. That is, the ratio between D1i and its

standard error (columns 2 and 3 in Table 11.3) can be regarded as a z-statistic. Note
that in Table 11.3, the standard error for the last item is not available. This is
because the interaction term for the last item is not estimated, but set to the negative
sum of the other interaction terms so that the average across all items is zero. This is
necessary for model identification. The standard error for the last item should have a
similar magnitude as for other items (Table 11.3).

To compare IRT method 1 and method 2, a plot of the DIF estimates from the
two methods is shown in Fig. 11.4.

It can be seen from Fig. 11.4 that the DIF estimates from IRT methods 1 and 2
are essentially the same. IRT method 2, however, has smaller standard errors for
DIF estimates than IRT method 1.

How to Deal with DIF Items?

When DIF items are detected, there are three possible approaches to deal with the
items: remove the DIF items, split DIF items as different items for different groups,
or do nothing and leave the items in the test. The following discusses each
approach.
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Table 11.3 Estimates of item-by-country interaction term

Item Item-by-Country interaction term (Germany) s.e.

1 −0.19 0.032

2 0.26 0.03

3 0.14 0.028

4 0.19 0.028

5 −0.14 0.029

6 −0.35 0.028

7 0.20 0.029

8 0.11 0.029

9 0.49 0.029

10 −0.15 0.028

11 0.30 0.028

12 −0.14 0.028

13 −0.17 0.029

14 0.30 0.028

15 −1.01 0.029

16 −0.50 0.029

17 0.46 0.028

18 0.40 0.028

19 0.31 0.028

20 −0.52 0.029

21 0.19 0.029

22 0.21 0.028

23 0.30 0.03

24 −0.09 0.028

25 −0.69 0.031

26 0.27 0.029

27 0.24 0.028

28 0.29 0.028

29 0.24 0.028

30 −0.09 0.029

31 0.22 0.028

32 0.03 0.03

33 −0.27 0.028

34 −0.52 0.028

35 −0.05 0.03

36 −0.08 0.028

37 0.24 0.028

38 0.35 0.03

39 −0.28 0.032

40 0.28 0.028
(continued)
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Remove DIF Items from the Test

When there are many test items available for selection into a final test, there is the
option of removal of items from a pilot test. Items may be removed because of poor
psychometric properties, such as low discrimination, overly easy or difficult items,
and items with DIF. Regarding the removing of DIF items, the following points
should be considered.

First, the identification of DIF items can be based on statistical significance test
or effect size, or both, as discussed earlier. One needs to be aware that statistical
significance tests are greatly influenced by sample size, so that more DIF items will
be detected when the sample size is large. In real-life, nearly all items will exhibit
DIF when the sample is large enough to detect small violations to the model.

Second, DIF is a relative notion. An item exhibits DIF with regard to other items
in the test, in very much the same way as item fit, as discussed in Chap. 8. That is,
DIF occurs when a group’s performance on an item is not as expected based on their
performance on other items. So when items are removed from a test owing to DIF,

Table 11.3 (continued)

Item Item-by-Country interaction term (Germany) s.e.

41 0.36 0.029

42 −0.38 0.028

43 −0.50 0.028

44 −0.36 0.028

45 0.19 0.028

46 −0.10 0.034

47 −0.21 0.031

48 0.26 0.028

49 −0.54 NA

Fig. 11.4 Comparison of DIF estimates using IRT methods 1 and 2
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items not showing DIF in the original item set may now show DIF since the item set
for checking for DIF is now a different set. Further, if we use 5% level to identify
DIF items via significance tests, there will nearly always be items showing statis-
tically significant DIF, in the same way that there are always 5% of people outside
the middle 95% region of any distribution. Consequently, one needs to be cautious in
using any procedures for trimming off DIF items in stages such as the “purification
process” of sequentially removing items and re-scaling to identify a set of DIF items.

Depending on the order of removal of items, the final set of remaining items may
vary, because DIF is estimated in reference to the items remaining in the test and
different items may be identified as DIF items, should the set of items in the test
changes.

For this reason, sometimes there are procedures that identify a set of reference
items deemed not to have DIF. Such decisions are made based on substantive
reasoning through examinations of the items, and not through statistical tests. Based
on the reference set of DIF-free items, we can make judgements about which items
are actual DIF items. Consequently, it may not always be the case that items
showing statistically significant DIF in favour or against a group are candidate
items to be removed. It may be the case that in a test, most items work against a
particular group of respondents, or most items are in favour of a particular group,
with regard to the reference set of DIF-free items. However, in the absence of a
reference set of DIF-free items, we need to make the assumption that the overall test
is not biased against or in favour of a group of respondents, but individual items
may be. So in choosing items for a final test, one would avoid choosing items
predominantly against or in favour of a particular group of respondents.

Split DIF Items as Two New Items

Sometimes DIF analysis is a post hoc procedure after a test has already been
administered. Therefore there is no chance of modifying items and re-administering
a test, or selecting items to form a new test. In such circumstances, removing DIF
items will results in loss of information collected. One way to retain the information
collected but at the same time to prevent model violation is to treat DIF items as two
different items for two groups of respondents. For example, if item 1 is a DIF item,
then this item may be called item 1a for group 1 respondents and item 1b for group
2 respondents. When scaling is carried out, item 1a and item 1b are treated as two
different items.

Retain DIF Items in the Data Set

Frequently, when there is no specific set of DIF-free items as a reference, there is an
implicit assumption that the overall test is not biased against any particular
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group. Under this assumption, retaining DIF items will not significantly change the
estimated abilities of the respondents, because there will be DIF items favouring as
well as against each group of respondents so that it “evens out”. For this reason,
when there are no DIF-free items as a reference set, DIF tests will not be able to
detect “real bias” of a test. DIF only detects item-level differences with the
assumption that there is no overall bias.

While the ability estimates will not change a great deal when DIF items are
retained, the descriptions of skills progression will be inaccurate. That is, the
estimated difficulty of a DIF item will not reflect the real difficulty for either group
of respondents. In IRT method 2, we need to add the adjustment term, Dgi, to obtain
the item difficulty for each group.

One rationale for retaining DIF items in a test is that it is a fact of life that DIF
exists, and removing these items will not reflect what is happening in the
real-world. In fact, some argue that DIF items provide useful information for
teaching and learning, since teaching programs can be tailored for different groups
of respondents, after finding out relative strengths and weaknesses of student
groups. For example, in a study it has been found that girls generally do not perform
as well as boys in spatial mathematics while they perform better than boys in the
numbers strand of mathematics. In reading, boys perform as well as girls in factual
texts but less well in making inferences from texts. If tests do not contain DIF items,
then these differences will not be found.

Cautions on the Presence of DIF Items

Having said that there are merits in not removing DIF items in tests, there are some
cautions regarding having DIF items in tests. Clearly, when items have DIF, it
becomes possible to manipulate test compositions to favour or to be against a
particular group. In the example above, it is possible to manipulate the composi-
tions of different text types in a reading test so that either boys or girls will perform
relatively better (or worse) than they would, had there been a balanced composition
of text types. That is, the existence of DIF items opens up the possibility of
manipulation of test results. Consequently, all tests should undergo not only DIF
analysis through statistical procedures, but also substantive content analysis by
experts to determine whether a test may be biased against a particular group.

Further, when test results hinge on a small set of test items, such as equating
between tests using link items, or state-wide tests using only around 40 items, it is
crucial that item bias due to DIF is carefully examined. If many of these items have
DIF, they could have considerable influence on the results. Because the number of
items is small, DIF effects in favour and against a group is not likely to “even out”.
Wu (2010) showed that DIF exists in PISA and DIF items used for linking between
PISA cycles can significantly change country mean scores in PISA.
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A Practical Approach to Deal with DIF Items

For a practical approach to deal with DIF items, the first step is to use statistical
analysis to identify DIF items. DIF items should not be automatically deleted
without an examination of item content to look for theoretical explanations for the
presence of DIF. Is the item testing the construct intended? For example, if migrant
students find a mathematics word-problem difficult, it could be because of a lack of
language skills than a lack of mathematics skills on the part of the students. Is this
intended? Is the ability of reading in the construct being tested? On the other hand,
if girls do not perform as well as boys do for a spatial mathematics problem, but
spatial ability is part of the mathematics construct being assessed, then one may
want to retain the item.

Clearly, items with very large DIF are candidates for deletion, for example, item
15 in Table 11.2 where the difference in item difficulties for the two countries is
more than 2 logits. Should this item be selected for equating purposes for future
cycles of PISA, it could have a significant effect on results for the two countries.
A closer examination of this item will be helpful.

More generally, it is advisable to begin examining items with the largest DIF
magnitudes, and eliminate items or split items as necessary, and progressively work
back for items with decreasing magnitudes of DIF. But do not expect to have a final
set of DIF-free items. The “stopping rule” for accepting items with some DIF is
probably best decided by practicality, that is, in the end, you need to have sufficient
number of items to run a test, but bearing in mind that DIF items can distort results.
Overall, statistical procedures and substantive reasoning should be used together to
deal with DIF items.

Summary

This chapter explains the concepts of differential item functioning (DIF), presents
some methods for detecting DIF, and provides suggestions on how to deal with DIF
items.

DIF occurs when respondents with the same ability have different probabilities
of success on an item. DIF is caused by different strengths and weaknesses of
respondents owing to a number of possible factors, including different curriculum,
different personal disposition, experience, culture, language and many other rea-
sons. It is a fact of life that DIF exists in many tests for different groups of
respondents. There are many statistical procedures to detect DIF. Three methods are
introduced and compared in this chapter. The detection of DIF does not mean that
DIF items are necessarily problematic, but cautions must be taken when tests are
short, or when link items are selected for equating purposes to ensure that any
presence of DIF does not threaten the assessment results. It is noted that statistical
procedures for the identification of DIF items should be complemented with
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theory-driven explanations of the occurrence of DIF. Items should not be removed
based on statistical decisions alone. An understanding of the reasons for DIF is also
essential for achieving fair tests.

We note that the DIF detection methods introduced in this chapter only focuses
on item difficulty parameters. This is the case for the Rasch model where item
difficulty parameters are estimated. For 2PL IRT models where discrimination
parameters are also estimated, DIF detection may involve both the item difficulty
and discrimination parameters. That is, an item may have different discrimination
power for two groups of respondents, in addition to different item difficulty
parameters. This is beyond the scope of this book.

Hands on Practise

(1) The following table shows the percentages correct of PISA 2009 mathematics
items for Shanghai and Australia (Table 11.4).

The following shows a plot of these percentages correct.

Given the information provided in the table and the graph, discuss the relative
performances of Shanghai and Australian students, and give your impressions of
the presence/absence of DIF.

Discussion Points

(1) Why is it that the existence of DIF items would violate the assumptions of the
IRT model applied to the test?

(2) Do you agree that the ability estimates will not change a great deal when DIF
items are retained? Why or why not?
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Table 11.4 Percentages
correct for Shanghai and
Australia PISA Mathematics
items

Item Percentage correct

Shanghai Australia Difference

M033Q01 74.1 78.6 −4.5

M034Q01T 52.5 43.8 8.7

M155Q01 79.4 73.2 6.3

M155Q04T 67.7 61.5 6.2

M192Q01T 63.0 47.1 15.9

M273Q01T 70.3 52.3 18.0

M406Q01 62.3 33.4 29.0

M406Q02 62.9 20.5 42.3

M408Q01T 42.9 57.1 −14.2

M411Q01 69.4 52.0 17.3

M411Q02 70.4 50.1 20.3

M420Q01T 61.8 65.7 −4.0

M423Q01 88.5 84.6 3.9

M442Q02 57.1 43.0 14.1

M446Q01 86.1 75.3 10.7

M446Q02 40.0 8.7 31.3

M447Q01 81.9 71.1 10.8

M464Q01T 61.4 27.8 33.6

M474Q01 81.3 73.7 7.6

M496Q01T 68.2 58.2 10.0

M496Q02 82.6 67.8 14.8

M559Q01 86.2 64.7 21.5

M564Q01 71.5 46.4 25.1

M564Q02 72.5 46.8 25.7

M571Q01 58.2 51.9 6.3

M603Q01T 54.6 43.3 11.3

M603Q02T 59.3 31.5 27.8

M800Q01 96.8 85.6 11.2

M803Q01T 44.3 33.1 11.2

M828Q01 64.8 43.5 21.2

M828Q02 73.5 60.0 13.6

M828Q03 53.6 29.9 23.7

Average 67.5 52.6 14.9
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Exercises

Q1. Indicate whether you agree or disagree with each of the following statements

A statistical DIF analysis did not detect any DIF item in a test. We can be
assured then the test is a fair test for the groups of respondents for which the
DIF analysis was performed

Agree/disagree

To determine if a test is a fair test, count the number of DIF items in a test
using a statistical DIF detection procedure. If there are considerably more
items favouring one group than the other group, then the test is biased

Agree/disagree

A test is biased if the average performance of one group of respondents is
considerably higher than for other groups

Agree/disagree

When sample size increases, the magnitudes of DIF (difference in item
difficulties for two groups of respondents) will tend to increase

Agree/disagree

When sample size increases, more items will tend to show statistically
significant DIF estimates

Agree/disagree
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Chapter 12
Equating

Introduction

When different tests are administered, the results from the tests are not directly
comparable. A process called Equating is needed for comparing results from dif-
ferent tests. We first explain the reasons why test results are not directly compa-
rable, followed by the presentation of some equating procedures as examples.

When a person performs well on a test, we do not know whether it is because the
person is very able, or because the test is easy. All we can say is that the person
found a particular test easy. That is, the test is easy relative to the person’s ability.
To make statements about a person’s ability level in more absolute terms (than
relative terms), we need some external references and contexts, such as the tests are
judged (e.g., by content experts) to be at certain standards (e.g., suitable for
10 years old students), or the person’s standing in a reference group (e.g., of the
Grade 5 students) so that high or low ability can be interpreted in a context rather
than that a respondent just did well (or poorly) on a test.

Mathematically, we can see this confounding between person ability and item
difficulty, as in Eq. (7.1)

p ¼ P X ¼ 1ð Þ ¼ exp h� dð Þ
1þ exp h� dð Þ ð12:1Þ

where the probability of success is a function of the difference between ability and
item difficulty. The probability is high when the difference is large. So when a
person is successful on an item, we can postulate that the person’s ability is likely
higher than the item difficulty, but we do not know the actually values of ability and
item difficulty in any absolute terms, as both can be somewhat higher or lower.

When ability is conceived as a quantity on a line, where the line goes from
negative infinity to positive infinity (�1 to þ1), the line has no labels on it to
indicate where zero is, or how wide a unit on the line might mean. That is, the
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ability line has no lower bound or upper bound, nor any particular unit, other than
for comparing relative high and low between people, between items, and between
people and items. Therefore, when estimating respondents’ abilities and item dif-
ficulties, we can use any part of the line to model item difficulties and person
abilities. To avoid the problem of obtaining multiple possible estimates of abilities
and item difficulties, an arbitrary location on the line is often chosen as the zero
point, and the scale unit is also arbitrarily chosen when estimating abilities and item
difficulties. Technically, this is referred to as model identification by setting con-
straints to the solutions of the estimation equations.

As a convention, the average item difficulty across all items or the average
ability of all respondents can be set as the zero point of the ability scale. This sets
the point of reference for the locations on the line representing ability and item
difficulty measures. For the unit of scale of the ability line, it is typically set by
assigning “1” to the scale parameter of the Rasch model. That is, in the more
general form of the item response function (i.e., the 2PL model discussed in
Chap. 10)

p ¼ P X ¼ 1ð Þ ¼ exp a h� dð Þð Þ
1þ exp a h� dð Þð Þ ð12:2Þ

the scale parameter, a, is set to 1, so Eq. (12.2) become Eq. (12.1) for the Rasch
model. Setting a to 1 fixes the unit of the ability scale. There is no particular reason
why a needs to be set to 1. It can be set to any number. In the Hands-on practice of
Chap. 7, we have shown that sometimes a is set to 1.7. For 2PL models, the unit of
the scale can be set by fixing the variance of the abilities of respondents to 1 (or to
any fixed number), or by setting the sum of the scale parameters ai across all items
to a fixed number, such as the maximum possible score on the test. In this way, the
location and scale of the ability line can be (arbitrarily) fixed and a unique set of
parameter estimates can be obtained.

Given that the location and scale of the ability measures are arbitrarily fixed, the
comparability of the results from two test administrations depends on how the
location and scale are determined. For example, if we set the mean of the item
difficulties of each test to zero to define the location of the scale, then the zero
locations from these two tests are not comparable if the two tests do not have
identical items. So to align the locations of measures from two tests, we need to at
least have some common items across the two tests to give us a basis for com-
parison. Consequently, it is really important to realise that if any analyses are to be
made to measure trends in student performance or growths, one must design the test
instruments to take into account of the need of common items or other mechanisms
for equating tests. If equating has not been well planned before test administration,
it may well be impossible to link between tests and make comparisons of test
results.

228 12 Equating

http://dx.doi.org/10.1007/978-981-10-3302-5_10
http://dx.doi.org/10.1007/978-981-10-3302-5_7


Overview of Equating Methods

In this section, we explain the rationales behind equating methods. Our focus in this
chapter is on equating the locations of ability scales, and not so much on equating
the scale factor of ability scales. Under the Rasch model, there is an assumption that
all items in a test have the same discrimination power [i.e., the same a parameter in
Eq. (12.2)]. If this assumption is met, there is then no need to equate the unit of the
ability scale, since the unit should be the same if the tests under comparison all
measure the same latent trait. In practice, this assumption is of course not likely to
be met. We discuss the violations of this assumption later in this chapter. We also
stress that the equating methods presented in this book are by no means compre-
hensive. For a more complete discussion on equating methods, see Kolen and
Brennan (2004).

Common Items Equating

If two tests have some common items, then the common items can be used to align
the two tests. Common items in tests are also known as link items. Formally, such a
design is known as common-item non-equivalent groups design (Kolen and
Brennan 2004) where the two tests containing common items are administered to
different groups of respondents. There are a number of ways to perform equating
using common items. We discuss the shift method, anchor method and joint cali-
bration method. However, before the common items are used for linking tests, the
items must be checked that they perform in the same way in both tests (termed item
invariance in this chapter). It is possible that an item may change across different
test administrations. For example, if curriculum has changed, the change could
affect the item difficulty of an item over time. If DIF exists (see Chap. 11), an item
may have different difficulties for two groups of respondents. So even two items are
identical, they may not have the same difficulty in different test administrations.
Consequently, before using common items for equating, the items should first be
checked for item invariance, as described below.

Checking for Item Invariance

We use an example data set to illustrate the procedures for checking for item
invariance in terms of item difficulty measures. In this data set, two different tests
containing common items were administered three years apart. We use the term
common items and link items interchangeably in this chapter. The tests were cali-
brated independently. We will use the term “free calibration” to refer to the esti-
mation of item parameters based on a test alone and not linked to any other test
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results. Table 12.1 shows the item parameters of the common items when the tests
were calibrated “free”.

Two observations can be made from Table 12.1. First, the average item diffi-
culties of the common items from the two tests are not the same (−0.398 and
−0.555 respectively). This may happen, for example, if the calibration of each test
makes the average item difficulties zero as a constraint, then the average of the
common items may not be zero, as it depends on what other items are in the tests.
Second, the relative difficulties of the common items across the two administrations

Table 12.1 Item difficulties
of common items

Item number 2010 item difficulty 2013 item difficulty

1 −1.392 −1.835

2 −0.189 −0.586

3 −1.087 −1.216

4 −0.812 −1.285

5 0.599 0.666

6 −0.664 −0.952

7 0.837 0.561

8 −0.406 0.514

9 0.641 0.634

10 −0.918 −0.937

11 −0.93 −0.879

12 1.467 1.435

13 −0.393 −0.472

14 −0.766 −0.904

15 −1.464 −1.88

16 −0.566 −0.901

17 −0.798 −1.219

18 0.13 0.418

19 −1.109 −1.085

20 −0.133 −0.164

21 0.888 0.945

22 −2.626 −2.874

23 1.252 0.136

24 0.982 0.45

25 −0.459 −0.45

26 −0.312 −0.51

27 −1.411 −1.891

28 0.348 0.3

29 −0.356 −0.417

30 −1.693 −1.709

31 −0.746 −0.909

32 −0.665 −0.748

Average −0.398 −0.555
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are correlated, as can be seen from a scatter plot of the two sets of item difficulties.
Figure 12.1 shows a plot of the 2010 item difficulties against the 2013 item diffi-
culties for the common items.

Generally, difficult items in 2010 are also difficult in 2013, and easy items are
easy in both test administrations. However, two items appear further away from the
general trend line in Fig. 12.1, namely, item 8 and item 23 (circled). That is, a
visual inspection of the performance of the common items indicates that item 8 and
item 23 may not be invariant in that the item difficulties may have changed from
2010 to 2013.

Visual checks of item invariance should always be carried out, as it provides a
check and assurance of whether the common items are suitable for equating pur-
poses. The visual invariance check can be refined to formally test for statistical
significance for the invariance of item parameters.

As the average item difficulties of the common items are not equal across the two
test administrations, the magnitudes of the item difficulties are not directly com-
parable other than through plotting a scatter graph. To formally check the invari-
ance of item parameters, the first step is to align the item parameters so that the
2010 and 2013 sets of common items have the same average value. This can be
done by adding the difference between the averages �0:398� ð�0:555Þ ¼ 0:157
to the 2013 estimates. That is, the average for the 2013 common items is lower than
the average for the 2010 common items by 0.157. So if all 2013 common items are
added by 0.157, the average of the 2013 common items will be the same as the
average for the 2010 common items. Table 12.2 shows the adjusted 2013 item
difficulties for common items (column 3 in the table) to the 2010 scale where every
2013 item difficulty in Table 12.1 is added 0.157 which is the difference between
the average item difficulties in Table 12.1.

In Table 12.2, the difference between the 2010 and 2013 item difficulties (col-
umn 4 in table) are computed, after placing the 2013 item difficulties on the 2010
scale. Further, a standardised difference can be computed by dividing the difference
in difficulties by its standard error. The standard error for the difference is computed
as the square root of the sum of squares of the standard errors for the 2010 and 2013

Fig. 12.1 2010 item
difficulties versus 2013 item
difficulties for the common
items
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item parameters. For example, for item 1, the standardised difference is computed as
0:286ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0342 þ 0:0392
p ¼ 5:53.

The standardised differences can be regarded as a z-score, so that values outside
the range of −2 to 2 are statistically significant. As for the discussions on DIF about

Table 12.2 Item difficulties of common items with 2013 difficulties on 2010 scale

Item
number

2010 item
difficulty

2013 item
difficulty
adjusted

Difference S.E.
2010

S.E.
2013

Standardised
difference

1 −1.392 −1.678 0.286 0.034 0.039 5.53

2 −0.189 −0.429 0.240 0.032 0.036 4.99

3 −1.087 −1.059 −0.028 0.033 0.037 −0.56

4 −0.812 −1.128 0.316 0.032 0.037 6.47

5 0.599 0.823 −0.224 0.032 0.037 −4.57

6 −0.664 −0.795 0.131 0.032 0.036 2.73

7 0.837 0.718 0.119 0.032 0.037 2.44

8 −0.406 0.671 −1.077 0.027 0.029 −27.17

9 0.641 0.791 −0.150 0.032 0.037 −3.06

10 −0.918 −0.780 −0.138 0.032 0.037 −2.81

11 −0.93 −0.722 −0.208 0.032 0.036 −4.31

12 1.467 1.592 −0.125 0.034 0.041 −2.34

13 −0.393 −0.315 −0.078 0.031 0.036 −1.63

14 −0.766 −0.747 −0.019 0.032 0.037 −0.38

15 −1.464 −1.723 0.259 0.034 0.04 4.94

16 −0.566 −0.744 0.178 0.032 0.036 3.70

17 −0.798 −1.062 0.264 0.032 0.037 5.40

18 0.13 0.575 −0.445 0.025 0.029 −11.61

19 −1.109 −0.928 −0.181 0.032 0.037 −3.69

20 −0.133 −0.007 −0.126 0.031 0.036 −2.64

21 0.888 1.102 −0.214 0.032 0.038 −4.30

22 −2.626 −2.717 0.091 0.038 0.046 1.53

23 1.252 0.293 0.959 0.034 0.036 19.37

24 0.982 0.607 0.375 0.033 0.036 7.69

25 −0.459 −0.293 −0.166 0.031 0.035 −3.54

26 −0.312 −0.353 0.041 0.031 0.035 0.88

27 −1.411 −1.734 0.323 0.034 0.04 6.16

28 0.348 0.457 −0.109 0.032 0.036 −2.26

29 −0.356 −0.260 −0.096 0.032 0.035 −2.02

30 −1.693 −1.552 −0.141 0.034 0.039 −2.72

31 −0.746 −0.752 0.006 0.032 0.036 0.13

32 −0.665 −0.591 −0.074 0.032 0.036 −1.53

Average −0.398 −0.398
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statistical significance and effect size, when sample size is large, most standardised
differences shown in Table 12.2 will be statistically significant. Thus one may look
for outliers such as items 8, 18 and 23 where the standardised differences are much
larger than others, rather than where the standardised difference is outside the
−2 and 2 range. Nevertheless, deciding on the items to remove from the common
item pool is a somewhat subjective process. The results are also likely to differ if
items are removed progressively and scaling is re-run after each item removal,
similar to the discussions about DIF item removals in Chap. 11. In practice, we
have often tried a number of different criteria for the removal of items from the
common item set and compared the results. It may also be helpful to have different
data analysts to independently select items as link items for the purposes of
equating, and then compare the results. The bottom line is that there is no one
correct way of selecting link items.

Number of Common Items Required for Equating

When the number of common items is few, the removal of a few items for linking
(or the selection of link items) will have considerable effect on the equating results.
We recommend a minimum of 30 link items for equating purposes, and more if
possible. If the purpose of equating is to put different grade level students’ results
on the same scale, one should be aware that a yearly increase (i.e., between two
adjacent grades of students) in proficiency is of the order of 0.5 logit (about half a
standard deviation of the student ability distribution for a year level) based on our
experience in dealing with educational type of data (e.g., see Wu 2010). If the
purpose of equating is to monitor trend from a calendar year to another calendar
year for students in the same grade, one needs to be aware that the average cohort
change across time is typically very small (perhaps less than 0.05 logit, or less than
one month’s of growth), so that we need very accurate measures of mean scores.
Errors due to equating are often too large for the purposes of measuring trends.
Many link items are needed in that case.

Factors Influencing Change in Item Difficulty

As discussed in previous sections, item difficulty for an item can change owing to
curriculum change, exposure of the item and many other reasons. One factor that
impacts on item difficulty is the item position in a test. An item placed at the
beginning of a test will likely be easier than the same item appearing at the end of a
test. Even for a 60-minute test, the so-called fatigue effect is often present. So if a
link item is placed at the beginning of one test, while it is placed at the end of
another test, the item will likely have different item difficulties. Thus if this item is
used as a link item, it will threaten the equating of the two tests. The item position
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effect has been discussed extensively in Chap. 3. When equating is undertaken, the
test design should take into account of item position effect and how test design can
mitigate some of the problems. In particular, rotated test booklet design can allow
an item to appear in different positions in different test booklets. If rotated test
booklets design is not used, then link items should be placed in matching positions
in different tests.

Shift Method

In the previous section on procedures for item invariance checks, it is mentioned
that the 2013 item parameters are placed on the 2010 scale by computing the
difference in the means of item parameters for 2010 and 2013 common items, and
adding the difference to all 2013 item parameters. Therefore, one simple method of
equating is the method of shift, where two tests are calibrated separately, and the
item and ability parameters for one test is placed on the scale of another test by a
constant shift, the magnitude of which is computed as the amount needed to make
the means of the common item parameters between the two tests the same.

In the above example, if the three problematic items are removed from the
common item set (i.e., items 8, 18, 23) after the item invariance checks, the mean of
the 2010 common items is −0.473, while the mean of the 2013 common items is
−0.649. Therefore, to equate the 2013 results onto the 2010 scale, all item
parameters (not just the common item set) and all ability parameters need to be
added the value of 0.176 (= −0.473 − (−0.649)). That is, all 2013 results are shifted
by a constant (0.176 in this case).

Mathematically, we may represent the equating transformation as

T 0
2 ¼ T2 þ c

¼ T2 þ l1 � l2ð Þ
¼ T2 � l2ð Þþ l1

ð12:3Þ

where T2 represents the calibrated (item and ability) parameter values of test 2. The
symbol c represents the constant to shift the T2 values, where c is equal to the
difference between the mean values of calibrated common item sets (mean of test 1
common items minus mean of test 2 common items, l1 � l2). T

0
2 represents the

transformed parameter values for test 2. Mathematically, we can think of the
transformation as a two-step process. First, we subtract the mean of test 2 common
set items from T2 (so that the common item set for test 2 will have a mean of zero),
and, in the second step, we add the mean of test 1 common item set to the result
from step 1 (so that the mean of the common item set for test 2 will equal to the
mean of common item set for test 1).
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Shift and Scale Method

The method described above shifts the locations of items and respondents. The
method does not take into account of whether the standard deviations of the
parameters of the common item set are equal for the two tests. That is, whether the set
of items provides the same discriminating power for both tests. Under the assumption
that the items of the two tests fit the Rasch model and the two tests are testing the same
construct, the standard deviations of the common item sets for both tests should be
equal, so one may argue that there is no need to use any multiplying factor to
transform the parameters, and that adding a constant to the parameters is sufficient for
equating two tests. Since this is an assumption, this assumption ought to be checked
in any case. For our example, the standard deviation of the common set of items for
2010 is 0.91, and 0.97 for 2013. This suggests that the 2013 set of items may spread
out the respondents more than the 2010 set of items do. That is, in addition to a shift of
the item parameters, the ability scale may need to be multiplied by a scale factor to
spread out the respondents more, or less.

A variation to the shift method is to transform both the scale and the location of
the item parameters. In the case where the standard deviations of the common items
for two tests are different and are taken into account in matching test 2 to test 1, the
equating transformation is

T 0
2 ¼

T2 � l2ð Þ
r2

r1 þ l1 ð12:4Þ

We can think of Eq. (12.4) as a four-step process. First, adjust test 2 parameters
by subtracting the mean of the common item set of test 2. Second, divide the result
by the standard deviation of test 2 common items. The combined effect of the first
two steps is equivalent to computing a z-score (standardised score) that has a mean
of 0 and a standard deviation of 1. The third step multiplies the standard score by
the standard deviation of test 1 common items, and the fourth step adds the mean of
test 1 common items. The third and fourth steps convert the previously computed
z-score to a statistic with mean of l1 and standard deviation of r1.

Note that we have not provided guidelines as to when Eq. (12.3) should be used
and when Eq. (12.4) should be used. In the case of our example where the standard
deviations differ somewhat (r1 ¼ 0:91, r2 ¼ 0:97), it is not immediately clear which
equating transformation should be used. The standard deviations of the common
item sets can be quite sensitive to outlying observations, (or extreme values) par-
ticularly when the number of common items is small (say, fewer than 30). For
example, in our example, if the lowest item parameter in test 2 is −2.2 instead of the
observed −2.9, the standard deviation will change from 0.97 to 0.93. As mentioned
in previous sections, item position effect alone could change item parameter values
considerably, and in turn affect the mean and standard deviation of the common item
sets.
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In practice, different equating methods should be carried out and decisions can
be made after comparing the results from different approaches. Unfortunately, in
real-life, data are often messy, and it is not always clear which analysis method is
the best one to apply. This is particularly relevant in equating tests. In one of our
projects, seven different equating methods produced seven different sets of results.
The instability of the results can be traced back to poor test design in terms of the
placement of items and the number of common items. Consequently, careful
planning at the test preparation stage is essential for achieving valid and reliable
results in making inferences across multiple tests.

Shift and Scale Method by Matching Ability Distributions

Another variation to the shift and scale method is to match the ability distributions
rather than to match the item parameter distributions. For the example given above,
two tests with common items are administered in 2010 and 2013. IRT scaling is
carried out for each test separately so that two sets of item parameters are produced.
A re-scaling of the 2010 data using 2013 item parameters for the common items is
carried out, where the item parameters are fixed at the 2013 calibrated values. The
result of this new 2010 calibration produces ability estimates different from the
original 2010 calibration, since different item parameters are used. Let l and r
denote the mean and standard deviation of the ability distribution from the original
2010 calibration, and let l0 and r0 denote the mean and standard deviation of the
ability distribution from the second calibration where 2013 item parameters are
used to calibrate 2010 data. Since, 2010 data are used in both calibrations, the mean
and standard deviation from both calibrations should be matched. The following
shows a transformation that can make the mean and standard deviation of the ability
distribution from the second calibration match that of the original calibration of the
2010 data.

T 0 ¼ T � l0ð Þ
r0

rþ l ð12:5Þ

where T is any calibrated parameter using the 2013 item parameters.

Equation (12.5) is very similar to Eq. (12.4), where a z-score is first formed ( T�l0ð Þ
r0 ),

and then the z-score is transformed to have a standard deviation of r and mean l.
Once this transformation is derived, we can apply the transformation to the 2013
calibration. That is, Eq. (12.5) is applied to all 2013 calibrated item and person
parameters to place them on the 2010 scale.
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Anchoring Method

Another way to place 2013 results on the 2010 scale is to use 2010 item parameters
for the common items when 2013 data are scaled. That is, when scaling the 2013
data, the item parameters for the common items in 2013 are not estimated but fixed
(or known as anchored) on the values from the 2010 scaling. All other items that are
unique to the 2013 test are scaled relative to the common item set, so these new
items will be placed on the 2010 scale. Note that in this case, no other constraint
should be placed. That is, we should not set the mean item difficulty or mean ability
to zero, as these constraints may not be compatible with constraining the common
items to fixed item parameters.

The anchoring method differs from the shift method in that every common item
in the 2013 test is fixed to the 2010 parameter value, while in the shift method, only
the mean of the set of 2013 common items are made equal to the mean of the 2010
common set so that individual items in the common item set may not have equal
parameter values. Consequently, the anchoring method applies more stringent
constraints. The shift method allows for some leeway for the item parameters to
change between two test administrations, as long as the set of common items have
the same mean value across the two tests. This may be a more realistic scenario
where items may have small changes between test administrations, as item positions
in tests may not be identical. There could also be many other reasons why item
parameters may not be identical between two test administrations. Typically, the
two tests being equated have different cohorts of students who might bring with
them different background knowledge. From these points of view, the shift method
would seem preferable to the anchoring method, as it allows for some variation in
item parameters.

However, there are situations where the anchoring method may be preferred to
the shift method. For example, if the 2013 test has a smaller sample of respondents
and the calibration of 2013 data is deemed less reliable, while the 2010 item
parameters have been well established, it may be preferable to use the 2010 item
parameters as anchors when calibrating 2013 data. In practice, the shift and anchor
methods are not expected to make a great deal of difference to the results. What is
important is the number of common items and the invariance characteristic of the
common items. Strictly speaking, if the items are invariant across two test
administrations, then the shift and anchor methods should produce very similar
results.

The Joint Calibration Method (Concurrent Calibration)

Another easy way to equate between two tests with common items is to perform a
joint calibration of both sets of test data. This is also known as concurrent cali-
bration. That is, the data from both tests are combined, with the common items
aligned in the combined data set, as illustrated by Fig. 12.2.
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To combine the data sets from two tests with common items, append one data set
to another data set as shown in Fig. 12.2, but make sure that the data for the common
items are matched so that both data sets contribute to the response data of the
common items. The shaded areas in Fig. 12.2 show the item responses. For the items
unique to each test (i.e., not common items), there will be missing responses in the
other tests (the unshaded spaces in Fig. 12.2). When data are combined as shown in
Fig. 12.2, the calibrated item parameters for the common items will be based on item
responses from both data sets, while the unique items in each data set are calibrated
in relation to the common item sets, so that the unique items from both tests are also
on the same scale, as these items are all linked to the common items.

While the joint calibration method may require a little preparation work for
combining the data sets, the equating process is easy since no additional transfor-
mation needs to be made: the IRT analysis already places all items on the same
scale. It should be noted, however, that item parameters produced from the joint
calibration utilise both data sets. This may or may not be desirable. As we men-
tioned in previous sections, there may be good reasons for retaining the item
parameters from a particular test, in which case the anchor or shift method may be
better.

Common Person Equating Method

In some situations, administered tests need to be released publicly. Under these
circumstances, no items from a previous test can be used as common items for
future tests because the items are already in the public domain. A number of
methods can be used for equating such tests. First, a common person equating
method can be used, where both tests are taken by a group of respondents. Thus the
relative difficulties of the items from two tests can be established when the same
group of people have taken both tests. Figure 12.3 shows the combined data
diagrammatically.

When common person equating is undertaken, some considerations should be
given to the selection of the respondents taking both tests. In some cases, the

Test 1 items Common 
items

Test 2 items

Test 1 
respondents 

Test 2 
respondents 

Fig. 12.2 Arrangement of
data from two tests with
common items for joint
calibration
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so-called “off-shore” equating has been used where respondents in another geo-
logical location are asked to take both tests. In other cases, students from a different
grade level for which the tests are targeted have been used as samples for equating.
In all these cases, care must be taken to ensure the sample selected for taking both
tests have the same student background characteristics as the respondents taking
individual tests. For example, if the students in the equating sample have schooling
with a different curriculum, then the relative item difficulties may be different from
those for students taking individual tests. These will threaten the accuracies of the
equating process.

Further, when tests are administered to the equating sample of students, the item
position effect should be considered. For example, if test 2 is always placed at the
end of test 1, then test 2 items will appear to be more difficult than they actually are.
One might consider the possibility of administering the two tests on separate days to
ensure that students are fresh when taking each test. In general, the equating study
should be carried under similar circumstances as the original tests, both in terms of
the selection of students for equating, and the test administration conditions. This
can be a challenge sometimes.

A variation to the common person equating method is to develop some “secure”
items (not released items) for equating purposes. A subsample of students taking
test 1 will also take the secure items. Similarly, a subsample of students taking test 2
will also take the same secure items. Thus the two tests can be linked through the
secure items.

Overall, there are many variations to equating methods. But the most important
consideration is to maintain item invariance in equating studies.

Horizontal and Vertical Equating

The terms horizontal and vertical equating have been used to refer to equating tests
aimed for the same target level of students (horizontal) and for different target levels
of students (vertical). For example, if a number of tests for grade 4 students are

Test 1 items Test 2 items

Test 1 
respondents 

Respondents 
taking both 
tests

Test 2 
respondents 

Fig. 12.3 Data structure for
common person equating
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administered, the equating of these tests is often known as horizontal equating. On
the other hand, if a test for grade 4 students and a test for grade 6 students are
equated, it is often known as vertical equating. There are many more challenges for
vertical equating than for horizontal equating. For example, common items between
a grade 4 test and a grade 6 test will likely be items that are more difficult for grade
4 students and easy for grade 6 students so that students from both grades can be
asked the same questions. As a result, frequently these common items are placed at
the end of the grade 4 test and at the beginning of the grade 6 test, so that item
position effect, as discussed previously, will be an issue in equating the tests.
Further, as the curricula for grade 4 and grade 6 students are different, there are
differences in terms of “opportunity to learn” between students from two different
grades. That is, a low performance of a grade 4 student on an item may not be
related to the low ability of the student, but the low performance may be attributable
to grade 4 students not having the opportunity to learn the topic being tested.

The challenges for vertical equating are especially pertinent for measures of
growth over time. For these reasons, some assessment programs do not make an
attempt to link between performances across different grade levels.

Equating Errors (Link Errors)

In the same way that standard errors are computed for estimated item parameters
and population parameters (such as mean ability scores of groups of respondents),
equating processes also contribute to the uncertainty of estimated statistics.
Frequently, the margin of error associated with the equating process, termed
equating error here (also known as link errors), has been ignored in many empirical
studies. In fact, equating errors are quite substantial, and they should be reported,
particularly when comparisons between tests are made (e.g., trends over time).

In the OECD PISA assessment, the equating error is computed in a relatively
simple way (see, e.g., OECD 2009). The idea is to capture the variability of esti-
mated item parameters in two different tests. We use our example data set in
Table 12.2 to illustrate the computation of equating error. Column 4 (headed
“Difference”) shows the differences between estimated item difficulty parameters in
two tests, when the two tests are aligned on the same scale. A standard error statistic
of these differences is computed. That is, the equating error is computed as the
standard deviation of these differences divided by the square root of the number of
items. (Note that in PISA 2006 and 2009, owing to the unit structure of the items,
some adjustments to the equating error are made. See PISA technical reports). The
equating error computed in this way reflects the amount of variation in item
parameters across two tests. If common items have identical estimated item diffi-
culties across two tests, then the equating error will be zero. In contrast, if items
vary in their difficulties from one test to another, then the equating error will be
large. The equating error is an indication of the amount of uncertainty caused by the
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sampling of items (for equating), similar to the uncertainty caused by the sampling
of students. Mathematically, the equating error can be expressed as

equating error ¼ standard deviation of di � d0i
� �

ffiffiffi
L

p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL

i¼1
di�d0ið Þ2

L�1

r
ffiffiffi
L

p ð12:6Þ

where L is the number of link items, di is item parameter for item i in test 1, and d0i
is the item parameter for item i in test 2 that has been aligned with test 1 (i.e., the
average item difficulties for both tests are equal so that

PL
i¼1 di � d0i

� � ¼ 0).
The magnitudes of equating errors are generally large (in comparison with trend

or growth estimates). In our example, if the three outlier items are removed in
Table 12.2, and the remaining 29 items are used as common items for equating, the
equating error is 0.038 logit. This translates to about 4 PISA score points, which is
about the magnitude of, or slightly larger than, the standard errors of country mean
scores in PISA. The equating errors in PISA vary between domains and between
years of comparison, but the magnitude is also around 4 PISA score points.

Additional Notes and References Michaelides and Haertel (2014) use a
bootstrap method to estimate the equating error due to the sampling of
common items. They note that such equating error will not become smaller as
respondent sample size increases, so this error can become the dominant
source of variability in assessment results.

Wu (2010) discusses the magnitude of measurement, sampling and
equating errors in large-scale assessments and draws cautions over these
errors.

More generally, sources of equating error can also come from the sampling
of respondents. Kolen and Brennan (2004) discuss in details the methods for
estimating the standard errors of equating due to the sampling of examinees.

How Are Equating Errors Incorporated in the Results
of Assessment?

Equating errors are systematic in the sense that if the shift constant is incorrectly
estimated, we may over- or under-estimate the ability and item difficulties by a
constant amount. If e is the error in the equating shift constant, then every
respondent’s ability is incorrectly estimated by e. If comparisons are made between
groups of respondents in one test, for example, between girls and boys in the 2013
test in our example, then all boys and girls will have the same equating error of e in
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their ability estimates, so that the difference between the mean scores between girls
and boys will not contain the e term as it is cancelled out in the subtraction between
the mean scores of the two groups. Consequently, it has been argued that for
comparisons between groups within one test, equating errors should not be incor-
porated. On the other hand, for comparisons between two different tests where
equating has been carried out, equating errors should be taken into account. The
technical reports of OECD PISA explain the treatment of equating errors in some
details (see, for example, OECD 2009).

Challenges in Test Equating

Test equating is complex, not just because of technical aspects of test equating, but
also because of real-life challenges of keeping test items invariant. For example,
on-going curriculum reforms occurring around the world will change emphases in
student learning, so that items will not remain the same in terms of difficulties, and
tests will not remain the same in terms of content balance. There is always a tension
between writing a test to reflect current student learning, and writing a test to
maintain the historic test construct for monitoring trends. In some cases, these
tensions cannot be reconciled. In the National Assessment of Educational Progress
(NAEP) program in the United States, for example, the test for monitoring trends is
separate from the test for monitoring current student performance.

For equating tests administered at the same time, there are also many challenges.
Item position effect has been discussed in previous sections. There have also been
suggestions that the sequencing of test items has an effect on the item difficulties.
For example, in the first cycle of OECD PISA, reading items always appeared
before mathematics and science items in a test booklet, as reading was the major
domain. This could have an impact on the calibrated difficulties of the mathematics
and science items. In PISA, even when test items have been rotated to appear in
different positions in a number of test booklets, a significant booklet effect was still
found that needed to be taken into account (Adams and Wu 2002). In PISA, test
booklets were randomly distributed to students within a classroom, so it was
expected that the average student abilities for different test booklets should be the
same as the sample size of respondents was large. However, it was found that the
average abilities of students taking different test booklets were not the same, and the
pattern of differences between booklets was consistent across most countries,
indicating that there were systematic biases in the estimation of student abilities.

Summary

This chapter provides some rationales for the need to equate tests. A number of
equating methods are introduced to illustrate equating procedures. These methods
include common item equating and common person equating. Among common
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item equating, the shift method, anchoring method and joint calibrations method are
discussed. These methods focus mostly on the equating of the location of the ability
scale, and not on the scale factor of the ability scale. In this chapter, we have not
considered traditional, non-IRT equating methods, such as Equipercentile equating
(see Holland and Rubin 1982; Kolen and Brennan 2004).

This chapter highlights a number of challenges to test equating. If item response
data fit the IRT model perfectly, we only need very few common items between two
tests to equate the tests. But in real-life, item response data never fit the mathe-
matical model. Factors such as differential item functioning and item position effect
have a significant impact on the reliability of equating results. In fact, we cannot
stress enough that many common items (well in excess of 30) are needed to equate
two tests. Equating errors come from both the sampling of students and sampling of
items. Increasing the sample size of students will reduce equating errors from the
sampling of students. However, there is a limit to the number of common items for
equating owing to limits on test length, so equating error from the selection of
common items will likely remain large. Careful planning at the test design stage is
essential to mitigate the effects of model violations on equating.

It should be noted that there is no single best method for equating. In practice,
we often try out different equating methods and compare the results. If the results
from different equating methods vary a great deal, we try to understand why there
are such differences. For example, are the differences caused by a few problematic
items? Are there plausible explanations for why some items have invariance issues?
Does the IRT model matter in the equating: is a 2PL or 3PL model better than the
Rasch model, or vice versa? Which equating method produced most credible
results, and why? These kinds of investigations will help us improve future
assessment designs. Even in well-established large-scale international studies,
equating methods are not firmly set. For example, PISA used different equating
methods for different cycles. To date, equating remains one of the more difficult
technical challenges in assessments.

Discussion Points

(1) Discuss the relative merits of the shift, anchoring and joint calibration methods
of equating. What criteria would you devise in order to choose among these
three equating methods?

(2) Discuss how the presence of equating error would affect the results from a
linking study between two tests with a set of common items. What are some
practical steps during the instrument design or test preparation stage that can
minimize potential equating error later on?
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Exercises

Q1. The following table shows estimated item parameters for 20 link items from two tests sep-
arately calibrated. If Test 2 needs to be placed on Test 1 scale, compute the equating transfor-
mation using the shift method. Also compute the equating error

Link item Test 1 Test 2

1 0.66 0.98

2 −0.64 −0.21

3 0.80 1.20

4 −1.44 −1.08

5 −0.59 −0.44

6 −0.86 −0.46

7 1.41 1.91

8 −0.74 −0.59

9 −1.41 −1.26

10 −0.15 0.22

11 −1.11 −0.84

12 −0.69 −0.34

13 −0.85 −0.55

14 −0.40 −0.15

15 0.64 1.10

16 0.24 0.49

17 0.17 0.46

18 −1.07 −0.85

19 −0.15 0.31

20 −0.73 −0.67
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Chapter 13
Facets Models

Introduction

In previous chapters, the item response models specify a probability function for the
chance of being successful on an item, or for obtaining partial/full credit on an item.
These probability functions depend on the values of person ability and item diffi-
culty. That is, if a person is of high ability, and/or if the item is easy, the probability
of success will be high. On the other hand, if the ability is low and/or the item is
difficult, the probability of success will be lower. In short, the probability of success
is a function of ability and item difficulty.

There are situations where factors other than ability and item difficulty will also
have an impact on students’ scores on an item. For example, if markers are
employed to mark extended response items, markers may vary in their
leniency/harshness. Consequently, two students with the same ability and similar
item responses may have different scores on the same item because two different
markers mark the students’ work, and one marker is more lenient than the other
marker. In this case, to model the probability of test scores, we need to take into
account of ability, item difficulty and marker harshness. A simple way to model
marker harshness in the probability function is shown in Eq. (13.1).

p ¼ PðX ¼ 1Þ ¼ exp hn � di þ qmð Þð Þ
1þ exp hn � di þ qmð Þð Þ ð13:1Þ

where hn is the ability of person n, di is the item difficulty of item i, and qm is the
harshness/leniency of marker m. Comparing Eq. (13.1) with Eq. (7.1), it can be
seen that the marker harshness is added to the item difficulty, so the effect of a harsh
marker is to make an item more difficulty (i.e., harder to obtain a higher score), and
the effect of a lenient marker is to make an item easier (i.e., easier to obtain a higher
score). We note that the model in Eq. (13.1) assumes that a marker has the same
harshness/leniency across all items. If a maker is sometimes lenient and sometimes
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harsh depending on the item, then we will need to model an interaction term cim to
be added to the item difficulty component. cim is the adjustment that needs to be
made to the item difficulty ðdiÞ and the overall marker harshness ðqmÞ of marker m,
as shown in Eq. (13.2).

p ¼ PðX ¼ 1Þ ¼ exp hn � di þ qm þ cimð Þð Þ
1þ exp hn � di þ qm þ cimð Þð Þ ð13:2Þ

The terms added to the item difficulty ðdiÞ in Eqs. (13.1) and (13.2) are some-
times known as facets, to indicate different factors that have an influence on the
item difficulty. Many factors can have an influence on the difficulty of an item, or,
more generally, on the probability of success on an item. For example, test
administration mode, such as computer-delivered tests or paper-and-pen tests, may
have different difficulty levels even if the test items are the same. In that case, we
may model a test–delivery–mode parameter and add it to the item difficulty. So test
delivery mode is a facet that impacts on students’ probabilities of success.

DIF Can Be Analysed Using a Facets Model

We note that one of the DIF methods discussed in Chap. 11 (IRT method 2) is a
facets model. In Eq. (11.2), the DIF parameter, Dgi, is a facet term that is added to
the item difficulty, di, in much the same way as qm is added to di in Eq. (13.1).

An Example Analysis of Marker Harshness

An example data set is used to demonstrate the analysis of marker harshness using a
facets model. The data set contains the ratings of four markers who marked 428
students’ project work. Each student’s project is marked on four criteria (labelled as
item 1 to item 4 in the data set) by four markers. For each item, a partial credit
scoring from 0 to 4 is used, where 0 is the lowest score and 4 is the maximum score
for an item. Table 13.1 shows an excerpt of the data set.

This data set is a complete marking design whereby every marker marked all
students and all items. In many cases, the marking design will be incomplete as it
will generally be too expensive to have all makers mark all students’ work.
Typically, each marker will only mark a subset of students’ work, but there are links
across markers so that the results from all markers can be placed on the same scale.

A facets model with interaction terms for a partial credit model [extension of
Eq. (13.2)] is used to fit the markers’ data, where the average marker harshness
ðqmÞ and an interaction term between marker and item ðcimÞ are modelled.
Specifically, Eq. (13.3) shows the fitted partial credit facets model.
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p ¼ PðX ¼ kÞ ¼ exp
Pk

j¼1 hn � d� � sj þ qm þ cim
� �� �
D

ð13:3Þ

where D is the sum of probabilities across all response categories for the item. d�
and sj parameterisation of the PCM is discussed in Chap. 9.

An R package for IRT analysis, TAM (Kiefer et al. 2012), is used to carry out
the analysis. The results of the facets analysis are shown in Table 13.2.

In Table 13.2, i1 to i4 refer to items 1 to 4; rater1 to rater4 refer to the four
markers. In addition to item difficulty and rater harshness measures, interaction
terms (e.g., i1:rater1) are also estimated. All estimated measures are in logit unit.
The standard errors of the estimates are also given. Owing to model identification
constraints to the parameters, some standard errors are not available (NA).

A number of observations can be made regarding the results shown in
Table 13.2. First, the item difficulty estimates for the four items show that items 2
and 3 are much more difficult than items 1 and 4 (1.366 and 0.906 vs. −0.016 and
−0.343). Second, the marker harshness measures show that marker 3 is more harsh
(0.302) while marker 1 is more lenient (−0.433). A positive rater estimate means
that one has to add an amount to the item difficulty, making the item more difficult
than for the average rater. A negative estimate means that one has to subtract an
amount to the item difficulty, making the item easier than for the average rater. The
item-by-rater interaction terms show that markers are not consistently harsh or
lenient across all items. For example, for item 1, marker 1 is even more lenient than
his/her average leniency, as a further 0.454 has to be subtracted from the item
difficulty estimate. On the other hand, marker 3 who is a harsher marker than other
markers is even more harsh on item 1 (add a further 0.396 to item 1 difficulty).

Table 13.1 An excerpt of a data set by four markers on four items with partial credit scoring
between 0 and 4

Record number Student ID Marker ID Item 1 Item 2 Item 3 Item 4

1 1 1 3 1 4 1

2 1 2 2 0 2 1

3 1 3 3 0 3 2

4 1 4 2 0 1 2

5 2 1 3 1 4 1

6 2 2 2 1 3 1

7 2 3 2 0 3 3

8 2 4 2 0 1 2

9 3 1 3 2 0 1

10 3 2 2 2 0 1

11 3 3 4 4 3 3

12 3 4 2 3 1 4

… … … … … … …
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In contrast, marker 3 is not so harsh on item 3 (add 0.302 and subtract 0.298, with a
net harshness measure of 0.004 on item 3). These results are more easily seen from
graphical displays of the expected scores of items for each marker. Figure 13.1
shows these expected scores curves.

Each graph in Fig. 13.1 shows the four markers’ expected scores, as a function
of ability, on an item. First, note that the curves for items 1 and 4 are generally
higher than for items 2 and 3, indicating that items 1 and 4 are relatively easier, with
higher expected scores across the ability range as compared to items 2 and 3. This is
also reflected in the estimates shown in Table 13.2.

For the expected scores curves, the solid black line is marker 1’s curve. Dashed
red line is marker 2’s curve. Dotted green line is marker 3’s curve. Dot-dash blue
line is marker 4’s curve. It can be seen that marker 1 (solid black line) tends to be
more lenient than other markers, with a curve generally higher than for the other
markers. On the other hand, marker 3 (dotted green curve) is quite harsh on items
1 and 4, with expected curves below that of others, but marker 3 has an average
harshness for items 2 and 3, with expected scores curves in the middle of other
curves.

Table 13.2 Results of marker harshness analysis

Parameter Facet Parameter estimate Standard error of estimate

i1 item −0.016 0.029

i2 item 1.366 0.028

i3 item 0.906 0.023

i4 item 0.343 0.029

rater1 rater −0.433 0.019

rater2 rater −0.006 0.019

rater3 rater 0.302 0.019

rater4 rater 0.137 NA

i1:rater1 item:rater −0.454 0.029

i2:rater1 item:rater 0.273 0.028

i3:rater1 item:rater 0.306 0.026

i4:rater1 item:rater −0.125 NA

i1:rater2 item:rater 0.027 0.029

i2:rater2 item:rater −0.237 0.028

i3:rater2 item:rater 0.021 0.026

i4:rater2 item:rater 0.189 NA

i1:rater3 item:rater 0.396 0.029

i2:rater3 item:rater −0.198 0.029

i3:rater3 item:rater −0.298 0.026

i4:rater3 item:rater 0.101 NA

i1:rater4 item:rater 0.031 NA

i2:rater4 item:rater 0.162 NA

i3:rater4 item:rater −0.029 NA

i4:rater4 item:rater −0.164 NA
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Further, an assessment of marker agreement shows that the agreement is best for
item 3, and worst for item 1. For item 3, the four marker curves are relatively close
together, with the widest difference of less than half a score point. In contrast, for
item 1, the markers vary greatly in their harshness, with a difference of more than one
score point across the ability range between the most lenient and most harsh markers.

Further, an examination of the observed scores curve against the expected scores
curve can provide information about how the markers apply the marking guide to
separate students. Figure 13.2 shows 16 graphs (4 items by 4 markers) of expected
scores curve versus observed scores curve.

A few observations can be made regarding Fig. 13.2. Rater 3’s observed scores
curves tend to be steeper than the expected scores curves, indicating that the ratings
given by Rater 3 discriminate students’ work more than the ratings of other raters.
Typically in assessment, the aim is to separate students by their ability levels, the
more one can utilise the full range of scores in the marking guide, the more we can
discriminate between low and high levels of students. In this sense, Rater 3 is doing
a better job than other raters. Sometimes raters may be playing safe, so they avoid
giving extreme scores. In that case, students’ scores tend to be bunched up in the
middle of the scoring range, and we will have less power in separating students by

Fig. 13.1 Expected scores curves for four items and four markers
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their ability levels. In other cases, raters may not be applying the marking guide
appropriately so that some high ability students may get lower scores and vice
versa, resulting in low discrimination of students. Consequently, in addition to
comparing rater harshness, rater discrimination can also be examined to provide
some information on how the raters are using the marking guides.

An analysis such as the one presented above can provide a great deal of
information about marker behaviour and marker agreement. Such information can
be useful feedback to the markers during marker training or for future improvement.

The following are a few notes about the facets models more generally.

Ability Estimates in Facets Models

In Eqs. (13.1) and (13.2), we take note that the model takes into account of
the marker harshness in the item difficulty measure when abilities are estimated.

Rater 1 Rater 2 Rater 3 Rater 4

Item 
1

Item 
2

Item 
3

Item 
4

Fig. 13.2 Expected scores versus observed scores curves
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That is, if a student is marked by a harsher marker, then the item difficulty is
adjusted upward, so that the probability of success is based on the student taking a
more difficult item than the probability would be if the student was marked by a
lenient marker. In this way, under the facets models of Eqs. (13.1) and (13.2), the
ability estimates computed have taken marker harshness into account. That is, the
ability estimates adjust for marker harshness. If two students obtain the same
overall score but are marked by different markers, their ability estimates may not be
the same. In the above example, however, since every student is marked by the
same four markers, students with the same score have the same ability estimate.
However, if we take a random sample of the data so that there is now an incomplete
marking design, then students with the same score may not have the same ability
estimates. As an illustration, a random sample of the data set is selected, as shown
in Fig. 13.3, where the first column is the record number in the original data set; the
second column is student ID; the third column is marker ID, followed by the scores
on four items given by the marker.

Using a facets model with an item-by-marker interaction term, the ability esti-
mates for the first seven students are given in Fig. 13.4, where the first column is
student ID; the second column is the number of items (e.g., if two markers marked
the student’s work, there will be 8 items); the third column is the total score the
student received on the items; the fourth column is the possible maximum score; the
fifth column is the weighted likelihood ability estimate (WLE); and the last column
is the standard error of the WLE ability estimate (See Chap. 7 about weighted
likelihood ability estimate).

From Figs. 13.3 and 13.4, it can be seen that student 3 and student 7 were each
marked by two markers. Markers 1 and 4 marked student 3’s work, while markers 2
and 4 marked student 7’s work. Both students obtained a raw score of 16 (total
score from two markers). But the ability estimate for student 3 is 0.346, and the
ability estimate for student 7 is 0.433. This is because marker 2 is a harsher marker
than marker 1, so student 7’s ability is adjusted slightly higher given that he/she had
a harsher marker than student 1 did.

id marker i1 i2 i3 i4
4    1     4  2  0  1  2
6    2     2  2  1  3  1
8    2     4  2  0  1  2
9    3     1  3  2  0  1
12   3     4  2  3  1  4
13   4     1  3  0  4  1
15   4     3  2  0  3  2
18   5     2  2  2  0  1
20   5     4  2  2  1  3
22   6     2  1  2  0  1
23   6     3  4  4  4  3
26   7     2  2  1  4  2
28   7     4  3  0  1  3
……………………… 

Fig. 13.3 Sampled records
from dataset shown in
Table 13.1
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In summary, one needs to be aware of the adjustment to ability estimates when
different facets apply to different students. In the case of markers as a facet term in
the IRT model, we would indeed want the ability estimates to be adjusted according
to whether students had harsh or lenient markers. But we need to be able to explain
to the layperson why students obtaining the same raw score may not have the same
ability estimate.

However, sometimes we may have a facet term for which we do not want to use
it to adjust for the ability estimates. For example, gender may be used as a facet
term, and gender-by-item interaction term can be used to detect DIF in a facets
model. Suppose Eq. (13.4) is fitted in an IRT analysis,

p ¼ PðX ¼ 1Þ ¼ exp hn � di þGg þDig
� �� �

1þ exp hn � di þGg þDig
� �� � ð13:4Þ

where g is male or female, so Gg is a gender main effect and Dig is an interaction
term between gender group and item. Such an analysis can be used to detect gender
DIF through the Dig term, and also to estimate the average difference in abilities
between males and females. While Gg and Dig will provide useful information, we
need to be aware that the ability estimates produced in this model, hn, is an ability
where the gender main effect Gg has been taken out. That is, the ability estimates
produced are for “gender-neutral” persons, if such persons exist, in much the same
way as the removal of marker effect in estimating abilities using Eq. (13.2). In fact,
to compute the ability for a male person, we need to subtract Gmale from hn, and to
compute the ability for a female person, we need to subtract Gfemale from hn. In
summary, while we want to remove DIF effect, Dig, from person abilities, but we
need to include gender main effect for male or female ability estimates.

Consequently, when a facets model is fitted, you need to be clear about the
mathematical model underlying the analysis, so you will know whether the ability
estimates are correctly produced. It would also depend on the software program you
are using and how a particular program handles the estimation of ability estimates.
As a rule of thumb, a factor that is related to items and tests can be modelled as a
facet term. A factor that is related to the persons should be treated with care in a
facets model. For example, test administration mode (e.g., online versus
pen-and-paper) can be a facet as this relates to the tests. Any test administration

id N.items Score    Max    WLE WLE error

1       4    5.0     16    0.059    0.414 
2       8   12.0     32    0.148    0.279 
3       8   16.0     32    0.346    0.279 
4       8   15.0     32    0.316    0.273 
5       8   13.0     32    0.220    0.276 
6       8   19.0     32    0.664    0.268 
7       8   16.0     32    0.433    0.272 

……………………

Fig. 13.4 Ability estimates for the first seven students
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mode effect should be removed from the ability estimates. In contrast, gender, age
group, country of residence and ethnic group are all attributes of persons. That is, a
person cannot be without a gender, age, residence or ethnicity, so we will not want
to remove any of these factors from a person’s ability estimate. In latent regression
IRT models (discussed in the latter section of this chapter), person attributes such as
gender are often treated as regressors. In general, it will be better to treat person
attributes as regressors than as facets. While the effect of a facet can be similarly
estimated from using the facets model and using the latent regression model, the
estimation of the ability will differ in the two models.

Choosing a Facets Model

As Eq. (13.2) shows, the probability function can be made progressively more
complex, to take in all factors that may have an impact on the probability of success
of a person. Therefore, there is an inclination to choose a complex model so that all
bases are covered. However, there are a number of considerations when we decide
on which model to choose. First, a very complex model requires a great deal of data
to estimate all the parameters. Using Eq. (13.2) as an example where an
item-by-marker interaction term is modelled, it is essentially assumed that there is
an item difficulty parameter for each item and marker combination. That is, for item
1 marker 1, the item difficulty is different from the difficulty for item 1 and marker
2. Therefore, to estimate each interaction term well, we need to have sufficient
pieces of information for a parameter. In our example, marker 1 marked 428
students’ work for item 1, so there are 428 pieces of information for the estimation
of c11 parameter. This seems sufficient. As our example is a complete marking
design, there is sufficient information for the estimation of each parameter in
Eq. (13.2).

For other data sets, particularly incomplete marking designs where markers may
not mark every item or every student, we need to be more cautious about choosing
an IRT model. For example, if marker 1 has not marked item 3, then there is no
information on c31, so any software program will have difficulty in estimating this
parameter (e.g., we can’t estimate girls’ average ability if there is no girl in the data
set!). Frequently, warning messages from software programs relate to this issue
where there is no data to estimate a modelled parameter. As another example, if a
test contains multiple choice items and open-ended items where markers only
marked the open-ended items, then any item-by-marker term should not include the
multiple choice items, as no marker has marked those items.

Consequently, when choosing an IRT model, we need to assess whether there is
sufficient information provided by the data to warrant the estimation of parameters
in our model.
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An Example—Using a Facets Model to Detect Item
Position Effect

This is an example demonstrating the use of the facets model, concurrent equating
and item position effect as discussed in Chap. 12 on equating.

In many large-scale studies where the aim is to measure proficiency at group
levels (e.g., state level or country level) rather than at individual student level, the
use of rotated test booklets is common. In order to cover all content areas in a
subject domain, many items are developed, but it would be impractical to test every
student on every item. Consequently, the items are allocated to a number of dif-
ferent booklets, with appropriate linkages across booklets so the booklets can be
equated.

The purpose of this example is to demonstrate item position effect in test
booklets. That is, if an item appears at the end of a test booklet, it will generally be
more difficult than if it appears at the beginning of a test, most possibly due to
fatigue effect. The results from this example also have an implication for common
item equating, where different test booklets contain link items, and the link items
are in different positions in the test booklets.

Structure of the Data Set

The data set for this example comes from a test where seven rotated test booklets
were constructed, using a Balanced Incomplete Block (BIB)1 test design, as shown
in Table 13.3.

C1 to C7 denote 7 different clusters of items, each containing approximately
20 min of testing material. Each student is administered one booklet, and the seven
booklets are distributed randomly within each class of students.

Two data sets are used for this example. The first file contains data from all 7
booklets. The second file contains data from booklets 3, 5 and 6 only. If we use data
from all 7 test booklets, then each item appears once in each of the three positions
(Blocks 1, 2 and 3). If we use data from booklets 3, 5 and 6 only, then the link items
are only the C6 items, and these link items appear at the end of booklet 3, in the
middle of booklet 5, and at the beginning of booklet 6. Other items in booklets 3, 5
and 6 are unique to each book and they only appear in one position. The aim of this
example is to contrast the differences if the test design is balanced (as for the 7
booklets), and if the test design is not balanced (as for booklets 3, 5 and 6 only).

Figure 13.5 shows an excerpt of the data file for booklets 3, 5 and 6, where every
line contains data of a student. The booklet number, gender and item responses for a
student are recorded. There are 91 items distributed into the 7 item clusters, but

1A BIB test design is one where every cluster of items appears in each position once, and every
pair of clusters appears together in one test booklet once.
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each student only took a subset (about 40) of the items. It can be seen that there are
gaps in the item responses for each student for the items not administered to the
students. The dots at the end of each data line indicate that there are more item
responses not shown.

Analysis of Booklet Effect Where Test Design Is not Balanced

First, we analyse the data set containing booklets 3, 5 and 6. A facets model is
fitted, as shown in Eq. (13.5).

p ¼ P X ¼ 1ð Þ ¼ exp hn � di þ bmð Þð Þ
1þ exp hn � di þ bmð Þð Þ ð13:5Þ

where bm is known as “booklet effect” for booklet m. When the data containing item
responses from three booklets (shown in Fig. 13.5) are calibrated together, we have
concurrent or joint calibration (see Chap. 12 on equating tests). That is, the items in
all three booklets are equated through link items across the three booklets. Item
parameters for items in cluster C6 are based on the item responses to C6 in all three
booklets. If an item has the same difficulty irrespective of which booklet the item
appears in, then the bm terms should be close to zero, since di already represent the
item difficulty, there should not be any other adjustment. However, if an item has
different difficulties in three different booklets, we will need to have a term bm to
make this adjustment.

Note that we have not included an interaction term between item and booklet.
Apart from the items in cluster C6, other items only appear in one booklet. For
example, we cannot have an interaction term involving booklet 5 and items in C3,
since there is no item response data for this combination. It will be difficult to
estimate a parameter without any data for the parameter, in the same way that we
cannot estimate the harshness of a marker when the marker has not marked any
student’s work. Further, the “booklet” term bm is a constant adjustment for all items
in the same booklet. If every item has a different adjustment, then we are essentially
assuming that the link items are different when they appear in different booklets. In
that case, we have three test booklets containing different items, and different

Table 13.3 Assignment of
item clusters to booklets

Booklet Block 1 Block 2 Block 3

1 C1 C2 C4

2 C2 C3 C5

3 C3 C4 C6

4 C4 C5 C7

5 C5 C6 C1

6 C6 C7 C2

7 C7 C1 C3
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students took the three test booklets. Therefore, the booklets would not be linked so
there would be an issue with model identification. This is an illustration of deciding
on the inclusion of terms in a facets model. A recommendation is to keep the model
simple if you can, and ensure that the data can support the estimation of the
parameters.

Table 13.4 shows the estimates of the booklet parameters, bm, in logit units.
The estimated booklet parameters have a standard error of about 0.013, so that

“booklet effect” shows statistical significance. The difference between booklet 6 and
booklet 3 parameters is 0.347 logit, which is more than half a year of growth.
Further, booklet 3 parameter is an adjustment of item difficulties “upwards” (i.e. to
make items more difficulty), while booklet 6 parameter is an adjustment downwards
(i.e. to make items easier). This is consistent with the fact that the link items (C6
items) are at the end of booklet 3, and at the beginning of booklet 6. The results in
Table 13.4 show that the link items do not have the same item difficulties when the
items appear in different booklets. A concurrent equating without taking into
account of booklet effect will result in incorrect item parameter estimates, leading to
incorrect ability estimates. For booklet 3, the items will be assumed to be easier
than they actually are, so it will disadvantage students taking booklet 3. In contrast,
the items in booklet 6 are assumed to be more difficult than they actually are, so
students taking booklet 6 will have over-estimated abilities.

To check this result, percentages correct for each item as it appears in each
booklet are computed. Given that the booklets were randomly distributed in each
class and there were about 400 students taking each booklet, one would expect the
percentages correct for each link item to be similar across the three booklets.
Table 13.5 shows some of these items. Reading across each row in Table 13.5, it
can be seen that, in general, percentages correct are higher for items appearing in

3 F      107     000       930210440413        3430 32214..
3 F      102     010       130111441413        3270 34212..
3 M      114     111       031119440413        3230 31212..
3 F      114     091       131111441413        3239 32292..
3 M      003     000       040300221342        2430 12201..
5 F 01      44411   114         04414431     30  301 ..
5 M 02      44423   141         04414131     30  301 ..
5 M 12      44433   112         14414131     31  711 ..
5 M 03      43144   012         14414132     30  311 ..
.

Fig. 13.5 An excerpt of the data file for booklets 3, 5 and 6

Table 13.4 Estimated
“booklet” parameters in logits

Estimated booklet parameters, bm
Booklet 3 0.168

Booklet 5 0.012

Booklet 6 −0.179
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earlier parts of a test than in latter parts of a test. This is consistent with the
estimated booklet parameters in the facets analysis.

Analysis of Booklet Effect—Balanced Design

If a test design is balanced, such as the one shown in Table 13.3 where all seven
booklets are used, then the unfairness caused by one link cluster of items at the end
of a booklet is offset by one link cluster of items that appears at the beginning of the
booklet, so overall, when all items are calibrated concurrently, we would expect a
smaller booklet effect.

Table 13.6 shows that the booklet parameter estimates are relatively smaller
when all seven booklets are used, as compared to when only three booklets are
used, showing that the bias caused by the position of one cluster of items is offset
by another cluster of items in the booklet to some extent.

Discussion of the Results

The results from the above analyses highlight the importance of item position effect,
whether for common item equating or for rotated test booklets where there is an
implicit equating across the booklets. Very often, for vertical equating,2 common
items are embedded in lower grade (e.g. grade 3) and higher grade (e.g. grade 5)
tests. Because the common items need to be at appropriate levels for both grades,
the common items tend to be difficult for the lower grade students, and easy for
higher grade students. It is often the practice to place more difficult items at the end
of a test, and easier items at the beginning of a test. If the common items are placed
in this way, then item position effect may cause a sizable equating error.

For rotated booklets, it is important to have a balanced test design. While this
does not entirely eliminate booklet effect, it helps to reduce it.

Table 13.5 Percentages correct for items in different booklets

Item Booklet 3 (% correct,
question no.)

Booklet 5 (% correct,
question no.)

Booklet 6 (% correct,
question no.)

29 24% (Q31) 26% (Q19) 30% (Q8)

30 86% (Q29) 89% (Q17) 90% (Q6)

31 77% (Q30) 80% (Q18) 86% (Q7)

32 63% (Q32) 72% (Q20) 71% (Q9)

2We use the term vertical equating here to refer to equating tests between different grade levels,
e.g., between grades 3 and 5.
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Summary

This chapter explains the facets models and provides examples to illustrate the use
of facets models. Facets models are IRT models where there are factors other than
item difficulty and person ability influencing the probabilities of success on an item.
Differential item functioning is a special case of a facets model. Facets models are
useful for estimating marker harshness, as markers also influence a student’s score,
over and above the difficulty of an item and the ability of the student. An example is
presented to demonstrate the use of the facets model to estimate item position
effects. In particular, cautions are drawn for common item equating where link
items appear in different positions in a test.

It is noted that in a facets model the ability estimates take into account of the
facets terms. In the case of the modelling of marker harshness as a facet term,
student abilities have been adjusted for marker harshness.

Some guidelines are given regarding the inclusion of facets terms in a model.
The main consideration is a check of the amount of data available for the estimation
of modelled parameters.

Discussion Points

(1) Many factors other than ability and item difficulty can affect the chance of
success of a person on an item. Some of these factors are suitable to model as
facet terms, some are suitable to model as latent regression terms. Discuss
which factors are suitable as facets and which factors are suitable as latent
regression conditioning variables.

(2) How does a “balanced design” of item rotation help in calibrating item dif-
ficulties and person abilities? For example, for a student taking booklet 1,
cluster 4 items will likely be more difficult than their calibrated values as they
appear at the end of the test. How does a balanced test design alleviate item
position effects?

Table 13.6 Estimated
booklet parameters in logits
for all seven booklets

Estimated booklet parameters, bm
Booklet 1 0.020

Booklet 2 −0.052

Booklet 3 0.028

Booklet 4 −0.049

Booklet 5 0.100

Booklet 6 0.024

Booklet 7 −0.069
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(3) In Tables 13.4 and 13.6, we note that a constraint is placed on the booklet
parameters so that the sum of the booklet parameter is zero. This is similar to
the estimation of DIF (Chap. 11) where the net DIF across all items is zero.
This relates to model identification. Discuss why this model identification is
needed. What will happen if there is no constraint on the booklet parameters?

Exercises

Q1. Indicate whether you agree or disagree with each of the following statements

In a facets model where marker harshness is modelled, a marker has an
estimated measure of −0.8. This indicates the marker is harsher than the
average marker

Agree/disagree

In a test analysis where marker harshness is modelled, two students have the
same score on the test. The abilities of the two students may differ if they are
marked by different markers

Agree/disagree

In a vertical equating between grade 3 and grade 5 students, common items
are placed at the end of the grade 3 test and at the beginning of the grade 5
test. Grade 3 students’ abilities are likely to be under-estimated

Agree/disagree

If gender is placed in a facets model as a facet term, the ability estimates
produced may not reflect the abilities of the students

Agree/disagree

The facets model shown in Eq. (13.3) models a marker harshness term that
is constant across the ability range. That is, a marker is equally harsh (or
lenient) for high ability and low ability students

Agree/disagree

Reference

Kiefer T, Robitzsch A, Wu M (2012) TAM (Test analysis modules)—an R package [computer
software]

Further Reading

Linacre JM (1989) Many-faceted rasch measurement. MESA Press, Chicago
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Chapter 14
Bayesian IRT Models (MML Estimation)

Introduction

In this chapter, we introduce a family of IRT models where there is an assumption
about the shape of the population distribution of abilities.

When a population distribution assumption is made about the latent trait, the
model is often known as a Bayesian IRT model. Such a model is often estimated
using the MML (marginal maximum likelihood) estimation methods, as opposed to
JML (joint maximum likelihood) or the CML (conditional maximum likelihood)
methods where no population distribution assumption is made. Readers are referred
to Baker and Kim (2004) about estimation methods for details. While MML refers
to an estimation method, the term is often used as if it is a kind of IRT model. The
distinguishing feature between MML and, say, JML, is that there is a distribution
assumption with respect to the population in MML. MML becomes an alias for the
more correctly termed Bayesian IRT models. We note that there are also other
estimation methods for Bayesian IRT models.

There are advantages and disadvantages in making an assumption about the
population distribution of abilities. The disadvantage is that any assumption made
in a model needs to be validated. If an assumption is incorrect, then the results are
invalid. On the other hand, when assumptions are valid, the results can be greatly
enhanced. Let us use an example to illustrate this concept. In measuring the heights
of a randomly selected sample of people, if the distribution of heights in a popu-
lation is normally distributed, then, given the mean and variance of the heights for a
simple random sample, we can make inferences about proportions of people in the
population with heights within certain ranges. Without an assumption about the
shape of the population distribution, we will not be able to make many inferences
about the population beyond the sample of data we collected. Further, sometimes
the data may distort the shape of the population distribution. For example, if an
ability distribution is normal, but a test is extremely easy so there is a strong ceiling
effect with most students obtaining perfect scores, then the sample ability
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distribution will be very skewed, not reflecting the true shape of the population.
Having an assumption that the population of abilities is normally distributed will
result in a better estimate of the shape of the population distribution.

Consequently, Bayesian IRT models are useful when our focus is on making
inferences about a population beyond the sample data we collected. For example, in
assessing students’ educational outcomes in large-scale surveys where samples of
students are selected, Bayesian IRT models will help us make better inferences
about the population characteristics of students, provided, of course, that our
population assumption is correct.

Bayesian Approach

The term “Bayesian” is coined after Thomas Bayes, an English statistician in the
18th century. For our purposes of explaining Bayesian IRT models, it suffices to say
that Bayesian probabilities often involve prior probabilities where the estimation of
parameters of interest are based on combining new information collected with the
prior probabilities. We provide an example to illustrate this.

Consider a group of basketball players and their hypothetical proficiency dis-
tribution in shooting goals. From past experience, we have information of the
proficiency distribution as shown in Table 14.1. The first column shows the
long-term rate of success (success rate when many attempts are made) where 0.1
indicates a success rate of 1 goal in 10 attempts, etc. The second column shows the
proportion of players with the success rate in column 1. So 80% of the players have
a long-term success rate of 0.1. The last column shows the number of players with
each success rate if there are 1000 players in total. We have only specified four
possible success rates to simplify the example. One can add more success rates in
real-life situations for the probability distribution but the process is the same.

Graphically, the probability distribution of shooting proficiency is shown in
Fig. 14.1.

The probability distribution shown in Table 14.1 and Fig. 14.1 is known as a
prior distribution—information we already have from the past.

Suppose a player, Zack, comes along and attempts to shoot goals. He tries 10
times and is successful on three attempts. That is, Zack’s success rate on this
occasion is 3 out of 10. If we are asked to estimate Zack’s goal shooting success
rate, we may arrive at 0.3 as an estimate, based on Zack’s performance on this

Table 14.1 Hypothetical probability distribution of basketball shooting success rates

Rate of success in shooting goals Proportion of players Number of players out of 1000

0.1 0.80 800

0.3 0.15 150

0.5 0.04 40

0.7 0.01 10
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occasion alone and not taking any information of the prior distribution of player
proficiencies.

However, using a Bayesian approach, we would proceed as follows. Zack is
from the population of players with the prior distribution of shooting rates shown in
Table 14.1. If Zack does not attempt to shoot any goals and we have no information
about how Zack may perform, and we are asked to estimate Zack’s shooting
success rate, we will probably choose 0.1, since most players (80%) in the popu-
lation have this success rate, based on the prior distribution. That is, if a player is
randomly selected from the population with no performance information about the
player and we are making a guess of the player’s success rate, we will be right 80%
of the time if we choose 0.1 as the success rate.

But Zack now provides us with more information by making 10 attempts to
shoot goals. On this occasion Zack scores 3 out of 10. Based on this new piece of
information, we have the opportunity to revise our estimate of 0.1 to take into
account of the additional information. The revision of our estimate is made as
follows.

The question we ask is “how many players with each long-term success rate in
the prior distribution are likely to score 3 out of 10?” We use the success rate of 0.1
as an illustration. If a player’s overall success rate is 0.1, then the probability of this
player scoring 0, 1, …, 10 goals out of 10 attempts can be computed using a
binomial distribution:

PrðX ¼ kÞ ¼ 10
k

� �
ð0:1Þkð1� 0:1Þ10�k ð14:1Þ

where k is the number of goals shot, out of 10 attempts. These probabilities are
computed and shown in Table 14.2.

Table 14.2 shows the binomial probabilities of obtaining a score k out of 10,
given the long-term success rate is 0.1. Since there are 800 players with success rate

Fig. 14.1 Histogram of
basketball shooting rate (Prior
distribution)
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of 0.1, we multiply 800 by the probabilities to obtain the expected numbers of
players with success rate of 0.1 scoring k goals out of 10. That is, even though the
players’ success rate is 0.1 in the long run, out of 10 attempts the players may score
higher (or lower) than the expected score of 1. In particular, we note that 46 players
out of 800 are expected to score 3 out of 10. We repeat this process for players with
success rates of 0.3, 0.5 and 0.7, and find the expected number of players to
score k out of 10 given a particular success rate. The results are summarized in
Table 14.3.

Getting back to estimating Zack’s proficiency given that he scored 3 out of 10,
we look through the column with the heading k ¼ 3 in Table 14.3. We find that in
the population, 46 players with success rate of 0.1 are expected to score 3; but we
also note that 40 players with success rate of 0.3 are expected to score 3 goals, 5
players with success rate of 0.5 and 0 players with success rate of 0.7 are also
expected to score 3 goals out of 10. We can express these numbers proportionally in
Table 14.4.

From Table 14.4, we can see that, if a player scores 3 out of 10, there is a 0.51
chance the player has a long-term success rate of 0.1; 0.44 chance of a success rate
of 0.3, and 0.05 chance of a success rate of 0.5. Therefore, if we are to estimate a

Table 14.2 Probability and expected number of players out of 800 with long-term success rate of
0.1 scoring k goals out of 10

k 0 1 2 3 4 5 6 7 8 9 10

Pr kð Þ 0.35 0.39 0.19 0.06 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Expected no of
players out of 800

279 310 155 46 9 1 0 0 0 0 0

Table 14.3 Expected number of players scoring k out of 10, given a success rate

k 0 1 2 3 4 5 6 7 8 9 10

Success rate = 0.1 279 310 155 46 9 1 0 0 0 0 0

Success rate = 0.3 4 18 35 40 30 15 6 1 0 0 0

Success rate = 0.5 0 0 2 5 8 10 8 5 2 0 0

Success rate = 0.7 0 0 0 0 0 1 2 3 2 1 0

Table 14.4 Expected number and proportion of players with each success rate to score 3 out of
10

k ¼ 3 Expected number of players
to score 3 out of 10

Proportion of players out of 91
(posterior probabilities)

Success rate = 0.1 46 0.51

Success rate = 0.3 40 0.44

Success rate = 0.5 5 0.05

Success rate = 0.7 0 0.00

Total 91 1.00
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player’s long-term success rate when the player scores 3 out of 10, we will choose
0.1 or 0.3, as these two are the most likely to result in the observation of 3 goals out
of 10. In particular, a success rate of 0.1 is more likely than a success rate of 0.3.
Column 3 in Table 14.4 is known as the posterior distribution, derived after
combining new information (a score of 3 out of 10) with the prior information (how
many players are in each success rate group, Table 14.1).

Mathematically, we express the posterior distribution as
Pr long�term success ratejscore k out of 10ð Þ. The symbol “|” within the expression
denotes “given the fact that” in the context of conditional probability. So this is the
probability of a particular long-term success rate given that a player scored k out of
10 in a tryout.

The probabilities calculated in Table 14.2 can be expressed as
Pr score k out of 10jlong�term success rateð Þ, the probability of scoring k out of 10
in one tryout, given a particular long-term success rate. This is somewhat opposite
to the posterior distribution.

The prior distribution can be expressed simply as Pr long�term success rateð Þ,
the probability of a particular long-term success rate.

All the above somewhat complex description of the process of Bayesian
approach can be elegantly summarised using Bayesian mathematics. Following
Bayes theorem on conditional probabilities,

Pr AjBð Þ ¼ Pr BjAð Þ PrðAÞ
PrðBÞ ð14:2Þ

where A and B denote two different events. The posterior probability can be
expressed in terms of the prior and marginal probabilities as follows.

Let Pr AjBð Þ be the posterior distribution so A is the long-term success rate and
B is the event of scoring k out of 10 attempts. Then, using Bayes theorem
Eq. (14.2), the posterior distribution can be expressed as

Pr long�term success ratejscore k out of 10ð Þ

¼ Pr score k out of 10jlong�term success rateð Þ Pr long�term success rateð Þ
Pr score k out of 10ð Þ

ð14:3Þ

where the denominator is the sum of the numerator term over all success rates. That
is, the denominator term can be expressed as follows:

Pr score k out of 10ð Þ
¼

X
success rates

Pr score k out of 10jlong�term success rateð Þ Pr long�term success rateð Þ

As an illustration, for long-term success rate of 0.1 in the above example, the
posterior probability is computed as
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Pr success rate ¼ 0:1jscore 3 out of 10ð Þ

¼ Pr score 3 out of 10jsuccess rate ¼ 0:1ð Þ Pr success rate ¼ 0:1ð Þ
Pr score 3 out of10ð Þ

¼ 0:06 � 0:8
0:06 � 0:8 þ 0:27 � 0:15 þ 0:12 � 0:04 þ 0:01 � 0:01

¼ 0:51

Some Observations

For the example of Zack’s performance, we note the difference in the conclusions
that might be drawn between a non-Bayesian approach and Bayesian approach. In a
non-Bayesian approach, the estimate of Zack’s long-term success rate will be 0.3,
as he scored 3 out of 10. In the Bayesian approach, it’s a toss-up between 0.1 and
0.3, with 0.1 as a slightly more probable success rate for Zack. The reason for this
discrepancy is that in the Bayesian approach, the prior distribution is taken into
account as well as current information. Since the majority of players have a success
rate of 0.1, the estimated success rate for Zack is being “pull” towards this part of
the population. In general, the prior distribution can be regarded as weights when
estimates are computed. For the dense part of the prior distribution, the weights are
large.

Second, the Bayesian approach produces a probability distribution (the posterior
distribution) instead of a point estimate for estimating individual proficiency. Under
the Bayesian approach, the inference about Zack’s success rate is made in terms of
probabilities, rather than a point estimate. We make statements such as “there is
0.51 chance that Zack has a success rate of 0.1, 0.44 chance a success rate of 0.3,
0.05 chance a success rate of 0.5”. In other words, Zack’s long-term success rate is
described by a probability distribution instead of a single number. Of course if a
single number is needed we may make rules about how to derive a point estimate
from the posterior distribution. But this is almost an addendum to the Bayesian
approach rather than part of the approach.

Third, since the prior distribution provides weightings when estimates are
computed, if players are from different populations where the prior distributions are
different, the derived posterior distribution will be different. For example, if a player
is in the NBA (National Basketball Association) and also obtains 3 goals out of 10
attempts, the posterior distribution for the NBA player will be “higher up” than the
posterior distribution for Zack, since the prior distribution of NBA players will
show higher success rates of goal shooting. Zack may cry unfair treatment given
that he obtained the same score as the NBA player, yet Zack’s estimated success
rate is lower. We might provide an explanation that on this occasion the NBA
player was a little unlucky while Zack was quite luck. For people who are not
convinced whether prior information should play a part in estimating performance,
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perhaps we will ask them to answer the question that if 100 attempts are given to
Zack and the NBA player next time, which player will they back as the winner?

Unidimensional Bayesian IRT Models (MML Estimation)

Using the Bayesian approach to estimate student assessment outcomes, the process
mirrors the basketball example. First, a population distribution of student abilities is
assumed to be the prior distribution, typically a normal distribution, although the
mean and variance of the prior distribution are unknown parameters to be estimated
from the data. Students’ performance on a test is the additional information we
obtain, as for Zack’s trial of 10 shots. The probabilities for this additional part are
modelled using IRT models such as the ones discussed in this book. The IRT part
and the population part are then combined to form posterior distributions of abilities
for each student. More formally, a Bayesian IRT model is presented below for a
normal prior distribution and dichotomous Rasch model for the item responses.

Population Model (Prior)

Let h represent a student’s ability and d represent the difficulty of an item.

h�N l;r2
� �

where l is the mean of the population distribution of abilities and r2 is the variance.
Both l and r2 are unknown and they are estimated from the item response data. In
estimating these two parameters, essentially we ask the question what values of l
and r2 are most likely to have the item responses we collected. We use g hð Þ to
denote the normal density function.

Item Response Model

P X ¼ 1ð Þ ¼ exp h� dð Þ
1þ exp h� dð Þ ; P X ¼ 0ð Þ ¼ 1

1þ exp h� dð Þ

We use X to denote a vector of item responses (0s and 1s) across all items for a
student, and f Xjhð Þ to denote the product of the item response probabilities across
all items for a student. So f Xjhð Þ is the probability of observing a response pattern
on a set of items in a test given the ability of a respondent, h.
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Putting together the population model and item response model using Bayes
theorem, the posterior distribution for each student is given by

h hjXð Þ ¼ f Xjhð ÞgðhÞR
f Xjhð ÞgðhÞdh ð14:4Þ

where the denominator of Eq. (14.4) is the integral of the numerator over all h
values. We denote the denominator as f ðXÞ which is the probability of a response
pattern, X. Formally, f ðXÞ ¼ R

f Xjhð ÞgðhÞdh.
As an exercise, readers can match the elements of Eq. (14.4) with those of

Eq. (14.3) to gain an understanding of how the posterior distribution is formed.
In estimating the Bayesian IRT model, we may use a maximum likelihood

approach and estimate parameters of the model by maximising the probability of all
observed item response patterns,

Q
f ðXnÞ, where the product (denoted by

Q
) is

over all students. We note that under the Bayesian approach, the parameters esti-
mated are di (item difficulties), l and r2. Individual abilities ðhnÞ are not parameters
of the model since h has been integrated out in f ðXÞ. However, to make inferences
about individual students’ ability, posterior distributions Eq. (14.4) for each student
can be formed. To find a point estimate for each student’s ability, a number of
methods can be taken. First, the mean of the posterior distribution can be computed
as an ability estimate. This estimate is called EAP (expected a posteriori).
Alternatively, the mode of the posterior distribution can be used as a point estimate
for a student’s ability, and this statistic is called the MAP (maximum a posteriori).
However, we stress that neither the EAP nor MAP are parameters in a
Bayesian IRT model. They are additional statistics computed after the model has
been estimated.

Some Simulations

We carry out some simulations to contrast the Bayesian and non-Bayesian
approaches. In these simulations, the abilities are generated from a normal distri-
bution with mean 0 and variance 1. The items are dichotomous and item difficulties
are evenly distributed from −2 to 2. The Rasch model is used to model the item
responses. For the Bayesian approach we use the MML estimation method, and for
the non-Bayesian approach we use the JML estimation method.

We note that the JML method estimates individual person’s ability and makes no
assumptions about the population distribution. So, for checking how well the JML
method recovers population distribution parameters such as the mean and variance,
a two-stage process is used where individual ability estimates are first computed
using JML, and then the mean and variance are computed based on the individual
ability estimates. In contrast, in MML estimation method, the mean and variance

268 14 Bayesian IRT Models (MML Estimation)



are parameters in the model so they are directly estimated and not re-constructed
from ability estimates.

However, when individual abilities are compared using the JML and MML
methods, we use the WLE (weighted likelihood) ability estimates from JML, and
EAP estimates after the MML model is estimated.

Simulation 1: 40 Items and 2000 Persons, 500 Replications

Frequently, a test is administered in one class period so a test length of around 40
items is common. The sample size of students for each simulation run is 2000,
considered large enough to provide stable item parameter estimates. Five hundred
simulation replications are carried out. The data are analysed using JML and MML.

Comparison of Population Characteristics

Table 14.5 shows that MML produces better population parameter estimates than
JML. In particular, both JML and MML produce unbiased population mean esti-
mate, but JML overestimates the variance. The reason for the overestimation is
because the variance estimate under JML is reconstructed using ability estimates
and each individual ability estimate contains measurement error, inflating the
variance. The problem of the overestimation of the variance is more severe when
the test length is short.

Additional Notes
The estimation of variance using individual ability estimates from JML is said
to be attenuated by measurement error so that the observed variance is larger
than the true variance. The observed variance can be disattenuated using test
reliability. Similar to the relationship in classical test theory

varianceðtrue scoreÞ ¼ reliability � variance(observed score)

the variance computed using IRT abilities in logits can also be disattenuated
as follows

varianceðpopulation abilitiesÞ ¼ reliability
� varianceðability estimates from JMLÞ

This adjustment generally works well when the test difficulty matches
student abilities. The adjustment does not work so well when a test is very
easy or very difficult for the students.
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Comparison of Ability Estimates for Individual Students

Given that the MML estimation takes into account of prior information about the
population distribution, one would expect the ability estimate for an individual
student under MML to be more accurate since more information is included in the
estimation (Consider the example of predicting Zack and the NBA player’s
long-term success rates in shooting basketball goals). In the simulations, we use
root mean squared error (RMSE) to measure how close the estimated ability is from
the true ability (generating value). Root mean squared error is computed by cal-
culating the difference between the estimated and the true abilities, square the
difference, then average across all replications, and finally take the square root of
the average so that the RMSE is in the unit of logit and is interpretable on the logit
scale. Five generating abilities are used to make the comparisons between JML and
MML where the WLE ability and EAP ability estimates are computed respectively.
Table 14.6 shows the results.

The RMSE values in Table 14.6 show that EAP ability estimates from MML
method are a little closer to the true ability than the WLE ability estimates from
JML, across all ability range. As an aside, we also note that the RMSE is the
smallest for abilities closer to the middle of the distribution when the test is better
targeted to the respondents. Lastly, we note that even when the test is well targeted,
the magnitude of the RMSE is still very large (>0.3 logit), so that a test of 40 score
points does NOT measure an individual well.

In addition to RMSE, we also examine the bias in estimating abilities. For each
generating ability, we compute the average WLE and average EAP values across
500 replication respectively. Table 14.7 shows the results.

In Table 14.7, the average of WLE estimates across 500 replications is close to
the true ability for each of the five generating value, showing no obvious bias.
However, for EAP ability estimates under MML, there is a clear bias in the esti-
mated abilities which are being “pulled” towards the middle of the ability distri-
bution. It is sometimes said that the EAP ability estimates are “shrunken” towards

Table 14.5 Compare JML and MML in recovering population characteristics–40 items

Generating value JML MML

Mean 0 0.00 0.00

Variance 1 1.18 1.00

Table 14.6 RMSE for JML
and MML methods in
recovering individual abilities
for 40 items

Generating
ability

JML WLE
RMSE

MML EAP
RMSE

−2 0.48 0.45

−1 0.39 0.35

0 0.36 0.33

1 0.39 0.35

2 0.46 0.46
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the mean of the distribution where the distribution is more dense. We have also
observed this phenomenon in the example of Zack’s basketball shooting rate.
Overall, the bias in EAP is more severe for the abilities at the extremes of the ability
distribution. But for the majority of students who are close to the mean of the
distribution, the bias is not severe.

In summary, EAP ability estimates from MML are biased as seen from the mean
estimates in Table 14.7, but for individual students’ ability estimates, EAP esti-
mates are, on average, closer to the true ability than WLE ability estimates from
JML as seen from the RMSE in Table 14.6. Further, as there are fewer students at
the extreme ends of the ability distribution, the larger bias of EAP estimates at these
extreme ability values does not contribute too much to the overall RMSE.

Simulation 2: 12 Items and 2000 Persons, 500 Replication

In this simulation, only 12 item responses are generated for each student. This test
length is chosen to reflect the rotated test design in PISA where each student may
take around 12 test items for a subject domain, particularly for the minor domains.
Five hundred replications are carried out in the simulation. Table 14.8 shows the
recovery of population parameters: the mean and variance of the population ability
distribution.

Comparison of Population Characteristics

When the test length is short (12 items in this case), the estimation of the population
mean is still very good under both the JML and MML methods. However, the
population variance is considerably overestimated under the JML method. In
contrast, MML still recovers the population variance well even though there are
only 12 items (score points) per student.

Table 14.7 Average WLE
and EAP ability estimates
across 500 replications for 40
items

Generating
ability

JML WLE
average

MML EAP
average

−2 −2.03 −1.73

−1 −1.01 −0.89

0 −0.01 −0.01

1 1.02 0.90

2 2.00 1.71

Table 14.8 Compare JML
and MML in recovering
population characteristics for
12 items

Generating value JML MML

Mean 0 0.00 0.00

Variance 1 1.60 1.00
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Comparison of Ability Estimates for Individual Students

Table 14.9 shows the RMSE of individual student ability estimates from JML and
MML methods.

Table 14.9 shows that when the test is short, EAP from MML method has
considerably smaller RMSE for abilities in the middle range of the distribution than
WLE from JML method. The bias of ability estimates is shown in Table 14.10.

The bias in EAP ability estimates from MML is much more severe than the bias
in WLE from JML method (Table 14.10). However, for very low and high abilities
where the bias is the worst, not many students are located at these extremes. In
contrast, EAP does a good job in recovering the abilities in the middle range of
abilities where more students are located.

Summary of Comparisons Between JML and MML
Estimation Methods

When one is choosing between the JML and MML estimation methods
(non-Bayesian and Bayesian), considerations should be given to the focus of the
assessment. If the focus is on population characteristics, such as in international
comparative surveys like TIMSS and PISA where there is no interest in measuring
individual students accurately, MML clearly is a better choice. The simulations
show that even when the test length is very short for each student, the collective
statistics such as the mean and variance of ability distributions are still estimated
very well under MML.

However, if the main goal of the assessment is to provide individual student
abilities, JML provides less biased results particularly for students at the extremes
of the ability distribution.

Table 14.9 RMSE for JML
and MML methods in
recovering individual abilities
for 12 items

Generating
ability

JML WLE
RMSE

MML EAP
RMSE

−2 0.79 0.80

−1 0.72 0.57

0 0.67 0.45

1 0.72 0.55

2 0.76 0.80

Table 14.10 Average WLE
and EAP ability estimates
across 500 replications–12
items

Generating
ability

JML WLE
average

MML EAP
average

−2 −2.11 −1.34

−1 −0.99 −0.66

0 0.01 0.01

1 1.03 0.69

2 2.08 1.32
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Plausible Values

In large-scale international studies such as TIMSS and PISA, the term “plausible
values (PV)” has been used frequently in the data provided by these studies. There
have been confusions about what plausible values are and how they are used. In this
section, we provide some explanations about plausible values.

First we remind readers about posterior distributions discussed earlier in this
chapter. Column 3 of Table 14.4 shows the posterior probabilities. The posterior
probabilities are probabilities of each possible (plausible) success rate of Zack,
derived by combining Zack’s performance in a “test” and the population distri-
bution of proficiencies (goal shooting rates). Table 14.11 shows the posterior dis-
tribution once again.

To describe Zack’s success rate, we do not provide a single number but we
provide a probability distribution as follows: the likelihood of Zack’s success rate
of 0.1 is 0.51, a success rate of 0.3 is 0.44, etc. Alternatively, we can “draw”
observations from the posterior distribution to represent Zack’s success rate:

0:3; 0:3; 0:1; 0:3; 0:1; 0:1; 0:1; 0:5; 0:1; . . .

These observations are drawn according to the probabilities in Table 14.11.
These observations are known as plausible values. If a frequency graph of the
plausible values is plotted, we will have the histogram of the posterior distribution,
as shown in Fig. 14.2.

Table 14.11 Posterior
distribution of success rates

Posterior probability

Success rate = 0.1 0.51

Success rate = 0.3 0.44

Success rate = 0.5 0.05

Success rate = 0.7 0.00

Fig. 14.2 Distribution of
plausible values (empirical
posterior distribution)
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That is, if we are asked the question of “what is Zack’s success rate of basketball
goal shooting?”, we can answer as the following: “0.3, 0.3, 0.1, 0.3, 0.1, 0.1, 0.1,
0.5, 0.1, …” are all possible (plausible) values of Zack’s success rate. Similarly, for
student achievement measures, plausible values are the likely student achievement
measures given the item responses of a student and the prior ability distribution.

Simulation

To illustrate some properties of plausible values, we carry out a simulation for a
data set with 2000 persons and 40 items, and we use MML estimation method to fit
the item response model. The prior distribution of abilities is assumed to be normal
with mean 0 and variance 1. We then draw plausible values for each student.
Figure 14.3 shows some results.

The top picture in Fig. 14.3 is a posterior distribution built using PVs for a
student whose true ability is −0.88 and his test score is 13 out of 40. The posterior
distribution formed by PV shows that this student’s ability is most likely to be
around −1, with some likelihood to be in the range of −2 to 0.

The middle picture in Fig. 14.3 shows the distribution built by the PVs for all the
students. This distribution is actually the (empirical) prior distribution.
Mathematically, we can express the collection of PVs across all students (so across
all response patterns) as

Z
h hjXð Þf ðXÞdX ¼

Z
f Xjhð Þg hð Þ

f ðXÞ f ðXÞdX

¼ gðhÞ
Z

f Xjhð ÞdX
¼ gðhÞ

ð14:5Þ

where X is a vector of response pattern, and the integration is over all response
patterns. We recall that gðhÞ is the prior distribution of students’ abilities.

As a check, in the bottom picture of Fig. 14.3, we have plotted the theoretical
prior distribution using the generating abilities in the simulation. It can be seen that
the empirical and theoretical prior distributions (middle and bottom pictures) are
very similar. The importance of Eq. (14.5) is that the distribution formed by PVs is
the (estimated) population distribution. So inferences about the population can be
made from the collection of PVs.

We make a further observation by comparing the top and bottom distributions in
Fig. 14.3. The posterior distribution for a student is considerably “narrower” than
the prior distribution. What this means is that when there is no item response
information about a student, we can only make a guess of the student’s ability using
the prior distribution. There is much uncertainty in this guess. But when we have
additional information about the performance of a student on a test, we make a
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Fig. 14.3 Posterior and Prior
distributions
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guess of a student’s ability using the posterior distribution which has much less
uncertainty. In fact, the “width” (or variance) of the posterior distribution is directly
related to the length of the test. If a test is very long, then the posterior distribution
will be quite narrow giving us more precise locations of the student’s ability. On the
other hand, when a test is short, the posterior distribution will be wider so we are
less certain about where a student is located. In fact, the variance of the posterior
distribution is a measure of measurement error, and PV’s have been used as a
means to incorporate measurement errors into the computations of standard errors.

Use of Plausible Values

The fact that the collection of PVs across all students forms the population distri-
bution allows us to use PVs to make inferences about the population ability dis-
tribution. But one may ask the question why this is necessary, given that an
assumption is made about the prior (typically a normal distribution), and the mean
and variance of this prior are directly estimated from the item response data. So we
should already have an estimate of the population distribution without drawing
plausible values. There are several reasons for using plausible values in large-scale
surveys such as TIMSS and PISA.

First, the process of “scaling” (estimation of the IRT model) is complex, as many
student background variables are also incorporated in the IRT model. The inclusion
of student background variables is through latent regression (discussed in the next
section). The estimation of such complex IRT model requires specialist software
and expertise. It is envisaged that secondary data analysts may not have access to
such specialist software, so the provision of plausible values is to allow data ana-
lysts to use common statistical packages to analyse the data. That is, plausible
values can be used to form ability distributions and inferences can be drawn about
the distributions without further IRT scaling. Therefore data analysts without
special training in IRT can carry out standard statistical analyses using plausible
values.

The second reason for providing plausible values is for the computation of
standard errors of statistics. For example, for simple random samples, the standard
error for the population mean is rffiffi

n
p ; where n is the sample size and r is the standard

deviation. But this estimate of standard error is not appropriate under complex
sampling, where the standard errors are not easily derived. In large-scale surveys,
cluster and stratified sampling is often used for practical considerations in test
administration and for increasing the efficiencies of the samples (reducing sampling
errors). The standard errors of statistics are typically computed using a replication
method (see, for example, technical reports of TIMSS and PISA (e.g. OECD
2009a)). In replication methods, student ability estimates are repeatedly sampled to
obtain variations in the statistics of interest in order to estimate standard errors.
Since a collection of plausible values across all students represent the population
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distribution (i.e., the prior distribution), plausible values can be sampled in repli-
cation methods for computing standard errors. For details, see PISA data analysis
manual (OECD 2009b).

In relation to the use of plausible values, we should stress that PVs are not
suitable as individual students’ ability measures to be provided to students. This is
because PVs are random draws from the posterior distributions. Two students with
the same response pattern are likely to have quite different PVs as measurement
error is typically large. However, PVs are used as individual ability measures in the
contexts of forming aggregate statistics for a population.

Latent Regression

In discussing the facets model in Chap. 13, latent regression has been mentioned in
relation to factors influencing the probability of success. In the facets model, facets
refer to factors (other than person ability and item difficulty) that have an impact on
the probability of success on an item. One can sometimes regard factors such as
gender, grade, ethnicity as facets, even though these factors are person attributes,
and not item attributes such as booklet or rater (see Chap. 13). Strictly speaking,
person attributes should be modelled as latent regression variables. In this section,
we will explain about the latent regression model and its relationship with the facets
model.

Facets and Latent Regression Models

The Bayesian IRT model has two parts: a population part and an item response
part. The population part assumes that the abilities come from a population dis-
tribution, and typically the unidimensional model is assumed to be a normal dis-
tribution with mean l and variance r2, where l and r2 are estimated together with
item parameters. For the simplest model, the population distribution can be written
as

h�N l; r2
� � ð14:6Þ

where h denotes person ability parameter.
The simplest item response model (dichotomous Rasch model) can be written as

PrðX ¼ 1Þ ¼ expðh� dÞ
1þ expðh� dÞ ð14:7Þ

where d denotes an item difficulty parameter.
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When there is a facet term, Eq. (14.7) can be written as

PrðX ¼ 1Þ ¼ exp h � gr þ dð Þð Þ
1 þ exp h � gr þ dð Þð Þ ð14:8Þ

where g denotes one facet term (e.g., raters), and gr denotes one level (or category)
of the facet (e.g., one rater). That is, the item difficulty can be thought of as being
altered by an amount that is equal to gr (e.g., a harsher rater makes the item more
difficult for a respondent as the score for the respondent is likely to be lower).

In contrast, for the latent regression model, attributes relating to persons (e.g.,
gender, SES, grade, motivation) may be identified as possibly having an impact on
the latent trait, h. So the population model can be written as

h�N l þ ax þ byþ . . .; r2
� � ð14:9Þ

That is, the mean of the ability distribution where a person comes from is
determined by a set of factors, x, y, …. These factors are known as regressors
because the expression “l þ ax þ byþ � � �” resembles part of a regression model.
For example, x could be 1 or 0 depending on the gender group; y could be a SES
measure of the person (in which case, the regressor may be a continuous (rather
than categorical) variable). Notice that x, y, …, etc. are known values for each
person. The regression coefficients, a, b, … are to be estimated, together with l and
r2.

For example, consider the case of one regressor, namely, gender. The population
model can be written as

h�N l þ ag; r2
� � ð14:10Þ

where g takes the value 0 for a boy and 1 for a girl. That is, the ability distribution
for boys is

h�N l;r2
� � ð14:11Þ

and the ability distribution for girls is

h�N l þ a; r2
� � ð14:12Þ

As a result, there are two prior distributions depending on the membership of a
respondent to a group.

If a latent regression model is fitted, the estimate of a can be regarded as the
average difference in mean abilities between girls and boys.
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Relationship Between Latent Regression Model
and Facets Model

If h is the ability of a girl, then, from Eq. (14.12),

ðh � aÞ�N l; r2
� � ð14:13Þ

So it is possible to write the following item response model for girls,

PrðX ¼ 1Þ ¼ exp ðh � aÞ � dð Þ
1þ exp ðh � aÞ � dð Þ

¼ exp h � ða þ dÞð Þ
1 þ exp h � ða þ dÞð Þ

ð14:14Þ

For boys, the item response model is simply

PrðX ¼ 1Þ ¼ expðh � dÞ
1 þ expðh � dÞ ð14:15Þ

If we let g1 ¼ a, and g0 ¼ 0, then, combining Eq. (14.14) and Eq. (14.15), the
item response model can be written as

PrðX ¼ 1Þ ¼ exp ðh � grÞ � dð Þ
1 þ exp ðh � grÞ � dð Þ ð14:16Þ

It can be seen that Eq. (14.16) looks identical to Eq. (14.8). However, if a facets
model is run, it will be assumed that h comes from a normal distribution with mean
l and variance r2 for both boys and girls. This, of course, is incorrect. So a
population model mis-specification has occurred.

Two observations can be noted about using facets model or latent regression
model for a variable such as gender.

First, the average difference between mean abilities of girls and boys can be
estimated in both models. In the facets model, the difference is g1 � g0. In the
latent regression model, the difference is a. These two estimates should be the same
(up to the accuracy of the estimations).

Second, if ability estimates are computed, the facets model will produce
incorrect abilities, as the population model for both boys and girls are assumed to
come from a common normal distribution. The reason is that, in the facets model,
the facet is considered as a factor contributing to the item difficulty, so when ability
is estimated, this source of item difficulty is removed (or adjusted for). For example,
rater harshness is adjusted for when ability is computed. In the case of raters, it is
desirable to estimate ability when there is no rater effect. But in the case of gender,
we do not want to know the ability of a person when the person has a neutral
gender, or no gender. In contrast, in the latent regression model, abilities are
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computed with the correct population models where the mean for girls is l þ a,
and l for boys, so the gender effect is incorporated in the estimation of abilities.

Summary

This chapter explains the Bayesian IRT models typically estimated using the
marginal maximum likelihood (MML) method. Bayesian IRT models contain two
parts: population part and item response part. The population distribution is known
as the prior. For an individual student, the estimated ability is not provided as a
point estimate, but expressed as a probability distribution known as the posterior.
Point estimates of abilities can be computed after the model has been estimated.
Typically, EAP is used as a point estimate for ability under MML. Comparing
Bayesian and non-Bayesian models, it is shown that Bayesian models provide
better population estimates such as the mean and variance of the ability distribution.
In contrast, non-Bayesian models provide less biased individual ability estimates.
Plausible values are random draws from individual students’ posterior distributions.
They are frequently provided in large-scale surveys for secondary data analysts to
explore the data using standard statistical software packages. Latent regression
relates to the specification of multiple prior distributions. When factors influencing
the probability of success on an item relate to person attributes, these factors should
be modelled as regressors in latent regression models.

Discussion Points

(1) From prior data, it has been found that drivers under 40 years-old have con-
siderable higher accident rates than drivers over 40 years-old. Driver A is 25
and Driver B is 45 years-old. Both drivers have not had an accident in the past
3 years. An insurance company sets premium rates based on age as well as
individual driver’s record of accidents over a three-year period. If a Bayesian
approach is used by the insurance company, would Drivers A and B pay the
same premium? Discuss this from the point of view of the insurance company,
and also from the point of view of the drivers.

(2) The choice of an IRT model depends on the purposes of an assessment.
Surveys such as PISA and TIMSS mainly focus on the performance of a
country. In contrast, state-wide testing programs are often interested in mea-
suring individual students. Discuss the relative merits between Bayesian and
non-Bayesian IRT models in relation to the purposes of an assessment.

(3) Discuss which ability estimates (WLE, EAP, plausible values) are most
suitable for representing the abilities of individuals.

(4) Discuss why plausible values are useful in large scaled educational assessment
studies.
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Exercises

Q1. Indicate whether you agree or disagree with each of the following statements

Two basketball players both scored 5/10 in goal shooting. Player A comes
from the local high school while Player B comes from the state basketball
team. If we use a Bayesian approach to estimate the long-term goal-shooting
rates, Player B will have a higher estimated rate

Agree/disagree

In a Bayesian IRT model, the prior is a normal distribution with mean 0. If a
student’s WLE ability estimate under JML (non-Bayesian) is 0.8, the
student’s EAP ability estimate will be less than 0.8

Agree/disagree

EAP ability estimates are more accurate than WLE ability estimates in that
the bias in the EAP estimates is smaller

Agree/disagree

The variance of a posterior distribution for an individual student will be
smaller if the test length is longer

Agree/disagree

2000 plausible values for a student are generated. The mean of these
plausible values can be used as the EAP estimate for the student

Agree/disagree

When plausible values across all students are collected, we have the prior
distribution

Agree/disagree

The variable “test-delivery mode (computer versus paper)” should be
regarded as a facet term and not as a regressor term

Agree/disagree

The variable “grade (years in school)” should be regarded as a facet term and
not as a regressor term

Agree/disagree
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Chapter 15
Multidimensional IRT Models

Introduction

The incorporation of a population model discussed in Chap. 14 leads to an
extension where the population distribution is a multivariate distribution rather than
a univariate one. That is, instead of having a population distribution assumption for
a latent ability, h, there is now a multivariate distribution assumption for a vector of
h for each respondent:

h ¼
h1
h2
� � �
hD

2
664

3
775

For example, for each respondent we could be measuring multiple abilities such
as mathematics and reading. The distribution for the vector of h is typically a
multivariate normal distribution with a vector of means l and covariance matrix R.
That is, it is assumed that the abilities h1 h2 � � � hDð Þ are correlated. In IRT
terminology, such an IRT model is termed multidimensional item response model
(MIRM). If the abilities are not correlated, then we can just use a unidimensional
model to scale each ability separately.

In real-life, students’ performances in different subject domains are often cor-
related. For example, a high performing student is often good at mathematics as
well as at reading. In PISA 2009, the (latent) correlations between reading, math-
ematics and science are given in Table 15.1 (OECD 2012, p. 194).

From Table 15.1, it can be seen that the correlations are rather high, but not as
high as one, giving support to the use of multidimensional IRT models.

In the simplest case of MIRM, the items are “loaded” on separate dimensions of
ability. That is, each item reflects only one ability. For example, if a test measures
mathematics and reading abilities, then some items test only mathematics ability
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and some items test only reading ability. In this case, the term “between-item
dimensionality” is used to describe the multidimensional nature of items. In con-
trast, if an item tests multiple abilities, such as a problem solving item tapping into
both reading and mathematics abilities, then we have “within-item dimensionality”.
In all analyses shown in this chapter, between-item MIRM are used (see Adams
et al. 1997).

In the following sections, we explain how multidimensional item response
models can be used to assist with the analysis and reporting of student achievement
results. In particular, we provide an assessment of the benefits and the limitations of
using MIRM, and the circumstances under which the increased complexity of the
methodologies adds value to the results obtained. We also contrast the multidi-
mensional models with unidimensional models.

Using Collateral Information to Enhance Measurement

One motivation for using the multidimensional item response model (and student
background variables in latent regression) may be illustrated in simple terms
through an analogy in physical measurements. Suppose we are interested in pre-
dicting how tall a child will be when he/she reaches adult age, we can collect
information such as the current height of the child in relation to children of the same
age, the heights of the parents, the region the child is from, the gender of the child,
etc. With multiple pieces of information, we have a better chance of making a good
prediction than with only one or two pieces of information. Similarly, if we know a
child is doing well in mathematics, and that the child comes from a high
socio-economic family, we may predict that the child should be doing well in
reading as well. If we have no information about a child, then it will be difficult to
make a prediction about the child’s achievement in reading. In the case where we
have a reading test score for the child, then the question is whether the additional
information on the child’s performance in mathematics and the child’s
socio-economic background can further enhance our measure of the child’s reading
level, given that there are measurement errors associated with the reading test score.
This justification for using collateral information, whether it is student background
information or student’s other academic results, stems from the aim to improve the
measurement of individual student’s level of achievement. This may not be the case
if the goal of the assessment is to obtain group level measures and not necessarily
individual measures. There are methodologies that can directly estimate group level
variables without first computing individual student estimates. Under these

Table 15.1 PISA 2009 latent
correlations between subject
domains for OECD countries

Reading Science

Mathematics 0.82 0.88

Reading 0.87
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circumstances, the use of collateral information plays a somewhat different role in
the analysis process. We examine the effect of using MIRM and collateral infor-
mation on individual student estimates and on group level estimates separately.

A Simple Case of Two Correlated Latent Variables

Suppose two tests are given to a student. Each test consists of 10 items. The two
tests measure two latent traits that are correlated. This means that if a student is
located high on one latent trait, he/she is likely to be located high on the other latent
trait. If the correlation is one, then the two tests measure the same latent trait. If the
correlation is zero, then the two tests measure two completely unrelated latent traits.
In the case of a correlation of one, one should be able to combine the results from
the two tests, and provide a single result that reflects a test of 20 items instead of 10
items. If the correlation is zero, then one cannot combine the two test results in any
way, and separate reporting on each test is necessary. What if the correlation is 0.8?
Can the result on test 1 (as a measure of the first latent variable) be improved by
drawing upon the result from test 2 so that the reported measure of latent variable
one reflects a test of more than 10 items, but not quite 20 items? The short answer is
that multidimensional item response model provides us with such a methodology
for combining information from different tests according to how well the latent
variables are correlated. If two tests assess two latent variables that have a corre-
lation of zero, the multidimensional item response model will simply use the
information from each test alone and ignore information from the other test. On the
other hand, if the correlation is high, then the multidimensional item response
model will use information from both tests in providing estimates of levels on the
latent traits.

A simulation is conducted where abilities are generated from a standard normal
distribution and item responses are generated using the simple Rasch model. Two
sets of 10 item responses are generated based on the same ability for each student,
reflecting a situation where two latent variables being assessed have a correlation of
one. Figure 15.1 shows a plot of the generating ability and the estimated EAP
(expected a posteriori) ability using only the first set of 10 items. Figure 15.2 shows
a plot of the generating ability and the estimated EAP (expected a posteriori) ability
for the first latent variable after fitting a two-dimensional item response model. It
can be seen that, when only the first set of 10 items are used, the estimated ability
departs from the generating ability by quite a margin as indicated by the width of
the spread in the diagram. In contrast, when a two-dimensional IRT model is fitted,
the estimated ability for the first dimension draws upon information from the item
responses in the second dimension, and is closer to the generating ability as
compared to the unidimensional case.

As the correlation between the two latent variables decreases, the item responses
from one test will have less impact on the ability estimate from the other test. If
reading, mathematics and science tests were all conducted, then the estimation of
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ability in each subject area can draw upon information from the other two subject
areas, in much the same way as increasing the test length in each test. This is not to
say that, if you want accurate measures of reading ability, you should measure
mathematics and science abilities. Certainly, the best way to improve precision of
reading ability is to increase the reading test length. However, given that mathe-
matics and science tests were administered already and the data are available, there
can only be gains by including these data. It should be noted that, in PISA for
example, the aim is not to report on individual student results. Rather, group level
results are of interest. Therefore, the main reason for carrying out multidimensional
item response modelling in PISA is not motivated by the desire to improve indi-
vidual student ability estimates. The reasons for using multidimensional item
response model are discussed in latter sections of this chapter.
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A number of observations need to be made in relation to the discussions presented
so far. First, if the test length of one test is already quite long (say, more than 50
items), then, the reduction in measurement error from using a multidimensional item
response model will not be as significant as when the test length is short. That is, the
gain from using a multidimensional item response model may need to be weighed
against the complexity of scaling multidimensional data. In addition, when group
level measures are of interest, the sample size of students will have a much higher
impact on the precision of the population mean estimates than increased test length.

The second observation is that, while on average, the precision of measurement
at individual student level will improve by using a multidimensional model, there is
a bias in the estimates, caused by the pull of information from other dimensions (as
well as a pull towards the denser part of the population distribution, as discussed in
Chap. 14). For example, if, by chance, a student performed not quite well in a
mathematics test than his/her expected performance, then the student’s reading
score will be affected under the multidimensional approach. Or, if the actual abil-
ities of a student on the two dimensions are far apart as compared to what the model
predicts using estimated cohort correlation, then a concurrent two dimensional
analysis will result in two ability estimates that are closer together than they would
have been if two unidimensional analyses were carried out. This is because in a
multidimensional analysis the estimated ability on one dimension can be treated as
a weighted average of abilities from all dimensions, so the abilities resulted from a
multidimensional analysis tend to be pulled towards each other (depending on the
magnitude of the correlation), causing a bias in ability estimates. The weights in
combining the abilities from all dimensions are related to the strengths of the
correlations between the dimensions.

A simulation for 1000 students is conducted where the true abilities are drawn
from a bi-variate normal distribution with mean 0, variance 1 for the marginal
ability distributions and a correlation of 0.8 between the two abilities. Item
responses to 10 items on each dimension are generated. One hundred replications
are run. For each student, the same generating ability is used across the replications,
but different item responses are generated between the replications. Table 15.2
shows results for the first three students in the simulated data set to illustrate some
comparisons.

Table 15.2 Comparison of generating ability and estimated abilities using unidimensional and
multidimensional item response model—correlation = 0.8, 100 replications

Student number Generating ability
(correlation = 0.8)

EAP (unidimensional)
(averaged over 100
replications)

EAP
(multidimensional)
(averaged over 100
replications)

Dim 1 Dim 2 Dim 1 Dim 2 Dim 1 Dim 2

1 −0.81 1.27 −0.48 0.86 −0.11 0.47

2 0.57 1.13 0.41 0.72 0.64 0.79

3 −1.04 −0.50 −0.74 −0.43 −0.59 −0.47

… … … … … … …

Average RMSE over all students 0.576 0.585 0.525 0.528
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A number of observations can be made about Table 15.2. Consider a pair of
generating abilities for a student. The pair of EAP (unidimensional) estimates tends
to be closer in values to each other than the pair of generating abilities is. This is
because EAP estimates have a bias (shrunken towards the mean ability), as dis-
cussed in Chap. 14, since the multidimensional IRT model is also a Bayesian IRT
model with a population distribution assumption. The pair of EAP (multidimen-
sional) estimates tends to be even closer in values than the generating pair. This is
because of the pull of estimates between the pair as the mean of each dimension of
generating abilities is zero. However, this does not mean that the EAP (unidi-
mensional) estimates will necessarily be closer to the generating values than EAP
(multidimensional) estimates will be. For Student 1, it can be seen that EAP
(unidimensional) estimates are closer to the generating values than EAP (multidi-
mensional) estimates are. But for Student 2, EAP (multidimensional) estimates are
closer to the generating values than EAP (unidimensional) estimates are. A RMSE
(root mean squared error) is computed for the ability estimates in Table 15.2.
The RMSE is a measure of how close the estimated ability is to the generating
ability, on average. A RMSE is computed for each student over the 100 replica-
tions, and then an overall average RMSE is computed across the 1000 students. The
last row in Table 15.3 shows this average RMSE. It can be seen that EAP (mul-
tidimensional) estimates are a little closer to the generating values than EAP
(unidimensional) estimates are as indicated by the smaller RMSE values. So,
despite the bias, the multidimensional EAP estimates recover the generating abil-
ities better than for the unidimensional model.

Comparison of Population Statistics

In studies such as PISA and TIMSS, the main focus is not on obtaining accurate
ability estimates for each student. The main aim is for estimating population
statistics. It will be of interest to examine the effect of using unidimensional and
multidimensional item response model in estimating population statistics, such as
cohort mean scores, the standard errors of the mean scores, the variances and
correlations between dimensions.

A simulation is conducted where two abilities are generated for each of 2000
students from a bi-variate normal distribution with mean 0 and variance of 1 for

Table 15.3 Comparison of estimated population means using unidimensional and multidimen-
sional models—averaged over 500 replications

Generating population mean Estimated population mean
and empirical standard error
(unidimensional model)

Estimated population mean
and empirical standard error
(multidimensional model)

Dimension 1 Dimension 2 Dimension 1 Dimension 2 Dimension 1 Dimension 2

0 0 0.00
(se = 0.025)

0.00
(se = 0.026)

0.00
(se = 0.026)

0.00
(se = 0.026)
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each dimension, and a correlation of 0.8 between the two dimensions. Twenty item
responses are generated for each dimension. Each replication re-generates abilities
and item responses, so that both sampling error and measurement error are incor-
porated in the generated data. The estimated population statistics for the two
dimensions are recorded after each replication, using both one- and
two-dimensional item response models. 500 replications are simulated. The average
over the 500 replications is reported in Table 15.3. A standard error is also com-
puted as the empirical standard deviation of the 500 means.

Comparisons of Population Means

Table 15.3 shows a comparison between the Bayesian unidimensional and the
multidimensional models.

It can be seen that both the unidimensional and multidimensional models recover
the population mean well. In addition, the standard error for the estimated mean is
of similar magnitude whether unidimensional or multidimensional model is used.

Additional Notes

Adams (2005) noted that

varðl̂Þ ¼ r2h
NRE

where r2h is the variance of the true latent abilities, N is the sample size, and
RE is the reliability of the test (Adams 2005). For a 20-item test in the data
sets used in the simulation, the reliability coefficient is around 0.769.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2000� 0:769

r
¼ 0:0255

This standard error is consistent with those obtained in the simulation as
shown in Table 15.3.

Comparisons of Population Variances

Table 15.4 shows a comparison of estimates of population variance using Bayesian
unidimensional and multidimensional models. It can also be seen that there is no
difference between the unidimensional and the multidimensional models in
recovering the population variance.
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Comparisons of Population Correlations

Using unidimensional models, the correlation between two dimensions is not part
of the models. Therefore, the correlation is computed in a second step using WLE
ability estimates after the unidimensional models are estimated. In contrast, in
multidimensional models the correlation is directly computed using the estimated
variance-covariance matrix. This directly estimated correlation reflects the latent
correlation, in contrast to the correlation computed from ability estimates which
contain measurement error.

Table 15.5 shows that the two-step approach of computing correlation using
abilities from unidimensional models considerably underestimates the correlation,
while the multidimensional model recovers well the value of the generating cor-
relation coefficient.

Additional Notes
In much the same way as for the disattenuation of variance estimate discussed
in Chap. 14, the correlation computed using ability estimates from unidi-
mensional models can be disattenuated by dividing it by the square root of the
reliabilities of the two tests. More specifically, we have:

Latent correlation ¼ correlation of ability estimates=sqrtðreliability1
� reliability2Þ

In the simulation example above, to find the latent correlation from the
WLE ability estimates, we use

latent correlation ¼ 0:613ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:769� 0:769

p ¼ 0:80

where 0.613 is the observed correlation and 0.769 is the reliability of each
test.

Table 15.4 Comparison of estimated population variance using unidimensional and multidimen-
sional models—averaged over 500 replications

Generating population
variance

Estimated population
variance and empirical
standard error
(unidimensional model—
Bayesian)

Estimated population
variance and empirical
standard error
(multidimensional model)

Dimension 1 Dimension 2 Dimension 1 Dimension 2 Dimension 1 Dimension 2

1 1 1.00
(se = 0.047)

1.00
(se = 0.047)

1.00
(se = 0.047)

1.00
(se = 0.047)
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Comparison of Test Reliability

As the multidimensional model draws information from all dimensions in making
inferences about abilities, one would expect that the test reliability to be higher
under the multidimensional model. In the simulation example above, the EAP
reliability for each dimension is 0.769 when the data for the two dimensions are
scaled using unidimensional models separately. However, using the multidimen-
sional model, the EAP reliability is 0.811 for each dimension. The effect of the
increase in reliability is equivalent to increasing the test length to about 26 items
from 20 items.

Data Sets with Missing Responses

Given that both unidimensional (Bayesian) and multidimensional models recover
population mean and variance well, a question arises about the advantages of using
multidimensional item response models. One advantage of multidimensional item
response model is that, when there are missing item responses, the multidimen-
sional model provides a theoretical underpinning that facilitates the imputation of
missing responses, thereby a complete data set can be produced that is easily usable
by secondary data analysts.

We use PISA as an example to illustrate the treatment of missing responses.
In PISA 2003 there were 13 rotated test booklets, containing test items in reading,
mathematics, science and problem solving. Table 15.6 shows the PISA 2003 test
design, where M refers to mathematics; R refers to reading; S refers to science and
PS refers to problem solving item blocks. Mathematics, being the major domain in
PISA 2003, appears in every test booklet. Reading, Science and Problem Solving
each appears in 7 of the 13 test booklets. That is, 7 out of every 13 students took
reading items, and 6 out of 13 students have missing reading scores. Similarly, for
Science and for Problem Solving, 6

13 of the students do not have scores in that
domain. The test booklets are distributed to students at random, so the missing
responses are Missing At Random (MAR) as they are missing by design.

Table 15.5 Comparison of estimated correlation using unidimensional and multidimensional
models—averaged over 500 replications

Generating
population
correlation

Estimated population correlation and
empirical standard error
(unidimensional model—Bayesian)

Estimated population correlation
and empirical standard error
(multidimensional model)

0.8 0.613
(se = 0.015)

0.799
(se = 0.016)
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A simulation is carried out to examine the effect of missing item responses when
unidimensional and multidimensional item response models are applied. Two
abilities are generated for a sample of 1000 students using a bi-variate normal
distribution where the correlation is 0.8, and the mean and variance for the marginal
distributions are 0 and 1 respectively. Twelve item responses are generated for each
of the two dimensions. 25% of the responses on each dimension are then changed
into missing values at random, but no student has missing responses on both
dimensions. That is, 50% of the students have responses on both dimensions; 50%
of the students have missing responses in one dimension. The simulation is repeated
100 times.

The results of the simulations show that both the unidimensional and multidi-
mensional models recover the population mean and variance well. However,
notable differences are in the correlation estimates and test reliabilities. The esti-
mated correlation between the two latent abilities is 0.53 using WLE ability esti-
mates from unidimensional models, and 0.80 from multidimensional model. Once
again the result illustrates that the multidimensional model recovers the correlation
much better. Furthermore, we find that the EAP test reliability is 0.5 for each
dimension under the unidimensional model, and 0.64 under the multidimensional
model.

Production of Data Set for Secondary Data Analysts

To allow secondary data analysts to use the data from a survey, data files containing
estimated student scores (e.g., plausible values) are prepared. If a student was not

Table 15.6 PISA 2003 test
design

Booklet Cluster 1
30 min

Cluster 2
30 min

Cluster 3
30 min

Cluster 4
30 min

1 M1 M2 M4 R1

2 M2 M3 M5 R2

3 M3 M4 M6 PS1

4 M4 M5 M7 PS2

5 M5 M6 S1 M1

6 M6 M7 S2 M2

7 M7 S1 R1 M3

8 S1 S2 R2 M4

9 S2 R1 PS1 M5

10 R1 R2 PS2 M6

11 R2 PS1 M1 M7

12 PS1 PS2 M2 S1

13 PS2 M1 M3 S2
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administered items in a subject domain, then, typically, the student’s score will be
set to missing for that subject domain. This often causes problems for secondary
statistical analyses, as many statistical procedures adopt list-wise deletion where the
entire case is deleted. In the case of the PISA data sets, as 12 out of every 13
students have missing score(s) in at least one subject area, list-wise deletion will
likely remove a substantial amount of data. In PISA, students with missing subject
scores have imputed scores, so that a complete data set is released. A complete data
set is easier to analyse than a data set with missing responses.

Imputation of Missing Scores

The following is an illustration of the idea for the imputation of missing scores. If a
student did not sit for a reading test, and no other information is known about the
student, then the imputed scores come from the population distribution of reading
scores across all students. If the student did sit for the mathematics test, and
obtained a high score, say, x, then the imputed reading score will be from the
distribution of reading scores of students who obtained x for their mathematics
score. Graphically, a bivariate relationship between two scores can be illustrated as
shown in Fig. 15.3. It can be seen that the marginal distribution of reading scores
(blue curve on the left side of the graph) is the imputation distribution if no
information is known about a student. The yellow curve located at 70 on the
mathematics scale shows the conditional reading score distribution given that the
mathematics score is 70. This conditional distribution has a much narrower spread
as compared to the blue curve. Consequently, if the mathematics score is known,
then the imputed reading score will be more precise than the imputed reading score
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when no information is known. Of course, the relationship between mathematics
and reading scores has already been established using the observed data. Therefore
the imputation of missing values simply uses the parameters of the estimated model
which is based on non-missing data. Essentially, the imputation conforms to the
estimated model. There is no circularity in this process where the estimation of a
model is not affected by imputations.

In the simulation described above where 50% of the students have missing
responses in one dimension, unidimensional and multidimensional IRT models are
fitted separately to the non-missing data. After the parameters of the IRT models
have been obtained, plausible values are generated for all students on both
dimensions, including students with missing responses on some dimensions, so that
a complete data set of plausible values are created without any missing values. The
aim of this example is to see how well plausible values (including imputed PVs for
students with missing responses) recover population correlation parameter. The
results are summarised below.

For the multidimensional model, the correlation between plausible values is
0.80, which is also the generating correlation.

For the unidimensional model where missing responses have imputed plausible
values, the correlation between plausible values is 0.18. If we only use plausible
values for students who have complete data (so there is no imputation), the cor-
relation between plausible values is 0.36. Note that using plausible values from
unidimensional models produces worse results than using EAP ability estimates in
recovering correlation.

As the unidimensional model does not take information from the other dimen-
sion into account, the imputed plausible values for a student with a missing test
score is from the estimated population marginal distribution. This considerably
lowers the correlation. In contrast, in the case of the multidimensional model, the
imputed plausible value for a student with a missing test score is from the estimated
conditional marginal distribution (which has been established with the “correct”
correlation parameter between the latent variables), so the plausible values pro-
duced reflect the correlation structure of the latent dimensions.

The key message is that if secondary data analysts use plausible values to
explore correlations between latent variables, then it is essential that plausible
values are produced using a multidimensional IRT model. More generally, for
Bayesian IRT models, the specification of the population model must be consistent
with the statistics of interest. For example, if we are interested in estimating cor-
relations between dimensions, then a multidimensional model must be used to
include the correlation as a parameter in the population model.
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Summary

At individual student level, the use of multidimensional item response model does
reduce the magnitude of measurement error. But the amount by which measurement
error is reduced depends on the test length and the strength of correlation between
the dimensions. However, while there is a gain in measurement precision, there is
also a bias in EAP ability estimates. If a test is already long (say, more than 50
items), the use of unidimensional item response model may be adequate for the
purposes of estimating individual student abilities. Further, it should be noted that,
in a multidimensional item response model, the results on any dimension has an
impact of the results on other dimensions. Consequently, the estimated ability on
one dimension will be closer to the abilities on other dimensions. For some stu-
dents, this will result in a better estimate (in the sense that it is closer to the true
ability). But for other students, this may result in a small bias in estimated abilities.
That is, the final ability estimate is no longer just based on what the student did on
that test. It incorporates other information as well. This may or may not be desir-
able, as more explanations will need to be given about how test results are pro-
duced. There is also a perceived fairness that needs to be considered. For example,
if both Student A and Student B received the same test score on reading, but
Student B had a higher mathematics score, then Student B’s estimated reading
ability would be higher if a multidimensional model is used.

At the population level, the cohort mean and variance are estimated equally well
whether unidimensional or multidimensional Bayesian item response model is used.
However, the correlation between two latent variables is recovered well only with
the multidimensional model. When there are missing cases for one dimension and
not the other, the multidimensional item response model uses the estimated cor-
relation parameter to draw upon information from the available data in other
dimensions for imputing missing scores so that complete data sets without missing
values can be produced. Imputed plausible values from a multidimensional model
recover the correlation well while plausible values from unidimensional models do
not. As a rule, in Bayesian IRT models, the population model for producing student
scores for secondary data analysis needs to be consistent with the statistics of
interest in the secondary analysis.

Discussion Points

(1) Discuss when multidimensional models should be used in preference to uni-
dimensional models.

(2) Explain why it’s possible to have biased estimates but yet smaller RMSE.
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Exercises

Q1. Indicate whether you agree or disagree with each of the following statements

Latent correlation refers to the correlation between “true” abilities (i.e., not
between estimated abilities)

Agree/disagree

The test reliability for each dimension will be similar whether
unidimensional or multidimensional model is used

Agree/disagree

Because multidimensional models draw on information from all dimensions,
the estimated correlation from MIRM will likely overestimate the latent
correlation

Agree/disagree

Because multidimensional models draw on information from all dimensions,
the EAP ability estimates will be influenced by students’ scores on all
dimensions

Agree/disagree

Multidimensional models produce biased population mean estimates Agree/disagree

Imputing missing student scores will overestimate the correlations between
two dimensions

Agree/disagree
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Further Reading

This chapter provides a brief introduction to multidimensional IRT models based on the
formulation of MIRM by Adams, Wilson and Wang (1997). This is only one type of MIRM

Reckase (2009) provides a comprehensive discussion on the developments in MIRM more
generally, and the topics include formulations of the models, parameter estimations, model fit
and equating designs
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In addition to MIRM, many analyses for dealing with multiple abilities and multiple cognitive
components have been developed. These include Bock and Aitkin’s full-information item
factor analysis (Bock et al. 1988), Embretson’s Multicomponent Response Models (Embretson
1997) and Fischer’s Linear Logistic Test Model (LLTM) (Fischer 1995)

Further, confirmatory factor analysis (CFA) (Jöreskog 1969) provides another statistical tool for
modelling multidimensional latent trait data
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Glossary

Ability This refers to the level of latent trait of a respondent as measured by an
instrument for a certain construct. It is usually represented by the total test score
in the classical test theory or in terms of logit in item response theory. See
Chap. 1.

Assessment framework An assessment framework is a document usually written
by subject matter experts and measurement experts. The document typically
covers the purpose of the assessment, the target population to be assessed,
assessment methods, and most importantly, the definition of the construct to be
measured and the content to be covered in the assessment. See Chap. 2.

Balanced incomplete block (BIB) design This refers to a test booklet design
where each cluster of items appears in each position of a test booklet, and every
pair of clusters appears together in one test booklet. See Chaps. 3 and 13.

Between-item dimensionality For multidimensional IRT models, each item loads
on only one dimension of the latent constructs. That is, there is a set of items
tapping into dimension 1, and a different set of items tapping into dimension 2,
etc. See Chap. 15.

Booklet design This refers to the arrangement of items in test booklets. In par-
ticular, in large-scale assessments, curriculum coverage requires many items to
be used. In order not to over burden the students to answer a long test, items can
be distributed to different booklets and each student is required to take only one
booklet. Typically, the items are grouped in blocks or clusters which are then
arranged according to a balanced incomplete block design. See Chaps. 3 and 13.

Calibration This refers to the procedure of estimating the item difficulties and the
abilities of respondents on a scale of a latent variable. See Chap. 8.

Classical test theory Classical test theory (CTT) refers to the analysis of test
results based on test scores. CTT typically includes the notion of the reliability of
a test, point-biserial correlation for each item, and test scores for students. See
Chap. 5.
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Cluster sampling Cluster sampling occurs when groups of respondents (e.g.,
schools or classes) form the sampling units instead of individuals in the popu-
lation. See Chap. 3.

Codebook A codebook provides information about a data set, such as variable
names, variable labels, value coding and what the value coding refers to. It
enables any researcher analysing the data to know what the data are and how to
access them. See Chap. 4.

Common items One technique for equating tests is to use common items (also
known as link items) in multiple tests and then align the calibrations based on
these common items. See Chap. 12.

Complex sampling We refer to probability sampling other than simple random
sampling as complex sampling. Complex sampling may involve stratifications of
the sampling frame, systematic sampling and cluster sampling. See Chap. 4.

Construct (Latent variable) This refers to a trait that cannot be observed directly.
The construct of a measuring instrument is what we are trying to measure with
the instrument. See Chaps. 1 and 2.

Control script Control scripts are example student responses to extended-response
items for the use of marker training sessions. The purpose of using control
scripts is to familiarise markers with the marking guide by providing them with
guidelines in categorising student responses. See Chap. 4.

Cronbach’s alpha Cronbach’s alpha is a measure of the internal consistency of a
test or a group of items that tap into the same construct. It is one of the most
commonly used reliability coefficients in applied studies within the classical test
theory. See Chap. 5.

Data cleaning Data cleaning refers to checking for, and rectifying, anomalies in
the data. It includes such procedures as value range check, missing values
treatment, duplicate record check, inconsistency check and multiple instruments
check. See Chap. 4.

Design effect The design effect is the factor by which the sample size of a simple
random sample needs to be inflated for complex sampling design in order for the
latter to achieve the same accuracy as for a simple random sample. See Chap. 4.

Dichotomous score/data This refers to the response outcomes of respondents to a
set of items. The outcomes are classified into two discrete categories (e.g., not
present/present, yes/no, and wrong/right). The categories are usually scored as 1
and 0 for the ease of data analysis. See Chap. 7.

Differential item functioning (DIF) An item is said to exhibit DIF when the
probability of success on the item differs for two groups of respondents even
when the abilities of the two groups of respondents are matched. DIF is caused
by different strengths and weaknesses of respondents owing to a number of
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possible factors, including different curriculum, different personal disposition,
experience, culture, language and many other reasons. See Chap. 11.

Embedded-missing items The term embedded-missing items refer to those items
being skipped by students while taking a test. See Chap. 4.

Equating When two tests need to be placed on the same ability scale, an equating
procedure is required in order to put the parameters of the two tests on the same
scale for comparison. See Chap. 12.

Expected a posteriori (EAP) statistic Expected a posteriori (EAP) statistic is a
point estimate for a student’s ability in the Bayesian IRT approach by taking the
mean of each respondent’s posterior distribution. This is sometimes used as an
ability estimate under the MML estimation method. See Chap. 14.

Expectation Generally speaking, the expectation of a random variable refers to the
long run average value under repeated realization of the variable. It is also
known as the expected value of the random variable. When applied to the
observed scores of student taking a certain test, it refers to the long run average
value of the observed scores under repeated administrations of the same test to
the same student. See Chap. 5.

Expected score This is the average item score for respondents with a given ability,
computed using the theoretical item response function. See Chap. 9.

Facets model This is a class of IRT models that incorporate factors (in addition to
item difficulty and student ability) that influence the probability of success on an
item. For example, the inclusion of a rater harshness parameter is an example of
a facets model. See Chap. 13.

Free calibration This refers to the estimation of item parameters based on the item
response data for a test and not linked to any other test results. See Chap. 12.

Generalised partial credit model This is a 2-PL extension of the partial credit
model. There are, however, different ways to generalise the partial credit model.
See Chap. 10.

Horizontal equating Horizontal equating refers to equating tests aimed for the
same target level of students. For example, if a number of tests for grade 4
students are administered, the equating of these tests onto the same scale for
comparison is known as horizontal equating. See Chap. 12.

Infit statistics This is a residual-based weighted fit statistics for assessing item fit.
See Chap. 8.

Information function Conceptually, this function gives us an idea of how useful
an item or a test is for estimating abilities. See Chap. 3.

Item characteristic curve The item characteristic curve (ICC) of an item shows
the probabilities of answering an item correctly by respondents across a spec-
trum of abilities. This curve is often formulated in terms of a logistic function,
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which looks like an elongated letter S. The ICC is sometimes known as the item
response function. See Chaps. 6 and 7.

Item dependency This refers to the violation of the local independence assumption
of the Rasch model when the probability of success on an item depends on the
response(s) on other item(s). See Chap. 8.

Item difficulty In the dichotomous Rasch model, an item’s difficulty is the location
on the scale at which the respondents have 0.5 chance of answering the item
correctly. The item difficulty is often used to place an item on the scale of the
latent variable. See Chaps. 2, 3, 6 and 7.

Item discrimination In classical test theory, item discrimination is a measure of
the relationship between the scores on an item and the overall test scores of
students. In IRT perspective, it refers to the slope of the item characteristic curve.
See Chaps. 5, 7 and 10.

Item fit statistics IRT has an underlying mathematical model to predict the like-
lihood of the item responses. Statistical tests of fit can be constructed to assess
the degree to which responses of an item “fit” the IRT model. Such fit tests
provide information on the degree to which individual items are indeed tapping
into the latent trait. See Chaps. 2 and 8.

Item invariance This refers to the situation when items are found to perform in the
same way across different tests. See Chaps. 6 and 12.

Item-person map This is a map that shows the relative positions of item diffi-
culties and the abilities of persons on the same scale. It is usually organised as a
map with two panels. The left panel usually displays a distribution of the
respondents’ abilities, while the right panel displays a distribution of the location
of the items. It is also known as a Wright map or variable map in the literature.
See Chap. 6.

Item position effect This refers to the situation when an item has different diffi-
culties if it is placed at different positions in a test, say, the beginning and the end
of a test. See Chaps. 3, 12 and 13.

Item response theory (IRT) Item response theory assumes an underlying math-
ematical model to predict the likelihood of the item responses by the respondents
according to their abilities and a number of parameters. See Chaps. 2, 6 and 7.
Note: We also refer to it as item response modeling

Latent regression The population model in Bayesian IRT specifies that the mean
of the ability distribution is formed by a regression-like formula typically con-
taining student background variables. See Chaps. 13 and 14.

Latent trait variable See construct. See Chaps. 1 and 2.

Learning progression When item response data fit the Rasch model, one can write
summary statements of skills along the ability scale based on the locations of test
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items positioned according to their item difficulties. These summary statements
are descriptions for a learning progression that typically apply to the population
of test takers. It describes the order of difficulty of skills to be mastered and is
sometimes known as a proficiency scale in the literature. See Chap. 7.

Level of measurement This refers to how numerical values are assigned to
attributes of objects according to some rules. A common treatment is to claim
that there are four levels (or scales) of measurement, namely, the nominal,
ordinal, interval and ratio levels. The numerical values from different levels of
measurement convey different amount of information. See Chaps. 1 and 2.

Linking In this book, linking is used as a synonym with equating. See Chap. 12.

Logit (logit scale) In item response theory, the measurement unit of the scale for
ability and item difficulty after the log(p/(1 − p)) transformation is generally
known as “logit”, a contraction of “log of odds unit.” See Chaps. 6 and 7.

Local independence An important assumption for the Rasch model is that the
probability of success depends only on a person’s ability and an item’s difficulty.
The probability is not influenced by a person’s success or failure on other items,
or by factors other than ability and item difficulty. This assumption is generally
referred to as the local independence assumption. See Chap. 7.

Mantel Haenzsel test This is a method for detecting differential item functioning.
See Chap. 11.

Maximum a posteriori statistics Maximum a posteriori (MAP) statistic is a point
estimate for a student’s ability in the Bayesian IRT approach by taking the mode
of the posterior distribution. See Chap. 14.

Marginal maximum likelihood estimation In some IRT models, there is an
assumption of the distribution of the population of abilities. The MML esti-
mation method incorporates this population distribution with the item response
function. See Chap. 14.

Marker harshness/leniency This refers to raters’ propensities for being harsh or
lenient in grading. See Chaps. 3 and 13.

Marking guide (or scoring rubric) This refers to a guideline that is established
for scoring purposes. This is usually used in scoring responses to constructed
response items, such as short response items or extended essays. See Chap. 4.

Measurement error Measurement error refers to the possible variation in a stu-
dent's test scores if similar tests are administered. There is always some
uncertainty associated with a test score, not because the test contains errors, but
because by chance the student may know more or less of the content of a
particular test. Measurement errors are typically large for an individual because a
test contains limited number of items and hence the possible variation in test
scores is usually large. See Chaps. 3 and 5.

Glossary 303

http://dx.doi.org/10.1007/978-981-10-3302-5_7
http://dx.doi.org/10.1007/978-981-10-3302-5_1
http://dx.doi.org/10.1007/978-981-10-3302-5_2
http://dx.doi.org/10.1007/978-981-10-3302-5_12
http://dx.doi.org/10.1007/978-981-10-3302-5_6
http://dx.doi.org/10.1007/978-981-10-3302-5_7
http://dx.doi.org/10.1007/978-981-10-3302-5_7
http://dx.doi.org/10.1007/978-981-10-3302-5_11
http://dx.doi.org/10.1007/978-981-10-3302-5_14
http://dx.doi.org/10.1007/978-981-10-3302-5_14
http://dx.doi.org/10.1007/978-981-10-3302-5_3
http://dx.doi.org/10.1007/978-981-10-3302-5_13
http://dx.doi.org/10.1007/978-981-10-3302-5_4
http://dx.doi.org/10.1007/978-981-10-3302-5_3
http://dx.doi.org/10.1007/978-981-10-3302-5_5


Measurement invariance Measurement invariance refers to the invariance of the
relative placements of students on the ability scale irrespective of the instruments
being administered to them, provided that the instruments all measure the same
construct. See Chap. 6.

Multidimensionality When test items tap into multiple constructs, the test is said
to be multidimensional. See Chap. 12.

Multidimensional IRT models These are IRT models for measuring multiple
constructs (abilities). See Chap. 15.

Not-reached items Not-reached items refer to the missing responses at the end of a
test, with the possibility that students ran out of time and never had the
opportunity to answer the items at the end of a test. See Chap. 4.

Outfit statistics This is a residual-based unweighted fit statistics for assessing item
fit See Chap. 8.

Partial credit model It is a Rasch model formulated to analyze data collected from
instruments with polytomously scored items. See Chap. 9.

Plausible values These are random draws from each student’s posterior distribu-
tion under the Bayesian IRT models. See Chap. 14.

Point biserial correlation This is a classical test theory item statistic assessing the
degree to which an item can separate students according to ability levels. See
Chap. 5.

Polytomous score An item is said to be polytomous when there are more than two
scoring categories. See Chap. 9.

Posterior distribution This is the estimated ability distribution for a student under
the Bayesian IRT models. See Chap. 14.

Prior distribution This is the population distribution of abilities. See Chap. 14.

Probability sampling Probability sampling means that every unit (e.g.,
school/student) in the target population has a chance of being selected, and these
chances can be computed according to the sampling design being used. See
Chap. 4.

Rasch model This refers to a family of measurement models that have measure-
ment invariance properties. This includes the model for dichotomous data, the
partial credit model and the facets model, among others. See Chaps. 6, 7, 9 and
13.

Rating scale model This is in the Rasch models family, formulated to analyze data
collected from rating scale instruments. In this book, we regard this model as a
special case of the partial credit model. See Chap. 9.

Raw data Raw data refers to the responses given by the respondents to a test
instrument before any data processing is carried out. See Chap. 4.
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Reliability Reliability refers to the degree to which an instrument can separate
respondents by their levels on the construct. See Chaps. 1, 2 and 5.

Response probability In the item-person map, when items are matched to a person
to describe the performance of the person on the items, it is usually regarded that
the person has a 50% chance of answering those items correctly. This probability
is regarded by some as being too low and is changed to a higher value. The
probability deemed as appropriate to match a person to the items is sometimes
called response probability, or RP in short. See Chap. 7.

Sampling design A sampling design refers to ways the sample of participants is
selected from a population for a study. Some examples are simple random
sampling design and cluster sampling design. See Chap. 3.

Sampling frame A sampling frame is a document that lists all the units of a target
population subjected to sampling. In educational surveys, sampling is usually
done by first identifying all schools in which students in the target population are
enrolled. The names of these schools, important information (e.g., address,
school type, geolocation) and the enrolment size for each grade in each school
are then made into a list. This list is known as a school sampling frame.
Similarly, a sampling frame of students can be made when sampling students
from selected schools. See Chap. 4.

Sampling weight One simple way to understand this is to think of sampling
weight as the number of students in the target population represented by a
sampled student. See Chap. 4.

Specific objectivity This is one of the properties of the Rasch model which refers
to the principle that comparisons between two objects must be free from the
conditions under which the comparisons are made. This is sometimes referred to
as the invariance property in the literature. See Chap. 7.

Standard error of measurement This gives the degree of uncertainty surrounding
a test score or associated with an ability measure. See Chaps. 3 and 5.

Stratified sampling It is a sampling design in which stratification is done by
grouping the sampling units (e.g. schools) in the target population into strata,
such as by geographical location or by school types (e.g., public, private) to
ensure that when samples are selected, each stratum has a representative sample
of schools. Sampling is then performed proportionally according to the size of
each stratum so as to achieve a more representative sample of the target popu-
lation. See Chap. 4.

Student participation forms A well documented test administration will include a
student participation form that contains students’ background information (e.g.,
date of birth, gender), booklet assignment information as well as test attendance
records. The attendance records will be useful in computing the adjusted sam-
pling weights. See Chap. 4.
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Sufficient statistics In the context of a Rasch model, this refers to the statistical
property that students with the same raw score will be given the same ability
estimate in logits, irrespective of which items they answer correctly on the test.
See Chap. 7.

Test blueprint The test blueprint is usually a table in which the number (or per-
centage) of items with respect to various contents of the test is being reported.
This can also be done with respect to the cognitive domain that the items
belonged. The test blueprint is sometimes known as the two-way specification
form when the number of items is reported in a contingency table with respect to
both the content and cognitive domains at the same time. See Chap. 2.

Test design Test design refers to the considerations for the number of items in a
test, the sample size of students to take the tests, the assignment of tests to
students, the arrangement of items in a test and the assignment of markers to test
scripts. More generally, the development of the construct, framework and test
blueprint are all also part of the test design. See Chaps. 2 and 3.

Testlet A testlet is a set of items that are linked to a common stimulus, usually a
common passage, a diagram or a common condition. The presence of testlets
within a test often leads to the violation of the local independence assumption
under the Rasch model. See Chap. 7.

Two-parameter IRT model This is an IRT model where there are two parameters
related to each item: the item difficulty parameter and the item discrimination
parameter. See Chap. 10.

Two-stage sampling In educational studies, two-stage sampling refers to the
practice where a number of schools are first randomly sampled from target
population of schools and then a number of students are randomly sampled from
the selected schools. See Chaps. 3 and 4.

Unidimensional test A test is said to be unidimensional if all its items should tap
into the same latent variable. This is a required condition for aggregated item
scores to be meaningfully interpreted. The scores then reflect an overall per-
formance by the respondent on the whole test. See Chaps. 2 and 7.

Validity Validity is about whether it is valid to use measures of an assessment for
the purposes of the assessment. See Chaps. 1 and 2.

Vertical equating This refers to equating tests that are administered between dif-
ferent grade levels, for example, between grades 4 and 5. See Chaps. 12 and 13.

Weighted likelihood estimate of ability Since the maximum likelihood approach
to the estimation of ability has been found to be biased outwards, Warm (1989)
proposed the weighted likelihood approach as a correction to remove this bias. The
corresponding estimate of ability is usually denoted byWLE. See Chaps. 7 and 14.

Within-item dimensionality For multidimensional IRT models, an item may load
on multiple dimensions of the latent constructs. See Chap. 15.
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