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Chapter 1
Introduction

Space physics studies various physical processes that exist in different regions
including the middle and high layer atmosphere, ionosphere, magnetosphere,
interplanetary space, the Sun, and the entire heliosphere. With the development of
modern technology, people has come to realize that the space physics is closely
related to our human life. For example, the Sun releases energy all the time, and in
most cases, our Earth will not be influenced if the space environment is in peace.
But the Earth system is vulnerable. If the Sun quickly releases significant amount of
energy and if the energy reaches our Earth, it will harm the satellites, power grids,
or even human health. Such disasters are called severe space weather events which
will cause unimaginably enormous damages to the developments of the modern
society. Therefore, it is necessary and significant to investigate these events and
take multiple actions to prevent such tragedies.

Similar to the dramatic changes in the weather, when severe space weather
events happen, spacecraft would detect violent changes in the magnetic field,
electric field, and the plasma conditions. This paper addresses the evolutions of
drastic processes related to such events, and the main concerns are given to the
realm related to magnetic reconnection and magnetic cloud boundary layer.

1.1 Magnetic Reconnection

As early as in the late 1940s, Giovanelli found that the energetic particles accel-
erated by the solar flare could be closely related to the magnetic reconnection
(Giovanelli 1946), but he did not put forward the name as ‘magnetic reconnection.’
To explain the acceleration of particles in the magnetosphere, Dungey proposed the
concept of magnetic reconnection (Dungey 1953). Magnetic reconnection is a
physical process during which the magnetic field line ‘breaks’ and ‘reconnects’
(Fig. 1.1), and this process can convert magnetic energy into plasma thermal and
kinetic energy (Birn and Priest 2007). Magnetic reconnection is a ubiquitous pro-
cess existing in laboratory, space, and astrophysical contexts. During the past few
decades, it becomes a hot topic in the realm of physics. Until March, 2012, more

© Springer-Verlag Berlin Heidelberg 2016
Y. Wang, Magnetic Cloud Boundary Layers and Magnetic Reconnection,
Springer Theses, DOI 10.1007/978-3-662-48310-7_1
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than 20,000 scientific papers related to magnetic reconnection have been published.
The basic information of magnetic reconnection will be introduced in this chapter.

Magnetic reconnection is a complex physical process that will evolve differently
under different conditions. For example, magnetic reconnection process may pro-
ceed either explosively or in a steady way. It can also occur both in collisionless and
collisional plasma. We would like to introduce two-dimensional reconnection
models briefly to show the properties of magnetic reconnection in different
environments.

1.1.1 Sweet-Parker Reconnection

Sweet (1958) and Parker (1957) proposed the first reconnection model (Fig. 1.2).
Based on resistive magnetohydrodynamics (MHD) theory, the generalized Ohm’s
law could be written as

before magnetic reconnection

after magnetic reconnection

Fig. 1.1 Simple
configuration of magnetic
field before and after
magnetic reconnection

L

d current sheet

reconnection
   outflow

reconnection inflow

reconnection inflow

reconnection
    outflow

Fig. 1.2 Illustration of Sweet-Parker reconnection

2 1 Introduction



E þ V � B ¼ gJ ð1:1Þ

The g represents resistivity, and the equation becomes ideal MHD equation if
g¼ 0.

Figure 1.2 displays the Sweet-Parker reconnection that introduces a long and
narrow current sheet (length L and with d) in which the field lines ‘break’ and
‘reconnect.’ The reconnection rate can be written as:

M� Vin

Vout
� d

L
� 1

ffiffiffi
S

p ð1:2Þ

where Vin and Vout denote inflow and outflow speed, respectively. S denotes the
Magnetic Lundquist number which is defined as:

S ¼ l0LVA

g
ð1:3Þ

where l0 is the vacuum permeability and VA ¼ B=
ffiffiffiffiffiffiffiffi
l0q

p
represents the Alfvén

speed. It should be note that the Magnetic Lundquist number (S) equals to the
Magnetic Reynolds number (Rm) in some cases (Huba 2004), and both of them
could reveal the diffusion of the magnetic field.

The Sweet-Parker reconnection is a creative work that builds a 2D (or 2.5D)
quantitative model. Since this model is based on the resistive MHD equations, and
the diffusion of the magnetic field lies on the resistivity which is determined by
classical collisions, Sweet-Parker reconnection is also called resistive reconnection,
collisional reconnection, or slow reconnection (Cassak and Shay 2011; Daughton
et al. 2009). When it is applied to the solar corona where the Magnetic Lundquist
number is very large (S > 106), it is found that the calculated reconnection rate is too
small to explain the observations (Parker 1957). Although Sweet-Parker recon-
nection requires too much time to trigger a coronal mass ejection (CME), further
analyses suggest that magnetic reconnection could proceed slowly to form a long
current sheet before CME in the energy build up phase. These features are properly
revealed by the Sweet-Parker reconnection, and this model is widely applied in the
studies of solar activities (Samtaney et al. 2009).

1.1.2 Hall Reconnection

The Earth’s magnetosphere is a different place where the plasma is nearly colli-
sionless. The magnetic field becomes frozen into the plasma. The region where
magnetic reconnection occurs is a small area in the reconnection center called
diffusion region (sometimes also called dissipation region, see Fig. 1.3) (Dungey
1961, 1963). This region is dominated by kinetic effects and reconnection could be
initiated by the waves, plasma microinstabilities, or turbulence (Gurnett and

1.1 Magnetic Reconnection 3



Bhattacharjee 2005). In such collisionless environment, the ions and electrons are
not coupled inside the diffusion region, and this decouple effect controls the size of
the diffusion region. The modified generalized Ohm’s law in Eq. (1.4) would help
understand this process (Birn and Priest 2007).

E þ V � B ¼ gJ þ J � B
ne

�r � P
!

e

ne
þ me

ne2
½@J
@t

þr � ðJV þ VJÞ� ð1:4Þ

Compared with Eq. (1.1), 3 items are added to the right-hand side in Eq. (1.4).
They are Hall term, the electron pressure tensor, and electronic inertia term,
respectively. These terms also introduce 3 scales that are ion inertial scale di ¼ c=xpi,

ion Larmor scale rl ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
=Xi and electron inertial scale de ¼ c=xpe, where

xpi,Xi, xpe and c denote ion plasma frequency, Ion cyclotron frequency, electron
plasma frequency, and the speed of light.

Ions and electrons are frozen into magnetic field outside the ion diffusion region
in Hall reconnection. However, ions demagnetize from the magnetic field inside the
ion diffusion region but electrons are still frozen to the field lines. The decouple
effect between ions and electrons introduces Hall magnetic field and Hall current
that control the reconnection rate. At the smaller electron diffusion region, even the
electrons are demagnetized, and the dynamics are mainly controlled by the electron
pressure tensor and electronic inertia term.

Generally speaking, the Hall reconnection is also called collisionless recon-
nection or fast reconnection in which the reconnection rate is greatly enhanced
(Dungey 1961, 1963). This reconnection model is widely used in the magneto-
sphere such as the Geospace environmental modeling magnetic reconnection
challenge (GEM) (Birn et al. 2001). Hall current and Hall magnetic field are also
regarded as the typical features that are usually observed in collisionless recon-
nection (Øieroset et al. 2001).

reconnection inflow
magnetic field

reconnection 

   outflow
  Hall

current

ion diffusion region
electron diffusion region

   Hall

magnetic

   field

Fig. 1.3 Illustration of Hall reconnection

4 1 Introduction



1.1.3 Petschek Reconnection

In resistive reconnection, the aspect ratio of the diffusion region (d/L) controls the
reconnection rate and this point could be known from Eq. (1.2). However, d * S1/2

is small compared with L, which is the macro scale of the system size. As a
consequence, the deduced reconnection rate is too small. To enhance the recon-
nection rate, Petschek (1964) proposed a revised model in which the length of the
diffusion region is much shorter. In Petschek mode, the reconnection diffusion
region is limited in a small region and two pairs of slow mode shocks which could
heat and accelerate the plasma are introduced (see Fig. 1.4). In such a frame work,
the reconnection rate is greatly boosted and the calculated maximum reconnection
rate is M ¼ p=ð8 ln SÞ.

Numerical simulations indicate that Petschek reconnection cannot be sustained
and it will transform to Sweet-Park reconnection if the resistivity is uniform
throughout the region (Uzdensky and Kulsrud 2000). Petschek-like reconnection
assumes that the resistivity increases sharply in the X-shape center region where the
current density is high. This diffusion region is small and there is a pair of V-shape
reconnection outflow regions at both sides. Theses outflow regions are often
observed in the solar wind and they are also called reconnection exhausts (Gosling
2011; Gosling et al. 2005b; Phan et al. 2006). Spacecraft will detect back to back
Alfvén waves if it crosses the Petschek-like reconnection exhaust (Fig. 1.5).

1.1.4 Open Questions

In the past few decades, a lot of work have been done by the scholars on the
subjects of magnetic reconnection in the solar corona and magnetosphere, but

L

Lmacro

reconnection inflow

reconnection

    outflow

slow mode shock

slow mode shock

slow mode shock

slow mode shock

Fig. 1.4 Illustration of Petschek reconnection
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reconnection in the solar wind (interplanetary space) received relatively less
attention. The solar wind has a typical velocity of *400 km/s around 1AU, while
the ion inertial scale is *100 km. It is difficult for current spacecraft with limited
resolution to detect the reconnection diffusion region where there are various
physical processes. Therefore, the absence of detailed observations in the recon-
nection diffusion region make it hard for scholars to carry out more insightful
analyses. In addition, solar wind is full of turbulence. Typical reconnection sig-
natures observed by the spacecraft, such as the reconnection jets, might be mixed
with the turbulent fluctuations (Wei et al. 2003a, b, c). It is very interesting to
discuss the reconnection behaviors in these complex regions.

1.2 Particle Acceleration in Magnetic Reconnection

Parts of energy released in magnetic reconnection are transported to the accelerated
particles. It is found that up to 50 % of the energy can be released to accelerate
20–100 keV electrons during the reconnection in the solar flares (Lin and Hudson
1971). Direct observation of electrons accelerated up to 300 keV by magnetic
reconnection in the Earth’s magnetotail has also been reported (Øieroset et al.
2002). According to MHD simulations, the bulk velocity of the electrons could only
be boosted to the order of Alfvén speed. How the electrons are accelerated to
hundreds of Kilo Electron Volt is a controversial topic (Ambrosiano et al. 1988;
Birn et al. 2000, 2004; Blackmana and Field 1994; Dmitruk et al. 2004; Drake et al.
2003, 2006; Egedal et al. 2012; Goldstein et al. 1986; Hoshino 2005, 2012;

Fig. 1.5 Petschek-like reconnection exhaust. Reprinted from (Gosling 2011), with kind
permission from Springer Science + Business Media
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Hoshino et al. 2001; Imada et al. 2007; Matthaeus et al. 1984; Möbius et al. 1983;
Oka et al. 2010a, b; Pritchett 2006a, b, 2008; Wang et al. 2010).

1.2.1 Acceleration Region and Acceleration Process

Observations from the Geotail and Cluster spacecraft indicate that the accelerated
electrons are more often found in the reconnection outflow region but not in the
diffusion region (Imada et al. 2005, 2007). However, observations from the WIND
spacecraft show that the fluxes of the accelerated energetic electrons1 peak near the
center of the diffusion region and decrease monotonically away from this region
(Fig. 1.6) (Øieroset et al. 2002).

These inconsistent observations also lead to another dispute about the acceler-
ation processes. Some authors indicate that the electrons are preliminarily accel-
erated in the diffusion region and then mainly accelerated to high energy in the
outflow region (Hoshino et al. 2001; Imada et al. 2007). Observations show that the
energy spectrum of the energetic electrons is harder2 in the outflow region (Imada
et al. 2007), and the spectrums with double power law are also found in magnetic
reconnection (Lin et al. 2003). These evidences seem to support the concept of
two-step acceleration. However, observations of electron fluxes from the WIND
spacecraft indicate that the electrons are accelerated in the diffusion region
(Øieroset et al. 2002). It is found that the power index varies the same as the fluxes.
The hardest spectrum is located in the diffusion region and spectrum becomes softer
as the distance increases away from the reconnection center. No evidence of
two-step acceleration has been found.

1.2.2 Acceleration Mechanism

Direct acceleration by the electric field is the simplest case. As shown in Fig. 1.7, if
an ideal 2.5D reconnection model is assumed in the magnetotail, there exists a
reconnection electric field (E) pointing to the dawn-dusk direction. When a particle
moves along this electric field with a distance L, it will gain the potential energy
W = EL (Möbius et al. 1983). This energy could be roughly estimated to be

1Note The reconnection accelerated electrons with high energy (usually greater than 1 keV) are
also called nonthermal electron or suprathermal electron by some authors. However, 100–700 eV
electrons in the solar wind, which is often used to diagnose the magnetic field, are also called
suprathermal electron. Here we use energetic electron to denote the reconnection accelerated
electron with high energy (usually greater than 1 keV).
2Note The electron flux spectrum usually obeys a power law at high-energy range. The relation
between the phase space density and energy can be descripted by f * E−k. A smaller power index
k means a harder spectrum.
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*200 keV (Birn and Priest 2007). In this framework, the ions and electrons would
move in different directions in the same electric field, and there should be a
dawn-dusk asymmetric distribution of the accelerated particles. But this phenom-
enon is not very distinct as is expected (Imada et al. 2002, 2008). In addition, a
power law spectrum of the energetic particles requires the electric field increase
exponentially in time (Deeg et al. 1991; Zelenyi et al. 1990). But this condition is
not satisfied in this simple model. Actually, particles would run away from the
acceleration region before they are accelerated to such high energy. Therefore, the
acceleration of energetic particles is not a single process, there should exist a
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Fig. 1.6 The fluxes of the energetic electrons accelerated by magnetic reconnection. Reprinted
with permission from (Øieroset et al. 2002). Copyright 2002 by American Physical Society
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mechanism which could trap the particles in the acceleration region so that the
particles have enough time to be accelerated (Fujimoto and Machida 2003; Hoshino
2005, 2012; Hoshino et al. 2001; Oka et al. 2010a).

Besides the reconnection electric field, particles would also be accelerated by the
electric field generated by various waves associated with magnetic reconnection.
The broadband electrostatic noise (Lakhina et al. 2000; Matsumoto et al. 1994;
Omura et al. 1994) (BEN) whose frequency extends broadly from the lower hybrid
frequency to the plasma frequency could be usually observed in the magnetotail. By
analyzing the high resolution data, a series of electrostatic solitary waves (Huttunen
et al. 2007; Ng et al. 2006; Omura et al. 1994; Wilson et al. 2007) (ESW) are
discriminated from the BEN. The scale of these ESWs is in an order of 10 Debye
length, and their amplitude could be 100 times larger than the reconnection electric
field. So this electric field could provide considerable energy to accelerate electrons.
Numerical simulations also suggest that the electron holes formed near the recon-
nection separatrix could generate strong electric field by which ions are scattered
and accelerated (Drake et al. 2003).

Charged particles would undergo repeated reflections under specified configu-
ration of magnetic field, such as in the magnetic island. Under high Lundquist
number condition, if the reconnection current sheet is long enough, instabilities
would lead the formation of magnetic islands instead of a single X-line. It provides
favorable conditions for Fermi-type acceleration (Fig. 1.8).

Fermi acceleration could be classified into two types. The electrons would
undergo an efficient first-order Fermi acceleration process and gain energy when
bouncing in a contracting magnetic island. They could also boost their energy via
second-order Fermi acceleration by bouncing among the magnetic islands (Drake
et al. 2006). Analyses show that the energetic electrons would reveal a power law
spectrum after Fermi acceleration, and this scenario also consists with the obser-
vations. However, the electrons get less energy if the contractions of the magnetic
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Fig. 1.7 Direct acceleration by reconnection electric field
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island is blocked by the plasma pressure. Therefore, it should be noted that the
proposed Fermi mechanism is less efficient in high beta plasma (beta is the ratio of
the plasma pressure to the magnetic pressure) (Drake et al. 2006).

Microinstabilities could occur and various waves could be generated near the
reconnection region. If the velocity of a particle approximately equals to the phase
velocity vp of the electromagnetic wave, Landau damping would occur. Particles
with velocities vp � DV would gain energy from the wave and be accelerated, while
the other particles with velocities vp þ DV would lose energy to the wave and be
decelerated. To collisionless plasma, since the distribution of phase space density is
close to the Maxwellian distribution, as seen in Fig. 1.9, the number of particles
with velocities slightly less than vp is always greater than the number of particles
with velocities slightly greater. So overall, particles would get accelerated via wave
particle interactions (Malmberg and Wharton 1964).

In some cases, particles could be accelerated by the betatron acceleration (Birn
et al. 2000). In the magnetotail, the first adiabatic invariant (magnetic moment) is
approximately a constant: l ¼ ðmv2?Þ=2B. When a particle leaves the reconnection
diffusion region and moves to the Earth, its perpendicular velocity v? would be
boosted due to the sudden change in the magnetic field B. In addition, the second
adiabatic invariant (longitudinal invariant J ¼ R

mvkdl) is also an adiabatic
invariant. Thus particles could also be heated in the parallel direction via first-order

(a)

(b) (c)

Fig. 1.8 Fermi acceleration in magnetic reconnection. Reprinted by permission from Macmillan
Publishers Ltd: (Drake et al. 2006), copyright 2006
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Fermi acceleration. If the magnetic field line becomes shooter when the particle
bounces in the magnetic mirror, the parallel velocity vk of the particle would
increase (Birn and Priest 2007). Moreover, turbulence, shocks, and other
quasi-Fermi acceleration models are usually involved when discussing particle
acceleration problem (Ambrosiano et al. 1988; Blackman and Field 1994; Goldstein
et al. 1986; Matthaeus et al. 1984). The acceleration of energetic particles tends to
be a complex processes combined with different mechanisms.

1.2.3 Open Questions

Magnetic reconnection is generally regarded as an efficient accelerator to produce
energetic particles, and this opinion is confirmed by the observations in the mag-
netotail and solar corona. However, it is so surprising that energetic particles are
rarely observed in solar wind magnetic reconnection exhausts (Gosling et al.
2005a). Canot they be produced in solar wind magnetic reconnection? Or they are
indeed produced but just not observed? Therefore, it is significant to analyze the
energetic particle acceleration associated with magnetic reconnection in the solar
wind.

1.3 Magnetic Cloud Boundary Layer

Magnetic cloud (MC), a subset of the interplanetary coronal mass ejection (ICME),
is a large-scale transient structure observed in the solar wind. In the past few
decades, its solar origin, magnetic field, and plasma structures have been widely
discussed. In the MC body, the magnitude of the magnetic field usually increases,
the magnetic field vector usually reveals smooth rotation, and the proton temper-
ature usually decreases (Bothmer and Schwenn 1994; Burlaga et al. 1980, 1981;
Burlaga 1995; Farrell et al. 2002; Lepping et al. 1997, 2006). The propagation of
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MC in solar wind is an interesting topic. For example, a MC could be overtaken by
a corotating stream so that the plasma and magnetic field in the tail region of the
MC would be compressed and become turbulent (Lepping et al. 1997). In addition,
there might also exist magnetic holes, directional discontinuities, or reconnection
layers in front of a MC (Janoo et al. 1998). Therefore, the interactions between the
MC body and the ambient solar wind is a complex problem which not only
aggravates the difficulty to understand the evolutions of ICME but also increases
the complexity to identify the MC boundary (Wei et al. 2003b).

1.3.1 The Identification of MC Boundary

There has been no consistency among the criteria identifying the MC boundary so
far (Burlaga 1995). For example, the bidirectional suprathermal electron could be a
useful signature to determine the MC boundary, but it can not be observed in every
MC boundary. Neither can the other signatures, such as temperature decrease,
density decrease, directional discontinuity, or magnetic hole. These features could
occur near the MC boundary but they reveal inconsistencies in time. Wei et al.
(2003b) statistically analyzed 80 MC events from 1969 to 2001 and presented the
concept of MC boundary layer (BL). As seen in Fig. 1.10, rather than a simple
discontinuity, the BL is a dynamical layer formed by the interactions between the
MC and the background solar wind. The inner boundaries of the BL at the MC-side
(Gf and Gt) are just the beginning and the end of MC body, while the outer
boundaries (Mf and Mt) are determined by systematic analyses of the magnetic field
and plasma signatures (Wei et al. b, 2003c, 2006).

1.3.2 Properties of the BL

Previous statistical analyses have macroscopically focused on the characteristics of
the magnetic field, plasma as well as the wave activities (Wei et al. 2003a, b, c,
2005, 2006).

The BL is a non-pressure-balanced structure. The increase of thermal pressure in
the BL often cannot compensate the decrease of magnetic pressure, so that the total
pressure (thermal pressure plus magnetic pressure) in the BL is usually lower than
that in the ambient solar wind (Wei et al. 2006). Compared with those in the nearby
upstream solar wind, the magnetic field in the BL is decreased and the plasma is
compressed and heated. These features are similar to the signatures of magnetic
reconnection. Numerical simulations also suggest that magnetic reconnection could
probably occur in the BL (Fig. 1.11).

Magnetic structures inside BL are also studied (Wei et al. 2003c). It is found that
(1) the distribution functions of fluctuations in the southward magnetic field com-
ponent (△Bz) inside the boundary layer is distinct from those in the background
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solar wind, and the fluctuation amplitude of △Bz is also larger in the BL; (2) circle
arc and random walk distributions in the maximum variance plane, which could
imply the Alfvén fluctuations and turbulence, are usually found in the BL; (3) the
distribution of magnetic field in the ϕ-θ plane exhibits a ‘U’ or inverse ‘U’ shape
with a spacing of about 180° in the azimuthal angle. This feature could also indicate
the existence of field reversal region and the associated Alfvénic fluctuations.

In addition, wave activities inside the BL are statistically analyzed (Wei et al.
2005). By analyzing 60 BL events observed by the WIND thermal noise receptor
(TNR) instrument, it is found that there are often various plasma wave activities in
the BL, which are different from those in the ambient solar wind and the MC
(Fig. 1.12). The Langmuir wave near the electronic plasma frequency is always
enhanced in 75 % of the investigated events. In 60 % of the total events, the
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enhancement of Langmuir wave and ion acoustic wave are both observed at the
same time. It is also found that the broadband wave activities, which are analogous
to the BEN in the magnetotail, could be also observed in 75 % of the investigated
events.

1.3.3 Open Questions

The solar activities might influence the properties of the BL. However, as time goes
by, the accumulated data make it possible to eliminate this potential influences. So
analyzing the properties of the BL through an entire solar circle could be an
interesting work. Moreover, previous work demonstrated that magnetic reconnec-
tion could prevail in the BL. But BL is a turbulent region in which the macroscopic
reconnection signatures, such as the changes in magnetic field and plasma, might
not be very obvious to be observed. In addition, it is also important to know the
microscopic properties, such as the variations of particle flux, in the BL and it could
be very significant if the flux variations could be related to the reconnection
processes.

0 5 10-5-10
-10

 10

0

Fig. 1.11 (Left) The dashed regions show properties of magnetic reconnection. Reproduced from
(Wei et al. 2006) by permission of John Wiley and Sons Ltd. (Right) Numerical simulation of
interactions between MC and the ambient solar wind Reproduced from (Wei et al. 2003b) by
permission of John Wiley and Sons Ltd

14 1 Introduction



7.0
7.5

8.0

8.5
|B

t| 
(n

T
)

3.5
4.0
4.5
5.0
5.5
6.0

N
 (

cm
-3

)

6.0 6.5 7.0 7.5 8.0
1995/04/03, Time (UT)

10

100

T
N

R
 (

K
H

z)

1

N
or

m
al

iz
ed

 V
ol

ta
ge

2

6
8

10
12
14
16

|B
t| 

(n
T

)

15
20
25
30
35

N
 (

cm
-3

)

0 1 2 3 4 5 6 7
2000/02/21, Time (UT)

10

100

T
N

R
 (

K
H

z)

0.1

1.0

10.0

N
or

m
al

iz
ed

 V
ol

ta
ge

2
3
4
5
6
7
8

|B
t| 

(n
T

)

1.0
1.2
1.4
1.6
1.8
2.0

N
 (

cm
-3

)

16.0 16.5 17.0 17.5 18.0
2001/11/25, Time (UT)

10

100

T
N

R
 (

K
H

z)

1

10

N
or

m
al

iz
ed

 V
ol

ta
ge

Fig. 1.12 WIND TNR spectrum: Langmuir wave, ion acoustic wave and broadband waves in the
BL. The red dashed lines mark the BL region and the black dashed lines denote the local
electronic plasma frequency and its harmonic

1.3 Magnetic Cloud Boundary Layer 15



1.4 Magnetic Reconnection in the Solar Wind

Early scholars tend to use the change of magnetic field and plasma parameters, such
as the reversed direction of magnetic field, reversed plasma flow and sharp increase
of plasma temperature, to determinate the interplanetary magnetic reconnection.
These characteristics are indeed consistent with the theoretical model of magnetic
reconnection, and sometimes they can also be observed simultaneously in certain
events; however, Gosling (2011) regards that the ‘direct evidence’ of magnetic
reconnection in the solar wind should be the roughly Alfvénic accelerated jets
embedded within bifurcated current sheets (Gosling 2011; Gosling et al. 2005b). As
seen in Fig. 1.5, if a spacecraft crosses a reconnection exhaust, it would observe the
Alfvénic disturbances propagating parallel and anti-parallel to B successively. Such
anti-correlated and correlated changes in V and B are strong signatures of recon-
nection jets.3

1.4.1 Structure of the Reconnection Exhaust

Generally, the reconnection exhaust is often assumed to have an X-type structure
(Fig. 1.13). According to multiple-spacecraft observations, magnetic reconnection
in the solar wind is a large-scale process. Near 1 AU, the reconnection X-line could
extend to hundreds of Earth radii (Re) (Phan et al. 2006), and the reconnection jets
could extend *4.26 × 106 km far away from the X-line (Gosling et al. 2007a). In
addition, the oppositely directed jets from the X-line were observed (Davis et al.
2006; Xu et al. 2011), and the boundaries of the exhausts were found to be roughly
planar (Phan et al. 2006).

1.4.2 Physical Properties of Magnetic Reconnections
in the Solar Wind

Magnetic reconnections in the solar wind have been demonstrated to be
Petchek-like reconnection, and its reconnection rate is typically 3–5 % (Davis et al.
2006; Gosling et al. 2005b; Phan et al. 2006; Wang et al. 2010). Although it is fast
reconnection, the Hall signatures associated with such reconnections have not been
found yet. One possible reason could be that the observational location of the
spacecraft is far away from the X-line (>105di) so that the Hall magnetic field
decays. Another reason may be attributed to the large guide field in these events,

3Note These reconnection jets could be described by the ‘Walen’ relation which would be dis-
cussed in Chaps. 2 and 5.
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since it is not very easy to distinguish the weak Hall signatures from the overlapped
large guide field.

Statistical work also reveals that magnetic reconnection in the solar wind prefers
to occur in low beta value solar wind, and it could initiate spontaneously. The
occurrence of magnetic reconnection in the solar wind could be very high. WIND
spacecraft has once observed *1.5 times reconnection events per day in March
2006 (Gosling et al. 2007b). In addition, such reconnection tends to be quasi-steady
and large-scale (Gosling 2011; Gosling et al. 2007a, b), and observations indicate
that the reconnection exhaust could persist for hours.

1.4.3 Open Questions

The Alfvénic reconnection jets have been widely used to determinate magnetic
reconnection events in the solar wind (Gosling 2011). However, in some regions,
such as in the BL, the local environment is in a turbulent status, thus it might be
difficult to identify the roughly Alfvénic jets (Wang et al. 2012; Wei et al. 2003b).

Fig. 1.13 Large-scale reconnection exhaust observed near 1 AU. Reprinted by permission from
Macmillan Publishers Ltd: (Phan et al. 2006), copyright 2006
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How to properly discriminate the reconnection processes in such cases? If no
roughly Alfvénic accelerated plasma flows been found, does it mean that no
magnetic reconnection occurs? Could other quantities be used to determinate
magnetic reconnection? These questions could be very meaningful.
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Chapter 2
Magnetic Reconnection and the Associated
Energetic Particles in the Boundary Layer

2.1 Introduction

Previous studies have shown that BL is a turbulent layer formed by the interaction of
the MC and the ambient solar wind (Wei et al. 2003a, b, c). Compared with those in
the nearby upstream solar wind, the magnetic field in the BL is decreased and the
plasma is compressed and heated. These features indicate that magnetic reconnection
could prevail in the BL, but the ‘direct evidence,’ the Alfvénic reconnection jets, has
not been found (Wei et al. 2006). In addition, although energetic electrons associated
with magnetic reconnection in the solar flares and magnetotail have been reported
(Imada et al. 2007; Lin and Hudson 1971; Øieroset et al. 2002), no such energetic
electrons have so far been found in the solar wind reconnection. After analyzing 7
reconnection exhausts observed by ACE spacecraft (Fig. 2.1), Gosling et al. (2005a)
found that no evidence for any substantial increase in energetic particle intensity
associated with these events. So they suggest that local reconnection is not a sig-
nificant source of energetic particles in the solar wind and reconnection itself may
not be a particularly effective process for populating other space and astrophysical
environments with energetic particles (Gosling et al. 2005a).

In this chapter, we report a Petschek-like reconnection with roughly Alfvénic
reconnection jets inside a BL and present the first observation of energetic particles
accelerated by magnetic reconnection in the solar wind.

2.2 Analyzing Methods

Compared with the magnetic reconnection in the magnetotail, where the recon-
nection X-line and reconnection jets generally point to the Z and X directions in
geocentric solar ecliptic (GSE) coordinate (Fig. 1.7), in most cases, it is not very
easy to discriminate the reconnection in the solar wind from the unambiguous
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signatures in GSE coordinates. So it is necessary to construct a new coordinate
based on the reconnection current sheet.

2.2.1 LMN Coordinate

To facilitate analyzing magnetic reconnection, we try to constructed the LMN
coordinate (Hudson 1970; Sonnerup and Cahill 1967) based on the reconnection
current sheet (Fig. 2.2). In this coordinate, L points along the antiparallel magnetic
field direction, N points along the overall current sheet normal and M points along
the X-line direction. Practically, each direction could be deduced by the minimum
variance analysis of magnetic field (MVAB) (Paschmann and Daly 1998).

Fig. 2.1 Ion and electron fluxes observed by ACE spacecraft. The beginning of exhausts are
shifted to t = 0 (black vertical line) and the end of the exhausts are marked by gray vertical line.
Reproduced from (Gosling et al. 2005a), by permission of John Wiley and Sons Ltd
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2.2.2 Walen Relation

When a spacecraft crosses a reconnection exhaust, the Alfvénic reconnection jets
could be described by the Walen relation in the form of:
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Fig. 2.3 a–f WIND measurements of the magnetic field strength, latitude angle, azimuth angle,
proton density, temperature, and velocity. The left dashed line shows a shock driven by the MC.
The BL is bounded by the dot lines (marked by Mf and Gf)
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Vpre ¼ Vref �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qref ð1� aref Þ

l0

s

ðB
q
� Bref

qref
Þ: ð2:1Þ

Here ρ, V, and B represent plasma density, velocity vector, and magnetic field
vector, while a¼ðp== � p?Þl0=B2 is the pressure anisotropy factor. The subscript
‘ref’ denotes the reference time at the leading (trailing) edge of the exhaust and
‘pre’ denotes the calculated velocity across the region. The positive (negative) sign
is chosen for the trailing (leading) edge of the exhaust.

2.3 Magnetic Reconnection in the BL

Figure 2.3 provides an overview of solar wind conditions measured at (32.6,
−251.7, −3.8)Re in GSE coordinate on 3rd October 2000 by the Wind spacecraft.
The MC’s leading edge, marked between Mf and Gf, reveals a decreased field
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Fig. 2.4 a–f WIND measurements of density, magnetic field, velocity (Vx has been shifted by
500 km/s), and temperature between 16:00 and 18:00 UT on October 3, 2000 with a cadence of
3 s. The MCBL is shown by the dotted lines; the dashed lines marked by A1 and A2 inside the BL
represent the reconnection exhaust boundaries at 16:46 UT and 16:58 UT, respectively. Reprinted
with permission from (Wang et al. 2010), Copyright 2010 by American Physical Society

26 2 Magnetic Reconnection and the Associated …



strength, sudden change in field orientations, increased flow velocity and proton
temperature.

Figure 2.4 shows more detailed information between 16:00 and 18:00 UT.
According to further analysis, it is found that the area between 16:46 and 16:58 UT
(marked by A1 and A2) exhibits the general characteristics of magnetic recon-
nection. In particular, the magnetic field in the X and Y directions are almost
reversed, and the total magnitude of magnetic field declines *4nT and rotates
*143°. Moreover, the plasma velocity increases *100 km/s and the proton
temperature increases *10 eV. All these features indicate that WIND spacecraft
may encounter a reconnection exhaust.

To see the reconnection exhaust more clearly, the LMN current sheet coordinate
system is constructed and shown in Fig. 2.5. The current sheet normal N, (0.76,
0.64, 0.06) in GSE, is calculated by minimum variance analysis of the magnetic
field (MVAB) across the exhaust (Paschmann and Daly 1998). So is the X-line
direction M, (−0.02, −0.06, 0.99) in GSE, nearly perpendicular to the ecliptic plane.
We assume that the associated MC has a flux-rope-like structure (Burlaga 1995)
and get its axis pointing to (−0.84, 0.23, 0.49) in GSE. Figure 2.3a reconstructs the
geometric configuration of the reconnection event.

Fortunately, this reconnection exhaust is also observed by the ACE spacecraft
located at (255.2, −29.2, −7.5)Re. Since ACE is farther away from the X-line than
WIND, it takes ACE 14 min, which is 2 min longer than Wind, to cross the exhaust.
Detailed magnetic field and velocity conditions projected in the LMN coordinate
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Fig. 2.5 Geometric configuration of the reconnection exhaust; the reconnection jets and X lines
are shown in red; the following MC is sketched in green. Reprinted with permission from (Wang
et al. 2010), Copyright 2010 by American Physical Society
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are shown in Fig. 2.6. It could be found that the normal magnetic field BN is almost
constant and near zero, while the antiparallel magnetic field BL component changes
from +14 nT to −14 nT, entirely reversed all over the exhaust. In addition, VN is
roughly steady while VL increases *100 km/s in the exhaust. Moreover, we use
WIND data1 to compare the observed plasma velocity in the exhaust with the
prediction given by Walen relation (Eq. 2.1). As seen in Fig. 2.6, both magnitude
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1The data provided by the ACE spacecraft is not used to calculate the predicated velocity since
there is a data gap near the trailing edge of the exhaust.
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and components of the predicted velocity agree well with the observations. The
increased velocity is mainly in the L direction and the increment is close to the
Alfvén speed. The observed plasma flows exhibit primary features of reconnection
jets. All these evidences indicate that WIND and ACE spacecraft detected a
reconnection exhaust in the BL.

2.4 Energetic Particles Associated with Magnetic
Reconnection

In this event, we fortunately observed energetic particles associated with magnetic
reconnection that has not been so far reported in the solar wind. As shown in
Fig. 2.7, the increments of particle fluxes display strong energy selectivity and pitch
angle dependency. Particularly, (1) low-energy electrons were mainly heated
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around 10–200 eV with an intense enhancement near 50 eV which resembles the
observations of Huttunen (Huttunen et al. 2008). (2) 1–100 keV electrons do not
show such enhancement, while 100–500 keV electron fluxes mainly increase at
pitch angle between 90 and 180° (perpendicular and antiparallel to the field line).
(3) The protons are accelerated around 100 keV, but no remarkable increments are
found in other energy bands.

In the high-energy range (100–500 keV) where our greatest concern exists, the
electron has a burst increase near 16:55 UT. As shown in Fig. 2.8, the least square
fits of the electrons and protons, measured by WIND (SST-Foil), also show power
law distributions (f ðvÞ / E�k) with a smaller power index k inside the exhaust and
larger ones outside. Although the spacecraft does not cross the reconnection dif-
fusion region, where the energetic electrons were thought to be initially produced,
we can still rule out the possibility that such irregular flux enhancements are merely
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caused by the variation of background electron temperature or density (see the
isotropic low-energy electrons around 40 eV for example). Instead, both the
reconnection topological structure and the harder spectrum in the exhaust suggest
that they are most probably accelerated by magnetic reconnection and then expelled
through the long reconnection separatrices (Egedal et al. 2009; Pritchett 2006).
Since the local magnetic field at 16:55 UT just points to the reconnection region and
the expelled energetic electrons are mainly concentrated near the specified two of
the four reconnection separatrices by the modulation of the guide field (Egedal et al.
2009; Pritchett 2006), the Wind spacecraft would naturally measure enhanced
field-aligned energetic electrons in the antiparallel direction (Fig. 2.7).

2.5 Discussion and Conclusion

The small normal velocity shear (△VN = 12 km/s) across bifurcated current sheet
could be considered as a Vin = 6 km/s reconnection inflow. Correspondingly, the
reconnection electric field is calculated to be E = 0.084 mV/m (E = B×Vin) and the
dimensionless reconnection rate could be estimated by Vin/VA = 5.3 %
(VA = 113 km/s is the external Alfvén speed). These signatures are consistent with
the Petschek-like model of fast reconnection and they also resemble the previous
observations.

In this event, it takes ACE spacecraft 14 min to cross the exhaust with a
300 km/s velocity (VN). So the width of the exhaust could be calculated to be
*2.5 × 105 km (or 40 Re) and the distance to the X-line is *2.4 × 106 km (or 374
Re). The observational location of ACE is so far away from the X-line (*32308di),
and no hall signatures are observed in this area.

Nevertheless, it is difficult to calculate the real length of the X-line since its
direction (M) is nearly perpendicular to the ecliptic plane (M = [−0.02nx, −0.06ny,
0.99nz] in GSE), while both spacecrafts are almost in that plane. However, the
observed similar characteristics make it reasonable to believe that this Petschek-like
reconnection with quasi-steady and large-scale properties also has a long recon-
nection X-line extending several hundreds of earth radius as those previously
reported observations (Gosling et al. 2007; Phan et al. 2006). If the X-line could
extend to *668 Re as is observed in previous event (Gosling et al. 2007), the
reconnection potential energy is *358 keV, and this energy might play an
important role in the acceleration of energetic particles.

To sum up, we observed a magnetic reconnection exhaust in a BL. After the
detailed analyses, it is found that the reconnection jets meet the Walen relation, and
this event belongs to Petschek-like fast reconnection which has large-scale and
quasi-steady properties as previous observations (Davis et al. 2006; Gosling 2011;
Gosling et al. 2005b, 2007; Phan et al. 2006). In addition, the first observation of
energetic particles (100–500 keV electrons and *100 keV protons) associated with
magnetic reconnection in the solar wind is reported.

2.4 Energetic Particles Associated with Magnetic Reconnection 31



References

Burlaga, L.F.: Interplanetary Magnetohydrodynamics. Oxford Univ. Press, New York (1995)
Davis, M.S., Phan, T.D., Gosling, J.T., Skoug, R.M.: Detection of oppositely directed

reconnection jets in a solar wind current sheet. Geophys. Res. Lett. 33(19), L19102 (2006).
doi:10.1029/2006gl026735

Egedal, J., Daughton, W., Drake, J.F., Katz, N., Le, A.: Formation of a localized acceleration
potential during magnetic reconnection with a guide field. Phys. Plasmas 16(5), 050701–
050704 (2009). doi:10.1063/1.3130732

Gosling, J.T.: Magnetic reconnection in the solar wind. Space Sci. Rev. 1–14 (2011). doi:10.1007/
s11214-011-9747-2

Gosling, J.T., Eriksson, S., Blush, L.M., Phan, T.D., Luhmann, J.G., McComas, D.J., Skoug, R.
M., Acuna, M.H., Russell, C.T., Simunac, K.D.: Five spacecraft observations of oppositely
directed exhaust jets from a magnetic reconnection X-line extending > 4.26 × 106 km in the
solar wind at 1 AU. Geophys. Res. Lett. 34(20), L20108 (2007). doi:10.1029/2007gl031492

Gosling, J.T., Skoug, R.M., Haggerty, D.K., McComas, D.J.: Absence of energetic particle effects
associated with magnetic reconnection exhausts in the solar wind. Geophys. Res. Lett. 32(14),
L14113 (2005a). doi:10.1029/2005gl023357

Gosling, J.T., Skoug, R.M., McComas, D.J., Smith, C.W.: Direct evidence for magnetic
reconnection in the solar wind near 1 AU. J. Geophys. Res. 110(A1), A01107 (2005b). doi:10.
1029/2004ja010809

Hudson, P.D.: Discontinuities in an anisotropic plasma and their identification in the solar wind.
Planet. Space Sci. 18(11), 1611–1622 (1970). doi:10.1016/0032-0633(70)90036-x

Huttunen, K.E.J., Bale, S.D., Salem, C.: Wind observations of low energy particles within a solar
wind reconnection region. Ann Geophys-Germany 26(9), 2701–2710 (2008). doi:10.5194/
angeo-26-2701-2008

Imada, S., Nakamura, R., Daly, P.W., Hoshino, M., Baumjohann, W., Mühlbachler, S., Balogh,
A., Rème, H.: Energetic electron acceleration in the downstream reconnection outflow region.
J. Geophys. Res. 112(A3), A03202 (2007). doi:10.1029/2006ja011847

Lin, R.P., Hudson, H.S.: 10–100 keV electron acceleration and emission from solar flares. Sol.
Phys. 17(2), 412–435 (1971). doi:10.1007/bf00150045

Øieroset, M., Lin, R.P., Phan, T.D., Larson, D.E., Bale, S.D.: Evidence for electron acceleration up
to* 300 keV in the magnetic reconnection diffusion region of Earth’s magnetotail. Phys. Rev.
Lett. 89(19), 195001 (2002). doi:10.1103/PhysRevLett.89.195001

Paschmann, G., Daly, P.W.: Analysis Methods for Multi-Spacecraft Data. ESA Publications
Division, Bern (1998)

Phan, T.D., Gosling, J.T., Davis, M.S., Skoug, R.M., Oieroset, M., Lin, R.P., Lepping, R.P.,
McComas, D.J., Smith, C.W., Reme, H., Balogh, A.: A magnetic reconnection X-line
extending more than 390 Earth radii in the solar wind. Nature 439(7073), 175–178 (2006).
doi:10.1038/nature04393

Pritchett, P.L.: Relativistic electron production during guide field magnetic reconnection.
J. Geophys. Res. 111(A10), A10212 (2006). doi:10.1029/2006ja011793

Sonnerup, B.U.Ö., Cahill Jr, L.J.: Magnetopause structure and attitude from explorer 12
observations. J. Geophys. Res. 72(1), 171–183 (1967). doi:10.1029/JZ072i001p00171

Wang, Y., Wei, F.S., Feng, X.S., Zhang, S.H., Zuo, P.B., Sun, T.R.: Energetic electrons associated
with magnetic reconnection in the magnetic cloud boundary layer. Phys. Rev. Lett. 105(19),
195007 (2010). doi:10.1103/PhysRevLett.105.195007

Wei, F.S., Feng, X., Yang, F., Zhong, D.: A new non-pressure-balanced structure in interplanetary
space: boundary layers of magnetic clouds. J. Geophys. Res. 111(A3), A03102 (2006). doi:10.
1029/2005ja011272

32 2 Magnetic Reconnection and the Associated …

http://dx.doi.org/10.1029/2006gl026735
http://dx.doi.org/10.1063/1.3130732
http://dx.doi.org/10.1007/s11214-011-9747-2
http://dx.doi.org/10.1007/s11214-011-9747-2
http://dx.doi.org/10.1029/2007gl031492
http://dx.doi.org/10.1029/2005gl023357
http://dx.doi.org/10.1029/2004ja010809
http://dx.doi.org/10.1029/2004ja010809
http://dx.doi.org/10.1016/0032-0633(70)90036-x
http://dx.doi.org/10.5194/angeo-26-2701-2008
http://dx.doi.org/10.5194/angeo-26-2701-2008
http://dx.doi.org/10.1029/2006ja011847
http://dx.doi.org/10.1007/bf00150045
http://dx.doi.org/10.1103/PhysRevLett.89.195001
http://dx.doi.org/10.1038/nature04393
http://dx.doi.org/10.1029/2006ja011793
http://dx.doi.org/10.1029/JZ072i001p00171
http://dx.doi.org/10.1103/PhysRevLett.105.195007
http://dx.doi.org/10.1029/2005ja011272
http://dx.doi.org/10.1029/2005ja011272


Wei, F.S., Hu, Q., Feng, X., Fan, Q.: Magnetic reconnection phenomena in interplanetary space.
Space Sci. Rev. 107(1), 107–110 (2003a). doi:10.1023/a:1025563420343

Wei, F.S., Liu, R., Fan, Q., Feng, X.: Identification of the magnetic cloud boundary layers.
J. Geophys. Res. 108(A6), 1263 (2003b). doi:10.1029/2002ja009511

Wei, F.S., Liu, R., Feng, X., Zhong, D., Yang, F.: Magnetic structures inside boundary layers of
magnetic clouds. Geophys. Res. Lett. 30(24), 2283 (2003c). doi:10.1029/2003gl018116

References 33

http://dx.doi.org/10.1023/a:1025563420343
http://dx.doi.org/10.1029/2002ja009511
http://dx.doi.org/10.1029/2003gl018116


Chapter 3
The Acceleration of Energetic Particles
in Magnetic Reconnection

3.1 Introduction

Magnetic reconnection acts as an efficient accelerator to generate energetic particles
that could be found in the solar corona, solar wind, and magnetotail. Up to now, it is
not clear that how the energetic particles are accelerated to hundreds of kiloelec-
tronvolt (keV) or even higher energy during the reconnection process. In the past
few decades, many authors have used numerical simulations to investigate the
acceleration of energetic particles in magnetic reconnection and built remarkable
acceleration models (Ambrosiano et al. 1988; Birn et al. 2000, 2004; Blackman and
Field 1994; Dmitruk et al. 2004; Drake et al. 2003, 2006; Goldstein et al. 1986;
Hoshino 2005, 2012; Hoshino et al. 2001; Imada et al. 2007; Matthaeus et al. 1984;
Oka et al. 2010a, b; Pritchett 2006a, b, 2008; Speiser 1965). However, as discussed
in the previous chapter, these acceleration models have some limitations, especially
when they are applied to the large-scale magnetic reconnection exhaust in solar
wind. Thus, it is important to know why these energetic particles are missed in these
reconnection events and how they are produced.

In this chapter, we will discuss the energetic electron acceleration problem in
large-scale reconnection exhaust under real solar wind conditions by numerical
simulations. First, we set up a MHD simulation for the reconnection event driven by
MC on October 3, 2000, to reveal its global evolution. Then we carry out another
MHD computation using initial conditions similar to the geospace environmental
modeling (GEM) reconnection challenge (Birn et al. 2001) and get the background
time-varying magnetic field and electric field, and finally, the test particle approach
is applied to trace the details of the electron energization (Wang et al. 2010).

The reconnection exhaust can extend up to *107 km (Lavraud et al. 2009), (e.g.
Fig. 3.1), while the depth of the reconnection current sheet is of the order of ion
inertial length (*102 km). Due to the scale difference, it is difficult to carry out a
global simulation that can both reveal the macroscopic evolutions of the recon-
nection event and resolve the microscopic dynamics in the reconnection diffusion
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region. Therefore, we use the adaptive mesh refinement (AMR) technique to handle
the MHD simulations (Zhang et al. 2011).

3.2 Background Description of Numerical Simulations

3.2.1 Different Methods of Numerical Simulations

Test particle approach is a useful tool to discuss the particle acceleration problem. It
ignores interactions between different particles. The electric field and magnetic field
introduced by the charged particles are also ignored. This method can be used in
tenuous plasma environment and many authors have used it to trace the particle
trajectories inside the current sheet in the early times (Sonnerup 1971; Speiser
1965). The basic idea of test particle approach is to solve the Lorentz equations as
written below:

dP
dt

¼ qðE þ v� BÞ
dR
dt

¼ v

P ¼ cmv

c ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

q

8
>>>>>>>>>><

>>>>>>>>>>:

Fig. 3.1 A complex
reconnection exhaust extends
over 1800Re. Reprinted from
(Lavraud et al. 2009), with
kind permission from
Springer Science + Business
Media
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where P, E, v, B, and R are momentum, electric field, velocity, magnetic field, and
position vector; m is the mass of a particle, q is the electric charge, and c is the
speed of light in vacuum. This method can provide a good approximation for
physical phenomena and since it simplifies the problems, it costs relatively little
time to finish the computation. Even now, it is still a powerful tool to diagnose the
acceleration problem of energetic particles (Birn et al. 2004; Dmitruk et al. 2004).

Unlike the test particle simulation, particle in cell (PIC) simulation has a distinct
feature. It calculates the electric field and magnetic field introduced by each particle
on fixed meshes. In such a framework, both wave-particle interactions and particle
−particle interactions can be revealed. In addition, PIC simulation is more
self-consistent than test particle simulation. However, it requires a lot of compu-
tational resources, and it becomes impossible to set up a PIC simulation when the
computational domain increases to a certain large scale.

MHD simulation, which is widely used in space plasma physics, treats particles
as a whole, and puts emphasis on their bulk movements. In MHD simulations, the
velocity of particles in magnetic reconnection is of the order of Alfvén speed (Liu
et al. 2009). Obviously, such velocity is too slow in the realm of energetic particle
acceleration. However, MHD simulation can provide electric field and magnetic
field (Fig. 3.2) that are needed by further analyses of particle acceleration such as
the computations in test particle simulation.

3.2.2 GEM Magnetic Reconnection Challenge

The MHD simulation of magnetic reconnection used in this chapter is similar to the
GME reconnection challenge with a guide field (Birn et al. 2001). The initial
configuration is based on the generalized 2-D Harris current sheet in xy plane with
thickness 2λ. The magnetic field B and density n can be written as

BxðyÞ ¼ B0 tan hðy=kÞ

nðyÞ ¼ n0sech2ðy=kÞ þ 0:2n0

The pressure balance condition can be revealed by

n0kðTe þ TpÞ ¼ B2
0=ð2l0Þ:

The whole computation domain is [−Lx/2 < x < Lx/2] and [−Ly/2 < y < Ly/2] with
periodic boundary conditions. To facilitate the magnetic reconnection, a small
perturbation function ϕ in the center region [x, y] = [0, 0] is added by

/ðx; yÞ ¼ /0 cosð2px=LxÞ cosð2py=LyÞ:
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3.3 Simulation Results

3.3.1 Interplanetary Magnetic Reconnection Driven by MC

The evolution of magnetic reconnection depends much on the local environments,
such as variations of plasma and magnetic field. First, we carry out MHD simulations
to reveal the occurrence of magnetic reconnection driven by a MC in the solar wind.
The model of the computation resembles those in our early calculations (Wei et al.
2003) and the initial conditions are taken from the real solar wind conditions on
October 3, 2000. As seen from Figs. 3.3 and 3.4a, the MC can drive magnetic
reconnection under certain local conditions. After the magnetic reconnection occurs, it
continues with the propagation of the MC. In this ongoing process, magnetic recon-
nection forms large-scale reconnection exhaust whose length can even extend longer
than the cross-section radius of the MC. These features are also consistent with the

(a)

(b)

Fig. 3.2 Ion (upper panel) and electron (lower panel) flow fields in magnetic reconnection
obtained from MHD simulation. Reproduced from (Liu et al. 2009), with permission of John
Wiley and Sons Ltd
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observations of large-scale and quasi-steady magnetic reconnection in the solar wind
(Gosling 2011; Gosling et al. 2007, 2005; Phan et al. 2006).

3.3.2 Acceleration of Energetic Electrons

To reveal the details of the magnetic reconnection process, we carry out MHD
simulations in the MC-driving reconnection center as seen in Fig. 3.4b. The model is
similar to the GME reconnection challenge with a guide field, and the initial condi-
tions are taken from the real solar wind. The guide field, the velocity of the vertically
symmetrical driving flows, and the Lundquist number are set to 5nT, 6 km/s and
50,000, respectively. The aspect ratio of the Harris current sheet is set to 100, and the
computation domain is 100di × 10di (di* 73 km is the ion inertial length). Due to the

Magnetic Cloud

MC-driving Shock

Reconnection Exhasut

Fig. 3.3 MHD simulation results: the distribution of thermal pressure in the interplanetary
magnetic reconnection driven by MC. Different colors represent different thermal pressure (red
stronger; blue weaker). The black lines denote magnetic field lines. The lower panel is the zoomed
view of the blue square in the upper panel
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squeezing of the driving flows together with the long current sheet (large aspect ratio),
the guide field and the high Lundquist number conditions all prefer to generate
magnetic island chain rather than form a single X-line in the reconnection center
(Birn and Priest 2007; Drake et al. 2003, 2006; Pritchett 2006a, b). As discussed in
the previous chapter, such configuration is conducive to electron acceleration. In
addition, this large-scale reconnection usually has long-extend reconnection X-line,
so that the electron can also get accelerated from the considerable reconnection
potential energy.

We continue to run test particle simulations based on the calculated
time-dependent electric field and magnetic field. We put a test electron in the
reconnection region at [L, M, N] = [2.0, 0.0, 0.7]di to trace the typical acceleration
processes. The initial kinetic energy of test electron is 14.4 keV and its pitch angel
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b Simulation of magnetic reconnection in the reconnection center. The magnetic field lines are
sketched by the dotted lines. c The electron energy Ek as a function of position in L direction in test
particle simulation. Three typical motions are marked by colored rectangles. d The electron energy
Ek (blue) and its M position (red) as a function of time during the whole acceleration process.
Reprinted with permission from (Wang et al. 2010), Copyright 2010 by American Physical Society
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is 10°. Figure 3.4b displays obviously three magnetic islands at t = 151tA (tA is the
Alfvén transit time, 1tA = 0.53 s).

It is seen from Fig. 3.4c that the test electron does not get accelerated all the
time. Specifically, significant energizations mainly occur at three typical stages
(marked by colored rectangles, respectively). At first, the electron bounces in the
middle island in Fig. 3.4b and gets energy at the contracting island ends. In this
stage, it gains energy from both the Fermi-type reflections and the electric field.
Later, the electron crosses the current sheet to the right island and mirrors back in
the magnetic field pileup region. In such Speiser-type and mirrored motions, it still
gets accelerated by the electric field. Overall, the test electron switches among the
three typical motions during the trapping status, and it gets energy from both
the Fermi-type acceleration and the electric field until it totally drifts outside the
reconnection region. In this simulation, it is demonstrated that even if the island
contraction is throttled by the back pressure of the heated electrons and the large
guide field, the electron can still get reconnection potential energy by drifting in the
X-line direction. Finally, the electrons are accelerated to *500 keV in *30 s with
a requirement of drifting *600 Re in the M direction (along the reconnection
X-line).

3.4 Discussion and Summary

Compared with the long duration time of the reconnection process, the required
time in the simulation is short, but it is enough for the acceleration. The *600 Re
X-line is also acceptable in such Petschek-type reconnection. It is noteworthy that
the final energy of the electron consists well with the observation. In addition, the
energetic electrons will concentrate near the magnetic islands and current sheet in
the simulation. Although this feature is not observed in this event since the
spacecraft is far from the reconnection center, a similar phenomenon is also
reported by other authors (Chen et al. 2008).

Traditional acceleration models can account for the acceleration of energetic
electrons during the magnetic reconnection process under certain conditions
(Ambrosiano et al. 1988; Birn et al. 2000, 2004; Blackman and Field 1994;
Dmitruk et al. 2004; Drake et al. 2003, 2006; Goldstein et al. 1986; Hoshino 2005,
2012; Pritchett 2006b, 2008; Speiser 1965). However, there also exist limitations in
these models. First, the single X-line configuration assumed by the electric field
acceleration model may rarely exist under real solar wind conditions. In addition,
the island’s volume-filled structure required by the Fermi-type mechanism may also
have difficulties in explaining why the expelled energetic electrons are always
concentrated near the reconnection separatrices. More importantly, it may be also
idealized for the referred models to treat acceleration of energetic electrons as a
single mechanism-dominated process, especially in the solar wind.

Referring to this event again, it is almost impossible that the reconnection
electric field itself can produce electrons up to 500 keV alone, because the
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maximum reconnection potential energy is only 317 keV even if the X-line can
extend as long as*600Re in the simulation. On the other hand, the released energy
from the contracting magnetic island prevented by both the large guide field and the
electron back pressure is unlikely to independently generate such high-energy
electrons either. Based on the observations, our simulations clearly conclude that
the generation of energetic electrons in the solar wind is a combined process
controlled by both the reconnection electric field and the Fermi-type mechanism,
and the trapping effect of the multi-islands configuration maintains the acceleration
status that boosts the finally reached energy.

Meanwhile, we also compare our results with the PIC simulations. As seen in
Fig. 3.5, the upper panel shows the energy gaining process of the accelerated
electrons in our test particle simulation based on MHD simulation. It can be seen
that the electrons mainly gain energy near the ends of the magnetic islands, and the
kinetic energy in the parallel direction is scattered to the perpendicular direction.
These phenomena are the same as those in the PIC simulations (Drake et al. 2006).
Certainly, although our simulation results correspond well with the related obser-
vations, more self-consistent computations together with detailed observations
inside the reconnection diffusion region should be provided.

Fig. 3.5 (upper panel) electron energy as a function of time in our simulation. (lower panel)
electron energy as a function of position (left) and time (right) in PIC simulation. Reprinted with
permission from Macmillan Publishers Ltd: (Drake et al. 2006) copyright 2006
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In summary, the electric field acceleration and Fermi-type mechanism are two
fundamental elements in the electron acceleration in interplanetary magnetic
reconnection process, and the trapping effect of the specific magnetic field con-
figuration maintains the acceleration status that increases the totally gained energy.
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Chapter 4
Proton and Electron Flux Variations
in the Magnetic Cloud Boundary Layers

4.1 Introduction

Magnetic cloud boundary layer is a distinct region formed by the interaction of the
magnetic cloud (MC) and the solar wind. To our knowledge, the concept of BL is
proposed from the discussions about the criteria for identifying the MC boundary
(Wei et al. 2003b). In the past few years, research on BL has mainly focused on its
macroscopical characteristics such as magnetic field structures, plasma environment
and the associated waves (Wei et al. 2003a, b, c, 2005, 2006). To get a compre-
hensive and insightful understanding of the BL, studies on the microcosmic char-
acteristics of the BL are needed (Wang et al. 2012).

Investigating the plasma velocity distribution function (VDF) is an effective way
to diagnose the plasma structure in the solar wind, since the density and temperature
are macroscopic manifestations of the plasma VDF (Paschmann and Daly 1998). In
addition, magnetic field lines are ‘frozen’ into the plasma in the solar wind. So the
behaviors of magnetic field should also be related to the local plasma VDF.
Therefore, it should be interesting and significant to analyze the proton and electron
flux variations in the BL.

4.2 The Velocity Distribution Function

4.2.1 Definition of the Velocity Distribution Function

Plasma VDF describes the distribution of position and velocity in phase space. The
Maxwell distribution is the simplest case which implies that particles are assumed
to have reached thermodynamic equilibrium. The VDF can be written as

© Springer-Verlag Berlin Heidelberg 2016
Y. Wang, Magnetic Cloud Boundary Layers and Magnetic Reconnection,
Springer Theses, DOI 10.1007/978-3-662-48310-7_4

45



f ðvÞ ¼ nð m
2pkBT

Þ32 expð� mv2

2kBT
Þ

where kB is the Boltzmann constant. Figure 4.1 illustrates six typical VDFs in
ðv?; vkÞ space.

4.2.2 The Moments of the Velocity Distribution Function

Plasma density, bulk velocity, pressure, and temperature can be calculated from the
VDF. The zeroth order moment of the VDF is the density

N ¼
Z

f ðvÞd3v

The plasma bulk velocity can be defined as

V ¼
R
f ðvÞvd3v

R
f ðvÞd3v

Then the pressure can be deduced from V

P ¼ m
Z

f ðvÞðv� VÞðv� VÞd3v

 

(a) (b) (c)

(d) (e) (f)

Fig. 4.1 Contours of typical VDF. Here, a–f are Maxwell distribution, Bi-Maxwell distribution,
beam distribution, ring-beam distribution, loss-cone distribution, and partially-filled loss-cone
distribution, respectively
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Correspondingly, the moment temperature can be calculated as

T ¼ P=ðNkÞ

We can see that the macroscopical characteristics are closely related to the VDF.

4.2.3 Electron Velocity Distribution Function in Solar Wind

In solar wind, electron VDF usually has two components (Feldman et al. 1983;
Larson et al. 1997; Phillips and Gosling 1990; Pierrard et al. 2001; Pilipp et al.
1987), a collisional hot core (core electrons, T < *70 eV) and a nearly collisionless
suprathermal tail (suprathermal electrons, T > *70 eV). In addition, the supra-
thermal electrons can be further classified into two categories: a nearly isotropic
component (halo electrons) and a relatively strong beam component (strahl elec-
trons). Figure 4.2 shows the different electron components.

Generally, the VDF of the observed core electrons in the solar wind can be fitted
by the Maxwell distribution, and the fitted temperature is called core temperature.
The core temperature is usually cooler than the moment temperature.

The strahl electrons are widely used to diagnose the magnetic field configuration
in the solar wind (Gosling et al. 2005; Larson et al. 1997; Phillips and Gosling
1990; Pierrard et al. 2001; Pilipp et al. 1987). For example, the bidirectional
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Fig. 4.2 Typical electron VDF in the solar wind. Different electron components are marked by
different colors
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suprathermal electrons, unidirectional suprathermal electron beam, and the heat flux
dropout (HFD)1 are possible evidences revealing whether the magnetic field lines
are connected directly to the sun (see Fig. 4.3).

4.3 Data Set Description

4.3.1 Instruments and Data

The data referred in this chapter are obtained from the WIND 3-D Plasma and
energetic particle experiment (3DP) (Lin et al. 1995). We will analyze the flux data
provided by the electron electrostatic analyzers (EESA), ion electrostatic analyzers
(PESA), and semiconductor telescopes (SST). To the electrons, the VDF data
provided by WIND is gyrotropic, while to the protons, we only get the omnidi-
rectional data. To facilitate the statistical analyses, we select four directions and
rebuild the energy bands (listed in Table 4.1). In addition, data obtained from
EESA-H and PLSP are abandoned since there are too many invalid data gaps.
Finally, 18 eV–500 keV electrons in parallel, perpendicular, and antiparallel
directions and 4 keV–4 MeV protons in omnidirection will be analyzed.

Bi-directional: closed field

Uni-directional: open field

HFD: disconnected field

Fig. 4.3 Strahl electrons and
the possible topology of the
magnetic field lines

1Note The electron heat flux is defined as H ¼ m
2

R
f ðvÞjv� V j2ðv� VÞd3v. Only the asymmetry

components with respect to V in f (v) will contribute to the integration, and the strahl electrons
are just the asymmetry ones in VDF. So the flux variations of the strahl electrons could be
reflected by the heat flux variation.

48 4 Proton and Electron Flux Variations …



4.3.2 Event Selection

We only analyze the particle flux variations in the front BL2 since the characteristics
of the tail BL are a bit different. We select 41 typical BL events (listed in Table 4.2)
throughout an entire solar cycle. All the BL events are determined by the
descriptions given by (Wei et al. 2003b).

Statistical analyses require proper quantities that can characterize the main
features of the samples. Since this work aims at researching the changes of fluxes in
the BL with respect to the ambient solar wind, we prefer to quantify the flux
variations in the form of DF ¼ ðF2 � F1Þ=F1 at all the energy bands, where F1

represents the average flux in the BL, and F2 denotes the nearby upstream solar
wind with 30 min duration. The change of magnetic field and plasma parameters are
also described by such a rule.

4.4 Statistical Results

As shown in Table 4.2, the average duration time of the BL is about 1 h. Magnetic
field usually decreases inside the BL (ΔBt * −16.4 %). The plasma is also com-
pressed and heated (Np, Tp, Te*42.9, *16.6, and magnetic field conditions near
*5.3 %, respectively). These features consist well with previous reports and
they are manifestations of the possible magnetic reconnection processes (Wei et al.
2003a, b, c).

Table 4.1 The selected energy bands on WIND/3DP and the corresponding instruments

Category
(direction)

Electron (parallel, perpendicular,
antiparallel)

Proton (omni)

Instrument
(source)

EESA-L
(ELPD) (eV)

SST-F
(SFPD) (KeV)

PESA-H
(PHSP) (KeV)

SST-MO
(SOSP) (KeV)

Energy
bands

18

27 27 4 74

42 40 6 128

65 66 9 197

103 108 11 333

165 183 15 552

265 307 21 1018

427 512 28 2074

689 4440

2Note All the ‘BL’ referred in Chaps. 4 and 5 indicate the front BL by default if they are not
specified.
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Table 4.2 41 typical BL events observed by WIND

No.a DATEb Startc Durd ΔBte |ΔVp|f ΔNpg ΔTeh ΔTpi

1 19950208 0252 31 −8.09 6.58 17.31 −4.57 −4.28

2 19950403 0629 75 −12.91 1.70 40.91 0.22 19.85

3 19950822 2036 61 −3.76 1.53 10.24 −2.40 5.61

4 19951018 1820 41 −22.24 2.38 4.15 −0.62 1.94

5 19960527 1210 152 −21.89 2.09 93.15 −3.45 7.16

6 19960701 1546 100 −17.55 9.92 4.22 −1.03 −0.47

7 19970411 0524 30 8.21 0.36 −8.47 −2.69 21.94

8 19970421 1152 13 −30.56 2.36 7.40 −2.37 12.08

9 19970515 0732 139 −16.73 32.64 −22.53 18.07 154.98

10 19970715 0844 21 −36.69 3.50 88.51 0.16 11.94

11 19970803 1005 226 −4.81 12.72 133.46 −16.20 −1.53

12 19970918 0255 57 −18.28 7.70 40.77 2.92 17.14

13 19971107 1438 59 −1.20 0.45 21.52 −7.61 −0.97

14 19971122 1448 22 −15.12 23.70 49.51 9.73 53.52

15 19980502 1233 21 −4.18 5.43 30.12 1.24 3.71

16 19980624 1611 31 −18.36 7.02 40.40 −3.93 −9.90

17 19980820 0450 263 −34.37 35.43 104.60 −6.23 21.38

18 19981108 2250 79 −11.65 5.32 39.97 17.13 23.54

19 19990218 1149 33 −23.58 23.58 41.22 26.70 −2.38

20 19990809 0756 142 −7.00 3.47 30.88 18.78 −6.21

21 20000221 0155 193 −39.13 4.08 55.08 17.96 −27.99

22 20001003 1634 44 −8.62 19.14 5.86 17.81 55.14

23 20010421 2347 25 −13.83 1.40 30.07 10.91 11.76

24 20010710 1638 92 −5.55 4.90 −0.30 2.92 15.44

25 20020319 2127 131 −18.96 5.86 2.80 4.54 42.80

26 20020324 0305 14 −21.83 4.72 123.21 23.79 32.09

27 20020418 0419 20 −19.89 17.98 17.93 4.49 61.71

28 20020519 0246 34 −33.36 14.79 43.60 12.33 5.87

29 20020801 1119 26 −22.67 9.31 48.73 25.64 23.08

30 20020802 0604 71 −6.07 1.46 21.70 1.64 18.36

31 20020903 0250 71 4.21 9.44 33.34 18.89 −7.48

32 20040404 0205 18 −18.46 33.65 191.12 1.19 62.40

33 20040722 1258 56 −28.26 27.65 36.16 15.41 −14.50

34 20040724 1129 27 −9.27 12.78 −10.59 −5.54 10.99

35 20040829 1830 28 −18.18 33.78 0.17 −1.02 0.54

36 20041109 1937 53 −41.59 5.98 68.43 20.51 13.83

37 20050520 0604 42 −17.01 2.46 29.97 −7.81 14.32

38 20050612 1441 21 −44.36 81.13 54.60 −2.16 10.77

39 20051231 1233 76 −37.93 6.83 187.31 16.98 7.20

40 20060205 1759 63 3.36 0.57 5.47 −10.34 −13.15
(continued)
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Electron flux variations in parallel, perpendicular, and antiparallel directions and
proton flux in omnidirection at different energy bands are shown in Fig. 4.4. It is
found that the flux variations behave differently in different directions and at dif-
ferent energy bands. Such features imply strong energy dependency and direction
selectivity. Specifically, (1) the core electrons show similar flux variations in three
different directions and the increment amplitude decreases with energy monoto-
nously from *30 % (at 18 eV) to *10 % (at 70 eV); (2) the increments of
suprathermal electron (100–700 eV) in the parallel and antiparallel directions are
very small (<4 %), but it is noted that their standard errors are obviously large;
(3) the energetic electron (>100 keV) also has slight increments in the perpendicular

Table 4.2 (continued)

No.a DATEb Startc Durd ΔBte |ΔVp|f ΔNpg ΔTeh ΔTpi

41 20060413 2023 41 −3.65 8.08 46.47 5.87 29.96

AVERAGE 67 −16.39 12.05 42.89 5.31 16.64
aEvent number
bThe date of event, formatted as Year/Month/Day
cThe beginning time of the event, formatted as Hour/Minute (UT)
dEvent duration (minute)
eThe change of total magnetic field (%)
fThe absolute difference of proton velocity (km/s)
gThe change of proton density (%) (Here, the proton density and electron density are assumed to
be equal, so are in Chap. 5. The electron density in the solar wind is discussed in Sect. 4.6.)
hThe change of electron temperature (%)
iThe change of proton temperature (%)
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direction; (4) the increments of the proton omni flux fall at higher energy bands, but
they have a prominence around 70 keV.

For further analyses of particle flux variations, we calculate the correlation
coefficients of electron flux variations in the parallel and antiparallel directions. As
shown in Fig. 4.5, the core electron has (strong) positive correlations (r > 0.8) in the
parallel and antiparallel directions. The correlation coefficients change sharply
around 70 eV, and the suprathermal electron has very low or negative correlations
(r * 0).

4.5 Explanations for the Flux Variations at Different
Energy Bands

4.5.1 The Core Electrons

The core electron flux variations in the BL should be closely related to the plasma
density, since zeroth order moment of the VDF is equal to the density. If the VDF
of the plasma is assumed to have a Maxwell distribution, the density will behave
essentially the same as the flux. In other words, the lower the flux energy is, the
more similar behaviors the density and flux will have (see Fig. 4.6).

This phenomenon is usually found in solar wind, as seen in Fig. 4.7; the iso-
tropic increments of electron flux at 15–41 eV vary consistently with the density
changes in the BL. It is noteworthy that, the average density increment of 41 BL
events is *42.9 %, which is also roughly consistent with the final increment of the
electron flux at 18 eV (*30 %). Actually, as stated above, electron fluxes at lower
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energy bands will behave even more similar to the density, but we do not use the
electron flux data under 18 eV (the reason will be discussed in Sect. 4.6).

4.5.2 The Suprathermal Electrons

As described above, the bidirectional suprathermal electrons, unidirectional
suprathermal electrons, and the absence of Strahl electrons are useful information to
infer the configurations of closed, open, and disconnected magnetic field lines from
the Sun. It is quite possible that the flux variations of the suprathermal electrons in
Fig. 4.4 as well as the near zero correlation coefficients in Fig. 4.5 also result from
the topological change of the magnetic field lines. In statistics, the enhancements of
the strahl electrons, mainly concentrating in the parallel direction will counteract
those enhancements mainly concentrating in the antiparallel direction. Hence, the
final average enhancements should be near zero and the standard error will be large.
Referring to Fig. 4.3, if the spacecraft detects unidirectional suprathermal electrons
in the solar wind first, thereafter, it observes bidirectional suprathermal electrons or
HFD in the BL (see Fig. 4.8). Then the calculated correlation coefficients of
suprathermal electron flux variations in the parallel and antiparallel directions will
be very low. This feature is just reflected in Fig. 4.5. Therefore, flux variations of
the suprathermal electron can indicate the topological change of the magnetic field
lines such as the possible magnetic reconnection processes as discussed in previous
work (Wei et al. 2006, 2003a, b, c).
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4.5.3 Energetic Electrons

The flux enhancement of the energetic electrons and its standard error are both
small. These results imply that there is indeed no obvious flux enhancement of the
energetic electrons inside the BL. However, it may also be possible that the ener-
getic electrons have pulsing flux enhancement inside some BL events (Wang et al.
2010), but the averaged flux variations are small due to the long duration of the BL.

4.5.4 Protons

Since the directional data of the proton flux is unavailable to us and the data provided
by PESA-L and PESA-H (lower energy bands) is unreliable either, it is difficult to
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have a comprehensive analyses on the proton flux. However, it is noted that there is a
peak value around 70 keV in Fig. 4.4. This phenomenon is also observed in the
interplanetary magnetic reconnection exhaust as reported in Chap. 2.

4.6 Discussion and Summary

Since the flux of electrons in low-energy band (*<10–20 eV) is usually affected by
the photoelectron of the spacecraft, the data provided by WIND/3DP should be
carefully calibrated before using (Lin et al. 1995; Paschmann and Daly 1998;
Pedersen et al. 2008). A possible solution is to fit the VDF of the electrons by
Gaussian distribution. However, this method is a bit complex and the validity is not
fully guaranteed in statistical work. So we do not consider the electron data below
18 eV. In addition, we abandon the data provided by EESA-H because of the
frequently occurred invalid data. Overall, these processes do not affect the major
results of our work.
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Although plasma is electrically neutral, the electron density directly obtained
from the spacecraft is not exactly the same as the proton density, and it also needs
calibrations (Paschmann and Daly 1998). The wave spectrum can be used to cal-
ibrate the electron density. As seen in Fig. 4.9, in the solar wind, the Langmuir
waves will display a bright ‘plasma line’ in the spectrum. So we can deduce the
electron density from the plasma frequency

fpe ¼ 1
2p

ffiffiffiffiffiffiffiffi
ne2

me0

s

In the statistical work, it is found that the electron density deduced from the
‘plasma line’ fits well with the proton density in many cases. So, the proton density
and electron density are assumed to be equal in Chaps. 4 and 5.

Actually, the averaged flux variation used in data processing will smooth the
results. We also adopt another sample method, such as applying the maximum flux
in the same time range to the events. Although we get more unsmooth results, the
main features also resemble the results presented here.

To sum up, we carry out a statistical study to analyze the proton and electron flux
variations inside the 41 BL events on reliable energy bands throughout an entire
solar cycle (1995–2006). It is found that the core electron flux increases
quasi-isotropically and the increments decrease monotonously with energy from
*30 % (at 18 eV) to *10 % (at 70 eV); the suprathermal electron flux usually
increases in either parallel or antiparallel direction; the correlation coefficients of
electron flux variations in parallel and antiparallel directions change sharply from
*0.8 below 70 eV to *0 above 70 eV; the energetic electron has slight increments
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in the perpendicular direction; the increments of the proton omni flux have a
prominence around 70 keV. These features indicate that magnetic field lines may
break up or reverse inside the BL. Considering the work done before, it is inferred
that magnetic reconnection processes may occur frequently in the BL.
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Chapter 5
The Criterion of Magnetic Reconnection
in the Solar Wind

5.1 Introduction

Ever since the “direct evidence” of magnetic reconnection in the solar wind has
been proposed by Gosling et al. (2005a), many reconnection exhausts are reported
(Gosling et al. 2005a, b; Davis et al. 2006; Phan et al. 2006; Gosling et al. 2007a, b;
Huttunen et al. 2007; Lavraud et al. 2009; Tian et al. 2010; Wang et al. 2010;
Gosling 2011; Xu et al. 2011). However, it is very difficult for the spacecraft to
detect direct reconnection evidence such as the hall signatures as those in the
magnetotail (Birn and Priest 2007) since the reconnection diffusion region is quite
small in the solar wind. So the key evidence for identifying the magnetic recon-
nection in the solar wind becomes to find the Alfvénic reconnection jets calculated
by Walen relation in the reconnection exhaust as pointed in the review article
(Gosling 2011).

Early observations (McComas et al. 1994) show that the fast ICME propagating
in the solar wind will compress the ambient solar wind, and then magnetic
reconnection may take place in front of the ICME. The compressing effect of the
ICME behaving as the driving flows in magnetic reconnection may help promote its
initiation, and such scenario has been demonstrated by observations and numerical
simulations (Dasso et al. 2006; Wang et al. 2010; Wei et al. 2003a, b). However,
recently, statistical work (Gosling 2011; Gosling et al. 2007b) indicates that the
solar wind magnetic reconnection will be suppressed in high beta value plasma, and
particularly, it prefers occurring spontaneously inside the ICME where the solar
wind generally has low beta value instead of ahead of the ICME.

This problem arouses our interests in discussing the criterion of magnetic
reconnection in the solar wind. Actually, the interaction region between the ICME
and the solar wind, which is similar to the BL region discussed in the previous
chapters, is a dynamic region where the magnetic field and plasma parameters
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change complexly. To a single spacecraft, the “direct evidence” referred above may
not really reflect the physical processes in such region. Moreover, it should not be
ignored that the measured reconnection jets are not well-consistent with the roughly
Alfvénic accelerated flows calculated by Walen relation in some reported recon-
nection events. The discrepancy between the observations and calculations can even
exceed 40 % in certain events. These analyses bring about an interesting question:
besides the Alfvénic accelerated flows, can other characteristics be selected as the
proper criterion of magnetic reconnection in the solar wind?

Magnetic field, plasma density, temperature, and velocity will change during the
magnetic reconnection processes. Generally, it is hard to identify a reconnection
event by only using the magnetic field signatures (Gosling 2011). Since the plasma
density, temperature, and velocity can all be calculated from the particle VDF, it is
speculated that variations of particle flux may also be useful signatures for iden-
tifying the reconnection event.

In this chapter, we compare the proton and electron mean flux variations in the
BL, in the interplanetary reconnection exhaust (RE), and across the MC-driven
shock by using the Wind 3DP and MFI data from 1995 to 2006. It is found that the
strong energy dependence and direction selectivity of electron flux variations,
which are previously thought to have no enough relevance to magnetic reconnec-
tion, could be considered as an important signature of solar wind reconnection in
the statistical point of view.

5.2 Event Selection

The event selection and data processing are similar to those in Chap. 4. The varia-
tions of particle flux are denoted by DF ¼ ðF2 � F1Þ=F1 at all the energy bands and
directions for each event. To the RE, F2 is the mean flux inside the RE and F1 is mean
flux of the nearby upstream solar wind with the same duration of the RE. For the
shock, F1 and F2 are the mean flux of upstream and downstream solar wind,
respectively, with 12 min duration and 3 min away from the shock discontinuity.

5.2.1 The Reconnection Exhaust

The interplanetary RE events are chosen from the list provided by Huttunen et al.
(2007). Since the time resolution of the EESA and PESA is *98 s, the RE events
with too short duration (<98 s) are excluded. The final 24 events are listed in
Table 5.1.
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5.2.2 The MC-Driven Shock

The MC-driven shock events are selected based on the work of Feng et al. (2010).
We use the following criteria to select shock events as “MC-driven” events1: (1) the

Table 5.1 Selected solar wind reconnection exhausts observed by WIND

No.a DATEb Startc Durd ΔBte |ΔVp|f ΔNpg ΔTeh ΔTpi

1 19971116 164250 220 −38.96 11.13 157.35 30.76 96.31

2 19980416 005434 198 2.27 17.01 −26.45 2.55 96.76

3 19980821 202036 240 −22.31 9.24 37.94 16.54 82.14

4 19980917 033315 109 −14.52 16.27 28.77 −0.15 29.06

5 19990218 102624 218 −23.31 56.20 213.91 63.95 7.90

6 19990615 143235 108 −13.32 16.82 42.82 13.23 91.98

7 19990626 054600 550 −25.24 7.95 29.85 20.53 2.85

8 19990728 043559 189 −24.44 6.29 39.33 1.72 49.62

9 19990810 183820 356 −43.70 2.26 29.98 15.48 16.78

10 19990919 091004 266 −30.09 20.71 24.34 1.90 5.43

11 20000419 035916 194 −39.35 18.40 15.77 10.10 13.30

12 20010617 163023 157 −19.27 38.24 48.55 16.36 1.74

13 20020202 035725 260 −32.48 49.74 65.86 28.72 54.89

14 20020419 004130 300 −9.55 36.29 −14.35 −3.54 10.59

15 20020628 152632 333 −9.36 14.23 22.16 5.92 −11.21

16 20030302 210955 107 −32.84 11.52 6.96 4.90 27.66

17 20040724 115110 235 7.41 62.34 5.42 0.87 45.34

18 20040826 092250 175 −12.69 11.46 −1.11 −3.96 32.22

19 20040914 212651 121 −20.80 60.91 36.30 12.67 −15.88

20 20040919 064100 670 −4.55 12.89 76.63 9.34 5.24

21 20041008 070545 130 −3.13 13.19 13.88 −1.56 6.86

22 20041011 152342 134 −18.82 16.04 −3.39 4.06 −2.68

23 20041029 024531 119 −38.80 9.63 0.77 0.98 1.80

24 20041206 022056 115 −14.50 0.16 2.70 1.95 2.33

AVERAGE 229 −20.09 21.65 35.58 10.56 27.13
aEvent number
bThe date of event, formatted as Year/Month/Day
cThe beginning time of the event, formatted as Hour/Minute/Second (UT)
dEvent duration (second)
eThe change of total magnetic field (%)
fThe absolute difference of proton velocity (km/s)
gThe change of proton density (%)
hThe change of electron temperature (%)
iThe change of proton temperature (%)

1Note We also try to use looser conditions (55° < θ < 125°, t < 16 h) and more strict conditions
(75° < θ < 115°, t < 12 h). The major conclusions will not be affected.
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angle θ between the axis of the MC, adopted by fitting the constant α force-free
model to the magnetic fields, and its leading shock normal is in the range from 65 to
115 degree; and (2) the interval t between the shock and the beginning of the MC is
less than 14 h. The final 23 events are listed in Table 5.2.

Table 5.2 Selected leading shocks ahead of magnetic cloud observed by WIND

No.a DATEb Startc ΔBtd |ΔVp|e ΔNpf ΔTeg ΔTph

1 19950822 1256 85.45 42.38 197.09 14.06 99.64

2 19970109 0052 208.79 28.07 118.19 2.41 139.35

3 19970515 0115 150.20 74.66 89.82 53.27 103.76

4 19970715 0215 19.50 9.90 63.46 10.77 22.35

5 19971010 1557 64.41 24.90 62.48 4.70 27.70

6 19971122 0912 198.94 98.79 144.61 75.63 168.50

7 19980304 1102 84.05 41.99 70.94 41.41 40.19

8 19981018 1929 128.17 30.16 89.00 19.93 57.42

9 20000811 1849 106.38 113.98 90.60 56.96 154.63

10 20010319 1133 107.18 47.99 67.30 70.81 60.64

11 20010404 1441 59.08 211.11 146.90 123.27 327.35

12 20010421 1529 80.23 27.70 115.75 60.64 60.14

13 20011031 1347 64.20 68.53 210.07 54.84 301.31

14 20011124 0454 86.78 75.84 33.69 29.39 46.66

15 20020518 1946 158.76 160.83 202.78 240.26 259.96

16 20020801 0519 57.15 100.17 129.64 34.11 296.22

17 20040724 0531 140.13 68.46 168.05 192.04 267.61

18 20041107 1759 123.46 160.31 142.38 90.91 89.20

19 20050515 0210 484.94 298.62 358.26 469.96 803.67

20 20050612 0648 379.41 37.37 30.07 59.08 48.23

21 20050614 1756 253.53 82.10 78.87 107.21 213.60

22 20060413 1121 113.57 35.12 57.57 45.34 79.13

23 20071119 1722 82.14 34.85 142.13 49.76 42.87

AVERAGE 140.72 81.47 122.16 82.90 161.31
aEvent number
bThe date of event, formatted as Year/Month/Day
cThe beginning time of the event, formatted as Hour/Minute (UT)
dThe change of total magnetic field (%)
eThe absolute difference of proton velocity (km/s)
fThe change of proton density (%)
gThe change of electron temperature (%)
hThe change of proton temperature (%)
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5.3 Statistical Results

It can be seen from Tables 5.1 and 5.2 that the magnetic field decreases
(ΔBt * −20.1 %) in most of the RE events and plasma is usually compressed
(ΔNp * 35.6 %) and heated (ΔTe * 10.6 %, ΔTp * 27.1 %). These phenomena
resemble those of the BL results as previously discussed in Chap. 4. In addition, the
absolute difference of proton velocity in the RE (ΔVp * 21.7 km/s) is larger than
that in the BL (ΔVp * 12.1 km/s). The MC-driven shocks are usually fast forward
shocks across which the magnetic field, proton and electron temperature, and
plasma speed always increase apparently (the average changes of ΔBt, ΔNp, ΔTe,
ΔTp, ΔVp are*140.7, 122.2, 82.9, 161.3 %, and 81.5 km/s, respectively). It is also
noted that there are few strong MC-driven shocks. The obtained density com-
pression ratio of the shock is in the range of 1.3–4.6 with a mean value of only 2.2.

Figure 5.1 displays the electron flux variation ΔF averaged over all events in the
parallel, antiparallel, and perpendicular directions as well as the omni proton flux
variation also averaged over all events. The flux variations (flux decrease or
increase) depend both on the direction and the energy. Inside the RE, the core
electron flux in the parallel and antiparallel direction increases consistently and the
increment amplitude decreases with energy monotonously from *30 % (at 18 eV)
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to *10 % (at 70 eV); the increments of suprathermal electron (100–700 eV) in the
parallel and antiparallel directions are very small (<4 %), but it is noted that their
standard errors are obviously large. Although the energetic electron in the parallel
direction has higher increment with larger standard error, the flux variations in the
RE have similar behaviors compared with the BL as a whole. By contrast, across
the shock, flux behaviors are quite different. The electron flux variations have peak
increments (>200 %) around *100 eV and decline on both sides; we also note that
they have higher increments in the perpendicular direction and the corresponding
energy of the peak increment is also higher in the perpendicular direction
(*165 eV) than in the field-aligned direction (*65 eV); the omni proton flux
increments decrease monotonously from*280 % (at 4 keV) to*10 % (at 4 MeV).

Similar to the results discussed in Chap. 4, it is also found that the correlations of
the electron flux variations in parallel and antiparallel directions have a sharp
change around 70 eV in the RE. Figure 5.2 shows the correlation coefficients of
electron flux variations in the parallel and antiparallel directions. In all events, the
core electron has (strong) positive correlations (BL and RE: r > 0.8; shock: r > 0.6);
while the suprathermal electron in the BL and RE has low or negative correlations
(BL: r * 0; RE: r * −0.2). In addition, the correlations are even lower across
(downstream to upstream) the RE (r * −0.4), however, no obvious changes are
found across the shock which always has high correlation around 0.8.
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5.4 Explanations for the Flux Variations in Different
Events

5.4.1 The Magnetic Cloud Boundary Layer
and Reconnection Exhaust

The statistical results show that plasma in the BL and RE are both compressed and
heated, and they have similar macroscopical variations in plasma density, tem-
perature, and velocity. Whereas in microcosmical view, the flux enhancements of
the core electrons and suprathermal electrons in RE are also similar to those in the
BL. Such similarities tend to reveal that the BL and RE are dominated by the same
physical processes, and magnetic reconnection is the candidate one.

Here we would like to explain why these features are related to the solar wind
reconnection in detail. As sketched in Fig. 5.3, taking the Strahl electron in ideal
case for instance, the intensity of flux is simply normalized by only two arbitrary
quantities: 100 (obvious Strahl electron) and 10 (no obvious Strahl electron). The
flux status is described by [F0, F180], where F0 and F180 stand for the flux of
Strahl electron in the parallel and antiparallel directions, respectively. Accordingly,
the status of bidirectional Strahl electron, unidirectional Strahl electron in the
parallel and antiparallel directions and no obvious Strahl electron could be
described by [100, 100], [100, 10], [10, 100] and [10, 10], respectively. In case I,
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the spacecraft would detect decreased and unchanged Strahl electron in the parallel
and antiparallel directions, respectively, inside the RE, and the increments are [−90,
0] ([10, 10]–[100, 10]). Similarly, the increments in cases II, III, and IV are [0, 90],
[0, −90], and [90, 0], respectively. Therefore, in statistical analyses, the correlations
of the Strahl electron flux variations in parallel and antiparallel directions should be
low if the spacecraft encounter the above four cases randomly. Mathematically
speaking, both the correlation coefficient and the averaged increments should
approach 0. Moreover, across the RE, the increments become [−90, 90] in cases I,
II and [90, −90] in cases III, IV. We could see that they always reveal anticorrelated
relations in the parallel and antiparallel directions. Accordingly, the theoretically
computed correlation coefficient is even lower (should be −1) in the statistical work.

Certainly, our assumptions are relatively simple. For example, the real flux
intensity could not be only two quantities (100 and 10), and thus the finally
obtained correlation coefficients and mean flux increments might not be as ideal as
those in the analyses. However, the flux variations of suprathermal electron still
reveal the properties that the mean increments approach 0with large standard errors
and the correlation coefficients are low (* −0.2) and lower (* −0.4) in and across
the RE. Other effects, such as particle scattering, could also modify the flux of
electron. If so, it should be explained as to why the correlation of core electron is
always higher than the suprathermal electron and why the correlation coefficients
change sharply around *70 eV. Perhaps the correlation coefficients should change
more smoothly if the scattering process plays a dominant role. In addition, since
these RE events are not magnetically connected to Earth’s bow shock (Huttunen
et al. 2007), the obtained results would not be greatly affected by particle reflection
either. Moreover, the correlation coefficients across the MC-driven shock, in which
there is no obvious break or reverse of magnetic field line, are always high (*0.7–
0.9). For these reasons, we tend to regard that the solar wind magnetic reconnection
is the best candidate process that could account for the statistically obtained low or
negative correlations of suprathermal electron increments in the parallel and anti-
parallel directions.

5.4.2 The MC-Driven Shock

Particle flux variations are totally different across the MC-driven shocks compared
with those in the BL and RE. The electron flux increments ascend first and then
descend with peak value near*65 and *165 eV in the field-aligned and perpen-
dicular directions, respectively. Such flux behaviors could not be merely caused by
the density increase and increments are also inconsistent with the average density
increments. We noted that the increase of electron temperature across the shock is
quite higher than that in the BL and RE. Since the “moment temperature” is
calculated from the second-order moment of the VDF, we speculate that the
increments of electron flux with hill-like shape are mainly dominated by the heating
effect of the shock. As seen in Fig. 5.4, higher temperature will broaden the particle
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VDF even if they have the same density. This result is consistent with previous
observations which show that the inflated electron VDF caused by heating in both
the parallel and perpendicular directions is always found downstream of the shock
(Fitzenreiter et al. 2003). In addition, according to early researches, for weaker
shocks, the electron heating was primarily perpendicular to the magnetic field due
to the conservation of magnetic moment (Feldman et al. 1983). The present sta-
tistical results with higher flux increments in the perpendicular directions could also
be supported by such explanations, since many of our selected MC-driven shocks
have relatively small density compression ratio. Since the proton flux increment
(*280 %) across the MC-driven shock at 4 keV is higher than both the density and
temperature increments (*122 and 161 %, respectively), it is speculated that the
proton VDF around 4 keV might also be inflated as that of the electron near
*70 eV across the shock.

5.5 Discussion and Summary

Magnetic field decrease, and density and temperature increase are similar in the RE
and BL, and similar flux variation behaviors are found between these two struc-
tures. Hence, we suggest that the flux variations in the BL are mainly related to the
magnetic reconnection process. However, as preliminarily discussed in the intro-
duction section, some researchers pointed out that the roughly Alfvénic accelerated
plasma flows: the “direct evidence” (Gosling 2011; Gosling et al. 2005a), are rarely
identified inside the front BL (except two events: 20001003 and 20040724).
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At first, it should be recognized that when there is no roughly Alfvénic accelerated
plasma flows it does not mean that there is no magnetic reconnection, since the
reconnection jets might not be measured or the generated jets do not meet the
referred criteria. Previous simulations (Wang et al. 2010, 2003a, b) imply that the
BL has strong turbulent property under high magnetic Reynolds number condition
(Rm *104). While, as also suggested by Matthaeus et al. (2003), turbulence should
commonly drive reconnection in the solar wind. Inside the BL, the compression of
the MC behaves as driving flows that would reduce the characteristic thickness of
the local current sheet from *108 km (in the corona) to *103 km (in the solar
wind). Accordingly, the magnetic Reynolds number could decrease from *1010

to *104. Besides, the magnetic field inside the BL always shows abrupt deflections
in the field direction. If the frozen field theorem is locally broken, these conditions
are all favored by the potential magnetic reconnection (Wei et al. 2006).

Actually, in many cases, the BL is a complex layer with turbulent and irregular
structures. Besides, the trajectory of the spacecraft relative to the orientation of RE
is not always suitable for the observation. So, the roughly Alfvénic accelerated
plasma flows that completely meet the reconnection criteria as those reported events
might be hard to identify. In addition, the referred criteria, especially the jets
(Gosling 2011; Gosling et al. 2005a; Paschmann et al. 1986; Sonnerup and Cahill
1967; Sonnerup et al. 1981), are described as “a useful guide” (Sonnerup et al.
1981) for the identification of reconnection and have made wonderful achievements
in the realm of magnetic reconnection. Yet it should still be cautious to use such
criteria because they are obtained under the MHD descriptions with the assumption
of ideal reconnection model. Remarkably, it is pointed out that such criteria have
never been demonstrated to be “incontrovertible” (Sonnerup et al. 1981). Recent
simulations also show that the outflowing reconnection jets could even turn back
and link with the inflows to form closed-circulation patterns in turbulent recon-
nection (Lapenta 2008). Accordingly, reconnection generated plasma flows might
not meet the referred criteria strictly in the real three-dimensional space. Therefore,
it is quite possible that many reconnections inside the BL do occur and the
reconnection jets are indeed measured. However, they are excluded by the criteria
so that many researchers tend to think that there is no reconnection.

Other factors should also be taken into consideration carefully, such as the
lifespan and the evolution of the reconnection itself. As studied previously (Wei
et al. 2003a, b), the magnetic reconnection might not be an ongoing process all the
time. After the reconnection occurs, the reconnection conditions would be weak-
ened and the frozen-in condition would be gradually recovered until the local
condition is ready for the next potential magnetic reconnection. Since this process
might continue to repeat itself, a single spacecraft across the BL might observe the
“‘remains” or the “preorder” of magnetic reconnection. For these reasons, the
signatures of reconnection, such as the Alfvénic accelerated flows, might not be
prominent to be identified sometimes. However, we have reasons to believe that the
electron flux variations would not be affected and could reflect the field topological
structure of the magnetic reconnection event to a certain extent.
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In summary, we carry out a statistical study to analyze the proton and electron
flux variations inside BL events on reliable energy bands and compare them with
those in the RE and across the MC-driven shocks. The results show that the BL is a
unique complicated transition layer that displays some reconnection characteristics.
The core electron flux behaviors inside the BL and RE are related to the density
increase. The hill-like electron flux increments across the shock are mainly domi-
nated by the temperature increase. It is also found that the correlations of the
electron flux variations in parallel and antiparallel directions have a sharp change
around *70 eV where solar wind magnetic reconnection occurs. The correlation
coefficients of the suprathermal electron in the parallel and antiparallel directions
are found to be low. Further analyses imply that strong energy dependence and
direction selectivity of flux variations could be regarded as an important signature of
solar wind reconnection in the statistical point of view.
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Chapter 6
Summary and Outlook

In this thesis, we carry out some researches related to magnetic reconnection and
particle acceleration in the BL. The main conclusions are (1) we observe the
energetic electrons associated with magnetic reconnection in the solar wind for
the first time; (2) we propose a combined acceleration model to explain how the
energetic electrons are accelerated in magnetic reconnection processes; (3) we
reveal the energy dependency and direction selectivity of particle flux variations in
the BL; (4) we indicate that particle flux variations could be considered as an
important signature of solar wind reconnection in the statistical point of view.

As discussed in the previous chapters, detailed observation of reconnection
diffusion region is the crucial point through which we can have better under-
standings of the physical processes related to magnetic reconnection (Birn and
Priest 2007). Hence, the following aspects should be noted: (1) seeking the
reconnection diffusion region in the solar wind; (2) using more self-consistent PIC
simulations to discuss the particle accelerations in magnetic reconnection;
(3) investigating the rear BL of the MC to have more comprehensive understand-
ings of the BL dynamics; (4) trying to find a more convenient and efficient method
to identify the reconnection event in the solar wind.

Actually, turbulence and waves are commonly observed in magnetic recon-
nection processes (Birn and Priest 2007; Biskamp 2003; Deng and Matsumoto
2001; Eastwood et al. 2009; Farrell et al. 2002; Matthaeus and Velli 2011;
Matthaeus et al. 2003). The relation between magnetic reconnection and turbulence
is an important and frontier topic in space physics. It should also be noted that the
reconnection current sheets can be produced by turbulence, and conversely, tur-
bulence can also be generated by magnetic reconnection (Karimabadi et al. 2013;
Liu et al. 2013; Eastwood et al. 2009; Servidio et al. 2009, 2010; Retino et al.
2007). In addition, waves associated with reconnection may play an important role
in the initiation and evolution of magnetic reconnection. Wave−particle interactions
are also important in the dissipation of turbulence (Bale et al. 2005; Howes et al.
2011; TenBarge et al. 2013; Tu and Marsch 1995). Therefore, the future work will
be investigations on the relations among magnetic reconnection, turbulence, and
waves together with their interactions.
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