


Quantitative Seismic Interpretation
Applying Rock Physics Tools to Reduce Interpretation Risk

Seismic data analysis is one of the key technologies for characterizing reservoirs and
monitoring subsurface pore fluids. While there have been great advances in 3D seismic
data processing, the quantitative interpretation of the seismic data for rock properties
still poses many challenges.

Quantitative Seismic Interpretation demonstrates how rock physics can be applied
to predict reservoir parameters, such as lithologies and pore fluids, from seismically
derived attributes. It shows how the multidisciplinary combination of rock physics
models with seismic data, sedimentological information, and stochastic techniques can
lead to more powerful results than can be obtained from a single technique. The authors
provide an integrated methodology and practical tools for quantitative interpretation,
uncertainty assessment, and characterization of subsurface reservoirs using well-log
and seismic data. They illustrate the advantages of these new methodologies, while
providing advice about limitations of the methods and traditional pitfalls.

This book is aimed at graduate students, academics, and industry professionals work-
ing in the areas of petroleum geoscience and exploration seismology. It will also interest
environmental geophysicists seeking a quantitative subsurface characterization from
shallow seismic data. The book includes case studies and problem sets. A website
(http://publishing.cambridge.org/resources/0521816017) offers Matlab codes, plus
seismic and well-log data, which will allow readers to gain a hands-on understanding
of the methodologies.
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Do not believe in anything simply because it is found written in your books.

But after observation and analysis, when you find that anything agrees with

reason and is conducive to the good and benefit of one and all, then accept

it and live up to it. The Buddha
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Preface

Every year finding new oil is harder, riskier, and more expensive – a natural consequence
of its finiteness. As dictated by M. King Hubbert’s “peak,” declines in discoveries and
production are inevitable. Yet demand continues, forcing us to deeper water, more
complex reservoirs, and smaller, more subtle oil fields.

A key to managing this complexity and risk has always been effective integration
of the diverse petroleum technologies. Workstations, visualization software, and geo-
statistics have contributed to integrating the vast amounts of data that we sometimes
drown in. Perhaps more important are the asset teams that exploit diverse data by inte-
grating expertise. Our goal, in preparing Quantitative Seismic Interpretation, is to help
illustrate the powerful role that rock physics can play in integrating both the data and
expertise of geophysics and geology for reservoir characterization.

Our objective for this book is to help make the links between seismic and reser-
voir properties more quantitative. Most of our examples use amplitude signatures and
impedances, but we consider quantitative seismic interpretation to include the use of
any seismic attributes for which there are specific models relating them to the rock prop-
erties. Our approach is to introduce fundamental rock physics relations, which help to
quantify the geophysical signatures of rock and fluid properties. Since rock properties
are a consequence of geologic processes, we begin to quantify the seismic signatures
of various geologic trends. We also fully embrace probabilistic and geostatistical tools,
as quantitative means for managing the inevitable uncertainty that accompanies all
quantitative methods. Quantifying, managing, and understanding the uncertainties are
critical for survival in a risky environment.

For many years, rock physics focused on physics. We carefully measured wave
propagation under a variety of laboratory conditions, and we developed marvelously
clever acoustic analogs of rocks, finding ways to model grains and pores, and the
fluids that sit inside them. We know how to parameterize seismic velocities in terms of
mineralogy, porosity, aspect ratios, and grain contacts. We understand how pore pressure
and stress affect velocity, attenuation, and their anisotropies. We have a sense for why
(high-frequency) laboratory velocities differ from (low-frequency) field velocities. And
we can make excellent predictions of how velocities change when pore fluids change.

xi
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Surprisingly, some of the most important breakthroughs in rock physics during the
past decade have come not from additional mathematics, but from rediscovering the
physics of rock geology. Our rock textural parameters that control elastic response can
now be related to depositional maturity, and the overprint of compaction and diagenesis.
Pore aspect ratios have given way to parameters such as grain sorting; linear impedance–
porosity trends have given way to sand-shale “boomerang” plots in the velocity–porosity
plane, reflecting depositional cycles. Quantitative geologic constraints can define the
relevant trajectories through geophysical planes (velocity versus porosity; VP versus
VS), which physics-based models can only parameterize.

One of the most powerful uses of rock physics is for extrapolation. At a well –
assuming that data quality is good – we pretty much know “the answer.” Cuttings, cores,
and logs tell us about the lithology, porosity, permeability, and fluids. The problem is,
often, knowing what happens as we move away from the well. This is the role of
the rock physics “What if?” Using rock physics, we can extrapolate to geologically
plausible conditions that might exist away from the well, exploring how the seismic
signatures might change. This is particularly useful when we wish to understand the
seismic signatures of fluids and facies that are not represented in the well. For statistical
methods, such as clustering analysis or neural networks, such extrapolations are critical
for extending the training data. What if the pore fluids change? What if the lithology
changes? What if the depositional environment changes?

Another exciting development is the appearance of statistical rock physics.
Simulation-based quantitative interpretation is one of the main messages of statisti-
cal rock physics. Geophysicists and geologists have tended to shy away from (even
scorn) statistics. We have somehow felt that statistical methods were giving up the
physics, even getting sloppy. But stochastic methods do not throw away the physics.
They just put in some of the realities and heterogeneities that are not modeled by the
idealized physics. When was the last time you saw a seismic section with error bars?
Not long ago one of our colleagues, after hearing a presentation on stochastic sim-
ulation, remarked “You mean that you just make up random numbers?” Thankfully,
these misconceptions are (slowly) melting away. Just because we do not yet have the
perfect imaging and velocity estimation algorithm does not mean we should stop mak-
ing interpretations and wait for perfect data. Decisions need to be made in the face of
uncertainty, with imperfect and incomplete data. As better-quality data become avail-
able, one can update prior interpretations and reduce the associated uncertainty. One
of the complaints about statistical methods is that they require lots of data. It is true
that more data help the statistics. But scenarios with scarce data are the ones where the
uncertainty is the greatest. It is these situations with few data that benefit the most from
stochastic methods for quantifying and reducing the uncertainty.

“Quantitative” does not mean without uncertainty. We also stress that uncertainty
estimates and probabilities are always subjective. Subjective information plays an
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important role in quantitative interpretation. “Subjective” and “quantitative” are not
mutually exclusive.

Uncertainty and risk pervade our decisions on reservoirs. One source of uncertainty
is model approximations of a hopelessly complex Earth. Rocks are neither linear nor
elastic nor isotropic. Yet much of seismic analysis assumes so, leaving imperfections in
our seismic images. Another source of uncertainty is the fundamental nonuniqueness of
interpretation. The most perfect seismic inversion assuming isotropic linear elasticity
yields at best three parameters: VP, VS, and density. We’re still struggling to get even
these three. In addition to VP, VS and density, perhaps we might be able to estimate
something about Q and anisotropy with appropriate models. The wave equation that
we base most of our work on depends only on these few parameters. Yet there are
many more rock unknowns: mineralogy, porosity, pore shapes, grain size distributions,
angularity, packing, pore fluids, saturations, temperature, pore pressure, stress, etc. So
even with perfect data we have a tremendous uncertainty that needs to be described and
reduced by optimum use of geology.

Chapter 1 gives a brief introduction to rock physics, the science aimed at discover-
ing and understanding the relations between seismic observables (velocity, impedance,
amplitude) and rock properties (lithology, porosity, permeability, pore fluids, tempera-
ture, and stress). We introduce the concepts of bounds on elastic properties, and show
how they also can serve as powerful interpolators when describing depositional and
diagenetic trends in the velocity–porosity plane. We give an extensive discussion of
fluid substitution, and explore the special role that shear wave information plays when
separating lithologic, pressure, and saturation effects. We also discuss some of the
effects that pore pressure has on seismic velocities.

Chapter 2 focuses on the rock physics link to depositional and diagenetic trends
of sands, shales, and shaly sands. We introduce a number of specialized models that
describe the velocity–porosity behavior of clastics, and illustrate these with a number
of field examples. We establish important links between depositional facies and rock
physics properties, investigate depth trends in the rock physics of sands and shales as
a function of diagenesis, and finally put it all together in basin-specific rock physics
templates (RPTs) which can be used both for well-log and seismic data analysis.

Chapter 3 focuses on statistical rock physics. It gives brief introductions to various
statistical classification techniques, and shows how combining rock physics models
with modern computational statistics helps us to go beyond what is possible using either
statistics or physics alone. We show how Monte Carlo simulations help us to quantify
uncertainties in rock physics interpretation of seismic attributes. We also discuss the
concept of derived distributions to extend and extrapolate training data. Matlab TM

functions for Monte Carlo simulation and statistical classification techniques described
in Chapter 3 may be downloaded from the website for our book. Two excellent texts
that we recommend for elaborate discussions on statistical classification techniques
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are The Elements of Statistical Learning: Data Mining, Inference, and Prediction
(Hastie, Tibshirani and Freidman, 2001) and Pattern Classification (Duda, Hart and
Stork, 2001). Decision Making with Insight (Savage, 2003) highlights in an entertaining
manner the pitfalls of ignoring uncertainty in quantitative modeling.

Chapter 4 provides a compilation of the most common techniques used for quantita-
tive seismic interpretation, including the new contributions made by the authors of this
book. We start with explaining some common pitfalls in qualitative seismic interpre-
tation, and how quantitative techniques can solve important ambiguities, and improve
the detectability of hydrocarbons. Amplitude variation with offset (AVO) analysis is
the most common quantitative technique used in the industry today, and we give an
overview of the many aspects of AVO, ranging from wave-propagation theory, process-
ing and acquisition effects, and different ways to interpret the AVO information. This
chapter also includes an overview on various methodologies to extract rock properties
from near and far impedance inversions. We stress the many pitfalls associated with the
various techniques, but also the great potential to obtain rock and fluid properties. We
extend the discussion from deterministic techniques to probabilistic AVO analysis as
a technique for seismic prediction of reservoir properties. The new techniques of AVO
constrained by rock physics depth trends and seismic applications of RPT analysis are
also presented. Finally, we give a brief overview on forward seismic modeling as a
technique to quantify subsurface reservoir properties.

Chapter 5 describes different case studies where the concepts described in the pre-
vious chapters are used systematically for quantitative prediction of lithology and pore
fluids from seismic data. Although our examples are drawn from siliciclastic deposi-
tional systems, the methods and workflows can be applied to other problems, such as
carbonates, gas hydrates, fractured reservoirs, and shallow hydrologic site character-
ization. Moreover, we discuss only static reservoir characterization, but the methods
can be extended to include time-lapse seismic.

Chapter 6 recommends specific workflows for applying the methodologies of quan-
titative seismic interpretation at various stages of reservoir exploration, appraisal,
development and management. By including these workflows, we hope to make the
methodology appealing to everyone who routinely interprets geophysical data.

Chapter 7 provides problem sets and an extended reservoir characterization project
based on an example seismic data set and well logs provided at the website. We empha-
size the value of working through the problems. The best way to learn is by doing.
We hope the exercises, example data set, and Matlab functions will help the reader
to understand the techniques better by providing practical hands-on experience. We
believe the resources at the website (http://srb.stanford.edu/books) will make this book
suitable for teaching.

Quantitative Seismic Interpretation is complementary to other works. For in-depth
discussions of specific rock physics topics, we recommend The Rock Physics Handbook
(Mavko et al., 1998); Acoustics of Porous Media (Bourbié et al.,1987); and Introduction
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to the Physics of Rocks (Guéguen and Palciauskas, 1994). We also draw your atten-
tion to 3-D Seismic Interpretation (Bacon et al., 2003), and Interpretation of Three-
Dimensional Seismic Data (Brown, 1992). More geologic discussions can be found in
Principles of Sedimentology and Stratigraphy (Boggs, 1987). Excellent discussions of
AVO technology can be found in Offset-Dependent Reflectivity: Theory and Practice
of AVO Analysis (Castagna and Backus (eds), 1993) and discussions of inversion meth-
ods in Global Optimization Methods in Geophysical Inversion (Sen and Stoffa, 1995).
We found especially useful the works of Yoram Rubin, including Applied Stochastic
Hydrogeology (Rubin, 2003).

We wish to thank Norsk Hydro, Statoil and Total for permission to publish many
of the field data illustrated in this book, and we acknowledge Norsk Hydro for
their generous support of Per Avseth while working on this book. Special thanks to
Aart-Jan van Wijngaarden, Harald Flesche, Susanne Lund Jensen, Erik Ødegaard,
Johannes Rykkje, and Jorunn Aune Tyssekvam at Norsk Hydro, and Tor Veggeland
at DONG, for contributions to this book. We also thank Jon Gjelberg, Tom Dreyer, Ivar
Sandø, Erik Holtar, Toril Dyreng, Ragnhild Ona, Hans Helle, and Torbjørn Fristad at
Norsk Hydro, for valuable feedback and discussions on the techniques and examples
shown in this book. We are happy to thank the faculty, students, industrial affiliates, and
friends of the Stanford Rock Physics and Borehole Geophysics (SRB) project for many
valuable comments and insights. We found particularly useful discussions with Jack
Dvorkin, Jef Caers, Biondo Biondi, Henning Omre, Mario Gutierrez, Ran Bachrach, Jo
Eidsvik, Nizar Chemingui, Ezequiel Gonzalez, and Youngseuk Keehm. Arild Jørstad
worked with us on one of the early statistical rock physics projects when we developed
methods of applying Monte Carlo simulation techniques in rock physics modeling and
statistical classification. And as always, we are indebted to Amos Nur whose work,
past and present, has helped to make the field of rock physics what it is today.

We hope you find this book useful.





1 Introduction to rock physics

Make your theory as simple as possible, but no simpler. Albert Einstein

1.1 Introduction

The sensitivity of seismic velocities to critical reservoir parameters, such as porosity,
lithofacies, pore fluid type, saturation, and pore pressure, has been recognized for many
years. However, the practical need to quantify seismic-to-rock-property transforms and
their uncertainties has become most critical over the past decade, with the enormous
improvement in seismic acquisition and processing and the need to interpret ampli-
tudes for hydrocarbon detection, reservoir characterization, and reservoir monitoring.
Discovering and understanding the seismic-to-reservoir relations has been the focus of
rock physics research.

One of our favorite examples of the need for rock physics is shown in Plate 1.1. It
is a seismic P–P reflectivity map over a submarine fan, or turbidite system. We can
begin to interpret the image without using much rock physics, because of the striking
and recognizable shape of the feature. A sedimentologist would tell us that the main
feeder channel (indicated by the high amplitude) on the left third of the image is likely
to be massive, clean, well-sorted sand – good reservoir rock. It is likely to be cutting
through shale, shown by the low amplitudes. So we might propose that high amplitudes
correspond to good sands, while the low amplitudes are shales.

Downflow in the lobe environment, however, the story changes. Well control tells
us that on the right side of the image, the low amplitudes correspond to both shale and
clean sand – the sands are transparent. In this part of the image the bright spots are the
poor, shale-rich sands. So, what is going on?

We now understand many of these results in terms of the interplay of sedimentologic
and diagenetic influences. The clean sands on the left (Plate 1.1) are very slightly
cemented, causing them to have higher acoustic impedance than the shales. The clean
sands on the right are uncemented, and therefore have virtually the same impedance as
the shales. However, on the right, there are more facies associated with lower energy

1



2 Introduction to rock physics

deposition, and these tend to be more poorly sorted and clay-rich. We know from
laboratory work and theory that poor sorting can also influence impedance. In the
turbidite system in Plate 1.1 both the clean, slightly cemented sand and the clean
uncemented sand are oil-saturated. These sands have essentially the same porosity and
composition, yet they have very different seismic signatures.

This example illustrates the need to incorporate rock physics principles into seismic
interpretation, and reservoir geophysics in general. Despite the excellent seismic
quality and well control, the correct interpretation required quantifying the connec-
tion between geology and seismic data. A purely correlational approach, for instance
using neural networks or geostatistics, would not have been so successful.

Our goal in this first chapter is to review some of the basic rock physics concepts
that are critical for reservoir geophysics. Although the discussion is not exhaustive, we
assess the strengths, weaknesses, and common pitfalls of some currently used methods,
and we make specific recommendations for seismic-to-rock-property transforms for
mapping of lithology, porosity, and fluids. Several of these rock physics methods are
further discussed and applied in Chapters 2, 3, and 5.

1.2 Velocity–porosity relations for mapping porosity and facies

Rock physics models that relate velocity and impedance to porosity and mineralogy
(e.g. shale content) form a critical part of seismic analysis for porosity and lithofacies.
In this section we illustrate how to recognize the appropriate velocity–porosity relation
when approaching a new reservoir geophysics problem.

Pitfall

One of the most serious and common mistakes that we have observed in industry
practice is the use of inappropriate velocity–porosity relations for seismic mapping
of porosity and lithofacies. The most common error is to use overly stiff velocity–
porosity relations, such as the classical empirical trends of Wyllie et al. (1956),
Raymer, Hunt, and Gardner (Raymer et al., 1980), Han (1986), or Raiga-Clemenceau
et al. (1988), the critical porosity model (Nur, 1992), or penny-shaped crack models.
“Sonic porosity,” derived from sonic logs using the Wyllie time average, is perhaps
the worst example. Implicit in these relations is that porosity is controlled by vari-
ations in diagenesis, which is not always the case. Hence, critical sedimentologic
variations are ignored.
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Solution

Rock physics diagnostic analysis of well logs and cores, coupled to the geologic
model, usually leads to more rational velocity–porosity relations. Certain aspects
are highlighted in this section.

The importance of velocity–porosity relations applies to other rock physics problems,
as well. Even seismic pore fluid analysis, which we discuss in the next section, depends
on the velocity–porosity relation. We can start to see this by looking at the Gassmann
(1951) relation, which can be represented in the form (Zimmerman, 1991; Mavko and
Mukerji, 1995; Mavko et al., 1998):

1

Krock
= 1

Kmineral
+ φ

K̃φ

where Krock, Kmineral, and K̃φ are the bulk moduli of the saturated rock, the mineral, and
the saturated pore space, respectively, and φ is the porosity. The pore space modulus is
approximately the sum of the dry pore modulus and the fluid modulus: K̃φ ≈ Kφ + Kfluid.
(We will define these more carefully later.) Hence, we can see that the sensitivity of
rock modulus (and velocity) to pore fluid changes depends directly on the ratio of pore
space stiffness to porosity, Kφ/φ. Rocks that are relatively stiff have a small seismic
sensitivity to pore fluids, and rocks that are soft have a large sensitivity to pore fluids.

We encounter the link between fluid substitution and velocity–porosity relations in
several common ways:
� When first analyzing well logs to derive a velocity–porosity relation, it is essential

first to map the data to a common fluid. Otherwise, the effects of the rock frame
and pore fluid become mixed.

� When interpreting 3D seismic data for hydrocarbon detection, the Gassmann ana-
lysis requires a good estimate of porosity, which also must be mapped from the
seismic data.

� When populating reservoir models with acoustic properties (VP and VS) for 4D
feasibility studies, we often need to map from porosity to velocity. Beginning the
exercise with the incorrect mapping quickly makes the fluid substitution analysis
wrong.

1.2.1 Background on elastic bounds

We begin with a discussion of upper and lower bounds on the elastic moduli of rocks.
The bounds provide a useful and elegant framework for velocity–porosity relations.

Many “effective-medium” models have been published, attempting to describe
theoretically the effective elastic moduli of rocks and sediments. (For a review, see
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Figure 1.2 Conceptual illustration of bounds for the effective elastic bulk modulus of a mixture of
two materials.

Mavko et al., 1998.) Some models approximate the rock as an elastic block of min-
eral perturbed by holes. These are often referred to as “inclusion models.” Others try
to describe the behavior of the separate elastic grains in contact. These are sometimes
called “granular-medium models” or “contact models.” Regardless of the approach, the
models generally need to specify three types of information: (1) the volume fractions
of the various constituents, (2) the elastic moduli of the various phases, and (3) the
geometric details of how the phases are arranged relative to each other.

In practice, the geometric details of the rock and sediment have never been adequately
incorporated into a theoretical model. Attempts always lead to approximations and
simplifications, some better than others.

When we specify only the volume fractions of the constituents and their elastic
moduli, without geometric details of their arrangement, then we can predict only the
upper and lower bounds on the moduli and velocities of the composite rock. How-
ever, the elastic bounds are extremely reliable and robust, and they suffer little from
the approximations that haunt most of the geometry-specific effective-medium models.
Furthermore, since well logs yield information on constituents and their volume frac-
tions, but relatively little about grain and pore microstructure, the bounds turn out to
be extremely valuable rock physics tools.

Figure 1.2 illustrates the concept for a simple mixture of two constituents. These
might be two different minerals or a mineral plus fluid (water, oil, or gas). At any given
volume fraction of constituents the effective modulus of the mixture will fall between
the bounds (somewhere along the vertical dashed line in the figure), but its precise value
depends on the geometric details. We use, for example, terms like “stiff pore shapes”
and “soft pore shapes” to describe the geometric variations. Stiffer grain or pore
shapes cause the value to be higher within the allowable range; softer grain or pore
shapes cause the value to be lower.
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The Voigt and Reuss bounds
The simplest, but not necessarily the best, bounds are the Voigt (1910) and Reuss (1929)
bounds. The Voigt upper bound on the effective elastic modulus, MV, of a mixture of
N material phases is

MV =
N∑

i = 1

fi Mi (1.1)

with

fi the volume fraction of the ith constituent
Mi the elastic modulus of the ith constituent

There is no way that nature can put together a mixture of constituents (i.e., a rock) that
is elastically stiffer than the simple arithmetic average of the constituent moduli given
by the Voigt bound. The Voigt bound is sometimes called the isostrain average, because
it gives the ratio of average stress to average strain when all constituents are assumed
to have the same strain.

The Reuss lower bound of the effective elastic modulus, MR, is

1

MR
=

N∑
i = 1

fi
Mi

(1.2)

There is no way that nature can put together a mixture of constituents that is elas-
tically softer than this harmonic average of moduli given by the Reuss bound. The
Reuss bound is sometimes called the isostress average, because it gives the ratio of
average stress to average strain when all constituents are assumed to have the same
stress.

Mathematically the M in the Voigt and Reuss formulas can represent any modulus:
the bulk modulus K, the shear modulus µ, Young’s modulus E, etc. However, it makes
most sense to compute the Voigt and Reuss averages of only the shear modulus, M = µ,
and the bulk modulus, M = K, and then compute the other moduli from these, using
the rules of isotropic linear elasticity.

Figure 1.3 shows schematically the bounds for elastic bulk and shear moduli, when
one of the constituents is a liquid or gas. In this case, the lower bound corresponds
to a suspension of the particles in the fluid, which is an excellent model for very soft
sediments at low effective stress. Note that the lower bound on shear modulus is zero,
as long as the volume fraction of fluid is nonzero.

The Reuss average describes exactly the effective moduli of a suspension of solid
grains in a fluid. This will turn out to be the basis for describing certain types of
clastic sediments. It also describes the moduli of “shattered” materials where solid
fragments are completely surrounded by the pore fluid.
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Figure 1.3 Conceptual illustration of upper and lower bounds to bulk and shear moduli for a
mixture of two materials, one of which is a fluid.

When all constituents are gases or liquids with zero shear modulus, then the Reuss
average gives the effective moduli of the mixture, exactly.

In contrast to the Reuss average which describes a number of real physical systems,
real isotropic mixtures can never be as stiff as the Voigt bound (except for the single-
phase end members).

Hashin–Shtrikman bounds
The best bounds for an isotropic elastic mixture, defined as giving the narrowest pos-
sible range of elastic moduli without specifying anything about the geometries of the
constituents, are the Hashin–Shtrikman bounds (Hashin and Shtrikman, 1963). For a
mixture of two constituents, the Hashin–Shtrikman bounds are given by

K HS± = K1 + f2

(K2 − K1)−1 + f1(K1 + 4µ1/3)−1

µHS± = µ1 + f2

(µ2 − µ1)−1 + 2 f1(K1 + 2µ1)/[5µ1(K1 + 4µ1/3)]

(1.3)

with

K1, K2 bulk moduli of individual phases
µ1, µ2 shear moduli of individual phases
f1, f2 volume fractions of individual phases

Upper and lower bounds are computed by interchanging which material is subscripted
1 and which is subscripted 2. Generally, the expressions give the upper bound when the
stiffest material is subscripted 1 in the expressions above, and the lower bound when
the softest material is subscripted 1.

The physical interpretation of a material whose bulk modulus would fall on one
of the Hashin–Shtrikman bounds is shown schematically in Figure 1.4. The space is
filled by an assembly of spheres of material 2, each surrounded by a spherical shell
of material 1. Each sphere and its shell have precisely the volume fractions f1 and f2.
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Figure 1.4 Physical interpretation of the Hashin–Shtrikman bounds for bulk modulus of a
two-phase material.

The upper bound is realized when the stiffer material forms the shell; the lower bound,
when it is in the core.

A more general form of the Hashin–Shtrikman bounds, which can be applied to more
than two phases (Berryman, 1995), can be written as

KHS+ = �(µmax), KHS− = �(µmin)

µHS+ = �(ζ(Kmax, µmax)), µHS− = �(ζ(Kmin, µmin))
(1.4)

where

�(z) =
〈

1

K(r) + 4z/3

〉−1

− 4

3
z

�(z) =
〈

1

µ(r) + z

〉−1

− z

ζ(K, µ) = µ

6

(
9K + 8µ

K + 2µ

)

The brackets 〈·〉 indicate an average over the medium, which is the same as an average
over the constituents, weighted by their volume fractions.

The separation between the upper and lower bounds (Voigt–Reuss or Hashin–
Shtrikman) depends on how elastically different the constituents are. As shown in
Figure 1.5, the bounds are often fairly similar when mixing solids, since the elastic
moduli of common minerals are usually within a factor of two of each other. Since
many effective-medium models (e.g., Biot, 1956; Gassmann, 1951; Kuster and Toksöz,
1974) assume a homogeneous mineral modulus, it is often useful (and adequate) to
represent a mixed mineralogy with an “average mineral” modulus, equal either to one
of the bounds computed for the mix of minerals or to their average (MHS+ + MHS−)/2.
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Figure 1.5 On the left, a mixture of two minerals. The upper and lower bounds are close when the
constituents are elastically similar. On the right, a mixture of mineral and water. The upper and
lower bounds are far apart when the constituents are elastically different.

On the other hand, when the constituents are quite different – such as minerals and pore
fluids – then the bounds become quite separated, and we lose some of the predictive
value.

Note that when µmin = 0, then KHS− is the same as the Reuss bound. In this case,
the Reuss or Hashin–Shtrikman lower bounds describe exactly the moduli of a
suspension of grains in a pore fluid. These also describe the moduli of a mixture of
fluids and/or gases.

1.2.2 Generalized velocity–porosity models for clastics

Brief “life story” of a clastic sediment
The bounds provide a framework for understanding the acoustic properties of sediments.
Figure 1.6 shows P-wave velocity versus porosity for a variety of water-saturated sedi-
ments, ranging from ocean-bottom suspensions to consolidated sandstones. The Voigt
and Reuss bounds, computed for mixtures of quartz and water, are shown for compar-
ison. (Strictly speaking, the bounds describe the allowable range for elastic moduli.
When the corresponding P- and S-wave velocities are derived from these moduli, it is
common to refer to them as the “upper and lower bounds on velocity.”)

Before deposition, sediments exist as particles suspended in water (or air). As such,
their acoustic properties must fall on the Reuss average of mineral and fluid. When the
sediments are first deposited on the water bottom, we expect their properties still to lie on
(or near) the Reuss average, as long as they are weak and unconsolidated. Their porosity
position along the Reuss average is determined by the geometry of the particle packing.
Clean, well-sorted sands will be deposited with porosities near 40%. Poorly sorted sands
will be deposited along the Reuss average at lower porosities. Chalks will be deposited at
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Figure 1.6 P-wave velocity versus porosity for a variety of water-saturated sediments, compared
with the Voigt–Reuss bounds. Data are from Yin (1992), Han (1986) and Hamilton (1956).

high initial porosities, 55–65%. We sometimes call this porosity of the newly deposited
sediment the critical porosity (Nur, 1992). Upon burial, the various processes that give
the sediment strength – effective stress, compaction, and cementing – must move the
sediments off the Reuss bound. We observe that with increasing diagenesis, the rock
properties fall along steep trajectories that extend upward from the Reuss bound at
critical porosity, toward the mineral end point at zero porosity. We will see below that
these diagenetic trends can be described once again using the bounds.

Han’s empirical relations
Figure 1.7 shows typical plots of seismic VP and VS vs. porosity for a large set of labo-
ratory ultrasonic data for water-saturated sandstones (Han, 1986). All of the data points
shown are at 40 MPa effective pressure. In both plots, we see the usual general trend of
decreasing velocity with increasing porosity. There is a great deal of scatter around the
trend, which we know from Han’s work is well correlated with the clay content. Han
described this velocity–porosity–clay behavior with the empirical relations:

VP = 5.59 − 6.93φ − 2.13C
VS = 3.52 − 4.91φ − 1.89C

(1.5)
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Figure 1.7 Velocity versus porosity for water-saturated sandstones at 40 MPa. Data are ultrasonic
measurements from Han (1986).

where the velocities are in km/s, φ is the porosity, and C is the clay volume fraction.
These relations can be rewritten slightly in the form

VP = (5.59 − 2.13C) − 6.93φ

VS = (3.52 − 1.89C) − 4.91φ
(1.6)

which can be thought of as a series of parallel velocity–porosity trends, whose zero-
porosity intercepts depend on the clay content. These contours of constant clay content
are illustrated in Figure 1.8, and are essentially the steep diagenetic trends mentioned
in Figure 1.6. Han’s clean (clay-free) line mimics the diagenetic trend for clean sands,
while Han’s more clay-rich contours mimic the diagenetic trends for dirtier sands.
Vernik and Nur (1992) and Vernik (1997) found similar velocity–porosity relations, and
were able to interpret the Han-type contours in terms of petrophysical classifications
of siliciclastics. Klimentos (1991) also obtained similar empirical relations between
velocity, porosity, clay content and permeability for sandstones.

As with any empirical relations, equations (1.5) and (1.6) are most meaningful for
the data from which they were derived. It is dangerous to extrapolate them to other
situations, although the concepts that porosity and clay have large impacts on P- and
S-wave velocities are quite general for clastic rocks.

When using relations like these, it is very important to consider the coupled effects
of porosity and clay. If two rocks have the same porosity, but different amounts of
clay, then chances are good that the high clay rock has lower velocity. But if porosity
decreases as clay volume increases, then the high clay rock might have a higher
velocity. (See also Section 2.2.3.)
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Figure 1.8 A subset of Han’s data from Figure 1.7, sorted by clay content. The empirical relations,
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slope, but with different clay contents.

Distinction between cementing and sorting trends
A number of workers (e.g., Dvorkin and Nur, 1996) have recognized that the slope of
the velocity–porosity trend (or impedance–porosity trend) in sandstones is highly vari-
able, and depends largely on the geologic process that is controlling porosity. The steep
velocity–porosity trends shown in Figures 1.7 and 1.8 for sandstones are representative
of porosity variations controlled by diagenesis, i.e. porosity reduction due to pressure
solution, compaction, and cementation. Hence, we often see steep velocity–porosity
trends when examining data spanning a great range of depths or ages. The classical
empirical trends of Wyllie et al. (1956), Raymer–Hunt–Gardner (Raymer et al., 1980),
Han (1986) and Raiga-Clemenceau et al. (1988), all show versions of the steep, diage-
netically controlled velocity–porosity trend.

On the other hand, porosity variations resulting from variations in sorting and clay
content tend to yield much flatter velocity–porosity trends. That is, porosity controlled
by sedimentation is generally expected to yield flatter trends, which we sometimes refer
to as depositional trends. Data sets from narrow depth ranges or individual reservoirs
often (though not always) show this behavior.

This distinction of diagenetic vs. depositional trends as a generalized velocity–
porosity model for clastics is illustrated schematically in Figure 1.9. We have found that
the diagenetic trends, which connect the newly deposited sediment on the Reuss bound
with the mineral point, can often be described well using an upper bound. In fact, we
sometimes refer to it as a modified upper bound, because we use it to describe a mixture
of the newly deposited sediment at critical porosity with additional mineral, instead of
describing a mixture of mineral and pore fluid. The modified upper Hashin–Shtrikman
bound approximating the diagenetic trend for clean sands is shown by the heavy black
curve in Figure 1.9. The thinner black curves below (and parallel to) the clean sand
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Figure 1.9 Generalized clastic model. Sediments are deposited along the suspension line. Clean,
well-sorted sands will have initial (critical) porosity of ∼0.4. Poorly sorted sediments will have a
smaller critical porosity. Burial, compaction and diagenesis move data off the suspension line.
Sediments of constant shaliness or sorting and variable age (or degree of diagenesis) fall along the
(black) cementing trends. Sediments of constant age but variable shaliness or sorting will fall along
the (gray) sorting trends.

line represent the diagenetic trends for more clay-rich sands. They are computed again
using the Hashin–Shtrikman upper bound, connecting the lower critical porosities for
more clay-rich sands with the elastically softer mineral moduli for quartz–clay mix-
tures. These parallel trends are essentially the same as Han’s empirical lines, shown in
Figure 1.8.

We observe empirically that the modified upper Hashin–Shtrikman bound describes
fairly well the variation of velocity with porosity during compaction and diagenesis of
sandstones. While it is difficult to derive from first principles, a heuristic argument for
the result is that diagenesis is the stiffest way to mix a young sediment with additional
mineral (i.e., the stiffest way to reduce porosity); an upper bound describes the stiffest
way to mix two constituents.

A slight improvement over the modified upper Hashin–Shtrikman bound as a diage-
netic trend for sands can be obtained by steepening the high-porosity end. An effective
way to do this is to append Dvorkin’s model (Dvorkin and Nur, 1996) for cement-
ing of grain contacts, as illustrated in Figure 1.10 (discussed more in Chapter 2). The
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Figure 1.10 Appending Dvorkin’s contact cement model at the high-porosity end of the modified
Hashin–Shtrikman bound improves the agreement with sands.

contact-cement model captures the rapid increase in elastic stiffness of a sand, without
much change in porosity as the first bit of cement is added. Very different processes
such as mechanical compaction and pressure solution can yield very similar trends
(J. M. Florez, personal communication, 2003).

The depositional or sorting trends can be described by a series of modified Hashin–
Shtrikman lower bounds (gray curves in Figure 1.9). The lowest gray curve is the
suspension line, indicating a depth of zero (i.e., at the depositional surface). The addi-
tional gray curves above the suspension line indicate diagenetically older and older
sediments. Each is a line of constant depth, but variable texture, sorting, and/or clay
content. (Avseth et al., 2000, also refer to these as constant cement lines.) Moving to
the right on the gray sorting curves corresponds to cleaner, better sorted sands, while
moving to the left corresponds to more clay-rich or more poorly sorted sands. Note that
as we move from the right to the left along these trends, we are simply crossing Han’s
contours from clean sands to clay-rich sands.

Figure 1.11 shows some laboratory data examples. The data from Han (1986), which
span a great range of depths and ages, show the steepest average trend, dominated by
diagenesis. Data from the Troll (Blangy, 1992), Oseberg, and two North Sea fields “B”
and “C” have flatter trends, dominated by sedimentation-controlled textural variations.
The data from the North Sea “A” field are from a narrow depth range, but in this
case the porosity is diagenetically controlled, related to varying amounts of chlorite,
and this gives a steep slope, close to Han’s. The second plot in Figure 1.11 shows
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another comparison of North Sea fields showing the difference between diagenetic
trends and depositional trends. In both cases, the data are from fairly narrow depth
ranges.

More detailed theory and applications of various rock physics models for character-
ization of sand-shale systems are presented in Chapter 2.

Porosity has an enormous impact on P- and S-wave velocities.
� Usually, an increase in porosity will result in a decrease of P- and S-wave velocities.

Often the correlation is good, allowing porosity to be estimated from impedance.
� For sandstones, clay causes scatter around the velocity–porosity trend, although

data grouped by nearly constant clay sometimes yield systematic and somewhat
parallel trends (Figure 1.8). In consolidated sandstones, clay tends to decrease
velocity and increase VP/VS ratio. In unconsolidated sands, clay sometimes slightly
stiffens the rock.

� Variations in pore shape also cause variable velocity–porosity trends. This is usually
modeled in terms of round vs. crack-like aspect ratio for pores. We now understand
that deposition-controlled textural variations, such as sorting, lead to specific,
similar variations in clastics. Increasing clay and poorer sorting act roughly in
the direction of smaller aspect ratios.

� Popular relations, like those of Han (1986), Wyllie et al. (1958), and Raymer et al.
(1980), describe steep velocity–porosity trends (as in Figure 1.6), which, when
correct, indicate conditions that are favorable for mapping porosity from velocity.
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These are only appropriate when porosity is controlled by diagenesis, often seen
over great depth ranges. These relations can be misleading for understanding lateral
variations of velocity within narrow depth ranges. They should certainly never be
used for fluid substitution analysis.

� We expect very shallow velocity–porosity trends when porosity varies texturally,
because of sorting and clay content. These trends, when appropriate, indicate
conditions where mapping porosity from velocity is difficult. However, these tex-
turally controlled rocks tend to be elastically softer and have a larger sensitivity
to pore fluids and pore pressure, and these characteristics are advantageous for 4D
studies.

1.3 Fluid substitution analysis

This section focuses on fluid substitution, which is the rock physics problem of under-
standing and predicting how seismic velocity and impedance depend on pore fluids.
At the heart of the fluid substitution problem are Gassmann’s (1951) relations, which
predict how the rock modulus changes with a change of pore fluids.

For the fluid substitution problem there are two fluid effects that must be considered:
the change in rock bulk density, and the change in rock compressibility. The com-
pressibility of a dry rock (reciprocal of the rock bulk modulus) can be expressed quite
generally as the sum of the mineral compressibility and an extra compressibility due
to the pore space:

1

Kdry
= 1

Kmineral
+ φ

Kφ

(1.7)

where φ is the porosity, Kdry is the dry rock bulk modulus, Kmineral is the mineral bulk
modulus, and Kφ is the pore space stiffness defined by:

1

Kφ

= 1

vpore

∂vpore

∂σ
(1.8)

Here, vpore is the pore volume, and σ is the increment of hydrostatic confining stress
from the passing wave. Poorly consolidated rocks, rocks with microcracks, and rocks
at low effective pressure are generally soft and compressible and have a small Kφ .
Stiff rocks that are well cemented, lacking microcracks, or at high effective pressure
have a large Kφ . In terms of the popular but idealized ellipsoidal crack models, low-
aspect-ratio cracks have small Kφ and rounder large-aspect-ratio pores have large Kφ .
In simple terms we can write approximately Kφ ≈ αKmineral where α is aspect ratio.
(This approximation is best at low porosity.)
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Similarly, the compressibility of a saturated rock can be expressed as

1

Ksat
= 1

Kmineral
+ φ

Kφ + Kfluid Kmineral/Kmineral − Kfluid
(1.9)

or approximately as

1

Ksat
≈ 1

Kmineral
+ φ

Kφ + Kfluid
(1.10)

where Kfluid is the pore-fluid bulk modulus. Comparing equations (1.7) and (1.10), we
can see that changing the pore fluid has the effect of changing the pore-space stiffness.
From equation (1.10) we see also the well-known result that a stiff rock, with large
pore-space stiffness Kφ , will have a small sensitivity to fluids, and a soft rock, with
small Kφ , will have a larger sensitivity to fluids.

Figure 1.12 shows a plot of normalized rock bulk modulus K/Kmineral versus poros-
ity (where K = Ksat or Kdry) computed for various values of normalized pore-space
stiffness Kφ/Kmineral. Since Kφ and Kfluid always appear added together (as in equation
(1.10)), then fluid substitution can be thought of as computing the change �(Kφ +
Kfluid) = �Kfluid and jumping the appropriate number of contours in the graph. For
the contour interval in Figure 1.12, the difference between a dry rock and a water-
saturated rock is three contours, anywhere in the plot. For the example shown, the
starting point A was one of Han’s (1986) dry sandstone data points, with effective dry
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rock bulk modulus Kdry/Kmineral = 0.44 and porosity φ = 0.20. To saturate, we move up
the amount �Kfluid/Kmineral = 0.06, or three contours. The water-saturated modulus can
be read off directly as Ksat/Kmineral = 0.52, point A′. The second example shown (points
B–B′) is for the same two pore fluids and the same porosity. However, the change in
rock stiffness during fluid substitution is much larger.

Pitfall

Seismic sensitivity to pore fluids is not uniquely related to porosity.

Solution

Seismic fluid sensitivity is determined by a combination of porosity and pore-space
stiffness. A softer rock will have a larger sensitivity to fluid substitution than a stiffer
rock at the same porosity. On Figure 1.12, we can see that regions where the contours
are far apart will have a large sensitivity to fluids, and regions where the contours are
close will have a small sensitivity. Gassmann’s relations simply and reliably describe
these effects.

Equations (1.7) and (1.9) together are equivalent to Gassmann’s (1951) relations. If
we algebraically eliminate Kφ from equations (1.7) and (1.9) we can write one of the
more familiar but less intuitive forms:

Ksat

Kmineral − Ksat
= Kdry

Kmineral − Kdry
+ Kfluid

φ(Kmineral − Kfluid)
(1.11)

and the companion result

µsat = µdry (1.12)

Gassmann’s equations (1.11) and (1.12) predict that for an isotropic rock, the rock bulk
modulus will change if the fluid changes, but the rock shear modulus will not.

These dry and saturated moduli, in turn, are related to P-wave velocity VP =√
(K + (4/3)µ)/ρ and S-wave velocity VS = √

µ/ρ, where ρ is the bulk density given
by

ρ = φρfluid + (1 − φ)ρmineral (1.13)

In equations (1.7)–(1.11), φ is normally interpreted as the total porosity, although in
shaly sands the proper choice of porosity is not clear. We sometimes find a better fit to
field observations when effective porosity is used instead. The uncertainty stems from
Gassmann’s assumption that the rock is monomineralic, in which case the porosity is
unambiguously all the space not occupied by mineral. Clay-rich sandstones actually
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violate the monomineralic assumption, so we end up forcing the Gassmann relations
to apply by adapting the porosity and/or the effective mineral properties. Should the
clay be considered part of the mineral frame? If so, does the bound water inside the
clay communicate sufficiently with the other free pore fluids to satisfy Gassmann’s
assumption of equilibrated pore-fluid pressure, or should the bound water be considered
part of the mineral frame? Alternatively, should the clay be considered part of the pore
fluid? If so, then the functional Gassmann porosity is actually larger than the total
porosity, but the pore fluid should be considered a muddy suspension containing clay
particles.

1.3.1 The Gassmann fluid substitution recipe

The most common scenario is to begin with an initial set of velocities and densities,
V (1)

P , V (1)
S , and ρ(1) corresponding to the rock with an initial set of fluids, which we call

“fluid 1.” These velocities often come from well logs, but might also be the result of
an inversion or theoretical model. Then fluid substitution is performed as follows:

Step 1: Extract the dynamic bulk and shear moduli from V (1)
P , V (1)

S , and ρ(1):

K (1) = ρ

((
V (1)

P

)2 − 4

3

(
V (1)

S

)2
)

µ(1) = ρ
(
V (1)

S

)2

Step 2: Apply Gassmann’s relation, equation (1.11), to transform the bulk modulus:

K (2)
sat

Kmineral − K (2)
sat

− K (2)
fluid

φ
(
Kmineral − K (2)

fluid

) = K (1)
sat

Kmineral − K (1)
sat

− K (1)
fluid

φ
(
Kmineral − K (1)

fluid

)
where K (1)

sat and K (2)
sat are the rock bulk moduli saturated with fluid 1 and fluid 2, and

K (1)
fluid and K (2)

fluid are the bulk moduli of the fluids themselves.

Step 3: Leave the shear modulus unchanged:

µ
(2)
sat = µ

(1)
sat

Step 4: Remember to correct the bulk density for the fluid change:

ρ(2) = ρ(1) + φ
(
ρ

(2)
fluid − ρ

(1)
fluid

)
Step 5: Reassemble the velocities:

V (2)
P =

√√√√(
K (2)

sat + 4

3
µ

(2)
sat

) /
ρ(2)

V (2)
S =

√
µ

(2)
sat

/
ρ(2)
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1.3.2 Pore fluid properties

When calculating fluid substitution, it is obviously critical to use appropriate fluid
properties. To our knowledge, the Batzle and Wang (1992) empirical formulas are the
state of the art. It is possible that some oil companies have internal proprietary data that
are alternatives.

One unresolved question is the effect of gas saturation of brine. There is disagreement
on how much this affects brine properties, and there is even disagreement on how much
gas can be dissolved in brine.

Another fuzzy question is how to model gas condensate reservoirs. These are not
mentioned specifically in the Batzle and Wang paper, although Batzle (personal com-
muncation) says that the empirical formulas should extend adequately to both the
gaseous and liquid phases in a condensate situation.

� The density and bulk modulus of most reservoir fluids increase as pore pressure
increases.

� The density and bulk modulus of most reservoir fluids decrease as temperature
increases.

� The Batzle–Wang formulas describe the empirical dependence of gas, oil, and
brine properties on temperature, pressure, and composition.

� The Batzle–Wang bulk moduli are the adiabatic moduli, which we believe are
appropriate for wave propagation.

� In contrast, standard PVT data are isothermal. Isothermal moduli can be ∼20%
too low for oil, and a factor of 2 too low for gas. For brine, the two do not differ
much.

1.3.3 Cautions and limitations

A gas-saturated rock is not a “dry rock”
The “dry rock” or “dry frame” moduli that appear in Gassmann’s relations and Biot’s
(1956) relations correspond to a rock containing an infinitely compressible pore fluid.
When the seismic wave squeezes on a “dry rock” the pore-filling material offers no
resistance. This is equivalent to what is sometimes called a “drained” experiment, in
which the pore fluid can easily escape the rock and similarly offers no resistance when
the rock is squeezed.

A gas is not infinitely compressible. For example, an ideal gas has isothermal bulk
modulus Kideal = Ppore, where Ppore is the gas pore pressure. Hence, an ideal gas at
a reservoir pressure of 300 bar is 300 times stiffer (less compressible) than the same
gas at atmospheric conditions. Conveniently, air at atmospheric conditions is suffi-
ciently compressible that an air-filled rock with a pore pressure of 1 bar is an excellent
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approximation to the “dry rock.” Hence, laboratory measurements of gas-saturated
rocks with Ppore = 1 bar can be treated as the dry rock properties, except for extremely
unconsolidated materials.

Pitfall

It is not correct simply to put gas-saturated rock properties in place of the “dry rock”
or “dry frame” moduli in the Gassmann and Biot equations.

Solution

Treat gas as just another fluid when computing fluid substitution.

Low frequencies
Gassmann’s relations are strictly valid only for low frequencies. They are derived
under the assumption that wave-induced pore pressures throughout the pore space have
time to equilibrate during a seismic period. The high-frequency wave-induced pressure
gradients between cracks and pores that characterize the “squirt mechanism” (Mavko
and Nur, 1975; O’Connell and Budiansky, 1977; Mavko and Jizba, 1991), for exam-
ple, violate the assumptions of Gassmann’s relations, and are the primary reason why
Gassmann’s relations usually do not work well for fluid effects in laboratory ultrasonic
velocities. The inhibited flow of pore fluids between micro- and macroporosity can also
violate Gassmann’s assumptions.

What frequencies are low enough? This is difficult to answer precisely. The critical
frequency is determined by the characteristic time for fluids to diffuse in and out of
cracks and grain boundaries. One rough estimate can be written as O’Connell and
Budiansky (1977) did:

fsquirt ≈ Kmineralα
3

η
(1.14)

where α is the crack aspect ratio and η is the fluid viscosity. The crack aspect ratio,
of course, is poorly known. Gassmann fluid substitution is expected to work well at
seismic frequencies significantly lower than fsquirt.

Jones (1983) compiled scant laboratory data that suggest fsquirt ≈ 104 Hz for water-
saturated sandstones. Obviously, slight changes in the rock microstructure can drasti-
cally change this. We do expect that the frequency should scale with viscosity as shown
in equation (1.14), so that higher viscosities will decrease fsquirt.

We believe that Gassmann’s relations are usually appropriate for 3D surface seismic
frequencies. Exceptions would include reservoirs with very heavy (high-viscosity) oils,
and rocks with tight microporosity.

Logs, at frequencies of 1–20 kHz, unfortunately fall right in the expected transi-
tion range. Gassmann’s relations sometimes work quite well at log frequencies, and
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sometimes not. Nevertheless, our recommendation is to use Gassmann’s relations at
logging and surface seismic frequencies unless there are specific reasons to the con-
trary. The recommended procedure for relating laboratory work to the field is to use dry
ultrasonic velocities and saturate them theoretically using the Gassmann relations.

Isotropic rocks
Gassmann’s relations are strictly valid only for isotropic rocks. Brown and Korringa
(1975) have published an anisotropic form, but even in laboratory experiments, there is
seldom a complete enough characterization of the anisotropy to apply the Brown and
Korringa relations.

Real rocks are almost always at least slightly anisotropic, making Gassmann’s rela-
tions inappropriate in the strictest sense. We usually apply fluid substitution analysis
to VP and VS measured in a single direction and ignore the anisotropy. This can some-
times lead to overprediction and at other times underprediction of the fluid effects (Sava
et al., 2000). Nevertheless, the best approach, given the limited data available in the
field, is to use Gassmann’s relations on measured VP and VS, even though the rocks are
anisotropic.

Single mineralogy
Gassmann’s relations, like many rock physics models, are derived assuming a homoge-
neous mineralogy, whose bulk modulus is Kmineral. The standard way to proceed when
we have a mixed mineralogy is to use an “average mineral.” A simple way to estimate
the bulk modulus of the average mineral is to compute upper and lower bounds of the
mixture of minerals, and take their average: Kmineral ≈ (KHS+ + KHS−)/2.

A common approach for adapting Gassmann’s relations to rocks with mixed mineral-
ogy is to estimate an “average” mineral. For example, we might estimate the mineral
bulk modulus as Kmineral ≈ (KHS+ + KHS−)/2, where KHS+ and KHS− are the Hashin–
Shtrikman upper and lower bounds on bulk modulus for the mineral mix. Another
approach is to simply ignore the mixed mineralogy and use the modulus of the
dominant mineral, for example Kmineral ≈ Kquartz for a sand or Kmineral ≈ Kcalcite for
a carbonate. One way to understand the impact of these assumptions is by looking
at Figure 1.12. In this figure, the Gassmann fluid sensitivity is proportional to the
contour spacing. When the rock modulus is low relative to the mineral modulus, the
rock is “soft” and the Gassmann relations predict a large sensitivity to pore-fluid
changes; when the rock modulus is high relative to the mineral modulus, the rock is
“stiff” and Gassmann predicts a small sensitivity to fluids. Hence, picking a mineral
modulus that is too stiff (i.e., ignoring soft clay) will make the rock look too soft,
and therefore predict a fluid sensitivity that is too large. Sengupta (2000) showed
that the sensitivity of the Gassmann prediction to uncertainty in mineral modulus is
small, except for low porosities.
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Other approaches to generalizing Gassmann’s relations to mixed mineralogy have
been explored theoretically. For example, Brown and Korringa (1975) generalized the
Gassmann problem to anisotropic rocks and to the case where the pore compressibility
and sample compressibility are unequal – a possible consequence of mixed mineralogy.
Berryman and Milton (1991) solved the problem of fluid substitution in a composite
consisting of two porous media, each with its own mineral and dry frame bulk moduli.
Mavko and Mukerji (1998b) presented a probabilistic formulation of Gassmann’s rela-
tions to account for distributions of porosity and dry bulk moduli, arising from natural
variability.

Mixed saturation
Gassmann’s relations were originally derived to describe the change in rock modulus
from one pure saturation to another – from dry to fully brine-saturated, from fully
brine-saturated to fully oil-saturated, etc. Domenico (1976) suggested that mixed gas–
oil–brine saturations can also be modeled with Gassmann’s relations, if the mixture of
phases is replaced by an effective fluid with bulk modulus K fluid and density ρfluid given
by

1

K fluid
= Sgas

Kgas
+ Soil

Koil
+ Sbr

Kbr
=

〈
1

Kfluid(x,y, z)

〉
(1.15)

ρfluid = Sgasρgas + Soilρoil + Sbrρbr = 〈ρfluid(x,y, z)〉 (1.16)

where Sgas,oil,br, Kgas,oil,br, and ρgas,oil,br are the saturations, bulk moduli, and densities
of the gas, oil, and brine phases. The operator 〈·〉 refers to a volume average and allows
for more compact expressions, where Kfluid(x, y, z) and ρfluid(x, y, z) are the spatially
varying pore-fluid modulus and density.

Substituting equation (1.15) into Gassmann’s relation is the procedure most widely
used today to model fluid effects on seismic velocity and impedance for low-frequency
field applications.

A problem with mixed fluid phases is that velocities depend not only on saturations
but also on the spatial distributions of the phases within the rock. Equation (1.15) is
applicable only if the gas, oil, and brine phases are mixed uniformly at a very small scale,
so that the different wave-induced increments of pore pressure in each phase have time
to diffuse and equilibrate during a seismic period. Equation (1.15) is the Reuss (1929)
average or “isostress” average, and it yields an appropriate equivalent fluid when all
pore phases have the same wave-induced pore pressure. A simple dimensional analysis
suggests that during a seismic period pore pressures can equilibrate over spatial scales
smaller than a critical length Lc ≈ √

κKfluid/ fη, where f is the seismic frequency, κ

is the permeability, and η and Kfluid are the viscosity and bulk modulus of the most
viscous fluid phase. We refer to this state of fine-scale, uniformly mixed fluids as
“uniform saturation.” Table 1.1 gives some estimates of the critical mixing scale Lc.
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Table 1.1 Critical diffusion length or patch size for
some values of permeability and seismic frequency

Frequency (Hz) Permeability (mD) Lc (m)

100 1000 0.3
100 0.1

10 1000 1.0
100 0.3

Permeabilities are in milliDarcy.

In contrast, saturations that are heterogeneous over scales larger than ∼Lc will have
wave-induced pore pressure gradients that cannot equilibrate during the seismic period,
and equation (1.15) will fail. We refer to this state as “patchy saturation.” Patchy
saturation can easily be caused by fingering of pore fluids and spatial variations in
wettability, permeability, shaliness, etc. The work of Sengupta (2000) suggests that
patchy saturation is most likely to occur when there is free gas in the system. Patchy
saturation leads to higher velocities and impedances than when the same fluids are
mixed at a fine scale. The rock modulus with patchy saturation can be approximated by
Gassmann’s relation, with the mixture of phases replaced by the Voigt average effective
fluid (Mavko and Mukerji, 1998):

K fluid = Sgas Kgas + Soil Koil + Sbr Kbr (1.17)

Equation 1.17 appears to be an upper bound, and data seldom fall on it, except at very
small gas saturations.

Figure 1.13 shows low-frequency P- and S-wave velocities versus water saturation for
Estaillades limestone, measured by Cadoret (1993), using the resonant bar technique,
near 1 kHz. The closed circles show data measured during increasing water saturation
via an imbibition process combined with pressurization and depressurization cycles
designed to desolve trapped air. The imbibition data can be accurately described by
replacing the air–water mix with the fine-scale mixing model, equation (1.15), and
putting the average fluid modulus into Gassmann’s equations.

The open circles (Figure 1.13) show data measured during drainage. At saturations
greater than 80%, the VP fall above the fine-scale uniform saturation line but below
the patchy upper bound, indicating a heterogeneous or somewhat patchy fluid distri-
bution. The VS data fall again on the uniform fluid line, as expected, since patchy
saturation is predicted to have no effect on VS (Mavko and Mukerji, 1998). Cadoret
(1993) used X-ray CAT (computerized axial tomography) scans to confirm that the
imbibition process did indeed create saturations uniformly distributed at a fine, sub-
millimeter scale, while the drainage process created saturation patches at a scale of
several centimeters.



24 Introduction to rock physics

1500

2000

2500

3000

0 20 40 60 80 100

Estaillades limestone (f=0.30) 

Drainage

ImbibitionVe
lo

ci
ty

 (m
/s

)

V S

VP

Water saturation 

patchy (upper bound) 

uniform 

(lower bound)

Voigt approximation 

Figure 1.13 Low-frequency data from Cadoret (1993). Closed circles show data during imbibition
and are in excellent agreement with the fine-scale effective fluid model (lower bound). Open circles
show data during drainage, indicating heterogeneous or patchy fluid distributions for saturation
greater than about 80%. The approximation (dashed line) using the Voigt average effective fluid
does a good job of estimating the exact patchy upper bound shown by the solid line.

Brie and others (1995) presented an empirical fluid mixing equation, which spans
the range of fine-scale to patchy mixing:

K fluid = (Kliquid − Kgas)(1 − Sgas)
e + Kgas (1.18)

where e is an empirical coefficient. When e = 1 equation (1.18) becomes the patchy
upper bound, equation (1.17); when e → ∞ equation (1.18) gives results resembling
those of the fine-scale lower bound, equation (1.15). Values of e ≈ 3 have been found
empirically to give a better description of laboratory and simulated patchy behavior
than the more extreme upper bound. In equation (1.18), Kliquid is the Reuss average mix
of the oil and water moduli.

1.4 Pressure effects on velocity

There are at least four ways that pore pressure changes influence seismic signatures:
� Reversible elastic effects on the rock frame
� Permanent porosity loss from compaction and diagenesis
� Retardation of diagenesis from overpressure
� Pore fluid changes caused by pore pressure
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Figure 1.14 Seismic P- and S-wave velocities vs. effective pressure in two carbonates.

1.4.1 Reversible elastic effects in the rock frame

Seismic velocities in reservoir rocks almost always increase with effective pressure.
Any bit of pore space tends to elastically soften a rock by weakening the structure of
the otherwise rigid mineral material. This decrease in elastic moduli usually results in a
decrease of the rock P- and S-wave velocities. Effective pressure (confining pressure –
pore pressure) acts to stiffen the rock frame by mechanically eliminating some of this
pore space – closing microcracks and stiffening grain contacts (Nur and Simmons,
1969; Nur, 1971; Sayers, 1988; Mavko et al., 1995). This most compliant, crack-like
part of the pore space, which can be manipulated with stress, accounts for many of the
seismic properties that are interesting to us: the sensitivity to pore pressure and stress,
the sensitivity to pore fluids and saturation, attenuation and dispersion.

Figure 1.14 shows examples of velocity vs. effective pressure measured on a lime-
stone and a dolomite. In each case the pore pressure was kept fixed and the confining
pressure was increased, resulting in frame stiffening which increased the velocities. In
consolidated rocks this type of behavior is relatively elastic and reversible up to effec-
tive pressures of 30–40 MPa; i.e., reducing the effective stress decreases the velocities,
just as increasing the effective stress increases the velocities (usually with only small
hysteresis).

Caution

In soft, poorly consolidated sediments significant compaction can occur (see next
section). This causes the velocity vs. effective pressure behavior to be inelastic and
irreversible, with very large hysteresis.

Laboratory experiments have indicated that the reversible pressure effects illustrated
in Figure 1.14 depend primarily on the difference between confining pressure and
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Figure 1.15 Seismic P- and S-wave velocities vs. pore pressure in two carbonates.

pore pressure. An increase of pore pressure tends approximately to cancel the effect of
confining pressure, pushing open the cracks and grain boundaries, and hence decreasing
the velocity. Figure 1.15 shows the data from Figure 1.14 replotted to illustrate how
increasing pore pressure decreases velocities. The same effective pressures are spanned
by varying pore pressure with confining pressure (Pconf) fixed.

A trivial, but critical, point is that the sensitivity of velocity or impedance to pres-
sure (the slopes of the curves in Figures 1.14 and 1.15) depends on what part of
the curve we are working on. At low effective stresses, when cracks are open and
grain boundaries are loose, there is large sensitivity to pressure; at high effective
pressures, when the rock is stiff, we expect much smaller sensitivity. Related to
this, there is a limit to the range of pressure change we can see. For the rocks in
Figures 1.14 and 1.15, there is a large change in velocity for a pore pressure drop of
200 bar (20 MPa). After that, the cracks are closed and the frame is stiffened, so addi-
tional pressure drops might be difficult to detect (except for bubble-point saturation
changes).

Numerous authors (Nur and Simmons, 1969; Nur, 1971; Mavko et al., 1995; Sayers,
1988) have shown that these reversible elastic stress and pore pressure effects can be
described using crack and grain contact models. Nevertheless, our ability to predict
the sensitivity to pressure from first principles is poor. The current state of the art
requires that we calibrate the pressure dependence of velocity with core measurements.
Furthermore, when calibrating to core measurements, it is very important to use dry
core data, to minimize many of the artifacts of high-frequency dispersion.

A convenient way to quantify the dependence, taken from the average of several
samples, is to normalize the velocities for each sample by the high-pressure value, as
shown for some clastics in Figure 1.16. This causes the curves to cluster at the high-
pressure point. Then we fit an average trend through the cloud, as shown. The velocity
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28 Introduction to rock physics

change between any two effective pressures Peff1 and Peff2 can be conveniently written
as:

VP(Peff2) = VP(Peff1)
1 − AP exp(Peff2/P0P)

1 − AP exp(Peff1/P0P)
;

VS(Peff2) = VS(Peff1)
1 − AS exp(Peff2/P0S)

1 − AS exp(Peff1/P0S)

(1.19)

where AP, AS, P0P, and P0S are empirical constants. We write separate equations for VP

and VS to emphasize that they can have different pressure sensitivities. For example, we
often observe in the laboratory that dry-rock VP/VS increases with effective pressure.

We know of no systematic relation between the parameters in a rock’s pressure
dependence, as in equation (1.19), and the rock type, age, or depth. Hence, site-
specific calibration is recommended.

1.4.2 Permanent porosity loss from compaction, crushing, and diagenesis

Effective stress, if large enough, or held long enough, will help to reduce porosity per-
manently and inelastically. In the first few tens of meters of burial at the ocean floor,
mechanical compaction (and possibly crushing) is the dominant mechanism of poros-
ity reduction. At greater depths, all sediments suffer porosity reduction via pressure
solution, which occurs at points of stress concentration. Stylolites are some of the most
dramatic demonstrations of stress-enhanced dissolution in carbonate rocks. Seismic
velocity varies inversely with porosity. Therefore, as stress leads to a permanent reduc-
tion of porosity, we generally expect a corresponding irreversible increase of velocity.

1.4.3 Retardation of diagenesis from overpressure

Earlier in this chapter, we discussed velocity–porosity relations. Some of these can be
understood in terms of porosity loss and rock stiffening with time and depth of burial.
A number of authors have discussed how anomalous overpressure development can
act to retard the normal porosity loss with depth. In other words, overpressure helps to
maintain porosity and keep velocity low. Hence, anomalously low velocities can be an
indicator of overpressure (Fertl et al., 1994; Kan and Sicking, 1994).

1.4.4 Pore fluid changes caused by pore pressure

Seismic velocities can depend strongly on the properties of the pore fluids. All pore
fluids tend to increase in density and bulk modulus with increasing pore pressure. The
pressure effect is largest for gases, somewhat less for oil, and smallest for brine.
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When calculating these fluid effects, it is obviously critical to use appropriate fluid
properties. To our knowledge, the Batzle and Wang (1992) empirical formulas represent
the best summary of published fluid data for use in seismic fluid substitution analysis.
It is possible that some oil companies have internal proprietary data that are equally
good alternatives.

Rock physics results regarding pore pressure
� The elastic frame effects are important for 4D seismic monitoring of man-made

changes in pore pressure during reservoir production.
� Numerous authors have shown that these reversible elastic stress and pore pressure

effects can be described using crack and grain contact models. Nevertheless, our
ability to predict the sensitivity to pressure from first principles is poor. The current
state of the art requires that we calibrate the pressure dependence of velocity with
core measurements.

� Since the pressure dependence that we seek results from microcracks, we must be
aware that at least part of the sensitivity of velocity to pressure that we observe in
the lab is the result of damage to the core. Therefore, we believe that laboratory mea-
surements should be interpreted as an upper bound on pressure sensitivity, compared
with what we might see in the field.

� Permanent pore collapse during production has been studied extensively in rock
mechanics, particularly to understand changes of reservoir pressure and permeability
during production in chalks. However, we are not aware of much work quantifying
the corresponding seismic velocity changes. These must be measured on cores for
the reservoirs of interest.

� Overpressure tends to lower seismic velocities by retarding normal porosity loss,
in the same sense as the reversible frame effects of pore pressure discussed above.
Nevertheless, these result from entirely different mechanisms and the two should not
be confused.

� A few authors claim to understand the relation between overpressure and porosity
from “first principles.” We believe that porosity–pressure relations can be developed
that have great predictive value, but the most reliable of these will be empirical.

� The effect of pore pressure on fluids is opposite to the effect of pore pressure on
the rock frame. Increased pore pressure tends to decrease rock velocity by softening
the elastic rock frame, but it tends to increase rock velocity by stiffening the pore
fluids. The net effect of whether velocity will increase or decrease will vary with each
situation.

Pitfall

The decrease in the P-wave velocity with increasing pore pressure has been com-
monly used for overpressure detection. However, velocity does not uniquely indicate
pore pressure, because it also depends, among other factors, on pore fluids, satura-
tion, porosity, mineralogy, and texture of rock.
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1.5 The special role of shear-wave information

This section focuses on the rock physics basis for use of shear-wave information in
reservoir characterization and monitoring. Adding shear-wave information to P-wave
information often allows us to better separate the seismic signatures of lithology, pore
fluid type, and pore pressure. This is the fundamental reason why, for example, AVO
and Elastic Impedance analysis have been successful for hydrocarbon detection and
reservoir characterization. Shear data also provide a strategy for distinguishing between
pressure and saturation changes in 4D seismic data. Shear data can provide the means
for obtaining images in gassy sediments where P-waves are attenuated. Shear-wave
splitting provides the most reliable seismic indicator of reservoir fractures.

One practical problem is that shear-wave information does not always help. Factors
such as rock stiffness, fluid compressibility and density, target depth, signal-to-noise,
acquisition and processing can limit the effectiveness of AVO. We will try to give some
insights into these problems.

Another issue is the choice of shear-related attributes. Rock physics people tend to
think in terms of the measured quantities VP, VS, and density, but one can derive equiv-
alent combinations in terms of P and S impedances, acoustic and elastic impedances,
the Lamé elastic constants λ and µ, R0, G (AVO), etc. While these are mathemat-
ically equivalent, different combinations are more natural for different field data
situations, and different combinations have different intrinsic sources of measurement
error.

1.5.1 The problem of nonuniqueness of rock physics effects on VP and VS

Figure 1.17 shows ultrasonic velocity data for the water-saturated sandstones (Han,
1986) that we discussed earlier. Recall the general trend of decreasing velocity with
increasing porosity. We know from Han’s work that the scatter around the trend is
well correlated with the clay content. More generally, increasing clay content or poorer
sorting tend to decrease the porosity with a small change in velocity. The result is
that within this data set, the combined variations in porosity and clay (lithology)
account for almost a factor of 2 variation in VP and more than a factor of 2 varia-
tion in VS. A single measurement of VP or VS would do little to constrain the rock
properties.

Figure 1.18 shows similar laboratory trends in velocity vs. porosity for a variety of
typical limestones reported by Anselmetti and Eberli (1997), with some model trends
superimposed. In this case, we can understand the scatter about the trends in terms of
pore microstructure. Somewhat like the sorting effect in sandstones, we can think of
this as a textural variation. In this case there is a factor of 3 variation in VP resulting
from variations in porosity and pore geometry.
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Figure 1.17 Velocity vs. porosity for water-saturated sandstones at 40 MPa. Data are ultrasonic
measurements from Han (1986).
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Figure 1.18 Comparison of carbonate data with classical, idealized pore-shape models. The aspect
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Figure 1.19 again shows velocities from the sandstones in Figure 1.17. The figure
on the left now includes a range of effective pressures: 5, 10, 20, 30, and 40 MPa. The
figure on the right adds velocities for the corresponding gas-saturated case. Now we
observe nearly a factor of 3 variation in P-wave velocity, resulting from a complicated
mix of porosity, clay, effective pressure, and saturation. Clearly, attempting to map any
one of these parameters from P-velocity alone would produce hopelessly nonunique
answers.
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Figure 1.19 Left: Sandstone velocity vs. porosity data from the same sandstone samples as in
Figure 1.17, but now with effective pressures at 5, 10, 20, 30, and 40 MPa, showing the additional
scatter or ambiguity caused when both pressure and porosity are variable. Right: Additional
variation due to gas vs. water saturation.

The point we emphasize is that effects on seismic VP and VS from pore-fluid satura-
tion, pore pressure, porosity, and shaliness can all be comparable in magnitude, and
intermixed. Each of these can be an important reservoir parameter, but separating
them is one of the fundamental sources of nonuniqueness in both 4D studies and
reservoir characterization. Quite simply, there are many more interesting unknown
rock and fluid properties than there are independent acoustic measurements. We will
discuss in the next section the fundamental result that combining VP and VS allows
some of the effects to be separated.

1.5.2 The rock physics magic of VP combined with VS

Figure 1.20 shows all of Han’s water-saturated data from Figure 1.19, plotted as VP

vs. VS. Blangy’s (1992) water-saturated Troll data and Yin’s (1992) water-saturated
unconsolidated sand data are also included. We see that all of the data now fall along a
remarkably simple and narrow trend, in spite of porosity ranging from 4% to 40%, clay
content ranging from 0% to 50%, and effective pressure ranging from 5 to 50 MPa.

We saw earlier that porosity tends to decrease velocity. We see here (Figure 1.20)
that porosity acts similarly enough on both VP and VS that the data stay tightly clustered
within the same trend. We also saw that clay tends to lower velocity. Again, clay acts
similarly enough on both VP and VS that the data stay tightly clustered within the same
trend – and the same for effective pressure. The only thing common to the data in
Figure 1.20 is that they are all water-saturated sands and sandstones.

Figure 1.21 shows the same data as in Figure 1.20, with gas-saturated rock velocity
data superimposed. The gas- and water-saturated data fall along two well-separated
trends.
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effective pressures 5–50 MPa, clay fraction 0–50%. Arrow shows direction of increasing porosity,
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Figure 1.21 Plot of VS vs. VP for water-saturated and gas-saturated sandstones, with porosities of
4–40%, effective pressures 5–50 MPa, clay fraction 0–50%. Arrow shows direction of increasing
porosity, clay, pore pressure. The trend of saturation is perpendicular to that for porosity, clay, pore
pressure.

The remarkable pattern in Figure 1.21 is at the heart of virtually all direct hydro-
carbon detection methods. In spite of the many competing parameters that influence
velocities, the nonfluid effects on VP and VS are similar. Variations in porosity, sha-
liness, and pore pressure move data up and down along the trends, while changes in
fluid saturation move data from one trend to another. (Large changes in lithology,
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such as to carbonates, also move data to separate trends.) For reservoir monitoring,
the key result is that changes in saturation and changes in pore pressure are nearly
perpendicular in the (VP, VS) plane. Similar separation of pressure and saturation
effects can be seen in other related attribute planes (R0, G) (Landrø, 2001), (ρVP,
ρVS), etc.

1.5.3 VP–VS relations

Relations between VP and VS are key to the determination of lithology from seismic
or sonic log data, as well as for direct seismic identification of pore fluids using, for
example, AVO analysis. Castagna et al. (1993) give an excellent review of the subject.
There is a wide, and sometimes confusing, variety of published VP– VS relations and VS

prediction techniques, which at first appear to be quite distinct. However, most reduce
to the same two simple steps:
(1) Establish empirical relations among VP, VS, and porosity φ for one reference pore

fluid – most often water-saturated or dry.
(2) Use Gassmann’s (1951) relations to map these empirical relations to other pore-fluid

states.
Although some of the effective-medium models predict both P and S velocities assuming
idealized pore geometries, the fact remains that the most reliable and most often used
VP–VS relations are empirical fits to laboratory and/or log data. The most useful role of
theoretical methods is in extending these empirical relations to different pore fluids or
measurement frequencies – hence the two steps listed above.

We summarize here a few of the popular VP–VS relations, compared with lab and log
data sets.

Limestones
Figure 1.22 shows laboratory ultrasonic VP–VS data for water-saturated limestones from
Pickett (1963), Milholland et al. (1980), and Castagna et al. (1993), as compiled by
Castagna et al. (1993). Superimposed, for comparison, are Pickett’s (1963) empirical
limestone relation, derived from laboratory core data:

VS = VP/1.9 (km/s)

and a least-squares polynomial fit to the data derived by Castagna et al. (1993):

VS = −0.05508V 2
P + 1.0168VP − 1.0305 (km/s)

At higher velocities, Pickett’s straight line fits the data better, although at lower
velocities (higher porosities), the data deviate from a straight line and trend toward the
water point, VP = 1.5 km/s, VS = 0. In fact, this limit is more accurately described as a
suspension of grains in water at the critical porosity (see discussion below), where the
grains lose contact and the shear velocity vanishes.
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Figure 1.22 Plot of VP vs. VS data for water-saturated limestones with two empirical trends
superimposed. Data compiled by Castagna et al. (1993).
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superimposed. Data compiled by Castagna et al. (1993).

Dolomite
Figure 1.23 shows laboratory VP–VS data for water-saturated dolomites from Castagna
et al. (1993). Superimposed, for comparison, are Pickett’s (1963) dolomite (laboratory)
relation:

VS = VP/1.8 (km/s)

and a least-squares linear fit (Castagna et al., 1993):

VS = 0.5832VP − 0.0777 (km/s)
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Figure 1.25 Plot of VP vs. VS data for water-saturated shales with three empirical trends
superimposed. Data compiled by Castagna et al. (1993).

For the data shown, the two relations are essentially equivalent. The data range is
too limited to speculate about behavior at much lower velocity (higher porosity).

Sandstones and shales
Figures 1.24 and 1.25 show laboratory VP–VS data for water-saturated sandstones
and shales from Castagna et al. (1985, 1993) and Thomsen (1986) as compiled by
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Castagna et al. (1993). Superimposed, for comparison, are a least-squares linear fit to
these data offered by Castagna et al. (1993):

VS = 0.8042VP − 0.8559 (km/s)

together with the famous “mudrock line” of Castagna et al. (1985), which was derived
from in situ data:

VS = 0.8621VP − 1.1724 (km/s)

and the empirical relation of Han (1986), based on laboratory ultrasonic data:

VS = 0.7936VP − 0.7868 (km/s)

Of these three relations, those by Han and by Castagna et al. are essentially the same
and give the best overall fit to the sandstones in Figure 1.24. The mudrock line predicts
systematically lower VS, because it is best suited for the most shaly samples, as seen
in Figure 1.25. Castagna et al. (1993) suggest that if the lithology is well known, then
one might fine-tune these relations to slightly lower VS/VP for high shale content, and
higher VS/VP in cleaner sands. When the lithology is not well constrained, then the
Han and Castagna et al. lines give a reasonable average.

Figure 1.26 compares laboratory ultrasonic data for a larger set of water-saturated
sands. The lowest-porosity samples (φ = 0.04–0.30) are from a set of consolidated shaly
Gulf Coast sandstones studied by Han (1986). The medium porosities (φ = 0.22–0.36)
are poorly consolidated North Sea samples studied by Blangy (1992). The very-high-
porosity samples (φ = 0.32–0.39) are unconsolidated clean Ottawa sand studied by Yin
(1992). The samples span clay volume fractions from 0 to 55%, porosities from 0.22 to
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Table 1.2 Regression coefficients for the
Greenberg–Castagna relations for VS prediction

Lithology ai2 ai1 ai0

Sandstone 0 0.80416 −0.85588
Limestone −0.05508 1.01677 −1.03049
Dolomite 0 0.58321 −0.07775
Shale 0 0.76969 −0.86735

0.39, and confining pressures from 0 to 40 MPa. In spite of this, there is a remarkably
systematic trend, represented well by Han’s relation:

VS = 0.79 VP − 0.79 (km/s)

Greenberg and Castagna (1992) have given empirical relations for estimating VS

from VP in multimineralic, brine-saturated rocks based on empirical, polynomial
VP–VS relations in pure monomineralic lithologies. For each single lithology, they
estimate VS = ai2 V2

P + ai1 VP + ai0, where VP is the water-saturated P-wave velocity,
and VS is the predicted water-saturated S-wave velocity. Both VP and VS are in km/s.
Their regression coefficients aij for the individual lithologies are listed in Table 1.2.

The shear-wave velocity in brine-saturated composite lithologies is approximated by
a simple average of the arithmetic and harmonic means of the constituent pure-lithology
shear velocities:

VS = 1

2




[
L∑

i=1

Xi

Ni∑
j=0

aijV
j
P

]
+


 L∑

i=1

Xi

(
Ni∑

j=0

aijV
j
P

)−1



−1



L∑
i=1

Xi = 1

where

L = number of pure monomineralic lithologic constituents
Xi = volume fractions of lithologic constituents
aij = empirical regression coefficients
Ni = order of polynomial for constituent i
V j

P = water-saturated P-wave velocity in the jth rock facies
VS = S-wave velocities (km/s) in composite brine-saturated, multimineralic rock

Figure 1.27 shows the relations for monomineralic lithologies. Note that the above
relation is for 100% brine-saturated rocks. To estimate VS from measured VP for other
fluid saturations, Gassmann’s equation has to be used in an iterative manner.
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Figure 1.27 Relations between VP and VS obtained by Greenberg and Castagna (1992) for
monomineralic lithologies.

1.5.4 Shear-related attributes

Our rock physics discussion has been generically stated in terms of P- and S-wave
velocities (VP, VS). However, various field acquisition schemes naturally suggest other
related attributes. We simply review a few definitions here.

The rock physics bottle-neck: only three key seismic parameters
Virtually all of rock physics applied to the seismic problem deals with just three fun-
damental pieces of information: P-wave velocity, S-wave velocity, and density. These
are the only three seismic parameters that are typically measured in the laboratory, and
these are generally the most we can ever hope for from field data (logs or seismic). An
exception might be attenuation (equivalent to velocity dispersion), which is not very
well understood or accurately measured. So this leaves us with at most 3 or 3.5 bits of
seismic information on which to base our interpretations.

Similarly, the most a seismologist can ever hope to learn about interval properties
from inverting seismic data is the same 3 or 3.5 bits of information at each location.
Any seismic inversion process amounts to building a 3D Earth model, with VP, VS,
and density assigned to every pixel. Synthetic seismograms are computed from the
model and compared with observed seismic wiggles. The VP, VS, and density values
are adjusted until a sufficiently good match is obtained. When the best match is poor,
we consider using finer grids, or blame the modeling algorithm, processing artifacts,
noise, etc. We never consider that more than VP, VS, and density are needed to specify
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Figure 1.28 Estimating the best-case, error-free rock properties can be useful. On the left, soft,
high-porosity rocks with good potential for detecting pressure and saturation changes. There is a lot
of overlap in VP only, but not in the 2D VP–VS plane. On the right, low-porosity stiff rocks offering
little chance of detecting fluid and pressure effects – the problem is close to hopeless, suggesting
that special shear acquisition would be a waste.

the rock properties, except for Q or attenuation, or velocity dispersion, or anisotropy.
In fact, the wave equation doesn’t require anything more. The main reason that many
more attributes are sometimes measured is to reveal the geometric arrangement of rock
types.

A related discussion is to show how to use calibration data to estimate quantitatively
the rock physics uncertainty when interpreting data. For any given reservoir, we believe
it is useful to quantify the “best-case” interpretation uncertainty that we would have
if we could measure VP, VS, and density error-free. In this case, the interpretation
accuracy will be limited by geologic parameters, such as mineralogy, pore stiffness, fluid
contrasts, shaliness, etc. This is the “intrinsic resolvability” of the reservoir parameters.
The value of quantifying the best-case uncertainty is that we will be able to identify
and avoid hopeless interpretation problems right from the start. These will be the field
problems where no amount of geophysical investment will allow accurate rock physics
interpretation (Figure 1.28).

For most other situations, we can estimate how the uncertainty worsens compared
with the best case, (1) when measurement errors are introduced, (2) when we drop from
three parameters to two (e.g. VP, VS), or (3) when using alternative pairs of attributes
(R0, G, or ρVP, ρVS, etc.). We believe that this kind of analysis can be helpful in the
decision-making process to find the most cost-effective use of shear-wave data.

Other shear-related attributes
The attribute pairs in the following short list are all algebraically derivable from VP,
VS, and density, ρ or their contrasts.
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Figure 1.29 Saturation and pressure discrimination are very similar in different attribute domains.
A. Plot of VP vs. VS sandstone data, showing the value of combining P- and S-wave data for
separating lithology, pore pressure, and saturation (same as Figure 1.21). B. Same rock samples as
in A, but plotted as P- and S-wave impedances. C. Same rock samples plotted as VP/VS vs. VS.

VP, VS P and S velocities
R0, G P–P AVO intercept and gradient
ρVP, ρVS P and S impedances
AI, EI acoustic impedance, elastic impedance (inverted from far offset stacks)
R0, GPS P–S AVO gradient, with normal incidence P–P reflectivity
λ, µ elastic Lamé coefficients

Figure 1.29 compares water- and gas-saturated data (same as in Figure 1.21) in three
different domains: (VP, VS), (ρVP, ρVS), and (VP/VS, VS). All three plots show a similar
interpretability. Gas- vs. water-saturated rocks are well separated in all three domains
when velocities are low (rocks are soft), and they are poorly separated when the veloc-
ities are high. Also, the trend for changes in pore pressure is essentially perpendicular
to the trend for a change in saturation, in all three domains.
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Information theory tells us that the intrinsic information in a data set does not change
under coordinate transformation. Hence, interpretation of data plotted in the (VP, VS)
domain should not be different than, for example, in the (VP/VS, VS) domain. On the
other hand, the problem is different in the (ρVP, ρVS) domain, because of the additional
parameter, density.

The more important practical consideration, which this theoretical statement ignores,
is the difference in measurement errors associated with the different domains. For
example, P–P AVO attributes (R0, G) have errors associated with noise, amplitude pick-
ing, phase changes with offset, velocity estimation, nonhyperbolic moveout, anisotropy,
fitting a sin2 θ function to the amplitudes, etc. Values of VP/VS determined from com-
paring interval times on P-wave and converted shear-wave stacks have errors associated
with incorrect moveout, migration difficulties, anisotropy, time-picking, correlation of
the P and S events, etc. We suspect that image quality, signal-to-noise, and measure-
ment uncertainty, in general, are the biggest practical differences among the different
types of shear data. A critical part of acquisition decision-making is forward modeling
to estimate these errors.

1.6 Rock physics “What ifs? ”: fluid and lithology substitution

One of the most powerful uses of rock physics is extrapolation. At a well – assuming
that data quality is good – we pretty much know “the answer.” Cuttings, cores, and logs
tell us about the lithology, porosity, permeability, and fluids. And, assuming that there
is a good tie between seismic and synthetics, we might even say that we understand the
seismic data at the well.

The problem is, often, knowing what happens as we move away from the well. As
we move laterally or vertically, what happens if the porosity changes, or if the lithology
changes, or if the fluids change? How would the well-log VP, VS, and density change?
How would the seismic data change?

This is the role of the rock physics “What ifs?” Using the various trends and transfor-
mations presented in this chapter, we can extrapolate to conditions that might exist away
from the well, and then compute synthetics to explore how the seismic signatures might
change. This is particularly useful when we wish to understand the seismic signatures
of fluids and facies that are not represented in the well. For statistical methods, such
as clustering analysis or neural networks, such extrapolations are critical for extending
the training data.

The best known example is, “What if the pore fluids change?” This is the fluid
substitution problem. In Plate 1.30 we show well logs penetrating a sandy North Sea
turbidite sequence. Along with it (top right) are the corresponding normal-incidence
synthetics, assuming a 50 Hz Ricker wavelet. The initial logs showed an average water
saturation of about 10% in the thick sand, with light oil of 35 API, GOR (Gas Oil
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Ratio) of 200 Sm3/Sm3. We apply a Gassmann fluid substitution, increasing the water
saturation to 90%, with brine salinity of 30 000 parts per million (ppm). The predicted
results are shown at the bottom of Plate 1.30. On the left, we see that replacing light
oil with water increases the density and P-wave velocity in the sand. The impedance
increases by about 8%. The synthetics show that the fluid substitution results in both
amplitude changes and traveltime pullup (earlier arrivals).

A very different rock physics “What if?” is what we call “lithology substitution.”
Plate 1.31 again shows the logs through the sandy turbidite sequence as in Plate 1.30.
Now we ask, “What if the porosity changes?” At the top of Plate 1.31, we predict
a porosity reduction of 3% associated with an increase of cementing. We model the
velocity change using the cementing trend, described by a modified upper Hashin–
Shtrikman bound, as in Figures 1.9 and 1.10. We see that decreasing the porosity
increases the density in the sand, and causes large increases in VP and impedance. The
synthetics show a large change in amplitude and traveltime.

At the bottom of Plate 1.31, we predict a porosity reduction of 3%, this time associated
with a deterioration of sorting. We model the velocity change using the sorting trend,
described by a lower Hashin–Shtrikman bound, as in Figures 1.9 and 1.10. We see
that decreasing the porosity increases the density in the sand, and causes much smaller
increases in VP and impedance.

Finally, Plate 1.32 shows what happens if the pore pressure changes. In this case,
the pore pressure declines by 5 MPa (effective pressure increasing from 10 MPa to
15 MPa). The result is virtually no effect on density, but fairly large increases in VP and
impedance.

1.7 All models are wrong . . . some are useful

Most rock physics models relevant to the scope of this book are aimed at describing
relations between measurable seismic parameters and rock-fluid properties. While it is
not our intention to review all models exhaustively, we find that many fall within three
general classes: theoretical, empirical, and heuristic.

1.7.1 Theoretical models

The theoretical models are primarily continuum mechanics approximations of the elas-
tic, viscoelastic, or poroelastic properties of rocks. Among the most famous are the
poroelastic models of Biot (1956), who was among the first to formulate the cou-
pled mechanical behavior of a porous rock embedded with a linear viscous fluid. The
Biot equations reduce to the famous Gassmann (1951) relations at zero frequency;
hence, we often refer to “Biot–Gassmann” fluid substitution. Biot (1962) generalized
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his formulation to include a viscoelastic frame, which was later pursued by Stoll and
Bryan (1970). The “squirt model” of Mavko and Nur (1975) and Mavko and Jizba
(1991) quantified a grain-scale fluid interaction, which contributed to the frame vis-
coelasticity. Dvorkin and Nur (1993) explicitly combined Biot and squirt mechanisms
in their “Bisq” model.

Elastic models tend to be (1) inclusion models, (2) contact models, (3) computational
models, (4) bounds, and (5) transformations.

(1) Inclusion models usually approximate the rock as an elastic solid containing
cavities (inclusions), representing the pore space. Because the inclusion cavities are
more compliant than solid mineral, they have the effect of reducing the overall elas-
tic stiffness of the rock in either an isotropic or anisotropic way. The vast majority
of inclusion models assume that the pore cavities are ellipsoidal or “penny-shaped”
(Eshelby, 1957; Walsh, 1965; Kuster and Toksöz, 1974; O’Connell and Budiansky,
1974, 1977; Cheng, 1978, 1993; Hudson, 1980, 1981, 1990; Crampin, 1984; Johansen
et al., 2002). Berryman (1980) generalized the self-consistent description so that both
the pores and grains are considered to be ellipsoidal “inclusions” in the composite.
Mavko and Nur (1978) and Mavko (1980) also considered inclusion cavities that were
non-ellipsoidal in shape. Schoenberg (1983) and Pyrak-Nolte et al. (1990a,b) have
considered inclusions in the form of infinite planes of slip or compliance, as models of
fractures.

Inclusion models have contributed tremendous insights as elastic analogs of rock
behavior. However, their limitation to idealized (and unrealistic) pore geometries has
always made comparing the models to actual pore microgeometry difficult. For example,
relating inclusion models to variations of rock texture resulting from different deposi-
tional or diagenetic processes is not feasible. Quite simply, if we observe a rock in thin
section, scanning electron microscope (SEM) image, or outcrop, we really do not have
a satisfactory way of choosing model parameters (such as inclusion density and aspect
ratio) to describe what we see. Workers often “invert” for the model parameters that
give a good fit to measured elastic properties, but the question always remains, “How
well do these parameters represent real rock textures?”

(2) Contact models approximate the rock as a collection of separate grains, whose
elastic properties are determined by the deformability and stiffness of their grain-to-
grain contacts. Most of these (Walton, 1987; Digby, 1981; Norris and Johnson, 1997;
Makse et al., 1999) are based on the Hertz–Mindlin (Mindlin, 1949) solution for the
elastic behavior of two elastic spheres in contact. The key parameters determining the
stiffness of the rock are the elastic moduli of the spherical grains and the area of grain
contact, which results from the deformability of the grains under pressure. Dvorkin
and Nur (1996) described the effect of adding small amounts of mineral cement at the
contacts of spherical grains.

As with the inclusion models, the spherical contact models have served as useful
elastic analogs of soft sediments, but they also suffer from their extremely idealized
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geometries. They are not easy to extend to realistic grain shapes, or distributions of
grain size. Furthermore, the most rigorous part of the contact models is the formal
description of a single grain-to-grain contact. To extrapolate this to a random packing
of spheres makes sweeping assumptions about the number of contacts per grain, and
the distribution of contact forces throughout the composite.

(3) Computational models are a fairly recent phenomenon. In these, the actual grain–
pore microgeometry is determined by careful thin-section or CT-scan imaging. This
geometry is represented by a grid, and the elastic, poroelastic, or viscoelastic behavior is
computed by “brute force,” using finite-element, finite-difference, or discrete-element
modeling. Clear advantages of these models are the freedom from geometric idealiza-
tions, and the ability to elastically quantify features observed in thin section. A second,
older class of computational contact models are the discrete-element models, which
attempt to simulate the simultaneous interactions of many free-body grains in a soft
sediment.

(4) Bounds, such as the Voigt–Reuss or Hashin–Shtrikman bounds presented in this
chapter are, in our opinion, the “silent heroes” of rock models. They are extremely
robust and relatively free of idealizations and approximations, other than representing
the rock as an elastic composite. Originally, bounds were treated only as describing
the limits of elastic behavior; some even considered them of only limited usefulness.
However, as shown in Chapters 1 and 2, they have turned out to be valuable “mixing
laws” that allow accurate interpolation of sorting and cementing trends, as well as being
the rigorously correct equations to describe suspensions and fluid mixtures.

(5) Transformations include models such as the Gassmann (1951) relations for
fluid substitution, which are relatively free of geometric assumptions. The Gassmann
relations take measured VP and VS at one fluid state and predict the VP and VS at
another fluid state. Berryman and Milton (1991) presented a geometry-independent
scheme to predict fluid substitution in a composite of two porous media having separate
mineral and dry-frame moduli. Mavko et al. (1995) derived a geometry-independent
transformation to take hydrostatic velocity vs. pressure data and predict stress-induced
anisotropy. Mavko and Jizba (1991) presented a transformation of measured dry velocity
vs. pressure to predict velocity vs. frequency in fluid-saturated rocks.

1.7.2 Empirical models

Empirical models do not require much explanation. The approach is generally to assume
some function form and then determine coefficients by calibrating a regression to
data. Some of the best known are Han’s (1986) regressions for velocity–porosity–clay
behavior in sandstones, the Greenberg–Castagna (1992) relations for VP–VS, and the
VP–density relations of Gardner et al. (1974). A particularly popular form of empirical
approach is to use neural networks as a way to determine nonlinear relations among
the various parameters.
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Empirical relations are sometimes disguised as theoretical. For example, the popular
model of Xu and White (1995) for VS prediction in shaly sands is based on the Kuster–
Toksöz ellipsoidal inclusion formulation. One unknown aspect ratio is assigned to
represent the compliant clay pore space, and a second unknown aspect ratio is assigned
to represent the stiffer sand pore space. These aspect ratios are determined empirically
by calibrating to training data. In other words, this is an empirical model, in which the
function form of the regression is taken from an elastic model.

It is useful to remember that all empirical relations involve this two-step process
of a modeling step to determine the functional form followed by a calibration step
to determine the empirical coefficients. We sometimes forget that the common linear
regression involves a very deliberate modeling step of deciding that there is a linear
relation between the two variables.

1.7.3 Heuristic models

Heuristic models are what we might call “pseudo-theoretical.” A heuristic model uses
intuitive, though nonrigorous, means to argue why various parameters should be related
in a certain way.

The best-known heuristic rock physics model is the Wyllie time average, relating
velocity to porosity, 1/V = φ/Vfluid + (1 − φ)/Vmineral. At face value, it looks like there
might be some physics involved. However, the time-average equation is equivalent to a
straight-ray, zero-wavelength approximation, neither of which makes any sense when
modeling wavelengths that are very long relative to grains and pores. We find that
the Wyllie equation is sometimes a useful heuristic description of clean, consolidated,
water-saturated rocks, but certainly not a theoretically justifiable one.

Other very useful heuristic models are the use of the Hashin–Shtrikman upper and
lower bounds to describe cementing and sorting trends, as discussed in Chapters 1
and 2. Certainly the Hashin–Shtrikman curves are rigorous bounds, for mixtures of
different phases. However, as we will discuss in Chapter 2, we often use the bounds as
interpolators to connect the mineral moduli at zero porosity, with moduli of well-sorted
end members at critical porosity. We give heuristic arguments justifying why an upper
bound equation might be expected to describe cementing, which is the stiffest way to
add mineral to a sand, and why a lower bound equation might be expected to describe
sorting. But we are not able to derive these from first principles.

1.7.4 Our hybrid approach

We have had considerable rock physics success using a hybrid of theoretical, empir-
ical, and heuristic models to describe clastic sediments. In this sense, we find our-
selves thinking more as engineers than physicists – what Amos Nur likes to call “dirty
science.”
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It started with Han’s empirical discovery (Chapter 1) that velocity–porosity in shaly
sands could be well described by a set of parallel contours of constant clay. Amos Nur
noted that each of these contours had high- and low-porosity intercepts that had a clear
physical interpretation: in the limit of zero porosity, any model should rigorously take on
the properties of pure mineral, while in the limit of high porosity (the critical porosity),
the rock should fall apart. When a rock is falling apart, it becomes a suspension, which
is rigorously modeled with a lower bound equation. Eventually Han’s contours were
replaced by modified upper bounds (Chapters 1 and 2), partly because they fit the data
better over a large range of porosities, and partly because we could heuristically defend
them. We came to understand that these modified upper bounds described the diagenetic
or cementation trend for sedimentary rocks.

We eventually found that a modified lower bound (Chapters 1 and 2) was an excellent
description of the sorting trend in velocity–porosity. Again, this was more of an empiri-
cal observation, aesthetically symmetric to the modified upper bound, but not rigorously
defendable. Jack Dvorkin introduced the friable sand model (Chapter 2), which uses a
theoretical elastic contact model to describe clean, well-sorted sands, combined with a
modified lower bound to interpolate these to lower porosity, poorly sorted sands.

In summary, the rock physics modeling approach presented throughout this book
is the one that we have found works well. We avoid over-modeling with too much
theory, frankly, because we have lost patience with model parameters that follow from
assuming spheres and ellipsoids, rather than from geologic processes. We have also
found it dangerous to become attached to meticulously derived theoretical models,
which can never approach the complexity of nature. At the same time, we like to honor
physical principles, because they make the models universal. As time goes on, it almost
seems that we throw away more and more equations, and replace them with clever use
of various bounds. Another important driver in our approach is our desire to discover,
understand, and quantify the elastic properties of geologic processes.

We hope that the following chapters will not only illustrate this modeling approach,
but also justify it.



2 Rock physics interpretation of texture,
lithology and compaction

How does it feel
To be without a home
Like a complete unknown
Like a rolling stone? Bob Dylan

2.1 Introduction

The main goal of conventional, qualitative seismic interpretation is to recognize and
map geologic elements and/or stratigraphic patterns from seismic reflection data. Often
hydrocarbon prospects are defined and drilled entirely on the basis of this qualita-
tive information. Today, however, quantitative seismic interpretation techniques have
become common tools for the oil industry in prospect evaluation and reservoir charac-
terization. Most of these techniques, which are discussed in Chapter 4, seek to extract
extra information about the subsurface rocks and their pore fluids from the reflection
amplitudes. The seismic reflections are physically explained by contrasts in elastic
properties, and rock physics models allow us to link seismic properties to geologic
properties. Hence, the application of rock physics models can guide and improve on
the qualitative interpretation. Figure 2.1 shows a schematic depiction of the relationship
between geology, rock physics properties and seismic response.

In Chapter 1 we summarized how seismic properties are controlled by a wide range
of different factors, including porosity, lithology, pore fluids and pressure. As of today,
the application of rock physics in seismic interpretation has mainly been on predic-
tion of porosity and discrimination of different fluid and pressure scenarios. Little
work has been done on quantitative prediction of geologic parameters from seismic
amplitudes, like sorting, cement volume, clay content, sand–shale ratio, and lithofa-
cies. These factors have often just been lumped into porosity, which is often calculated
from acoustic impedances derived from post-stack seismic inversion. In these cases, a
linear relationship between impedance and porosity is assumed. However, as empha-
sized in Chapter 1 and indicated in Figure 2.1, different rock types or lithologies can
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Figure 2.1 Conceptual illustration of the rock physics link between seismic data and geology. Rock
physics helps to explain reflection signatures by quantifying the elastic properties of rocks and
fluids.

have overlapping porosities but large differences in seismic velocities and impedances.
Furthermore, during fluid substitution going from an observed brine saturation scenario
to predicted hydrocarbon-saturated scenario, it is very common to assume the rock type
and porosity to be constant, neglecting the possibility that lithology can change from
the brine zone to the hydrocarbon zone. In this chapter, we link rock physics properties
to various geologic parameters in siliciclastic environments, including sorting, cement
volume, clay content, lithofacies, and compaction. We summarize important models,
focusing on grain-contact models for sands, shaly sands and shales. These models
allow us to perform lithology substitution, and solve important rock physics “What if ”
questions.

We also investigate how geologic trends in an area can be used to constrain rock
physics models. Geologic trends can be split into two types: compactional and depo-
sitional. If we can predict the expected change in seismic response as a function of
depositional environment or burial depth, we will increase our ability to predict hydro-
carbons, especially in areas with little or no well-log information. Understanding the
geologic constraints in an area of exploration reduces the range of expected variability
in rock properties and hence reduces the uncertainties in seismic reservoir prediction.
Figure 2.2 depicts this problem, where we have well-log control only in the shallow
interval on the shelf edge. Before extending the exploration into more deeply buried
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Figure 2.2 Rock physics properties change with depositional environment and burial depth. These
geologic trends must be taken into account during hydrocarbon prediction from seismic data.
Vertical line and ellipse depict the known area from well control in the shallow shelf edge. Arrows
indicate deeper and more distal waters where we would like to predict the changes in seismic
response.

zones, or to more distal deep-water environments, it is important to understand the rock
physics trends in the area.

In this chapter, we first look at the effect of rock microstructure on the seismic
properties of sands and shales, using well-log data from different wells in two North Sea
oil fields. We apply the technology of rock physics diagnostics (Dvorkin and Nur, 1996),
where we quantify various sedimentologic/diagenetic factors in terms of rock physics
properties. This technology is applied by adjusting an effective-medium theoretical
model curve to a trend in the velocity–porosity data, and then interpreting the rock
microstructure as that used in the model. By superimposing such model curves on
cross-plots in the velocity–porosity plane, we can sort (diagnose) data into clusters,
characteristic of various facies and pore fluids in the reservoir.

These clusters, which are defined by characteristic sedimentologic and rock physics
properties, are referred to as seismic lithofacies. Facies have a major control on reservoir
geometries and porosity distributions. By relating lithofacies to rock physics properties
one can improve the ability to use seismic amplitude information for interpretation
of depositional systems and characterization of reservoir heterogeneities within these
systems.

Next, we study the effect of burial depth on the seismic properties of sands and shales.
Seismic amplitude contrasts will change with depth, because the contrasts between
sands and shales are depth dependent. This is related to diagenesis and compaction,
where the compaction histories of sands and shales are markedly different. Establishing
local rock physics depth trends is important for constraining AVO classification when
the target depth is variable.

Finally, we present the concept of rock physics templates, where we constrain rock
physics models to local geologic parameters including texture, lithology and depth, and
show how these can help us in better discrimination of hydrocarbons from well-log and
seismic data.
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Why relate rock physics to geology?

� Seismic exploration is increasingly focusing on searching for subtle traps. There-
fore, seismic amplitude maps are becoming increasingly important in prospect
evaluation and reservoir delineation. As shown in Plate 1.1, the amplitude patterns
often reveal good insight into depositional patterns. However, a quantitative link
between the geologic parameters and the rock physics properties is needed to make
sure we understand the meaning of the seismic amplitudes.

� If we understand the link between geological parameters and rock physics prop-
erties, we can avoid certain ambiguities in seismic interpretation, including fluid–
lithology, sand–shale, and porosity–saturation ambiguities.

� The link between rock physics and various geologic parameters, including cement
volume, clay volume and degree of sorting, allows us to perform lithology substi-
tution from observed rock types at a given well location to rock types assumed to
be present nearby (cf. Chapter 1). Hence, we can do sensitivity analysis not only
of fluid types, but also on the quality of the reservoir during quantitative seismic
interpretation of a reservoir.

� During statistical classification of different rock types, lithology substitution allows
us to extend our training data set to include geologic scenarios not observed at any
well location (see Chapter 3 and Chapter 5).

2.2 The link between rock physics properties and sedimentary
microstructure: theory and models

If we wish to predict the seismic velocities of a rock, knowing only the porosity, the
mineralogic composition, and the elastic moduli of the mineral constituents, we can at
best predict the upper and lower bounds of seismic velocities (see Chapter 1). However,
if we know the geometric details of how the mineral grains and pores are arranged
relative to each other, we can predict more exact seismic properties. There are several
models that account for the microstructure and texture of rocks, and these in principle
allow us to go the other way: to predict the type of rock and microstructure from seismic
velocities. The rock physics diagnostic technique was introduced by Dvorkin and Nur
(1996) as a means to infer rock microstructure from velocity–porosity relations. This
diagnostic is conducted by adjusting an effective-medium theoretical model curve to a
trend in the data, assuming that the microstructure of the sediment matches that used
in the model.

Below we present a collection of models that describe the velocity–porosity–pressure
behavior of medium- to high-porosity sediments and rocks (low-porosity models are
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mentioned in Chapter 1). A very effective approach that we have found is to begin
by defining the elastic properties of the “end members.” At zero porosity, the rock
must have the properties of mineral. At the high-porosity limit, the elastic properties
are determined by elastic contact theory. Then, we interpolate between these two “end
members” using either upper or lower Hashin–Shtrikman bounds. The upper bound
explains the theoretical stiffest way to mix load-bearing grains and pore-filling material,
while the lower bound explains the theoretical softest way to mix these. Hence, we have
found that the upper bound is a good representation of contact cement, while the lower
bound nicely describes the effect of sorting. It is found that rocks with very little contact
cement (a few percent) are not well described by the Hashin–Shtrikman upper bound,
because there is a large stiffening effect during the very initial porosity reduction as
cement fills in the microcracks between the contacts. Then it is dangerous to interpolate
between the high-porosity and zero-porosity end members. We therefore include a high-
porosity contact-cement model that takes into account the initial cementation effect. In
summary, we consider the following rock physics models, each to be used for different
geologic scenarios:
� The friable- (unconsolidated) sand model. This describes the velocity–porosity

behavior versus sorting at a specific effective pressure. The velocity for the well-
sorted, high-porosity member (normally selected to be around 0.4) is determined by
contact theory, and intermediate (poorly sorted) porosities are “interpolated” using a
lower bound.

� The contact-cement model. This model describes the velocity–porosity behavior
versus cement volume at high porosities. The contact cement fills the crack-like
spaces near the grain contacts. This has the effect of very rapidly stiffening the rock
with very little change in porosity. This cement tends to eliminate further sensitivity
to effective pressure in the model. The high-porosity member is the critical porosity,
which can vary as a function of sorting. For practical purposes, we assume this
porosity to be equal or close to the well-sorted end member of the friable-sand model.
More poorly sorted cemented sandstones are then modeled using the constant-cement
model.

� The constant-cement model. This describes the velocity–porosity behavior versus
sorting at a specific cement volume, normally corresponding to a specific depth. The
high-porosity member is defined by first applying the contact-cement model and
calculating the velocity–porosity for a well-sorted sandstone with a given cement
volume. A lower bound interpolation between this well-sorted end member and zero
porosity will then describe more poorly sorted sandstones with the constant-cement
volume.

� The increasing-cement model (modified Hashin–Shtrikman upper bound). This
model describes the velocity–porosity behavior versus cement volume for low to
intermediate porosities. The high-porosity end member is determined by contact
theory. The first 2–3% cement should be modeled with the contact-cement model.
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Further increase in cement volume and decrease in porosity is described by an upper
bound interpolation between the high-porosity end member and the mineral point.
The theory and application of this model are shown in Chapter 1.

� The constant-clay model. This describes the velocity–porosity behavior for shales
or sands with a constant clay–quartz ratio. The same equations are used as for
the friable-sand model. However, the high-porosity end member will vary as a
function of clay content. The mineral end member is defined by effective min-
eral moduli of quartz and clay. A lower bound interpolates between the two end
members.

� Dvorkin–Gutierrez shaly sand model. This describes the velocity–porosity relation
versus clay content for shaly sands, assuming the clay is pore-filling. The high-
porosity end member is the same as for the friable-sand model, while the low-porosity
end member is when the original sand porosity is completely filled with clay. However,
this is not at zero porosity, since clay has intrinsic porosity.

� Dvorkin–Gutierrez sandy/silty shale model. This model describes the velocity–
porosity behavior versus clay content for sandy/silty shales. The high-porosity end
member is the pure shale, which can be calculated using the constant-clay model
with 100% clay. The low-porosity end member is the same as the low-porosity end
member for the Dvorkin–Gutierrez sandy shale model.

� Yin–Marion shaly sand model. This model explains the relationship between
velocity–porosity–clay in unconsolidated sands. It assumes the clay to be a part of the
pore fluid, hence there is no increase in shear stiffness with increasing clay content
for shaly sands. Gassmann theory is used to calculate velocity–porosity relations for
increasing clay content.

� Yin–Marion silty shale model. This model describes velocity–porosity behavior in
shales with dispersed silt particles. The high-porosity member is the pure shale, while
increasing silt content will reduce this porosity. The low-porosity end member will
be when quartz grains start to touch each other, and the sediment becomes a shaly
sand. Yin and Marion used the Reuss (lower) bound to interpolate between these end
members.

� Jizba’s cemented shaly sand model. Jizba’s model expands on the Yin–Marion
model and takes into account quartz cementation. The quartz cement volume is
estimated as a function of clay content. Empirical equations are used to calculate
velocity–porosity relations as a function of quartz volume and clay content.

� The laminated sand–shale model. This model calculates the effective velocity–
porosity trends in thin-laminated sand–shales using the absolute lower elastic bound,
which is the Reuss bound.

For each of these models we present elastic moduli and bulk density as a function
of porosity. For some of the models, we present the dry moduli. The corresponding
saturated elastic moduli are then calculated using Gassmann’s formulas (equations
(1.11) and (1.12)). However, for some of the models, the saturated elastic moduli
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are directly derived from the models. In any case, the P-wave and S-wave velocities
(VP and VS) are calculated using the following equations:

VP =
√

K + 4/3µ

ρ
(2.1)

and

VS =
√

µ

ρ
(2.2)

where K and µ are either the dry or the saturated bulk and shear moduli, and ρ is
corresponding dry or saturated bulk density.

Before we elaborate on each of these models, we want to emphasize that there exist
several alternative models that try to explain the relationship between velocity and
porosity in sedimentary rocks. A common approach, which differs from our use of
contact theory combined with upper and lower bounds, is to model the rock as a solid
with increasing numbers of pore inclusions. The shape of the inclusions, determined by
the so-called aspect ratio, determines the stiffness of the rock at a given porosity. For
instance, shaly sands will have softer pores and lower aspect ratios than clean sands with
equal porosity. The inclusion models have become popular among some rock physics
experts and practitioners, and are found to give good results in describing velocity–
porosity trends for sands, shaly sands and sandy shales. Some excellent references
on rock physics models using inclusion models include Berryman (1980 and 1995),
Hornby et al. (1994), Xu and White (1995), Sams and Andrea (2001), Johansen et al.
(2002), and Jakobsen et al. (2003).

2.2.1 Rock physics properties of clean sands

The friable-sand model
Dvorkin and Nur (1996) introduced two theoretical models for high-porosity sands. The
friable-sand model, or the “unconsolidated line,” describes how the velocity–porosity
relation changes as the sorting deteriorates. The “well-sorted” end member is repre-
sented as a well-sorted packing of similar grains whose elastic properties are determined
by the elasticity at the grain contacts. The “well-sorted” end member typically has a
critical porosity φc around 40%. The friable-sand model represents poorly sorted sands
as the “well-sorted” end member modified with additional smaller grains deposited in
the pore space. These additional grains deteriorate sorting, decrease the porosity, and
only slightly increase the stiffness of the rock (Figure 2.3).

The elastic moduli of the dry well-sorted end member at critical porosity are modeled
as an elastic sphere pack subject to confining pressure. These moduli are given by the
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Figure 2.3 Schematic depiction of the friable-sand model and the corresponding sedimentologic
variation. (Courtesy of Jack Dvorkin.)

Hertz–Mindlin theory (Mindlin, 1949) as follows:

KHM =
[

n2(1 − φc)2µ2

18π2(1 − ν)2
P

] 1
3

(2.3)

µHM = 5 − 4ν

5(2 − ν)

[
3n2(1 − φc)2µ2

2π2(1 − ν)2
P

] 1
3

(2.4)

where KHM and µHM are the dry rock bulk and shear moduli, respectively, at critical
porosity φc (i.e., depositional porosity); P is the effective pressure (i.e., the difference
between the overburden pressure and the pore pressure); µ and ν are the shear modulus
and Poisson’s ratio of the solid phase; and n is the coordination number (the average
number of contacts per grain).

The Poisson’s ratio can be expressed in terms of the bulk (K) and shear (µ) moduli
as follows:

ν = 3K − 2µ

2(3K + µ)
(2.5)

Effective pressure versus depth is obtained with the following formula:

P = g

Z∫
0

(ρb − ρfl) dz (2.6)

where g is the gravity constant, and ρb and ρfl are the bulk density and the fluid density,
respectively, at a given depth, Z.

The coordination number, n, depends on porosity, as shown by Murphy (1982). The
relationship between coordination number and porosity can be approximated by the
following empirical equation:

n = 20 − 34φ + 14φ2 (2.7)

Hence, for a porosity φ = 0.4, n = 8.6.
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Figure 2.4 Schematic depiction of the contact-cement model and the corresponding diagenetic
transformation. (Courtesy of Jack Dvorkin.)

The other end point in the friable-sand model is at zero porosity and has the bulk (K)
and shear (µ) moduli of the mineral. Moduli of the poorly sorted sands with porosities
between 0 and φc are “interpolated” between the mineral point and the well-sorted end
member using the lower Hashin–Shtrikman (1963) bound (Chapter 1). One heuristic
argument for this is that adding small grains passively in the pore space is the softest
way to add mineral to the well-sorted sands; the lower bound equation is always the
softest way to mix two phases. Another argument follows from Figure 2.3. Here we
envision the poorly sorted sand as a few large grains enveloped by soft “shells” of
fine-grained sand. This is the realization of a Hashin–Shtrikman bound, as discussed
in Figure 1.4, Chapter 1.

At porosity φ the concentration of the pure solid phase (added to the sphere pack to
decrease porosity) in the rock is 1 − φ/φc and that of the original sphere-pack phase is
φ/φc. Then the bulk (Kdry) and shear (µdry) moduli of the dry friable sand mixture are:

Kdry =
[

φ/φc

KHM + 4µHM/3
+ 1 − φ/φc

K + 4µHM/3

]−1

− 4

3
µHM (2.8)

µdry =
[

φ/φc

µHM + z
+ 1 − φ/φc

µ + z

]−1

− z (2.9)

where

z = µHM

6

(
9KHM + 8µHM

KHM + 2µHM

)

The saturated elastic moduli, Ksat and µsat, can now be calculated from Gassmann’s
equations (equations (1.11) and (1.12)).
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Density is given by:

ρb = φρfl + (1 − φ)ρmin (2.10)

where ρmin is the mineral density, which equals 2.65 g/cm3 for quartz, and ρfl is the
fluid density, normally varying from around 1.0 g/cm3 to 1.15 g/cm3 for saline brine
water. For dry rocks, the fluid density is zero.

The friable-sand model represents velocity–porosity–sorting variation within a sand
unit. For quartz-rich sands the sorting variation is due to smaller quartz grains filling
into the pore space between larger quartz grains. However, deteriorating sorting is
normally associated with increasing clay content, and if the clay content is relatively
large (>20%) we are talking about a shaly sandstone (see Section 2.2.3).

The contact-cement model
During burial, sands are likely to become cemented sandstones. This cement may
be diagenetic quartz, calcite, albite, or other minerals. Cementation has a more rigid
stiffening effect, because grain contacts are “glued” together. The contact-cement model
assumes that porosity reduces from the initial porosity of a sand pack because of the
uniform deposition of cement layers on the surface of the grains (Figure 2.4). The
contact cement dramatically increases the stiffness of the sand by reinforcing the grain
contacts. In particular, the initial cementation effect will cause a large velocity increase
with only a small decrease of porosity. The mathematical model is based on a rigorous
contact-problem solution by Dvorkin et al. (1994).

In this model, the effective bulk (Kdry) and shear (µdry) moduli of dry rock are:

Kdry = n(1 − φc)McSn/6 (2.11)

and

µdry = 3Kdry/5 + 3n(1 − φc)µcSτ /20 (2.12)

where φc is critical porosity; Ks and µs are the bulk and shear moduli of the grain
material, respectively; Kc and µc are the bulk and shear moduli of the cement material,
respectively; Mc = Kc + 4µc/3 is the compressional modulus of the cement; and n is the
coordination number, defined as average number of contacts per grain. The variables
Sn and Sτ are:

Sn = An(�n)α2 + Bn(�n)α + Cn(�n), An(�n) = −0.024153�−1.3646
n

Bn(�n) = 0.20405�−0.89008
n , Cn(�n) = 0.00024649�−1.9864

n

Sτ = Aτ (�τ, νs)α
2 + Bτ (�τ, νs)α + Cτ (�τ, νs)

Aτ (�τ, νs) = −10−2 × (
2.26ν2

s + 2.07νs + 2.3
)
�0.079ν2

s +0.1754νs−1.342
τ

Bτ (�τ, νs) = (
0.0573ν2

s + 0.0937νs + 0.202
)
�0.0274ν2

s +0.0529νs−0.8765
τ
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Cτ (�τ, νs) = 10−4 × (
9.654ν2

s + 4.945νs + 3.1
)
�0.01867ν2

s +0.4011νs−1.8186
τ

�n = 2µc(1 − νs)(1 − νc)/[πµs(1 − 2νc)], �τ = µc/(πµs)

α = [(2/3)(φc − φ)/(1 − φc)]0.5

νc = 0.5(Kc/µc − 2/3)/(Kc/µc + 1/3)

νs = 0.5(Ks/µs − 2/3)/(Ks/µs + 1/3)

A detailed explanation of these equations and their derivation are given in Dvorkin
and Nur (1996). Saturated elastic moduli are calculated using Gassmann’s equations
(equations (1.11) and (1.12)). Dry and saturated bulk densities are calculated using
equation (2.10).

The contact-cement model represents the initial stage of the “diagenetic trend” in
the data. It is found to be applicable to high-porosity sands. During more severe
cementation where the diagenetic cement is filling up the pore space, the contact
theory breaks down and one should use Jizba’s cement model (see Section 2.2.3)
or the modified Hashin–Shtrikman upper bound (also referred to as the “increasing-
cement model”; see Chapter 1).

The constant-cement model
The constant-cement model was introduced by Avseth et al. (2000), and assumes that
sands of varying sorting (and therefore varying porosity) all have the same amount
of contact cement. Porosity reduction is solely due to noncontact pore-filling material
(e.g., deteriorating sorting). Mathematically, this model is a combination of the contact-
cement model, where porosity reduces from the initial sand-pack porosity to porosity
φb because of contact-cement deposition, and the friable-sand model where porosity
reduces from φb because of the deposition of the solid phase away from the grain
contacts (Figure 2.5). Considering a given reservoir, this is the most likely scenario,
since the amount of cement is often related to depth, whereas sorting is related to
lateral variations in flow energy during sediment deposition. In these cases we can refer
to this model as a constant-depth model for clean sands. However, it is possible that
cement can have a local source, and therefore cause a considerable lateral variation in
velocity.

To use the constant-cement model, one must first adjust the well-sorted end-member
porosity, φb, that corresponds to the point shown as an open circle in Figure 2.5. The
dry-rock bulk and shear moduli at this porosity (Kb and µb, respectively) are calculated
from the contact-cement model. Equations for the dry-rock bulk (Kdry) and shear (µdry)
moduli at a smaller porosity φ are then interpolated with a lower bound:

Kdry =
[

φ/φb

Kb + (4/3)µb
+ 1 − φ/φb

K + (4/3)µb

]−1

− 4

3
µb (2.13)
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Figure 2.5 Schematic depiction of three effective-medium models for high-porosity sands in the
plane of elastic modulus versus porosity, and corresponding diagenetic transformations. The elastic
modulus may be compressional, bulk, or shear.

and

µdry =
[

φ/φb

µb + z
+ 1 − φ/φb

µ + z

]−1

− z (2.14)

where

z = µb

6

(
9Kb + 8µb

Kb + 2µb

)

The effect of pore fluid can be accounted for by using Gassmann’s (1951) equations.
Dry and saturated bulk densities are calculated using equation (2.10).

Notice that it is possible to arrive at the constant-cement line by first moving along the
friable-sand line and then adding contact cement to the rock (dashed line in Figure 2.5),
which is consistent with diagenesis following deposition.

For a reservoir at a given depth, where the sands are consolidated, the constant-
cement model represents the most likely scenario. The amount of cement is often
related to depth, whereas sorting is related to lateral variations in flow energy dur-
ing sediment deposition. Making this assumption, we can refer to this model as a
“constant-depth model” for clean sands. However, it is possible that cement can have
a local source and therefore result in a considerable lateral variation in velocity. Also,
if more poorly sorted sands means increased grain contacts, the amount of contact
cement will be somewhat correlated with degree of sorting.



60 Rock physics interpretation of texture, lithology and compaction

2.2.2 Rock physics properties of shales

In general, shales are mixtures of clay-sized particles, consisting primarily of clay
minerals, and silt-sized particles, which are mostly quartz or in some cases feldspar.
Krynine (1948) estimated the “average” shale to be about 50% silt, whereas Pettijohn
(1975) and others suggested that shales average about 65% silt. Mineralogically, shales
tend to be composed of about half clay minerals, while the other half is primarily quartz
plus a few percent feldspar and calcite.

The constant-clay model for sandy shales
In shales, silt grains are suspended in the clay matrix. Furthermore, shales are normally
not cemented. Therefore, shales with constant-clay content can be modeled by once
again using the unconsolidated (friable-sand) line. The constant-clay lines for shales
can be helpful for identification of different types of shales with respect to sand–shale
ratio and/or silt content (Figure 2.6).

Using equations (2.3)–(2.9) we obtain Kdry and µdry for the shales, and using
Gassmann’s equations (equations (1.11) and (1.12)) we can calculate the water-
saturated moduli. As input to equations (2.3)–(2.9), the critical porosity should be
set to be very high for shales (60–70%) owing to the “card-stack” arrangements of
clay platelets, and because the clay particles have internal porosity (i.e., bound water).
The higher the clay content, the higher the critical porosity will be. Pure marine shale
(with almost 100% clay) can have a depositional porosity of almost 90% (Rieke and
Chilingarian, 1974). The next input parameter to consider is the mineral moduli. The
mineral moduli of clays are highly variable and not very well known. In Table 2.1
we suggest several values that have been reported for clay minerals. However, if the
shales are silty, it is necessary to calculate effective mineral moduli. We assume that
silt grains are suspended in the clay matrix even at the zero-porosity end member. This
results in soft effective mineral moduli, which can be estimated using the Reuss average
equations (Chapter 1).

1

Kmixed
= 1 − C

Kqz
+ C

Kclay
(2.15)

and

1

µmixed
= 1 − C

µqz
+ C

µclay
(2.16)

where C is the fraction of clay in the solid phase. The silt fraction is normally assumed
to be composed of 100% quartz.

The densities for the constant-clay lines are calculated using equation (2.10). The
mineral density of clays can be assumed to be close or equal to the density of quartz.
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Table 2.1 Elastic moduli of different clay minerals

Clay mineral K (GPa) µ (GPa) Author

Smectite 17.5 7.5 Brevik (1996)
Illite 39.4 11.7 Katahara (1996)
Kaolinite 1.5 1.4 Woeber et al. (1963)

37.9 14.8 Katahara (1996)
12 6 Vanorio et al. (2003)

Chlorite 95.3 11.4 Katahara (1996)

Dvorkin–Gutierrez silty shale model
We can also model the velocity–porosity trend of decreasing clay content (i.e., increas-
ing silt content) for shale. The porosity of a shale as a function of clay content, assuming
silt grains to be dispersed in the clay matrix, can be expressed as:

φ = φshC (2.17)

where φsh is the porosity of a clean shale, and C is the volume fraction of clay. Dvorkin
and Gutierrez (2001, 2002) inserted equation (2.17) into the Hashin–Shtrikman lower
bound, in order to express the velocity–porosity trend of shale as a function of clay
content. The elastic moduli of the saturated silty shale are then expressed as:

Ksat =
[

C

Ksh + (4/3)µsh
+ 1 − C

Kqz + (4/3)µsh

]−1

− 4

3
µsh (2.18)

µsat =
[

C

µsh + Zsh
+ 1 − C

µqz + Zsh

]−1

− Zsh (2.19)

where

Zsh = µsh

6

(
9Ksh + 8µsh

Ksh + 2µsh

)

Here, Ksh and µsh are the saturated elastic moduli of pure shale, respectively. These
could be derived from well-log measurements of VP, VS and density in a pure shale zone.
By adding silt or sand particles, the clay content reduces, and the elastic moduli will
stiffen. The variables Kqz and µqz are the mineral moduli of the silt grains, commonly
assumed to consist of 100% quartz. The bulk density of shales with dispersed silt is
given by:

ρb = (1 − C)ρqz + C(1 − φsh)ρclay + Cφshρfl (2.20)

where ρqz is the density of the silt mineral (2.65 g/cm3 for quartz) and ρclay is the density
of the solid clay.
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Yin–Marion silty shale model
Marion et al. (1992) calculated the elastic moduli of shales with dispersed quartz grains,
using the Reuss bounds:

1

Kssh
= C

Ksh
+ 1 − C

Kqz
(2.21)

1

µssh
= C

µsh
+ 1 − C

µqz
(2.22)

where Kssh and µssh are the bulk and shear moduli of the silty shale, respectively; Ksh

and µsh are the elastic moduli of the pure shale (i.e., the moduli of the shale rock
including the saturated porosity); and Kqz and µqz are the elastic mineral moduli of the
silt grains. Densities are calculated using equation (2.20).

The models for silty shales presented here predict the isotropic velocities of shales.
Most shales, however, have significant anisotropy. Vernik and Liu (1997) performed
experimental measurements to quantify the anisotropy of shales, while Sams and
Andrea (2001) and Jakobsen et al. (2003) have provided models to calculate anisotropic
velocities of shales.

Pitfalls

� Shales can be difficult to model because they can be composed of various minerals
with highly variable elastic properties. It is often impossible to determine the exact
composition of shales because cores and thin sections are rarely obtained in shaly
intervals.

� The depositional porosity of shales is uncertain. In contrast to sands, shales do
not have a well-defined upper critical porosity. Very clay-rich shales can have
depositional porosities higher than 80%. However, abundance of silt will reduce
the depositional porosity dramatically.

� Clay minerals have intrinsic porosity and presence of bounding water in the mineral
structure. During compaction, this water will be released and the shale mineralogy
will change, as will the elastic properties of the shales.

� Shales are always anisotropic! The shale models presented here predict isotropic
velocities. The isotropic velocities are close to, but not equal to the vertical veloc-
ities of shales (e.g., Sams and Andrea, 2001).

2.2.3 Rock physics properties of shaly sands

The constant-clay model for shaly sands
By analogy with the friable-sand model, we use the modified Hashin–Shtrikman lower
bound to model constant-clay lines for shaly sands. These lines can be used to define
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Figure 2.6 Lines of VP versus porosity for shales with varying silt content. The lines are modeled
using modified lower bound Hashin–Shtrikman combined with Hertz–Mindlin theory.

subfacies of sands where the facies changes are associated with varying clay content.
Alternatively, we can use the more empirical VP–porosity–clay trends of Han (1986)
that are presented in Chapter 1, or the lithology lines of Vernik (1992).

In shaly sands, we can assume that the clay particles fill in the pores between the
sand grains. Assuming shaly sands to be uncemented, we can apply the friable-sand
model (i.e. Hertz–Mindlin plus modified lower bound Hashin–Shtrikman) to calculate
constant-clay content lines for friable shaly sands. Using equations (2.3)–(2.9) we
obtain Kdry and µdry for the mixed lithology, and using Gassmann’s equation we can
calculate the corresponding water-saturated moduli. As input to equations (2.3)–(2.9),
the critical porosity will be lower for shaly sands than for sands (10–40%), depending on
the clay content. The higher the clay content, the lower the critical porosity will be. The
critical porosity will never reach zero since the clay particles have internal porosity. The
next input parameters to consider are the mineral moduli. Since we are mixing quartz
and clay particles, we need to calculate effective mineral moduli, just like we did for
the silty shales. The mineral moduli represent the projections of the frame moduli,
given by the modified lower Hashin–Shtrikman bound, at zero porosity. One can either
use Voigt or Reuss averages (see Chapter 1) to calculate the mixed mineral’s elastic
moduli, or the average of these two. The moduli calculated from Voigt or Reuss should
be approximately the same for most mineral mixtures. However, if we have very soft
clays (e.g. smectite or illite) mixed with relatively stiff quartz, the difference between
the two methods can be significant. We assume that the effective mineral moduli are
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given by the Voigt average equations, representing the stiffest possible alternative of
the mixed quartz–clay mineral (cf. Chapter 1):

Kmixed = (1 − C)Kqz + C Kclay (2.23)

and

µmixed = (1 − C)µqz + Cµclay (2.24)

The densities along the constant-clay lines are calculated using equation (2.10).

Yin–Marion shaly sand model
As an alternative to constant-clay content lines, we can also model increasing clay
content trends in the velocity–porosity plane. Marion (1990) introduced a topological
model for sand–shale mixtures to predict the interdependence between velocity, poros-
ity, and clay content. For shaly sands, it can be assumed that clay particles are strictly
located within the sand pore space. Then, total porosity will decrease linearly with
increasing clay content, C (Figure 2.7):

φ = φs − C(1 − φsh), for C < φs (2.25)

where φsh is porosity of pure shale, and φs is the clean sand porosity. Equation (2.25)
holds until the sand porosity is completely filled up with clay, C = φs. The total porosity
at this point is the product of sand porosity and shale porosity,

φ = φsφsh, for C = φs (2.26)

When clay content exceeds the sand porosity, the addition of clay will cause the
sand grains to become disconnected, as we go from grain-supported to clay-supported
sediments (i.e. shales). The total porosity will then be described by equation (2.17).
The total porosity evolution of a sand–shale mixture, as a function of increasing clay
content, is summarized in Figure 2.7.

Marion applied Gassmann’s equations to calculate the velocities of shaly sand. As
we know from Chapter 1, the Gassmann theory is used for fluid substitution of a porous
rock. Similarily, we can use Gassmann to replace porous fluids with pore-filling clay
(treating clay like a liquid). When clay content is less than the sand porosity, clay
particles are assumed to be located within the pore space of the load-bearing sand. The
clay will stiffen the pore-filling material, without affecting the frame properties of
the sand. Therefore, increasing clay content will increase the stiffness and velocity of
the sand–shale mixture as the elastic moduli of the pore-filling material (fluid and clay)
increases. We can express the Gassmann’s equations accordingly:

Ksat

Kqz − Ksat
= Kdry

Kqz − Kdry
+ Kpf

φs(Kqz − Kpf)
(2.27)

µsat = µdry (2.28)
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Figure 2.7 Porosity and P-wave velocity versus clay content for shaly sands and sandy shales. Note
the porosity minimum and velocity maximum at the transition from grain-supported sediment to
clay-supported sediment. (Adapted from Marion, 1990.)

where Kdry and Kqz are the bulk moduli of the solid frame and the frame-forming
mineral, respectively, µdry is the shear modulus of the dry sand frame, and Kpf is the
effective bulk modulus of the pore-filling material (fluid and clay). Marion assumed
that like fluids, the pore-filling clay would not affect the shear modulus of the rock, so
equation (2.28) is theoretically valid for increasing clay content. This assumption was
supported by laboratory measurements (Yin, 1992).

Density of the sand–shale mixture where porosity is reduced by pore-filling clay can
be calculated using the following formula:

ρ = (1 − φs)ρqz + C(1 − φsh)ρclay + (φs − C(1 − φsh))ρfl (2.29)

where ρqz, ρclay, and ρfl are the density of sand grains (quartz), clay mineral and
saturating fluid, respectively.

The impact of increasing clay content in a sand–shale mixture on velocity–porosity
relationship is depicted in Figure 2.8. From the measured data we observe that when
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Figure 2.8 P-wave velocity versus porosity for unconsolidated sands and shales at constant
effective pressure (50 MPa). A clear V-shaped trend is observed with increasing clay content,
where velocity reaches a maximum and porosity a minimum when the clay content equals the sand
porosity. (Adapted from Marion et al., 1992.)

clay content increases, porosity decreases and velocity increases till a given point, the
critical clay content. This point represents the transition from shaly sands to sandy
shales. After this point, porosity increases with increasing clay content, and velocity
decreases.

The Dvorkin–Gutierrez shaly sand model
Instead of using Gassmann theory, we can use the lower bound Hashin–Shtrikman to
calculate velocity–porosity trends for sands with increasing clay content:

Ksat =
[

1 − C/φss

Kss + (4/3)µss
+ C/φss

Kcc + (4/3)µss

]−1

− 4

3
µss (2.30)

µsat =
[

1 − C/φss

µss + Zss
+ C/φss

µcc + Zss

]−1

− Zss (2.31)

Zss = µss

6

9Kss + 8µss

Kss + 2µss

where Kcc and µcc are Ksat and µsat as calculated from the sandy shale model at critical
clay content (using equations (2.18) and (2.19)), and Kss and µss are Ksat and µsat as
calculated from any clean sandstone model (see Section 2.2.1). Plate 2.9 shows an
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Figure 2.10 Example of VP versus porosity for a Norwegian Sea reservoir zone. There are obvious
transitions from clean sands to shaly sands at the base of the reservoir, and from shale via silty
shale to shaly sand at the top of the reservoir. The upper curve is the clean sand line (i.e.
constant-cement fraction line assuming 2% quartz cement). The lower curve is the shale line
(i.e. constant-clay line assuming 80% clay and 20% quartz).

example of using the Dvorkin–Gutierrez models for a complete sandy shale to shaly
sand sequence. The modeled lines show trends similar to those observed by Marion
et al. (1992) in Figure 2.8.

Figure 2.10 shows velocity–porosity data from a Norwegian Sea oil field, where
reservoir velocities are brine measurements. We clearly observe the shaly sand and
silty shale trend as a characteristic V-shape. The seismic response of this reservoir will
be very different at the top compared to the base. The cap-rock is a silty shale with
predominantly lower velocities than the reservoir, while the rock beneath the reservoir
is relatively stiff compared with the reservoir. Note that the reservoir unit itself spans
a large range in terms of sorting and increasing clay content. A clean sand model (i.e.,
the constant-cement line with 2% cement) and a shale model (i.e., the constant-clay
line with 80% clay) nicely describe the cleanest reservoir sands and the most clay-rich
shales, respectively.

Jizba’s cemented shaly sand model
Jizba (1991) established a simple model to predict velocity of cemented sands. First,
she simulated the cementation process (i.e., volume of quartz, Vq) as a function of time:

Vq(t + �t) = Vq(t) + Vq(�t) (2.32)
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The quartz that precipitates during the cementation process is proportional to the amount
of fluid that flows through the pore space within a given volume of rock (V). Using
Darcy’s law (see Jizba, 1991), the following expression is obtained:

Vq(�t) = Eq
�t

V

(
kA

v

dP

dx

)
(2.33)

where k is permeability, ν is fluid viscosity, A is the cross-sectional area of the rock
volume V under consideration, and dP/dx is the pressure gradient. Eq is the excess con-
centration of silica in solution that deposits, or the cementation efficiency. Permeability
is computed using the Kozeny–Carman equation.

In the next step, velocity as a function of increasing quartz cement is calcu-
lated. Regression coefficients of linear velocity–porosity–clay relations in consoli-
dated sands are used to describe the effect of quartz cementation on bulk and shear
frame moduli. The quartz cementation results in increased frame bulk and shear mod-
uli, as well as increased bulk density. Given initial values of dry elastic moduli for
unconsolidated sands, one can calculate the perturbed moduli due to the cementation
using:

Kfr(t + �t) = Kfr(t) + 73.5Vq(�t) (2.34)

µfr(t + �t) = µfr(t) + 87.5Vq(�t) (2.35)

ρ(t + �t) = ρ�t + Vq(�t)ρq (2.36)

where the coefficients in equations (2.34) and (2.35) (in GPa) represent the empirical
increase in stiffness of the dry frame with increase in quartz cement (in this case derived
from Han’s (1986) data set). The perturbed dry-frame moduli are used to compute
the saturated moduli, using either Gassmann theory or the bounding average method
(Marion and Nur, 1991). Note that for these empirical equations, the units of the elastic
moduli must be in GPa.

Using equations (2.34) to (2.36), Jizba obtained the relationship between P-wave
and S-wave velocities and clay content at various degrees of diagenesis. It was found
that velocity increases dramatically from the initial unconsolidated model at low clay
concentrations and increases less in shaly sandstones (Figure 2.11). The cleaner sand-
stones will be more extensively cemented, because the presence of clay inhibits quartz
cementation.

Plate 2.12 shows a velocity versus gamma-ray cross-plot with log data from offshore
Brazil. We clearly observe two trends: one is the increasing velocities with increasing
clay content. The other is a more dramatic increase in velocities for clean sands becom-
ing increasingly more cemented. The trends in this plot are in good agreement with
Jizba’s modeling results (Figure 2.11).
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Figure 2.11 Jizba’s modification of the Marion–Yin model as a function of quartz cement volume.
Curves represent increasing degree of diagenesis as indicated by the normalized product of excess
silica concentration and elapsed time, Eqt.

NB Jizba’s cement model yields linear increase in velocity with increasing cement
volume. This is a good assumption for medium- to low-porosity sands, when the
cement fills the macroporosity. However, the velocity increase is much larger during
initial cementing of sands than later in the cement process. The contact-cement
model represents a more realistic prediction of velocities during initial cementation
of sands. In contrast, this model fails for low-porosity sandstone (porosity <∼0.2),
since it is based on grain contact theory.

Jizba’s model, however, requires a lot of geologic input during the modeling,
including clay surface area and tortuosity, in addition to mineral moduli. An alterna-
tive model to predict velocity–porosity–clay trends in low-porosity sandstones is the
increasing-cement model (i.e., the upper Hashin–Shtrikman bound). Nevertheless,
Jizba’s modeling serves as a useful demonstration of how quartz cementation affects
the velocity–porosity–clay relationship of sandstones.

The laminated sand–shale model
In sandstone units clay particles can be distributed as laminas. The Marion–Yin model
assumes that clay particles are located as pore-filling material, and is therefore not valid
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for clay-laminated sands. Dvorkin and Gutierrez (2001, 2002) presented a model for
velocity–porosity–clay relationship in clay-laminated sands. Firstly, the total porosity
is given by the weighted average of the sand and shale porosities:

φ = Cφsh + (1 − C)φss (2.37)

where C is clay content, φsh is the porosity of the shale, and φss is the porosity of the
sand.

The bulk density is given by:

ρb = (1 − C)[(1 − φss)ρqz + φssρfl] + C[(1 − φsh)ρclay + φshρfl] (2.38)

where ρqz is the density of the sand mineral, ρclay is the density of the solid clay mineral,
and ρfl is the fluid density.

The effective properties of clay-laminated sands can be drastically reduced compared
with clean sand, owing to the weakening effect of clay laminas. The clay particles are
relatively soft compared with the sand grains, and given that the clay laminas are
arranged perpendicular to the direction of wave propagation (i.e., transverse isotropic
rock), the dry-frame elastic moduli will follow the lower bound Reuss average equations
(Dvorkin and Gutierrez, 2001, 2002):

1

Mmix
= 1 − C

Mqz
+ C

Mclay
(2.39)

and

1

µmix
= 1 − C

µqz
+ C

µclay
(2.40)

where M = K + (4/3)µ, and C is clay content and varies between 0 and 1.
An example of clay-laminated shaly sand is shown in Figure 2.13. The cross-plot of

P-wave velocity versus porosity shows well-log data from an offshore Angola turbidite
field. We observe a gradual spread from clean sands, via shaly sands, to shales. No
V-shape trends are seen, as we observed for shaly sands with pore-filling clay.

2.3 Example: rock physics interpretation of microstructure in North Sea
turbidite systems

We apply the rock physics models above to diagnose rocks of Paleocene age in the
North Sea. We use data from two wells, Well 1 and Well 2, located in two different oil
fields in the Southern Viking Graben, North Sea. Well 1 is located in the Glitne field,
while Well 2 is from the Grane field located about 100 km northeast of the Glitne field.
The Paleocene interval is comprised of mostly pelagic/hemipelagic shales and turbidite
sandstones, but volcanic tuff, marl, and limestone are also present. The Paleocene
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Figure 2.13 Example of velocity–porosity data from an offshore Angola turbidite field. There is a
gradual spread from clean sands via shaly sands to shales. In this case, we do not observe the
V-shape as seen in Figure 2.10, but a porosity-independent transition with increasing clay content.
Hence, we interpret the shaly sands to be laminated sand–shale units.

sands encountered in both the Glitne and Grane fields are referred to as the Heimdal
Formation, and hence represent the same stratigraphic level, yet separate turbidite
systems.

2.3.1 Diagnosing Paleocene turbidite sands

Diagnosing microstructure from well-log data
The gamma-ray and P-wave velocity log curves for the two wells under examination
are shown in Figure 2.14. In Well 1, we observe a gradual variation of clay content
between very clean sand and shale. Only a relatively thin (10 m) sand interval (gray bar
in Figure 2.14A) is identified as a practically clay-free reservoir sand. In Well 2, unlike
in Well 1, a thick oil-saturated sand interval (gray bar in Figure 2.14C) is marked by
extremely low and constant gamma-ray readings (about 55 GAPI) and high velocity
(about 3 km/s). This sand layer is surrounded by shale packages whose gamma-ray
readings and velocity strongly contrast with those of the pay zone sand. As mentioned,
the clean sand zones in both wells represent the same stratigraphic unit, although located
at different depths and in separate oil fields.

The velocity difference between the pay zones in the wells under examination is
emphasized in Figure 2.15, where the P-wave velocity is plotted versus porosity.
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Figure 2.14 Gamma-ray (GR) and P-wave velocity curves for Wells 1 and 2. The pay zones are
marked by gray vertical bars.
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Figure 2.15 P-wave velocity versus porosity for the pay zones in Wells 1 and 2, with model curves
superimposed. Porosity is calculated from bulk density.

In the same porosity range, with similar gamma-ray count, and close oil saturation,
the velocity in Well 2 exceeds the velocity in Well 1 by about 500 m/s.

In order to understand the reason behind the observed velocity difference in the
two wells, we superimpose the model lines on the velocity–porosity cross-plot in
Figure 2.15. The three curves come from the contact-cement, constant-cement, and
friable-sand models. The solid is assumed to be pure quartz; the porosity of the initial
sand pack is 39%, and the initial-cement porosity φb is 37% (the latter corresponds to
contact cement occupying about 2% of the pore space of the initial sand pack).
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Well 2 Cemented

0.25 mm

Well 1 Uncemented

0.25 mm

Figure 2.16 Thin sections of two selected samples from the reservoir zones of Well 1 (left), taken
at 2154.0 m, and Well 2 (right), taken at 1800.25 m.

The rock diagnostic shown in Figure 2.15 implies that the sands in Well 2 have small
initial contact cementation. The porosity decrease from the initial-cement porosity is
likely to be due to deteriorating sorting (smaller grains fall in the pore space between
larger grains and have a large effect on the porosity). The pay zone sands in Well 1
appear to lack any contact cementation, with porosity reducing from the initial sand-
pack porosity because of deteriorating sorting.

Confirming the sandstone diagnostics from thin-section and SEM analysis

Quartz cementation
Thin sections of samples from both reservoir zones are shown in Figure 2.16. The
porosity of both samples is about 35%, and they are predominantly composed of quartz.
No contact cementation is apparent in either of the images. The Well 1 image (on the
left), unlike the image from Well 2 (on the right), shows clay coating (black) around
quartz grains.

The presence of contact cement in Well 2 reveals itself in scanning electronic
microscope (SEM) image in Figure 2.17. Not detectable in the back-scatter light,
it shows as a dark rim around a light grain in cathodoluminescent light. Energy
dispersive spectroscopy (EDS) analysis, and X-ray analysis, confirm that both the
grain and cement are pure quartz (Figure 2.18). The polygonal crystal shapes in
the upper left corner in Figure 2.17 are also typical for overgrowth cementation.
These shapes are observed throughout the reservoir zone in Well 2 (Figure 2.19).
No cement rims or polygonal crystal shapes have been found in the sand interval from
Well 1.

EDS analysis of the clay coating (Figure 2.20) shows the presence of pyrite (FeS)
which is commonly associated with organic matter in sedimentary rocks (Boggs, 1987).
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SEM cathodoluminescent image: Well 2

0.1 mm0.1 mm

SEM back-scatter  image: Well 2

Figure 2.17 SEM images of a Well 2 sample in back-scatter light (left) and cathodoluminescent
light (right).
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Figure 2.18 EDS spectrogram of cement rim and grain observed in the SEM image in Figure 2.17,
confirming that both the grain and the cement are quartz, SiO2. The carbon peak (C) is from the
preparation of the sample.

The high Si peak is related to interference between coating and the quartz grain. The
peaks of Al, Si, and K may reflect remnants of dissolved K-feldspar, or illitized kaolinite.
We also identify mineral signatures typical for mixed smectite–illite (Al, Si, and K, with
traces of Mg and Cl). The clay and organic matter that coat the sand grains may explain
why the sands in Well 1 are not cemented, as clay coating tends to inhibit quartz
cementation.

Thus, the thin-section analysis confirms the result of our mathematical rock diagnos-
tic. Consistent with this conclusion is also the fact that the cores extracted from Well 1
appeared as piles of loose sand, while those from Well 2 supported external stress. This
structural integrity of the samples from Well 2 is apparently due to the binding effect
of contact quartz cement.
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Figure 2.19 A thin section (left) and an SEM image (right) of grains with crystal cement shapes
from different depths (1800.25 m and 1818.0 m, respectively) in the reservoir zone in Well 2.
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Figure 2.20 EDS spectrogram of clay coating observed in thin-section image in Figure 2.16
(Well 1), showing the presence of pyrite (FeS), indicative of organic matter. The aluminum (Al),
potassium (K), and magnesium (Mg), together with silicon (Si) and chlorine (Cl), are indicative of
mixed smectite–illite clays and/or illitized kaolinite.

Sorting variation
According to the diagnostics, the clean sands in Figure 2.15 have decreasing porosity
with deteriorating sorting. We did thin-section analysis throughout a sand interval rep-
resenting the same reservoir sands as in Well 2, but in a different well where an extensive
coverage of thin sections was available. Figure 2.21 shows VP and density-porosity in
Well 3. We observe almost mirror-shaped patterns in the VP and density-porosity logs.
Thin-section analysis shows that clay and cement content is consistently close to zero.
Hence, the porosity and velocity changes in this sand unit should be attributed to rock
texture and grain-size variation (i.e., sorting). We carried out quantitative grain-size
analysis of 12 thin sections, and Figure 2.22 shows the histograms of mean grain diam-
eter within four of the thin sections analyzed. We observe a marked change in the char-
acter. The two upper histograms (at 1785.1 and 1790.1 m) show a much smaller spread
in grain size than the two lower histograms, where much larger grains are present. The
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Figure 2.21 P-wave velocity and density-porosity versus depth. Note how the porosity trend is
almost a perfect mirror-image of the velocity trend. Star symbols (*) represent helium porosities at
the locations where thin sections are analyzed.
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Figure 2.22 Histograms of grain-size distribution from different depth locations throughout the
sand unit.
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Figure 2.23 Thin-section images taken at depths 1785.1 m (upper left), 1790.1 m (upper right),
1815.1 m (lower left) and 1820.1 m (lower right).

corresponding thin sections are shown in Figure 2.23; we can see that the two upper
pictures have a more evenly sized grain population, whereas the two lower pictures
show larger variance in grain size, and indeed some larger grains. Furthermore, we
observe that the porosity is lower and the grains more closely packed in the two lower
pictures. Thus thin-section analysis confirms that the degree of sorting varies within
the studied sand interval.

The grain-size measurements are conducted using an image analysis computer pro-
gram. The next step is to study the relationship between derived sorting parameters
from the quantitative thin-section analysis and rock physics properties from well-
log (sonic velocities and density-porosities) and core measurements (helium porosi-
ties). Sorting is difficult to quantify. However, a reasonable parameter of sorting (S)
is defined by the standard deviation of grain size (σ ) normalized to the mean grain
size (M):

S = σ/M (2.41)

When this value is relatively large, the sands are relatively poorly sorted; when
it is low the sands are relatively well sorted. Figure 2.24 shows how sorting affects
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Figure 2.24 There is a very good correlation between velocity and porosity within the sand unit at
the depths where thin sections have been studied (upper left). The derived sorting factor shows a
very good correlation to VP (upper right) and porosity (lower).

velocity–porosity relations in the studied sand unit. There is a nice correlation between
VP and density-porosity at the depth locations where the thin sections have been taken
(upper left). Next, we observe a nice correlation between VP and sorting (S), where
velocity linearly increases when the sands become more poorly sorted. Hence, sorting
is also nicely correlated to density-porosity (lower left), and we observe a marked
decrease in porosity as the sands become more poorly sorted. Helium porosities versus
sorting show the same trend.

Thus, the thin-section analysis confirms our hypothesis that the porosity decrease in
the clean sands and sandstones of the Heimdal Formation is due to deteriorating sorting.
However, the results in Figure 2.24 should be considered as a qualitative confirmation
that deteriorating sorting increases velocities in saturated rocks. Bear in mind, too, that
in these sands the smaller grains filling in the pores between larger grains are also
quartz grains. More commonly, deteriorating sorting is associated with increasing clay
content.

2.3.2 Diagnosing Paleocene shaly sands and shales

Next, we do rock diagnostics of shaly sands and shales. The goal is to better under-
stand the composition of the shales, in particular the silt (i.e., quartz) content. Direct
information in terms of core or thin sections is lacking in the Paleocene shaly intervals,
and this is why diagnostics become extra important for these rocks. Petrographic or
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Figure 2.25 P-wave velocity versus porosity for two types of shale superimposed on rock physics
models. We have included the unconsolidated shale line and silty shale line where the silt content is
40%.

mineralogic variations within the shales may cause internal seismic signatures, and it
is important to understand the acoustic properties of shales and how we can distinguish
these from other lithologies, in particular sands and sandstones.

Consider the data of the Sele Formation shales, located at about 2100 m depth in
Well 1 (Figure 2.14 and Plate 2.31). This unit has been interpreted to be shales, on
the basis of high gamma-ray values as well as mud-loggers’ cuttings observations.
By plotting the velocity–porosity values of this unit together with the diagnostic shale
model line, we find that there is a good correlation between the shale data and the shale
line (Figure 2.25). However, the shales (shown as crosses) are plotting slightly above
the model line. This probably reflects the fact that the shales are not 100% clay-rich.

Consider another shaly interval in Well 1 (Figure 2.14 and Plate 2.31), this time the
Lista Formation shales located just above the Heimdal reservoir (i.e., the cap-rock unit),
at a depth of about 2140 m. These shales have slightly lower gamma-ray values than
the Sele Formation shales. The question that arises is whether this is due to higher silt
content. This question is confirmed using rock physics diagnostics. These shaly sands
are plotted as open triangles in Figure 2.25. Using equations (2.3)–(2.9), we are able
to quantify the silt content of the silty shales to be an average of 40%.

Now consider the zone below the reservoir sands in Well 1 (Figure 2.14 and Plate
2.31), ranging from about 2165 to 2200 m depth. This interval has core and thin-
section information, just like the clean reservoir sands above. Thin-section analysis
reveals two different lithofacies within this interval. The upper zone (2165–2180 m)
is relatively clean sands, but with plane lamination of clay. Figure 2.26 shows thin-
section images from these sands. The grains are slighly smaller than the clean sands in
Figure 2.16, and the intergranular pore space has higher clay content. The lower zone
(2183–2200 m) comprises thin-bedded sand and shales. The thin-bedded sands, shown
in thin section (Figure 2.26, right) are even more shaly and show even smaller grains
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Figure 2.26 Thin-section images of the shaly sands encountered in Well 1. The left picture is taken
from depth 2168 m, within a thick-bedded sand unit. Clay content in this shale is, according to XRD
analysis, about 11% (Martinsen et al., 1996). The picture to the right is taken from depth 2183 m,
within a thin sand bed of an interbedded sand–shale unit. The sand grains are smaller and clay
content higher, 17%. The scales of the images are the same as for the thin sections in Figure 2.16.
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Figure 2.27 P-wave velocity versus porosity for shaly sands superimposed on rock physics models.
We have included the unconsolidated clean sand line, the 2% cement line, the contact cement line
and the unconsolidated shaly sand line where clay content is 20%. The two different types of shaly
sands correspond to the thin sections in Figure 2.26 (diamonds here represent the thick-bedded
shaly sands shown in Figure 2.26 (left), while the crosses here represent the shaly sands within the
thin-bedded turbidites shown in Figure 2.26 (right)).

and more pore-filling clay than the overlying thick-bedded zone (Figure 2.26, left).
Figure 2.27 shows the two zones of shaly sands, the plane-laminated shaly sands (dia-
monds) and thin-bedded sand–shales (crosses), cross-plotted in the velocity–porosity
plane together with rock physics diagnostic models. The data points fall pretty much
between the unconsolidated shaly sand line and the 2% cement fraction line. The uncon-
solidated shaly sand line is modeled assuming 20% clay in the matrix, and hence it has
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lower effective mineral moduli than the unconsolidated clean sand line. The “flat” pro-
jection of the data trend, from the contact cemented line to the uncemented shaly sand
line, probably reflects that as clay content increases the cement content gradually drops
(cf. Jizba’s modeling results, Section 2.2.3). The velocity stays fairly constant because
of the pore-filling effect of clay particles that counteracts the effect of decreasing cement
volume.

The data also include the laminas or interbeds of shale, so the scatter in the
VP–porosity plane can be attributed to this interbedding. However, the laminas in the
thick-bedded shaly sands are very thin (a few centimeters or millimeters) and not likely
to be resolvable by the well logs. The thin-bedded sand–shales, however, can have a
significant scatter due to the binary lithology composition.

2.4 Relating rock physics to lithofacies and depositional environments

One of the fundamental aspects of this chapter is to establish a link between rock
physics and sedimentology. More specifically, we want to relate lithofacies to rock
physics properties. This will improve the ability to use seismic amplitude information
for interpretation of depositional systems, as facies have a major control on depositional
geometries and porosity distributions. Facies furthermore occur in predictable patterns
in terms of lateral and vertical distribution and can also be linked to sedimentary
processes. They therefore represent an important parameter in seismic exploration and
reservoir characterization.

Traditionally, seismic facies have been interpreted at a large scale from seismic
traveltimes, that is from geometric patterns made out of the reflections. This has been
a purely visual and qualitative methodology where pre-defined “seismic facies” have
been interpreted from the seismic data (e.g., Weimer and Link, 1991). The first use of
seismic amplitudes to interpret depositional facies was by Brown et al. (1981), who
recognized river channels from seismic amplitude maps. Their work was followed up
by other authors who imaged facies from seismic amplitude maps, most successfully in
fluvial systems where channel facies have been easily recognized (Rijks and Jauffred,
1991; Brown, 1992; Enachescu, 1993; Ryseth et al., 1998). A few authors have studied
the correlation between seismic amplitudes and lithology by seismic forward modeling
(Varsek, 1985; Zeng et al., 1996). Zeng et al. (1996) linked lithofacies to rock physics
properties and conducted a facies-guided seismic modeling study of a micro-tidal
shore-zone depositional system. Furthermore, several authors have used seismic inver-
sion to estimate lithology and reservoir properties from pre-stack seismic data (Loertzer
and Berkhout, 1992; Buland et al., 1996).

Conventional seismic interpretation may be very uncertain in complex depositional
environments (Tyler and Finley, 1991). Figure 2.28 shows how reservoirs in various
depositional systems have been produced in conventional development. In the most
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Figure 2.28 Unrecovered mobile oil as a function of depositional origin. Relatively simple,
homogeneous reservoir systems (e.g., beach systems) are produced effectively, whereas much oil
in highly compartmentalized systems (e.g., turbidites) is often left behind in conventional
development. The latter reservoirs are particular targets of improved oil recovery (Tyler and Finley,
1991). (* indicates deep-water clastic systems.)

complex depositional environments, turbidite systems, more than 70% of the mobile
oil is commonly left behind, because of the heterogeneous nature of these reservoirs.

Since conventional geophysical methods of interpreting and characterizing reservoirs
from seismic data do not suffice in these complex systems, there is a need to use more
quantitative seismic techniques to reveal reservoir units from seismic amplitude data.
In this section we show how we can relate lithofacies and rock physics properties.
In Chapter 5 we show several case studies where we apply this link to characterize
reservoirs from seismic amplitude data.

2.4.1 Depositional systems and facies associations

Facies analysis and classification has been an important procedure among petroleum
geologists for decades. A facies is defined as a rock unit with distinctive lithologic
features, including composition, grain size, bedding characteristics, and sedimentary
structures. Facies furthermore occur in predictable patterns of lateral and vertical dis-
tribution and can also be linked to sedimentary processes and depositional environ-
ments. When Walther (1893–4) formulated what is today known as the Walther’s law
of facies, a new concept was introduced that had great impact on the way geologists
analyzed the stratigraphic record. Walther stated: “It is a basic statement of far-reaching
significance that only those facies and facies areas can be superimposed primarily which
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can be observed beside each other at the present time.” Careful application of Walther’s
law suggests that in a vertical sequence, a conformable transition from one facies to
another implies that the two facies can also be found laterally adjacent to each other
(Middleton, 1973). Prograding and retrograding depositional systems can explain these
facies associations. Hence, if we have Walther’s law in mind, we can understand lateral
stratigraphic relationships by analyzing vertical well-log sections. This means that by
linking facies to rock physics properties we can understand lateral patterns in seismic
amplitude maps from rock physics analysis of vertical wells.

2.4.2 Seismic lithofacies

A seismic lithofacies is a seismic-scale sedimentary unit which is characterized by its
lithology (sand, silt, and clay), bedding configuration (massive, interbedded, or chaotic),
petrography (grain size, clay location, and cementation) and seismic properties (P-wave
velocity, S-wave velocity, and density).

By introducing seismic lithofacies that represent seismic-scale sedimentary units, we
try to improve our lateral facies prediction, as we can link facies observed in vertical
well logs to seismic attribute maps. Facies have a major control on reservoir geometries
and porosity distributions, so by relating lithofacies to rock physics properties one can
improve the ability to use seismic amplitude information for reservoir prediction and
characterization in these systems. Even better, the seismic lithofacies classified from
well logs can serve as a calibration of statistical populations, each of which we can
assume to have stationarity in the seismic parameters. These can serve as constraints
in the seismic reservoir characterization (see Chapter 5).

2.5 Example: seismic lithofacies in a North Sea turbidite system

2.5.1 Seismic lithofacies description

A descriptive facies scheme is suggested in order to determine facies objectively from
well logs, cores, and thin sections (Table 2.2 and Figure 2.29). Our scheme comprises
six major facies (I–VI) that are geologically characterized by a specific grain size,
clay content, and bedding configuration. Facies I represent gravels and conglomerates,
Facies II are thick-bedded sandstones, Facies III are interbedded sands and shales where
the individual bed is below seismic resolution (i.e., thinner than approximately 10 m),
Facies IV are shales with a significant silt content (i.e., more than approximately 30%),
while Facies V are relatively pure shales. This scheme is general and aims to include all
possible siliciclastic lithofacies that can be encountered in deep-water clastic systems.
Figure 2.29 must not be confused with any given depositional sequence (it is not meant
to illustrate a coarsening or thickening upward sequence). It is a schematic illustration
of lithofacies that can occur at a seismic scale.
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Figure 2.29 Seismic lithofacies in deep-water clastic systems. Geologic description.

In the Glitne turbidite system studied in this example and case studies 1 and 2
in Chapter 5, we only recognize Facies II, III, IV, and V. Facies II–V represent a
gradual transition from clean sandstone to pure shale, whereas sand–shale ratio can
vary considerably for Facies I and VI. In the Grane turbidite system, studied in case
studies 3 and 5 in Chapter 5, we recognize other facies including tuff and carbonates,
but these are not encountered within the target zone in the Glitne field.

Three subfacies of Facies II are recognized and honor seismically important pet-
rographic variations within the thick-bedded sand facies. These subfacies are deter-
mined from core, thin-section and SEM analyses, and include cemented clean sands
(Facies IIa), uncemented or friable clean sands (Facies IIb), and plane-laminated sands
(Facies IIc). Thick-bedded shaly sands (Facies IId) are included as a possible facies to be
encountered in deep-water clastic environments. These could be slurry-flow deposits
as defined by Lowe et al. (1995), or sandy debris-flows as defined by Shanmugam
et al. (1995). This type of facies, however, is not encountered in the area of study.

There is a gradual increase in clay content as we go from Facies IIa to IId, and the
cleanest sandstones (IIa) are slightly cemented.

2.5.2 Facies associations in turbidite systems (classical submarine fans)

Our seismic lithofacies can be linked to depositional sub-environments and sedimen-
tary processes within a deep-water clastic system. Walker (1978) suggested an ideal-
istic depositional model which gives a simplified but good picture of how we expect
sedimentary facies to be distributed in a “classical” submarine fan system. An even
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Figure 2.30 Walker’s (1978) conceptual model for facies associations on a submarine fan.

more simplified and schematic version of Walker’s model is depicted in Figure 2.30.
The upper fan is characterized by channel-fill turbidite conglomerates, debris-flow, or
slump deposits (Facies I and VI), but can also be characterized by starved shale units
(Facies V). The turbidity currents on the upper fan are usually transported through a
single deep channel depositing conglomerates and thick-bedded sands (Facies I and II).
This feeder-channel is usually confined by stable overbanks. The overbank deposits are
finer-grained, thin-bedded turbidites (Facies III). In the mid-fan and lower fan areas, a
lot of the coarse-grained material is transported radially via channels and is deposited as
thick elongated sand sheets, or as sandy lobes that spread out at the end of the channels.
Fine-grained material is transported along the channels and then laterally as overbank
deposits. The sand–shale ratio is therefore high within the channels (Facies II) and in
the proximal parts of the lobes, but relatively low in interchannel areas and in the more
distal fan environments (Facies III and IV). Outside the fan system, there will be mainly
deposition of hemipelagic and pelagic shales (Facies IV and V).

Turbidite systems can be very complex. Furthermore, these depositional systems can
be very different from one basin to another, depending on hinterland characteristics,
feeder-system (river or canyon), shore-to-shelf length, dominant grain size, and
slope steepness. In particular, sand-dominated turbidite systems show very different
depositional characteristics than mud-dominated turbidite systems. The Grane field
in case studies 3 and 5, Chapter 5, represents a very sand-rich turbidite system,
whereas the Glitne field in case studies 1 and 2, Chapter 5, represents a mixed
sand/mud-rich turbidite system. The offshore Angola turbidite system in case study
4, Chapter 5, is more mud-dominated. The expected facies and sand–shale ratios will
be very different for the different types of turbidite systems. Reading and Richards
(1994) presented an excellent overview of 12 different types of turbidite systems
and their facies characteristics as a function of various controlling factors.
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Table 2.2 Geological description of seismic lithofacies in North Sea deep-water
clastic systems

Facies
Geological description of facies and
subfacies Gamma-ray log motif

I
Gravels and conglomerates

Gravels, conglomerates, and pebbly
sands. Sand-rich or mud-rich debris flow
deposits.

Complex. Can be blocky if
“clean”

II
Thick-bedded sandstone

IIa: Very clean, well-sorted, massive
sandstones with small amounts of quartz
overgrowths. Water-escape structures are
common. Clay content less than 10%.

Usually blocky and smooth

IIb: Clean, massive sandstones with clay
coatings. Water-escape structures are
prominent. Pore-filling clay content
slightly higher than in Facies IIa
(approximately 10–15%).

Bell and funnel shapes can occur

IIc: Plane-laminated sandstone. Higher
pore-filling clay content (10–20%) and
grain size in general smaller (fine- to
medium-grained) than in Facies IIa
and IIb.

Low, but increasing GR values,
from IIa–IIc

IId: Shaly sandstone (clay content
between 20–40%).

Intermediate in IId

III
Interbedded sandstone
–shale

Interbedded sand–shale couplets, where
sand units are relatively thin-bedded
compared with Facies II types of sand
(i.e., below seismic resolution).

Serrated
Intermediate GR values

IV
Silty shales

Silty shales and thin-laminated silt–shale
couplets. (In rock physics often referred
to as “sandy” shales.)

Serrated
High GR values

V
Pure shales

Pure shales, often seen as thick, massive
shale units.

Serrated/smooth
Very high GR values

VI
Chaotic deposits

Syn-depositional deformation units, slide
blocks, slump deposits, injection sands,
shale diapirs, etc.

Serrated/complex

2.5.3 Seismic lithofacies identification from well logs

We select a type-well for identification of seismic lithofacies from well-log data
(Plate 2.31; this is the same well as Well 1 in Section 2.3). Primarily, we have used the
gamma-ray log to determine the different facies, as it is a good clay indicator in the
quartz-rich sediments of the North Sea. Facies II will usually show blocky log motifs and



87 2.5 Example: Seismic lithofacies

Figure 2.32 Subfacies of Facies II are defined by petrographic differences determined from thin
sections and cores. (Core description is courtesy of Norsk Hydro.)

low gamma-ray values. Fining upwards or coarsening upwards trends may occur, but are
not typically recognized on gamma-ray logs in deep-water clastic systems, as clay con-
tent tends to be sorted equally from the fine-grained sands to the coarse-grained sands
(Rider, 1996). Facies III will show a serrated log pattern, and the overall gamma-ray val-
ues will be higher than for Facies II. However, individual sand beds within a Facies III
unit may show gamma-ray values as low as Facies II sands. Facies IV shows a less
serrated pattern, but higher gamma-ray values. Facies V can show serrated gamma-ray
values, but ideally it should be smooth, with very high gamma-ray values. Facies I
and VI, not observed in Plate 2.31, will normally show a complex pattern because of
random arrangement of quartz and clays.

Density and sonic logs have also been used to ensure that each facies occurs as
significant clusters in terms of rock physics properties. Rock physics analysis can fur-
thermore be used diagnostically to determine lithofacies and to define training data
when direct core and thin-section data are not available. The subfacies IIb and IIc have
been determined from core, thin-section, and SEM analyses (Figure 2.32), whereas
IIa, representing a zone where no cores were taken, has been diagnosed as cemented
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Figure 2.33 Rock physics diagnostics of two sandstone intervals in the type-well, indicating an
unconsolidated zone (Facies IIb, open circles) and a cemented zone (Facies IIa, filled squares).
The unconsolidated sands have been confirmed by core observations (Figure 2.32). Presence of
cemented Heimdal Formation sands has been confirmed in Section 2.3.

thick-bedded sands using rock physics theory (Dvorkin and Nur, 1996). As confirmed
in Section 2.3, the Heimdal Formation comprises both friable sands and cemented
sandstones. Figure 2.33 shows the interval between 2252 and 2280 m in the type-well
plotted in terms of velocity versus porosity, superimposed on the contact-cement model,
the constant-cement fraction model (2% quartz cement), and the unconsolidated line.
We diagnose the zone as cemented sands (∼2%). Also included in this plot is the
zone defined as Facies IIb, which we know from core and thin sections to be unce-
mented sands. These sands fit perfectly with the unconsolidated line. The cementation
in Facies IIa is volumetrically not very significant, but in terms of elastic properties it has
important impact. The seismic velocities and impedances are relatively high because
of the stiffening effect of initial cementation (cf. Section 2.2).

2.5.4 Rock physics analysis of seismic lithofacies

Figure 2.34 shows the different seismic lithofacies plotted as P-wave velocity versus
gamma ray (left), and density versus gamma ray (right). We observe an overturned
V-shape, and an ambiguity exists between Facies IIb and IV/V. Cemented sands (IIa)
and laminated sands (IIc) as well as interbedded sand–shales have relatively high veloc-
ities. The sand–shale ambiguity is not observed in density versus gamma ray. Here we
see a more linear trend where density increases with increasing gamma-ray values (i.e.,
clay content) as we go from clean sands (Facies IIa and IIb) to silty shales (Facies IV).
However, we observe that silty shales have higher densities than pure shales. The
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Figure 2.34 P-wave velocity versus gamma ray (left) and density versus gamma ray (right), for
different seismic lithofacies in training data (i.e. Well 2). Note the ambiguity in P-wave velocity
between Facies IIb and IV/V.
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Figure 2.35 Acoustic impedance versus gamma ray (left) and VP/VS ratio versus gamma ray
(right) in type-well.

sand–shale ambiguity observed in terms of velocity is also observed in acoustic
impedance, which is the product of VP and density (Figure 2.35; left). The overturned
V-shape we observe can be explained physically: for grain-supported sediments,
increasing clay content tends to reduce porosity (i.e. increase density) and therefore
stiffen the rock. However, for clay-supported sediments, porosity will increase with
increasing clay content because of the intrinsic porosity of clay, and the rock frame-
work will weaken. Hence, velocity will reach a peak when clay content is approxi-
mately 40%. This effect was described by Marion et al. (1992) based on laboratory
measurements of sand–shale mixtures (see Section 2.2.3 and Figure 2.7). Among others,
Zeng et al. (1996) observed an ambiguity between seismic properties of clean sands
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and pure shales in an oil field, studying the acoustic impedance of Tertiary sediments
in the Powderhorn Field, Texas.

The shear-wave sonic log provides us with shear-wave velocity (VS). Figure 2.35
(right) shows the VP/VS ratio versus gamma-ray value. Here we observe that Facies IIb
can be distinguished from shales (Facies IV and V), as the VP/VS ratio increases with
increasing shaliness. Higher VP/VS ratios in shales than sands are expected, since the
shear strength in shales tends to be relatively low compared with sands, owing to the
platy shapes of clay particles.

2.6 Rock physics depth trends

Velocity–depth trends are important in seismic exploration and borehole drilling for
several reasons. Commonly, these have been used for detection of overpressure zones
from seismic velocity data (using traveltime inversion), indicated by negative veloc-
ity anomalies (e.g., Herring, 1973; Japsen, 1998; Dutta et al., 2002a, 2002b). These
are important to detect since they can cause hazardous blowouts during drilling. Also,
velocity–depth trends can be used for calculation of interval velocities and depth con-
version of seismic time horizons (e.g., Carter, 1989; Al-Chalabi, 1997). In areas where
few wells are drilled, one often needs to assume a velocity trend based on an interpreted
geologic depth-column. The trends for sands and shales can also be used to study the
expected seismic signatures of sand–shale interfaces as a function of depth, and to
identify anomalous lithologies (e.g., limestones) or diagenetic zones (e.g., cementa-
tion). Similarily, overcompacted zones related to uplift can be recognized, and erosion-
thickness (i.e., missing overburden) can be estimated (e.g., Bulat and Stoker, 1987;
Japsen, 1993; Al-Chalabi and Rosenkranz, 2002). Finally, expected brine-saturated
velocity–depth trends can be applied to detect seismic velocity anomalies related to
hydrocarbons (e.g., Avseth et al., 2003).

Several authors have studied the impact of depth and compaction on porosity of sands
and shales (e.g., Magara, 1980; Ramm and Bjørlykke, 1994; Lander and Walderhaug,
1999). Independently, empirical velocity–depth baselines have been applied to study
burial anomalies. However, few authors have used more rigorous rock physics theory
to study the effect of depth on seismic velocities. Japsen et al. (2001) investigated the
relations between rock physics models and normal velocity–depth trends for different
lithologies, with examples from the North Sea and the Gulf of Mexico. He presented
baselines for sandstone and for shale that are based on a modified Voigt trend, and on
a constrained relation between transit time and depth, respectively.

In this section, we use existing empirical porosity–depth trends for sands and shales,
as input to rock physics models of VP, VS, and density. We use Hertz–Mindlin theory
(Mindlin, 1949) to calculate the velocity–depth trends for unconsolidated sands and
shales, whereas Dvorkin–Nur’s contact-cement model (Dvorkin and Nur, 1996) is used
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Figure 2.36 Schematic illustration of porosity–depth trends for sands and shales. Both the sand and
shale trends can vary significantly because of composition, texture, pore fluids, temperature and
pressure gradients. Hence, no attempt is made to assign absolute scales. However, there are a few
rules of thumb. (1) The depositional porosity of shales is normally higher than that of sands. (2)
The porosity gradient with depth is steeper for shales than for sands during mechanical compaction
(i.e., at shallow depths). (3) The porosity gradient with depth will be steeper for sands than for
shales during chemical compaction (i.e., quartz cementation of sands normally occurs at greater
burial depth, beyond 2–3 km).

for cemented sands. The modeling results provide estimates of the parameters needed
to calculate expected seismic response with depth for sand–shale interfaces. Hence,
the depth trends allow us to study the ability to discriminate between pore fluids and
lithologies at different depths.

Shale versus sand compaction

At deposition, shales tend to have relatively high porosities compared with sands.
Sands will have depositional porosities of about 0.4, while shales can have deposi-
tional porosities of more than 0.8 (Figure 2.36). Shaly sands and heterolithics (i.e.,
mixed sands and shales) can have even lower depositional porosity than 0.4, as clay
particles will fill the pore space of the sand frame.

Shales tend to compact more easily than sands, causing a cross-over of the
porosity–depth trends of sands and shales. At greater depths, different diagenetic
processes occur. Sands lose porosity mainly through cementation, while bound water
is released and intrinsic clay porosity is reduced in shales. Secondary porosity may
occur in sands because of dissolution of mineral grains. Hence, porosity–depth trends
can become very complex at great depths.
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2.6.1 Compaction of sands and shales

During burial, the porosity of sediments changes dramatically through diagenesis.
Diagenesis represents all mechanical and chemical alterations of a rock after depo-
sition. Diagenetic processes change with burial depth, time (age), and/or temperature.
The processes most damaging to porosity and permeability in sands and shales during
early burial are packing change and ductile grain deformation (Surdam et al., 1989).
In the North Sea, this mechanical compaction dominates the diagenetic reduction of
porosity during burial from 0 to 2.5–3 km (Ramm et al., 1992).

During progressive compaction of sandstone, the number of grain contacts and the
area of contacts between grains increase. If the grains are spherically shaped and there
are no ductile grains present, the intergranular volume of a sandstone may be reduced
towards 26% (closest packing of spheres). However, resistance to reorientation by
angularities prevents compaction. Sandstones with more ductile components such as
clay matrix, phyllitic rock fragments, and mica undergo a more severe loss of porosity
by mechanical compaction (Surdam et al., 1989).

The rate of porosity decrease for sands and shales is more rapid at shallow depths and
slows at greater depth of burial (Magara, 1980). Rubey and Hubbert (1959) proposed
an exponential function to describe the porosity reduction with depth as follows:

φ = φ0e−cZ (2.42)

where φ is the porosity at depth Z, φ0 is the depositional porosity (i.e., critical porosity)
at the surface (Z = 0), and c is a constant of dimension (length−1). Ramm and Bjørlykke
(1994) suggested a clay-dependent exponential regression model for porosity versus
depth of sands, valid only for mechanical compaction:

φ = Ae−(α+βCI)Z (2.43)

where A, α, and β are regression coefficients (see Figure 2.37). Coefficient A is related
to the initial porosity at zero burial depth, α is a framework grain stability factor for
clean sandstones (CI = 0) and β is a factor describing the sensitivity towards increasing
clay index (CI). The clay index is defined as the volume content of total clays (VCl)
relative to the total volume content of stable framework grains, where we assume grains
are quartz (Vqz):

CI = VCl

Vqz
(2.44)

However, chemical compaction also affects the porosity of rocks. In particular, quartz
cementation is of great importance in quartz-rich sands, and drastically affects porosity,
permeability, and seismic properties. It may occur during shallow burial, associated with
meteoric flow precipitation (Dutton and Diggs, 1990), but is more common at deeper
diagenetic levels associated with pressure solution. In quartz-rich sandstones, pressure
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Figure 2.37 Sand and shale porosity models (equations (2.43) and (2.45)) with depth. During
shallow burial, porosity change is mainly due to mechanical compaction (curved lines, equation
(2.43)), and the porosity decreases with increasing clay content (i.e., increasing ductility). At a
certain depth level, clean sands lose porosity mainly via pressure solution and quartz cementation
(straight line, equation (2.45)). (Modified from Ramm and Bjørlykke, 1994.) Depth is in meters
relative to sea floor (mRSF).

solution and related quartz cementation is probably the process most devastating to
porosity during deep burial (Surdam et al., 1989). Sandstones in continuously subsid-
ing sedimentary basins, such as in the North Sea and the Gulf Coast, are mainly subject
to mechanical compaction and tend to have poorly developed quartz cement down to
a depth of 2.5–3.0 km. Chemical compaction in terms of pressure solution and quartz
cementation will normally dominate below this depth level (Bjørlykke and Egeberg,
1993; Ramm and Bjørlykke, 1994). Ramm and Bjørlykke suggested that clean sand-
stones lose porosity mostly via pressure solution and quartz cementation approximated
by the following formula:

φ = φD − k(Z − ZD) (2.45)

where φD is the porosity at depth ZD where diagenetic cement initiates. The constant k
is the rate at which the cement volume increases with depth.

Presence of clay in sandstones normally inhibits quartz cementation. Consequently,
chemical compaction related to quartz cementation is most significant in clean
sandstones. Quartz cementation is furthermore inhibited by the early migration of
hydrocarbons, and/or overpressure (Dutton and Diggs, 1990).

Diagenesis of shales is restricted to mechanical compaction during shallow burial
(less than ∼80 ◦C). However, a stable clay fabric tends to develop in the early stages of
burial, and remains unchanged during the subsequent burial history. Hence, clay fabrics
are relatively independent of depth, and pure shales tend to obtain a nearly constant
porosity trend versus depth (Sintubin, 1994). Chemical processes in shales, including
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transformation of smectite to illite and liberation of organic acids from organic matter,
begin at an intermediate diagenetic level (80–140 ◦C).

Baldwin and Butler (1985) introduced alternative compaction curves for sands and
shales. Instead of deriving empirical porosity–depth trends, they derived solidity–depth
trends, where solidity (N) is defined as the volume of solid grains as a percent of total
volume of sediment, which is the complement of porosity. During compaction, the
thickness of solid grains is constant; therefore the relation between solidity and sedi-
ment thickness reduction is linear, whereas the relation between porosity and sediment
thickness reduction is nonlinear (Shinn and Robbin, 1983). Hence, the equations for
solidity versus depth are normally simpler than the equations for porosity versus depth.
Also, the resulting power-law equations for solidity versus depth were found to fit
data for siliciclastic sediments better than the exponential equations for porosity versus
depth. For normal shales they found the following power-law relationship:

Z = 6.02N 6.35 (2.46)

where Z is the burial depth in km.
Similarly, they found that thick (>200 m), undercompacted shales followed the

Dickinson equation (Dickinson, 1953) derived from Tertiary shales of the Gulf Coast.
In terms of solidity, the resulting power-law version of the Dickinson equation is:

Z = 15N 8 (2.47)

Finally, they found that the Sclater and Christie (1980) sandstone curve for North Sea
sediments should work well for rather mature, moderately cemented sandstones. The
equation for their curve is exponential, and solved for burial depth it has the following
logarithmic form:

Z = 3.7 ln[0.49/(1 − N )] (2.48)

2.6.2 Rock physics properties as a function of compaction

In order to understand the expected seismic response of a siliciclastic reservoir, at any
given depth, it is of key interest to know the expected contrast in elastic properties
between shales and sands as a function of depth. However, rock physics depth trends
can be very complicated, depending on mineralogy, lithology, diagenesis, pore pressure,
effective stress and fluid properties. In areas with good well coverage, one can establish
empirical rock physics depth trends for different lithologies from statistical regressions
to well-log data (VP, VS, and density). However, we want to stress the importance of
modeling depth trends. Rock physics models allow for extrapolation of observed trends
to depositional settings and depth ranges that are not covered by well-log data. This is
often the case in an early exploration stage. Furthermore, modeled depth trends help us
to better understand observed depth trends, and to detect anomalous zones that do not
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follow the expected depth trends, whether these are pressure anomalies, unexpected
lithologies, or abrupt diagenetic events.

In general, seismic velocities and densities of siliciclastic sedimentary rocks will
increase with depth because of compaction and porosity reduction. However, the
rock physics depth trends (i.e., VP, VS, and density versus depth) corresponding to
the porosity–depth trends mentioned in the previous section can be rather complex
because of the competing effects of porosity, pressure, mineralogy, texture, and pore
fluids. In fact, we may observe more than one cross-over in velocity–depth trends of
sands and shales. Rock physics models can be very useful in better understanding these
depth trends. However, the models have to be calibrated to local geology before they
can be used for further prediction of hydrocarbons and lithology. Geologic constraints
include expected lithofacies and facies associations, sand and shale mineralogy (to
determine effective elastic moduli and densities for the solid phase), fluid properties
(oil density, GOR, gas gravity, brine salinity), as well as information about pressure
and temperature gradients. For unconsolidated rocks we apply Hertz–Mindlin contact
theory (see Section 2.2) to calculate elastic moduli of unconsolidated sediments as a
function of porosity and pressure. Based on the elastic moduli, we calculate VP and VS

versus depth. Density (ρ) is calculated directly from the porosity trends. From these
parameters we can calculate acoustic impedance and VP/VS ratios versus depth. We
can calculate depth trends for clean sands, shaly sands and shales using Hertz–Mindlin
theory.

Using Hertz–Mindlin for unconsolidated sediments

It has been found that Hertz–Mindlin contact theory overpredicts velocities in uncon-
solidated sands, especially at low pressures and for dry samples. One possible expla-
nation for this could be shear slip and/or rotation of grains around contact points
which is not accounted for by the Hertz–Mindlin contact theory. However, we assume
this to be a second-order effect for saturated sediments in situ at burial depths of
several hundred meters to a few kilometers.

One can debate the applicability of Hertz–Mindlin theory for shales. The theory
behind the model assumes spherical grains, but clay-rich shales certainly contain
mainly platy grains and particles. However, when calculating the effective bulk and
shear moduli of a dry sphere pack using equations (2.3) and (2.4), the coordination
number to some degree takes into account the shape of the grains. At deposition, a
shale tends to have very high porosity and very low coordination number, while a
compacted, “collapsed” shale will have relatively low porosity and high coordination
number.

Although the Hertz–Mindlin theory is not a completely rigorous model, we find
it to work fairly well for shales as well as for sands.
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Figure 2.38 Examples of rock physics depth trends estimated for a well offshore Angola. This well
is the same as the one used in case study 4 in Chapter 5. We observe a nice match between the
calculated depth trends for different lithologies and the well-log data. The gamma-ray log to the left
is a good clay indicator in the area, where extreme lows are representative of clean sands. Some of
the swings in the logs which deviate sharply from the trends correspond to hydrocarbon zones (low
VP and density values) and a few cemented zones (high VP and VS values).

Rock physics depth trends for cemented sandstone can be calculated using the
Dvorkin–Nur cement model (see Section 2.2). However, in addition to the porosity,
we would then need to know or assume the amount of cement as a function of depth
before calculating the elastic properties. To do this requires reliable information from
geologists about the expected cement volume at a given depth.

Figure 2.38 shows an example of rock physics depth trends calculated for an offshore
Angola well. This well is the same as the one used in case study 4 in Chapter 5.
We observe a nice match between the calculated velocity–depth trends for different
lithologies and the well-log data. The corresponding depth trends in acoustic impedance
and VP/VS are shown in case study 4 in Chapter 5, and these are used to constrain the
AVO classification in the area.

2.7 Example: rock physics depth trends and anomalies in a North Sea field

In this section we want to apply the physical models given in the previous section, to
predict expected depth trends in seismic properties in a North Sea field. The empiri-
cal porosity–depth trends need to be calibrated to local observations, and this can be
done in two ways: either by calibrating the equations to an inverted density log, or if
core observations and helium porosity measurements are available, using these to cali-
brate the porosity–depth trends. On the basis of the porosity calibration, we can model
expected depth trends of velocity, impedances and VP/VS ratio. For other areas, the
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porosity trends need to be calibrated to the local conditions, and the porosity formulas
below should not be applied.

In this example we also use local observations to constrain the transition from
mechanical compaction to cementation. This transition can vary considerably from one
area to another, but using only the mechanical compaction models can reveal where
this transition zone happens. Reliable information about cement volume from geologic
observations or geochemical modeling may be used to constrain the velocity–depth
trend modeling for cemented rocks.

2.7.1 Modeling and calibration of porosity–depth trends

We apply the empirical porosity–depth models of Ramm and Bjørlykke (1994), given
in Section 2.6, equation (2.43), to North Sea well-log data from the Glitne field. We
calibrate the formulas to measured porosities at target level, where helium porosities of
sands are available. We assume the surface depositional porosity (i.e., critical porosity)
of sands to be 0.45, consistent with Ramm and Bjørlykke’s regression. The regression is
calibrated with clean Heimdal sands at 2150–2160 m depth, where the average porosity
is 0.34. Hence we obtain the following regression formula for relatively clean sands
(CI = 0.1):

φ = 45e−(0.10 + (0.27×0.1))Z (2.49)

We do the same procedure for shales. However, we select a higher critical porosity for
shales than for sands, A = 60 versus A = 45, since we know that shales normally have
higher depositional porosities related to the card-stack arrangements of clay particles
(Rieke and Chilingarian, 1974). Lacking cores and helium-porosity measurements,
we calibrate with well-log derived porosities, which are, on average, 0.28 for Lista
Formation shales in the interval 2140–2154 m. These shales have a clay content of
60–70% and a quartz content (i.e., silt particles) of about 30–40% (see Section 2.3.2).
Hence, we choose CI = 2, and the regression formula for this shale becomes

φ = 60e−(0.01 + (0.22 × 2.0))Z (2.50)

For modeling the porosity of the cemented sands, we use the linear cementation
model of Ramm and Bjørlykke’s (equation (2.45)), and calibrate it to cemented sands
observed at 2250–2270 m depth in the North Sea. These sands have an average porosity
of 0.28. The resulting formula is assumed to be valid below 2.2 km depth; hence the
formula becomes

φ = 30 − 13(Z − 2.2) (2.51)

The porosity at 2.2 km depth is set to 30% (0.3) in order to be calibrated to the cemented
sands at 2250–2270 m depth. The trends calculated from the formulas (equations (2.49),
(2.50), and (2.51)) are shown in Figure 2.39 (left).
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Figure 2.39 Porosity and P-wave velocity versus depth for unconsolidated sands and shales as
modeled by Hertz–Mindlin theory, and for cemented sandstone as modeled by the Dvorkin–Nur
cementation model. The models have been calibrated with North Sea observations in the porosity
space, and the modeled velocities match the observations almost perfectly.

2.7.2 Modeling velocity–depth trends

Next we input the porosities calculated above into the theoretical velocity models
outlined in the previous section. The porosities are shown in Figure 2.39 (left) and the
corresponding velocities in Figure 2.39 (right). The formula for coordination number in
equation (2.7) has been combined with equations (2.49) to (2.51) to obtain coordination
number versus depth for sands and shales, respectively (see Figure 2.40). As input for
the contact-cement model, the critical porosity value is set to 0.34 at 2.2 km depth,
which is the value of unconsolidated sands at that depth. The calibrated porosity value
at that depth, according to the regression formula in equation (2.48), is 0.3, which means
that the cement volume at that depth is 4%.

Based on the elastic moduli, we calculate VP and VS versus depth. Density (ρ) is
calculated directly from the porosity trends. P-wave velocity VP is shown in Figure 2.39
(right), whereas acoustic impedance and VP/VS ratios versus depth are shown in Figure
2.41.

There is an excellent fit between the predicted P-wave velocities and the observed
mean values at about 2200 m, for all the different rock types (Figure 2.39). The uncon-
solidated sands have slightly higher velocities than the shales. The cemented sands,
however, show much higher velocities. The acoustic impedances also show an excellent
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Figure 2.41 Acoustic impedance and VP/VS ratio versus depth for sands and shales.
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match (Figure 2.41, left). The unconsolidated sands have slightly lower impedance
than the shales, whereas the cemented sands have much higher impedance values.
Moreover, there is a cross-over in impedance with depth between unconsolidated sands
and shales occurring at about 1600 m depth. For VP/VS, the match between the models
and observed data is not perfect (Figure 2.41, right). However, the Hertz–Mindlin
models for sands and shales show a nice match with the observed values. The VP/VS

ratio is consistently lower for sands than for shales. The contact-cement model, however,
underpredicts the VP/VS of cemented sands.

Plate 2.42 shows the porosity and sonic velocity versus depth for relatively clean
sandstones (red) and relatively pure shales (blue) from a different well, adjacent to the
one from the previous section. The data are measured in the interval between the sea
floor and rocks of Intra-Paleocene age (Tertiary). We have superimposed the Hertz–
Mindlin models for unconsolidated sands and shales. Although there is significant
discrepancy in the porosities, the predicted velocities show a remarkably good fit with
the data.

Below 2 km depth, the sands have much higher velocities than the shales immedi-
ately above. This dramatic increase in velocity with depth for sands of the Heimdal
Formation does not agree with purely mechanical compaction and corresponding poros-
ity reduction with depth. Purely mechanical compaction would be represented by a
gradually increasing velocity and a decreasing velocity gradient with depth, according
to the Hertz–Mindlin model. The “jump” in velocity observed for the Heimdal sands,
however, can be explained by chemical compaction. These sands most likely have slight
quartz cementation, which produces a velocity increase through a stiffening effect on
the grain contacts. The onset of cementation is interpreted to occur at about 2 km
depth. We assume that mechanical compaction dominates above 2 km, while quartz
cementation dominates below this depth.

The overall velocity contrasts between sands and shales in the mechanical com-
paction zone (0–2 km) are relatively weak. We do not observe a strong contrast in
velocity between sands and shales until the sands enter the chemical compaction zone.
The transition from mechanical to chemical compaction therefore represents a very
significant seismic boundary in the North Sea.

By cross-plotting velocity versus porosity for various sand and shale intervals at
the different depth levels observed in Plate 2.42, we can better evaluate what hap-
pens in terms of diagenesis and compaction of the rocks (Plate 2.43). We analyze
velocity–porosity data for sand intervals and their overlying shales at three different
depth intervals. The sandstone intervals include the Utsira sands (Sst 800) where data
range from 820 to 830 m, the Frigg sands (Sst 1500) from 1500 to 1600 m, and the
Heimdal sands (Sst 2200). The shale intervals include Shale 650 ranging from 620
to 670 m, Shale 1400 from 1400 to 1500 m, and Shale 2100 spanning the interval
from 2120 to 2150 m. The various sand intervals create separate data clusters in an
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echelon pattern, with overlapping, decreasing porosity values, but discrete jumps and
great separation in velocity. These velocity jumps can be attributed to the increased
depth, causing an increase in effective pressure and more severe mechanical and chem-
ical compaction, as discussed above. The individual sand clusters at given depths show
relatively constant or slowly increasing velocity with decreasing porosity. According
to rock physics diagnostics, presented in Section 2.2, this variation is related to deteri-
orating sorting and/or increased clay content in the sands.

The paths assumed to represent increasing clay from clean sands to pure shales
are superimposed. The expected V-shaped paths are observed at all depths. However,
at the shallowest level, the V-shaped path is highly compressed. The sands probably
overlap with the shales, because this sand cluster includes both clean and shaly sands,
while the shales are both pure and sandy. The whole clay spectrum is therefore repre-
sented in the data. With increasing depth, the V-shaped path is less compressed. This
is consistent with Yin’s (1992) laboratory observations, where he conducted pressure-
dependent studies of the velocity–porosity relations in sand–shale mixtures. At the
greatest depth, there is a large drop in velocity from the shaly sands to the pure
shales. This gap is related to the effect of going from grain-supported to clay-supported
sediments (Marion, 1990), but the gap is amplified because the sands are slightly
cemented.

Figures 2.44 and 2.45 show an example of combined diagenetic modeling and rock
physics modeling (Helseth et al., 2004). The cement volume as a function of depth
is modeled following the methodology of Lander and Walderhaug (1999), whereas
the corresponding velocities are modeled using the clean sandstone models presented
in Section 2.2. In this example, three different depths are selected (Figure 2.44),
and we can see the expected velocity–porosity locations at these various depths
(Figure 2.45).

2.8 Rock physics templates: a tool for lithology and fluid prediction

In this section we describe how we can combine the depositional and diagenetic trend
models presented in this chapter with Gassmann fluid substitution, and make charts
or templates of rock physics models for prediction of lithology and hydrocarbons.
We refer to these locally constrained charts as Rock Physics Templates (RPTs), and
this technology was first presented by Ødegaard and Avseth (2003). Furthermore, we
expand on the rock physics diagnostics presented earlier in this chapter as we create
RPTs of seismic parameters, in our case acoustic impedance versus VP/VS ratios. This
will allow us to perform rock physics analysis not only of well-log data, but also of
seismic data (e.g. elastic inversion results). Moreover, we show how important it is to
constrain the rock physics models to local geology.
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Figure 2.44 Quartz cement volume (left curve) and corresponding porosity trend (right curve)
versus depth (Helseth et al., 2004). The modeling is based on the method of Lander and
Walderhaug (1999), and assumes temperature and pressure gradients representative for mid
Norwegian Sea. These models can be converted to velocity versus depth using the rock physics
models for sands in Section 2.2. In this example, three depths are selected where corresponding
velocity versus porosity values are calculated (see Figure 2.45).

The motivation behind RPTs is to apply the models presented in this chapter (or
other alternative rock physics models) and calculate a compilation of relevant RPTs
for different basins and areas. Then the ideal interpretation workflow becomes a fairly
simple two-step procedure:
� Select the appropriate RPT for the area and depth under investigation. Use well-log

data to verify the validity of the selected RPT(s). (If no appropriate RPT exists, one
should update the input parameters in the rock physics models, honoring the local
geologic observations, and create new RPTs for the area under investigation.)

� Use the selected and verified RPT(s) to interpret elastic inversion results (see
Chapter 5).

RPT interpretation of well-log data may also be an important stand-alone exercise,
for interpretation and quality control of well-log data, and in order to assess seismic
detectability of different fluid and lithology scenarios. Examples of this are included in
Section 2.8.2.
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Figure 2.45 Velocity–porosity values (circles) corresponding to the three different depths selected
in Figure 2.44 (Helseth et al., 2004). Also included are the contact-cement model and various
constant-cement models (light gray line, and dashed lines), as well as the friable-sand model. The
modeled data points are based on combined diagenetic and rock physics models, and we observe
that both cementation and mechanical packing (which will cause similar effects to sorting)
increased with depth.

Intuitive cross-plots for cross-disciplinary applications

By creating intuitive RPTs, a broad range of geo-practitioners can use these as a tool-
box for efficient lithology and pore-fluid interpretation of well-log data and elastic
inversion results. The RPTs can be applied by petrophysicists who do formation
evaluation, seismic interpreters who analyze inversion results, or rock physicists
who evaluate seismic detectability from well logs.

Moreover, the RPTs serve as a nice venue for different disciplines to meet for
round-table discussions, as the plots show trends in seismic, petrophysical and geo-
logical parameters all together.

2.8.1 Rock physics models constrained by local geology

The first step in the modeling of RPTs is to calculate velocity–porosity trends for the
expected lithologies, for various burial depths, using the models presented earlier in
this chapter. To briefly summarize, we apply Hertz–Mindlin contact theory (Mindlin,
1949) to calculate the pressure dependency at the high-porosity end member. The other
end point is at zero porosity and has the bulk and shear moduli of the solid mineral.
These two points in the porosity–moduli plane are connected with a curve given by
modified Hashin–Shtrikman (Hashin and Shtrikman, 1963) bounds (bulk and shear
moduli) for the mixture of two phases: the original porous phase and the added solid
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phase. Porosity reduction related to packing and sorting, where smaller grains enter
the pore space between larger grains, is modeled by the lower bound. For cemented
rocks, we can either apply Dvorkin–Nur’s cement model or the Hashin–Shtrikman
upper bound model.

The next step is to calculate the elastic bulk moduli of brine- and hydrocarbon-
saturated rocks. The dry rock properties calculated from the combined Hertz–Mindlin
and Hashin–Shtrikman models are used as input into Gassmann’s equations to calculate
the saturated rock properties, assuming uniform saturation. From these we can calcu-
late the VP, VS and density of brine- or gas-saturated rocks, and finally the acoustic
impedance (AI) and VP/VS ratio. Estimates of AI and VP/VS are among the typical out-
puts from elastic inversion of seismic data, and this is the main reason for presenting
the rock physics templates as cross-plots of VP/VS ratio versus AI. An example of an
RPT is shown in Figure 2.46. It includes a background shale trend, a brine-sand trend,
and curves for increasing gas saturation as a function of sand porosity.

Possible modifications to the RPTs

In the templates above we have calculated AI and VP/VS as a function of lithol-
ogy, porosity and gas saturation. Alternatively, one could calculate similar tem-
plates for other parameters, such as AI versus EI (elastic impedance), AI versus SI
(shear impedance), or λ (Lamé’s parameter) versus µ (shear modulus). Also, one
could add other dimensions to the templates, like attenuation and anisotropy. Finally,
one could make templates with effective rock physics models to account for scale
effects.

The RPTs are site- (basin-) specific and honor local geologic factors. Geologic con-
straints on rock physics models include lithology, mineralogy, burial depth, diagenesis,
pressure, and temperature. All these factors must be considered when generating RPTs
for a given basin. In particular, it is essential to include only the expected lithologies for
the area under investigation when generating the rock physics templates. A siliciclastic
system will comprise different lithofacies from a carbonate system. In this book we
show examples for siliciclastic environments, so we expect the following lithologies:
shale, shaly sands, and clean sands. But even for a siliciclastic system, the mineralogy
can be highly variable. The sands can be either quartz-rich (arenite) or feldspar-rich
(arkose). Quartz and feldspar have very different elastic properties, and this must be
considered in the rock physics modeling. Other minerals may also be of significance.
Shales are dominated by clay minerals such as smectite, illite, kaolinite or chlorite.
Silty particles of quartz and feldspar are also very common in shales. Mavko et al.
(1998) list elastic properties of common minerals. The sands modeled in the RPT in
Figure 2.46 represent clean, quartz-rich sands (arenite), while the shales are assumed
to be smectite-rich.
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Figure 2.46 A rock physics template (RPT) presented as cross-plots of VP/VS versus AI includes
rock physics models locally constrained by depth (i.e., pressure), mineralogy, critical porosity, and
fluid properties. The template includes porosity trends for different lithologies, and increasing gas
saturation for sands (assuming uniform saturation). The black arrows show various geologic trends
(conceptually): (1) increasing shaliness, (2) increasing cement volume, (3) increasing porosity, (4)
decreasing effective pressure, and (5) increasing gas saturation.

The water depth and the burial depth determine the effective pressure, pore pres-
sure and lithostatic pressure. The pore pressure is important for the calculation of fluid
properties, and to determine the effective stress on the grain contacts of the rock frame
carrying the overburden. Porosity reduction associated with rock compaction and dia-
genesis are directly related to burial depth. At great depths quartz-rich sands tend to
be quartz-cemented whereas smectite-rich shales will go through illitization and the
release of bound water. In Figure 2.46 the effective pressure is 20 MPa. If the pore
pressure is hydrostatic, this represents approximately 2 km burial depth.

In the modeling of the RPTs we also need to know the acoustic properties of mud
filtrate, formation water and hydrocarbons in the area of investigation. Required input
parameters include temperature, pressure, brine salinity, gas gravity, oil reference den-
sity (API), and oil GOR. In areas where hydrocarbons have yet to be encountered, gas
gravity can be assumed (normally between 0.6 and 0.8). However, oil API is more
uncertain. Also, the seismic response of oil can be difficult to distinguish from that of
brine. Thus, in the templates presented in this chapter we consider only gas- and brine-
saturated sands. One should, however, expect oil to show similar values to those of low
gas saturation in cross-plots of AI vs. VP/VS ratio. Regarding saturation distribution,
we have assumed uniform distribution in the modeling of the templates, which gives
the famous effect where residual amounts of gas will cause almost the same seismic
properties as commercial amounts of gas. However, a patchy distribution of gas would
have shown a more linear change in seismic properties with increasing gas saturation.
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Pitfalls

During modeling and application of RPTs, one should address the most likely geo-
logical scenario to be modeled. However, alternative pitfall scenarios should also be
considered. Silica ooze and opal-A to opal-CT transitions, volcanic tuff, salt intru-
sions, calcite cement, and shallow overpressure all represent potential pitfalls that are
typically not included in the models. Nonetheless, the RPTs may help discriminate
some of these anomalies from hydrocarbon-related anomalies.

2.8.2 RPT analysis of well-log data: examples from Norwegian Sea and offshore
West Africa

The well-log example presented in Plate 2.47 is from offshore mid-Norway. It shows
acoustic impedance and VP/VS logs for a 100-m interval, and the corresponding VP/VS

vs. AI cross-plot. The logs are color-coded based on the four populations defined in the
cross-plot domain, and the cross-plot points are color-coded using the gamma-ray log
(not shown).

Four populations can easily be identified in the log cross-plot domain, and a separate
lithology or pore fluid can be attributed to each of the four populations based on
additional log information: two different shales, gas sand and brine sand. The cross-
plot interpretation would have been much more difficult without the additional log
information. However, if we can use rock physics models to interpret these clusters, we
can do more than interpret and quality-control observed well-log data. We can also use
the templates to find the expected seismic properties for lithologies and fluid scenarios
not encountered by any well. Moreover, having validated the templates with well-log
data in an area, we can go forward and use the templates for enhanced qualitative
interpretation of elastic inversion results (see case study 5 in Chapter 5).

Let us again consider the well-log data in Plate 2.47. Plate 2.48 is basically the same
cross-plot as in Plate 2.47, superimposed onto the appropriate RPT. It includes porosity
trends for different lithologies: the upper white dotted line represents pure shale while
the black dotted line represents clean compacted brine-filled quartz sand. Increasing
gas saturations are included for the clean sands. Note that the two “shale” popula-
tions fall exactly on the shale trend, and assuming that the trends are valid for the
area, the obvious interpretation is that these two populations represent shales with
different total porosities. The “brine-sand” population sits just above the theoretical
brine-sand trend, and again assuming that the trends are valid for the area, the inter-
pretation is that the brine sand is slightly shaly. The “gas-sand” population falls well
below the brine-sand trend and roughly along the dotted lines indicating the effects of
increasing gas saturation. For the “gas-sand” population it is possible to estimate the
corresponding clean brine-sand porosities, but little can be inferred about the shaliness
of the gas sand (this is a fundamental limitation in seismic data analysis).
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Plate 2.49 shows examples of RPTs for different types of sands. The upper plot repre-
sents unconsolidated clean sand, whereas the lower one represents cemented sandstone.
For the unconsolidated sands we observe that the VP/VS ratio drops dramatically with
just a little increase in gas saturation, whereas the acoustic impedance drops more mod-
erately. For the cemented sandstones, which have a stiffer rock frame, there is a much
smaller fluid sensitivity. The VP/VS ratio shows a very small decrease with increasing
gas saturation. However, the acoustic impedance still shows a marked decrease due to
the density effect of the gas.

Log data for two different wells from offshore West Africa have been superimposed
onto the templates in Plate 2.49. The logs represent the same Oligocene interval, but
different burial depths; one well penetrated the Oligocene with approximately 1200 m
overburden (top RPT in Plate 2.49), the other with approximately 2400 m overburden
(bottom RPT). Hence, the sands and shales in the second well have been compacted
more than in the first well, and the sands in the second well are cemented whereas the
sands in the first well are unconsolidated. Quartz cementation tends to occur at temper-
atures over about 80 ◦C, corresponding to burial depths of about 1.5–2 km. The sands
in the first well (top RPT in Plate 2.49) show a much bigger fluid response than in the
second well (bottom RPT), even though the sands are from the same stratigraphic level!
This illustrates the value of the RPTs. Even for the same basin, and the same strati-
graphic level, different rock physics models will apply for different burial depths. More-
over, the RPTs indicate that the expected seismic response of hydrocarbon-saturated
sands will be different at the two wells. For the shallow sands in the first well, we
expect an AVO class II for oil-saturated sands, whereas the gas sands will be class III.
For the deeper, cemented sands in the second well, the oil sands will be predomi-
nantly AVO class I, whereas gas sands will be AVO class II. Hence, the AVO response
of hydrocarbons will be different at the two locations because of local diagenetic
changes. This example of RPT analysis confirms how rock physics depth trends must
be taken into account during AVO analysis, as shown in Chapter 4 and in case study 4,
Chapter 5.

2.9 Discussion

Rock physics models can be used to predict or diagnose petrographic changes from
velocity–porosity relations. By separating into different clusters of data, with character-
istic sedimentary features and rock physics properties, we can use these as training data
in a classification procedure (Chapter 3), and ultimately predict these various clusters
from seismic data (Chapters 4 and 5). But why do we use physical models to diagnose
the rocks? Why do we not just use thin-section and core information and correlate the
various intervals with corresponding seismic properties, without caring much about
the physical relations? First of all, thin-section and core data are not always available,
and especially in non-sand lithologies, this direct information is rarely available. Even
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in sandy intervals where such information is available, we will not automatically find
out what petrographic factor will be most important seismically, until we investigate
the rock physics properties. The Heimdal sands are clearly a good example of this: the
friable and cemented thick-bedded sands look very similar in core and thin section, but
small amounts of quartz cement occurring in some of the sands make a big difference
in seismic response. The rock physics diagnostics helped us to separate into these two
different rock types.

The rock physics diagnostics used in this chapter suffer from two important factors.
The first one is ambiguity in the velocity–porosity plane. A data point in this plane
does not necessarily have a unique diagnostic result. For sands, there are ambiguities
between clay content and sorting. Both these factors have similar paths in the velocity–
porosity plane. There also seem to be ambiguities between different lithologies. Marl,
tuffaceous muds and silty shales show great overlaps. One way to solve the ambigu-
ities would be to use shear-wave information. In this chapter we have primarily used
P-wave velocities. However, shear-wave information is often not available. Further-
more, the rock physics models for shear-wave velocity are known to vary widely from
real data (Dvorkin and Nur, 1996), indicating that current models are not completely
valid. One solution to this problem is to diagnose clusters of data using multivariate
statistical methods as an alternative to physical rock diagnostics. Examples are shown in
Chapter 3.

The second factor that may cause the rock physics diagnostics to fail is the issue of
resolution. The well-log data can show effective values of small-scale heterogeneities,
while the rock physics models used to diagnose the rocks in this chapter assume homo-
geneous rock types. This could be corrected by using effective rock physics models. The
thin-bedded shaly sands showed a large scatter, and some of this scatter could be due to
variation in sand–shale ratio and individual layer thicknesses. Ultrasonic measurements
on cores could eliminate this problem, but since the core samples in the studied area
are poorly consolidated or friable, velocity measurements in the laboratory would not
give correct in situ values.

The seismic lithofacies defined in this study create a link between rock physics and
sedimentology, which can be used in seismic reservoir characterization (see Chapter 5).
They can also serve as “building blocks” in seismic modeling. In both cases, the use
of seismic lithofacies becomes a predictive tool, as different seismic lithofacies will be
associated with each other. Seismic lithofacies will therefore make it easier to inter-
pret seismic amplitudes in terms of sedimentological features and depositional trends.
Ultimately, the potential of seismic lithofacies is to improve reservoir characterization
from 3D seismic data.

When rock physics is used in reservoir characterization, it is important to separate
depth-related changes and constant-depth variations in seismic properties. Usually,
hydrocarbon reservoirs are located within a small depth interval with little depth-
dependent variation in the seismic properties. Depth-related factors include mechanical
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and chemical compaction and related porosity reduction. However, variations in these
may occur at a given depth level. In the North Sea case considered here, we observed
that the transition from purely mechanical compaction to chemical compaction (i.e.,
quartz cementation) occurred within the Paleocene interval of interest, and this is a
very significant seismic horizon. As a consequence, sands are observed to change lat-
erally from friable sands to cemented sandstones, giving completely different seismic
signatures.

The RPT analysis presented in this chapter brings together the concept of rock physics
diagnostics with rock physics depth trends, for improved prediction of hydrocarbons at
any given depth and any given depositional environment. This RPT analysis represents
the first step in a methodology where the second step is to apply RPTs for interpretation
of elastic inversion results. The application to quantitative seismic interpretation is
presented in Chapter 4, with case examples in Chapter 5. Nevertheless, as illustrated
in this chapter, RPT analysis of well-log data may also be an important stand-alone
exercise. It can be used for petrophysical interpretation (i.e., formation evaluation)
and quality control of well-log data, as well as assessment of seismic detectability of
lithologies and fluids.

However, the templates must be used with care, and the reliability of the information
extracted depends on the quality of the input data and the model assumptions. RPTs
may not always be 100% valid, but can in most cases be used for enhanced qualitative
interpretation of well-log and seismic data. Moreover, one should be aware of poten-
tial scale effects distorting the similarities between well-log data and seismic data.
Nevertheless, the rock physics templates provide a very useful interpretation tool that
can improve communication between geologists and geophysicists and can help reduce
risk in seismic exploration and prospect evaluation.

2.10 Conclusions

� The seismic properties of sedimentary rocks are highly dependent on geologic factors
including burial compaction, diagenesis, rock texture, lithology, and clay content.

� Clay content, cement volume, degree of sorting, and lithology can be identified via
rock physics diagnostics based on well-log data.

� Rock physics diagnostics are important to incorporate into seismic interpretation.
Otherwise, the seismic response differences may be misinterpreted as fluid or porosity
changes, and result in erroneous prediction of hydrocarbons.

� Rock physics diagnostics can be used as a tool to identify characteristic clusters of
data (facies) that can serve as training data in classification procedures (Chapter 3).

� Seismic lithofacies are seismic-scale sedimentary units with characteristic rock
physics properties. Geologically, these facies are defined by clay content, grain size,
and bedding configuration. The potential benefits of seismic lithofacies are better
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understanding of seismic signatures and consequently improved reservoir character-
ization in complex depositional systems.

� Hertz–Mindlin theory can be applied to predict expected velocity–depth trends
for unconsolidated sands and shales. Dvorkin–Nur’s contact-cement theory can be
applied to cemented sands.

� Deviations from expected velocity–depth trends can be related to overpressure, gas,
diagenesis, lithology, uplift, etc. One can apply the velocity–depth models to detect
seismic anomalies related to these effects.

� Quartz cementation of sands tends to initiate at a certain burial depth. Even a small
percentage of contact diagenetic cement strongly affects the elastic properties of
sands, resulting in a drastic difference between the seismic response of slightly
cemented and friable reservoirs.

� Rock physics templates (RPTs) are basin-specific rock physics models constrained
by local geologic trends. A compilation of RPTs provides geoscientists with an easy-
to-use “tool-box” for lithology and pore-fluid interpretation of sonic log data and
elastic inversion results.

� The RPT technology has a broad range of applications, ranging from analysis and
quality control of well-log data, to interpretation and quality control of elastic inver-
sion results.



3 Statistical rock physics: Combining rock
physics, information theory, and statistics
to reduce uncertainty

Any physical theory is a kind of guesswork. There are good guesses and bad guesses. The language
of probability allows us to speak quantitatively about some situation which may be highly variable,
but which does have some consistent average behavior.
. . .
Our most precise description of nature must be in terms of probabilities. Richard Phillips Feynman

3.1 Introduction

This chapter introduces the concepts of statistical rock physics for seismic reservoir
characterization. We will see how we can quantify uncertainties in reservoir exploration
and management by combining rock physics models with statistical pattern recognition
techniques to interpret seismic attributes. Plate 3.1 shows an example of results from
a statistical rock physics study. Seismic impedances from near and far-offset inver-
sions were interpreted using well logs and rock physics to estimate the probabilities of
oil sands. The figure shows the iso-probability surface for 75% probability of oil-sand
occurrence. Statistical rock physics is also useful for identifying additional information
that may help to reduce the interpretation uncertainties. Seismic imaging brings indi-
rect, but nevertheless spatially extensive information about reservoir properties that are
not available from well data alone. Rock physics allows us to establish the links between
seismic response and reservoir properties, and to extend the available data to gener-
ate training data for the classification system. Classification and estimation methods
based on computational statistical techniques such as nonparametric Bayesian classifi-
cation, bootstrap, and neural networks help to quantitatively measure the interpretation
uncertainty and the misclassification risk at each spatial location. With geostatistical
stochastic simulations, geologically reasonable spatial correlation and small-scale vari-
ability are added; these are hard to identify with seismic information alone because of
the limits of resolution. Combining deterministic physical models with statistical tech-
niques helps us to develop new methods for interpretation and estimation of reservoir
rock properties from seismic data. These formulations identify not only the most likely
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interpretation of our seismic data but also the uncertainty of the interpretation, and
serve as a guide for quantitative decision analysis.

3.2 Why quantify uncertainty?

It is well known that subsurface heterogeneity delineation is a key factor in reliable reser-
voir characterization. Heterogeneities contribute to interpretation uncertainty. These
heterogeneities occur at various scales, and can include variations in lithology, pore
fluids, clay content, porosity, pressure and temperature. Some of the methods used
in seismic reservoir characterization are purely statistical, based on multivariate tech-
niques (e.g. Fournier, 1989). Others are deterministic, based on physical models derived
from elasticity theory as well as laboratory observations. Each group of techniques can
have some degree of success depending on the particular study. The optimum strategy is
to combine the best of each method to generate results much more powerful than would
be possible from purely statistical or purely deterministic techniques alone. Examples
where combined methodologies have been used in case studies include, among others,
Lucet and Mavko (1991), Doyen and Guidish (1992), Avseth et al. (1998, 2001a,
2001b), Mukerji et al. (1998a, 2001), and Eidsvik et al. (2004); see also the case
studies in Chapter 5.

Subsurface property estimation from remote geophysical measurements is always
subject to uncertainty, because of many inevitable difficulties and ambiguities in data
acquisition, processing, and interpretation (see Chapter 4). How can we express quan-
titatively the information content and uncertainty in rock property estimation from
seismic data? Indeed, why quantify uncertainty at all? Most interpretation techniques
give us some optimal estimate of the quantity of interest. Obtaining the uncertainty of
that estimate usually requires further work and hence comes at an extra cost. So what
extra benefits do we get thereby? Why care about quantifying uncertainty?

Uses of uncertainty
� Assessing risk
� Integrating data from different sources
� Estimating value of additional data

One fundamental reason stems from our accountability as responsible scientists. We
know that models are approximate, data have errors, and rock properties are variable. So
it is always appropriate to report error bars along with the interpretation results. Error
bars lend credibility. A more practical reason for understanding uncertainty is for risk
analyses and optimal decision-making. Quantifying uncertainty helps us to estimate our
risks better, and possibly take steps to protect ourselves from those risks. Uncertainty



113 3.2 Why quantify uncertainty?

estimates are useful also in data integration, and in estimating the value of additional
information for reducing the uncertainty. Complex interpretational processes such as
reservoir characterization usually require integration of data from different sources and
of different types. Understanding the uncertainties associated with the different data
sets helps us to assign proper weights (and discard unreliable data) before we combine
them together in the interpretational model. Additional data (for example S-wave data
in addition to P-wave seismic data) may help to clear away ambiguities and reduce
uncertainty – but not always. Estimating the value of additional information requires
quantitative estimates of uncertainty.

3.2.1 Uncertainty, probability distributions and the flaw of averages

Having understood some of the applications of estimating uncertainty, let us now look
at the tools required for quantitatively expressing uncertainty. Probabilities, random
variables, and probability distributions are the basic building blocks of uncertainty.
Classically the concept of probability involves long run frequencies. When we say that
the probability of heads in a fair coin toss is 1/2, we mean that if we were to toss the
coin repeatedly in a long series of independent tosses, heads would occur half of the
time. This frequency concept of probability may be applicable in some situations,
but often it does not suffice. For example, in the problem of trying to estimate the
net-to-gross (NG) of a reservoir, what does it mean to say that the probability that
0.6 < NG < 0.7 is 1/2? Here we do not have repeated identical trials. The net-to-gross
is an uncertain number that we are trying to estimate. It is either between 0.6 and
0.7 or it is not. It cannot be half of the time within the interval and half of the time
outside. Subjective probability theory allows us to deal with probabilities when the
frequency viewpoint does not apply. In the subjective view probability is the degree of
belief about a statement on the basis of given evidence. Some subjective probabilists
argue that the frequency concept never applies because it is impossible to have a long
sequence of identical repetitions of any event, except in textbooks. There continues
to be disagreement and posturing among statisticians about the various philosophical
viewpoints of probability. The interested reader can find discussions of the differing
philosophical perspectives in Berger (1985), and Kyburg and Smokler (1980). Berger’s
(1985) book is also an excellent source for Bayesian analysis and statistical decision
theory.

Uncertainty arises through our imperfect knowledge. We model uncertainty mathe-
matically by random variables. Random variables are uncertain numbers. They can be
continuous variables (e.g. uncertain porosity) or categorical variables (e.g. uncertain
shale/sand lithology). Statistical probability density functions (pdfs) and cumulative
distribution functions (cdfs) give us one way to describe quantitatively the state of our
knowledge – or lack of knowledge – about the random variable. Categorical random
variables are described by their probability mass function (pmf). If a random variable X
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has a pdf f (x), then specifying f (x) allows us to compute probabilities associated with
X:

P(a < X < b) =
b∫

a

f (x) dx

The cdf is obtained by integrating the pdf. These distribution functions are the shapes
that describe the uncertain quantity. The moments of the pdf, such as the mean and
standard deviation, tell us about the central tendency and spread of the random vari-
able, but a complete description of the random variable is given by the full pdf. The
mean and standard deviation are the height and weight, but the pdf is the complete
DNA. How do we estimate the unknown pdf from observed data? One estimate is the
parametric approach where we assume that the pdf is a known function (e.g. Gaussian)
and estimate the parameters (e.g. mean and variance) of the function from the data. A
nonparametric approach makes less rigid assumptions about the functional form of the
pdf. Silverman’s monograph (Silverman, 1986) is the standard reference for nonpara-
metric density estimation. The oldest and simplest density estimate is the histogram
(Figure 3.2). The choice of bin widths and number of bins can have quite an impact on
the histogram. Nevertheless, histograms are very useful for exploring data variability.
Kernel estimators can improve upon histograms. Kernel-based pdf estimates amount to
a smoothing or interpolation of the observations by a kernel or window function. The
pdf estimate is a superposition of n window functions centered at the n data points.
The window functions themselves must be nonnegative and integrate to 1 to ensure
that the estimate is a legitimate pdf. Examples of window functions are the triangular
kernel, the Gaussian kernel, or the Epanechnikov kernel (Silverman, 1986). The shape
of the kernel does not matter too much. Any legitimate kernel function can be chosen
based on considerations such as ease of computation. The size of the kernel and the
amount of smoothing does have significant impact on the estimated pdf. If the win-
dow is too large, the estimated pdf will be too smooth and have too little resolution.
If the window is too small, the estimate will have too much variability. Figure 3.3
shows histograms and smoothed kernel-based pdf estimates for porosity observed in
a well log. The appropriate choices of the smoothing parameter will depend on the
purpose of the density estimate. For many applications it is desirable to choose the
smoothing subjectively by plotting several curves with different amounts of smoothing.
Several pdf plots smoothed by different amounts can give more insight about the data
than a single automatic curve. For visual presentations, the curve should be some-
what undersmoothed. The eye can very easily do further smoothing but it is hard to
unsmooth “by eye.” When estimating pdfs for statistical classification purposes, the
smoothing parameter can be selected by cross-validation using a training data set and
a test set. The smoothing that gives the least classification error on the test set is
selected.
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Figure 3.2 Histograms showing variability of P-wave velocity for three different formations in
Texas. The histogram for the San Andres formation shows a bimodal behavior. The Queen
formation has a skewed VP histogram with a long tail. Data are from sonic logs.

The relations between multiple random variables (e.g. rock properties and seismic
signatures), including their inherent uncertainty, can be described by joint pdfs. Non-
parametric bivariate pdfs may be estimated as simple 2D histograms or by 2D kernel
estimates analogous to the 1D pdf estimation. Plate 3.4 shows an example of a trivariate
nonparametric joint density estimate for VP, VS, and rock bulk density. The power of
nonparametric pdf estimates lies in their generality. We make no assumptions about
their functional form but let the data speak. But computation and number of sam-
ples required for good estimation grow exponentially with dimensionality. The curse
of dimensionality limits practical nonparametric pdf estimations in high dimensions
(Duda et al., 2001).
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Figure 3.3 Histograms and kernel estimates for pdf of neutron porosity from well data. Increasing
number of data points, n, from top to bottom, and for two different kernel bandwidths, w, for a
Gaussian kernel. Larger bandwidth gives a smoother pdf estimate.

Pdfs and random variables help us to quantify the distributions and variability of
target reservoir properties. Estimates of the variability are data-dependent and model-
dependent, and subject to our prior knowledge. All estimates of uncertainty are
subjective.

The pdfs must be estimated from prior knowledge or available training data. The
training set often has to be extended or enhanced using rock physics models to derive
pdfs for situations not sampled in the original training data. For example, a well may
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encounter only brine sands, thus yielding no data for oil sands. The well data give us
the pdf for brine-sand properties such as P-wave velocity or impedance. The pdf for oil-
sand P-wave velocity then has to be derived by transforming the brine-sand pdf, using
Gassmann’s fluid substitution model. When the pdfs can be expressed analytically, it
may be possible to carry out the mathematical transformations analytically to derive the
new distributions. An example of analytically derived pdfs for hydrocarbon indicators
using the congenial Gaussian distribution is presented in Mavko and Mukerji (1998b).
Monte Carlo simulation is another, more powerful way of deriving transformed pdfs,
without having to assume analytically tractable forms for the pdfs. Simple techniques for
univariate and multivariate Monte Carlo simulations are described later, in Section 3.5.

The concept of derived distributions is very important in statistical rock physics.
Derived distributions, by combining deterministic rock physics models with the
observed statistical variability, allow us to build a more powerful strategy for reser-
voir prediction than would be possible by using either purely deterministic models
or purely statistical methods.

We may have data about an uncertain reservoir property X1 that follows a pdf PI(X1).
Another uncertain reservoir property of interest is X2. But we have no data for X2. We
believe that X1and X2 are related by a deterministic rock physics model: X2 = g(X1). We
can estimate the pdf of X2 by simulating multiple realizations of X1 drawn from PI(X1),
propagating them through the function g(X1) to compute multiple values of X2, and
then estimate the distribution of X2, P2(X2), by binning and smoothing the computed
values. This is a derived distribution. Derived distributions extend the training data.

Ignoring the variability of rock properties in quantitative computations can drasti-
cally distort decisions. As an example of the pitfall of ignoring distribution, consider
the following calculation. We would like to compute the normal-incidence reflectivity
between an overlying shale layer and a packet of thinly bedded, sub-seismic-resolution
sand/shale layers. The effective properties (velocity, density, and impedance) of the thin
sand/shale layers are computed using the Backus average. The contrast between the
impedance of the shale and the effective impedance of the sand/shale packet then gives
us the normal-incidence reflectivity. The Backus average elastic modulus depends on
the volumetric sand fraction. For normal-incidence propagation perpendicular to the
layers, the effective P-wave modulus is given by a volumetric harmonic average of the
sand and shale moduli. The effective density is given by the usual volumetric arithmetic
average of sand and shale densities. By doing the calculations for all sand/shale ratios
(0 to 1) we get a relation between sand ratio and normal-incidence reflectivity. We
could do the computation in two different ways. We could take an average value for
sand VP, density, and impedance, and another average value for the shale VP, density,
and impedance, and use them in the equations for Backus average and reflectivity. The
average values could be estimated from blocked well logs, for example. This average
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Figure 3.5 Relation between normal-incidence reflectivity, R(0), and sand/shale ratio in very thin
bedded sand/shale layers. The line is obtained using Backus average for thin layers, with blocked
average values of sand and shale properties from well log. In this computation we ignored the
variability of sand and shale velocity, density, and impedance.

computation, ignoring the variability, gives us the single line shown in Figure 3.5. One
might use this line for interpreting observed reflectivities to estimate sand/shale ratio in
the thinly layered packet. Instead of taking average sand and shale properties, another
way to do the computation would be by Monte Carlo simulation. This would take into
account the natural variability in the properties of the sand and shales. We draw a sam-
ple sand (VP, density) and a sample shale (VP, density) from the distributions observed
in the well log. The simulated values are then used in the equations. A number of
realizations are drawn to get the full distribution of reflectivity for every sand fraction.
We bombard the equations with the whole range of possible inputs in accordance with
their probability of occurrence. Now we see something very different (Figure 3.6).
The average of the Monte Carlo simulations (solid curve) is not the same as the result
from the average computation (solid straight line). The straight line would overpredict
considerably the sand ratio for large values of reflectivity, and slightly underpredict
the sand ratio at small values of reflectivity. The average computation also completely
misses the negative branch of the relation between sand ratio and reflectivity. As we
see from the distributions of the shale and sand impedances in Figure 3.7A, there is
considerable overlap, leading to a small finite chance of getting negative reflectivity.
The histogram of reflectivity from the Monte Carlo Backus calculation is shown in
Figure 3.7B. Monte Carlo simulations also give us confidence intervals, such as the
10 percentile and 90 percentile curves shown in Figure 3.6. Computations using aver-
ages alone do not give any indication of the uncertainty due to the variability in the
properties. The example described above was not a contrived example with cooked-up
distributions, but an actual example, using log derived properties from a region where
identification of thin sand/shale packets is a practical problem. The surprising outcome
is an example of the flaw of averages (Savage, 2002, 2003). One should not expect to
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Figure 3.6 Relation between normal-incidence reflectivity and sand/shale ratio in very thin bedded
sand/shale layers. The solid straight line is obtained using the Backus average for thin layers, with
blocked average values of sand and shale properties from well log. Curves show the result of
computations using Monte Carlo simulation to incorporate the variability of sand and shale
velocity, density, and impedance. The solid curve is the mean of the distributions obtained from the
simulations, and the upper and lower dashed curves are the 10 percentile and 90 percentile curves,
respectively. We see clearly the pitfalls of ignoring variability. The calculations using average
values can seriously overestimate the sand/shale ratio, leading to wrong decisions. It does not
capture the negative reflectivity branch, and gives no indication of the uncertainty in the relation.
The percentile curves obtained from Monte Carlo simulations are a measure of uncertainty in the
relation, subject to the assumed model being correct.

get even correct average results using average values of inputs. Plugging in a single
“best guess” input does not result in the “best guess” output. Mathematically, for a
function g(x), in general, 〈g(x)〉 �= g(〈x〉), unless g(x) is linear. The symbol 〈 〉 denotes
the expectation operator. When there is a lot of variability, calculations using single
point values are almost worthless. Simple simulations to take account of the variability
can be easily performed using software such as Excel, Matlab , or S. There is hardly
any excuse for falling prey to the flaw of averages.

Monte Carlo simulations, by taking into account whole distributions of values instead
of single average values, help to avoid the flaw of averages. Calculations based on a
single “best guess” input may not give the “best guess” output.

3.2.2 Describing the value of additional data with probability distributions

As already mentioned, additional data can sometimes bring in information that can help
to reduce the uncertainty. For example, studies have shown that knowing VS, in addition
to VP, can help to resolve ambiguities in reservoir facies versus fluid identification that
arise from geologic variability.
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Figure 3.7 A, Distribution of shale and sand impedances used in the computation for Figure 3.6.
On average the sand has slightly higher impedance than the shale, but there is considerable overlap.
B, Histogram of reflectivity from Monte Carlo simulations. Because of the overlap in shale and
sand impedances, there is a small but finite chance of negative reflectivity values.

Figure 3.8 illustrates an uncertainty in pore fluid identification that can occur from
natural variability of rock properties such as porosity, sorting, and texture. On both
the left and right figures, velocity data from gas- and water-saturated sandstones are
plotted. In both, the porosities are large and the rocks are elastically soft, so there is
a large separation between the two clouds in the two-dimensional (VP, VS) domain,
as would be predicted by the Gassmann relations (Chapter 1). The biggest difference
between the two cases is the range of porosities. On the left, the standard deviation in
porosity is only 2%. On the right, it is twice as large. Because velocity is well correlated
with porosity, we find a very narrow range of velocities on the left (standard deviation
∼100 m/s), and nearly twice the range on the right.
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Figure 3.8 Changes in natural variability of porosity and velocity can become comparable to fluid
effects.

The variability in velocity and porosity increases the uncertainty if we try to detect
pore fluids using VP only. Figure 3.8C shows the pdfs of VP for the narrower porosity/
velocity range. There is relatively little overlap between the gas- and water-saturated
curves, so VP would be sufficient for identifying the pore fluid, and VS would add little
value. Figure 3.8D shows the VP pdfs for the broader porosity range. Even though
the average shift in velocity between gas and water saturation is the same on the left
(Figure 3.8C) and on the right (3.8D), and there is no measurement error in either, the
broadening of the distributions would make fluid detection with VP unreliable. In this
case adding shear information would be extremely valuable.

A simple statement of the problem is that the change in P-velocity due to fluids is
small compared with the naturally occurring variability in P-velocity due to porosity.
Adding shear data essentially makes the ambiguity vanish.

In Figure 3.9 we explore how geologic variability might affect exploration or mon-
itoring problems. For these plots, we have randomly sampled Han’s sandstone data
(Han, 1986) in the porosity range 15–31%. In 3.9A, we compare velocity data under
both water- and gas-saturated conditions, at effective pressure of 10 MPa. The combi-
nation of high porosity and low effective stress makes the two data clouds fairly well
separated, so that we would expect reasonable success in distinguishing gas vs. water
from VP and VS data. It is fairly clear, however, that VP alone would not be enough.
The overlapping pdfs in the plot below Figure 3.9A show the distributions of VP for the
gas- and water-saturated conditions, and there is virtually no separation. In this case,
introduction of even noisy shear data, allowing us to work in two dimensions, would
greatly improve our interpretation.
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Figure 3.9 Subsets of Han’s sandstone data. A, Data at 10 MPa, showing the separate gas- and
water-saturated clouds. B, Data at 40 MPa, showing the gas- and water-saturated clouds, now with
less separation. In both A and B, VP alone would not be very valuable for separating the clouds, as
seen by the overlap of the smoothed histograms. C, Water-saturated data, showing the overlapping
clouds for high and low effective pressures. D, Gas-saturated data, showing the overlapping clouds
for high and low effective pressures.
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In Figure 3.9B, we compare data for the same rocks at 40 MPa effective pressure,
under both water- and gas-saturated conditions. The larger effective pressure makes
the rock elastically stiffer, and a stiffer rock will have a smaller seismic sensitivity
to pore fluid changes, as predicted by Gassmann theory. Detection of the saturation
difference using VP alone would be hopeless, as shown by nearly perfect overlap of the
VP pdfs. Working in two dimensions with both VP and VS will be better, although we
can expect more interpretation errors than in 3.9A, because the two clouds are closer
together. We will show in Section 3.6 how to quantify these differences statistically,
using discriminant analysis and Bayesian classification methods.

Figure 3.9C shows a comparison of water-saturated data at two different effective
pressures. Figure 3.9D shows a similar comparison of two different effective pressures
with gas saturation. The pressure change shows up as a shift in VP which might be
detectable in time-lapse seismic data, but would be difficult to detect in an exploration
mode. Adding shear velocity does not make the change any more detectable, although
it allows us to see that the saturation stayed constant and only the pressure changed in
each case.

There are seismic attributes that implicitly include shear information and that can be
derived from conventional P-wave 3D seismic data. The AVO gradient (proposed by
Shuey, 1985) and various other forms of AVO attributes, as well as the far-offset elastic
impedance (Connolly, 1998; Mukerji et al., 1998b; see Chapter 4) are examples of
such “physical attributes” that indirectly contain shear-wave information. The elastic
impedance (EI) is not an intrinsic property of the rocks, because it depends on the
incidence angle of the waves. Nevertheless, it can be a very useful S-velocity-dependent
attribute, which can be obtained from inversion of far-offset partial stacks. Shear-
wave information may also be obtained more explicitly from multi-component surveys,
which, however, are costlier than conventional single-component surveys. How do we
assess the relative value of cheaper, indirect shear-wave information from far-offset
data versus costlier, direct shear-wave information from multi-component data? We will
describe how pdfs allow us to compute Shannon’s information entropy. This information
entropy gives us a quantitative measure of the value of different types of additional data
in reducing the uncertainty of rock property estimation.

3.3 Statistical rock physics workflow

The statistical rock physics methodology described in this chapter may be broadly
divided into four steps:
(1) First, well-log data are analyzed to obtain facies definition. This is done after

appropriate corrections, including fluid substitution and shear velocity estimation
when required. Basic rock physics relations such as velocity–porosity and VP–VS

are defined for each facies (see Chapters 1 and 2).
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(2) This is followed by Monte Carlo simulation of seismic rock properties (VP, VS,
and density) and computations of the facies-dependent statistical pdfs for seismic
attributes of interest. A key feature is the use of rock physics modeling to extend
the pdfs to situations that are of interest but were not encountered in the wells (e.g.
different fluid saturations, presence of fractures, different levels of diagenesis or
cementation, different depths). Gassmann’s equations can be used for fluid substi-
tution. Lithology substitution can be done using the various rock models described
in Chapter 2. The extended pdfs are the derived distributions. Using the derived pdfs
of seismic attributes, feasibility evaluations are made about which set of seismic
attributes contains the most information for the problem. Discriminating litholo-
gies may require a different set of attributes than, say, discriminating fractured
from nonfractured reservoir zones. Evaluation of the seismic attribute pdfs based
on well-log data can be used to guide the choice of attributes to be extracted from
the seismic data.

(3) The seismic attributes from seismic inversion or analyses (AVO analyses,
impedance inversion, etc.) are used in a statistical classification technique to
classify the voxels within the seismic attribute cube. Calibrating the attributes
with the probability distributions defined at well locations allows us to obtain a
measure of the probability of occurrence of each facies. Various standard statis-
tical validation tests can be performed to obtain a measure of the classification
success.

(4) Geostatistics is used to include the spatial correlation, represented by variograms
or multiple-point spatial statistics, and the small-scale variability, which is not cap-
tured in seismic data because of their limited resolution. The probabilities obtained
in the previous step from classification of seismic attributes alone are dependent
on the local voxel values of the seismic attributes, and are not conditioned to the
neighboring spatially correlated values. Hence, this final geostatistical step may be
used to update the seismically derived probabilities by taking into account geolog-
ically reasonable spatial correlation and by conditioning to the facies and fluids
observed at the well locations.

Four steps of the statistical rock physics methodology:
(1) Well-log analyses and facies definition
(2) Rock physics modeling, Monte Carlo simulation and pdf estimation
(3) Seismic inversion, calibration to well pdfs, and statistical classification
(4) Geostatistical simulations incorporating spatial correlation and fine-scale het-

erogeneity
Depending on the stage in the reservoir exploration, development, and production
cycle, the steps outlined above may be modified.
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Not all of the steps may be carried out in the initial exploration stages where there
are few or no well data. In the exploration stage, the pdfs of just a few basic facies
categories (say shale, oil sand, brine sand) may be estimated from wells and a quick
classification may be done using seismic attributes derived at a few locations, e.g. a few
AVO intercepts and gradients derived from a handful of CDP (common depth point)
gathers. In some cases, at the early exploration stage, there may be no wells, and the
pdfs of rock properties may be on the basis of analogous data from regions of similar
geologic history. In the development stage, on the basis of more extensive well data,
more facies categories may be defined (e.g. shale, unconsolidated sand, cemented sand,
etc.). Seismic attributes extracted after careful inversions over a full 3D volume may be
used in the classification. Geostatistical methods would be applied both in the charac-
terization and production stages. Although we describe geostatistics as the fourth step,
in practice geostatistical methods can be incorporated at all stages: in defining horizons
and estimating reservoir structures, as well as in the seismic inversion itself. Our work-
flow described geostatistical simulations after the seismic inversion, but constrained by
the probabilities derived from statistical classification of the seismic inversion results.
As will be described briefly in Chapter 4, as an alternative, geostatistical seismic inver-
sion can incorporate spatial correlation within the steps of the inversion itself. In the
production monitoring stages, the lithologies stay constant and the changes in seismic
signatures are due to production-related changes in fluid saturation and pressure. In
this case, obviously, the pdfs would be conditioned to changes in pressure and satura-
tion. Use would also be made of multi-phase flow simulation results to constrain the
saturation-related changes in seismic attributes. In the production monitoring stage,
much more care has to be given to derive the distributions not only for different fluid
saturations, but also for different spatial scales of heterogeneous saturations.

3.3.1 Step 1: Identifying facies from well logs and geology

Usually the information from the wells is the most directly available observation of
the reservoir. In many reservoir characterization projects the first step is to define,
based on the well information, the facies that, a priori, we would like to be delineated
in the reservoir. We will use the term facies for categorical groups, not necessarily
only by lithology type, but also by some property or a collection of properties, for
example a combination of lithology and pore fluids. Brine sands and oil sands would be
considered as two different “facies” or categories. An example of three different facies
might be: carbonates with gas-filled fractures, carbonates with brine-filled fractures,
and unfractured carbonates.

Using the available information at the well – cores, thin sections, geology, logs, pro-
duction data – a facies indicator is assigned to each depth. It is convenient to do this with
one or a few key wells where the data and interpretation are most complete and reliable.
The criteria to define the facies depend on the targeted objective. This could be to map
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different lithologies (sands/shale facies), to delineate fractures (unfractured/fractured
facies), to identify fluids (brine-sand/oil-sand facies) or to monitor changes in pressures
and/or temperatures in a reservoir. It is a common practice to initiate the facies definition
with exploratory cross-plots between the different logs, looking for cluster separation.
The gamma-ray, resistivity, density, and sonic logs are often very useful for defin-
ing different lithologies. Knowledge of background geology and core and thin-section
information also play an important part in this step. Facies or category identification
may be done purely statistically using what are known as “unsupervised learning”
algorithms. However, this usually gives poorer results than supervised learning, where
facies clusters are defined on the basis of expert knowledge such as petrophysical and
geologic expertise. Plate 3.10A shows the result of facies definition in a set of well logs
from the North Sea (see also Sections 2.4–2.5).

A critical, and obvious, point is that each facies is not a single rock, but a collection of
geologically similar rocks that span a range of petrophysical and seismic properties. For
example, in Plate 3.10 the oil sands span a range of velocity, density, and impedance, as
do the water sands and the shales. This intrinsic variability of rock properties presents
one of the biggest challenges of quantitative seismic interpretation: when does an
observed attribute change indicate a significant change across facies rather than a minor
fluctuation within a facies?

3.3.2 Step 2: Rock physics, Monte Carlo simulation and pdf estimation

Basic rock physics relations such as velocity–porosity behavior and VP–VS relations
are defined for the facies. In wells with missing VS, VS prediction has to be carried out
using VP–VS relations appropriate for the facies (see Chapters 1 and 2 for basic rock
physics modeling). The VP–VS relations should ideally be locally calibrated.

The different physical conditions or facies of interest that we would like to identify
may not always be adequately sampled in the initial well training data. It is often
necessary to extend the training data, using rock physics to simulate different physical
conditions theoretically. As we saw in Chapters 1 and 2, there are theoretical and
empirical models to predict rock physics “What ifs” – the effects of changes in fluid
saturation, temperature, pressure, and variations in sedimentological properties such
as cementation, sorting, and lithology. With rock physics it is possible to translate
production or geologic information into elastic properties that condition the seismic
response.

A critical assumption of the well-calibration process is that the well-log data extended
by rock physics modeling will be statistically representative of all the possible values of
VP, VS, and density that might be encountered in the study area. This includes facies-
to-facies variations as well as the intrinsic variability within each facies, and is not
limited to the facies variability encountered in the wells alone. The subjective decision
that the training data are a statistically representative set underlies almost all statistical
classification techniques. With this assumption it is possible to explore the intrinsic
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variability of each facies in the VP–VS–density space using correlated Monte Carlo
simulation (see Section 3.5). A large number of points are generated spanning the
intrinsic variability while preserving the distributions and the VP–VS and VP–density
correlations of the original data. Using well data to estimate the intrinsic geologic
variability implicitly relies on Walther’s law in geology (Middleton, 1973) that relates
vertical variability to lateral variability within conformable stratigraphic sequences.
Thus we take the vertical variability in rock properties observed in the well and use this
to infer the possible lateral variability that we might encounter between the wells for
the same sequence. Deviated or near-horizontal wells may give a more direct inference
of the lateral variability within the formation intersected by the well.

Next, to establish the link with the seismic information, seismic observables and
attributes are theoretically calculated using the extended log-based training data. Monte
Carlo realizations are drawn from the distributions of each facies defined above, and are
used in deterministic models to compute seismic attributes such as AVO intercept and
gradient, P- and S-wave impedance and others of interest. An attribute is any character-
istic that can be extracted from the seismic data. Although the statistical methodology
is completely general and can be applied to any collection of mathematically defined
attributes, in this book only seismic attributes with some “physical meaning” are con-
sidered. This type of seismic attribute has a well-defined physical relation with the
reservoir properties, and can be either calculated using well logs (VP, VS, density) or
extracted from seismic data (e.g. with inversion, or AVO techniques).

Not all seismic attributes respond equally to different reservoir properties. For exam-
ple, seismic P-wave velocity and S-wave velocity are not equally affected by changes
in fluid saturations. Therefore the optimum seismic attribute or combination of seismic
attributes to be used depends on both the particular reservoir and the targeted problem:
lithology classification, fluid detection, fracture-zone identification, etc. Possibly the
easiest (but not the most rigorously objective) way to select attributes when there are
only a few of them is by visual inspection of color-coded comparative histogram plots
or cross-plots of attributes. A more quantitative approach is described in Section 3.4 on
information theory. Plate 3.10Bshows an example of a cross-plot of acoustic impedance
(AI) vs. elastic impedance at 30◦ (EI) calculated with well logs. As can be seen, there
are three color-coded groups: oil sandstones, brine sandstones, and shales, clearly sep-
arated in this AI–EI plane. On the other hand, if a single attribute is used (equivalent to
projecting the points over one of the axes), it is not possible to discriminate the three
groups completely. The computation of seismic attributes and estimation of their pdfs
from log data serve as a feasibility check to decide which attributes should be extracted
from the field seismic data. In the initial exploration stages, this kind of feasibility
study may also be used as a guide for designing surveys suitable for extracting the most
promising attributes.

During this process of computing attributes it may be determined that not all of the
a-priori defined facies, based on geologic, petrophysical and log data, can actually be
separated in the seismic attributes space. In that case it is necessary to consider the
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union or division of some of the facies. Looking carefully at Plate 3.10B, we can iden-
tify different symbol shapes (triangles, circles, etc.) within each color-coded group. A
priori, eight groups were defined, but it is clear that not all groups were separable with
the proposed seismic attributes. In practice, splitting or combining categories can be
done quantitatively using cluster analysis techniques. However, as mentioned earlier,
completely unsupervised cluster analysis usually gives poorer results than supervised
learning, where clusters are defined on the basis of expert subjective knowledge of
petrophysics and geology. Subjective expert decisions play an important role in quanti-
tative interpretation. When splitting or combining facies, it is not enough to analyze the
attribute plots; it is also necessary to justify the decisions with geologic or production
observations. This helps to prevent the analysis from being driven to wrong conclusions
if there are problems with the data.

From the points computed in the seismic attribute space, the probability density func-
tions (pdfs), either univariate (one attribute) or multivariate (combinations of attributes),
are estimated for each defined facies. In the simplest sense, an empirical pdf can be
thought of as a normalized and smoothed histogram. In practice, to obtain the pdfs
it is necessary to discretize the space where they will be calculated, and use a kernel
(window) function for smoothing, as described in Section 3.2.1. The monograph by
Silverman (1986) gives a good description of density estimation. More recent techniques
include the use of filtering in the wavelet-transform domain to estimate the smooth den-
sity function from the empirical histogram. Plate 3.10C shows a bivariate example of
the results of density estimation using a smoothing window. In the pdf estimation, there
has to be a compromise between the discretization and the smoothing. With too many
cells, the pdfs would be too specific to the particularities of the input sample, and would
not generalize to other data. With too much smoothing, the data variability would not
be captured, and the discrimination between groups would be washed away. To choose
these two parameters, a set of classification tests has to be done with a validation data
subgroup. In spaces with few dimensions (few attributes), the pdf calculation is not very
difficult, although there are some details (smoothness, grid definition, limit extrapo-
lation, etc.) that have to be carefully handled. On the other hand, in spaces with high
dimensionality, nonparametric pdf estimation is computationally demanding, and may
not be very reliable because of sparse data. Instead of pdf-based classification, other
classification methods, such as K-nearest neighbors, neural networks, or classification
trees, have to be used in such situations.

3.3.3 Step 3: Seismic information and statistical classification of seismic attributes

Seismic attributes, which include reflectivities, velocities, impedances, and others, are
derived from seismic data using different processing, analysis, or inversion techniques.
How to obtain attributes from the seismic data is a topic of ongoing research and
discussion. There are different algorithms for seismic inversion, each with its pros and
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cons, not discussed here (for more on this see Chapter 4). Velocity determination and
migration, and careful seismic processing, are decisive in the usefulness of the estimated
values of seismic attributes. In some cases the seismic acquisition and processing may
affect the absolute values of seismic amplitudes but maintain their relative variations.
With well calibration, these relative variations could still be of practical interest for
discrimination and classification of reservoir properties. In general terms, having “good
data” increases the probability of deriving reliable interpretations.

Some seismic attributes respond to the reservoir interval properties (e.g. acoustic
impedance, elastic impedance). Others respond to interface properties caused by con-
trasts across layers (e.g. reflectivity, AVO attributes). Plate 3.11A presents an example
of interface attributes extracted from a 3D seismic data set. The attributes shown are the
popular AVO attributes defined by Shuey (1985): normal incidence P-to-P reflectivity
R(0) (AVO intercept) and G (AVO gradient). The topography follows the traveltime
topography of the interpreted seismic horizon. The attributes were estimated along this
horizon from seismic AVO analyses. Plate 3.11B, a different example, this time of inter-
val attributes, shows acoustic and elastic impedance volumes resulting from impedance
inversion of near-offset and far-offset seismic partial stacks.

The seismic attribute values and their pdfs derived from the seismic data inversion are
usually not equal to the same attribute values computed theoretically from the well-log
VP, VS, and density. The reasons for those differences include the simplifications of the
models used to derive the analytical expressions (linearization of the reflectivity with
the incidence angle, plane layers, single interface, small contrasts, etc.), imperfections
in the data processing (residuals in attenuation corrections, diffraction, etc.), arbitrary
scaling of the field amplitudes, and noisy data. Additionally, an important issue is that
the measurement scales of the seismic and well logs are very different. The seismic
wave responds to reservoir property averages that are not always well approximated
by upscaling from the well logs. Often the Backus averaging of layer properties, prior
to drawing realizations, might work well for upscaling; sometimes it may not, as the
well log only samples heterogeneities along the well path, and lateral heterogeneities
are missed. Some other attempts to account for the scaling issues may include the
following. Instead of using individual Monte Carlo draws of rock properties from
log-scale pdfs, averages over multiple draws can be used. The number of points to
average would represent a scale equal to about 1/10 of the seismic wavelength. A
more rigorous attempt would draw realizations not only of the point properties, but
also their spatial distribution along the well. In essence this would create pseudo-
logs with the appropriate variability in point properties as well as the appropriate
spatial correlation. In addition to estimating the pdfs of rock properties, their spatial
correlation has to be estimated from well logs. Two common ways of describing the
spatial correlation are by variograms and by Markov transition matrices. Geostatistical
simulations based on variograms or Markov chain models can be used to generate
the pseudo-logs. Once multiple pseudo-logs are generated, synthetic seismograms are
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calculated and the desired attributes extracted from the synthetic seismogram. This
process is carried out with a large number of realizations of the pseudo-logs to capture
the variability of the seismic attributes. Upscaling is more rigorous in this procedure
because of the wave propagation calculation. Takahashi (2000) shows an example of
deriving distributions for normal-incidence reflectivity using variogram-based pseudo-
log simulation and forward synthetic seismic modeling. Modeling seismic signatures of
lithologic sequences using Markov chains has been presented by Godfrey et al. (1980),
Velzeboer (1981), and Sinvhal et al. (1984), among others. Eidsvik et al. (2003) use
Hidden Markov Chain models to estimate from well logs the parameters of the Markov
transition matrix for stratigraphic sequences.

Because of discrepancies between logs and seismic data, it may not be possible in
general to use directly the pdfs calculated with the well logs for classifying the attributes
extracted from the seismic data. In order to avoid the differences between the computed
and extracted attributes, the pdf-derived classification system should be calibrated with
the attribute traces around the wells. An option, when there are few available well
data, is to calibrate or scale the global pdfs derived from the seismic data with the
corresponding global pdfs calculated from the well logs. A simple scaling might just
consist of equalizing the histograms of well-derived and seismically derived attributes.
For multiple attributes this can also include equalizing the covariance of the attributes.
This recalibration of the seismic pdfs is based on the idea that the facies of interest (e.g.
oil sands) are outliers, and the global pdfs are predominantly the shales.

Once we have the calibrated pdfs and the seismically derived attributes, we can go
on to classify the volume or horizon of seismic attributes into different classes. These
classes are the ones defined in the first step, and depend on the targeted problem: the
classes could represent different facies, fluid types, fractured vs. unfractured rock, etc.
There are many statistical methods for pattern recognition or attribute classification.
Some examples include: discriminant analysis, K-nearest-neighbor classification, neu-
ral networks, classification trees, or Bayes classification with the estimated pdfs. There
exists a vast literature on statistical pattern recognition and classification with applica-
tions in various fields. Two general texts that cover many of the algorithms are Duda
et al. (2001) and Hastie et al. (2001). The book by Bishop (1995) describes classifica-
tion using neural networks. We describe briefly the mathematical basis for some of the
common classification techniques later in Section 3.6, after discussing the statistical
rock physics workflow. Plate 3.12 shows examples of applying Bayesian classification
for two different cases. With the Bayes classification method (Fukunaga, 1990; Houck,
1999), the conditional probability of each group given the combination of attributes
is calculated, and the sample is classified as belonging to the group that has the high-
est probability. Bayesian classification, by working with the conditional probabilities,
provides not only the most likely classification but also an estimate of the different
kinds of errors in the classification process. Plate 3.12A is the result of classifying the
AVO attributes R(0) and G shown in Plate 3.11A. Plate 3.12B shows iso-probability sur-
faces obtained after Bayesian classification of near- and far-offset impedances shown in
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Plate 3.11B. It is important to keep in mind that such probability surface visualizations
do not show the actual sand (or shale) bodies but show the probability that the bodies
have that spatial location and distribution.

3.3.4 Step 4: Geostatistics

By including geostatistical techniques of stochastic simulation in the analysis, we can
further take into account geologically realistic spatial correlations and spatial uncer-
tainty of reservoir properties. Geostatistical simulations can also attempt to reproduce
the expected small-scale variability that cannot be detected with seismic data, but is seen
in the well-log data. Geostatistical analysis requires estimation of spatial variograms
(or spatial auto- and cross-correlations) that measure how different reservoir properties
are correlated in space. Modern geostatistical techniques not only use the traditional
two-point spatial correlation, but can also incorporate multi-point spatial statistics.

As an example, we show results from a particular geostatistical technique known
as indicator simulation. In this technique the facies are represented by binary-valued
indicator random variables. Indicator random variables take the value 1 when the facies
is present, and 0 otherwise. Indicator simulation generates multiple equiprobable real-
izations of facies in the reservoir after incorporating the results from seismic attribute
classification as soft indicators. Plate 3.13 (top) presents a particular vertical section
of the multiple equiprobable volumes (realizations) generated using indicator simu-
lation. The figure clearly shows the characteristic spatial variability of the stochastic
process. For this example, the probabilities derived from the seismic acoustic and elastic
impedance attribute volumes of Plate 3.12 were used as soft indicators. Soft indica-
tors take values between 0 and 1. The Markov–Bayes indicator formalism (Deutsch
and Journel, 1996) was used to obtain the posterior conditional pdfs, incorporating
the spatial correlation through the indicator variograms. Plate 3.13(bottom) shows the
result of this updating of the prior pdfs, the probability of a facies given the seismic
attributes, to the posterior pdfs, the probability of a facies given seismic attributes,
the spatial correlation, and the facies indicator data from the wells. The colors in the
section shown in Plate 3.13 correspond to the probability that each point belongs to a
particular facies, oil sands in this case. The probabilities are calculated from the statis-
tics of a large number of geostatistical realizations. As was mentioned, this type of
result is an extension of the facies classification process described before, where the
spatial correlation and small-scale variability were included. In exploration situations
with sparse well data, often the updating may not change the pdfs very much. Some
applications (e.g. risk assessment for well placement) will require the pdfs, whereas in
some other applications (e.g. reservoir flow simulations) it will be necessary to have
stochastic realizations of reservoir properties drawn from the pdfs. Geostatistics pro-
vides powerful tools for spatial data integration, and can play an important role at
various stages of reservoir exploration and development. In the early stages, seismic
traveltime data and sparse well horizon markers can be combined geostatistically to
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delineate reservoir architecture. With more well data, core measurements, and mul-
tiple seismic attributes, it is possible to obtain geostatistical simulations of reservoir
properties such as lithofacies, porosity, and permeability. Geostatistics can be used in
seismic impedance inversions to impart the appropriate spatial correlation structure to
the inversions. In the later stages, geostatistics provides tools to incorporate production
data into the analysis. One of the pitfalls of using geostatistics is that users may apply
it in a black-box mode without understanding the underlying spatial models. Users
may naively throw in disparate data without accounting for the physics that relates the
data to the reservoir properties of interest. This leads to poor results. One of the main
benefits of geostatistics when properly applied is that it provides ways to estimate joint
spatial uncertainty. For mathematical background and details the reader is referred to
the literature on geostatistics. The books by Isaaks and Srivastava (1989) and Kitanidis
(1997) provide good introductory treatments. Software is available in the book by
Deutsch and Journel (1996). More comprehensive texts on geostatistics include Jour-
nel and Huijbregts (1978), Cressie (1993), Goovaerts (1997) and Chiles and Delfiner
(1999). Rubin (2003) gives an excellent treatment of spatial stochastic methods for
quantifying uncertainty in groundwater and solute transport.

After classification, it is imperative to cross-check the results with geologic, pro-
duction, and other reservoir data, as it is not always possible to include all kinds of
available information (especially the subjective information of experienced veterans,
encoded in their “natural neural networks”) in the analysis.

3.4 Information entropy: some simple examples

Statistical information theory gives us simple yet powerful tools to quantify the infor-
mation that each attribute can bring to discriminate the different facies (Mavko and
Mukerji, 1998b).

The information entropy, H (X ), is a statistical parameter that quantifies the intrinsic
variability of a random variable X. The concept of information entropy, which originated
in statistics and communication theory, has found applications in diverse fields such as
computational chemistry, linguistics, bioinformatics, and genetics. It can be computed
from the pdf, P(X ), as follows (Cover and Thomas, 1991):

H (X) = −
∑

i

p(xi ) ln[p(xi )]

when X takes discrete values. For continuous X the corresponding equation is:

H (X ) = −
∞∫

∞
ln[p(X )]p(X ) dX
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In this equation all X values where the pdf P(X) is zero are excluded from the integral.
For a given variance, the pdf with maximum entropy is the Gaussian distribution.
For a bounded pdf, the one with maximum entropy is the uniform distribution. For a
known mean, the pdf with maximum entropy is a truncated exponential. In practice,
for continuous variable X, the values may be discretized into N bins or intervals and the
entropy computed using the discrete summation formula given above. One extreme case
is when each interval is equally likely. Then P (Xi) = 1/N for all i and H (X) = ln N. Note
that this depends on the discretization level N. So a standardized measure of entropy
would be HN(X) = H (X)/ln N with values ranging between 0 and 1.

Consider a categorical variable C that takes two values, say, shale or sand: C = {shale,
sand}. Let P(C) = {1/2, 1/2} be the probabilities for C being shale or sand, respectively.
In other words, both events, shale or sand, are equally likely, and we are not sure which
one occurs. The entropy, H, is given by the summation of – [P log P], summed over all
the different categories (in this case 2). So, H = −[(1/2) log(1/2) + (1/2) log(1/2)] = 1
(using log to base 2) or H = 0.693 (using natural log). When the log is computed in
base 2, entropy is measured in units of “bit.” One can also compute H using natural
logarithms, in which case the unit of entropy is termed “nat,” while logarithms to base
10 give units of “dit.” Now let us compare this entropy of 1 bit to another situation
when P(C) = {9/10, 1/10}, i.e., shale is much more likely. This might be, for exam-
ple, the updated posterior probability after measuring some seismic attribute, such as
impedance. Now H = −[(9/10) log(9/10) + (1/10) log(1/10)] = 0.469 bit or 0.325 nat.
In this situation, the entropy or “disorder” is reduced, compared with the first case,
because now both events are not equally likely; one of the events (shale) is much more
likely to occur. There is now more predictability, less disorder, and less uncertainty.

While this was a very simple univariate example of calculating and comparing
entropies from probabilities, the same principle carries forward to multivariate data
types and multivariate probability distribution functions. Consider another simple uni-
variate example to compare variance and entropy as measures of uncertainty. Now let
the random variable X take the discrete values

X = {−2, −1, 0, 1, 2}
with two different probability functions:

P1(X ) = {0.0909, 0.1818, 0.4545, 0.1818, 0.0909} and

P2(X ) = {0.03, 0.44, 0.06, 0.44, 0.03}
The variance (square of standard deviation) is about the same (∼1.1) for both cases:

Var1 = 1.09, Var2 = 1.12

But the uncertainty is actually greater for case 1 as seen by computing the entropy:

Entropy1 = 1.41, Entropy2 = 1.10
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The variance is a measure of deviation from central tendency and may not always be a
complete measure of the uncertainty.

Using the concept of Shannon’s information entropy, it is possible to select the “best”
attributes as those that most reduce the uncertainty in the identification of reservoir
properties.

The quantity of information about a reservoir property X (e.g. porosity) contained in
an attribute A (e.g. seismic impedance) can be defined as:

I(X | A) = H (X) − H (X | A)

where H (X ) is the information entropy. Information entropy quantifies the intrinsic
variability of X, before observing the attribute A. It can be computed from the pdf, P(X ).
The quantity H (X |A) is the conditional mean entropy of X given A, that is, the average
uncertainty of X after observing A. The conditional mean entropy is calculated from the
conditional pdf of X given A, P(X |A). The information I (X |A) can be interpreted as
the reduction in the uncertainty of the reservoir property X, due to observing the
attribute A. Therefore, a quantitative criterion to select the best attribute (or com-
bination of attributes) is the one (or ones) that maximize I (X |A) (Takahashi et al.,
1999).

The reduction in information entropy and uncertainty by additional data can be shown
by the example in Figure 3.14. The relationships among porosity, VP, and VS of a partic-
ular reservoir are described by the trivariate pdf shown in Figure 3.14 (top). Condition-
ing of porosity information by velocities is summarized in Figure 3.14 (bottom). The
unconditional marginal prior pdf of porosity describing the distribution of all porosities
in the reservoir changes to narrower and taller conditional pdfs, P(porosity | VP), and
P(porosity | VP, VS) upon inclusion of velocity information. The velocity observations
decrease the spread and variability (and hence uncertainty) about porosity. The infor-
mation entropy quantifies this decrease in uncertainty. The prior information entropy
of porosity computed from its unconditional pdf is 3.44. This decreases to 3.06 with VP

alone, and to 2.89 with both VP and VS. Calculations such as these can be used to select
the best set of attributes that contain the most information about the targeted rock prop-
erty of interest. While linear measures of uncertainty, such as variance and covariance,
can also be used, their nonlinear counterparts, such as entropy and relative entropy, go
beyond, and generalize the linear uncertainty measures in several ways. Uncertainties
for categorical variables (e.g. shale/sand categories) can be estimated using entropy.
The variance and covariance are not properly defined for categorical variables. The
entropy is a better measure of uncertainty when pdfs have multiple modes, since vari-
ance is just a measure of deviation from the mean value, while the entropy takes
the full distribution into account. Entropy captures nonlinear co-dependence whereas
the covariance captures only linear dependence. Entropy measures can be estimated
from nonparametric pdfs, are invariant to linear and nonlinear coordinate transforms,
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Figure 3.14 Trivariate pdf of porosity, VP, and VS (top). Conditioning of porosity pdf (bottom) by
VP and VS information, corresponding to the trivariate pdf.

and hence offer a more flexible representation of the state of information about the
rock property. Nonetheless, linear measures of variance are useful as quick checks in
the preliminary steps of analyzing data variability, before going on to the nonlinear
measures. A pitfall of using entropy as a measure of uncertainty is that entropy does
not depend on the actual values of the variables but only on the pdfs.
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3.5 Monte Carlo simulation

Statistical simulation has become a popular numerical method with which to tackle
many probabilistic problems. One of the steps in many statistical simulation procedures
is to draw samples Xi such that they follow a desired probability distribution function
F(x). Once a large number of samples have been drawn, the desired function is computed
from these. This procedure is often termed Monte Carlo simulation, a term made popular
by physicists working on the bomb during the Second World War. Discussions of Monte
Carlo procedures applied to modeling and financial evaluation of oil prospects may be
found in Newendorp and Schuyler (2000) and Harbaugh et al. (1995). In general, Monte
Carlo simulation can be a very difficult problem, especially when X is multivariate with
correlated components, and F(x) is a complicated function. Sometimes F(x) may be
known only up to a constant. Markov chain Monte Carlo is a sequential procedure that
allows one to draw samples xi using the properties of Markov chains. This is a powerful,
numerically intensive procedure that has been applied in various fields of science and
engineering to solve complicated probabilistic problems. The book by Liu (2001) gives
a readable modern account of Markov chain Monte Carlo methods and applications.
In this book we talk about simpler Monte Carlo methods for drawing random samples
with desired distributions.

For the simple case of a univariate X, and a completely known F(x) (either analytically
or numerically), drawing xi amounts to first drawing uniform random variates ui between
0 and 1, and then evaluating the inverse of the desired distribution function at these
ui: xi = F−1(ui). A simple proof follows. Let FU(u) and FX(x) be the cumulative prob-
ability distribution functions (cdfs) of U and X respectively, defined as:

FU (u) = P(U ≤ u)

FX (x) = P(X ≤ x)

These are monotonic increasing functions and take values between 0 and 1. In the above
equations P denotes probability. Since U is uniform between 0 and 1, FU(u) = u. Now

P(X ≤ x) = P
(
F−1

X (U ) ≤ x
) = P(U ≤ FX (x))

since FX is a monotonic increasing function. Since FU(u) = u, we can rewrite the right-
hand side of the above equation as:

P(U ≤ FX (x)) = FU (FX (x)) = FX (x)

Hence the simulated X indeed follow the desired distribution FX(x).
Often F−1(X) may not be known analytically. In this case the inversion can be

easily done by table-lookup and interpolation from the numerically evaluated F(X).
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Figure 3.15 Schematic diagram of a univariate Monte Carlo simulation using the cdf of the variable
to be simulated.

Graphically univariate Monte Carlo simulation may be described as shown in Figure
3.15. Many computer packages these days have random number generators not only
for uniform and normal (Gaussian) distributions, but also for a large number of well-
known analytically defined statistical distributions. The simple technique described
above also works well for data-derived, nonparametric distribution functions where
the distribution function is only known numerically.

How do we draw two random variables that are correlated? For example, we have
drawn VP using the technique described above. Now we need a VS to go along with
that VP. We cannot draw VS independently from the marginal unconditional distri-
bution of VS, because that would ignore the correlation between VP and VS. One
simple approach is to use a VP–VS regression that may have been derived from the
log data or borrowed from the literature. Chapter 1 gave some examples of VP–VS

regressions.
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A simple procedure for correlated Monte Carlo draws is as follows:
� draw a VP sample from the VP distribution
� compute a VS from the drawn VP and the VP–VS regression
� add to the computed VS a random Gaussian error with zero mean and variance

equal to the variance of the residuals from the VP–VS regression
This gives a random, correlated (VP, VS) sample. A better approach is to draw VS

from the conditional distributions of VS for each given VP value, instead of using a
VP–VS regression.

Given sufficient VP–VS training data, the conditional distributions of VS for different
VP bins can be pre-computed. For each randomly drawn VP, the VS is drawn from the
corresponding conditional distribution associated with the VP value.

When using log data to derive VP–VS correlations, care must be taken to see that
there are no depth mismatches between the VP and VS logs. Slight depth mismatches
can give rise to poor correlations. Different regressions should be derived for different
lithologies (shales versus sands, for example), and for different pore fluids. A usual
practice is to derive a VP–VS relation for a reference fluid (say brine), then do Monte
Carlo simulations and fluid substitution (via Gassmann’s equations; see Chapter 1) to
simulate VP–VS data for other fluids not present in the training data.

After extending the data by Monte Carlo simulations, it is very important to check
that the simulated and original data (for the same facies and fluids) do indeed have
similar statistical distributions. This can be done by plotting comparative histograms,
quantile–quantile plots and scatter plots of the original log data and the simulated
data.

When doing correlated Monte Carlo simulations:
� data correlations should be specific to a particular facies and pore fluids
� be careful of depth mismatch in log data as this may mask data correlations
� check that the simulated data have a statistical distribution similar to the original

data for the same facies and fluid conditions.

3.6 Statistical classification and pattern recognition

The typical scenario of the statistical classification problem is as follows. There is a
set of input variables or predictors (sometimes also called “attributes” or “features”)
that influence one or more “outcomes” or “responses.” The inputs and outcomes can be
either quantitative or categorical or a combination of both types. For example, the inputs
could be seismic P and S impedances and the outputs could be lithofacies classes: sand
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or shale. In a well-log classification problem the inputs might be measured log curves
such as gamma ray, density, VP and resistivity, and the outputs could again be different
lithofacies categories. Often when the inputs and outputs are quantitative variables,
the problem is termed a regression problem; when we have categorical outputs it is
termed a classification problem. In a broader sense, however, the problems have much
in common, and it is possible to express a regression problem as a classification problem
or vice versa.

The goal in classification is to predict the outcome (e.g. shale or sand) based on
the observed inputs (e.g. P and S impedance). We have a training data set where we
have observed both the inputs and the outcomes. For example, this could be from well-
log measurements. Using the training data we have to devise a classification rule or
prediction model that will allow us to predict the outcomes for new data where the
outcomes are unknown. This is called supervised learning. We have a training data
set with known outcomes that can help us to come up with the classification rule. In
unsupervised learning, we have only observed input features, with no measurements
of the outputs. Unsupervised learning then tries to cluster the data into groups that
are statistically different from each other. We will discuss mostly supervised classi-
fication. Usually some calibration or supervision gives better results than completely
unsupervised classification. Unsupervised classification may give rise to classes that
are optimally distinct according to some chosen statistical criteria but may not have any
significance from a geologic or reservoir production viewpoint. Nevertheless unsuper-
vised classification may sometimes be useful for pointing out outliers of data clusters.
These outliers may be related to artifacts such as data processing noise, or they may be
pointers to classes not yet considered in the classification scheme.

For any given reservoir, we believe it is useful to quantify the “best-case” classifica-
tion uncertainty that we would have if we could measure VP, VS, and density error-free.
In this case, the interpretation accuracy will be limited by geologic parameters, such as
mineralogy, pore stiffness, fluid contrasts, and shaliness. This is the “intrinsic resolv-
ability” of the reservoir parameters. The value of quantifying the best-case uncertainty
is that we will be able to identify and avoid hopeless classification problems right from
the start. These will be the field problems where no amount of geophysical investment
will allow accurate rock physics interpretation (Figure 3.16).

For most other situations, we can estimate how the uncertainty worsens compared
to the best case (1) when measurement errors are introduced (2), when we drop from
three parameters to two (e.g. VP, VS), or (3) when using alternative pairs of attributes
(R0, G, or ρVP, ρVS, etc.). We believe that this kind of analysis can be helpful in the
decision-making process to find the most cost-effective use of seismic data.

There is a wide variety of algorithms for statistical classification. Here we will discuss
a few well-known, simple, yet often very effective methods. For excellent coverage of
many modern classification methods the reader is referred to Hastie et al. (2001) and
Duda et al. (2000).
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Figure 3.16 Estimating the best-case, error-free rock properties can be useful. On the left, soft,
high-porosity rocks with good potential for detecting pressure and saturation changes. There is a lot
of overlap in VP only, but not in the 2D VP–VS plane. On the right, low-porosity stiff rocks offering
little chance of detecting fluid and pressure effects. The problem is close to hopeless, suggesting
that special shear acquisition would be a waste.

3.6.1 Discriminant analysis

The first method we discuss is the traditional classification method based on simple
linear (or quadratic) discriminant analysis (Davis, 2002; Doveton, 1994). This method
uses only the means and covariances of the training data. The underlying assumption
is that the input features follow a Gaussian distribution. New samples are classified
according to the minimum Mahalanobis distance to each cluster in the training data
(Duda and Hart, 1973; Fukunaga, 1990). The Mahalanobis distance is defined as:

M2 = (x − µi)
T �−1(x − µi)

where x is the sample feature vector (measured attribute), µi are the vectors of the
attribute means for the different categories or facies classes, and � is the covariance
matrix of the training data. The Mahalanobis distance can be interpreted as the usual
Euclidean distance scaled by the covariance, in order to decorrelate and normalize the
components of the feature vector. So, a given voxel in a seismic cube, with observed
seismic attribute x, would be classified as the facies to which it is “nearest” in terms of
the Mahalanobis distance. When the covariance matrices for all the classes are taken
to be identical, the minimum Mahalanobis distance classifications give rise to linear
discriminant surfaces in the feature space. More generally, with different covariance
matrices for each category we have quadratic discriminant surfaces. If the classes have
unequal prior probabilities, then the decision has to be biased in favor of the class that
is more likely. This is done by adding the term ln[P(class)] to the right-hand side of
the equation for the Mahalanobis distance, where P(class) is the prior probability for
each class. Linear and quadratic discriminant classifiers are simple classifiers and often
produce very good results, performing amongst the top few classifier algorithms. Even
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better performance may be achieved by generalizations of linear discriminant analysis,
such as flexible discriminant analysis (FDA) and mixture discriminant analysis (MDA)
described in Hastie et al. (2001).

Now let us look at an example of discriminant classification of facies using P-wave
acoustic impedance and elastic impedance (AI–EI) as the input features. Discriminant
analysis can be done with any number of attributes, not just two. Here we show an
example with two attributes for ease of plotting. Plate 3.17A shows the scatter plot of
AI versus EI(30◦) for three facies: shales, brine sands, and oil sands. This constitutes
the training data and was generated by extension of the well-log data by Monte Carlo
simulation. The minimum Mahalanobis distance discriminant is plotted in Plate 3.17B.
For more than two attributes, the discriminants will be surfaces or hyper-surfaces in the
high-dimension attribute space. Because of the overlap among the groups, classification
will not be perfect. To compute the classification success rate we exclude one sample
from the training data, and then classify that sample based on the remaining training data.
This is referred to as the “leave-one-out” jackknife technique and is done successively
for all samples in the training data. Validation can also be done by having two subsets of
the data: a training subset and a validation subset. Using validation methods one can also
estimate the elements of the classification confusion matrix Pij (also called Bayesian
confusion matrix in Bayesian classification). The ijth element of Pij is the conditional
probability that the true facies is “i” when the predicted facies is “j”: Pij = P(true = i|
predicted = j). In general this is not a symmetric matrix. By keeping track of the results
in the leave-one-out jackknife we can estimate Pij. The diagonal elements of the matrix
are the success rates for each facies, while the off-diagonal elements are probabil-
ities of misclassification. Figure 3.18 shows the confusion matrix and the success
rate for classification of the three facies based on the discriminant function shown in
Plate 3.17B. Overall, the classification is quite good, with a success rate of 80–90%.
The confusion matrix is very useful in understanding the different kinds of errors. For
example, in this case, we see that when the classifier predicts oil sand, there is a 7%
chance that actually it is brine sand, and about 2% chance that it is truly shale. When
the prediction is shale, there is very little chance (<1%) that it is an oil sand, although
it could be (17%) a brine sand. In the figure, the elements of Pij have been rounded
off. The columns actually add up to 1. How certain are we about the success rates
themselves? What is the variability in the success rate given the training data we have?
Could the minimum success rate go down to as low as 60%? We can attempt to answer
these questions by bootstrap techniques. Bootstrap is a very powerful computational
statistical method for assigning measures of accuracy to statistical estimates (Efron,
1979; Efron and Tibshirani, 1993). The general idea is to make multiple replicates of
the data by drawing from the original data with replacement. Each of the bootstrap data
replicates has the same number of elements as the original data set, but since they are
drawn with replacement, some of the data may be represented more than once in the
replicate data sets, while others might be missing. The statistic of interest is computed
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Figure 3.18 Classification confusion matrix for minimum Mahalanobis distance (top) and success
rate.

on all of the replicate bootstrap data sets. The distribution of the bootstrap replicates of
the statistic is a measure of the accuracy of the statistic. By using a simple bootstrap
analysis, we can estimate the variability of the probabilities in Pij. For the AI–EI clas-
sification of the three facies, bootstrapping gives histograms for each element of Pij as
shown in Figure 3.19. From these histograms we can estimate distributions for the prob-
ability of correct classification (Figure 3.20). Figure 3.20A shows that the probability
of correctly classifying the brine sands can vary from 70% to about 90% with a peak
around 85%. The variability in the probability of correctly classifying oil sands is less,
as indicated by the more peaked distribution. We can also examine the distribution of
probabilities for different kinds of errors: P(oil sand | brine sand) and P(brine sand | oil
sand). These are shown in Figure 3.20B. The probability of a dry hole is estimated by
the sum of the error probabilities, P(shale | oil sand) + P(brine sand | oil sand). Since the
bootstrap analysis gives us multiple replicates of these probabilities, we can plot the
cumulative distribution function of the sum of the two probabilities (Figure 3.20C).
The cdf plot indicates that there is very little chance (<5%) that the probability
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Figure 3.19 Bootstrapping the classification confusion matrix. Off-diagonal subplots show the
distribution of probabilities for different types of errors. Diagonal subplots show distribution of
probability of correct classification.
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Figure 3.20 Distribution of probability of successful classification (A); different types of
misclassification (B); and the risk of dry hole (C).
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Figure 3.20 (cont.)

of a dry hole will be less than 6%. It is very likely (>90%) that the probability of a
dry hole is 15% or less, and there is some small chance (5%) that it could be as high
as 18%. All of these specific uncertainty estimates are valid only for this particular
example and do not apply in general. The techniques, however, are very general and
widely applicable. Estimation of the classification confusion matrix can be done for
any classification method, not just a minimum-distance discriminator. The confusion
matrix can be very useful in testing the feasibility of different attributes, and in selecting
the appropriate sets of attributes to use in the classification, based on the classification
success rate, and error rates.

Probably one of the oldest and most well-known techniques for multivariate statistical
analysis is principal component analysis (PCA) introduced by Pearson around 1901.
What is the use of PCA in the context of discriminant analysis and classification? By
itself PCA is not a classification technique, but a data description technique. Unlike the
classification problem where there is a unique response variable or dependent variable
(the class) and a set of predictor variables, in PCA all the variables are treated on
an equal footing as components of a multivariate random vector. The basic concept
behind PCA is to reduce the dimensionality of data with a large number of interrelated
variables, but at the same time retain most of the variation present in the data. The
data are transformed to a new set of uncorrelated variables, the principal components
(PCs), which are linear combinations of the old variables. The principal components
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are ordered so that the first few retain most of the variation present in all of the original
variables. Thus the most obvious way of using PCA in classification problems is to
reduce the dimensions by choosing to work with just the first few principal components
rather than the full set of variables in the discriminant analysis. For example, one might
use the first two PCs to make 2D graphical plots that capture most of the behavior of
the multivariate data. Use of PCA helps to orthogonalize a classification or regression
problem by replacing the set of correlated original variables by the uncorrelated PCs.
Computing the principal components consists of solving an eigenvalue–eigenvector
problem for the covariance matrix or the correlation matrix. In most realistic cases,
the sample covariance matrix estimated from the data is used, in place of the unknown
true covariance. The kth principal component of a multivariate random vector x is
given by p(k) = v(k)′x, where v(k) is the eigenvector of the covariance matrix, � = x′x,
corresponding to the kth largest eigenvalue λk. Instead of the covariance matrix, it
is more common to use the correlation matrix C = x̃′x̃ to compute the eigenvectors.
Here x̃ i = xi/σ i are the standardized variables with each component normalized by
the standard deviation of that component. The benefits of using the correlation matrix
to compute PCs are that sensitivity to choice of measurement units is reduced, and
PCs from different sets of random variables are more directly comparable. Covariance
matrix PCs depend sensitively on the measurement units of each element of x. If the
variables have large disparities in variance, those variables with the largest variance
will dominate the PCs. Standardizing the variables solves this problem. Most modern
numerical software packages for multivariate data analysis provide tools for principal
component analysis. Since the principal components are just a linear transformation
of the original variables, they do not contain any new information. Furthermore, the
principal components may not have a clearly interpretable physical meaning. Jolliffe
(2002) gives an excellent authoritative and accessible account of principal component
analysis and its various applications.

There are some pitfalls in using principal components for discriminant analysis and
classification of groups. The covariance or correlation matrix may not be the same
for all groups, and the PCs from different groups may not be directly comparable.
PCs computed from the overall covariance matrix are more useful than those based
on within-group covariances. However, the overall-covariance PCs will work well
only when the within-group variation is much less than the between-group variation.
There is no guarantee that the first few PCs with the largest variance also have the
best discriminatory power to separate the groups. The first few PCs will only be
useful for classification if the within-group and between-group variation is along the
same direction. Omitting the low-variance PCs may throw away information about
variations between the groups.
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3.6.2 Bayesian classification

A fundamental approach to the classification problem is provided by Bayesian decision
theory (Duda et al., 2000). Our use of the Bayes method for rock physics classification
problems is closely linked to the data clouds corresponding to different reservoir states.
We begin by describing each of the data clouds as having been drawn from a probability
density function (pdf). For a cloud corresponding to gas-saturated rocks we describe
the distribution of P- and S-wave velocity data points by the function P(VP, VS | gas);
for a cloud corresponding to water-saturated rocks, P(VP, VS | water); and so on, for
each cloud representing a different reservoir state of interest (lithofaces, saturation,
pore pressure, etc.). The pdfs are sometimes called the state-conditional probability
density functions (Duda et al., 2000), since they describe the expected distribution of
P- and S-wave velocities, once we specify the saturation state of the reservoir. This
approach uses the complete probability distribution functions of the input features, and
hence assumes that all the pdfs are known. In practice they must be estimated from
the training data. The state-conditioned pdfs are highly site-dependent, varying with
rock type, depth, age, etc., and are most often determined empirically from well logs.
The approach we use is to make cross-plots of sonic VP vs. VS, searching for clusters
when the data are sorted by saturation, pore pressure, lithofacies, etc. We have to make
a judgement of how many clusters to separate. In some North Sea reservoirs we have
good separation in the (VP, VS) domain between oil-saturated unconsolidated sands,
water-saturated unconsolidated sands, oil-saturated cemented sands, water-saturated
cemented sands, silty shales, and shales – six different states! In other reservoirs there
is too much overlap, so we only try to separate sands from shales – two different states.
We will refer to this number of clusters that covers all possibilities in our data as N.
As stressed earlier, rock physics transformations can be used to extend the log-based
training data – for example, using Gassmann’s relations to map the log data to other sat-
uration states not observed in the wells. (Additional transformations to different ranges
of porosity, pore pressure, or shaliness can be applied, although these should be chosen
using carefully considered rock physics principles!) Once the data are cross-plotted,
we define bins in VP and VS and create a two-dimensional histogram of the (VP, VS)
data in each cloud. The histograms can be smoothed to approximate a continuous pdf
function, and finally normalized to ensure that the volume under the pdf is unity. (More
formal approaches exist for pdf estimation.)

An important consideration is to upscale the log-derived cross-plots and pdfs to the 3D
seismic scale. A simple, though crude, procedure is to smooth the well-log slownesses
before plotting, at ∼λ/4, to approximate the spatial averaging of the seismic wave.

We can similarly plot the clouds corresponding to the water- and gas-saturated states
(or any other reservoir state of interest such as lithofacies or pore pressure) in the AVO
domain (R(0), G) with pdfs P(R(0), G | water), P(R(0), G | gas), impedance domain, λ–µ

domain, and so on. This operation of representing the reservoir states as distributions
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in different seismic attribute planes will be very important for our discussion, since
our goal is to quantify the relative values (and cost) of different seismic acquisi-
tion and interpretation strategies. Making cross-plots and estimating pdfs for other
attributes might require a bit of calculation. For example, if we wish to plot in the
AVO (R(0), G) domain, then we can randomly draw (density, VP, VS) data from the
logs and compute the corresponding (R(0), G) values using the Zoeppritz equations
(see Chapter 4).

Let x denote the univariate or multivariate input. This could be VP and gamma ray for
log classification, or AVO gradient and intercept for classifying seismic attributes, and
so on. Let cj, with j = 1, . . . , N, denote the N different states or classes. It might be helpful
to think of the specific example when N = 2 and the two classes are c1 = shale and c2 =
sand. The different classes may have different prior probabilities of occurrence P(cj).
For example, shales are more likely than sands. Statisticians sometimes argue about
the problem of unknown priors. A practical approach, the empirical Bayes approach
is to use the existing data to estimate the prior. Any other relevant information can
also be used to start with any reasonable prior pdf. The different classes will have
different distributions of the input features, although the distributions may have some
overlap. The distribution may be expressed as P(x | cj), the class-conditional (or state-
conditional) pdfs. Plate 3.21 shows the estimated class-conditional bivariate pdfs for
R(0) and G, for two different classes, brine sands and oil sands. The pdfs were estimated
by Monte Carlo simulations from VP, VS, and density well logs.

Bayes’ formula allows us to express the probability of a particular class given an
observed x as:

P(c j | x) = P(x, c j )

P(x)
= P(x | c j )P(c j )

P(x)

where we have used the usual notation for probabilities: P (x, cj) denotes the joint
probability of x and cj; P(x | cj) denotes the conditional probability of x given cj. The
Bayes relation converts the prior probability, P(cj), of a particular class (before having
observed any x) to the posterior probability given an observed x. The class-conditional
pdf, P(x | cj), is estimated from the training data or from a combination of training
data and forward models. In the above equation, P(cj) describes the a-priori probability
that the reservoir is in state “cj.” For example, examination of logs might show that
shale is encountered 60% of the time and sand 40% of the time in the interval of
interest. Then, if no additional data are available, we might estimate P(shale) ≈ 0.60
and P(sand) ≈ 0.40. Other estimates of the a-priori probabilities might come from
the sedimentological model. The point is that the a-priori probabilities quantify our
expectation of the reservoir state, before we look at any seismic data. Estimates of the
a-priori probabilities during production, such as P(water), P(gas), P(high pressure),
P(low pressure) might be taken from reservoir flow simulations through stochastically
simulated reservoir models. Again, the idea is to quantify our expectation of the reservoir
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state as best we can, before we look at any seismic data. When we do not have much
of an expectation (we really don’t know what to expect) then a reasonable guess is
“fifty-fifty,” each state is equally likely, or P(statei) = 1/N, where N is the number of
different states that we are trying to distinguish.

Finally, P(x) is the marginal or unconditional pdf of the seismic observable values
across all N reservoir states. It can be written as

P(X ) =
N∑

i=1

P(X | statei )P(statei )

and serves as a normalization to ensure that
∑N

i=1 P(statei | X ) = 1. Specifically, if we
assume that there are only two possible reservoir states, “sand” and “shale,” and two
seismic observables, VP and VS, then

P(VP, VS) = P(VP, VS | sand)P(sand) + P(VP, VS | shale)P(shale)

This simply describes the distribution of seismic data points that we observe. The
denominator, P(x) = ∑

j P(x | c j )P(c j ), is a scale factor and does not play any impor-
tant role in the Bayes decision rule for classification.

Bayes’ decision rule says:

classify as class ck if P(ck | x) > P(cj | x) for all j �= k.

This is equivalent to choosing ck when P(x | ck)P(ck) > P(x | cj)P(cj) for all j �= k.
For example, if there are only N = 2 states, “sand” and “shale,” and two seismic

observables VP and VS, then we classify each new data point as:

sand if P(sand | VP, VS) > P(shale | VP, VS)
shale if P(shale | VP, VS) > P(sand | VP, VS)

The procedure is illustrated in Figure 3.22, for a simple one-dimensional case with
a single seismic observable VP. In Figure 3.22A, two state-conditional pdfs are shown,
corresponding to the distributions of VP in gas-saturated rocks and water-saturated
rocks. The area under each of the pdfs is unity. The a-priori probabilities were assumed
to be P(gas) = 0.4 and P(water) = 0.6. That is, if we do not look at any seismic data,
we generally expect to find gas 40% of the time and water 60% of the time (only
for this example!). In Figure 3.22B, we show the product of the a-priori probabilities
with the state-conditional probabilities, P(VP | gas)P(gas) and P(VP | water)P(water).
Figure 3.22C shows the Bayes probabilities of gas and water, given some observation
VP. For the specific observation value highlighted with the vertical line, VP = 3.15 km/s,
the probabilities are P(gas | VP = 3.15) = 0.85 and P(water | VP = 3.15) = 0.15. Hence,
we would interpret this point in the seismic survey to be gas-saturated. Gas is much
more likely than water given this velocity.
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Figure 3.22 A, State-conditional probabilities of P-wave velocity assuming that the reservoir rocks
are either gas-saturated or water-saturated. B, The same curves as in A, multiplied respectively by
the a-priori probabilities P(gas) = 0.4 and P(water) = 0.6. C, The Bayes probability of gas and of
water, as a function of measured VP. D, Areas under the curves used to represent interpretation
errors.
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The Bayes decision rule is the optimal one that minimizes the misclassification
error and maximizes the posterior probability. This is the classification criterion when
the loss associated with each type of misclassification is the same. It does not matter
whether a shale is misclassified as oil sand (dry well) or an oil sand is classified as shale
(bypassed oil). Both have equal losses associated with them. In real-world decision
analyses the losses of dry well and bypassed oil are different. The final decision therefore
takes into account the loss function associated with each type of misclassification as
well as the risk-aversion policy of the company. Some companies may be more risk-
averse than others. The decision rule is then modified from the Bayes rule, which
minimizes misclassification error, to one that minimizes the expected loss or maximizes
the expected profit (see e.g. Berger (1985), Harbaugh et al. (1995)).

The misclassification error is given by the area of overlap of the class-conditional
pdfs. Bayes’ theory provides a straightforward approach to estimating seismic/rock
physics interpretation errors – the risk of being wrong. Classification errors occur when
the sample is classified as class cj when it is actually ck. Consider again the two-class
water/gas example shown in Figure 3.22. For any observed value of velocity, we would
interpret the reservoir state using the Bayes decision criterion as

gas if P(gas | VP) > P(water | VP)

water if P(water | VP) > P(water | VP)

For the particular velocity example, VP = 3.15 km/s, in Figure 3.22C, we interpreted
the reservoir as having gas, because the Bayes probability of gas was higher.

Nevertheless, we might be wrong. Bayes’ theory tells us that there is a small but finite
probability, P(water | VP = 3.15) = 0.15 of finding water at VP = 3.15 km/s. Hence,
we write the probability of wrongly interpreting that measured velocity as indicating
gas as:

P(error | VP) = P(water | VP = 3.15) = 0.15

More generally,

P(error | VP) = P(water | VP), if P(gas | VP) > P(water | VP)

P(error | VP) = P(gas | VP), if P(water | VP) > P(gas | VP)

The average probability of making any interpretation error can be written as

P(any error) =
∫

P(gas | VP)

P(VP | water)P(water) dVP

>P(water | VP)

+
∫

P(water | VP)

P(VP | gas)P(gas) dVP

>P(gas | VP)
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For geophysical work it is valuable to make the distinction between false positives
and false negatives. In the example that we have been talking about, any VP that falls
in the region where P(gas | VP) > P(water | VP) would be interpreted as a positive
hydrocarbon indicator. Hence, any of these interpretations that are in error are false
positives. These have particular cost/risk implications, such as drilling a dry well. On
the other hand, any VP that falls in the region where P(water | VP) > P(gas | VP) would
be interpreted as a negative hydrocarbon indicator. Any of these interpretations that are
in error are false negatives. These have different cost/risk implications, such as missing
potential reserves.

We will define the probability of a false positive as the fraction of all VP observations
falling in the region P(gas | VP) > P(water | VP) that actually correspond to water:

P(false positive) =

∫
P(gas | VP)

>P(water | VP)

P(VP | water)P(water) dVP

∫
P(gas | VP)

>P(water | VP)

P(VP) dVP

The denominator indicates the fraction of all observations that fall in the region inter-
preted as gas. Similarly, we define the probability of a false negative as the fraction
of all VP observations falling in the region P(water | VP) > P(gas | VP) that actually
correspond to gas:

P(false negative) =

∫
P(water | VP)
>P(gas | VP)

P(VP | gas)P(gas) dVP

∫
P(water | VP)
>P(gas | VP)

P(VP) dVP

For multi-class problems, it is easier to compute the probability of correct classifi-
cation as

P(correct) =
N∑

j=1

∫
� j

p(x | c j )P(c j ) dx

where �j is the region in feature space assigned to class cj. The Bayes error is then
1 − P(correct). Theoretically the Bayes error is the minimum possible error, given that
the pdfs are known. In practice, the pdfs are not known but estimated. Hence we can
only approach the theoretical minimum Bayes error rate. For a simple nearest-neighbor
rule classification, the upper bound on the error rate is twice the minimum Bayes error
rate. Because the error rate is always less than or equal to twice the minimum Bayes
error, any classification system involving complicated rules and lots of data can at most
cut the error rate by half (Duda et al., 2000). Roughly speaking, the nearest neighbor
contains at least half of the classification information.

The Bayes approach allows us to recursively update facies probabilities estimated
from some earlier classification using old data, xn, to posterior probabilities as new
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data, xn+1, become available. For example, we may have the probabilities for each
class from observed post-stack P-impedance data. Denote these probabilities by
P(cj | xn). Later, suppose new information in the form of S-impedance (denoted by
xn+1) becomes available after pre-stack inversion. Bayes’ formula allows us to update
P(cj | xn) to obtain P(cj | xn+1, xn) as follows:

P(c j | xn+1, xn) = P(xn+1, xn, c j )

P(xn+1, xn)
= P(xn+1 | c j , xn)

P(xn+1 | xn)
P(c j | xn)

This expression incorporates all dependencies between new and old data. Often the two
pieces of information may not be independent. For example, P- and S-wave impedances
in a fixed lithology are correlated. If xn+1 and xn are independent the expression sim-
plifies to:

P(c j | xn+1, xn) = P(xn+1 | c j )

P(xn+1)
P(c j | xn)

The class-conditional probabilities, P(xn+1 | cj, xn) are estimated from data and forward
modeling.

What about measurement uncertainties? Measurement errors arise from many
sources: navigation errors, cable feathering, hardware calibration, noise, processing
difficulties, velocity estimation, and so on. We do not observe x directly but can get
only a noise-contaminated estimate x̂ of x. The distribution of cj given the estimated x̂
may be written as:

P(c j | x̂) =
∫

P(c j | x)P(x | x̂) dx =
∫

P(x | c j )P(c j )

P(x)
P(x | x̂) dx

The geologic uncertainty arising from natural variability is captured by the conditional
distribution P(x | cj). Within the same class cj there is not a fixed value of the attribute
x but a distribution of possible values, and different classes can have different, possibly
overlapping distributions of x values. The measurement uncertainty is captured by the
conditional distribution P(x | x̂), the probability that the true value is x given the estimate
x̂ . If enough training data (e.g. well data) exist, then it may be possible to estimate P(x | x̂)
from data alone. For example the P-impedance obtained from a seismic inversion may
be compared to the measured P-impedance at the wells. In other cases, without enough
training data, the error distribution has to be modeled. The inversion process used to get
the estimate can give us error distributions, under some approximations (e.g. Gaussian
errors). Stochastic inversion methods and statistical bootstrap techniques may also be
used to estimate the distribution of x̂ and thus quantify the measurement uncertainty.
These are usually computationally intensive and involve running the forward model
many times.

From the point of view of statistical classification, we can think of measurement
errors as broadening the clouds that we wish to separate. Figure 3.23A shows a graph
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Figure 3.23 Left: gas- and water-saturated sandstones, error-free. Right: effect of measurement
error can be simulated by convolving with the error pdf.

of gas- and water-saturated sandstones in the (VP, VS) domain (same as Figure 3.8A).
The data are fairly free of errors, and the clouds are well separated.

If we assume random velocity errors with standard deviations ±�VP, ±�VS, then
effectively each data point in Figure 3.23A should be replaced by a fuzzy cloud of
possible measured values. Hence, the effect of random measurement errors can be
approximated by convolving the error-free log-derived pdfs with the measurement error
pdf, which we can approximate as a two-dimensional Gaussian distribution, having
standard deviations ±�VP, ±�VS. Figures 3.23B and 3.23D show the result. The gas-
and water-saturated clouds are broadened in both VP and VS. The clouds significantly
overlap in the (VP, VS) plane, as well as in VP only.

The rock physics of error analysis is fairly simple. The most critical part is estimation
of errors expected for each type of acquisition being considered.

When using multiple attributes in the classification, it should be kept in mind that
the errors may be correlated. A simple model of uncorrelated identically distributed
Gaussian error may not hold. Different seismic attributes have different measurement
errors associated with them. For example P–P AVO attributes (R0, G) have errors associ-
ated with noise, amplitude-picking, phase changes with offset, velocity estimation, non-
hyperbolic moveout, anisotropy, fitting a sin2 θ function to the amplitudes, etc. Houck
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Figure 3.24 Subsets of Han’s sandstone data. A, Data at 10 MPa, showing the separate gas- and
water-saturated clouds. B, Data at 40 MPa, showing the separate gas- and water-saturated clouds.
C, Water-saturated data, showing the overlapping clouds for high and low effective pressures.
D, Gas-saturated data, showing the overlapping clouds for high and low effective pressures.

(2002) gives an analysis of correlated errors in P–P AVO attributes. The VP/VS ratios
determined from comparing interval times on P-wave and converted S-wave stacks
have errors associated with moveout, migration difficulties, anisotropy, time-picking,
correlating the P and S events, etc. A critical part of acquisition decision-making is
forward modeling to estimate these errors.

Let us now see how to apply the Bayes formalism to choose among different seismic
attributes and acquisition schemes. Figure 3.24 illustrates gas- and water-saturated
sandstone data in the (VP, VS) domain. In Figure 3.24A, the high porosity and low
effective stress make separation of the fluid states fairly good. In Figure 3.24B, the higher
effective stress stiffens the rock, leading to less fluid sensitivity and more overlap of the
clouds. In Figure 3.24C, high and low effective pressures are shown, both with water
saturation. The separation is poor. In Figure 3.24D, high and low effective pressures
are shown, both with gas saturation. Again the separation is poor.
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Figure 3.25 State-conditional pdfs and classification error rates for distinguishing gas and water
using velocities. Left: rocks at 10 MPa. Right: rocks at 40 MPa. Table shows expected interpretation
error rates using VP only, VS only, and VP + VS. In this case shear data add tremendous value.

We can illustrate a procedure for quantifying these differences using estimates of
Bayes misclassification errors (Takahashi, 2000). Figure 3.25 shows the gas- and water-
saturated data clouds at effective pressures of 10 MPa (left) and 40 MPa (right). The
contours represent the state-conditional pdfs, estimated from the data that we showed
in Figures 3.24A and 3.24B. The single attribute pdfs for VP and VS are shown above
and to the right of each cross-plot.

A table of expected interpretation errors is also shown, assuming that these calibration
pdfs would be used to interpret observed velocities, according to the Bayes decision
criterion. In the table, the “total error” is what we defined as the average probability
of making any error. Beneath that is the probability of being wrong when we classify
data as indicating water (false negative); last is the probability of being wrong when
classifying data as gas (false positive). The columns show each of the errors when using
VS only, VP only, and both VP and VS. This gives us objective measures of the value
of each seismic attribute for separating water sands from gas sands for this particular
case.

Comparing the examples in Figure 3.25, we see that for both high- and low-pressure
situations, the probability of false positives or false negatives is very high if only a single
velocity is used, but the errors drop dramatically when both VP and VS are used. We also
can quantify that most of the error rates go up a few percent at higher pressure, when
the rocks are stiffer. The exception is that there is a slight reduction in errors at high
pressure when only VS is used. For fluid detection in these rocks, VS adds tremendous
value.

Figure 3.26 shows the problem of distinguishing gas and water for the same rocks as
in Figure 3.25, except that here the AVO attributes, intercept (R0) and gradient (G), are
considered (see Chapter 4 for AVO attributes). We see again that classification is easier
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Figure 3.26 State-conditional pdfs and classification error rates for distinguishing gas and water,
using AVO intercept and gradient. Left: rocks at 10 MPa. Right: rocks at 40 MPa. Table shows
expected interpretation error rates using R0 only, G only, and R0 + G. In this case shear data add
tremendous value.

Figure 3.27 State-conditional pdfs and classification error rates for distinguishing gas and water,
using acoustic impedance and elastic impedance at 30◦. Left: rocks at 10 MPa. Right: rocks at
40 MPa. Table shows expected interpretation error rates using AI only, EI only, and AI + EI. In this
case shear data add tremendous value. In fact EI alone is almost as good as AI + EI.

for the low-effective-pressure rocks. Again two attributes lead to substantially greater
error reduction (tremendous value in shear-related data). Comparing with Figure 3.25,
we can see that for these rocks and fluids AVO will lead to more accurate interpretation
than VP, VS. However, in these examples we have not included the measurement errors
for velocity or AVO attributes.

Figure 3.27 shows the same gas vs. water problem, using acoustic impedance (AI) and
elastic impedance (EI) at 30◦. Elastic impedance is a pseudo-impedance that will yield
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Figure 3.28 Detecting pressure differences for rocks at 10 MPa effective pressure (gray) and
40 MPa effective pressure (black). Gas-saturated on the left, brine-saturated on the right. Error rates
are fairly high. Adding VS only slightly reduces the errors relative to using VP alone.

the far-offset amplitudes if we simply take its difference across layer boundaries, just as
we would for normal-incidence reflectivity. Although EI depends on VP, VS, and density,
it is not entirely a material property, since it also depends on the angle of incidence. We
see again that using two attributes (AI + EI) gives the best discrimination of the fluid,
very comparable to using AVO and slightly better than using VP, VS. However, we get
the surprising result that using the single attribute EI does almost as well! Again, we
caution that acquisition errors are not included.

Figure 3.28 shows the problem of seismically detecting rocks at low effective pressure
(10 MPa) vs. high effective pressure (40 MPa). Rocks on the left are gas-saturated; on
the right, water-saturated. Detection error rates are fairly high (∼25–40%). Adding VS

reduces the errors only slightly.
Figure 3.29 illustrates the effect of measurement error. Both plots show the problem

of separating gas vs. water using AI and EI, as in Figure 3.27. The left is error-free.
The right has a large increase in measurement errors for both AI and EI, simulated by
convolving with an error pdf. This leads to substantial overlap of the data clouds, and
increases the classification error rates.

Figure 3.30 is the same as Figure 3.25, except that here we include the error rates
when all three seismic attributes are measured, VP, VS, and density. This is the most
information we could hope for. Dropping from three attributes to two has some effect.

One of the important steps in Bayes classification is to estimate the class-conditioned
pdfs. If the pdfs are Gaussian, then the Bayes decision rule is equivalent to discriminant
analysis based on Mahalanobis distances. However, Bayes classification is not limited
to Gaussian pdfs, but in principle can be applied to any parametric or nonparametric
pdfs as long as they can be estimated. Estimation of pdfs can become a problem in high
dimensions. For low dimensions a simple approach is based on smoothing of histograms
and scatter plots. The raw histograms obtained from the training data are smoothed to get
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Figure 3.29 Separating gas- from water-saturated rocks. Left: error-free. Right: large errors in
estimating both AI and EI.

pdfs that capture the overall general trend without fitting the specific idiosyncrasies of
the data. Over-smoothing can give poor classification results by increasing the overlap
between classes. The appropriate smoothing may be determined by dividing the whole
training sample into two sets, one for the pdf estimation, and another, for validation. The
smoothing that gives the best overall success rate with the validation data is selected.

Figure 3.31 shows a comparison of the state-conditioned pdfs for brine sands, gas
sands, and shales from an Australian field and a North Sea field. We simply wish to
illustrate that:

Different geologic settings must be separately calibrated, and can lead to different
interpretational problems. The classification success depends on
� the categories we wish to separate (water/gas; sand/shale, etc.)
� the reservoir rock and fluid properties and their variability, and
� the seismic attributes used for the classification.

3.6.3 Neural network classification

Neural networks represent yet another way to classify observations. This amounts
essentially to a nonlinear regression. The features or inputs are the independent vari-
ables, and the class categories are the desired dependent output variables or targets.
This approach can be useful when the discriminant surfaces are highly nonlinear and
are not well approximated by the simple linear discriminant analysis. Amongst others,
Baldwin et al. (1989, 1990), and Rogers et al. (1992) used neural networks to classify
porosity and density logs and lithologies. Harris et al. (1993) trained networks to clas-
sify lithology from borehole imagery data. Avseth and Mukerji (2002) compared neural
networks, Bayesian classification and discriminant analysis for classifying lithologies
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Figure 3.30 Distinguishing gas from water using velocities, the same as Figure 3.25. Top: 10 MPa.
Bottom: 40 MPa. The table shows the complete best-case error if VP, VS, and density are all
measured without errors.
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Figure 3.31 Pdfs for brine sand, gas sand, and shale facies in Australia and the North Sea.

from well-log data. Other examples of various applications in geosciences, and a prac-
tical introduction to neural network theory, are given in Dowla and Rogers (1995).

While there are various kinds of neural networks, we will describe the popular single-
hidden-layer, feed-forward architecture with weight adaptation by back-propagation.
The network consists of an input layer, and output layer, and a hidden layer with multiple
nodes. So for example if we wanted to classify six different facies using VP and gamma
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ray as the inputs, the input layer would have two nodes, the output layer would have six
nodes, and the hidden layer would have any number of multiple nodes as selected by
the user. Having too many nodes in the hidden layer would lead to overfitting the data.
There are no hard and fast rules to pick the number of nodes to use, although there are
some limiting analytical guidelines (e.g., Lin and Lee, 1996). In practice, the choice is
made on the basis of trial and experiment, balancing among computation and training
time, convergence, and network performance. In the neural network, derived “hidden”
features are created by taking weighted linear combinations of the inputs and passing
them through a nonlinear transfer function. Often a sigmoid function, 1/(1+ e−z),
is used as the nonlinear transfer function. The weighted linear combination with the
nonlinear transfer function forms the hidden layer. In general there can be multiple
hidden layers. The desired outputs are then modeled as a function of linear combinations
of the derived features. The unknown parameters of the neural network, the weights,
are obtained by a process of training the neural network using the training data set. This
amounts to minimizing some measure (e.g. sum-of-squared error) of misfit between
the desired output and the output of the neural network. The minimization is done
by gradient descent. This procedure is known as back-propagation in neural network
literature. Ordinary gradient descent can be slow if the learning constant parameter is
small, and can oscillate too much if the parameter is set too large. Gradient descent with
momentum helps to solve this problem by adding a fractional (<1) contribution from
the previous time step to each weight change during the training session. The weight
update scheme is implemented by:

�w(t) = −η∇E(t) + α�w(t − 1)

where E is the error between the desired and actual network output, η is the learning
parameter,α is the momentum parameter (<1), and�w is the weight update. Figure 3.32
shows an example of the decrease in the error as the network goes towards convergence
in one training session. Error plots help to monitor the network convergence during
training. The weights are initialized to some small random values near zero. Large initial
weights can lead to poor solutions as the network gets into the nonlinear region too
quickly. With small weights the network starts out nearly linear, and then nonlinearity
is gradually introduced as the weights are adapted during training. It is best to scale
and standardize the inputs so that they have similar ranges of values. This ensures that
all inputs have an equal effect on the weights. The final solution is dependent on the
starting weights. Hence a number of initial random starting weights should be tried,
and the one with the least error should be chosen. Another approach is to use a set of
neural nets, and take the final classification as the average over the outputs of the set.

One of the complaints about neural networks is that these models are not easily
interpretable. The inputs and their linear combinations enter nonlinearly into the model.
The role of individual input features is unclear and neural networks are not very effective
for interpretation of the processes that gave rise to the data.
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Figure 3.32 Neural network error plot. Plots like these are monitored to obtain an indication of the
convergence of the network.

3.6.4 Comparison of three different classification methods

Now let us look at a simple example (Avseth and Mukerji, 2002) using three different
methods to classify six different facies based on well-log measurements of VP and
gamma ray. Plate 3.33 shows the classification results in a type-well (in the target zone:
2100–2300 m), using different methods. The figure compares discriminant classification
(MLDA), Bayes’ rule classification (PDF) and neural network classification (NN). For
the neural network classification, a simple feed-forward back-propagation network was
used. There were six nodes in the hidden layer with a sigmoid transfer function. For our
lithofacies classification problem the input vector consisted of the VP and gamma-ray
value from the log at each depth point. The desired output was a six-element binary
vector (corresponding to six lithofacies classes) with a “1” at the position corresponding
to the facies numeric code, and zero elsewhere. The weight update was done using
conjugate gradient descent with momentum (Lin and Lee, 1996). The classification
results from the three different methods are very similar, but some important differences
occur. Note the thin dark stripe close to depth sample 600 in the PDF classification.
This interval is actually classified as “zero,” meaning no facies is recognized by the
Bayes method. Taking a look at the core section from the well, we find that this interval
corresponds to a 1-m-thick debris-flow unit, which is not represented in the training
data.
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Figure 3.34 Mean classification success rate.
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Figure 3.35 Classification success rate for different facies for the three different classification
methods.
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Figure 3.36 Classification success rate for neural network classifications with different weights.

Figures 3.34 and 3.35 show the overall classification success rates of the different
methods. In general, all the methods give about 80% success rate (Figure 3.34). Note
that here we have assumed that the training data set itself is error-free with perfect
classification.

The neural network method can be tuned to give slightly different weights to the
different facies. Figure 3.36 shows the classification success rate for three different
networks. NN1 was trained with a training set biased towards Facies 1. This causes poor
performance for Facies 4, but gives almost 100% success rate in classifying Facies 1.
The other two networks (NN2 and NN3) had more evenly biased training data, but had
different initial weights. The similar results for both networks show that consistency
can be achieved with proper selection of training data and network architecture.

3.7 Discussion and summary

We have presented in this chapter concepts and methodologies of applied statistical
rock physics used to quantify and reduce uncertainties in the reservoir characterization.
Pictorially, the steps are described in Figure 3.37: facies definition, and rock physics
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Figure 3.37 A schematic cartoon of the steps in a statistical rock physics workflow for quantitative
seismic interpretation.

modeling from geology and well logs; Monte Carlo extension of data, and estima-
tion of facies-conditioned pdfs of seismic attributes; selection of attribute or attribute
combinations based on information content and classification success rates for the tar-
geted problem; estimation of attributes from seismic data using various inversion meth-
ods; statistical classification of the volumes of seismic attributes into different facies
categories based on the facies-conditioned, calibrated pdfs, and integrating small-scale
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spatial variability using geostatistics. The final products of this integrated technique are
the spatial probability maps of reservoir fluids and facies, and stochastic realizations of
the reservoir properties. In this way, not only do we obtain the most probable facies, but
also we can quantify the uncertainty of the interpretation. In Chapter 5 we will present
case studies that apply the methods described in this chapter.

Some of the emerging and future trends in applied statistical rock physics will include
strategies for better understanding and integrating qualitative, “fuzzy” geologic infor-
mation in terms of probabilities for quantitative seismic interpretation. On the deter-
ministic side, we need a better understanding of the physics behind various attributes,
especially attributes based on wave attenuation (Q) and mode conversions (P-to-S).
Integrated 3D visualizations will have to combine not only reservoir architecture and
lithologies but also their probabilities of occurrence. There will be an emphasis on quan-
tifying uncertainties and risks associated with the geophysical interpretation, in order
to incorporate them into the decision-making process. Interpretation based on Monte
Carlo simulations, rather than single-point estimates, will become routine. Finally, with
the advent of continuously monitored intelligent oil fields, on-line rock physics will be
needed to quantify the uncertainties in real time, updating the interpretation risks as
new data come in.

Most of these endeavors will require analyzing and understanding large amounts
of disparate data types: geological, geophysical, and production data. When using
statistical pattern-recognition techniques it is wise to keep in mind some of the myths
and pitfalls of these methods. It is a myth that the more attributes we throw in, the
more effective will be the statistical effort. More attributes are useful only if they can
contribute more information about the goal of the data-mining exercise. Otherwise
they can do more harm than good. No statistical data-manipulation technique is so
powerful that it can substitute for expertise in reservoir analysis and physical under-
standing of reservoir processes. The best strategies, we feel, combine the strengths
of computational statistics with deterministic physics-based models and subjective
human knowledge. Uncertainty estimates are always subjective.



4 Common techniques for quantitative
seismic interpretation

There are no facts, only interpretations. Friedrich Nietzsche

4.1 Introduction

Conventional seismic interpretation implies picking and tracking laterally consistent
seismic reflectors for the purpose of mapping geologic structures, stratigraphy and
reservoir architecture. The ultimate goal is to detect hydrocarbon accumulations, delin-
eate their extent, and calculate their volumes. Conventional seismic interpretation is an
art that requires skill and thorough experience in geology and geophysics.

Traditionally, seismic interpretation has been essentially qualitative. The geometrical
expression of seismic reflectors is thoroughly mapped in space and traveltime, but little
emphasis is put on the physical understanding of seismic amplitude variations. In the
last few decades, however, seismic interpreters have put increasing emphasis on more
quantitative techniques for seismic interpretation, as these can validate hydrocarbon
anomalies and give additional information during prospect evaluation and reservoir
characterization. The most important of these techniques include post-stack amplitude
analysis (bright-spot and dim-spot analysis), offset-dependent amplitude analysis (AVO
analysis), acoustic and elastic impedance inversion, and forward seismic modeling.

These techniques, if used properly, open up new doors for the seismic interpreter.
The seismic amplitudes, representing primarily contrasts in elastic properties between
individual layers, contain information about lithology, porosity, pore-fluid type and sat-
uration, as well as pore pressure – information that cannot be gained from conventional
seismic interpretation.

4.2 Qualitative seismic amplitude interpretation

Until a few decades ago, it would be common for seismic interpreters to roll out
their several-meters-long paper sections with seismic data down the hallway, go down
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on their knees, and use their colored pencils to interpret the horizons of interest in
order to map geologic bodies. Little attention was paid to amplitude variations and
their interpretations. In the early 1970s the so-called “bright-spot” technique proved
successful in areas of the Gulf of Mexico, where bright amplitudes would coincide with
gas-filled sands. However, experience would show that this technique did not always
work. Some of the bright spots that were interpreted as gas sands, and subsequently
drilled, were found to be volcanic intrusions or other lithologies with high impedance
contrast compared with embedding shales. These failures were also related to lack of
wavelet phase analysis, as hard volcanic intrusions would cause opposite polarity to low-
impedance gas sands. Moreover, experience showed that gas-filled sands sometimes
could cause “dim spots,” not “bright spots,” if the sands had high impedance compared
with surrounding shales.

With the introduction of 3D seismic data, the utilization of amplitudes in seismic
interpretation became much more important. Brown (see Brown et al., 1981) was
one of the pioneers in 3D seismic interpretation of lithofacies from amplitudes. The
generation of time slices and horizon slices revealed 3D geologic patterns that had been
impossible to discover from geometric interpretation of the wiggle traces in 2D stack
sections. Today, the further advance in seismic technology has provided us with 3D
visualization tools where the interpreter can step into a virtual-reality world of seismic
wiggles and amplitudes, and trace these spatially (3D) and temporally (4D) in a way
that one could only dream of a few decades ago. Certainly, the leap from the rolled-out
paper sections down the hallways to the virtual-reality images in visualization “caves”
is a giant leap with great business implications for the oil industry. In this section we
review the qualitative aspects of seismic amplitude interpretation, before we dig into the
more quantitative and rock-physics-based techniques such as AVO analysis, impedance
inversion, and seismic modeling, in following sections.

4.2.1 Wavelet phase and polarity

The very first issue to resolve when interpreting seismic amplitudes is what kind of
wavelet we have. Essential questions to ask are the following. What is the defined
polarity in our case? Are we dealing with a zero-phase or a minimum-phase wavelet?
Is there a phase shift in the data? These are not straightforward questions to answer,
because the phase of the wavelet can change both laterally and vertically. However,
there are a few pitfalls to be avoided.

First, we want to make sure what the defined standard is when processing the data.
There exist two standards. The American standard defines a black peak as a “hard” or
“positive” event, and a white trough as a “soft” or a “negative” event. On a near-offset
stack section a “hard” event will correspond to an increase in acoustic impedance with
depth, whereas a “soft” event will correspond to a decrease in acoustic impedance with
depth. According to the European standard, a black peak is a “soft” event, whereas a
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white trough is a “hard” event. One way to check the polarity of marine data is to look
at the sea-floor reflector. This reflector should be a strong positive reflector representing
the boundary between water and sediment.

Data polarity

� American polarity: An increase in impedance gives positive amplitude, normally
displayed as black peak (wiggle trace) or red intensity (color display).

� European (or Australian) polarity: An increase in impedance gives negative ampli-
tude, normally displayed as white trough (wiggle trace) or blue intensity (color
display).

(Adapted from Brown, 2001a, 2001b)

For optimal quantitative seismic interpretations, we should ensure that our data are
zero-phase. Then, the seismic pick should be on the crest of the waveform correspond-
ing with the peak amplitudes that we desire for quantitative use (Brown, 1998). With
today’s advanced seismic interpretation tools involving the use of interactive work-
stations, there exist various techniques for horizon picking that allow efficient inter-
pretation of large amounts of seismic data. These techniques include manual picking,
interpolation, autotracking, voxel tracking, and surface slicing (see Dorn (1998) for
detailed descriptions).

For extraction of seismic horizon slices, autopicked or voxel-tracked horizons are
very common. The obvious advantage of autotracking is the speed and efficiency.
Furthermore, autopicking ensures that the peak amplitude is picked along a horizon.
However, one pitfall is the assumption that seismic horizons are locally continuous
and consistent. A lateral change in polarity within an event will not be recognized
during autotracking. Also, in areas of poor signal-to-noise ratio or where a single event
splits into a doublet, the autopicking may fail to track the correct horizon. Not only
will important reservoir parameters be neglected, but the geometries and volumes may
also be significantly off if we do not regard lateral phase shifts. It is important that the
interpreter realizes this and reviews the seismic picks for quality control.

4.2.2 Sand/shale cross-overs with depth

Simple rock physics modeling can assist the initial phase of qualitative seismic inter-
pretation, when we are uncertain about what polarity to expect for different lithology
boundaries. In a siliciclastic environment, most seismic reflectors will be associated with
sand–shale boundaries. Hence, the polarity will be related to the contrast in impedance
between sand and shale. This contrast will vary with depth (Chapter 2). Usually, rela-
tively soft sands are found at relatively shallow depths where the sands are unconsol-
idated. At greater depths, the sands become consolidated and cemented, whereas the
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Sand versus shale impedance depth trends
and seismic polarity (schematic)

Impedance

Depth

Shale Sand

“Hard” sands

“Soft” sands

Sand–shale cross-over

Figure 4.1 Schematic depth trends of sand and shale impedances. The depth trends can vary from
basin to basin, and there can be more than one cross-over. Local depth trends should be established
for different basins.

shales are mainly affected by mechanical compaction. Hence, cemented sandstones are
normally found to be relatively hard events on the seismic. There will be a correspond-
ing cross-over in acoustic impedance of sands and shales as we go from shallow and soft
sands to the deep and hard sandstones (see Figure 4.1). However, the depth trends can
be much more complex than shown in Figure 4.1 (Chapter 2, see Figures 2.34 and 2.35).
Shallow sands can be relatively hard compared with surrounding shales, whereas deep
cemented sandstones can be relatively soft compared with surrounding shales. There
is no rule of thumb for what polarity to expect for sands and shales. However, using
rock physics modeling constrained by local geologic knowledge, one can improve the
understanding of expected polarity of seismic reflectors.

“Hard” versus “soft” events

During seismic interpretation of a prospect or a proven reservoir sand, the following
question should be one of the first to be asked: what type of event do we expect,
a “hard” or a “soft”? In other words, should we pick a positive peak, or a negative
trough? If we have good well control, this issue can be solved by generating synthetic
seismograms and correlating these with real seismic data. If we have no well control,
we may have to guess. However, a reasonable guess can be made based on rock
physics modeling. Below we have listed some “rules of thumb” on what type of
reflector we expect for different geologic scenarios.
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Typical “hard” events

� Very shallow sands at normal pressure embedded in pelagic shales
� Cemented sandstone with brine saturation
� Carbonate rocks embedded in siliciclastics
� Mixed lithologies (heterolithics) like shaly sands, marls, volcanic ash deposits

Typical “soft” events

� Pelagic shale
� Shallow, unconsolidated sands (any pore fluid) embedded in normally compacted

shales
� Hydrocarbon accumulations in clean, unconsolidated or poorly consolidated sands
� Overpressured zones

Some pitfalls in conventional interpretation

� Make sure you know the polarity of the data. Remember there are two different
standards, the US standard and the European standard, which are opposite.

� A hard event can change to a soft laterally (i.e., lateral phase shift) if there are
lithologic, petrographic or pore-fluid changes. Seismic autotracking will not detect
these.

� A dim seismic reflector or interval may be significant, especially in the zone of
sand/shale impedance cross-over. AVO analysis should be undertaken to reveal
potential hydrocarbon accumulations.

4.2.3 Frequency and scale effects

Seismic resolution
Vertical seismic resolution is defined as the minimum separation between two interfaces
such that we can identify two interfaces rather than one (Sheriff and Geldhart, 1995).
A stratigraphic layer can be resolved in seismic data if the layer thickness is larger than
a quarter of a wavelength. The wavelength is given by:

λ = V/ f (4.1)

where V is the interval velocity of the layer, and f is the frequency of the seis-
mic wave. If the wavelet has a peak frequency of 30 Hz, and the layer velocity is
3000 m/s, then the dominant wavelength is 100 m. In this case, a layer of 25 m can
be resolved. Below this thickness, we can still gain important information via quan-
titative analysis of the interference amplitude. A bed only λ/30 in thickness may be
detectable, although its thickness cannot be determined from the wave shape (Sheriff and
Geldhart, 1995).
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Figure 4.2 Seismic amplitude as a function of layer thickness for a given wavelength.

The horizontal resolution of unmigrated seismic data can be defined by the Fresnel
zone. Approximately, the Fresnel zone is defined by a circle of radius, R, around a
reflection point:

R ≈
√

λz/2 (4.2)

where z is the reflector depth. Roughly, the Fresnel zone is the zone from which all
reflected contributions have a phase difference of less than π radians. For a depth of
3 km and velocity of 3 km/s, the Fresnel zone radius will be 300–470 m for frequencies
ranging from 50 to 20 Hz. When the size of the reflector is somewhat smaller than
the Fresnel zone, the response is essentially that of a diffraction point. Using pre-
stack migration we can collapse the diffractions to be smaller than the Fresnel zone,
thus increasing the lateral seismic resolution (Sheriff and Geldhart, 1995). Depending
on the migration aperture, the lateral resolution after migration is of the order of a
wavelength. However, the migration only collapses the Fresnel zone in the direction
of the migration, so if it is only performed along inlines of a 3D survey, the lateral
resolution will still be limited by the Fresnel zone in the cross-line direction. The
lateral resolution is also restricted by the lateral sampling which is governed by the
spacing between individual CDP gathers, usually 12.5 or 18 meters in 3D seismic
data. For typical surface seismic wavelengths (∼50–100 m), lateral sampling is not the
limiting factor.

Interference and tuning effects
A thin-layered reservoir can cause what is called event tuning, which is interference
between the seismic pulse representing the top of the reservoir and the seismic pulse
representing the base of the reservoir. This happens if the layer thickness is less than a
quarter of a wavelength (Widess, 1973). Figure 4.2 shows the effective seismic ampli-
tude as a function of layer thickness for a given wavelength, where a given layer
has higher impedance than the surrounding sediments. We observe that the amplitude



174 Common techniques for quantitative seismic interpretation

increases and becomes larger than the real reflectivity when the layer thickness is
between a half and a quarter of a wavelength. This is when we have constructive
interference between the top and the base of the layer. The maximum constructive
interference occurs when the bed thickness is equal to λ/4, and this is often referred
to as the tuning thickness. Furthermore, we observe that the amplitude decreases and
approaches zero for layer thicknesses between one-quarter of a wavelength and zero
thickness. We refer to this as destructive interference between the top and the base.
Trough-to-peak time measurements give approximately the correct gross thicknesses
for thicknesses larger than a quarter of a wavelength, but no information for thicknesses
less than a quarter of a wavelength. The thickness of an individual thin-bed unit can be
extracted from amplitude measurements if the unit is thinner than about λ/4 (Sheriff
and Geldhart, 1995). When the layer thickness equals λ/8, Widess (1973) found that
the composite response approximated the derivative of the original signal. He referred
to this thickness as the theoretical threshold of resolution. The amplitude–thickness
curve is almost linear below λ/8 with decreasing amplitude as the layer gets thinner,
but the composite response stays the same.

4.2.4 Amplitude and reflectivity strength

“Bright spots” and “dim spots”
The first use of amplitude information as hydrocarbon indicators was in the early
1970s when it was found that bright-spot amplitude anomalies could be associated
with hydrocarbon traps (Hammond, 1974). This discovery increased interest in the
physical properties of rocks and how amplitudes changed with different types of rocks
and pore fluids (Gardner et al., 1974). In a relatively soft sand, the presence of gas
and/or light oil will increase the compressibility of the rock dramatically, the veloc-
ity will drop accordingly, and the amplitude will decrease to a negative “bright spot.”
However, if the sand is relatively hard (compared with cap-rock), the sand saturated
with brine may induce a “bright-spot” anomaly, while a gas-filled sand may be trans-
parent, causing a so-called dim spot, that is, a very weak reflector. It is very important
before starting to interpret seismic data to find out what change in amplitude we expect
for different pore fluids, and whether hydrocarbons will cause a relative dimming or
brightening compared with brine saturation. Brown (1999) states that “the most impor-
tant seismic property of a reservoir is whether it is bright spot regime or dim spot
regime.”

One obvious problem in the identification of dim spots is that they are dim – they are
hard to see. This issue can be dealt with by investigating limited-range stack sections.
A very weak near-offset reflector may have a corresponding strong far-offset reflector.
However, some sands, although they are significant, produce a weak positive near-
offset reflection as well as a weak negative far-offset reflection. Only a quantitative
analysis of the change in near- to far-offset amplitude, a gradient analysis, will be able
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to reveal the sand with any considerable degree of confidence. This is explained in
Section 4.3.

Pitfalls: False “bright spots”

During seismic exploration of hydrocarbons, “bright spots” are usually the first type
of DHI (direct hydrocarbon indicators) one looks for. However, there have been
several cases where bright-spot anomalies have been drilled, and turned out not to
be hydrocarbons.

Some common “false bright spots” include:
� Volcanic intrusions and volcanic ash layers
� Highly cemented sands, often calcite cement in thin pinch-out zones
� Low-porosity heterolithic sands
� Overpressured sands or shales
� Coal beds
� Top of salt diapirs
Only the last three on the list above will cause the same polarity as a gas sand. The
first three will cause so-called “hard-kick” amplitudes. Therefore, if one knows the
polarity of the data one should be able to discriminate hydrocarbon-associated bright
spots from the “hard-kick” anomalies. AVO analysis should permit discrimination
of hydrocarbons from coal, salt or overpressured sands/shales.

A very common seismic amplitude attribute used among seismic interpreters is
reflection intensity, which is root-mean-square amplitudes calculated over a given
time window. This attribute does not distinguish between negative and positive
amplitudes; therefore geologic interpretation of this attribute should be made with
great caution.

“Flat spots”
Flat spots occur at the reflective boundary between different fluids, either gas–oil, gas–
water, or water–oil contacts. These can be easy to detect in areas where the background
stratigraphy is tilted, so the flat spot will stick out. However, if the stratigraphy is more
or less flat, the fluid-related flat spot can be difficult to discover. Then, quantitative
methods like AVO analysis can help to discriminate the fluid-related flat spot from the
flat-lying lithostratigraphy.

One should be aware of several pitfalls when using flat spots as hydrocarbon indi-
cators. Flat spots can be related to diagenetic events that are depth-dependent. The
boundary between opal-A and opal-CT represents an impedance increase in the same
way as for a fluid contact, and dry wells have been drilled on diagenetic flat spots.
Clinoforms can appear as flat features even if the larger-scale stratigraphy is tilted.
Other “false” flat spots include volcanic sills, paleo-contacts, sheet-flood deposits and
flat bases of lobes and channels.
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Pitfalls: False “flat spots”

One of the best DHIs to look for is a flat spot, the contact between gas and water,
gas and oil, or oil and water. However, there are other causes that can give rise to
flat spots:
� Ocean bottom multiples
� Flat stratigraphy. The bases of sand lobes especially tend to be flat.
� Opal-A to opal-CT diagenetic boundary
� Paleo-contacts, either related to diagenesis or residual hydrocarbon saturation
� Volcanic sills
Rigorous flat-spot analysis should include detailed rock physics analysis, and for-
ward seismic modeling, as well as AVO analysis of real data (see Section 4.3.8).

Lithology, porosity and fluid ambiguities
The ultimate goal in seismic exploration is to discover and delineate hydrocarbon reser-
voirs. Seismic amplitude maps from 3D seismic data are often qualitatively interpreted
in terms of lithology and fluids. However, rigorous rock physics modeling and analysis
of available well-log data is required to discriminate fluid effects quantitatively from
lithology effects (Chapters 1 and 2).

The “bright-spot” analysis method has often been unsuccessful because lithology
effects rather than fluid effects set up the bright spot. The consequence is the drilling of
dry holes. In order to reveal “pitfall” amplitude anomalies it is essential to investigate the
rock physics properties from well-log data. However, in new frontier areas well-log data
are sparse or lacking. This requires rock physics modeling constrained by reasonable
geologic assumptions and/or knowledge about local compactional and depositional
trends.

A common way to extract porosity from seismic data is to do acoustic impedance
inversion. Increasing porosity can imply reduced acoustic impedance, and by extract-
ing empirical porosity–impedance trends from well-log data, one can estimate porosity
from the inverted impedance. However, this methodology suffers from several ambi-
guities. Firstly, a clay-rich shale can have very high porosities, even if the permeability
is close to zero. Hence, a high-porosity zone identified by this technique may be shale.
Moreover, the porosity may be constant while fluid saturation varies, and one simple
impedance–porosity model may not be adequate for seismic porosity mapping.

In addition to lithology–fluid ambiguities, lithology–porosity ambiguities, and
porosity–fluid ambiguities, we may have lithology–lithology ambiguities and fluid–
fluid ambiguities. Sand and shale can have the same acoustic impedance, causing no
reflectivity on a near-offset seismic section. This has been reported in several areas
of the world (e.g. Zeng et al., 1996; Avseth et al., 2001b). It is often reported that
fluvial channels or turbidite channels are dim on seismic amplitude maps, and the
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interpretation is usually that the channel is shale-filled. However, a clean sand fill-
ing in the channel can be transparent as well. A geological assessment of geometries
indicating differential compaction above the channel may reveal the presence of sand.
More advanced geophysical techniques such as offset-dependent reflectivity analysis
may also reveal the sands. During conventional interpretation, one should interpret top
reservoir horizons from limited-range stack sections, avoiding the pitfall of missing a
dim sand on a near- or full-stack seismic section.

Facies interpretation
Lithology influence on amplitudes can often be recognized by the pattern of ampli-
tudes as observed on horizon slices and by understanding how different lithologies
occur within a depositional system. By relating lithologies to depositional systems we
often refer to these as lithofacies or facies. The link between amplitude characteristics
and depositional patterns makes it easier to distinguish lithofacies variations and fluid
changes in amplitude maps.

Traditional seismic facies interpretation has been predominantly qualitative, based on
seismic traveltimes. The traditional methodology consisted of purely visual inspection
of geometric patterns in the seismic reflections (e.g., Mitchum et al., 1977; Weimer and
Link, 1991). Brown et al. (1981), by recognizing buried river channels from amplitude
information, were amongst the first to interpret depositional facies from 3D seismic
amplitudes. More recent and increasingly quantitative work includes that of Ryseth
et al. (1998) who used acoustic impedance inversions to guide the interpretation of
sand channels, and Zeng et al. (1996) who used forward modeling to improve the
understanding of shallow marine facies from seismic amplitudes. Neri (1997) used
neural networks to map facies from seismic pulse shape. Reliable quantitative lithofacies
prediction from seismic amplitudes depends on establishing a link between rock physics
properties and sedimentary facies. Sections 2.4 and 2.5 demonstrated how such links
might be established. The case studies in Chapter 5 show how these links allow us to
predict lithofacies from seismic amplitudes.

Stratigraphic interpretation
The subsurface is by nature a layered medium, where different lithologies or facies
have been superimposed during geologic deposition. Seismic stratigraphic interpreta-
tion seeks to map geologic stratigraphy from geometric expression of seismic reflections
in traveltime and space. Stratigraphic boundaries can be defined by different litholo-
gies (facies boundaries) or by time (time boundaries). These often coincide, but not
always. Examples where facies boundaries and time boundaries do not coincide are
erosional surfaces cutting across lithostratigraphy, or the prograding front of a delta
almost perpendicular to the lithologic surfaces within the delta.

There are several pitfalls when interpreting stratigraphy from traveltime information.
First, the interpretation is based on layer boundaries or interfaces, that is, the contrasts
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between different strata or layers, and not the properties of the layers themselves.
Two layers with different lithology can have the same seismic properties; hence, a
lithostratigraphic boundary may not be observed. Second, a seismic reflection may
occur without a lithology change (e.g., Hardage, 1985). For instance, a hiatus with no
deposition within a shale interval can give a strong seismic signature because the shales
above and below the hiatus have different characteristics. Similarily, amalgamated
sands can yield internal stratigraphy within sandy intervals, reflecting different texture
of sands from different depositional events. Third, seismic resolution can be a pitfall in
seismic interpretation, especially when interpreting stratigraphic onlaps or downlaps.
These are essential characteristics in seismic interpretation, as they can give information
about the coastal development related to relative sea level changes (e.g., Vail et al.,
1977). However, pseudo-onlaps can occur if the thickness of individual layers reduces
beneath the seismic resolution. The layer can still exist, even if the seismic expression
yields an onlap.

Pitfalls

There are several pitfalls in conventional seismic stratigraphic interpretation that can
be avoided if we use complementary quantitative techniques:
� Important lithostratigraphic boundaries between layers with very weak contrasts

in seismic properties can easily be missed. However, if different lithologies are
transparent in post-stack seismic data, they are normally visible in pre-stack seismic
data. AVO analysis is a useful tool to reveal sands with impedances similar to
capping shales (see Section 4.3).

� It is commonly believed that seismic events are time boundaries, and not necessarily
lithostratigraphic boundaries. For instance, a hiatus within a shale may cause a
strong seismic reflection if the shale above the hiatus is less compacted than the
one below, even if the lithology is the same. Rock physics diagnostics of well-log
data may reveal nonlithologic seismic events (see Chapter 2).

� Because of limited seismic resolution, false seismic onlaps can occur. The layer
may still exist beneath resolution. Impedance inversion can improve the resolution,
and reveal subtle stratigraphic features not observed in the original seismic data
(see Section 4.4).

Quantitative interpretation of amplitudes can add information about stratigraphic
patterns, and help us avoid some of the pitfalls mentioned above. First, relating lithol-
ogy to seismic properties (Chapter 2) can help us understand the nature of reflections,
and improve the geologic understanding of the seismic stratigraphy. Gutierrez (2001)
showed how stratigraphy-guided rock physics analysis of well-log data improved the
sequence stratigraphic interpretation of a fluvial system in Colombia using impedance
inversion of 3D seismic data. Conducting impedance inversion of the seismic data will
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give us layer properties from interface properties, and an impedance cross-section can
reveal stratigraphic features not observed on the original seismic section. Impedance
inversion has the potential to guide the stratigraphic interpretation, because it is less
oscillatory than the original seismic data, it is more readily correlated to well-log data,
and it tends to average out random noise, thereby improving the detectability of later-
ally weak reflections (Gluck et al., 1997). Moreover, frequency-band-limited impedance
inversion can improve on the stratigraphic resolution, and the seismic interpretation can
be significantly modified if the inversion results are included in the interpretation proce-
dure. For brief explanations of different types of impedance inversions, see Section 4.4.
Forward seismic modeling is also an excellent tool to study the seismic signatures of
geologic stratigraphy (see Section 4.5).

Layer thickness and net-to-gross from seismic amplitude
As mentioned in the previous section, we can extract layer thickness from seismic
amplitudes. As depicted in Figure 4.2, the relationship is only linear for thin layers in
pinch-out zones or in sheet-like deposits, so one should avoid correlating layer thickness
to seismic amplitudes in areas where the top and base of sands are resolved as separate
reflectors in the seismic data.

Meckel and Nath (1977) found that, for sands embedded in shale, the amplitude
would depend on the net sand present, given that the thickness of the entire sequence
is less than λ/4. Brown (1996) extended this principle to include beds thicker than
the tuning thickness, assuming that individual sand layers are below tuning and that
the entire interval of interbedded sands has a uniform layering. Brown introduced the
“composite amplitude” defined as the absolute value summation of the top reflection
amplitude and the base reflection amplitude of a reservoir interval. The summation of
the absolute values of the top and the base emphasizes the effect of the reservoir and
reduces the effect of the embedding material.

Zeng et al. (1996) studied the influence of reservoir thickness on seismic signal and
introduced what they referred to as effective reflection strength, applicable to layers
thinner than the tuning thickness:

Re = Zss − Zsh

Zsh
· h (4.3)

where Zss is the sandstone impedance, Zsh is the average shale impedance and h is the
layer thickness. A more common way to extract layer thickness from seismic amplitudes
is by linear regression of relative amplitude versus net sand thickness as observed at
wells that are available. A recent case study showing the application to seismic reservoir
mapping was provided by Hill and Halvatis (2001).

Vernik et al. (2002) demonstrated how to estimate net-to-gross from P- and S-
impedances for a turbidite system. From acoustic impedance (AI) versus shear
impedance (SI) cross-plots, the net-to-gross can be calculated with the following
formulas:
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N/G =

Zbase∫
Z top

Vsand dZ

�Z
(4.4)

where Vsand is the oil-sand fraction given by:

Vsand = SI − bAI − a0

a1 − a0
(4.5)

where b is the average slope of the shale slope (b0) and oil-sand slope (b1), whereas a0

and a1 are the respective intercepts in the AI–SI cross-plot.

Calculation of reservoir thickness from seismic amplitude should be done only in
areas where sands are expected to be thinner than the tuning thickness, that is a
quarter of a wavelength, and where well-log data show evidence of good correlation
between net sand thickness and relative amplitude.

It can be difficult to discriminate layer thickness changes from lithology and fluid
changes. In relatively soft sands, the impact of increasing porosity and hydrocarbon
saturation tends to increase the seismic amplitude, and therefore works in the same
“direction” to layer thickness. However, in relatively hard sands, increasing porosity
and hydrocarbon saturation tend to decrease the relative amplitude and therefore
work in the opposite “direction” to layer thickness.

4.3 AVO analysis

In 1984, 12 years after the bright-spot technology became a commercial tool for
hydrocarbon prediction, Ostrander published a break-through paper in Geophysics
(Ostrander, 1984). He showed that the presence of gas in a sand capped by a shale
would cause an amplitude variation with offset in pre-stack seismic data. He also found
that this change was related to the reduced Poisson’s ratio caused by the presence of gas.
Then, the year after, Shuey (1985) confirmed mathematically via approximations of the
Zoeppritz equations that Poisson’s ratio was the elastic constant most directly related
to the offset-dependent reflectivity for incident angles up to 30◦. AVO technology, a
commercial tool for the oil industry, was born.

The AVO technique became very popular in the oil industry, as one could physically
explain the seismic amplitudes in terms of rock properties. Now, bright-spot anomalies
could be investigated before stack, to see if they also had AVO anomalies (Figure 4.3).
The technique proved successful in certain areas of the world, but in many cases it was
not successful. The technique suffered from ambiguities caused by lithology effects,
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Figure 4.3 Schematic illustration of the principles in AVO analysis.

tuning effects, and overburden effects. Even processing and acquisition effects could
cause false AVO anomalies. But in many of the failures, it was not the technique itself
that failed, but the use of the technique that was incorrect. Lack of shear-wave velocity
information and the use of too simple geologic models were common reasons for failure.
Processing techniques that affected near-offset traces in CDP gathers in a different
way from far-offset traces could also create false AVO anomalies. Nevertheless, in
the last decade we have observed a revival of the AVO technique. This is due to the
improvement of 3D seismic technology, better pre-processing routines, more frequent
shear-wave logging and improved understanding of rock physics properties, larger data
capacity, more focus on cross-disciplinary aspects of AVO, and last but not least, more
awareness among the users of the potential pitfalls. The technique provides the seismic
interpreter with more data, but also new physical dimensions that add information to
the conventional interpretation of seismic facies, stratigraphy and geomorphology.

In this section we describe the practical aspects of AVO technology, the poten-
tial of this technique as a direct hydrocarbon indicator, and the pitfalls associated
with this technique. Without going into the theoretical details of wave theory, we
address issues related to acquisition, processing and interpretation of AVO data. For
an excellent overview of the history of AVO and the theory behind this technology,
we refer the reader to Castagna (1993). We expect the future application of AVO to
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expand on today’s common AVO cross-plot analysis and hence we include overviews of
important contributions from the literature, include tuning, attenuation and anisotropy
effects on AVO. Finally, we elaborate on probabilistic AVO analysis constrained by rock
physics models. These comprise the methodologies applied in case studies 1, 3 and 4 in
Chapter 5.

4.3.1 The reflection coefficient

Analysis of AVO, or amplitude variation with offset, seeks to extract rock parameters
by analyzing seismic amplitude as a function of offset, or more correctly as a function
of reflection angle. The reflection coefficient for plane elastic waves as a function of
reflection angle at a single interface is described by the complicated Zoeppritz equations
(Zoeppritz, 1919). For analysis of P-wave reflections, a well-known approximation is
given by Aki and Richards (1980), assuming weak layer contrasts:

R(θ1) ≈ 1

2

(
1 − 4p2V 2

S

) �ρ

ρ
+ 1

2 cos2θ

�VP

VP
− 4p2V 2

S
�VS

VS
(4.6)

where:

p = sin θ1

VP1
θ = (θ1 + θ2)/2 ≈ θ1

�ρ = ρ2 − ρ1 ρ = (ρ2 + ρ1)/2
�VP = VP2 − VP1 VP = (VP2 + VP1)/2
�VS = VS2 − VS1 VS = (VS2 + VS1)/2

In the formulas above, p is the ray parameter, θ1 is the angle of incidence, and θ2 is
the transmission angle; VP1 and VP2 are the P-wave velocities above and below a given
interface, respectively. Similarly, VS1 and VS2 are the S-wave velocities, while ρ1 and
ρ2 are densities above and below this interface (Figure 4.4).

The approximation given by Aki and Richards can be further approximated (Shuey,
1985):

R(θ ) ≈ R(0) + G sin2θ + F(tan2θ − sin2θ ) (4.7)
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Figure 4.4 Reflections and transmissions at a single interface between two elastic half-space media
for an incident plane P-wave, PP(i). There will be both a reflected P-wave, PP(r), and a transmitted
P-wave, PP(t). Note that there are wave mode conversions at the reflection point occurring at
nonzero incidence angles. In addition to the P-waves, a reflected S-wave, PS(r), and a transmitted
S-wave, PS(t), will be produced.

and

F = 1

2

�VP

VP

This form can be interpreted in terms of different angular ranges, where R(0) is the
normal-incidence reflection coefficient, G describes the variation at intermediate offsets
and is often referred to as the AVO gradient, whereas F dominates the far offsets, near
critical angle. Normally, the range of angles available for AVO analysis is less than
30–40◦. Therefore, we only need to consider the two first terms, valid for angles less
than 30◦ (Shuey, 1985):

R(θ ) ≈ R(0) + G sin2θ (4.8)

The zero-offset reflectivity, R(0), is controlled by the contrast in acoustic impedance
across an interface. The gradient, G, is more complex in terms of rock properties, but
from the expression given above we see that not only the contrasts in VP and density
affect the gradient, but also VS. The importance of the VP/VS ratio (or equivalently
the Poisson’s ratio) on the offset-dependent reflectivity was first indicated by Koefoed
(1955). Ostrander (1984) showed that a gas-filled formation would have a very low
Poisson’s ratio compared with the Poisson’s ratios in the surrounding nongaseous for-
mations. This would cause a significant increase in positive amplitude versus angle
at the bottom of the gas layer, and a significant increase in negative amplitude versus
angle at the top of the gas layer.

4.3.2 The effect of anisotropy

Velocity anisotropy ought to be taken into account when analyzing the amplitude varia-
tion with offset (AVO) response of gas sands encased in shales. Although it is generally
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thought that the anisotropy is weak (10–20%) in most geological settings (Thomsen,
1986), some effects of anisotropy on AVO have been shown to be dramatic using
shale/sand models (Wright, 1987). In some cases, the sign of the AVO slope or rate of
change of amplitude with offset can be reversed because of anisotropy in the overlying
shales (Kim et al., 1993; Blangy, 1994).

The elastic stiffness tensor C in transversely isotropic (TI) media can be expressed
in compact form as follows:

C =

C11 (C11 − 2C66) C13 0 0 0
(C11 − 2C66) C11 C13 0 0 0

C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

where C66 = 1

2
(C11 − C12) (4.9)

and where the 3-axis (z-axis) lies along the axis of symmetry.
The above 6 × 6 matrix is symmetric, and has five independent components, C11, C13,

C33, C44, and C66. For weak anisotropy, Thomsen (1986) expressed three anisotropic
parameters, ε, γ and δ, as a function of the five elastic components, where

ε = C11 − C33

2C33
(4.10)

γ = C66 − C44

2C44
(4.11)

δ = (C13 + C44)2 − (C33 − C44)2

2C33(C33 − C44)
(4.12)

The constant ε can be seen to describe the fractional difference of the P-wave velocities
in the vertical and horizontal directions:

ε = VP(90◦) − VP(0◦)

VP(0◦)
(4.13)

and therefore best describes what is usually referred to as “P-wave anisotropy.”
In the same manner, the constant γ can be seen to describe the fractional difference

of SH-wave velocities between vertical and horizontal directions, which is equivalent
to the difference between the vertical and horizontal polarizations of the horizontally
propagating S-waves:
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γ = VSH(90◦) − VSV(90◦)

VSV(90◦)
= VSH(90◦) − VSH(0◦)

VSH(0◦)
(4.14)

The physical meaning of δ is not as clear as ε and γ , but δ is the most important
parameter for normal moveout velocity and reflection amplitude.

Under the plane wave assumption, Daley and Hron (1977) derived theoretical for-
mulas for reflection and transmission coefficients in TI media. The P–P reflectivity in
the equation can be decomposed into isotropic and anisotropic terms as follows:

RPP(θ ) = RIPP(θ ) + RAPP(θ ) (4.15)

Assuming weak anisotropy and small offsets, Banik (1987) showed that the anisotropic
term can be simply expressed as follows:

RAPP(θ ) ≈ sin2θ

2
�δ (4.16)

Blangy (1994) showed the effect of a transversely isotropic shale overlying an isotropic
gas sand on offset-dependent reflectivity, for the three different types of gas sands.
He found that hard gas sands overlain by a soft TI shale exhibited a larger decrease
in positive amplitude with offset than if the shale had been isotropic. Similarly, soft
gas sands overlain by a relatively hard TI shale exhibited a larger increase in negative
amplitude with offset than if the shale had been isotropic. Furthermore, it is possible
for a soft isotropic water sand to exhibit an “unexpectedly” large AVO effect if the
overlying shale is sufficiently anisotropic.

4.3.3 The effect of tuning on AVO

As mentioned in the previous section, seismic interference or event tuning can occur
as closely spaced reflectors interfere with each other. The relative change in traveltime
between the reflectors decreases with increased traveltime and offset. The traveltime
hyperbolas of the closely spaced reflectors will therefore become even closer at larger
offsets. In fact, the amplitudes may interfere at large offsets even if they do not at
small offsets. The effect of tuning on AVO has been demonstrated by Juhlin and Young
(1993), Lin and Phair (1993), Bakke and Ursin (1998), and Dong (1998), among others.

Juhlin and Young (1993) showed that thin layers embedded in a homogeneous rock
can produce a significantly different AVO response from that of a simple interface of
the same lithology. They showed that, for weak contrasts in elastic properties across the
layer boundaries, the AVO response of a thin bed may be approximated by modeling
it as an interference phenomenon between plane P-waves from a thin layer. In this
case thin-bed tuning affects the AVO response of a high-velocity layer embedded in a
homogeneous rock more than it affects the response of a low-velocity layer.
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Lin and Phair (1993) suggested the following expression for the amplitude variation
with angle (AVA) response of a thin layer:

Rt(θ ) = ω0�T (0) cos θ · R(θ ) (4.17)

where ω0 is the dominant frequency of the wavelet, �T (0) is the two-way traveltime
at normal incidence from the top to the base of the thin layer, and R (θ ) is the reflection
coefficient from the top interface.

Bakke and Ursin (1998) extended the work by Lin and Phair by introducing tuning
correction factors for a general seismic wavelet as a function of offset. If the seismic
response from the top of a thick layer is:

d(t, y) = R(y)p(t) (4.18)

where R(y) is the primary reflection as a function of offset y, and p(t) is the seismic
pulse as a function of time t, then the response from a thin layer is

d(t, y) ≈ R(y)�T (0)C(y)p′(t) (4.19)

where p′(t) is the time derivative of the pulse, �T(0) is the traveltime thickness of the
thin layer at zero offset, and C (y) is the offset-dependent AVO tuning factor given by

C(y) = T (0)

T (y)

[
1 + V 2

RMS − V 2

2T (0)2V 4
RMS

y2

]
(4.20)

where T (0) and T (y) are the traveltimes at zero offset and at a given nonzero offset,
respectively. The root-mean-square velocity VRMS, is defined along a ray path:

V 2
RMS =

t∫
0

V 2(t) dt

t∫
0

dt

(4.21)

For small velocity contrasts (VRMS ≈ V ), the last term in equation (4.20) can be
ignored, and the AVO tuning factor can be approximated as

C(y) ≈ T (0)

T (y)
(4.22)

For large contrast in elastic properties, one ought to include contributions from P-
wave multiples and converted shear waves. The locally converted shear wave is often
neglected in ray-tracing modeling when reproduction of the AVO response of potential
hydrocarbon reservoirs is attempted. Primaries-only ray-trace modeling in which the
Zoeppritz equations describe the reflection amplitudes is most common. But primaries-
only Zoeppritz modeling can be very misleading, because the locally converted shear
waves often have a first-order effect on the seismic response (Simmons and Backus,
1994). Interference between the converted waves and the primary reflections from the
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(1) Primaries (2) Single-leg

(3) Double-leg (4) Reverberations
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Figure 4.5 Converted S-waves and multiples that must be included in AVO modeling when we have
thin layers, causing these modes to interfere with the primaries. (1) Primary reflections;
(2) single-leg shear waves; (3) double-leg shear wave; and (4) primary reverberations. (After
Simmons and Backus, 1994.) TPS = transmitted S-wave converted from P-wave, RSP = reflected
P-wave converted from S-wave, etc.

base of the layers becomes increasingly important as the layer thicknesses decrease. This
often produces a seismogram that is different from one produced under the primaries-
only Zoeppritz assumption. In this case, one should use full elastic modeling including
the converted wave modes and the intrabed multiples. Martinez (1993) showed that
surface-related multiples and P-to-SV-mode converted waves can interfere with primary
pre-stack amplitudes and cause large distortions in the AVO responses. Figure 4.5 shows
the ray images of converted S-waves and multiples within a layer.

4.3.4 Structural complexity, overburden and wave propagation effects on AVO

Structural complexity and heterogeneities at the target level as well as in the overbur-
den can have a great impact on the wave propagation. These effects include focusing
and defocusing of the wave field, geometric spreading, transmission losses, interbed
and surface multiples, P-wave to vertically polarized S-wave mode conversions, and
anelastic attenuation. The offset-dependent reflectivity should be corrected for these
wave propagation effects, via robust processing techniques (see Section 4.3.6). Alter-
natively, these effects should be included in the AVO modeling (see Sections 4.3.7
and 4.5). Chiburis (1993) provided a simple but robust methodology to correct for
overburden effects as well as certain acquisition effects (see Section 4.3.5) by normal-
izing a target horizon amplitude to a reference horizon amplitude. However, in more
recent years there have been several more extensive contributions in the literature on
amplitude-preserved imaging in complex areas and AVO corrections due to overburden
effects, some of which we will summarize below.
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AVO in structurally complex areas
The Zoeppritz equations assume a single interface between two semi-infinite layers with
infinite lateral extent. In continuously subsiding basins with relatively flat stratigraphy
(such as Tertiary sediments in the North Sea), the use of Zoeppritz equations should be
valid. However, complex reservoir geology due to thin beds, vertical heterogeneities,
faulting and tilting will violate the Zoeppritz assumptions. Resnick et al. (1987) discuss
the effects of geologic dip on AVO signatures, whereas MacLeod and Martin (1988)
discuss the effects of reflector curvature. Structural complexity can be accounted for by
doing pre-stack depth migration (PSDM). However, one should be aware that several
PSDM routines obtain reliable structural images without preserving the amplitudes.
Grubb et al. (2001) examined the sensitivity both in structure and amplitude related
to velocity uncertainties in PSDM migrated images. They performed an amplitude-
preserving (weighted Kirchhoff) PSDM followed by AVO inversion. For the AVO
signatures they evaluated both the uncertainty in AVO cross-plots and uncertainty of
AVO attribute values along given structural horizons.

AVO effects due to scattering attenuation in heterogeneous overburden
Widmaier et al. (1996) showed how to correct a target AVO response for a thinly layered
overburden. A thin-bedded overburden will generate velocity anisotropy and transmis-
sion losses due to scattering attenuation, and these effects should be taken into account
when analyzing a target seismic reflector. They combined the generalized O’Doherty–
Anstey formula (Shapiro et al., 1994a) with amplitude-preserving migration/inversion
algorithms and AVO analysis to compensate for the influence of thin-bedded layers
on traveltimes and amplitudes of seismic data. In particular, they demonstrated how
the estimation of zero-offset amplitude and AVO gradient can be improved by cor-
recting for scattering attenuation due to thin-bed effects. Sick et al. (2003) extended
Widmaier’s work and provided a method of compensating for the scattering attenuation
effects of randomly distributed heterogeneities above a target reflector. The general-
ized O’Doherty–Anstey formula is an approximation of the angle-dependent, time-
harmonic effective transmissivity T for scalar waves (P-waves in acoustic 1D medium
or SH-waves in elastic 1D medium) and is given by

T ( f ) ∝ T0e−(α( f,θ )+iβ( f,θ ))L (4.23)

where f is the frequency and α and β are the angle- and frequency-dependent scattering
attenuation and phase shift coefficients, respectively. The angle θ is the initial angle of
an incident plane wave at the top surface of a thinly layered composite stack; L is the
thickness of the thinly layered stack; T0 denotes the transmissivity for a homogeneous
isotropic reference medium that causes a phase shift. Hence, the equation above repre-
sents the relative amplitude and phase distortions caused by the thin layers with regard
to the reference medium. Neglecting the quantity T0 which describes the transmission
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response for a homogeneous isotropic reference medium (that is, a pure phase shift), a
phase-reduced transmissivity is defined:

T̃ ( f ) ∝ e−(α( f,θ )+iβ( f,θ ))L (4.24)

For a P-wave in an acoustic 1D medium, the scattering attenuation, α, and the phase
coefficient, β, were derived from Shapiro et al. (1994b) by Widmaier et al. (1996):

α( f, θ ) = 1

cos2θ

4π2aσ 2 f 2

V 2
0 + 16π2a2 f 2 cos2θ

(4.25)

and

β( f, θ ) = π f σ 2

V0 cos θ

[
1 − 8π2a2 f 2

V 2
0 + 16π2a2 f 2 cos2θ

]
(4.26)

where the statistical parameters of the reference medium include spatial correlation
length a, standard deviation σ , and mean velocity V0. The medium is modeled as a
1D random medium with fluctuating P-wave velocities that are characterized by an
exponential correlation function. The transmissivity (absolute value) of the P-wave
decreases with increasing angle of incidence.

If the uncorrected seismic amplitude (i.e., the analytical P-wave particle displace-
ment) is defined according to ray theory by:

U (S, G, t) = RC
1

γ
W(t − τM) (4.27)

where U is the seismic trace, S denotes the source, G denotes the receiver, t is the
varying traveltime along the ray path, RC is the reflection coefficient at the reflection
point M, γ is the spherical divergence factor, W is the source wavelet, and τM is
the traveltime for the ray between source S, via reflection point M, and back to the
receiver G.

A reflector beneath a thin-bedded overburden will have the following compensated
seismic amplitude:

U T(S, G, t) = T̃tw(t) ∗ RC
1

γ
W(t − τM) (4.28)

where the two-way, time-reduced transmissivity is given by:

T̃tw(t) = T̃MG(t) ∗ T̃SM(t) (4.29)

The superscript T of UT(S, G, t) indicates that thin-bed effects have been accounted
for. Moreover, equation (4.28) indicates that the source wavelet, W(t), is convolved with
the transient transmissivity both for the downgoing (T̃ SM) and the upgoing raypaths
(T̃ MG) between source (S), reflection point (M), and receiver (G).
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In conclusion, equation (4.28) represents the angle-dependent time shift caused by
transverse isotropic velocity behavior of the thinly layered overburden. Furthermore, it
describes the decrease of the AVO response resulting from multiple scattering additional
to the amplitude decay related to spherical divergence.

Widmaier et al. (1995) presented similar formulations for elastic P-wave AVO, where
the elastic correction formula depends not only on variances and covariances of P-wave
velocity, but also on S-wave velocity and density, and their correlation and cross-
correlation functions.

Ursin and Stovas (2002) further extended on the O’Doherty–Anstey formula and cal-
culated scattering attenuation for a thin-bedded, viscoelastic medium. They found that
in the seismic frequency range, the intrinsic attenuation dominates over the scattering
attenuation.

AVO and intrinsic attenuation (absorption)
Intrinsic attenuation, also referred to as anelastic absorption, is caused by the fact that
even homogeneous sedimentary rocks are not perfectly elastic. This effect can com-
plicate the AVO response (e.g., Martinez, 1993). Intrinsic attenuation can be described
in terms of a transfer function Ĝ(ω, t) for a plane wave of angular frequency ω and
propagation time t (Luh, 1993):

Ĝ(ω, t) = exp(ωt/2Qe + i(ωt/π Qe) ln ω/ω0) (4.30)

where Qe is the effective quality factor of the overburden along the wave propagation
path and ω0 is an angular reference frequency.

Luh demonstrated how to correct for horizontal, vertical and offset-dependent
wavelet attenuation. He suggested an approximate, “rule of thumb” equation to cal-
culate the relative change in AVO gradient, δG, due to absorption in the overburden:

δG ≈ f1τ

Qe
(4.31)

where f1 is the peak frequency of the wavelet, and τ is the zero-offset two-way travel
time at the studied reflector.

Carcione et al. (1998) showed that the presence of intrinsic attenuation affects the
P-wave reflection coefficient near the critical angle and beyond it. They also found that
the combined effect of attenuation and anisotropy affects the reflection coefficients at
non-normal incidence, but that the intrinsic attenuation in some cases can actually com-
pensate the anisotropic effects. In most cases, however, anisotropic effects are dominant
over attenuation effects. Carcione (1999) furthermore showed that the unconsolidated
sediments near the sea bottom in offshore environments can be highly attenuating, and
that these waves will for any incidence angle have a vector attenuation perpendicular
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to the sea-floor interface. This vector attenuation will affect AVO responses of deeper
reflectors.

4.3.5 Acquisition effects on AVO

The most important acquisition effects on AVO measurements include source direc-
tivity, and source and receiver coupling (Martinez, 1993). In particular, acquisition
footprint is a large problem for 3D AVO (Castagna, 2001). Irregular coverage at the
surface will cause uneven illumination of the subsurface. These effects can be corrected
for using inverse operations. Different methods for this have been presented in the liter-
ature (e.g., Gassaway et al., 1986; Krail and Shin, 1990; Chemingui and Biondi, 2002).
Chiburis’ (1993) method for normalization of target amplitudes with a reference ampli-
tude provided a fast and simple way of correcting for certain data collection factors
including source and receiver characteristics and instrumentation.

4.3.6 Pre-processing of seismic data for AVO analysis

AVO processing should preserve or restore relative trace amplitudes within CMP gath-
ers. This implies two goals: (1) reflections must be correctly positioned in the sub-
surface; and (2) data quality should be sufficient to ensure that reflection amplitudes
contain information about reflection coefficients.

AVO processing

Even though the unique goal in AVO processing is to preserve the true relative
amplitudes, there is no unique processing sequence. It depends on the complexity
of the geology, whether it is land or marine seismic data, and whether the data will
be used to extract regression-based AVO attributes or more sophisticated elastic
inversion attributes.

Cambois (2001) defines AVO processing as any processing sequence that makes
the data compatible with Shuey’s equation, if that is the model used for the AVO
inversion. Cambois emphasizes that this can be a very complicated task.

Factors that change the amplitudes of seismic traces can be grouped into Earth effects,
acquisition-related effects, and noise (Dey-Sarkar and Suatek, 1993). Earth effects
include spherical divergence, absorption, transmission losses, interbed multiples, con-
verted phases, tuning, anisotropy, and structure. Acquisition-related effects include
source and receiver arrays and receiver sensitivity. Noise can be ambient or source-
generated, coherent or random. Processing attempts to compensate for or remove these
effects, but can in the process change or distort relative trace amplitudes. This is an
important trade-off we need to consider in pre-processing for AVO. We therefore need
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to select a basic but robust processing scheme (e.g., Ostrander, 1984; Chiburis, 1984;
Fouquet, 1990; Castagna and Backus, 1993; Yilmaz, 2001).

Common pre-processing steps before AVO analysis

Spiking deconvolution and wavelet processing
In AVO analysis we normally want zero-phase data. However, the original seismic pulse
is causal, usually some sort of minimum phase wavelet with noise. Deconvolution is
defined as convolving the seismic trace with an inverse filter in order to extract the
impulse response from the seismic trace. This procedure will restore high frequen-
cies and therefore improve the vertical resolution and recognition of events. One can
make two-sided, non-causal filters, or shaping filters, to produce a zero-phase wavelet
(e.g., Leinbach, 1995; Berkhout, 1977).

The wavelet shape can vary vertically (with time), laterally (spatially), and with
offset. The vertical variations can be handled with deterministic Q-compensation (see
Section 4.3.4). However, AVO analysis is normally carried out within a limited time
window where one can assume stationarity. Lateral changes in the wavelet shape can
be handled with surface-consistent amplitude balancing (e.g., Cambois and Magesan,
1997). Offset-dependent variations are often more complicated to correct for, and are
attributed to both offset-dependent absorption (see Section 4.3.4), tuning effects (see
Section 4.3.3), and NMO stretching. NMO stretching acts like a low-pass, mixed-phase,
nonstationary filter, and the effects are very difficult to eliminate fully (Cambois, 2001).
Dong (1999) examined how AVO detectability of lithology and fluids was affected
by tuning and NMO stretching, and suggested a procedure for removing the tuning
and stretching effects in order to improve AVO detectability. Cambois recommended
picking the reflections of interest prior to NMO corrections, and flattening them for
AVO analysis.

Spherical divergence correction
Spherical divergence, or geometrical spreading, causes the intensity and energy of
spherical waves to decrease inversely as the square of the distance from the source
(Newman, 1973). For a comprehensive review on offset-dependent geometrical spread-
ing, see the study by Ursin (1990).

Surface-consistent amplitude balancing
Source and receiver effects as well as water depth variation can produce large devi-
ations in amplitude that do not correspond to target reflector properties. Commonly,
statistical amplitude balancing is carried out both for time and offset. However, this
procedure can have a dramatic effect on the AVO parameters. It easily contributes
to intercept leakage and consequently erroneous gradient estimates (Cambois, 2000).
Cambois (2001) suggested modeling the expected average amplitude variation with
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offset following Shuey’s equation, and then using this behavior as a reference for the
statistical amplitude balancing.

Multiple removal
One of the most deteriorating effects on pre-stack amplitudes is the presence of multi-
ples. There are several methods of filtering away multiple energy, but not all of these are
adequate for AVO pre-processing. The method known as f–k multiple filtering, done in
the frequency–wavenumber domain, is very efficient at removing multiples, but the dip
in the f–k domain is very similar for near-offset primary energy and near-offset multiple
energy. Hence, primary energy can easily be removed from near traces and not from far
traces, resulting in an artificial AVO effect. More robust demultiple techniques include
linear and parabolic Radon transform multiple removal (Hampson, 1986; Herrmann
et al., 2000).

NMO (normal moveout) correction
A potential problem during AVO analysis is error in the velocity moveout correction
(Spratt, 1987). When extracting AVO attributes, one assumes that primaries have been
completely flattened to a constant traveltime. This is rarely the case, as there will always
be residual moveout. The reason for residual moveout is almost always associated with
erroneous velocity picking, and great efforts should be put into optimizing the estimated
velocity field (e.g., Adler, 1999; Le Meur and Magneron, 2000). However, anisotropy
and nonhyperbolic moveouts due to complex overburden may also cause misalignments
between near and far offsets (an excellent practical example on AVO and nonhyperbolic
moveout was published by Ross, 1997). Ursin and Ekren (1994) presented a method
for analyzing AVO effects in the offset domain using time windows. This technique
reduces moveout errors and creates improved estimates of AVO parameters. One should
be aware of AVO anomalies with polarity shifts (class IIp, see definition below) during
NMO corrections, as these can easily be misinterpreted as residual moveouts (Ratcliffe
and Adler, 2000).

DMO correction
DMO (dip moveout) processing generates common-reflection-point gathers. It moves
the reflection observed on an offset trace to the location of the coincident source–
receiver trace that would have the same reflecting point. Therefore, it involves shift-
ing both time and location. As a result, the reflection moveout no longer depends
on dip, reflection-point smear of dipping reflections is eliminated, and events with
various dips have the same stacking velocity (Sheriff and Geldhart, 1995). Shang
et al. (1993) published a technique on how to extract reliable AVA (ampli-
tude variation with angle) gathers in the presence of dip, using partial pre-stack
migration.
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Pre-stack migration
Pre-stack migration might be thought to be unnecessary in areas where the sedimentary
section is relatively flat, but it is an important component of all AVO processing.
Pre-stack migration should be used on data for AVO analysis whenever possible,
because it will collapse the diffractions at the target depth to be smaller than the Fresnel
zone and therefore increase the lateral resolution (see Section 4.2.3; Berkhout, 1985;
Mosher et al., 1996). Normally, pre-stack time migration (PSTM) is preferred to pre-
stack depth migration (PSDM), because the former tends to preserve amplitudes better.
However, in areas with highly structured geology, PSDM will be the most accurate
tool (Cambois, 2001). An amplitude-preserving PSDM routine should then be applied
(Bleistein, 1987; Schleicher et al., 1993; Hanitzsch, 1997).

Migration for AVO analysis can be implemented in many different ways. Resnick
et al. (1987) and Allen and Peddy (1993) among others have recommended Kirch-
hoff migration together with AVO analysis. An alternative approach is to apply wave-
equation-based migration algorithms. Mosher et al. (1996) derived a wave equation for
common-angle time migration and used inverse scattering theory (see also Weglein,
1992) for integration of migration and AVO analysis (i.e., migration-inversion). Mosher
et al. (1996) used a finite-difference approach for the pre-stack migrations and illus-
trated the value of pre-stack migration for improving the stratigraphic resolution, data
quality, and location accuracy of AVO targets.

Example of pre-processing scheme for AVO analysis of a 2D seismic line

(Yilmaz, 2001.)
(1) Pre-stack signal processing (source signature processing, geometric scaling,

spiking deconvolution and spectral whitening).
(2) Sort to CMP and do sparse interval velocity analysis.
(3) NMO using velocity field from step 2.
(4) Demultiple using discrete Radon transform.
(5) Sort to common-offset and do DMO correction.
(6) Zero-offset FK time migration.
(7) Sort data to common-reflection-point (CRP) and do inverse NMO using the

velocity field from step 2.
(8) Detailed velocity analysis associated with the migrated data.
(9) NMO correction using velocity field from step 8.

(10) Stack CRP gathers to obtain image of pre-stack migrated data. Remove residual
multiples revealed by the stacking.

(11) Unmigrate using same velocity field as in step 6.
(12) Post-stack spiking deconvolution.
(13) Remigrate using migration velocity field from step 8.
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Some pitfalls in AVO interpretation due to processing effects

� Wavelet phase. The phase of a seismic section can be significantly altered during
processing. If the phase of a section is not established by the interpreter, then AVO
anomalies that would be interpreted as indicative of decreasing impedance, for
example, can be produced at interfaces where the impedance increases (e.g., Allen
and Peddy, 1993).

� Multiple filtering. Not all demultiple techniques are adequate for AVO pre-
processing. Multiple filtering, done in the frequency–wavenumber domain, is very
efficient at removing multiples, but the dip in the f–k domain is very similar for
near-offset primary energy and near-offset multiple energy. Hence, primary energy
can easily be removed from the near-offset traces, resulting in an artificial AVO
effect.

� NMO correction. A potential problem during AVO analysis is errors in the velocity
moveout correction (Spratt, 1987). When extracting AVO attributes, one assumes
that primaries have been completely flattened to a constant traveltime. This is
rarely the case, as there will always be residual moveout. Ursin and Ekren (1994)
presented a method for analyzing AVO effects in the offset domain using time
windows. This technique reduces moveout errors and creates improved estimates
of AVO parameters. NMO stretch is another problem in AVO analysis. Because
the amount of normal moveout varies with arrival time, frequencies are lowered
at large offsets compared with short offsets. Large offsets, where the stretching
effect is significant, should be muted before AVO analysis. Swan (1991), Dong
(1998) and Dong (1999) examine the effect of NMO stretch on offset-dependent
reflectivity.

� AGC amplitude correction. Automatic gain control must be avoided in pre-
processing of pre-stack data before doing AVO analysis.

Pre-processing for elastic impedance inversion
Several of the pre-processing steps necessary for AVO analysis are not required when
preparing data for elastic impedance inversion (see Section 4.4 for details on the method-
ology). First of all, the elastic impedance approach allows for wavelet variations with
offset (Cambois, 2000). NMO stretch corrections can be skipped, because each limited-
range sub-stack (in which the wavelet can be assumed to be stationary) is matched to its
associated synthetic seismogram, and this will remove the wavelet variations with angle.
It is, however, desirable to obtain similar bandwidth for each inverted sub-stack cube,
since these should be comparable. Furthermore, the data used for elastic impedance
inversion are calibrated to well logs before stack, which means that average amplitude
variations with offset are automatically accounted for. Hence, the complicated pro-
cedure of reliable amplitude corrections becomes much less labor-intensive than for
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Figure 4.6 AVO curves for different half-space models (i.e., two layers – one interface). Facies IV
is cap-rock. Input rock physics properties represent mean values for each facies.

standard AVO analysis. Finally, residual NMO and multiples still must be accounted for
(Cambois, 2001). Misalignments do not cause intercept leakage as for standard AVO
analysis, but near- and far-angle reflections must still be in phase.

4.3.7 AVO modeling and seismic detectability

AVO analysis is normally carried out in a deterministic way to predict lithology and
fluids from seismic data (e.g., Smith and Gidlow, 1987; Rutherford and Williams, 1989;
Hilterman, 1990; Castagna and Smith, 1994; Castagna et al., 1998).

Forward modeling of AVO responses is normally the best way to start an AVO
analysis, as a feasibility study before pre-processing, inversion and interpretation of
real pre-stack data. We show an example in Figure 4.6 where we do AVO modeling
of different lithofacies defined in Section 2.5. The figure shows the AVO curves for
different half-space models, where a silty shale is taken as the cap-rock with different
underlying lithofacies. For each facies, VP, VS, and ρ are extracted from well-log data
and used in the modeling. We observe a clean sand/pure shale ambiguity (facies IIb
and facies V) at near offsets, whereas clean sands and shales are distinguishable at far
offsets. This example depicts how AVO is necessary to discriminate different lithofacies
in this case.
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Figure 4.7 Schematic AVO curves for cemented sandstone and unconsolidated sands capped by
shale, for brine-saturated and oil-saturated cases.

Figure 4.7 shows another example, where we consider two types of clean sands,
cemented and unconsolidated, with brine versus hydrocarbon saturation. We see that a
cemented sandstone with hydrocarbon saturation can have similar AVO response to a
brine-saturated, unconsolidated sand.

The examples in Figures 4.6 and 4.7 indicate how important it is to understand the
local geology during AVO analysis. It is necessary to know what type of sand is expected
for a given prospect, and how much one expects the sands to change locally owing to
textural changes, before interpreting fluid content. It is therefore equally important to
conduct realistic lithology substitutions in addition to fluid substitution during AVO
modeling studies. The examples in Figures 4.6 and 4.7 also demonstrate the impor-
tance of the link between rock physics and geology (Chapter 2) during AVO analysis.

When is AVO analysis the appropriate technique?

It is well known that AVO analysis does not always work. Owing to the many
cases where AVO has been applied without success, the technique has received a
bad reputation as an unreliable tool. However, part of the AVO analysis is to find
out if the technique is appropriate in the first place. It will work only if the rock
physics and fluid characteristics of the target reservoir are expected to give a good
AVO response. This must be clarified before the AVO analysis of real data. Without
a proper feasibility study, one can easily misinterpret AVO signatures in the real
data. A good feasibility study could include both simple reflectivity modeling and
more advanced forward seismic modeling (see Section 4.5). Both these techniques
should be founded on a thorough understanding of local geology and petrophysical
properties. Realistic lithology substitution is as important as fluid substitution during
this exercise.
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Often, one will find that there is a certain depth interval where AVO will work,
often referred to as the “AVO window.” Outside this, AVO will not work well.
That is why analysis of rock physics depth trends should be an integral part of
AVO analysis (see Sections 2.6 and 4.3.16). However, the “AVO window” is also
constrained by data quality. With increasing depth, absorption of primary energy
reduces the signal-to-noise ratio, higher frequencies are gradually more attenuated
than lower frequencies, the geology usually becomes more complex causing more
complex wave propagations, and the angle range reduces for a given streamer length.
All these factors make AVO less applicable with increasing depth.

4.3.8 Deterministic AVO analysis of CDP gathers

After simple half-space AVO modeling, the next step in AVO analysis should be deter-
ministic AVO analysis of selected CDP (common-depth-point) gathers, preferably at
well locations where synthetic gathers can be generated and compared with the real
CDP gathers. In this section, we show an example of how the method can be applied to
discriminate lithofacies in real seismic data, by analyzing CDP gathers at well locations
in a deterministic way. Figure 4.8 shows the real and synthetic CDP gathers at three
adjacent well locations in a North Sea field (the well logs are shown in Figure 5.1, case
study 1). The figure also includes the picked amplitudes at a top target horizon super-
imposed on exact Zoeppritz calculated reflectivity curves derived from the well-log
data.

In Well 2, the reservoir sands are unconsolidated, represent oil-saturated sands, and
are capped by silty shales. According to the saturation curves derived from deep resis-
tivity measurements, the oil saturation in the reservoir varies from 20–80%, with an
average of about 60%. The sonic and density logs are found to measure the mud
filtrate invaded zone (0–10% oil). Hence, we do fluid substitution to calculate the
seismic properties of the reservoir from the Biot–Gassmann theory assuming a uni-
form saturation model (the process of fluid substitution is described in Chapter 1).
Before we do the fluid substitution, we need to know the acoustic properties of
the oil and the mud filtrate. These are calculated from Batzle and Wang’s relations
(see Chapter 1). For this case, the input parameters for the fluid substitution are as
follows.

Oil GOR 64 l/l
Oil relative density 32 API
Mud-filtrate density 1.09 g/cm3

Pore pressure at reservoir level 20 MPa
Temperature at reservoir level 77.2 ◦C
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The corresponding AVO response shows a negative zero-offset reflectivity and a neg-
ative AVO gradient. In Well 1, we have a water-saturated cemented sand below a silty
shale. The corresponding AVO response in this well shows a strong positive zero-offset
reflectivity and a relatively strong negative gradient. Finally, in Well 3 we observe a
strong positive zero-offset reflectivity and a moderate negative gradient, corresponding
to interbedded sand/shale facies capped by silty shales. Hence, we observe three distinct
AVO responses in the three different wells. The changes are related to both lithology
and pore-fluid variations within the turbidite system. For more detailed information
about this system, see case study 1 in Chapter 5.

Avseth et al. (2000) demonstrated the effect of cementation on the AVO response in
real CDP gathers around two wells, one where the reservoir sands are friable, and the
other where the reservoir sands are cemented. They found that if the textural effects
of the sands were ignored, the corresponding changes in AVO response could be inter-
preted as pore-fluid changes, just as depicted in the reflectivity modeling example in
Figure 4.7.

Importance of AVO analysis of individual CDP gathers

Investigations of CDP gathers are important in order to confirm AVO anomalies
seen in weighted stack sections (Shuey’s intercept and gradient, Smith and Gidlow’s
fluid factor, etc.). The weighted stacks can contain anomalies not related to true
offset-dependent amplitude variations.

4.3.9 Estimation of AVO parameters

Estimating intercept and gradient
The next step in an AVO analysis should be to extract AVO attributes and do multivari-
ate analysis of these. Several different AVO attributes can be extracted, mapped and
analyzed. The two most important ones are zero-offset reflectivity (R(0)) and AVO gra-
dient (G) based on Shuey’s approximation. These seismic parameters can be extracted,
via a least-squares seismic inversion, for each sample in a CDP gather over a selected
portion of a 3D seismic volume.

For a given NMO-corrected CDP gather, R(t, x), it is assumed that for each
time sample, t, the reflectivity data can be expressed as Shuey’s formula (equation
(4.8)):

R(t, x) = R(t, 0) + G(t) sin2θ (t, x) (4.32)

where θ (t, x) is the incident angle corresponding to the data sample recorded at
(t, x).
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For a layered Earth, the relationship between offset (x) and angle (θ) is given approx-
imately by:

sin θ (t, x) ≈ x(
t2
0 + x2

/
V 2

RMS

)1/2

VINT

V 2
RMS

(4.33)

where VINT is the interval velocity and VRMS is the average root-mean-square veloc-
ity, as calculated from an input velocity profile (for example obtained from sonic
log).

For any given value of zero-offset time, t0, we assume that R is measured at N offsets
(xi, i = 1, N). Hence, we can rewrite the defining equation for this time as (Hampson
and Russell, 1995):
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[
R(t, 0)
G(t)

]
(4.34)

This matrix equation is in the form of b = Ac and represents N equations in the two
unknowns, R(t, 0) and G(t). The least-squares solution to this equation is obtained by
solving the so-called “normal equation”:

c = (ATA)−1(ATb) (4.35)

This gives us the least-squares solution for R(0) and G at time t.

Inversion for elastic parameters
Going beyond the estimation of intercept and gradient, one can invert pre-stack seis-
mic amplitudes for elastic parameters, including VP, VS and density. This is commonly
referred to as AVO inversion, and can be performed via nonlinear methods (e.g., Dahl
and Ursin, 1992; Buland et al., 1996; Gouveia and Scales, 1998) or linearized inversion
methods (e.g., Smith and Gidlow, 1987; Loertzer and Berkhout, 1993). Gouveia and
Scales (1998) defined a Bayesian nonlinear model and estimated, via a nonlinear con-
jugate gradient method, the maximum a-posteriori (MAP) distributions of the elastic
parameters. However, the nonlinearity of the inversion problem makes their method
very computer intensive. Loertzer and Berkhout (1993) performed linearized Bayesian
inversion based on single interface theory on a sample-by-sample basis. Buland and
Omre (2003) extended the work of Loertzer and Berkhout and developed a linearized
Bayesian AVO inversion method where the wavelet is accounted for by convolution.
The inversion is performed simultaneously for all times in a given time window, which



202 Common techniques for quantitative seismic interpretation

makes it possible to obtain temporal correlation between model parameters close in
time. Furthermore, they solved the AVO inversion problem via Gaussian priors and
obtained an explicit analytical form for the posterior density, providing a computation-
ally fast estimation of the elastic parameters.

Pitfalls of AVO inversion

� A linear approximation of the Zoeppritz equations is commonly used in the calcu-
lation of R(0) and G. The two-term Shuey approximation is known to be accurate
for angles of incidence up to approximately 30◦. Make sure that the data inverted
do not exceed this range, so the approximation is valid.

� The Zoeppritz equations are only valid for single interfaces. Inversion algorithms
that are based on these equations will not be valid for thin-bedded geology.

� The linear AVO inversion is sensitive to uncharacteristic amplitudes caused by
noise (including multiples) or processing and acquisition effects. A few outlying
values present in the pre-stack amplitudes are enough to cause erroneous estimates
of R(0) and G. Most commercial software packages for estimation of R(0) and
G apply robust estimation techniques (e.g., Walden, 1991) to limit the damage of
outlying amplitudes.

� Another potential problem during sample-by-sample AVO inversion is errors
in the moveout correction (Spratt, 1987). Ursin and Ekren (1994) presented a
method for analyzing AVO effects in the offset domain using time windows.
This technique reduces moveout errors and creates improved estimates of AVO
parameters.

4.3.10 AVO cross-plot analysis

A very helpful way to interpret AVO attributes is to make cross-plots of intercept (R(0))
versus gradient (G). These plots are a very helpful and intuitive way of presenting AVO
data, and can give a better understanding of the rock properties than by analyzing the
standard AVO curves.

AVO classes
Rutherford and Williams (1989) suggested a classification scheme of AVO responses
for different types of gas sands (see Figure 4.9). They defined three AVO classes based
on where the top of the gas sands will be located in an R(0) versus G cross-plot. The
cross-plot is split up into four quadrants. In a cross-plot with R(0) along x-axis and G
along y-axis, the 1st quadrant is where R(0) and G are both positive values (upper right
quadrant). The 2nd is where R(0) is negative and G is positive (upper left quadrant). The
3rd is where both R(0) and G are negative (lower left quadrant). Finally, the 4th quadrant
is where R(0) is positive and G is negative (lower right quadrant). The AVO classes
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Table 4.1 AVO classes, after Rutherford and Williams (1989),
extended by Castagna and Smith (1994), and Ross and
Kinman (1995)

Class Relative impedance Quadrant R(0) G AVO product

I High-impedance sand 4th + − Negative
II No or low contrast 4th + − Negative
IIp 3rd − − Positive
III Low impedance 3rd − − Positive
IV Low impedance 2nd − + Negative

 Class I Class IIp Class II

 Class III

 Class IV

 R(0)

 G

Figure 4.9 Rutherford and Williams AVO classes, originally defined for gas sands (classes I, II and
III), along with the added classes IV (Castagna and Smith, 1994) and IIp (Ross and Kinman, 1995).
Figure is adapted from Castagna et al. (1998).

must not be confused with the quadrant numbers. Class I plots in the 4th quadrant
with positive R(0) and negative gradients. These represent hard events with relatively
high impedance and low VP/VS ratio compared with the cap-rock. Class II represents
sands with weak intercept but strong negative gradient. These can be hard to see on
the seismic data, because they often yield dim spots on stacked sections. Class III
is the AVO category that is normally associated with bright spots. These plot in the
3rd quadrant in R(0)–G cross-plots, and are associated with soft sands saturated with
hydrocarbons (see Plate 4.10).

Ross and Kinman (1995) distinguished between a class IIp and class II anomaly.
Class IIp has a weak but positive intercept and a negative gradient, causing a polarity
change with offset. This class will disappear on full stack sections. Class II has a weak
but negative intercept and negative gradient, hence no polarity change. This class may
be observed as a negative amplitude on a full-offset stack.

Castagna and Swan (1997) extended the classification scheme of Rutherford and
Williams to include a 4th class, plotting in the 2nd quadrant. These are relatively rare,
but occur when soft sands with gas are capped by relatively stiff shales character-
ized by VP/VS ratios slightly higher than in the sands (i.e., very compacted or silty
shales).



204 Common techniques for quantitative seismic interpretation

Summary of AVO classes

� AVO class I represents relatively hard sands with hydrocarbons. These sands tend to
plot along the background trend in intercept–gradient cross-plots. Moreover, very
hard sands can have little sensitivity to fluids, so there may not be an associated
flat spot. Hence, these sands can be hard to discover from seismic data.

� AVO class II, representing transparent sands with hydrocarbons, often show up as
dim spots or weak negative reflectors on the seismic. However, because of relatively
large gradients, they should show up as anomalies in an R(0)–G cross-plot, and
plot off the background trend.

� AVO class III is the “classical” AVO anomaly with negative intercept and negative
gradient. This class represents relatively soft sands with high fluid sensitivity,
located far away from the background trend. Hence, they should be easy to detect
on seismic data.

� AVO class IV are sands with negative intercept but positive gradient. The reflection
coefficient becomes less negative with increasing offset, and amplitude decreases
versus offset, even though these sands may be bright spots (Castagna and Swan,
1997). Class IV anomalies are relatively rare, but occur when soft sands with gas
are capped by relatively stiff cap-rock shales characterized by VP/VS ratios slightly
higher than in the sands (i.e., very compacted or silty shales).

The AVO classes were originally defined for gas sands. However, today the AVO
class system is used for descriptive classification of observed anomalies that are
not necessarily gas sands. An AVO class II that is drilled can turn out to be brine
sands. It does not mean that the AVO anomaly was not a class II anomaly. We
therefore suggest applying the classification only as descriptive terms for observed
AVO anomalies, without automatically inferring that we are dealing with gas
sands.

AVO trends and the effects of porosity, lithology and compaction
When we plot R(0) and G as cross-plots, we can analyze the trends that occur in terms of
changes in rock physics properties, including fluid trends, porosity trends and lithology
trends, as these will have different directions in the cross-plot (Figure 4.11). Using
rock physics models and then calculating the corresponding intercept and gradients,
we can study various “What if ” scenarios, and then compare the modeled trends with
the inverted data.

Brine-saturated sands interbedded with shales, situated within a limited depth range
and at a particular locality, normally follow a well-defined “background trend” in AVO
cross-plot (Castagna and Swan, 1997). A common and recommended approach in
qualitative AVO cross-plot analysis is to recognize the “background” trend and then
look for data points that deviate from this trend.
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Porosity
trend

Fluid trend 

Noise
trend

R(0)

G

Background  
trend

Figure 4.11 Different trends occurring in an intercept–gradient cross-plot. (Adapted from Simm
et al., 2000.)

Castagna et al. (1998) presented an excellent overview and a framework for AVO
gradient and intercept interpretation. The top of the sands will normally plot in the 4th
quadrant, with positive R(0) and negative G. The base of the sands will normally plot in
the 2nd quadrant, with negative R(0) and positive G. The top and base of sands, together
with shale–shale interfaces, will create a nice trend or ellipse with center in the origin
of the R(0)–G coordinate system. This trend will rotate with contrast in VP/VS ratio
between a shaly cap-rock and a sandy reservoir (Castagna et al., 1998; Sams, 1998).
We can extract the relationship between VP/VS ratio and the slope of the background
trend (ab) by dividing the gradient, G, by the intercept, R(0):

ab = G

R(0)
(4.36)

Assuming the density contrast between shale and wet sand to be zero, we can study
how changing VP/VS ratio affects the background trend. The density contrast between
sand and shale at a given depth is normally relatively small compared with the velocity
contrasts (Foster et al., 1997). Then the background slope is given by:

ab = 1 − 8

[
(VS1 + VS2)

(VP1 + VP2)

�VS

�VP

]
(4.37)

where VP1 and VP2 are the P-wave velocities in the cap-rock and in the reservoir,
respectively; VS1 and VS2 are the corresponding S-wave velocities, whereas �VP and
�VS are the velocity differences between reservoir and cap-rock. If the VP/VS ratio is
2 in the cap-rock and 2 in the reservoir, the slope of the background trend is −1, that
is a 45◦ slope diagonal to the gradient and intercept axes. Figure 4.12 shows different
lines corresponding to varying VP/VS ratio in the reservoir and the cap-rock.

The rotation of the line denoting the background trend will be an implicit function
of rock physics properties such as clay content and porosity. Increasing clay content
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VP/VS = 2.5 in cap-rock
VP/VS = 2.0 in cap-rock0.5
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Figure 4.12 Background trends in AVO cross-plots as a function of varying VP/VS ratio in cap-rock
and reservoir. (We assume no density contrast.) Notice that a VP/VS ratio of 1.5 in the reservoir can
have different locations in the AVO cross-plot depending on the cap-rock VP/VS ratio. If the VP/VS

ratio of the cap-rock is 2.5, the sand will exhibit AVO class II to III behavior (left), whereas if the
cap-rock VP/VS ratio is 2.0, the sand will exhibit class I to IIp behavior (right).

at a reservoir level will cause a counter-clockwise rotation, as the VP/VS ratio will
increase. Increasing porosity related to less compaction will also cause a counter-
clockwise rotation, as less-compacted sediments tend to have relatively high VP/VS

ratio. However, increasing porosity related to less clay content or improved sorting will
normally cause a clockwise rotation, as clean sands tend to have lower VP/VS ratio
than shaly sands. Hence, it can be a pitfall to relate porosity to AVO response without
identifying the cause of the porosity change.

The background trend will change with depth, but the way it changes can be complex.
Intrinsic attenuation, discussed in Section 4.3.4 (Luh, 1993), will affect the background
trend as a function of depth, but correction should be made for this before rock physics
analysis of the AVO cross-plot (see Section 4.3.6). Nevertheless, the rotation due to
depth trends in the elastic contrasts between sands and shales is not straightforward,
because the VP/VS in the cap-rock as well as the reservoir will decrease with depth.
These two effects will counteract each other in terms of rotational direction, as seen in
Figure 4.12. Thus, the rotation with depth must be analyzed locally. Also, the contrasts
between cap-rock and reservoir will change as a function of lithology, clay content,
sorting, and diagenesis, all geologic factors that can be unrelated to depth. That being
said, we should not include too large a depth interval when we extract background trends
(Castagna and Swan, 1997). That would cause several slopes to be superimposed and
result in a less defined background trend. For instance, note that the top of a soft sand
will plot in the 3rd quadrant, while the base of a soft sand will plot in the 1st quadrant,
giving a background trend rotated in the opposite direction to the trend for hard sands.
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Fluid effects and AVO anomalies
As mentioned above, deviations from the background trend may be indicative of hydro-
carbons, or some local lithology or diagenesis effect with anomalous elastic properties
(Castagna et al., 1998). Foster et al. (1997) mathematically derived hydrocarbon trends
that would be nearly parallel to the background trend, but would not pass through the
origin in R(0) versus G cross-plots. For both hard and soft sands we expect the top of
hydrocarbon-filled rocks to plot to the left of the background trend, with lower R(0)
and G values compared with the brine-saturated case. However, Castagna et al. (1998)
found that, in particular, gas-saturated sands could exhibit a variety of AVO behaviors.

As listed in Table 4.1, AVO class III anomalies (Rutherford and Williams, 1989),
representing soft sands with gas, will fall in the 3rd quadrant (the lower left quadrant)
and have negative R(0) and G. These anomalies are the easiest to detect from seismic
data (see Section 4.3.11).

Hard sands with gas, representing AVO class I anomalies, will plot in the 4th quadrant
(lower right) and have positive R(0) and negative G. Consequently, these sands tend
to show polarity reversals at some offset. If the sands are very stiff (i.e., cemented),
they will not show a large change in seismic response when we go from brine to gas
(cf. Chapter 1). This type of AVO anomaly will not show up as an anomaly in a product
stack. In fact, they can plot on top of the background trend of some softer, brine-
saturated sands. Hence, very stiff sands with hydrocarbons can be hard to discriminate
with AVO analysis.

AVO class II anomalies, representing sands saturated with hydrocarbons that have
very weak zero-offset contrast compared with the cap-rock, can show great overlap
with the background trend, especially if the sands are relatively deep. However, class II
type oil sands can occur very shallow, causing dim spots that stick out compared with
a bright background response (i.e., when heterolithics and brine-saturated sands are
relatively stiff compared with overlying shales). However, because they are dim they
are easy to miss in near- or full-stack seismic sections, and AVO analysis can therefore
be a very helpful tool in areas with class II anomalies.

Castagna and Swan (1997) discovered a different type of AVO response for some
gas sands, which they referred to as class IV AVO anomalies (see Table 4.1), or a
“false negative.” They found that in some rare cases, gas sands could have negative
R(0) and positive G, hence plotting in the 2nd quadrant (upper left quadrant). They
showed that this may occur if the gas-sand shear-wave velocity is lower than that of the
overlying formation. The most likely geologic scenario for such an AVO anomaly is in
unconsolidated sands with relatively large VP/VS ratio (Foster et al., 1997). That means
that if the cap-rock is a shale, it must be a relatively stiff and rigid shale, normally a
very silt-rich shale. This AVO response can confuse the interpreter. First, the gradients
of sands plotting in the 2nd quadrant tend to be relatively small, and less sensitive to
fluid type than the gradients for sands plotting in the 3rd quadrant. Second, these AVO
anomalies will actually show up as dim spots in a gradient stack. However, they should
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stand out in an R(0)–G cross-plot, with lower R(0) values than the background trend.
Seismically, they should stand out as negative bright spots.

Pitfalls

� Different rock physics trends in AVO cross-plots can be ambiguous. The interpreta-
tion of AVO trends should be based on locally constrained rock physics modeling,
not on naive rules of thumb.

� Trends within individual clusters that do not project through the origin on an AVO
cross-plot cannot always be interpreted as a hydrocarbon indicator or unusual
lithology. Sams (1998) showed that it is possible for trends to have large offsets
from the origin even when no hydrocarbons are present and the lithology is not
unusual. Only where the rocks on either side of the reflecting surface have the
same VP/VS ratio will the trends (not to be confused with background trends as
shown in Figure 4.12) project through the origin. Sams showed an example of a
brine sand that appeared more anomalous than a less porous hydrocarbon-bearing
sand.

� Residual gas saturation can cause similar AVO effects to high saturations of gas
or light oil. Three-term AVO where reliable estimates of density are obtained, or
attenuation attributes, can potentially discriminate residual gas saturations from
commercial amounts of hydrocarbons (see Sections 4.3.12 and 4.3.15 for further
discussions).

Noise trends
A cross-plot between R(0) and G will also include a noise trend, because of the corre-
lation between R(0) and G. Because R(0) and G are obtained from least-square fitting,
there is a negative correlation between R(0) and G. Larger intercepts are correlated
with smaller slopes for a given data set. Hence, uncorrelated random noise will show
an oval, correlated distribution in the cross-plot as seen in Figure 4.13 (Cambois,
2000).

Furthermore, Cambois (2001) formulated the influence of noise on R(0), G and
a range-limited stack (i.e., sub-stack) in terms of approximate equations of standard
deviations:

σR(0) = 3

2
σs (4.38)

σG = 3
√

5

2

σs

sin2θmax
(4.39)

σG =
√

5
σR(0)

sin2θmax
(4.40)
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Figure 4.13 Random noise has a trend in R(0) versus G (after Cambois, 2000).

and

σn = √
n · σs (4.41)

where σ s is the standard deviation of the full-stack response, σ n is the standard deviation
of the sub-stack, and n is the number of sub-stacks of the full fold data. As we see, the
stack reduces the noise in proportion to the square root of the fold. These equations
indicate that the intercept is less robust than a half-fold sub-stack, but more robust
than a third-fold sub-stack. The gradient is much more unreliable, since the standard
deviation of the gradient is inversely proportional to the sine squared of the maximum
angle of incidence. Eventually, the intercept uncertainty related to noise is more or
less insensitive to the maximum incidence angle, whereas the gradient uncertainty will
decrease with increasing aperture (Cambois, 2001).

Simm et al. (2000) claimed that while rock property information is contained in AVO
cross-plots, it is not usually detectable in terms of distinct trends, owing to the effect
of noise. The fact that the slope estimation is more uncertain than the intercept during
a least-square inversion makes the AVO gradient more uncertain than the zero-offset
reflectivity (e.g., Houck, 2002). Hence, the extension of a trend parallel to the gradient
axis is an indication of the amount of noise in the data.
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Fluid versus noise trends

In areas where fluid changes in sands cause large impedance changes, we tend
to see a right-to-left lateral shift along the intercept direction. This direction is
almost opposite to the noise direction, which is predominantly in the vertical/gradient
direction. In these cases there should be a fair chance of discriminating hydrocarbon-
saturated sands from brine-saturated sands, even in relatively noisy data.

Simm et al. (2000) furthermore stressed that one should create AVO cross-plots
around horizons, not from time windows. Horizon cross-plot clearly targets the reservoir
of interest and helps determine the noise trend while revealing the more subtle AVO
responses. Moreover, only samples of the maximum amplitudes should be included.
Sampling parts of the waveforms other than the maxima will infill the area between
separate clusters, and a lot of samples with no physical significance would scatter
around the origin in an R(0)–G cross-plot. However, picking only peaks and troughs
raises a delicate question: what about transparent sands with low or no impedance
contrast with overlying shales? These are significant reflections with very small R(0)
values that could be missed if we invert the waveform only at absolute maxima (in
commercial software packages for AVO inversion, the absolute maxima are commonly
defined from R(0) sections). Another issue is shale–shale interfaces. These are usually
very weak reflections that would be located close to the origin in an AVO cross-plot,
but they are still important for assessment of a local background trend.

There are also other types of noise affecting the AVO cross-plot data, such as residual
moveout. It is essential to try to reduce the noise trend in the data before analyzing the
cross-plot in terms of rock physics properties. A good pre-processing scheme is essential
in order to achieve this (see Section 4.3.6).

Cambois (2000) is doubtful that AVO cross-plots can be used quantitatively, because
of the noise effect. With that in mind, it should still be possible to separate the real
rock physics trends from the noise trends. One way to distinguish the noise trend
is to cross-plot a limited number of samples from the same horizon from a seismic
section. The extension of the trend along the gradient axis indicates the amount of
noise in the data (Simm et al., 2000). Another way to investigate noise versus rock
physics trends is to plot the anomaly cluster seen in the AVO cross-plot as color-
coded samples onto the seismic section. If the cluster is mainly due to random noise, it
should be scattered randomly around in a seismic section. However, if the anomaly
corresponds with a geologic structure and closure, it may represent hydrocarbons
(see Plate 4.10).

Finally, we claim that via statistical rock physics we can estimate the most likely
fluid and lithology from AVO cross-plots even in the presence of some noise. This
is referred to as probabilistic AVO analysis, and was first introduced by Avseth et al.
(1998b). This method works by estimating probability distribution functions of R(0)
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and G that include the variability and background trends. Houck (2002) presented a
methodology for quantifying and combining the geologic or rock physics uncertainties
with uncertainties related to noise and measurement, to obtain a full characterization of
the uncertainty associated with an AVO-based lithologic interpretation. These method-
ologies for quantification of AVO uncertainties are explained in Section 4.3.12.

How to assess the noise content in AVO cross-plots

� Make cross-plots of full stack versus gradient, in addition to R(0) versus G. The
stack should have no correlation with the gradient, so if trends in R(0)–G plots
are still observed in stack vs. G, these trends should be real and not random noise
(Cambois, 2000).

� Identify the location of AVO anomalies in seismic sections. Color-code AVO
anomalies in R(0)–G plots and then superimpose them onto your seismic sec-
tions. Do the anomalies make geologic sense (shape, location), or do they spread
out randomly?

� Plot the regression coefficient of R(0) and G inversion onto the seismic to identify
the areas where R(0) and G are less reliable.

� Cross-plot a limited number of samples from the same horizon from a seismic
section. The extension of the trend along the gradient axis indicates the amount of
noise in the data (Simm et al., 2000).

4.3.11 AVO attributes for hydrocarbon detection

The information in the AVO cross-plots can be reduced to one-dimensional parameters
based on linear combinations of AVO parameters. This will make the AVO information
easier to interpret. Various attributes have been suggested in the literature, and we
summarize the most common below (AVO inversion-based attributes are discussed in
Section 4.4).

Far- versus near-stack attributes
One can create several AVO attributes from limited-range stack sections. The far stack
minus the near stack (FN) is a “rough” estimate of an AVO gradient, and in particular it
is found to be a good attribute from which to detect class II AVO anomalies (Ross and
Kinman, 1995). For class II type prospects, the far stack alone can be a good attribute
for improved delineation. However, for class IIp anomalies, both the near and the far
stack can be relatively dim, but with opposite polarities. Then the difference between
far and near will manifest the significant negative gradient that is present. In contrast, a
conventional full stack will completely zero-out a class IIp anomaly. Ross and Kinman
(1995) suggested the following equation for the FN attribute depending on whether
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Figure 4.14 Schematic illustration of class II and class IIp and definitions of parameters used in
equation (4.42). The angle θP is the angle of polarity change. Separation of near and far stack away
from the angle of phase reversal will increase the dynamic range of the FN attribute. (Modified
from Ross and Kinman, 1995.)

there is a class II or class IIp anomaly:

FN =
θmax∑
θ=θf

F − c
θn∑

θ=0

N (4.42)

where c = 0 if class II, and c = 1 if class IIp. The variables F and N are the far- and near-
stack amplitudes, respectively. The angles θn, θ f, and θmax are the limitations of angle
ranges applied to calculate average amplitudes of N and F, as depicted in Figure 4.14.
The mid-offset range where the phase reversal occurs is avoided. This gives larger
average amplitudes of N and F, and hence increases the dynamic range of equation
(4.42).

Cross-plots of near (N) versus far minus near (FN) will indicate similar trends to a
cross-plot of intercept versus gradient. However, one should make sure that the near
stack and the far stack are balanced correctly, so the amplitude changes from near stack
to far stack are representative for true AVO effects. Also, one should make sure the
horizons are time-aligned correctly during the subtraction procedure.

Other attributes include far minus near times far (FNXF) and far minus near times
near (FNXN). The first is a good attribute to enhance class II AVO anomalies, where
the near stack is weak and the far is a strong negative. The second is a good attribute
to enhance hydrocarbon-related class III AVO anomalies, and at the same time reduce
the corresponding brine-saturated class II AVO response.

AVO attributes combining intercept and gradient
The estimated intercept, R(0), and AVO gradient, G, can be plotted as colored section
displays or visualized as 3D cubes. We can also plot combinations of these, such as the
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AVO product:

PR = R(0)G (4.43)

This is the product of R(0) and G and is a very helpful parameter in areas where we
expect soft sands with hydrocarbons, that is AVO class III (according to the Rutherford
and Williams nomenclature), or a classic bright spot. Soft sands with hydrocarbons will
have a strong negative intercept and a strong negative gradient. The product will be
a strong positive. Nonhydrocarbon reflectors will be weak or have negative products.
Thus, the product stack is a nice attribute to distinguish hydrocarbon-related bright spots
from “false” bright spots (bright spots with no gradient, or opposite polarity associated
with anomalous lithologies). Another advantage of the AVO product is obtained if it
is calculated from the complex analytical R(0) and G values (see Swan, 1993). Then
this attribute will be independent of the wavelet phase and it will be less sensitive to
small stacking velocity errors than is the case for the AVO gradient. Furthermore, in the
case of thin beds with opposite reflectivities at the top and the base, the respective AVO
products will reinforce each other and the correct sign will be preserved. Nevertheless,
the product stack will not be able to recognize relatively hard (class I) or transparent
sands (class II) with hydrocarbons, and should only be applied in areas where AVO
class III is expected.

Castagna and Smith (1994) compared different AVO attributes, and found that the
reflection coefficient difference, RP − RS, is a better gas-sand discriminator than the
AVO product, because it will work for any type of sand, whether these are AVO class I,
II or III. They verified that RP − RS can be expressed in terms of intercept and gradient
as follows:

RP − RS ≈ (R(0) + G)/2 (4.44)

This relation is exact when VP/VS = 2. Castagna and Smith therefore concluded that
(R(0) + G)/2 should be an excellent hydrocarbon indicator in siliciclastic environments.
They also demonstrated that this attribute is physically more intuitive to use than the
product stack, as shown by the following derivations:

RP = (�VP/VP + �ρ/ρ)/2 (4.45)

RS = (�VS/VS + �ρ/ρ)/2 (4.46)

and

RP − RS = (�VP/VP − �VS/VS)/2 (4.47)

The equations above reveal that pore-fluid changes will affect RP much more than
RS, and therefore RP − RS will have a large fluid sensitivity. On the other hand, both
lithology and porosity changes will affect RP and RS similarly. Hence, the reflection
difference tends to cancel out lithology and porosity variations, while fluid changes are
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enhanced. Finally, this attribute will always be negative for gas sands, and always more
negative than brine sands, if these are also negative.

Castagna and Smith (1994), as well as Swan (1993), suggested a local calibration of
this attribute, later referred to as scaled Poisson’s reflectivity (e.g., Ross, 2002):

SPR = αR(0) + βG (4.48)

where α and β are empirical constants extracted during the calibration procedure. These
could be obtained from local well-log information or background rock physics trends
extracted by other means (e.g., Chapter 2).

The AVO product will highlight class III AVO anomalies as positive values, compared
with the background trend and other type of anomalies which will show up as negative
values. However, it should only be used in areas where feasibility studies show that
AVO class III is expected for hydrocarbon-saturated sands, and at the same time
brine sands will have a positive or transparent impedance contrast to surrounding
shales. The AVO product is normally negative for brine-saturated sands. However,
relatively soft sands with brine can exhibit a positive AVO product. Moreover, the
AVO product may be positive, close to zero, or negative for gas sands, depending
on the acoustic impedance contrast with the overlying shale (Castagna and Smith,
1994).

The reflection difference, RP − RS, is found to be a more universal AVO attribute
in siliciclastic environments (Castagna and Smith, 1994). Brine sands capped by
shales tend to have reflection differences close to zero. Moreover, the reflection
difference is always negative for gas sands, regardless of the impedance contrast
with the overlying shale. This is because RP is fluid sensitive while RS is not, and at
the same time RP and RS are more or less equally affected by lithology and porosity
changes.

Poisson reflectivity
Verm and Hilterman (1995) suggested AVO attributes based on further approximations
of Shuey’s (1985) equations:

R(θ ) ≈ NI cos2θ + PR sin2θ (4.49)

where NI is the normal incidence reflectivity, and PR is the so-called Poisson reflectivity
defined as

PR =
[

(σ2 − σ1)

(1 − σavg)2

]
(4.50)

where σ 1 and σ 2 are the Poisson’s ratio above and below the interface, respectively,
and σavg is the average Poisson’s ratio for the two layers above and below the interface.
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Verm and Hilterman’s approximation is based on Shuey’s assumptions along with
the assumption that the background VP/VS ratio is 2. Also, the higher-order terms that
describe the angle-dependent reflectivity beyond 30◦ have been dropped. The attributes
R(0) and NI are equivalent, but unlike the gradient G, PR includes only Poisson’s ratio
but not density.

The fluid factor
Smith and Gidlow (1987) introduced the concept of “weighted stacking.” This is a tech-
nique where the principle is to create a “difference stack” relative to a wet background
trend. They referred to this attribute as the fluid factor, and AVO anomalies related to
hydrocarbons would be enhanced in these attributes.

First, R(0) and G are calculated via least-square inversion as explained in Section
4.3.9. Then, following Smith and Gidlow, the difference between R(0) and G can be
approximated by the change in VS at an interface, normalized by the average VS in the
layers above and below the interface (Wiggins et al., 1983).

�VS

VS
≈ R(0) − G (4.51)

where �VS = VS2 − VS1, and VS = (VS2 + VS1)/2.
Using Gardner’s relation (Gardner et al., 1974) for sandstones allows us to replace

densities with P-wave velocities:

�ρ/ρ ≈ 0.25�VP/VP (4.52)

where �ρ = ρ2−ρ1, and ρ = (ρ2+ρ1)/2; and �VP = VP2−VP1, and VP = (VP2+VP1)/2.
Combining Gardner’s relation with

R(0) = 1

2

(
�VP

VP
+ �ρ

ρ

)

the following approximation is obtained:

�VP

VP
≈ 8R(0)

5
(4.53)

Using the Mudrock Line (Castagna et al., 1985) we obtain �VP = 1.16�VS, or
�VP/VP = 1.16(VS/VP)(�VS/VS). This only holds for brine-saturated siliciclastics.
Therefore, for hydrocarbon-saturated rocks, a residual called the fluid factor, �F, is
defined as the difference between observed �VP/VP (derived from equation (4.53)) and
�VP/VP predicted from �VS/VS (the latter is derived from equation (4.51)):

�F = �VP

VP
− 1.16

(
ν
�VS

VS

)
(4.54)

where ν is the background VS/VP ratio which can be predicted by application of the
Mudrock Line to interval velocities obtained from conventional velocity analysis.
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Fatti et al. (1994) redefined the fluid factor in terms of P-wave reflectivity and S-wave
reflectivity:

�F = RP − 1.16

(
VS

VP

)
RS (4.55)

They also suggested an alternative way of looking at equation (4.55), in which the
fluid factor is the difference between the real P-wave reflection coefficient RP and the
calculated RP for the same sandstone in a water-saturated state. The calculated RP

is derived from the S-wave reflection coefficient, RS, using the local Mudrock-Line
relationship. Equation (4.55) then takes the form

�F(t) = RP(t) − g(t)RS(t) (4.56)

where t is two-way traveltime, RP(t) is the P-wave reflectivity trace, RS(t) is the S-wave
reflectivity trace, and g(t) is a slowly time-varying gain function. The gain function is
expressed as:

g(t) = M(VS/VP) (4.57)

where M is the slope of the Mudrock Line. Fatti et al. (1994) suggested that this should
be a value extracted locally rather than that of Castagna et al. (1985).

Smith and Sutherland (1996) introduced a quality factor (not to be confused with
absorption-related quality factor) to find the optimal gain function, g:

Q =
∑

[(RP − gRS)GB − (RP − gRS)SG]∑
[RP − gRS]SB

(4.58)

where GB indicates gas sand over brine sand, SG indicates shale over gas sand, and SB
indicates shale over brine sand. A highest possible Q value is desirable.

Ross (2000) demonstrated that for time windows where ν is constant, this attribute
is equivalent to Castagna and Smith’s SPR attribute.

Pitfalls using the fluid factor and SPR attributes

The fluid factor trace (Fatti et al., 1994; Smith and Sutherland, 1996) and the reflec-
tion difference (Castagna and Smith, 1994) are both constructed so that all reflectors
associated with brine-saturated siliciclastics have a low amplitude, whereas rocks
that lie off the Mudrock Line (Castagna et al., 1985), or a local version of this
equation, will show bright amplitudes. In particular, gas sands will brighten up on
the fluid factor trace. However, there are several lithologies that do not follow the
Mudrock Line which will also brighten up on these attributes, including carbonates
and igneous rocks. These are rock types that may appear locally within a siliciclastic
environment.
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AVO polarization attributes
Recently, Mahob and Castagna (2003) introduced some new AVO attributes that take
into account wavelet characteristics. One of these attributes is the so-called polarization
angle, which is defined as follows. For a time window about a single reflection from
a given interface, the AVO intercept and gradient have a preferred orientation in the
R(0)–G plane. The angle defining the preferred orientation in the intercept–gradient
space is called the polarization angle. This angle can be found by eigenvector analysis
(Keho, 2000; Keho et al., 2001):

φ = arctan

(
Py

Px

)
(4.59)

where Px and Py are the components of the eigenvector of the correlation matrix (Mahob
and Castagna, 2003).

Another attribute created by Mahob and Castagna is the polarization angle difference,
which is the difference between the polarization angle and the background trend angle:

�φ = φ − φtrend (4.60)

Furthermore, they defined the AVO strength which is the total length of a cloud of
points in an R(0)–G cross-plot (representing one event). The strength is defined as

L = Lmin + Lmax (4.61)

where

Lmin =
√

R(0)2
min + G2

min (4.62)

and

Lmax =
√

R(0)2
max + G2

max (4.63)

where R(0)min is the minimum signed value within the time window of the analysis of
R(0) and Gmin is the corresponding G at R(0)min. Similarly, R(0)max and Gmax are the
corresponding maximum values within the same time window.

The polarization product is the multiplication of polarization angle and AVO strength,
and is a measure of the magnitude of the AVO response along the trace. Finally, the
linear-correlation coefficient, r, is a measure of how well defined the polarization spread
is. The square of this coefficient tells us about the reliability of the polarization attributes,
and is defined as:

r2 = (cov(R(0), G))2

var(R(0)) × var(G)
(4.64)

Applying these polarization attributes, anomalies that fall on the background trend
can be discriminated from the true background trend. Mahob and Castagna concluded
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that these attributes better discriminate gas sands and brine sands from background
shales than conventional AVO attributes. However, these attributes will not work well
if the signal-to-noise ratio of the data is very poor, or if the data are characterized by
very low frequencies.

4.3.12 AVO anomalies caused by residual gas saturation

One of the most notorious pitfalls of AVO analysis is related to residual gas saturation
(low gas saturation (<30%) due to leakage of a reservoir unit previously characterized
by high gas saturation (>60%)), or low gas saturation due to gas coming out of solution
from water or oil, caused by a drop in pore pressure. It is well known that just a small
amount of gas in the pore space of a rock will cause a dramatic decrease in the bulk
modulus of the rock. This effect is described by the Gassmann theory, assuming a
uniform saturation distribution (see Chapter 1). Then the lower bound Wood’s equation
(or Reuss average) will apply, where just a few percent gas will cause a significant
drop in the effective fluid modulus, and consequently a significant drop in the saturated
bulk modulus of the rock. The problem in AVO analysis is that residual gas saturations
(fizz-water) will yield similar seismic properties to commercial gas saturations. If we
are dealing with a light oil, there may also be similar ambiguities between residual gas
and commercial oil, or even residual oil and commercial oil.

Figure 4.15 shows an example of calculated P-wave velocity (VP), acoustic
impedance (AI), and VP/VS ratio as a function of oil or gas saturation versus brine
saturation (i.e., two-phase fluid mixtures) for an unconsolidated sand with a porosity of
30%. In this example, representative of an offshore West African reservoir of Oligocene
age, we assume the following reservoir and fluid properties: brine salinity = 250 000
ppm, oil relative density = 29 API, gas gravity = 0.7, reservoir temperature T = 70 ◦C,
and pore pressure P = 33 MPa. The resulting curves show that the rock with just a few
percent of gas will have the same VP as with commercial amounts of oil. Because a very
low gas saturation has little effect on the bulk density and almost no effect on the shear-
wave velocity, the same ambiguity that is observed in VP will also be seen in acoustic
impedance and VP/VS. In conclusion, two-term AVO will not be able to discriminate
between a seismic anomaly caused by a few percent gas and an anomaly caused by
commercial amounts of oil, in this case. This is found to be a universal problem, and
many wells have been drilled on AVO-driven prospects that indicated hydrocarbons, but
proved to be residual amounts of gas. These were scientifically correct but commercial
failures.

Han and Batzle (2002) pointed out that fizz-water is an ill-defined and misapplied
concept. They found that dissolved gas or gas coming out of solution from water or
oil at pressures higher than 20 MPa has little effect on effective fluid properties. This
conclusion was based on experiments showing that at pressures over 20 MPa gas coming
out of solution has a negligible effect on total gas–water mixture compressibility because
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Figure 4.15 Rock physics modeling of VP, AI, and VP/VS versus saturation for oil–water and
gas–water mixtures. There is an ambiguity between low gas saturation and commercial oil
saturation in all parameters. Hence, AVO analysis will not be able to discriminate between the two
scenarios.

the exsolved gas has very low volume and high density at those high pressures. Hence,
low gas saturation should have large effects on seismic properties only in shallow
formations with low pore pressures. It is important, however, to bear in mind that
significant residual gas may occur at pore pressures greater than 20 MPa. If a gas
reservoir formerly filled with high gas saturation has leaked, leaving only a few percent
of gas, we could still observe a significant drop in P-wave velocity, even at pore pressures
greater than 20 MPa.

Density is the only elastic seismic parameter that can discriminate residual gas sat-
uration from commercial hydrocarbon saturation, because low gas saturation should
imply bulk densities similar to 100% brine saturation, whereas commercial gas satura-
tion should result in a significant drop in bulk density. Density can be derived seismically
from three-term AVO (see Section 4.3.15).

Residual gas can also be discriminated from commercial gas using converted
P-to-S elastic impedance calculated from multicomponent seismic data (Zhu et al.,
2000; Gonzalez et al., 2003a; see Section 4.4 for further discussion).

Alternatively, residual gas saturation can be discriminated using attenuation
attributes, since it has been shown that partial gas saturation will give larger attenuation
than either commercial gas saturation or oil saturation. However, this technology is still
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Figure 4.16 Flat spots are normally caused by fluid contacts. However, false flat spots may occur
because of other geologic factors. The most common pitfall in flat-spot driven prospects is
diagenetic horizons. AVO should be an efficient tool to discriminate qualitatively between fluid
contacts and diagenetic horizons.

immature, and few examples have been published in the literature showing successful
applications of attenuation attributes.

4.3.13 Flat-spot analysis using AVO

The most trusted and successful seismic hydrocarbon indicator is the flat spot. However,
as mentioned in Section 4.2.4, there are numerous examples of seismic flat spots that
turned out not to be associated with fluid contacts. Some of the most common pitfalls
related to flat spots are diagenetic horizons, which often occur as abrupt, horizontal
contacts (e.g., opal-A to opal-CT transitions in diatomaceous ooze deposits). These
often cut across dipping sedimentary strata, just like fluid contacts. However, AVO
should be an efficient tool to discriminate diagenetic flat spots from hydrocarbon-
related flat spots. A schematic example is shown in Figure 4.16, where an anticline
structure contains a sandy reservoir filled with oil. Alternatively, the contact indicated
by the arrow could be a diagenetic horizon. Seismically, these two scenarios will give
similar near-stack responses. In both cases there will be an increase in impedance
across the flat spot. Any oil–water, gas–water or gas–oil contact will cause an increase
in impedance, as will a diagenetic contact going from uncemented rock (e.g., opal A)
to cemented rock (opal CT). The VP/VS ratio should increase across a fluid contact,
since VS is more or less fluid-insensitive, while VP will be lower in gas than in oil, and
lower in oil than in brine. In contrast, a diagenetic contact should imply a decrease in
VP/VS ratio.
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4.3.14 AVO detection of overpressure

AVO can be applied to discriminate between shallow water flows (SWF) and overpres-
sured zones (e.g., Dutta et al., 2002; Mukerji et al., 2002; Carcione, 2001). It is important
to discover these in order to prevent drilling hazards. Mallick and Dutta (2002) found
that the VP/VS ratio was an excellent parameter for overpressure detection. Overpres-
sure zones are normally very soft impedance events, and can be erroneously interpreted
as gas sands if only P-wave impedance is considered. However, the VP/VS ratio in over-
pressured zones tends to be abnormally high compared with a hydrostatic background
trend (see Chapter 2), whereas gas sands have abnormally low VP/VS ratios compared
with such a background trend. Hence, overpressure can be detected from velocity–depth
trend analysis (e.g., from well logs or P and S traveltime inversion) as well as from
AVO analysis. Carcione et al. (2003) estimated pore pressure in reservoir rocks in the
Tune field, North Sea, using P-wave velocities estimated from reflection tomography.
However, they suggested the use of AVO to verify overpressure, to avoid ambiguities
with pore fluids and lithology.

4.3.15 Wide-angle AVO analysis

Three-term AVO for density estimation
Three-term AVO analysis can be used to estimate density from pre-stack seismic
amplitudes. Shuey’s three-term approximation to the Zoeppritz equations for P-wave
reflectivity is given by equation (4.7): R(θ ) ≈ R(0) + G sin2θ + F(tan2θ − sin2θ ).
Theoretically, the density contrast at an interface can be calculated by subtracting the
third coefficient from the intercept:

R(0) − F = 1

2

(
�VP

VP
+ �ρ

ρ

)
− 1

2

�VP

VP
= 1

2

�ρ

ρ
(4.65)

The advantage of extracting density from seismic amplitudes, in addition to VP

and VS, is the fact that residual gas can be discriminated from commercial gas (see
Section 4.3.12). Examples of the use of three-term AVO to calculate density include
the papers by Kabir et al. (2000), Roberts et al. (2002), and Buland and Omre (2003),
among others. However, Hilterman (2003) demonstrated that for density to be used to
discriminate residual gas saturation, the porosity of the reservoir has to be known. A
sandstone unit with relatively high porosity and residual gas saturation will have similar
density to a sandstone unit with relatively low porosity and commercial amounts of gas.
One point to be made here is that residual gas saturation often occurs in the more shaly
sands, as leakage of gas from reservoir sands is more efficient from high-permeability
clean sandstones.

Chen et al. (2001) pointed out, as demonstrated by Swan (1993), that the method
of calculating density from three-term AVO is very difficult because of the poor
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signal-to-noise ratio of the third-term coefficient F, which they referred to as the
curvature term. A complicating factor that adds uncertainty to this procedure is the
effect of anisotropy, which starts to dominate the reflection coefficient at mid- to far-
offset ranges. Considering elliptical anisotropy, they demonstrated how to correct AVO
parameters, including the gradient G and the curvature F, for this anisotropy effect.
Based on Rüger’s (1997) approximation to the offset-dependent reflection coefficient
in transverse isotropic media, they performed empirical corrections to improve the cor-
rection of anisotropy for three-term AVO responses. Rüger’s approximation includes
modifications of the gradient and curvature as follows:

Grug = G iso + �Grug (4.66)

and

Frug = Fiso + �Frug (4.67)

where Giso and Fiso are Shuey’s isotropic coefficients, and �Grug and �Frug are
anisotropic corrections, which can be expressed as follows (Rüger, 1997):

�Grug = �δ/2 (4.68)

and

�Frug = �ε/2 (4.69)

where �δ and �ε are the changes in Thomsen’s anisotropy parameters across the
interface (average value of top medium minus average value of bottom medium).

Chen et al. (2001) found that even for angles less than 30◦, there may be large errors
generated by Rüger’s approximation. They introduced empirical corrections to Rüger’s
equations:

Gemp = G iso + �Grug + �Gemp (4.70)

and

Femp = Fiso + �Frug + �Femp (4.71)

where �Gemp and �Femp are empirical anisotropic corrections. By comparing Rüger’s
approximation and exact Daley and Hron (1977) reflection coefficients, they found the
empirical relationship between �Gemp and δ, or �Femp and ε, using trial and error. The
resulting relationships are expressed as follows:

�Gemp = R(0)
(
g1δ

1/2 + g2�δ
)

(4.72)

and

�Femp = f0 R(0)2 + f1 R(0)ε + f2 R(0)2ε + f3(�ε)2 (4.73)
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where g1, g2, f0, f1, f2, and f3 are regression coefficients that are functions of the
VP/VS ratio, and δ and ε are the average Thomsen parameters across the interface.
Hence, the empirical corrections depend on both the average anisotropy and the change
in anisotropy across the interface.

Limitations of Rüger’s approximation

Chen et al. (2001) found that empirical corrections to the Rüger’s equations are
necessary before three-term AVO can be used to interpret or correct for anisotropic
AVO effects.

Chen et al. (2001) found that anisotropy may cause large changes in the position, and
minor changes in the slope, of data clouds in an R(0) versus G cross-plot. Background
trends may be shifted from a diagonal line going through the origin, to a line inter-
cepting the gradient axis at nonzero values. This can easily be misinterpreted as fluid
anomalies in AVO cross-plots, if assuming isotropic media. Similarly, in G versus F
cross-plot, trends due to anisotropy can be misinterpreted as changes in density across an
interface.

Cambois (2001) argued that if the effects of anisotropy are mild enough to be
neglected, the aperture is sufficient, and the signal-to-noise ratio is exceptional,
reliable estimates of density contrasts may be obtained from the three-term Shuey
equation. However, there are additional sources of errors beyond anisotropy that
can make density calculations unreliable, including acquisition (source directivity
and array responses become more significant) and processing effects (the parabolic
assumption for multiples is not valid) on wide-angle data. Also, anisotropy can
cause nonhyperbolic moveouts, or “hockey-stick” signatures in pre-stack CDP gathers
(Hilterman, 2001). This could be corrected for using higher-order or anisotropic
moveout.

Ultra-far AVO analysis
In the last few years, there has also been increasing focus on extracting elastic properties
from wide-angle AVO beyond critical angle, that is, normally angles beyond 50–60◦

(this procedure is sometimes referred to as ultra-far AVO analysis). Linearized two-term
or three-term approximations to Zoeppritz equations will break down, and the exact
Zoeppritz equations should be applied in modeling and inversion of ultra-far-offset
reflectivities. Roberts (2000) demonstrated the potential of ultra-far AVO analysis by
using the exact Zoeppritz equations to obtain improved estimates of S-wave velocities
from amplitudes close to and beyond critical angle. Hawkins et al. (2001) extended
Roberts’ study, and obtained estimates of VP, VS and density from wide-angle AVO
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including post-critical-offset ranges. Simmons and Backus (1994), however, have
warned that primaries-only Zoeppritz modeling can be very misleading, because thin-
bed effects will imply interference between converted waves and primaries at far offsets.
In fact, they found that for primaries-only modeling of thin-bedded media, synthetic
seismograms obtained by using a linearized approximation to the Zoeppritz equations
to describe the reflection coefficients are more accurate than those obtained via the
exact Zoeppritz reflection coefficients. This also indicates that AVO parameter esti-
mation from long-offset AVO based on exact Zoeppritz equations is a very unreliable
procedure. Hence, full elastic waveform inversion should be applied to invert ultra-far
seismic amplitudes for elastic properties. However, such an inversion is highly non-
unique, and very computer-intensive, making the procedure not yet practical for full
3D inversions.

Qualitative assessment of ultra-far reflectivity still has some promising aspects. Wide-
angle AVO recorded from conventional streamers can be used to extract information
about converted wave energy. In an exploration stage, this could save the cost of acquir-
ing ocean-bottom multicomponent data. Furthermore, the AVO class II and III type
hydrocarbon anomalies defined by Rutherford and Williams (1989), which often are
difficult to discriminate from brine-saturated sands, can be more easily discriminated on
ultra-far, pre-critical offsets. Class II anomalies with transparent near-offset reflectivi-
ties will further enhance their energy in ultra-far, pre-critical-offset ranges (Hilterman
et al., 1998). Class I anomalies, which are the most difficult anomalies to detect (because
the sands are usually stiff with low fluid sensitivity; see Chapter 1) may attain class II
characteristics with polarity change at very far, but pre-critical, offsets (Hilterman
et al., 2000).

Pros and cons of wide-angle AVO analysis

Pros:
� Can potentially estimate density from three-term linearized AVO or nonlinear

inversion of exact Zoeppritz equations (e.g., Roberts et al., 2002).
� Can obtain information about converted waves, hence the extra cost of Ocean

Bottom Cable (OBC) surveying may be avoided.
� AVO class I in two-term AVO may turn into AVO class IIp, with polarity change

at very far offsets. This will improve the ability to discriminate hydrocarbons from
brine sands in relatively stiff sands (Hilterman et al., 2000).

� AVO class IIp with weak stack response based on near- to mid-offset ranges (i.e.,
dim spots) can be enhanced with further brightening of the amplitudes on very far,
pre-critical-offset ranges (Hilterman et al., 1998).

� With ultra-far AVO analysis, one may be able to improve the imaging of sub-salt
reservoirs (e.g., Towner and Lindsey, 2000).
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Cons:
� The Zoeppritz equation assumes a single layer interface. With the decreased reso-

lution on ultra-far offsets, this assumption is less likely to be valid with increasing
offsets. Simmons and Backus (1994) found that modeling of thin-bedded media
based on a linearized approximation to the Zoeppritz equations was more accurate
than modeling based on the exact Zoeppritz equations.

� There are complications with nonhyperbolic moveouts, NMO stretch and
anisotropy effects that tend to worsen with increasing offset (Cambois, 2001).

� The oil industry has little experience with processing and interpretation of very-far-
offset data, because traditionally these have been muted away during processing
(Castagna, 2001).

Conclusion
The use of wide-angle AVO is still an immature technology that requires extended
future research, both in processing and interpretation. Quantitative estimates should
be used with even more caution than quantitative estimates from two-term AVO
analysis.

4.3.16 Probabilistic AVO analysis

The AVO attributes presented in Section 4.3.11 are all one-dimensional parameters
calculated from two-dimensional cross-plots. This procedure is convenient for qualita-
tive interpretation, but will actually reduce the information content in the cross-plots.
But quantitatively it is desirable not to reduce the two-dimensional information to
one-dimensional parameters. Using statistical techniques, one can classify the different
characteristic zones in a cross-plot, and then display the classification result onto the
seismic sections.

Another problem with quantitative interpretation of AVO cross-plots, which is not
accounted for in the conventional AVO attributes, is that a given point in the cross-plot
does not correspond to a unique combination of rock physics properties. Many combi-
nations of rock properties will yield the same R(0) and G (e.g., Sams, 1998). Moreover,
owing to natural variability in geologic and fluid parameters, one given geologic sce-
nario may span a relatively large possible outcome area in the AVO cross-plot, not just
a discrete point. Hence, a hydrocarbon-like AVO response might occasionally result
from a brine-associated reflection, and hydrocarbon-saturated sands might not always
produce an anomalous AVO response (Houck, 2002).

Quantifying AVO uncertainties related to variability in rock properties
In this section we show how we can do probabilistic AVO analysis taking into account
the natural variability and uncertainties in rock properties. As explained in Chapter 3,
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Figure 4.17 AVO pdfs for cemented sandstone and unconsolidated sands with brine and oil. The
cap-rock is represented by a silty shale. There are relatively large uncertainties in AVO response
related to the variability within each facies and there are overlaps between different facies and
pore-fluid scenarios. However, the most likely AVO responses are distinct for each facies and
pore-fluid scenario. The superimposed black ticked lines are the deterministic AVO responses
calculated from the median values of the cdfs. Equation (4.8) is used to calculate these pdfs. The
results from this equation start to deviate away from the exact Zoeppritz solution beyond 30◦.

from well-log analysis combined with rock physics modeling, we first extract cumu-
lative density functions (cdfs) of seismic properties for different lithofacies and fluid
scenarios. Based on the cdfs of velocities and density, we create probability density
functions (pdfs) of AVO response for different lithofacies combinations, and assess
uncertainties in seismic signatures related to the natural variability within each facies.
Figure 4.17 shows examples of AVO pdfs derived from well-log data from the Glitne
field, North Sea. The plots have been generated from Monte Carlo simulated seismic
properties drawn randomly from lithofacies cdfs, one for the cap-rock shale and one
for the underlying sandy facies. First we simulated VP and then VS followed by density.
It is important to make sure that the simulation honors the correlation among the three
parameters. The procedure of correlated Monte Carlo simulations of rock properties is
explained in Chapter 3. The corresponding reflectivity simulations are calculated using
equation (4.6). The workflow of this methodology is described in Chapter 6.

Next, we can generate bivariate probability density functions of zero-offset reflec-
tivity versus the AVO gradient (Figure 4.18). The center or peak of each contour plot
represents the most likely set of R(0) and G for each facies. These pdfs show how R(0)
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Figure 4.18 Bivariate distribution of the different seismic lithofacies in the R(0)–G plane, assuming
facies IV as cap-rock. The center of each contour plot represents the most likely set of R(0) and G
for each facies. The contours represent iso-probability values, decreasing away from the innermost
contour.

and G can vary for a given facies combination, and that different facies combinations
can have overlaps. However, the most likely set of R(0) and G is a unique characteristic
of a given facies combination, corresponding to the modeled AVO curves in Figure 4.17.
In general, these pdfs create a probabilistic link between facies and seismic properties
that can be used to predict the most likely facies, and the conditional probability of a
given facies, from seismic data. The pdfs are used to statistically classify the seismically
derived R(0) and G into the most likely facies class. Chapter 3 explains some common
statistical classification techniques, such as discriminant classification, Bayesian clas-
sification and classification with neural nets. Case studies 1 and 3 in Chapter 5 describe
two examples of probabilistic AVO analysis.

Statistical AVO constrained by rock physics depth trends
The seismic signature of hydrocarbons can be very different from one depth to another
owing to different compaction trends for different lithologies. It is therefore neces-
sary to include depth as a parameter when we use AVO analysis to predict lithol-
ogy and pore fluids from seismic data. The statistical AVO classification technique
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Figure 4.19 Schematic illustration of depth-dependent AVO probability density functions.

presented above was extended by Avseth et al. (2001c, 2003) to account for burial depth
(Figure 4.19).

First, expected depth trends in rock physics properties are calculated for different
lithologies and pore fluids (see Chapter 2). These trends are calculated from empir-
ical calibrated porosity–depth models representing the local burial and compaction
history.

Next, the corresponding AVO depth trends are derived from the depth trends in rock
properties. Estimated acoustic impedance and VP/VS trends can be used to calculate
the expected AVO response with depth, for various sand/shale interfaces. Different
models (i.e., interface categories) can be generated from the knowledge of local geology
and depositional environment. These are based on realistic layer configurations in a
given depositional system, but will of course be simplified compared with the true
sedimentologic observations. The number of interface categories should be kept as low
as possible while still honoring geologic variations that may be seismically significant.
Including too many interface categories may introduce too much overlap between
individual classes in a binary AVO cross-plot. Values of VP, VS, and density for the
different facies included in the interface categories are derived from the rock physics
depth trends (see Chapter 2). These are assumed to be the mean values for the different
facies at the target level. Assuming multi-Gaussian distributions, the variances can
be selected on the basis of information from analog areas, or from nearby wells. If
necessary, covariances between the different parameters may be defined via regression
analysis. Normally, there is a higher correlation between VP and VS than between VP

and ρ. Moreover, Gassmann theory is used to estimate the rock properties for gas- and
oil-saturated sands (see Chapter 1). In this way we can create histograms or cdfs of
seismic properties for different facies at the target depth. For each interface category,
Monte Carlo simulation is performed (see Chapter 3) by drawing from the cdfs of VP,
VS, and ρ, and inserting into Shuey’s equation, R(θ ) ≈ R(0) + G sin2θ , valid for angles
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less than 30◦. The Monte Carlo simulations give distributions of R(0) versus G, based
on the mean and covariances in VP, VS, and ρ for the different interface categories.
In this way AVO probability density functions can be obtained for any given depth of
burial.

The final step is to apply the modeled AVO pdfs to predict the most likely facies and
pore fluid from seismic data. Values of R(0) and G estimated from pre-stack gathers
along the line are calibrated to the modeled AVO pdfs. A background “window” should
be identified in the seismic section near or around the target interval. The covariance
matrix of R(0) and G for the background trend in the seismic data is calibrated with
the covariance matrix of R(0) and G for the background trend in the model, either by
matching the covariances or by univariate variance matching. This calibration is then
applied to seismic data in the target area. After calibrating the seismic data with the
modeled AVO pdfs, the AVO classification can be performed. Using for instance the
Mahalanobis distance (see Chapter 3) one can estimate the most likely layer category
for each sample in the seismic data.

This technique has been applied to an unconsolidated, mud-rich deep-water turbidite
system offshore West Africa; see case study 4 in Chapter 5.

Limitations of AVO classification constrained by rock physics depth trends:
� The AVO classification technique described here will give classification of inter-

faces, not layers. However, the methodology can also be applied to layer inversion
results (Section 4.4). For instance, elastic inversion could be classified using pdfs
of AI versus VP/VS.

� Remember that fluid properties will be depth-dependent. Pressure and temperature
control the compressibility of fluids, but the chemical properties of fluids can also
change with depth. In particular, oil reference density (API gravity) tends to be
depth-dependent, where biodegradation of oil decreases with depth. Hence, shallow
reservoirs will normally contain thicker oil than deeper reservoirs. Trend lines of
oil reference density versus depth would be valuable information to be included in
this AVO classification technique.

� A future extension of this methodology will be to include facies transition prob-
abilities and spatial statistics to improve the constraints on the classification of
vertical and lateral geologic variations from seismic data.

Combining geologic uncertainties and measurement uncertainties
Lithology and pore-fluid interpretations from AVO cross-plots are ambiguous, for
two reasons. Geologic uncertainty arises because different lithologies will occupy
overlapping ranges of elastic properties. Measurement uncertainty arises because an
observed AVO response is imperfectly related to rock properties. Almost always, AVO
inversion results will be influenced and deteriorated by processing artifacts, noise, or
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tuning effects. Houck (2002) presented a technique to quantify and combine these two
components of uncertainty to obtain a full characterization of the uncertainty associated
with an AVO-based lithology interpretation.

Houck defined the following model for the offset dependence of real seismic ampli-
tudes:

di = si (R(0) + G sin2θi ) + ni (4.74)

where si is an offset-dependent scale factor and ni is offset-dependent noise. The scale
factor includes uncorrected acquisition and propagation effects, reflector geometry,
processing artifacts, and where we happened to sample the seismic wavelet. The noise
includes ambient noise, source-generated scattered noise, multiples, tuning effects,
and higher-order terms in the reflection coefficient expansion. He assumed that the
scale factor does not change with offset, and that the additive noise on each trace is
uncorrelated and Gaussian with zero mean and constant variance. Uncertainty in the
scale factor means that the true locations of the seismic points in the R(0) and G plane
are unknown. In reality, we do not know the correct scaling between seismic amplitudes
and true reflectivity values. Not all scale factors are possible, though. Scale factors that
produce reflectivities outside the expected range should be excluded, and, even within
the allowable range, some scale factors may be more likely than others. Bachrach
et al. (2003) addressed issues of uncertainty related to resolution and accuracy of
seismic inversions applied to reservoir property estimation. They used the methodology
described in this book, and extended it to take into account the scale differences between
well-log data and seismic inversion results.

The use of spatial statistics to improve reservoir characterization from AVO
The probabilistic AVO methodologies summarized above perform prediction on a trace-
by-trace basis. For a given horizon, that also implies sample-by-sample basis. Spatial
statistical methods can, however, be applied to account for spatial correlations. Knowing
that geologic features, like lithofacies, are characterized by systematic lateral variations,
we can account for this in the seismic reservoir characterization. Recent work by Caers
et al. (2001) and Eidsvik et al. (2002, 2004) demonstrates methodologies for integrating
rock physics models, AVO attributes and spatial statistical techniques for improved
reservoir mapping of the same turbidite field that is shown in case study 1 in Chapter 5.
Also, spatial correlations are accounted for in the reservoir mapping from near and far
impedances carried out in case study 2 in Chapter 5. (Also see Section 3.3.4.)

4.4 Impedance inversion

Ambiguities in lithologic and fluid identification based only on normal-incidence reflec-
tion amplitudes and impedance (ρV) can often be effectively removed by adding
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information about VP/VS-related attributes, for example from non-normal incidence
data. This provides the incentive for AVO analysis described in the previous sections.
However, synthetic seismic modeling has shown that sometimes it can be difficult to
use the seismic amplitudes quantitatively owing to practicalities of picking, resolution
problems, and thin-layer effects. Hence another approach to lithofacies identification
is based on seismic impedance inversions. Impedance inversions take into account the
full waveform of the seismic trace, not just the amplitudes. In the overall scheme of
integrated reservoir characterization, impedance inversion is a tool to derive seismic
attributes (P-impedance, Poisson’s ratio, etc.) that can be linked to rock properties
(lithology, porosity, pore fluids, etc.) using rock physics models and statistical tech-
niques. Inversion-derived attributes incorporate the underlying physics of wave propa-
gation using models of different levels of approximation. This is in contrast to purely
statistical or mathematically defined attributes derived directly from the seismic traces,
without explicitly using any physical model. The purely statistical attributes are harder
to relate to rock properties, and require more comprehensive calibration and training
data sets.

The goal of geophysical inversion is to estimate model parameters from observed
data. So, for example, one might want to invert measured seismic traces to estimate
the P-wave impedance of the subsurface layers. The parameters that can be estimated
depend on the data and the assumed model. With pre-stack seismic data one might
invert for the P-wave impedance and Poisson’s ratio (or S-wave impedance) of the sub-
surface model. If we have only stacked P-wave data, however, we can invert for P-wave
impedance alone, and information about Poisson’s ratio or S-wave impedance is lost.

General inverse theory is a mathematically rich discipline, and many excellent books
on geophysical inverse theory exist that the reader may wish to consult (e.g., Menke,
1989; Parker, 1994; Tarantola, 1987; Sen and Stoffa, 1995). Our goal in this section is
just to give a brief overview of seismic impedance inversion methods as applicable for
reservoir characterization. The typical set-up of inverse problems is as follows. We have
a theoretical model A that relates (linearly or nonlinearly) the model parameters m to
the data d. The actual observed data are denoted by dobs while the calculated data from
the forward model are denoted by dcal. The goal is to find those model parameters that
minimize some function (called the objective function) of the misfit between dobs and
dcal. The misfit arises not only because we do not know the correct model parameters,
but also because the model itself is imperfect, and the observed data are not noise-free.
Often we minimize the squared error (i.e., the L2 norm of the misfit) between observation
and model predictions. This gives the least-squares solution. Robust approaches involve
minimizing the L1 norm or the absolute value of the misfit. The objective function can
include not only the misfit between dobs and dcal but also other constraints derived from
prior models or smoothness requirements. In a general probabilistic framework of the
inverse problem (e.g. Tarantola, 1987; Gouviea, 1996) the goal is to obtain the posterior
distribution of the model parameters given the prior distribution and the likelihood of
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observing the data. The likelihood may be estimated from the forward model, or from
exhaustive training data if such data are available. Following Sen and Stoffa (1995),
model-based inversion methods may be categorized as follows.

Linear methods
In these methods, data and model parameters are linearly related and can be expressed
in a matrix equation as:

Am = d

The least-square solution m̂ is given by the well-known normal equations of linear
algebra,

m̂ = (ATA)−1ATdobs

and the covariance of the estimate (assuming unbiased model and uncorrelated errors)
is

Cm̂m̂ = σ 2(ATA)−1

where σ 2 is the error variance. Uncertainty in the estimated model parameters may be
given in terms of

√
Cm̂m̂ if we assume a Gaussian distribution of the parameters. A

particular case of this linear model fitting was described in the earlier section where
seismic amplitudes R measured at different offsets (or angles) were fit to the simple
straight-line model R(θ ) = R(0) + G sin2θ to obtain the least-squares estimate of the
AVO intercept, R(0), and gradient, G.

Iterative gradient-based methods
These methods attempt to solve nonlinear problems by linearizing around an initial
solution. Iterative linear steps are taken to update the current model on the basis of gra-
dient information. The iteration is stopped when the updates are below some tolerance.
Gradient descent methods such as Newton’s method, steepest descent, and conjugate
gradient can be used to minimize the objective function. Gradient descent methods are
susceptible to the choice of the starting point, and can easily get trapped into local
mimima.

Exhaustive search methods
This involves computation of synthetic data from the forward model at every point of
the model space. Usually for seismic inversions this is not very practical.

Random search methods
The model space is searched randomly using Monte Carlo trials. This is also computa-
tionally expensive.



233 4.4 Impedance inversion

Directed Monte Carlo methods
These are global optimization methods where the random Monte Carlo search is directed
using some fitness criteria of the estimate. Methods such as simulated annealing (SA)
and genetic algorithms (GA) belong to this category. These are powerful methods and
can be very useful for highly nonlinear problems. Probabilistic estimates including
estimates of uncertainty can be obtained without the Gaussianity assumption. The
monograph by Sen and Stoffa (1995) explains SA and GA as applied to geophysical
inverse problems. Mallick (1999) describes some practical aspects of using GA for
pre-stack waveform inversion.

Geostatistical sequential simulation methods
Geostatistical simulations are often used in reservoir characterization to integrate differ-
ent kinds of data while at the same time incorporating the spatial correlation of reservoir
heterogeneities. One approach is to first derive seismic impedances from conventional
(gradient-based) inversion techniques and then perform geostatistical co-kriging or
indicator simulation of reservoir properties using the impedance as secondary data
(e.g. Doyen, 1988; Doyen and Guidish, 1992; Zhu and Journel, 1993; Mukerji et al.,
2001). However, in the geostatistical inversion methodology (Bortoli et al., 1993; Haas
and Dubrule, 1994) geostatistical simulations are more closely integrated with the seis-
mic inversion at the initial stage itself. So far the geostatistical simulation methodology
has been used mostly for post-stack seismic inversion. In principle it can be used
for pre-stack inversion, though in practice computation time poses a limitation. The
methodology consists of local trace-by-trace optimization combined with sequential
geostatistical sampling based on the horizontal and vertical variogram (Rowbotham
et al., 1998). The variogram statistically quantifies the spatial correlation. Each trace
location is visited in a random path. At each location, a number of possible vertical
seismic impedance logs are simulated using sequential Gaussian simulation (Deutsch
and Journel, 1996). The simulation is constrained by the existing impedances at the
well locations, and by the vertical and horizontal variograms. The synthetic seismo-
grams computed from the simulated impedance logs using a 1D convolution model are
compared with the actual seismic data. The simulated log that gives the best fit to the
seismic data is retained and used as a constraint for simulating vertical logs at the next
random location. The seismic data constrain the inversion within the seismic bandwidth
while the higher spatial frequencies are stochastically constrained by the variograms
obtained from well logs. A Bayesian framework for stochastic impedance inversion is
described by Eide et al. (1997).

In all of the stochastic inversion methods multiple realizations of seismic impedance
are obtained. These multiple realizations can be statistically analyzed to estimate
probabilities and uncertainties of the results.

The simplest seismic impedance inversion is trace-by-trace post-stack inversion
based on a 1D convolutional model of the seismic trace. Many vendors offer
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user-friendly GUI-driven commercial software that do trace-based impedance inver-
sions. Since this is a post-stack 1D inversion, the output is P-impedance when P-wave
data are used. At the time of writing, very few vendors offer commercial software to
do full-waveform pre-stack impedance inversions. Pre-stack inversion of P data can be
used to estimate not only the P-impedance but also shear-wave-related attributes such as
Poisson’s ratio or S-impedance. Of course one can also estimate S-impedance directly
from post-stack inversion of shear-wave data when available. As described in Chapter
1, having both P- and S-related attributes can be very useful in discriminating litholo-
gies and pore-fluid saturations. An alternative to full pre-stack impedance inversion is
offered by the concept of offset impedance or angle-dependent impedance, also called
“elastic impedance.” As explained below, this generalized impedance allows us to use
trace-based 1D inversion algorithms and existing software on far-offset partial stacks
to invert for elastic impedance that carries information about shear-wave attributes in
the form of VP/VS ratio. But before we describe offset impedances, let us look at the
steps required for a standard post-stack, trace-based inversion for P impedance.

4.4.1 Post-stack 1D impedance inversion

In 1D inversions the seismic trace S(t) is modeled as a convolution of the normal-
incidence reflectivity series r(t) with the wavelet w(t):

S(t) = w(t) ∗ r (t) (4.75)

The normal-incidence reflectivity is defined in terms of the contrast in the seismic
impedance (I = ρV) as

r = I j+1 − I j

I j+1 + I j
≈ 1

2
d(log I ) (4.76)

where the approximation holds for small impedance contrasts. Since the seismic trace
is a bandlimited version of the derivative of log I, a simple inversion consists of just
reversing the process by integrating the seismic trace, after scaling the amplitudes.
This gives us a bandlimited estimate of log I up to an integration constant. A simple
Hilbert transform of the trace is a “poor man’s” impedance inversion since the Hilbert
transform is equivalent to bandlimited integration. The low-frequency trend has to be
supplied separately. Most robust approaches use constrained minimization to combine
a prior model with the observed seismic data as outlined below.

We start with migrated post-stack seismic data, well logs (sonic and density), and
interpreted horizon picks. Well logs are tied to the seismic data by comparison of the
nearest traces to the 1D synthetic computed from the sonic log. This usually involves
iteration with wavelet estimation. Extracting a reliable wavelet is an important step in the
inversion process. Wavelet extraction is a complex processing issue, but most software
packages include a few different methods to extract a wavelet. A direct deterministic
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method of course is to measure the source wavelet using nearby surface receivers.
Purely statistical methods use the autocorrelation of the seismic traces over a small
window to estimate the amplitude spectrum of the wavelet, while the phase spectrum is
user-defined. An inverse Fourier transform then gives the time-domain wavelet. Sonic
log information can be used in addition to the seismic data to extract the wavelet. This
depends on a good tie between log and seismic and good depth-to-time conversion.
A good seismic-to-log tie of course depends on having a good wavelet, so there is
some iteration between tying the logs and extracting the wavelet. A robust method is to
extract the amplitude spectrum from the seismic autocorrelation and use the well log to
estimate an average phase. In reality, wavelets are not constant from trace to trace over
a section, or from one traveltime to another. One could, in theory, extract a spatially and
temporally varying wavelet. In practice, usually a single average wavelet is extracted
and used for the impedance inversion.

In summary, from the end-user point of view, these are the steps involved in a trace-
based seismic impedance inversion.
� Import migrated post-stack seismic data, well logs, and horizon picks.
� Tie well logs to seismic and extract a reliable average wavelet.
� Build a background initial impedance model using logs (maybe along with seis-

mic RMS velocity estimates), horizon picks and other geological and structural
information.

� Carry out the inversion. In commercial software this involves selecting amongst
the choice of available algorithms and setting the algorithm parameters.

� Examine the residuals to identify zones that show anomalously high residual values.
Go back to seismic data, log ties and prior model to see if the anomalous residuals
can be explained and a better inversion obtained.

� Export the inverted impedance values and when possible the uncertainty associated
with the estimated impedances.

Another important step in impedance inversion is building the background model
or prior model. This supplies information about the low-frequency (spatial frequency)
component of the impedance. The seismic trace, being a bandlimited version of the
Earth’s reflectivity, lacks any information about the low-frequency trend. This band-
limited nature also gives rise to the inherent nonuniqueness of the seismic inversion
problem. There may be many combinations of impedance models that fit the data equally
well, but differ only in the low-frequency trend. The low-frequency background model
may be estimated from sonic logs or RMS velocity estimates from seismic data. Simple
model builders in commercial software use the well-log impedance values and inter-
polate them along horizon picks. More sophisticated model builders allow placement
of faults and unconformities and other complex structures that may be available from
prior geologic and seismic interpretations. The prior model and the seismic data are then



236 Common techniques for quantitative seismic interpretation

combined in a constrained least-squares inversion to obtain the inverted impedance esti-
mates. The prior model may be used in different ways: to estimate depth trends of upper
and lower bounds to constrain the inversion, or in a weighted objective function that
includes not only the misfit with the data but also the deviations from the prior model.
The weights depend on our relative confidence in the prior model versus the seismic
traces. The constrained minimization problem can then be solved using gradient-based
optimization techniques. In some software programs the objective function is based not
on a trace-by-trace misfit but on a global misfit between forward model predictions and
observed data for multiple traces in the section.

4.4.2 Far-offset elastic impedances

As described in the earlier section, usually impedance inversion is applied to zero-
offset, or near-offset, stacked sections to estimate the acoustic impedance ρV, and
therefore does not give us any VP/VS information. A direct method of obtaining
S-wave impedance is, of course, from inversion of post-stack S-wave data. When only P-
wave data are available, one way to estimate S-wave-related attributes (e.g., Poisson’s
ratio, or VP/VS) is by pre-stack inversion of multi-offset data. While full pre-stack
inversion is not yet common in commercial software, it will almost surely become the
trend in future. Here we describe an alternative approach based on a pseudo-impedance
attribute (Connolly, 1998; Mukerji et al., 1998b) which is a far-offset equivalent of the
more conventional zero-offset impedance. This far-offset impedance has been called
the “elastic impedance” (EI) as it contains information about the VP/VS ratio. This
approach allows us to use the same trace-based 1D algorithm for inversion of the far-
offset stack as for the near-offset stack, to get an elastic impedance cube. Although
only approximate, the inversion for this pseudo-impedance parameter is economical
and simple compared with full pre-stack inversion. The key to using this extracted
attribute effectively for quantitative reservoir characterization is calibration with log
data.

The acoustic impedance, Ia = ρV, can be expressed as

Ia = e2
∫

R(0) dt (4.77)

where R(0) is the normal-incidence reflection coefficient. Similarly, the elastic
impedance may be defined in terms of the elastic P–P reflection coefficient at θ , R(θ ),
as:

Ie(θ ) = e2
∫

R(θ ) dt (4.78)

Substituting in this equation one of the well-known approximations for R(θ ) (see for
example Aki and Richards, 1980) in terms of VP, VS, and density contrasts:

R(θ ) = R(0) + A sin2θ + B tan2θ (4.79)
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We can express Ie as:

Ie(θ ) = ρVP · etan2θ
∫

d(ln VP) · e−4 sin2θ (VS/VP)2
∫

2d(ln VS) · e−4 sin2θ (VS/VP)2
∫

d(ln ρ) (4.80)

or

Ie(θ ) = V (1+ tan2θ )
P ρ(1−4K sin2θ )V (−8K sin2θ )

S (4.81)

where K = (VS/VP)2 is taken to be a constant. In deriving this expression we have used
the fact that eln x = x. The elastic impedance reduces to the usual acoustic impedance,
Ia = ρV, when θ = 0. Unlike the acoustic impedance, the elastic impedance is not a
function of the rock properties alone but depends on the angle. Using only the first two
terms in the approximation for R(θ ) gives a similar expression for Ie with the tan2 θ

terms replaced by sin2θ :

Ie(θ ) = V (1+sin2θ )
P ρ(1−4K sin2θ )V (−8K sin2θ )

S (4.82)

This has been termed the first-order elastic impedance (Connolly, 1999), and it goes to
(VP/VS)2 at θ = 90◦ assuming K to be 1/4. Note that the elastic impedance has strange
units and dimensions, and they change with angle. Whitcombe (2002) defines a useful
normalization for the elastic impedance:

Ie(θ ) = [VP0ρ0]

(
VP

VP0

)(1+tan2θ ) (
ρ

ρ0

)(1−4K sin2θ ) ( VS

VS0

)(−8K sin2θ )

(4.83)

where the normalizing constants VP0, VS0, and ρ0 may be taken to be either the average
values of velocities and densities over the zone of interest, or the values at the top of
the target zone. Now the elastic impedance has the same dimensionality as the acoustic
impedance. Mention must be made also of the extended elastic impedance (EEI) of
Whitcombe et al. (2002), which is defined over angle χ ranging from −90◦ to +90◦.
It should not be interpreted as the actual reflection angle, but rather as the independent
input variable in the definition of EEI. The EEI is expressed as:

Ie(χ ) = [VP0ρ0]

(
VP

VP0

)(cos χ+sin χ ) (
ρ

ρ0

)(cos χ−4K sin χ ) ( VS

VS0

)(−8K sin χ )

(4.84)
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Under certain approximations, the EEI for specific values of the independent variable
χ becomes proportional to rock elastic parameters such as bulk modulus and shear
modulus.

For impedance inversion using 1D trace-based algorithms, the elastic impedance
may be written as:

Ie(θ ) = VPρ
∗ (4.85)

ρ∗ = V (tan2θ )
P ρ(1−4K sin2θ )V (−8K sin2θ )

S (4.86)

where ρ* is a pseudo-density, and 1D convolutional models can now be used for forward
modeling. In actual inversion of field seismic data, the far-offset traces are stacked over
some appropriate small angle range �θ = θ2 − θ1, instead of using just a single
reflection angle θ . The stacked elastic impedance attribute Īe(θ1, θ2) can be obtained by
first integrating the reflection coefficient over the angle range, and then using equation
(4.78) to give:

Ie(θ1, θ2) = V 1+Tθ

P ρ1−4(VS/VP)2Sθ V−8(VS/VP)2 Sθ

S (4.87)

where

Tθ = tan θ2 − tan θ1

�θ
− 1

Sθ = 1

2
− 1

4

(sin 2θ2 − sin 2θ1)

�θ

Equation (4.87) reduces to equation (4.81) in the limit when θ2 → θ1.
The elastic and acoustic impedance attributes derived from well logs can be used

to test for the distinguishability of the facies based on these attributes. Log data are
first used to build a bivariate calibration pdf for Ie and Ia. A key step, as mentioned in
Chapter 3, is to extend the log derived data, using Gassmann’s equations, to incorporate
velocity and impedance attributes for pore fluids not encountered in the well. Lithol-
ogy substitution should also be done if necessary, using for example the cementation
models or texture models described in Chapter 2. This helps to incorporate velocity
and impedance values corresponding to lithology variations not encountered in the
well. Figure 4.20 shows different seismic lithofacies defined from wells in a North
Sea reservoir, in an Ie–Ia cross-plot. Facies that overlap in acoustic impedance can be
discriminated by their elastic impedance and vice versa. Different pore fluids can also
be discriminated on the Ie–Ia cross-plot.

Classification success rate can then be tested statistically. One simple method is
by omitting one sample at a time from the training data, and using the rest of the
data to classify the omitted sample (jackknife validation). This is done for all the
samples in the training data. Figure 4.21 shows the classification success rate using a
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Figure 4.20 Cross-plot of elastic impedance at 30◦ versus acoustic impedance for different
lithofacies. Light symbols indicate oil-saturated facies.
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discriminant analysis (see Chapter 3) to classify the samples. Classification was
done using zero-offset impedance (Ia) alone, and then using both Ia and Ie together.
Figure 4.21 clearly shows the value (in this particular case) of the far-offset impedance
attribute in increasing the average success rate for all facies from about 60% (Ia only)
to about 85% (Ia and Ie).

The following section describes two other data examples, one from the Australian
shelf, and another from the Gulf of Mexico. Figure 4.22A shows a cross-plot of acous-
tic impedance versus elastic impedance from logs in a well on the Australian shelf.
The sands are fairly incompressible, with a large acoustic impedance compared with
the shales. Sensitivity to fluid type is small, and oil-sand impedance (not shown) is
very close to brine-sand impedance. In this case lithologies can be separated more
easily than fluid type. Changing the pore fluid to gas (using Gassmann’s equation)
shifts the sand points slightly to the lower left. While brine sands are well separated
from shales by their acoustic impedance, the acoustic impedance of gas sands over-
laps that of shales. It would be difficult to separate gas sands from shales from just
their zero-offset impedance. Figure 4.22B shows classification success rates for the
three different facies. The histograms again show the value of the far-offset impedance
attribute. The average success rate increases from about 68% (Ia only) to about 78%
(Ia and Ie).

Figure 4.23A shows a cross-plot of acoustic impedance versus elastic impedance
from a Gulf of Mexico well. Here the sands are not very consolidated, and show a strong
sensitivity to pore fluids. Gas, oil, and brine sands are well separated on the cross-plot
both in acoustic impedance and elastic impedance. In this instance, acoustic impedance
by itself is a good discriminator of the sands with different pore fluids. Adding elastic
impedance does not improve the classification performance (Figure 4.23B) for this
case.

These examples show how well-log data can be used before doing inversions to
decide whether it is worthwhile to do far-offset inversions, and how much improvement
might be expected by including far-offset impedance in the reservoir characterization
strategy.

The convolutional model does not handle properly all the reflections at far offsets as
the primary reflections get mixed with other events. The approximations used to derive
the expressions for elastic impedance get worse at larger angles. The first-order two-
term elastic impedance has been found to give more stable results than the three-term
elastic impedance (Mallick, 2001). Mallick compares pre-stack inversion with partial
stack elastic impedance inversions and recommends a hybrid approach. In this approach
full pre-stack inversion is done at a few control points to get reliable estimates of P and S
impedance. These pre-stack inversions are used as anchors for cheaper 1D trace-based
inversions over large data volumes. On the basis of these results, small zones may be
selected for detailed analysis by pre-stack inversions. Bachrach and Dutta (2004) used
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Figure 4.22 A, Cross-plot of elastic versus acoustic impedances from an Australian shelf well log,
and B, corresponding classification success rates.
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Figure 4.23 A, Cross-plot of elastic versus acoustic impedances from a Gulf of Mexico well log,
and B, corresponding classification success rates.
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pre-stack inversions and statistical rock physics methodologies described in this book
to quantify porosity and saturation distributions from seismic data.

In applications to reservoir characterization, care must be taken to filter the logs to
match the seismic frequencies, as well as to account for the differences in frequency
content in near- and far-offset data. A different wavelet has to be extracted for the
near- and far-offset angle stacks. The inverted acoustic and elastic impedance co-
located at the wells must be calibrated with the known facies and fluid types in the
well, before classifying the seismic cube in the interwell region.

The major limitations of using partial stack elastic impedance inversion arise from
the assumptions of the 1D convolutional model for far offsets, the assumption of a
constant value for K, and errors in estimates of incidence angle.

As pre-stack inversions become more common, it will be routine to obtain the
inverted P and S impedances directly instead of attributes such as the elastic
impedance that are indirectly related to shear-wave properties. It should be kept in
mind that any other set of attributes that are directly derived from P and S impedances
by deterministic functions (e.g., linear combinations, or nonlinear functions) cannot
contain any extra information than that originally in P and S impedances. This is a
direct result of a fundamental data-processing theorem in information theory (Cover
and Thomas, 1991; Takahashi, 2000)

4.4.3 Lambda–mu estimation

Goodway et al. (1997) have championed the use of the parameters λρ, µρ, and λ/µ

obtained from pre-stack seismic data. Here λ and µ are the elastic Lamé parameters
and ρ is the density. The Lamé parameter µ is the same as the shear modulus. Goodway
et al. (1997) use the approximation to the P–P reflectivity in terms of P- and S-wave
impedances:

RPP(θ ) = �IP

2IP
(1 + tan2θ ) − 8

(
VS

VP

)2

sin2θ
�IS

2IS
(4.88)

−
[

1

2
tan2θ − 2

(
VS

VP

)2

sin2θ

]
�ρ

ρ

where � indicates contrast across the reflecting interface, and IP, IS, and ρ are the
average P-wave impedance, the average S-wave impedance, and the average density
over the interface. The average P-wave and S-wave velocities are denoted by VP and VS,
and they are related to impedances in the usual way: IP = ρVP, and IS = ρVS. Ignoring
the far-angle third term in density contrast, equation (4.88) can be used to extract P and
S reflectivity sections from pre-stack P-wave data, which are then inverted to obtain IP
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and IS, the P and S impedances. Finally IP and IS are used to compute λρ and µρ from
the relations

µρ = I 2
S

λρ = I 2
P − 2I 2

S

(4.89)

which follow directly from the equations relating velocities to elastic moduli:

VS =
√

µ/ρ

VP =
√

(λ + 2µ)/ρ

Since equations (4.89) define a one-to-one mapping from the pair (IP, IS) to (λρ,
µρ), the statistical information content stays the same. This equivalence stems from
a fundamental theorem in information theory, sometimes termed the “data-processing
theorem” (Cover and Thomas, 1991; Takahashi, 2000). Points that overlap in the (IP, IS)
domain will overlap in the (λρ, µρ) domain, and the Bayes classification error using the
full bivariate probability density functions will be the same. However, the covariances
will be different in the two domains. Since the impedances are estimated from seismic
inversions, they are subject to errors. Squaring the impedances and taking their linear
combinations introduces further errors and bias in the estimates of λρ and µρ. Gray
(2002), using assumptions of Gaussian noise distribution and independence of IP and
IS, showed that the error in µρ is approximately twice the error in IS, while the error in
λρ is about four times as great as the error associated with IS. This also assumes that
the errors associated with IP and IS are about the same.

Instead of first inverting for impedances and then computing λρ and µρ, Gray
et al. (1999) and Gray (2002) have advocated directly estimating λ and µ from pre-
stack seismic data by using an approximation for RPP(θ ) expressed directly in terms of
contrasts in λ and µ:

RPP(θ ) = �λ

λ

[
1

4
− 1

2

(
VS

VP

)2
]

(sec2θ ) + �µ

µ

(
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)2 (
1

2
sec2θ − 2 sin2θ

)

+
[

1

2
− 1

4
sec2θ

]
�ρ

ρ
(4.90)

Here as before, � indicates contrast across the reflecting interface, and λ, µ, and ρ

are averages over the interface. The reflectivity can also be expressed in terms of bulk
modulus, K, and shear modulus contrasts as follows (Gray et al., 1999):

RPP(θ ) = �K

K
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+
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4
sec2θ

]
�ρ

ρ
(4.91)
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These approximations can be used in AVO analysis of pre-stack P-wave data to
extract �λ/λ and �µ/µ. Usually the far-angle density term is ignored in conventional
AVO analysis. The extracted �λ/λ and �µ/µ are then inverted using, for example,
standard post-stack amplitude inversion based on convolutional modeling. The direct
estimates of λ and µ are less prone to noise than computations of λρ and µρ from IP

and IS, and moreover, decouple the elastic parameters from the density.

4.4.4 P-to-S elastic impedance

Non-normal-incidence reflections give rise to converted waves. We now derive expres-
sions for far-offset impedance attributes for converted waves using Aki–Richards
approximations for the P-to-S and S-to-P reflectivities, RPS(θ ) and RSP(θ ), respectively
(see also Duffaut et al., 2000). The angle-dependent far-offset impedance attributes
will be expressed in terms of integrated reflectivities as

IPS(θ ) = e2
∫

RPS(θ ) dt (4.92)

ISP(θ ) = e2
∫

RSP(θ ) dt (4.93)

For converted waves, it is important to distinguish between the incidence angle and
the reflection angle as they are not the same. The P-to-S reflectivity is given by

RPS(θ ) = − sin θP

2 cos θS

[(
1 − 2

V 2
S

V 2
P

sin2θP + 2
VS

VP
cos θP cos θS

)
�ρ

ρ

−
(

4
V 2

S

V 2
P

sin2θP − 4
VS

VP
cos θP cos θS

)
�VS

VS

]
(4.94)

where θP and θS are the angles made by the incident P-wave and reflected S-wave with
the normal to the plane interface. Using the relation sin θP = (VP/VS) sin θS to express
the reflectivity in terms of just the reflected wave angle θS we get

RPS(θS) = − tan θS

2(VS/VP)

(
1 − 2 sin2θS + 2 cos θS

√
(VS/VP)2 − sin2θS

)
�ρ

ρ

+ tan θS

2(VS/VP)

(
4 sin2θS − 4 cos θS

√
(VS/VP)2 − sin2θS

)
�VS

VS
(4.95)

Substituting this expression into equation (4.92) and carrying out the integration we
get

IPS(θS) = ρa V b
S (4.96)

a = tan θS

(VS/VP)

(
2 sin2θS − 1 − 2 cos θS

√
(VS/VP)2 − sin2θS

)

b = 4 tan θS

(VS/VP)

(
sin2θS − cos θS

√
(VS/VP)2 − sin2θS

)
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Similar expressions may be obtained for the S-to-P converted waves. The S-to-P
reflectivity versus angle is given by

RSP(θS) = cos θS

cos θP

(
VS

VP

)
RPS (4.97)

Expressing all angles in terms of the reflected angle θP we get

RSP(θS) = − (VS/VP) tan θP

2
×

(
1 − 2(VS/VP)2sin2θP

+ 2(VS/VP) cos θP

√
1 − (VS/VP)2sin2θP

)
�ρ

ρ
+ (VS/VP) tan θP

2

×
(

4(VS/VP)2 sin2θP − 4(VS/VP) cos θP

√
1 − (VS/VP)2 sin2θP

)
�VS

VS

(4.98)

and finally using equation (4.93) we obtain

ISP(θP) = ρa V b
S (4.99)

a = (VS/VP) tan θP

(
2(VS/VP)2 sin2θP − 1 − 2(VS/VP) cos θP

√
1 − (VS/VP)2 sin2θP

)

b = 4(VS/VP) tan θP

(
(VS/VP)2 sin2θP − (VS/VP) cos θP

√
1 − (VS/VP)2 sin2θP

)

Figure 4.24 shows cross-plots of various impedance attributes. They were computed
from well-log data using the above equations for the far-offset P-to-P and P-to-S
impedances. The log is from the Australian shelf. The points for gas sands were com-
puted from the brine-sand data by fluid substitution using Gassmann’s equations. The
sands are well consolidated and show little sensitivity to fluid changes. The sands and
shales can be separated, provided we have both P and S information. This can be in
the form of direct estimates of the P and S impedances (upper left subplot) or it could
come from one of the other impedance attributes, which indirectly contain the S-wave
information.

Gonzalez et al. (2003) showed how the PS far-offset elastic impedance (PSEI)
could be used to discriminate quantitatively not only lithologies (sand/shale) but also
“fizz-water” from commercial gas. Homogeneously mixed “fizz-water” with low gas
saturation is difficult to differentiate seismically from higher gas saturations. The abrupt
reduction in VP with the first few percent of gas controls the seismic response. There-
fore, usually only the presence of gas but not the saturation can be detected with P-to-P
seismic. Use of P-to-S converted waves has been suggested as a source of additional
information that can help in distinguishing high from low gas saturation (for example,
Wu, 2000; Zhu et al., 2000). At near offsets (small angles) VS and ρ terms contribute
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Figure 4.24 Cross-plots of various impedance attributes computed from logs (Australian shelf).
The ellipses are contours of Gaussian functions computed from the mean and covariance of each
cluster. The thick line (drawn by eye) separates the sands from shales.

equally to PS elastic impedance. For mid-to-large offsets the ρ term dominates. The
asymmetric contribution or “decoupling” between VS and ρ can be exploited in dis-
criminating different reservoir properties (Gonzalez et al., 2003). Unlike the abrupt
jump in VP with the initial presence of a small amount of gas, the density varies more
gradually and linearly with gas saturation. The linear behavior of density with saturation
makes attributes, that are closely related to density useful proxies for estimating gas
saturation. Gonzalez et al. (2003a, 2003b) defined two groups: fizz-water sands with
gas saturation between 10% and 20%, and commercial gas sands with gas saturation
greater than 50%. Classification success rates for the two groups were then estimated
using Monte Carlo simulations and well-log data from Eastern Venezuela. Classifi-
cation was done with different pairs of attributes: PSEI(10◦)–PSEI(50◦); IP–EI(30◦);
ρλ–ρµ; and λ–µ. Successful classification of commercial gas increased to about 90%
with the PSEI attributes, compared with about 75–80% using IP–EI(30◦), and about
70–80% using the various Lamé parameter attributes. Of course it goes without saying
that these classification rates only apply to the particular sands and fluids studied by
Gonzalez et al. (2003a, 2003b). One advantage of using two PSEI attributes, instead of
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a combination of P-to-P and P-to-S attributes, is that the time matching of PP and PS
data is avoided.

4.4.5 Anisotropic elastic impedance

It is tempting to apply the same simple derivation to the reflectivity equations for
anisotropic media. The integration of the anisotropic reflectivity versus angle and
azimuth (AVAZ) gives us an impedance-like attribute that depends on both the inci-
dence angle and the azimuth. This anisotropic elastic impedance can be calculated from
measured well logs (VP, VS, and density) along with some estimates of the Thomsen’s
anisotropic parameters.

This section details the equations used for deriving anisotropic elastic impedance. We
begin with the approximate forms of the reflectivity vs. angle (and azimuth) equations.
We will use the notation introduced by Thomsen (1986) for weak transversely isotropic
media with density ρ, and stiffness tensor C:

α =
√

C33

ρ
ε = C11 − C33

2C33

β =
√

C44

ρ
γ = C66 − C44

2C44

δ = (C13 + C44)2 − (C33 − C44)2

2C33(C33 − C44)

In the above equations, α and β are the P- and S-wave velocities along the sym-
metry axis, and ε, γ , and δ are the Thomsen’s anisotropic parameters. The P-wave
reflection coefficient for weakly anisotropic TIV media (transverse isotropy with ver-
tical symmetry axis) in the limit of small impedance contrast is given by (Thomsen,
1993)

RPP(θ ) = RPP-iso(θ ) + RPP-aniso(θ ) (4.100)

RPP-iso(θ ) ≈ 1

2
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Z
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+ 1
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
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)2
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
 sin2θ
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(
�α

α

)
sin2θ tan2θ (4.101)

RPP-aniso(θ ) ≈ �δ

2
sin2θ + �ε

2
sin2θ tan2θ (4.102)

where

θ = (θ2 + θ1)/2 �ε = ε2 − ε1 �γ = γ2 − γ1

ρ = (ρ1 + ρ2)/2 �ρ = ρ2 − ρ1 �δ = δ2 − δ1
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α = (α1 + α2)/2 �α = α2 − α1

β = (β1 + β2)/2 �β = β2 − β1

G = (G1 + G2)/2 �G = G2 − G1 G = ρβ2

Z = (Z1 + Z2)/2 �Z = Z2 − Z1 Z = ρα

In the above and following equations, � indicates a difference and an overbar indi-
cates an average of the corresponding quantity. All these equations are approximations
for the exact reflectivity in anisotropic media, and are valid for “small contrasts,”
“small anisotropy” and for incidence angle θ up to 30–40◦. In TIH media (trans-
verse isotropy with horizontal symmetry axis, e.g., single set of vertical fractures
with a horizontal symmetry axis), reflectivity will vary with azimuth, φ, as well
as offset or incident angle θ . Rüger (1995, 1996) and Chen (1995) derived the P-
wave reflection coefficient in the symmetry planes for reflections at the boundary of
two TIH media sharing the same symmetry axis. At a horizontal interface between
two TIH media with horizontal symmetry axis x1 and vertical axis x3, the P-wave
reflectivity in the vertical symmetry plane parallel to the x1 symmetry axis can be
written as

RPP(φ = 0◦, θ ) ≈ RPP-iso(θ ) +

�δ(V)

2
+

(
2β

α

)2

�γ


 sin2θ

+ �ε(V)

2
sin2θ tan2θ (4.103)

where azimuth φ is measured from the x1-axis and incident angle θ is defined with
respect to x3. The isotropic part RPP-iso(θ ) is the same as before. In the above expression

α =
√

C33

ρ
ε(V) = C11 − C33

2C33

β =
√

C44

ρ
δ(V) = (C13 + C55)2 − (C33 − C55)2

2C33(C33 − C55)

β⊥ =
√

C55

ρ
γ = C66 − C44

2C44

In the vertical symmetry plane perpendicular to the symmetry axis, the P-wave
reflectivity is the same as the isotropic solution:

RPP(φ = 90◦, θ ) = RPP-iso(θ )
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In nonsymmetry planes, Rüger (1996) derived the P-wave reflectivity RPP(φ, θ ) using
a perturbation technique:

RPP(φ, θ ) ≈ RPP-iso(θ ) +




�δ(V)

2
+
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 cos2φ
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+
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�ε(V)

2

]
cos4φ +

[
�δ(V)

2

]
sin2φ cos2φ

}
sin2θ tan2θ (4.104)

The impedance-like far-offset attribute may be defined in terms of the elastic P–P
reflectivity as

Ianiso(θ, φ) = exp
2
∫

RPP(θ, φ)� (4.105)

Using this definition of anisotropic elastic impedance, we integrate the RPP relations
for anisotropic media described above to get the following relations. In each case, the
anisotropic elastic impedance (Ianiso) may be represented in terms of the isotropic elastic
impedance, multiplied by a factor due to the anisotropy. For TIV media we have

Ianiso(θ, φ) = Iiso A (4.106)

A = exp
δ sin2θ + ε sin2θ tan2θ�

The isotropic elastic impedance (Iiso) is the usual isotropic far-offset impedance that
has been described in various forms in the preceding section. One expression for Iiso

obtained by integrating the Aki–Richards three-term approximation of RPP in isotropic
media is given as

Iiso(θ ) = α1+tan2θ · ρ1−4(β/α)2 sin2θ · β−8(β/α)2 sin2θ (4.107)

For TIH media, there is a dependence on both incidence angle and the azimuthal angle
measured from the horizontal symmetry axis. Integrating the approximate RPP relation
we get for TIH media

Ianiso(θ, φ) = Iiso A (4.108)

A = exp
δ(V) cos2φ sin2θ (1 + sin2φ tan2θ )

+ ε(V) cos4φ sin2θ tan2θ + 2γ cos2φ sin2θ (2β/α)2�

The isotropic elastic impedance can be estimated from well-log data. To estimate
the additional factor A in the anisotropic elastic impedance we need estimates for the
Thomsen parameters. These can come from modeling of the anisotropy, for instance
using crack models (e.g., Hudson’s model; Hudson, 1981), or from a reasonable guess
for the percentage P and S anisotropy.
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Figure 4.25 Cross-plot of normal-incidence and mid-offset (10◦) elastic impedance for fractured
and unfractured carbonate reservoir rocks. The azimuth is along the normals of a single set of
vertical cracks. The anisotropic offset-impedance attributes may be useful for characterizing
fractures and fluids from seismic data. Well-log data and Hudson’s model were used to create this
cross-plot.

Figure 4.25 shows an example of a cross-plot of near- and mid-offset elastic
impedance in anisotropic media. The computations were based on log data taken from
a carbonate reservoir. Fractures were modeled using Hudson’s formulation to embed
a single crack set (crack density 0.07; aspect ratio 0.001) in the background limestone
matrix giving an effective TIH fractured reservoir. The cross-plot shows the possibility
of distinguishing gas-filled fractures using the anisotropic impedance attribute defined
here. Of course, the separability depends on rock and fluid properties, and should be
calibrated for the reservoir of interest.

4.4.6 Interpretation of elastic inversion results using rock physics templates

The generation of the rock physics templates (RPTs) was demonstrated in Chapter 2.
This is a tool that can be applied by seismic interpreters. Based on a compiled catalog
or atlas of RPTs calculated by a rock physics expert, the seismic interpreter can select
the appropriate RPT(s) for the zone and area of interest, and interpret elastic inversion
results without in-depth knowledge about rock physics theory. If a compilation of
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relevant RPTs is available for the area under investigation, the ideal interpretation
workflow becomes a fairly simple two-step procedure: (1) use well-log data to validate
the selected RPT(s) (if no appropriate RPT exists, the user should provide the rock
physicist with local geologic input, so that new RPTs can be created for the area under
investigation); and (2) use the selected and verified RPT(s) to interpret elastic inversion
results.

Plate 4.26 shows an example: a small set of 3D elastic inversion data exist around
this well. Plate 4.26 shows the estimated AI and VP/VS results for a selected line in a
100-ms time window. Values of VP/VS are calculated from elastic impedance according
to equation (4.82). The VP/VS vs. AI cross-plot of these data is shown in Plate 4.27, with
a selected RPT superimposed (the RPT has been verified to well-log data according to
the procedure described in Chapter 2).

The rock physics interpretation of Plate 4.27 appears to be straightforward. The
population that sits along the theoretical shale trend is interpreted to represent shale.
Note that the shale points appear to move closer to the sand trend for the highest
AI values. This could reflect shales becoming increasingly more silty, and the points
between the shale and brine-sand trends are interpreted to be silty shales and/or shaly
sand. The points close to the theoretical brine-sand trend most probably represent clean
sand. We do not expect to see a clear oil-sand response, as the oil is fairly heavy in
this case, but some of the data that plot significantly below the brine-sand trend may
be attributed to oil saturation. The sand appears to have total porosities in the range
22–28%.

4.5 Forward seismic modeling

One common way to do quantitative analysis of seismic amplitudes is to do forward
seismic modeling. This is done by creating a synthetic seismic model based on an
assumed or interpreted Earth model. The synthetic seismic is then compared to the real
seismic data, and if necessary the Earth model must be edited to give a better match.
This is the opposite procedure to seismic inversion, where the Earth model is calculated
from the seismic data. However, the two procedures are often combined.

4.5.1 “Quick and dirty” 1D acoustic modeling

Plate 4.28 shows a very simple but very illustrative example of how seismic modeling
can be applied to verify a geologic model. In a seismic near-stack section (upper
left), we observe a channel-levee complex where the levees are relatively bright with
a positive impedance contrast (shown in red) at the top surface of the levees. The
channel fill is relatively transparent, and it is easy to interpret this as a shale-filled
channel. However, in the area of investigation, well-log rock physics analysis shows
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that the acoustic impedance of clean sands is very similar to the acoustic impedance of
shales, while shaly sands are characterized by relatively high impedances (upper right).
Hence, if we assume the levees to be mainly represented by shaly sands, the channel
to be filled with clean sands, and the cap-rock to be shale (lower left), the resulting
zero-offset seismic response (lower right) shows exactly the same seismic response as
the real seismic section. Simple zero-offset modeling like this can be very informative
and beneficial before or during seismic interpretation, for a qualitative assessment of
seismic amplitudes. However, complex geology and AVO effects are not accounted for.
For this specific case, it would be of interest to determine whether the channel is filled
with transparent shales or transparent sands. More rigorous modeling including AVO
effects could reveal the correct lithology.

4.5.2 2D elastic seismic modeling

To show an example of multilayer, offset-dependent seismic modeling, we create a 2D
Earth model based on the facies information from a North Sea well (well logs shown
in Plate 2.31) combined with stratigraphic information from seismic interpretation of
the 2D seismic line intersecting this well. This model is a simplification of the real
case. However, it is a realistic model that honors vertical facies variations observed
in the type well, and takes into account the interpreted lateral extent and geometry of
the observed facies. In Plate 4.29, the seismic section is zero-phase, peak frequency is
30 Hz, and a black peak in the wiggle display represents a positive stacked amplitude.
The seismic horizons included in the figure correspond to major lithostratigraphic
boundaries.

Top Heimdal is the interface of main interest, representing the top of the reservoir.
This horizon changes character laterally, and a polarity change is observed in the stack
section. We assume that this lateral variation reflects changes in the reservoir rock prop-
erties. We interpret the 2D cross-section to transect laterally from oil-filled lobe sands
at the well location, into marginal facies (Facies III) in both directions. Marginal facies
are observed conformably underlying the lobe sands, and these are believed to correlate
with the marginal facies laterally from the lobe sands. This interpretation is guided by
observations made in the seismic amplitude map in Plate 1.1 (see also Figure 5.1), and
the fact that Facies III represents the top of the reservoir in one of the marginal wells (see
case study 1, Chapter 5). The general conceptual model of turbidite systems (Walker,
1978) shown in Figure 2.30, and application of Walther’s law (Middleton, 1973;
Chapter 2), also support this interpretation. The resulting Earth model is depicted in
Figure 4.30.

Facies and rock physics properties that build up the model are listed in Table 4.2.
Seismic forward modeling is conducted using a commercial 2D dynamic ray-tracing
package, assuming elastic and isotropic conditions. The seismic pulse used is a
zero-phase Ricker wavelet with 30 Hz center frequency. The modeling creates synthetic
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Table 4.2 Rock properties for each facies or layer in the Earth model

Layer VP (m/s) VS (m/s) Density (g/cm3) VP/VS AI (m/s × g/cm3)

0–150-m water zone 1500 0 1 ∞ 1500
Overburden (sand and shale) 1850–2390 450–950 1.8–2.2 4–2.5 3300–5260
Tuff (Balder Fm) 2600 1200 2.3 2.17 5980
Facies V (Sele Fm) 2300 950 2.25 2.42 5175
Facies IV (Lista Fm) 2400 1000 2.25 2.4 5400
Facies IIb-oil (Heimdal Fm) 2440 1300 2.02 1.88 4930
Facies IIc-oil (Heimdal Fm) 2630 1400 2.06 1.88 5420
Facies III (Heimdal Fm) 2750 1200 2.2 2.3 6050
Facies IIa (Heimdal Fm) 3100 1600 2.15 1.94 6650
Chalk (Ekofisk Fm) 3500 1700 2.3 1.94 8050

Figure 4.30 The geological model used as input for the seismic modeling. Elastic properties are
given in Table 4.2. Note that this figure is not to scale. The lateral extension is 6 km and the
vertical/lateral ratio is about 1/6.

pre-stack seismic gathers along the section. Only primary reflectors are included, and
the offset-dependent reflectivity is calculated using the Zoeppritz equations (Zoeppritz,
1919) at each interface. These gathers are stacked at limited ranges to create a
near-stack, a far-stack and a full-stack seismic section corresponding to our Earth
model.

The results from the forward seismic modeling are shown in Figure 4.31. Comparing
the synthetic full-stack section with the real stack section, we observe a good fit. This
shows that the Earth model can explain the seismic signatures observed in the real data.
Considering the Top Heimdal horizon, we clearly observe a phase shift as we go from
marginal facies to the lobe on the full stack. Correspondingly, we observe a bright spot
on the far stack with large negative amplitudes at the Top Heimdal level, while the near
stack shows a much weaker seismic response at this level.
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Figure 4.31 Synthetic seismic modeling results, including a full-offset stack section (upper), a
near-offset stack (middle) and a far-offset stack (lower). The data are zero-phase, and peak
frequency is 30 Hz. White amplitudes represent negative reflectivity. Arrows on the sides indicate
the Top Heimdal horizon. Note the much brighter white amplitude on the far-offset stack section
compared with the near-offset stack section at the Top Heimdal horizon (CDP range 35–110). Also
note the phase change and positive reflectivity along this horizon in the CDP range 0–35. The CDP
spacing is 50 m.
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Ray theory modeling will break down in very heterogeneous and/or structurally
complex media. In these cases, more advanced finite-difference algorithms are normally
used for seismic modeling. It is beyond the scope of this book to go into the details
of ray theory and finite-difference methods for seismic modeling, but some excellent
references on the theory of seismic wave propagation include Cerveny (2001) and Aki
and Richards (1980).

A fast convolution-based elastic modeling in complex geologic media was developed
by Petersen (1999). His modeling approach takes into account geologic processes
(tectonic and sedimentologic), which makes it easy to modify and update the Earth
model. It also allows for quick lithology and fluid substitution within complex geologic
settings.

4.6 Future directions in quantitative seismic interpretation

We see some clear trends in quantitative seismic interpretation: more rigorous modeling
and inversion of the wave propagation phenomena; combining sedimentologic and
diagenetic modeling with rock physics modeling to obtain more realistic predictions
of seismic properties; probabilistic Monte Carlo simulations to capture uncertainties in
both rock physics and inversion results; and incorporation of geostatistical methods to
account for spatial correlations in reservoir properties.

Today, two-term AVO analysis is still the most common means to estimate elastic
properties from pre-stack seismic data. However, higher-order, ultra-far AVO analy-
sis, although immature, is a technology that can potentially provide us with additional
information about reservoir properties from seismic data. Furthermore, full-waveform
pre-stack inversions will become more common as computer power increases.
Benabentos et al. (2002) used hybrid inversions which combined pre-stack inversion
with post-stack inversion to quantify lithologies. Bachrach et al. (2004) quantified
uncertainties in reservoir prediction using full-waveform pre-stack inversion combined
with rock physics analysis and mapped the estimated probabilities of different litholo-
gies in deep-water Gulf of Mexico. Not only will we see inversions of the elastic seismic
properties, but also increased use of attributes related to attenuation. Attenuation has
always been difficult to estimate reliably from seismic data. However, recent techniques
give us hope that it will become more common to use QP and QS in addition to VP, VS,
and density for reservoir characterization.

Integration of geologic processes, by numerical modeling, will open up new doors in
quantitative seismic interpretation. Helseth et al. (2004) combined numerical modeling
of diagenetic processes with the rock physics models shown in Chapter 2, to predict
quantitative depth trends in seismic properties. There is also a trend of using results from
quantitative interpretation techniques in virtual reality rooms for improved delineation
of geomorphologic elements.
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Because reservoir characterization is inherently uncertain and risky, Monte-Carlo-
based techniques are essential for managing the uncertainty. Using simple deterministic
models without capturing the variability can lead to erroneous decisions. Representation
of quantitative seismic interpretation in terms of probabilities allows the results to be
more easily incorporated into economic risk analysis. One of the main goals of this
book is to show how seismic interpretation can be represented quantitatively in terms
of probabilities.



5 Case studies: Lithology and pore-fluid
prediction from seismic data

The path of precept is long, that of example short and effectual. Seneca

The case study examples in this chapter make use of the techniques described in the
previous chapters, to estimate the uncertainty and map the probability of occurrence of
different facies and fluids away from the well locations by combining attributes from
seismic analyses with statistical rock physics.

The first case study uses pre-stack seismic amplitude analyses to delineate reservoir
zones in the North Sea. In the second study, again in the North Sea, use is made of
seismic impedance inversions, statistical rock physics, and geostatistics to characterize
the reservoir by mapping probabilities of occurrence of facies and fluids. In the third case
study we show how we can combine statistical rock physics, lithofacies interpretation,
and AVO analysis to discriminate between lithologies and thereby improve detectability
of hydrocarbons from seismic amplitudes in Grane field, North Sea. The fourth study,
from West Africa, shows an example of using seismic amplitude analyses and depth
trends in rock properties to classify hydrocarbon zones at different depths. The fifth
case study is an example of the full workflow of rock physics template (RPT) analysis,
starting with the selection of the most appropriate RPT using well-log cross-plot analysis
followed by rock physics interpretation of elastic inversion results using the selected
template. The example is from the Grane field in the North Sea, the same field as for
case study 3.

5.1 Case 1: Seismic reservoir mapping from 3D AVO in a North Sea
turbidite system

5.1.1 Introduction

In this case study (Avseth et al., 2001a, 2001b), we conduct seismic reservoir charac-
terization constrained by well-log rock physics (see Chapter 2) and facies classification
(see Chapter 3), and apply it to the Glitne field. The Glitne field is a turbidite sys-
tem located in South Viking Graben, North Sea, whose reservoir sands represent the

258
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Figure 5.1 Seismic reflectivity map (above) of Top Heimdal Formation, corresponding to the gray
lines in the well logs (P-wave velocity) (below). The bright amplitudes reflect relatively strong
positive stack responses. The three wells penetrate a submarine fan in the feeder channel (Well 1),
in a lobe channel (Well 2), and in the marginal area of the lobe (Well 3). The Heimdal Formation
dramatically changes character between the wells. Oil was encountered in Well 2, and the area
represents a commercial oil field, the Glitne field. The oil–water contact (OWC) in Well 2 is
indicated by the horizontal black line. The contours in the seismic map are in two-way traveltime
(ms) and illustrate the structural topography of the lobe. (The reflectivity map is courtesy of Norsk
Hydro.)

Heimdal Formation of Late Paleocene age and include an oil field of economic interest
(Figure 5.1). By linking lithofacies to rock physics properties, using statistical tech-
niques to account for natural variability within, and overlap between different facies,
we obtain a probabilistic link between facies, rock properties, and seismic response.
This allows us to predict the most likely lithofacies and conditional probabilities of
facies from seismic data. The proposed methodology, including the steps presented in
Chapters 1, 2, 3 and 4, ultimately improves the ability to delineate subtle traps and
characterize reservoir units in complex depositional systems from seismic data.

We have a comprehensive database available for this study, including thin sections
and cores, well-log data from seven wells (five of the wells are located in the field
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Figure 5.3 P-wave velocity versus gamma ray (left) and density versus gamma ray (right), for
different seismic lithofacies in training data (Well 2). Note the ambiguity in P-wave velocity
between Facies IIb and IV/V.

of study while two are located in a neighboring field), CDP (common depth point)
gathers from selected seismic lines and a 3D seismic cube covering the area of interest.
The thin sections and cores are used to guide the facies identification from well-log
data. The well-log data available for classification and generation of probability density
functions (pdfs) include P-wave velocity (VP), density and gamma ray for all the seven
wells. In addition we have S-wave velocity (VS) and resistivity data (shallow and deep)
from two of the wells. Helium porosity data are available from the cored zone in
Well 2. The pre-stack seismic data (CDP gathers) both from the selected 2D lines
and from the 3D cube have been pre-processed for true amplitude recovery and AVO
analysis. The processing includes spherical divergence correction, pre-stack FK time
migration, NMO correction, Radon-transform multiple removal, and surface-consistent
offset balancing.

5.1.2 Rock physics and facies analysis of well-log data

As discussed in Chapter 2, relating lithofacies to rock physics properties will improve
the ability to use seismic amplitude information for reservoir prediction and charac-
terization in complex depositional systems. There are several reasons why facies are
important in seismic interpretion. Firstly, facies occur in predictable patterns in terms
of lateral and vertical distribution. Facies can also be linked to sedimentary processes
and depositional environments. Moreover, facies have a major control on reservoir
geometries and porosity distributions.

The facies definitions used in this case study are listed in Section 2.5.1. The different
facies are demarcated on the logs from the type-well in Plate 5.2. Figure 5.3 shows
the different seismic lithofacies plotted as P-wave velocity versus gamma ray (left),
and density versus gamma ray (right). We observe an overturned V-shape, and an
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Figure 5.4 Acoustic impedance versus gamma ray (left) and VP/VS ratio versus gamma ray (right)
in type-well.

ambiguity exists between Facies IIb and IV/V. Cemented sands (IIa) and laminated
sands (IIc) as well as interbedded sand–shales have relatively high velocities. The
sand–shale ambiguity is not observed in density versus gamma ray. Here we see a
more linear trend where density increases with increasing gamma-ray values (i.e., clay
content) as we go from clean sands (Facies IIa and IIb) to silty shales (Facies IV).
However, we observe that silty shales have higher densities than pure shales. The sand–
shale ambiguity observed in terms of velocity is also observed in acoustic impedance,
which is the product of VP and density (Figure 5.4; left). The overturned V-shape we
observe can be explained physically: for grain-supported sediments, increasing clay
content tends to reduce porosity (i.e., increase density) and therefore stiffen the rock.
However, for clay-supported sediments, porosity will increase with increasing clay
content because of the intrinsic porosity of clay, and the rock framework will weaken.
Hence, velocity will reach a peak when clay content is approximately 40% (see also
Section 2.2.3 and Figure 2.8).

The shear-wave sonic log provides us with shear-wave velocity (VS). Figure 5.4
(right) shows the VP/VS ratio versus gamma-ray value. Here we observe that Facies IIb
can be distinguished from shales (Facies IV and V), as the VP/VS ratio increases with
increasing shaliness. Higher VP/VS ratios in shales than sands are expected, since the
shear strength in shales tends to be relatively low compared with sands, owing to the
platy shapes of clay particles.

Potentially, the trends observed in our cross-plots could be influenced by variation in
pore fluid, as the thick-bedded sand units identified as IIb and IIc are located within the
oil zone. However, the shallow and deep resistivity logs and helium porosity measure-
ments indicate invasion of mud filtrate in the shallow zone (Figure 5.5). The density logs
are proven to measure mud filtrate by calibration to the helium porosity measurements
(Figure 5.6). We have no direct proof that the velocity logs measure in the invaded
zone, but the perfect match between the velocity–porosity data of Facies IIb and the
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Figure 5.5 Saturation curves derived from resistivity logs in the reservoir zone of Well 2, indicating
the effect of mud-filtrate invasion. Sw is water saturation in the reservoir. The oil saturation of the
reservoir equals 1 − Sw. Sxo is the water saturation in the invaded zone. The residual oil saturation
in the invaded zone equals 1 − Sxo.
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Figure 5.6 Porosity logs derived from the density log in the interval 2168–2184 m in Well 2,
representing the lower part of the oil zone, where the sands are plane-laminated (Facies IIc). This is
the interval where helium porosity data are available. If we assume the pore fluid is oil with a
density of 0.78 g/cm3, the porosity log shows values that are too low compared with the helium
porosity measurements. Assuming a saline water density of 1.09 g/cm3, the porosity log matches
with the helium porosities. This proves that the formation is invaded by mud filtrate in the zone
measured by the density tool.
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Figure 5.7 Seismic lithofacies classification results in the three wells shown in Figure 5.1. The
channel sands in Well 1 (2172–2220 m) are classified as cemented (IIa), while the marginal lobe
facies encountered in Well 3 (2180–2240 m) are identified as interbedded sand–shales (III). Well 2
is the type-well and the reservoir facies comprise Facies IIb at the top (2155–2165 m) and Facies
IIc beneath (2166–2183 m)

friable-sand model, shown in Plate 2.31 (Section 2.5.3) was obtained assuming mud
filtrate as pore fluid. Furthermore, since Facies IIb and IIc in Well 2 have about the same
oil saturation, it is clear that the relatively large increase in velocity when we go from
Facies IIb to IIc must be related to lithologic and/or textural changes. This indicates
that the sonic log is also measuring in the zone invaded by mud filtrate. Hence, the
variations in seismic properties observed in Figures 5.3 and 5.4 should only reflect
facies variations.

5.1.3 Creating nonparametric facies and pore-fluid pdfs

To correlate and describe the reservoir between the wells is an impossible task without
using seismic data, and the goal is therefore to predict from seismic amplitudes the
character of the reservoir in the interwell areas. In this section we generate probability
density functions (pdfs) of seismic parameters based on the well classification, and
these pdfs will then be used to create facies maps from seismic data.

We first do statistical facies classification of all the wells used in the case study.
This allows us to create cumulative distribution functions from which we can perform
Monte Carlo simulation of seismic parameters and create the AVO pdfs (for details see
Chapter 3 and Section 4.3.11). The log data from the type-well (Well 2) are used as
training data for a multivariate statistical classification of seismic lithofacies in other
wells in the area. Figure 5.7 shows the classification results in Wells 1–3, where only
gamma-ray and P-wave velocity logs were used, as the density logs were found to be
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Figure 5.8 Cumulative distribution functions (cdfs) of acoustic impedance and VP/VS ratio for each
of the brine-saturated facies. We observe a much better discrimination in VP/VS ratio than in
acoustic impedance.

corrupted by wash-outs and rough borehole surfaces in some intervals. The classification
was done in seven wells using Mahalanobis quadratic discriminant analysis (Davis,
2002; Doveton, 1994). This method uses the means and covariances of the training data.
Samples are classified according to the minimum of the Mahalanobis distances to each
cluster in the training data (Duda and Hart, 1973; Fukunaga, 1990). The Mahalanobis
distance classification technique is further explained in Chapter 3.

In Figure 5.7 we observe that the feeder-channel sands in Well 1 (2172–2220 m) are
mainly classified as cemented clean sands (Facies IIa), whereas the lobe-channel sands
in Well 2 (2155–2165 m) are classified as uncemented sands (Facies IIb). Furthermore,
we observe that the Top Heimdal is represented by interbedded shales/sands in the lobe
margin area where Well 3 is located (2180–2240 m). As confirmed in the deterministic
AVO analysis in Figure 4.7, this dramatic variability in the lateral facies distribution
going from a relatively proximal feeder-channel environment to a relatively distal lobe
and lobe margin environment has great impact on the seismic signatures in this turbidite
system.

Based on the facies classification, we first extract cumulative density functions of seis-
mic properties for each of the lithofacies, and for oil-saturated sand facies (Figures 5.8
and 5.9). The oil-saturated cdfs were calculated from the water-saturated cdfs using
the Biot–Gassmann theory (Gassmann, 1951; see Chapter 1). As for the training data,
we observe a much better discrimination in VP/VS ratio than in acoustic impedance in



265 5.1 Case 1: 3D AVO

3.5 4 4.5 5 5.5 6 6.5 7 7.5
0

0.2

0.4

0.6

0.8

1

Acoustic impedance

IIc–oilIIb–oil IIa–oil

IIa

IIc
IIb

1.6 1.8 2 2.2 2.4 2.6
0

0.2

0.4

0.6

0.8

1

VP/VS   ratio

IIa

IIb

IIc
IIc–oilIIb–oil

IIa–oil

Figure 5.9 Cumulative distribution functions (cdfs) of acoustic impedance and VP/VS ratio for oil
versus brine saturation in the sandy facies. We observe a much better discrimination in VP/VS ratio
than in acoustic impedance.

terms of lithofacies. The cdfs in Figure 5.9 show that VP/VS ratio also discriminates pore
fluids better than acoustic impedance. Hence, as suggested in Section 4.3.7, amplitude
versus offset (AVO) analysis must be used to predict lithofacies from seismic data.

From the cdfs of velocities and density, we create probability density functions
(pdfs) of AVO response for different lithofacies combinations, and assess uncertain-
ties in seismic signatures related to the natural variability within each facies. The pdfs
are generated from Monte-Carlo-simulated seismic properties drawn randomly from
the two lithofacies cdfs, one for the cap-rock and one for the underlying facies. First
we simulate VP and then VS followed by density. We make sure the simulation honors
the correlation between the three parameters. The corresponding reflectivity simula-
tions are calculated using Shuey’s equation (i.e., equation (4.8)). The AVO pdfs can be
plotted either as reflectivity versus offset (cf. Figure 4.14), or as zero-offset reflectivity
R(0) versus the AVO gradient G (Figure 5.10). In Figure 5.10 the center or peak of each
contour plot represents the most likely set of R(0) and G for each facies. These pdfs
show how R(0) and G can vary for a given facies combination, and that different facies
combinations can have overlaps. However, the most likely set of R(0) and G is a unique
characteristic of a given facies combination. For instance, a cemented sand (Facies IIa)
with brine will likely have a relatively large positive R(0) and a relatively large nega-
tive G, whereas an oil-saturated cemented sand will more likely have a smaller posi-
tive R(0) and larger negative gradient. However, there is a great overlap between the
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Figure 5.10 Bivariate distribution of the different seismic lithofacies in R(0)–G plane, assuming
Facies IV as cap-rock. The center of each contour plot represents the most likely set of R(0) and
G for each facies.

water-saturated and oil-saturated sands, and oil sands can potentially show larger R(0)
and smaller negative G values than water sands. There is also overlap between different
types of sands. Another interesting observation is that even a shale–shale interface can
cause a significant seismic response. In general, these pdfs create a probabilistic link
between facies and seismic properties that can be used to predict the most likely facies
and the conditional probability of a given facies, from seismic data.

To better assess important trends in terms of the R(0)–G bivariate plots, we lump all
oil sands together into one group, all brine sands in another and all shaly facies in a third,
and plot them together in the same cross-plot (Figure 5.11). Only the iso-probability
contours of 50% and larger are included. In spite of significant overlaps, there is a fairly
good separation between shales and sands, and between oil sands and brine sands. From
these plots we observe that both R(0) and G are needed to discriminate between facies
and pore fluids in our case.

5.1.4 Facies and pore-fluid classification of AVO attributes

We use our AVO pdfs to predict lithofacies and pore fluids from 2D and 3D pre-
stack seismic data. We first conduct a realistic seismic forward modeling along a 2D
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Figure 5.11 AVO pdfs for main facies groups: oil sands, brine sands and shales. Only the
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separate the three facies groups, but there are significant overlaps.

cross-section intersecting the type-well (see Section 4.5), and predict most likely litho-
facies and pore fluids along the top reservoir horizon from the synthetic data. This
becomes a feasibility study on how well the methodology works, as the input Earth
model is known. Then we use the same technique to predict facies and pore fluids from
the real 2D seismic section intersecting the well. Finally, we characterize facies and
pore fluids, and map their occurrence probability, over the whole field using 3D AVO
data.

AVO inversion and facies prediction from synthetic seismic data
The next step is to use the offset-dependent reflectivity information in the synthetic
seismograms (see Figure 4.31) to see if we are able to predict the correct facies present
immediately beneath the Top Heimdal horizon. We extract R(0) and G along this horizon
using AVO inversion based on generalized least-squares as available in a commercial
AVO package. A common procedure to calculate R(0) and G from pre-stack seismic
data is described in Chapter 4.

Combining the inverted AVO parameters, R(0) and G, with the bivariate probability
distributions in Figure 5.10, we are able to predict the most likely seismic lithofacies
present below the Top Heimdal horizon in the synthetic seismic section. The results are
shown in Plate 5.12.

The lithofacies are indicated both in terms of a graph and as a color display. For
computational reasons, the facies are given integer numbers 1 through 9, according to
the following scheme:
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1 = Facies IIa with oil 4 = Facies IIa with brine 7 = Facies III
2 = Facies IIb with oil 5 = Facies IIb with brine 8 = Facies IV
3 = Facies IIc with oil 6 = Facies IIc with brine 9 = Facies V

For convenience, the sandy facies with oil (1 through 3) are red-colored, the sandy
facies with brine (4 through 6) are yellow-colored, whereas the shaly facies (7 through
9) are green-colored.

In Plate 5.12, we have superimposed the true R(0) and G values calculated from
Table 4.1 with the predicted (inverted) R(0) and G, respectively. There is a relatively nice
fit between true and predicted R(0), while true and inverted G show larger discrepancy.
The largest discrepancy in R(0) occurs where Facies IIc is the true answer (CDP 36–
60). However, Facies IIc is relatively thin (∼10 m) and pinches out laterally. Hence
the discrepancy can be related to tuning effects. The total thickness of the Heimdal
Formation reservoir sands encountered in Well 2 is about 35 m. This is approximately
half a wavelength, and at this location the sands are therefore seismically resolvable.
Accordingly, we expect no major tuning at places along the line other than at the pinch-
out of Facies IIc. Nevertheless, G shows relatively large discrepancy in several places
along the section. This could be due to focusing/defocusing of energy as some of the
overlying horizons are rather curved, and this could have caused the nonhyperbolic
moveouts that were observed locally. (The synthetic section used for the inversion has
not been pre-stack migrated.) The largest discrepancy in G, however, occurs in the
pinch-out zone of Facies IIc where we observe tuning of R(0). Consequently, this zone
also has substantial error in terms of predicted facies. Shales of type IV and brine-
saturated sands of type IIc are predicted where the true answer is oil-saturated sands of
type IIc. Elsewhere, the predicted most likely lithofacies underlying the Top Heimdal
horizon match very well with the true facies given in the Earth model.

Facies and pore-fluid prediction from real 2D seismic section
Now, we want to use the AVO-pdfs in Figure 5.10 to predict facies and pore fluids from
a real 2D seismic section. We select the same 2D line as the one from which we derived
our Earth model in the synthetic case (i.e., the seismic line intersecting the type-well,
Well 2). Thus, if our Earth model is more or less correct, we should expect the predicted
reservoir rocks to be similar in the synthetic and the real cases. The assumption of a
consistent cap-rock of Facies IV is reasonable as the Lista Formation which overlies
the Heimdal Formation reservoir rocks is normally represented by hemipelagic, silty
shales (cf. classification results in Figure 5.7).

Figure 5.13 shows the real 2D seismic stack section (wiggle-trace display, zero-phase
wavelet, 30 Hz peak frequency) intersecting the type-well, the same line as shown in
Plate 4.29. Plate 5.14 shows the extracted R(0) and G along the picked Top Heimdal
horizon, and the predicted most likely seismic lithofacies present below the horizon. We
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Figure 5.13 Seismic section intersecting the lobe of the submarine fan. The picked horizon and the
arrows on the side indicate the top of the Heimdal sands. There is a marked phase-shift along the
Top Heimdal horizon. CDP spacing is 18 m.

predict mainly oil sands of type IIb and IIc within the interval where the Top Heimdal
horizon has a negative R(0). This is very similar to what is suggested in the Earth model
in Figure 4.30, although the subfacies of sands are not always the same. Bear in mind
that our oil facies pdfs represent 100% oil saturation, while the true oil saturation in
the reservoir is varying between 0.2 and 0.8 (Figure 5.5). This can have an effect on
the prediction of sand type (IIb versus IIc).

In the area where the Earth model has shaly sands or interbedded sand-shales
(Facies III), the prediction shows a more heterogeneous character. We observe both
shaly sands (Facies III) and thick-bedded, cemented sands (Facies IIa) with oil. This
indicates that there is probably another lobe-channel intersected by the real 2D line that
we did not include in the synthetic modeling. An alternative explanation is that this local
oil-saturated sand is a result of tuning effects or noise in the data, as discussed for the syn-
thetic case. A third explanation is lateral facies variations in the Lista Formation above
the reservoir, obstructing our assumption of a cap-rock consisting of only Facies IV.
These issues are further discussed below.

Facies and pore-fluid prediction and probability maps from 3D AVO data
The next step is to expand on our results from the 2D seismic line and perform facies
and pore-fluid prediction from 3D seismic data. Three-dimensional AVO inversion is
done on the turbidite system using the same commercial inversion software that was
used for the 2D line. Again, we focus only on the horizon representing the top of the
system (Top Heimdal). Figure 5.15 shows the 3D topography (in two-way traveltime) of
this seismic horizon, where the geometries of the feeder-channel and the lobe structure
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Figure 5.15 Three-dimensional seismic topography of Top Heimdal horizon (traveltime). The
depositional geometry of a feeder-channel and fan lobe is outlined (compare to Figure 5.1).

Figure 5.16 Zero-offset reflectivity, R(0) (left), and AVO gradient, G (right), along Top Heimdal
horizon.

are outlined. The inversion gives us R(0) and G over the whole area, along this horizon
slice. Figure 5.16 shows R(0) (left) and G (right). These plots allow us to predict the
most likely seismic lithofacies under this horizon. This is done by combining the R(0)
and G inverted from the seismic with the R(0)–G bivariate pdfs derived from well-log
data. Before we can do this, however, the inverted parameters must be calibrated to the
well-log values.

Figure 5.17 shows the comparison between the well-log-derived R(0) and G values
and the R(0) and G from the AVO inversion. The upper left subplot shows the global
training data from the well logs. In the upper right subplot are the raw unscaled R(0) and
G values derived from the least-squares AVO inversion. We calibrate the inverted R(0)
and G at Well 3. In this well we observe Facies III beneath the Top Heimdal horizon.
We first calculate the mean uncalibrated R(0) and G from a small area around the well
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Figure 5.17 Comparing the global training data of R(0) and G derived from well-log data (upper
left; Monte Carlo simulated values) to 3D AVO inversion results (upper right). The calibrated AVO
parameters show a smaller range than the well-log data, but the scatter matches nicely with the
distribution of the well-log pdf (lower left and right). The dark-colored two-dimensional bins in the
lower left subplot represent relatively high frequencies of data points within a bin.

(approximately 200 m × 200 m). Then we calibrate these values to the mean values of
R(0) and G of Facies III calculated from the well-log data. The calibrated seismic data
are shown in the lower right subplot.

The smaller scatter in R(0) and G in the seismic data compared with the well-log data
is expected because of the scale difference. We assume that the well-log-derived pdfs
can still be used to predict facies and pore fluids from the seismic data. This assumption
implies that all the facies present beneath the Top Heimdal horizon are also present in
the global well-log training data. In order to compare the well-log R(0) and G with the
calibrated R(0) and G from the seismic data, we superimpose the estimated well-log
pdf (lower left subplot in Figure 5.17) on the seismic data. The calibrated values match
the well-log pdf very nicely.

The next step is to use the well-log-derived AVO pdfs to predict facies and pore fluids
from the seismic data. To get a general picture of the reservoir, we first distinguish only
between oil versus brine, and sands versus shales. Hence, we group similar facies
together. Facies IIa with oil, IIb with oil and IIc with oil are lumped into a facies group
referred to as oil sands. Similarly, we have created a brine sands group. Facies III, IV
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Figure 5.18 Lithofacies prediction beneath a seismic horizon with 3D topography (left) and in map
view (right).

Figure 5.19 Left, most likely facies derived from pdfs; right, oil-sand probability.

and V have been lumped into a facies group of shales. First, we apply the Mahalanobis
distance method to calculate the most likely facies group and pore fluid. The results are
shown in Figure 5.18 (left: 3D topography; right: map view). We predict oil-saturated
sands in the lobe area where the lobe is structurally highest. The rest of the lobe area
is most likely water-saturated according to the prediction. Furthermore, we predict
oil-filled sands in the upper feeder-channel. Outside the submarine fan, mainly shale
is predicted to be the most likely facies. The exception is an area just north of the
feeder-channel where oil and brine sands are predicted. If this prediction is correct, it
could imply the presence of some overbank sands.

The overall prediction is reasonable in terms of facies and pore-fluid distribution.
The sands are mainly predicted in the channel and lobe areas while oil is predicted in
the structurally highest areas of the sand deposits.

The next step is to use nonparametric pdfs to calculate the conditional posterior
probabilities of the various facies groups and pore fluids. Figure 5.19 shows two map
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views of the Top Heimdal horizon calculated from the well-log-derived pdfs, one with
the nonparametric facies classification results and one with the estimated probability
of oil sands given the observed R(0) and G:

P{oil | R(0), G} (5.1)

The map to the left shows the most likely facies and pore fluid. The results are very
similar to the results from the linear discriminant method (see Figure 5.18). The oil
sands are predicted mainly in the feeder-channel and in the central part of the lobe. The
map to the right shows the probability of oil sands, and in accordance with the map of
most likely facies, we recognize relatively high probabilities in the central lobe, in the
upper feeder-channel and in the possible splay deposits north of the feeder-channel.
Outside the turbidite system, there are very low probabilities of oil sands.

Plate 5.20 shows the probability of oil sands (upper left), brine sands (upper right),
brine and oil sands together (lower left), and shales (lower right). The high probabilities
of oil and brine sands together (sand probability map) nicely depict the depositional
pattern of a submarine fan. Also note that there are relatively high probabilities of brine
sands even where the most likely sands were predicted to be oil sands. This stems
from the fact that brine sands and oil sands have a large overlap in terms of R(0) and
G (see Figure 5.11). The low probabilities of shales in the lower right map depict the
depositional pattern of a submarine fan as shales are found outside the margins of the
system and in interchannel areas of the lobe complex.

We want to analyze more detailed probability maps of individual facies to gain a better
sedimentologic understanding of the studied turbidite system. Plate 5.21 shows prob-
ability maps of the different facies. Since there are nine facies including oil-saturated
facies, probabilities larger than 0.11 indicate more likely occurrence than just by random
chance. The upper three subplots show the three different subfacies of sand saturated
with oil. We observe relatively high probabilities of Facies IIa with oil predominantly
in the upper feeder-channel and on the lobe structure, while Facies IIb with oil has
relatively low probabilities over the whole system. Facies IIc with oil has relatively
high probabilities in scattered areas of the lobe area. Facies IIa with brine shows a very
similar probability map to the same facies with oil, with relatively high probabilities
in the feeder-channel and proximal parts of the lobe. This could be explained by the
fact that Facies IIa is a stiff rock type, resulting in a large overlap between the pdfs of
oil and brine (Figure 5.10). Facies IIb with brine shows relatively large probabilities in
the southern lobe area, north of the feeder-channel and in a small area just south of the
feeder-channel. The two last occurrence probabilities could reflect overbank or splay
sands from the feeder-channel. Facies IIc is found to have relatively high probabilities
over a large area including the feeder-channel, lobe structure and an area north of the
feeder-channel. Facies III shows relatively large probabilities along the feeder-channel
and in the distal portions of the lobe. This is in accordance with conceptual models
that interbedded sand–shales and shaly sands occur in marginal areas of a turbidite
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Table 5.1 Blind-test results at well locations

P{sand} (only thick-bedded)
P{shale} (includes

Facies (well-log interbedded Facies Fluid
Well observation) P{oil} P{brine} P{total} sand–shales) correct? correct?

2 Thick-bedded oil sands (II) 0.25 0.44 0.69 0.31 Yes No
3 Interbedded sand–shale (III) 0.1 0.31 0.41 0.59 Yes –
4 Thick-bedded brine 0.16 0.38 0.54 0.46 Yes Yes

sands (II) (thin oil cap)
5 Silty shale (IV) 0.09 0.23 0.32 0.68 Yes –

P{x} indicates the probability that x occurs at a given well location. Shales occur only as brine-saturated, hence
we include the dash symbol in the fluid prediction column for Well 3 and Well 5.

system, either as levee deposits associated with channels, or in distal portions of the
lobe (see Section 2.5.2). Finally, both Facies IV and V show high probabilities outside
the turbidite system.

Blind test at well locations
Four wells penetrate the turbidite system inside the area of seismic inversion (see
Figures 5.18 and 5.19). The calibration was done over an area around Well 3, with the
mean value of Facies III. The exact R(0) and G values estimated at Well 3 are also
classified into the correct Facies III (see Table 5.1). Based on the calibration at Well 3,
the three other wells were blind-tested in terms of facies and pore fluids. The results are
listed in Table 5.1. Starting from the left, Well 5 encountered only shales at the target
level, and the most likely lithofacies according to the seismic prediction is shale. Well 4
is located within lobe sands, but mostly brine-saturated (the oil column is about 10 m
out of a total ∼45 m of reservoir sands). In contrast, the most likely facies is Facies III,
interbedded sand–shales. However, the total probability of thick-bedded sands (oil and
brine) is 0.54, which is higher than the probability of shaly facies (0.46). Well 2 (the
type-well), located structurally higher on the lobe, encountered 35 m of oil sands. We
predict most likely brine sands, but the well is just on the fringe of an area of predicted
most likely oil sands.

5.1.5 Discussion

We have shown how we can use statistical rock physics to translate 3D AVO inversion
results into lithofacies and pore-fluid probability maps. In our case we have successfully
mapped the most likely distribution of good-quality reservoir sands in a North Sea
turbidite system and estimated the probability of finding oil within these sands. These
maps are ultimate products in the process of geologically characterizing reservoirs
from seismic data. They can be used as inputs for various decision and risk analyses
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during exploration and development, or as constraints for reservoir modeling and flow
simulation during production and reservoir forecasting.

Although we have obtained a successful characterization of the turbidite system, it
is important to be aware of certain limitations of the methodology proposed in this
study. An important factor to be considered is that all the facies in the training data
are at a well-log scale, while the prediction is at the seismic scale. This issue could
be handled by creating physically upscaled pdfs from the well logs using effective-
medium theory, especially for the interbedded sand–shales (Facies III). An upscaling of
thin-bedded sequences using effective-medium theory (e.g., Backus, 1962) is needed
if the intercalating layers have strong contrasts in elastic properties. However, the
interbedded sand–shales in the studied turbidite system consist of thin-bedded sands
that have weak contrasts in seismic properties compared with the intercalating shales (cf.
small range in VP within the Facies III cluster in Figure 3.6). In core observations made of
Facies III in Well 2, the thin-bedded sands seemed to have a relatively high clay content,
while the thin-bedded shales seemed to have a relatively high quartz content (i.e., silt).
From Marion’s (1992) study of sand–shale mixtures, we know that shaly sands and
silty/sandy shales can have similar elastic properties. We therefore do not expect the
thin-bed scale effect on rock physics properties to be important for Facies III, nor for
the more thick-bedded facies observed in this turbidite system. Another aspect of scale
that can cause problems to AVO analysis is tuning effects (see Chapter 4). The AVO
inversions employed in this study assume no tuning. As a result the parameter estimates
can be wrong in areas where tuning occurs. Consequently, classification and prediction
of facies and pore fluids can also be wrong. This was manifested in the synthetic
modeling and prediction case (Section 4.4.1). The training pdfs could be recreated to
include the uncertainties caused by tuning.

The AVO inversion procedure itself is also a source of error (Chapter 4). We use
a linear approximation of the Zoeppritz equations in our calculation of R(0) and G.
This approximation is known to be accurate for angles of incidences up to approx-
imately 30◦ (Shuey, 1985). The data inverted in our case do not exceed this range,
so the approximation is valid. The linear AVO inversion is furthermore sensitive to
uncharacteristic amplitudes caused by noise (including multiples) or processing and
acquisition effects (Chapter 4). A few outlying values present in the pre-stack ampli-
tudes are enough to cause erroneous estimates of R(0) and G. The 3D AVO inversion
software used in this study, as opposed to the 2D AVO inversion software, applies a
robust estimation technique (Walden, 1991) to limit the damage of outlying ampli-
tudes. Other potential problems in the AVO methodology used here include errors in
the moveout correction, cap-rock anisotropy, and focusing and defocusing of wave
energy caused by lateral velocity variations in the overburden (see Chapter 4). We have
neglected the effect of anisotropy in this study. In particular, some of the shales may
be transverse isotropic. We also suspect defocusing and focusing of wave energy to
play a role in the Glitne area, based on overburden observations of shale tectonics and
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deformation at ∼1 km depth. The rugged traveltime map in Figure 5.15 can reflect
lateral velocity fluctuations related to the shale tectonics. If overburden variation is sta-
tistically homogeneous over the area, however, the calibration of the inverted R(0) and
G with the well data partly accounts for this uncertainty. Local overburden effects on the
other hand (e.g., major faults, shale diapirs, gas pockets), can cause nonlinear moveouts
and abrupt changes in the offset-dependent reflectivity. In this case, the straight-line
approximation of Shuey (1985) breaks down, and the estimation of R(0) and G will be
meaningless.

The pick of seismic horizon also represents an uncertainty. We do not know for
sure if the seismic interpretation of the Top Heimdal horizon in our 3D case is correct
everywhere. If the horizon is incorrectly picked, the estimated AVO data we use are not
representative of our reservoir. As we have observed in the 2D cross-section intersecting
Well 2, polarity reversals occur along the Top Heimdal horizon. Picking these can be a
very difficult task. In fact the 3D interpretation of the Top Heimdal horizon, conducted
prior to this study, was based on the belief that the Heimdal sands always have much
higher impedance than overlying shales, resulting in a consistent positive reflector.
This study shows that this is not the case, as variation in sand texture has a dramatic
impact on the seismic response. However, it was an impossible task to double-check
the 3D interpretation at every CDP gather prior to the 3D inversion. Therefore, the
predictions from the 3D data can be affected by a subjectively picked horizon that
does not necessarily coincide with the true top reservoir horizon. In particular, some
of the unconsolidated sands saturated with oil, seen on the 2D data as negative stack
amplitudes (Figure 5.13), are not detected in the 3D case (Figure 5.16).

Another important issue is whether the well-log training data are representative of the
statistics of the entire reservoir. The well-log pdfs are calculated from vertically stacked
facies, whereas the predicted facies are located laterally beside each other. Based on
Walther’s law of facies, we believe that the different facies observed vertically stacked
in the wells are also present laterally over the large area where 3D seismic inversion is
done. However, there may be facies observed in the wells that are not present beneath the
Top Heimdal horizon. The opposite could also occur, with facies we have not observed
in the wells being present beneath the Top Heimdal horizon.

Moreover, it is important to note that in the lithofacies prediction from AVO param-
eters we assume the cap-rock to be Facies IV (silty shale), which is not necessarily
true everywhere. Nonetheless, well-log observations indicate that the Top Heimdal is
consistently capped by a silty shale, so the assumption is reasonable. Other cap-rocks
could be included in the prediction, but this could on the other hand cause more ambi-
guities in the results. We are, however, including the variability within silty shales in
the calculations of the pdfs.

Finally, regarding the spatial distribution of facies, one expansion on this study has
been to include spatial statistics in the facies prediction (Eidsvik et al., 2002). This
technique implies a better control on the lateral facies transitions during the prediction.



277 5.1 Case 1: 3D AVO

With all these potential limitations and uncertainties that have not been considered
in this case study, we still feel that including the uncertainties related to variability in
facies and rock physics properties strengthens the validity of the seismic reservoir char-
acterization of the Glitne field. Also, by linking the rock physics properties and seismic
signatures to sedimentary facies, we can determine whether our results are geologically
plausible. In a complete assessment of the uncertainties of reservoir characterization
from seismic data, however, stochastic models of all the other factors mentioned above
should be included.

The blind testing of wells (Table 5.1) represents a means of validating our methodol-
ogy. The correct facies were predicted in all the wells, whereas pore fluid was incorrect
in one well. The match between seismic predictions and well-log observations is not
perfect, but that is not expected. Boreholes are “pinpoints” into the underground, while
seismic data contain information from a relatively large area given by the Fresnel zone
size. This is why we calibrated the seismic data from an area around Well 3. In addition,
high-frequency random noise is present in the well-log data, which makes the compari-
son between seismic and well-log data even more difficult. Nevertheless, the blind-test
results indicate that the results in this case study are reliable.

5.1.6 Conclusions

� We have estimated uncertainties and mapped probabilities of occurrence of different
lithofacies and pore fluids from AVO attributes in a North Sea turbidite system (the
Glitne field).

� We have analyzed real CDP gathers at several well locations, and successfully pre-
dicted the seismic lithofacies indicated by the well-log data. This demonstrates the
feasibility of using AVO analysis to predict seismic lithofacies.

� Uncertainties in AVO response related to the inherent natural variability of each
seismic lithofacies have been quantified using a Monte Carlo technique. The resulting
AVO probability plots show that there are overlaps between different facies, but the
most likely responses for each facies are nicely separated.

� Bivariate probability plots of zero-offset reflectivity (R(0)) versus AVO gradient (G)
are created and calibrated to both 2D and 3D AVO attributes. Combining the R(0)
and G values estimated from the seismic data with the bivariate probability density
functions (pdfs) estimated from well logs, we have used both linear discriminant
analysis and Bayesian classification to predict lithofacies and pore fluids from the
seismic amplitudes. The linear discriminant analysis is tested out on a synthetic
seismic section, and the predicted facies match the “true” facies model very well,
except in a zone where wavelet tuning occurs.

� For the 3D real data, the final results are spatial maps of the most likely facies and pore
fluids, and their occurrence probabilities. These maps show that the studied turbidite
system is a point-sourced submarine fan in which thick-bedded clean sands are present
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in the feeder-channel and in the lobe channels, while interbedded sand–shale facies
and shaly sands are found in interchannel and marginal areas of the system. Shales
are located outside the margins of the turbidite fan. Oil is most likely to be present in
the central lobe channel, and in parts of the feeder-channel.

5.2 Case 2: Mapping lithofacies and pore-fluid probabilities
in a North Sea reservoir using seismic impedance inversions
and statistical rock physics

In this case study (Mukerji et al., 2001) we show how statistical rock physics techniques
combined with seismic impedance inversions can be used to classify reservoir litholo-
gies and pore fluids. One of the innovations at that time was to use both the normal-
incidence acoustic impedance (ρVP) and the so-called “elastic” impedance attributes.
As described in Chapter 4, the elastic impedance (related to VP/VS ratio) incorporates
far-offset data, but at the same time can be practically obtained using normal-incidence
inversion algorithms. The methods were applied to a North Sea turbidite system (the
same field as for case study 1, the Glitne field). We incorporated well-log measure-
ments with calibration from core data to estimate the near- and far-offset reflectivity
and impedance attributes. Multivariate probability distributions were estimated from
the data to identify the attribute clusters and their separability for different facies and
fluid saturations. A training data set was set up using Monte Carlo simulations based on
the well-log-derived probability distributions. Fluid substitution by Gassmann’s equa-
tion was used to extend the training data, thus accounting for pore-fluid conditions not
encountered in the well.

Seismic inversion of near-offset and far-offset stacks gave us two 3D cubes of
impedance attributes in the interwell region. The near-offset stack approximates a
zero-offset section, giving an estimate of the normal-incidence acoustic impedance
(ρV). The far-offset stack gives an estimate of a VP/VS-related elastic impedance
attribute that is equivalent to the acoustic impedance for non-normal incidence. These
impedance attributes obtained from seismic inversion were then used with the training
pdfs to predict the probability of occurrence of the different lithofacies in the inter-
well region. Statistical classification techniques (such as those described in Chapter 3)
and geostatistical indicator simulations were applied to the 3D seismic data cube. A
Markov–Bayes technique was used to update the probabilities obtained from the seismic
data by taking into account the spatial correlation as estimated from the facies indicator
variograms. The final results are spatial 3D maps of not only the most likely facies
and pore fluids, but also their occurrence probabilities. A key ingredient in this case
study was the exploitation of physically based seismic-to-reservoir property transforms
optimally combined with statistical techniques.
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The ultimate goal of this study was to obtain reliable quantitative estimates, with their
uncertainties, for relevant reservoir rock and fluid parameters in the area of exploration.
The four major components of our study are as follows:
(1) Well-log analysis to define different seismic lithofacies, rock physics analysis

including fluid effects and shear-velocity estimation in wells without shear logs, and
log-based analysis of near- and far-offset seismic attributes for different lithofacies
and pore fluids.

(2) Seismic inversion of near- and far-offset partial stacks to obtain 3D cubes of near-
and far-offset impedances.

(3) Nonparametric multivariate probability density estimation of facies and near- and
far-offset seismic impedances from wells and co-located seismic inversion to obtain
the training pdfs.

(4) Statistical and geostatistical classification of the 3D seismic impedance cubes to
predict most likely facies and pore fluids, and obtain the spatial distribution of
probabilities of occurrence for different lithofacies and pore fluids.

5.2.1 Defining lithofacies from logs

The geological setting is a Tertiary turbidite system in the North Sea. Deep-water clastic
systems and associated turbidite reservoirs are often characterized by very complex,
heterogeneous sand distributions. Conventional seismic reservoir characterization may
be very uncertain in these depositional environments. Linking 3D seismic imagery
with rock physics properties of different facies and pore fluids can provide a powerful
strategy for improved quantitative interpretation of seismic data. The North Sea turbidite
system was covered by a marine 3D seismic survey which was specially processed for
amplitude interpretation. As shown in Plate 5.22, an amplitude anomaly interpreted
as a channel-fan submarine system was identified in an early stage, before this study.
What does this amplitude anomaly mean quantitatively in terms of lithology and pore
fluids? How can we link the 3D seismic imagery with rock and fluid properties of the
different facies?

The well information is sparse within the coverage (approximately 300 km2) of the
3D survey. The well data had been subjected to an extensive petrophysical analysis
prior to this study, and the results from those analyses were made available to us. Of
the five wells drilled in the area of 3D seismic coverage, only one had a shear-wave
log. As shear information can be crucial for discriminating lithologic and pore-fluid
ambiguities, a calibration well outside the study area was included in the analysis. This
well had shear-wave data in the Tertiary interval, and was interpreted to have roughly
the same depositional environment as the other wells within the study area. Emphasis
was on careful analysis of the well data for calibration and use of the seismic data for
lithofacies characterization in the interwell region.
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We first defined seismic lithofacies representing seismic-scale sedimentary units with
distinguishable characteristic petrophysical properties such as clay content, bedding
configuration (massive or interbedded), petrography (grain size, cementation, packing,
clay location), and seismic properties (P-wave velocity, S-wave velocity, and density).
(See Sections 2.4.2 and 2.5.1.) This was the basis for quantitative facies and fluid
estimation from seismic data. Seismic scale here refers to units that can be observed
and mapped from seismic data. This depends on vertical and lateral seismic resolution,
which is governed by wavelength, Fresnel zone radius and depth to target. In this study
the wavelength was about 60 m and the thickness of the seismic lithofacies units about
10 to 15 m.

A key well was identified with a complete suite of good-quality logs that sampled
all of the important lithologies in the turbidite system. Well logs play an important role
in linking rock parameters to the seismic data. Figure 5.23 shows an example of some
of the important logs from the key well. Reasons for choosing this well as the key
well are that shear-wave information is available, the important facies of the turbidite
system are all encountered in the well, and it is a new well with good-quality modern
logs. The total porosity is relatively constant, and there is a marked increase in acoustic
impedance at about 2225 m (depths indicated from mean sea level) (Figure 5.23).
Cross-plots of acoustic impedance vs. VP/VS ratio color-coded to volume shale and
porosity (Plate 5.24) provide one way to visualize the lithologic information present
in the data. Plate 5.24 shows that the porosity is relatively constant within this depth
interval (2000–2400 m) and the shale has both a lower acoustic impedance and higher
VP/VS ratio than the sands.

Histograms of acoustic impedance and VP/VS ratio for sandy (volume shale Vsh <

0.35) and shaly (volume shale Vsh > 0.35) facies are presented in Figure 5.25. This plot
helps to show the differences and overlap in the seismic parameters of the two main
groups, and also reveals the possible existence of several subgroups within each main
group of lithology. The sandy facies shows two subgroups from the acoustic impedance
plot. Two shaly subgroups are clearly distinguishable from the VP/VS plot. In this case
it is the tuffaceous Balder Formation which has the lower VP/VS ratio.

Based on the logs, and some core and thin section descriptions, five major facies
were identified (see also case study 1). Facies II–V represent a gradual transition
from clean sandstones to pure shale (II: thick-bedded sands; III: interbedded sand–
shale; IV: silty shales; V: pure shales). Gravels and conglomerates were included
as Facies I. Four subfacies of Facies II (thick-bedded sands) were introduced to
account for important seismic and petrographic variations within the thick-bedded
sands. There is a gradual increase in clay content from Facies IIa to IId, and the
cleanest sands (IIa) are slightly cemented. Brine sands and oil sands were grouped
as separate categories. The gamma-ray log values and patterns, and velocity and den-
sity logs, were used primarily to determine the different facies with contrasting seismic
properties.
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Figure 5.23 Porosity, volume shale (light curve), density, VP and VS logs from one of the key wells
used in this study.

5.2.2 Pore-fluid effects

An important complicating factor is the presence of flushed zones in hydrocarbon
columns at the wells. Because of the water-based drilling fluid, the well logs could be
measuring water-saturated rocks from the mud-filtrate invaded zone, instead of mea-
suring the oil-saturated rocks. This was carefully investigated using deep-sounding
and shallow-sounding resistivity and Gassmann modeling based on dry ultrasonic data
with actual mud-filtrate and reservoir hydrocarbon properties (Avseth, 2000; see also
Figures 5.5 and 5.6 in case study 1). The fluid substitution showed that log values in the
oil zone were actually very close to the Gassmann estimated water-saturated values.
Realistic reservoir fluid properties (oil GOR 64; oil gravity 32 API; oil den-
sity 0.78 g/cm3; oil P-wave velocity 1070 m/s; mud-filtrate density 1.09 gm/cm3;
mud-filtrate P-wave velocity 1700 m/s) were used in the fluid-substitution calcula-
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Figure 5.25 Histograms of P-wave acoustic impedance and VP/VS ratio grouped as sandy
(Vsh < 0.35) and shaly (Vsh > 0.35) facies. It can be seen that there are several subgroups within
both sands and shales.

tion using Gassmann’s equations (Chapter 1). Comparison of log and core porosities,
and empirical VP/VS relations, also confirmed that the sonic velocities were measures of
the water-saturated rocks and not oil-saturated rocks. Using the log data alone to build
our calibration pdfs would not capture the properties of the oil-saturated facies. A key
step therefore was to extend the log-derived training data, using Gassmann’s equations,
to derive probability distributions incorporating velocity and impedance attributes for
fluid saturations not encountered in the well. The augmented training data were then
used to build up the calibration pdfs.
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5.2.3 Acoustic and elastic impedance

Ambiguities in lithologic and fluid identification based only on normal-incidence
impedance (ρV) can often be effectively removed by adding information about VP/VS-
related attributes. This provides the incentive for AVO analysis. Synthetic seismic
modeling has shown that sometimes it can be difficult to use the seismic amplitudes
quantitatively because of practicalities of picking and resolution problems. Another
approach to lithofacies identification is based on seismic impedance inversion. Usually
this is applied to zero-offset or near-offset sections to estimate the acoustic impedance
Ia = ρV, and therefore does not contain VP/VS information. Here we used a pseudo-
impedance attribute that is a far-offset equivalent of the more conventional zero-offset
impedance. The far-offset impedance attribute is sometimes variously termed the angle
impedance, or elastic impedance, as it contains information about the VP/VS ratio,
and depends on the angle of incidence at the target (Mukerji et al., 1998b; Connolly,
1999). This approach allows us to use the same algorithm for inversion of the far-offset
stack as for the near-offset stack, and get an elastic impedance cube. The inversion for
this pseudo-impedance parameter is therefore economical and simple, with no addi-
tional software required. The mathematical details about the definition of the far-offset
impedance are described in Chapter 4 and in Mukerji et al. (1998b) and Connolly
(1999). In brief, the elastic impedance Ie can be expressed in terms of layer parameters
available from logs as:

Ie(θ ) = (
V 1+tan2 θ

P

)[
ρ1−4(VS/VP)2 sin2 θ

][
V −8(VS/VP)2 sin2 θ

S

]
(5.2)

There are other variations of this expression (not used in this study) depending on the
form of the approximation used for the angle-dependent reflectivity in deriving
the far-offset impedance. Equation (5.2) is based on the Aki–Richards approximation
to the full Zoeppritz equations (Aki and Richards, 1980), and is therefore valid for small
angles (<30◦).

Figure 5.26 shows the seismic lithofacies defined from the wells and by fluid substi-
tution in an Ie–Ia cross-plot. These data points are from a depth around 2 km. Facies that
overlap in acoustic impedance can be discriminated by their elastic impedance and vice
versa. Modeling of far-offset seismic signatures and computation of Ie from logs require
knowledge of VS. Since shear-wave velocity was not available in all wells, we first esti-
mated VS (where unavailable) using VP–VS relations calibrated from wells where shear
logs were available. The VS estimation sub-task involved testing various models for
predicting VS from P-wave velocity, porosity, and shale volume (Jørstad et al., 1999).
As described in Jørstad et al. (1999), the VS prediction error was about 10%. This
uncertainty was included in the Monte Carlo simulations for estimating the pdfs of the
training data at the wells.
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Figure 5.26 Cross-plot of elastic impedance at 30o versus acoustic impedance for different
lithofacies. Light markers indicate oil-saturated facies. Facies that overlap in acoustic impedance
can be discriminated by their elastic impedance and vice versa.

5.2.4 Seismic inversions

The seismic data used in this study are near-offset and far-offset partial stacks from a
marine 3D survey covering approximately 300 km2 of the North Sea. The survey was
processed for true amplitude recovery. The maximum fold is 30, which corresponds to
a maximum source–receiver offset of approximately 2500 m. The near-offset stack of
10 traces has an average incidence angle of 8◦ at the target level, while the far-offset
stack of the 10 last traces in each CMP gather has an average incidence angle of 26◦.

The post-stack inversion was performed using a commercially available package.
The inversion requires as inputs information about the seismic wavelet, the geometric
structure from structural seismic interpretation, and a prior model based on well-log
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impedance. The same method (generalized least-square inversion) is used for both the
near- and far-offset stacks, except that the calculated elastic impedance logs for the
proper incidence angle were used as the prior model for the far-offset inversions. In
other words, for the near-offset (approximately normal incidence) inversion the “usual”
sonic VP and density logs were used as inputs to build the prior model. But for the far-
offset inversion, we used the VP log and a pseudo-density log defined as ρ = Ie(θ )/VP,
so that the product of VP and the pseudo-density is the desired elastic impedance. Many
of the commercial software packages that are geared to handle far-offset impedance
inversions now do the calculations automatically, freeing the user from having to define
a pseudo-density log.

We used two independent methods to obtain a reliable wavelet estimate. Different
wavelets have to be estimated for the near- and far-offset inversions. The first method,
provided in the software package, is based on the amplitude spectrum of a selected
time window, and a scan of the phases to pick one that best matches synthetic and true
seismic traces. Another independent estimate, outside the package, was obtained from
the Akaike information criterion (AIC) estimate (e.g. Priestley, 1983) of the filter that
best minimizes the error between synthetic and real traces. Both methods indicated that
the actual wavelet at the target level was mixed phase with a time shift of ∼20 ms.
The prior model was created by extrapolation of well data along the defined structural
horizons. We used two well-defined horizons for this purpose: the Top Balder and
Top Heimdal horizons. The inversion itself is a 1D trace-by-trace inversion, based on
convolution with the wavelet, followed by a minimization of the squared error between
the synthetic seismogram and the observed seismogram. A different wavelet is used for
the near- and far-offset inversions. Plate 5.27 shows a subset of the near- and far-offset
impedance cubes (i.e., acoustic and elastic impedance) from the inversions.

5.2.5 Statistical classification and simulation

The impedance attribute cubes were used to estimate the most likely facies, and the
probability of occurrence of each facies at every grid point within the cube. We used
two different statistical approaches (see Chapter 3): a quadratic discriminant analysis
(e.g. Fukunaga, 1990) based on the Mahalanobis distance, and a Bayes classification
and probability estimate based on the complete pdfs for each facies calibrated from the
training data. Finally, the probabilities estimated from the seismic classification were
used in a geostatistical indicator simulation, thus incorporating the spatial correlation
of the facies. The spatial correlation was modeled by variograms estimated from the
log data. By simulating multiple realizations, the conditional distributions of the facies
were obtained. In general, all three methods gave similar probability maps for the
different facies. This is because there was sparse well control to strongly condition
the geostatistical simulations, and the effects of the seismic classification dominated
the results.
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Figure 5.28 Acoustic and elastic impedances from wells and inversion, and facies classification at
the well. The first two panels from the left compare the acoustic and elastic impedance traces from
the inversion with the same attributes computed from the log values. The third panel compares the
quadratic discriminant classification of the facies from the inverted traces with the known facies at
the well. The fourth panel displays the normalized Mahalanobis distance (see text) as a measure of
the probability for each facies.

We compared the log values and the inverted acoustic and elastic impedance traces
co-located with the wells as a check for consistency. The co-located impedance traces
were then used to classify the known facies at the wells. This was done with the
standard Mahalanobis distance method, which takes into consideration only the means
and covariances of the training pdfs. Discriminant analysis is described in Chapter 3,
as well as in many standard texts on statistical pattern classification (e.g. Duda and
Hart, 1973; Fukunaga, 1990; Doveton, 1994). The attribute space in this case is two-
dimensional since we have two attributes – near- and far-offset seismic impedances.
For every unknown point, its Mahalanobis distance from each class is computed, and
the point is assigned to the class to which it has the smallest Mahalanobis distance.

The inverted seismic impedance traces were calibrated and cross-validated to the well
logs. Figure 5.28 shows an example comparing the inverted acoustic and elastic traces
with the log values. Panel 3 (from left) in Figure 5.28 shows the facies classification
from the inverted traces compared with the known facies at the well. The fourth panel
shows the normalized Mahalanobis distance which is a measure of the probability of
each facies.
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Figure 5.29 Facies classification in one well from calibration data in two other wells. The inverted
near- and far-offset impedance traces at the well were classified into facies using discriminant
analysis using only training data from two other wells. Facies 1 and 2 are shaly facies, 3 to 5 are
brine sands and 6 to 8 are the corresponding oil sands. The average classification success rate in
this well increased from 49% (using acoustic impedance alone) to 73% (using both acoustic and
elastic impedance).

Another check using the same technique was to classify the facies in one well based
on training data and facies definitions in a different well. This is demonstrated in
Figure 5.29 where the inverted impedances are classified into facies and compared
with the known facies at the well using only training data from two other wells. The
classification follows closely the defined facies in the well and picks out the oil-filled
sands (around time 2050). The oil-sand facies were not actually present in the two
other calibration wells but were added to the training data by fluid substitution of the
brine-sand facies. This shows the value of extending the training data using physical
models. The average classification success rate was about 73% in this well when using
both acoustic impedance and elastic impedance for the classification. Using acoustic



288 Case studies

impedance alone, the average classification success was 49%. After validation of the
inversions at the well locations we were able to go ahead and classify the seismic
inversion results. Each sample in the inverted near- and far-stack sub-cube around
the reservoir is classified based on the nearest Mahalanobis distance. Example vertical
sections from the discriminant analysis are shown in Plate 5.30. Facies coded 1 and 2 are
shaly facies, facies 3–5 are water-saturated sands, and facies 6–8 are the corresponding
oil sands.

After discriminant classification, we used the complete pdfs to estimate P(facies |
Ia, Ie), the conditional probability of occurrence of each facies at each voxel in the 3D
cube, given the inverted acoustic and elastic impedances at that voxel. The training pdfs,
P(Ia, Ie | facies), were obtained from the inverted near- and far-offset traces located at
the wells and the known facies at the wells. This is a distribution with two continuous
variables (Ia and Ie) for each categorical variable (facies type). The distribution was
estimated nonparametrically without assuming any specific form (e.g. Gaussian) for
the pdf (Silverman, 1986). Similar nonparametric density estimation techniques were
used by Gastaldi et al. (1998) to predict reservoir thickness. The choice of size for
the smoothing kernel in our pdf estimation was done by dividing the training data into
two subsets, and cross-validating with different smoothing kernel sizes. Obviously, too
large a smoothing window smears out the distinction between different facies giving
poor validation results, while too small a window makes the pdf estimate very specific
to the training subset, with poor ability to generalize to the validation subset. For Bayes
classification, the choice of the smoothing window is not too critical. The decision
boundary does not change too much with different choices of window. However, esti-
mates of the classification error are more sensitive to choice of window. Figure 5.31
shows a surface plot of the nonparametric calibration pdfs estimated from the training
data to be used in the seismic classification. As mentioned earlier, facies codes 1 and
2 represent shales, 3 to 5 are brine sands, while 6 to 8 are the corresponding oil sands
obtained by fluid substitution of facies 3 to 5.

All the statistical classifications and geostatistical simulations (described below) were
first carried out on a pilot subset of the cube (251 × 100 × 100 ∼ 2.5 million cells)
before a final production run for the whole cube (475 × 250 × 100 ∼ 11.9 million
cells). Plate 5.32 displays time slices of the estimated conditional probability maps
for three different facies groups, while Plate 5.33 shows the spatial distribution of iso-
probability surfaces (surface of 80% probability) for shales and oil sands. The surfaces in
Plate 5.33 represent probabilities of occurrence of sands and shales, and are not the
sand and shale bodies themselves. For example, at the location of the iso-probability
surface for oil sands there still exists a 20% probability that it is not oil sand.

To take into account the spatial correlation of the different facies we used geosta-
tistical techniques of indicator kriging and simulation. We describe below one possi-
ble method for geostatistical simulation incorporating seismic information and well
data. Certainly this is not the only one. Since the geostatistical simulations take into
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Figure 5.31 Surface plot of Ia–Ie bivariate conditional probability distribution functions for
different facies. Facies coded 1 and 2 represent shales, 3 to 5 are brine sands, while 6 to 8 are the
corresponding oil sands obtained by fluid substitution of facies 3 to 5.

account the small-scale variability seen in the well logs, they provide a statistical esti-
mate of small-scale spatial heterogeneity beyond the resolution of the seismic data.
In the indicator formalism, the known facies at the wells are coded as binary [0 1]
indicator random variables. These are taken as “hard data.” In the interwell region,
the probabilities (between 0 and 1) obtained from the voxel-by-voxel classification
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Figure 5.34 Facies experimental variograms from well data and model fits. The range varies from
54 m (facies 2) to 458 m (facies 5).

of the seismic attributes are taken as “soft indicators.” The hard and soft indicator
data are then combined using indicator simulation to provide multiple realizations
of facies and fluid distributions in the reservoir. The first step in any geostatisti-
cal exercise is to model the spatial variability. We estimated the experimental vario-
grams of the different facies from well data. Since there was sparse lateral control,
we chose to use the horizontal spatial anisotropy ratio from the variograms of the
seismic impedance which had much more exhaustive lateral coverage. The experimen-
tal variograms were then fit to functional forms by least-square minimization. The
well variograms were modeled with a single spherical function (see e.g. Deutsch and
Journel, 1996) while the near- and far-offset impedance variograms were modeled with
a spherical function with two structures (Figures 5.34 and 5.35). The well variograms
for the different facies had a range from 54 m (facies code 2) to 458 m (facies code 5).
The experimental variogram for the acoustic impedance did not show a well-defined
range or sill (i.e., approximate flattening out for large values of spatial lag distances).
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Figure 5.35 Acoustic and elastic impedance variograms. The acoustic impedance variograms do not
show a well-defined sill. However, the variogram shapes look reasonable for the elastic impedance.

The variograms for the elastic impedance were well defined with a range of 60 m
in the vertical direction, 861 m in the cross-line direction and 392 m in the inline
direction.

After estimating and modeling the variograms, we carried out indicator kriging and
simulation. Indicator random function models are ideally suited for estimating and
simulating categorical variables. The Markov–Bayes indicator formalism (Deutsch
and Journel, 1996) was used to obtain the posterior conditional pdfs, incorporating
the spatial correlations of the facies as estimated from the facies indicator variograms.
This updates the prior pdf, P(facies | Ia, Ie) to give the posterior pdf, P(facies | Ia, Ie,
well indicator data). In the Markov–Bayes approach the covariance function of the
soft seismic indicator is taken to be proportional to the covariance function of hard
indicators obtained from well data. The proportionality constant is obtained from the
collocated hard and soft indicator data as described by Deutsch and Journel (1996).
The well coverage was very sparse, and the variogram model for facies indicators along
the horizontal direction had to be completed by borrowing the spatial anisotropy ratio
from variograms of the seismic impedance. Hence the updating by conditioning to hard
well indicator data did not change the seismically obtained prior pdfs significantly.
Plate 5.36 shows vertical sections of one stochastic realization of the simulated facies
from the sequential indicator simulation. Figure 5.37 displays the probability maps
(Markov–Bayes posterior probabilities) for shales, oil sands and brine sands as inlines
through the cube.
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Figure 5.37 Vertical sections along two inlines showing probability of shales (top), oil sands
(center), and brine sands (bottom). Light color indicates higher probability.

We now compare the predictions from this study with lithofacies actually observed in
a well drilled after this study was done. Plate 5.38 shows a depth-averaged probability
map of oil sands, with the location of the new well. The location of the well was inde-
pendent of the probability maps from our analysis. The comparison between predictions
from seismic inversion and classification with lithologies as interpreted from well-log
analysis is shown in Figure 5.39. The three sand intervals and the shale just above the
lowermost sand are all correctly predicted from the seismic data. In Figure 5.39 the
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Figure 5.39 Comparison between predictions of lithologies and pore fluids from seismic inversion
and classification (right) with lithologies and fluids as interpreted from well-log analysis (left). The
shading indicates different lithofacies and fluids: light gray for shales, stippled for oil sands, and
dark gray for brine sands. The horizontal widths of the bars on the right panel indicate the
probabilities of the corresponding facies as estimated from seismic data.

shading indicates different lithofacies and fluids: light gray for shales, stippled for oil
sands, and dark gray for brine sands. The horizontal widths of the bars on the right
panel indicate the probabilities of the corresponding facies as estimated from seismic
data. At the well location the middle sand was interpreted to be water-wet whereas
the seismic interpretation assigned a somewhat higher probability to its being oil sand
rather than brine sand (stippled bar slightly wider than dark gray bar at the middle
sand). The upper sand had a higher probability for oil than brine, which matches with
the observation at the well. The lower sand was also correctly predicted to be a brine
sand (dark gray bar wider than stippled bar).

5.2.6 Discussion and conclusions

This case study shows how near- and far-offset seismic impedance attributes can be
optimally combined with well-log petrophysical analysis, calibration, and statistical
rock physics to classify and map the occurrence probabilities of reservoir lithofacies
and fluids. Seismic impedance inversion in conjunction with lithofacies classification
is applied to a North Sea reservoir data set to map out the iso-probability surfaces
of shales, oil sands and brine sands within the reservoir. This strategy based on seis-
mic inversions can complement the more traditional approach to seismic reservoir
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characterization, based on AVO gradient and reflectivity (see case study 1). Synthetic
seismic modeling of AVO has shown that sometimes it can be difficult to use the
seismic amplitudes quantitatively because of practicalities of picking, phase changes,
resolution problems, and thin-layer effects. Lithofacies identification based on seis-
mic impedance inversions can alleviate some of these problems as it uses informa-
tion from the full waveform, not just the picked amplitudes. Impedance inversion is
also less affected by the problems of horizon interpretation which can be subjective
in heterogeneous reservoirs. Usually impedance inversion is applied to zero-offset or
near-offset sections to estimate the acoustic impedance ρV, and therefore does not
contain VP/VS information. Here we used a pseudo-impedance attribute, the elas-
tic impedance, which is a far-offset equivalent of the more conventional zero-offset
impedance. The elastic impedance contains information about the VP/VS ratio. This
approach allows us to use the same algorithm for inversion of the far-offset stack as
for the near-offset stack, and get an elastic impedance cube. The inversion for this
pseudo-impedance parameter is therefore economical and simple, with no additional
software required. A different inversion approach (not done in this case study) at con-
siderably more computational cost is pre-stack full-waveform impedance inversions.
This would give estimates of the P and S impedances (or P impedance and Poisson’s
ratio) directly, instead of the far-offset impedance-like attribute (elastic impedance)
used in this study. If the objective is to identify and discriminate lithofacies and pore
fluids, P and S impedances may not have higher classification success rate than the
near- and far-offset impedances. However, the different impedance inversions (full
pre-stack versus partial stacks) can have different errors associated with the estimated
impedances.

Well-log training data should be used before doing any inversions to estimate the
classification success rates for different attributes. This will help to decide whether
it is worthwhile to do far-offset inversions, and how much improvement would be
achieved by including far-offset impedance in the reservoir characterization strategy.
For example, in this study we used well data to do a validation test which showed that
the classification success rate with both near- and far-offset impedances was about 73%,
whereas it was only about 49% with near-offset attribute alone. This clearly indicated
that both attributes should be used.

We used discriminant analysis and Bayesian classification based on nonparamet-
ric pdfs. The advantage of the nonparametric approach is that, unlike a discriminant
approach, it uses more than just the means and covariances of the data, and can capture
nonlinear trends in the discriminant hyper-surface. The nonparametric Monte Carlo
approach avoids restrictive, and sometimes erroneous, assumptions about the form of
the underlying pdfs (e.g. Gaussianity). On the other hand, estimation of nonparametric
pdfs may become unreliable and computationally intensive in very high-dimensional
attribute spaces. For this study, where we have two attributes, the Bayesian nonpara-
metric approach is a powerful method to obtain not only the most likely facies, but also
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the probability of each facies given the observed near- and far-offset seismic impedance
attributes and assess the uncertainty of the interpretation.

As with any statistical analysis, there is always the issue of how representative of
the whole population are the training data obtained from a few wells. With sparse
data representativeness becomes problematic. In some situations it may be possible
to borrow the population statistics from other similar reservoirs that have more data.
Key wells have to be selected carefully so that they sample the important facies. One
important aspect of the analysis is to use rock physics models (such as Gassmann’s
equations) to augment the training data by estimating rock properties for conditions not
available in the initial training data (different pore-fluid saturations, different degrees
of cementation etc.). The extended training data and the pdfs derived using physical
models can capture more of the variability than the original data alone. This study lays
the framework for an efficient strategy to optimally combine statistical techniques with
physically based seismic-to-reservoir property transforms and apply them for reservoir
characterization.

5.3 Case 3: Seismic lithology prediction and reservoir delineation using
statistical AVO in the Grane field, North Sea

5.3.1 Introduction

In this case study we show how we can combine statistical rock physics, lithofacies inter-
pretation, and AVO analysis to discriminate between lithologies and thereby improve
detectability of hydrocarbons from seismic amplitudes in Grane field, North Sea. This
Late Paleocene turbidite oil field has been problematic because of complex sand dis-
tribution and nonreservoir seismic anomalies. Plate 5.40 is a 3D visualization of the
reservoir as delineated by conventional seismic interpretation. The reservoir is bounded
by the Top Heimdal and Base Heimdal horizons. The figure includes seismic grids of
the Top Chalk horizon and the overlying Base Balder Formation, which define the Late
Paleocene target interval. Also shown are five wells, three of which (1, 2, and 3) pene-
trate reservoir sands. Wells 4 and 5 targeted possible satellite sands. However, neither
encountered reservoir sands. This case study focuses on three 2D seismic lines that
intersect Wells 1, 3, and 4 (Plate 5.41).

The sands of interest represent the Paleocene Heimdal Formation. The study area,
on the eastern margin of the South Viking Graben, is complex in terms of lithology
variation. In addition to sands and shales, carbonates and volcanic ash-fall deposits
are relatively abundant. This is related to the particular setting and the local basin
topography during deposition. Grane field is on the eastern flank of the South Viking
Graben, near the Utsira High which had abundant limestone and marl deposition during
Late Cretaceous and Early Paleocene, as siliciclastic sedimentation rates were low. The
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Figure 5.42 Structural setting and sedimentary processes in the South Viking Graben during the
Paleocene, causing a great mix in lithologies in the Grane area, near the Utsira High.

complete Heimdal sequence is relatively thin (less than 100 m), and was deposited in
the Late Paleocene. During deposition of the sands, limestones, marls, and shales were
eroded and redeposited locally. The Paleocene also experienced repeated episodes of
volcanic eruptions and ash-flow deposition, associated with the opening of the Norwe-
gian Sea. Hence, the relatively thin Paleocene interval in the Grane area comprises a
great mix of lithologies (Figure 5.42).

Our approach to discriminating between these lithologies from seismic data includes
three major steps: facies analysis, rock physics analysis, and AVO analysis. The first
step involves facies analysis of cores and well logs, the second explores site-specific
rock physics trends in terms of lithology and diagenesis using well-log data, and the
third uses statistical AVO analysis to predict lithofacies from seismic data. Probability
density functions (pdfs) are derived for each facies in terms of zero-offset reflectivity
and AVO gradient. The R(0) and G estimated from real seismic data were used to predict
the most likely facies distribution along selected 2D seismic lines. In this methodology,
the rock physics analysis provides the critical link between facies interpretation and
AVO analysis. For more detailed description of the methodology, which is the same as
applied in case study 1, see Chapter 4.

5.3.2 Facies analysis

In Grane field, the following lithofacies can occur at seismic scale: clean sandstone,
pure shale, tuff, marl, and limestone. All are identified in Well 1 (Figure 5.43), based
on core observations available for the entire zone.

The reservoir sands in Well 1, representing Heimdal Formation, are very clean,
high-porosity sandstones saturated with water. The sands are embedded in relatively
pure shales that represent Lista Formation. Balder Formation, representing the top of
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Figure 5.43 Various log data and facies in Well 1, the type-well. Facies observations are from cores.
Key seismic horizons are noted.

the Paleocene interval, consists mainly of volcanic tuff or tuffaceous shales. Ekofisk
Formation, of Cretaceous age, represents the base of the target interval. It consists
of chalk deposits (limestones). The lower Paleocene Vaale Formation, directly over
Ekofisk, consists of marl deposits. These are mixed deposits of limestone and shale.

Plate 5.44 shows the seismic signatures (zero-phase wavelet, peak frequency 30 Hz)
along a 2D post-stack section intersecting Well 1. Here, we observe important seismic
horizons that correspond with lithostratigraphic and facies boundaries. Balder Forma-
tion shows a prominent red reflector, indicating a positive stack response. Balder is
about a wavelength thick; the black response below coincides with the base of the
tuffaceous unit. The reservoir sands (Heimdal Formation) are also identified. The top
reflector is prominent, but has an incoherent character. A black reflector that undulates
in shape, just beneath the Top Heimdal reflector, represents the base of the reservoir.
We also observe some subtle internal reflectors within the reservoir. The Base Heimdal
horizon interferes with the sidelobe of the peak wavelet representing Top Chalk, which
is the most prominent seismic reflector in the area. It shows a very strong positive
reflectivity.

Well 1 was used as a type-well for a multivariate statistical classification of seismic
lithofacies in other wells. The gamma-ray, density, and P-wave velocity logs were
used as training data. Shear-wave velocity was not used, because it was not available
in all the wells. Classification was done using quadratic discriminant analysis (see
Chapter 3). Because significant mud-filtrate invasion has been documented in other
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Figure 5.45 Facies classification results of Well 4. The well was drilled on a seismic anomaly at a
depth of 1722 m (see Figure 5.50), but no sand was encountered. Note the tuff unit near the depth of
this anomaly.

wells penetrating oil zones, we did not include oil-saturated facies in the classification of
well logs. We expanded our training data to include oil-saturated facies in the prediction
from seismic data, using the Gassmann equations (Chapter 1; see also the rock physics
analysis section below).

Figure 5.45 shows classification results for Well 4. No sands are identified in
the target zone. The Balder Formation tuff is identified around 1680 m and marl
deposits about 1770 m. We identified a zone of tuff facies in the target zone between
1725–1735 m, embedded in shaly facies. Core data from the well confirm the presence
of tuff at this level. The Intra-Paleocene tuff unit in Well 4 is of great interest, because
it could explain the observed seismic anomaly on which Well 4 was targeted. The well
that was drilled through the seismic anomaly, however, encountered no reservoir sands.
In the next sections, we investigate the possibility that tuff is responsible for the seismic
anomaly, and we will use statistical rock physics and AVO analysis to see if we are able
to distinguish these tuffs from oil sands.

5.3.3 Rock physics analysis

We want to link the facies defined above, with rock physics properties. This is important
for better understanding and interpretation of seismic amplitudes in terms of lithofacies,
pore fluids, and the distributions of these (Chapter 2).
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Figure 5.46 P-wave velocity versus density for different lithofacies.

Figure 5.46 plots the P-wave velocity versus density. In the V-shaped trend shales,
marls, and tuffs have relatively low velocities and high densities, brine sands have
intermediate velocities but relatively low densities, and limestones (chalks) have very
high velocities and densities. Tuffs and marls overlap shales, but tend to have slightly
higher velocities and densities. For instance, the tuff units in Well 4 (Figure 5.45) show
a significant increase in P-wave velocity, and a subtle increase in density, compared
with surrounding shales. The sandstones in Figure 5.46 have relatively long velocity
and density ranges, and there are large overlaps with other facies. The variability within
the sandstone cluster in terms of rock physics properties is related to sandstone tex-
ture, depositional sorting, and diagenetic cementation (Avseth et al., 2000; see also
Chapter 2).

The sandstones in the Grane area are either water-saturated or oil-saturated. Hence,
we needed to expand on our training-facies data base to include oil-saturated sands. We
applied Gassmann theory (Chapter 1) to calculate the rock physics properties of oil-
saturated sands based on properties for the water-saturated sands in Well 1. Figure 5.46
shows that oil-saturated sands have slightly lower densities and velocities than water-
saturated sands, but there are great overlaps between clusters. Oil is relatively heavy
in Grane field (18 API), and the seismic properties do not change much as we go from
brine-saturated to oil-saturated. Variability within the sandstone cluster is much larger
than change related to pore fluids. This shows that the rock texture of the sands is
seismically more important than pore fluids. Nevertheless, the oil saturation brings
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Figure 5.47 Acoustic impedance versus VP/VS ratio for different lithofacies.

the overall cluster of sands closer to the tuff and marl clusters in terms of P-wave
velocity.

Figure 5.47 plots acoustic impedance versus VP/VS ratio for the various facies. Note
the great overlap between different lithofacies in terms of acoustic impedance; VP/VS

ratio is a much better facies discriminator. The exception is limestones. Limestones
are easily distinguished in terms of acoustic impedance, whereas the VP/VS ratios are
similar to those of sands (VP/VS ∼ 2). The VP/VS ratio at the tuff units in Well 4
(Figure 5.45) is clearly dropping relative to the surrounding shales. In fact, the VP/VS

curve mimics very well the facies classification results even though VS information was
not used in the classification procedure. The same is true for the sandstone and tuff unit
in Well 1 (Figure 5.43). The observations in Figure 5.47 are important in order to assess
seismic detectability in the area. The contrast in acoustic impedances between two
layers controls the zero-offset reflectivity at the layer interface, whereas the contrast in
VP/VS has a large effect on the offset-dependent reflectivity (see Chapter 4). Hence, the
observations in Figure 5.47 indicate that AVO analysis must be conducted to predict
lithofacies from seismic data in this case.

5.3.4 AVO analysis

We first conducted deterministic AVO analysis in Well 3 to study the offset-dependent
reflectivity of oil sands in the area. We then did similar studies in Well 4 to see if tuffs
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Figure 5.49 AVO analysis at Well 3. There is an excellent match between real and synthetic
gathers. The top of the oil-saturated sands shows a prominent zero-offset reflectivity and a strong
negative AVO gradient, resulting in a phase shift at an offset of approximately 1500 m.

in this well yield a characteristic AVO response. Finally, we did probabilistic AVO
analysis along 2D seismic sections intersecting these wells to predict lithofacies and
pore fluids away from the wells.

Plate 5.48 shows a seismic near-offset stack section intersecting Well 3. This well
encountered thick reservoir sand saturated with oil. The oil–water contact is at 1765 m.
There is a prominent positive near-offset stack response at the top of the reservoir.
Figure 5.49 shows the real CDP gather and the modeled synthetic CDP gather at the
well. The synthetic gather is based on log properties in Well 3. Shear-wave velocity
information was not available so we used the VP/VS ratio in Well 1 to calculate VS in this
well. Because of the mud-filtrate invasion effect, fluid substitution using the Gassmann
theory is done to calculate properties of the sands saturated with oil. The response of the
resulting synthetic CDP gather is very similar to the real gather. Moreover, the picked
amplitude of the top reservoir shows a phase shift at the same offset for the real and the
synthetic case, when normalized at zero-offset reflectivity.

Figure 5.50 shows a seismic stack section intersecting Well 4. Note the prominent
seismic reflector around the well. This anomaly was interpreted as potential reservoir
sands before drilling Well 4. The main reservoir sands of Grane field are a significant
seismic reflector around CDP 1350. The stack response of reservoir sands will vary as
a function of the sand texture, and because of phase shifts (see Figure 5.49) the stack
response of the sands can be very weak. Variation in amplitude can also be related to
tuning effects or diffractions related to an uneven top reservoir. Figure 5.51 shows the
real and the synthetic CDP gather in Well 4. The log data in Figure 5.45 were inputs for
the AVO modeling. Shear-wave velocity is available in this well. There is a good match
between the real AVO response and the synthetic one. The AVO modeling confirms
that the tuff unit gives a significant seismic reflector that is also recognized in the real
data. The tuff unit shows a prominent zero-offset reflectivity that decreases with offset.
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Figure 5.50 Seismic section intersecting Well 4 (for scale and location see Plate 5.41).

Figure 5.51 AVO analysis in Well 4. There is a good match between real and synthetic gathers. The
top of the tuff unit shows a prominent zero-offset reflectivity and a negative AVO gradient, resulting
in a weak far-offset reflectivity.

On the basis of the facies classification, we generated cumulative distribution func-
tions (cdfs) of rock physics properties for each facies population. The cdfs are the basis
for generation of the AVO pdfs (Chapter 4). We did Monte Carlo simulation (Chapter 3)
of the seismic properties from cdfs, and calculated corresponding realizations of reflec-
tivity versus offset, using Shuey’s approximation of the Zoeppritz equations (see
Chapter 4). Uncertainties in the properties of the cap-rock as well as of the reser-
voir zone are included in the simulations. On the basis of these simulations, we created
bivariate pdfs of R(0) and G for the different facies combinations (Figure 5.52). We
assume shale as cap-rock. These pdfs create the probabilistic link between lithofacies
and seismic properties, and they will be used below to predict lithofacies from seismic
data. We observe that the various facies have different locations in terms of R(0) and
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Figure 5.52 Bivariate pdfs of R(0) and G for different facies. We assume shale as cap-rock.

G. Oil sands and brine sands have relatively large R(0) and G values, and there is great
overlap between the two. Hence, this plot indicates that seismic data can hardly discrim-
inate between oil and brine sands. Shales have very low R(0) and G values centering
around 0, since the cap-rock is also shale. Tuffs and marls have intermediate R(0) and
G values. Finally, limestone has very large R(0) and G values, and is easily separated
from the other facies. Note that tuff capped by a shale produces a significant R(0) and
a negative AVO gradient. Shale–shale interfaces can also give some R(0) response.

Let us focus again on the seismic anomaly around Well 4. Figure 5.53 illustrates the
potential ambiguity between tuffs and oil sands. Intermediate positive R(0) and negative
G of tuff could give similar stack responses to the strong positive R(0) and large negative
G of oil sands. However, statistical AVO analysis should be able to distinguish between
them, if both facies are included in the training data. Even statistical AVO would fail if
tuff was not included as a facies in the training data.

The next step is to apply the bivariate AVO pdfs to predict seismic lithofacies from
pre-stack seismic data. We selected two seismic lines from which we extracted R(0)
and G along the Top Heimdal horizon using commercial AVO inversion software. The
inverted R(0) and G values from the seismic data were calibrated to the log data and
classified according to our bivariate pdfs of R(0) and G.

One selected line intersects Well 3 (Plate 5.48). For this line the goal was to delineate
the extent of the reservoir sands laterally, and see if results corresponded with the
extent determined from the conventional seismic interpretation. The other selected line
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Figure 5.53 Iso-probability contours (50%, outer; 90%, inner) of shale, tuff, and oil sands. This
figure illustrates the potential pitfall of tuff in the assessment of seismic amplitudes. The tuff data
are between shales and oil sands. Hence, a tuff data point can easily be mistaken for an oil sand, if
we ignore tuffs and only try to distinguish sands and shales.

intersects Well 4 (Figure 5.50). For this line, the goal was to do a blind test of the well.
We wanted to determine if we could predict the presence of volcanic tuff based upon a
calibration within the main reservoir sands. Figure 5.54 shows the calibrated R(0) and
G values along the Top Heimdal horizon in the line intersecting Well 3, where oil sands
were encountered. The AVO pdfs in Figure 5.52 were used to predict the most likely
facies underlying this horizon. We predicted both oil- and brine-saturated sands along
the horizon. The total extent of the reservoir sands coincides nicely with the extent
determined from conventional seismic interpretation (Plate 5.41).

Next, we conducted a blind test on the seismic anomaly around Well 4, and predicted
seismic lithofacies along the Top Heimdal horizon. For each location along a horizon,
we obtained R(0) and G from inversion of pre-stack seismic data. These values were
calibrated inside the main reservoir sands of Grane field. We calibrated the average of
unscaled R(0) and G values from a range of CDPs inside the reservoir (as defined by
the map in Plate 5.41) with the mean values of R(0) and G for oil-saturated sandstone
facies as defined by the training data. Figure 5.55 includes the calibrated R(0) and G as
well as the predicted most likely lithofacies along this line. We confirmed the oil-filled
sands of the main reservoir (CDP 1225–1375). At Well 4 we predicted the most likely
facies to be tuff, present beneath the seismic anomaly in Figure 5.50. This prediction
matches core observations and log classification results. A local water-saturated sand
body is predicted just east of the well.
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Figure 5.55 Seismic two-way traveltime, R(0), and G along the Top Heimdal horizon extended to
the anomaly around Well 4. Lowest bar indicates most likely facies and/or pore fluid predicted
under the seismic horizon, assuming shale as cap-rock. We predicted tuff at Well 4.

5.3.5 Conclusions

Rock physics analysis shows that volcanic tuffs and marls with relatively low porosity
can have similar acoustic impedances to high-porosity sandstones in the Grane area,
especially if sands are saturated with oil. The ratio VP/VS is a better parameter to
discriminate different types of lithofacies. Because of these ambiguities in acoustic
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impedance, tuffs and marls can cause seismic anomalies that are potential pitfalls in
hydrocarbon exploration. We have shown how statistical AVO analysis can be applied to
seismically discriminate sands from other lithofacies. Oil sands can be hard to discrim-
inate from brine sands in this field, because of the relatively heavy oil. In general, this
case study demonstrates how we can combine rock physics and facies analysis with sta-
tistical AVO to improve delineation of hydrocarbon reservoirs, identify possible nearby
satellite reservoirs, and reveal potential pitfall anomalies caused by nonreservoir rock
types.

5.4 Case 4: AVO depth trends for lithology and pore fluid classification
in unconsolidated deep-water systems, offshore West Africa

5.4.1 Introduction

In this case study we apply statistical AVO classification constrained by rock physics
depth trends to predict most likely lithofacies and pore fluids in an offshore West Africa
deep-water system (Plate 5.56). First, we calculate expected depth trends in rock physics
properties for different lithologies and pore fluids (see Section 2.6). These trends are
calculated from empirical porosity–depth models representing the local burial and com-
paction history. Next, we calculate the corresponding AVO depth trends from the depth
trends in rock properties (see Section 4.3.11). Different models are generated based on
the knowledge of local geology and depositional environment. AVO uncertainties are
included and take into account the expected or observed natural variability in the rock
properties. In this way we can obtain AVO pdfs for any given depth of burial. Finally,
the modelled AVO pdfs are used to predict the most likely lithology and pore fluids for
different depth intervals from real seismic data.

The seismic signature of hydrocarbons can be very different from one depth to another
owing to different compaction trends for different lithologies. Therefore, it is necessary
to include depth as a parameter when we use AVO analysis to predict lithology and
pore fluids from seismic data.

5.4.2 Rock physics depth trends

During early burial porosity is reduced mainly through packing change and ductile
grain deformation. Ramm and Bjørlykke (1994) suggested a clay-dependent regression
model for porosity versus depth (Z) of sands, owing to mechanical compaction:

φ = φce−(α+βCl)Z (5.3)

where φc is the critical (i.e., depositional) porosity, whereas α and β are regression
coefficients representing a framework grain stability factor for clean sandstones (Cl = 0)
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Figure 5.57 Predicted seismic depth trends based on empirical porosity trends, compared with
well-log data from the Tertiary deep-water turbidite case in Plate 5.56.

and a factor describing the sensitivity towards increasing clay, respectively. The clay
index, Cl, is defined as the content of total clays relative to the total content of stable
framework grains. Porosity–depth trends are calibrated locally using reasonable critical
porosity values (0.4–0.45 for sands and 0.6–0.8 for shales) at the surface, and inverted
density logs for any burial depth.

Hertz–Mindlin (HM) theory (Mindlin, 1949) can be used to calculate elastic mod-
uli of unconsolidated sediments as a function of porosity and pressure (Chapter 2).
Densities are calculated from the empirical porosity–depth trends. From elastic moduli
and densities we can calculate acoustic impedance (AI) and VP/VS ratios versus depth.
We calculate depth trends for clean sands, shaly sands and shales. We assume 100%
quartz and 0% clay for the clean sand trend and 80% quartz and 20% pore-filling clay
(smectite) for the shaly sand trend. Effective mineral moduli are estimated using the
Hill’s average (see Mavko et al., 1998). Bulk and shear moduli of quartz are 36.8 GPa
and 44 GPa, respectively. The same parameters for smectite are 15 GPa and 5 GPa.

Figure 5.57 shows calculated trend lines of AI and VP/VS versus depth compared with
observed well-log data from the well intersected by the seismic line in Plate 5.56. We
observe a very good match between the shale trend and the log data in the shaly inter-
vals (i.e., zones with high gamma-ray values), both in terms of acoustic impedance
and VP/VS. Deviations from the modeled shale trend may reflect variation in silt
content within the shales. The sandy reservoir zone nicely follows the shaly sand
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Figure 5.58 Simple facies association model for mud-rich turbidite channel–levee complex.

trend. Deviations from the clean sand and shaly sand trends reflect both presence of
hydrocarbons (the trend lines are calculated for brine-saturated rocks) and variabil-
ity in clay content. A few local peaks of high impedance anomalies may reflect local
cementation.

5.4.3 Statistical AVO modeling constrained by rock physics depth trends

The estimated acoustic impedance and VP/VS trends in Figure 5.57 can be used to
calculate the expected AVO response with depth, for sand–shale interfaces. The exam-
ple in this study is from a deep-water turbidite setting, and we assume 12 different
interface categories. These are based on realistic layer configurations in a turbiditic
environment, and are depicted in Figure 5.58. This model of facies associations is
rather simplified compared with the true sedimentologic observations in the area, but
we attempt to reduce the amount of interface categories while still honoring geologic
variations that may be seismically significant. If we include too many interface cate-
gories, we may introduce too much overlap between individual classes in a binary AVO
cross-plot.

Next, we extract VP, VS and density for clean brine sand, pure shale, and shaly
sand, from the calculated depth trends in the previous section. These are assumed to be
the mean values for the different facies at the target level. We assume multi-Gaussian
distributions where the variances are selected on the basis of information from analog
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Figure 5.59 Histograms of VP, VS and density for different lithologies and fluids at the target depth
level corresponding to the reservoir sands penetrated by the well in Figure 5.57. The mean values
are determined by the depth trends, while the variances are assumed to be depth-independent and
are taken from a nearby well.

areas, or from nearby wells. In this example we have used nearby wells to calculate
the variances. Moreover, we use Gassmann theory (Chapter 1) to estimate the rock
properties for gas- and oil-saturated sands. (Fluid properties used for the turbidite field:
gas gravity = 0.7, oil reference density = 28 API, and brine salinity = 80 000 ppm). The
resulting histograms of VP, VS and density for different facies and fluids are shown in
Figure 5.59.

For each interface category, the expected AVO response at a target depth is calcu-
lated using Shuey’s approximation to the Zoeppritz equation for P-wave reflectivity,
valid for angles less than 30◦ (see Chapter 4). In Shuey’s equation, R(0) is controlled
by the contrast in acoustic impedance across an interface. The gradient, G, is mainly
controlled by the contrast in VP/VS ratio. We do a Monte Carlo (MC) simulation to
estimate the distribution of R(0) versus G, based on the mean and covariances in VP, VS,
and ρ for the different interface categories. The structure of the covariance matrix deter-
mines the dependencies between the variables. Normally, there is a higher correlation
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Figure 5.60 Modeled AVO scatter plots of R(0) versus G for different interface categories for the
target depth level. (See Figure 5.58 for explanations of the interface categories.)

between VP and VS than between VP and ρ. The resulting AVO scatter plots
representative of the target depth, from which the AVO pdfs can be estimated, are
shown in Figure 5.60.

5.4.4 Seismic calibration and AVO classification

The final step in the AVO classification technique is to apply the modeled AVO pdfs
to predict the most likely facies and pore fluid from seismic data. We did a blind test
of the well intersecting the line in Plate 5.56, using the AVO pdfs derived from the
modeled depth trends. We calibrate R(0) and G estimated from pre-stack gathers along
the line to the modeled AVO pdfs in Figure 5.60. We identify a background “window”
in the seismic section near or around the target interval. For the studied turbiditic envi-
ronment we assume the background trend to be characterized by interface categories
10–12, as most seismic horizons in a mud-rich turbiditic environment are made up of
these categories. We calibrate the covariance matrix of R(0) and G for the background
trend in the seismic data with the covariance matrix of R(0) and G for the background
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trend in the model, either by matching the covariances or by univariate variance match-
ing. This calibration is then applied to seismic data in the target area (Plate 5.61).

After calibrating the seismic data with the modeled AVO pdfs, we perform the AVO
classification. We use the Mahalanobis distance (see Chapter 3) to estimate the most
likely layer category for each data sample in the data. The classification result is shown
in Plate 5.62, where we lump the 12 layer interface categories into five facies and fluid
groups (tops and bases together). We obtain a good match with the observations in
the well (compare with Figure 5.57). The top reservoir is successfully identified as
gas-bearing, while zones of oil sands are identified below the gas reservoir. However,
significant parts of the reservoir are characterized as water-bearing. This could reflect the
great overlap and ambiguities between oil and brine sands in terms of AVO properties.
The cap-rock is predicted to be predominantly heterolithics and shales. Bear in mind,
however, that the final result in Plate 5.62 represents classification of interfaces, not
layers. However, the methodology used in this case study can also be applied to layer
inversion results. For instance, elastic inversion could be classified using pdfs of AI
versus VP/VS. In that case, the calibration of the seismic data is not necessary. Also
note in Plate 5.62 that a few data points have been categorized as “no class,” depicted
in black. In the classification procedure, data points located a certain distance away
from any of the modeled interface categories in the R(0)–G cross-plot are rejected.
The unclassified units could either represent noise in the data, or lithologies/facies not
included in the modeling. We suspect these to be thin units of cemented sands. This
would be in accordance with the well-log data in Figure 5.57, where we observe a few
anomalous high-velocity peaks in the sandy target interval.

5.4.5 Discussion and conclusions

The seismic signature of hydrocarbons can be very different from one depth to another
because of different compaction trends for different lithologies. Therefore, it is neces-
sary to include depth as a parameter when we use AVO analysis to predict lithology
and pore fluids from seismic data. The depth-dependent probabilistic AVO technique
presented in Chapter 4 enables us to predict the most likely lithology and pore fluid from
seismic data, even in areas with sparse local well-log information. Nevertheless, the
presence of local well-log data will improve the modeling of AVO pdfs, and give better
control of the seismic calibration. The main limitations of the methodology include
tuning and overburden effects, as well as the inherent ambiguities in rock physics prop-
erties and AVO response. Moreover, only unconsolidated siliciclastic sediments have
been modeled. One future extension of the AVO technique used in this case study will
be to include depth trends for cemented sandstone. It is also important to note that
fluid properties will be depth-dependent. Pressure and temperature control the com-
pressibility of fluids, but the chemical properties of fluids can also change with depth.
In particular, oil reference density (API gravity) tends to be depth-dependent, where
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biodegradation of oil decreases with depth. Hence, shallow reservoirs will normally
contain relatively thick oil, compared with deeper reservoirs. Trend lines of oil refer-
ence density versus depth would be valuable information to be included in this AVO
classification technique. Another future extension will be to include facies transition
probabilities and spatial statistics to improve the constraints on the classification of
vertical and lateral geologic variations from seismic data.

5.5 Case 5: Seismic reservoir mapping using rock physics templates.
Example from a North Sea turbidite system

(Courtesy of Aart-Jan van Wijngaarden, Susanne Lund Jensen, and Erik Ødegård,
Norsk Hydro.)

Rock physics templates (RPTs) are locally calibrated rock physics models that can
be used for interpretation of well-log and seismic data. In our case, the RPTs are
plotted in terms of acoustic impedance (AI) versus VP/VS. The models used include the
friable-sand model and the constant-clay model presented in Chapter 2. In Chapter 2
we showed how to construct the templates, and we presented an example of how
to apply RPTs for well-log analysis. We also demonstrated how well-log data can
be used to calibrate/validate the RPTs before the interpretation of seismic data. An
example of seismic data analysis using RPTs was shown in Chapter 4. In this case
study, we present an example of the full workflow of RPT analysis, starting with the
selection of the most appropriate RPT using well-log cross-plot analysis followed by
rock physics interpretation of elastic inversion results using the selected template. We
also demonstrate how the RPTs can guide the classification of elastic inversion results.
The example is from the Grane field in the North Sea, the same field as for case study
3. This is a producing oil field, and the goal is to characterize the reservoir in terms of
lithofacies and depositional units.

5.5.1 Step 1: RPT selection and validation to well-log data

As mentioned in Chapter 2, we need to validate the RPT to well-log data before we
apply it on seismic data. Plate 5.63 illustrates the template verification step. The log
data are from Well 2 shown in Figure 2.13, Section 2.3.1. The lithologic interpretation is
based on a suite of different log data (gamma-ray, VP, VS, density, and neutron porosity)
as well as core information (see case study 3, Figure 5.43). Plate 5.63 also includes a
cross-plot of AI versus VP/VS where we have superimposed the log data onto a selected
RPT. We have identified certain populations in the data and marked these with colored
polygons. The boundaries of the zones are selected by qualitative judgement. Still, we
see that the defined zones match perfectly with different lithofacies identified in the
well-log data. The AI and VP/VS logs have been color-coded according to the zones
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defined in the AI vs. VP/VS log cross-plot. The red zone includes two different shales,
and the yellow zone contains mixed facies (shaly sand, silty shale and marls). The
chalk constitutes a small and clearly separate cluster in the high-AI violet zone. The oil
sand is highlighted by the blue zone, while the brine zone is represented by the green
zone. Note that the oil–water contact coincides with a sudden change in porosity: the
brine sand has higher AI values than the oil sand, as expected, but lower VP/VS values,
which is the opposite of expected. Normally, we expect oil sands to have lower VP/VS

values than brine sands at the same stratigraphic level. In Chapter 2 and in case study 3,
we have demonstrated that the Grane sands exhibit great changes in porosity due to
variation in sorting. Moreover, the oil in this example is very dense (18 API) and has a
relatively low GOR, so a large deviation from the brine-sand trend is not expected. We
can therefore conclude that the log data match the theoretical trends in the selected RPT
fairly well. Bear in mind that the RPT in Plate 5.63 only includes the friable or uncon-
solidated sand model together with a shale model. However, as shown in Chapter 2,
the sandy interval has a little bit of quartz cement. This may explain why the sands plot
somewhat below the friable-sand line in the RPT plot. Cementation will cause a drop
in VP/VS ratio and an increase in acoustic impedance (cf. Figure 2.44, Section 2.8.2).
The exact porosity values of the friable-sand line are therefore not representative for the
Grane sands. Nevertheless, the modeled trends are relevant, and the friable-sand model
together with a shale model (constant-clay line) nicely explains the geologic trends in
the target zone.

5.5.2 Step 2: RPT interpretation and classification of elastic inversion results

RPT analysis of elastic seismic inversion results
A sub-cube of 3D elastic inversion data exists around the well shown in Plate 5.63.
Plates 5.64 and 5.65 show vertical sections of estimated AI and VP/VS across the Grane
reservoir. AI is determined from near-stack inversion, while VP/VS ratio is determined
from elastic impedance combining near- and far-offset stacks. For details about the
methodology, see Chapter 4. Plate 5.66 shows a cross-plot of the AI versus VP/VS

derived from the seismic data, superimposed onto the same RPT as selected in step 1.
The cross-plot only contains the data within the limited time-window 1650–1850 ms,
since the template is strictly valid only for a given depth. The templates should, however,
be fairly robust within a window of a few hundred meters, as shown in the validation
step in the previous section. The target time depth in this case is around 1750 ms.
The selected time-window corresponds roughly to the depth range cross-plotted in
Plate 6.63, for which the selected RPT is assumed to be valid.

The rock physics interpretation of Plate 5.66 appears to be straightforward. The
population that sits along the theoretical shale trend is interpreted to represent shale.
Note that the shale points appear to move closer to the sand trend for the highest
AI values. This could reflect shales becoming increasingly more silty, and the points
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between the shale and brine-sand trends are interpreted to be silty shales and/or shaly
sand. The points close to the theoretical brine-sand trend probably represent clean
sand. Some of the data points plot below the sand line, with lower VP/VS ratios than
we expect for brine sands. As discussed above, this could reflect the fact that most of
the clean sands in the Grane field are slightly cemented (1–2%). We do not expect to
see a clear oil-sand response, as the oil is fairly heavy in this case, but some of the
data that plot significantly below the brine-sand trend may also be attributed to oil
saturation.

Seismic facies classification and reservoir mapping guided by RPT analysis
Next, we want to use the RPT models in Plate 5.66 to guide the selection of certain
populations or polygons of data that we assume represent various lithofacies or rock
types. In Plate 5.66 we have defined the following facies populations:
� Shale (red polygon): high VP/VS and low AI values.
� Sands 1 (purple polygon): low VP/VS and low to intermediate AI values.
� Sands 2 (green polygon): intermediate VP/VS and intermediate to high AI values.
� Sands 3 (blue polygon): intermediate to high VP/VS and low to intermediate AI

values.
� Chalk (yellow polygon): low VP/VS and high AI values.
The polygons made in Plate 5.66 are somewhat different from the polygons in Plate
5.63. This is because we want to capture the texture-related changes of the sands rather
than the fluid changes. Also, the seismic data contain a larger variability in facies than
we observe in one single well, and we want to include facies changes not encountered in
the well. This is where the benefit of the rock physics template comes in. The underlying
models make it easier to interpret facies not observed in the wells. Also note that the
polygon colors in Plate 5.66 are different from those in Plate 5.63.

The sandstones in the Grane field have large variation in porosity associated with
sorting (see Chapter 2 and case study 3, this chapter). This variation is associated with
different depositional events and sub-environments within the Grane turbidite system.
By grouping into different sandy facies we hope to delineate different depositional units
from the seismic inversion results. As shown in Plate 5.63, the change from oil sands
to brine sands followed a porosity trend, not a fluid trend. Indeed, for the well shown
in Plate 5.63, the oil sands are better sorted than the brine zone. The oil is relatively
dense and therefore difficult to differentiate seismically from brine. Nevertheless, we
define Sands 1 to fall entirely within the hydrocarbon zone of the template. The low
VP/VS ratios may or may not be related to hydrocarbons. As mentioned above, the
sands in the Grane area are slightly cemented (case study 3), so the low VP/VS ratios
may also reflect clean sands with contact cement. Consequently, in this case we assume
the different sand populations to represent variation in sand quality, and not variation
in pore fluids:
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� Sands 1 = clean, well-sorted, high-porosity sandstone. Slightly cemented.
� Sands 2 = relatively clean sands, moderately well-sorted, with intermediate porosity

values. Assumed to be less cemented than Sands 1.
� Sands 3 = relatively dirty “sands,” more likely silty shales. Poorly sorted rocks.

Possibly including some tuff deposits (see case study 3).
The classification result based on the RPT analysis in Plate 5.66 is shown in Plate
5.67. The cap-rock is classified as massive shales, just as we observe in the well-log
data. The Grane reservoir sands are identified, and we observe the better-quality sands
(Sands 1) in the center, with adjacent sands of lower quality (Sands 2 and Sands 3).
As mentioned above, “Sands 3” are probably not true sands, but silty shales. This facies
category may also include some volcanic tuff deposits (see case study 3). Silty shales
and tuff deposits will indeed be located between the shale line and the clean sand line
in the RPT plot, as we observe in Plate 5.66. This makes geologic sense, as we expect
silty, hemipelagic shales to be present laterally besides the sandy turbidite channels and
lobes. It is also interesting to note that we are able to identify the thin shale between
the reservoir sands and the chalk beneath (compare with well-log observations in Plate
5.63). The sandy facies predicted within the chalk unit we suspect to be erroneously
classified marl deposits (i.e., mixed facies of chalks and siliciclastics).

In Plate 5.68 we have plotted a time slice (at 1780 ms) of the classified 3D cube.
The resulting map view of the classification results shows some nice geologic features.
We identify a rather patchy but channelized outline of Sands 2 (green), surrounded
by the “Sands 3” facies, more likely to represent silty shales and/or tuff deposits. The
Sands 1 facies are almost absent in this time slice. However, a “movie” through the cube
(not included here for practical reasons) reveals how the different facies are associated
with different depositional units. This “movie” shows that Sands 1 is likely to be the
youngest event of sands, sometimes located on top of Sands 2, and sometimes filling
in depositional lows between geologically older units of Sands 2. The underlying shale
and chalk facies are seen in the lower right of the map in Plate 5.68. This is due to the
structural dip of the stratigraphy in the direction towards a structural high (the Utsira
High; see case study 3).

5.5.3 Conclusions

We have demonstrated how RPT analysis can be used to guide interpretation and clas-
sification of pre-stack seismic inversion results into various lithofacies and depositional
units in the Grane field. The procedure consists of two basic steps: (1) selecting the
template that is consistent with the well-log data; and (2) applying the user-defined poly-
gon boundaries in the template to classify the seismic data. This is a semi-quantitative
method. The templates are based on quantitative rock physics models. But the val-
idation with log data, and especially the choice of separation polygons, is based on
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qualitative judgement. RPTs help to combine qualitative expert knowledge with model
curves.

The results show that we can potentially distinguish between different types of sands
in the Grane field. We are also able to delineate reservoir sands from silty shales. In
this way, this case study is a complementary technique to the statistical AVO technique
applied in case study 3. The final classified cube of lithofacies can be used as input
in well planning and field development during the production phase of the Grane
field.



6 Workflows and guidelines

Damn the torpedoes, full speed ahead! Admiral David Glasgow Farragut

In this chapter we provide a summarizing workflow, or road map, explaining the major
steps of the methodologies for seismic reservoir prediction and characterization pre-
sented in this book. In the description of the workflows we consider the term AVO
to represent all offset reflectivity-dependent seismic attributes. These are not limited
to the classical intercept–gradient attributes but also include other elastic parameters
extracted from pre-stack data such as near- and far-offset impedances, elastic Lamé
parameters, converted wave impedance, P-wave and S-wave impedances, and density.
The workflows are general and are applicable to any quantitative seismic attribute that
can be linked to rock properties.

A complete workflow of quantitative seismic interpretation should also include some
necessary qualitative steps, including AVO reconnaissance, semi-quantitative feasibil-
ity studies based on well-log analysis, and qualitative interpretations of the inversion
results. Below, we list our recommended techniques to be included in a combined
qualitative and quantitative seismic interpretation workflow:
(1) AVO reconnaissance and seismic anomaly hunting (performed together with

conventional seismic interpretation, not afterwards!).
(2) Well-log-based rock physics and AVO feasibility study (rock physics templates

(RPTs) and cross-plot analysis, lithology and fluid substitution, forward seismic
modeling).

(3) RPT interpretation of elastic inversion results.
(4) AVO lithology and fluid classification constrained by rock physics depth trends.
(5) AVO analysis and classification constrained by statistical rock physics and facies

analysis of well logs.
(6) Elastic inversions and classification constrained by statistical rock physics and

facies analysis of well logs.
(7) Quantifying the uncertainty associated in the interpretations in terms of prob-

abilities.

317
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Figure 6.1 Quantitative seismic interpretation techniques performed at different stages of
development of an oil field.

All the methodologies listed above are complementary to each other, yet they should be
applied at different stages during exploration and production of an oil field. Figure 6.1
depicts a suggested flow-scheme for how the different techniques are tied together and
performed at different stages during the development of an oil field. Below, we first go
through the steps of each of the methodologies listed above. Finally, we will discuss
how these technologies should be used together, and how some of the technologies are
most appropriate for the early exploration stage, whereas others are more appropriate
for later exploration, development, and production stages of an oil field.

6.1 AVO reconnaissance

AVO analysis should always be done (if pre-stack data are available) at an early stage of
seismic exploration. The first thing to do is to create sub-stacks of seismic data, and/or
AVO attributes that combine intercept and gradient, plus other attributes if possible
(Poisson’s reflectivity, fluid factor, etc.).

The primary reason for early use of AVO is to scan for anomalies that may represent
hydrocarbon accumulations. In order to understand what is an anomaly, one must also
understand what is the background “wet” response at the given target depth. At a very
early exploration stage, the target depth may not be defined, and rock physics depth
trends may be useful, especially if well-log data are lacking (see Sections 6.2 and 6.4).

A further motivation for early AVO analysis is understanding the seismic signa-
tures of lithologies. It makes little sense to start interpreting a hard event as a poten-
tial reservoir sand, if the expected seismic response of a wet sand is relatively soft
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(or dim) compared with an overlying shale. Also, the appropriate AVO attribute must
be selected on the basis of expected AVO response for a given case. Hence, early AVO
screening should go along with rock physics feasibility studies and qualitative seismic
interpretation.

To summarize the steps of AVO reconnaissance, we suggest the following workflow,
assuming that the appropriate pre-processing scheme (see Chapter 4) has been carried
out in advance:
� Create sub-stacks that are balanced correctly, so the near-stack response and far-stack

response are consistent with each other, with relative amplitude levels intact.
� Create far versus near attributes (see Section 4.3.11). Make sure the far and near

stacks are properly aligned, with no phase difference.
� If pre-stack CDP gathers are available, estimate R(0) and G. Make various attributes

that combine these parameters. (R(0) and G may also be estimated from partial stacks.)
� If well logs are available in the area, make rock physics cross-plots to improve

your understanding of the expected seismic signatures in the area, both in terms of
background “wet” response and anomalous hydrocarbon response. Go to Section 6.2.
The results will tell you which attributes are most appropriate (see Chapter 4). These
results can also be valuable input information to the conventional seismic interpreter.

� If well logs are not available, no attempt should be made to interpret the AVO results
quantitatively. However, if well logs from nearby or regional wells are available, rock
physics depth trends may be very helpful in improving the understanding of expected
seismic signatures. Rock physics depth trends can also be used to calibrate the AVO
parameter estimates. Go to Section 6.2 and/or 6.4.

� Having found the optimal AVO screening attribute, start “hunting” for anomalies. If
an anomaly is detected, investigate the AVO data from a time-limited window around
the observed anomaly, in an attribute cross-plot, for example R(0) versus G.

� Identify the background trend in the cross-plot and in the seismic section. Do you
observe geologic elements/layers that have been confirmed or interpreted to be water-
saturated sands at the same depth? Investigate where the known/interpreted water
sands locate in an AVO cross-plot compared with the observed anomaly.

� If the anomaly is first detected in a cross-plot, then identify where on the stacked
section the anomaly plots. Compare the anomaly with qualitative seismic interpreta-
tion results. Does the anomaly occur in a location that is geologically plausible for
hydrocarbon accumulation (structural and/or stratigraphic trap)?

� Investigate the CDP gathers where the anomaly occurs. Do you observe an AVO
response at the same location where the AVO attributes indicate an AVO anomaly?

� Do noise analysis of the cross-plot. If the fluid anomaly is still seen in a cross-plot
of R(0) versus full-stack amplitude, the fluid anomaly observed in R(0) versus G is
more likely to be real (see Section 4.3.10).

� Analyze potential geologic pitfalls that could have caused the observed anomaly.
Does the anomaly occur at a pinch-out zone, so that it could reflect tuning effects?
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Any signs of overburden effects (gas clouds, complex geology with lateral velocity
shifts, faulting, extensive thin-bed effects, etc.)?

� Integrate the AVO results with conventional seismic interpretation results.
Complementary to the above recommended workflow for AVO screening, we also
include the AVO checklist of Castagna (1993), which contains some additional impor-
tant points to be aware of during qualitative AVO analysis.

Castagna’s AVO checklist

� Is the expected variation in rock properties sufficient to produce a detectable AVO
anomaly? What are the petrophysical signal and background?

� Can the same seismic response result from other (nonpay) Earth models? What
are the chances that one of these other models is the real one?

� If AVO correctly predicts the occurrence of hydrocarbons, what are the chances that
the saturations will be commercial? Do all parties involved understand that AVO
cannot generally be used to distinguish between commercial and noncommercial
saturations?

� Is there sufficient angular coverage for the event of interest?
� How do I know that processing has preserved and isolated the “true” relative AVO

response? What quality control (QC) displays have been used to verify this?
� What is the seismic data quality? Has coherent noise been adequately suppressed?

If so, has the procedure corrupted the relative AVO signal?
� Have lateral variations in overburden effects been properly compensated?
� Has an appropriate amplitude-preserving migration algorithm adequately corrected

for structural effects?
� Is the AVO algorithm being used sensitive to velocity errors? Do the NMO veloc-

ities need to be repicked?
� Can the AVO anomaly be verified by eye on the CDP gathers? Is the anomaly

robust or must it be coaxed from the data?
� Does the AVO anomaly confirm to structure? Do I really believe the result or am

I ignoring my instincts because I want to drill the prospect? Am I using AVO to
better characterize the subsurface or just as a flashy sales device?

� Do I understand what “red” on the AVO display really means in physical terms?

6.2 Rock physics “What ifs ” and AVO feasibility studies

In conjunction with the qualitative AVO screening summarized above, one should
perform rock physics and AVO feasibility studies. This feasibility study should include
rock physics analysis of well-log data, rock physics modeling, and AVO reflectivity
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modeling as well as seismic modeling and analysis of CDP gathers at well locations.
Doing this, we can find out if AVO will work in our case. Also, different rock physics
“What if ” questions can be modeled in terms of AVO response. Sensitivity studies of
both fluid and lithology changes should be performed. Statistical rock physics analysis
(see Chapter 3) can also help to determine what seismic attributes are optimal for fluid
and facies discrimination in our case.

The feasibility studies can be done to help the reconnaissance, but may also help us to
decide which quantitative seismic techniques would be most appropriate. Is inversion of
near-stacks and estimation of acoustic impedance enough to discriminate hydrocarbons
from lithologies, or do we need to carry out full-offset inversion and estimate elastic
parameters?

We can summarize the steps of the rock physics and AVO feasibility studies as
follows, assuming that thorough quality control and corrections of well logs have been
performed:
� Make cross-plots of different well-log data, including VP–porosity, VS–porosity,

VP–VS, AI–VP/VS, AI–EI, etc. When shear logs are missing, perform VS predic-
tion using Greenberg–Castagna’s formulas or other locally calibrated methods that
give you estimated VS (see Chapter 1).

� Create color-coded scatter plots with color indicating a third dimension of gamma-ray,
saturation, clay content, or other petrophysical logs or estimates. The third dimension
may help to identify the reasons for trends observed in the cross-plots. What do the
cross-plots tell you in terms of seismic detectability? Are fluids discriminated mainly
in terms of VP/VS ratios (soft rocks) or in terms of AI (stiff rocks)? (See Chapter 2.)

� If necessary, apply rock physics models to understand the trends seen in the cross-
plots. RPT analysis of well-log data is a means of comparing well-log data with
rock physics models for interpretation of observed trends, and quick determination
of various “What if ” scenarios, including porosity, lithology and fluid saturation
changes not encountered in the data (see Chapters 1 and 2).

� In the case that well logs only contain data from brine zones, perform fluid substi-
tution to find out where oil and gas sands will plot. Also check for different satura-
tion scenarios, including patchy versus uniform saturation, and commercial versus
residual saturations. Plot the fluid-substituted data in the same cross-plots as above
(see Chapter 1).

� Perform lithology substitution to capture lithofacies or textural scenarios not encoun-
tered in the wells, but likely to occur away from the wells. If we observe a given
type of sand (in terms of porosity, clay content, sorting, and cementation) at a drilled
location, how do we expect this sand to change away from the well? Add the new
modeled data in the same cross-plots as above, in order to determine the seismic
detectability of the “What if ” scenarios (see Chapters 1 and 2).

� Make synthetic seismograms (CDP gathers) at the well locations, and investigate
the seismic signatures (including AVO responses) of the target zone. Also, make
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synthetic seismograms of the “What if ” scenarios, including both fluid and lithology
substitutions (see Chapters 1 and 4).

� Compare the original synthetic seismograms with real CDP gathers at the well loca-
tion. Then, compare CDP gathers away from well location with the various “What if ”
synthetic seismograms. Are the observed lateral changes in AVO response more in
agreement with the lithology-substituted seismograms, or with the fluid-substituted
seismograms? (See Chapters 1 and 4.)

� Perform 2D (and/or 3D) forward seismic modeling, and conduct the same fluid and
lithology “What if ” changes as mentioned above. In addition, geometric “What if ”
changes may have to be modeled as well (including layer thickness, faulting patterns,
net–gross, etc.). (See Section 4.5.)

6.3 RPT analysis

The rock physics template (RPT) analysis methodology is described in Chapter 2 (theory
and well-log applications) and in Chapter 4 (application to seismic data analysis). Also
see case study 5 in Chapter 5. The main goal of RPT analysis is to use rock physics
models constrained by local geology to interpret and classify well-log and seismic data.
The RPT plots are also very intuitive and allow for better communication between
geologists and geophysicists. The workflow of a complete RPT analysis is summarized
in Plate 6.2.

Step 1: Well-log analysis and RPT validation

� The RPTs are based on the rock physics models described in Chapter 2. The RPTs
can also be made from other, alternative rock physics models. A compilation of RPTs
should be generated for a given basin, as a catalog of rock physics charts describing
various lithology, mineralogy, diagenesis, and depth scenarios.

� One needs well-log data to validate and calibrate the models used in the RPT plots.
However, if a few well logs exist in an area, one can make RPT plots to cover a range
of “What if ” scenarios away from the wells. In this way, the RPT plots can be used
in feasibility studies (go back to Section 6.2), to predict expected lithology and fluid
trends in terms of seismic properties.

� If no existing RPT plot matches the well-log data in a new well, one should update
the RPT models. Alternatively, one should check the quality of the well-log data.
Wash-out effects and mud-filtrate invasions are common causes of mismatch between
observed well-log data and the models in the RPT plots.

� Select the appropriate RPT that matches with the well-log data in the target zone.
The same RPT is applied to interpret seismic inversion results (go to step 2).
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Step 2: Seismic data analysis using selected RPT plot

� Perform elastic seismic inversion and obtain acoustic impedance (AI) and elastic
impedance. From elastic impedance, calculate VP/VS ratios (see Section 4.4).

� Cross-plot the AI versus VP/VS data onto the RPT selected in step 1 (see Section 4.4.6).
Other attributes such as AI versus EI, λ−µ etc. could also be investigated in RPT
plots.

� Interpret the trends in the elastic inversion results using the underlying models in the
RPT plots. If there is a great mismatch between inversion results and RPT models,
evaluate the quality of the inversion procedure. Also, evaluate possible scale effects
that can cause differences between the seismic data and the well-log data, especially
if there are a lot of thin-bedded layers in the target zone (see Chapter 4).

� Use the RPT plot to guide manual classification of characteristic data populations,
representative of lithology and/or fluid changes (see case study 5, Chapter 5).

� Evaluate the RPT classification results along seismic sections and/or 3D cubes.

The wide range of applications of RPT analysis

� Interpretation of well-log data and assessing seismic detectability of observed
facies and fluid variations.

� Petrophysical quality control of well-log data.
� “Quick and dirty” qualitative feasibility studies of various rock physics “What if ”

scenarios, both in terms of lithology and fluid substitutions.
� Calibration and validation of rock physics models to local conditions.
� Interpretation and classification of elastic inversion results.
� The RPT plots are intuitive and link rock physics properties to geologic trends.

Hence, the RPT plots, and the interpretations of these, are perfect for round-table,
cross-disciplinary discussions of inversion results.

6.4 AVO classification constrained by rock physics depth trends

During early exploration, when few or no well-log data are available, AVO classification
can be constrained by rock physics depth trends. Plate 6.3 shows a flowchart of this
technique. The methodology is thoroughly explained in Chapter 4.

Step 1: Calibration/estimation of rock physics depth trends

� Using nearby or regional wells, establish the local or regional compaction trends for
different lithologies expected to occur in the area of investigation. Porosity–depth
trends are calibrated to density logs and/or direct measurements of porosity (for
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example helium porosities measured on core samples). For siliciclastic systems, we
suggest that you make depth trends for sands, shales, and shaly sands (see Chapter 2).

� Estimate corresponding seismic properties (VP, VS, and density) for brine-saturated
rocks as a function of depth, using rock physics models. If unconsolidated sedi-
ments, use Hertz–Mindlin models. Use Gassmann’s theory to obtain brine-saturated
values from models that give dry rock properties. If consolidated rocks, use rock
physics models for cemented rocks. Empirical regression trends may be used instead
of theoretical rock physics models, if sufficient well-log data are available. It is
important to discuss with a geologist to find out if and at what depth cementation
is expected to occur. Geochemical modeling of cement volume as a function of
depth is very valuable input information in the modeling of seismic depth trends
(see Chapter 2).

� In the lack of any well-log data, velocity–depth trends extracted from seismic travel-
time inversion may be used as input.

Step 2: Modeling AVO pdfs at a target depth

� Select a target depth at which to pick VP, VS, and density from the depth trends derived
in step 1. These represent the mean values for the different lithologies.

� Define variances and covariances of the same properties. The variances are assumed
to be depth-independent and may be selected from an analog area or from well logs
nearby. Now we have the estimated distributions of VP, VS, and density, for the various
lithologies, representative for the target depth.

� For the depositional system in the area of interest, define likely facies models and
corresponding interface categories (see Chapter 2). This procedure should be done in
collaboration with an experienced sedimentologist who has worked in the area, or in
analog systems. Also, include various pore-fluid scenarios. However, avoid making
too many interface categories. This will make the following classification unstable.
Fluid–fluid contacts should be avoided, because these often exhibit a relatively weak
AVO response, and may be misclassified as shale over brine-sand. Flat spots and fluid
contacts should be investigated using qualitative AVO combined with rock physics
sensitivity studies (Sections 6.1 and 6.2).

� For each interface category, perform Monte Carlo simulations to create AVO pdfs
of R(0) versus G representative of the target depth (see Chapter 3). Use Gassmann’s
theory to extend the training data to include pdfs of categories not encountered in the
well, for example, oil sand or gas sand below shales.

Step 3: AVO parameter estimation

� Estimate AVO parameters from CDP gathers along 2D lines or for a 3D cube of
pre-stack seismic data (see Chapter 4).
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� Extract the uncalibrated R(0) and G values only for a target window, representative
for the selected target depth in step 2. (A time interval of 300–400 ms should be
fine, since very little depth-related variation in the seismic properties will generally
occur within this window.) Include all samples, not only trough and peak values, from
this target window. We want to include potential class II AVO anomalies, which are
easily left out if only maximum amplitude values are selected. Be aware, though, that
sidelobe energy will be classified as an interface category.

Step 4: Calibration of AVO attributes to modeled AVO pdfs

� Identify a “background-trend” window in the seismic data, located at the same depth
as the target anomaly.

� Extract the variances or covariances of R(0) and G for the uncalibrated background-
trend data window.

� Define which modeled AVO pdfs shall constitute the background trend. For a silici-
clastic sand–shale system, we suggest that the background trend includes shale–shale
and brine-saturated shaly sand–shale interfaces. Clean brine sands should be avoided
as part of the background trend, because these are actually rare, and they can have sig-
nificant AVO effects off the shaly background trend. Extract variances or covariances
of the modeled background trend.

� Calibrate the real background trend with the modeled background trend.
� Do the same calibration of the AVO data around the target anomaly as for the back-

ground window. Now you have obtained calibrated R(0) and G values for the target
zone.

Step 5: Lithology and fluid classification

� Use discriminant analysis or other classification techniques to classify the calibrated
AVO data with the modeled AVO pdfs as the training data (see Chapter 3).

� Plot the resulting most likely lithofacies and fluids as sections or maps.
� Plot the occurrence probabilities of various facies and fluids (see Chapter 3).
� Use the seismic reservoir prediction results as input in prospect evaluation and risk

assessment.

6.5 Seismic reservoir characterization constrained by lithofacies
analysis and statistical rock physics

In this section we present in detail a general workflow that can be applied to map 3D
seismic data attributes into 3D lithological cubes and evaluate the uncertainty associated
with the prediction (Plate 6.4). The workflow describes the steps of the techniques
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listed as 5, 6 and 7 at the beginning of this chapter. These techniques combine rock
physics theory (Chapter 1) with local geologic parameters or trends (Chapter 2) and
statistical techniques (Chapter 3) to predict and map the most likely lithofacies and
pore fluids, as well as their occurrence probabilities, from seismic AVO or impedance
inversion data (Chapter 4). This workflow, which has been used in case studies 1, 2,
and 3 in Chapter 5, is best suited for situations where there are at least a few key wells
available.

Step 1: Seismic and rock physics lithofacies analysis

Mapping seismic volumes into lithology cubes is not a unique process, and a mecha-
nism for incorporating a-priori geological information is needed. The first step of the
workflow is dedicated to identifying textural effects, depth trends, and composition for
the target interval, defining the range of seismic lithofacies, to which the seismic data
volume will be mapped, and identifying key trends and rock physics models that will be
used in transforming the seismic data into lithofacies. These goals imply the following
specific tasks:
� Gather prior geological/sedimentary knowledge for the selected zone of interest from

key wells. Identify depositional and compactional trends. What is the depositional
environment and what are the associated facies? What are the dominant mineralo-
gies? What types of rock are expected? Thin-section and core analysis will provide
important information about sorting, clay content and cement volume. What types of
pore fluids are expected? Gather information about fluid properties, including API,
GOR, salinity, etc.

� Map well logs, core data, and geological knowledge into the rock physics domains,
and make cross-plots of VP–porosity, VP–VS, AI–VP/VS, etc. Be sure to correct the
well logs for mud-filtrate invasion if necessary. Make VS prediction if VS log is not
available (see Chapter 1).

� Select appropriate rock physics models and constraints to describe the well-log data.
We suggest using the rock physics diagnostic procedure introduced by Dvorkin and
Nur (1996) (see Chapter 2) to generate velocity/porosity/depth relations from all
available data, as well as identifying key textural trends in the data (sorting, cementa-
tion, sand–shale–clay, etc.). Rock physics models can help us to discover subtle but
important textural or mineralogical variations within the rocks.

� Define seismic lithofacies. On the basis of the well-log facies analysis and the rock
physics diagnostic, we define seismic lithofacies by one of the following criteria. (1) It
has a distinct lithologic/geologic definition, or (2) it has distinct acoustic properties.
For example, shales and gas sands are two distinct lithofacies, although these may
have the same seismic velocity. Gas-saturated sands, oil-saturated sands and brine-
saturated sands are also distinct seismic lithofacies since each of them may have a
different seismic signature.
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Step 2: Derive attribute probability density functions (pdfs) from well-log pdfs,
rock physics models and surface seismic data at the well location

In this step we define the uncertainty associated with the deterministic trends we have
established in step 1 and analyze different attributes at the well location. The rock
physics models and trends will be characterized in terms of probability density functions
(pdfs). This step comprises the following tasks:
� Estimate the pdfs of rock properties for different lithofacies (Chapter 3).
� Extend the original data set where necessary by Monte Carlo simulations and rock

physics models (Chapter 3).
� Derive the distributions (pdfs) of sets of possible seismic attributes. The seismic

attributes to be tested are physical attributes that have specific models relating them
to the rock properties. Among these are VP, VS, R0, G, IP, IS, EI, Poisson ratio, λ−µ,
etc. Assessment of the surface seismic quality at the well location will be made. The
quality of the data will determine to some extent which attributes can be extracted
from it.

� Use the class-conditioned probabilities for statistical classification in step 3.

Step 3: Classification and validation tests at the well locations

� Estimate the separability of the lithofacies using the different attributes computed
from the extended training data in step 2.

� Validate facies classification of different sets of computed attributes at the well loca-
tions. Different statistical algorithms that can be used include Bayesian classification
based on pdfs, discriminant analysis, and neural networks. The output of a Bayesian
classification procedure is the full posterior facies pdf, P(facies|seismic attributes) so
an assessment of the uncertainty in the prediction is inherent in this procedure. The
uncertainty is estimated in terms of the classification confusion matrix, which gives
the conditional probability of the true lithofacies given the predicted facies.

� Choose an optimal set of attributes. This selection depends not only on the rock
physics benefit as estimated by the classification success rate, but also on the eco-
nomical constraints such as the cost of estimating that attribute from seismic data,
and the quality of the seismic data. The classification validation also helps in select-
ing additional information that can help to improve the classification and reduce the
uncertainty.

Step 4: Extract the optimal set of attributes from the seismic volume in 3D

� Extract the optimal set of attributes identified in step 3 from seismic data. The actual
methodology will depend on the specific attributes, e.g. AVO analysis or impedance
inversion.
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� Calibrate the pdfs generated from the well data to the seismic and field scale. In gen-
eral, the calibration procedure accounts for the upscaling of the well-data velocities
and derivation of appropriate pdfs from analyses and/or inversion of seismic data
available.

Step 5: Statistical classification of the seismic lithofacies using all
available information

This step integrates the previous steps, and should include “all available information.”
We generate the final lithocube in the following way:
� Generate appropriate 3D attributes from the seismic data.
� Map/classify them into lithology cubes using the pdfs we have generated in the

previous steps. Any number of 3D attributes extracted from the seismic data volume
can be used and classified into most likely lithological units using the extended
training data.

� We strongly recommend incorporating spatial correlation and seismically derived
structure to constrain the lithocube further. This can be done using a conventional geo-
statistical framework (e.g. variogram-based co-kriging, simulation, indicator statis-
tics) or using more recent multiple-point geostatistical methods. Geostatistics should
certainly be used when there are a few wells (see Chapter 3).

Step 6: Visualization of lithocube and uncertainty in lithological prediction

Visualization of the output is an important part of the workflow. There are various ways
of visualizing the final results. We recommend generating a maximum likelihood cube
that will represent the most likely lithological unit at each point of the subsurface, as well
as showing iso-probability surfaces which are essentially confidence intervals presented
in 3D space. Such a display is presented in Plate 6.5 (Mukerji et al., 2001). Once we
obtain the posterior conditional pdfs [P(lithofacies|seismic attribute and training data)]
other displays of critical values can also be made. For example, it might be of interest
to display the probability that the depth-averaged sand/shale ratio is greater than some
critical threshold.

6.6 Why and when should we do quantitative seismic interpretation?

In this book, we have shown the potential of various quantitative techniques to predict
hydrocarbons, to determine lithologies, and to resolve ambiguities between different
types of facies and fluid scenarios. All these methodologies take advantage of offset-
dependent reflectivity information, via pre-stack or partial-stack seismic inversions, or
AVO least-square estimates. Hence, in a complete industrial workflow of quantitative
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seismic interpretation, conventional AVO modeling and analysis should be one of the
first points on the task list. AVO analysis is also a cheap and rapid technology which
can be very effective during early exploration. However, we have also emphasized the
long list of pitfalls associated with AVO techniques.

Three very important questions to be raised before a new area is explored for potential
hydrocarbon prospects are these.
(1) Does AVO analysis work in this area?
(2) Do we really need AVO in this case? (Do we expect a detectable AVO anomaly,

given the known rock physics properties?)
(3) Do we observe any AVO anomalies in the real seismic data that can be related to

hydrocarbons?
These questions are solved by AVO reconnaissance and AVO feasibility studies. These
two tasks should go hand in hand, because the feasibility and modeling studies may tell
us to go back and re-evaluate the observed AVO anomalies. Also, feasibility studies
combined with AVO reconnaissance will tell us if there is any hope for more quantitative
AVO analysis.

If we find that AVO analysis will work and will be needed in order to detect hydro-
carbons in the area of investigation, a new, important question arises:
(4) When should we do AVO analysis? During seismic exploration, should it be done

before, at the same time as, or after the conventional seismic interpretation and
prospect evaluation?

We claim, as Castagna did more than 10 years ago (Castagna, 1993), that AVO analysis
should always be included in the workflow of a seismic interpreter, from an early stage!
It should be used for anomaly hunting rather than to validate already existing prospects.
Unfortunately, in the oil industry, AVO analysis is often put at the end of the workflow
of seismic exploration, after the qualitative seismic interpretation has been completed
and prospects have already been defined. Also, the AVO analysis is often done by
geophysicists who are not familiar with the local geology. While the seismic interpreter
sits on valuable information about the area of investigation, the AVO analyst often
must make vague assumptions about geologic input parameters. Often shortage of time
results in lack of good communication and interaction between the seismic interpreters
and the AVO analysts.

We would like to stress, as one of the final statements of this book, that AVO technolo-
gies, qualitative as well as quantitative, do not belong to the geophysicists, but should
represent integrated technologies used by geophysicists and geologists together. Too
often, hydrocarbon prospects are defined on the basis of conventional geologic interpre-
tation of seismic geometries. Before these geologically (geometry) driven prospects are
risk-evaluated, it is common to do late-stage AVO analysis to strengthen the prospect,
making it an AVO-supported prospect. First of all, if AVO is implemented as a tech-
nical support, done after seismic interpretation, there is no real decision impact to be
made by the AVO technology. The risk number may be adjusted up or down a little,
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depending on the AVO results. If the well turns out to be dry, it is not rare to see that the
AVO analysis becomes the scapegoat. One easily forgets that the AVO analyst joined
the game at a late stage, and probably did not receive too much information about
local geologic parameters (if the AVO work is done after the seismic interpreter has
finished his or her job, this makes interaction and collaboration between AVO analyst
and seismic interpreter very challenging). Furthermore, defining the prospects before
doing AVO analysis means that potential prospects that would be detected only using
AVO techniques can be missed (like AVO class II anomalies causing dim spots on
stacked sections). Fortunately, it is becoming more common for seismic interpreters to
do interpretation on partial stacks.

There are also pitfalls in doing AVO analysis before conventional seismic interpre-
tation. Defining a prospect based predominantly on an AVO anomaly would create an
AVO-driven prospect. An AVO-driven prospect needs a geologic model that can explain
the observed AVO anomaly. If the AVO work is done before there exists a thorough
geologic interpretation in the area, it probably means that the geophysicist has made
vague assumptions about the geologic input parameters in the first place. And there
will always be some positive scenario that can explain an observed AVO anomaly. An
AVO-driven prospect can easily make the interpreter blind to pitfalls.

If AVO techniques are integrated with geologic interpretations of seismic data dur-
ing prospect evaluation (call that geology-controlled AVO analysis), it allows for more
collaboration between the conventional seismic interpreter and the AVO analyst. The
seismic interpreter can gain important input from the AVO analysis during the geomet-
ric interpretation, while the AVO analyst can gain important input information to better
constrain the rock physics models behind the AVO analysis. If we want to discover
increasingly subtle oil fields in the future, there is a need to establish more interaction
between conventional seismic interpreters and quantitative seismic interpreters. This
also means that the conventional seismic interpreters must become more knowledge-
able about AVO analysis and other quantitative seismic techniques, whereas the rock
physics and AVO analyst must become more knowledgeable about geologic aspects of
seismic interpretation. This integration aspect is one of the main motivations of this
book: to make quantitative seismic interpretation techniques more available to seis-
mic interpreters and practitioners, and to improve interaction between the geologically
inclined interpreters and the geophysically inclined interpreters. We hope this will result
in improved drilling success for oil companies.

That being said, it is important to note that while some of the techniques presented in
this book should only be used during early exploration, others can also be used during
appraisal and production stages of an oil or gas field. A final question to be asked is
therefore the following:
(5) What quantitative methodologies should we select to use, and at what stage?
AVO classification constrained by depth trends (see case study 4, Chapter 5) would be
used only during early exploration, when few wells are available, or during appraisal
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where satellite fields are explored at different depths from an existing field where wells
are available. AVO classification constrained by well-log observations (case studies 1
and 3 in Chapter 5) can be performed during appraisal stage, where a few wells have
been drilled and the goal is to predict the reservoir properties in the interwell areas.
At the same stage or later, given that enough wells are available, impedance inversions
ought to be carried out. Statistical rock physics models can then be used to classify
the layer-based inversion results (case study 2). Classification of impedance inversions
should also be the selected methodology during production stage, and the same classifi-
cation techniques as presented here can be applied for pressure and saturation mapping
from time-lapse (4D) seismic data. RPT analysis (case study 5) can in principle be
carried out at any stage from early exploration to late production, depending on the
goal of the analysis. However, some wells must be available in order to calibrate the
models used in the rock physics templates. Also, if the templates are in terms of AI and
VP/VS as shown in this book, impedance inversions are required and therefore some
wells should be drilled before reliable seismic data analysis can be done using RPT
plots. That being said, the RPTs are semi-quantitative, and one can use the RPT plots
to analyze well-log data, and then extrapolate and predict expected seismic properties
away from a given well. This can be done as part of feasibility studies during early or
late exploration stages.

Again we emphasize that the methodologies and workflows are applicable to all
quantitative offset-dependent attributes extracted from seismic data such as intercept
and gradient, impedances, and elastic parameters.
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For the things we have to learn before we can do them, we learn by doing them. Aristotle

7.1 Introduction

This chapter provides problem sets and an extended reservoir characterization project
based on an example seismic data set and well logs provided at the book website. The
website also has additional resources in the form of downloadable Matlab function
files that may be helpful in solving the problems. We used the Matlab statistics
toolbox and neural net toolbox for solving the problems involving pdf estimation and
statistical classification.

Well-log data from five wells are provided in flat ascii text files. Well 2 is taken as the
type-well. Six different lithofacies have been identified from Well 2. For the purposes of
the problem sets and the project the facies are: clean sand, cemented sand, silty-sand1,
silty-sand2, silty-shale, and shale. The depth zones containing data for these facies have
been extracted from Well 2 and provided in separate text files. The seismic data consist
of one 2D section of NMO-corrected pre-stack CDP gathers, and two 3D cubes of near-
and far-offset partial stacks. Details about the seismic data and well locations within
the seismic cubes are provided below in Section 7.3.

7.2 Problems

Rock physics modeling

Load the well-log data for Well 2 into your software of choice (Matlab , Excel or
any other suitable software). The ascii file contains five columns: depth, VP, density,
gamma ray, and VS.
(1) Make cross-plots of VP versus porosity. Derive porosity from density assuming

mineral density of 2.65 and fluid density of 1.05 g/cm3. What can you say about
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the trends of shales versus sands? How do you explain porosity variation for each
lithology class? Compare with upper and lower Hashin–Shtrikman bounds. Com-
pare with Han’s empirical sandstone line, assuming 5% clay content (Chapter 1).
Is there a good match? If not, how do you explain the mismatch? Model a
constant-cement line (using modified Hashin–Shtrikman lower bound combined
with Dvorkin–Nur cement model) to match the trend of the reservoir sands, assum-
ing 100% quartz. What is the volume of cement in the reservoir sands? Use modified
Hashin–Shtrikman lower bound to model the cap-rock shales, assuming a critical
porosity of 0.6. What effective bulk and shear mineral moduli are needed to match
the shale data? What can these values say about the mineralogical composition of
the shales?

(2) Make cross-plots of VP versus VS. Compare with famous mudrock line (Chapter 1)
and “dry rock” line (VP/VS = 1.5). What do VP–VS relationships tell you about
lithology and fluids?

(3) Make cross-plots of AI versus VP/VS. Superimpose on appropriate rock physics
template (RPT). Interpret the trends you see in terms of fluid, porosity, lithology,
sorting, cement or other effects. What can you say about seismic contrasts between
reservoir sands and cap-rock shales from the RPT analysis?

(4) Use Greenberg–Castagna or any other shear-wave prediction tool to predict VS

from VP for Well 2. Assume 80% quartz, 15% feldspar and 5% clays in the sands,
and 80% clays and 20% silt (quartz) in the shales. Compare predicted VS with
measured VS.

(5) Use empirical porosity trends from Well 2 together with Hertz–Mindlin model
to create VP–depth trends for brine-saturated sands. Assume the same mineralog-
ical composition as in Problem (4). Water depth is 100 m. To create the depth
trend, first fit an exponential porosity versus depth trend to the sand points in
Well 2. For each depth compute the effective pressure assuming no overpres-
sure. Finally use the porosity and effective pressure as inputs in the Hertz–Mindlin
model to compute the velocity–depth trend. What can you say about the reservoir
sands?

(6) Create normal-incidence synthetic seismograms for the case of brine-saturated
sands. Use a 35-Hz zero-phase wavelet. What is the seismic character and polarity
of the top and base sand?

(7) Use Gassmann’s relations to do fluid substitution in Well 2, first from brine to
oil, then from brine to gas in the upper 50 m of the reservoir sands. The fluid
properties are as follows: brine salinity 80 000 ppm, oil API 19, GOR 100 l/l,
temperature 70 ◦C, pore pressure 16 MPa, gas gravity 0.6.

(8) Create AI–VP/VS cross-plots after fluid substitution and compare with the AI–
VP/VS for brine sands using rock physics templates (RPTs). What can you say
about the seismic contrast between gas sands and shales versus oil sands and
shales?
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(9) Create synthetic seismograms for the oil and gas cases. What is the seismic char-
acter of the top and base sand? Do you observe any fluid contact (gas–water or
oil–water contact)?

Statistical rock physics

(10) Plot histograms, boxplots, cumulative distribution functions and quantile–quantile
plots of gamma ray, VP, VS, density. Explore the variability in the different rock
properties for the different facies.

(11) Estimate and compare univariate pdfs of P-wave impedance for the different facies.
A simple estimate of the pdf is obtained by a kernel-based smoothing of the data
points. Explore the impact of the width of the smoothing kernel on the estimated
pdfs.

(12) Make a color-coded cross-plot of gamma ray versus P-wave impedance for the dif-
ferent facies. Assign a different color to each facies. Explore qualitatively whether
the clean sands (low gamma ray) can be separated from the shales (high gamma
ray) using P-wave impedance.

(13) Estimate 2D pdfs for P- and S-wave impedance for the clean sand, cemented
sand and shale facies. A simple way to estimate the 2D pdf is to smooth the 2D
histogram. Visualize the 2D pdfs using contour plots or surface plots.

(14) Monte Carlo simulation: compute the nonparametric univariate cdf of VP for
the clean sand facies. A simple estimate of the cdf is obtained by a cumulative
sum of the histogram frequencies. Draw 1000 uniform random numbers between
0 and 1, and interpolate the inverse of the cdf to obtain 1000 Monte Carlo sim-
ulations of VP. Check that the histogram of the simulated VP is similar to the
histogram of the original data. Establish a linear regression between the well-
log VP and VS of the form: VS = a + bVP. Estimate the coefficients a and b by
standard least-squares curve fitting. Using the linear regression between VP and
VS draw correlated Monte Carlo realizations of (VP, VS) pairs. Be careful not to
make the Monte Carlo (VP, VS) pairs perfectly correlated. Check that the Monte
Carlo simulations of (VP, VS) have about the same correlation as the original log
data.

(15) Derive the distributions of P-wave velocity and impedance for oil-saturated clean
sand. For this problem, the Well 2 data for clean sands represent brine-saturated
sands. Draw 1000 correlated Monte Carlo realizations of VP, VS, and density
from the log data. Make sure that the VP–VS and VP–density correlations are
honored. Propagate the simulated points through Gassmann’s relation to get 1000
realizations of VP, VS, and density for oil-saturated clean sands. Use the same
fluid properties as in Problem (7). Compare the histograms and pdfs of P-wave
velocity and impedance for the original brine-saturated clean sand, and the derived
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oil-saturated sands. Using simulations we can derive the pdfs and extend our
training data beyond the conditions encountered in the well.

(16) Classify Well 3 into different facies based on the training data from Well 2. The
facies in Well 2 are: clean sand, cemented sand, silty-sand1, silty-sand2, silty-
shale, and shale. Use a minimum Mahalanobis distance discriminant classification.
Gamma ray and VP will be the input attributes for the classification. Test the
classification error rate in the training data and then classify Well 3. Compare
the classification with one attribute (gamma ray alone) and with two attributes
(gamma ray and VP). Remember to normalize the gamma-ray values in Well 3 to be
within the range observed in the type-well 2. A color-coded cross-plot of gamma
ray versus VP will help in understanding qualitatively some of the causes for
misclassification.

(17) Estimate 2D pdfs of gamma ray and VP from the training data in Well 2 for the
different facies. Use the pdfs in Bayes classification of Well 3. Compare with the
classification obtained by discriminant analysis in Problem (16).

(18) Using the training data from Well 2 train a feed-forward back-propagation neural
network to classify the different facies. The neural net will have two inputs: gamma
ray and VP. The output will be the facies class. There are six facies classes: clean
sand, cemented sand, silty-sand1, silty-sand2, silty-shale, and shale. One way to
represent the desired net output is by a six-element indicator vector with ‘1’ in
the jth position representing the jth class, and zeros in all other positions. Thus
[0 1 0 0 0 0] would represent facies class 2. Use the trained neural net to classify the
data in Well 3. Compare with discriminant and Bayesian classification obtained
in Problems (16) and (17).

(19) Compute the 2D pdfs of AVO intercept, R(0), and gradient, G, for the follow-
ing pairs of cap-rock over reservoir rock: shale/clean sand (brine); shale/clean
sand (oil); shale/cemented sand (brine); shale/cemented sand (oil); shale/silty-
sand1 (brine); shale/silty-sand1 (oil); shale/silty-shale; shale/shale. The data for
the six different facies in Well 2 represent brine-saturated conditions. Derived
distributions for oil-saturated conditions will have to be obtained using Monte
Carlo simulation as in Problem (15). For each cap-rock/reservoir-rock pair, draw
1000 correlated Monte Carlo points of (VP, VS, ρ) for the cap-rock as well as the
reservoir rock. Propagate the simulated point through the equations for R(0) and
G (Chapter 4) to obtain 1000 simulated R(0)–G pairs. Estimate the pdfs from the
simulated point for each class.

(20) From the simulations of R(0) and G in Problem (19), compute the classification
error rate and confusion matrix using a leave-one-out jackknife (Chapter 3). Use
any classification method (discriminant, Bayesian, neural network). Combine all
the oil sands into one group, the brine sands into a second group and the silty-
shales and shales into a third group. Now compute the classification error rate
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and confusion matrix for the three groups instead of the original six groups. Do a
bootstrap analysis of the uncertainty of the error rate by drawing a large number
of bootstrap samples of the training data and computing classification error rates
for all of the bootstrap samples.

(21) Compute classification error rate and confusion matrix for different pairs of
attributes for the different facies classes: oil sands, brine sands, and shales (includ-
ing silty shales). Oil-sand distributions will have to be derived using Monte Carlo
simulations and fluid substitution. Compute the following different attribute sets:
P-impedance and S-impedance; AI–EI(30◦) (Chapter 4); λ – µ, P-impedance, S-
impedance, and density. For each attribute set estimate and compare the classifi-
cation confusion matrix for different classification methods.

7.3 Project

Objective

Using quantitative interpretation methods seismically characterize the reservoir. Create
maps of most likely facies and fluids. Estimate the uncertainties and create maps of
probability of occurrence for different lithofacies and pore fluids.

Reservoir information for North Sea oil field

The field to be investigated is located in the South Viking Graben in the North Sea. It
is of Paleocene age, and represents turbidite sand deposits. The sands were eroded off
the Scottish Mainland and East Shetland Platform, and transported to the “deep sea”
between Scotland and Norway, into the graben basins of the North Sea.

The sediments are today buried at a depth of about 2200 m in the area of study.
But they are still loosely consolidated sediments. The episodes of sand deposition
were separated by longer periods of high-stand shale deposition. Hence, the lithology
variation can be complex and variable both vertically and laterally in these systems.

Hydrocarbons were encountered in Well 2 and Well 5 in these sands, often referred
to as the Heimdal Formation sands. In Well 2, the Top Heimdal is located at a depth of
2153 m. The OWC (oil–water contact) in this well is at 2183 m. Hence, the oil column
is 30 m. The traveltime topography to the Top Heimdal horizon is given in the text file
Top Heimdal subset.txt in inline and cross-line coordinates. You will have to focus on
the depth zone of about 2100–2300 m in all wells.

Well logs, rock and fluid properties

When you start recognizing clusters of data, we recommend you to use Well 2 as a
type-well or reference well to create a database of training data. This is because of
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all the direct information available here, including cores and thin sections, and helium
porosity and permeability measurements. Wells 2 and 5 are the only wells with shear-
wave information (VS). If you choose to use VS as a parameter in your classification,
you should carry out VS prediction (based on VP) in the other wells, before you do
classification. The gamma-ray log is a very good clay indicator in the North Sea. So
VP and gamma ray together will work well in order to classify lithologies in the area.
Remember to normalize your gamma-ray values to be within the range observed in the
type-well. Alternatively, you can calculate clay content empirically from gamma-ray
values using the formula:

clay content (%) = (GRmax − GRlog)/(GRmax − GRmin)

This assumes a linear relationship between clay content and gamma ray, which is not
necessarily true. If you want you can use other empirical relations that exist in the liter-
ature. Clay content can also be calculated from relations between density and neutron
porosity; this can be done in Well 2, and the gamma-ray method can be controlled or
calibrated. The P-wave velocity log should be very reliable in all the wells available.
However, keep in mind that the P-wave velocity log will probably read the velocity of
mud-filtrate-invaded zones even in wells that encountered hydrocarbons. It would be
most reasonable to define your training data in a zone where we know we have brine,
so this invasion effect would be negligible. Check the shallow and deep saturations in
Well 2. By knowing what lithology we have from cores, we can check the invasion
effect by using rock diagnostics. The density log is available in all the wells, and can
be used in the classification procedure. The density logging tool is sensitive to rough
borehole surfaces. This is why we have to provide you with a corrected density log in
Well 2. It turns out that the cap-rock is a silty shale with thinly laminated beds that
cause reading errors. This effect has not been corrected for in other wells, so the density
log values there may not always be reliable. In practice, one would check the caliper
log to identify zones where the density tool is reliable or not. The density is needed
because we want to calculate acoustic impedance (AI), which is the product of velocity
and density. Porosity can be directly related to density by the following formula:

Porosity = (ρmatrix − ρlog)/(ρmatrix − ρfluid)

Parameters and rock properties that you need in your North Sea project

Effective pressure at reservoir depth ≈ 20 MPa or assuming hydrostatic pressure we
can calculate:

Peff = (ρ − ρfluid)g × depth

where g = 9.8 m/s2 is the acceleration due to gravity.
Temperature at reservoir depth = 77.2 ◦C.
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Fluid properties:
brine density 1.09 g/cm3

brine bulk modulus 2.8 GPa
oil density 0.78 g/cm3

oil gravity 32 API
GOR 64 Sm3/Sm3

Rock properties:
quartz mineral bulk modulus 36.8 GPa
quartz mineral shear modulus 44 GPa
clay bulk modulus 15 GPa
clay shear modulus 5 GPa

You will need to calculate the fluid bulk modulus of oil before you do pore-fluid
substitution. This can be done using Batzle–Wang relations. Mineral moduli will also
be needed in Gassmann fluid substitution modeling. Furthermore, they will be needed
in rock diagnostics.

Three-dimensional seismic information

Near- and far-offset partial stacks: sub-cubes from full 3D cubes in SEGY format. The
survey was processed for true amplitude recovery. The maximum fold is 30, which
corresponds to a maximum source receiver offset of approximately 2500 m. The near-
offset stack of 10 traces has an average incidence angle of 8◦ at the target level, while
the far-offset stack of the 10 last traces in each CDP gather has an average incidence
angle of 26◦.

inline: 1300–1500, every 2nd line (50 m spacing)
xline: 1500–2000, every 2nd line (50 m spacing)
time: 1500–2500 ms
total 25 351 traces for each sub-cube

xline number stored in bytes 21–26; inline number (multiplied by 1000) stored in bytes
41–44.

The file cdps line2.sgy contains NMO corrected pre-stack CDP gathers. Well 2 corre-
sponds to CDP 2232.

Well locations (inline and xline coordinates):
Well 1: inline 1448, xline 945 (outside the sub-cube)
Well 2: inline 1376, xline 1776 (inside)
Well 3: inline 1468, xline 1847 (inside)
Well 4: inline 1154, xline 1128 (outside)
Well 5: inline 1242, xline 1636 (outside)

The sub-cube is defined within inlines 1300–1500 and xlines 1500–2000.
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Tasks

From the well logs identify the different facies. You can use the six different facies
already identified in Well 2, or form your own facies clusters. Make VS predictions in
well with missing shear-wave sonics.

Derive distributions of VP, VS, and density for the different facies. Consider both
brine and hydrocarbon saturations for the sands.

Using simulations derive the distributions for different seismic attributes: R(0)–G,
P- and S-impedances, near- and far-offset elastic impedance, etc. Using the extended
training data perform a statistical analysis of classification success rates. Compute the
classification confusion matrix. How many classes should you keep? Should some of
the initial classes be grouped together?

Perform AVO analysis (using any commercially available or in-house software) of
the 2D line of CDP gathers and extract R(0) and G from the pre-stack seismic data.
Calibrate the R(0) and G to the log-derived R(0) and G distributions. Statistically classify
the seismically extracted R(0)–G attributes and estimate the most likely facies and fluids
along the 2D section. (As an alternative, already extracted R(0)–G attributes along the
Top Heimdal horizon are provided in a data file at the website.) Classify R(0)–G along
the horizon to estimate the most likely facies, and the probabilities of occurrence of
different facies. Make plots of the Top Heimdal showing the most likely oil sands.

Perform impedance inversion (using any commercially available or in-house soft-
ware) of the near- and far-offset partial stacks. Calibrate the inverted impedances to
log-derived near- and far-offset impedance. Statistically classify the cubes of near- and
far-offset impedances to get the probabilities of different facies, and the most likely
facies at each point within the cube. Make 3D iso-probability plots showing occurrence
of oil sands. Compute and plot vertically averaged probability of oil sands. As an alter-
native, already inverted near- and far-offset impedance cubes have been provided at the
website. These inverted impedance cubes can be used for statistical classification.

Estimate and model the spatial correlation of different facies from the experimental
variogram of facies indicators at the well-log locations. Perform geostatistical simula-
tions of different facies conditioned to the well facies indicators, and constrained by the
probabilities obtained from statistical classification of the seismic attributes. From the
multiple geostatistical simulations, estimate the joint spatial uncertainty of occurrence
of oil sands.
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acoustic impedance 104, 236, 278–295
see also rock physics templates

adiabatic modulus see fluid properties
Aki–Richards AVO approximation see AVO,

Aki–Richards approximation
American polarity standard see polarity
anisotropy, elastic 62, 183–185, 222–223, 248–251,

275
AVAZ 248
Brown and Korringa relations for fluid substitution

21
elastic impedance, anisotropic 248–251
Thomsen’s parameters 184, 248

aspect ratio see inclusion models
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layered media 188–189
scattering 188–190
see also Biot model; Bisq model; squirt model
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AVO 30, 180–230, 258–278, 306–312, 317–331

Aki–Richards approximation 182, 283
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classes 202–204
depth trends 227–229
fluid factor 215–216
inversion 201–202
parameters 200–201
Poisson reflectivity 214
pre-processing 191–195, 320
probabilistic 225–230
Shuey approximation 182, 265, 275, 276, 302, 309
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Batzle–Wang relations 19, 29
Bayes classification 147–159, 163, 277, 285, 294, 327

Bayes decision rule 149
confusion matrix 141
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Biot model 19, 43

Bisq model 44
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modified lower bound 13, 56, 61, 62, 63, 66, 103
modified upper bound 11, 58, 90
Reuss bound 5–6, 7, 8, 11, 22, 60, 62, 63, 70
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Brie equation 24
bright spot 169, 174–175
Brown and Korringa 21, 22
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case studies 70–81, 83–90, 96–101, 106–107,
258–316

Castagna 320, 329
see also empirical relations

cementation 11, 84, 92, 324
cementation trend 11–15, 43
constant-cement model 13, 58–59, 72, 80
contact-cement model 12, 44, 52, 57–58, 72, 88, 96,

98, 104
see also bounds, modified upper bound; diagenesis;

Jizba’s cemented shaly sand model
chemical compaction see diagenesis
classification 323–328

see also Bayes classification; facies interpretation;
statistical classification

clay 17, 30, 60–62
clay minerals 60
see also empirical relations; Han’s

velocity–porosity–clay relations; models, rock
physics

compaction 11, 13, 25, 28, 90–95, 306
confusion matrix 141, 145
constant-cement model 13, 58–59, 72, 80
constant-clay model 13, 52, 53, 62, 312
contact-cement model 12, 44, 52, 57–58, 72, 88, 96,
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contact models 44, 55
converted waves 245–248, 317
coordination number 55, 57, 92, 98
critical porosity 2, 9, 54, 60, 62, 63, 98, 306
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cross-plot analysis 101–107, 202–211, 319, 321, 326
cumulative distribution functions 113

deposition 8
depositional trends 11
see also sorting

depth trends 50, 90–95, 227–229, 306–312, 319,
323–325, 330

see also diagenesis
derived distributions 117, 124
diagenesis 1, 11, 28, 51–70, 90–95

diagenetic trends 9, 10, 11–15
pressure solution 11, 13, 92
see also cementation; compaction

dim spot 169, 174–175, 318
discriminant analysis 140–145, 163
dispersion 20–21

Biot model 19, 43
Bisq model 44
squirt model 20, 44
see also attenuation

drainage 23
drained condition 19
dry rock 19
Dvorkin–Gutierrez models

shaly sand model 53, 66
silty shale model 53, 61

effective-medium models see models, rock
physics

effective stress see pressure effects
elastic impedance see far-offset impedance
empirical relations

Batzle–Wang relations 19, 29
Brie equation 23
coordination number 55
Gardner relations 215
Greenberg–Castagna relations 38, 321
Han relations 2, 9–10, 11, 13, 30, 63
Raiga-Clemenceau relation 2, 11
Raymer–Hunt–Gardner relation 2, 11
Wyllie time average 2, 11
see also models, rock physics; VP–VS relations

entropy 132–135
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facies interpretation 50, 81–90, 125, 177, 258–316,
317, 323–328

far-offset impedance 30, 41, 104, 236–243, 278–295,
317

field examples see case studies
flat spot 175–176, 220, 324
flaw of averages 117–119
fluid factor 215–216
fluid properties 19, 28, 311

adiabatic modulus 19
Batzle–Wang relations 19, 29

isothermal modulus 19
see also saturation; suspension

fluid substitution 15–24, 42–43, 258–316, 321
Brie equation 24
Brown and Korringa relations 21, 22
Gassmann relations 3, 15–24, 34, 43, 64, 324

focusing see overburden effects
friable-sand model 52, 58, 60, 63, 72, 84, 88, 263,

312

Gardner relations 215
Gassmann 3, 15–24, 34, 43, 64, 324

see also fluid substitution
geostatistics 124, 125, 131–132, 233, 288–293, 328
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Han 2, 9–10, 11, 13, 30, 63
hard event 169, 171–172, 318
Hashin–Shtrikman bounds see bounds, elastic
Hertz–Mindlin theory 55, 95, 100, 103, 307, 324
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heuristic models 46
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imbibition 23
impedance inversion 195, 234–243
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inclusion models 2, 4, 15, 20, 44, 54
increasing-cement model 52
information theory 41, 132
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interference see tuning
intrinsic variability 126, 153
inversion 230–252

hybrid inversion 240
impedance inversion 234–243, 278–295

isostrain 5
isostress 5, 22
isothermal modulus (see fluid properties)

jackknife 141
Jizba’s cemented shaly sand model 53, 58, 67, 81

kernel density estimators 114, 128
Kuster and Toksöz model 44

lambda–mu analysis 30, 41, 104, 243–245
Lamé parameters 41, 243–245, 317
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lithofacies see facies interpretation
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Mahalanobis distance 140, 264, 272, 285, 297, 311
Markov chains 129, 130, 136
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98, 104
contact models 44, 55
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Gassmann relations 3, 15–24, 34, 43, 64, 324
granular-medium models 4, 51–70
Hertz–Mindlin model 55, 95, 100, 103, 307, 324
inclusion models 2, 4, 15, 20, 44, 54
increasing-cement model 52
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shales 60–62, 78, 79
see also soft sediment model
soft sediment model 52, 58, 60, 63, 72, 84
squirt model 20, 44
Yin–Marion shaly sand model 53, 64, 260
Yin–Marion silty shale model 53, 260
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modified lower bound see heuristic models
modified upper bound see heuristic models
Monte Carlo simulation 119, 124, 127, 136–138, 283,

309, 324
see also statistical rock physics

net-to-gross 179–180
neural networks 159–162, 163, 165
nonparametric density estimation 114, 115

O’Doherty–Anstey formula 188–189
overburden effects 187, 268, 275
overpressure 90, 221

see also pressure effects

partial saturation see saturation
patchy saturation 23
penny-shaped cracks see inclusion models
Poisson reflectivity 214
polarity 169

American polarity standard 170
European polarity standard 170

polarization attributes 217–218
pore-fluid properties (see fluid properties)
pore stiffness 3, 15
pressure effects 24–29, 34
pressure solution see diagenesis
principal component analysis 145–146

probability 113
frequentist 113
subjective 113
see also statistical rock physics

probability density functions 113–117, 147
probability mass function 113
P-to-S impedance see converted waves

Raiga-Clemenceau 2, 11
random variables 113
Raymer–Hunt–Gardner 2, 11
reflection coefficient 182, 185, 245, 248
residual gas 218–219, 246
resolution 172–173
Reuss see bounds, elastic
rock physics bottle-neck 39
rock physics diagnostics 50, 326
rock physics templates 50, 101–107, 251, 312–316,

317, 321, 322–323, 331
rock physics What ifs 42–43, 320–322

see also fluid substitution; lithology substitution
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Brie equation 24
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scattering 188–190
O’Doherty–Anstey formula 188–189

sedimentation 1, 11, 51–70
see also sorting

seismic modeling 252–256
shale–sand cross-over 91, 100, 170
shales 60–62, 78, 91

see also facies interpretation; models, rock physics
shaly sands 62–70, 78

see also facies interpretation; models, rock physics
shear attributes, value of 30–42, 119–123, 261
Shuey approximation see AVO, Shuey approximation
simulation, stochastic 131, 136–138
soft event 169, 171–172, 318
soft sediment model 52, 58, 60, 63, 72, 84
sorting

sorting trend 11–15, 54–57, 58, 75, 104
squirt model 20, 44
statistical classification 124, 130, 138–165

discriminant analysis 140–145
Bayesian classification 147–159
neural networks 159–162

statistical rock physics 111–167, 263–266, 269–274,
277–312, 321, 324, 325–328
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stratigraphic interpretation 177–179
see also facies interpretation

suspension 5, 8, 13, 60
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tuning 173–174, 179, 185–187, 268, 269, 275, 301,
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uncertainty, uses of 112
upscaling 129–130, 147
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physics
Voigt see bounds, elastic

VP–VS relations 34–38
see also empirical relations

Walther’s law 82, 127, 276
wavelet 169, 192, 234

see also polarity
What ifs see rock physics What ifs
workflows 123–124, 317–331
Wyllie time average 2, 11

Yin–Marion models 260
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Plate 1.1 Seismic P–P amplitude map over a submarine fan. The amplitudes are sensitive to lithofacies and
pore fluids, but the relation varies across the image because of the interplay of sedimentologic and diagenetic
influences. Blue indicates low amplitudes, yellow and red high amplitudes.
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Plate 1.30 Top left, logs penetrating a sandy turbidite sequence; top right, normal-incidence synthetics with a
50 Hz Ricker wavelet. Bottom: increasing water saturation Sw from 10% to 90% (oil API 35, GOR 200)
increases density and VP (left), giving both amplitude and traveltime changes (right).
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Plate 1.30 (cont.)
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Plate 1.31 Top: reducing porosity by 3% by increasing cement. Bottom: reducing porosity by 3% by going to
poor sorting.
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Plate 1.31 (cont.)

Plate 1.32 Decreasing pore pressure by 5 MPa (from Peff = 10 MPa to Peff = 15 MPa).
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Plate 2.9 Trend in VP versus porosity for sand–shale mix, using modified lower bound Hashin–Shtrikman
model. We observe the same V-shape as observed in data by Marion (1992); see Figure 2.8.

Plate 2.12 Example of velocity versus gamma-ray data for sands and silty shales, offshore Brazil. All the data
are from a relatively thin depth interval, yet the sands span a great range in velocities. Some of the sands are
completely unconsolidated whereas some are almost completely cemented. The local source of a carbonate
reef (calcite) has caused some of the sands to become well cemented.
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Plate 2.31 Lithofacies interpretation in
type-well, representing training data for
further classification.

Plate 2.42 Porosity versus depth
(left) and velocity versus depth
(right). Empirical porosity–depth
models for sands and shale have been
calibrated to North Sea data (the
calibration was done in a different
well than the data here), and then
Hertz–Mindlin theory has been
applied to calculate expected
velocity–depth trends. Deviations
from these unconsolidated trends can
be related to cementation (interval
2200–2500 m), overpressure
(interval 1900–2000 m), or other
factors like gas, borehole wash-outs,
tectonic uplifts, calcareous or
volcanic lithologies, etc.
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Plate 2.43 Velocity–porosity cross-plot for sands (red) and shales (blue) at different
depth levels in the North Sea, with superimposed paths assumed to correspond to
gradually increasing clay content, from clean sands (0%) to pure shales (100%).
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Plate 2.47 Acoustic impedance (AI) and VP/VS logs (left) and VP/VS vs. AI cross-plot (right). The logs are
color-coded based on the populations defined in the cross-plot domain, and the cross-plot points are
color-coded using the gamma-ray log (not shown). The interpretation is based on all available log data.
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Plate 2.48 Cross-plot of VP/VS vs. AI, with theoretical rock physics trends for pure shale and clean
compacted brine-filled quartz sand superimposed. The trends are plotted as functions of the total porosities.
The effects of different gas saturations are added below the brine-sand trend. The color-coding is the same as
in Plate 2.47.
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Plate 2.49 Rock physics templates for unconsolidated sands (top) and cemented sandstone
(bottom). Data from the same basin and same stratigraphic level, but with different burial depths
are superimposed on the templates. The fluid effects are completely different in the two different
situations, because the deeper sands have been cemented, unlike the shallower sands. (Color codes:
blue = shale, green = shaly sand, cyan = brine sand, red = oil sand, yellow = gas sand.)

Cambridge Books Online © Cambridge University Press, 2010



Well-sorted arenite, cemented Effective pressure = 20 MPa
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Plate 2.49 (cont.)

Plate 3.1 Iso-probability surface of 75% probability of oil-sand occurrence in a North Sea reservoir. The
lateral extent is about 12 km along the long dimension. The total vertical extent is about 100 m. The
probability estimates are obtained by combining well-log data, rock physics models, seismic impedance
inversions, and statistical pattern recognition. This is a typical result from a statistical rock physics workflow.
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Plate 3.4 Iso-surfaces of
trivariate nonparametric pdf
estimate for VP, VS, and density.
Blue indicates brine sands, and
red indicates gas sands.

Plate 3.10 A, “Classified” well logs (each depth level has been identified as belonging to a
particular facies). B, Acoustic and elastic (30◦) impedance calculated theoretically from well logs.
The color of each point corresponds to the facies to which it belongs. C, Probability density
function (pdf) contours generated with the data of B extended by Monte Carlo simulation.
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Plate 3.11 A, P-wave AVO attributes as defined by Shuey: R(0) (intercept) and G (gradient) extracted from
seismic data. The topography follows the traveltime interpretation of the seismic horizon along which the
reflectivity and gradient were estimated from AVO analyses of pre-stack data. B, Acoustic and elastic
impedance (at 30◦) volumes. These two attributes respond to the reservoir interval properties. The far-offset
elastic impedance implicitly contains shear-wave information. These were estimated by impedance inversion
of partial stacks.

Plate 3.12 A, Areas with more
probability of finding oil sands (red) and
shales (blue), resulting from the
Bayesian classification using the
P-wave AVO attributes, R(0) and G,
shown in Plate 3.11A. The topography
follows the interpretation (traveltime) of
the seismic horizon (amplitudes) used to
calculate the attributes. B,
Iso-probability surfaces resulting from
applying statistical classification
(nonparametric Bayesian) using the
seismic attributes acoustic and elastic
impedance, shown in Plate 3.11B.
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Plate 3.13 Top: A vertical section (at the same position) taken from different indicator stochastic simulation
realizations (top). The red colors correspond to the oil-sand facies. Bottom: One vertical section from the 3D
probability volume cube, showing probability of finding oil sands. These probabilities are obtained by
averaging over multiple geostatistical simulations. The yellow color indicates areas with higher probabilities.
The geostatistical simulation updates the seismically derived probability (e.g. Plate 3.12) by incorporating the
spatial correlation and small-scale variability seen in well logs.
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Plate 3.17 Discriminant analysis using minimum Mahalanobis distance. A, Scatter plot of
far-offset elastic impedance [EI(30o)] and acoustic impedance (AI), showing the training data
for three classes. B, Three different domains separated out by the discriminant function. A new
unclassified observation of EI–AI will be classified according to the region in which it lies. Even
in the training data all points will not be correctly classified because of overlap. We see that
some blue points fall within the red domain and vice versa. The misclassification error rate for
these data using the discriminant function plotted in B is about 13%.
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Plate 3.21 Class-conditioned pdf of R(0) and G for different facies based on well-log data. The blue
surface represents the pdf for brine sands, and the yellow surface represents the pdf for oil sands.
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Plate 3.33 Comparing discriminant analysis, Bayes’ rule and neural network classification results in a
type-well. The depth axis is annotated with sample number. Sample number 1 is located at about 2075 m
and sample number 1400 is located at about 2300 m.
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Plate 4.10 Inverted R(0) and G from a seismic line. Projection of a predominantly class III anomaly is
confined to the top of a local structural high.
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Plate 4.26 Elastic inversion results, AI (left) and VP/VS (right), for the 100-ms target window (Ødegård and
Avseth, 2004).

Cambridge Books Online © Cambridge University Press, 2010



Well sorted Arenite, compacted.

VP/VS

3
Color Key

Time

2.8

2.6

2.4

2.2

1.8

1.6

1.4
2000 3000 4000

Oil sand?

Shaly sand?

Shale

Brine sand,
22-28% por.?

5000 6000
Acoustic impedance (Al) (g/cm3 × m/s)

7000 8000 9000 10 000 11000

2

500

492

484

476

468

460

452

444

436

428

420

40%

30%

20%

10% porosity

Shale

Plate 4.27 Cross-plot of VP/VS vs. AI for the elastic inversion results shown in Plate 4.26, with the selected
rock physics template superimposed. A rough interpretation is indicated.

Plate 4.28 Simple seismic modeling exercise demonstrating the value of linking depositional facies to rock
physics properties. (1) A turbidite channel-levee complex is observed in real seismic data (near-offset stack).
(2) A plausible geologic interpretation in terms of seismic lithofacies (see Chapter 2 for definition of seismic
lithofacies) is represented by clean channel sands that are laterally confined by heterolithic levee deposits.
The channel axis is dim, whereas the levees are bright. Without good rock physics understanding, the seismic
signatures observed in the real data might have been interpreted as a shale-filled channel axis with adjacent
sand-rich levee deposits. However, rock physics analysis and seismic modeling show that the bright levees
can be represented by hard heterolithics (shaly sands), while the dim channel can be filled with clean sands.
This is an example from a Tertiary turbidite system in the North Sea.
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Plate 4.29 Seismic stack section intersecting a North Sea well (same well as in Plate 2.31), and
superimposed facies observation at well location (from top to base: facies V = olive green, tuff =
brown, facies IV = green, facies IIb-oil = orange, facies IIc-oil = red, facies III = light green,
facies IIa-brine = yellow, chalk = blue). Seismic interpretation combined with well-log facies and
rock physics analysis constrains the synthetic seismic modeling.
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Plate 5.2 Lithofacies interpretation in
type-well (Well 2). From upper left to
lower right: gamma ray, VP, density, and
VS logs. The zones that are not
interpreted have been left out because of
ambiguous and/or transitional
characteristics.
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Plate 5.12 Seismic lithofacies prediction based on AVO inversion along the Top Heimdal horizon.

Plate 5.14 AVO inversion results and seismic lithofacies prediction along the 2D seismic line
intersecting Well 2 (Figure 5.13).
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Plate 5.20 Probability maps of different grouped lithofacies.

Plate 5.21 Estimated probability maps of the various facies defined in this study.
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Plate 5.22 Seismic amplitude map showing the geological feature interpreted as a deep marine
turbidite sediment system. What does it mean quantitatively in terms of lithology and pore fluid?

Plate 5.24 Rock properties as a function of seismic parameters: acoustic impedance vs. VP/VS color-coded to
volume shale (left) and porosity (right). On the left the shalier points (purple and red) have both a lower
acoustic impedance and higher VP/VS ratio than the sands (green). The porosity is relatively constant (right).
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Plate 5.27 Acoustic (left) and elastic (right) impedance cubes (top) from inversion of near- and far-offset
partial stacks, and examples of vertical sections from the inverted 3D cubes. (The 3D cubes and vertical
sections have different color scales.)
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Plate 5.30 Facies classification from Mahalanobis linear distance method on a sub-cube of the seismic
acoustic and elastic impedance data set. Vertical numbering is time samples from top of the sub-cube. Sample
interval is 4 ms. Horizontal numbering refers to cross-line numbers in the original seismic data set. The facies
are color-coded. Facies 1 and 2 are shaly facies, 3 to 5 are brine sands and 6 to 8 are the corresponding oil
sands.

Plate 5.32 Horizontal time slices showing the conditional probabilities of occurrence of shales (left), brine
sands (center), and oil sands (right) within the seismic grid. Blue indicates low probability and yellows and
reds indicate high probabilities.
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Shales

Oil sands

Plate 5.33 Iso-probability surfaces (80% probability) showing probable spatial distribution of oil-sand bodies
(red) and the overlying shales (blue). Vertical dimension is 100 time samples at 4 ms per sample, and the
longer horizontal dimension is about 250 cross-lines at 50-m spacing for a total distance of about 12.5 km.

Plate 5.36 Simulated realizations of facies along different vertical sections. A geostatistical Markov–Bayes
indicator simulation algorithm was used for generating the realizations. As is often the case with stochastic
simulations, the realizations show more heterogeneity at finer spatial scales than present in the seismic
impedances used as conditioning data for the simulations.
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Plate 5.38 A depth-averaged probability map (estimated from near- and far-offset impedance interpretation)
of oil sands, with the location of the new well. The choice of location of the well was independent of the
probability maps from this analysis.
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Plate 5.40 Three-dimensional map (traveltime) of Grane field.
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Plate 5.41 Map of Grane field. The reservoir extent is based on conventional seismic interpretation.
Black lines indicate 2D seismic lines considered in this article. They intersect Well 1, Well 3, and
Well 4.

1700 ms
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Base
Balder

Top
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Top
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Well 1 (Type-well)

1 km  

Plate 5.44 Seismic stack section intersecting Well 1. Important seismic reflectors include Base
Balder, Top Heimdal, and Top Chalk. The lithofacies column in the type-well is superimposed.
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Plate 5.48 Seismic stack section intersecting Well 3. This well encountered thick reservoir sand
with oil saturation (top reflector indicated by arrow). The internal positive reflector beneath the top
is related to rock texture change. (CDP spacing is 25 m.)

Plate 5.56 Seismic section intersecting a well penetrating a turbiditic gas and oil field, offshore
West Africa. Gas was encountered in the upper sandy interval, whereas oil was found in the middle
sand interval. Brine was encountered in the lower sandy interval. (Compare with well logs in
Figure 5.57.)
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Plate 5.61 Calibration of AVO attributes extracted from pre-stack seismic data with modeled AVO scatter
plots in Figure 5.60. The black stars represent the AVO attributes estimated from the real data (i.e., cross-plot
of each sample in upper R(0) versus lower G section), while the colored dots represent the modeled AVO
responses for the various interface categories. The modeled heterolithics (i.e., shaly sands) and shales in
green and blue, respectively, represent the modeled background trend, which has been calibrated with the
background trend in the real data.
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Plate 5.62 The most likely lithology and pore fluid along the seismic section in Plate 5.56.
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Plate 5.63 AI and VP/VS logs (right) and VP/VS vs. AI cross-plot (left). The logs are color-coded based on
the populations defined in the cross-plot domain. The interpretation is based on all available log data.
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Plate 5.64 Cross-section of acoustic impedance estimated from pre-stack seismic inversion.
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Plate 5.65 Cross-section of VP/VS estimated from pre-stack seismic inversion.

Plate 5.66 Cross-plot of acoustic impedance versus VP/VS derived from seismic data (Plates 5.64 and 5.65)
superimposed onto the same RPT that was validated with well-log data (Plate 5.63). Note that we only
include data within the target zone (1650–1850 ms).
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Plate 5.67 Vertical section of RPT classified lithofacies across the Grane field. We observe the good quality
“sands” (Sands 1 and Sands 2) in the central part, with poorer quality sands and/or silty shales (Sands 3) to
the sides. The sands are capped by massive shales. We also detect the presence of a thin shale layer between
the base of the reservoir sands and underlying chalk deposits. Some marls within the chalks have been
erroneously classified as Sands 2.

Plate 5.68 Time-slice map view of RPT classified lithofacies (at 1780 ms) showing the lateral distribution of
various facies.
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Plate 6.2 Workflow for RPT analysis.

Plate 6.3 Overview of the workflow scheme for AVO classification constrained by rock physics depth trends.
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Logs + rock physics + geology

Monte Carlo – probability distributions

Seismic inversions – near- and far-offset attributes

Integrated statistical classification – facies probability maps

Plate 6.4 Schematic workflow for seismic reservoir characterization constrained by statistical rock physics
and facies analysis of well-log data.

Shale
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Plate 6.5 3D visualization of iso-probable surfaces (Mukerji et al., 2001).
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