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Preface

The world is losing farmland at a rapid rate to erosion and chemical depletion of
soils, while the world’s population is increasing tremendously. Plant scientists are
challenged with the development of sustainable production systems for food, feed,
fuel, and value-added bioproducts. The natural sources for bioactive natural prod-
ucts, which support industries from nutrition to flavors and health care, are subject
to unfavorable weather conditions, insect infestations, poor quality of soil, and
sociopolitical instabilities. Therefore, this volume assesses the current status of bio-
technological processes for the production of valuable plant natural products.

What are the advantages attributed to a biotechnological production of natural
products that justify such an effort?

(i) Legal status of “natural” as opposed to “artificial” or “synthetic.”
(ii) If defined product is desired, enzymes with exquisite catalytic specificity can
be employed.
(iii) If chemical diversity is desired, promiscuous enzymes can be employed.
(iv) Optimized conditions lead to high reliability and productivity.
(v) Multistep reactions, which are difficult or impossible to achieve in aqueous
solutions by chemical means, proceed under mild conditions.

The enormous chemical diversity among plant natural products is reflected in
distinct chemical properties and biological activities. For this book, we have assem-
bled a cast of authors that cover a rather broad spectrum of research to illustrate the
potential for harnessing the diversity of natural products through biotechnological
approaches. Chapters on isoprenoids, polyphenols, alkaloids, and phenylpropanoids
are included, with a special emphasis on economically important targets such as
vanillin, caffeine, and morphine. Furthermore, two chapters discuss the legal frame-
work for natural products and their quality control, with authenticity and quality
assurance in the European Union serving as an example.

The legislation that determines the correct usage of the term “natural” in labeling
consumer goods is quite complex, with several pitfalls, and has already led to sev-
eral lawsuits in member countries of the European Union, especially in Germany.
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We hope this book will be a resource for students, teachers, and researchers with
interests in the fascinating field of natural product biotechnology.

The editors would like to express their sincere thanks to the esteemed colleagues
who contributed to this compilation of eleven chapters and to the publisher for
administrative support and patience during the writing and review process.
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Biotechnological Production of Selected
Natural Products



Vanilla: The Most Popular Flavour

Nethaji J. Gallage and Birger Lindberg Mgller

Abbreviations

°C Celsius

cm  Centimetre

DNA Deoxyribonucleic acid
ER  Endoplasmic reticulum
EU  European Union

g Gram

h Hour

kg Kilogram
1 Liter

m Meter

mM  Millimolar
sp. Species

UDP Uridine diphosphate glucose
US$  United States dollar

1.1 Introduction

Vanilla is a universally appreciated global delicacy and probably the most popular
plant-derived flavour in the world. Vanilla flavour is obtained from the seedpods of
the cultivated orchid, Vanilla planifolia and from several other vanilla species.
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Vanilla pods, vanilla extracts (the isolated extract from vanilla pods) and vanillin
(the main flavour of the vanilla extract) constitute a multimillion-dollar industry.

The history of human utilization of vanilla flavour began with the Aztecs, in cur-
rent day Mexico, during the 1300s. The Aztecs utilized the seedpods from vanilla
orchids for flavour and fragrance. The earliest documented consumption of vanilla
pods dates back to 1520, when the Spanish arrived in Mexico. The colonists were
exposed to the Aztecs’ use of vanilla to flavour a drink, which is considered the
ancestor of hot chocolate. The Spanish were impressed by the flavour of vanilla and
transported the pods back to Spain. Subsequently, the demand for vanilla pods in
Spain, France and the rest of Europe increased, and this demand led to domestica-
tion of the vanilla orchid, V. planifolia [1].

Despite the popularity of the flavour, there is still a great deal of uncertainty
regarding the biology of vanilla. Natural pollinators of the vanilla orchid species are
not well investigated [2, 3]. Symbiosis with fungi is required for seed germination
and growth, but the interactions are poorly understood [4]. The question of why
some Vanilla species produce aromatic fleshy pods while other Vanilla species do
not is unclear, and it is unknown why some Vanilla species rarely flower in cultiva-
tion or even in their native habitat [5]. Moreover, little is known of pod and seed
dispersal mechanisms, and the taxonomy and systematics of the Vanilla genus is in
a state of ambiguity [6]. The biosynthesis pathway of vanillin (4-hydroxy-3-
methoxybenzaldehyde), the main flavour component of vanilla extract [7], has
remained elusive for decades in spite of dedicated efforts. In 2014, an enzyme des-
ignated VpVAN was isolated from V. planifolia and shown to efficiently convert
ferulic acid and ferulic acid glucoside into vanillin and vanillin glucoside, respec-
tively [8] (see also Chap. 9 of this book).

In contrary to vanilla orchid biology, bioengineering approaches to biosynthesis
of vanillin in microorganisms and its status as a ‘natural’ ingredient are in the spot-
light. In this book chapter, we review our current understanding of the vanilla
plants, vanilla flavour, and vanillin biosynthesis in the vanilla orchid and sum-
marize emerging bioengineering possibilities of vanillin biosynthesis in
microorganisms.

1.2 Vanilla Orchids, Vanilla Flowers and the Pod

Vanilla plants are climbing orchids [6, 9]. They belong to the Orchidaceae tamily, one
of the largest families of flowering plants. However, more detailed classification of
vanilla plants into tribes, subfamilies and genera has proven to be challenging. The
increased use of DNA-based systematic sequence studies has governed the latest clas-
sification of the vanilla species. According to these studies, the vanilla orchid belongs
to the genus Vanilla, tribe Vanilleae, subfamily Vanilloideae and family Orchidaceae
[6, 10-12]. In the genus of Vanilla there are about 110 vanilla species, among which
there are three species known to be important for commercial cultivation and for local
low scale vanilla farmers: V. planifolia, V. tahitensis and V. pompona. V. planifolia
originates in current day Mexico and is the most valued of these three species because
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Fig. 1.1 V. planifolia climbing orchids that produce beautiful yellow flowers when the vine is
about 4-5 m long. Pods in this picture are only a few weeks old (Photo was taken at CIRAD shade
houses, at La Reunion. Photo credit: Nethaji J. Gallage)

of its vanilla flavour quality. V. planifolia is widely cultivated and provides 95% of the
world vanilla production [9]. V. planifolia differs very little from its ancestors in the
wild. The vanilla plants that are grown in La Reunion, Madagascar, Mauritius and
Seychelles are derived from a single cutting of V. planifolia. Stem cutting propagation
results in a lack of genetic variation in vanilla plants [9].

The orchid, V. planifolia is a climbing perennial vine with a large, green, fleshy
and succulent stem that is photosynthetic. V. planifolia has oblong, smooth, bright
green leaves and adventitious aerial roots that grow opposite of each leaf, aiding
lateral support. The roots are associated with endotrophic mycorrhiza [13]. This
symbiosis provides the fungus access to the sugars produced by V. planifolia through
photosynthesis and in return, vanilla is able to get water and minerals through the
fungal mycelium. This particular association involves ‘endomycorrhizae‘- fungi
whose hyphae actually enter the plant’s root’s cell membrane [4].

When the V. planifolia vine is approximately 4-5 m long, the plant starts flower-
ing. The vanilla flowers are yellow, bisexual and usually sprout towards the top of
the plant (Fig. 1.1). Once opened, these flowers only survive for 24 h. Although
flowers are bisexual, they are not able to self-pollinate. Pollination requires outside
action either by transferring pollen from an anther to the stigma using a soft tiny
paintbrush or by lifting a thin-membrane that prevents self-fertilization, and subse-
quently pressing the flower’s anther towards the stigma [14]. The lack of specific
flower pollinators was a key issue encountered when introducing V. planifolia to the
rest of the world from Mexico. Vanilla’s pollen is also largely inaccessible to most
pollinating insects due to the shape of the flower [14]. In nature, flowers are polli-
nated by small bees and hummingbirds that are capable of penetrating the tough
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Fig. 1.2 Transverse picture of vanilla pod disc, photo is taken with Canon EF 200 mm f/2.8 L
macro lens (Photo credit: Nethaji J Gallage)

membrane that separates the plant’s pistil and stamen, although very little scientific
information is available on this subject. In 1841, Edmond Albius had developed an
artificial pollination technique of vanilla flowers by using bamboo sticks.
Additionally, there are records by Charles Morren, in 1836, of the artificial pollina-
tion of vanilla flowers. Even today, hand pollination techniques are used for the
flower pollination in vanilla production, and these techniques have not developed
much further since 1841 [14, 15].

Botanically, the vanilla pod is a seed capsule, but is generally referred to as a
vanilla bean or vanilla pod. The pod reaches its full size 10—15 weeks after pollina-
tion. Fully matured pods are about 15 cm long and are pale green to yellow in
color. A transverse section of a mature green vanilla pod is triangular, containing a
central cavity comprising numerous black seeds. From the outer part to the inner
cavity, the pod consists of the following tissues: epicarp, mesocarp and endocarp.
The mesocarp fills the majority of the fruit volume and consists of parenchyma
cells. The cavity of the pod contains black seeds that are attached to a long narrow
funicle [16] (Fig. 1.2).

Vanilla pods are harvested when they are 89 months old, before the pods begin
to split from the end and become yellow in color. The immature green vanilla pods
are almost odorless as the key flavour components are stored as glucosides. Freshly
harvested pods are processed by curing to stop the natural vegetative process. This
induces enzymes responsible for the formation of aromatic flavour constituents and
prevents microbial growth, thus enabling long-term preservation of vanilla pods [9].
Curing methods can be different according to the country in which the plants are
cultivated. As a result, the curing process has a major influence on the variety, qual-
ity and aromatic profile of the pods that are traded [17].
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1.3  When the Green Becomes Black - Vanilla Pod Curing

In general, the curing process includes wilting, sweating, drying and conditioning
of the pod. The main purpose of wilting is to stop the vegetative growth of the pod
after harvest and to disrupt the cell structures. This process is also referred to as
kilning, as it ceases the respiratory function of the plant tissues and promotes dis-
ruption of cell membranes thus creating better conditions for contact between cer-
tain metabolites and enzymes that release aroma compounds typically by catalyzing
hydrolysis of a glycosidic linkage. Methods used to initiate kilning are sun drying,
freezing, hot water, and ethylene gas treatments [18].

Sweating is the process by which the pod temperature is raised; moisture is
initially allowed to escape to prevent harmful fermentation by microbial spoilage,
but enough moisture is retained to promote enzymatic reactions. This is docu-
mented to be the most crucial step of the curing process, as most enzymes that are
responsible for flavour and aroma development are active at this stage and are
determinants of the quality of the cured pods. The sweating process is usually car-
ried out for seven to ten days, and at the end of the process pods obtain a charac-
teristic brown chocolate color due to the oxidation of polyphenolic compounds
[13]. The pods are then dried at room temperature to reduce their moisture content
so microbial spoilage can be avoided. The lower moisture content also reduces
undesired enzymatic activities [9].

Conditioning/packaging is the last step of the curing process. Pods are placed in
closed boxes for one to several months to initiate various biochemical reactions
such as esterification, etherification and oxidative degradation etc., which produce
the final high quality aromatic composition. After the curing process, the pod in
general consists of sugars, proteins, free amino acids, fibers, cellulose, organic
acids, oil, wax, resin, gum, pigments, minerals, volatile aromatics and essential oils.
As mentioned, the most abundant aromatic compound in the vanilla extract is vanil-
lin, followed by p-hydroxybenzadehyde, p-hydroxybenzoic acid, vanillic acid,
p-hydroxybenzyl alcohol and vanillyl alcohol [18-20]. The ratio between these
main flavour compounds in the pod is known to determine the quality and the final
flavour of the vanilla pod and the vanilla extract. In addition to the curing process,
the chemical constituents of the vanilla pod and its flavour are also determined by
various other factors such as plant species, growing conditions, soil nutrition and
maturity level at harvest [19].

Madagascar is the largest vanilla pod producer in the world. Madagascar, together
with La Réunion islands, account for nearly 75% of the vanilla pod market. Vanilla
pods from Madagascar and other islands east of Africa (La Réunion, Mauritius, the
Comoros and the Seychelles) have the status ‘Bourbon’, and are considered the best
vanilla pods in the current market. The vanilla growers in this region also produce
the majority of the world’s natural vanilla extract, which is an alcohol extract from
matured and cured vanilla pods. The vanilla extract isolated from the vanilla pods
includes more than 200 aromatic compounds [21].
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1.4  Vanillin Is the Key Flavour Compound of the Complex
Vanilla Extract

Often the terms ‘vanilla’ and ‘vanillin’ are confused in non-scientific communica-
tions. The term ‘vanilla’ refers to the complete extract of the vanilla pod and, as
stated above, is known to include more than 200 different flavour compounds.
However, the term vanilla is commonly used also to describe vanilla plants, vanilla
pods and vanilla flavour. Vanillin is the main flavour compound in vanilla extract.
The chemical structure of vanillin is quite simple and known to give the character-
istic flavour and aroma that we associate with vanilla extracts [7].

Vanillin (4-hydroxy-3-methoxybenzaldehyde) (Fig. 1.3) is the most abundant
compound in the cured vanilla pod and corresponds to 2.5-4.5% of the dry weight
[7]. The French chemist Theodore Nicolas Gobley was able to isolate vanillin as the
main flavour constituent of vanilla pod extracts in 1858. He also elucidated the
chemical structure of vanillin [22]. Recent studies have demonstrated that vanillin
starts to accumulate in a free or glycosylated form from the 15th week and contin-
ues to accumulate until the 30th week after pollination [23]. Vanillin is an aldehyde.
The aldehyde group is very reactive, forming Schiff bases with, for example, free
amino groups present on the side of the protein-bound lysine residues. This is the
reason it is toxic to living organisms in high concentrations [24]. Vanilla plants store
vanillin almost entirely in the glucose-conjugated form, vanillin-p-D-glucoside
(commonly referred to as vanillin glucoside or glucovanillin) (see also Chap. 9 of
this book). Vanillin glucoside can account for up to 15% of the vanilla pod dry
weight. The highest concentration of vanillin glucoside is reached in the inner part
of the pod, including mesocarp and placenta, 6 months after pollination. Small
amounts of vanillin glucoside can also be found in the papillae of the pod. There is
no vanillin found in the black vanilla seeds and interestingly, black vanilla seeds are
free of aroma [16] (Fig. 1.4).

Currently, the annual worldwide consumption of vanilla pods, vanilla extract
and vanillin is over 18,000,000 kg [25]. However, due to the slow growth of the
orchids and the low concentration of vanillin in the vanilla pods (about 2% of the
dry weight of cured vanilla beans), only about 0.25% of consumed vanillin origi-
nates from vanilla pods [26]. The production of vanilla beans and the isolation of
vanillin from vanilla pods is a laborious and costly process [7]. Production of 1 kg

Fig. 1.3 Vanillin (4-hydroxy-3-methoxybenzaldehyde) H (0]

OCH,

OH
vanillin
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Fig. 1.4 The most popular flavour (Photo credit: Nethaji J. Gallage)

of vanillin requires approximately 500 kg of vanilla pods, corresponding to the
pollination of approximately 40,000 vanilla orchid flowers. The market cost of
natural vanillin derived from vanilla pods is therefore high and fluctuates because
of the unpredictable availability of vanilla pods. Crop yield is tightly associated
with weather conditions, the incidence of diseases, as well as local and interna-
tional political and economic issues. Vanillin extracted from vanilla pods has a
market price varying from around US$ 1200 kg~! to more than US$ 4000 kg~' [27].
Thus, the increasing global demand for natural vanilla flavour appeals other sources
of vanillin [28].

Currently the main source of vanillin is chemical synthesis, while, as men-
tioned, less than 1% is derived from the vanilla pod industry. Less than 20 years
after its initial isolation, synthetically produced vanillin was marketed. Nowadays,
guaiacol and lignin are favoured starting materials for synthetic vanillin. Synthetic
vanillin is able to meet the global market demands, and it is also rather cheap with
a market price below US$ 15 kg~! [1]. Chemical synthesis of vanillin suffers from
serious drawbacks e.g. the use of hazardous chemicals. Chemical synthesis of van-
illin via lignin has been calculated to require safe removal of 160 kg of waste per
1 kg of vanillin obtained. As a consequence, concerns are increasing regarding the
negative environmental impact caused by chemical synthesis of vanillin [29].
Nevertheless, at present a substantial amount of synthetic vanillin is still derived
from lignin [30]. Recent advances in biotechnology have allowed an alternative
method to challenge the chemical synthesis of vanillin, namely bioengineering of
natural vanillin.
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1.5 How Does the Vanilla Plant Form Vanillin?

As the main constituent of the vanilla extract and the world’s most popular flavour,
vanillin is a compound of major interest to the flavour and fragrance industry.
Although there are many research efforts and resources committed to engineering
various microorganisms for vanillin biosynthesis, limited attention has been given
to understanding the most efficient vanillin synthesizing machinery that is found in
nature, namely the vanilla orchid. The vanilla orchid produces vanillin in the pods
in such high concentrations that it cannot be compared to any other known biologi-
cal system in nature.

This simple molecule, 4-hydroxy-3-methoxy benzaldehyde, was speculated to
be formed through the operation of a multitude of pathways in the vanilla orchid. It
was clear that vanillin biosynthesis in the vanilla pod proceeds from the amino acid
phenylalanine and includes phenylpropanoid intermediates [31]. Vanillin glucoside
and p-hydroxybenzaldehyde glucoside are the two most abundant components that
produce aroma-active compounds upon hydrolysis in mature vanilla pods (see also
Chap. 9 of this book). These compounds are structurally similar. Accordingly, a
biosynthetic relationship between the formation of these two compounds had been
hypothesized in the early literature, with p-hydroxybenzaldehyde as a putative pre-
cursor for vanillin glucoside biosynthesis [32-34]. Recently, the involvement of
p-hydroxybenzaldehyde in vanillin biosynthesis has been ruled out by Gallage
et al., who demonstrated that incubation with [*C]-p-hydroxybenzaldehyde did not
result in ['*C]-vanillin glucoside formation in the 6 month old vanilla pods after pol-
lination [8]. This work also established a route to vanillin biosynthesis in the pod,
namely via C3 side chain shorting of ferulic acid or its glucoside (Fig. 1.5). This
argument was first brought forward by Zenk in 1965, who carried out radioactive
precursor studies using ['*C]-ferulic acid and observed efficient conversion of
[**C]-ferulic acid to [**C]-vanillin glucoside [31]. The conclusions of Zenk were
confirmed by Negishi et al., who carried out a similar study employing radioactive
precursors [35].

Ferulic acid and ferulic acid glucoside are ubiquitous phenylpropanoids that are
derived from cinnamic acid. Ferulic acid is present as a constituent of the plant cell
wall polymers. It is a component of lignocelluloses, where it confers rigidity to the
cell wall by making the crosslink between polysaccharides and lignin. Ferulic acid
is highly reactive and is often linked to a variety of metabolites including sugars as
glycosidic conjugates, different esters and amides, thus forming a broad range of
natural products [36]. Ferulic acid is formed by O-methylation of caffeic acid, and
caffeic acid is formed from phenylalanine in approximately six enzyme catalysed
steps. When produced from phenylalanine, the first intermediate is cinnamic acid,
and the reaction is catalyzed by phenylalanine ammonia lyase (PAL) [37].
Subsequently, cinnamic acid 4-hydroxylase (C4H) [38] catalyzes the hydroxyl-
ation of cinnamic acid at the 4-position, resulting in the formation of p-coumaric
acid. p-Coumaric acid-3-hydroxylase (C3H) [39] catalyzes hydroxylation of
p-coumaric acid at the 3 position, resulting in the formation of caffeic acid.
C3-hydroxylation step is shown to be proceeding via, e.g. quinate or shikimate
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esters. 4-Hydroxycinnamoyl-CoA ligase (4CL) and hydroxycinnamoyltransferase
(HCT) are involved in quinate and shikimate ester formation [39]. Caffeic acid

could, in principle, be O-methylated by an O-methyltransferase (OMT) [40] to
afford ferulic acid.

The key enzyme that is involved in catalyzing C3 side chain shorting of ferulic
acid or its glucoside in the pods of V. planifolia was recently identified by Gallage
et al.,, [8]. A single enzyme named vanillin synthase (VpVAN) was characterized to
catalyze the double carbon bond cleavage of ferulic acid and ferulic acid glucoside
to vanillin and vanillin glucoside, respectively. VpVAN was isolated from V. plani-
Jolia and functionally characterized in vitro, in yeast and in planta. A route to vanil-
lin biosynthesis mediated by VpVAN is illustrated in Fig. 1.5. VpVAN belongs to
the enzyme family of cysteine proteases [8]. In a recent paper including Hailian
Yang, Daphna Havkin-Frenkel and Richard A. Dixon as authors, the role of VpVAN
in vanillin biosynthesis was questioned [41].

Cysteine proteases are known to possess versatile physiological functions and do
not have well-defined substrate specificities. In general, cysteine proteases are
expressed as a pre-protein, with a N-terminal ER-targeting signal peptide being part
of a pro-peptide domain comprising 130-160 residues [42]. To form the mature
cysteine-proteinases, the pro-peptide sequence is removed either by a processing
enzyme or by auto-catalytical processing [43]. The VpVAN protein has not shown
any evidence of autocatalytic processing. This indicates that the removal of the pro-
peptide requires the action of a separate processing enzyme [8].

As vanillin is almost entirely stored as vanillin glucoside, it is apparent that the
glycosylation step in the vanilla pod is highly efficient (see also Chap. 9 of this
book). The glycosylation step has not been explored in detail, and it is not known at
which step glucose incorporation occurs in the course of vanillin glucoside biosyn-
thesis. Gallage et al., demonstrated, that VpUGT72E!1 possesses vanillin-specific
glycosyltransferase activity. However, the glycosylation step in the vanillin biosyn-
thesis machinery needs further study [8]. The enzyme that catalyses the reverse
reaction hydrolysing vanillin glucoside to vanillin, vanillin-p-glucosidase, has pre-
viously been characterized [44].

1.6  Flavour Synthesis by Brewing - Bioengineering
of Vanillin Biosynthesis

The increasing global demand for natural vanilla flavour can no longer be met with
pods of the vanilla orchid as the sole source. This is why the market for vanillin is
increasing [1]. The major source of marketed vanillin originates from chemical syn-
thesis. In recent years, demand from consumers for natural products has increased.
Though the approved use of the attribute ‘natural’ is not well defined and not evident
to most consumers [45], many consumers equate the term “natural” with food quality
and food safety and maybe also with enhanced environmental friendliness [46] (see
also Chap. 11 of this book). Accordingly, and guided by novel technologies, research
on bioengineering of microorganisms for flavour production is rapidly growing.
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Vanillin, obtained by bioengineered microorganisms by transforming a range of
different substrates into vanillin, is entitled to the label ‘natural vanillin® according
to US and European legislation (EC Directive 88/388, OJ no. L 184 15/07/88) [47].
This affords significantly increased sales in the range of US$1000 kg~! for the bio-
engineered vanillin and enables the vanillin produced by bioengineering to compete
with the chemically synthesized vanillin that currently dominates the market [48].
Several of the bioengineering approaches have been successful, and biotechnologi-
cally derived vanillin products have been available on the market for more than a
decade (Fig. 1.6). Rhovanil produced by Solvay (previously known as Rhodia) was
the first commercially available fermentation-derived vanillin product and was
obtained by bioconversion of ferulic acid [49]. Ex-tumeric vanillin is marketed by
De Monchy Aromatics and produced from curcumin [50]. Sense Capture Vanillin is
obtained by bioconversion of eugenol and marketed by Mane [51]. De novo synthe-
sized bio-vanillin using glucose as a precursor was commercialized in 2014 by
Evolva A/S and International Flavors and Fragrances (IFF) [52].

Fermentation and bioengineering have been used to produce beers, wine, cheese,
food colorants and pharmaceuticals for centuries. Vanillin has now been added to
that list. Most bioengineering approaches for the synthesis of vanillin are based on
the bioconversion of certain natural substances such as lignin, ferulic acid, eugenol
and iso-eugenol etc., using microorganisms such as yeast, fungi and bacteria as

- Vanilla pods
Ricebran Q
H5CO. = Curing
? OH and
&, Extractiol
H S r‘;:;%ny“'% v

SOLVAY "th”% by
Ferulic acid EM
Pty f Us f
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Fig. 1.6 Different commercial routes to natural vanillin [1] (Figure reproduced with permission
from Molecular Plant)
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production hosts by fermentation [53-55]. Microorganisms that exhibit rapid
growth rates and are amenable to molecular genetics are obviously preferred.
Further bioengineering has focused on increasing tolerance to high concentrations
of both product and substrate. Microorganisms and fermentation ingredients, which
have been given GRAS status, are preferred. GRAS is an acronym for Generally
Recognized As Safe under the regulations of the US Food and Drug Administration
(FDA) [56].

Microorganisms that are able to metabolize a range of different precursors into
vanillin have been subjected to further bioengineering to circumvent remaining
pathway bottlenecks and other drawbacks. Bioengineering includes the use of tools
such as genetic engineering, enzyme optimization and cost-efficient downstream
processing. However, several major yet common issues have challenged the suc-
cessful use of microorganisms for efficient bioconversion of various substrates into
vanillin. Bottlenecks include: (1) cytotoxicity of the flavour products obtained and
of their precursors; (2) inefficient metabolic flow; and (3) costly downstream pro-
cessing methods due to the physicochemical properties of the substrate and the
product. The increasing knowledge of enzymes that are involved in the bioconver-
sion of ferulic acid and other substrates into vanillin, as well as identification and
characterization of the corresponding genes, offers new opportunities for more tar-
geted bioengineering of microorganisms for vanillin production. In the following
sections, the bioconversion and bioengineering of vanillin by microorganisms (bac-
teria, fungi and yeast) are presented and commented upon, with emphasis on the
major issues encountered and the solutions obtained.

1.7 Biotechnology-Based Production of Vanillin
from Eugenol, Iso-Eugenol, Ferulic Acid and Glucose

Availability of the Substrate In general, bioengineering of vanillin in microorgan-
isms is carried out using precursors that are structurally similar to vanillin e.g. eugenol
(2-methoxy-4-(2-propenyl)-phenol), iso-eugenol (2-methoxy-4-(1-propenyl)-phenol)
or ferulic acid (4-hydroxy-3-methoxy-cinnamic acid). These compounds are also rela-
tively cheap and easily available. Ferulic acid is one of the most abundant hydroxycin-
namic acid derived products, present as a constituent of the plant cell wall and as a
lignin monomer precursor [57]. Ferulic acid is widely distributed throughout the plant
kingdom and was recently shown to serve an additional function as the main precursor
for vanillin production in the vanilla orchid [8]. The main source of the ferulic acid for
bioengineered vanillin production is agricultural waste such as sugar beet, barley and
wheat bran. Ferulic acid is ester-linked to pectic side chains in beet and ether-linked
to lignin in cereals [57]. Eugenol and iso-eugenol are main components of natural
essential oils of clove trees [58]. The pure eugenol and iso-eugenol substrates are
inexpensive and cost no more than US$ 5 kg~ [59].

To reach a higher degree of sustainability, much effort has been focused on the
use of agricultural waste as the main precursor for bioengineering. Several studies
have attempted to remove ferulic acid from plant cell wall materials enzymatically
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[60-62]. Feruloyl esterases are enzymes that are able to hydrolyze the ester bonds
by which ferulic acid is attached to the cell wall polymers, and can be isolated from
a wide range of fungi, yeast and bacteria [63]. Two feruloyl esterases, FaeA and
FaeB, isolated from Aspergillus niger, are able to release ferulic acid from industrial
by-products such as wheat straw, coffee pulp, apple core, maize bran, maize fiber
etc.[64]. A. niger strain 1-1472 has been used to release ferulic acid from auto-
claved maize bran [65].

Enzymatic hydrolysis of cell walls using a combination of commercial
polysaccharide-degrading enzymes and feruloyl esterase has also been investigated
[66]. Currently, these methods are not economically feasible as the commercially
available polysaccharide-degrading enzymes are costly and would result in signifi-
cantly increased production costs of vanillin. Ferulic acid can also be released from
plant cell walls by alkaline treatment at high temperatures (85-100°C) [67, 68].
This kind of chemical release of ferulic acid would not be considered natural pro-
cessing according to EU regulations, but would comply with registration as “natu-
ral” according to US legislation [47, 67].

Today, the ferulic acid used for commercial production of natural vanillin is
mainly obtained as a by-product in the production of rice bran oil. The ferulic acid
is liberated from the rice bran by enzymatic treatment to comply with the regula-
tions for being classified as a natural product. The cost of naturally extracted ferulic
acid is relatively high with a price around US$ 180 kg~! [69].

The cost of glucose can be as low as US$ 0.30 kg='. It is the cheapest substrate
used in vanillin production by bioengineering to date [53]. It is also valuable as a
cheap primary energy source for the production strain. Moreover, glucose is a more
attractive substrate in comparison to eugenol, ferulic acid and other phenolic com-
pounds, because it is not toxic to the host microorganisms.

Host Microorganisms One of the key decisions in developing a vanillin bioengi-
neering process is to choose a host strain that is highly tolerant to both the substrate
and the product. Vanillin is rarely accumulated in high concentrations in living cells
as it is toxic. In the vanilla plants, vanillin is glycosylated to vanillin glucoside while
in many other living organisms it is expected to be oxidized to vanillic acid or
reduced to vanillyl alcohol and thereby reduced in the toxicity [1, 8, 24, 53].
Studies of eugenol bioconversion and ferulic acid catabolism in Rhodococcus sp.
124 and Rhodococcus sp. PD630 have shown that Rhodococcus sp. 124, in contrast
to Rhodococcus sp. PD630, can tolerate up to 2.4-3.0 mM eugenol, implying an
effective eugenol catabolism naturally occurring in this strain [70].
Actinomyctetes, such as Amycolatopsis sp. [70] and Streptomyces setonii [71]
are able to accumulate high concentrations of vanillin while at the same time exhib-
iting a high tolerance towards ferulic acid. P. putida IE27 [72] and Bacillus fusifo-
mis were reported to efficiently convert iso-eugenol into vanillin. Bacillus fusifomis
is known to yield 32.5 g/l vanillin after 72 h incubation [73]. Similarly, the P. putida
IE27 strain is able to produce 16.1 g/ of vanillin after 24 h incubation. The vanillin
production was induced by continuously adding iso-eugenol to the cultures, which
helps to prevent further oxidation of the vanillin formed into vanillic acid [72].
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However, the filamentous growth of actinomycetes results in highly viscous broths,
unfavourable pellet formation and a lot of fragmentation and lysis of the mycelium,
thereby complicating downstream processing [74].

Compared to bacterial strains, yeast strains have not been as heavily exploited for
bioengineered synthesis of vanillin. However, natural vanillin is produced via bio-
engineered Saccharomyces cerevisiae on a commercial scale, and more information
on this strain is provided in the sections below. Vanillin biosynthesis in bioengi-
neered algae and cyanobacteria is yet to be established.

Cytotoxicity The bioengineering of vanillin-producing microbial systems is chal-
lenged by the potential toxicity of precursors as well as products formed. It should
be noted that compounds such as vanillin are produced in nature as part of the
plants” defense system against pathogens such as bacteria and fungi [48]. As pointed
out previously, vanillin is toxic to living cells in high concentrations. Dealing with
this issue is an important pre-requisite for building economically viable
biotechnology-derived vanillin cell factories. In the case of S. cerevisiae, vanillin
production beyond 0.5-1 g/l was toxic, as shown by hampered growth and low level
of vanillin accumulation [53]. The natural vanillin biosynthesis pathway in the
vanilla orchid V. planifolia has an elegant solution to cope with the toxicity issue, by
glucosylation of vanillin to vanillin-pB-D-glucoside (see also Chap. 9 of this book).
The same strategy was implemented by Hansen et al. [53], in which the A. thaliana
UDP-glucose glycosyltransferase UGT72E2 was employed to glucosylate vanillin,
producing the less toxic vanillin-p-glucoside as the final product. Hansen and co-
workers reported that extracellular concentration of vanillin f-D-glucoside even
above 25 g/l had no effect on yeast growth [53]. Moreover, vanillin-p-glucoside has
higher water solubility than vanillin and can potentially serve as a sink that can aid
in directing the pathway towards vanillin synthesis.

Genes involved in metabolizing ferulic acid into vanillin have been heterolo-
gously expressed in engineered E. coli with high vanillin tolerance to bypass the
problems related to product toxicity. This includes expression of the Fcs and Ech
genes from Amycolatopsis sp. HR104 [75]. The vanillin-resistant mutant strain was
obtained following NTG (N-methyl-N-nitro-N-nitrosoguanidine) mutagenesis and
following a 48 h incubation period, as much as 1 g/l of vanillin was produced in a
media containing 2 g/l of ferulic acid. To further circumvent the inhibitory effect of
vanillin, XAD-2 ion-exchange resin was used to bind the vanillin formed in the
medium. This increased vanillin yield to 5 g/l in 48 h when ferulic acid substrate
was applied during incubation [75].

By-Products When various microorganisms metabolize eugenol, iso-eugenol and
ferulic acid, vanillin is only produced as an intermediate, and is either readily
reduced to vanillyl alcohol or oxidized to vanillyl acid by alcohol dehydrogenases
and oxidases, respectively. General approaches used to circumvent undesired prod-
uct formation are knock-outs and/or knock-downs of genes related to undesired
catabolism of substrates and/or products. Several examples are listed below:
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The actinomycete Amycolatopsis sp. ATCC 39116 is able to synthesize vanillin
from ferulic acid but the vanillin formed is subjected to further undesired metabo-
lism. Two to three times higher vanillin accumulation and a substantially reduced
amount of vanillic acid was observed using the Amycolatopsis sp. ATCC 39116
Avdh::Km(r) mutant when ferulic acid was provided as a substrate for biotrans-
formation in a cultivation experiment using 2 | bioreactor scale. In the mutant
strain, the vdh gene, which codes for the vanillin dehydrogenase activity, has been
deleted [76].

Hansen et al. constructed glucose-based de novo vanillin biosynthesis in S. cere-
visiae. Further metabolism of vanillin to vanillyl alcohol was circumvented by tar-
geted deletions of alcohol dehydrogenase (ADH) encoding genes. From the tested
enzymes, ADH6 was recognized as the most important enzyme catalyzing vanillin
reduction in S. cerevisiae. The adh6 mutants in S. cerevisiae grew normally under
all growth conditions and showed a 50% decrease in converting vanillin to vanillyl
alcohol [53].

Bacillus subtilis 3NA is a microorganism with enhanced capacity to metabolize
lignin-derived compounds. The strain tolerates a high concentration of up to 20 mM
of vanillin. However, B. subtilis 3NA further converts vanillin to vanillic acid and
subsequently to guaiacol whereas ferulic acid is converted to 4-vinyl guaiacol. Gene
deletion of phenolic acid decarboxylase bsdD resulted in an increased vanillic acid
synthesis in Bacillus subtilis 3NA [77].

In yeast, ferulic acid is readily detoxified by the action of the decarboxylation
enzymes PAD1 and FDCI, resulting in the formation of 4-vinylguaicol [78].
Mutation of padl and fdcl is essential for improving vanillin production in yeast
when ferulic acid is used as substrate [79, 80].

Inefficient Metabolic Flow One approach to bypass inefficiencies in the meta-
bolic flux caused by inhibitory effects of substrates or accumulated intermediates is
a continuous administration of the substrate to the cell culture. In the P. putida IE27
strain, vanillin production was increased by continuous addition of iso-eugenol to
the cultures, which reduced oxidation of the vanillin formed into vanillic acid.
Using this method, Bacillus fusifomis was reported produce 32.5 g/l vanillin from
isoeugenol over 72 h [72].

To reduce by-product formation, a two-step fermentation process can be carried-
out using two different microbial organisms. This approach was employed by
Lesage-Meessen and co-workers to optimize vanillin production by combining use
of Aspergillus niger and Pycnoporus cinnabarinus. The micromycete A. niger
metabolized ferulic acid to vanillic acid in high yield whereas the basidiomycete P.
cinnabarinus reduced the amount of vanillic acid converted into vanillin. The vanil-
lic acid titer from A. niger is reported to be 920 mg/l while vanillin titer from P.
cinnabarinus strain was reported to be 237 mg/1 [54].

The development of engineered production strains is an alternative route towards
achieving efficient metabolic flow towards the desired product. Li and Frost [81]
devised a route for microbial production of vanillin from glucose, in which de novo
biosynthesis of vanillic acid in E. coli was combined with enzymatic in vitro
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conversion of vanillic acid to vanillin. The recombinant E. coli KL7 strain was engi-
neered to dehydrate 3-dehydroshikimic acid to protocatechuic acid
(3,4-dihydrobenzoic acid) by the action of 3-dehydroshikimic dehydratase (3DSD),
encoded by the gene AroZ from the dung mold fungus Podospora anserina.
3-Dehydroshikimic acid is an intermediate in the shikimate pathway resulting in
biosynthesis of aromatic amino acids. Protocatechuic acid was then converted to
vanillic acid by a human catechol-O-methyltransferase (COMT). Reduction of
vanillic acid to vanillin was carried out in vitro using a cellular extract of Neurospora
crassa, which contained the required aromatic carboxylic acid reductase (ACAR)
activity [81].

Hansen et al., reported the first example of one-cell microbial vanillin biosynthe-
sis from glucose in the yeasts S. cerevisiae and Schizosaccharomyces pombe [53].
These strains encompass an ACAR from Nocardia iowensis, in combination with a
phosphopantetheinyltransferase (PPtase), which is required for proper activation of
the ACAR enzyme. ACAR catalyzes the ATP- and NADPH-driven reduction of pro-
tocatechuic acid to protocatechuic aldehyde and of vanillic acid into vanillin. The
yeast strain utilizes the gene encoding 3DSD from P. anserina to mediate the forma-
tion of protocatechuic acid from 3-dehydroshikimate. From protocatechuic acid, the
pathway may then proceed via vanillic acid formed by O-methylation catalyzed by
human COMT, which is subsequently reduced to vanillin by ACAR [53].
Alternatively, protocatechuic aldehyde formed by the reduction of protocatechuic
acid by the ACAR enzyme may subsequently be O-methylated into vanillin by
COMT. To improve the metabolic flux through the de novo vanillin biosynthetic
pathway in yeast, mutations were introduced into the production strains. These
included a mutation in the AROM enzyme complex (ARO1) to increase the accu-
mulation of 3-dehydroshikimate. This mutation resulted in an increased accumula-
tion of protocatechuic acid, and thereby redirected the metabolic flux from aromatic
amino acid production to vanillin precursor production. A more efficient and more
specific ACAR enzyme, which was able to catalyse the conversion of the high con-
centrations of protocatechuic acid to protocatechuic aldehyde, was obtained from
Neurospora crassa. Upon expression of the gene encoding NcACAR, the yeast effi-
ciently catabolized the available high concentrations of protocatechuic acid. This
was one of the key features for the successful generation of recombinant S. pombe
and S. cerevisiae capable of de novo synthesizing vanillin [82].

Downstream Processing Methods Based on the Physicochemical Properties of
the Substrate and the Product Commercially viable vanillin production in micro-
organisms is dependent on efficient low-cost downstream processing and high prod-
uct recovery. Few studies have reported on the potential advantages of using various
product removal techniques to prevent further metabolism of the final product, e.g.
by binding the product to absorbent resins that can be used in the fed batch
fermentation.

Topakas et al., improved vanillic acid to vanillin transformation in P. cinnabari-
nus cultures grown at bioreactor scale by absorbing the toxic vanillin produced by
the hydrophobic resin Amberlite XAD-2 [83]. The use of macroporous DM11
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adsorbent resins has given promising results in the fed-batch biotransformation of
ferulic acid to vanillin using Amycolatopsis sp. strain ATCC 39116. In this study, in
the presence of a surplus of DM11, continuous addition of 45 g/l ferulic acid resulted
in formation of 19.2 g/l vanillin within 55 h [84]. At 20°C, vanillin concentrations
above 10 g/l resulted in vanillin crystallization and this provides a convenient way
of isolation.

1.8  Future Perspectives and Final Remarks

Using synthetic biology, microbial organisms have been engineered for the produc-
tion of various natural food components. Vanillin is one such successful example
[56]. Major constraints like substrate or product inhibition have been overcome by
bioengineering. The increased knowledge of enzymes involved in bioconversion of
ferulic acid and other substrates to vanillin, as well as identification and character-
ization of the encoding genes, offers new opportunities for improved targeted bio-
engineering of microorganisms for vanillin production. The recent identification of
VpVAN as the enzyme converting ferulic acid into vanillin in V. planifolia provides
the option to transfer the vanilla orchid pathway for vanillin synthesis into microor-
ganisms. Yeast and cyanobacteria are apparently the best host organisms for this
purpose, as the vanilla orchid enzymes may require post-translational modifications
to be fully active.

The market launch of several synthetic biology derived vanillin products has
generated some media attention. Bioengineering approaches may provide a more
sustainable alternative to chemical synthesis [85]. In this context it is relevant to
discuss whether or not it is justified and appropriate to label biotechnologically
produced flavours such as vanillin as “natural” [45]. The general public cannot be
expected to understand and adapt to definitions of flavour codes that are not self-
evident and obvious. The main flavour codes such as, “natural”, “nature identical
flavour,” and “artificial” (FDA), do not offer a proper and specific description of
each category when the consumer is faced to choose between commercially avail-
able products from each category in a store. This situation obviously results in
unsatisfied and insecure consumers. Multinational organizations like Friends of the
Earth and Greenpeace exploit the situation to establish communication platforms
voicing their general resistance to all products obtained using genetic engineering,
even when no genetic material is present in the commercialized product [86]. It is
also clear that unconscious or conscious lack of distinction between the meanings
of the words vanilla and vanillin gives rise to misinterpretations and manipulation
of the available facts [87].

It is important to highlight that from a commercial point of view, as well as from
the point of view of the consumer, bioengineered natural vanillin competes with
chemically synthesized vanillin, which currently dominates the market [88]. And
not with the vanilla extract from V. planifolia which contains a wide range of flavour
components in addition to vanillin.
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Fig. 1.7 Bioengineering approaches for vanillin production need key considerations as summa-
rized here

In conclusion, the biotechnological production of vanillin from safe and cheap

substrates by the use of food-grade production organisms and environmentally
benign and economically feasible downstream processing is envisioned to result in
a compatible and sustainable alternative to vanillin produced by chemical synthesis
(Fig. 1.7).
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ATP Adenosine triphosphate

BAP 6-benzylaminopurine

C4H Cinnamic acid 4-hydroxylase

CoA Coenzyme A

DHPL 3,4-dihydroxyphenyllactic acid
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Dw Dry weight

2,4-D 2,4-dichlorophenoxyacetic acid

3'-H Hydroxycinnamoyl-hydroxyphenyllactate 3’-hydroxylase
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HdhA Hydroxyacid dehydrogenase

HpaBC 4-hydroxyphenylacetate 3-hydroxylase
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pHPL 4-hydroxyphenyllactic acid

pHPP 4-hydroxyphenylpyruvic acid

RA Rosmarinic acid

RAS Rosmarinic acid synthase, hydroxycinnamoyl-
CoA:hydroxyphenyllactate hydroxycinnamoyltransferase

SA Salicylic acid

TAL Tyrosine ammonia-lyase

TAT Tyrosine aminotransferase

YE Yeast extract

2.1 Occurrence and Structures of Rosmarinic Acid
and Related Metabolites

Rosmarinic acid (RA) (Table 2.1) was first described in 1958 as an ester of caffeic
acid and 3.4-dihydroxyphenyllactic acid (DHPL) extracted from rosemary
(Rosmarinus officinalis) [140], but has since then been detected in plant species
across the plant kingdom from hornworts to mono- and dicotyledonous plants (for
reviews see [126, 129]). Hotspots of RA presence are the sub-family Nepetoideae
of the Lamiaceae and the family Boraginaceae. In other plant taxa, RA often only
occurs sporadically and may not occur in all species of the same genus [126]. RA
and related caffeic acid esters have been isolated from hornworts (species of the
genera Anthoceros, Folioceros, Nothothylas, Phaeoceros, Dendroceros, Megaceros;
[6, 155, 156, 162, 163]) as well as fern species (Blechnum spec.; [68, 70, 169]).
Furthermore, grasses [32, 109] and species of the so-called basal orders (Sarcandra
glabra, [191]; Chloranthus spec., [129]) contain RA, whereas there are — up to
now — no reports from leafy mosses, liverworts and gymnosperms.

A larger number of derivatives of RA have been described, many of them occur-
ring in Salvia species (Table 2.1; [18, 79, 103, 168]). These derivatives generally
contain RA as core structure. Metabolites often incorrectly described as caffeic acid
oligomers contain additional 4-coumaric or caffeic acid moieties or a second RA
molecule. Further derivatization can occur by glycosidation (e.g. RA glucosides;
[43, 95, 165]) (see also Chap. 9 of this book), methylation (e.g. methyl rosmari-
nate, methyl lithospermate [90], methylmelitric acid [105]) or the addition of ethyl
and butyl or hydroxycinnamoyl moieties.

Whereas the biosynthesis of RA in Lamiaceae and Boraginaceae (e.g. Coleus
blumei, Salvia miltiorrhiza, Melissa officinalis, Anchusa officinalis, Lithospermum
erythrorhizon) is well investigated [106, 126, 128, 129], it is less well analyzed in
other plant taxa. The same is true for the formation of most of the above-mentioned
RA derivatives.

There are thousands of publications on the diverse biological activities of RA
and derivatives such as the salvianolic acids. Recent reviews on this topic have been
published by e.g. Shetty [142], Wang [168], Bulgakov et al. [18] and Amoah et al.
[5], and this topic will therefore not be covered in this article.
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Table 2.1 Examples for rosmarinic acid and related compounds

Structure Common name Reference
OH R = H isorinic acid [139]
o COOH .
Kj/\)‘\m)\/@ R = OH rosmarinic acid [140]
HO
X [ R
HO
o /\/@W Teucrol [45]
HO
OH Salvianic acid C [28]
H{
HO
o OH
M
HO
COOH OH Salvianolic acid D [4]
H\
HO
HO
o o COOH Megacerotonic acid [155]
OH
OH
OH
OH Anthocerotonic acid [155]
=
o
X WO COOH
H
Hi H
HOOC OH
a
| OH
\ OH
OH

(continued)
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Table 2.1 (continued)

Structure Common name Reference
Salvianolic acid A [96]
Lithospermic acid [82, 167]
[Monardic acid [114]

A = (7R,8R)-stereoisomer
of lithospermic acid]

Salvianolic acid C [3]
Melitric acid A 2]
OH Melitric acid B 2]
o COOH
[N
& o

OH

OH Sagecoumarin [105]
)v@“
o] COOH
H\
HO Z (o)

(continued)
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Table 2.1 (continued)
Structure Common name Reference
OH Salvianolic acid K [102]
HO COOH OH
X
HO OD/\/U\O OH
HO
Hooc\(o/\“/o on | Yunnaneic acid C [158]
HO :
oy T L
HO
Hooco on | Yunnaneic acid D [158]
HO H
T L
HO
OH Yunnaneic acid E [159]
OH
COOH o COOH
COOH
HO
OH
Yunnaneic acid F [159]
Sagerinic acid [102]

OH

OH

(continued)
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Table 2.1 (continued)

Structure Common name Reference
OH Salvianolic acid E [4]

Salvianolic acid L [104]
Salvianolic acid [3, 157]
B = lithospermic acid B

[Monardic acid [114]

B = (7R,8R)-stereoisomer
of lithospermic acid B]

(—)-Rabdosiin [1]
[103]

(continued)
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Table 2.1 (continued)

Structure Common name Reference
OH OH Yunnaneic acid A [158]
OH OH
COOH COOH
o (o] o] o
HO Z X OH
Ok .k O
HO P s OH
o
COOH o OH COOH
OH OH Yunnaneic acid B [158]
OH OH
"_“‘COOH "“\COOH
o) o o o
HO F X OH
Ok k1 O
Ho P = OH
o OH
COOH (o] OH COOH
Yunnaneic acid G [159]
HO Yunnaneic acid H [159]
HO

(continued)
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Table 2.1 (continued)

Structure Common name Reference
HooC Anthocerodiazonin [163]

OH

OH

2.2  Biosynthetic Pathway of Rosmarinic Acid

RA is derived from two distinct pathways: The general phenylpropanoid pathway
provides the caffeic acid moiety, while DHPL is produced by a tyrosine-derived
pathway [130, 131]. Both pathways are dependent on the shikimate pathway, which
generates the aromatic amino acid precursors L-phenylalanine and L-tyrosine. The
biosynthetic pathway (Fig. 2.1) has first been elucidated in Coleus blumei [130], a
member of the family Lamiaceae, and Anchusa officinalis [36], and to a great part
confirmed in Melissa officinalis [171, 172].

The general phenylpropanoid pathway starts with L-phenylalanine as precursor.
The enzyme phenylalanine ammonia-lyase (PAL) is responsible for the transforma-
tion of the amino acid to frans-cinnamic acid [134]. A cytochrome P450-dependent
enzyme, cinnamic acid 4-hydroxylase (C4H), introduces the first hydroxyl group to
the aromatic ring in para position to form 4-coumaric acid [124]. Then, the ATP-
dependent coenzyme A (CoA) activation of 4-coumaric acid to 4-coumaroyl-CoA is
catalyzed by the enzyme 4-coumarate CoA-ligase (4CL) [81].

L-Tyrosine is the precursor in the formation of the second intermediary precursor
in RA biosynthesis. Tyrosine aminotransferase (TAT) catalyzes the transamination
of tyrosine and 2-oxoglutarate to 4-hydroxyphenylpyruvate (pHPP) and glutamate
[36]. In a NAD(P)H-dependent step, the enzyme hydroxyphenylpyruvate reductase
(HPPR) reduces pHPP to 4-hydroxyphenyllactic acid (pHPL) [69, 127].

The trans-esterification of the two precursors is catalyzed by rosmarinic acid
synthase (RAS). This enzyme forms an ester of 4-coumaric acid and pHPL [127]
and belongs to the BAHD acyltransferase superfamily in the subgroup hydroxycin-
namoyltransferases [14]. The product 4-coumaroyl-4'-hydroxyphenyllactic acid is
hydroxylated at the 3- and 3’- positions by two cytochrome P450-dependent enzyme
activities, caffeoyl-4’-hydroxyphenyllactate 3'-hydroxylase and 4-coumaroyl-3’,4'-
dihydroxyphenyllactate 3-hydroxylase (3’H, 3H) (Fig. 2.1) [124]. The product, RA,
is then stored in the vacuole. For comprehensive reviews on biosynthesis, distribu-
tion and evolution of RA biosynthesis see e.g. Petersen and Simmonds [128] and
Petersen [126].



[+]
o oL
NHy HH
2 e - ]

L-phenylalanine L-tyrosine
J 2-oxoglutarate
PAL \ TAT
+ o | /.
NHg ¥ Ll
o L-glutamate .l;.
o~ oY
[+]
o =
f-cinnamic acid 4-hydroxyphenylpyruvic acid
NADPH+H + 02
N NAD(PJH+H
C4H
HPPR
MADP™ +Ha0 NAD(P) "

o
a
HOY = oH

4-coumaric acid HE
ATP + CoASH a-hydroxyphenyliactic acid

3

4CL

AMP + PP;

L=}
[
| S Sy SCoA
o™

A-coumaroyl-CoA

HO.

ll
o aH

3,4-dihydroxyphenyllactic acid

. ConsH="|
MADPH+H" + 02 "

CC ™ SN 20 D00
S o { |‘*~. S Q = OH
-
4

| 3H
HOY = HO'
A by ic acid 4 acid
MADPH+H" + 02 MADPH+H" + 02
aH 3H
.
NADP + HaO NADPHsH® + 02 NADF™ + H20

2 NADP™ + Hz0

o HQID/O/OH 2 ° HU:(O/@OH
Hoj‘l\A:/\\Vko T Hoﬁ/%‘) - S OH
HO = HO =

caffecyl-4"-hydroxyphenyllactic acid rosmarinic acid
caffeic acid
resmarinic acd |

?

HO HE !
” HO
=0 HO. .0 ZoH
_‘8» o . oH
oH
o o HO O= \ Y
o OH DHPL _/'u:-u
[ -
HO \ HO- a
lithaspearmic acid J:—_u\ HO o oH
- [+] = |
]
| R S 0 = (=]
HEY =
lithosparmic acid B

Fig. 2.1 Biosynthetic pathway of rosmarinic acid and derivatives as evaluated in Plectranthus
scutellarioides (syn. Coleus blumei) [130] and Salvia miltiorrhiza [39, 177]. Reactions specifically
described in or proposed for Salvia miltiorrhiza are shown by dashed lines and arrows. PAL phe-
nylalanine ammonia-lyase, C4H cinnamic acid 4-hydroxylase, 4CL 4-coumarate CoA-ligase,
TAT tyrosine aminotransferase, HPPR hydroxyphenylpyruvate reductase, RAS “rosmarinic acid
synthase” (4-hydroxycinnamoyl-CoA:4'-hydroxyphenyllactate hydroxycinnamoyltransferase),
3H, 3’H 3- and 3'-hydroxylases
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Di et al. [39] suggested an alternative pathway in Salvia miltiorrhiza. They pro-
pose that an additional hydroxylation of pHPL to DHPL occurs prior to the esterifi-
cation. Accordingly, the product 4-coumaroyl-3’,4’-dihydroxyphenyllactate
undergoes a single hydroxylation. While Di et al. [39] furthermore propose a direct
formation of lithospermic acid B by coupling of two molecules of RA, Xiao et al.
[177] suggest a sequential formation by addition of caffeic acid and DHPL in two
separate reactions (Fig. 2.1).

2.3  Production of RA in Untransformed Aseptic In Vitro
Cultures

Cell cultures of species of the families Lamiaceae and Boraginaceae have been
established for the biotechnological production of RA and related compounds.
However, although these efforts were successful at pilot scale, an industrial-scale
production process for RA has never been established. Efforts to optimize RA pro-
duction in in vitro cultures are summarized in the following paragraphs.

2.3.1 Species from the Family Lamiaceae

Coleus blumei (syn. Solenostemon scutellarioides, Plectranthus scutellarioi-
des) The first reports on the formation of high amounts of RA in plant callus and
cell suspension cultures are from 1977. Razzaque and Ellis [134] as well as Zenk
et al. [187] both used Coleus blumei, the painted nettle, to establish suspension
cultures that accumulated up to 15% of the cell dry weight (DW) as RA. The latter
authors also described the influence of the sucrose concentration of the medium on
the outcome of RA production as well as the incorporation of exogenously fed
L-phenylalanine. The same species was used by Ulbrich et al. [164] in the first bio-
technological production process, a two-phase culture system with a growth and a
production phase. In the latter phase, a 5% sucrose solution was used for cultivation
and a yield of 21% RA in the cell DW was achieved. Since then, in vitro cultures of
Coleus blumei have been the most prominent system to elucidate the biosynthetic
pathway of RA and to isolate and characterize the respective enzymes and genes
(see below and review articles by [126, 128, 129]).

The influence of the carbohydrate source and concentration was investigated in
more detail by Gertlowski and Petersen [54] and Petersen et al. [132]. They showed
that sucrose is quickly cleaved into glucose and fructose. The optimal sucrose con-
centration was at 5%. Glucose as sole carbohydrate source was nearly as effective
as sucrose while fructose led to a lower RA accumulation. The stimulating effect of
higher sucrose concentrations on RA biosynthesis and accumulation is not due to an
osmotic effect since partial replacement by mannitol could not promote RA forma-
tion. The onset of RA biosynthesis is independent of the sugar concentration and
correlates with the depletion of mineral nutrients (e.g. phosphate) from the medium.
Medium optimization was also done by Ju et al. [80] in order to establish a
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two-phase culture system with a growth phase and a production phase for callus as
well as suspension cultures. Essentially the same results were obtained as described
before: higher sucrose concentrations increased the formation and accumulation of
RA. With 6% sucrose in the medium calli contained 33.7% RA in the DW, suspen-
sion cells accumulated RA to 10.1%.

Permeabilization was investigated in order to isolate RA from the medium
instead of the cells and thus enable a continuous production process. For this pur-
pose, Park and Martinez [118] added dimethyl sulfoxide (DMSO) to the suspension
cultures. This, however, resulted in loss of cell viability. Preconditioning at a lower
DMSO concentration (0.1%) ensured cell viability at higher DMSO levels (0.5—
1.5%) and resulted in a prominent release of RA to the medium. With 0.5% DMSO,
2.85 g RA per 100 g cell DW was found in the medium, which was 66.4% of the
total RA production.

Immobilization of Coleus blumei cells was performed by adding luffa cubes to a
suspension culture in order to capture the cells within the sponge-like luffa material
[107]. Luffa is the dry fibrous material of berry endocarp of Luffa cylindrica,
Cucurbitaceae. After 33 days of growth, the cell-inhabited cubes were placed into a
glass column and fed with medium by spraying it from the top. The cells were via-
ble to a high percentage until 52 days but showed strongly reduced growth. RA
production was higher (2% of the cell DW) than in the respective parent suspension
culture (1.2%).

Approaches to further increase the production of RA were based on elicitation or
transformation of Coleus blumei cell cultures; the latter will be described in the
chapter “Hairy roots”. Fungal elicitor preparations (Pythium aphanidermatum) or
methyl jasmonate (MeJA) were added to suspension cultures of Coleus blumei and
resulted in increased activities of some biosynthetic enzymes as well as about a
three-fold RA accumulation [153]. Interestingly, an effect of the volatile MeJA
could also be seen when it was applied via the gas phase.

Bauer et al. [12] investigated RA accumulation in different callus cell lines trans-
formed by Agrobacterium tumefaciens and cultivated on hormone-free media.
Growth and RA accumulation varied between different lines. The highest RA accu-
mulation was 11% of the cell DW.

Whole in vitro grown plants of Solenostemon scutellarioides were investigated
by Dewanjee and coworkers [37, 38]. Feeding of precursors (Phe and Tyr alone and
in combination) could increase RA levels (up to 3.1-fold) as well as the activities of
PAL, TAT and RAS. On the other hand, phytopathogenic fungi were applied with
best results using Alternaria alternata. This increased RA accumulation up to 1.6-
fold (18.5 mg/100 g fresh weight).

Salvia officinalis Various varieties of culinary sage (Salvia officinalis) were com-
pared with respect to their RA accumulation in leaves and suspension cultures. The
RA content varied between 0.89% and 7.82% of the DW, the best variety being
“Dwart”. In all varieties except one, leaves contained less RA than suspension cells
[174]. A similar approach was followed by Grzegorcyzk et al. [58] who compared
the RA content in seed-derived and in vitro regenerated sage plants as well as shoot
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callus and cell suspension cultures after different numbers of passages. Here the
highest RA content was found in suspension cells with around 1.9% of the cell
DW. Hippolyte et al. [71, 72] characterized RA production in suspension cultures of
sage further. The optimal sucrose concentration was 5%, which resulted in an RA
content of 19% of the DW at the end of the culture period. Feeding of L-phenylalanine
as precursor shortened the production period and enhanced RA production at 0.1 g/1
phenylalanine in 5% sucrose medium. The highest RA accumulation of 36% of the
cell DW could be observed in a low osmolarity medium (Heller-medium with 5%
sucrose).

A number of studies reported on shoot cultures of sage as a source for RA. MS
agar medium supplemented with different concentrations of the long chain satu-
rated primary alcohol triacontanol showed positive effects with respect to shoot
multiplication as well as diterpene and RA content. Highest RA concentrations of
approximately 2% of the DW were found after addition of 20 pg/1 triacontanol [59].
Shoots grown in liquid medium accumulated around 3% RA in the DW irrespective
of the triacontanol concentration [55]. MeJA (50 and 100 pM) stimulated RA levels
in liquid cultivated shoots even further to 4.1% of the DW on the fifth day after elici-
tation [56]. Shoot cultures were also cultivated in a laboratory scale sprinkle biore-
actor with a 43-fold increase in biomass after 3 weeks and a RA content of 2.6% of
the DW [57].

Shoot cultures on solidified MS medium were used to test the effect of sodium
salicylate on diterpene (carnosol, carnosic acid) and RA production. Although the
amount of diterpenes was stimulated by elicitiation, the RA levels remained largely
unaffected and growth was decreased [93]. In contrast, Ejtahed et al. [46] showed a
two-fold increase in RA production to 1.8% of the DW in shoot cultures after addi-
tion of 250 puM salicylic acid (SA).

Salvia miltiorrhiza Salvia miltiorrhiza is an important Asian medicinal plant which
is very well investigated with respect to its accumulation of tanshinones and pheno-
lic acids, among them RA, lithospermic acids and salvianolic acids (Table 2.1).
Many investigations have been performed with hairy root cultures and are described
below. In addition, undifferentiated cell cultures were the basis for the production of
phenolic acids [42]. Morimoto et al. [112] showed that callus cultures accumulated
1.24% of the DW as RA and 0.1% as lithospermic acid B. In shoot cultures regener-
ated from these calli, both phenolic acids accumulated in considerably higher
amounts (6.96% RA and 6.05% lithospermic acid B). The same compounds were
detected in Ti-transformed suspension cells (4.59% RA and 0.81% lithospermic
acid in the cell DW) [26]. In a special 6,7-V-medium, the same cell line produced
phenolic acids (RA 530 mg/1 and lithospermic acid B 216 mg/l) as well as tanshi-
nones (220 mg/1), the latter being excreted to the medium to a considerable extent
[21]. In an attempt to increase secondary metabolite production, yeast extract (YE)
was used. This resulted in nearly doubled tanshinone production, while RA accu-
mulation was strongly reduced [22, 23]. MeJA (10 pmol/l) also stimulated the activ-
ities of PAL and TAT as well as RA accumulation [179]. Addition of Ca* ions
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(10 mM) enhanced the accumulation of RA up to 2% of the DW. This was also
coupled to enhanced PAL and TAT activities [101].

Stems and leaves of Salvia milthiorrhiza were used by [175] to establish callus
cultures and to compare their efficacy to produce RA and salvianolic acid B. Stem
callus contained more phenolic acids (1.27 + 0.38% RA and 0.87 = 0.20% salviano-
lic acid B in the DW) than leaf callus (0.28 + 0.02% RA and 0.07 + 0.03% salviano-
lic acid B).

SA (22.5 mg/1) was used as elicitor to increase the production of phenolic acids.
Addition of SA resulted in a doubled RA accumulation 2 days after addition (to
approximately 0.03% of the DW). At the same time, H,O, levels increased. External
addition of H,0O, (10 mM) also induced RA formation and it was suggested that
H,0, is a mediator in elicitation processes by SA [66]. Besides increase in RA for-
mation (to 1.1%), SA addition also induced Ca** mobilization. Extracellular addi-
tion of calcium ions (10 mM) or the calcium ionophore A23187 also enhanced RA
levels [64]. SA was shown to lower the cytoplasmic pH by inhibition of the plasma
membrane H*-ATPase. The RA content was increased to about 2.25-fold of the
control level [99].

Ocimum basilicum Undifferentiated in vitro cultures of basil (Ocimum basilicum)
were investigated by Kintzios et al. [88]. Leaf-derived suspension cultures accumu-
lated about 10% of the cell DW as RA. Immobilization in calcium alginate resulted
in a dramatic decrease of the RA level. Immobilization in test tubes at high cell
density (25 x 10* cells/ml; approximately 4 ml volume; mini-bioreactor), in con-
trast, resulted in highly enhanced RA production and RA concentrations of 2% of
the cell DW could be achieved. RA was also determined in the medium with about
5 mg/ml in the first week of the experiment [113]. Nodal shoot explants and
suspension-cultured cells of Ocimum basilicum were incubated in a small bioreac-
tor by [87]. They reported increased growth and RA accumulation in the bioreactor-
cultivated plant material. Highest RA levels (0.02% of the DW) were found in the
organized plant material.

Addition of YE (0-5 g/1) positively influenced RA formation in basil callus cell
lines from 0.67% in controls to 2.3% in the DW on medium with 5 g/l YE [63].

A red-colored cell line of basil accumulated RA and anthocyanins, both of which
arise from the general phenylpropanoid pathway. Strazzer et al. [144] chose a stable
anthocyanin-producing cell line that also accumulated 0.8 mg/g fresh weight RA
and subjected these cells to mechanical stress (enhanced agitation) and light stress.
Both treatments led to increased RA accumulation (up to 1.9 mg/g fresh weight for
combined light and mechanical stress), and in parallel anthocyanin accumulation
was enhanced as well. Since both biosynthetic pathways require phenylpropanoid
precursors, the overall flux into the phenylpropanoid pathway must have increased.
The authors also propose that both stressors might increase the formation of reactive
oxygen species which can be quenched by both, RA and anthocyanins.

In vitro shoot regeneration from basil nodal explants was performed by [84].
They found highest RA levels (approximately 40 mg/g DW) in fully acclimatized
plantlets. The effect of benzyladenine on RA accumulation was dependent on the
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basil cultivar. In the anthocyanin-producing variety, the accumulation of anthocyanin
and RA were inversely correlated with the benzyladenine concentration. The same
group used different culture vessel types for the micropropagation of basil shoots. A
prominent difference with respect to RA accumulation (approximately 16% of the
cell DW compared to 4% in other culture systems) was observed, which was
inversely correlated with biomass accumulation [83].

Orthosiphon aristatus Orthosiphon aristatus (Java tea) was first used as suspen-
sion culture for the production of RA by Sumaryono et al. [152] and Sumaryono and
Proksch [151]. These cells synthesized about 1-2 pmol RA per g fresh weight. After
elicitation with YE (4-6 g/), RA accumulation increased to 10 pmol/g fresh weight
3—4 days after elicitor addition; decarboxylated RA was found as well.

Cell cultures of Orthosiphon aristatus established from plants from different
locations were analysed with respect to their growth characteristics. Highest RA
contents ranged between 4.5% and 5.0% of the cell DW [100].

Glechoma hederacea A suspension culture of Glechoma hederacea accumulated
up to 25.9% RA in the cell DW in CB2-medium [41] in only 7 days of culture.
Besides, lower amounts of caffeic acid and chlorogenic acid were detected. This is
one of the highest levels of RA accumulation described so far.

Lavandula vera Several aspects of medium optimization and elicitation have been
evaluated in the course of investigations on Lavandula vera suspension cultures. RA
was identified as the main phenolic metabolite [92]. Linsmayer and Skoog medium
was used as the basic medium. Several medium components were varied and finally
an optimized medium presented [77, 123]. Raising the sucrose content of the
medium from 3% to 7% strongly reduced the biomass accumulation to 45% of the
control but at the same time dramatically enhanced the RA yield to more than sev-
enfold of the control [75]. Doubling the phosphate concentration resulted in
enhanced growth (131%) and enhanced RA production (206% compared to the con-
trol) [74]. Reduction of the medium’s ammonium concentration to % enhanced RA
accumulation to 2.7 times of the control level (1.5% of the DW) but still ensured
growth. Increasing the level of ammonium ions delayed the onset of RA biosynthe-
sis and reduced the overall accumulation. Higher nitrate levels in the medium were
reported to be beneficial for RA accumulation [76]. A combination of optimized
medium parameters (NH,NO;, KNO3, and KH,PO,) resulted in a 27-fold RA accu-
mulation (17.9% of the cell DW) [123]. Feeding of the precursor phenylalanine
strongly increased the amounts of caffeic acid and raised RA accumulation to 128%
of the control level [119].

RA is mostly accumulated intracellularly. Adding the resin Amberlite XAD4 or
a mixture of 4% polyethylene glycol and 7.5% dextran to the liquid medium as a
two-phase culture system resulted in a release of RA to the extracellular phase. The
total RA accumulation in presence of XAD4 was slightly increased (115% of con-
trols), but only 6.4% of the total amount of RA was adsorbed to the resin. Cultivation
with polyethylene glycol and dextran as second phase strongly reduced biomass



2 Rosmarinic Acid and Related Metabolites 39

accumulation, although the content of RA per cell remained unchanged. About 12%
of the total RA amount was found in the extracellular phase [122].

Further optimization of RA production by Lavandula vera cell cultures was done
in 3 l-bioreactors with respect to dissolved oxygen concentration, agitation speed
and temperature with the result of doubling the RA production (3.5 g/l) compared
to shake flask cultures [52, 120, 121] .

A selection of putatively high producing cell lines was achieved by applying a
fluorinated phenylalanine derivative. As the best result, an enhanced RA accumula-
tion from 0.5% of the cell DW to approximately 1% was observed [53].

A way of enhancing secondary metabolite production is elicitation which was
also applied to Lavandula vera cultures. Different biotic elicitors such as bacterial
homogenates and cell wall preparations did not result in increased RA accumulation
[91]. An abiotic elicitor, vanadyl sulfate, was added to the culture 11 days after
inoculation. The highest RA accumulation (280% of the control level) was observed
with 25 mg/l vanadyl sulfate after 12 h. As an additional effect more RA was found
extracellularly [49]. The addition of benzothiadiazole had only small effects,
whereas elicitation with MeJA (50 pM) on day 11 enhanced RA accumulation 2.4
times [50]. Here, the best elicitation result in Lavandula vera suspension cultures
was about 12.6% RA in the dry cell biomass (calculated with the published data).

Lavandula officinalis Common lavender cultivated as in vitro culture was investi-
gated by Nitzsche et al. [115]. Suspension cultures contained about six to ten times
the amount of RA as normal plants. Interestingly, here RA was also secreted to the
medium, which has not been described frequently. Usually, secreted RA is quickly
decomposed, e.g. by peroxidases (own unpublished observations) and thus cannot
be identified as RA anymore. Application of jasmonic acid or stress by oxygen
depletion changed the profile of phenolic metabolites but did not increase the RA
content.

Satureja khuzistanica The Iranian species Satureja khuzistanica was used to estab-
lish a callus culture for RA production. On B5 medium with 5% sucrose, callus cells
accumulated 7.5% RA in the DW [136]. Suspension cultures of the same species
showed much higher RA contents (18% of DW) after 21 days [137]. It was shown
that reducing the nitrogen content to Y4 decreased growth slightly and RA accumu-
lation severely to 3.8% of the cell DW.

Melissa officinalis Although Melissa officinalis, lemon balm, is one of the most
important RA-containing medicinal plants, in vitro cultures of Melissa officinalis
are barely investigated. Extracts of lemon balm are used against Herpes simplex
infection due to their content of phenolic compounds; the most important of them is
RA. Besides RA, melitric acids A and B (Table 2.1) have been detected in Melissa
officinalis [2]. Suspension cultures of lemon balm have been characterized and used
as source for the isolation of cDNAs and genes for PAL, 4CL and RAS. Suspension
cultures accumulated up to 6.7% of the cell DW as RA after 6 days of cultivation.
The effect of increased sucrose concentrations was not as prominent as observed for
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suspension cultures of Coleus blumei [171, 172]. Hot water extracts of whole in
vitro cultured lemon balm plants were analysed by Barros et al. [9]. They showed a
wide variety of phenolic acids in the plant material, of which sagerinic acid
(Table 2.1) was dominant followed by lithospermic acid and RA (which commonly
is named as the dominant phenolic acid). Attempts to increase the RA content in
Melissa officinalis shoot cultures by treatment with 200 ppb ozone for 3 h resulted
in a transient increase of the RA content (30 mg/g fresh weight) at 2 h after starting
the ozone treatment [161] .

Ocimum sanctum Holy basil (Ocimum sanctum, syn. O. tenuiflorum) is cultivated
for medicinal and religious purposes because of its essential oil composed of several
phenolic compounds (e.g. eugenol, isoeugenol, estragol). It also contains other phe-
nolic antioxidants, mainly RA (0.012-0.025% of the DW). Callus cultures derived
from different plant organs showed RA concentrations of 0.14-0.27% of the DW
[65].

Rabdosia rubescens The effect of the sucrose concentration and the ratio of NO;~
to NH,* on specialized metabolism and plant regeneration were tested by Dong
et al. [40]. The best result with respect to RA was achieved with 5% sucrose and a
NO;/NH,* ratio of 2:1.

Agastache rugosa The effect of MeJA on RA accumulation was investigated in
suspension cultures of Agastache rugosa (Korean or Indian mint). 50 pM MeJA
proved to be optimal for the stimulation of RA accumulation from 7.8 to 36.6% of
the cell DW. Also other phenolic acids were present in higher levels. The expression
levels of PAL, C4H and 4CL correlated well with the increase in the RA level [86].

2.3.2 Species of the Family Boraginaceae

Anchusa officinalis Anchusa officinalis was one of the first species taken into
culture for the production of RA and the investigation of its biosynthesis.
Suspension cultures accumulated up to 6% of the cell DW as RA and the accu-
mulation phase correlated with the linear growth phase. Early biosynthetic inves-
tigations established that 20-30% of exogenously applied, radioactively labelled
phenylalanine or tyrosine was incorporatedinto RA [33]. Microspectrophotometric
investigations suggested that RA is accumulated in the vacuoles [20]. Ellis [44]
also studied the accumulation of RA in clonal cell lines derived from single cells
with known productivity. This showed that high-producing mother cells did not
result in high-producing clonal cell lines. After several subcultures each cell line
established a quite stable level of RA production, which was not related to the
RA production level of the mother cell. The optimization of the culture medium
with respect to macronutrients (sucrose, alternative sugars, nitrate, phosphate
and Ca*") and phytohormones (2,4-D, NAA, IAA and 2-chloro-4-fluorophenoxy-
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acetic acid as auxins; BAP, kinetin and zeatin as cytokinins) was undertaken by
De Eknamkul and Ellis [34, 35]. Surprisingly, a combination of all optimized
levels of single macronutrients did not result in increased growth and RA pro-
duction. Variations of phytohormone contents were performed in standard
B5-medium. The highest RA levels of 12% of the DW were achieved in medium
with 0.25 mg/l NAA as auxin, while medium with 2,4-D showed a decrease in
RA accumulation. In contrast to previous results, the onset of RA synthesis was
shifted to the exponential growth phase.

Su and Humphrey [145] established a high density culture of Anchusa officina-
lis with perfusion and tested several growth media. Using this technique the RA
yield was doubled in comparison to control cultures. This, however, was only
based on higher cell densities (38 g DW/I compared to approximately 14 g/I)
while the RA content in the cells (approximately 3.3% of the DW) decreased
slightly. The principle of perfusion culture was transferred to a membrane-aerated
bioreactor. Here, the cell density was at 26 g/l and the calculated cellular RA con-
tent approximately 4.6% of the DW [146]. Optimization of the perfusion strategy
in shake flasks led to higher productivity with respect to RA. The best result was
obtained by growing the culture as batch culture in B5 medium with 3% sucrose
and 0.25 mg/l NAA for 10 days, followed by perfusing the culture with B5
medium containing 6% sucrose and the same NAA concentration at a constant
perfusion rate of 0.1/day. The obtained cell density was 35 g/l and 11.3% RA were
found in the cell DW [149]. This procedure has been transferred to a stirred-tank
bioreactor with similar productivity. However, the suspension cells proved to be
very sensitive to agitation, aeration conditions and the dissolved oxygen concen-
tration [148]. The inoculum size strongly influenced the productivity with best
results at 4 g DW/1 [147]. The results with a perfusion culture of Anchusa offici-
nalis have been summarized by Su et al. [150].

Lithospermum erythrorhizon Suspension cultures of Lithospermum erythrorhizon
were mainly investigated with respect to their accumulation of the red pigment shi-
konin. However, unpigmented cell cultures also accumulate RA (0.55% of the DW)
and lithospermic acid [48]. Interestingly, the accumulation of phenolic acids and
shikonin cannot occur under the same culture conditions but require different cul-
ture media. Elicitors such as YE and MeJA were added to increase the RA amount
up to 0.22% of the cell fresh weight [110, 111]. Elicited cell cultures were mainly
used to investigate the biosynthetic pathway for RA in this species. Besides RA,
Yamamoto et al. [181, 182] identified RA-related compounds in Lithospermum
erythrorhizon such as rhabdosiin, lithospermic acid and lithospermic acid B as well
as lithospermic acid B glucoside (Table 2.1). Among these, lithospermic acid B was
the predominant compound. Addition of MeJA or YE strongly increased the forma-
tion of RA by factors of 10- and 4-fold of the control cells, respectively. At the same
time, the activities of PAL, 3H and 3’H were increased while RAS activity remained
at a rather low level [117].
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2.3.3 Non-vascular Plant Species

Anthoceros agrestis (Anthocerotaceae) The occurrence of RA in non-vascular
plants like the hornworts was first described by Takeda et al. [155, 156]. Hornworts
are among the earliest land plants to evolve. Nevertheless, hornworts contain RA
and related compounds like anthocerotonic acid, megacerotonic acid and anthocer-
odiazonin (Table 2.1) as well as other phenolic compounds [162, 163]. Cell cultures
of Anthoceros agrestis have been established by Binding and Mordhorst [15] and
further investigated with respect to RA accumulation and biosynthesis by Petersen
and coworkers (e.g. [125, 165]). Not all enzymes found in Lamiaceae for RA bio-
synthesis have to date been found in Anthoceros as well and thus the biosynthetic
pathway is still under investigation. Suspension cultures of Anthoceros agrestis can
accumulate quite high levels of RA. Pezeshki has measured up to 9% RA in the cell
DW in a hormone-free B5-derived medium with 1% sucrose after 2 weeks of culti-
vation [133], whereas higher sugar content (2%) resulted in a lower RA accumula-
tion. In the latter medium, however, an accumulation of RA 3’-O-p-D-glucoside at
the beginning of the culture period was observed [165] (see also Chap. 9 of this
book). With respect to the intracellular RA concentrations Anthoceros agrestis sus-
pension cultures are in no way inferior to cell cultures of many higher plant species.
It must, however, be mentioned that the cell mass increase of these cultures is lower.

24  Production of Rosmarinic Acid in Hairy Roots

Hairy roots have become a common type of axenic plant in vitro culture due to their
easy maintenance and rapid biomass increase. Usually hairy roots are established by
infecting plant material with Rhizobium rhizogenes (formerly Agrobacterium rhizo-
genes) strains, which transfer genes of their Ri plasmid to the plant cells. These are
stably integrated into the plant genome and direct the plant cells to produce roots.
The developing roots often carry high numbers of root hairs that give the roots a
“hairy” appearance [108]. In recent years, efforts have been made to optimize the
production of plant metabolites in hairy root cultures of plants that contain the very
same metabolites or to insert new pathways for small molecules or proteins of inter-
est into model plants [51, 62, 141, 160].

Hairy root cultures of members of both, the Boraginaceae and Lamiaceae, have
been used for the production of RA and other caffeic acid derivatives. As of April
2016, 36 scientific articles had been published on this topic.

2.4.1 Hairy Roots of Lamiaceae Species

The production of RA in hairy root cultures of plants in the Lamiaceae is well docu-
mented (Tables 2.2 and 2.3). Hairy roots have several advantages with respect to
undifferentiated cell cultures or plants. The hairy root material contains mostly the
same metabolites as the source plant but is more stable than undifferentiated plant
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Table 2.2 Hairy root cultures of Lamiaceae species established for the production of RA and
related compounds. For experiments with Salvia miltiorrhiza see Table 2.3

Plant species

Compound

Experiment

Reference

Agastache foeniculum

RA

Establishment of HR, 4-fold higher
production of RA (0.02% DW) than
in non-transformed roots

[116]

Coleus blumei

RA

Establishment of HR and normal
roots, comparison of biomass and
RA content. HR had 2.8-fold higher
RA content (5% DW). Effects of
MelJA and YE on HR

[11]

Coleus blumei

RA, caffeic acid,
chlorogenic acid

Transformation of HR with the
Arabidopsis thaliana PAL gene
under the control of the constitutive
CaMV 358 promotor decreases the
formation of RA and chlorogenic
acid, but enhances caffeic acid levels

Coleus blumei

RA and other
phenolic acids

Endogenously synthesized elicitor
B-cryptogein causes excretion of RA
from the cells to the medium

[166]

Coleus blumei

RA

Establishment of HR, RNAI-
mediated suppression of HPPR or
RAS reduced RA by 92%,
overexpression led to RA levels of
176% of the control HR lines (1.73%
DW)

(73]

Coleus blumei

RA

Comparison of different tissues
revealed high stability of production
of RA in HR

Coleus forskohlii

RA and other
natural products

Analysis of various media for HR
cultures with respect to biomass and
RA accumulation. Comparison of the
elicitors YE, SA and MeJA. Increase
of RA content up to 3.4-fold higher
with MeJA than control

Dracocephalum
kotschyi

RA and
flavonoids

Establishment of HR, up to 15-times
higher production of RA in HR than
in non-transformed roots (max.
0.15% DW)

[47]

Dracocephalum
moldavica

RA

Establishment of HR, analysis of
different media, tenfold higher RA
content than in untransformed roots
(7.8% DW)

[173]

Hyssopus officinalis

RA and other
phenolic acids

Comparison of different media with
respect to RA amount. Highest value
was 6% DW, 60% higher than in
callus, cell suspension culture and

1 year old field plant roots. Detection
of nine other phenolic acids in HR

[89]

(continued)
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Table 2.2 (continued)

Plant species Compound Experiment Reference
Nepeta cataria RA Elicitation of HR cultures with [185]
auxins and polyamines led to
increase in biomass and RA
accumulation (1.92% DW)

Ocimum basilicum RA and related Comparison of various clones of HR | [154]
phenolic acids cultures with respect to RA amount.
Highest amount was 14.1% DW
Ocimum basilicum RA Increased production of RA in HR [8]

and elicited HR compared with
untreated or untransformed roots.
Exudation of RA into medium upon
treatment with Pythium ultimum

Ocimum basilicum RA and other Production of RA as major [143]
antioxidants antioxidant, dependent on cultivar
(up to 7.6% DW)
Salvia officinalis RA Comparison of two lines of HR [60]

cultures transformed with different
strains of Agrobacterium and with
untransformed HR, up to 2.3-fold
increase in RA accumulation
(approx. 4.5% DW)

Salvia officinalis RA Comparison of shoot and HR [57]
cultures with respect to accumulation
of antioxidants and biomass (shoot
2.6%, HR 3.5% DW)

Salvia wagneriana RA Establishment of culture, no [135]
elicitation of RA with JA

DW dry weight, HR hairy roots, JA jasmonic acid, MeJA methyl jasmonic acid, SA salicylic acid,
YE yeast extract

cells. Moreover, the yield of RA and other caffeic acid derivatives can be increased
by eliciting with e.g. MeJA or SA.

A problem remains during the downstream processing of the phenolic acids: the
extraction of RA from cells and organs is a tedious process. For biotechnological
use, exudation of the phenolic metabolites into the medium would be an important
step for a simpler and cheaper production. Two publications deal with this problem.
In 2002, Bais and coworkers treated hairy roots of RA-producing Ocimum basili-
cum with Pythium ultimum. Upon this fungal in situ challenge, the hairy roots pro-
duced droplets on the roots tips with concentrated RA solutions. This behavior was
absent with other fungi or in untreated roots. It has been hypothesized that this
strategy might be useful for the plant root to prevent infections with soil pathogens,
as RA showed effective antimicrobial activity [8].

The oomycete Phytophthora cryptogea produces B-cryptogein. This protein-
aceous elicitor causes activation of phenylpropanoid metabolism via stimulation of
calcium-dependent pathways. By transforming Rhizobium rhizogenes with the cod-
ing sequence for fB-cryptogein, Vukovi¢ and her colleagues obtained modified
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Coleus blumei hairy root clones with the ability to produce the elicitor endoge-
nously. These cultures were able to secrete RA and caffeic acid into the culture
medium [166].

A modulation of product amounts can not only be achieved by changing the
medium or eliciting the root culture, but also by manipulating the expression pattern
of genes for enzymes of RA biosynthesis. Hiicherig and Petersen [73] used tech-
niques of RNAi suppression and overexpression with a constitutive promotor to
modulate gene expression for HPPR and RAS in hairy roots of Coleus blumei. They
showed that the insertion of interfering hairpin RNA of both genes led to decreased
expression values of HPPR and RAS and accordingly to reduced RA accumulation.
One HPPR-RNAI-line accumulated only about 8% of the RA amount found in con-
trol lines (1.73% of DW in controls). In contrast, an overexpression of these genes
led to a 1.8-fold increase in RA accumulation compared to control lines.

By far the most publications on RA production in hairy roots are dealing with the
plant Salvia miltiorrhiza (Table 2.3), the red or Chinese sage, named for its red
ochre-colored roots. It is an important plant in traditional Chinese medicine, also
known as Danshen, Dan Shen or Tan Shen. Two substance groups dominate the
constituents of the plant extracts, namely phenolic acids (RA, lithospermic acids,
and salvianolic acids) and diterpenes (tanshinones). Danshen is employed for the
treatment of various diseases associated with malfunctioning blood flow, cardiovas-
cular and cerebrovascular diseases, such as coronary heart disease, hypertension,
angina pectoris, ischemic strokes and hyperlipidemia. It is used in various phyto-
pharmaceutical forms, for oral application or injection, as solids, liquids or aerosols,
as single preparation or in combination with other drugs. Clinical and pharmaco-
logical studies of bioactive metabolites isolated from Danshen have focused on
Danshensu, which is DHPL, salvianolic acid B and tanshinone ITA [30, 190].

Xiao et al. [177] investigated the production of lithospermic acid B in hairy
roots. It has been hypothesized that lithospermic acid B is directly derived from
RA. After elicitation of hairy root cultures of S. miltiorrhiza with silver ions (Ag"),
they investigated accumulation of RA, lithospermic acid B and intermediates of the
RA biosynthetic pathway as well as gene expression of enzymes involved in this
pathway and found an inverse proportionality of RA and lithospermic acid accumu-
lation after elicitation. This finding, combined with metabolic profiling and gene
activity measurements, led to the conclusion that RA is the precursor of lithosper-
mic acid B.

Other publications presented a genetic engineering approach to stimulate the
accumulation of phenolic acids in S. miltiorrhiza. Xiao et al. [178] used an overex-
pression/suppression approach to manipulate the expression patterns of genes of the
RA biosynthetic pathway. The upregulation of the single genes for c4h, tat and hppr
as well as suppression of the 4-hydroxyphenylpyruvate dioxygenase gene (hppd) led
to an increase of RA, lithospermic acid B or both. The gene product HPPD partici-
pates in the tyrosine catabolic pathway by catalyzing the conversion of
4-hydroxphenylpyruvate to homogentisate. A co-overexpression of tat and hppr
resulted in the highest accumulation of both RA and lithospermic acid, 4.3 and 3.2-
fold higher than in the wild type, respectively.
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Table 2.3 Hairy root cultures of Salvia miltiorrhiza (Lamiaceae) established for the production
of RA and related compounds

Compounds Experiment Reference
Lithospermic acid B, Establishment of HR, comparison of different media [25]
RA and related with respect to accumulation of lithospermic acid B
compounds (between 0.73 and 1.61% DW) and RA (0.48% DW)
and increase of biomass
Phenolic acids Methyl viologen inhibited biomass production and [24]
decreased content of phenolic acids in HR
Phenolic acids, RA and | Increase of phenolic acids and other natural products [27]
lithospermic acid B, and biomass upon elicitation with YE (up to 2.89%
other natural products lithospermic acid B and 2.98% RA in DW)
RA and related Comparison of two elicitors, YE and silver ions. [183]
compounds Increase of RA accumulation and gene expression for
enzymes of RA biosynthesis for both elicitors, effects
with YE higher (up to 8% DW)
RA and lithospermic Elicitation of HR with MeJA increased RA and [176]
acid B lithospermic acid B approx. 2—8-fold higher than
untreated control (RA up to 6.02% DW, lithospermic
acid B up to 19.3% DW). Gene expression was elevated
for RA biosynthesis genes
RA, salvianolic acid B, | Dependence of phenolic acid content on concentration [29]
DHPL (danshensu) of MeJA elicitor in medium and growth stage of
HR. Accumulation in DW, RA 14.35%, salvianolic acid
B 1.59%, DHPL 0.51%
RA and lithospermic Elicitation of HR cultures with Ag* led to approx. [177]
acid B 3-fold increase of lithospermic acid B (to 18.8% DW),
while RA content decreased. Analysis of gene
expression and intermediates suggest RA as precursor
for lithospermic acid B
RA and lithospermic Overexpression of genes of RA biosynthesis and [178]
acid B suppression of genes for by-products led to 3.2—4.3-fold
increase of phenolic acids in HR compared to
untransformed wildtypes
RA, salvianolic acids Effects of MeJA and YE on accumulation of RA and [189]
salvianolic acids. MeJA elevated the accumulation of
salvianolic acid B up to 7.11% and RA up to 3.38%
DW, YE increased RA content up to 5.71% DW but
suppressed salvianolic acids
Salvianolic acids and Effects of sugar and other nutrients of the medium on [170]
RA accumulation of salvianolic acids in whole plants,
seedlings and HR
Phenolic acids, RA and | Effects of various concentrations of abscisic acid and [31]
lithospermic acid B fluridone on growth and accumulation of phenolic acids
in HR

(continued)
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Table 2.3 (continued)
Compounds Experiment Reference
RA, lithospermic acid | Overexpression of allene oxide cyclase promoted [61]
B and other natural biosynthesis of natural products in HR, RA increased
products 2.1-fold compared to wildtype (up to 0.28% DW),
lithospermic acid B accumulated 1.8-fold more than
wildtype and 2.3-fold more than blank vector control
(up to 1.90% DW)
RA, salvianolic acid B | Gene expression study of RA biosynthetic genes after [97]
and caffeic acid elicitation with MeJA, LC-MS-analysis of phenolic
acids. Both expression and accumulation were elevated
several hours after induction
RA, lithospermic acid [Ring-'*C]-labeled phenylalanine and UPLC/Q-TOF [39]
B measurement to analyze the biosynthetic pathway of
phenolic acids
RA, salvianolic acid B | Endophytic bacteria decrease the production of [184]
and tanshinones phenolic acids and biomass and increase the production
of tanshinones
RA and salvianolic Treatment of HR with MeJA and fungal extracts, [188]
acid B expression and activity analysis of phenylpropanoid and
tyrosine-derived pathway (RA max 4.5% DW)
RA, salvianolic acid B | Silver ions as elicitor for secondary metabolites, [180]
and tanshinones analysis of gene expression (up to 1.5% DW)
RA and salvianolic Study on transcription factors for RA biosynthesis [67]
acid B

DW dry weight, HR hairy roots, JA jasmonic acid, MeJA methyl jasmonic acid, SA salicylic acid,
YE yeast extract

Using the overexpression of allene oxide cyclase, Gu et al. [61] were also able to
enhance the accumulation of secondary metabolites, namely tanshinone ITA, RA
and lithospermic acid B in hairy roots of Salvia miltiorrhiza. Allene oxide cyclase
catalyzes a reaction in the pathway toward jasmonates, which are a group of phyto-
hormones that are induced in response to various stresses [16]. Jasmonates are
known to trigger plant defence mechanisms, especially the production of secondary
metabolites. MeJA, for instance, is an important elicitor. Overexpression of the
Salvia miltiorrhiza allene oxide cyclase gene in hairy root cultures led also to an
increase in RA biosynthetic genes encoding PAL, HPPR and 4CL.

2.4.2 Hairy Roots of Boraginaceae Species

Two species of the Boraginaceae family (Lithospermum erythrorhizon and
Eritrichium sericeum) have been used to establish hairy roots for the production of
RA and related compounds (Table 2.4). Lithospermum erythrorhizon, the purple
gromwell, accumulates RA, lithospermic acid and rabdosiin, a condensation prod-
uct of two molecules of RA (Table 2.1). Another interesting natural substance from
this species is shikonin, a prenylated naphthoquinone. The content of phenolic
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Table 2.4 Hairy root cultures of Boraginaceae species established for the production of RA and
related compounds

Plant species Compounds Experiment Reference
Lithospermum Lithospermic acid B, | Analysis of HR in M-9 medium [181]
erythrorhizon RA, rabdosiin and for caffeic acid derivatives and
other natural other natural products
products
Eritrichium sericeum | Rabdosiin and RA Presence of rolC in HR inhibits [19]
and Lithospermum production of phenolic acids
erythrorhizon compared to control cultures.
MeJA-triggered (1 pM) E.
sericeum HR can accumulate up
to 3.41% and 6.92% of the DW
as rabdosiin and RA,
respectively

DW dry weight, HR hairy roots, MeJA methyl jasmonic acid

compounds in hairy roots was considerably lower than in suspension cultures and
RA was hardly detectable [181]. Thus, this culture system is inferior for biotechno-
logical uses.

Bulgakov et al. [19] described interesting effects of the agrobacterial rolC gene.
This gene is located on the Ri plasmid, which is transferred during infection of the
plant with Rhizobium rhizogenes. RolC causes inhibition of phenolic acid produc-
tion (namely RA and rabdosiin) in Lithospermum erythrorhizon and Eritrichium
sericeum callus and hairy root cultures, leading to depletion of both substances to a
level two- to three-fold lower than in untransformed plant material. Yet, the effects
are reversible with cantharidin, an inhibitor of serine/threonine phosphatases, which
has led to the hypothesis, that rolC affects shikimate metabolism via a set of regula-
tory phosphatases, which in return can be affected by cantharidin. This finding was
unexpected because several publications had demonstrated that transgenic hairy
roots bearing the rolC gene can produce more secondary metabolites without fur-
ther treatment than untransformed cultures.

2.5 Production of Rosmarinic Acid and Related Caffeic Acid
Esters in Microorganisms

In recent years, several efforts to introduce a biosynthetic pathway for RA and
related phenolic metabolites into Escherichia coli have been reported. The first step
was taken by Kim et al. [85] who inserted coding sequences for 4CL and
hydroxycinnamoyl-CoA  shikimate hydroxycinnamoyltransferase (HST) or
hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase (HQT) into E. coli
and fed different hydroxycinnamic acids to the bacteria. These were capable to pro-
duce hydroxycinnamoylshikimate or hydroxycinnamoylquinate, metabolites
closely related to RA. They circumvented the necessity to introduce enzymes neces-
sary to hydroxylate the benzene ring, which, in plants, requires cytochrome P450s.
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Therefore, their approach can be viewed as a biotransformation rather than a de
novo synthesis of hydroxycinnamic acid esters. To increase the amount of acceptor
substrates, the authors mutated different enzymes of the shikimate pathway, leading
either to the production of quinate or shikimate esters [85].

The next step was taken by Bloch and Schmidt-Dannert in 2014 (Fig. 2.2). They
took advantage of the fact that RAS, the key enzyme for RA production and respon-
sible for esterification of 4-coumaroyl-CoA and pHPL, can also use caffeoyl-CoA
and DHPL as substrates, since the enzyme has a broad substrate promiscuity regard-
ing the hydroxylation in meta position [94, 138]. In plants, these hydroxyl groups
are added after the RAS reaction by cytochrome P450 reactions. The engineered
pathway starts for both, the acceptor and the donor, with pHPP from the bacterial
shikimate pathway. The acceptor molecule DHPL is produced by addition and over-
expression of two enzymes, a dehydrogenase (HdhA; hydroxyacid dehydrogenase
from Lactobacillus delbrueckii ssp. bulgaricus) and a hydroxylase complex
(HpaBC; 4-hydroxyphenylacetate 3-hydroxylase from E. coli), using FADH, (and
NAD(P)H + H*) as cofactors. The donor is synthesized by using three enzymes. In
the bacterial pathway to aromatic amino acids, pHPP is transaminated to tyrosine.
An inserted tyrosine ammonia-lyase (TAL from Rhodobacter sphaeroides) deami-
nates tyrosine to 4-coumaric acid, which is hydroxylated with the HpaBC complex
described above to build caffeic acid. After CoA activation with an inserted 4CL
(At4CL2 from Arabidopsis thaliana), an introduced RAS (CbRAS from Coleus
blumei) produces RA. Alongside RA, isorinic acid (ester of caffeic acid and pHPL)
was observed. The introduction of RAS from other plants species, namely Lavandula
angustifolia or Melissa officinalis, resulted in higher production of RA and isorinic
acid (1.8 £ 0.3 pM RA, 5.3 £ 0.7 pM isorinic acid with MoRAS; approximately
2.5 mg phenolic acids/l). Both metabolites were released into the medium and the
amount of product was increased when appropriate precursors were fed to the
medium. The authors stated, however, that an industrial use of this modified E. coli
needs either feeding of expensive precursors like pHPL or DHPL, which would
elevate production costs into unprofitable ranges or to use bacterial strains with
upregulated shikimic acid and tyrosine biosynthetic pathways, so that the precursors
would be produced autotrophically [17].

A similar approach was followed by Jiang et al. [78] using a tyrosine-
overproducing E. coli strain as a platform [7]. Furthermore, coding sequences for an
Arabidopsis thaliana 4CL, a mutated D-lactate dehydrogenase (LDHY*?*) from
Lactobacillus pentosus [186], the HpaBC complex from E. coli BW25113 and a
synthetic CbRAS sequence (optimized for expression in E. coli) were used. The
final transformed E. coli strain was able to produce approximately 133 mg RA per
litre of culture besides approximately 55 mg/l caffeoyl-phenyllactate.

Recently, Zhuang et al. [192] achieved the formation of 18 RA analogues by
feeding E. coli BLRAI transformed with a 4CL from Arabidopsis thaliana and
RAS from Coleus blumei with different donor substrates (4-coumaric acid, caffeic
acid,ferulicacid, 3,4-dihydroxyphenylpropanoicacidand4-hydroxyphenylpropanoic
acid) and various acceptors (pHPL, DHPL, phenyllactic acid, mandelic acid and
tyrosol).
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Fig. 2.2 Formation of isorinic acid and rosmarinic acid in Escherichia coli as established by
Bloch and Schmidt-Dannert [17]. HdhA hydroxyacid dehydrogenase from Lactobacillus del-
brueckii ssp. bulgaricus, HpaBC 4-hydroxyphenylacetate 3-hydroxylase from E. coli, TAT tyro-
sine aminotransferase (endogenous), TAL tyrosine ammonia-lyase from Rhodobacter sphaeroides,
4CL 4-coumarate CoA-ligase (At4CL2) from Arabidopsis thaliana, RAS rosmarinic acid synthase
from Coleus blumei. Microbial enzymes are marked by boxes

2.6 InVitro Formation of Non-natural Hydroxycinnamic
Acid Esters and Amides by “Rosmarinic Acid Synthase”

RAS is the essential ester-forming enzyme in the biosynthetic pathway towards RA
[130]. In vivo, this enzyme couples a hydroxycinnamoyl unit activated as CoA thioes-
ter (4-coumaroyl-CoA, caffeoyl-CoA) to the aliphatic OH-group of a phenylpyruvate
derivate. RAS proteins from lavender as well as Coleus blumei heterologously
expressed in Escherichia coli displayed unexpected substrate promiscuity. The recom-
binant proteins were shown to form esters as well as amides and accepted a consider-
able variety of compounds leading to products that had not yet been described, e.g.
hydroxycinnamoyl-D-phenylalanine, hydroxycinnamoyl-D-tyrosine, hydroxycinnam-
oyl-D-DOPA, hydroxycinnamoyl-phenethylamine, hydroxycinnamoyl-tyramine, and
hydroxycinnamoyl-tryptamine [94, 138].
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2.7 Conclusion and Outlook

RA and related metabolites are among those specialized metabolites in plants that
are produced at the highest levels. Often, the contents in undifferentiated cells, such
as callus and suspension cells, are considerably higher (sometimes exceeding 30%
of the DW) than in the source plants. Undifferentiated cells, however, often lose
their production capacity with increasing numbers of subcultivations. This disad-
vantage is less pronounced in differentiated organs. Here HR cultures are the most
often established production systems. Up to now, however, the RA production levels
in HR are lower (<20% of the DW) than in undifferentiated cells. Many production
systems have been established, mostly at laboratory scale. With the exception of
early attempts in the 1980s [164], these have not been developed further to semi-
industrial or industrial scale. This may be due to the lack of commercial demand for
these phenolic acids, since, despite the many biological effects of RA and related
phenolic acids, medicinal applications have not been developed, perhaps with
exception of Salvia miltiorrhiza and its extracted ingredients as traditional Chinese
medicines.

Very recent approaches have shown that RA and similar metabolites can also be
produced in genetically modified E. coli. Here, a combination of bacterial and plant
genes have been used and the necessity of membrane-bound cytochrome P450
enzymes circumvented. The amount of RA produced in prokaryotic systems
(133 mg/1; [78]) is, however until now, not competitive with plant cell cultures (e.g.
6.4 g/l in Salvia officinalis [72]).
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Bioproduction of Resveratrol

Jian Wang, Yaping Yang, and Yajun Yan

3.1 Introduction

Resveratrol (3, 5, 4'-trihydroxy-trans-stilbene) is an important member of the
stilbene class of plant-derived polyphenolic metabolites [1]. It naturally occurs in
many different plants, including grapes, various berries, peanuts, and their derived
food products, such as wine and juice [2, 3]. In plants, as a defense compound, res-
veratrol has been shown to exert biological effects against pathogenic infection and
injury [4]. Especially, resveratrol has been regarded as an important health-
promoting nutraceutical in red wine [5, 6]. Numerous studies have reported that
resveratrol exhibits protective effects against some cancers and possesses a benefi-
cial effect on the cardiovascular system [7]. Pre-clinical tests have demonstrated
that resveratrol is a promising pharmaceutical candidate compound with consider-
able pharmacological potential to be used for the treatment of neurodegenerative
diseases [8, 9]. Resveratrol has also been demonstrated to exert a positive effect on
the lifespan of different organisms [10]. Additionally, resveratrol exhibits a high
level of antioxidant activity, which exceeds the activity of vitamin E [3]. Thus, res-
veratrol is currently being developed and sold as over-the-counter ingredient of
nutritional supplements, pharmaceuticals, nutraceuticals and cosmetics [11]. These
potential applications of resveratrol have triggered new research interests toward
engineering the biosynthesis of this value-added compound.
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Stilbenes

R1=H, Rz=H, R3=0H, R4=0H: Pinosylvin

R1=0H, Rz=H, R3=0H, R4=0H: Resveratrol

R1=0H, Rz=0H, R3=0H, R4=0OH: Piceatannol

R1=0CH3, R2=H, R3=0OH, R4=0OH: Desoxyrhapotigenin (3,5-dihydroxy-4 -methoxystilbene)
R1=0H, R2=H, R3=0OH, R4=0CHs: Pinostilbene

R1=0H, R2=H, R3=0OCHs, R4=0OCHa: Pterostilbene

R1=0CHa, R2=H, R3=0CHs, R4=0H: 3,4’-dimethoxy-5-hydroxystilbene

R1=0CHa, R2=H, R3=0CHs, R4=0CHa: 3,5,4'-trimethoxystilbene

R1=0H, R2=0CHs, R3=0H, R4=0OH: Isorhapontigenin

Fig. 3.1 Resveratrol and its stilbene analogs

3.2  Biosynthesis of Resveratrol and Its Analogs

The potential therapeutic value of resveratrol has stimulated the exploration of
resveratrol-related natural products. Natural resveratrol derivatives include deoxy
derivatives such as pinosylvin, hydroxylated derivatives such as piceatannol, meth-
ylated derivatives such as pinostilbene (3,4’-dihydroxy-5-methoxy-trans-stilbene),
pterostilbene (3,5-dimethoxy-4'-hydroxy-trans-stilbene), 3,4’ ,5-trimethoxystilbene,
and desoxyrhapotigenin (3,5-dihydroxy-4'-methoxy-trans-stilbene), and glucosyl-
ated derivatives such as piceid (resveratrol-3-O-glucoside) and resveratroloside
(resveratrol-4'-O-glucoside) (Fig. 3.1) [12, 13] (see also Chap. 9 of this book).
Interestingly, the naturally occurring hydroxylated, methylated and glucosylated
resveratrol derivatives exhibit higher biological properties and oral bioavailability
than the parent compound resveratrol [14-16]. Among them, frans-resveratrol tri-
methylether and pinostilbene appeared to be the most potent compounds, which
were reported to be up to 100-fold more cytotoxic than resveratrol in cancer cell
lines [12, 17]. Structure-activity relationship studies with resveratrol analogs
revealed that the phenolic hydroxyl or methyl groups are the major structural deter-
minants of the molecule’s activity [18, 19]. Thus, the chemical scaffold of resvera-
trol has been utilized as the starting backbone to synthesize new resveratrol analogs
for improving the chemopreventive activities of resveratrol [20, 21]. Because of its
advantageous biological activities over resveratrol, pterostilbene has been approved
by the FDA to be generally recognized as safe (GRAS) status as a food ingredient,
which provides new commercial opportunities in natural food and beverage pro-
cessing [22].

The biosynthesis of resveratrol compounds is initiated from phenylpropanoid
acids including cinnamic acid, p-coumaric acid, caffeic acid and ferulic acid that are
derived from aromatic amino acids (Fig. 3.2) [23]. L-phenylalanine and L-tyrosine
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Fig. 3.2 Biosynthetic pathway and metabolism of resveratrol and its stilbene derivatives. The
enzymes in black are plant-derived enzymes that involve in natural biosynthetic pathways, and
enzymes in red denote bacterial enzymes that are utilized for respective reactions. ACC acetyl-
CoA carboxylase, PAL phenylalanine ammonia-lyase, TAL tyrosine ammonia-lyase, C4H
cinnamate-4-hydroxylase, C3H coumaroylquinate (coumaroylshikimate) 3’-monooxygenase,
HCT hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase, HQT hydroxycinnamoyl-
CoA quinate hydroxycinnamoyl transferase, 4CL 4-coumarate: coenzyme A ligase, STS stilbene
synthase, YjiC UDP-glycosyltransferase from Bacillus species, SbOMTI and SbOMT3
O-methyltransferase 1 and 3 from Sorghum bicolor, VvROMT resveratrol O-methyltransferase
from V. vinifera

are converted to the phenylpropanoid acids cinnamic acid and p-coumaric acid,
respectively, via phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase
(TAL), which are then converted to cinnamoyl-CoA and p-coumaroyl-CoA by
4-coumaroyl-CoA ligase (4CL). Then malonyl-CoA is condensed with cinnamoyl-
CoA or p-coumaroyl-CoA to produce pinosylvin and resveratrol, respectively, via
stilbene synthases (STSs) [24]. Resveratrol can serve as a scaffold to generate sev-
eral derivatives through the action of tailoring enzymes like hydroxylases,
O-methyltransferases and glucosyltransferases, whereby diverse resveratrol analogs
are generated (Fig. 3.2) [25] (see also Chap. 9 of this book).

3.3  Bioproduction of Resveratrol in Microorganisms

As a high-value phytochemical found in many plants, resveratrol production has
been engineered in various transgenic plants like Polygonum cuspidatum,
Arabidopsis thaliana, Nicotiana tabacum, Arachis hypogea, Vitis amurensis and
especially V. vinifera [26-29]. Industrially, resveratrol is mainly extracted from
plants, which suffers from several limitations like low yields, impurities, and long
turn-around time involving the growth period required by the plants. Moreover,
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resveratrol compounds are mostly produced in response to stress situations such as
fungal infection or injury, or induced by elicitors [27, 30]. The chemical synthesis
is also a widely reported method for resveratrol production with high yield, whereas
the complexity of synthesis process and the generation of unwanted byproducts
greatly limit the application of this technique.

With the advance of metabolic engineering, microorganisms like yeast and
Escherichia coli can be equipped with resveratrol biosynthetic genes, which repre-
sents an alternative strategy and has achieved remarkable progress in resveratrol
bioproduction [11, 31]. Specifically, besides efficient biotransformation of fed pre-
cursors to resveratrol, de novo production of resveratrol from renewable carbon
sources has also been realized in microorganisms [32—-35]. Thus, microbial synthe-
sis has attracted much attention due to its high purity and productivity. The well-
known manufacturer, the Swiss company (Evolva), possesses a high purity (98%)
and high capacity of 40 to 50 tons per year for resveratrol production [11]. However,
cost-effective production of resveratrol is still required for the increasing market
demand. Thus, in this chapter, we will introduce the recent progress on the biopro-
duction of resveratrol in microbial hosts.

3.3.1 Yeast

Saccharomyces cerevisiae, the most commonly used yeast, is a well-studied eukary-
otic model microorganism that is a Generally Regarded As Safe (GRAS) microbe
for industrial applications like baking, brewing and winemaking. It is an ideal
microbial host for production of valuable phytochemicals because of its ease of
expressing plant-derived enzymes (like cytochrome P450 enzymes) and its tracta-
bility of genetic manipulations [36]. Many plant-derived chemicals like flavonoids,
stilbenoids, benzylisoquinoline alkaloids and terpenoids have been produced via
metabolic engineering in S. cerevisiae [36, 37]. Thus, yeasts like S. cerevisiae have
been generally recognized as industrially robust hosts for plant-derived natural
compounds.

Resveratrol pathway has been engineered in yeast by introducing two enzymes,
4-coumarate: coenzyme A ligase (4CL) from plant or bacterial origin and stilbene
synthase (STS) from various plant species (Table 3.1). When 4CL2 from N. taba-
cum and STS from V. vinifera were integrated into the genome of S. cerevisiae and
co-expressed, 6 mg/L resveratrol was produced via feeding of p-coumaric acid [38].
Expression of 4CL1 from A. thaliana and STS from A. hypogaea in S. cerevisiae
W303-1A achieved resveratrol production with a titer of 3.1 mg/L and 14.4% (mol/
mol) conversion yield from 15.3 mg/L p-coumaric acid [40]. This established the
commercial viability for resveratrol production in a food-grade yeast, although the
titer was still far from large-scale industrialization. Several studies have been per-
formed to increase resveratrol production via either engineering a fusing enzyme
4CL::STS or creating synthetic scaffolds of 4CL and STS via small peptide ligands,
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Table 3.1 Biosynthesis of resveratrol in microorganisms
Fed Titers
Microbial hosts Introduced genes precursors | (mg/L) | References
Yeast
S. cerevisiae CEN.PK 4CL2 (Nicotiana tabacum) p-Coumaric 6 [38]
STS (Vitis vinifera) acid
Industrial yeast 4CL1 (Arabidopsis thaliana) | p-Coumaric | 391 [39]
STS (Vitis vinifera) acid
S. cerevisiae W303-1A | 4CL1 (Arabidopsis thaliana) | p-Coumaric 3.1 [40]
STS (Arachis hypogaea) acid
S. cerevisiae WAT11 TAL (Rhodobacter Tyrosine 1.9 [41]
sphaeroides)
4CL::STS, 4CL1
(Arabidopsis thaliana)-STS
(Vitis vinifera) fusion
enzyme
S. cerevisiae WAT11 4CL1 (Arabidopsis thaliana) | p-Coumaric | 14.4 [42]
STS (Vitis vinifera) acid
S. cerevisiae CEN. TAL (Herpetosiphon Glucose 415.65 [32]
PK102-5B aurantiacus)
4CL1 (Arabidopsis thaliana)
STS (Vitis vinifera)
S. cerevisiae CEN. TAL (Herpetosiphon Ethanol 531.41 [32]
PK102-5B aurantiacus)
4CL1 (Arabidopsis thaliana)
STS (Vitis vinifera)
E. coli
E. coli BL21 (DE3) 4CL2 (Nicotiana tabacum) p-Coumaric | 16 [38]
STS (Vitis vinifera) acid
E. coli BW27784 4CL1 (Arabidopsis thaliana) | p-Coumaric | 105 [43]
STS (Arachis hypogaea) acid
E. coli BLR (DE3) 4CL (Lithospermum p-Coumaric | 171 [44]
erythrohizon) acid
STS (Arachis hypogaea)
ACC (Corynebacterium
glutamicum)
E. coli BL21 (DE3) 4CL::STS, 4CL(Arabidopsis | p-Coumaric | 80.5 [45]
thaliana)-STS (Arachis acid
hypogaea) fusion enzyme
E. coli BW25113 ACL2 (Petroselinum p-Coumaric | 268.20 [46]
crispum) acid
STS (Vitis vinifera)
E. coli BW27784 4CL1 (Arabidopsis thaliana) | p-Coumaric | 2340 [47]
STS (Vitis vinifera) acid
E. coli BW27784 4CL1 (Arabidopsis thaliana) | p-Coumaric | 1600 [48]

(DE3)

STS (Vitis vinifera)

acid

(continued)
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Table 3.1 (continued)
Fed Titers
Microbial hosts Introduced genes precursors | (mg/L) References
E. coli BL21 (DE3) PAL (Rhodotorula rubra) Tyrosine 37 [49]
4CL (Lithospermum
erythrorhizon)
STS (Arachis hypogaea)
E. coli BL21 (DE3) TAL (Rhodotorula glutinis) | Tyrosine 35 [50]
4CL (Petroselinum crispum)
STS (Vitis vinifera)
E. coli BL21(DE3) TAL (Saccharothrix Tyrosine 114.4 [23]
espanaensis)
4CL (Arabidopsis thaliana)
STS (Arachis hypogaea)
E. coli C41(DE3) TAL (Saccharothrix Tyrosine 1.4 [51]
espanaensis)
4CL (Streptomyces
coelicolor)
STS (Arachis hypogaea)
E. coli C41 (DE3) TAL (Saccharothrix Glucose 5.2 [33]
espanaensis)
4CL (Streptomyces
coelicolor)
STS (Arachis hypogaea)
E. coli BW25113 TAL (Rhodotorula glutinis) Glucose 4.6 [35]
(DE3) 4CL (Petroselinum crispum)
STS (Vitis vinifera)
Other bacteria
Corynebacterium 4CL (Petroselinum crispum) | p-Coumaric | 158 [34]
glutamicum Del Aro? STS (Arachis hypogaea) acid
Corynebacterium TAL (Flavobacterium Glucose 59 [34]
glutamicum Del Aro* Jjohnsoniae)
4CL (Petroselinum crispum)
STS (Arachis hypogaea)

which led to resveratrol production enhancement with a titer of 5.3 mg/L and
14.4 mg/L, respectively [42, 52]. Specifically, when a codon-optimized tyrosine
ammonia lyase (TAL) from Rhodobacter sphaeroides was introduced into an S.
cerevisiae strain expressing the 4CL::STS fusion construct, 1.9 mg/L resveratrol
could be produced from 12 mg/L tyrosine [41]. Based on that, introducing the araE
gene encoding a arabinose transporter from E. coli could facilitate transporting res-
veratrol and further produce up to 3.1 mg/L resveratrol [41]. Fermentation of an
industrial S. cerevisiae expressing 4CL1 from A. thaliana and STS from V. vinifera
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Fig. 3.3 Metabolic engineering of resveratrol production in yeast and E. coli. Critical endogenous
enzymes from E. coli (blue), S. cerevisiae or Salmonella enterica (green) and heterologous
enzymes for resveratrol biosynthesis (red) are included. EcAroGP'%*N feedback inhibition resistant
3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase, EcTyrAM>3: 435%V feedback inhi-
bition resistant chorismate mutase/prephenate dehydrogenase, EcPDH pyruvate dehydrogenase,
ScAro4p*??°t feedback inhibition resistant DAHP synthase, ScAro7p“'#$ feedback inhibition resis-
tant chorismate mutase, ScPdcP pyruvate decarboxylase, ScAld6p aldehyde dehydrogenase,
SeACSH#P acetylation-resistant acetyl-CoA synthetase variant from S. enterica, SCACCS*3 511574
inactivation-resistant acetyl-CoA carboxylase, PAL phenylalanine ammonia lyase, TAL tyrosine
ammonia lyase, C4H cinnamate-4-hydroxylase, 4CL 4-coumaroyl-CoA ligase, STS stilbene
synthase

in rich medium yielded a significantly higher resveratrol titer of 391 mg/L with
optimal supply of the precursor, p-coumaric acid (2.46 g/L) [39].

Recently, de novo production of resveratrol from glucose or ethanol without
costly supplementation of precursors like p-coumaric acid or tyrosine has been
achieved in S. cerevisiae (Fig. 3.3). First, introduction of the resveratrol biosyn-
thetic pathway consisting of TAL from Herpetosiphon aurantiacus, 4CL1 from A.
thaliana and STS from V. vinifera enabled production of 2.73 mg/L resveratrol from
glucose. Subsequently, the formation of the pivotal precursor p-coumaric acid was
increased by enhancing the endogenous shikimate pathway (over-expression of
feedback-insensitive ARO4, ARO7 mutant ARO4¥2%L and ARO76'4!5) and malonyl-
CoA (by over-expression of a post-translational de-regulated acetyl-CoA carboxyl-
ase mutant (ACCS94 SUS7A) (Fig, 3.3). Finally, multiple copies of the resveratrol
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pathway genes were integrated into the genome of the engineered S. cerevisiae.
Fed-batch fermentation of the final strain resulted in a resveratrol titer of 415.65 and
531.41 mg/L with glucose or ethanol as carbon source, respectively [32].

3.3.2 E.coli

E.coli is one of the most widely used microbial organisms for metabolic engineer-
ing owing to favorable characteristics like fast growth, amenability of genetic
manipulation, and compatibility of diverse synthetic biology tools. E. coli is some-
times advantageous over yeast in producing certain plant-derived natural products
including most flavonoids, stilbenoids, benzylisoquinoline alkaloids and terpenoids
[37, 53]. Metabolic engineering in E. coli for resveratrol production is feasible
because the availability of both precursors, tyrosine and malonyl-CoA, can be sig-
nificantly enhanced via genetic modification of the host cells. However, most work
for resveratrol production in E. coli is still based on the biotransformation of fed
precursors like p-coumaric acid and tyrosine (Table 3.1).

In contrast to yeast, which is sensitive to high concentration of p-coumaric acid,
E. coli is much more tolerant to p-coumaric acid (>3 g/L) [40, 54]. When 1 mM
p-coumaric acid was fed to E. coli cultures expressing 4CL1 from A. thaliana and
STS from A. hypogaea, 105 mg/L of the stilbene resveratrol was produced with a
conversion yield of 46% (mol/mol) [43]. Fusion of 4CL1 from A. thaliana and STS
from A. hypogaea led to a final resveratrol titer (when 1 mM substrate p-coumaric
acid was fed to E. coli) of 80.5 mg/L with a conversion yield of 35.3% (mol/mol)
[45]. Generally, when p-coumaric acid was supplemented, increasing the availabil-
ity of malonyl-CoA further enhanced the production of resveratrol. Over-expression
of ACC from Corynebacterium glutamicum in E. coli carrying 4CL from
Lithospermum erythrohizon and STS (grown with supplemental p-coumaric acid)
from A. hypogaea increased the intracellular pool of malonyl-CoA and thus the
production of resveratrol to a titer of 171 mg/L and a conversion yield of 74.9%
(mol/mol) [44]. This implied that an improvement of resveratrol production can be
achieved by redirecting more malonyl-CoA into the resveratrol biosynthetic path-
way. Some other strategies have also been exerted to enhance resveratrol production
to a great extent via increasing malonyl-CoA in E. coli. Expression of different
combinations of 4CL and STS in two different E. coli strain backgrounds revealed
that expression of 4CL from A. thaliana and STS from V. vinifera in E. coli
BW27784 produced the highest titer of resveratrol (1.3 g/L). Based on the best
combination, addition of cerulenin, a specific inhibitor of the fatty acid biosynthesis
pathway, further increased the production of resveratrol to 2.3 g/L [47]. To redirect
carbon flux into malonyl-CoA, phosphoglycerate kinase (PGK), glyceraldehyde-3-
phosphate dehydrogenase (GapA) and genes coding for the components of the
pyruvate dehydrogenase complex (PDH) were over-expressed in E. coli BW27784
(DE3) AfumC mutant. The final recombinant strain carrying 4CL from A. thaliana
and STS from V. vinifera resulted in resveratrol production titers of 1.6 g/L in shake
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flask experiments without adding expensive inhibitors of fatty acid metabolism like
cerulenin [48]. Most recently, anti-sense RNA (asRNA)-based repression of fab
genes has increased the concentration of intracellular malonyl-CoA whereas knock-
out of most fab genes are lethal to host cells [46]. When 4CL2 from Petroselinum
crispum and STS from V. vinifera were co-expressed with anti-sense RNA targeting
fabD (asfabD) in E. coli BW25113, 268.2 mg/L resveratrol was produced, which is
a 1.70-fold increase compared with the control strain without asfabD [46].

Expression of three enzymes, TAL, 4CL and STS, enabled E. coli to produce
resveratrol from tyrosine. Expression of PAL from Rhodotorula rubra, 4CL from
Lithospermum erythrorhizon and STS from A. hypogaea, or TAL from R. glutinis,
4CL from P. crispum and STS from V. vinifera in E. coli BL21 (DE3) produced 37
and 35 mg/L resveratrol, respectively [49, 50]. Over-expression of TAL from
Saccharothrix espanaensis, 4CL from A. thaliana and STS from A. hypogaea in E.
coli achieved the highest production of resveratrol, with a titer of 114.4 mg/L from
tyrosine [23]. As tyrosine is a native amino acid that can be overproduced in E. coli,
de novo production of resveratrol from a simple carbon source is feasible. As a
proof-of-concept demonstration, expression of the artificial pathway harboring TAL
from S. espanaensis, 4CL from Streptomyces coelicolor and STS from A. hypogaea
in E. coli produced 1.4 mg/L resveratrol [51]. When codon-optimized TAL and STS
were used, the resveratrol titer was further increased to 5.2 mg/L [33]. Recently, a
site-specific integration strategy was utilized to chromosomally insert resveratrol
biosynthetic pathway containing genes TAL from R. glutinis, 4CL from P. crispum
and STS from V. vinifera into E. coli BW25113 (DE3) at the loci of tyrR and trpED.
The resulting final strain was capable of producing 4.6 mg/L resveratrol from glu-
cose [35]. We can therefore propose that resveratrol production in E. coli can be
further improved if aromatic pathway flux and the malonyl-CoA pool are both
enhanced.

3.3.3 Other Bacteria

Besides the widely used microbial hosts yeast and E. coli, other industrially avail-
able bacteria like Corynebacterium glutamicum have also been harnessed as a chas-
sis for resveratrol production (Table 3.1). In order to construct a suitable C.
glutamicum platform strain for resveratrol production, four gene clusters (phd, cat,
ben and pca) comprising 20 genes involved in the catabolism of aromatic com-
pounds were deleted to obtain C. glutamicum Del*3. Expression of the plant-
derived and codon-optimized genes 4CL (from Petroselinum crispum) and STS
(from A. hypogaea) with additional supplementation of the antibiotic cerulenin (to
downregulate lipid biosynthesis from malonyl-CoA), led to resveratrol production
with a titer of 158 mg/L from supplemented p-coumaric acid. Additional engineer-
ing via deletion of gsuB (encoding a putative dehydroshikimate dehydratase) and
over-expression of aroH from E. coli and TAL from Flavobacterium johnsoniae
enabled resveratrol production directly from glucose with a titer of 59 mg/L, which
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is up-to-date the highest production titer of resveratrol from a simple carbon source
in microorganisms [34]. Caffeic acid, added in the same way, resulted in the produc-
tion of the expected dihydroxylated stilbene, piceatannol. The quantity of the stil-
bene piceatannol produced from caffeic acid was also relatively high, around
13 mg/L [43].

3.4 Bioproduction of Resveratrol Analogs and Derivatives

Resveratrol is one of the few stilbenes that has been widely investigated and meta-
bolically engineered in microbes. However, other stilbenes like pinosylvin, piceatan-
nol, as well as methylated and glucosylated resveratrols have also been produced in
microbial hosts.

The resveratrol analog pinosylvin is derived from cinnamic acid, while piceatan-
nol is derived from caffeic acid or Dopa (Fig. 3.1). Microbial based production of
pinosylvin or piceatannol has been developed and mainly focused on the biotransfor-
mation from phenylpropenoic acids or aromatic amino acids. E. coli expressing PAL
from R. rubra, 4CL from L. erythrorhizon and STS from A. hypogaea produced
20 mg/L pinosylvin when phenylalanine was supplemented [49]. Co-expression of
PAL, 4CL and STS in E. coli BL 21(DE3) achieved de novo biosynthesis of pinosyl-
vin from glucose with a titer of 13.3 mg/L [23]. Total biosynthesis of pinosylvin was
enabled, via in vivo evolution of the STS from Pinus strobus for improved activity
and addition of the fatty acid production inhibitor cerulenin for increasing intracel-
lular malonyl-CoA, to allow the production of 70 mg/L pinosylvin from glucose in
E. coli [55]. Most recently, 47.49 mg/L pinosylvin was produced from glycerol via
optimization of the expression of the pinosylvin pathway and clustered regularly
interspaced short palindromic repeats interference (CRISPRi)-mediated repression
of the fabD gene [56]. Piceatannol is a hydroxylated resveratrol, which can be pro-
duced by hydroxylation from resveratrol. STS shows catalytic promiscuity towards
caffeic acid, though the activity to caffeic acid is relatively low compared with native
p-coumaric acid [43]. To date, several monooxygenases including a bacterial P450
monooxygenase CYP102A1 from Bacillus megaterium, a tyrosinase MelC2 from
melanin-forming Streptomyces avermitilis MA4680 and a two-component flavin-
dependent monooxygenase HpaBC from Pseudomonas aeruginosa have been
reported to efficiently hydroxylate resveratrol to piceatannol [57-59]. E. coli
BL21(DE3) expressing a C3H from S. espanaensis NRRL 15764 produced 65.4 mg/L
piceatannol from 100 mg/L resveratrol [23]. When combined with the resveratrol
biosynthetic pathway via expression of four genes (TAL, 4CL, C3H and STS),
21.5 mg/L piceatannol was produced from glucose [23].

The methylated derivatives of resveratrol, including desoxyrhapotigenin
(3,5-dihydroxy-4'-methoxystilbene), pinostilbene (3,4'-dihydroxy-5-methoxystilbene),
pterostilbene (3,5-dimethoxy-4'-hydroxystilbene), 3,4, -dimethoxy-5-hydroxystilbene
and 3,4',5-trimethoxystilbene, have been produced via expression of a resveratrol
O-methyltransferase (ROMT) gene [22, 33, 60]. At least five resveratrol
O-methyltransferases have been expressed and characterized, namely SbOMT1 and
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SbOMT3 from Sorghum bicolor [61, 62], VVROMT from V. vinifera [63], VIROMT
from V. riparia [60], and OsPMT from Oryza sativa [49, 60-63]. Expression of the
codon-optimized SbBROMT3 in E. coli led to the production of pinostilbene (mono-
methylated resveratrol derivative) (34 mg/L) from 1 mM resveratrol, with a very small
amount of pterostilbene (di-methylated resveratrol derivative) (0.16 mg/L) [60].
However, co-expression of 4CL::STS and VVROMT in E. coli led to the production of
pterostilbene (50 mg/L) as the major product and pinostilbene as the minor product
when fed with p-coumaric acid [22]. OsPMT, a pinosylvin methyltransferase from O.
sativa, turned out to have a rather relaxed substrate specificity towards pinosylvin and
resveratrol [49]. Expression of PAL from R. rubra, 4CL from L. erythrorhizon and
OsPMT in E. coli led to the production of pinostilbene (18 mg/L) and pterostilbene
(5.8 mg/L) when fed with tyrosine, and pinosylvin monomethyl ether (27 mg/L) and
pinosylvin dimethyl ether (27 mg/L) when fed with phenylalanine [49]. Recently,
incorporation of two resveratrol O-methyltransferase genes SbOMT1 and SbBOMTS3 in
E. coli established the artificial biosynthetic pathway for total biosynthesis of methyl-
ated resveratrol analogues, including pinostilbene, pterostilbene, 3,5-dihydroxy-4'-
methoxystilbene, 3,4'-dimethoxy-5-hydroxystilbene, and 3,5,4’-trimethoxystilbene
from glucose [33].

Resveratrol glucoside derivatives, like piceid (resveratrol-3-O-glucoside) and
resveratroloside (resveratrol-4’-O-glucoside), are endowed with beneficial advan-
tages like improved bioavailability and solubility [13]. E. coli expressing a glucos-
yltransferase (GT) from Phytolacca americana (PaGT3) produced both of the
resveratrol glucoside derivatives with a ratio of resveratroloside: piceid of 10:3
(mol/mol) [64]. Recently, the expression of a codon-optimized TAL from S.
espanaensis, CCL from S. coelicolor, codon-optimized STS from A. hypogaea and
an additional UDP-glycosyltransferase YjiC from Bacillus species in E. coli enabled
the de novo production of piceid and resveratroloside from a simple sugar medium
[65] (see also Chap. 9 of this book).

3.5 Strategies in Metabolic Engineering of Resveratrol
Production

Microbial-based metabolic engineering for resveratrol production has achieved
great progress in recent years, thus validating the concept of microbial factories for
plant-derived valuable phytochemicals from renewable carbon sources. However,
there is still a need for improvements to make microbial-based resveratrol produc-
tion industrially and commercially feasible. Precursor availability and low stilbene
synthase activity in the heterologous hosts are the main bottlenecks during total
biosynthesis of resveratrol. Generally, increasing the precursor supply (namely aro-
matic amino acids and malonyl-CoA) via genetic manipulation of host strains and
improving the activity of key enzymes via protein engineering are the main strate-
gies for elevating the productivity of microbial factories.
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3.5.1 Pathway Engineering to Increase Precursor Supply

Significant efforts have been devoted to optimizing the production of aromatic
amino acids or their derived phenylpropenoic acids in microbes especially yeast and
E. coli [66-72]. Aromatic amino acids are produced from shikimate pathway in
bacteria, and especially E. coli can be easily engineered to overproduce aromatic
amino acids. Metabolic engineering of the shikimate pathway in E. coli has firstly
focused on enhancing carbon flux toward chorismate, a branch point to Phe, Tyr and
Trp (Fig. 3.3). Increasing E4P supply and PEP availability are the two main
approaches to enhance chorismate production. Over-expression of transketolases,
especially (TktA, encoded by 7ktA), is an efficient approach for increasing the sup-
ply of E4P, while over-expression of native PEP synthetase ppsA redirects pyruvate
to PEP for aromatic amino acid biosynthesis [69, 73]. Repression or disruption of
the global regulator gene csrA results in increased levels of PEP and thus increased
production of aromatic amino acids [73, 74]. Additionally, over-expression of
feedback-inhibition-resistant aromatic pathway enzymes like AroGP'*N (DAHP
synthase) and TyrAM3L 4334V (chorismate mutase/prephenate dehydrogenase), and/
or deletion of aromatic amino acid specific repressor gene tyrR or trpR further
enhance the production of aromatic compounds [69]. Heterologous expression of
PAL or TAL leads to enhanced production of phenylpropenoic acids like cinnamic
acid or p-coumaric acid and incorporation of an appropriate hydroxylase results in
the production of caffeic acid [54, 68]. Similar approaches have been successful in
yeast. A p-coumaric acid overproducing yeast has been established via overexpress-
ing TAL from F. johnsoniaeu, DAHP synthase ARO4%*?L  chorismate mutase
ARO7C4S and E. coli shikimate kinase II (aroL), while at the same time deleting
phenylpyruvate decarboxylase ARO10 and pyruvate decarboxylase PDCS5. This
final strain produced the highest titer of p-coumaric acid of 1.93 g/L from glucose,
which could serve as a platform yeast host for producing p-coumaric acid-derived
natural products, including resveratrol.

The other substrate for resveratrol biosynthesis, malonyl-CoA, is also involved
in fatty acid biosynthesis in bacteria. The cellular concentration of malonyl-CoA is
maintained at a very low level in E. coli [75]. Increasing the flux to malonyl-CoA
via carboxylation of acetyl-CoA and inhibiting the consumption of malonyl-CoA
via repression of fatty acid biosynthesis are the main two strategies to enhance
malonyl-CoA availability (Fig. 3.4). Over-expression of acetyl-CoA carboxylase
(ACC) alone resulted in a threefold increase in cellular malonyl-CoA concentration
[76]. Over-expression of ACC, along with deletion of competing pathways leading
to the byproducts acetate (pta and ackA) and ethanol (adhE) as well as over-
expression of an acetate assimilation enzyme (acs), led to a 15-fold elevated cellular
malonyl-CoA level in E. coli [76]. As for blocking the malonyl-CoA consumption
pathway, direct knockouts of fab genes are lethal to cells [46]. Thus, inhibition of
fatty acid biosynthesis is preferred and has been achieved by three major approaches.
First, the addition of cerulenin, a covalent inhibitor of FabB and FabF, can greatly
facilitate the accumulation of malonyl-CoA and thus enhance the production of
resveratrol [34, 47, 77, 78]. Second, repression of the fab operon, especially the
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Fig. 3.4 Strategies for increasing the malonyl-CoA pool. (a) Cerulenin-mediated inhibition of the
fab operon. (b) Antisense RNA-mediated inhibition of the fab operon. (¢) Systematic inhibition of
competing pathways via CRISPRi-mediated repression

fabD genes via antisense RNA, can enhance the accumulation of malonyl-CoA and
its derived natural compounds like naringenin and resveratrol [46, 79]. Recently, the
CRISPRI tool has been implemented in E. coli to systematically repress multiple
genes and direct carbon flux to malonyl-CoA, thereby achieving a 7.4-fold increase
in naringenin production with a final titer of 421.6 mg/L [80]. The CRISPRi-based
downregulation of the fabD gene along with an introduced pinosylvin biosynthetic
pathway in E. coli led to a 1.9-fold increase of pinosylvin production with a final
titer of 47.5 mg/L from 0.5 mM cinnamic acid [56].

3.5.2 Protein Engineering

In addition to pathway engineering, protein engineering of STS, which catalyzes the
first committed step in stilbene biosynthesis, provides new possibilities to increase
the production titer for the stilbene backbone. Protein engineering and mutagenesis
of 4CL and STS have indeed been applied to improve resveratrol production capa-
bilities in microbes. It had been hypothesized that colocalization of the two enzyme
active sites should improve the catalytic efficiency of the enzymatic reactions. The
unnatural fusion of 4CL from A. thaliana and STS from V. vinifera (4CL::STS) is
an example to prove the validity of the hypothesis. Introduction of the engineered
4CL::STS in S. cerevisiae resulted in a 15-fold increase of resveratrol levels (with a
final titer of 5.25 mg/L) compared to yeast expressing the individual enzymes [52,
81]. Yeast carrying the codon-optimized TAL from R. sphaeroides in combination
with fused 4CL::STS greatly increased resveratrol biosynthesis, reaching a titer of
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1.06 mg/L without adding L-tyrosine and 1.90 mg/L with tyrosine added [41]. A
similar fusion enzyme 4CL::STS (4CL from A. thaliana and STS from A. hypo-
gaea) was also created and enabled E. coli to produce 80.5 mg/L resveratrol from
1 mM p-coumaric acid [45]. An alternative and compromised “fusion” strategy has
been established using synthetic scaffolds to spatially recruit pathway enzymes in a
designable manner [82]. 4CL1 with SH3 domain (Src homology 3 domain from the
adaptor protein CRK) and STS with PDZ domain (PSD95/DlgA/Zo-1 domain from
the adaptor protein syntrophin) were recruited and optimized in yeast cells, which
led to a fivefold improvement of resveratrol production (6.7 mg/L) over the non-
scaffolded control, and a 2.7-fold increase over the fusion enzyme strategy [42].

Enzyme evolution via random mutagenesis and phenotype screening is another,
but sometimes labor-intensive, option to generate enzyme variants with improved
performance. To adapt the STS of P. strobus for optimal expression in E. coli, error-
prone PCR was performed to randomly mutate the codon-optimized STS and screen
STS library with increased fluorescence of pinosylvin. This led to the discovery of
two amino acid substitutions (T248A and Q361R) that can increase the pinosylvin
production titer to 70 mg/L from glucose in the presence of cerulenin [55]. A more
rational approach for protein engineering is via structure-based modeling and site-
directed mutagenesis of enzymes. However, due to the paucity of protein structural
information, this has met with limited success. Intriguingly, the mutation of STS
from V. vinifera, which shows high structural similarity with STS from A. hypogaea
(for which a crystal structure has been resolved), expanded the biosynthetic scope
of STS for polyketides production [83]. Feeding non-natural substrates to wild type
VVSTS or derived variants with an altered substrate binding and/or cyclization
pocket, produced 7 and 9 non-natural polyketides, respectively. This implies the
possibility of producing various kinds of natural and non-natural polyketides with
pharmaceutical potential by mutagenesis of stilbene synthases.

3.6 Conclusion and Perspective

Plant derived phytochemicals are a valuable arsenal for pharmaceutical and nutri-
tion additives. Resveratrol and its derivatives have been extensively investigated
because of purported health-promoting effects. To achieve a cost-effective produc-
tion of resveratrol, metabolic engineering, especially the microbial-based biopro-
duction, is an appealing approach and has achieved great progress in recent years.
The amenability of genetic manipulation and tolerance of heterologous pathways
make microbes capable of producing resveratrol by way of harnessing and redirect-
ing their native metabolic networks. Systematic metabolic engineering, including
genetic manipulation, pathway optimization and protein engineering, enabled
microbial hosts to produce resveratrol and various derivatives. Via further optimiza-
tion of the fermentation processes, metabolic engineering makes it possible to maxi-
mize the production of resveratrol in microbes to an industrial scale. Especially,
with the recent development of novel synthetic biology strategies and generation of
new stilbene synthase variants, an improved production of natural resveratrol
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compounds or more bioactive non-natural resveratrol analogs can be achieved via
microbial platforms. The remarkable progress of resveratrol bioproduction in the
last decades highlights the opportunity of microbial-based production of phyto-
chemicals to fulfill the great demands for value-added nutraceuticals to fortify
human against diseases.
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41 Anthocyanins and Their Industrial Applications

Anthocyanins are ubiquitous pigments in many plants. Macroscopically, they endow
flowers, leaves and fruits with diverse colors, which are important traits pursued by
floriculture and horticulture. Microscopically, these chemicals protect plants from
irradiation damage, oxidative stress, and pathogens [1—4]. As a group of colorful
compounds with similar structures that belong to the flavonoid group of polyphe-
nols (Fig. 4.1), anthocyanins have found their uses extended beyond their physio-
logical roles in plants. With an increasing preference for natural food colorants,
there is an ever-growing demand for anthocyanins as dietary supplements, colo-
rants, and cosmetic additives [5—7]. Great effort has been invested towards improv-
ing the production of natural anthocyanins and developing new technologies for
highly efficient and stable anthocyanin production [8].

4.1.1 Pharmaceutical Applications

Anthocyanins are promising drug candidates in preventing and treating diseases in
animal models and in humans [9-12]. With the specific mechanisms remaining

Anthocyanidins R, R, R R, R; R,
1 Pelargonidin H OH H OH OH OH
2 Cyanidin OH OH H OH OH OH
3 Delphinidin OH OH OH OH OH OH
4 Peonidin OMe OH H OH OH OH
5 Petunidin OMe OH OH OH OH OH
6 Malvidin OMe OH OMe OH OH OH

Fig. 4.1 The basic structure of natural anthocyanins. Different decorations including glycosyl-
ation, methylation and acylation can occur at C3’ (R1), C4’ (R2), C5’ (R3), C3 (R4), C5 (RS), and
C7 (R6), and over 600 anthocyanins with such a basic core structure have been identified. Most
anthocyanins are distinguished into six anthocyanidins shown in the table. Me: a methyl group
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elusive, there have been many studies probing the cellular and global response to
anthocyanins, and in vivo anthocyanin metabolism [13]. Among other things, it has
been shown that anthocyanins may inhibit body fat accumulation and obesity-
induced inflammation in animal models, presumably by suppressing fat synthesis in
the liver and white adipose tissue [10, 14], and by increasing glutathione peroxidase
3 expression while reducing the expression of inflammatory genes [15]. In treating
diabetes in mice, cyanidin 3-O-glucoside was shown to downregulate retinol-
binding protein 4 (RBP4) [16], while crude bilberry extract was shown to activate
AMP-activated protein kinase (AMPK) [10], both ameliorating hyperglycemia
symptoms. Anthocyanin extracts also help mitigate osteoclast-induced postmeno-
pausal bone loss [17], lower blood pressure [18], and improve visual functions [10,
19]. In addition, anthocyanins block interleukin-1f, tumor necrosis factor-o, and
nuclear factor (NF)-kp in animal models, and therefore help with the suppression of
neuroinflammation, neurodegradation, and brain aging [10]. These health benefits,
though, are mostly observed with animal models and have yet to be verified in
human clinical trials.

4.1.2 Food Colorants

Colorants are important additives to enhance the attractiveness of processed foods
to consumers. Artificial colorants such as azo dyes dominated the market until a few
decades ago, when consumers became more concerned about safety issues. The
social tendency of “going natural” has stimulated the rapid increase in the use of
pigments from natural sources as colorants owing to their specific characteristics,
such as color variation at different pHs, pharmaceutical activities, biosafety, etc. [6].

Among natural pigments, anthocyanins, with potential health attributes and rela-
tively low toxicity in animals and humans at high doses [20], are leading the market
(together with carotenoids) [21-23]. In the US, four anthocyanin-based colorants
are exempt from FDA certification [24]. In the European Union, anthocyanin-
containing colorants are treated as natural colorants [25]. Besides anthocyanins,
their acylated products are also widely used for improved color stability [26].
Nowadays, most anthocyanins are derived from grape pomace in winemaking pro-
cesses [5], and grape extracts are widely used in coloring ice creams, dairy products,
and sweets [21].

4.1.3 Cosmetic Industry

Besides the nutraceutical and food industries, anthocyanins also have potential
applications in the cosmetic industry [27]. As effective antioxidants against reactive
oxygen species, anthocyanins strongly absorb visible and ultraviolet (UV) light
owing to the specific polyphenol structure [28], and protect skin from aging and
UV-induced damage [29], such as inflammation and oxidative damage in the epider-
mis, dermis, and adnexal organs [27]. The underlying mechanisms have been
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demonstrated in several in vitro cellular and animal models, although detailed in
vivo investigations are to be established [30, 31]. In general, anthocyanins reduce
the UV-induced elevation of cyclooxygenase-2 and prostaglandin E2 through the
NF-kp-dependent pathways. Moreover, anthocyanins decrease apoptotic cell death
by inhibiting caspase-3 activation and reduce the proapoptotic Bax protein levels
[30, 32]. So far, no cosmetic products containing pure anthocyanins have been
approved; however, there have been trials on the development of anthocyanin-
colored lipsticks [33]. The incorporation of anthocyanins into cosmetics and skin
care products may facilitate the alleviation of skin problems caused by direct con-
tact with certain chemicals in these products, and may help to rejuvenate skin by
reducing wrinkles, dark spots, redness, and other problems resulting from aging and
skin damage [34, 35]. At present, a few companies have been trying to incorporate
anthocyanins into cosmetics. Among them, Nutrasorb, LLC. developed engineered
lettuce, whose extract is used both as a food supplement and a cosmetic additive.
With more investigations into the skin protecting functions of anthocyanins and
their decreased production costs, anthocyanin-based cosmetics may find their way
into the market in the near future.

4.1.4 Other Fields

Beyond the applications in food, drugs and cosmetics that come into direct contact
with humans and animals, anthocyanins have been exploited in dye sensitive solar
cells (DSSCs) for the conversion of visible light to electricity. The key component
in a DSSC is the sensitizer, which should have strong absorption in a wide spectrum
and good adherence to the TiO, surface [36]. Traditionally, a transition metal coor-
dination complex is used, making the synthesis expensive and complicated [37].
Natural dyes such as anthocyanins, however, are vastly available at much lower
cost. Anthocyanins interact with TiO, through hydroxyl and carbonyl groups, allow-
ing for electron transfer to the conducting band of TiO, films [38, 39]. The energy
conversion efficiency is influenced by many factors such as the source of anthocya-
nins and the extraction method [37, 40], and efficiencies of up to 2% have been
achieved with anthocyanins extracted from different plants [37, 41, 42]. Although
the efficiency of anthocyanin-based DSSCs is substantially lower compared to those
using synthetic sensitizers (~10% efficiency), it can be further enhanced by chemi-
cal modifications [43, 44]. Research is continuing in this field to improve the effi-
ciency of DSSCs using anthocyanins alone or in combination with other natural
dyes as photosensitizers.

4.2 Plant-Based Anthocyanin Production

Anthocyanins are synthesized via the general flavonoid pathway in plants, whereby
three molecules of malonyl-CoA and one molecule of 4-coumaroyl-CoA derived
from the general phenylpropanoid pathway are condensed to form naringenin
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chalcone by chalcone synthase (CHS) (Fig. 4.2). In the subsequent step, naringenin
chalcone is converted to its isomer naringenin by chalcone isomerase (CHI). Next,
naringenin is hydroxylated by enzymes such as flavanone 3-hydroxylase (F3H),
flavonoid 3’-hydroxylase (F3’H) and flavonoid 3’, 5'-hydroxylase (F3’5°H), form-
ing different dihydroflavonols. The dihydroflavonols are then reduced to the corre-
sponding leucoanthocyanidins by dihydroflavonol 4-reductase (DFR), followed by
the oxidation from anthocyanidin synthase (ANS) to generate the unstable precur-
sor anthocyanidins. Anthocyanidins are flavylium cations that undergo glycosyl-
ation at C3 or other positions by flavonoid glucosyltransferases (FGTs), giving rise
to anthocyanins (see also Chap. 9 of this book). The most common saccharide unit
incorporated in this step is glucose, whereas galactose, xylose, and other sugar units
are also found in natural anthocyanins [45]. Beyond glycosylation, other modifica-
tions, such as acylation, and methylation of the hydroxyl groups on B ring, have also
been reported [46]. These modifications are performed in plants for improved sta-
bility or for specific physiological functions.

Anthocyanins in plants show different colors according to the pH in vacuoles [5,
45], which also affects anthocyanin stability. These compounds are quite labile at
neutral and basic pH values. Structural modifications, lowered pH and co-
pigmentation in vacuoles are all means adopted by plants to stabilize anthocyanins.
The complexity of anthocyanin biosynthesis and their instability make their produc-
tion in controlled systems a great challenge.

4.2.1 Extraction from Plants

So far the prevailing way of industrial anthocyanin production is by extraction from
plants. For example, the anthocyanin supply for food colorants mainly comes from
the waste products of the winemaking industry. The extraction is typically per-
formed in solvents, of which the most commonly used is ethanol, because of its
environmental friendliness, safety, and little interference with anthocyanin recovery
[47]. Other extraction methods, such as pressurized liquid extraction, and novel
extraction tools/agents, including ultrasound, subcritical water, and polymeric
absorber resins, have also been reported to be effective in obtaining anthocyanins
from crops and fruits [48-51]. These methods have different applications and should
be selected with care. For example, water-extracted anthocyanins from plant flowers
can be directly used for making DSSCs, whereas ethanol assisted extraction leads to
photocatalytic decomposition of the extracted anthocyanins by TiO, in the solar
cell, and hence lead to low efficiency of energy conversion [37].

4.2.2 Anthocyanin Production from Suspension Cell Culture
Plant suspension cell culture is a technology that introduces the bioreactor concept

to cultivate plant cells for anthocyanin production with tight control over the fer-
mentation processes [52, 53]. This technology involves development of suitable cell
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the intermediate coumaroyl-CoA for the production of flavonoids. Coumaroyl-CoA undergoes
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lines, optimization of operating conditions of the bioreactors, and scaling up of
fermentation (see also Chap. 8 of this book). For several decades, plants have been
used to develop anthocyanin-producing cell lines, such as grapes, Cleome rose,
sweet potatoes, aspen, wild carrots, etc. [54, 55]. However, currently there are no
systems that are commercially feasible.

At present, the total anthocyanins obtained from plant suspension cell culture
can reach up to 10% of the total dry weight of the producing cells, whereas the
yields of specific types of anthocyanins are usually low [5, 56]. A major difficulty in
suspension cell culture is the instability of cell lines, with anthocyanin production
decreasing drastically over time [5]. Although the underlying mechanisms are not
fully understood, one possible cause is the inadequate cell differentiation, since fast-
growing, undifferentiated cells cannot produce anthocyanins. Besides the low
anthocyanin yield in unstable and inefficient cell lines, other hurdles restricting the
application of plant suspension cell culture in anthocyanin production include high
production cost, low consumer acceptance, and strict biosafety regulations on cell
line-derived compounds, especially those obtained from genetically modified cell
lines [57, 58]. These limitations directly affect the economic competitiveness and
attractiveness to investment and commercialization of anthocyanins. Subsequent
metabolic engineering of cell lines and cell line selection are necessary for enhanced
metabolic flux towards the anthocyanin pathway and improved accumulation of
specific anthocyanins. In the future, the emerging global genome editing technolo-
gies, such as the clustered regularly interspaced short palindromic repeat (CRISPR)/
CRISPR-associated protein 9 (Cas9) system, zinc finger nucleases (ZFNs), and
transcription activator-like effector nucleases (TALENS), can be applied in develop-
ing engineered cell lines to support stable and efficient anthocyanin production [59].
Moreover, detailed investigations on fermentation design, in terms of medium com-
position, culture conditions, elicitation, and precursor feeding, are required to
release the maximal potential of plant cell culture.

4.3  Anthocyanin Production in Microorganisms

As the most commonly used workhorse in metabolic engineering, E. coli has been
engineered for the production of many flavonoids including naringenin, kaemp-
ferol, and catechin [46, 60—62]. Anthocyanins have also attracted much attention. In
2005, the genes of F3H and ANS from Malus domestica, DFR from Anthurium
andraeanum, and flavonoid 3-glucosyltransferase (F3GT) from Petunia hybrida
were successfully expressed in E. coli [63], and the recombinant strain could

Fig. 4.2 (continued) condensation with malonyl-CoA to form naringenin chalcone, which
experiences various modifications to form diverse anthocyanin compounds. R1-R5 are func-
tional groups involved in the modification of different carbons in anthocyanin molecules, such
as glycosyl, acyl, methyl, and hydroxyl groups. Abbreviations of enzymes: CHS chalcone
synthase, CHI chalcone isomerase, F3H flavanone 3-hydroxylase, F3’H flavonoid 3’-hydrox-
ylase, F3’5’H flavonoid 3’, 5'-hydroxylase, DFR dihydroflavonol reductase, ANS anthocyani-
din synthase, FGT flavonoid-glucosyltransferase, OMT O-methyltransferase, ACT acyltransferase
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produce 6.0 pg/L of cyanidin 3-O-glucoside and 5.6 pg/L of pelargonidin
3-0-glucoside (see also Chap. 9 of this book) using naringenin and eriodictyol as
the respective feeding precursors. Subsequent optimization of the enzyme source
and the UDP-glucose pool, regulation of precursor uptake, and optimization of the
production process greatly increased final product titers [64—66]. The highest pro-
duction of cyanidin 3-O-glucoside and pelargonidin 3-O-glucoside was 350 mg/L
and 113 mg/L using catechin and afzelechin as the respective precursors. These
approaches have also been extended to the microbial biosynthesis of methylated
anthocyanins. For example, the production of peonidin 3-O-glucoside (an
O-methylated anthocyanin) from catechin was achieved in E. coli with the introduc-
tion of P. hybrida ANS, Arabidopsis thaliana F3GT, and Vitis vinifera anthocyanin
O-methyltransferase (AOMT), and a final titer of 56 mg/L was reported upon path-
way optimization [67]. To date, the reported microbial hosts of anthocyanin biosyn-
thesis are still limited to E. coli, although the heterologous production of other
flavonoids has been extended to Saccharomyces cerevisiae and Streptomyces vene-
zuelae [46, 63], and the production of stilbenes and flavanones has been established
in the amino acid-producing strain Corynebacterium glutamicum [68-70]. It will
remain to be seen if other microbial hosts can be engineered for the production of
anthocyanins.

4.3.1 Engineering of Pathway Enzymes

Engineering of the anthocyanin pathway involves coexpression of enzymes from
plants. Heterologous expression of plant genes in prokaryotes is generally challeng-
ing, and typically, the genes/enzymes need to be modified prior to their functional
expression (Fig. 4.3). For example, to achieve functional expression of a plant P450
F3’5’H from Catharanthus roseus, the four codons at the 5’-end of the gene were
removed, and the fifth codon was replaced with ATG as the new start codon, while
the sixth codon was changed from leucine to alanine [71]. The resulting new F3’5’H
was fused to a shortened P450-reductase from C. roseus to form a chimeric protein,
which catalyzed the formation of the flavonol quercetin by feeding coumaric acid.

Apart from modification of individual enzymes in the metabolic pathway, trans-
lational fusion of multiple enzymes in successive steps is another effective method
of improving anthocyanin production (Fig. 4.3). Such fusions can maximize the
local concentrations of substrates for each enzyme in the fusion system while mini-
mizing the degradation of unstable intermediates, allowing multiple reactions to
occur efficiently [72]. Using this strategy, it has been shown in E. coli that the trans-
lational fusion of F3GT from Arabidopsis to the N-terminus of ANS from Petunia
could better convert catechin to cyanidin 3-O-glucoside compared with the tandem
expression of ANS and F3GT [64]. In this case, the fused protein complex could
catalyze the successive biochemical reactions 16.9% more efficiently than the
uncoupled enzymes due to the faster conversion of the unstable intermediate
anthocyanidin.
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Fig. 4.3 The strategies applied in microbial production of anthocyanins. The whole strategies
include the engineering of anthocyanin-producing strains and the optimization of the biocatalytic
process. Strain modification focuses on screening and engineering of enzymes in the metabolic
pathway, the transportation of the substrate and the product, and the supply of UDP-glucose. The
biocatalysis is separated into two phases to maximize anthocyanin accumulation while maintain-
ing normal cell growth. The content shown here is the example of cyanidin 3-O-glucoside produc-
tion from catechin

Beyond direct enzyme engineering, selection of enzymes from diverse species is
another way of improving the production of anthocyanins and other flavonoids
(Fig. 4.3) [73]. The orthologous enzymes from different species that catalyze the
same reactions usually exhibit diverse kinetic and thermodynamic properties, result-
ing in varied metabolic behaviors and different levels of production. In a study, the
in vivo activities of ANS from four plants were compared, and the enzyme from
P. hybrida produced 0.19- to 5.4-fold and 0.47- to 4.9-fold higher cyanidin and
cyanidin 3-O-glucoside, respectively, in E. coli than the enzymes from Antirrhinum
majus, Gerbera hybrida, and M. domestica [64]. In the production of peonidin
3-0-glucoside, five sources of AOMTSs were compared and the one from V. vinifera
led to the best substrate conversion with the lowest byproduct production [67].
Similarly, selection of DFR was conducted based on in vitro characterization of
DFR orthologs from different plant sources during the de novo production of antho-
cyanins from flavonols [63, 74]. In another study, different combinations of three
4-coumaroyl CoA ligases, two CHSs and two CHIs, each enzyme having a distinct
plant origin, resulted in a 3-fold increase in naringenin production in E. coli [75]. In
an effort to synthesize resveratrol in recombinant E. coli, the in vitro kinetics of
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stilbene synthases from four plants were analyzed, and the data correlated well with
the in vivo production [76] (see also Chap. 3 of this book).

4.3.2 Supply of Cofactors and Cosubstrates

Besides pathway enzymes, the biosynthesis of anthocyanins is also dependent on
cofactors and cosubstrates that are involved in electron transfer, and enzyme activa-
tion or stabilization. For example, the enzyme ANS uses ferrous ions and sodium
ascorbate as cofactors, and 2-oxoglutarate as a cosubstrate to conduct a two-electron
oxidation of its substrates [64, 77]. The glycosylation of cyanidin at the C3 position
requires an equimolar amount of UDP-glucose. Therefore, sufficient supply of
cofactors and cosubstrates is a prerequisite for efficient, high-yield production of
anthocyanins.

UDP-glucose is required for glycosylation in some anthocyanins (see also Chap.
9 of this book). As a valuable chemical that takes part in many cellular functions,
from the generation of metabolic intermediates to the biosynthesis of cellular struc-
tural components, UDP-glucose must undergo global and elaborate regulation to
reach a suitable level. In general, the regulation lies in altered expression of genes
involved in UDP-glucose biosynthesis and/or its consumption. In an E. coli strain
that produced cyanidin 3-O-glucoside, the abundance of UDP-glucose was increased
by overexpressing one or more genes responsible for its biosynthesis from orotic
acid (pyrE, pyrR, cmk, ndk, pgm, and galU) while blocking the competitive UDP-
glucose consumption pathways. The resulting production of cyanidin 3-O-glucoside
increased by 20-fold [64, 65]. Interestingly, even the overexpression of pgm and
galU alone, under the control of independent T7 promoters on the same plasmid, led
to a 57.8% increase in cyanidin 3-O-glucoside production [64]. These studies dem-
onstrate that the supply of UDP-glucose is an important limiting factor for the over-
production of glycosylated anthocyanins. Considering the high cost of UDP-glucose
and its precursor orotic acid, engineered intracellular biosynthesis of UDP-glucose
from cheap nutrients would be useful for its supplementation.

Sodium ascorbate is another necessary ingredient to support the overproduction
of anthocyanins. The addition of sodium ascorbate was found to significantly
increase the consumption of the substrate catechin and the production of anthocy-
anin 3-O-glucoside in E. coli, whereas extra addition of the cosubstrate 2-oxoglutarate
was unnecessary, probably because 2-oxoglutarate is the intermediate compound in
the Krebs cycle and its supply is commonly abundant [64].

S-Adenosyl-L-methionine (SAM), a cosubstrate commonly involved in the
transfer of methyl groups by methyltransferases, is generally required for the pro-
duction of methylated anthocyanins. SAM supply can be increased by supplement-
ing methionine and/or upregulating genes associated with SAM production.
However, the generation of SAM undergoes feedback repression by methionine
biosynthesis regulator MetJ based on the intracellular concentration of SAM [78],
thus limiting the high-level accumulation of SAM and the rate of methylation of
the target compounds. Recently, this difficulty was overcome by
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CRISPRi-mediated deregulation of the methionine and SAM biosynthetic path-
ways through the silencing of Metz/ in the production of peonidin 3-O-glucoside
from catechin in E. coli, and a twofold increase in the production titer was achieved
with such an approach [67].

4.3.3 Engineering Anthocyanin Secretion

Metabolic engineering has resulted in accomplishing the production of many com-
pounds, natural or unnatural, in microorganisms. However, some of these com-
pounds are toxic to cells by either directly reducing cell viability or indirectly
interfering with cellular functions and metabolism, thus limiting their high-yield
production. A feasible scheme is to pump out the products continuously during their
biosynthesis to extracellular media, where their toxic effects are attenuated. To
achieve this, identification of specific transporters is critical. In addition, the incor-
poration of transporters for enhanced substrate uptake also facilitates the production
of the target chemicals. In an E. coli strain that converted catechin to cyanidin
3-0O-glucoside, the overexpression of the product-associated efflux pump YadH
increased the production by 15%, and the deletion of another efflux pump TolC,
which was probably responsible for the secretion of catechin, enhanced production
by 55%. The combined effect was a 63% promotion in cyanidin 3-O-glucoside pro-
duction [66].

Anthocyanins in their natural plant hosts are transported to vacuoles after their
synthesis, and this process requires both cytoplasmic transporters and transmem-
brane transporters. The most commonly studied plant-based transporters are gluta-
thione S-transferase and ATP-binding cassette (ABC) transporters (see also Chap.
9 of this book). Since both plant tonoplasts (membranes surrounding the vacuoles)
and microbial cell membranes comprise lipid bilayers, it may be useful to investi-
gate the performance of engineered plant-based transporters in microorganisms for
anthocyanin delivery across the cytoplasmic membrane and the outer membrane.

4.3.4 Optimization of the Production Process

The instability of anthocyanins is a major problem for accomplishing their efficient
production in microorganisms. In plants, the naturally synthesized anthocyanins are
stabilized in vacuoles through pH adjustment and co-pigmentation [45, 79].
However, in bacterial cells that are engineered as artificial producing hosts, there is
a shortage of protection mechanisms for produced anthocyanins. The microbially
synthesized anthocyanins are quite unstable inside or outside cells, considering that
the intracellular and extracellular pH is around 7 for commonly used bacteria under
their normal growth conditions. To solve this issue, a two-step biocatalysis strategy
has been proposed [64]. During the first phase, cells are cultured in a medium at
pH 7 to support normal growth and enzyme expression. In the second step, cells at
a particular growth stage are transferred to fresh medium at pH 5.0 to facilitate
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anthocyanin production and accumulation (Fig. 4.3). Protective agents such as glu-
tamate can be added to minimize acid-induced cell lysis. With such an approach, the
production of cyanidin 3-O-glucoside in E. coli was ~15-fold higher than that from
the traditional single-step production [64].

Concentration of dissolved oxygen is another parameter that shows great impact
on anthocyanin biosynthesis and stability. Oxygen is critical for the maintenance of
ANS functionality and the synthesis of anthocyanins; however, an excessive amount
of dissolved oxygen may oxidize anthocyanins. Although the specific roles of oxy-
gen in microbial production of anthocyanins are poorly understood, it is clear that
an optimal supply of oxygen is important. In a study of catechin production from
eriodictyol, increased concentration of dissolved oxygen led to enhanced produc-
tion of catechin, which might be related to increased NADPH supply [73]. However,
no such investigations have been reported for anthocyanin production.

Besides pH and oxygen, temperature and induction point also have remarkable
effect on anthocyanin production [66, 75]. Temperature generally imposes direct
impact on cell viability and protein expression or folding, and hence influences antho-
cyanin bioconversion indirectly. Induction time-points are correlated with growth
stages and conditions of the producing cells, and differential enzyme expression at
diverse growth phases can result in significantly different production efficiencies.

Pathway balancing should also be considered for efficient anthocyanin production.
The aim is to reduce metabolic burden exerted on host cells during the overproduction
of anthocyanins, and meanwhile, to maintain normal cell growth and metabolism to
the most extent [80]. Many tools have been established to balance the metabolic path-
ways, such as the ePathBrick vectors, the ePathOptimize platform, and biosensor-
based dynamic regulation in flavonoid biosynthesis [§1-85]. Recently, a dCas9-based
toolbox has been developed to orchestrate the expression of multiple genes simultane-
ously in E. coli [86, 87]. This strategy can be exploited for the identification of the
potential regulation points relevant for anthocyanin production.

4.4  Conclusions and Future Perspectives

Anthocyanins are very useful flavonoids with applications as dietary supplements,
food colorants, and cosmetic additives. The current supply is largely dependent on
extraction from plant materials, while emerging technologies delve into sustainable
production either in engineered plant cells or in recombinant microbial cells. In this
chapter, we focused on metabolic engineering of anthocyanin production in micro-
organisms, especially in E. coli. We presented the strategies that have been applied
in optimizing the biosynthetic pathways, the host strains, and the bioreaction pro-
cesses. However, many issues still remain to be addressed, such as poor expression
of anthocyanin biosynthetic genes, imbalance of genes in the pathway, and stabili-
zation of the final product. With the elucidation of anthocyanin biosynthesis in
plants, sophisticated redesign of related enzymes, and regulation of the constructed
pathways based on metabolic models, it is expected that engineered microorgan-
isms will become an important source of providing anthocyanins.
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COR Codeinone reductase

CPR Cytochrome P450 reductase

CXE Carboxylesterase

CYBS5 Cytochrome b5

CYP Cytochrome P450

DMAPP Dimethylallyl pyrophosphate
DODC DOPA decarboxylase

DOPA 3,4-dihydroxyphenylalanine
DXP Deoxyxylulose 5-phosphate

ER Endoplasmic reticulum

FBR Feedback resistant

FPP Farnesyl pyrophosphate

GI10H Geraniol 10-hydroxylase

GES Geraniol synthase

GPP Geranyl pyrophosphate
HMG-CoA  3-hydroxy-3-methylglutaryl CoA
HMGR HMG-CoA reductase

HMGS HMG-CoA synthase

10 Iridoid oxidase

IPP Isopentenyl pyrophosphate

IS Iridoid synthase

MAO Monoamine oxidase

MIA Monoterpene indole alkaloid
MSH (S)-N-methylstylopine 14-hydroxylase
MVD Mevalonate pyrophosphate decarboxylase
MVK Mevalonate kinase

NCS Norcoclaurine synthase

NMCH N-methylcoclaurine hydroxylase
P6H Protopine 6-hydroxylase

PDH Prephenate dehydrogenase
PMVK Phosphomevalonate kinase

Prx1 Class III peroxidase

REPI Reticuline epimerase

ROS Reactive oxygen species

SOOMT Scoulerine 9-O-methyltransferase
SAR Salutaridine reductase

SAS Salutaridine synthase

SAT Salutaridinol acetyltransferase
SDR Short-chain dehydrogenase/reductase
SLS Secologanin synthase

SPS Stylopine synthase

STS Strictosidine synthase

T60DM Thebaine 6-O-demethylase
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TNMT Tetrahydroprotoberberine N-methyltransferase
TYR Tyrosine hydroxylase

5.1 Introduction

Microbial synthesis has emerged as an attractive and sustainable alternative for the
production of high-value plant natural products [1]. Within the alkaloid family of
metabolites, the monoterpene indole alkaloids (MIAs) and benzylisoquinoline alka-
loids (BIAs) are particularly noteworthy for their potent pharmaceutical activities and
broad structural diversity (Fig. 5.1). More than 5500 known MIAs and BIAs are found
in nature, several of which exhibit analgesic, antimicrobial, anticancer, antispasmodic,
and antitussive activities [2-5]. Notable compounds include the anticancer MIAs vin-
blastine and vincristine and the BIA analgesics morphine and codeine, all of which
are included in the World Health Organization’s Model List of Essential Medicines
[6]. The biosynthetic pathways mediating formation of MIAs and BIAs share many
general features. For example, both pathways branch from the aromatic amino acid
pathway and employ a key Pictet-Spengler condensation responsible for the core
structures from which all members are derived. Strictosidine is the condensation prod-
uct in the MIA pathway (Fig. 5.1a), while norcoclaurine is generated in the analogous
BIA reaction (Fig. 5.1b). Downstream metabolites from both metabolite classes are
then diversified through a network of complex enzymatic and spontaneous rearrange-
ments that generate the immense diversity characterized by plant natural products.
Presently, the principal source of most alkaloid-derived pharmaceuticals remains
direct extraction from source plants and plant cell cultures (see also Chap. 8 of this
book). Owing to its comparatively low structural complexity and lack of a chiral
center, papaverine is the only naturally-occurring BIA pharmaceutical produced
through complete chemical synthesis [2]. Selective breeding and mutagenesis
cycles have generated cultivars of opium poppy (Papaver somniferum) for supply of
morphinans (thebaine, codeine, and morphine) and noscapine BIAs, which together
with papaverine constitute the most abundant alkaloids in the latex of commercially
cultivated opium poppy [2, 7]. Conversely, the antimicrobial BIA berberine and the
MIA precursor geraniol are produced by means of plant cell cultures [8] (see also
Chap. 8 of this book). While the supply of these select metabolites and their deriva-
tives currently meet market demands [7], crop-based manufacturing of less abun-
dant alkaloids is generally unfeasible. The MIAs vinblastine and vincristine, for
example, are harvested from the leaves of mature periwinkle (Catharanthus roseus)
at very low yields and highly variable concentrations [9]. Indeed, of the thousands
of known MIA and BIA structures, only a few select compounds accumulate to suf-
ficient quantities in plant tissues to justify large-scale production and extraction. In
this regard, the overwhelming majority of MIA and BIA activities remains untapped,
resulting in an attractive pool of bioactive candidates awaiting drug discovery. In an
effort to tap into this pharmaceutical potential, microbial synthesis has emerged as
a promising alternative to natural product extraction and total chemical synthesis.
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Fig. 5.1 Chemical structures of major MIA and BIA classes. (a) Chemical structures of notable
MIA pathway intermediates and structural classes. Black and red portions highlight backbones
derived from tryptamine and secologanin, respectively. Green and blue regions of vinblastine derive
from the MIAs catharanthine and vindoline, respectively. (b) Chemical structures of key BIA path-
way intermediates and structural classes. Black and red portions highlight backbones derived from
dopamine and 3.4-dihydroxyphenylacetaldehyde (3,4-dHPAA) or 4-hydroxyphenylacetaldehyde
(4-HPAA), respectively. Downstream derivatives are color-coordinated according to derivation
from (§)-norcoclaurine
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Fig. 5.1 (continued)

Microbial systems exploit the exceptional regio- and stereo-selectivity of
enzymes and offer fast growth rates, well-developed genetic engineering technolo-
gies, and relatively simple product purification schemes. Although host systems
based on both bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae)
have been envisioned for MIA and BIA biosynthesis, assembling plant secondary
metabolic pathways in prokaryotes is challenging, as bacteria lack organelles
required to support functionality of complex plant enzymes. Instead, the yeast S.
cerevisiae is often regarded as the favorable microbial host for producing high-value
plant alkaloids. The most notable and abundant membrane-associated enzymes
present in alkaloid biosynthesis are cytochromes P450 (CYPs), which catalyze a
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Table 5.1 Production of key MIA and BIA precursors and upstream intermediates in microbial
hosts

Maximum titer (g/L)
Metabolite E. coli S. cerevisiae Key references
MIA biosynthesis
Mevalonate 47 41 (Downstream)® [1, 23, 24]
17.6 (Cell-free)?
Geraniol 1.119 0.036 [12, 25, 26]
BIA biosynthesis
Tyrosine 55 0.0847 (Precursor)® [18, 19, 27, 28]
0.0898 (Downstream)?
L-DOPA 8.67 0.00364 [20, 21]
Dopamine 2.15 0.0238 [21, 29, 30]

Cell-free lysates derived from E. coli hosts were employed

"Titer reported for the downstream product amorphadiene

“Titer reported for the upstream precursor 4-hydroxyphenylpyruvate (4-HPP)
dTiter reported for the downstream metabolite 4-hydroxybenzoic acid

range of complex biochemical transformations, particularly in downstream MIA
and BIA pathways (Sect. 5.4.1). CYPs require pairing with a suitable membrane-
bound cytochrome P450 reductase (CPR) to mediate electron shuttling from
NADPH. While recent successes in the synthesis of downstream alkaloids have
been reported using E. coli (2.1 mg/L of thebaine) [10], pathways abundant in
CYPs, such as the sanguinarine and noscapine BIA branches, in addition to the key
branch point MIA strictosidine (0.5 mg/L), have only been successfully recon-
structed in S. cerevisiae [5, 11-16]. On the other hand, current titers of BIA precur-
sors and upstream intermediates, namely tyrosine [17-19], L-DOPA [20], and
dopamine [21, 22], are substantially higher in bacterial systems (55, 8.67, and
2.15 g/L, respectively) compared to yeast (roughly 0.09, 0.00364, and 0.0238 g/L,
respectively) (Table 5.1). While both yeast and E. coli have been engineered for
production of the MIA precursor mevalonate with comparable titers (41-47 g/L) [1,
23, 24], production of the intermediate geraniol appears to be favorable in E. coli
(1.119 g/L compared to 0.036 g/L) [12, 25, 26]. Advances in the application of cell-
free systems have also generated impressive mevalonate titers (17.6 g/L) that could
be exploited for MIA biosynthesis [31]. Given the infancy of microbial alkaloid
production, host systems based on both bacteria and yeast warrant further
investigation.

De novo synthesis of alkaloids in microbial hosts involves connecting plant sec-
ondary pathways with host central metabolism. However, several enzymes involved
in MIA and BIA synthesis have only been recently identified due to advances in
sequencing technologies and gene silencing techniques. Together these efforts form
the basis of microbial synthesis of plant natural products. For example, the final
missing steps of the C. roseus pathway leading to production of the key branching
MIA strictosidine were only unveiled in 2014 [32-35]. More recently, the elusive
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Table 5.2 De novo synthesis of downstream MIA and BIA products in microbial hosts

Titer (mg/L)
Metabolite E. coli S. cerevisiae Key references
MIA biosynthesis
Strictosidine - 0.5 [11]
BIA biosynthesis
(S)-reticuline 40.5 0.082 [21, 22, 38]
0.0806
Thebaine 2.1 0.0064 [10, 38]
Hydrocodone 0.36* 0.0003 [10, 38]

aStepwise fermentation involving four engineered E. coli strains

enzyme involved in the stereochemical inversion of (S)- to (R)-reticuline in the mor-
phinan node of the BIA pathway was identified [36, 37]. De novo production of
strictosidine in yeast (0.5 mg/L) [11] and thebaine in both E. coli (2.1 mg/L) [10]
and yeast (0.0064 mg/L) [38] soon followed (Table 5.2), thus solidifying microbial
synthesis as a potential source of high-value plant alkaloids. Prior to these monu-
mental studies, de novo production of plant alkaloids was hindered by gaps in our
understanding of MIA and BIA biosynthetic pathways. To overcome these obsta-
cles, early efforts focused on supplementation approaches, in which key MIA and
BIA pathway intermediates were fed to cells expressing partial alkaloid pathways.
While total de novo production of the BIAs sanguinarine and noscapine has yet to
be demonstrated, the corresponding pathway branches have been elucidated very
recently and promising partial pathway reconstructions have been achieved [13, 15,
16, 39]. Given the considerable effort required to engineer strictosidine biosynthesis
in yeast [11, 12], it is unsurprising that presently no downstream MIAs have been
produced in a microbial host.

In this chapter we describe recent successes in the microbial synthesis of MIAs
and BIAs (Sects. 5.2 and 5.3, respectively), highlight underlying challenges gleaned
from these studies (Sect. 5.4), and discuss integrated engineering strategies for opti-
mizing microbial production (Sect. 5.5). While present titers are still several orders
of magnitude below levels required for large-scale production, it is evident that
microbial systems possess exceptional potential for synthesizing natural products,
as well as manufacturing novel structures and activities. Indeed, the number of
proof-of-concept syntheses reported in 2015 and 2016 [10, 11, 21, 38] lays a prom-
ising foundation for the development of industrial bioprocesses based on microbial
production of plant metabolites. We anticipate that this chapter will serve as an
informative and comprehensive introduction to the MIA and BIA metabolite classes
and provide unique insights into the production of plant natural products using
microbial species. Readers are directed to recent reviews covering a range of
detailed topics spanning MIA and BIA biosynthesis, regulation, and gene discovery
[2, 9, 4043], as well as engineering strategies for microbial production of these
promising compounds [5, 44—47].
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5.2  Reconstitution of MIA Biosynthetic Pathways

Biosynthesis of MIAs is extremely complex and spans 37-40 enzymatic steps,
in which mevalonate-derived secologanin and the tryptophan derivative trypt-
amine are condensed to yield strictosidine, the MIA structural scaffold.
Strictosidine is subsequently derivatized to generate an array of dimeric bis-
indole products, such as vinblastine and vincristine (Fig. 5.1a). Compared to
BIAs, downstream MIA pathways are poorly characterized, as many biochemi-
cal steps remain to be elucidated. In this section we provide an overview of MIA
biosynthesis and survey microbial engineering strategies based on both S. cere-
visiae and E. coli. For simplicity, we partition the MIA biosynthetic pathway
into three sections consisting of precursor pathways, strictosidine formation,
and downstream derivatization (Fig. 5.2).

1. Precursor Pathways

MVK ---> IPP
ACAT PMVK!
HMGS HMGR MVD ERG20 ERG20
Acetyl-CoA ----> HMG-CoA ——> Mevalonate ----- GPP —— FPP
“--->DMAPP Aromatic AA
biosynthesis
2. Strictosidine Formation S l GES
10 10HGO . G10H ) v
7-DLGA «—— Nepetalactol «---- 10-Hydroxygeraniol «—— Geraniol Tryptophan
| 7DLH
~:¢ sLs lTDC
Secologanin STS > Strictosidine «———> | Tryptamine
3. Downstream Derivatization
Corynanthe v
v € 4,21-Dehydrogeissoschizine
type :

1 v

i Tabersonine
: i

i

v v
Catharanthine | — PR Vindoline
Iboga Aspidosperma
type type
v

Vinblastine «———— a-3'4-Anhydrovinblastine ————————> Vincristine

Dimeric bis-indole alkaloids

Fig.5.2 Overview of major MIA biosynthetic pathways. The MIA network is divided into three
portions consisting of precursor pathways, strictosidine formation, and downstream derivatization.
Solid and dashed arrows represent single and multi-enzyme conversions, respectively. Major MIAs
corresponding to corynanthe (grey), iboga (blue), aspidosperma (red), and bis-indole (green) types
are boxed. Transformations catalyzed by cytochrome P450 enzymes (CYPs) are depicted in violet
font. All other enzymes are shown in red font. Refer to text for abbreviations
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5.2.1 Precursor Pathways

The mevalonate pathway is responsible for initiating synthesis of the secologanin
precursor that, when condensed with tryptamine, constitutes the structural back-
bone of all MIAs [48]. Whereas tryptamine is derived from tryptophan by trypto-
phan decarboxylase (TDC), secologanin is produced in a complex series of
transformations that begins with acetyl-CoA (Fig. 5.2). Three molecules of acetyl
CoA are first condensed by acetoacetyl-CoA thiolase (ACAT) and 3-hydroxy-3-
methylglutaryl CoA (HMG-CoA) synthase (HMGS) to yield the intermediate
HMG-CoA, which is subsequently reduced to mevalonate by the rate-controlling
enzyme HMG-CoA reductase (HMGR) in the first committed step of the pathway
[49, 50]. HMGR ameliorates the toxicity caused by HMG-CoA [51] and is regu-
lated through a multivalent feedback mechanism mediated by downstream sterol
and non-sterol metabolites [52, 53]. Mevalonate is subsequently converted to
mevalonate-5-phosphate by mevalonate kinase (MVK), which is feedback regu-
lated by the downstream isoprenoids geranyl pyrophosphate (GPP) and farnesyl
pyrophosphate (FPP) [54]. Mevalonate 5-phosphate is further phosphorylated and
decarboxylated by phosphomevalonate kinase (PMVK) and mevalonate pyrophos-
phate decarboxylase (MVD), respectively, to produce the universal isoprenoid
building blocks isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate
(DMAPP) [52, 55]. IPP and DMAPP exemplify the final products of the mevalonate
pathway and undergo condensation to form the base monoterpene GPP by the action
of farnesyl diphosphate synthase (Erg20p). Erg20p also catalyzes an additional con-
densation of DMAPP with GPP to form FPP, representing the precursor to many
important sterols and forming the basis of sesquiterpene biosynthesis. This
mevalonate-dependent pathway prevails in higher eukaryotes (including plants) and
archaea, while an alternative mevalonate-independent route known as the deoxyx-
ylulose 5-phosphate (DXP) pathway is employed by most bacteria, as well as plants.
This pathway generates the essential IPP and DMAPP isoprenoid precursors
through condensation of pyruvate and glyceraldehyde 3-phosphate [56, 57].
Detailed knowledge of the biochemistry of both the mevalonate and DXP pathways
has enabled unique opportunities for optimizing isoprenoid production in a number
of organisms [58, 59].

The widespread use of isoprenoids in pharmaceuticals, fragrances, and flavor-
ings has stimulated extensive metabolic engineering strategies to enhance pro-
duction titers [11, 12, 57, 60]. The prevailing strategy involves reinforcing the
mevalonate or DXP pathway to increase the pool of IPP and DMAPP precursors.
In this regard, Martin et al. [57] engineered E. coli to express the heterologous S.
cerevisiae mevalonate pathway, in addition to its native DXP pathway, which
resulted in titers of over 100 mg/L of the sesquiterpene olefin amorphadiene.
Expression of the S. cerevisiae pathway in E. coli circumvents host control
mechanisms that would hinder isoprenoid production using the native DXP route
[57]. Similar approaches were employed in S. cerevisiae by overexpressing eight
genes of the mevalonate pathway, including two additional copies of a truncated
feedback-resistant form of HMGR [61], resulting in the production of over
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1.2 g/L of amorphadiene. Recent literature has described additional methods of
optimizing monoterpene biosynthesis in S. cerevisiae, such as mutagenesis of the
ERG20 gene to reduce off-target activity [62, 63]. A K197E amino acid substitu-
tion was found to increase the available pool of GPP by minimizing its conver-
sion to FPP [63]. These strategies provide rationale for producing highly complex
MIAs in microbial hosts by providing an abundant supply of monoterpene pre-
cursors. Indeed, coupling expression of appropriate plant terpene synthases with
high level monoterpene formation has enabled the production of various non-
native products in S. cerevisiae, including limonene (0.61 mg/L) [64], pinene
(32 mg/L) [65], citronellol (1180 mg/L) [66], and geraniol (36.04 mg/L) [25].

5.2.2 Strictosidine Formation

The seco-iridoid strictosidine has been identified as the core intermediate in the
derivatization of all MIAs across various plant families [48]. Strictosidine bio-
synthesis is a nine-step process beginning with conversion of GPP to geraniol by
geraniol synthase (GES) [11] (Fig. 5.2). The hydroxylation of geraniol to
10-hydroxygeraniol (10HG) is the first committed step of MIA biosynthesis, and
is catalyzed by geraniol 10-hydroxylase (G10H), one of four CYPs present in the
pathway [48]. 10HG is converted to nepetalactol via reduction by 10HG oxido-
reductase (10HGO) and subsequent cyclization by iridoid synthase (IS), an
NADPH-dependent reductive cyclase. A complex series of reactions involving
three CYPs [iridoid oxidase (I0; CYP76A26), 7-deoxyloganic acid hydroxylase
(7DLH; CYP72A224), and secologanin synthase (SLS; CYP72A1)] converts
nepetalactol to secologanin, via oxidative ring cleavage. It has been suggested
that conversion of loganin to secologanin by SLS is the rate limiting step in
strictosidine formation [48]. In the final step of this pathway, secologanin is
condensed with tryptamine by strictosidine synthase (STS), resulting in the syn-
thesis of strictosidine [11, 67]. Elucidation of the enzymes and corresponding
genes involved in strictosidine biosynthesis by C. roseus [33] has unlocked the
possibility of producing this complex molecule in microbial hosts. Following
genomic integration of all required biosynthetic genes from C. roseus, Brown
et al. [11] succeeded in engineering S. cerevisiae to produce strictosidine. Trace
amounts of the compound were generated following resolution of a major bottle-
neck in geraniol hydroxylation due to poor activity of the GIOH enzyme.
Enhancing gene dosage through integration of four additional copies of the
G10H gene led to an increase in strictosidine production from 0.03 to 0.5 mg/L
[11]. Campbell et al. [12] subsequently demonstrated that G10H and IS exhibit
promiscuous activities that limit flux through the target pathway. While tremen-
dous efforts will be required to overcome such issues as enzyme promiscuity
(Sect. 5.4.2) and low titers (Sect. 5.5), the development of a strictosidine-
producing yeast paves the way for microbial synthesis of even higher complexity
downstream MIAs.



5 Microbial Synthesis of Plant Alkaloids 109

5.2.3 Downstream Derivatization

Based on alkaloids naturally produced by C. roseus, downstream MIAs are divided
into four major subtypes: the corynanthe, iboga, and aspidosperma types, as well as
the dimeric bis-indole alkaloids [48, 68, 69] (Fig. 5.1a). The first three types are clas-
sified based on the structural orientation of the monoterpene group, while the dimeric
bis-indole alkaloids are more loosely defined as dimers of strictosidine derivatives.
There are roughly 3000 examples of such molecules, all of which are based on the
strictosidine backbone [11]. The first downstream transformation involves deglyco-
sylation of strictosidine by strictosidine glucosidase [70], which forms an unstable
hemi-acetal that triggers a series of spontaneous reactions and yields 4,21-dehydro-
geissoschizine [71]. 4,21-Dehydrogeissoschizine exists in equilibrium with cathena-
mine [72], a precursor to the corynanthe alkaloids, including ajmalicine, serpentine,
and tetrahydroalsonine. Alternatively, 4,21-dehydrogeissoschizine also feeds into the
aspidosperma or iboga type MIA branches through the intermediate preakuammi-
cine. Although several mechanisms have been proposed to clarify the conversion of
4,21-dehydrogeissoschizine to preakuammicine, the precise mechanism remains
unknown [73]. Preakuammicine is then reduced to stemmadenine, which acts as a
precursor for iboga- and aspidosperma-type alkaloids when supplemented to C.
roseus suspension cultures [74]. Seven steps catalyze the formation of vindoline
from tabersonine, embodying one of the only downstream pathways that has been
reconstructed in microbes. Supplementation of tabersonine to yeast expressing the
reconstituted pathway produced vindoline with a yield of 7.5% [75]. The class III
peroxidase Prx1 has been demonstrated to couple vindoline and catharanthine in
vitro, producing an unstable iminium dimer that spontaneously rearranges to a-3',4'-
anhydrovinblastine [76]. Hydroxylation of the o-3’,4’-anhydrovinblastine double
bond generates vinblastine, while formylation of the N-methyl group yields
vincristine.

The production of downstream MIAs in microbes remains a significant chal-
lenge due to gaps in our understanding of MIA biosynthesis in native plant spe-
cies. The corynanthe-type family of MIAs is presently the most accessible, as the
reductases involved in the formation of tetrahydroalsonine and ajmalicine from
cathenamine have been identified [77]. Theoretically, these enzymes could be
expressed in yeast, given a base strain engineered for strictosidine biosynthesis
has been constructed [11]. Unfortunately, synthesis of aspidosperma- and iboga-
type alkaloids is not possible at the present time, as the enzymatic steps involved
in conversion of 4,21-dehydrogeissoschizine to preakuammicine, as well as for-
mation of catharanthine and tabersonine from stemmadenine, remain unknown. In
this context, it is clear that discovery of elusive pathway enzymes is the chief
factor impeding our capacity to produce valuable MIAs in heterologous hosts. It
is anticipated that the recent success in engineering yeast for strictosidine biosyn-
thesis will serve as a catalyst for the identification of new pathway genes, leading
to new microbial engineering opportunities and contributing to a deeper under-
standing of MIA biosynthesis.
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5.3  Reconstitution of BIA Biosynthetic Pathways

While enzyme discovery remains a bottleneck for the microbial synthesis of key
MIAs, the BIA family has recently experienced an intense period of pathway eluci-
dation and enzyme discovery. Although morphine was first isolated from opium
poppy in 1806, the elucidation of its biosynthetic pathway was only completed in
2015 [36, 37]. Analogously, the chemical structure of noscapine was determined
more than a century ago (Fig. 5.1b), yet the majority of the enzymatic steps from the
branch point (S)-canadine were characterized very recently [78-83]. Nevertheless,
formation of most BIA structures proceeds through the branch point intermediate
(S)-reticuline, itself derived from (S)-norcoclaurine (Fig. 5.3). The protoberberine
(S)-scoulerine and the aporphine (S)-corytuberine are produced from (S)-reticuline
by the berberine bridge enzyme (BBE) and corytuberine synthase (CYP80G?2),
while the morphinan class of BIAs are produced from (R)-reticuline via stereo-
chemical inversion of (S)-reticuline by a fusion enzyme composed of aldo-keto
reductase and CYP domains. The protoberberine (S)-canadine is another intermedi-
ate common to the synthesis of both berberine and phthalideisoquinoline BIAs.
Because many downstream pathways share common intermediates, BIAs are prime
candidates for microbial synthesis whereby, an optimized host producing high titers
of a common branch point metabolite serves as a platform for the synthesis of dif-
ferent classes of downstream compounds [84]. In this section we present an over-
view of such BIA formation pathways and summarize the recent flurry of activity
directed at engineering microbial hosts for the synthesis of valuable BIA
pharmaceuticals.

5.3.1 Upstream BIA Pathways

Prior to the elucidation of all biosynthetic steps involved in a specific pathway, het-
erologous BIA production strategies were limited to the assembly of partial path-
ways in microbial hosts. Such approaches rely on the availability of costly BIA
pathway intermediates and contrast de novo production strategies, in which glucose
acts as substrate for both cell growth and BIA biosynthesis. In this regard, BIA feed-
ing schemes have been employed to reconstruct both mid- and down-stream path-
ways in yeast for the production of high-value BIAs, including (R,S)-reticuline,
sanguinarine, (S)-canadine and noscapine from (R, S)-norlaudanosoline [13, 39], as
well as an array of morphinan alkaloids from supplemented thebaine or (R)-
reticuline [14, 85]. With the elucidation of entire metabolic networks in native BIA-
producing plants (Fig. 5.3), de novo production was first demonstrated for the
upstream precursor dopamine in yeast (23.8 mg/L) and subsequently extended to
(S)-reticuline (0.0806 mg/L) [21]. De novo production strategies entail linking het-
erologous plant biosynthetic pathways with endogenous host metabolism. Since
MIAs and BIAs are derived from tryptophan and tyrosine, respectively, the aromatic
amino acid pathway acts as the key starting point for many plant alkaloid engineer-
ing approaches. The norcoclaurine structural backbone of BIAs is formed through
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condensation of dopamine and 4-hydroxyphenylacetaldehyde (4-HPAA), both
derivatives of tyrosine. Alternatively, dopamine can be condensed with
3,4-dihydroxyphenylacetaldehyde (3,4-dHPAA), itself a derivative of dopamine
through the action of monoamine oxidase (MAO). Although yeast naturally pro-
duces 4-HPAA, the organism lacks a source of dopamine, necessitating the intro-
duction of a heterologous pathway to enable conversion of tyrosine to dopamine via
L-DOPA. Using a novel enzyme biosensor to monitor pathway fluxes, DeLoache
et al. [21] engineered yeast to produce 23.8 mg/L dopamine from glucose through
the combined expression of an engineered tyrosine hydroxylase from sugar beet
(CYP76ADIWVBLEML) and a bacterial DOPA decarboxylase (DODC). High-level
dopamine production was also dependent on expression of a feedback resistant
(FBR) mutant of Arodp (Aro4™R) to enhance supply of the tyrosine precursor [86].
Condensation of the resulting dopamine pool with endogenous 4-HPAA using nor-
coclaurine synthase (NCS) from opium poppy yielded 0.1046 mg/L (S)-
norcoclaurine, a conversion efficiency of only 0.25% based on dopamine levels.
Analysis of the norcoclaurine-producing strain revealed the accumulation of (S)-
norcoclaurine, as well as substantial levels of dopamine, in the extracellular medium
[21]. Secretion of intermediates from non-optimized pathways is a common chal-
lenge of yeast BIA production [5] and, therefore, preventing efflux of BIA pathway
intermediates is a critical facet of yeast BIA production strategies (Sect. 5.4.3).

Whereas production of (S)-norcoclaurine from glucose in yeast (0.1046 mg/L)
requires further optimization, extension of the pathway to the important branch point
BIA (S)-reticuline (0.0806 mg/L) has proven to be relatively efficient. (S)-Reticuline is
produced from (S)-norcoclaurine in a four-step conversion involving three methyltrans-
ferases [norcoclaurine 6-O-methyltransferase (6OMT), coclaurine N-methyltransferase
(CNMT), and 3'-hydroxy-N-methylcoclaurine 4’-O-methyltransferase (4’'OMT)] and
a CYP hydroxylase [N-methylcoclaurine hydroxylase (NMCH; CYPS8OBI1)].
Alternatively, the NMCH-catalyzed reaction is bypassed if norlaudanosoline is
employed in place of norcoclaurine. De novo synthesis of (S)-reticuline with titers
reaching 0.082 mg/L [38], 0.0806 mg/L [21], and 0.0192 mg/L [29] was achieved by
expressing methyltransferases from opium poppy and NMCH from California poppy
(Eschscholzia californica). Based on measured levels of (S)-norcoclaurine, conversion
to (S)-reticuline was surprisingly efficient (molar conversion efficiency of 63.5%), yet
less than 3% of the total product was found associated with the cell pellet, again indicat-
ing substantial efflux of BIA pathway intermediates. While yeast is generally regarded
as the preferred microbial host for the expression of complex downstream BIA path-
ways, the highest de novo (S)-reticuline production titers to date have been achieved
using bacteria. Nakagawa et al. [22] engineered E. coli to produce 46 mg/L (S)-reticuline
from glycerol by rewiring host tyrosine metabolism and engineering an efficient (S)-
reticuline pathway composed of a diversity of variants from bacteria and plants.
Regardless of the microbial host selected for BIA biosynthesis, de novo production of
(S)-reticuline remains an impressive feat, as the pathway can be extended to yield an
assortment of high-value BIA pharmaceuticals, including compounds from the morphi-
nan, sanguinarine, and noscapine nodes.
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5.3.2 Microbial Production of Morphinan Alkaloids

The reticuline epimerase (REPI) is responsible for the stereochemical inversion of
(S)- to (R)-reticuline [36, 37]. (R)-Reticuline is then converted into thebaine in a
linear four-step conversion involving salutaridine synthase (CYP719B1; SAS), sal-
utaridine reductase (SAR), salutaridinol acetyltransferase (SAT), and a spontaneous
rearrangement. Thebaine represents an important morphinan building block, acting
as a precursor to morphine, codeine, and the semi-synthetic oxycodone. Two con-
vergent pathways have been shown to mediate production of morphine. The preva-
lent pathway in opium poppy proceeds through neopinone and codeinone via the
enzymes thebaine 6-O-demethylase (T6ODM) and codeinone reductase (COR)
[87]. Codeine is then demethylated to morphine by codeine demethylase (CODM).
The alternative route to morphine utilizes the same enzyme set and produces
oripavine in a codeine-independent pathway. Like most plant MIA and BIA biosyn-
thetic pathways, the morphinan node is punctuated with spontaneous chemical rear-
rangements and highly promiscuous enzymes (Sect. 5.4.2) [14]. In this context,
downstream BIA metabolic networks resemble complex web-like architectures
rather than simple linear pathways. For example, the enzyme COR catalyzes the
reduction of codeinone to codeine, yet is also responsible for the formation of a
number of off-target products, such as neopine and 14-hydroxycodeine [85].
Moreover, the product of the SAT reaction, salutaridinol-7-O-acetate, is spontane-
ously rearranged to thebaine, the preferred product, or dibenz[d,flazonine, a side
product. Culture pH was shown to be the chief driving force, whereby thebaine
formation is favored at an elevated pH of 8-9 [14], a recurring theme in microbial
BIA production approaches (Sect. 5.5.2) [5, 46]. For these reasons, microbial mor-
phinan production is highly complex and difficult to harness, contributing to the
currently low product titers and yields [10, 14, 38, 85].

Following identification of the REPI enzyme, de novo production of thebaine
and hydrocodone was first demonstrated in yeast [38], followed by E. coli [10]
(Table 5.2). While thebaine production titers are more than 300-fold higher in E.
coli compared to S. cerevisiae (2.1 and 0.0064 mg/L, respectively), it is note-
worthy that a stepwise fermentation approach involving four engineered strains
of E. coli was utilized to attain titers in the mg/L range [10]. In contrast, a com-
plete thebaine pathway consisting of 21 non-native enzymatic activities was
introduced into a single yeast host [38]. Until most BIA production issues are
resolved in the respective microbial hosts, present studies point to a two-stage
approach, in which bacteria synthesize pathway precursors and early BIA inter-
mediates, which are then derivatized in complex downstream reactions by engi-
neered yeast. Examples of this approach are the synthesis of 8.3 mg/L
(S)-scoulerine or 7.2 mg/L. magnoflorine from 766 mg/L supplemented dopa-
mine using co-cultures of E. coli expressing the dopamine-to-(S)-reticuline bio-
synthetic pathway and a S. cerevisiae strain expressing either BBE or CYP80G2
along with CNMT [88].



114 M.E. Pyne et al.

5.3.3 Microbial Production of Protoberberine,
Benzophenanthridine, and Phthalideisoquinoline
Alkaloids

Berberine (protoberberine type), sanguinarine (benzophenanthridine type), and
noscapine (phthalideisoquinoline type) biosynthetic pathways all proceed through
the common intermediate (S)-scoulerine, synthesized from (S)-reticuline by the
enantioselective BBE. (S)-Canadine is the following branch point intermediate
shared by protoberberine and phthalideisoquinoline alkaloids. In 2008, Minami
et al. [88] reported the production of (S)-scoulerine from exogenously supplied
dopamine using a co-culture of an E. coli strain producing (S)-reticuline and an S.
cerevisiae strain expressing the BBE from Coptis japonica. In the same year
Hawkins and Smolke [39] produced (S)-canadine from (R,S)-norlaudanosoline by
expressing seven heterologous genes from a range of plant species. The pathway
was further optimized to sustain production of the downstream alkaloids berberine
and noscapine several years later [15, 89]. A total of 1.8, 0.621, and 0.700 mg/L
(S)-canadine were obtained in shake flask, batch, and fed-batch conditions, respec-
tively. Optimization consisted of tuning expression levels, screening enzyme ortho-
logs involved in the conversion of (S)-scoulerine to (S)-canadine, and using buffered
media to maintain neutral pH. Berberine was also detected as a spontaneous oxida-
tion product from (S)-canadine. The tetrahydroberberine oxidase from Berberis wil-
soniae, which was reported to oxidize (S)-canadine to berberine [90], didn’t increase
berberine production compared to the spontaneous reaction in S. cerevisiae.

5.3.3.1 Synthesis of Dihydrosanguinarine and Sanguinarine in Yeast

Sanguinarine is an orange-red benzophenanthridine alkaloid produced by certain
members of the Papaveraceae family, such as bloodroot (Sanguinaria canadensis)
and Mexican poppy (Argemone mexicana). Like most major BIA pathway nodes,
the sanguinarine branch was fully elucidated following a series of recent studies
[91-93]. Sanguinarine is produced from (S)-reticuline in a seven-step process that
proceeds through the key intermediate (S)-scoulerine. This transformation involves
four plant CYPs [cheilanthifoline synthase (CFS; CYP710A25), stylopine synthase
(SPS; CYP719A20), (S)-N-methylstylopine 14-hydroxylase (MSH; CYP82N4),
and protopine 6-hydroxylase (P6H; CYP82N2v2)], in addition to BBE and tetrahy-
droprotoberberine N-methyltransferase (TNMT). Following elucidation of the san-
guinarine biosynthetic pathway, Fossati et al. [13] devised a feeding strategy to
reconstitute the pathway from (R,S)-norlaudanosoline by partitioning the pathway
into three enzyme blocks. Pathway flux through each module could then be moni-
tored and quantified by feeding with different pathway intermediates, namely (R,S)-
norlaudanosoline, (S)-reticuline, (S)-scoulerine, or (S)-stylopine. Whereas molar
conversion for the full pathway from (R,S)-norlaudanosoline to dihydrosanguina-
rine was 1.5%, yields for enzyme blocks 2 + 3 and block 3 alone were 4.4% and
37%, respectively, demonstrating significant losses at each portion of the pathway.
Promiscuity of TNMT and CYP719, as well as efflux of (5)-N-methylstylopine,
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significantly hindered efficient conversion. The former issue was comprehensively
resolved in an ensuing effort [94] (Sect. 5.4.2), leading to a boost in molar conver-
sion to 10% from fed (R,S)-norlaudanosoline without production of off-target prod-
ucts. Unsurprisingly, however, resolution of the previous bottleneck spawned a new
downstream target for optimization based on accumulation and efflux of (S)-N-
methylstylopine. The importance of the CFS reaction was further emphasized by a
subsequent sanguinarine biosynthesis study, in which CFS variants were combina-
torially expressed with various plant CPRs [16]. Although all tested CFS variants
exhibited activity, the authors demonstrated that pairing with an optimal CPR was
critical for achieving high flux through (S)-cheilanthifoline (Sect. 5.4.1). A final
molar conversion of 0.012% was achieved from (R,S)-norlaudanosoline to sanguin-
arine, which contrasts the 10% yield achieved by the previous study through exten-
sive optimization of the conversion of (S)-scoulerine to (S)-N-methylstylopine [94].
Despite these partial pathway reconstructions, de novo production of dihydrosan-
guinarine or sanguinarine has yet to be demonstrated.

5.3.3.2 Noscapine Synthesis in Yeast

In a manner similar to the morphine biosynthesis pathway, the noscapine branch has
remained elusive until very recently despite the fact that its structure was character-
ized more than a century ago. In 2012 Winzer et al. [95]. identified a 10-gene cluster
tightly linked to the formation of noscapine in select opium poppy variants. The clus-
ter was found to encode three O-methyltransferases, four CYPs, an acetyltransferase,
a carboxylesterase, and a short chain dehydrogenase/reductase (SDR). Detailed bio-
chemical characterization of most of the enzymatic activities associated with the clus-
ter was completed within the following 3 years [78—83]. Together these efforts led to
an in-depth understanding of the noscapine biosynthetic pathway employed by opium
poppy and paved the way to its reconstitution in yeast. As with other key BIA pathway
elucidations, assembly of the noscapine pathway in S. cerevisiae was reported soon
after its discovery [15]. Heterologous production of noscapine required expression of
16 plant enzymes together catalyzing 14 biosynthetic transformations from fed (R,S)-
norlaudanosoline leading to the production of approximately 0.678 mg/L noscapine.
The authors were forced to tweak the overall noscapine biosynthetic schema, resulting
in characterization of the last missing catalytic step: O-methylation of the 4’ hydroxyl
group of narcotoline to generate noscapine. The reaction was found to be catalyzed by
a heterodimer composed of two previously uncharacterized O-methyltransferases,
MT?2 and MT3, expressed from the noscapine cluster in P. somniferum. Due to the
complexity of noscapine biosynthesis, the pathway was found to exhibit all major
challenges associated with the production of alkaloids in yeast. For example, the path-
way expresses four complex plant CYPs (Sect. 5.4.1), several promiscuous enzymatic
activities were detected (Sect. 5.4.2), almost all pathway intermediates were exported
from the cell (Sect. 5.4.3), and molar conversion was only 0.082% from a supple-
mented substrate, as conversion was too low to support de novo biosynthesis [15].
Hence, significant improvements will be required to link the existing noscapine path-
way to yeast central metabolism.
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5.4  Microbial Engineering Challenges

Building highly complex plant secondary metabolic pathways in microbes has proven
to be an immensely arduous challenge. A number of recurring metabolic engineering
challenges undermine attempts to reconstruct both MIA and BIA pathways in E. coli
and S. cerevisiae. In this section we focus on the most pertinent engineering hurdles:
functionally expressing complex plant CYPs, taming enzyme promiscuity, and limit-
ing efflux of intermediates. We briefly outline specific approaches that have proven
successful at overcoming such challenges in the context of microbial synthesis of
MIAs and BIAs. In Sect. 5.5, we highlight broader genetic and bioprocessing strate-
gies to enhance flux through target alkaloid pathways.

5.4.1 Functional Expression of Cytochromes P450 (CYPs)

CYPs are abundant in plant specialized metabolism and contribute to the vast struc-
tural diversity of MIAs and BIAs by adding hydroxyl functional groups and catalyz-
ing oxidation, methylene-dioxy bridge formation, and C-O and C-C phenol coupling
reactions [2, 96]. CYPs require a source of electrons for catalysis, which is typically
provided by CPRs following oxidation of NADPH [97]. Plant CYPs and CPRs
localize to the endoplasmic reticulum (ER), where N-terminal membrane-binding
domains anchor them. The presence of endomembrane structures affords a signifi-
cant advantage to eukaryotes as hosts for alkaloid production. Indeed, most efforts
to assemble CYP-containing pathways have been carried out in yeast [5]. The stric-
tosidine, morphinan, noscapine, and sanguinarine branches are examples of com-
plex multi-CYP pathways [11, 13—16, 38]. Surprisingly, E. coli has also proven to
be a suitable host for de novo production of thebaine, albeit through partitioning of
the pathway into four engineered strains [10]. The authors employed a truncated
SAS (CYP719B1) and co-expression of truncated CPR2 from Arabidopsis thaliana
(ATR?2) to generate salutaridine from (R)-reticuline. In contrast, functional expres-
sion of REPI in E. coli was unsuccessful, leading the authors to opt for an alterna-
tive route to (R)-reticuline [10].

As a result of their inherent complexity, CYP-catalyzed steps often produce a
bottleneck in microbial alkaloid production. Overall, heterologous CYPs suffer
from poor expression and activity, resulting in low titers of target compounds.
Improvements in the functional expression of CYPs have been made, yet catalytic
efficiency often remains suboptimal. No strategy alone seems to be superior, point-
ing to an integrated strategy for improving CYP activity. In this regard, high
throughput assays greatly assist efforts to enhance CYP expression and activity,
such as the biosensor screen employed to boost activity of a tyrosine hydroxylase
(CYP76AD1) by a factor of 2.8 [21]. Unfortunately, such high throughput screens
are rarely available to facilitate protein engineering and mutagenesis. An effective
alternative entails engineering the N-terminal membrane anchor to increase CYP
stability. Fossati et al. [13] swapped the N-terminus of SPS from P. somniferum with
the membrane domain from lettuce germacrene A oxidase, thus enabling functional
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expression in S. cerevisiae. In another study, N-terminal engineering was used to
improve SAS (CYP719B1) activity [38]. Western blotting detected glycosylation of
SAS in yeast, resulting in misprocessing of the protein. Subsequent removal of the
glycosylation sites by site-directed mutagenesis prevented glycosylation but reduced
the activity of the enzyme. Instead, replacing the N-terminus with that from an ung-
lycosylated CYP (CFS; CYP719A5) increased the activity of SAS. Other strategies
to enhance expression and activity of CYPs include broadly applicable genetic strat-
egies, such as promoter swapping and boosting gene copy number (Sect. 5.5.1.3).

Although S. cerevisiae expresses a native CPR, designated Ncp1p, co-expression
of an ancillary plant CPR is usually necessary to assist activity of plant CYPs [98].
The choice of plant CPR varies amongst studies, where typically only one plant
CPR is assessed, even in cases where a diversity of CYPs are co-expressed.
Trenchard and Smolke [16] compared functional expression of three distinct CPRs,
in addition to the native yeast CPR, to support activity of CFES from E. californica.
Co-expression of either CPR1 from A. thaliana (ATR1) or CPR from P. somniferum
resulted in similar production of (S)-cheilanthifoline, while co-expression of CPR
from E. californica led to lower titers of (S)-cheilanthifoline comparable to those
attained using the endogenous yeast CPR. Efficient electron transfer between CYP
and CPR is paramount, as de-coupling leads to formation of toxic reactive oxygen
species (ROS) [99]. ROS inhibit CYP activity and are deleterious to yeast growth
[1, 99]. Collectively, these studies suggest that an optimal ratio of CYP:CPR exists
to optimize electron shuttling and limit formation of ROS. While few alkaloid stud-
ies have investigated tuning of CYP expression [15, 16, 89], the optimal ratio of
CYP:CPR has not been directly investigated. The cytochrome b5 (CYBS5) family of
proteins are also known to support electron transfer to some CYPs, in combination
with or independent of a CPR partner [100, 101]. CYB5 has been used as redox
support for heterologously expressed CYPs in the strictosidine pathway [11],
although the direct contribution of co-expressing CYBS was not investigated.
However, high-level production of artemisinic acid in S. cerevisiae was found to
require CYBS together with CPR1 from Artemisia annua [1]. Finally, overexpres-
sion of CYPs induces proliferation of ER in S. cerevisiae [102], presumably to
condition membrane capacity to high amounts of embedded membrane proteins. In
a localization study, cells expressing a CFS-GFP fusion protein from a high-copy
plasmid showed patches of concentrated fluorescence associated with reduced CFS
activity compared to the same fusion expressed from a low copy plasmid, which
displayed evenly distributed fluorescence [16]. Similar observations were made for
canadine synthase when expression from a low-copy plasmid was compared to that
from a high-copy plasmid [89].

5.4.2 Taming Enzyme Promiscuity
Enzyme promiscuity, defined here as an unusually broad substrate range for a given

enzyme (thereby releasing multiple products), has proven to be an underlying theme
and challenge of microbial production of MIAs and BIAs. While many metabolic
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networks employ distinct pathways to synthesize a common metabolite, the trans-
port and accumulation of pathway intermediates in different plant tissues provides
a means for regulating secondary metabolite production [103]. Removing these
spatially-separated enzymes from their native context and combining them within
the yeast cytosol often leads to unpredictable outcomes in the form of off-target
reactions. While in some instances enzyme promiscuity can be harnessed to yield
“new-to-nature” structures, most often undesirable side products result. In the for-
mer case, non-canonical enzyme activities tend to exhibit poor catalytic efficien-
cies, necessitating improvement through protein engineering if pathway flux is to be
harnessed and diverted to non-native routes [5].

Within the MIA network, both G10H and IS have been shown to divert pathway
flux to off-target routes. In addition to its reductive cyclase activity, IS was found to
reduce both geraniol and 10GH without cyclization, yielding the side-products cit-
ronellol (200 mg/L) and 10-hydroxycitronellol (10HC) (5.6 mg/L), respectively
[12]. To further convolute this pathway, G10H was shown to hydroxylate citronellol
to 10HC. In this case, levels of the citronellol side-product dramatically outweighed
that of the target 10HG metabolite, underscoring the complex pathway challenges
that arise from enzyme promiscuity. Since flux through the citronellol pathway was
found to be highly efficient, pathway diversion to reconnect off-target reactions to
the trunk pathway is ostensibly the most promising troubleshooting strategy [5].
This approach is dependent on the ability to reductively cyclize 10HC, necessitating
the identification or engineering of such an enzymatic activity. An example of this
approach was reported by Narcross et al. [94], in which a side reaction of the san-
guinarine pathway was diverted and reconnected to the target pathway. Promiscuous
activities of CYP719s (CFS and SPS) and TNMT from the sanguinarine branch
initially led to the accumulation of numerous side products, including (S)-nandinine,
(S)-N-methylscoulerine, and (S5)-N-methylcheilanthifoline, placing constraints on
the formation of dihydrosanguinarine and sanguinarine. A comprehensive library of
15 methyltransferases and 54 CYP719s were screened to identify variant combina-
tions leading to reduced off-target products. Using this strategy, novel CYP719s
possessing activity on the side product (S)-nandinine were identified such that off-
target flux could be efficiently diverted back to the trunk pathway through conver-
sion to (S)-stylopine. Most importantly, several methyltransferase-CYP719 variant
pairs were identified that completely abolished the formation of side products,
effectively increasing the yield of dihydrosanguinarine. Other microbial MIA and
BIA production strategies that have effectively decreased off-target activities
include the identification of a tyrosine hydroxylase with reduced DOPA oxidase
activity [21], mutagenesis of the ERG20 gene to diminish FPP synthase activity
[12], and the use of bacterial variants in place of promiscuous plant enzymes for
production of natural and semi-synthetic opioids [85]. Perhaps the most promiscu-
ous class of enzymes involved in alkaloid biosynthesis are methyltransferases.
Examples include the TNMT enzyme discussed above [94], MT2 and MT3 of the
noscapine branch [15], and all three methyltransferases involved in formation of
(S)-reticuline from norcoclaurine or norlaudanosoline [104—107]. In addition to
pathway redesign and enzyme bioprospecting, enzyme promiscuity is overcome by
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tuning enzyme levels or engineering synthetic protein scaffolds to better balance
metabolic flux, or through spatial or temporal separation of promiscuous enzymes
from non-target substrates [5, 108]. To prevent formation of neomorphine in yeast,
Thodey et al. [85] localized COR to the ER, resulting in decreased production of
neomorphine and slightly higher titers of morphine. Spatial sequestration allowed
for the spontaneous conversion of neopinone to codeinone to proceed before COR
could divert available neopinone to neomorphine. Because E. coli lacks membrane
structures for subcellular localization, Nakagawa et al. [30] sequestered promiscu-
ous enzymes between strains rather than organelles by employing a stepwise fer-
mentation approach.

5.4.3 Limiting Efflux of Intermediates

The passage of molecules across cell walls and phospholipid bilayers has
become an increasingly common target for metabolic engineering. Evidence
suggests that the majority of small molecule passage across membranes is facili-
tated by transporters [109]. Molecules carried by microbial transporters include
endogenous metabolites as well as toxins and heterologous products [110].
Almost every step in the production of MIAs and BIAs from simple sugars is
accompanied by secretion of intermediates: synthesis of aromatic amino acids
[27, 111], precursors of the initial alkaloid [21, 38], as well as derivatization of
the downstream alkaloids [13, 15, 112]. Overexpression of efflux transporters
reduces the intracellular concentration of end-products, minimizing the effects
of feedback-inhibition [113, 114] as well as product toxicity [115-117]. Final
recovery of end-products from supernatant is also easier than recovery from cell
pellets [118]. Thus, a great deal of effort has been dedicated to identifying and
improving transporters capable of secreting molecules of interest [119-122].
However, when pathway intermediates are secreted, total yield is reduced [123].
This is especially true when a pathway is not well-balanced, leading to interme-
diate accumulation [124], such as current endeavors to build MIA and BIA path-
ways in yeast. In such cases, enhancing fluxes through target pathways should
reduce efflux of intermediates. Finally, a few studies have unveiled a significant
association between cultivation pH and both the uptake and efflux of BIA inter-
mediates (Sect. 5.5.2).

5.5 Optimization Strategies
5.5.1 Genetic and Pathway Engineering Techniques

Reconstitution of MIA and BIA biosynthetic networks in microbes entails more
than simply expressing plant enzymes in a suitable host, as troubleshooting and
optimization are essential facets of metabolic engineering. This process demands a
suite of genetic and metabolic engineering strategies involving the use of
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combinatorial enzyme libraries, diverse pathway assembly tools, and a genetic tun-
ing toolkit [125]. In this section we provide a broad overview of such pathway
engineering techniques to aid efforts directed at enhancing microbial production of
MIA and BIA alkaloids.

5.5.1.1 Building Combinatorial Enzyme Libraries

One of the most effective methods to improve metabolic flux and troubleshoot path-
way bottlenecks is to survey nature’s vast biodiversity by screening enzyme variants
for improved catalytic function [46]. Major advances in next generation sequencing
technology have led to an explosion of sequencing data deposited in publically
accessible online databases. The 1000 Plants Project (http://www.onekp.com) and
PhytoMetaSyn (http://www.phytometasyn.ca) are plant transcriptome initiatives
providing a valuable resource for the identification of enzymes involved in biosyn-
thesis of plant natural products [84, 126]. These and other databases are queried,
often using characterized enzymes from source plants, to identify orthologs pos-
sessing significant sequence similarity [46]. Building combinatorial enzyme librar-
ies in this manner has become more accessible with the decreasing cost of DNA
synthesis, effectively abolishing reliance on plant cDNAs [94]. Libraries of syn-
thetic coding sequences are codon optimized and cloned into custom expression
vectors to optimize translation efficiency and gene expression within a target micro-
bial host. Comparison of three codon optimized orthologs each of CFS and SPS
allowed improvement of (S)-stylopine production within the sanguinarine pathway
[16]. The same approach was used to identify the best available CAS variant for
production of (S)-canadine [89]. Unlike other pathway engineering strategies, such
as protein engineering and directed evolution, screening using combinatorial librar-
ies often provides a more efficient and comprehensive approach for pathway opti-
mization. Rather than improving single enzymatic conversions, combinatorial
libraries can reveal enzyme synergies through parallel screening at multiple enzy-
matic steps. As outlined previously (Sect. 5.4.2), Narcross et al. [94] exploited this
approach by sampling the sequence diversity of transcriptome databases to combi-
natorially screen a set of 15 methyltransferase and 54 CYP719 candidates for opti-
mized production of (S)-stylopine from (S)-scoulerine.

5.5.1.2 Pathway Assembly

The reconstitution of alkaloid metabolic pathways can be simplified by dividing
large pathways into smaller manageable portions through grouping of enzymes into
blocks and assembling corresponding genes into multigene expression cassettes
[13]. This strategy reduces the number of manipulations required to assemble full
metabolic pathways in a target host. Enzyme blocks can be screened in parallel by
feeding supplemented pathway intermediates and can also be further improved
prior to combining into a single strain. To assess activity of candidate genes, gene
cassettes are often first assembled and expressed from replicating plasmids because
they are easily manipulated and efficiently co-transformed. It is important to con-
sider the copy number of plasmids selected for gene expression, as expression pro-
files are typically dependent on the origin of replication employed. High copy
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plasmids based on the 2p replicon (>50 copies per cell) and low copy plasmids
based on an Autonomously Replicating Sequence (ARS; 1-2 copies per cell) exhibit
vastly different effects on gene expression. Despite a reduction in gene dosage, low
copy plasmids have the advantage of minimizing metabolic stress inflicted on the
host cell. Still, the use of plasmids presents several challenges. For example, low
copy plasmids show varying levels of gene expression between cells in the same
population, leading to inconsistencies in pathway productivity and culture perfor-
mance [127]. Because of these challenges and following advancements in the use of
chromosome-encoded expression systems, it is now generally preferred to integrate
pathways directly into host chromosome(s), thus ensuring consistent cell-to-cell
gene expression and long-term stability of biosynthetic pathways without the need
for antibiotics or auxotrophies for plasmid maintenance. Multiple promoters, genes,
and terminators can be shuffled, assembled, and integrated into any target genomic
locus by harnessing the efficient homologous recombination capability of yeast
[128]. Homologous recombination in S. cerevisiae affords an additional benefit to
the use of this organism as a host for the heterologous synthesis of plant natural
products, as even phage-assisted recombination in E. coli is less efficient than the
native yeast system [129, 130]. Until recently, targeted chromosomal integration in
yeast was only possible through homologous recombination with co-integration of
a selectable marker. The use of chromosomal expression platforms have become
widespread following the discovery and exploitation of CRISPR-Cas systems for
genome editing [131]. When coupled with yeast homologous recombination, the
CRISPR-Cas9 system enables highly efficient marker-free gene integration at virtu-
ally any chromosomal locus [132]. This technology has the capacity to greatly
increase the efficiency of pathway assembly and optimization by allowing multi-
plexed integration of very large DNA fragments comprised of multi-gene pathways
[133-135].

5.5.1.3 Tuning Gene Expression

The most widespread approaches for tuning gene expression for pathway optimiza-
tion involve swapping genetic regulatory elements and modulating gene copy num-
ber. Extensive yeast promoter and transcriptional terminator libraries, including
native, synthetic, and hybrid elements, have been characterized in yeast for applica-
tions in metabolic engineering [136—139]. Despite these efforts, typically only a few
select regulatory elements are routinely employed for yeast metabolic engineering,
including the TEFI, TDH3, TPIl, and PGKI promoters and the PGII, ADHI,
CYC1, and TGII terminators. Tuning gene expression by swapping regulatory ele-
ments has been shown to lead to a six-fold difference in enzyme activity between
promoters (N = 14) [139] and a 70-fold difference between terminators (N = 5302)
[140]. Another approach to optimize enzyme activity and alleviate pathway bottle-
necks is to modulate gene copy number. Pathway assembly begins by first integrat-
ing a single copy of each pathway gene into the chromosome and subsequently
probing pathway flux for inefficient enzymatic conversions. Catalytic efficiency of
enzyme bottlenecks is subsequently improved through iterative rounds of gene inte-
gration until sufficient chemical conversion is attained or no further increase in
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product yield is observed. For example, a total of four copies of the gene encoding
G10H were required to partially alleviate a key bottleneck in the formation of stric-
tosidine by S. cerevisiae [11].

5.5.2 Cultivation Methods

The importance of bioprocess engineering and strain cultivation cannot be over-
stated, as substantial improvements in titer and productivity are achieved by opti-
mizing growth conditions. The decade-long quest to engineer artemisinin production
in microbes serves as a benchmark for all subsequent microbial synthesis efforts.
Interestingly, strain engineering techniques, such as deletion of native S. cerevisiae
genes and overexpression of a codon-optimized mevalonate pathway from strong
inducible promoters, led to only modest production of amorphadiene (2 g/L) [11].
Through extensive engineering strategies, including phosphate limitation, the use of
ethanol as carbon source, and elimination of catabolite repression of galactose, the
amorphadiene titer was elevated to more than 40 g/L [24]. Nonetheless, the synthe-
sis of the target downstream product artemisinic acid was hardly improved relative
to the preexisting strain despite tremendous increases in the formation of amorphadi-
ene [24], again highlighting the challenges of producing highly functionalized com-
pounds using complex CYP enzymes. While no studies have extensively investigated
bioprocessing techniques to optimize microbial alkaloid synthesis, here we briefly
recap strain cultivation conditions that have been employed to date in the context of
MIA and BIA biosynthesis.

Several studies suggest that an intimate relationship exists between pH, alkaloid
yield, and efflux of pathway intermediates [14, 89, 141]. An inherent incompatibil-
ity was identified, wherein the ideal pH for cultivation of E. coli and S. cerevisiae
(pH 5-6) contrasts the alkaline conditions required to retain pathway intermediates
and support activity of plant enzymes (pH 7.5-9) [89]. To further complicate these
findings, however, alkaline conditions favor the non-productive oxidation of several
upstream intermediates, particularly L-DOPA, dopamine, and norlaudanosoline [5].
Kim et al. [142] employed a pH of 6 to balance E. coli cell growth and synthesis of
(S)-reticuline from dopamine. In the case of yeast hosts, most early BIA feeding
strategies utilized a two-stage approach, wherein cells are grown to a target OD
under slightly acidic conditions, which was followed by a BIA production stage
buffered at pH 8 [14, 16]. Such a strategy is not as straightforward in de novo sys-
tems, as BIA production and cell growth are expected to proceed concomitantly. In
this regard, pathway balancing is paramount to ensure intermediates are transformed
enzymatically before spontaneous oxidation or efflux can occur. Nevertheless, the
impact of pH on microbial alkaloid synthesis across different hosts and pathways
demands careful investigation and optimization of this critical cultivation parame-
ter. Similarly, selection of the growth substrate affects several facets of a bioprocess,
including precursor supply, redox considerations, and production costs. As men-
tioned above, the switch from glucose to ethanol and subsequent optimization of the
feeding regimen led to an astounding 20-fold increase in amorphadiene titer from 2
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to 41 g/L [24]. Since amorphadiene and strictosidine are both derived from acetyl-
CoA and the mevalonate pathway, such a strategy could be adopted for enhancing
MIA production. In the case of bacterial systems, de novo BIA production has been
shown to be more effective using glycerol rather than glucose as growth substrate
[10], which is likely related to the effectiveness of this carbon source for producing
compounds derived from the shikimate pathway [143]. Curiously, the sugar galac-
tose appears to boost yeast production of (S)-stylopine, (S)-canadine, and berberine
from fed (R,S)-norlaudanosoline by a factor of 2-to-3 compared to glucose [16, 89].
The authors did not provide a hypothesis for the increase in alkaloid yield using
galactose, although a global effect on yeast metabolism was acknowledged. From
these studies, it is clear that much remains to be known regarding the effect of car-
bon source on both de novo and supplemented alkaloid production schemes. Lastly,
the temperature employed to cultivate engineered strains for alkaloid synthesis can
have a minor effect on production of a few select BIAs, such as (§)-stylopine, which
was elevated more than 3-fold by cultivating S. cerevisiae at a reduced temperature
of 25 °C [16]. While this strategy was not effective for enhancing synthesis of (S)-
canadine or berberine [89], it has been demonstrated that the activity and folding of
CYPs in S. cerevisiae is improved through cultivation at reduced temperatures [16,
144]. Since CFS and SPS are the only enzymes unique to the (S)-stylopine forma-
tion branch, it is apparent that one or both of these CYPs is at least partially unstable
at typical cultivation temperatures of 30 °C. This finding again highlights the com-
plexities associated with functionally expressing plant CYPs in microbial hosts
such as S. cerevisiae (Sect. 5.4.1).

5.6 Conclusions and Future Directions

With the establishment of microbial synthesis as a promising platform for plant
alkaloid production, considerable effort will be required to move this technology
beyond the proof of concept stage. Elevating current MIA and BIA titers to levels
warranting scale up is the most critical and challenging endeavor. Future efforts will
be wise to draw from prior successes of microbial synthesis, such as the production
of amorphadiene, which was initiated at 24 pg/ml in E. coli [57] and meticulously
elevated to 41 g/L in S. cerevisiae over a 10-year span [24]. In this context, present
yeast titers of (S)-reticuline mirror early outputs of amorphadiene, forecasting that
the coming years will witness tremendous increases in the production of key MIA
and BIA intermediates. Enhanced alkaloid pathway fluxes will also facilitate assem-
bly of longer and more complex de novo pathways, such as the production of
noscapine, which currently relies on supplementation of (R,S)-norlaudanosoline
due to poor overall conversion efficiency [15]. The second area of focus encom-
passes expanding alkaloid pathways to produce non-native scaffolds and tailor-
made pharmacological activities [141]. Harnessing enzyme promiscuity, as detailed
in this chapter, will play a key role in exploiting microbial systems for drug discov-
ery and engineering ‘“new-to-nature” structures. The third research direction
involves elucidating the highly complex downstream MIA pathways and
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corresponding enzymes from C. roseus that have thus far eluded discovery. While
MIA pathway elucidation currently lags behind that of BIAs, it is noteworthy that
yeast production of the key branching MIA strictosidine (0.5 mg/L) is roughly
6-fold higher than present levels of the corresponding BIA intermediate, (S)-
reticuline (0.082 mg/L) (Table 5.2). We anticipate that this discrepancy will act as a
catalyst for the unveiling of downstream MIA pathways and enable de novo produc-
tion of highly derivatized MIAs.

Finally, it must be noted that several members of the morphinan branch of BIAs
are controlled substances in many countries. While these compounds embody some
of the most important medicines in the world, they are also some of the most abused
and addictive substances known to mankind. For example, the naturally occurring
morphinans thebaine, morphine, and codeine can be chemically converted into
more potent semisynthetic opioids, including oxycodone, hydrocodone, and heroin.
Since de novo production of thebaine and hydrocodone has been validated in two
highly tractable microbes, albeit at low levels (Table 5.2), the threat of “home
brewed opioids™ has become a reality. Therefore, ethical considerations and policies
surrounding the construction of morphinan-producing microorganisms, including
the genetic safeguarding of such strains against release or misuse, must be firmly
established prior to the deployment of large-scale processes based on microbial
synthesis of opioids.
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Caffeine

Misako Kato and Fumiyo Nakayama

6.1 Introduction

Caffeine was first isolated from tea and coffee in the early 1820s; however, the main
biosynthetic pathway of this alkaloid has not been elucidated until relatively
recently. In this chapter, the current knowledge about the distribution and the bio-
synthetic pathway of caffeine are summarized. In addition, the relationship between
N-methyltransferases involved in caffeine biosynthesis and the motif B’ methyl-
transferase family is discussed.

6.2 Distribution of Caffeine in Plants

Caffeine (1,3,7-trimethylxanthine) is one of the well-known purine alkaloids
(Fig. 6.1). Occurrence of theobromine (3,7-dimethylxanthine), which is the precur-
sor of caffeine, has also been demonstrated in caffeine-containing plant species.
Caffeine is widely distributed in plants compared with the limited distribution of
some other alkaloids, such as nicotine and morphine. The major genera of caffeine-
containing plants are Camellia, Coffea, Theobroma, Paullinia, Ilex, and Cola [2, 3,
6, 8]. The distribution of purine alkaloids in Camellia, Coffea, and Theobroma, has
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been well studied; however, there has been limited study on their occurrence in the
remaining taxa.

Caffeine content in the young leaves of Camellia sinensis var. sinensis, C. sinen-
sis var. assamica, and C. taliensis has been reported to be 2-3% of the dry weight.
In contrast, no caffeine has been detected in C. irrawadiensis [39], where the pre-
dominant purine alkaloid is theobromine [40]. C. ptilophylla has also been investi-
gated as one of the theobromine-accumulating Camellia species [4]. In addition to
caffeine, theacrine (1,3,7,9-tetramethyluric acid) is a major purine alkaloid in C.
assamica var. kucha [63]. Camellia, which consists of four subgenera, is the largest
genus among the Teaceae, and all species containing purine alkaloids belong to sec-
tion Thea. No purine alkaloid biosynthetic activity has been detected by radiola-
beled tracer experiments in the leaves of species from subgenera Protocamellia,
Camellia, and Metacamellia [5, 15, 20].

The caffeine content of seeds from Coffea species has been reported to be 0.4—
2.4% of the dry weight [32]. According to these authors, the content of caffeine in
Coffea arabica, which is the most widely cultivated species, is 0.6—1.2%. Caffeine
and theobromine also occur in the leaves of Coffea arabica, and the maximum
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content of purine alkaloids in the leaves is 4% of the dry weight [11, 16]. However,
no caffeine has been detected in roots or the brown parts of shoots [62]. In addition
to its occurrence in Camellia species, theacrine has also been detected in some
Coffea species. The presence of liberine (O(2),1,9-trimethyluric acid) and methyl-
liberine (O(2),1,7,9-tetramethyluric acid) has also been demonstrated in Coffea
liberica, Coffea dewevrei, and Coffea abeokutae [45, 46, 57].

In Theobroma cacao, the major purine alkaloid is theobromine [18, 50]. The
theobromine and caffeine contents in seeds from three genotypes of Theobroma
cacao have been shown to be 0.9-3.3% and 0.08-1.2%, respectively [18]. The
leaves of Theobroma cacao also contain theobromine and caffeine [18, 28].
Theacrine also occurs in Theobroma spp., although not in Theobroma cacao [18].

Leaf extracts of Ilex paraguariensis, which in South America are commonly
used to prepare maté, contain 0.8-0.9% caffeine and 0.08—0.16% theobromine [31].
Paullinia cupana, which is renowned as the source of Amazonian guarana fruits,
contains 4.3% caffeine in the seed kernel [10]. Based on a screening of 34 species
of Paullinia, three species (P. cupana, P. yoco and P. panchycarpa) were found to
contain purine alkaloids [58]. The theobromine content was shown to be higher than
that of caffeine in the leaves of five cultivars of P. cupana [49]. Moreover, signifi-
cant amounts of caffeine and related purine alkaloids have been detected in Citrus
flowers [29]. The content of purine alkaloids in selected plant species has previously
been summarized by Ashihara et al. [6].

6.3  Biosynthesis of Caffeine from Xanthosine

The major route of caffeine biosynthesis from xanthosine is illustrated in Fig. 6.2.
The xanthine skeleton of caffeine is derived from purine nucleotides. This pathway
in Camellia sinensis and Coffea arabica has been verified by the substrate specific-
ity of native and recombinant N-methyltransferases [23, 25, 26, 37, 38, 42, 55], and
also by experiments using radiolabeled precursors [3, 5, 53]. The pathway through
paraxanthine is one of the minor pathways operating in C. sinensis [23]. The path-
way of caffeine biosynthesis, as mentioned above for Camellia and Coffea, is essen-
tially the same in llex paraguariensis [1] and Theobroma cacao [28, 60].

Caffeine biosynthesis from xanthosine involves three methylation steps. In all
these steps, the purine-base methyl donor is S-adenosyl-L-methionine (SAM) [53].
The first methylation involves the production of 7-methylxanthosine from xantho-
sine and is catalyzed by 7-methylxanthosine synthase (EC2.1.1.158). The only sub-
strate that is available for 7-methylxanthosine synthase is xanthosine [37, 55]. The
monoanionic form of xanthosine rather than the neutral form as widely adopted is
the substrate for 7-methylxanthosine synthase [47]. Xanthine monophosphate
(XMP) has been proposed as the substrate for the precursor of caffeine [52]; how-
ever, XMP does not function as a substrate of 7-methylxanthosine synthase [37, 55].
CmXRS1 (AB034699), CaXMTI1 (AB048793), and CaXMT2 (JX978522) from
Coffea arabica and CcXMTI (JX978518) from Coffea canephora have been
reported as 7-methylxanthosine synthases [33, 37, 55] (Table 6.1). To date, no
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Fig.6.2 Pathway for the biosynthesis of theobromine and caffeine in tea and coffee. Solid arrows
indicate the major biosynthesis route. 7-Methylxanthosine synthase and theobromine synthase
have high substrate specificity and only catalyze the conversion of xanthosine to 7-methylxanthosine
and 7-methylxanthine to theobromine, respectively. Caffeine synthase has a broad substrate speci-
ficity. 7-Methylxanthosine synthase (I), theobromine synthase (II), caffeine synthase (III)

7-methylxanthosine synthase activity has been detected in recombinant enzyme
studies of other species.

7-Methylxanthosine is converted to 7-methylxanthine by N-methylnucleosidase
(EC3.2.2.25). Studies on the chemical structure of 7-methylxanthosine synthase
from C. canephora have suggested that this enzyme has the dual functions of methyl
transfer and nucleoside cleavage. The purine ring of 7-methylxanthosine has a par-
tial positive charge that induce the flow of electrons from the ribose moiety. A
nucleophilic attack by water on the oxocarbenium intermediate occur and the ribose
moiety of 7-methylxanthosine is released [33].

The second and third methylations are catalyzed by caffeine synthase
(EC2.1.1.160). Caffeine synthase was the first N-methyltransferase from
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Camellia sinensis to be biochemically characterized and cloned, and this break-
through led to the subsequent isolation of other N-methyltransferase genes
involved in caffeine biosynthesis [25, 26]. TCSI (AB031280), which was iso-
lated from the cDNA of C. sinensis as the caffeine synthase gene, consists of
1438 bp and encodes a protein of 369 amino acids. The apparent molecular mass
of the native caffeine synthase from Camellia sinensis is 61 kDa, as estimated by
gel-filtration chromatography, and 41 kDa, as estimated by sodium dodecyl sul-
fate-polyacrylamide gel electrophoresis [25]. Most members of the caffeine syn-
thase family are believed to function in a dimeric form in vivo [33, 64]. CCSI
(AB086414), CtCS7 (AB086415), and CaDXMT1 (AB084125) from C. arabica
and CcDXMT (JX978516) from C. canephora have been identified as caffeine
synthases from Coffea [33, 37, 55]. Caffeine synthase catalyzes 1-N- and
3-N-methylation reactions of mono- or di-methylxanthines. When dimethylxan-
thines are used as substrates for caffeine synthase, paraxanthine is the best methyl
acceptor, followed by theobromine. 7-Methylxanthine is the best substrate of the
three monomethylxanthines. The order of the methylation of purine bases by caf-
feine synthase from tea and coffee is N-3 > N-1. The amount of paraxanthine in

Table 6.1 N-methyltransferases involved in the biosynthesis of caffeine and the related
compounds

Major
Family Genus Nomen alkaloids | Gene name Substrate
Theales Camellia Camellia sinensis | Cf TCS1 TmX/Tb
(AB031280)
TCS2 -
(AB031281)
Camellia Tb ICS1 TmX
irrawadiensis (AB056108)
ICS2 -
(AB207816)
Camellia Tb PCS1 TmX
ptilophylla (AB207817)
PCS2 —
(AB207818)
Camellia japonica | — CjCS1 TmX
(AB297451)
Camellia - CgCS1 TmX
granthamiana (AB362882)
CgCS2 TmX
(AB362883)
Camellia - CICS1 TmX
lutchuensis (AB362885)
Camellia kissi - CkCS1 TmX
(AB362884)
Camellia - CcCS2 -
chrysantha (AB362886)

(continued)
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Table 6.1 (continued)

Major

Family Genus Nomen alkaloids | Gene name Substrate

Rubiales Coffea Coffea arabica Cf, Tg CmXRS1 XR
(AB034699)
CaXMTI1 XR
(AB048793)
CaXMT2 XR
(JX978522)
CTS1 7mX
(AB034700)
CaMXMT1 7mX
(AB048794)
CaMXMT2 7mX
(AB084126)
CCS1 TmX/Tb
(AB086414)
CaDXMTI TmX/Tb
(AB084125)
CTgS1 NA
(AB058482)
CTgS2 NA
(AB054843)

Coffea canephora | Cf CcXMTI XR

(JX978518)
CcMXMTI TmX
(IJX978517)
CcDXMT TmX/Tb
(IJX978516)

Malvales Theobroma Theobroma cacao | Tb BTSI TmX
(AB096699)

Sapindales | Paullinia Paullinia cupana Cf PcCS TmX/Tb
(BK008796)

7mX 7-methylxanthine, XR xanthosine, Cf caffeine, Tg Trigonelline, NA nicotinic acid, 7b theo-
bromine, — not detected

plant tissues is very low, suggesting that N-1-methylation of 7-methylxanthine is
very slow [7]. In contrast, the best substrate of recombinant PcCS (BK008796)
protein, which is a caffeine synthase from Paullinia cupana, is theobromine; no
activity against paraxanthine was detected [49].

Theobromine synthase (EC2.1.1.159) is specific for the conversion of
7-methylxanthine to theobromine. In caffeine-accumulating species, in addition to
caffeine synthase, theobromine synthase also appears to catalyze theobromine pro-
duction. CTS1 (AB034700), CTS2 (AB054841), CaMXMTI (AB048794), and
CaMXMT?2 (AB084126) from C. arabica, and CcMXMTI (JX978517) from C.
canephora have been isolated as theobromine synthases [36, 42]. In theobromine-
accumulating species, theobromine synthase plays a key role in purine alkaloid bio-
synthesis. ICS1 (AB056108) from Camellia irrawadiensis, PCS1 (AB207817) from
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C. ptilophylla, and BTSI (AB096699) from T. cacao have also been isolated, and
their recombinant protein activity was identified as that of a theobromine synthase.
The accumulation of purine alkaloids is dependent on the substrate specificity of
N-methyltransferases since aforementioned three species are theobromine-
accumulating species.

SAM-dependent N-methyltransferases play important roles in the regulation of
caffeine biosynthesis in C. sinensis [17]. The level of TCSI expression is higher in
young leaves than in mature leaves [24, 30], which is consistent with the change in
gene expression in coffee leaves [37, 38]. TCS/ and three type of N-methyltransferase
genes from coffee are also expressed in the flowers [24, 37, 38].

Recently, Huang et al. supposed the precursor of the caffeine was xanthine as
distinct from xanthosine in Theobroma cacao, Paullinia cupana and Citrus sinensis
[19]. Xanthine is the key substrate in the conventional purine catabolism pathway to
CO, and NH; via uric acid, allantoin and allantonate [2]. This new hypothesis needs
to be proved by physiological studies on the purine metabolism.

6.4 The Caffeine Synthase Gene Family in Plants

Genes with high sequences identity to caffeine synthase from five purine alkaloid-
free Camellia species are listed in Table 6.1. Despite the lack of purine alkaloid
biosynthetic activity, genes homologous to caffeine synthase are conserved in
purine alkaloid-free species from the four subgenera, Protocamellia, Camellia,
Metacamellia, and Thea, of the genus Camellia. The occurrence of transcripts of
these genes suggests that they are functional genes and not pseudogenes.
Recombinant enzymes derived from these genes have theobromine synthase activ-
ity [20]. These observations strongly suggest that caffeine synthase has evolved
from theobromine synthase in Camellia plants. Yoneyama et al. [60] showed that
amino acid H*'! of theobromine synthase (PCS1) from Camellia ptilophylla plays a
critical role in substrate discrimination. The corresponding amino acid residue of
TCS1, which is a caffeine synthase, is R?!°. The same critical amino acid is seen in
the theobromine synthases from purine alkaloid-free Camellia species [20]. The
theobromine synthase gene from purine alkaloid-free Camellia species shows
higher expression levels in mature leaves than in young leaves, which is unlike the
expression profile of caffeine synthase in caffeine-accumulating species [20].
However, the functions of some genes from purine alkaloid-accumulating species of
Camellia homologous to caffeine synthase have yet to be determined. These genes,
namely TCS2 from C. sinensis, ICS2 from C. irrawadiensis, and PCS2 from C.
ptilophylla, are placed in the same clade of a molecular phylogenetic tree [20, 41].

The caffeine synthases, theobromine synthases, and related proteins shown in
Table 6.1 belong to the motif B’ methyltransferase family, members of which have
a motif B’ and a YFFF region in the amino acid sequence, and are members of the
SABATH family [12]. The three conserved motifs (A, B, and C) involved in binding
the methyl donor SAM have been reported in most plant SAM-dependent methyl-
transferases [22]. Members of the motif B’ methyltransferase family share motif B’
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(LNDL F/P XNDEFN) instead of motif B between motif A and C, and have the char-
acteristic YFFF region (AYXXQFXXDFXXFL), which is located downstream of
motif C [27] (Fig. 6.3). Phylogenetic analysis of the major motif B’ methyltransfer-
ases, for which substrates have been identified, is shown in Fig. 6.4. The illustrated
tree implies that the caffeine biosynthetic pathways in coffee, tea, guarand, and
cacao might have evolved in parallel with one another, consistent with the different
catalytic properties of the enzyme involved. Studies on C. canephora genome dem-
onstrated N-methyltransferases involved in caffeine biosynthesis expanded through
sequential tandem duplications independently of genes from cacao and tea, suggest-
ing that caffeine in eudicots is of polyphyletic origin [13]. It is noteworthy that nico-
tinic acid N-methyltransferase (CTgS1) from Coffea arabica has a high degree of
sequence identity (82.3%, 80.8%, and 82.9%) with caffeine synthase (CCS1), theo-
bromine synthase (CTS1), and 7-methylxanthosine synthase (CmXRS1), respec-
tively [35]. CTgS1 is involved in the production of trigonelline in coffee. Baumann
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CbSAMT 1 TORQVISITKPITEAAT DTVTTRLAIADL TELT T IFRSL 111
Motif C YFFF region
—0 essesee b il v
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. eose
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Fig. 6.3 Comparison of the amino acid sequences of caffeine synthases and related enzymes. The
proposed SAM-binding motifs (A, B’ and C) and the conserved region nominated as “YFFF-
region” are shown by open boxes. Asterisks indicate tyrosine (Y) or phenylalanine (F) residues in
the region. The nominated amino acids in substrate binding are indicated by closed circles (methyl
acceptor) and open circles (SAM), and additional active site residues are indicated by a closed
arrowhead. The amino acid residue indicated by a open arrowhead plays a critical role in substrate
discrimination in Camellia plants. The sources of sequences indicated by GenBank numbers are as
follows: TCS1, AB031280; ICS1, AB056108; PCS1, AB207817; CjCS1, AB297451; BTSI,
AB096699; PcCS, BK008796; CmXRS1, AB034699; CTS1, AB034700; CCS1, AB086414;
CTgS1, AB054842; CbSAMT, AF133053
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Fig. 6.4 Molecular phylogenetic tree of the motif B’ methyltransferase family. The unrooted tree
was generated by the neighbor-joining method using Clustal W software [54]. The sources of
sequences indicated by GenBank numbers are as follows: TCS1, AB031280; ICS1, AB056108;
PCS1, AB207817; CjCS1, AB297451; CmXRS1, AB034699; CTS1, AB034700; CCSI1,
AB086414; CTgS1, AB054842; BTS1, AB096699; CbSAMT, AF133053; AmBAMT, AF198492;
OsIAMT, EU375746; AtBSMT1, NM111981; AtJAMT, AY008434; AtHAMTI1, NM124907;
AtGAMTI1, NM118775; AtFAMT, NM114355; PcCS, BK008796. Substrates of enzymes are
shown in parentheses. Abbreviations of substrates are as follows: XR xanthosine, 7mX
7-methylxantine, 7b theobromine, NA nicotinic acid, FA farnesoic acid, /AA indole 3-acetic acid,
GA. gibberellic acid, BA benzoic acid, SA salicylic acid, JA jasmonic acid

proposes a speculative scheme that NAD is processed in parallel steps to both caf-
feine and trigonelline in coffee [9].

Well-characterized members of the motif B’ methyltransferase family are sali-
cylic acid carboxyl methyltransferase (SAMT) [48], benzoic acid carboxyl methyl-
transferase (BAMT) [14], jasmonic acid carboxyl methyltransferase (JAMT) [51],
indole-3-acetic acid methyltransferase (IAMT) [64], farnesoic acid methyltransfer-
ase (FAMT) [59], and gibberellic acid methyltransferase (GAMT) [56]. These
members of the motif B methyltransferase family catalyze the formation of small
molecule methyl esters by using SAM as a methyl group. Twenty-four and forty-
one genes encoding motif B methyltransferase proteins have been identified in
Arabidopsis thaliana and Oryza sativa, respectively [61]. However, the function of
these genes has not been determined yet.

The three-dimensional crystal structure of several motif B'methyltransferases
has been determined, including SAMT from Clarkia breweri [64], CcXMT1 and
CcDXMT from C. canephora [33], and AtTAMT from A. thaliana [61]. The overall
structure of the SAMT monomer consists of a globular domain containing an
extended P-sheet and a unique a-helical cap that forms the top one-third of the
active site cavity. SAMT exists as a homodimer in solution, and this dimeric arrange-
ment is preserved in the crystal lattice [64]. This structure appears to be a common
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characteristic of motif B methyltransferase proteins. In addition, there are no resi-
dues located within the transmethylation pocket that act as a general acid/base for
the methyl transfer reaction [33, 64].

A question yet to be addressed is how caffeine/theobromine synthases are dif-
ferentiated from motif B” methyltransferases. Further investigation into other motif
B’ methyltransferases is needed to resolve this question.

6.5 Biotechnological Production of Caffeine by Genetic
Engineering

The identification of caffeine synthase genes in purine alkaloid-producing plants led
to produce transgenic caffeine-deficient coffee plants. Low-caffeine-containing cof-
fee plants were generated by the RNA interference method [43, 44]. This method
was effective in plantlets, although the suppression was not as complete as observed
in embryogenic tissues of C. arabica [44].

The second approach is the engineering of microbial host for caffeine produc-
tion. Caffeine production (0.38 mg/L) was reported by co-expression of C. arabica
xanthosine methyltransferase (CaXMT) and C. sinensis caffeine synthase (TCS1)
in Saccharomyces cerevisiae [21]. The authors also demonstrated the change in the
sum yields of caffeine and theobromine by the expression of TCS 1 structure-guided
mutants [21]. On the other hand, McKeague et al. improved by rational modifica-
tions to the native yeast central metabolic pathway the endogenous purine flux for
the production of 7-methylxanthine, a key intermediate in caffeine biosynthesis
(2016). They achieved titers of 0.27 mg/L, 0.061 mg/L, and 3.7 mg/L of caffeine,
theophylline, and 3-methylxanthine, respectively, in 0.3-L bench-scale batch fer-
mentation [34].
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Taxol® Biosynthesis and Production:
From Forests to Fermenters

Christopher McElroy and Stefan Jennewein

Abbreviations

CPRs Cytochrome P450 reductases
DMAPP Dimethylallyl diphosphate

DXP 1-Deoxy-D-xylulose 5-phosphate pathway
GGPP Geranylgeranyl diphosphate

HGT Horizontal gene transfer

IPP Isopentenyl diphosphate

MEP 2-C-methyl-D-erythritol 4-phosphate pathway
MVA Mevalonate pathway
P450 Cytochrome P450 dependent mono-oxygenase

7.1 Introduction

Taxol® is a complex metabolite comprising a tetracyclic oxaheptadecane skeleton
decorated with eight functional oxygen groups, two acyl groups and a benzyl group.
This intricate molecule (Fig. 7.1) was first structurally characterized in 1971 [202].
It took 21 years before this highly desirable anti-cancer drug became available to the
public following approval by the Food and Drug Administration (FDA). Despite the
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Taxol (paclitaxel)

Fig. 7.1 The structure of taxol (paclitaxel)

difficult development process, taxol and related taxane analogues have become
leading anti-cancer drugs with sales reported previously as exceeding five billion
USD [34, 140]. The annual financial reports for 2016 from Sanofi and Celgene [24,
165], state that combined revenues from Taxotere®, Jevtana® and Abraxane® prod-
ucts summed in excess of one and a half billion USD. Although suggestive of a
decrease, these figures do not include the sales of generics and other competitor
flagship products that use paclitaxel or other toxic compounds linked to conjugate
monoclonal antibodies such as Avastin® [160], which alone generated revenues
greater than six billion USD in 2016. The lengthy development time largely reflected
the lack of a good source, because the acquisition of 1 g of taxol was highly destruc-
tive. It required the bark of three adult Pacific yew (Taxus brevifolia Nutt) trees,
which provided ~12 kg of bark material. Purification was laborious and complex
due to the hydrophobic nature of the compound, which resulted in a yield of only
0.5 g, effectively 0.004% of the original dry weight [203]. The advancement of taxol
also required delicate political manoeuvring due to conflicts with environmentalists,
the relationship between privatized intellectual property and consumer drug costs,
as well as the need to assess side effects [5, 60].

Taxol is a potent anti-neoplastic compound that binds to the p-tubulin subunits of
microtubules, causing their polymerization even at low temperatures and in the
presence of calcium concentrations that normally promote depolymerization [157].
Doses greater than 10 nM cause the accumulation of large, stable tubulin bundles,
preventing cellular proliferation and thereby arresting cells in metaphase, whereas
lower concentrations lead to apoptosis [166]. Studies in vitro with purified bovine
brain tubulin and with HeLa cells confirmed these findings. In 1992, taxol was
approved by the FDA for the treatment of refractory ovarian cancer. This was
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followed by its approval for the treatment of mammary cancer in 1994, for lung
carcinoma in 1999 and adenocarcinoma in 2014 [203]. Indeed, since its approval,
the drugs developed from taxol have been administered (independently or as part of
a drug cocktail) to more than one million patients [203].

Taxol was discovered during a collaborative screening program in 1960 between
the National Cancer Institute (NCI) and the US Department of Agriculture (USDA)
led by Jonathan L. Hartwell. The purpose of the program was to identify cytotoxic
natural products from plants. In the second year of the program, Arthur S. Barclay
and three USDA assistants collected 650 plant samples, including stems, leaves,
bark and fruit from the slow growing tree Taxus brevifolia [202, 203]. Crude extracts
were then tested for cytotoxicity against 9 KB cell cultures isolated from nasophar-
ynx tumours. Based on these initial findings, Hartwell was asked to send crude
extracts to the medical chemists Monroe E. Wall and Mansukh C. Wani at the
Research Triangle Institute (RTI). This ultimately led to this institute being given
the assignment of extracting and purifying taxol from 7. brevifolia samples, a labo-
rious process which commenced in 1964 [203]. Purification was achieved by etha-
nol extraction, separation of the ethanol phase between chloroform and water, and
many Craig countercurrent distribution treatments. The extraction steps were guided
by in vivo inhibition assays using Walker WM solid tumours in order to prevent the
loss of taxol [199]. Following purification, taxol was structurally characterized by
chemical conversion followed by 'H nuclear magnetic resonance (NMR) spectros-
copy, X-ray diffraction and high-resolution mass spectrometry. Later, the ester
located on the thirteenth carbon was found to be critical for antitumor activity and
that its removal caused taxol to become inactive [202].

The current status of 7. brevifolia is “near threatened”. Its population has notice-
ably declined and continues to do so due to fires, logging and the exploitation of its
bark for the acquisition of taxol [185]. Because these trees require ~300 years to
reach maturity [158], it has long been appreciated that alternative sources or methods
for taxol production must be developed to avoid the need to rely on destructive bark
harvesting [159]. These include complete chemical synthesis, partial synthesis from
taxol precursors such as baccatin III and 10-deacetylbaccatin III extracted from
European yew needles, and the development of Taxus spp. cell tissue cultures for
precursor synthesis. Taxus spp. cell cultures are currently used to produce taxol and
related compounds from which taxol can be synthesized, but the metabolic engineer-
ing of microorganisms may replace this source in the future. Taxus spp. cell cultures
are the current method of choice because they can be grown under controlled condi-
tions, they are environmentally sustainable and also cost effective [132, 183].
However, as more potential uses for this compound are found, the demand will con-
tinue to increase, encouraging innovation and the development of advanced produc-
tion methods with greater productivity. For the time being, such new methods will
continue to be hampered by our lack of understanding of the taxol biosynthesis path-
way. Once the entire pathway is well characterized, the entire pathway could be
optimized and transferred into an industrially relevant microorganism which could
be metabolically engineered for industrial-scale production. The following section
summarizes our present knowledge of the taxol biosynthesis pathway.
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7.2  The Biosynthesis of Taxol

The entire taxol biosynthesis pathway is not yet known, but it is widely agreed that
it requires 19 enzymatic steps [88] from the precursor geranylgeranyl diphosphate
(GGPP) to taxol itself [34]. Our present understanding of the genes and enzymes in
this pathway mainly reflects the exceptional work carried out by Rodney Croteau,
Robert M. Williams and their co-workers. Thus far, 14 enzymes have been well
characterized (Table 7.1), although a candidate 15th enzyme was recently described
in the form of a newly identified B-phenylalanine-CoA ligase identified by analys-
ing the transcripts of Taxus baccata cells elicited with methyl jasmonate [155]. This
is a known elicitor of taxol and baccatin III synthesis in cell cultures [108, 140,
219]. Furthermore, a list of potential candidate genes encoding the elusive four
remaining enzymes was also provided, i.e. C1 and C9 hydroxylases, C4-C20 epoxi-
dase, oxomutase and C9 oxidase [155].

Despite these exciting new revelations, these potential enzyme candidates require
thorough testing using standard feed experiments with synthetic and isotopically-
labelled substrates, followed by the structural determination of products and testing
for the incorporation of these isolated intermediates into the taxol pathway in vivo.

The biosynthesis of taxol is a complex process involving eight oxidation steps,
five acetyl/aroyl transferase steps, a C4p,C20-epoxidation reaction, a phenylalanine
aminomutase step, N-benzoylation and two CoA esterifications [140] as shown in
Fig. 7.2. Taxol is just one of ~400 taxoids (taxane diterpenoids) that share the same
taxane skeleton produced by Taxus species [84], and individual Taxus species pro-
duce several taxoids at a time. Whereas the vast majority likely have clear biological
roles such as discouraging predation due to their toxicity to mammals [139], insect
anti-feeding activities [37] and fungal antibiotic activities [48], a small minority of
these taxoids may be products of promiscuous acetyltransferases and oxygenases
[214] which are possibly redirected into alternative taxoid pathway end products by
as yet unknown enzymes. Due to the energy investment required to produce these
diverse taxane diterpenoids, it has been suggested that increasing taxol yields in
Taxus spp. cell cultures will need to “take into account these numerous and appar-
ently diversionary taxoid biosynthetic side-routes and dead-ends” [34].

The source of the precursors, isopentenyl diphosphate (IPP) and dimethylallyl
diphosphate (DMAPP) for the taxol biosynthesis pathway is the plastid 2-C-methyl-
D-erythritol phosphate (MEP) pathway [46]. The conversion of three molecules of
IPP and one of DMAPP into GGPP is catalysed by geranylgeranyl diphosphate
synthase (GGPPS). Despite evidence suggesting that fosmidomycin and mevinolin
inhibit the plastid and cytosolic IPP pathways of 7. baccata cell cultures, respec-
tively [36], both taxadiene synthase and GGPPS have native plastid targeting pep-
tides suggesting a local IPP bias from the plastids [70, 210].

GGPP is then cyclized by taxadiene synthase (TS) into taxa-4(5),11(12)-diene
(~95%) also known as taxadiene, taxa-4(20),11(12)-diene (~5%) and taxa-3(4),11(12)-
diene (<1%) [65]. This terpene synthase is an interesting enzyme, which contains three
a-helix domains, a class I terpenoid cyclase domain located at the C-terminus and a
vestigial class II terpenoid cyclase formed via a tertiary domain and the N-terminus
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Table 7.1 List of all known taxol biosynthesis enzymes and their original publications

Size | Probable GenBank
Enzyme Abbreviation | (kDa) |localization | number Reference
Geranylgeranyl diphosphate GGPPS 42 Plastids AF081514 | [70]
synthase
Taxadiene synthase TS 98 Plastids AY364469 | [209]
Taxadiene-5a-hydroxylase T5aOH 56 ER AY289209 | ([87])
Taxadiene-13a-hydroxylase T13aOH 54 ER AY056019 | [85]
Taxadiene-5a-0l-O-acetyl TAT 49 Cytosol AF190130 | [195]
transferase
Taxane-10f-hydroxylase T10pOH 56 ER AF318211 | [167]
Taxane-10p-hydroxylase® T10pOH 55 ER AY563635 | [88]
Taxane-9a-hydroxylase® T9axOH ? ER - -
Taxane-7p-hydroxylase T7pOH 56 ER AY307951 | [28]
Taxadiene-2a-hydroxylase T2aOH 55 ER AYS518383 | [27]
Taxane-1B-hydroxylase T1pOH ? ER - -
Taxane-2a-O-benzoyl transferase | TBT 50 Cytosol AF297618 | [193]
C4p,C20-epoxidase EPOX ? Cytosol - -
Oxomutase OXM ? Cytosol - -
Taxane-9a-dehydrogenase T9aDH ? ER - -
10-deacetylbaccatin III-10-O- DBAT 49 Cytosol AF193765 | [194]
acetyl transferase
Phenylalanine aminomutase PAM 76 Cytosol AY582743 | [198]
B-phenylalanoyl-CoA ligase® PCL 59 Cytosol KM593667 | [155]
Baccatin III: 3-amino, BAPT 50 Cytosol AY082804 | [196]
13-phenylpropanoyltransferase
Taxane-2’a-hydroxylase T2’aOH ? ER - -
N-benzoyl transferase DBTNBT 49 Cytosol AF466397 | [197]
NADPH:cytochrome P450 NADPH: 86 ER AY571340 | [89]
reductase P450-Red

A second taxane-10B-hydroxylase has also been found

A presumed T9aOH has been identified but also requires further testing [34]

“The PCL protein listed here is a putative candidate isolated from 7. baccata cultures, which is
probably part of the pathway

ER endoplasmic reticulum

[100]. The formation of taxa-4(5),11(12)-diene by TS was rather unexpected, but
enzyme assays using partially purified TS from 7. brevifolia and different deuterium
labelled substrates, [1-*H,, 20-*H;] and [20-*H;] geranylgeranyl diphosphate and puta-
tive olefin intermediates, conclusively showed the direct formation of the more stable
endocyclic double bond isomer taxa-4(5),11(12)-diene [116]. Also experiments using
heterologous expressed and purified enzyme confirmed taxa-4(5),11(12)-diene as the
main conversion product of TS [210]. A comparison of the in vitro activity of TS and
Taxus canadensis cell suspension cultures indicated that although the reaction is slow, it
is not rate limiting within the pathway, nor does it cause a detectable accumulation of
taxadiene [73]. After cyclization, the pathway diverges along a multitude of branches
leading to the synthesis of other taxanes, via hydroxylations or acylations by other
enzymes such as P450 taxane-14p-hydroxylase [86].
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Fig. 7.2 Overview of taxol biosynthesis. Labelled steps (underlined and marked by red colour)
indicate uncharacterized enzymatic steps. Multiple arrows represent interim sections of the path-
way where several enzymes and the order of their reactions are unknown

Taxa-4(5),11(12)-diene is hydroxylated by a class II cytochrome P450 hydroxy-
lase called taxadiene-5a-hydroxylase or CYP725A4 (T5a0H) bearing an N-terminal
endoplasmic reticulum (ER) insertion sequence [87]. T5aOH converts taxa-
4(5),11(12)-diene into taxa-4(20),11(12)-dien-5a-ol via hydroxylation at the fifth
carbon and migration of the carbon double bond. The exact mechanism of this reac-
tion is still unknown, and remains the topic of much debate. The original hypothesis
was that TSaOH mediates hydrogen atom abstraction from the C20 methyl group of
the 4(5)-olefin isomer, yielding an allylic radical which is subsequently oxygenated
at the fifth carbon [65, 87]. Alternatively, taxadiene-4(5)-epoxide may facilitate the
transition of taxa-4(5),11(12)-diene into taxa-4(20),11(12)-dien-5a-ol [10, 14, 45].
Investigations involving the heterologous expression of TS and T5axOH to increase
taxa-4(20),11(12)-dien-5a-ol yields have focused this debate, providing insight into
alternative taxol production platforms. The expression of the 7. brevifolia TS and
the 7. cuspidata T5aOH in Nicotiana sylvestris surprisingly did not lead to the
anticipated overproduction of taxadiene, but instead produced 5(12)-oxa-3(11)-
cyclotaxane (OCT) [163]. OCT was the sole product from the conversion of taxadi-
ene by T5aOH, instead of forming taxadien-5a-ol. This surprising result has also
been reported in Escherichia coli, through the use of heterologous expression plat-
forms and chimeric fusion enzymes made up of TSxOH and cytochrome P450
reductases (CPRs) [4, 214]. However, the product spectrum varied widely in these
platforms, which is unsurprising considering the difficulties encountered when
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expressing plant P450s in E. coli [169], caused by the absence of an ER and of
CPRs. Despite these limitations, the above approach has been successful in express-
ing a codon optimized synthetic TSaOH linked to a CPR, e.g. the chimeric
At24T5aOH-tTCPR was able to convert 98% of the taxadiene into taxadien-Sa-ol
and OCT, in roughly equal amounts [4]. However, such chimeric enzymes can lead
to abnormal product spectra such as the production of up to 16 other molecules
within E. coli, of which taxadien-5a-ol is but a minor product drawing just 10% of
the flux [214]. What is clear from these studies is that the chassis and enzymes used
do not resemble the native Taxus system, because such promiscuity if attributable to
the native TSaOH would have been detected and thus far no epoxide intermediates
have been found in 7axus microsomes, although the adventitious taxa-4(20),11(12)-
diene product has. Furthermore, attempts to find this hypothetical epoxide product
in native physiological samples using [20-?H;] taxa-4(5),11(2)-diene were unable to
identify the kinetic isotope effect after deprotonation [65]. Although recent evi-
dence from Taxus cuspidata cell suspension cultures has shown the presence of an
OCT epoxide intermediate, albeit in low amounts (0.5 mg L™!) [45], these cultures
were elicited with 40 pL L~"' methyl jasmonate to upregulate gene expression in the
pathway, and when supplemented with as much as 260 mg L~! of exogenous taxa-
diene the cells produced barely 3 mg L=! OCT. This implies that if the supplemented
taxadiene is fully incorporated into the host cells then taxadiene and (if present
under non-elicited physiological conditions) OCT are quickly used within the native
taxol pathway and its branches for the biosynthesis of other products.

The next part of the taxol pathway diverges, instigated by either a hydroxylation
at the 13 position, or an acylation at the Sa position of the taxane skeleton of taxa-
4(20),11(12)-dien-5a-0l [85, 195]. Taxadiene-5a-ol-O-acetyl transferase (TAT) has
no organelle targeting sequences suggesting a cytosolic localization, and catalyses
the acylation of the fifth carbon of taxa-4(20),11(12)-dien-5a-ol to form taxa-
4(20),11(12)-dien-5a-yl-acetate. This acetylated substrate can then be further
hydroxylated by a P450 of the CYP725A1 family, 10p-hydroxylase (T10BOH)
[167], forming Sa-acetoxytaxadien-10p-ol, although with lower efficiency this
P450 can also hydroxylate the Sa alcohol [34]. Concomitantly, the 13a-hydroxylase
(T130OH) P450 of the CYP725A family preferentially hydroxylates the thirteenth
carbon of the taxa-4(20),11(12)-dien-5a-ol rather than that of the taxa-4(20),11(12)-
dien-5a-yl-acetate substrate [205]. Interestingly, attempts to produce triols from
these diols using the corresponding hydroxylases have proven unsuccessful [85]. A
subsequent bifurcation introduced by the 14p-hydroxylase (T14pOH) leads to the
formation of Sa-acetoxytaxadien-10p,14p-diol, which although not an intermediate
of the taxol pathway does lead to the biosynthesis of other taxoids. The order of the
subsequent catalytic steps in the pathway is not yet clear, with hydroxylations at
positions C1, C2, C4, C7 and C9, a further oxidation at C9, and a C4f,C20 epoxida-
tion. The 2a and 7 hydroxylases were identified using the surrogate substrate tax-
usin [27, 28], revealing that an intermediate in the middle of the pathway is first
hydroxylated by the 7p-hydroxylase and then by the 2a-hydroxylase. Furthermore,
these P450 hydroxylases are selective for acetylated and poly-oxygenated taxadiene
substrates [34]. Contrasting this proposed sequence is the ratio of oxygenated
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taxoids found in Taxus spp. cell cultures, which suggests the sequence of hydroxyl-
ations is C5, C10, C13, C2, C9, C7 and C1 [192], although other sequences have
also been proposed [78].

It is unclear whether the intermediates identified using in vitro tissue cultures are
truly part of taxol biosynthesis or rather intermediates en route to other taxoids
[140]. The oxygenation of the ninth carbon is believed to be an early event whereas
the oxygenation of the first carbon occurs later [78], so the approximate hydroxyl-
ation order C5, C10, C13, C9, C7, C2 and C1 may be more accurate. However, this
requires more investigation because the acylation of the poly-hydroxylated sub-
strate is likely to occur during the formation of a hypothetical heptaol intermediate
[34]. Additionally, it is unclear how the oxetane (trimethylene oxide) ring at C4 and
C5 is formed [65], although it may involve the enzymatic epoxidation of the C4(20)
double bond, subsequent migration of the C5 acetyl-oxy group to C4, and final
oxetane group formation through oxirane (ethylene oxide) expansion. Neither the
proposed C4p,C20-epoxidase (EPOX) nor the oxomutase (OXM) responsible for
the latter oxirane conversion have been identified, but potential gene candidates
have been discovered through the analysis of jasmonate-induced 7. baccata cultures
[155]. At the midpoint of the pathway, a hypothetical poly-hydroxylated and acyl-
ated taxadiene substrate undergoes oxidation at C9 to form a ketone, followed by
the creation of the oxetane ring, the attachment of a hydroxyl group at the first car-
bon, and the benzoylation of the hydroxyl group at C2 [193]. The putative
9a-hydroxylase (T9xOH) is yet to be characterized, but a cDNA has been identified
in feeding experiments using taxa-4(20),11(12)-diene-5a-ol as a substrate, although
this work remains incomplete [196]. The timing of the hydroxylation at C1 is also
unknown, and the anticipated 1p-hydroxylase (T1POH) should be forthcoming
once the appropriate surrogate substrates are acquired [34]. To reach
10-deacetylbaccatin III, a hypothetical poly-hydroxylated and acylated intermedi-
ate is benzoylated in a regiospecific manner by taxane-2a-O-benzoyl transferase
(TBT), an enzyme which is also likely to be cytosolic [193].

Fortunately, the second half of the pathway is better understood, and the enzymes
responsible for the acyl transfers and side chain attachments have been character-
ized (Fig. 7.3). The further trans-acetylation of 10-deacetylbaccatin III at the C10
position by 10-deacetylbaccatin I1I-10-O-acetyl transferase (DBAT) [194] produces
baccatin III, an important intermediate in the taxol pathway. Baccatin III and
10-deacetylbaccatin III are major substrates for the chemical semi-synthesis of
taxol. They can be isolated from the needles of yew trees [15, 135, 136] and can be
modified with synthesized side chains to produce taxol and its analogues [77, 208].
The p-phenylalanoyl-CoA side chain is synthesized naturally in a two-step process:
first f-phenylalanine is produced from a-phenylalanine by phenylalanine aminomu-
tase (PAM) [78, 198] and then a CoA ligase is predicted to activate the side chain
into P-phenylalanoyl-CoA. This f-phenylalanoyl-CoA ligase (PCL) could be
encoded by the 7. baccata TB768 gene, which encodes a cytoplasmic PCL that can
convert f-phenylalanine into p-phenylalanoyl-CoA [155].

Subsequently the esterification of the B-phenylalanoyl-CoA side chain to the
C13 hydroxyl group of baccatin III is mediated by baccatin III: 3-amino,
13-phenylpropanoyltransferase (BAPT), producing 3’-N-debenzoyl-2'-deoxy-taxol
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Fig. 7.3 Terminal steps in the taxol biosynthesis pathway. The dashed arrows represent semi-
synthetic “short-cuts” through the pathway. Steps (underlined and marked by red colour) indicate
uncharacterized enzymatic reactions

[196]. The last two steps are proposed to require the hydroxylation of the second
carbon of the B-phenylalanine side chain and terminal N-benzoylation. The precise
timing of the hydroxylation step is not known but it is assumed to occur prior to the
benzoylation step because the N-benzoyl transferase (DBTNBT) [119, 120, 197]
has a substrate preference for hydroxylated N-debenzoyl-taxol rather than
debenzoyl-2’-deoxy-taxol based upon tests with both substrates. The hydroxylase
taxane-2'a-hydroxylase (T2a’OH) is likely to be identified soon but its position
within the pathway is unknown because the hydroxylation of free f-phenylalanyl-
CoA has also not yet been attempted, and further investigation will require analysis
with suitable substrates [155]. The pathway appears to be divided among different
compartments in Zaxus spp. cells, with GGPP synthesis localized to the plastids
using available DMPP with local and translocated cytosolic IPP precursors for core
taxane synthesis via TS. Following this, the multitude of hydroxylation and acyla-
tion reactions would suggest either free movement or trafficking between the ER
and the cytosolic acetyltransferases. It is possible that some of the acylation steps
may help to control flux through the pathway, theoretically limiting the accumula-
tion of intermediates for taxol biosynthesis, thereby providing precursors for other
taxoid species likely also possessing distinct biological roles. This is supported by
the many acyltransferase genes responsible for numerous structural side chain mod-
ifications found among taxoid variants [34].

Extraction of advanced taxoids from plant material and semi-synthesis has
served as a practical solution for the commercial supply of taxol and Taxotere (a
second-generation clinical taxoid) for clinical applications [64, 106, 215]. Baccatin
IIT and 10-deacetylbaccatin III can be extracted from the needles of 7. baccata or
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Taxus spp. cell cultures [6]. Thus, semi-synthesis provided a renewable alternative,
supplanting the need for intensive deforestation of the pacific yew.

Due to the complexity of taxol possessing a unique tricyclic core, several chiral
centres and a high degree of oxygenation, total synthesis is unlikely to be an effi-
cient alternative to semi-synthesis or biotechnological solutions. However, the total
synthesis of taxol presented organic chemists with a formidable challenge with
which to demonstrate their synthetic skills and ingenuity. In 1994, two groups, one
headed by Nicolaou, the other by Holten described the total chemical synthesis of
taxol [79, 80, 136]. Both groups achieved the total chemical synthesis of taxol in
1994 simultaneously, albeit with extremely low yields of 2.7% and 0.07% respec-
tively [77, 136]. The Nicolaou group developed a convergent synthesis method
facilitated by Shapiro and McMurry coupling, requiring at least 40 steps, whereas
the Holten group converted (—)-borneol into an unsaturated ketone for further modi-
fication. Many other synthesis methods have since been developed, with a recent
method involving 37 steps from an easily available substrate [75]. For wider reading
about the chemical synthesis of taxol, and how these developments have been trans-
lated into potential medical applications, readers are referred to [99].

Despite the development of chemical synthesis techniques (semi-synthesis and
total synthesis), the inherent complexity and costs will likely discourage their adop-
tion for high-volume production. In order to meet the predicted demands, metabolic
engineering of Taxus spp. cells using gene editing techniques will help to avoid the
loss of flux through branches and alternative end products. Eventually, industrial
biotechnology will provide a practical and sustainable alternative but for this to
become a reality the last few gaps in the pathway must be identified before it can be
engineered in a suitable host organism that allows controlled, reliable and cost-
effective production.

7.3  Taxol Production by Endophytes

Endophytes are considered asymptomatic bacterial and fungal microorganisms that
for at least a part of their life cycle inhabit the intercellular spaces in plant tissues
[68, 170]. However, the original definition referred to any species living together,
such as microorganisms found within a plant [9]. Like many biological terms, this
one is constantly evolving as our knowledge of plant microbiomes and host interac-
tions increases [211]. Recent evidence for bacterial endophytes within the cyto-
plasm and the periplasm suggests that the specification of intercellular spaces
should be updated, at least for bacterial endophytes [149, 186, 206]. It has been
predicted that at least one species is likely to be present within each of the 350,699
[150] different plant species on Earth [181]. Endophytic fungi cause symptomless
infections but are closely related to biotrophic and necrotrophic pathogens. Indeed,
some species appear to have swapped roles multiple times during their evolutionary
history [40]. Interestingly, infected plants acquire selectable advantages resulting
from endophyte colonization, including improved growth and increased resilience
to abiotic and biotic stress [33, 40, 161].
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Over the last few decades, several genera of endophytic fungi have been shown
to synthesize a plethora of valuable natural products [133]. The pool of secondary
metabolites produced by endophytic fungi is vast and includes phenolic acids such
as tyrosol and p-coumaric acids [102], quinones [217], hundreds of terpenoids
[174], plant hormones such as gibberellins and indoleacetic acid [94, 204], as well
as antimicrobial compounds such as Hsp90 inhibitors [126]. Endophytes have also
been proposed to synthesize the potent cytotoxic compound taxol [177]. The finding
that Tuxomyces adreanae isolated from the phloem of 7. brevifolia was capable of
taxol production caused an explosion of subsequent publications reporting similar
capabilities in other endophytic microorganisms [177]. Approximately 200 differ-
ent fungi representing diverse orders are thought to produce taxol [54, 69]. Reported
productivity has ranged from as little as 0.001 ng mL~' [111] to ~800 ng mL~" [118]
in various isolates, but so far these results have not been independently reproduced
[54]. Therefore, it is still unclear whether some of these species can actually pro-
duce taxanes, or whether the detected compounds were more likely artefacts of
laboratory culture methods, or misidentified by the analytical and immunological
methods deployed in the original studies [54, 71, 176]. The most intriguing aspect
is how so many fungi could acquire the independent ability to synthesize this com-
plex diterpenoid when at least 19 enzymatic steps are required, and which other
compounds they can produce [34].

In many of the early publications claiming taxol production from isolated endo-
phytes, the compound was detected using a competitive inhibition enzyme immuno-
assay. Without the necessary positive and negative controls, this method lacks
stringency when only ng levels of a target compound are present [71]. Indeed,
approximately 10 times the concentration of taxanes was detected in the tobacco
(Nicotiana tabacum) plants used as a negative control than endophytes, which did
not produce taxol but had carryover from their plant hosts. The authors proposed
that the signal detected in the negative control was likely to reflect the cross-
reactivity of the polyclonal antibody, because tobacco is not known to produce taxol
or any other taxoids. In contrast, the positive control extract from 7. baccata needles
contained nearly 50,000-fold more taxanes. The authors also analysed isolates of 7.
andreanae (CBS 279.92) [180], UPH-12 (NRRL 30405) [76] and HIOBA2 (NRRL
21209) [178] along with candidate taxol-producing endophytes by LC-MS/MS.
Contrary to the earlier reports, no taxol was detected in 7. andreanae, UPH-12 or
H10BA?2 using either of the analytical methods [72]. Furthermore, after sequencing
the genomes of 7. andreanae and EF0021, no evidence for a taxol biosynthesis
pathway was found, providing a logical basis for the absence of taxol biosynthesis
[71]. For T. andreanae not even a diterpene cyclase could be identify in the genome
sequence, thus also excluding the possibility of taxoid biosynthesis via an alterna-
tive independently developed biosynthetic pathway. The relatively weak analytical
evidence for taxol synthesis in some reported isolates [66, 147, 224] suggests that
an overreliance on HPLC (and even HPLC-MS) and immunological methods has
led to the misidentification of taxol [54]. Furthermore, LC-MS/MS methods for the
accurate detection of taxol were described several years ago, but this method has
been curiously neglected. The misidentification of taxol is supported by studies that
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have scrutinized the products of fungi isolated from Taxus species, e.g. one group
found three novel harziane tetracyclic diterpenes, structurally similar to taxanes, in
Trichoderma atroviridae [3].

The loss of taxol biosynthesis in endophytes was also proposed to reflect labora-
tory cultivation or storage in biorepositories, but this would not explain how the data
for all these reports was acquired with such unstable isolates. The proteins respon-
sible for taxol production should at least possess key structural features and thus
should retain some similarity at the amino acid and nucleotide levels [71]. Predicted
conserved sequences in genes encoding TS, 10-deacetylbaccatin III-10-O-
acetyltransferase and C-13 phenylpropanoid side chain-CoA acyltransferase were
therefore used for Southern blot analysis. The results indicated the presence of
introns within the amplicons, suggesting that 7axus genomic sequences had been
amplified rather than endophyte cDNAs. Furthermore, some reports include ‘endo-
phyte’ taxol genes with up to 99% identity with the corresponding 7axus genes
[222] suggesting host DNA contamination is the most likely source of these prod-
ucts. Additionally the sheer commonality of taxol biosynthesis within large clades
of distant endophytic fungal and even bacterial species leads some researchers to
question the likelihood of such an extreme case of convergent evolution. Isolates
from increasingly surprising sources are being published, such as from the giant
panda Ailuropoda melanoleuca, capable of producing 1.5 mg L' ‘taxol’ [63].
Something else that has also not been explained is the lack of intermediates or side
products, which one would normally associate with any biosynthesis pathway. The
taxoid biosynthesis pathway is neither simple nor fully understood in 7axus and yet
many intermediates, branches and alternative end products have been identified, but
these have not been identified in endophytes (Fig. 7.4).

Despite these discrepancies, which at the very least should prompt inter-
laboratory comparisons for independent verification although this has not yet been
implemented [174], few published reports have countered these findings or estab-
lished concrete evidence for an endophytic pathway through the use of knockouts
and protein characterization with in vitro substrate kinetic analysis. If the volume of
publications is to be used itself as evidence then the pathway should be investigated
in more detail to enrich our understanding of endophytic terpenoid synthesis. Two
main hypotheses have been proposed to explain the evolution of endophytic taxol
production, one based on the transfer of genetic information and the other based on
convergent evolution. The first hypothesis proposes that horizontal gene transfer
(HGT) events could be responsible for the transfer of metabolic capability from the
host plant to the endophyte, but the dispersal of the corresponding genes makes this
an unlikely explanation if one assumes that complete pathway transfer allows
immediate taxol production [104]. Furthermore, recently published genomics and
transcriptomics data suggest that biosynthesis genes in the ‘taxol’ producing
microbe Penicillium aurantiogriseum NRRL 62431 evolved independently from its
host, hazel [216]. This was based on the identification of putative transcripts that
shared according to the authors “some similarity” with taxol biosynthesis genes.
However, without a stringent knockout study including these sequences and any
other putative fungal taxol biosynthesis genes, the ability of endophytes to produce
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taxol will remain in doubt. If HGT does explain current observations it must have
been an early event that radiated into many different fungal clades, or it must have
happened on many occasions during endophyte evolution. Perhaps an ancestor of
the Pinales tamily Taxaceae was the first host to an ancient predecessor of the first
taxol-synthesizing endophytes, but if so then such an organism would have proven
extremely successful. Presumably this organism evolved the taxol pathway in
response to pathogen colonization, immediately conferring an advantage over its
competing flora and allowing it to colonize the northern hemisphere. This adapta-
tion would have elicited a strong selection pressure for widespread tissue taxol con-
centrations, resulting in the commonly observed resistance phenotype within
endophyte populations [172].

Another prediction from the HGT hypothesis is that geographically disparate
endophytes producing the same secondary metabolite should display genetic diver-
gence equal to their hosts, in relation to sequence conservation in the taxol biosyn-
thesis pathway, in contrast to other endophytes in different biomes and different
hosts. Some taxol-producing endophytes and their hosts have been analysed by
comparing genomic sequences representing known pathway genes in different
organisms, and as stated above such comparisons failed to identify any comparable
genes or gene clusters proven to be involved in taxol biosynthesis. This work could
be extended further by comparing genomic and proteomic data representing the TS,
T5a0OH, T13aOH, TAT, T10pOH, TBT, DBAT, PAM, BAPT and DBTNBT
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sequences. This would provide a definitive basis for investigating lineages in differ-
ent regional populations to determine the origin of taxol-producing endophytes
[216]. Furthermore, at least one endophyte genome and transcriptome has been ana-
lysed showing at best seven hits with homology to archetypal Taxus pathway genes,
but their variation disproves at least in this fungus the likelihood of HGT [216],
suggesting divergent evolution generated these similar sequences if they are
involved in taxol biosynthesis. As these sequences have been identified, they should
be easily and rapidly investigated, e.g. by mutation or heterologous expression in
another host as described for 7axus TS. Endophytic taxol biosynthesis may also
reflect convergent evolution, although one cannot help but ask how an organism
would benefit by evolving the ability to synthesize a toxin already present in its
environment, when another would surely be more favourable. Alternatively, for
hosts that cannot produce taxol themselves, a taxol-producing endophyte and its
host would benefit from maintaining symbiosis, but the vast majority of ‘taxol-
producing’ endophytes have been isolated from 7axus. Furthermore, it is unclear
why taxol-producing endophytes isolated from taxol-producing hosts would lose
most of their productivity after several passages in culture. This would suggest there
are environmental pressures eliciting and/or maintaining production which are not
present under laboratory conditions resulting in the silencing of the pathway or
genomic rearrangements. These issues need to be addressed for endophytic produc-
tion to become a realistic opportunity.

Alternatively, the ability of endophytes to produce taxol could be a remarkable
case of convergent evolution, with the fungus independently evolving its own bio-
synthesis pathway as proposed for fungal gibberellic acid biosynthesis [16].
Interactions between the plant host and fungus may also influence taxol production
[152] and may depend on specific host and environmental factors such as host age,
tissue, season and local environment [171]. Furthermore one study argues that these
symbiotic fungi might act as part of a plant defence system, offering a curious
explanation as to why some taxol-producing fungi are found within hosts that pro-
duce taxol already [173]. Perhaps in the absence of stimuli from the host (or a
pathogen), the endophyte product spectrum may be attenuated, thus explaining the
loss of productivity in culture [152]. Should this hypothesis prove correct, industrial
production using endophytes as production hosts will no doubt prove challenging
until the relationship is fully understood. It is deeply troubling that so little third-
party confirmatory work has been carried out to probe what is clearly a conflicted
subject, and so long as this continues our knowledge will stagnate. Given the com-
mercial and ethical interests involved with high-profile pharmaceutical compounds
like taxol, the investigation of this phenomenon would prove a wise investment.

7.4  Taxol Production by Plant Cell Cultures

Most taxol is currently produced by semi-synthesis, which is achieved by modify-
ing the late taxol precursors baccatin III and 10-deacetylbaccatin III isolated from
Taxus cell cultures (see also Chap. 8 of this book). This has replaced semi-synthesis
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methods using precursors extracted from Taxus needles, which in turn replaced bark
extraction, given that taxol comprises as little as 0.02% of the total dry weight of the
bark and 2000-3000 adult 7. brevifolia trees are therefore required for the commer-
cial production of 1 kg of taxol [190]. The extraction of precursors from needles
nevertheless requires a constant supply of 7. brevifolia trees, which is dependent on
external factors. The first semi-synthesis method for the production of taxol from
10-deacetylbaccatin III was reported in 1988 [41].

An alternative means of production is the use of Taxus spp. cell suspension cultures
[59, 92, 175]. This has many advantages, e.g. productivity is consistent because opti-
mized culture conditions can be maintained, large-scale production platforms allow
the production of more biomass, and the whole platform is ecologically sustainable
[58]. The addition of 200 pM methyl jasmonate to Taxus cell suspension can increase
the total taxane yield to 23.4 mg L d-!, with taxol representing up to 20% of the total
[92]. Finally, production strains can be manipulated and genetically modified to
increase yields, e.g. by overexpressing rate-limiting enzymes or blocking/removing
competing pathways [52, 220]. Better techniques for the engineering of production
strains have emerged over the years because transformation methods are becoming
more efficient through the refinement of gene transfer and cell culture techniques [7].
The most widely used transformation methods involve Agrobacterium tumefaciens or
particle bombardment, chiefly due to technological developments in vector design
that have enabled these technologies to produce marker-free transgenic plants using
processes such as transposition and site specific recombination. Furthermore, the
development of binary bacterial artificial chromosomes and superbinary vectors has
enabled the transformation of previously recalcitrant species [7]. For metabolic engi-
neering, precision genome editing tools are now available, such as zinc finger nucle-
ases (ZFNs), transcription activator-like effector nucleases (TALENSs) and clustered
regularly interspaced short palindromic repeats (CRISPRs) with CRISPR-associated
(Cas) proteins [50, 53]. However successful production platforms not only require a
tailored biosynthesis pathway and optimized regulatory networks, because important
intermediates or the end-products themselves may not pass unhindered across cell
membranes, highlighting the need for membrane trafficking optimization achieved by
engineering the translocation machinery [138, 218].

Although cell and tissue culture provides a potentially reliable and sustainable
production platform, it is difficult to maintain high rates of secondary metabolite
biosynthesis [42, 67, 131, 148, 168]. The yield of secondary metabolites in cell
suspension cultures must typically increase by several orders of magnitude before it
reaches commercially acceptable levels, and this often requires the simultaneous
use of many yield improvement strategies such as the manipulation of biotic and
abiotic stimuli, scale-up techniques and the optimization of downstream processing.
The following sections will describe the most recent findings concerning the utiliza-
tion of plant cell cultures for the production of taxol and the discovery of further
pathway proteins (see also Chap. 8 of this book).

The development of Taxus cell cultures was first described in an abstract and a
patent application [29, 30]. The earliest yields of 1-3 mg L' increased to levels
between 77.46 and 153.3 mg L~ [19, 30, 140, 219]. Many advances were achieved
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by the optimization of culture conditions, such as the use of elicitors to increase
secondary metabolite synthesis, the modification of gas composition, and varying
the osmotic pressure, medium composition and cultivation method. Many other fac-
tors can also influence productivity including temperature, pH, light and the pres-
ence of specific metals. An in vitro Taxus culture is established by inducing callus
formation, i.e. undifferentiated masses of plant cells on solid media which act as the
inoculum for cell suspension cultures. Callus induction in Taxus spp. was first
reported by [162], but another 22 years would pass before these techniques were
used for the production of taxol, when Taxus chinensis cells achieved a yield of
153.3 mg L' after 42 days [19]. The repetitive elicitation of 7. chinensis suspension
cultures was later shown to achieve taxoid yields of 612 mg L' confirming that
higher yields could be achieved by optimizing the elicitation process [201].

The use of biotic and abiotic elicitors to stimulate plant stress response path-
ways can induce the production of desirable compounds [156]. These desirable
compounds are produced in native plants to allow their adaptation to changing
environmental conditions, such as predation or drought. Elicitation can be abiotic
or biotic, with many subcategories. For example, abiotic elicitors include physical
stimuli such as thermal stress, drought or UV radiation, or exogenous hormones, or
chemical stimuli such as the presence of heavy metals or salts [134]. Alternatively,
biotic elicitors can include any substances of biological origin, the best-character-
ized of which are polysaccharides from bacteria, fungi and yeast [57]. Elicitors
have been thoroughly reviewed recently so we will only discuss key findings
related to taxol production, but the interested reader can consult the following
reviews [2, 121, 134, 156].

Jasmonates are a family of oxylipins produced by plants and some fungi, and the
best known are jasmonic acid, methyl jasmonate and jasmonyl-isoleucine.
Physiological analysis has shown that (+)-7-iso-jasmonoyl-L-isoleucine is involved
in Arabidopsis leaf jasmonate signalling, and jasmonyl-L-tryptophan is an inhibitor
of Arabidopsis root auxin signalling [2]. Several elicitors induce taxane biosynthe-
sis in Taxus spp. [117, 128, 129, 219] including methyl jasmonate, jasmonic acid,
coronatine, vanadium sulfate, silver nitrate, salicylic acid, ammonium citrate, cobalt
chloride, cyclodextrin and even fungal extracts in conjunction with methyl jasmo-
nate and salicylic acid [35, 95, 129, 141, 154, 219]. The structures of methyl jasmo-
nate and coronatine are shown in Fig. 7.5. Some of these elicitors will be described
in detail in this section. The production rate and yield of taxol can be dramatically
influenced by elicitation, e.g. Taxus media cultures elicited with 100 pM methyl
jasmonate have been reported to produce 110 mg L~! taxol within 14 days [219].
The mechanism of jasmonate-mediated elicitation of secondary metabolites has
been reviewed [38].

Specialized production methods such as cell immobilization, two-phase cul-
ture techniques, in sifu taxane removal and large-scale bioreactors with volumes
up to 75,000 L have all been developed to increase the production of valuable
taxanes [212]. Cell immobilization methods can circumvent the issues of variable
productivity related to aggregation and product-related feedback inhibition, shear
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Fig. 7.5 Structures of the elicitors methyl jasmonate and coronatine

force susceptibility and slow growth [20, 21, 44]. Cells have been encapsulated
within a range of matrices, such as agar, gelatin, polyacrylamide, hollow fibre
membranes and polyurethane foam. Production rates of 2.71 mg L-! d-! were
achieved using T. baccata cells immobilized in calcium alginate beads in a stirred
bioreactor, peaking at 43.43 mg L' after 16 days of culture [11] with jasmonate
elicitation increasing the yields further [18]. More recently, the capacity for tax-
ane production in free and immobilized 7. globosa cells in two media containing
different plant growth regulators elicited with methyl jasmonate resulted in a two-
fold increase in taxol production compared to free cells, yielding 130 pg L' d-!
when treated with picloram and kinetin [143]. The in situ removal of taxol, bac-
catin III and other taxanes from cultivation media increases yields, because in
vitro culture conditions can inhibit growth probably due to intracellular and/or
extracellular taxane accumulation [51, 96]. The implementation of in sifu removal
has achieved some promising results. For example, the development of two-phase
(aqueous-organic) cultivation techniques for 7. chinensis was reported to increase
taxol yields by a factor of six when the two-phase cultivation system was sup-
ported with sucrose feeding [200]. Different carbon sources can also affect the
synthesis of secondary metabolite, with sucrose and fructose being beneficial to
yields [47, 98]. Furthermore, environmental factors such as temperature and gas
composition within the culture can also effect the taxane content and production
rates, e.g. high carbon dioxide levels prevented taxol biosynthesis, probably due
to the inhibition of P450 catalytic activity, whereas low oxygen levels promoted
the early onset of secondary metabolite production [127].

Finally, plant cells in culture can aggregate, forming disparate and heterogeneous
populations with varied morphology and taxol productivity. Cell aggregates of 400 pm
have been shown to produce 6 mg L~! taxol, 20-fold more than aggregates roughly
twice their size, after elicitation with methyl jasmonate [101]. Large-scale bioreactors
containing T. chinensis cells have been used successfully for commercial taxol pro-
duction for several years [132]. However, although culture methods are important,
specialized production cell lines with higher titres can be engineered, reducing the
need for larger culture systems, limiting costs and also production times.
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Rational approaches for the further improvement of taxol biosynthesis include
the generation of cell lines with desirable characteristics, the identification and
manipulation of flux regulators, and the use of metabolic engineering methods to
modify natural producers or integrate the taxol biosynthesis pathway into alterna-
tive hosts. The variable secondary metabolite yields reported in cell suspension cul-
tures argues for the selection and/or generation of stable, fast-growing cell lines
capable of taxol biosynthesis [17, 105, 121]. Indeed, T. baccata cell cultures pro-
duce different taxol yields even when cultivated under the same conditions, if initi-
ated with explants taken from different parts of the same mother plant [22].

Genetic modification is likely to be faster than selection for natural mutations
when it comes to the isolation of productive cell lines. For example, stable trans-
genic T. cuspidata cell lines produced by Agrobacterium-mediated transformation
were viable even after 20 months of continuous culture [93]. Furthermore, particle
bombardment has been used to achieve transient expression in 7. cuspidata cell
lines [191], and the upregulation of abscisic acid in 7. chinensis cells led to a 2.7-
fold increase in taxol yields [114]. Taxol production has been increased by the over-
expression of genes such as DBAT [223] and the redirection of flux away from
competitive branches by antisense silencing of the T/4$OH gene in Taxus media
[110]. The overexpression of 7S in 7. media cell lines achieved a 265% increase in
taxane production compared to an untransformed control line, resulting in yields of
up to 70 mg L~! taxol [52, 140]. Despite these achievements, previous investigations
have largely focused on the modification of key genes rather than the entire path-
way, and this serves only to reveal bottlenecks in the remainder of the pathway,
including the unknown steps. Additionally the genetic engineering of Taxus cells
has previously been achieved only with very low transformation efficiencies i.e. 1%
at best [93]. Fortunately, more recent work by [123] has demonstrated a greatly
improved methodology conveying a 75% transformation efficiency by exchanging
kanamycin for paromomycin as the selectable marker. Unfortunately the effect
upon the taxol biosynthesis from these 7axus transformants was not disclosed in this
paper. A potential reason for such a delay between reported improvements is likely
due to fears of patent conflicts which restrict the generation of transgenic Taxus cell
lines with modified taxol biosynthesis pathways [124]. This patent has recently
been assigned to Diana U.S. INC., Oregon, of which Diana Plant Sciences, INC.,
Oregon is a subsidiary. Unfortunately, little has been achieved in this field with
regards to strain development, substantial yield improvement and reduction of side
product accumulation despite the presence of technology that could likely achieve
this. For example the use of CRISPR/Cas9 for channelling flux into the pathway
branches of interest could lead to increased taxol titres. Crucially, before this method
can be attempted the enzyme sequences responsible for these side branches must be
elucidated. Thus, until this research is conducted cell line improvement strategies
will be restricted to those that do not require knowledge of the entire biosynthesis
pathway, such strategies include increasing known gene copy number, GGPP pool
expansion, elicitation, upstream bioprocess optimization and genetic modification
of regulatory elements. Therefore a more holistic approach is required to achieve
substantial gains, based on the global modulation of host cell metabolism.
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Several recent investigations have focussed on the global taxol pathway by ana-
lysing the effects of elicitors on the transcriptomes of 7. media [141], T. baccata
[155] and T. globosa cell cultures [154]. Such experiments can facilitate gene dis-
covery, even in the absence of genomic sequencing data [32, 61]. The effect of elici-
tation with coronatine (1 pM) or methyl jasmonate (100 pM) on the expression of
TS, T13aOH, T7pOH, T2aOH, DBAT, PAM, BAPT and DBTNBT was determined
by quantitative RT-PCR, revealing the differential transcription of these genes in a
transgenic 7. media cell line expressing 1. baccata TS [52] up to 4 days after elicita-
tion [141]. TS was induced 5.2-fold by methyl jasmonate after 4 days, whereas TS
transcript levels peaked 24 h after elicitation with coronatine, with a 4.8 fold increase
compared to the control [141]. The three P450 transcripts peaked 2 and 4 days after
elicitation with coronatine and methyl jasmonate, respectively, and the peak
response of each elicitor was approximately twice as strong as the other elicitor at
the same time point. The PAM, BAPT and DBTNBT transcripts behaved in a similar
manner, but the DBAT transcript (encoding the enzyme that converts
10-deacetylbaccatin III into baccatin III) was strongly induced just 12 h after elicita-
tion with methyl jasmonate and maintained the peak until 24 h after elicitation, at
double the level achieved by coronatine and triple the level of the control culture
[141]. This suggests that flux may be less inhibited by side chain assembly and
attachment to baccatin III when cultures are elicited with coronatine, because BAPT,
PAM and DBTNBT are strongly expressed at earlier time points compared to the
control culture and elicitation with methyl jasmonate. Furthermore, the unknown
T2’a«OH may also be induced when comparing the expression profiles of the three
P450s. A follow-up study using a similar methodology has also included a likely
PAM candidate, which is also induced by at least three-fold in the presence of elici-
tors, but this gene could still represent a rate-limiting step in the pathway [154]. This
follow-up study explored various elicitation strategies in two-stage cultures of a
transgenic 7. baccata cell line [52] and T. globosa cell lines. The elicitors coronatine
(1 pM) and cyclodextrin (50 mM) presented together promoted the highest accumu-
lation of taxanes, with yields of 35 mg L~! in transgenic 7. globosa cultures and
70 mg L' in T. baccata [154].

The elicitor cyclodextrin forms inclusion complexes around hydrophobic com-
pounds such as taxol to facilitate excretion [23]. This should alleviate feedback
inhibition caused by the intracellular accumulation of taxol and also prevent degra-
dation [213]. The extraction of taxol is expensive and labour-intensive, but cyclo-
dextrin inclusion complexes protect taxol from modification and degradation, thus
prolonging cultures, simplifying downstream processing and reducing costs [164].
When used in conjunction with methyl jasmonate, cyclodextrin has been shown to
induce a 60-fold increase in taxol production [164]. Interestingly, a large proportion
of the taxanes produced when 7. globosa cells were elicited with cyclodextrin or
cyclodextrin plus coronatine was represented by cephalomannine, which is similar
to taxol but has a tigloylation group instead of a benzoylation at the C3 position of
the side chain. Although cephalomannine can be used for the semi-synthesis of
taxol analogues, the enzyme responsible for its creation could be identified and
knocked out, allowing the 7. globosa cell line in this study to produce more taxol.
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The T. globosa cell line has a faster growth rate and capacity for product excretion
than the transgenic 7. baccata cell line. Alternatively, a desirable hybrid could be
selected from protoplast fusion experiments. Once identified, other candidate
sequences such as the T2’aOH could also be tested to alleviate other bottlenecks
within the pathway. In contrast to the elicited lines, the control culture expression
profile indicated that only 7'S and DBAT are strongly expressed, with peaks one day
after the test cultures were elicited. Overall this investigation demonstrated that
coronatine elicits a stronger and faster transcriptional response than methyl jasmo-
nate, albeit at the cost of reducing the proportion of taxol in the total taxane content
[141]. If the aim were to accumulate as much taxol as possible at the expense of
other valuable precursors, multiple overlapping cultures with coronatine elicitation
running for just 4 days after elicitation would produce at least 30 mg L' taxol each,
in contrast to a single suspension cell culture running for 16 days after elicitation
yielding 77 mg L~!. Alternatively, a two-stage cell culture could be used to produce
high levels of biomass under optimal growth conditions, followed by transfer into
an optimized production medium containing elicitors [154]. However, the TS and
DBAT expression profiles suggest that coronatine elicitation will not circumvent
bottlenecks in the pathway because the flux is determined by the slowest step.
Therefore, until the entire pathway is characterized, the rate for each step deter-
mined, and the regulatory networks understood, any manipulations will be ham-
pered by our lack of knowledge.

Pathway regulation has been explored for taxol biosynthesis at the transcrip-
tional and post-translational levels. It is unsurprising that such a complex pathway
must be tightly regulated in order to conserve precious resources. As previously
stated, jasmonates are elicitors that affect many physiological processes in plants,
including the synthesis of defence compounds. Jasmonates are phytohormones
derived from oxygenated tri-unsaturated fatty acids, with jasmonic acid, methy] jas-
monate and jasmonoyl-isoleucine playing key regulatory roles [2, 38]. The jasmo-
nate elicitation mechanism is well conserved across the plant kingdom, suggesting
early evolution within a distant common ancestor. Species radiation then led to
diverse species-dependent terpenoid, alkaloid and phenylpropanoid pathways that
are directly or indirectly (via induced precursor biosynthesis) regulated by jasmo-
nates [38]. In Taxus, some of the regulatory components controlling taxol biosyn-
thesis have been identified, including transcriptional activators, repressors and
evidence of a 46-amino-acid, cysteine-rich signalling peptide [108, 113, 142, 221].
The first transcriptional regulator of the taxol pathway to be characterized was a
WRKY transcription factor (TcWRKY1) that activates the 7. chinensis DBAT gene
[113]. This was identified by the deletion analysis of cis-acting elements in the
DBAT promoter, and these elements were subsequently used as bait for yeast one-
hybrid screening of a 7. chinensis cDNA library. TcWRKY1 binds to two W-box
cis-acting elements in the upstream DBAT promoter. Furthermore, the elicitation of
T. chinensis with methyl jasmonate induces this transcription factor, which in turn
upregulates the transcription of the DBAT gene [113]. Similar methods were used to
investigate the 7. chinensis TS gene [221]. Deletion analysis revealed the jasmonate-
response region using a P-glucuronidase (GUS) reporter gene expressed in 7.
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chinensis cells. Several deletion constructs attached to the reporter were tested in
the presence or absence of 100 uM methyl jasmonate, showing that deleting the
promoter sequence to position —131 abolished jasmonate induction. Further analy-
sis revealed that induction was abolished by the deletion of an ethylene-response
element known as a GCC-box between positions —150 and —131 [56] or by the loss
of the sequences containing an E-box upstream of position —219. The GCC-box
sequence was used as bait in a yeast one-hybrid screen as above, resulting in the
identification of two candidates TCERF12 and TcERF15. TcERF12 was similar to
the previously identified ethylene-responsive repressor AtERF3 [56] whereas
TcERF15 was similar to the known activator ORAS9 [151]. The binding of these
proteins was confirmed in vivo based upon the expression of the HIS2 selectable
marker under the control of the 7'S promoter. Confirmation of the roles of TcERF12
and TcERF15 as a repressor and an activator, respectively, was achieved by the
elicitation of 7. chinensis cell suspension cultures with methyl jasmonate followed
by RT-PCR analysis, by overexpressing the transcription factors in Taxus cells and
subsequent analysis of 7'S gene expression, and by the transient expression of GUS
reporter constructs in cells co-transformed with plasmids carrying the TcERF'12 or
TcERF15 genes [221]. Elicitation with 100 puM methyl jasmonate induced the
expression of TcERF12 by 47-fold within 1 h, followed by a gradual decline over
the next 12 h, whereas TcERFI5 levels increased by 4.5-fold after 30 min and
remained at high levels for the next 3—6 h before declining. The effect of the two
transcriptional regulators on 71 gene expression was determined by northern blot
and quantitative RT-PCR. The overexpression of T7cERF15 induced TS expression
by 2.5-fold, whereas TcERF 12 overexpression caused a 2-fold reduction in 7'S gene
expression compared with controls. These results were supported by reporter gene
activity assays [221]. Three further methyl jasmonate-inducible transcriptional reg-
ulators were later identified in Taxus cuspidate, and although they were similar to
the Arabidopsis transcriptional activator AtMYC2, all three were shown to act as
transcriptional repressors [1, 108]. GUS assays were carried out using the promoter
regions of the TS, T5SaOH, TBT, DBAT, PAM, BAPT and DBTNBT genes. The con-
structs were introduced into 7. cuspidata along with a control construct containing
the firefly luciferase (LUC) gene driven by the Cauliflower mosaic virus (CaMV)
35S promoter, which does not respond to jasmonates and therefore provides a con-
trol for transformation efficiency. Methyl jasmonate elicitation was shown to induce
GUS activity driven by all seven taxol pathway promoters by 1.5-fold, whereas
there was no effect on the construct driven by the CaMV 35S promoter [108]. The
promoter sequences were then analysed in silico using PLACE (http://www.dna.
affrc.go.jp/PLACE/) [74] which identified multiple E-boxes (CANNTG), suggest-
ing the presence of jasmonate-responsive MYC regulatory proteins. Degenerate
primers were designed according to the reference sequences of the known regula-
tors MYC2 and JAMYCI10, yielding a 172-bp cDNA fragment that was used to
obtain a full length cDNA for sequence comparison with known methyl jasmonate-
sensitive bHLH proteins. After confirming its similarity with other MYC proteins,
the new T. cuspidata gene was named TcJAMYCI. The induction of TcJAMYCI
following elicitation with methyl jasmonate was confirmed by semi-quantitative
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RT-PCR, and two other transcripts (7cJAMYC2 and TcJAMYC4) were found to be
upregulated in the same manner. The binding of the putative transcription factor
TcJAMYCI1 to the E-boxes in the taxol gene promoters was confirmed using a com-
petitive electrophoretic mobility shift assay (EMSA) with a mutated sequence lack-
ing an E-box as a control, further revealing that the preferential E-box sequence was
CACGTG [108]. Transcriptional regulation by TcJAMYCI, TcJAMYC2 and
TcJAMYC4 was tested by co-expressing the corresponding expression vectors with
the GUS reporter genes discussed above in the presence and absence of 100 pM
methyl jasmonate, revealing that TcJAMYCI, TcJAMYC2 and TcJAMYC4
expressed individually were able to suppress reporter gene expression [108].
Interestingly, mock elicitation with ethanol also allowed TcJAMYCI to suppress by
3-fold the TBT, BAPT and DBTNBT reporter constructs, but none of the others.
Conversely, TcJAMYC2 induced the 75aOH reporter by 1.5-fold and the PAM pro-
moter by 2.5-fold, whereas the BAPT construct was marginally repressed.
TcJAMYC4 suppressed the TBT, DBAT, PAM, BAPT and DBTNBT promoters but
the 7'S promoter was slightly induced. The authors stated that reporter activity was
measured 48 h after bombardment, equivalent to 54 h post-elicitation, when the
endogenous regulatory machinery was likely to be active. This suggests that the
positive regulation they detected was probably less potent than would be the case at
an earlier time point, and that the overexpression of these repressors coincided with
the expression of native repressors, potentially repressing the taxol gene promoters
more strongly than would normally be observed. This agrees with the reported
induction of taxol gene expression within 24 h of elicitation [137], but the authors
suggested that downregulation occurs after this first 24-h period, returning the cul-
tures to their basal state by 48 h post-elicitation [108]. In contrast to this hypothesis,
increased taxol gene expression has been observed 4 days after methyl jasmonate
elicitation [141], but this could reflect differences in the cell line and cultivation
conditions even though the same final concentration of methyl jasmonate was used.
TcJAMYCI1, TcJAMYC2 and TcJAMYC4 were proposed either to repress the taxol
gene promoters by direct binding or to activate the genes encoding other transcrip-
tional repressors, similar to the regulation of WRKY?26 and ERF11 by MYC2 in
Arabidopsis. It is also likely that the regulation of the taxol pathway involves a
complex regulatory mechanism with multiple transcription factors, as reported for
other jasmonate-regulated pathways [38]. This is supported by the presence of puta-
tive WRKY binding sites (TGAC) in the TS, T5aOH, TBT, DBAT, PAM, BAPT and
DBTNBT promoters [108].

In addition to jasmonate, defence pathways can also be regulated by small secre-
tory or non-secretory peptides that range in size from 5 to 75 amino acids. These are
perceived by receptors in signalling cascades that may overlap with those elicited by
plant hormones, or the peptides themselves may be expressed in response to stimuli
such as insect oral secretions, which indicate an attack by herbivores [82]. The
mature signalling peptides can in turn elicit the production of jasmonates or ethyl-
ene, which ultimate cause the transcriptional activation of plant defence genes [82].
Taxane production by Taxus cultures can be elicited synergistically with active
phytosulfokine-a and methyl jasmonate, prompting the investigation of other Taxus
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signalling peptides [97]. In relation to taxol, the signalling peptide Taximin (7B595)
was identified in 7. baccata cells, and was found to be highly conserved among
higher plants [142]. The 73-amino-acid pre-protein sequence included a 27-amino-
acid N-terminal signal peptide, which was predicted to pass through the secretory
system and localize the peptide extracellularly or in the vacuoles and plasma mem-
brane. The native localization of the peptide was investigated by fusing the
C-terminus of the peptide to the Venus yellow fluorescent protein, followed by tran-
siently expression in Nicotiana benthamiana. Attempts to determine the effect of
exogenous Taximin on 7. baccata cells required the synthetic surrogate
HyproTaximin (in which proline residues were replaced with hyroxyproline)
because the original could not be synthesized, and HyproTaximin was designed to
mimic post-transitional proline hydroxylation which is believed to occur often with
native signalling peptides [125]. Taxol and baccatin III levels were determined over
a 2l-day period in relation to the addition of ethanol (mock -elicitation),
HyproTaximin, methyl jasmonate or a combination of methyl jasmonate and
HyproTaximin. Taxane production peaked 7 days after treatment. The addition of
HyproTaximin alone increased baccatin III production by 1.4-fold and taxol by
2-fold compared to ethanol controls, and in agreement with earlier reports [36],
methyl jasmonate alone increased baccatin III production by 4-fold and taxol by
4.7-fold. The combined treatment with methyl jasmonate and HyproTaximin was
the most potent, increasing baccatin III production by 4.6-fold and taxol by 6.6-fold
compared to ethanol controls. However, by day 21 there was no significant differ-
ence between the elicited and control cultures, suggesting that Taximin has a tran-
sient positive influence on taxane production that is additive to the effect of methyl
jasmonate in 7. baccata cell cultures [142]. They also noted that Taximin induced
the synthesis of alkaloids in tobacco but did not affect the transcript levels of alka-
loid biosynthesis genes, suggesting the peptide does not act as a transcriptional
activator. The role of Taximin should therefore be determined before it is used as a
target for the manipulation of Taxus cell lines to increase taxol production.
Furthermore the roles of plant defence hormones, and their impact upon taxol bio-
synthesis within Taxus cell cultures could present novel targets leading to higher
titres. There is an antagonistic relationship between the plant hormones jasmonic
acid and salicylic acid in the context of jasmonate-responsive gene expression
[188]. The presence of a GCC-box in jasmonate-responsive promoters is sufficient
for salicylic acid mediated suppression of jasmonic acid induced gene expression.
This possibly provides further targets for the regulatory fine tuning of taxol produc-
ing cell lines, because such defence responses can hinder the production of useful
compounds in controlled aseptic environments [188]. Current knowledge concern-
ing the regulation of taxol biosynthesis is summarized in Fig. 7.6. Coronatine insen-
sitive 1 receptors, Skp-Cullin-F-box-type E3 ubiquitin ligase and JAZ protein
homologues are likely to be involved but their role in the regulation of taxol produc-
tion is unclear.

The identification of positive and negative regulators and their binding sites pro-
vides potential targets for the metabolic engineering of production strains by gene
knockout or RNA silencing. Furthermore, these investigations illustrate the
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Fig. 7.6 Major players in the taxol biosynthesis regulatory network. Arrows (dashed) indicate
positive transcriptional regulation and blunt lines (filled) indicate negative transcriptional regula-
tion. Lines (heavy) indicate a strong regulatory response. E = elicitor such as methyl jasmonate,
P = peptide such as Taximin,? = undetermined mechanism

promising use of transcriptomics in the context of in vitro cultures with and without
elicitation, not only for the identification of unknown genes that are co-expressed
with genes known to be involved in taxol biosynthesis, but also for mapping regula-
tory networks at the transcriptional level [153].

Metabolic engineering has also been used for the heterologous expression of
taxol biosynthesis genes in Arabidopsis [12], tomato [103] and Nicotiana sylvestris
[163] plants with varying success. The heterologous expression of 7'S in Arabidopsis
using constitutive and inducible promoters resulted in the accumulation of taxadi-
ene to levels of 20 and 600 ng g~! dry weight, respectively [12]. The host plants
suffered stunting and decreased pigmentation, which the authors suggested may
reflect the suppression of other GGPP-dependent pathways by direct precursor
competition. The 7S gene has also been expressed in the tomato yellow flesh mutant,
which lacks fruit phytoene synthase activity [55, 103]. Phytoene synthase normally
uses GGDP for the synthesis of carotenoids, which can account for up to 2% of
tomato fruit dry weight [103]. This mutant therefore provides an ideal background
for GGPP-demanding pathways because the excess GGPP can be channelled into
taxadiene synthesis via TS and the absence of carotenoids facilitates product extrac-
tion. Accordingly, a taxadiene yield of 160 mg/kg freeze dried tomato fruit was
achieved with a purity of >95% after extraction [103]. Interestingly, attempts to
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express TS and T5aOH within tobacco (Nicotiana sylvestris) a year later showed
that the transfer of P450s into another host does not guarantee the native activity
[163]. Although preliminary analysis indicated that the leaves contained 20 pg g™
taxadiene, the next product was expected to be taxa-4(20),11(12)-diene-5a-ol but
the novel taxane OCT was detected instead [163]. Another study investigated the
heterologous expression of 7S in Artemisia annua, a fast-growing herb that natu-
rally synthesizes the important anti-malarial compound artemisinin [112].
Agrobacterium-mediated delivery of a construct containing the 7S gene and a
hygromycin phosphotransferase selectable marker (hptll) resulted in taxadiene
yields of up to 130 pg g=! dry weight, with a concomitant decrease in the levels of
artemisinin [112].

The challenges associated with the heterologous expression of plant P450s must
be overcome before efficient taxol production can be achieved in a surrogate meta-
bolic chassis. Perhaps a combination of genome editing and metabolic engineering
will provide the means to streamline a Taxus cell line, with competitive pathways
silenced e.g. by disrupting the T/4$OH gene, and regulatory mechanisms removed
by mutating E-boxes in the promoters of taxol biosynthesis genes or integrating
similar genes from other Taxus species. Coupling this designer 7axus cell line with
optimized cultivation methods, elicitation strategies and the use of cyclodextrin or
the improvement of taxol export machinery could provide the best conditions for
taxol production.

7.5  Microbial Biotechnology for the Production of Taxol

Despite the impressive yields achieved using plant tissue culture methods and cell
suspension cultures, limitations such as slow growth, high costs and contamination
risks are difficult to overcome. Some researchers have therefore investigated the
practicality of transferring this highly complex pathway into a microbial chassis. The
growth rate of bacteria and yeast is faster, doubling at least once per hour rather than
the once per day typical for plant cells, and the productivity of microbes is also supe-
rior. Progress has been made in two major candidates for heterologous production,
the bacterium E. coli and the yeast Saccharomyces cerevisiae. In both cases, meta-
bolic engineering can be achieved by the stable integration of heterologous genes and
each species benefits from a range of genetic tools that facilitate their manipulation.
Both species are also easy to handle, grow rapidly on inexpensive carbon sources and
are metabolically well characterized [212]. Accordingly, both species successfully
express TS and 75aOH (with appropriate modification, such as the removal of plas-
tid-targeting peptides), and at least eight 7. canadensis genes involved in taxol bio-
synthesis have been expressed episomally in S. cerevisiae, namely GGPPS, TS,
T5aOH, TIOPOH, T13aOH, TAT, TBT and DBAT [4, 39]. The first successful inves-
tigation of in vivo heterologous taxadiene synthesis involved a non-optimized E. coli
strain overexpressing IPP isomerase, GGPPS and TS, resulting in a yield of 1.3 mg
L' taxadiene [81]. The highest heterologous taxadiene yields achieved thus far are
~1 g L7'in E. coli [4] and 72.8 mg L~! in S. cerevisiae [43]. Recently, the highest
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yield for oxygenated taxane production was achieved in E. coli (~570 mg L) of
which ~16% (~91 mg L) was taxadiene-5a-ol, ~62% was iso-OCT, ~13% was
OCT and ~8% was an unidentified oxygenated taxane [13]. The expression of
eukaryotic P450s in bacteria was achieved by the optimization of a P450 pathway
module, opening a new chapter in the development of microbial taxol, as well as
other oxygenation-dependent chemistries in E. coli. However, the low proportional
production of taxadiene-5a-ol suggests that too much flux is lost: at least seven fur-
ther oxygenases are required to produce baccatin III. Clearly the present art is still
very far away from the development of microbially produced taxol or even just bac-
catin III. This section will discuss the major milestones and strategies used to over-
come the problems posed by non-native chassis utilization.

Choosing an appropriate host for a particular process requires a solid under-
standing of the pathway biochemistry and any predictable incompatibilities which
might arise from it, so that potential solutions can be considered. In the case of
microbial taxol production, this process has been facilitated by chimeric P450 redox
partner proteins, co-culture fermentations, host metabolism optimization, protein
engineering, novel reductase partner interactions, computer assisted modelling and
the use of multivariate operons for pathway expression. Until recently, the cloning
and functional expression of plant CYP450s in E. coli has been daunting because of
physiological inconsistencies, such as the absence of CPRs for electron transfer, the
localization signals usually attached to plant CYP450s, and the absence of intracel-
lular compartments usually required for CYP450s in plants [146, 169]. However,
these issues have been addressed by the co-expression of P450s and CPRs, or the
expression of truncated P450s with N-terminal modifications [4, 25, 26, 109].
Recent statistical modelling suggests that the 1-deoxy-D-xylulose 5-phosphate
(DXP) pathway has the theoretical potential to supply nearly 50% more IPP than the
MVA pathway in yeast [62]. The DXP pathway also requires less oxygen, is redox
balanced, and can theoretically produce more IPP from glucose than the MVA path-
way [207]. Conversely, the MVA pathway has produced superior terpene yields,
with highly-engineered systems producing impressively high titres [122, 144, 207].
A S. cerevisiae strain capable of producing 25 g L~! artemisinic acid was success-
fully constructed for an artemisinin semi-synthesis pipeline by extensive pathway
optimization and metabolic engineering of the mevalonate pathway for the overpro-
duction of FPP [145]. The MVA pathway can also be improved, with a carbon effi-
ciency equivalent to or exceeding that of the MEP pathway as well as lower oxygen
requirements [107].

Combined strategies have recently been used for the successful functional
expression of plant CYP450s in E. coli [13]. This was achieved by using codon-
optimized truncated proteins, N-terminal sequence modification with a membrane-
associated octapeptide [8, 184], genomic integration of MEP pathway genes (dxs,
idi, ispDF) and cyclase modules (7S and GGPPS) regulated by the T7 promoter,
and finally by balancing CPR and T5aOH expression. In the latter case, optimal
performance was accomplished by uncoupling T5aOH and its redox partner and
expressing them using a five-copy plasmid under the control of a weak Trc pro-
moter, recreating the unbalanced (1:15) host CPR to CYP450 ratios hypothetically
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due to inefficiencies with cellular resources and NADPH use [13, 90]. Furthermore,
the hydrophilicity conferred by N-terminal signal modification reduced mono-
oxygenase activity, probably due to the interruption of F-G loop-mediated substrate
acceptance [31], effectively reducing the oxygenated taxane yield by at least 50% in
small-scale cultures [13].

The use of yeast for terpenoid synthesis has several advantages over bacteria
because the subcellular compartments required for CYP450 activity are already pres-
ent, as are the native reductase partners, although these alone are not sufficient for
high levels of taxol oxygenase catalysis [39]. Yeast cells are capable of high-density
growth, the post-translational modifications are similar to higher eukaryotes and
products are efficiently secreted, although it may be possible to transfer some eukary-
otic post-translational capacity into E. coli [187]. The earliest attempt to reconstruct
the first half of the taxol pathway in S. cerevisiae involved the expression of five
enzymes, from GGPPS to DBAT, yielding 1 mg L' taxadiene and ~25 pg L'
taxadiene-Sa-ol in selective medium [39]. Flux was restricted at the TSaOH step,
potentially due to weak expression from the corresponding promoter and the absence
of its native NADPH:cytochrome P450 reductase, which was previously shown to
increase hydroxylase activity [89]. The next great advance in the creation of a yeast
production platform required multifaceted flux rechannelling, which was achieved
by overcoming aerobic sterol exclusion by mutating the transcription factor UPC2
(which is normally responsible for preventing sterol uptake under aerobic condi-
tions). Site-directed mutagenesis led to the creation of UPC2.1, which reverses this
process, reducing the amount of metabolic flux diverted to steroid biosynthesis.
Additionally, the creation of a truncated 3-hydroxy-3-methylglutaryl-CoA reductase
(tHMG1) by removing the N-terminal regulatory domain abolished feedback inhibi-
tion of the mevalonate pathway, resulting in higher levels of the precursor IPP. Finally,
to reduce precursor competition between taxadiene and steroid biosynthesis, the
GGPPS from Sulfolobus acidocaldarius was expressed along with upc2.1, thmgrl
and codon-optimized TS. The taxadiene yield was 8.7 mg L~! plus ~33 mg L~! GGPP,
suggesting there is potential for even greater taxadiene production [49]. Computer
assisted design and modelling has been used to increase this taxadiene concentration
by more than 7-fold [43]. This was achieved by screening the FPP binding affinity
and catalytic efficiency of six GGPPS genes with diverse origins (Ginkgo biloba,
Rana catesbeiana, Erwinia herbicola, Chlamydomonas reinhardtii, T. baccata x T.
cuspidate and S. cerevisiae) facilitated by in silico proofing and in vivo confirmation,
eventually leading to the selection and expression of the GGPPS from a T. baccata x
T. cuspidate hybrid in a S. cerevisiae chassis capable of increased FPP synthesis via
the integrated overexpression of erg20 and thmgr. The reported yield of ~73 mg L'
taxadiene was achieved in this strain by expressing 7'S and GGPPS using a high-copy-
number plasmid [43]. Co-culture fermentation systems for terpenoid production
have also been attempted, by combining an ‘upstream’ E. coli strain producing taxa-
diene with a ‘downstream’ S. cerevisiae strain expressing the P450s TAT, TSaOH
and T10pOH, resulting in 33 mg L' of oxygenated taxanes [225]. Although this is
an innovative concept for taxol biosynthesis, the practicality of such a method for
industrial-scale production is unclear [107].
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The combination of powerful new technologies such as synthetic biology,
CRISPR/Cas9 editing [115, 179], the development and refinement of new artifi-
cial chassis for metabolic engineering [83], and the applications of in silico design
[189], should make it possible to achieve the production of microbial taxol within
a few years, at least via the semi-synthetic route. However for this goal to be real-
ized the rest of the missing steps of the pathway need to be elucidated, their
required proteins characterized and then successfully expressed within the desired
host. Alternatively, perhaps rather than transferring an unknown pathway into
another organism it might instead prove preferential to merely screen for produc-
tive Taxus sp. mutants following N-methyl-N'-nitro-N-nitrosoguanidine (NTG) or
ethyl methanesulfonate (EMS) mutagenesis [91, 182]. The mutagenized cells
could then be cultivated individually within 96-well plates and the resulting cul-
tures screened using a simple method easily modified for 96 well plate format
such as a taxol dependent fluorescence assay [130]. After initial determination,
candidate productive mutants could be further characterized by stringent LC-MS/
MS quantification of taxane product profiles. Multiple rounds of mutagenesis and
selection could eventually produce production strains capable of significantly
superior taxol titres.

7.6  Concluding Remarks

The discovery, production and applications of taxol have emerged from decades
of research, and the story will continue for as long as taxol continues to benefit
society. This chapter has highlighted research milestones that have enabled the
harnessing of this powerful secondary metabolite for modern medicine, although
the story is not without its share of controversy. Twenty years after the first taxol-
producing fungus was reported, no industrial processes have been realized even
though such fungi are abundant in different genera. Furthermore, the discovery of
taxol-producing plants that are not members of the Taxaceae is also a surprising,
yet potentially useful, revelation. Total security of supply cannot be achieved
using natural sources, and the scientific community must therefore strive to
develop new methods to increase the productivity of both the native pathway in
Taxus cells and the imported pathway in heterologous production hosts. The
remaining steps in the pathway remain to be characterized and the heterologous
expression of P450s has produced some unexpected results, so the transfer of the
pathway to non-native genetic backgrounds is likely to be challenging. Metabolic
engineering and synthetic biology offer a potential route to overcome these issues
and provide an ideal natural or synthetic chassis for the synthesis of this valuable
secondary metabolite.
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for the Production of Plant Natural
Products: Successes, Failures

and Outlook

Bernd Markus Lange

Abbreviation

PNP  Plant natural product

8.1 Introduction

Plant tissue culture can be broadly defined as the in vitro aseptic maintenance of
cells, tissues or organs under defined conditions. The pioneering developments for
sustaining isolated plant cells date back to the early 1900s [1]. Haberlandt already
introduced the concept of totipotency, which refers to the unique genetic potential
to regenerate a whole plant from a single somatic plant cell (validated in the 1960s
[2]). During the decades following the initial discoveries, tissue cultures were estab-
lished from seed embryos, cambial tissue, roots, and many additional plant parts
(reviewed in [3]). Biotechnological applications of plant tissue culture for the pro-
duction of medicinally relevant plant natural products (PNPs) emerged in the 1960s
and 1970s [4]. Over the last forty years, several companies have had research and
development programs aimed at optimizing plant tissue culture [5]. However, the
large-scale market introduction of plant tissue culture products has mostly been
confined to (i) early successes with isolated metabolites for the cosmetic (shikonin)
[6] and pharmaceutical (paclitaxel) [7] (see also Chap. 7 of this book) industries
and (i) more recent uses of whole cell extracts as drinks, dietary supplements and
food additives [5] (Table 8.1). The production of therapeutically relevant proteins in
plant tissue cultures, which is also an area of very active research and development
efforts, has been reviewed recently [8] and will not be covered here.
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8.2 Commercial Products from Plant Tissue Culture

Shikonin The naphthoquinone pigment shikonin (Fig. 8.1) was produced by
Mitsui Petrochemical Industries Ltd. (now Mitsui Chemicals Inc.) in Lithospermum
erythrorhizon Siebold & Zucc. cell suspension cultures, formulated into the Lady
80 BIO lipstick by Kanebo Cosmetics Inc., and introduced to the market in 1983
(www.kanebo.com/aboutus/history/). High shikonin yields (up to 23% (w/w) of dry
biomass) were achieved in 750 L bioreactors using batch processing [6]. It is diffi-
cult to assess how long Mitsui pursued the biotechnological production of shikonin,
but it appears that a combination of unfavorable factors - delays in the regulatory
approval of the product, a limited market size (150 kg per year), a decrease in prod-
uct price ($ 4000 per kg in 1988), and high operating costs of fermenters - led to a
termination of the project [9].

Paclitaxel Phyton Catalytic (now Phyton Biotech; owned by DFB Pharmaceuticals)
began the scale-up of cell suspension cultures 7axus chinensis (Pilg.) Rehder in the
early 1990s with the goal of a large-scale production of paclitaxel (taxol®) (see also
Chap. 7 of this book) (Fig. 8.1), which had been in high demand for the treatment of
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R = CHO, Vincristine

Fig. 8.1 Structures of PNPs discussed in this article (in alphabetical order). Abbreviations: Glc
glucose

various forms of cancer (more details in). Following the acquisition of a manufactur-
ing plant near Hamburg (Germany), the capacity increased to 75,000 L fermenters,
which are still the largest vessels for plant tissue culture today. The plant cell fermen-
tation technology was licensed to Bristol-Myers Squibb in 1995 to jointly commer-
cialize paclitaxel production. In 2004, Bristol-Myers Squibb received the prestigious
Presidential Green Chemistry Challenge Award of the American Chemical Society,
following a transition, in 2002, to plant tissue culture as the sole source for its block-
buster anti-cancer treatment [10]. Patent protection for taxol® ended in 2000 and
generic competition emerged, including a new tissue culture and formulation process
for paclitaxel (and related taxanes) by Samyang Biopharm, which operates 35,000 L
fermenters on its premises in Daejeon, South Korea [11].

Triterpene Saponin-Containing Cells In the mid-1980s, Nitto Denko Corp.
(Ibaraki, Japan) began developing an industrial-scale process for the cultivation of
ginseng cells (Panax ginseng). The product was approved for commercialization in
Japan in 1988. The ginseng cells were shown to have contents of triterpene saponins
(more specifically, ginsenosides (Fig. 8.1), which are considered to be the active
principles of ginseng extracts [12]), that were very similar to those of field-cultivated
ginseng [13]. The powder and extracts from the ginseng cell cultures are used to
produce additives for foods, drinks and cosmetics [14]. Nitto Denko is employing
bioreactors of up to 25,000 L in a two-stage production process, achieving a bio-
mass productivity of 20 g dry weight per liter in 4 weeks of culture [15]. More
recently, a collaborative team of scientists at Unhwa Corp. (Jeonju, South Korea)
and the University of Edinburgh (United Kingdom) introduced cambial meriste-
matic cells as a potentially cost-effective and reliable source of undifferentiated
cells [16]. Based on information on the company website (www.unhwa.com), this
technology has been adapted to generate wild ginseng cambial meristematic cells
and a skincare product containing these cells (Ddobyul®) is now available com-
mercially. More detailed information about the process (conditions and scale) is not
available in the public domain at this time.


http://www.unhwa.com
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Polyphenol-Containing Cells DianaPlantSciences (Portland, OR; acquired by
Symrise AG in 2014) has been developing processes for employing cell suspension
cultures rich in polyphenols, which are formulated into cosmetics and dietary sup-
plements. Cocovanol™ (launched in 2013) is a freeze-dried powder of cocoa sus-
pension cells that, according to information on the company website (http://www.
diana-group.com/), delivers high polyphenolic content without solvent extraction
and contains only trace amounts of caffeine and theobromine (the bitter alkaloids of
the cacao plant) (see also Chap. 6 of this book). Another polyphenol-containing
product, ActivBerry™, which is based on bilberry suspension cells, will purportedly
be launched in the near future (based on information on company website). Further
information can be extracted from the patent literature but very little technical
details are given in these documents. Unfortunately, no peer-reviewed publications
are available on the topic.

8.3  Considerations for Commercial Targets

The commercial advances with plant tissue culture thus far have been confined to
the production of (i) structurally complex pharmaceuticals with low natural abun-
dance and (ii) cell biomass (without prior extraction) containing PNPs with pre-
sumed health-promoting properties. A combination of factors such as production
cost and reliability, market scale, regulatory burden, and consumer perception
determine the likelihood for a successful market introduction. In the following
paragraphs, [ will discuss challenges and opportunities for commercial-scale plant
tissue culture.

Cost of Natural Material The prices of raw materials containing desirable PNPs
vary greatly from a few U.S. dollars per kg (e.g., garlic bulbs (Allium sativum) (con-
tain sulfoxides such as alliin)) to several thousand U.S. dollars per kg (e.g., saffron
stigmas (Crocus sativus) (contain crocin and related apocarotenoid glycosides))
[17]. The extraction cost is also determined by the concentration and the accessibil-
ity of the PNP(s) of interest. For example, while Bulgarian rose (Rosa damascena)
petals are readily available, the bulk oil price is several thousand U.S. dollars per kg
[17]. The concentrations of some plant PNPs are exceedingly low (e.g., the alkaloid
vincristine (Fig. 8.1) (see also Chap. 5 of this book) occurs at only 0.001% of dry
biomass in the leaves of Madagaskar periwinkle (Catharanthus roseus)) and the
cost of formulations containing them can be extraordinarily high [18]. Most plant
tissue culture efforts have focused on such high-value products and the history for
one commercial example, the production of paclitaxel (taxol®) by plant tissue cul-
ture, is discussed briefly above (see also Chap. 7 of this book).

Structural Complexity The extraction of salicylates from various plant sources to
treat symptoms such as pain, fever and inflammation dates back to antiquity [19].
However, with the advent of facile chemical routes in the late 1800s, acetylsalicylic
acid (better known as Aspirin®) went on to become the first blockbuster synthetic
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drug [20]. A large number of commercial drugs, even those with a PNP scaffold, are
obtained by chemical synthesis or semi-synthesis. In many cases, the biological
material serves as source and additional chemical steps generate the desired end
product. At present, a plant-based production of a particular PNP, including but not
limited to the use of tissue culture, is only competitive when the target molecule is
structurally complex with several chiral centers [21]. A high degree of functional-
ization in a PNP can also be an advantage when the extraction from a plant-based
matrix competes with the production in engineered microbial hosts.

A highly publicized example is artemisinin (Fig. 8.1), a sesquiterpene lactone
employed in antimalarial therapies. Amyris Inc. (Emeryville, CA, USA) and
Sanofi (Paris, France) invested tens of millions of U.S. dollars in the development
of an integrated synthetic biology/chemical synthesis platform for artemisinin;
however, the commercial introduction in the market for malaria drugs has been
very challenging [22]. One of the reasons is the cost of production, which still
cannot compete with the extraction from artemisinin’s natural source, sweet
wormwood (Artemisia annua). Furthermore, while the production of terpenoid
backbones (incl. that of amorphadiene, the precursor of artemisinin) has been
achieved at fairly high titers in engineered microbes, the yields achieved for
highly functionalized PNPs of plant origin have been substantially lower. Often,
the pathways toward plant PNPs have only been partially elucidated, and not all
genes required for transferring the pathway to microbes have been cloned yet (see
also Chaps. 7 and 5 of this book). Moreover, the obtaining high activities from
multiple plant enzymes produced recombinantly in microbial hosts can be quite
challenging. In summary, while synthetic biology platform will continue to be
improved and may eventually make a significant contribution to the production of
plant PNPs, there are currently advantages for a plant-based production of high
functionalized target molecules.

Market Size The substantial up-front investment in tissue culture facilities (fermen-
ters) and maintenance (manpower, growth medium, and energy costs) has to be sup-
ported by cost savings (when compared with alternative methods for production) as
well as an appropriate size of the market. While the development of high-yielding cell
suspension cultures for the production of shikonin by Mitsui was a significant break-
through at pilot scale, the product had only a fairly short period of success in the mar-
ketplace: (i) the price tag of cell culture-derived shikonin (approximately U.S. $ 4000
per kg) was only marginally below the cost for shikonin extracted from roots of
Lithospermum erythrorhizon and (ii) the requirement of shikonin in 1988 was only
about 150 kg per year, with a predicted annual market value of U.S. $ 600,000 [23]. As
a comparison, the cost for the discovery and development efforts toward cell culture
production of shikonin was estimated to have been in the tens of millions U.S. dollar
range [23], and the product therefore did not have a longer term commercial future.

Regulatory Burden Most products from plant tissue culture require the same reg-
ulation as the corresponding products extracted from whole plants in the U.S.
(assuming that these are not ‘novel’” foods or pharmaceutical ingredients). However,
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the regulatory environment for registering plant tissue culture products differs sig-
nificantly in various parts of the world. For example, plant tissue culture products
would be treated as ‘natural’ in some markets, while in others they would be labeled
as ‘nature-identical’ [24, 25]. Different federal agencies will be involved in review-
ing commercialization efforts depending on if the product requires regulation as
food ingredient or additive, or as active pharmaceutical ingredient [26]. Regulatory
complications arise if genetic engineering is employed in plant tissue culture. While
some concerns voiced by opponents of genetically engineered crops, for example
the release of genetic material with potentially undesirable environmental effects,
are irrelevant in plant tissue culture (which employs a closed production environ-
ment), the public perception in many countries has been that plant biotechnology in
general poses undesirable risks [27]. Interestingly, some engineered organisms
developed using newer gene editing technologies (including the revolutionary
CRISPR/Cas9 system (acronym for Clustered Regularly Interspaced Short
Palindromic Repeats and their associated nuclease (CRISPR associated protein 9))
are currently not regulated by the U.S. Department of Agriculture [28], and it
remains to be seen if federal agencies in other countries will follow suit. The land-
scape for the commercialization of plant tissue culture-related products continues to
evolve and future regulation in the area is therefore difficult to predict.

Processing into Products As discussed above, plant tissue cultures have been
commercialized for the production and isolation of high-value PNPs. A very dif-
ferent, but equally viable, application of tissue culture technology is the direct
formulation of suspension cells into cosmetics and dietary supplements. There are
several potential advantages to the approach: (i) cost savings because no further
processing is required, (ii) reduction of undesirable constituents because tissue
culture is optimized for the accumulation of specific products in a fairly simple
matrix, and (iii) high consistency of the product due to controlled growth condi-
tions. Commercial examples include suspension cells of ginseng (www.unhwa.
com) and cocoa (http://www.diana-group.com/). Several companies have purport-
edly experimented with additional plant tissue cultures at pilot scale (reviewed in
[5]) but, while patent applications with limited technical detail are available, very
few of these efforts have been described in the peer-reviewed literature. It is there-
fore not possible for an industry outsider to evaluate the commercial potential of
formulated plant cells.

Consumer Acceptance In many countries, the demand for food additives, nutra-
ceuticals and consumer care products carrying a ‘natural’ label has been increasing
consistently over the last decade [29]. Plant tissue cultures can be a source of such
‘natural’ extracts, for which there is a marketing advantage over synthetic products.
However, plant tissue culture products have not established a significant footprint in
the marketplace, where plant parts are still the primary source of ‘natural’ extracts.
Is synthetic biology, which includes the engineering of microbes for the production
of metabolites originally sourced from plants, another challenge for the commercial
development of plant tissue culture-derived products? Part of the answer to this
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question likely depends on labeling requirements for ingredients derived from
genetically modified organisms. The regulatory landscape is highly complex and
often differs across countries [30] (see also Chap. 11 of this book). The current
trend toward the establishment of labeling standards would appear to be favorable
for plant tissue culture that does not rely on genetic engineering. However, public
concern about genetically modified organisms does not appear to be directed toward
pharmaceuticals in the same way as they affect food and consumer care products. In
May 2012, Protalix Biotherapeutics (www.protalix.com) was approved by the
U.S. Food and Drug Administration to employ plant tissue cultures for the produc-
tion of recombinant taliglucerase alpha (Elelyso®), and more products using the
same platform are in advanced stages of development. It is not unlikely that plant
tissue culture for producing PNPs with pharmaceutical applications would be
acceptable for consumers, even if genetic engineering technologies should have
been brought to bear.

8.4  Future Opportunities

Based on the considerations presented above, it would seem that plant tissue cul-
tures have commercial potential when harvested cells are directly formulated into a
nutraceutical product (simplified plant matrix and uncomplicated processing) or a
PNP of particularly high pharmaceutical value is accumulated in high concentra-
tions. Generally speaking, high value PNPs will be structurally complex (with mul-
tiple chiral centers and elaborate functionalization), accumulate at low levels in the
source plant, and/or occur in species where access is limited (endangered or poor
agronomic characteristics). In this paragraph, I will discuss examples of individual
PNPs (not extracts) that might be produced at commercial scale by plant tissue cul-
ture technology. PNPs that have fallen out of favor among clinicians (e.g., digitoxin,
ouabain, sanguinarine, tubocurarine, and yohimbine) will not be covered here (see
also Chap. 5 of this book). I will also not discuss in the narrative PNPs whose clini-
cal efficacy has not been demonstrated conclusively (e.g., cucurmin, epigallocate-
chin 3-gallate, and resveratrol) (Fig. 8.1; Table 8.2) (see also Chap. 3 of this book).

For some PNPs that meet the high value criteria listed above, the development of
optimized tissue cultures has not been attempted or was not published; among these
are ingenol 3-angelate, galanthamine, huperzine, combretastatins, and calanolide A
(Fig. 8.1, Table 8.2). In other cases, the pharmaceutically relevant product is struc-
turally distinct from the PNP lead and is obtained by chemical synthesis (which
means that no plant source is needed); examples include ado-trastuzumab emtan-
sine (synthetic antibody conjugate linked to the benzoansamacrolide, maytansine),
dapagliflozin (employed for treatment of type 2 diabetes; based on the dihydrochal-
cone glucoside, phlorizin), vorapaxar (used for treatment of patients with a history
of myocardial infarction; based on the alkaloid, himbacine), and tabex (employed to
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aid with smoking cessation; chemical synthesis more efficient than extraction of
PNP, cytisine) (Fig. 8.1, Table 8.2).

Tissue cultures have been developed for many plants that contain pharmaceuti-
cally relevant metabolites, but the concentration of the PNP of interest has mostly
been equal to or below that reported for the natural source (Table 8.2). A few tissue
culture resources, however, would seem to be worth further consideration.

The diterpene epoxide, triptolide (Fig. 8.1, Table 8.2), accumulates to only
very low concentrations (<0.01% of dry weight in various organs) in members of
the genus Tripterygium [31]. The current harvesting of roots from mature plants
requires significant agronomic inputs and suffers from low efficiency [32].
Chemical derivatives of triptolide have been evaluated in phase I clinical trials
[33, 34], and minnelide, a water soluble pro-drug analogue of triptolide, has
shown particularly promising activity in multiple animal models of pancreatic
cancer [35]. Various types of tissue cultures of Tripterygium producing different
PNPs were developed in the 1980s and 1990s [36-39]. However, it was recog-
nized only recently that triptolide concentrations produced by tissue cultures (up
to 0.15%) [40-42] far exceed those reported for roots. In one Tripterygium root
culture, more than 70% of the metabolites extracted from the culture medium with
an organic solvent were characterized as diterpenoids (with triptolide accounting
for 16% of all detected metabolites) [43]. Such an unprecedented enrichment of
the target PNP, which is very difficult to obtain in sufficient quantities from natu-
ral sources, makes tissue culture an attractive alternative to the unsustainable har-
vest from Tripterygium roots.

Ajmaline (Fig. 8.1, Table 8.2) is an alkaloid that has been used since the 1970s as
a treatment of heart arrhythmias (more recently, semi-synthetic derivatives have
been introduced) [44]. The commercial cultivation of the medicinal plant Rauwolfia
serpentina, which accumulates ajmaline in stem bark and roots, has met several
challenges [45]. Despite decent yields from extracting the natural producer, the
scarcity of the source materials has led to the high cost of treatments involving
ajmaline. A tissue culture source, such as hairy roots with yields of >0.5% [46],
would be a desirable alternative.

A larger number of clinical trials (>30) have been conducted with berberine
(Fig. 8.1, Table 8.2), in particular as a treatment for type 2 diabetes (more informa-
tion at www.clinicaltrials.gov) (see also Chap. 5 of this book). The extraction of
berberine from members of the genus Berberis is reasonably straightforward but the
plant cannot be grown commercially (by law) in several countries due to the fact
that is serves as an alternate host for the wheat rust fungus [47]. Other natural pro-
ducers, such as Coptis spp. or Eschscholtzia spp., have very poor agronomic perfor-
mance and are not viable alternatives. Tissue cultures had been developed to produce
berberine at fairly high yields (>3%) in the 1980s [48], and a reevaluation of their
commercial potential would therefore be warranted.
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SG Steviol glycoside
ushA UDP-glucose hydrolase
zwf D-glucose-6-phosphate dehydrogenase

9.1 Introduction

In the biosynthesis of plant natural products, modification of their chemical structure
by tailoring enzymes is pivotal. These reactions include transfer of sugar units cata-
lyzed by carbohydrate-active enzymes (CAZymes; http://www.cazy.org/) which are
proteins whose functional domains are able to form, degrade or modify glycosidic
bonds [1]. Their general abundance is in accordance with their high biological sig-
nificance in Nature. In fact, most of the dry weight of plant biomass on earth exists
as carbohydrate polymers, which emerged from glycosyl transfer reactions [2]. Some
end products of primary plant metabolism are the major base of the food and the feed
industry (for example, starch in grain and tuber crops). Glycosides and glucose esters
of secondary metabolites are in general less abundant, but nevertheless of equal
importance. On a cellular level, glycosylation functions, among other roles, in energy
metabolism, pathogen virulence, molecular defense, and storage information signal-
ing [3]. Addition of a sugar residue also increases water solubility and stability, and
thus affects the bioactivity of acceptor molecules [4]. Therefore, the interest of the
pharmaceutical, cosmetics and food industry in these compounds has increased con-
tinuously. At present, glycosides are used as therapeutic drugs, functional ingredi-
ents, and dietary supplements. They can be produced either chemically, for example
by the Koenigs-Knorr reaction, or biochemically by the action of glycosidases, trans-
glycosidases, glycoside phosphorylases and glycosyltransferases [5].
Glycosyltransferases (GTs) form a vast class of CAZymes that transfer sugar
moieties from activated donors (usually nucleoside diphosphate (NDP) activated
monosaccharides) to specific acceptor molecules (generally alcohols and carboxylic
acids) (Fig. 9.1). However, transfer to N-, S-, and C-atoms, resulting in the forma-
tion of glycosylamines, thioglycosides, and C-glycosides, respectively, have also
frequently been observed [6-8]. Recently, family 1 GT enzymes have drawn special
interest from industry, because they change the physicochemical properties and
consequently the bioactivity of lipophilic small molecules, thus offering new and
exciting possibilities for the biotechnological production of bioactive glycosides [4,
9]. An advantage of family 1 GTs in this context is due to their ability to catalyze
glycosidic bond formation regio- and stereoselectively with high yield [10, 11].
Hence, the property of the molecule of interest can be adapted on demand. This is
especially important for the application of carbohydrate-tailored drugs, where the
precise identity and position of the glycosyl residue decides about the mechanism
of action and the bioavailability [12, 13]. The rapidly growing number of publicly
available genomes has enabled the identification of new GT sequences that encode
proteins with novel activities, and the first GT enzymes have now been successfully
applied in bio-catalytic processes [14]. The following chapter will cover the last
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Fig. 9.1 Reactions catalyzed by glycosyltransferase (a). Anthocyanin-storing vacuoles of Rhoeo
spathacea (b). Cells have been plasmolyzed. Picture was adapted from Wikipedia (https://en.wiki-
pedia.org/wiki/Vacuole; last accessed April, 2017). Hydrangea variety producing the anthocyanin
myrtillin (delphinidin-3-O-glucoside) (c), and Delphinium variety accumulating the anthocyanin
violdelphin  (delphinidin  3-O-rutinoside-7-0-(6-0-(4-0-(6-O-(p-hydroxybenzoyl)-glucosyl)-
oxybenzoyl)-glucoside) (d). Transport of glycosides into the vacuole (e). ABC ATP-binding cas-
sette transporter, AVI anthocyanin vacuolar inclusions, GST glutathion S-transferase, GT
glycosyltransferase, MATE multidrug and toxic extrusion protein, R alkyl or aryl
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10 years of research on family 1 GT enzymes with focus on the biotechnological
production of glycosides/glucose esters and special emphasis upon production in
whole cell biocatalysts and applications in industry.

9.2 The Significance of Glycosylation in Plants

Glycosylation is one of the most important tailoring mechanisms of bioactive com-
pounds in plants [15]. The addition of a glycon (sugar unit) fundamentally changes
the physicochemical properties of the acceptor aglycon (non-sugar component).
Through glycosylation by GTs, plants can modulate the structure and function of
secondary metabolites.

9.2.1 Glycosylation Increases Solubility

Glycosides and glucose esters of natural products are less hydrophobic than the
aglycon on its own [16]. Thus, upon glycosylation of the aglycon the water solubil-
ity increases. In particular, this is evident for hydrophobic metabolites like flavo-
noids that feature a complex phenolic ring structure [17]. Flavonoids are major
secondary metabolites in many fruits and vegetables, where they act among others
inter alia as colored pigments. Due to enhanced solubility by glycosylation, plants
can accumulate glycosylated flavonoids and related anthocyanins in the lumen of
the vacuole in high concentrations [18] (Fig. 9.1) (see also Chap. 3 of this book).
Glycosylation of flavonoids takes place in the cytosol right after the formation of the
aglycons, since some of the non-glycosylated precursor molecules are unstable
under physiological conditions. Utilizing a GT enzyme from apple, the 3,5-8-D-
glucoside of resveratrol was produced, thereby increasing the water-solubility of an
otherwise hydrophobic compound by 1700-fold [19] (see also Chap. 3 of this
book). As a currently applied dietary supplement resveratrol is administered orally
to patients. However, its medical exploitation is strongly limited by the low water-
solubility. Thus, the future usage of resveratrol glucosides as therapeutic agent is
envisaged [20, 21]. Similarly, the biological availability of the isoflavone gentistin
is limited by its insolubility in water. Consequently, water-soluble gentisin glyco-
sides were produced whereby solubility was increased 1000-10,000-fold and anti-
oxidant activity was maintained [22]. Likewise, quercetin glycosides were developed
to improve water solubility of the flavonoid for food and other applications [23].

9.2.2 Glycosylation Increases Stability

Glycosides and glucose esters exhibit not only a higher hydrophilicity but also an
enhanced stability. Glycosylation stabilizes and intensifies the color of plant antho-
cyanidins — secondary metabolites that are responsible for the red, blue, and purple
pigmentation of flowers and fruits in various plant species (see also Chap. 4 of this
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book). This stabilization is probably further enhanced by acylation of the anthocy-
anin core with phenolic acids, thereby promoting intermolecular sandwich type
stacking of the aromatic nuclei of the molecules [24]. However, the substitutions of
the aromatic acyl groups occur at glycosyl residues. Thus, without glycosylation, a
subsequent acylation with phenolic acids would be limited to the available hydroxyl
groups of the aglycon. The poly-acylated anthocyanin glycoside violdelphin, one of
the main color pigments of Delphinium flowers [25], is more stable and shows a
stronger blue color than its less modified form myrtillin (Fig. 9.1), which is found
in varieties of the genus Hydrangea [26]. Similarly, the O-glucosides of hydroxy-
cinnamic acids are more stable than the phenolic acids, of which 20-40% degrade
at room temperature during one year of storage [27]. Furthermore, the half-life of
furaneol-glucoside exceeds that of the free flavor molecule by 35-fold [28].

9.2.3 Glycosylation Controls Sequestration/
Compartmentalization

Anthocyanins are believed to be synthesized by a multi-enzyme complex located on
the cytosolic side of the endoplasmic reticulum [29]. The aglycons are promptly
glycosylated, and the glycosides are administered from the cytosol to the vacuole,
where they accumulate to high levels [30] (see also Chap. 4 of this book). The low
pH value of the vacuole suppresses oxidation reactions, and ensures anthocyanin
stability. Consequently, a specific transport mechanism is required that permits the
translocation of sugar-bound metabolites across the cytoplasm and through the
tonoplast [31].

For transport across the cytoplasm, two main models have been proposed: the
ligandin model and the vesicle-mediated transport model, both being not mutually
exclusive (Fig. 9.1). The ligandin model suggests binding of cytoplasmic anthocya-
nins to glutathione S-transferase (GST) proteins, which function as carriers that
escort/stabilize anthocyanins until they are taken up into the vacuole [32-34]. As an
example, two GST proteins from Vitis vinifera were associated to this mode of
transport as their overexpression correlated with increased anthocyanin content in
grape suspension cells [33]. Furthermore, it was shown that Arabidopsis mutant
seedlings deficient in expression of the GST Transparent Testa 19 (TT19) barely
accumulated anthocyanins [32, 34], whereas by re-introduction of a functional
TT19 the mutant phenotype could be rescued [34]. Similarly, a GST seems to be
critical for anthocyanin formation in strawberry as comparative transcriptome anal-
yses of red- and natural white-fruited strawberry genotypes uncovered GST as
highly differentially expressed gene [35]. According to the vesicular transport
model, anthocyanins enter the ER lumen and are subsequently transported to the
vacuole in vesicles, which could be detected microscopically due to the fact that the
contained anthocyanins possess autofluorescence [36]. This process leads to the
vacuolar accumulation of the glycosides in anthocyanic vascular inclusions (AVIs).
AVIs have been described in more than 70 anthocyanin-producing species [31].
Since vanadate, a general inhibitor of ABC transporters, induced a dramatic increase
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of anthocyanin-containing sub-vacuolar structures it was suggested that cells utilize
components of the protein secretory trafficking pathway for the direct transport of
anthocyanins from the endoplasmic reticulum to the vacuole [37].

For transport into the vacuole two major mechanisms were suggested: On one
hand, active transport was proposed that is mediated by directly energized ATP-
binding cassette (ABC) transporters, such as the multidrug resistance-associated
proteins (MRPs) ZmMRP3 and 4 in maize (Zea mays) [38]. Genetic loss of
ZmMrp3 function in mutant plants led to a distinct pigmentation pattern, resulting
from mislocalized and significantly reduced anthocyanin levels. Furthermore,
yeast microsomes expressing the ZmMrp3 homologue ABCC1 from V. vinifera
demonstrated the transport of anthocyanins in the presence of GSH [39]. On the
other hand, a second transport involving Multidrug And Toxic Extrusion (MATE)
family proteins was proposed that depends on a pre-existing, vacuolar membrane
spanning H* gradient [40-42]. Characterization of MATE2 from Medicago trun-
catula [41] and anthoMATEI and 3 from V. vinifera [42] revealed the translocation
of glycosylated pigments that have been further decorated by acylation or malonyl-
ation. However, both transport mechanisms are presumably not mutually exclusive
and seem to strongly depend on the type and structure of the transported secondary
metabolite and may require other, not yet known factors. As an example, abscisic
acid glucosyl ester is transported by both, proton-antiport and ABC-binding cas-
sette mechanisms [43]. Only recently, a novel way of vacuolar transport has been
put forward (Fig. 9.1). The authors observed by confocal microscopy that cytoplas-
mic anthocyanins aggregate in AVIs in close proximity to the vacuolar surface, and
are directly enclosed by the tonoplast in a microautophagy-like process [44]. The
endoplasmic reticulum-to-vacuole vesicular transport of anthocyanins mediated by
a trans Golgi network-independent mechanism presumably contributes to the for-
mation of AVIs [37].

A new, putative flavonoid carrier has been found in epidermal tissues of carna-
tion petals [45]. The amino acid sequence is similar to mammalian bilitranslocase,
a plasma membrane transporter found in liver and gastric mucosa. There, the pro-
tein mediates the uptake of the pigment bilirubin, dietary anthocyanins and nicotinic
acid.

9.2.4 Glycosylation Affects Bioactivity and -Availability

Plants can regulate the level of bioactive secondary metabolites by linking them
to sugar units. The plant hormone abscisic acid (ABA), which has important func-
tions in plant responses to abiotic stresses, seed development, and germination
[46], is inactivated by esterification with glucose [47]. While “free”, unbound
ABA can trigger stomatal closure and is mainly found in extra-vacuolar compart-
ments, the ABA-glucose-ester (ABA-GE) is non-reactive and stored in the vacu-
ole [48]. A second, oxidative mechanism of ABA inactivation has been proposed
[49]. However, glucose conjugation has one decisive advantage to other modifica-
tions — it is reversible. ABA-GE is hydrolyzed by vacuolar f-glucosidases in a
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fast, one-step reaction to generate free cytosolic ABA [50, 51]. Therefore,
ABA-GE is thought to act as an easily accessible ABA reservoir that can be tapped
by plants to regulate ABA homeostasis [43]. Another example is the recent iden-
tification of xanthophyll-derived apocarotenoid glycosides (AGs) in leaves of
Arabidopsis thaliana [52]. Increased carotenoid pathway flux in leaves of trans-
genic plants resulted in higher levels of AGs. Accordingly, the authors hypothe-
sized that formation of AGs regulates the cellular level of carotenoids. Similarly,
it has been shown that glycosylation of monoterpenes reduces the concentrations
of free, aroma-active terpenols in grapes, which however, can be released again
during vinification [53].

Furthermore, glycosides and glucose esters act as precursors for various biosyn-
thetic pathways, because the glycon features several functional hydroxyl groups
that enable additional metabolic reactions [25]. For example, galloylglucose ester is
generally considered as precursor of ellagitannins and ellagic acid, polyphenolic
antioxidants in strawberry [54], raspberry [54], grapevine [55], pedunculate oak
[56], and pomegranate (Punica granatum) [57]. It is hypothesized that the galloyl-
glucose ester functions as gallic acid donor as well as acceptor and thus, enables
dimerization of the phenolic acid in the ellagitannin pathway [54].

9.2.5 Glycosylation Reduces Toxicity

As sedentary organisms, plants have developed strategies to mitigate the poisonous
effects of toxic chemicals they are confronted with. One possible detoxification
process is the conjugation of toxins to glucose molecules, making them more water
soluble and enabling transport into the vacuole. Spotted knapweed (Centaurea mac-
ulosa) is able to metabolize maculosin — a host-specific toxin produced by the fun-
gus Alternaria alternata — to the corresponding f-O-glucoside, which lacks the
phytotoxicity of the aglycon [58]. Moreover, it was shown that GT enzymes are able
to diminish the harmful effects of the mycotoxins zearalenone [59] and deoxyniva-
lenol [60]. Thus, the toxins become masked but remain present in the plant tissue.
Toxicological data are scarce, but several studies revealed the potential threat to
consumer safety from these substances due to possible hydrolysis during mamma-
lian digestion [61].

An interesting observation has been made by Australian wine producers. After a
number of vineyards were exposed to smoke from bushfires and the berries were
processed, the resulting wines exhibited a strong off-flavor [62]. Strong “smoky”,
“burnt” and “ashtray” characters were reported [62, 63]. Subsequently, the presence
of the f-D-glucosides of guaiacol, its conjugates, and other related phenolic smoky
compounds was confirmed [64, 65]. Apparently, the plants tailor the phenols by
glycosylation to cope with the toxic effect. However, during the winemaking pro-
cess (e.g. fermentation) and consumption of the wine, the glycosidic bonds are
hydrolyzed and the smoky compounds are released, thus causing an unpleasant taste
[66, 67]. The wines are disliked due to the off-flavor, which eventually leads to a
loss of income for the wine producers.
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9.2.6 Glycosylation Affects Perception

The elucidation of the cause of the smoke-tainted wines prompted further analyses
of the in-mouth hydrolysis of glycosidically bound flavor compounds [67]. It was
shown that enzymes of the human saliva are able to release the volatile aglycones
from their natural glycoconjugates even under low pH and elevated ethanol condi-
tions, confirming the in-mouth breakdown of monosaccharide and disaccharide gly-
cosides. Thus, the long, lingering aftertaste of wines, desirable or undesirable, may
be due to retro-nasal perception of aromas released from glycosides, which occur
naturally in grapes [67, 68].

Steviol glycosides, a mixture of glycosides of the diterpene steviol, have recently
been approved as sweetener in the EU [69]. Stevioside and rebaudioside A are the
main diterpene glycosides present in leaf tissues, but only rebaudioside A imparts a
desirable sweet taste, while stevioside produces a residual bitter aftertaste (Fig. 9.2).
Glycosylation of stevioside yields rebaudioside A and can increase the ratio of
rebaudioside A to stevioside in steviol glycoside products, providing a conceivable
strategy to improve the organoleptic properties of steviol glycoside products. Hence,
several enzymatic processes have been recently suggested to produce rebaudioside
A by glucosylation of stevioside [70-74].

9.3  Glucoside/Glucose Ester Synthesis

Glycosidic and glucose ester bond formation is mostly achieved chemically by a
series of steps involving the protection of interfering hydroxyl groups, activation of
a leaving group at the anomeric carbon proceeding in an Sy1 reaction mechanism,
use of a heavy metal catalyst in water free medium, exclusion of light, and eventu-
ally deprotection [75]. Although decisive progress has been made in improving the
methods and techniques since the classical Koenigs-Knorr reaction was published
[76], chemical glycosylation has considerable drawbacks. It still suffers from low
yields, high costs, usage of toxic heavy metal catalysts, and the formation of unspe-
cific products [9, 77].

In contrast, biocatalytic reactions are a promising alternative due to the mild
reaction conditions, the regio- and stereo-selectivity of the enzymatic reactions, and
the ability to accept both hydrophilic and hydrophobic substrates. Furthermore, the
protection of functional groups is not required. Consequently, fewer process steps
are needed, which reduces production costs and ecological damage [77, 78]. Among
the glycosidic bond mediating enzymes are (i) glycoside hydrolases that also effi-
ciently catalyze the reverse hydrolytic reaction (condensation) whereby glycosides
are formed, (ii) transglycosidases that are able to catalyze the transfer of glycosidic
bonds within carbohydrate molecules and between glycosides, (iii) glycoside phos-
phorylases that use phosphate-activated glycosyl donors, and (iv) glycosyltransfer-
ases that utilize nucleotide diphosphate activated sugar donors as co-substrates to
form glycosides [5].
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Fig. 9.2 Schematic representation of the biosynthetic pathway of steviol glycoside, rebaudioside
A. This biosynthetic pathway takes place in the leaf tissue of Stevia rebaudiana. The multi-step
methylerythritol 4-phosphate (MEP) pathway in the chloroplast stroma converts the initial precur-
sor pyruvate to kaurene. It is then transported to the endoplasmic reticulum (ER) where it is oxi-
dized by kaurene oxidase (KO) and kaurenoic acid hydroxylase (KAH) to form steviol.
Subsequently, steviol is glycosylated by multiple glycosyltransferases (GT) to form rebaudioside
A — the sweetest and least bitter tasting glycoside — which is transported into the vacuole for
storage

However, successful application of these CAZymes in industrial processes is
limited for various reasons, which also depend on the enzyme class [9]. Glycosidases
show high promiscuity regarding their acceptor substrate specificity, yet production
outcome is poor, and conversion of acceptors with multiple hydroxyl groups often
results in an isomeric product mixture. Thus, expenses for the purification of the
product make a considerable contribution to the overall costs. Transglycosidases
and glycoside phosphorylases accept only a limited number of acceptors and exhibit
poor regioselectivity, similar to glycosidases. GT enzymes on the other hand accept
a wide range of hydrophobic and hydrophilic acceptors, while showing regio- and
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stereoselective product formation. Their disadvantage is the requirement of expen-
sive co-substrates.

9.4 Family 1 Plant Glycosyltransferases

GT enzymes can be classified in families based on their reaction mechanism,
sequence similarity, as well as donor, acceptor and product specificity [79-82]. Up
to date, 103 GT families and approximately 316,000 annotated protein sequences
are contained in the CAZY database (http://www.cazy.org, last accessed April
2017). Recently, a specific PlantCAZyme database was established, giving credit
to the vast number of plant GTs [83]. Plant GT enzymes, similar to all GT proteins,
catalyze the transfer of sugar units from activated nucleotide diphosphate sugar
donors. Plant GTs mostly use UDP-glucose, although UDP-rhamnose, UDP-
galactose, UDP-xylose, UDP-arabinose, and UDP-glucuronic acid have also been
reported as donors [84-87]. Additionally, glycosides and glucose esters can be
distinguished by the type of bond that is formed. Although O-glycosylation is the
most common modification, N-, S-, and C-glycosides have also been described [3].
The sequence identity of plant GTs may vary, but they share distinctive character-
istics, such as structural folds, stereo-chemical mechanism of glycosidic bond for-
mation, and a conserved motif called plant secondary product glycosyltransferase
(PSPG) box.

Two structural folds (Fig. 9.3) have been characterized intensively, the GT-A fold
and the GT-B fold [92]. GT-A folded GTs possess a single Rossmann fold and a
conserved metal-binding motif [93, 94]. In contrast, GT-B enzymes do not require
metal ions and contain two Rossmann folds. These Rossmann folds are linked, fac-
ing one another, and form an active cleft between them [95, 96]. A third fold, named
GT-C fold, has been proposed along with the other two folds but the distinctiveness
of the GT-C fold remains controversial [97-99]. Recently, a new fold was reported
for a bacterial GT involved in the glycosylation of serine-rich repeat streptococcal
adhesins [91]. After X-ray crystallography the authors were able to identify a dis-
tinct structure, different from all known GT folds, and a new metal-binding site.
Consequently, this new structure was called GT-D fold.

GT enzymes can also be classified according to the anomeric configuration of the
product. Enzymes that retain the stereo-chemistry at the anomeric center of the
donor substrates are called “retaining” GTs. In contrast, enzymes that invert the
stereochemistry are called “inverting” GTs [82]. Family 1 GT proteins are inverting
enzymes that adopt the GT-B fold, and tailor lipophilic small-molecule acceptors
[100]. Additionally, most of the family 1 GT enzymes feature the so-called PSPG
box, a conserved C-terminal motif responsible for the interaction with the sugar
donor [101]. An interaction between the highly conserved HCGWNS motif and
UDP-glucose has been revealed [102], and the last amino acid of the PSPG box
probably controls the selection of the sugar donor [103].
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Fig. 9.3 Representative examples of the four possible structural GT folds. GT-A: PDB 1FOA
[88]; GT-B: PDB 4REL [89]; GT-C: PDB 3RCE [90], and GT-D: 4PHR [91]. The pdb-files were
downloaded from RCSB Protein Data Base (http://www.rcsb.org/pdb/home/home.do; last accessed
May, 2016), and visualized by the PyMOL v.1.7.4 software

9.5 Substrates of Family 1 Plant Glycosyltransferases

Plants produce a tremendous diversity of low molecular weight metabolites, many
of them being of commercial importance. The variety is mostly ensured by decora-
tion of a limited number of common skeletons by hydroxylation, methylation, acyl-
ation and glycosylation. Glycosylation is one of the most widespread
modifications.

9.5.1 Secondary Metabolites

Although secondary metabolites may not be essential for plant growth and develop-
ment under artificial growth conditions, they are of high relevance for survival in
natural environments. During evolution, when plants became sedentary, their inabil-
ity to move forced them to be able to adapt to constantly changing environmental
conditions. At times they are exposed to changes in temperature, UV radiation,
salinity, water status, and pathogen pressure. This has led to the development of a
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wide variety of secondary metabolites that are constantly modified to meet the
plant’s requirements. Many metabolites acting in defense responses are glycosyl-
ated for stabilization, detoxification, and sequestration.

9.5.1.1 Phenylpropanoids

Phenylpropanoids consist of a three carbon side chain linked to a phenyl group
(Fig. 9.4). Like most phenolic secondary metabolites, their aromatic core structure
is derived from phenylalanine, which in turn is derived from the shikimate pathway.
Phenylalanine is converted in three reaction steps to the activated 4-coumaroyl-CoA
thioester, which gives rise to simple (e.g. hydroxycinnamic acids) and more com-
plex (e.g. flavonoids, stilbenes, lignins) phenolics; this biosynthetic pathway has
been well studied and reviewed [104, 105]. The phenylpropanoid biosynthetic path-
way provides metabolites acting as UV protectants (flavones) or as chemo-attrac-
tants for Rhizobia — mycorrhiza forming bacteria [106]. Furthermore, the precursors
for polymeric lignin, antimicrobial phytoalexins, and pigments (anthocyanins) are
derived from the general phenylpropanoid pathway [107] (see also Chap. 4 of this
book). Phenylpropanoids have also drawn attention for their health-promoting
properties. Anticancerogenic, antioxidative, and antimicrobial effects have been
noted [108—110]. The already high structural diversity is further increased by the
action of family 1 GTs through addition of sugar residues.

Caffeic acid (3,4-dihydroxycinnamic acid) is an example of a simple phenylpro-
panoid. Its esterification with glucose by GTs has been described frequently [10,
111], most recently by enzymes from the tea plant (Camellia sinensis) [112].
Strawberry, raspberry and grape GTs that produce phenylpropanoyl glucose esters
show substrate promiscuity as they form glucose esters of a variety of (hydroxyl)
cinnamic acids and (hydroxyl)benzoic acids, including gallic acid, and might also
to be involved in the biosynthesis of ellagitannins [54].

Monolignols are the precursors of lignins, which are integrated into the cell walls
of higher plants to enhance shoot stabilization. They are converted to glycosides by
GTs, as has been shown for UGT72B1 from Arabidopsis, which catalyzes the glu-
cosylation of coniferyl alcohol and coniferyl aldehyde [113]. Over-expression of
PtGT1 from poplar (Populus tomentosa) in tobacco plants led to increased lignin
content and an early flowering phenotype [114], indicating that monolignol gluco-
sides might play a role in the formation of lignin in plant cell walls (although their
specific functions remain elusive) [115].

Coumarins are yet another group of phenylpropanoids relevant for industry.
Coumarin (1-benzopyran-2-one), the eponym of this class of metabolites, is com-
monly used in perfumes and fragrances because of its vanilla-like odor. In planta,
coumarins are hydroxylated, which enables glycosylation of these functional
groups, and these metabolites rarely occur in aglycon form. Two GTs from tobacco
were found to glucosylate scopoletin (6-methoxy-7-hydroxycoumarin), which is
considered a phytoalexin because it possesses antimicrobial properties and is accu-
mulated by plant tissues upon pathogen infection [116]. Glycosylation of umbel-
liferone (7-hydroxycoumarin), another hydroxycoumarin with phytoalexin activity,
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was recently reported to be mediated by PNgt1 and 2, two GTs from Ipomoea morn-
ing glory (Pharbitis nil) [117].

9.5.1.2 Flavonoids, Anthocyanins

Flavonoids, which arise from phenylpropanoids by condensation with three mole-
cules of malonyl CoA, are characterized by a 15-carbon flavan skeleton (Fig. 9.4)
(see also Chap. 4 of this book). Among them are anthocyanins — glycosylated plant
pigments responsible for fruit color [118]. The first plant GT gene was identified in
a study on the genetic instability of transponsons in maize. Bronze I, the gene
responsible for the dark pigmentation of maize grains later turned out to encode an
anthocyanidin GT [101]. In most cases, UDP-D-glucose serves as the preferred
sugar donor for plant GTs, which is the reason why glucosides are so abundant in
the plant kingdom. However, in red-fleshed kiwifruit (Actinidia chinensis) cyanidin
3’-0-xylo-3-O-galactoside is the main anthocyanin. It is formed by two sequential
glycosylation steps. The first sugar (galactose) is transferred by F3GT1, whereas
xylose is transferred by F3GGT1 [87]. Similarly, malvidin-3,5-O-bis-glucoside is
synthesized by two sequential glycosylation reactions, but the monosaccharides are
transferred to different positions of the anthocyanidin skeleton. The second glyco-
sylation step is catalyzed by 5-O-glucosyltransferase Va5GT from grape (Vitis amu-
rensis), which converts malvidin-3-O-glucoside to the corresponding
3,5-0O-bis-glucoside [119, 120]. RhGTI1, a dual function anthocyanidin
3,5-O-glucosyltransferase from Rosa hybrida, produces the 3,5-O-bis-glucoside
directly from anthocyanidins and is able to glycosylate a wider spectrum of flavo-
noid metabolites including apigenin (flavone) and galangin (flavonol) [121]. The
diversity of plant natural products originates from such combinatorial
modifications.

9.5.1.3 Dihydrochalcones, Acylphloroglucinol, Stilbenes, Curcumin
Phloretin derivatives are classified as dihydrochalcones and belong to the group of
acylphloroglucinols (Fig. 9.4). They are the main phenolic metabolites in apple
(Malus x domestica) and pear (Pyrus communis) leaves, where they are thought to
act in pathogen resistance [122]. They mainly occur in glycosylated form, with
phloridzin (phloretin 2’-O-glucoside) being the most abundant product [123].
Phloridzin is produced by a GT in apple and pear that is specific for the acceptor
substrate phloretin but shows relaxed activity for the donor substrate. MdPGT1 can
glycosylate phloretin in the presence of three sugar donors: UDP-glucose, UDP-
xylose and UDP-galactose [124-126]. Trilobatin (phloretin-4'-O-glucoside) is
formed by MdPh-4'-OGT in apple [127].

Only recently, acylphloroglucinols have also been discovered in strawberry fruit
[128]. They are synthesized by a dual functional chalcone/valerophenone synthase,
which readily catalyzes the condensation of two intermediates in the branched-
chain amino acid metabolism, isovaleryl-Coenzyme A (CoA) and isobutyryl-CoA,
with three molecules of malonyl-CoA to form phlorisovalerophenone and phloriso-
butyrophenone, respectively. Glucosylation is finally catalyzed by the promiscuous
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H O
Ry =H, R; =H, Ry = H, Ry = OH apigenin
Ry =O0H, Ry = H, Ry = H, Ry = H galangin
Ry =0H, Rz = H, R3 = H, Ry = OH kaempferol
Ry =0H, R; = H, Ry = OH, Ry = OH quercetin
Ry =0H, Rz =H, Ry = H, Ry = OH scutellarein

Fig. 9.4 Chemical structures of GT acceptor molecules
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UGT71K3 enzyme [129], which also participates in the glucosylation of the key
strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone [130].

Similar to coumarins, stilbenes are considered as phytoalexins but are also
thought to act in defense response signaling and protection against UV-radiation
[131]. Trans-resveratrol (trans-3,5,4'-trihydroxystilbene) has received attention
lately, as it lowered blood pressure and insulin resistance when administered to
rodents [132]. Glucosylation of resveratrol significantly increases its solubility and
is catalyzed by PaGT3 (in Phytolacca americana) [133] or a bi-functional resvera-
trol/hydroxycinnamic acid glucosyltransferase (in Vitis labrusca) [134]. Four dif-
ferent glucosides of resveratrol, namely resveratrol 3-O-p-D-glucoside, resveratrol
4'-0-B-D-glucoside, resveratrol 3,5-O-p-D-diglucoside, and resveratrol 3,5,4’-O-f-
D-triglucoside are produced by an UDP glucosyltransferase from Bacillus licheni-
Sformis [21] (see also Chap. 3 of this book).

Curcumin is the yellow pigment of turmeric, the dried rhizome of Curcuma
longa. 1t is used primarily as food colorant, but also supposedly possesses pharma-
cological activity. However, its low water solubility limits further pharmacological
exploration and practical application. Thus, glucosylation of curcumin was ana-
lyzed in cultured Catharanthus roseus cells and two GTs were characterized.
CaUGT?2 catalyzed the formation of curcumin monoglucoside from curcumin and
also the conversion of curcumin monoglucoside to curcumin diglucoside [135],
whereas UCGGT catalyzed the 1,6-glucosylation of curcumin 4’-O-glucoside to
yield curcumin 4’-O-gentiobioside [136].

9.5.1.4 Terpenoids

Terpenoids are synthesized in-vivo via two biosynthetic pathways, either by the
mevalonate or the 2-C-methyl-D-erythritol 4-phosphate/1-deoxy-D-xylulose
5-phosphate (MEP/DOXP) pathway [137]. In plants, terpenoids are involved in
defense and stress response, and plant insect interaction [138]. Many terpenoids are
fragrant volatile metabolites used in many different industrial applications, primar-
ily in the fragrance and food sectors. The monoterpene alcohol geraniol is a com-
mercially highly relevant terpenoid, as it possesses an odor commonly associated to
rose flowers [139]. In addition, it is also a crucial flavor contributor in various grape-
vine varieties, and several monoterpenol GTs mediating gluco-conjugation of gera-
niol among other terpenoid alcohols have been reported recently [53, 140]. Similarly,
AdGT4 from the kiwi plant (Actinidia deliciosa) glycosylates a range of terpenes
and primary alcohols which are found as glycosides in ripe kiwifruit. Two of the
enzyme’s preferred primary alcohol aglycones, hexanol and (Z)-hex-3-enol, con-
tribute strongly to the ‘grassy-green’ aroma notes of ripe kiwifruit [141]. In tea
plants (C. sinensis) terpenoid alcohols are stored as p-primeverosides, diglycosides
formed from glucose and xylose, by the sequential action of CsGT1 and CsGT2
[142].
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9.5.2 Plant Hormones

Phytohormones are bioactive compounds of plant origin that function as messenger
molecules and play essential roles in germination, growth, development, and
defense reactions. They are thought to be glycosylated by GTs to sustain cellular
homeostasis, in other words to maintain an equilibrium of active and inactive (non-
glycosylated and glycosylated) products [143]. Brassinosteroids, a family of steroid
hormones, regulate cell division and elongation. In A. thaliana it was shown that
homologous UGT73C5 and UGT73C6 catalyze the glucosylation of the brassino-
steroid castasterone, thereby causing its inactivation [144, 145]. Likewise, cytoki-
nins are involved in plant growth but also environmental responses, and GT activity
on cytokinins such as cis-zeatin has been verified [146]. Similarly, GT mediated
glucose esterification of auxins [147] and abscisic acid [148] has been shown, and a
promiscuous GT enzyme from the immature seeds of morning glory (Ilpomoea nil)
glucosylates 2-frans-abscisic acid, indole-3-acetic acid, salicylic acid (SA) and
(+/—)-jasmonic acid [149].

9.5.3 Miscellaneous Substrates (Alkaloids, Benzoxazinoids,
Furanones, and Xenobiotics)

Alkaloids are bioactive nitrogen-containing plant metabolites derived from amino
acids (see also Chap. 5 of this book). Capsaicinoids are branched or straight-chain
alkylvanillylamides produced by species of the genus Capsicum, which are impor-
tant sources of foods, spices, and medicines. Capsaicin (8-methyl-N-vanillyl-6-non-
enamide) is the most poignant compound among naturally-occurring capsaicinoids
and shows interesting bioactivity. However, capsaicinoids exhibit low water-solu-
bility and are consequently only poorly absorbed after oral administration [150].
The search for capsaicinoid GTs yielded PaGT3, which was isolated from poke-
weed (P. americana) and converted capsaicin and 8-nordihydrocapsaicin to their
corresponding glucosides [150].

Benzoxazinoids (Bx) are defensive metabolites in various species of the Poaceae
and are derived from tryptophan. DIBOA (2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-
one) and its C-7-methoxy derivative DIMBOA are the predominant benzoxazinoids in
maize, and were reported to be glucosylated by the GT Co-BX8 from larkspur
(Consolida orientalis) [151]. The Bx-glucosides possess reduced toxicity compared to
the aglycons and are stored in the vacuole. When the cells are disrupted upon wounding
and/or infection, the toxic aglycons are released by a pre-existing -glucosidase (Glu)
that accumulates in plastids, defining them as phytoanticipins [152].

Furanones such as the key strawberry flavor compound 4-hydroxy-2,5-dimethyl-
3(2H)-furanone (HDME, furaneol®) are downstream metabolites of fructose-1,6-di-
phosphate [153]. HDMF is synthesized during strawberry development but becomes
glucosylated by UGT71K3a and UGT71K3b, rendering the volatile odorless [130].
UGT71K3 isozymes are promiscuous and also accept acylphloroglucinols and vanil-
lin as acceptor molecules, probably due to structural similarities with HDMF [129].



9 Tailoring Natural Products with Glycosyltransferases 235

Xenobiotics are man-made chemical substances, such as pesticides and indus-
trial chemicals that form residues in plants. Some of these have cytotoxic effects,
but plants can prevent these by conjugating xenobiotic breakdown products to sugar
residues. The explosive 2,4,6-trinitrotoluene (TNT) is one such chemical contami-
nating soil and groundwater today. Six GTs from A. thaliana were found to gluco-
sylate hydroxylaminodinitrotoluenes and aminodinitrotoluenes, degradation
products of the TNT-metabolism [154], while 44 GTs catalyzed the O-glucosylation
of chlorinated phenols, but only one, UGT72B1, showed appreciable N-glucosylating
activity toward chloroanilines [155]. Similarly, FaGT2, a multifunctional GT
enzyme from strawberry fruits, is involved in the metabolism of natural and xenobi-
otic compounds, such as the herbicide 2,4,5-trichlorophenol and the herbicide ana-
logue 3,5-dichloro-4-hydroxybenzoic acid [156].

9.6 Glucoside Production by Whole Cell Biocatalysts

Natural product glycosides/carbohydrate esters are new and promising bioactive
substances with prospective in functional foods, drug development, cosmetics, and
many other applications [157, 158]. The bio-catalytic synthesis of glucosides using
GT enzymes has many advantages over classic chemical approaches [159]. The
production can be carried out either in-vitro, employing purified, heterologously
produced enzyme [160-162], or in-vivo, utilizing a whole-cell biotransformation
system [74, 133, 163, 164]. Production of glycosides using living cells provides
major advantages (Fig. 9.5) [77, 165, 166], as the cells can be grown to high density
and cultivation is cost-efficient compared to chemical approaches or in-vitro sys-
tems. Furthermore, if supplied with appropriate nutrients, the cells will be able to
take up the substrates by diffusion or active transport. Consequently, endogenous or
exogenous GTs glycosylate the substrates and the products are excreted into the
medium, where they can be easily collected as the biocatalyst can readily be
removed. Moreover, addition of co-factors is not required, since the cells provide
their own recycling machinery [162]. Since many plant genomes and consequently
GT sequences are publicly available, the next step in the development of whole-cell
biocatalysts, currently applied in newest research, is the creation of transgenic cells
overexpressing the genes of interest (Table 9.1). However, the whole-cell approach
has also some limitations [189]. Often the availability of the substrate is restricted
by its solubility, and too high concentrations can be toxic for the cells. Furthermore,
some substrates are not able to enter the cells [159].

9.6.1 Production System

Glycoside production using whole-cell biocatalysts can be performed in two techni-
cal production systems; shaking flasks and stirred-tank reactors.

Production in partitioned shaking flasks, as described for the production of
B-glucosides employing plant GTs, consists of three sequential steps [162, 166]. (I)
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Fig. 9.5 Possible starting points for optimization of the whole cell biocatalyst (host cell).
Utilization of improved plasmids to regulate heterologous GT expression (a) (ori: origin of replica-
tion, ABR: antibiotic resistance). Amino acid sequence mutation for enhanced protein expression,
increased enzyme stability, modified substrate specificity and enzymatic activity (b). Host
improvement through deletions and insertions/additions to the host genome, including metabolic
engineering to improve the metabolic flux towards glycoside formation (c). R alkyl or aryl

Biomass production: Recombinant cells are grown to a high cell density using a
complex medium. (II) GT production: The culture medium is changed to a defined
minimal medium. This is done to reduce unwanted byproducts and to simplify the
downstream applications. Subsequently, the expression of the recombinant GT is
actively induced. (III) Glycosylation: The aglycon is added to the medium and the
conversion takes place. Although the use of shaking flasks is simple, it offers very
little process control and is not suitable for up-scaling.

The stirred-tank reactor on the other hand offers superior aeration and can be
scaled up [166]. Furthermore, it provides online data like, among others, pH value,
precise temperature, and dissolved O, concentration. This enables a more precise
control of the process by, for example, using intelligent software and protocols
[190]. The production of 3-O-xylosyl quercetin using an engineered E. coli strain
was improved through up-scaling. By changing the cultivation vessel from 5-mL
culture tubes to a 3-L bioreactor, the production of quercetin 3-O-xylose was
boosted from 55-98% [170].



237

9 Tailoring Natural Products with Glycosyltransferases

(penunuoo)
9p1soon[3-0-,z unatoryd
Qp1s0oN[3-()-, UrudIuLIBU snjjkydofino
[LL1) ‘ap1soon[S-0-/, uruaSurreN uneioqyd ‘urueSurreN asoon[S-dan D1S102420 °§ smyppuviq $1DOIQ
JpIsoulqeIe-0-¢ unadronb asoulqere-Jan
“Qp1s0on[3--¢ unadranb “@sO[AX-dN
(98] *IPISO[AX-0-¢ UNRdIANY upeoINg *asoon|3-ddn nod°g |  ouvyvyl 'y | ¢A8LLONIV
pIsoon|3-0-¢
urpruogre[ad ‘OpIso[Ax-0-¢
uno1anb ‘oprsoon(3-p-¢ 3SO1AX-dAN
[o1oydwaey ‘op1soon|[3-0-¢ ‘as0on[3-ddN
[9LT—¥LT unao1anb ‘ururesoon|3[A1o0e utpruogiefod | ‘Quruesoon|S[Ajeoe (0SOLI3SIY)
“TLT ‘98] -N-O-€ unao1ng ‘foroyduwoey ‘uneorongy -N-ddN o> °q puvnpyl 'y | ¢d3LLONYV
(9s0TeIAX03p-9)-(-¢ uTRdIaNb
‘ap1s0on[3-0-¢ [o1ojdurary 9SOTBIAX0IP
‘opIsouweyl-0-¢ [oIojdwoey -9-dd.Lp
[eL1-TLT] ‘OPISOUWERYI-0-€ UNAINQY [orojduoey ‘unedrangy ‘souwreyl-dan 1o>q puvnpyl 'y | [d3LLONIYV
[1L1] opIsoan[3-0-¢ [orojdwaeyy [orojdwoes] asoon[3-4an 1102 °Hq buvippyl 'y | ¢deLLONIV
[oL1] 9S0[AX-(-¢ unedIANQ) uresIen() ISO[AX-dAN 1702 ' puvyvyl "y ¢-10Ie
9pIS0ON[3-(-/ UI[oAN] proe snilvut
[6911 ‘opruoInon(3-0-/ uroan’y urjosny oruoman[3-gan fo>°y | wmunLmuy | Q[ LONWY
apisoon(3-q-¢-0-L utaresteq (00S60311V)
(8911 ‘op1soan[3-(-¢-0-L utuasidy uro[edreq ‘uruasidy 2s0on[3-ddn 7027 | Uiyl 'y 1OV
pup1DY]
[£91] ap1soon[3-O-¢ urprued’) urprued’) 2s0on[3-gdn 17027 | sisdopiqoay 1€
SoouQIR)OY jonpoig 101dodoy Jouop IeSng 1SOH RN QwiAzug
onouen

0414 U1 $)10JJ9 [e2130[0UYd01q Ul paIo[dxo udeq ARy Jey) SI.0 Jo suonound L6 d|qeL



K. Hartl et al.

238

[691] 9pIsojoe[e3-0-¢ unadINQ unadINQY osone[es-dan o2 °q vpLqly LONud
9pIS0ON[I-()-¢ UIPIUBAD
[6L1 ‘9LIT] ‘opIsOIN[3-0-¢ UIPIUOSIE[A] UIpIuEAd ‘UIpIuosIe[a ] asoon[3-4an 102 g vprqly 810d
apisoon[3-g-0-,+ EYUITUB)
[ONBIDASAI-SUBT) ‘OPISOON[3 uoisuadsns 1122 DUDILIIUID
[¢cT1] -d-0-¢ 10neI0ASAI-SURI], [OI)RIOASI-SUD. ], 9S00N[3-dA() | PUPILIIWD | /1]0D p2oV]0ISY ] c1oed
[991] 19)S9 9500N[3 POk OIUISIWANY PIOR OIUISIWALY asoon[3-dan 1705 g puvyvyl 'y 1dSLLD
9prsoon|3 [Aypuatr
‘op1soon[3 [A[eur] ‘op1soon|3
1A711d ‘aprsoon|3 [Aodurdio) [OyJUdW ‘[OO[eUI] ‘[OYO[B
9p1s0oN[3 [Asoure] ‘oprsoon|3 [ATIed ‘[osurdia) ‘[osourey
[991] [A[[ouomnId ‘opisoon|s [Aueion) ‘[O[[oUONID ‘[OTURIIN) 9soon[3-dan 1700 7] punipYy] "y SOELLD
quouaydojeseAxoIpAyIn-,9¢,+*,7 quouayd
pue ‘QuouaydojaoeAxoipAyLn 0320RAX0IPAYLN-,9° #°,T
-,9°.%",¢-1Auoyd-g ‘ououoydojodeAxoIpAyLn
‘urrquoourd£xoIpAy-g -9 %, 7-1Auayd-¢
‘UIuaZULIBUAXO0IPAY-7 ‘uLquioourdAxoIpAy-g
JO sop1soon[3-) ‘UTIQSULIBUAXOIPAY-7 wmpuanosa | (1D80LLON)
[8L1] “Qp1soan[3-)-¢ unaIod ‘unaroyd 9soon[3-dan 1700 wnido3n,y BLOD]
9p1soon[3m-0-,+°L G utuagide
‘op1soon[31p-0-L ‘G utuagide
‘op1soon[31p-0- L utuadide S1SU2]PIVIq
[191 ‘0911 ‘ap1soon3-0-/ uruasidy uruasidy 2s0on[3-gdn 70277 | pLD|I2INIS LOLA
unasy pue
‘utrowl ‘unaouAw ‘[orojduwoey unosy ‘ULow ‘undLIAw ppriqly
[e91] ‘unooranb jo saprsojoeesd-o-¢ ‘Joroydwaey ‘unooren) asojoee3-dan 1702 pIunog 19¢d
S90UAIRJY jonpoig 101dodoy Jouop reSng 1SOH 90In0S JwAzug
onouan

(ponunuod) 1°6 d|qer



239

9 Tailoring Natural Products with Glycosyltransferases

(panunuoo)
(1811 ap1soon{3-(J-¢ urq[rueA ul[iueA 2s0on[3-qan aquiod g puvnvyl 'y 1dCLLON
9p1S0oN[3IP-0-L ‘¢ unadianb
‘Qp1soon[31p-0-, ¢ unedronb
‘Qp1sodn[3Ip-0-,€ ¢ unedIanb
[191] ‘ap1s0on[3-Q-¢ unedranQ unaoIangy esoons-4an 1024 puvipyl 'y €DI1LLON
[181] op1soon|3-(-¢ urruea RHILELAN 2s0on[3-dan aquiod °g puvnyl 'y COILLON
9p1soon[3Ip-0-,¢‘/ unadianb
“Qp1soon[3--/ unadranb
[191] *apIs0oN[3-0-, ¢ unddIANQY unaoIang 2s0on[8-4aN 1024 puvipyl "y I1DILLDN
pruoInon|3
QUO0I9)S0JS9) “OPIUOININ[S QUO019)S0)S9) poe suardps
[081] -(1-¢-ouoIafI[[PquIN[ AN -7 ‘QUOIJI[PQUINIAPAW-f | JIUWOININ[S-JAN aquiod g owor | L14¢1ON
SrdcLon
‘TVZ1ON
o1
opruonon|3 proe aquiod suaidps -OVI11DN
[o8T1] --¢-ouoIayIequIn AYIN - QUOIRI[qUIN[AYIoW-1, oruomon(S-gqn | $224uoany2o0s021y2g owogy ‘IVILON
PIOE OI0U2I9PEIO0 Djo21qUIOG
(2911 -(1Asouerkdoon[3-q-¢)-0-91 proe onrwed-£xoIpAy-9| osoon[3-4an no> g | vjjaseuupg | 1VIONAS
961DAS
‘PELDAS
#9711 9pISOON[3-(-/, UTRIL[[AINOS UTQIR[AINOS 9soon[S-JN) | 2VIS12420 °§ /1100 T | SI1SU2|PIVIG °§ ‘0€1Das
pruoInon|3 proe sno18aa10u
[0sT1] -(1-¢-ou0IaJI[[PqUINIAYIAN- QuoIIPquUINAYoW-4, oruomaN[3-dan aquiod g Sy LVILONT
urjesy pue
‘untow ‘undLAw ‘[ordyduwoey
‘uneoranb jo soprsoon3-0-¢ urjasy ‘ULIOW ‘UrjadLI W asoon3-gan
[¢91] pue sopisouwieyi-0-¢ ‘Joxoydwraey ‘unesrong) ‘osouwreyI-JdN 1709 punipyl "y 1Loeyy




K. Hartl et al.

240

[s81] €33 opIsouasuIn) U opIsouasuln) 9s0on[3-dan DIS1A249D °§ Suasus g 6234150
[$811 1YY Pue [ SOpISOuasuIn) [oexeuedojoig 9s0on[3-dan DIS1A2LDD °§ Suasui8 | 001OdLON
Suasu1d
[$811 1YY Pue [ SOpISOuasuln) [omexeuedojoid 9soon[3-dan DIS1A2L2D °§ XDUDG 13410
uno1onb ‘utrow
‘uneouAu ‘joroyduwoey ‘unesy unooranb ‘unlow ‘unoouAw dsouwreyI-Jdn
[€8T ‘SLT] |  JO sopisouweyl pue sapisoonjn ‘Joxoydwoey ‘unesty ‘esoon[3-dAN 1700 5 | Xput 2u128]5 18L1ON
pUPIPNDGaL
(L] V 9pIsoIpneqay 9PISOIARLS asoon(3-4dn aDISIN2L2I °§ 014218 1D9L1DN
apIsoon|3-0-4
[09] QuougeIeZ-g pue -0 QuoudeILYZ 9soon[3-dan aDISIA2LDD °§ puvyvyl "y 9D¢L1ON
9PISOON[T [OIOBATED
QpIS0oN[3-0-, 1 [0NRIOASI
pue apIsoon[3-0-¢ [0NRIASAI
‘OpISON[SIN-0- 1L ¢
unao1anb ‘oprsoon|3m-0-,¢L‘¢
unooxonb ‘oprsooni3ip-0-L°¢
unjadranb ‘opisoon(3p-0-,#°L
unadranb ‘aprsoon|3p-0-,¢‘¢
urjadranb ‘aprsoon|3p-O-,#°¢
uneo1anb ‘oprsoon(3-p-¢
unadrenb ‘aprsoon(3-0- 4
unooronb ‘Oprsoon|Ip urunoInd [OIOBAIRD OIJBIIASII-SUBT) $NaS0L (z1OoN®D)
[291-0911 OpISooN[3ouoW UINdINY ‘unedrenb ‘urwinon) 9soon[3-4an 1702 g | smypuvivyiv) | SIVELLON
(181 ‘v11 aprsoon[3-(J-¢ urrues ul[rueA 2s0on[3-gdn aquiod g puvnpyl 'y CHILLIDN
SISUIUIDYIDS
[zsT1] apIsoan[3 [0so1£], [0s01£], es0on[3-gdn noo'q pjopoyy | v1dcLLON
SOURIRJOY jonpoid 101doooy Jouop Iesng JSOH 90IN0S owAzug
blikliETy)

(ponunuod) 1°6 d|qer



241

9 Tailoring Natural Products with Glycosyltransferases

aprsoon[3-g-¢-0-L
Ur)ouOUOULIO]
“op1soon[31p-a-g-0-L

* ¥ urazprep “oprsoan(s-q-g-0-L
urazprep ‘apisoans-g-g-0-
urozprep dprsoon(s-q-g-0-L

V UIUBYD0Iq ‘OPISOON[IIp
-d-¢-0-L" ¥ ure)stuag
‘ap1s0on[3-(-g-0-/ ureIsIuad
‘op1soon[3--g-0-, urIsiuad
‘ap1soon[3-0-+°,+*, 7 unaroryd
‘ap1soon[sIp-0-t*, unaroryd

Ur}ouOUOULIO]

‘aptsoon[3-0-, g unasoyd ‘UIZPIEP Y UIURYd0Iq stuiofiuaydl] | (Ty80¥NVY)
(8871 “L8T] ‘apIs0on[3-Q- i UNAIO[YJ ‘UIQISTUAT ‘UNAIONYJ as0on[3-4an o> °q smjovg oix
pLoe
[691] 9pruoInoN|3-O-¢ urdIINY) u1a21on() oruondN[3-dan 1700 g paafiuin A LONAA
proe 010ZuaqAX0IpAY-d ‘proe
OI[ADI]ES ‘pIOR JISULIAS ‘pIoB
JT[AX0QIBIULXAYO[IAD ‘pIo®
oreyydare) ‘proe oreyydost
‘pIOB OIWRUULD ‘PIOR
JI[NI9J ‘pIok drozuaqourue-d
‘proe oIunodIu ‘proe
SI[[IUBA ‘PIOE OLIRWNOD-d
‘proe omyoajes0joxd
[981] s101doo0® [[B JO 519159 9500N[D) ‘proe ordeuts ‘proe o1jen) asoon[S-dan 1705 ' paafiuin A TLOAA
[z91] ap1soon[3 [AueIon [orueIon 9soon[s-dan 1702 7 va2fiuia A OGTLOAA
[z911 9p1soon[3 [ouasnyg [ouasng 9s0on[3-4an 1702 g | va2fiuna suip By LOAA
€3y Ty
[¢811 OPISOUASUIT ‘7Y APIsouasuln) | opIsoudsurd ‘joipexeuedolold 9soon[3-4an DIS14242D °§ Suaswuis g S#SdION




242 K. Hartl et al.

9.6.2 Types of Whole-Cell Biocatalysts

Presently, E. coli is the biocatalyst of choice in most natural product glycol-diversi-
fication approaches, as it is a well-studied bacterium with many genetic tools already
available [191] (Table 9.1). A broad range of natural plant products has already been
successfully glycosylated in transgenic E. coli cells expressing GTs [192]. The fla-
vonol quercetin was transformed to the 3-O-rhamoside and 3-O-N-acetylglucosamine
by E. coli cells expressing GTs from A. thaliana [172, 174], and anthocyanidins
[167], kaempferol [171] and 2(4-hydroxyphenyl)ethanol [182] were glycosylated
employing various GT enzymes in transgenic E. coli cells (see also Chap. 4 of this
book). C-glucosides of flavonoids and related compounds (2-hydroxyflavanone,
dihydrochalcone, and trihydroxyacetophenone) were produced by E. coli express-
ing a buckwheat C-glucosyltransferase [178].

However, depending on the substrate compatibility or the final application, a dif-
ferent host organism might be of advantage. For example, Saccharomyces cerevi-
siae cells expressing GTs from Dianthus caryophyllus (carnation) or Scutellaria
baicalensis have been successfully applied as whole-cell biocatalyst for the produc-
tion of naringenin glucosides [177] and scutellarein 7-O-glucoside [164], respec-
tively. Furthermore, yeast expressing an Arabidopsis GT was used for the production
of zearalenone 4-O-glucoside [60], and Schizosaccharomyces pompe cells express-
ing human GTs were utilized for the generation of drug metabolites [180].
Additionally, the GT-mediated production of rebaudioside A from stevioside was
catalyzed by an engineered S. cerevisiae strain [74].

Plant cells have also been used as biocatalysts in glycosylation processes.
Glucose esters of cinnamic acid, 4-coumaric acid, caffeic acid and ferulic acid were
produced by suspension-cultured cells of Eucalyptus perriniana [193], and bio-
transformation of raspberry ketone and zingerone to the correspondent glucosides
was achieved by cultured suspension cells of P. americana [194]. p-Thujaplicin
(hinokitiol), a tropolone derivative present in the heartwood of cupressaceous plants
and used as medicine, food additive, and preservative, is transformed by cultured
plant cells of Nicotiana tabacum to two glucosides and two gentiobiosides [195].

9.6.3 Process Optimization

Although living cells as biocatalysts provide advantages over in vitro cell-free sys-
tems, there are also limitations. The harvested product suspension may contain cell
debris, secretion products of the host metabolism, and other by-products, which
result in more intensive downstream purification. Some organisms also express their
own glycosyltransferases potentially interfering by drawing co-factors and UDP-
sugars, and produce unwanted side-products. Depending on the choice of host
organism, only specific metabolic pathways employing specific carbon sources are
available for glucoside production. However, decisive progress has been made to
overcome these hindrances. Nowadays, many properties can be added to or removed
from the employed host or enzyme using strategies such as those shown in Fig. 9.5.
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9.6.3.1 Vector Conveyed Process Optimization

Many studies engaged in optimizing the product formation use vector construct
transformation strategies (Fig. 9.5a). Glycosides produced by E. coli strains are
mostly conjugates of glucose or galactose. However, more and more UDP-sugar
modifying enzymes are being identified and investigated. Microorganisms contain-
ing plasmids that harbor one or more of these enzymes can produce a broader range
of different activated sugars and corresponding glycosides. Bioactive flavonol
3-O-rhamnosides have been successfully synthesized via co-transformation of two
vectors in E. coli containing a flavonol rhamnosyltransferase and a rhamnose syn-
thase both from A. thaliana [172]. The heterologously expressed rhamnosyltrans-
ferase produced rhamnosides and the rhamnose synthase ensured the conversion of
UDP-glucose into UDP-rhamnose, thereby increasing the product formation rate.
The NDP-sugar biosynthesis circuit of E. coli was also shifted towards the produc-
tion of flavonoid glucosides and rhamnosides by employing a multi-monocistronic
synthetic vector containing multiple genes [183]. Another study employed GTs and
a sucrose synthase in enzymatic cascade reactions to enable utilization of sucrose as
a carbon source, and to facilitate in-sifu recycling of the NTP-sugar donor from the
NDP leaving group [162]. Correspondingly, shifting of the nucleotide sugar path-
ways of E. coli towards the production of UDP-xylose and -arabinose for
GT-conveyed synthesis of flavonoid O-pentosides was demonstrated [86]. To pro-
duce flavonoids attached to sugars such as glucuronic acid and galactoside, E. coli
was genetically modified to express GTs specific for UDP-glucuronic acid
(AmUGTI10 from Antirrhinum majus and VVUGT from V. vinifera) and UDP-
galactose (PhUGT from Petunia hybrida), along with the appropriate nucleotide
biosynthetic genes to enable simultaneous production of their substrates, UDP-
glucuronic acid and UDP-galactose [169]. Using these strategies, luteolin-7-O-
glucuronide, quercetin-3-O-glucuronide, and quercetin 3-O-galactoside were
successfully synthesized.

Overall, the success of metabolic engineering depends on a balanced expression
of the biosynthesis enzymes. Factors that influence protein levels include gene copy
number, promotor strength, ribosomal binding site (RBS), inducer concentration
and codon usage [191, 196]. Besides, coupling to a fusion partner like GST (gluta-
thione S-transferase), NusA (N-utilization substance protein A), MBP (maltose-
binding protein), Trx (thioredoxin) or SUMO (small ubiquitin-related modifier) can
increase enzyme solubility and prevent accumulation of inactive protein aggregates,
thus providing enhanced biocatalytic activity [191].

9.6.3.2 UGT Optimization

Another strategy to improve the product yield and diversity is to optimize
enzyme function (Fig. 9.5b). Usually, the GT is chosen for a specific activity or
for its promiscuity towards a spectrum of aglycon substrates. However, if an
enzyme with the desired substrate specificity is not available, known GTs can be
modified. For example, the protein sequence of the GT OleD from Streptomyces
antibioticus was mutated to broaden the accepted substrate spectrum. A more
than 180-fold higher activity towards the therapeutically important acceptor
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7-hydroxycoumarin-4-acetic acid was achieved [197]. The most common
approach to achieve improved or altered substrate specificity, usually involves
mutating amino acids positioned in the active cleft of the enzyme. For example,
the activity of GTs from Panax ginseng towards ginsenosides, bioactive natural
glycosides from the ginseng plant, was altered by this approach [184]. However,
other researchers demonstrated that also amino acid substitutions outside of the
active cleft, but in its vicinity, can procure changed product conversion rates
[53, 54], and alteration of sugar donor specificities of plant GTs [103]. The cata-
lytic mechanism and basis for O- and N-glucosylation specificity was also
probed by mutagenesis and domain shuffling [198]. Mutation of an O-specific
GT at just two positions installed high levels of N-GT activity, whereas molecu-
lar modeling revealed the connectivity of these residues to the catalytically
active histidine-19 on UGT72B1, with its mutagenesis exclusively defining N-
GT activity in UGT72B1.

Furthermore, it is imperative to secure a balanced protein expression, as overex-
pressed enzymes are a metabolic burden for the cell. This can lead to protein aggre-
gation or incorrect folding, in addition to subsequent formation of enzymatically
inactive inclusion bodies. Accumulation of inactive protein aggregates can be pre-
vented by co-expression of proteins that assist in folding. It has been demonstrated
that co-expression of recombinant GT enzymes with chaperones resulted in an
increased enzymatic activity and a lower aggregation rate [199].

9.6.3.3 Host Genome Optimization — Metabolic Engineering

Along with process optimization through extrachromosomal gene expression,
modification of the host metabolism can also be achieved by direct insertion/dele-
tion of sequences into/from the genome (Fig. 9.5¢). Thereby, futile metabolic
cycles can be shut down, and product utilization by the host and nonessential
metabolic effluxes can be avoided. Although plasmids are a quick and easy way to
test out new enzyme additions without having to design a whole new expression
cassette, permanent changes by gene deletion/insertion secure a stable metabo-
lism within the cell population. However, in most cases, a combined approach of
extra- and intra-chromosomal modifications achieves the best results. Figure 9.6
illustrates how the metabolic carbon flow of E. coli Waksman was modified to
exclusively use sucrose and fructose as cheap carbon sources for the production
of phenolic glucose esters [186]. The vector conveyed introduction of the sucrose
phosphorylase from Bifidobacterium adolescentis, and the permanent deletion of
the endogenous phosphoglucomutase gene created a split in the usage of sucrose.
In this manner, half of the carbon was utilized for the production of phenolic glu-
cose esters, while the second half was spared for other cell metabolism. Another
strategy to increase GT product formation is the deletion of UDP-glucose con-
suming pathways, e.g. the UDP-glucose hydrolase (ushA) in E. coli, to prevent
metabolization of the co-substrate UDP-glucose and to promote glycosylation
reactions [163, 175] (Fig. 9.7a). The production of 3-O-xylosyl quercetin was
improved in mutant strains deficient in phosphoglucoisomerase (pgi), D-glucose-
6-phosphate dehydrogenase (zwf) and ushA genes, paired with over-expressed
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Fig.9.7 UDP-glucose consuming enzymes of competing metabolic pathways (a). Schematic dia-
gram of the UDP-glucose biosynthesis pathway showing the mutations of the engineered E. coli
strain used for glycoside production (b) [170]. Up-regulated and deleted enzymes are shown in red
and blue, respectively

UDP-xylose biosynthetic genes phosphoglucomutase (pgm), glucose 1-phosphate
uridylyltransferase (gal/U), UDP-glucose dehydrogenase (calS8) and UDP-
glucuronic acid decarboxylase (calS9) [170]. Thereby, the level of glucose-
1-phosphate, UDP-glucose and consequently of UDP-xylose was increased
(Fig. 9.7). A similar engineered E. coli mutant, lacking the over-expressed UDP-
xylose biosynthetic genes, was further developed for the efficient whole-cell bio-
catalysis of flavone 7-O-p-D-glucopyranosides [168], phloretin glucosides [187]
and isoflavonoid glucosides [188].

The deletion of galU can also be used to shift the metabolic pathway of E. coli
towards the formation of alternative sugar donors, such as UDP-N-acetyl-D-
glucosamine [174] and dTDP-6-deoxytalose [173], thereby increasing the produc-
tion of novel quercetin glycosides employing extrachromosomal GTs.

Combinatorial intra- and extrachromosomal optimization approaches have
recently been introduced as a successful strategy to increase product yields [167].
The authors made use of previously published advances, such as the optimization of
the medium pH and the UDP-glucose supply, as well as introducing gene expression
cassettes [176, 179, 200]. They combined these conditions with (i) optimized culture
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conditions and induction parameters, (ii) a bicistronic expression cassette for bal-
anced co-expression of a GT and a precursor forming enzyme, and (iii) overexpres-
sion of transporter proteins for improved transportation of substrate and product
across the host cell membrane. In doing so, a final titer of 350 mg/L of cyanidin
3-0-glucoside was achieved [167].

Aside from E. coli, other biocatalysts have been successfully engineered as well.
For example, the metabolism of yeast strains was optimized by integration of mul-
tiple genes including GTs into the genome for de novo biosynthesis of ginsenosides
and vanillin glucosides [14, 181, 184, 185] (see also Chap. 1 of this book).

9.7 Recent Applications of Glycosyltransferases
for Production of Small Molecule Glycosides

Numerous remarkable characteristics arise from the glycosylation of natural prod-
ucts providing auspicious applications in new drug development, making it a hotspot
in natural product biosynthesis and modification. Natural and biological approaches
for glycosylation of aglycons to form glycosides have attracted substantial attention
and interest, as it involves the formation of novel compounds under mild conditions.
In comparison to ‘traditional’ chemical synthesis methods, biotransformation
implements an environmentally friendly option for the synthesis of fine chemicals.
GT enzymes that partake in the biosynthesis of natural products have demonstrated
to be advantageous for the chemo-enzymatic synthesis or biosynthesis of functional
compounds with new bioactivities. This enzymatic process influences their biologi-
cal and chemical properties by the attachment or alteration of sugar moieties in
natural or synthetic compounds. The common strategy utilizes the promiscuity fea-
ture of natural product GTs by transferring various sugar moieties to different agly-
cons in-vivo or in-vitro. Precise regio/stereo-selectivity and moderate reaction
conditions lay the groundwork to manipulate and apply the enzymatic glycosylation
of natural product GTs. In the recent years, the composed research and known fea-
tures aid in the comprehensive understanding and has shed light on many GT
sequences, which have been correlated with novel glycosylation reactions and per-
spective applications of GTs.

9.7.1 Glycosyltransferases and Glycosylation in Product
for Consumer Consumption

In the 1960s, the discovery and extraction of glycol-conjugated forms of monoter-
pene alcohols has unraveled a new expanse of nonvolatile aroma precursors where
researchers can indulge in the study of scents and flavor [4]. In general, nonvolatile,
glycosylated aroma precursors produce an aroma when the glycosidic bond is
removed and the molecule becomes volatile, and is then able to interact with the
olfactory receptors [4, 67, 201-203]. The applications of fragrance and flavor chem-
ical compounds have been vastly applied in food, medicine, tobacco, textiles,
leather, papermaking, cosmetics, and further products for consumer consumption
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[4]. Among the many aromatic compounds, vanillin, phenylethanol, benzyl acetate,
linalool, menthol, and geraniol are economically important aroma chemicals, which
exceed annual consumption rates of 5000 tonnes [4, 137] (see also Chap. 1 of this
book).

Terpenes are volatile, unsaturated hydrocarbons that serve as essential oil con-
stituents of many plants and are often used as natural flavor additives for food, fra-
grances in perfumery, as well as medicine, and aromatherapy [4, 204]. A number of
volatile hemiterpenoids (C5), monoterpenoids (C10), and sesquiterpenoids (C15)
greatly contribute to the odor of a product. At the same time, higher terpenoids can
contribute to the perception of taste. As an example, steviosides are sweet tasting
glycosides of the diterpenoid steviol extracted from Stevia rebaudiana, a herb from
the Asteraceae family [205]. These glycosylated secondary metabolites are bioac-
tive constituents of the commonly used sweetener, Stevia. Aside from other metabo-
lites found and glycosylated in the fruit tissue, the steviol glycosides are
biosynthesized in the leaf tissue [206]. Steviol glycoside synthesis commences with
steviol, which is a product from the MEP pathway (Fig. 9.2). The subsequent four
steps include the addition of sugar molecules to the carbon backbone catalyzed by
GTs. The final product of this multi-step process is the glycosylated rebaudioside A,
which is transported to the vacuole for storage [207]. Previous studies of the various
enzymes involved in steviol glucosylation led to the isolation of two protein frac-
tions from S. rebaudiana leaves revealing significant GT activity [207, 208]. Each
enzyme possessed a unique activity; one that exhibited high specificity and ability
to catalyze the transfer of UDP-glucose to steviol and subsequent glycosides, and a
second that exhibited low specificity and activity. Interestingly, both enzymes were
found to also accept flavonol substrates, such as kaempferol, quercetin, and hydro-
quinone [206]. The different properties of the individual glycosides can vary signifi-
cantly, and their characteristics are determined by the type of sugar and pattern of
glycosylation. Among various tested steviolglycosides, rebaudioside A was ascer-
tained as the sweetest tasting and least bitter glycoside [73]. Thus, several biotech-
nological processes involving GTs have already been suggested to manipulate the
glycosylation status of steviosides [70-74].

Similarly, a plant GT partially purified from pomelo fruits has been immobilized
and used in bioprocessing for de-bittering citrus juice by converting the astringent
triterpene limonoid into glycosides [209].

Monoterpenes (linalool, menthol, and geraniol) are volatile and predominantly
poorly water-soluble flavor and fragrance compounds, thus limiting their utility for
industrial applications. The glycosylation of these monoterpenes enhances their
water-solubility, thus rendering them odorless. Therefore, they are of interest for the
flavor and fragrance industry due to the possibility of a controlled release of the
bound aroma compound upon cleavage of the glycosidic bond. Moreover, monoter-
pene glycosides have been proposed to inhibit unpleasant odor for various products,
enhance the quality of cigarette smoke, augment the aroma of freshly cut flowers,
and improve longer-lasting deodorants. Besides, they can be utilized in personal
hygiene products for continuous release of scents and as air fresheners [4]. Utilizing
odorless volatiles bound via a glycosidic bond as fragrance materials was
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exemplified by incubating skin microflora with numerous glycosides. The majority
of the glycosidically bound volatiles, in particular B-D-glucosides of monoterpenes,
are hydrolyzed by glucosidases excreted by the skin microbiome, thereby releasing
the aglycones as fragrance ingredients [210, 211].

GTs are mainly involved in natural product glycosylations via O-glycosidic
bonds. In contrast, glycosylation at the carbon atom (C-glycosylations) is quite rare,
and only a few C-GT enzymes are therefore available [155]. Aryl glycosides are
derived from aglycons resembling flavonoids, which denote either an O- or
C-glycosidic bond [212]. These glycosides have been proposed to show significant
biological activities, including antioxidant properties, antiviral, and cytotoxic
impacts [213, 214]. Commonly, direct isolation from plants is impractical and
chemical methodologies involve a series of steps resulting in poor yield and toxic
byproducts. Therefore, a single-step reaction catalyzed by GTs in-vitro represents a
powerful tool for the synthesis of aryl C-glycosides [215]. Nothofagin (3-C-glucoside
of phloretin) is a natural secondary metabolite found in redbush herbal tea with
applications in the food industry [216]. For a proficient synthesis of nothofagin, a
C-GT reaction was coupled to an enzymatic supply of glucosyl donor substrate in-
situ. This step-by-step reaction results in efficient and high-yielding bio-catalytic
production of nothofagin [215].

9.7.2 Glycorandomization

GT enzymes with broad substrate specificity have been utilized in the development
of powerful tools for glycorandomization [217]. This has led to the development of
an E. coli platform for the combinational biosynthesis of antibiotics where numer-
ous new glycoderivates were generated, some of which may become valuable drug
candidates [218]. Another ‘in-vitro glycorandomization’ experiment is based on the
flexibility of glycosyltransferases fD and fE (GtfD, GtfE). These two GTs were
used on NDP-sugar libraries to generate glycorandomized natural products and then
the applied method of chemo-selective ligation produced monoglycosylated vanco-
mycins. The obtained products’ bioactivity varied significantly and at the same time
possessed notably improved antibacterial properties [219].

9.7.3 Glycosyltransferases and Their Role in Cancer Therapies

In the 1970s, mitoxantrole (MXT), a synthetic anthracenedione, was discovered and
developed for the treatment of various human cancers [220, 221]. Additionally,
MXT has been proposed to exhibit in-vivo activity against rheumatoid arthritis in
several animal models [222]. Moreover, MXT supposedly acts as anti-tuberculosis
agent, functioning through the inhibition of a specific mycobacterial kinase (PknB)
controlling pathogen growth and evolvement [223]. However, MXT treatments are
associated with various serious side effects such as irreversible cardiomyopathy.
Therefore, stimulating research to generate analogues with diverse therapeutic
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effects, such as increased potency and reduced cardiotoxicity, has been conducted
[224-226]. The recently identified GT OleD produced by S. antibioticus catalyzes
the transfer of a glucose moiety from UDP-Glucose to various macrolide antibiotics
[227]. Protein engineering of OleD and subsequent screening for variants capable of
executing extended glycosylation reactions has led to the discovery of a promiscu-
ous triple mutant, OleD-ASP [228]. Initial liquid chromatography mass-spectrome-
try (LC-MS) evaluation of the OleD-ASP acceptor flexibility revealed its ability to
glycosylate a range of pharmaceuticals including anthraquinones, indolocarbozoles,
polyenes, cardenolides, steroids, macrolides, beta-lactams, and enediyenes [217].
As engineered GT with unique promiscuity, OleD-ASP, was shown to regio- and
stereo-selectively modify and glycosylate also MXT, thus providing an asymmetric
MXT 4'-p-D-glucoside [228]. Interestingly, OleD-ASP is the first engineered GT
that is able to asymmetrically glycosylate an anticancer drug whilst retaining its
activity. At the same time, this is a single-step reaction requiring no protecting
groups or sugar activation guidance. The single glucoside of MXT may potentially
offer a beneficial toxicity profile leading to a reduction of side effects with the
potential to be further optimized [228].

9.8 Conclusions and Future Prospects

Synthetic biology has been driven by the development of new powerful tools for
DNA synthesis, sequencing and genome editing, which enable microbial engineer-
ing for the production of pharmaceuticals and other high-value chemicals. There is
great diversity in the type and number of sugar units that could be added to naturally
occurring aglycones, and the biological relevance remains elusive [229]. It is antici-
pated, that the attachment of sugars to natural products, or altering an existing sugar
moiety, can improve pharmacological properties and specificity at multiple levels.

Glycotechnologies have been used for the generation of novel glycosylated com-
pounds either in in-vitro or in-vivo experiments. Several GTs are suitable for alter-
ing glycosylation patterns, but strict substrate specificity remains a limiting factor in
natural product diversification. Engineering GTs is the most promising way to dis-
cover and develop new GTs with clearly defined specificities. Suitable high-
throughput screening systems will support glycodiversification technologies.
Further structure elucidation of GTs will help to understand the mode of action of
these enzymes [229]. Modifying the specificity of current natural product GTs and
enhancing the biosynthetic technologies in the discovery of new GTs to improve the
yields of applicable natural products, is increasingly becoming of utmost impor-
tance for researchers.
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Authenticity Control of Natural Products by 1 0
Stable Isotope Ratio Analysis

Matthias Wust

Abbreviations

BSIA Bulk stable isotope analysis

CAM Crassulacean acid metabolism

CSIA Compound-specific isotope ratio analysis

EA Elemental analyzer

GC Gas chromatography

HT-RPLC High-temperature reversed-phase liquid chromatography

IRMS Isotope ratio mass spectrometry

LC Liquid chromatography

PSIA Position specific isotope analysis

SIRA Stable isotope ratio analysis

SNIF-NMR Site-specific natural abundance isotope fractionation-nuclear
magnetic resonance spectroscopy

TMU Tetramethyl urea

10.1 Introduction

There has been an ever increasing interest in the chemical industry to produce natu-
ral products either chemically or biotechnologically in order to be independent of
unsecure natural resources. However, while the chemical structure of a synthesized
product is identical to its natural counterpart, it is not of equal value for the con-
sumer. From a psychological perspective this phenomenon has been described as
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Table 10.1 Elements and their stable isotopes that frequently occur in natural products
(bioelements); for oxygen and sulfur additional stable isotopes exist that are not shown because
their ratios are usually not used for authenticity control purposes

Isotope
Element Symbol F [atom-%] Standard R (Standard)
Hydrogen 'H 99.9855 Standard mean Ocean 0.00015576
water (V-SMOW)?*
‘H=D 0.0145
Carbon 12C 98.892 Pee-Dee belemnite 0.0111802
(V-PDB)*
13C 1.108
Nitrogen “N 99.6337 Air Nitrogen (Air)
5N 0.0036782
Oxygen 10 99.7587 Standard mean Ocean
water (V-SMOW)*
70 0.0375
130 0.2039 0.00200520
Sulfur 28 95.018 Canyon diablo Troilite
(CDT)
3S 0.750
S 4215 0.0441509
*S 0.02

F mean relative abundance = [Isotope]/[Z Isotopes], R isotope ratio of the two most abundant
isotopes for the given standard = [Heavy isotope]/[Light isotope]
2V indicates the location of the international atomic energy agency IAEA in Vienna, Austria

“natural preference” and is documented particularly for the domain of food related
natural products [30, 31]. Humans may have an innate desire (“biophilia”) for the
experience of their ancestral environment. Natural products that are obtained from
natural sources or synthesized biotechnologically from natural precursors are repre-
senting thus an additional value to consumers and are perceived of being closer to
nature. New terms like “all natural” or “minimally processed” are discussed in this
context. In the EU, for example, three guiding principles for natural flavoring sub-
stances are published in the Regulation (EC) No. 1334/2008 on flavorings: (i)
occurrence of a natural flavoring substance in nature, (ii) natural source materials
and (iii) the use of permitted natural processes, their sequence and conditions
thereof applied during manufacture [10] (see also Chap. 11 of this book). In order
to safeguard the positioning and positive value recognition of natural products man-
ufacturers and control authorities continuously need to develop and implement
measures regarding the authenticity and the quality assurance of natural products in
the EU and increasingly also for other regions [32]. This chapter will therefore pro-
vide an overview about new and well established strategies regarding the authentic-
ity control of natural products by stable isotope ratio analysis (SIRA), which has
become the most important method during the last years. The method is extremely
powerful when stable isotope ratios of multiple elements are determined for a given
target compound. Table 10.1 provides an overview of the most important elements
in natural products and their stable isotopes. Characteristic deviations from their
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Table 10.2 Overview of parameters influencing isotopic composition in plants for the bio-
elements measured by stable isotope ratio analysis

Primary influencing Secondary influencing
parameter on isotope parameter on isotope
Element Primary pool composition composition
C Atmospheric CO,, Photosynthetic pathway Climate (humidity,
geogenic bicarbonate, |including mode of temperature, sunlight),
soil organic matter CO,-fixation (C3, C4 or cultivation practice, plant
CAM) variety, ripening stage,
secondary metabolism
H Ocean water Distance from coast, Temperature, transpiration,
latitude, altitude respiration
(6] Ocean water, Distance from coast, Temperature, transpiration,
atmospheric oxygen | latitude, altitude respiration
N Atmospheric N,, soil | Agricultural practice,
environmental and
climatic parameters

Adapted from [20]

relative mean abundances are detectable in natural products and can be explained by
the differential behavior of isotopomeric and isotopologic molecules (isotopomers
or isotopic isomers are isomers with isotopic atoms, having the same number of
each isotope of each element but differing in their positions; isotopologues are mol-
ecules that differ only in their isotopic composition). The global and positional iso-
topic abundance of an element in a natural product is determined by thermodynamic
and kinetic isotope effects during its biosynthesis and by climatic effects (Table 10.2).
These deviations for a given element are reported as differences to the isotopic
abundance of an international standard and can be interpreted as a fingerprint for a
specific origin of a natural product. Because these deviations are in the ppm range,
highly precise methods must be employed for their accurate measurement. To date,
isotope ratio mass spectrometry (IRMS) and site-specific natural abundance isotope
fractionation-nuclear magnetic resonance spectroscopy (SNIF-NMR) are methods
that are employed for this purpose and are discussed below.

10.2 Isotope Ratio Mass Spectrometry - IRMS

10.2.1 Notations in IRMS

The molar ratios of the main isotopes of a given element are reported with respect
to an international standard (Table 10.1) and are expressed as the so-called delta-
value (8) in %o [20]. For the >C/"3C—-ratio (R) the international standard is Vienna
Pee Dee Belemnite (V-PDB) and the following notation is obtained:

6HC:[(%’O] = [(Rsamplc / Rstandard) _1] X 1000
Negative d-values indicate a depletion of the heavier isotope in the sample rela-

tive to the standard and positive values indicate an enrichment of the heavier
isotope.
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10.2.2 Elemental Analyzer-IRMS (EA-IRMS)
and Gaschromatography-IRMS (GC-IRMS)

If the natural product to be characterized is available in pure form the isotope ratios
of the elements can be measured directly by the so called elemental analyzer-IRMS
(EA-IRMS). Here, mg quantities of the substance are converted to simple gases like
hydrogen, nitrogen, carbon monoxide and carbon dioxide by combustion or pyroly-
sis in an elemental analyzer and separated by solid phase gas chromatography using
molecular sieves as stationary phases. The gases are ionized by electron impact in
an ion source and the ions are separated by mass spectrometry using a magnetic
sector analyzer. The ion currents of the separated isotopic species are detected by
collectors, the so called Faraday cylinders or cups. The use of triple collectors
allows, for example, the determination of the isotope ratios of carbon (§'*C) by
detecting ions of the mass/charge ratios of m/z 44, 45 and 46. This approach delivers
the high analytical precision that is necessary to reveal the natural variations in the
stable isotope ratios (Table 10.3) [19]. If the natural product to be characterized is
not present in pure form, as for example vanillin in a vanilla extract, a GC allowing
the separation of complex mixtures can be coupled online to a capillary reactor. This
approach is called GC-IRMS or compound specific isotope analysis (CSIA).
Figure 10.1 shows the instrumental setup for GC-IRMS employing an on-line com-
bustion interface for the oxidation of compounds eluting from the GC for the pro-
duction of carbon dioxide and nitrogen for subsequent IRMS measurement.
Figure 10.2 shows the isotope ratio mass spectrometer in more detail with ion-
source, magnet and the array of Faraday cups for simultaneous isotope detection.
Table 10.3 summarizes the technical setups of stable isotope measurements for the
most important bioelements and the analytical precision that can be achieved. It has
to be kept in mind that the obtained value for a certain isotope ratio represents the
mean for all atoms in a given molecule. Position-specific values can be obtained by
a selective chemical degradation of the target molecule and subsequent detection of
selected fragments [34, 36, 37]. New approaches rely on the on line-pyrolysis and
separation of the generated fragments using GC followed by the IRMS measure-
ment [5, 6, 8]. The determination of intramolecular isotope ratios of different

Table 10.3 Technical setups used in stable isotope analysis by mass spectrometry for the most
important bio-elements

Isotope | Measured Mass Technical
ratio species Method detected Temperature precision
813C CO, Combustion 44,45,46 | Upto 1000 °C 13C 0.05%0
(0.56 ppm)
8N N, Combustion, 28,29 Up to 1000 °C 5N 0.1%o
Reduction (0.27 ppm)
580 CcO Pyrolysis 28, 30 1450 °C 180 0.1%o
(0.2 ppm)
8’H H, Pyrolysis 2,3 1280 °C ’H 1%0
(0.16 ppm)

Adapted from [19]
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Fig. 10.1 On-line oxidation of compounds eluting from GC for the production of carbon dioxide
and nitrogen for IRMS measurement (Copyright by Thermo Fisher Scientific Inc., reproduced with
permission)
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Fig. 10.2 TIsotope ratio mass spectrometer with ion source, magnet and the array of Faraday cups
for simultaneous ion detection (Copyright by Thermo Fisher Scientific Inc., reproduced with
permission)

positions in a molecule has been termed position-specific isotope analysis (PSIA).
However, PSIA by on line-pyrolysis and separation of the generated fragments is
technically demanding and not yet widely employed in routine analysis. PSIA by
selective chemical degradation of the target molecule can be quite tedious and time-
consuming and carries the risk of undesirable isotope discriminations [24]. A more
widely applied method to determine isotope ratios of pure substances is site-specific
natural isotope fractionation-nuclear magnetic resonance spectroscopy (SNIF-
NMR), which will be discussed below.
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Fig. 10.3 Schematic representation of LC-IRMS hyphenation (LC IsoLink®) used for organic
matter chemical oxidation and carbon dioxide extraction from aqueous eluent (Copyright by
Thermo Fisher Scientific Inc., reproduced with permission)

10.2.3 Liquid Chromatography-IRMS (LC-IRMS)

LC-IRMS has gained growing interest during the last years as it is able to measure
carbon isotope ratios of single compounds directly from complex mixtures that are
not volatile and thus not amenable to GC [14]. The technical challenge is to com-
pletely oxidize the compound of interest in a liquid eluent that has to be free of
interfering carbon i.e. an organic solvent. This is achieved using the powerful oxi-
dant peroxodisulfate and phosphoric acid that are both mixed with the eluent in a
post-column reactor at approx. 90 °C. The cooled solution passes through a separat-
ing membrane, flushed by helium on the outside, allowing the extraction of the
carbon dioxide produced in the reactor (Fig. 10.3). The gas mixture is sent in the
IRMS for isotope ratio analysis after crossing a Nafion membrane for gas drying
[41].

10.2.4 Site-Specific Natural Isotope Fractionation-Nuclear
Magnetic Resonance Spectroscopy (SNIF-NMR)

If the natural product to be characterized is available in pure form and in sufficient
quantity (minimum 50-100 mg) the isotope ratios of the elements hydrogen and
carbon can be measured by SNIF-NMR exploiting the joint structural and quantita-
tive dimensions of NMR spectroscopy [24]. The method has proved to be particu-
larly powerful for detecting the chaptalization of wines but can now also applied to
provide an isotopic fingerprint of a wide variety of natural products. The notation
usually used in SNIF-NMR is quite different from the one that is used in
IRMS. Specific isotope ratios and molar fractions are widely used. For hydrogen, as
an example, position specific isotope ratios (D/H); in parts per million (ppm) or
molar fractions f; of the monodeuterated isotopomers are used. These values are
obtained by internal referencing using a precisely known quantity of a certified
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Fig. 10.4 Chemical structure and H-NMR spectrum of a vanillin sample showing the presence
of a small peak on the right side of the peak corresponding to the methoxy group (site 5). The small
peak is due to molecules containing probably OCHD, (enlarged box in the left upper corner). This
is an indication that an isotopic manipulation of vanillin was performed on that sample. The num-
bering of the different positions of the hydrogen/deuterium atoms is consistent with earlier publi-
cations and follows peak order in the 2H-NMR spectra but is not based on TUPAC references [29]
(Copyright by American Chemical Society, reproduced with permission)

working standard, which is frequently tetramethyl urea (TMU) [24]. The values for
f; and (D/H); can be directly calculated from the signal area of the individual NMR
signals S;. Figure 10.4 shows a typical ZH-NMR spectrum of vanillin. Signals are
relatively broad due to the electric quadrupole moment of deuterium. However, only
singlets are observed because of the low abundance of deuterium which does not
give rise to spin-spin coupling that is typical for conventional '"H-NMR spectra.

10.3 Practical Applications of Stable Isotope Analysis
on Miscellaneous Natural Products

10.3.1 Phenylpropanoids (Vanillin)

Vanillin is one of the most important flavoring substances (see also Chap. 1 of this
book). Beside natural vanillin isolated from vanilla pods, it can be produced by
chemical synthesis and by biotechnological production processes [12]. Because
natural vanillin (in the sense of the legal definition i.e. of natural or biotechnological
origin) (see also Chap. 11 of this book) has a high consumer acceptance, it is often
adulterated by addition of undeclared, inexpensive, chemically synthesized vanillin
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Table 10.4 Stable carbon and hydrogen isotope values of vanillin and vanillin methoxyl groups

Methoxyl Methoxyl

Bulk Bulk group group

Origin or starting 8"Cypps 8" Hyspow 8"Cypps 8’ Hysyow

material of vanillin | (%o) (%o0) (%o0) (%0) Reference

Ex-bean —21.5t0 —57.7t0 [17,33]

(Madagascar) —18.2 -10.4

Ex-bean (Tahiti) -19.7 to -28.5to [17, 33]
—-15.5 -3.0

Ex-bean —7.08 to —149.0 to [15]

—24.08 —-181.6

Ex-bean —21.5t0 —115to [35]
-16.8 -52

Ex-guaiacol -26.2 to —23t0-27 | -29.73 -121.4 [15, 35]
—-24.9

Ex-eugenol -31.7to [35]
-29.9

Ex-lignin —28.7 to —204 to -37.15 -235.6 [15,35]
-26.5 -170

Ex-feruclic acid —36.4 to [3,39]

(rice bran) -36.1

[29]. EA-IRMS, LC-IRMS and GC-IRMS have been proven to be efficient and reli-
able methods for the authenticity control of vanillin [1-4, 15, 17, 21, 29, 33, 35].
Table 10.4 provides an overview of the isotope ratios of carbon and hydrogen that
have been obtained for authentic vanillin samples. The vanilla plant as a CAM-plant
(crassulacean acid metabolism) biosynthesizes vanillin with less negative §'*C—val-
ues than vanillin, which is produced from precursors (guaiacol, eugenol, lignin and
ferulic acid) obtained from C3-plants. By inspecting the values of the carbon iso-
tope ratios it becomes clear that it is possible to distinguish between vanillin of
different botanical origins and different production processes:

— Natural vanillin ex beans (V. pompona, V. planifolia or V. tahitensis) shows §3C—
values that are above (more positive) —22%o

— Vanillin that has been obtained by biotechnological processes ex ferulic acid
isolated from rice bran shows characteristic values between —37 and —36%o

— Vanillin that has been chemically synthesized from lignin, eugenol or guaiacol
shows values that are more negative than —25%o

However, measurement uncertainty of +/— 1%o, which has been determined by
inter-laboratory trials, has to be taken into account for authenticity control purposes
as recommended by the Society of German Chemists (GDCh) [1]. Moreover, in
vanilla extracts prepared by an enzymatic curing process, 5'°Cy.ppg values for vanil-
lin of —21.6 to —22.2%¢ were found [13], which are significantly more negative than
those of vanilla extracts from traditional curing. Data suggest that the less negative
8"Cyppp values in traditional extracts are the result of an isotope discriminating



10 Authenticity Control of Natural Products by Stable Isotope Ratio Analysis 275

Table 10.5 Mean values of (D/H); of vanillin from the main origins [29]. The numbering for
(D/H); of the different positions is consistent with earlier publications and follows peak order in the
H-NMR spectra but is not based on TUPAC references (see Fig. 10.4)

Origin (D/H), (ppm) (D/H); (ppm) (D/H), (ppm) (D/H)s (ppm)
Ex-beans 130.8 157.3 196.4 126.6
Ex-lignin 119.9 132.1 168.8 105.9
Ex-guaiacol 315.2 138.8 143.8 139.1

degradation of vanillin in the traditional process [13]. Less negative §*Cy.ppp values
were also reported for vanillin-flavored dairy products. An incomplete enzymatic
oxidation of vanillin to vanillic acid was made likely to explain these unexpected
analytical deviations [22]. Authenticity control of vanillin by §*Cy.ppp values can be
supplemented by the determination of the §*Hy.syow values (Table 10.4) [3]. More
sophisticated adulterations can be detected by degradation of the vanillin molecule
and subsequent IRMS measurement of the generated product [15], by IRMS mea-
surements of accompanying substances [21, 33] or by §*Oy.gyow measurements of
vanillin or its degradation products [3, 18].

If enough sample material is available in pure form, position-specific isotope
analysis by SNIF-NMR is possible. ZH-NMR and *C-NMR can be employed to
distinguish between vanillin of natural, biotechnological and chemosynthetic ori-
gin [2, 24, 28, 29, 39]. Table 10.5 shows the (D/H); values of vanillin samples of
different origin. A relatively high value for (D/H), is characteristic for vanillin
ex-beans and can be explained by an isotope effect during the mono-oxygenase
catalyzed hydroxylation reaction of cinnamic acid to para-coumaric acid which
involves an NIH-shift [25]. Using additionally quantitative 3*C-NMR, the *C/"2C
ratios at all eight carbon positions of the vanillin molecule can be exploited.
Improved discrimination using all eight sites is preferable to differentiate between
different methods of production from natural ferulic acid or between natural and
lignin-derived vanillin on the basis of the *C/!C ratios characteristic of different
origins (Fig. 10.5) [39].

10.3.2 Terpenes (Monoterpenes and Tetraterpenes)

The monoterpene linalool, together with its esters like linalyl acetate, is one of the
most frequently used fragrance substances and is produced in large quantities. In the
1950s, linalool was isolated from essential oils but currently this method plays no
longer a commercial role. Since linalool is an important intermediate in the chemi-
cal synthesis of vitamin E, several large-scale processes are available today for its
chemical synthesis [38]. a- and B-pinene or 6-methylhept-5-en-2-one can be used as
starting materials. SNIF-NMR combined with IRMS can be used to characterize
linalool and linalyl acetate obtained from chemical synthesis or extracted from
essential oils of well-defined botanical and geographical origins [16, 26]. Other
acyclic monoterpenes, citral and citronellal, hold key positions as fragrance and
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Fig.10.5 Bidimensional representations of the PCA performed on partial reduced molar fractions
fi/F; of sites (carbons) 1 and 5-8 of vanillin calculated from '*C NMR spectra. The samples are
represented in the plane of the two main axes (CP1 and CP2), and the relative weights are indicated
in parentheses [39] (Copyright by American Chemical Society, reproduced with permission)

flavor chemicals and serve as starting materials for the synthesis of other flavor
compounds [38]. Natural citral is nearly always a mixture of the two isomers gera-
nial and neral. Since citral is used in bulk as a starting material for the synthesis of
vitamin A, it is produced on a large scale by various chemical syntheses. Isotope
data obtained from GC-IRMS measurements (6"*Cy.ppg and §*Hy.gmow) allowed to
determine the origin of these terpenes and to detect adulterations [27].

Carotenoids like beta-carotene, lycopene and lutein are of increasing commer-
cial importance in the nutraceutical industry. There is thus an interest in developing
a reliable method for authenticity assessment of these compounds. Applying
EA-IRMS, the 6"Cyppg and §*Hy.guow values of these carotenoids and carotene-
based commercial dietary supplements were determined in comparison to those of
synthetic, biotechnological and natural references [23]. It could be shown that the
natural stable isotopic composition of carotenoids is a powerful tool for determining
their origin.

10.3.3 Polyphenols (Resveratrol)

Resveratrol is a long known plant secondary metabolite that received considerable
attention due to its biological activity (see also Chap. 3 of this book). It is com-
mercially available as a food additive and there are two sources for this material: the
costly plant extraction and the chemical synthesis from two readily accessible C-6-
C-1 precursors, that is, anisaldehyde and 3,5-dimethoxybenzaldehyde. The
C6-C2-C6 framework of suitably derivatized resveratrol can be degraded with
ozone to the C6-C1 aldehydes [11]. These derivatives of either synthetic or natural
origin can be characterized and distinguished by SNIF-NMR. The positional
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5"80y.smow Vvalues of resveratrol samples were also determined following a selective
deoxygenation procedure. These results demonstrate the utility of simple chemical
degradations in the stable isotope characterization of structurally complex food
components.

10.3.4 Alkaloids (Caffeine)

Purine alkaloid-containing drinks like tea and coffee are the most popular type of
hot beverage in the world, and synthetic caffeine (a purine alkaloid) is also added to
energy drinks and cola-type soft drinks (see also Chap. 6 of this book). In the case
of caffeine, the synthetic product is much depleted in *C and "N, and its character-
ization by SNIF-NMR and EA-IRMS is straightforward [7]. The 83 CVy.ppg, 8*Hy.
smow and 880y.syow values of caffeine isolated from Arabica green coffee beans of
different geographical origin have been determined by isotope ratio mass spectrom-
etry (IRMS) using elemental analysis (EA) in the “combustion” (C) and “pyrolysis”
(P) modes (EA-C/P-IRMS) [40]. Within the natural species, the climatic depen-
dency enables caffeine from Africa and South America to be distinguished. A new
method for compound-specific isotope analysis (CSIA) by coupling high-
temperature reversed-phase liquid chromatography to isotope ratio mass spectrom-
etry (HT-RPLC/IRMS) was developed for discrimination of natural and synthetic
caffeine contained in all types of drinks [41]. More recently, a methodology has
been developed that exploits the power of isotopic quantitative *C nuclear magnetic
resonance (NMR) spectrometry combined with chemical modification of the xan-
thines (caffeine, theobromine, and theophylline) to enable the determination of
positional intramolecular *C/"2C ratios (8'3C;) with high precision [9].

10.4 Conclusions

An overview of the established methods for SIRA as well as their fields of applica-
tion in the authenticity control of various natural products has been given. For this
methodology to be successfully employed in the future by control authorities and
quality managers, the implementation of databases is highly recommended to moni-
tor the stable isotope ratios of the natural products of commercial importance. This
is of vital interest to safeguard the interests of consumers and honest
manufacturers.

References

1. Arbeitsgruppe Aromastoffe. Lebensmittelchemische Gesellschaft der Gesellschaft Deutscher
Chemiker. Grundlagenpapier ‘Herkunft und Authentizitit von Vanillearomen’ [Internet]. 2016
[cited 2016 Oct 4]. Available from: https://www.gdch.de/fileadmin/downloads/Netzwerk_
und_Strukturen/Fachgruppen/Lebensmittelchemiker/Arbeitsgruppen/aromastoffe/vanille_
aroma.pdf


https://www.gdch.de/fileadmin/downloads/Netzwerk_und_Strukturen/Fachgruppen/Lebensmittelchemiker/Arbeitsgruppen/aromastoffe/vanille_aroma.pdf
https://www.gdch.de/fileadmin/downloads/Netzwerk_und_Strukturen/Fachgruppen/Lebensmittelchemiker/Arbeitsgruppen/aromastoffe/vanille_aroma.pdf
https://www.gdch.de/fileadmin/downloads/Netzwerk_und_Strukturen/Fachgruppen/Lebensmittelchemiker/Arbeitsgruppen/aromastoffe/vanille_aroma.pdf

278 M. Wist

2. Bayle K, Grand M, Chaintreau A, Robins RJ, Fieber W, Sommer H, et al. Internal referencing
for 13C position-specific isotope analysis measured by NMR spectrometry. Anal Chem.
2015;87(15):7550-4.

3. Bensaid FF, Wietzerbin K, Martin GJ. Authentication of natural vanilla flavorings: iso-
topic characterization using degradation of vanillin into guaiacol. J Agric Food Chem.
2002;50(22):6271-5.

4. Bononi M, Quaglia G, Tateo F. Easy extraction method to evaluate §13C vanillin by liquid
chromatography—isotopic ratio mass spectrometry in chocolate bars and chocolate snack
foods. J Agric Food Chem. 2015;63(19):4777-81.

5. Brenna JT. Natural intramolecular isotope measurements in physiology: elements of the case
for an effort toward high-precision position-specific isotope analysis. Rapid Commun Mass
Spectrom. 2001;15(15):1252-62.

6. Corso TN, Brenna JT. High-precision position-specific isotope analysis. Proc Natl Acad Sci.
1997;94(4):1049-53.

7. Danho D, Naulet N, Martin GJ. Deuterium, carbon and nitrogen isotopic analysis of
natural and synthetic caffeines. Authentication of coffees and coffee extracts. Analusis.
1992;20(3):179-84.

8. Dias RF, Freeman KH, Franks SG. Gas chromatography—pyrolysis—isotope ratio mass spec-
trometry: a new method for investigating intramolecular isotopic variation in low molecular
weight organic acids. Org Geochem. 2002;33(2):161-8.

9. Diomande DG, Martineau E, Gilbert A, Nun P, Murata A, Yamada K, et al. Position-specific
isotope analysis of Xanthines: a 13C nuclear magnetic resonance method to determine the 13C
intramolecular composition at natural abundance. Anal Chem. 2015;87(13):6600-6.

10. European Union. Regulation (EC) No 1334/2008 of the European Parliament and of the
Council of 16 December 2008 on flavourings and certain food ingredients with flavouring
properties for use in and on foods and amending Council Regulation (EEC) No 1601/91,
Regulations (EC) No 2232/96 and (EC) No 110/2008 and Directive 2000/13/EC. Off J Eur
Union. 2008;51:34-50.

11. Fronza G, Fuganti C, Serra S, Cisero M, Koziet J. Stable isotope labeling pattern of resveratrol
and related natural stilbenes. J Agric Food Chem. 2002;50(10):2748-54.

12. Gallage NJ, Mgller BL. Vanillin—bioconversion and bioengineering of the most popular plant
flavor and its de novo biosynthesis in the vanilla orchid. Mol Plant. 2015;8(1):40-57.

13. Gassenmeier K, Binggeli E, Kirsch T, Otiv S. Modulation of the 13C/12C ratio of vanillin from
vanilla beans during curing. Flavour Fragr J. 2013;28(1):25-9.

14. Godin JP, Breuillé D, Obled C, Papet I, Schierbeek H, Hopfgartner G, Fay LB. Liquid and gas
chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine
isotopic ratios in complex biological samples. J Mass Spectrom. 2008;43(10):1334-43.

15. Greule M, Tumino LD, Kronewald T, Hener U, Schleucher J, Mosandl A, et al. Improved
rapid authentication of vanillin using 813C and 82H values. Eur Food Res Technol.
2010;231(6):93341.

16. Hanneguelle S, Thibault JN, Naulet N, Martin GJ. Authentication of essential oils containing
linalool and linalyl acetate by isotopic methods. J Agric Food Chem. 1992;40(1):81-7.

17. Hansen A-MS, Fromberg A, Frandsen HL. Authenticity and traceability of vanilla flavors by
analysis of stable isotopes of carbon and hydrogen. J Agric Food Chem. 2014;62(42):10326-31.

18. Hener U, Brand WA, Hilkert AW, Juchelka D, Mosandl A, Podebrad F. Simultaneous on-line
analysis of 180/160 and 13C/12C ratios of organic compounds using GC-pyrolysis-IRMS. Z
Fiir Leb Forsch A. 1998;206(3):230-2.

19. Hiibschmann H-J. Handbook of GC-MS: fundamentals and applications. Weinheim: Wiley;
2015.

20. Jochmann MA, Schmidt TC. Compound-specific stable isotope analysis. Cambridge: Royal
Society of Chemistry; 2012.

21. Kaunzinger A, Juchelka D, Mosandl A. Progress in the authenticity assessment of vanilla. 1.
Initiation of authenticity profiles. J Agric Food Chem. 1997;45(5):1752-17.



Authenticity Control of Natural Products by Stable Isotope Ratio Analysis 279

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Kempe K, Kohnen M. Deterioration of natural vanilla flavours in dairy products during
processing. Adv Food Sci. 1999;21(1-2):48-53.

Kroll H, Friedrich J, Menzel M, Schreier P. Carbon and hydrogen stable isotope ratios of carot-
enoids and p-carotene-based dietary supplements. J Agric Food Chem. 2008;56(11):4198-204.
Martin G, Remaud G, Martin GJ. Isotopic methods for control of natural flavours authenticity.
Flavour Fragr J. 1993;8(2):97-107.

Martin GJ, Heck G, Djamaris-Zainal R, Martin ML. Isotopic criteria in the characterization of
aromatic molecules. 1. Hydrogen affiliation in natural benzenoid/phenylpropanoid molecules.
J Agric Food Chem. 2006;54(26):10112-9.

Martin GJ, Lavoine-Hanneguelle S, Mabon F, Martin ML. The fellowship of natural abun-
dance 2H-isotopomers of monoterpenes. Phytochemistry. 2004;65(20):2815-31.

Nhu-Trang T-T, Casabianca H, Grenier-Loustalot M-F. Authenticity control of essential oils
containing citronellal and citral by chiral and stable-isotope gas-chromatographic analysis.
Anal Bioanal Chem. 2006;386(7-8):2141-52.

Remaud GS, Akoka S. A review of flavors authentication by position-specific isotope anal-
ysis by nuclear magnetic resonance spectrometry: the example of vanillin. Flavour Fragr
J.2017;32(2):77-84.

Remaud GS, Martin Y-L, Martin GG, Martin GJ. Detection of sophisticated adulterations
of natural vanilla flavors and extracts: application of the SNIF-NMR method to vanillin and
p-hydroxybenzaldehyde. J Agric Food Chem. 1997;45(3):859-66.

Rozin P. The meaning of ‘natural’ process more important than content. Psychol Sci.
2005;16(8):652-8.

Rozin P, Spranca M, Krieger Z, Neuhaus R, Surillo D, Swerdlin A, et al. Preference for natural:
instrumental and ideational/moral motivations, and the contrast between foods and medicines.
Appetite. 2004;43(2):147-54.

Schifer U, Kiefl J, GeiBler T, GeiBler K, Kassing M, Ley J, et al. Recent advances in the
authenticity control of bioflavours. Biofavour 2015 — book Abstr. Frankfurt/Main: Dechema
e.V; 2015. p. 53.

Scharrer A. Vanille : Neues zur Authentizitit [Internet]. [Franfurt am Main]: Universitit
Frankfurt am Main; 2002 [cited 2016 Oct 4]. Available from: http://publikationen.ub.uni-
frankfurt.de/frontdoor/index/index/docld/5451/

Schmidt H-L. Fundamentals and systematics of the non-statistical distributions of isotopes in
natural compounds. Naturwissenschaften. 2003;90(12):537-52.

Schmidt H-L, Mosandl A, Schreier P, Rofmann A, Werner RA. Stable isotope ratio analysis
in quality control of flavourings. In: Ziegler H, editor. Flavourings: production, composition,
applications, regulations. Weinheim:Wiley-VCH; 2007.

Schmidt H-L, Werner RA, Eisenreich W. Systematics of 2H patterns in natural com-
pounds and its importance for the elucidation of biosynthetic pathways. Phytochem Rev.
2003;2(1-2):61-85.

Schmidt H-L, Werner RA, RoBBmann A. 180 pattern and biosynthesis of natural plant products.
Phytochemistry. 2001;58(1):9-32.

Surburg H, Panten J. Common fragrance and flavor materials: preparation, properties and uses.
Weinheim: Wiley; 2016.

Tenailleau EJ, Lancelin P, Robins RJ, Akoka S. Authentication of the origin of vanillin using
quantitative natural abundance 13C NMR. J Agric Food Chem. 2004;52(26):7782-7.
Weckerle B, Richling E, Heinrich S, Schreier P. Origin assessment of green coffee
(Coffea arabica) by multi-element stable isotope analysis of caffeine. Anal Bioanal Chem.
2002;374(5):886-90.

Zhang L, Kujawinski DM, Federherr E, Schmidt TC, Jochmann MA. Caffeine in your drink:
natural or synthetic? Anal Chem. 2012;84(6):2805-10.


http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/5451/
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/5451/

Natural or Synthetic? The Legal 1 1
Framework in the EU for the Production
of Natural Flavouring Ingredients

Jan C.R. Demyttenaere

11.1 Introduction

In the EU, the legal framework for the safe and correct use of flavourings is the
European Flavouring Regulation (EC) No 1334/2008 [1]. This regulation does not
only cover “flavourings” as such but also other “food ingredients with flavouring
properties for use in and on foods”. According to Recital (5) of the Regulation, the
purpose is to protect the human health. This Regulation was published on 31/12/2008
and entered into force on 20 January 2009 with a transition period of 2 years until
its application from 20 January 201 1. It repeals the former Flavour Directive 88/388/
EC of 1988 [2], which applied until almost a decade ago.

With the introduction of a “Flavouring Regulation” in 2008 the implementation
by the different EU Member States should be better harmonised as stipulated by the
last line of the Regulation: “This Regulation shall be binding in its entirety and
directly applicable in all Member States.”

This Chapter will mainly focus on definitions of natural flavouring ingredients
(natural flavouring substances and flavouring preparations) and the permissible pro-
cesses for their preparation. However some insight will also be given in the correct
labelling (Business-to-Business) of flavourings (in particular natural flavourings)
and on the safety evaluation of flavourings in the EU.

Disclaimer: The views expressed in this chapter are purely those of the author and may not in any
circumstances be regarded as stating an official position of the European Flavour Association
(EFFA), although the EFFA Guidance Documents are often referred to in this Chapter and have
been consulted as basis for this contribution.
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11.2 General Conditions

The Flavouring Regulation is built up of six chapters and five Annexes. Chapter I
(Subject Matter, Scope and Definitions) covers Articles 1-3 including definitions
which will be discussed in more detail in this chapter. Chapter IV (Labelling) will
be addressed in more detail in the section on the labelling rules. However, also
Recitals provide important information and clarification on certain requirements.

For example Recital (7) describes some criteria to which flavourings should
comply: “Flavourings are used to improve or modify the odour and/or taste of foods
for the benefit of the consumer. Flavourings and food ingredients with flavouring
properties should only be used if they fulfil the criteria laid down in this Regulation.
They must be safe when used, and certain flavourings should, therefore, undergo a
risk assessment before they can be permitted in food. Where possible, attention
should be focused on whether or not the use of certain flavourings could have any
negative consequences on vulnerable groups. The use of flavourings must not mis-
lead the consumer and their presence in food should, therefore, always be indicated
by appropriate labelling. Flavourings should, in particular, not be used in a way as
to mislead the consumer about issues related to, amongst other things, the nature,
freshness, quality of ingredients used, the naturalness of a product or of the produc-
tion process, or the nutritional quality of the product. [...]”.

Thus, flavourings are used to impart or modify the odour and/or taste of foods;
according to Art. 3(4) of the Flavouring Regulation, flavourings may contain food
additives as permitted by Regulation (EC) No 1333/2008 (the Additives Regulation
[3]) and/or other food ingredients incorporated for technological purposes.

The general conditions for the use of flavourings or food ingredients with fla-
vouring properties are laid down in Art. 4: they can only be used in or on food if they
do not, on the basis of the scientific evidence available, pose a safety risk to the
health of the consumer, and if their use does not mislead the consumer.

For more information the author refers to the Guidance Documents of EFFA
(European Flavour Association) which are available and can be consulted on the
open EFFA website: www.effa.eu namely: EFFA Guidance Document on the
European Flavour Regulation [4] and EFFA Guidance Document for the
Production of Natural Flavouring Substances and (Natural) Flavouring
Preparations in the EU [5].

11.3 Scope of the Regulation

The scope of the Flavouring Regulation is clearly outlined in Art. 2 of the Regulation
which applies to:

— flavourings which are used or intended to be used in or on foods;
— food ingredients with flavouring properties;
— food containing flavourings and/or food ingredients with flavouring properties;
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— source materials for flavourings and/or source materials for food ingredients with
flavouring properties

However, the regulation does not apply to:

— substances which have exclusively a sweet, sour or salty taste;

— raw foods;

— non-compound foods and mixtures such as, but not exclusively, fresh, dried or
frozen spices and/or herbs, mixtures of tea and mixtures for infusion as such as
long as they have not been used as food ingredients.

The first bullet point above is very important as it clearly defines that substances
which only impart a sweet (e.g. sweeteners), sour (e.g. acidulents) or salty (e.g.
mineral salts) taste are out of the scope of the flavouring regulation. But also spices
and herbs (fresh or dried or frozen) and tea and infusions are out of the scope of this
regulation, unless they are used exclusively as “food ingredients” to impart a fla-
vouring to the final food.

11.4 Definitions
11.4.1 Definitions of Flavourings in General

Art. 3 of the Flavouring Regulation defines a ‘flavouring’ as products not intended
to be consumed as such, which are added to food in order to impart or modify odour
and/or taste.

It is important to stress that flavourings are ingredients which are added to food
to give it a certain taste or aroma but they should not be consumed as such.

The flavouring regulation further defines six different categories of flavourings:
flavouring substances (either natural or not), flavouring preparations (per definition
natural), thermal process flavourings, smoke flavourings, flavour precursors and
other flavourings or mixtures thereof.

Although all of these categories (or mixtures thereof) can be used and added to
food, this chapter will mainly focus on natural flavouring substances and flavouring
preparations (which are per definition natural flavouring ingredients according to
Art. 3(2)(d)). The following paragraphs will focus on the production of natural fla-
vouring substances and flavouring preparations and their labelling from a Business-
to-Business perspective (B2B).

According to Art. 3(2)(b) a ‘flavouring substance’ means a “defined chemical
substance with flavouring properties”. Hence, a flavouring substance is a chemi-
cally defined substance which further complies with the criteria defined in Art. 3(2)
(a). Flavouring substances can be natural in which case they have to comply with
Art. 3(2)(c) on ‘natural flavouring substance’ — in the other case they are simply
referred to as a “flavouring substance”. The old distinction (from the former Flavour
Directive 88/388/EC) between “nature-identical flavouring substances” and
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“artificial flavouring substances” no longer applies. Hence what used to be referred
to as nature-identical (NI) or artificial flavouring substances is today simply called
“flavouring substances”. Note that also the annotation “synthetic flavouring sub-
stances” is not used in the regulation and would be a terminology without legal
basis. The same applies to the terminology “artificial” which is not legally defined
for flavourings. Consequently labels or claims on the front of final food products
such as “without artificial flavourings” have no legal basis whatsoever — they are
misleading to the consumers and should therefore be avoided.

11.4.2 Definition of Natural Flavouring Substance

As mentioned above, “natural flavouring substances” (which constitute one subcat-
egory of “flavouring substances”) are defined by Art. 3(2)(c):

(c) ‘natural flavouring substance’ shall mean a flavouring substance obtained by appropri-
ate physical, enzymatic or microbiological processes from material of vegetable, animal or
microbiological origin either in the raw state or after processing for human consumption
by one or more of the traditional food preparation processes listed in Annex IlI. Natural
flavouring substances correspond to substances that are naturally present and have been
identified in nature;

Thus in order to call a flavouring substance “natural” three cumulative basic
requirements have to be checked:

1. The source material must be from material of vegetable, animal or microbiologi-
cal origin, either in the raw state or after processing for human consumption by
traditional food preparation processes listed in Annex II (or combinations
thereof);

2. The identification in nature of the manufactured flavouring substance must be
valid and meeting the criteria as further explained below.

3. The natural processes, their sequence and conditions thereof applied during
manufacture: as stipulated by Art. 3(2)(k) and Annex II.

Substances which do not meet the above-mentioned requirements shall not be
considered as being natural.

(a) Source material requirements

According to the first criterion (and as defined in Art. 3(2)(c) by the wording
“either in the raw state or after processing for human consumption by one or more
of the traditional food preparation processes listed in Annex I1...”") the source mate-
rial for the production of natural flavouring substances is not restricted to the unpro-
cessed/raw source materials (material of vegetable, animal or microbiological
origin): also processed source materials can be used as a basis for the production of
natural flavouring substances. However, the “processing” should be done by strict
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Table 11.1 List of traditional food preparation processes (Annex II to Flavouring Regulation
(EC) No 1334/2008) [* footnote by EFFA added (EFFA Guidance document)]

Used in the kitchen at home and in industrial food preparation facilities

Chopping Coating

Heating, cooking, baking, frying (up to Cooling

240 °C at atmospheric pressure) and pressure

cooking (up to 120 °C)

Cutting Distillation/rectification

Drying Emulsification

Evaporation Extraction, incl. solvent extraction in
accordance with Directive 88/344/EEC

Fermentation Filtration

Grinding Maceration

Infusion Mixing

Microbiological processes™ Percolation

Peeling Refrigeration/Freezing

Pressing Squeezing

Roasting/Grilling Steeping

*The Flavour Industry considers these to include “enzymatic processes”

criteria, namely using typical “traditional food preparation processes” as listed in
Annex II of the Regulation — these are the processes typically used in a kitchen (at
home) or in industrial food preparation facilities.

Annex II of the Flavouring regulation gives a list of “traditional food preparation
processes” by which natural flavouring substances and (natural) flavouring prepara-
tions can be obtained (see Table 11.1).

(b) Identified in nature

The second requirement (identification in nature) is a very important one (and
was not part of the former Flavour Directive 88/388/EC) and in particular applies to
natural flavouring substances.

It clearly requires that a substance has to be identified in nature before it can be
regarded as ‘natural’, so it is not only sufficient to produce it by a permissible pro-
cessing. It has to be identical to a substance which is present in nature. This is to
avoid that a substance that has never been identified in nature before (and is not
naturally occurring), such as ethylvanillin, would be labelled as a ‘natural flavour-
ing substance’, even if today a (new) “natural process” has been discovered (e.g.
through biotechnology) for its production that was not described before.

This could be the case when a new enzymatic or microbial process would be
developed by which a flavouring substance can be produced “by enzymatic or
microbial processes from material of vegetable origin” (i.e. natural source materi-
als), which has so far never been identified in nature.

Since such substance has not been “identified in nature” before, it can never be
claimed to be “natural” even if the new production process is technically speaking a
“natural process”.



286 J.C.R. Demyttenaere

According to EFFA’s interpretation, “identified in nature means”:

— it has been identified in materials of plant, animal, microbiological, or mineral
origin, and/or

— it has been identified in food in the raw state or processed or partly processed for
human consumption.

In addition, within the global Flavour Industry, there is a general principle and
agreement that in order to decide that a flavouring substance has been ‘identified in
nature’, any identification needs to meet the criteria for the validity of identifications
in nature as described by IOFI (International Organization of the Flavor Industry)
[6] and where necessary in specific IOFI guidelines for using the technique of
LC-MS for identifications [7].

A very important note though is the following EFFA consideration: a process
used to produce a natural flavouring substance or flavouring preparation may not in
itself be used to qualify the resulting product as natural if the end product cannot be
found in nature or in products traditionally used as foods by human beings (see
example above on ethylvanillin).

(c) Production processes acceptable as natural

The third requirement relates to the types of processes that can be applied to
produce / obtain a natural flavouring substance. Processes can either be the same
“traditional food preparation processes” (listed in Annex II; Table 11.1) which can
also be applied to the raw source materials but can also be “appropriate physical,
enzymatic and microbiological processes”.

The EU Flavouring Regulation defines “appropriate physical process” in Art.
3(2)(k).

This definition reads as follows:

(k) ‘appropriate physical process’ shall mean a physical process which does not intention-
ally modify the chemical nature of the components of the flavouring, without prejudice to
the listing of traditional food preparation processes in Annex II, and does not involve, inter
alia, the use of singlet oxygen, ozone, inorganic catalysts, metal catalysts, organometallic
reagents and/or UV radiation.

Strictly speaking, any process that “intentionally modifies the chemical nature of
the components of the flavouring” would not be regarded as an ‘appropriate physical
process’. However, the wording “without prejudice to the listing of traditional food
preparation processes in Annex II” in Art. 3(2)(k) indicates that all processes listed
in Annex II also fall under the definition of “appropriate physical processes”
although it is well-known that e.g. frying up to 240 °C and fermentation modify the
chemical structure of the components of the flavouring.

A scheme showing the production of Natural Flavouring Substances according
to the definition (Art. 3(2)(c) of the Flavouring Regulation) is depicted in Fig. 11.1.
A “Natural Flavouring Substance” can be obtained either directly from material of
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Material of vegetable, animal or microbiological origin

» inthe Raw state, or: | Annex Il process

» After processing for human consumption by one or more of
the traditional food preparation processes (listed in Annex I1)

= Appropriate physical
= Enzymatic processes
= Microbiological

Y

Natural Flavouring Substance

Fig. 11.1 Scheme depicting the production of Natural Flavouring Substances according to the
definition (Art. 3(2)(c) of the Flavouring Regulation (EC) No 1334/2008)

vegetable, animal or microbiological origin “in the raw state” or “after processing
for human consumption”. In the first case (from the source material in the raw state),
it can be obtained after various “appropriate physical” processes (as defined by Art.
3(2)(k) mentioned above) but also “enzymatic or microbiological processes” as
listed in Annex II.

In the second case “after processing for human consumption” a two-step
approach is involved, where the first step “processing for human consumption”
should be one of the “traditional food preparation processes” listed in Annex II. The
second step is again any other process (appropriate physical, enzymatic or micro-
biological process), which means not only processes listed in Annex II but also a
process as defined by Art. 3(2)(k).

Some further considerations on the term “for human consumption” will be pro-
vided in the section on the safety evaluation of flavourings.

(d) Consideration of geometric and optical isomers

Many flavouring substances may exist as distinct geometric isomers (Z/E, more
commonly referred to as cis/trans). It is EFFA’s position that mixtures of such iso-
mers do not have to be produced in the same ratio as they are found in a specific
food or in a natural source. If all geometric isomers have been identified in nature,
the production of a mixture of geometric isomers in any ratio should be allowed in
order to call the mixture natural.
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Flavouring substances may have one or more chiral centres and hence can exist
as different optical isomers and stereoisomers (enantiomers and diastereoisomers,
resp.). According to the EFFA Guidance, mixtures of optical isomers and stereoiso-
mers shall be allowed in any ratio provided that all the isomers are identified in
nature.

However, if only one out of two (or more) isomers has been identified in nature
the mixture of the two (or more) isomers cannot be regarded as natural if the other
isomer(s), not identified in nature is (are) present at levels that are higher than trace
levels (i.e. unavoidable levels <1%).

In that respect EFFA considers that if one of the geometric or optical isomers has
not (yet) been reported to have been identified in nature, it must be interpreted as an
artefact of the natural process. Any flavouring substance thus produced would not
qualify as natural unless the artefacts present are in small amounts (<1%: unavoid-
able traces) that do not contribute to the flavour of the natural ingredient.

11.4.3 Definitions of Flavouring Preparations

As already mentioned above, “flavouring preparations” (which constitute another
category of flavourings) are always natural as defined by Art. 3(2)(d):

(d) ‘flavouring preparation’ shall mean a product, other than a flavouring substance,

obtained from:
(1) food by appropriate physical, enzymatic or microbiological pro-
cesses either in the raw state of the material or after processing for
human consumption by one or more of the traditional food preparation
processes listed in Annex II (Table 11.1);

and/or

(ii) material of vegetable, animal or microbiological origin, other than
food, by appropriate physical, enzymatic or microbiological processes,
the material being taken as such or prepared by one or more of the tra-
ditional food preparation processes listed in Annex II;

A very important element (which does not apply to flavouring substances) is the
distinction between flavouring preparations obtained from food sources (Art. 3(2)
(d)(i)) and those obtained from non-food sources (Art. 3(2)(d)(ii)). The reason
behind is the potential need for a safety evaluation depending on the source (fla-
vouring preparations from food source materials do not need to undergo a safety
evaluation). This aspect will be addressed in the section on the safety evaluation.

Thus in order to call a flavouring a “flavouring preparation” (and thus natural)
two cumulative basic requirements have to be checked:

1. The source material must be from food (raw or processed for human consump-
tion, refer to Annex II, Table 11.1) or from material of vegetable, animal or
microbiological origin, other than food (either taken as such or prepared by
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Food or Material of vegetable, animal or microbiological origin
other than food

» inthe Raw state,or: | Annex Il process
» As such, or: Annex Il process

» After processing for human consumption / Prepared by one or more
of the traditional food preparation processes (listed in Annex Il)

= Appropriate physical
= Enzymatic processes
= Microbiological

Flavouring Preparation from food or from non-food

Fig.11.2 Scheme depicting the production of (Natural) Flavouring Preparation from food sources
[in red font] or from non-food sources [in green font] (according to the definition (Art. 3(2)(d)(i)
& Art. 3(2)(d)(ii), resp. of the Flavouring Regulation (EC) No 1334/2008)

traditional food preparation processes listed in Annex II (Table 11.1, or combina-
tions thereof));

2. The natural processes, their sequence and conditions thereof applied during
manufacture are stipulated by Art. 3(2)(k) and Annex II (Table 11.1).

Flavourings which do not meet the above-mentioned requirements shall not be
considered as “flavouring preparations” and thus not as natural. Depending on their
sources and the production methods, such mixtures might still fall under the cate-
gory ‘thermal process flavourings’ (Art. 3(2)(e)), ‘smoke flavourings’ (Art. 3(2)(f))
or ‘other flavourings’ (Art. 3(2)(h)).

(a) Source material

A scheme with the production of a (Natural) Flavouring Preparation from food
sources according to the definition Art. 3(2)(d)(i) and from non-food sources
(according to the definition Art. 3(2)(d)(ii)) is shown in Fig. 11.2 [red font is used
for food sources, whereas green font is used for materials other than food].

In both cases (analogue to the production of natural flavouring substances), a
preparation can be obtained either from the raw food [in red font] (or the non-food
source material [in green font] taken as such — unprocessed) or from food [red font]
(or a non-food source material [green font]) processed (or prepared, resp.) by one or
more of the traditional food preparation processes listed in Annex II (Table 11.1).
The second step involves again any other process (appropriate physical, enzymatic
or microbiological process), which means not only a process listed in Annex II but
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also a process as defined by Art. 3(2)(k). The end result will be a flavouring prepara-
tion either from food sources [red font] according to Art. 3(2)(d)(i) or from non-
food sources [green font] according to Art. 3(2)(d)(ii).

Typical examples of flavouring mixtures which are used in foods for their fla-
vouring properties are essential oils and extracts and a key question is whether such
mixtures would have the “natural” status and can be regarded as “flavouring prepa-
rations” according to Art. 3(2)(d).

Considering the criteria listed above, it can be concluded that according to this
definition (Art. 3.2(d)) essential oils and extracts obtained from plant material
(material of vegetable origin) prepared by distillation (which is a traditional food
preparation process listed in Annex II, Table 11.1), followed by an appropriate
physical process can be considered as a ‘flavouring preparation’ and thus natural,
as long as the chemical nature of the components is not intentionally modified dur-
ing the physical process.

However, as it is EFFA’s understanding (see above) that the definition of “appro-
priate physical processes (Art. 3(2)(k)) also covers all processes listed in Annex 11
(Table 11.1) an essential oil will still be regarded as a “flavouring preparation” and
hence natural, even if the distillation (which is listed in Annex II, Table 11.1) and
some of the following physical processes (e.g. extraction, drying, evaporation, con-
centration...) may modify the chemical nature of the components. The intention to
apply those processes is to obtain the “flavouring preparations” for example in the
expected purity or concentration range. It is not the intention to modify the chemical
nature of the ingredients. Thus an occurring modification during a process like dis-
tillation (e.g. in the production of essential oils) is not intentionally and therefore
does not prevent the material from being natural.

ISO Standard 9235 gives some examples of different flavouring preparations
such as essential oils, extracts and tinctures [8].

With regard to the permitted source materials for the production of natural fla-
vourings, EFFA in its Guidance Document makes a special note that the source
materials which can be used are material of vegetable, animal or microbiological
origin but not minerals.

EFFA further considers that these sources may be foods as well as non-foods.
Source materials for the production of natural flavouring ingredients may also
include less routinely consumed parts of plant material as well as co- and/or by-
products of food production such as fibre, hulls, stems, shells etc. (see in this respect
Recital (16) of the Regulation).

(b) Permissible processes for the production of (natural) flavouring
preparations

The processes that can be used for the production of flavouring preparations are
essentially the same as for the production of natural flavouring substances.

EFFA has developed a Guidance Document for the European Flavour Industry
on the Permissible Processes to obtain natural flavouring ingredients (i.e. natural
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Fig. 11.3 Scheme on the permissible processes for the production of natural flavouring ingredi-
ents (Source: EFFA Guidance Document on natural flavouring ingredients [5])

flavouring substances and (natural) flavouring preparations) which is published on
the EFFA-website [5].

A scheme on the permissible processes for the production of natural flavouring
ingredients (according to the EFFA Guidance Document mentioned above) is shown
in Fig. 11.3.

As can be seen from this scheme (yellow box in Fig. 11.3) all processes (including
the appropriate physical processes (Art. 3(2)(k)) as well as the traditional food prepa-
ration processes (Annex II, Table 11.1) and microbial and enzymatic processes) are
regarded as “permissible processes” to obtain natural flavouring ingredients.
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This scheme also explains why essential oils are considered as natural even if
some of the processes (like distillation) would be able to modify the chemical nature
of the components.

11.5 Processes for the Production of Natural Flavouring
Ingredients

11.5.1 EFFA Considerations on the Permitted Order
of the Various Processes

In the EFFA Guidance document for the production of natural flavouring ingre-
dients, some special considerations are given to the permissible processes
(including appropriate physical processes, microbiological and enzymatic pro-
cesses and traditional food preparation processes (Annex II, Table 11.1)) and
the order in which they can be applied for the production of natural flavouring
ingredients.

From the wording of the regulation it is clear that the traditional food preparation
processes take place before the physical, enzymatic and microbiological processes
are applied. However, it is the understanding of EFFA that the physical, enzymatic
and microbiological processes may be used sequentially and repetitively in any
order as is also the case for the food preparation processes in Annex II (Table 11.1).
The regulation does not provide any limitations to this extent. EFFA further empha-
sises that natural processes do not have to mimic the route of formation by which
the flavouring substances or preparations are formed in the vegetable, animal or
microbiological source and/or during traditional food processing.

A natural flavouring substance or preparation may be produced by consecutive
steps involving a series of intermediates. Each step must be recognised as a natural
process. However, the intermediates themselves do not have to be recognised as
flavouring ingredients (substances) nor as food intended for human consumption as
such.

Several processes may be used for the production of natural flavouring ingredi-
ents. To further facilitate a transparent view of the consecutive steps used in natural
flavouring production and how they are applied is covered in the Regulation, Chapter
V of the EFFA Guidance Document which provides an open-ended list of such
processes and includes concise descriptions and conditions of use.

A parameter which requires some special attention is the temperature. According
to Annex II (Table 11.1) heating, cooking, baking and frying (the latter up to 240 °C
at atmospheric pressure) as well as pressure cooking (up to 120 °C) are allowed
traditional food preparation processes.

Although Annex II (Table 11.1) does not clearly specify a maximum temperature
for heating and baking (in contrast to frying), EFFA considers that the temperature
should be limited to 400 °C. The pressure should preferably be maintained below
400 bars (conditions which may be reached in a typical supercritical extraction of
herbs and spices).
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Also for roasting and grilling Annex II (Table 11.1) does not specify any maxi-
mum temperature. Although it will be higher than for frying, EFFA considers also a
limit of 400 °C for these processes.

Certain grill-like flavourings, when obtained at higher temperature are subject to
authorisation and evaluation (per Art. 9): see section on safety evaluation.

11.5.2 Biotechnology for the Production of Natural Flavouring
Ingredients

Biotechnology is a very important technique in the production of natural flavouring
ingredients. As biotechnology uses mainly fermentation and microbiological pro-
cesses which are considered to include “enzymatic processes” it will lead to the
formation of “natural flavourings” (in compliance with the legal requirements)
when the other parameters (e.g. source materials requirements, other process condi-
tions, identified in nature in the case of substances) are met.

In the EFFA Guidance Document on the production of natural flavouring ingre-
dients [5] a specific chapter (Chapter 1V) is devoted to microbiological and enzy-
matic processes. According to this Guidance Document, natural flavouring
ingredients can be obtained by enzymatic or microbiological processes. EFFA con-
siders the following biological entities as biosystems that are permitted for the pro-
duction of natural flavourings: bacteria, yeasts and fungi, or higher organisms such
as algae, plants or animals, used as such or in cell or tissue cultures, and enzymes
derived thereof. These biosystems are grown and/or maintained during a fermenta-
tion process. Apart from those biosystems, also other enzymes can be used (food
enzymes that can be typically used in the process of flavouring production are
alpha-amylase, polygalacturonase, lipases and alpha-glucosidase amongst others).

The EFFA Guidance Document describes the conditions and general require-
ments with which the biosystems and enzymes have to comply. This covers the
specific requirements for culture medium, nutrients, substrates, co-factors etc.

With regard to enzymes there is a requirement that the enzymes used for the
production of natural flavourings are in compliance with the Enzyme Regulation
(EC) No 1332/2008 [9].

One key question that is currently being addressed is what happens when the
micro-organisms that perform the fermentation are genetically engineered or if the
enzymes are produced by genetically modified organisms (GMO’s)? Can these fla-
vourings be labelled as ‘natural’? Is there an obligation to mention the GMO nature
of the process on the label of food products?

The EU-Commission is working on a Q&A-document for labelling of flavour-
ings in food. The provisional answer to this question (pending the formal endorse-
ment of the Q&A-document by all Member States) reads as follows:

The use of the term “natural” does not exclude the production of flavourings from GMO
sources. For flavourings from GMO sources, the rules governing the labelling are the GMO
labelling rules like for any other ingredient.
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If the flavouring is produced by fermentation using a genetically modified microorgan-
ism (GMM) which is kept under contained conditions and is not present in the final product,
it is not included in the scope of Regulation (EC) No 1829/2003 [10]. This food has to be
considered as having been produced with the GMM, rather than from the GMM.

In the case a GMM derived enzyme is used during the fermentation of a non-GM fla-
vouring, the flavouring is also out of the scope of Regulation 1829/2003 since the GMM
derived enzyme itself is out of the scope ("produced with" GMM).

If, however; the flavouring is produced, in whole or in part, from a GMO, then the fla-
vouring needs an authorisation according to Regulation (EC) No 1829/2003 and Regulation
(EC) No 133472008 and should be labelled as “genetically modified”.

This answer is supported by Recital 16 of Regulation (EC) No 1829/2003 [10]:

This Regulation should cover food and feed produced ‘from’ a GMO but not food and feed
‘with’ a GMO. The determining criterion is whether or not material derived from the
genetically modified source material is present in the food or in the feed. Processing aids
which are only used during the food or feed production process are not covered by the defi-
nition of food or feed and, therefore, are not included in the scope of this Regulation. Nor
are food and feed which are manufactured with the help of a genetically modified process-
ing aid included in the scope of this Regulation. Thus, products obtained from animals fed
with genetically modified feed or treated with genetically modified medicinal products will
be subject neither to the authorisation requirements nor to the labelling requirements
referred to in this Regulation.

This is also supported by the EFFA position on the interpretation of GMO Legislation
in the EU in relation to flavourings which states that food ingredients such as fla-
vourings that are produced with genetically modified micro-organisms (GMMs) are
in principle out of scope of the GMO-regulation (EC) no 1829/2003, as these GMMs
are used as processing aids. The same applies to flavourings produced with enzymes
obtained from GMM-sources.

In conclusion flavourings produced with enzymes obtained from GMMs or with
GMMs as such, can be called “natural flavourings” if the other criteria are fulfilled
(source materials requirements, other process conditions, identified in nature in the
case of substances) and such flavourings are out of the scope of the GMO-regulation
(EC) no 1829/2003, hence no GMO-labelling is required.

11.5.3 Further Considerations on the Production of Natural
Flavouring Substances and Flavouring Preparations
According to the EFFA Guidance Document

In its Guidance Document, EFFA has considered other elements that have to be
taken into account when assessing the compliance of flavouring preparations with
the EU regulation, esp. in relation to the presence of non-volatile constituents and
other ingredients (e.g., solvents).

According to the EFFA interpretation, due to the way they are produced flavour-
ing preparations are complex mixtures containing more than volatile flavouring
molecules. Therefore the presence of constituents that are naturally occurring in the
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flavouring preparation due to their presence in the source materials, e.g. intrinsic
fruit water, as well as foods / food ingredients used during the manufacturing pro-
cess as processing aids, e.g. ethanol, edible oil, acetic acid, can be considered
according to EFFA as part of the flavouring preparation.

Flavouring preparations shall be produced in line with appropriate processes as
described in Article 3(2)(d) — incl. the traditional processes listed in Annex II
(Table 11.1) — and Article 3(2)(k) taking into account the considerations expressed
in Recital (25) and the requirements of Article 4 in order to ensure that consumers
are not misled.

EFFA reminds its members that if solvents are used for extraction purposes to
obtain flavouring preparations, only those listed in the EU Extraction Solvents
Directive 2009/32/EC (as amended) shall be used and the applicable maximum resi-
due levels should be observed [11]. The remaining amount of extraction solvents
depending on the process, together with other intrinsic components from the respec-
tive source material e.g., fruit/plant sugars or cell water, are part of the entire fla-
vouring preparation.

EFFA also notes that for other purposes than extraction (e.g. chromatography,
crystallisation, azeotropic distillation) during the isolation / purification of the natu-
ral flavouring ingredients, the permitted solvents are not legally restricted to those
listed in the Extraction Solvents Directive (as amended), however, solvents for these
other uses are preferably also those solvents permitted by the Directive 2009/32/EC
as amended.

EFFA further clearly stipulates in its Guidance Document that solvents or carri-
ers, added for purposes other than extraction, e.g., for dilution, or standardization,
or when used outside the conditions/limitations of EU Directive 2009/32/EC (as
amended), will not become part of the entire flavouring preparation.

11.6 Analytical Methods to Assess Authenticity

Although the EFFA Guidance document [5] devotes a chapter on analytical meth-
ods to assess the authenticity of natural flavouring substances some clear warnings
are given on the limitations of such analytical methods. For example EFFA cautions
that the methods of analysis as listed in the EFFA Guidance Document are for the
sole purpose of identifying compliance with the natural processes as described in
the Guidance Document. These analytical techniques are not necessarily suitable
for the identification of the natural source from which flavouring substances are
produced (source authentication).

Some analytical methods are listed which can be used in the discrimination of
the source of the flavouring substances. These comprise fingerprint analysis (such
as the examination of impurities characteristic of a natural process or a non-natural
process, including gas-chromatographic analysis), chiral analysis (even more effec-
tive when coupled with an isotopic method such as chiral GC/IRMS (isotopic ratio
mass spectrometry)), site specific deuterium NMR, and more sophisticated tech-
niques such as IRMS / SIRA (Stable Isotope Ratio Analysis) coupled with High
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Resolution Gas Chromatography (HRGC) or Chiral Multidimensional Gas
Chromatography (MDGC) (see also Chap. 10 of this book).

11.7 Labelling of Flavourings (B2B)
11.7.1 General Labelling Requirements

The ‘business to business’ (B2B) labelling requirements for flavourings are stipu-
lated in Article 15 of the Flavouring Regulation. These requirements include the
‘sales description’ and are similar to those laid down in the former Directive 88/388/
EEC with three additions:

* date of minimum durability or use-by-date;

* allergen information according to the food labelling Directive 2000/13/EC [12]
as amended [which is now replaced by the Food Information to Consumers
(Labelling) Regulation (EU) No 1169/2011 [13];

* if necessary, the special conditions for storage and/or use.

This information has to be mentioned on a label on the packaging or container of
the product. It is not sufficient that this information is only provided on the accom-
panying documents.

For general labelling purposes Art. 15(1)(a) is of particular importance as it
allows to label a flavouring formula simply with the word ‘flavouring’ (which can
be the labelling of choice for any flavouring) or in combination with a specific name
or description of the flavouring. In particular for non-natural flavourings (since there
are special provisions foreseen in Art. 16 for natural flavourings, see below) this is
relevant. For example a non-natural flavouring which smells like apple can be
labelled as “apple flavouring” even if the flavouring components are not coming
from apple. Likewise, thermal processed flavourings which have a savoury smell
and remind of barbecued or grilled meat (e.g., chicken) can be labelled as “barbecue
flavouring” or “roasted chicken flavouring” if the flavouring has this smell or prop-
erties that are characteristic for the used descriptor(s). In those examples “apple” or
“barbecue” or “roasted chicken” are a “more specific name or description” and the
resulting sales description is in compliance with Art. 15(1)(a).

The EFFA Guidance Document further notes that where applicable (i.e. where
the composition of the flavouring does allow) specific names such as ‘orange oil’,
‘lemon oil’, ‘yeast extract’, ‘spice extracts’ (i.e. mentioning the name of essential
oils and extracts), and others, remain authorised.

It is important to note that for natural flavourings there is no obligation to apply
exclusively the options stipulated in Art. 16, thus, a producer of a flavouring can
always simply label a flavour as “flavouring” (according to Art. 15) with reference
to a more specific name or description without referring to the natural status, even if
it is a natural flavouring. For example a flavouring tasting/smelling like vanilla can
be labelled as “vanilla flavour” irrespective of its source, production method and
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even if it is obtained via natural ways (see also Chap. 1 of this book). A reason
could be if the flavouring is not exclusively (and not at least for 95%) obtained from
vanilla beans (vanilla pods) but also from other natural sources and has an overall
vanilla smell but would no longer comply with the rules stipulated in Art. 16(4).

11.7.2 Labelling of Natural Flavourings

Art. 16 sets out the specific requirements for the use of the term ‘natural’ in the
B2B-labelling of natural flavourings and describes the rules. In order to use a refer-
ence to ‘natural’ in the labelling, the overall condition that needs to be met is that
the flavouring component can only contain natural flavouring substances and/or fla-
vouring preparations. In other words, the entire flavouring part has to be natural.
There are four possible terms for the sales description of natural flavourings (see
Article 16 paragraphs 3—6), namely:

— ‘Natural flavouring substance(s)’ (Art. 16(3));

— ‘Natural <X > flavouring’ (Art. 16(4));

— ‘Natural <X> flavouring with other natural flavourings’ (Art. 16(5));
— ‘Natural flavouring’ (Art. 16(6)),

where “<X>" stands for the food(s), food category or source(s) referred to in the
labelling.

As mentioned above the use of these terms is optional, since ‘flavouring’ or ‘a
more specific name or description of the flavouring” remains possible (in line with
Art. 15), without reference to the word “natural” also for natural flavourings.

(a) Natural flavouring substances

Art. 16(3) stipulates the labelling for natural flavouring substances as follows:

3. The term ‘natural flavouring substance(s)’ may only be used for flavourings in which the
flavouring component contains exclusively natural flavouring substances.

This option can only be used if the flavouring contains exclusively chemically
defined natural flavouring substances as defined by Art. 3(2)(c). However, the EFFA
Guidance Document foresees the option, if preferred and if applicable, to use the
term ‘natural < X > flavourings’, ‘natural <X> flavouring with other natural fla-
vourings’ or ‘natural flavouring’ as an alternative.

(b) Natural <X > flavouring
Art. 16(4) defines the rules for the labelling of natural flavourings (natural fla-

vouring substances and/or flavouring preparations) with a reference to the food
source (“<X>") as follows:
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4. The term ‘natural’ may only be used in combination with a reference to a food, food
category or a vegetable or animal flavouring source if the flavouring component has been
obtained exclusively or by at least 95 % by w/w from the source material referred to.

In order to be able to use this labelling option (Natural flavouring with reference
to the food source from which the flavouring is obtained), three key criteria must be
met: (1) the entire flavouring must be natural (not only the 95%-part); (2) the fla-
vouring component should be obtained at least 95% by w/w from the source mate-
rial referred to; and (3) the flavour perception of the named source needs to be easily
recognized. Moreover, as indicated in Recital (26), there are also specific require-
ments for the other 5%-part: “As the use of flavourings should not mislead the con-
sumer, the other maximum 5 % can only be used for standardization or to give a, for
example, more fresh, pungent, ripe or green note to the flavouring.”

In addition, EFFA stipulates in its Guidance Document that the 5% part may not
reproduce the total flavour profile of the 95% part from the source material referred
to; otherwise the flavouring does not meet the provisions of Article 16(4).

In its Guidance Document, EFFA provides some clear rules and interpretation on
the compositional assessment. The 95/5-ratio is examined on the basis of the for-
mula composition. At least 95% by w/w of the flavouring component (i.e. flavouring
preparations and/or natural flavouring substances as defined under Article 3 of the
Regulation) have to be obtained from the source material(s) referred to. With regard
to the compositional assessment, the wording of the Regulation indicates that when
considering a “flavouring preparation” — as part of the “flavouring component” of a
given “natural <X > flavouring” — in the quantitative determination pursuant to Art.
16(4), the entire “flavouring preparation” has to be taken into account and not only
the volatile fraction (e.g. as determined by gas-chromatography).

(c) Natural <X > flavouring with other natural flavourings

For flavourings not obtained by at least 95% from the named source (and in com-
bination with other natural flavourings) another labelling option is provided for by
Art. 16(5):

5. The term ‘natural “food(s) or food category or source(s)” flavouring with other natural
flavourings’ may only be used if the flavouring component is partially derived from the
source material referred to, the flavour of which can easily be recognised.

To be able to use this labelling option (‘Natural <X> flavouring with other natu-
ral flavourings’ where <X> refers to the food(s) or food category or source(s)) the
first requirement is of course that all flavouring components are natural, but it is also
required that flavouring materials derived from all the named source(s) are present
and that their flavour can easily be recognised in the final food. With regard to the
requirement that “the flavour can easily be recognised” EFFA recommends that the
qualification ‘can easily be recognised’ be based on expert opinion, e.g. by a fla-
vourist or a sensory panel evaluating the final food product to which the flavouring
has been added.
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Table 11.2 Some examples of (natural) flavouring labelling (some as presented in the EFFA
Guidance Document) (for more examples refer to Attachment IV to the EFFA Guidance

Document [4])

Example of ‘Flavouring’ or a more specific name or
description (Art. 15(1)(a))

Labelling (Art. 15(1))

80% w/w flavouring substances (natural or not) providing a
banana flavour.

20% w/w flavouring substances (natural or not) used to
introduce other notes [overall flavour is like banana]

‘Flavouring’ or
‘Banana flavouring’

75% w/w flavouring materials providing a grilled chicken
flavour

25% w/w flavouring substance (natural or not) providing
spicy notes [overall flavour is like grilled chicken]

‘Flavouring’ or
‘Grilled chicken flavouring’

Example of ‘Natural flavouring substance(s)’ (Art. 16(3))

Natural Labelling (Art. 16(3)/
4)

95% w/w natural flavouring substances derived from mint
(e.g. menthol ex arvensis).

5% wiw natural flavouring substances derived from orange
(e.g. limonene ex orange) which is used to introduce a
special note

‘Natural flavouring substances’
or

‘Natural mint flavouring” (Art.
16(4))

100% w/w menthol (natural)

‘Natural flavouring substances’
or

‘Natural flavouring substances
(menthol)’

Example of ‘Natural <X> flavouring’ (Art. 16(4))

Natural Labelling (Art. 16(4))

95% wiw flavouring preparations and/or natural flavouring
substances derived from mint (e.g. mint oil and/or menthol
ex arvensis).

5% wi/w natural flavourings derived from other natural
sources (e.g. orange oil or limonene ex orange) which is
used to introduce a special note

‘Natural mint flavouring’

97% w/w flavouring preparations and/or natural flavouring
substances derived from raspberry (e.g. raspberry distillate
and raspberry isolate).

3% w/w natural flavourings derived from other natural
sources (e.g. natural flavouring substances used to adjust
natural variations).

‘Natural raspberry flavouring’

Example of ‘Natural <X> flavouring with other natural
flavourings’ (Art. 16(5))

Natural Labelling (Art. 16(5))

85% wiw flavouring preparations and/or natural flavouring
substances derived from mint (e.g. mint oil and/or menthol
ex arvensis) [mint flavour easily recognized]

15% w/w natural flavourings from other natural sources
(e.g. orange oil or limonene ex orange) which is used to
introduce a special note

‘Natural mint flavouring with
other natural flavourings’

(continued)
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Table 11.2 (continued)

80% w/w flavouring preparations and/or natural flavouring ‘Natural banana flavouring with
substances derived from banana [banana flavour easily other natural flavourings’
recognized]

20% w/w natural flavourings from other natural sources
(e.g. vanilla) which is used to introduce a round note or for

standardisation
Example of ‘Natural flavouring’ (Art. 16(6)) Natural Labelling (Art. 16(6))
60% w/w flavouring preparations and/or natural flavouring ‘Natural flavouring’

substances derived from banana

40% w/w derived from other natural sources (e.g. mango,
pear, lemon, etc).

The overall flavour-profile is fruity but the source materials
(banana, mango, pear, lemon) cannot easily be recognised.

(d) Natural flavouring

Only when the criteria for the option ‘Natural <X>flavouring’ and ‘Natural
<X> flavouring with other natural flavourings’ are not met can the term ‘Natural
flavouring’ be used. This means that this term ‘Natural flavouring’ is only possible
to be used for flavourings when a clear relationship between the different source
materials used in the flavouring component and the overall flavour-profile does not
exist. Also in case of uncertainty about this relationship, it is recommended to use
the term ‘natural flavouring’.

This can be understood from the wording of Art. 16(6):

6. The term ‘natural flavouring’ may only be used if the flavouring component is derived
from different source materials and where a reference to the source materials would not
reflect their flavour or taste.

Although Art. 16(6) refers to “different source materials” (in plural) it is EFFA’s
understanding that in case one source material is used the same principle can be
adhered to.

For further information we refer to the EFFA Guidance Document on the
Flavouring Regulation [4] and in particular the various examples on labelling in
Attachment I'V of the Guidance Document.

Some examples of natural flavouring labelling (as presented in the EFFA
Guidance Document) are provided in Table 11.2 — for more examples the author
refers to Attachment I'V to the EFFA Guidance Document.

11.7.3 Considerations on Different Interpretations of the 95/5-
Rule (Art. 16(4))

EFFA has been made aware of some different views of the application of the 95/5-
rule (in relation to Art. 16(4)), in particular a different interpretation of the German
Food Control Authorities. This has led to a decision of the OLG (Oberlandesgericht)
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in Diisseldorf (which is the Higher Regional Court of Diisseldorf) on 21/03/2012.
This decision related to a final product (a strawberry yoghurt) and the declaration of
the “natural strawberry flavour” (according to Art. 16(4)) that was challenged.

As a consequence of this Court Decision, EFFA has contacted the European
Commission (DG SANTE) who has discussed the matter (EFFA interpretation ver-
sus the views of the German Food Control Authorities) with the EU Member States
during a Standing Committee Meeting (Food Chain and Animal Health, Toxicology
Section) on 31/07/2012.

The conclusion of this Standing Committee meeting (based on all the elements
and background information provided by EFFA) was:

the Commission services consider that when assessing the “95/5-ratio” of a “flavouring
component”, it is necessary to take into account the amount of “flavouring preparations”
and “natural flavouring substances” from the labelled source compared to the total of
amount of flavouring component. For the purpose of this measurement the entire flavouring
preparation from the labeled source should be included.

This conclusion was formally published by the EU-Commission in a “Note to the
Standing Committee on Food Chain and Animal Health, Toxicology Section” of
22/01/2013 [14].

Subsequent to this meeting and the publication of the note, EFFA received a let-
ter from the EU-Commission (DG SANTE) stating the same conclusions and also
noting that this interpretation was supported by the majority of the Member States
in the Standing Committee meeting. In another (separate letter) from the
EU-Commission (DG SANTE) to EFFA the Head of Unit stated that the Commission
can agree with EFFA’s view on the assessment of the 95/5-ratio of the flavouring
component.

However, the EU-Commission also pointed out in their communications that
ultimately it is for the Court of Justice of the European Union to provide legally
binding interpretation of the provisions of the Regulation.

As a follow-up, EFFA has generated a pictorial representation (graphical depic-
tion) of the correct interpretation of Art. 16(4) and the application of the 95/5-ratio
with some examples of “Natural <X> Flavouring”. In particular the labelling rules
are illustrated through examples of natural strawberry flavouring and natural lemon
flavourings: this graphical depiction has recently been added as Attachment XI to
the EFFA Guidance Document which is available on EFFA’s public website [4].

11.8 Safety Evaluation of Flavourings and Their Inclusion
in the EU Union List

In relation to the discussion on the definition of flavouring preparations (see above)
it is necessary to focus also on the difference between “from food sources” and
“from non-food sources”. Although all flavouring preparations are by definition
natural (see Art. 3(2)(d)), only those obtained from food sources (covered by the
Definition of Art. 3(2)(d)(i)) can be used without any need for safety evaluation as
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stipulated in Art. 8(1)(a). According to Art. 9(b), for flavouring preparations obtained
from “material [...] other than food” (i.e. referred to in Art. 3(2)(d)(ii)) an evalua-
tion and approval (by the European Food Safety Authority (EFSA)) is required.

For this reason, the definition according to Art. 3(2)(d)(i) specifies that any (tra-
ditional food preparation) process (i.e. Annex II, Table 11.1 process applied to the
food) should be fit “for human consumption”. For flavouring preparations from
material other than food, defined by Art. 3(2)(d)(ii), there is no reference to the
wording “for human consumption”. The definition only states that the material can
be “taken as such or prepared by one or more of the traditional food preparation
processes”. These are the preparations which need evaluation and approval.

In contrast to flavouring preparations, there is no distinction between natural
flavouring substances from food sources and natural flavouring substances from
non-food sources. Indeed, all flavouring substances (irrespective whether they are
natural or not and regardless from which sources they are obtained) require an eval-
uation and approval, as stipulated by Art. 9(a).

All flavouring substances currently in use and legally introduced in the EU mar-
ket are in the process of safety evaluation, carried out by the European Food Safety
Authority (EFSA), which is in progress.

The basis for the evaluation program was the Regulation 2232/96/EC [15], a
Community Procedure that established rules such as the need for drawing up a “List
of Flavouring Substances”. Initially this would become the EU-Register and later
the Union List (see below). This Community Procedure also established a
Notification procedure (procedure in which Member States had to notify the legal
use and market introduction of certain flavouring substances in each EU-country to
the EU-Commission), the adoption of the EU-Register (in 1999) [16] and finally the
adoption of the “Evaluation Program” (in 2000). This Regulation further foresaw,
after the completion of the evaluation program, for the adoption of “the list of fla-
vouring substances” which is today known as the Union List of flavouring sub-
stances. The measures necessary for the adoption of the evaluation program were
provided by the Regulation 1565/2000/EC [17].

All the flavouring substances which are approved for use in and on food in the
EU are now listed on a positive list, the so-called “EU Union List of flavouring sub-
stances”. This list has been established and published with the Implementing
Regulation (EU) No 872/2012 of 1 October 2012 [18]. The list currently contains
more than 2500 chemically defined flavouring substances which can legally be used
in or on foods in the EU (although for some substances certain restrictions (i.e.
maximum use levels to certain food categories) apply, such as caffeine, quinine
salts, ammonium chloride etc). This list does not differentiate between natural fla-
vouring substances and other flavouring substances. The list with the chemically
defined flavouring substances is in fact part (Part A) of a broader list, the so-called
“Union List of flavourings and food source materials”, which is Annex I to the
Flavouring Regulation. Parts B-F are currently empty and would in theory in the
future constitute the following categories of flavourings:
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— Part B: Flavouring preparations [from non-food sources]
— Part C: Thermal process flavourings

— Part D: Flavour precursors

— Part E: Other flavourings

— Part F: Source materials

It should be noted that only those flavourings/source materials for which an eval-
uation and approval is required (as listed in Art. 9) should ultimately be listed on
Parts B-F.

More precisely these are the following categories (Art. 9):

e (b) flavouring preparations referred to in Article 3(2)(d)(ii), i.e. flavouring prepa-
rations from non-food sources;

e (c) thermal process flavourings obtained by heating ingredients which fall par-
tially or totally within Article 3(2)(e)(ii) (i.e. from source material other than
food) and/or for which the conditions for the production of thermal process fla-
vourings and/or the maximum levels for certain undesirable substances set out in
Annex V are not met;

e flavour precursors referred to in Article 3(2)(g)(ii) (i.e. from source material
other than food);

¢ other flavourings referred to in Article 3(2)(h);

e source materials other than food referred to in Article 3(2)(j)(ii) (i.e. source
material other than food).

In particular Part B would in the future only contain flavouring preparations from
non-food sources. However, to the best of the author’s knowledge no flavouring
preparations from non-food sources are currently on the EU market for which an
evaluation and approval is required and for which an application has been submitted
by any company for its safety assessment. It is thus anticipated that in practice Part
B of the Union List will remain empty since all flavouring preparations in use in EU
are from food sources and do not require a safety evaluation.

Also with regard to Parts C, D and F, the author is not aware of applications
which have up to now been submitted to the Risk Assessment and Risk Management
Authorities in EU (EFSA and EU-Commission, resp.) by the flavour industry,
although new applications might be submitted in future resulting from new research
and innovation. However, in relation to Part E (Other flavourings) a few applications
have been submitted by the flavour industry for the evaluation and authorisation of
some “other flavourings” such as grill-like flavourings and a complex mixture called
“Rum Ether”. Some of these flavourings are currently still under evaluation by
EFSA and may ultimately appear on Part E of the Union List, pending the comple-
tion of their evaluation.

For more information on the status of the evaluation by EFSA of the
flavourings which are currently still under evaluation, the author refers to EFSA’s
Register of Questions: see http://registerofquestions.efsa.europa.eu/roqFrontend/
ListOfQuestionsNoLogin?0.
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