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Foreword

Waves underlie a wealth of natural phenomena, ranging from seismic activity to
elementary particles, and encompassing light and sound. Mathematical tools that
are useful for modeling and understanding the behavior of waves are therefore of
central importance in science and engineering. The insights of Huygens and Fresnel
led to the description of wave propagation in terms of secondary waves: if a wave
field is known at a given initial plane, its propagation away from it can be modeled
by expressing the field as a continuous superposition of secondary waves emanating
from all points over the plane. This beautiful interpretation provides a connection
between wave propagation and linear integral transformations. As underlined by
Feynman’s path-integral formalism of quantum mechanics, this interpretation also
holds for the description of the temporal evolution of quantum-mechanical wave
functions, where time plays the role of the propagation direction, and instead of an
initial plane one must consider all space at an initial time.

The mathematical similarity between different wave phenomena becomes more
accentuated when regimes that allow certain approximations are considered. For
example, in the description of optical waves of a given temporal frequency, one is
often interested in highly collimated beams that propagate mainly around a specific
direction. In this case, the electric field distribution satisfies approximately what
is known as the paraxial wave equation. This equation is mathematically similar
to the Schrödinger equation ruling the evolution of quantum wave functions in
the nonrelativistic regime. Further, the effect of some refractive index distributions
on the propagation of an optical field can be formally analogous to that of some
potentials over the evolution of a particle’s wave function. It is then natural that the
same propagation models be employed in the description of these systems.

This book gives a thorough overview of a class of integral transformations,
known as linear canonical transformations, which are remarkable both for their
mathematical elegance and for their range of physical applications. Mathematically,
linear canonical transformations are defined by their simple properties: (1) each of
these transformations is associated with, and fully determined by, a 2 � 2 matrix
(or 2N � 2N matrix, when applied to functions that depend on N variables); (2)
a concatenation of a series of linear canonical transformations can be reduced
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vi Foreword

to a single linear canonical transformation whose matrix is the product of the
matrices for the original independent transformations. Physically, linear canonical
transformations describe wave propagation in cases where the Hamiltonian is at
most quadratic in both position (e.g., thin lenses and quadratic gradient index
media in optics, or harmonic-oscillator potentials in quantum mechanics) and
momentum (i.e., within the paraxial approximation in optics or the non-relativistic
approximation in quantum mechanics). In these contexts, the matrix associated
with the transformation turns out to be the transfer matrix that maps the initial
position and momentum of a classical particle or ray to the final ones for the
system in question. Linear canonical transformations include as special cases the
Fourier transformation, the fractional Fourier transformation (which describes the
paraxial propagation of optical fields in quadratic gradient index fibers, as well
as the evolution of quantum states in a harmonic oscillator potential), the Fresnel
transformation (which describes free propagation of paraxial wave beams), and even
simple multiplication by quadratic phase factors.

This book is, to my knowledge, the first devoted fully to providing a com-
prehensive study of linear canonical transformations and their applications. Some
previous publications have included some discussions on these transformations,
while others have focused on specific special cases like the Fourier or even the
fractional Fourier transformations. While some of these special cases are standard
items in the toolbox of most physicists and engineers, the more general class
of transformations discussed here is not as widely known. The present book is
therefore a very timely and welcome addition to the scientific literature. Further,
its chapters are authored by some of the most influential researchers in the
subject. The first part of the book concentrates on the origins, definition, and
properties of linear canonical transformations. Chapter 1, by Kurt Bernardo Wolf,
gives a historical perspective on the independent development of linear canonical
transformations in optics and nuclear physics, from the point of view of someone
at the intersection of these two communities. In Chap. 2, Martin J. Bastiaans and
Tatiana Alieva provide a detailed treatment of the definition and properties of linear
canonical transformations, paying careful attention to cases of special interest. The
eigenfunctions of linear canonical transformations, i.e. those functions that retain
their functional form following transformation, are discussed by Soo-Chang Pei
and Jian-Jiun Ding in Chap. 3. The different types of uncertainty relations between
functions and their linear canonical transforms are the subject of Chap. 4, by R.
Tao. In Chap. 5, Tatiana Alieva, José A. Rodrigo, Alejandro Cámara, and Martin J.
Bastiaans discuss the application of linear canonical transformations to the modeling
of light propagation through paraxial optical systems. Complementarily, M. Alper
Kutay, Haldun M. Ozaktas, and José A. Rodrigo consider the use of simple optical
systems for implementing linear canonical transformations, both in one and two
variables in Chap. 6. The second part of the book focuses on practical aspects
of the numerical implementation of linear canonical transformations. In Chap. 7,
Figen S. Oktem and Haldun M. Ozaktas discuss the degrees of freedom involved in
the implementation of a linear canonical transformation. The effects of sampling
and discretization of linear canonical transformations are presented by John J.
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Foreword vii

Healy and Haldun M. Ozaktas in Chap. 8. Markus Testorf and Brian Hennelly
investigate in Chap. 9 the effect known as self-imaging in systems described by
linear canonical transformations. This part concludes with a discussion by Aykut
Koç and Haldun M. Ozaktas in Chap. 10 about fast computational implementations
of linear canonical transformations. The third and final part of the book is devoted to
applications. This part opens with a study in Chap. 11 by Unnikrishnan Gopinathan,
John Healy, Damien P. Kelly, and John T. Sheridan of the connection between
linear canonical transformations and the retrieval of the phase of a field from the
knowledge of its intensity. In Chap. 12, Damien P. Kelly and John T. Sheridan
discuss the application of these transformations in digital holography. Applications
to signal encryption are presented in Chap. 13 by Pramod Kumar, Joby Joseph and
Kehar Singh. Steen G. Hanson, Michael L. Jakobsen and Harold T. Jura explore the
use of these transformations for speckle metrology in Chap. 14. Lastly, the use of
linear canonical transformations in quantum optics is presented by Gabriel F. Calvo
and Antonio Picón.

This volume will be a very useful reference for specialists working in the fields
of optical system design and modeling, image and signal processing, and quantum
optics, to name a few. It will also be a great resource for graduate students in physics
and engineering, as well as for scientists in other areas seeking to learn more about
this important yet relatively unfamiliar class of integral transformations.

The Institute of Optics Miguel A. Alonso
University of Rochester
Rochester, New York
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Preface

Linear canonical transforms (LCTs) are a three-parameter family of linear integral
transformations, which have a quadratic-phase kernel. For this reason, they have
also been called quadratic-phase transforms or quadratic-phase systems (as well as
other names). They are unitary transforms that correspond to linear, area-preserving
distortions in phase space, a fact which underlies certain invariance properties.
Combinations of LCTs are again LCTs. The family includes important operations
or transforms such as chirp multiplication, chirp convolution (Fresnel transforms),
fractional Fourier transforms, and of course the ordinary Fourier transform, as
special cases. Arbitrary LCTs can be written as combinations of these simpler
transforms. This leads to fast algorithms for approximately calculating LCTs, much
as the ordinary Fourier transform can be calculated with fast algorithms.

LCTs have been rediscovered many times in different contexts, a fact we consider
evidence of their ubiquity. Their significance in optics was recognized at least as
early as the 1970s. Later, interest in the fractional Fourier transform during the
1990s led to renewed interest in LCTs from new perspectives.

This book deals with LCTs primarily from the perspective of signal and image
processing, and optical information processing. Part I presents the mathematical
theory of LCTs in the style of signal theory and analysis, as well as the foundations
of how LCTs are related to optical systems. Part II deals with issues of degrees
of freedom, sampling, numerical implementation, and fast algorithms. Part III is
a survey of various applications. No attempt is made here to discuss canonical
transformations as they appear in classical Hamiltonian mechanics and symplec-
tomorphisms. These are well-established subjects in physics. However, we note that
it is quite possible that a crossover of concepts and techniques between the different
approaches to these transforms may be quite fruitful, and we hope this book may
contribute to that end, in addition to being useful for its primary audience in the
areas of signal processing and optics.

ix



x Preface

Overview

The opening chapters cover a range of fundamental topics. We start with a
discussion of the twin discovery of LCTs in two different areas: paraxial optics
and nuclear physics. This provides a fascinating window into more than 40 years
of parallel scientific progress. This chapter also contrasts two parallel efforts to
define a discrete counterpart to the LCTs—one based on group theory, the other
on sampling theory. Chapter 2 provides a self-contained introduction to LCTs and
their properties, so the reader who just wishes to dip into the subject may be advised
to start here. Chapter 3 discusses the eigenfunctions of the LCTs. These functions
are important for analyzing the characteristics of the transforms. Since the LCT
can be used to describe wave propagation, they also play important roles in the
analysis of self-imaging and resonance phenomena. Chapter 4 continues the theme
of key properties of the transform with a discussion of the uncertainty principle.
Heisenberg’s principle provides a lower bound on the spread of signal energy in the
time and frequency domains, and there has been a good deal of work on extending
this work to LCTs. The first part of the book is rounded out by Chaps. 5 and 6 that
discuss the relationship of LCTs to optics. These chapters deal with both how LCTs
can be used to model and analyze optical systems and how LCTs can be optically
implemented.

The modern age is digital, whether we are working with spatial light modulators
and digital cameras or processing the resulting signals with a computer. In the
second part of the book, we have a number of chapters on topics relevant to
discrete signals and their processing. Chapter 7 discusses a modern interpretation
of the relationship between sampling and information content of signals. Chapter 8
discusses sampling theory and builds up to a discrete transform. Periodic gratings
have long been known to produce discrete signals at certain distances, and in Chap. 9
this Talbot effect and hence the relationship between discrete and periodic signals
are examined. Just as the fast Fourier transform is key to the utility of conventional
spectral analysis, corresponding fast algorithms are critical to our ability to use
LCTs in a range of applications. Chapter 10 examines how to calculate the LCT
numerically in a fast and accurate fashion.

In the final part of the book, we turn to a series of chapters in which linear
canonical transforms are used in a variety of optical applications. One of the
fundamental problems in optics is that our detectors are insensitive to phase. Chapter
11 discusses phase retrieval from the field intensity captured in planes separated by
systems that can be described using LCTs, focusing particularly on non-iterative
techniques. Another way to find the full wave field (amplitude and phase) is to
record a hologram, a topic which experienced a revival in the past 20 years due
to the rapid improvement in digital cameras. Digital holography is the focus of
Chap. 12. Chapter 13 examines optical encryption by means of random phase
encoding in multiple planes separated by systems that may be described using LCTs.
Coherent light reflected from a rough surface develops laser speckle, a characteristic
of the wave field, which may be beneficial in metrology or a nuisance in display
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Preface xi

technologies. Chapter 14 examines complex-parametered LCTs as a means of
modelling speckle fields propagating through apertured optical systems. With Chap.
15, the book is rounded off with a discussion of the use of LCTs in quantum optics.

Dublin, Ireland John J. Healy
Ankara, Turkey M. Alper Kutay
Ankara, Turkey Haldun M. Ozaktas
Dublin, Ireland John T. Sheridan
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Chapter 1
Development of Linear Canonical Transforms:
A Historical Sketch

Kurt Bernardo Wolf

Abstract Linear canonical transformations (LCTs) were introduced almost
simultaneously during the early 1970s by Stuart A. Collins Jr. in paraxial optics, and
independently by Marcos Moshinsky and Christiane Quesne in quantum mechanics,
to understand the conservation of information and of uncertainty under linear maps
of phase space. Only in the 1990s did both sources begin to be referred jointly in
the growing literature, which has expanded into a field common to applied optics,
mathematical physics, and analogic and digital signal analysis. In this introductory
chapter we recapitulate the construction of the LCT integral transforms, detailing
their Lie-algebraic relation with second-order differential operators, which is the
origin of the metaplectic phase. Radial and hyperbolic LCTs are reviewed as unitary
integral representations of the two-dimensional symplectic group, with complex
extension to a semigroup for systems with loss or gain. Some of the more recent
developments on discrete and finite analogues of LCTs are commented with their
concomitant problems, whose solutions and alternatives are contained the body of
this book.

1.1 Introduction

The discovery and development of the theory of linear canonical transforms (LCTs)
during the early seventies was motivated by the work on two rather different
physical models: paraxial optics and nuclear physics. The integral LCT kernel was
written as a descriptor for light propagation in the paraxial régime by Stuart A.
Collins Jr., working in the ElectroScience Laboratory of Electrical Engineering at
Ohio State University. On the other hand, Marcos Moshinsky and his postdoctoral
associate Christiane Quesne, theoretical physicists at the Institute of Physics of
the Universidad Nacional Autónoma de México, while working among other
problems on the alpha clustering and decay of radioactive nuclei, saw LCTs as

K.B. Wolf (�)
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,
Av. Universidad s/n, Cuernavaca, Morelos 62251, México
e-mail: bwolf@fis.unam.mx

© Springer Science+Business Media New York 2016
J.J. Healy et al. (eds.), Linear Canonical Transforms, Springer Series
in Optical Sciences 198, DOI 10.1007/978-1-4939-3028-9_1
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4 K.B. Wolf

the key to understand the conservation of uncertainty as a matter of intrinsic
mathematical interest. Some two decades elapsed before the two currents of research
acknowledged each other. For this reason alone, the 45-year history of LCTs could
provide an interesting case study on the intertwining of basic and applied endeavors.
The more recent trend towards the analysis of discrete and finite data sets such as
computers can handle also evinces a bifurcation between the search for efficient
algorithms and the quest for subtler constructions based on symmetry. Usually
mathematics yields more results than can be useful for applications. Applications
have generated admirable technology, while symmetry catches the eye and pleases
the mind.

The two seminal papers on LCTs, of Collins [1], and of Moshinsky and Quesne
[2–4], are highly referenced (>657 and>390 joint citations, respectively, 11/10/15).
Yet closer analysis shows that the authors who cited each of them have been mostly
disjoint up to recent years: there was an optics community and a theoretical physics
community, each with its own preferred journals, interests, and working styles [5].
The author’s [6] grievously omits Collins’ work—and any reference to optics as
well. Fortunately, during the early eighties a mathematician colleague brought to
my attention a series of papers by Nazarathy, Shamir, and Hardy on linear systems
with loss or gain [7–11], and the work of Alex J. Dragt (University of Maryland)
and several of his collaborators [12, 13] who had been developing techniques to
control charged particle beams for the Superconducting Supercollider project [14,
15], which started a learning process on optical systems seen as a group-theoretical
construct.

It should not be a matter of apology to focus this introductory chapter toward a
review of LCTs seen from a more mathematical perspective. Section 1.2 contains the
Collins and Moshinsky–Quesne approaches to LCTs, and the context in which our
local research continued to develop. Thus, Sect. 1.3 reviews the salient properties of
LCTs as integral transform realizations of the double cover of the group Sp(2;R)
of 2�2 real matrices of unit determinant, and as generated by an algebra of second-
order differential operators in Sect. 1.4. Section 1.5 recapitulates the radial and the
(lesser-known) hyperbolic LCTs, geared to answer the question “what are LCTs?”
In that section we propose what seems to be the proper context to accommodate
all realizations (“faces”) of integral and (infinite) matrix LCTs. Section 1.6 recalls
complex extensions of LCTs that can be made unitary, such as heat diffusion,
and a hint of applications to special function theory. Realizations of LCTs as
finite matrices are addressed in Sect. 1.7 because there is a growing interest in
fast algorithms to digitally treat LCTs for finite signals or pixelated images, where
several tactics have been proposed to handle them, and on which I add a few words
in the concluding Sect. 1.8. Here too it seems that at least two schools of thought
contend, one strives for æsthetics and the other for efficacy.
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1.2 Diffraction Integrals, Uncertainty Relations

Geometric and wave optics, as well as classical and quantum mechanics, agree
with each other in the linear approximation—except for complex phases. It should
be evident therefore that the paraxial régime of optics and quadratic systems
in mechanics are closely related in their mathematical structure. They are both
Hamiltonian systems whose waveforms, or states in any number of dimensions,
can be displayed on a flat phase space. There, evolution is canonical (keeping the
symplectic structure invariant) and linear (consisting only of translations, rotations,
and shears). In paraxial wave optics, shears of phase space result from thin lenses
and empty spaces, which, respectively, multiply the input functions by quadratic
phases, and subject them to an isotropic Fresnel integral transform. In quantum
mechanics on the other hand, beside the shear of free propagation, the harmonic
oscillator is the most privileged actor; it generates a fractional Fourier transform on
the initial state—times a phase.

1.2.1 Matrix Representation of Paraxial Optical Systems

The evolution in linear systems can be represented mathematically in three ways: by
linear operators, by integral kernels, and by finite or infinite matrices. These will act
on the states of the system, which in turn are realized, respectively, as differentiable
and/or integrable functions of position (or momentum, or other observables), and
as finite- or infinite-dimensional vectors. Since LCTs form a group, there will be
locally a 1:1 correspondence between the three realizations, so one can use the
algebraically simpler finite matrix realization to compute products and actions.
Many authors point to the books by Willem Brouwer [16] and by Gerrard and
Burch [17] for introducing the use of matrix algebra to paraxial optical design for
resonators and the evolution of Gaussian beams therein. In two-dimensional (2D)

optics, free propagation by z is represented by the 2 � 2 matrix
�
1
0

z
1

�
, and a thin

lens of focal distance f by
�

1
�1=f

0
1

�
; these act on rays represented by a two-vector�

x
p

�
, where x is the position of the ray on the z D 0 screen, and p D n sin � � n�

is the momentum of the ray that crosses the screen with the “small” angle � to its
normal, in a transparent optical medium of refractive index n. In the paraxial régime
one lets the phase space coordinates .x; p/ roam over the full plane R2. Products
of these matrices correspond with the concatenation of the optical elements, and

every paraxial 2D optical system is thus represented by a 2 � 2 matrix
�

a
c

b
d

�
, with

ad � bc D 1 because the two generator matrices have unit determinant.
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The paper by Stuart A. Collins, Jr. [1] considered the generic 3D paraxial,
generally nonsymmetric but centered and aligned system.1 These systems are

represented by a 4 � 4 matrix M D
�

a
c

b
d

�
,

�
x0
p0
�

D
�

a b
c d

��
x
p

�
; i.e., w0 D Mw; (1.1)

where w WD
�

x
p

�
, with x; x0; p;p0 being 2-vectors, and a; b; c; d are the 2 � 2

submatrices of M. Since free propagation of an input function f .x/ is described by
the Fresnel transform, whose integral kernel has a quadratic phase, and thin lenses
multiply the function by a quadratic phase also, one should guess that the output

fM.x/ of an M D
�

a
c

b
d

�
-transform should be an integral transform which, for the

generic N-dimensional case is

fM.x/ � .CM f /.x/ WD
Z

RN
dNx0 CM.x; x0/ f .x0/; (1.2)

with a quadratic phase kernel CM.x; x0/ in the components of x and x0, and the
matrix parameters of M. The Collins paper considers transverse scalar fields Ei D
Ai exp.ikLi/ in each element of the optical setup, using the Fermat principle to show
how the eikonal (optical distance) can be expressed in terms of the initial and final
ray positions and slopes.2 The resulting linear relations between these two 4-vectors
with the parameters of the optical system turn out to be equivalent to the definition
of symplectic matrices, whose generic form is

M � M> D �; �> D ��; �2 D �1; (1.3)

where the skew-symmetric metric matrix � is usually written as � D
�

0
�1

1
0

�
. In

the 2 � 2 submatrix form (1.1), this is

�
a b
c d

��
0 1

�1 0

��
a> c>

b> d>

�
D
�

0 1
�1 0

�
; (1.4)

which implies that the following submatrix products are symmetric,

a b> D .a b>/>; c d> D .c d>/>; a d> � b c> D 1: (1.5)

1All lens centers are assumed to be on a common straight optical axis with their planes orthogonal
to it; the “center” of cylindrical lenses is a line that should also intersect this axis. The consideration
of displacement and (paraxial) tilt can be made using 2 C 2 more parameters for inhomogeneous
LCTs, which are not explicitly considered here. See [18].
2The paper by Collins uses momenta in the form nipi with jpij D sin �i, and orders the 4-vector
components as .x1; p1; x2; p2/>.
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These conditions (for N D 2) were found [1, Appendix B] and thereby the optical
distance between initial and final ray positions L WD L0 C LM, consisting of the
distance L0 along the axis plus that gained for rays between positions off this axis,
LM.x; x0/, which is a quadratic function of its arguments and contains the parameters
of the transfer matrix M. The integral kernel (1.2) is thus determined to be of the
form AM exp.ikLM/. The normalization factor AM is computed by demanding the
conservation of energy, and its phase is taken from the Fresnel diffraction kernel
[1, Eq. (28)]. The paper by Collins applies this result for the analysis of Hermite–
Gaussian beams in resonators and for the reconstruction of holographic images.

1.2.2 Evolution in Quadratic Quantum Systems

Marcos Moshinsky had been studying the harmonic motion of Gaussian wavepack-
ets that represent alpha bondings in various oscillator models of the nucleus. This
is the context in which he seems to have been motivated to touch upon canonical
transformations in quantum mechanics. His paper was presented at the XV Solvay
Conference in Physics of 1970 [2], whose Proceedings were delayed 4 years. Upon
returning to Mexico with the Belgian postdoctoral associate Dr. Christiane Quesne,
they stated the problem in the following terms [3, 4]: What are the transformations of
phase space that leave the structure of quantum mechanics invariant? This included
the important uncertainty relation �f �Qf � 1

4
(„ � 1) that is a mathematical

property of the Fourier integral transform. The question remitted them to the basic
Heisenberg commutators

ŒOxi; Opj� WD Oxi Opj � Opj Oxi D i ıi;j; (1.6)

between the Schrödinger position operators Oxi D xi � and the momentum operators
Opj D �i@j (where @j � @=@xj), for i; j D 1; 2; : : : ;N in N-dimensional systems.
Such transformations can be linear or nonlinear; some of the latter were examined a
few years later, but the more immediate ones were the linear, for N-vector operators

Ox and Op forming a 2N-vector Ow �
� Ox

Op
�

as before, acted upon by a transformation CM

depending on the elements of a 2N � 2N matrix M. For operators, these are written
somewhat differently from (1.1),

CM Ow C�1
M D M�1 Ow: (1.7)

The reason for having the inverse matrix on the right-hand side is that this
alone ensures that the composition of transforms follows that of the matrices:
CM1CM2 D ' CM1M2 , with ' a constant undetectable in (1.7). Next, direct replacement
into (1.6) yields the symplectic conditions (1.3)–(1.5) for M. Symplectic matrices
are invertible,
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�
a b
c d

��1
D �M>�> D

�
d> �b>

�c> a>

�
; (1.8)

the unit 1 is symplectic and associativity holds. Hence symplectic matrices that
are real form the real symplectic group Sp(2N;R) with N.2NC1/ independent
parameters. When N D 1, Sp(2;R) is identical with the group of all 2 � 2 real
matrices of unit determinant. (The complex case will be considered in Sect. 1.6.)

The action of the linear operators CM on the usual Hilbert space L2.RN/ of
quantum mechanical Lebesgue square-integrable functions, f 7! fM � CM f , is
expected to be integral in RN as (1.2), and unitary, because such is quantum
evolution. The integral kernel can be found applying CM to Oxif and to Opjf using (1.7)
and (1.8),

CM .Oxi f / D .CM OxiC�1
M / fM D P

j.dj;i Oxj � bj;i Opj/fM; (1.9)

CM .Opi f / D .CM OpiC�1
M / fM D P

j.�cj;i Oxj C aj;i Opj/fM: (1.10)

On the right, Oxi and Opi act outside of the integral, on the x argument of the kernel
CM.x; x0/, while those on the left act inside, on f .x0/; the derivatives of the latter can
be integrated by parts to act on the x0 argument of the kernel. Since f is arbitrary,
one obtains the 2N simultaneous linear differential equations satisfied by the LCT
kernel,

x0
iCM.x; x0/ D P

j

�
dj;ixi C ibj;i@j

�
CM.x; x0/; (1.11)

@ 0
i CM.x; x0/ D P

j

�
icj;ixi � aj;i@j

�
CM.x; x0/: (1.12)

The solution, up to a multiplicative constant KM, is

CM.x; x0/ WD KM exp i
�
1
2
x>b�1dx � x>b�1x0 C 1

2
x0>ab�1x0�: (1.13)

The constant KM is found from the limit to the 2N � 2N unit matrix, M ! 1 (with
det b in the lower-half complex plane), so that CM.x; x0/ ! ıN.x � x0/, regaining
the unit transform C1 D 1. The result is

KM D 1p
.2� i/N det b

� e�i�N=4 exp i.� 1
2

arg det b/p
.2�/N j det bj : (1.14)

Finally, when only b ! 0 from the lower complex half-plane, the matrix is

M 0 WD
�

a
c

0
a>�1

�
, the Gaussian kernel converges weakly to a Dirac ı, and the

integral operator action becomes a change of scale of the function multiplied by
a quadratic phase,
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.CM0 f /.x/ D exp i. 1
2
x>ca�1x/p
det a

f .a�1x/: (1.15)

In the case of N D 1-dimensions, Eqs. (1.2) and (1.13)–(1.14) simplify to the
best-known form of LCTs,

fM.x/ � .CM f /.x/ D
Z

R
dx0 CM.x; x

0/ f .x0/; (1.16)

CM.x; x
0/ WD 1p

2� i b
exp

� i

2b
.dx2 � 2xx0 C ax02/

�
; (1.17)

where it should be understood that 1=
p

ib D exp.�i 1
2
�.sign bC 1

2
//=

pjbj. The
generalization of the Fourier–Heisenberg uncertainty relation to LCTs is of the
form �f�fM � 1

4
jbj. The last two chapters of [6] were written based on the works

of Marcos Moshinsky and his associates on LCTs, complemented with results by
the author on translations of phase space, complex extensions, and applications to
the evolution of Gaussians and other wavefunctions of quantum quadratic systems
(oscillator wavefunctions, parabolic cylinder and Airy functions) under diffusion.

1.2.3 LCTs in a Broader Context

Optical models are richer than mechanical ones because they provide a wider view
of canonical transformations beyond the linear regime. Mechanical Hamiltonians
are mostly of the form 1

2
p2CV.x/, where the potential V.x/with a smooth minimum

may be expanded using perturbation series in powers of x around the harmonic
oscillator; in geometric and magnetic metaxial optics on the other hand, the presence
of aberrations generally requires evolution Hamiltonians expressible in series of
terms pnxm. As Alex J. Dragt applied for accelerators [12–15, 19], Hamiltonian
and Lie-theoretic tools served to calculate carefully one turn in the accelerator,
and then one raises that transformation to the power of any number of turns, while
canonicity ensures the conservation of the beam area in phase space. The usefulness
of these techniques for optical design was facilitated by a neat theorem on the
canonical transformations produced by refraction between two media separated by
a surface of smooth but arbitrary shape [20]: they can be factored into the product of
two canonical transformations, each depending on the surface and only one of the
media. This allowed the computation of the aberration coefficients for polynomial
surfaces of revolution, and the group structure translated the concatenation of optical
elements along the optical axis into matrix multiplication. Interest in these lines
led us to convene two gatherings on Lie optics (a convenient neologism), in 1985
and 1988 [21, 22]. In fact, LCTs were taken for granted and served as basis for
chapters on Fourier optics, coherent states, holography, computational aspects for
aberrations, and optical models that take into account that the optical momentum
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vector ranges over a sphere, and not over a plane as the paraxial theory assumes.
Yet, it is the linear regime (paraxial optics or quadratic mechanics) that displays
naturally the cleanest symmetries.

Closely related with LCTs, a line of research on the Wigner distribution function
applied to optical waveforms and their transformation in first-order optical systems
was opened by Martin J. Bastiaans by the end of the 1970s [23, 24]. Both papers are
highly cited (>330 and >400 citations), indicating that many authors have followed
the analysis of non-imaging linear systems in phase space [25–27]. More recent
work with Tatiana Alieva, María Luisa Calvo, and several coworkers addressed
LCTs to obtain phase information out of intensity measurements [28–30], and
the processing of two-dimensional images [31, 32] by means of optical setups
of cylindrical lenses that can be rotated in fixed positions to synthesize any LCT
transformation [33], in particular fractional Fourier transforms [34, 35] and gyrators
[36, 37]. Both the Wigner function and the two-dimensional LCTs that form the
group Sp(4;R) cannot be surveyed in this chapter for reasons of space even though
they are now widely used for many applications in quantum optics. See, for example,
[38] (>1120 citations).

Linear canonical transformations include fractional Fourier transforms in the
subgroup F� � F� 2 SO.2/ � Sp.2;R/ of matrices

�
cos �

� sin �
sin �
cos �

�
, of power

� 2 R or angle � D 1
2
��, times the metaplectic phase (to be seen below).

This development also has a story behind: in 1937, Edward Condon thanks Profs.
Bochner, von Neumann, and Bohnenblust for conversations leading to the article
[39], where he clearly defines the fractional Fourier transform and finds its kernel
following the reasoning in (1.11)–(1.12), recognizing the metaplectic problem.
Condon’s result seems to have been in suspended animation for decades, unnoticed
by Victor Namias [40] who in 1980 rediscovered F� proposing that it self-
reproduces the harmonic oscillator wavefunctions with a phase .�i/� (to be taken
as e�i��=2), and the kernel found from the bilinear generating function of Hermite
polynomials (inexplicably, [6] disregarded this specialization of LCTs). Interest of
the optical community in fractional Fourier transforms grew in the early nineties
around their optical implementation through the slicing of graded-index media and
non-imaging lens systems, by Mendlovic and Ozaktas [41–44] (>780, >437, >250
and >254 citations). Their work was formalized in the 2001 book [45] by Ozaktas,
Zalevsky, and Kutay, which spread the use of the fractional Fourier transform and
LCTs in general. This book contains a bibliography of >500 references which
hardly any of us can read entirely, and which I certainly cannot reproduce.

1.3 LCTs, Matrices, Signs and Covers

An important property of the LCTs (1.13)–(1.15) is that they conserve the norms
[1] and overlaps [3], i.e., the transformations are unitary under the L2.RN/ inner
product,
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.f ; g/L2.RN / WD
Z

RN
dx f .x/� g.x/ D .fM; gM/L2.RN /; (1.18)

because

CM.x; x0/ D CM�1 .x0; x/�: (1.19)

However, the group composition property of LCTs is satisfied by the integral kernels
only as

Z

RN
dx0 CM1 .x; x

0/CM2 .x
0; x00/ D � CM1M2 .x; x

00/; (1.20)

where � is a phase—the metaplectic phase (actually a sign). This problem is
announced by the square root in the denominator of (1.14) and (1.15); it can
be seen most clearly in the Fourier integral transform F for N D 1, which for
dimensionless matrix elements corresponds to F D �3; the integral kernel is then
CF.x; x0/ D e�i�=4e�ixx0

=
p
2� , so

CF D e�i�=4F ; F D
�
0 1

�1 0
�
: (1.21)

Thus, while F4 D 1 we have C4F D �1; this is reminiscent of the behavior of spin
under 2� rotations.

The metaplectic sign has bedeviled many papers, and it can be said that it was
not really understood until the group theory behind brought to the fore the fact that
the correspondence between integral LCTs and matrices is not 1:1, but 2:1. The
problem is not crucial in optical setups because overall phases are commonly not
registered, but in mathematics signs cannot be just ignored. Indeed, the structure
of the symplectic groups (even that of 2 � 2 matrices) is unexpectedly imbricate
[46]. The problem for N D 1 was clarified early by Valentin Bargmann in 1947 [47,
Sects. 3, 4] using the polar decomposition of matrices. This is a generalization of
the factorization of complex numbers z D ei� jzj into a phase ei� times a positive
number jzj; multiple Riemann sheets of a function around its branch points need the
phase � to range beyond its basic interval modulo 2� . A real 2 � 2 matrix can be
similarly decomposed into the product of a unitary and a symmetric positive definite
matrix,

3I thank Dr. George Nemeş for the remark that when dimensions are respected, F ¤ � because
the parameters b and 1=c have units of momentum/position, while a and d have no units. In our
presentation of the kernel (1.17) we assume that momentum p bears no units (as in optics), and that
a unit of distance has been agreed for position so that x is its numerical multiple.
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�
a b
c d

�
D
�

cos� � sin�
sin� cos�

��
	C Re
 Im


Im
 	 � Re


�
; (1.22)

where 
 is complex, and 	 WD Cpj
j2 C 1 � 1. Under multiplication of two
matrices, their Bargmann parameters (with subindices 1 and 2) compose through

� D �1 C �2 C arg �; 
 D e�i arg �.	1
2 C e�2i�2
1	2/; (1.23)

where � WD 1C e�2i�2
1
2=	1	2 is an auxiliary complex quantity whose phase is
determined to range in arg � 2 .� 1

2
�; 1

2
�/, and 	 D 	1j�j	2 � 1. The composite

� can thus take values on the full real line R and hence parametrize all elements
of Sp.2;R/, the infinite cover of the group Sp(2;R). Thus, while the unitary
spin group SU(2) covers twice the orthogonal rotation group SO(3), the symplectic
group is infinitely covered; the realization by LCTs is then a twofold cover of the
group of 2 � 2 real matrices of unit determinant. Below we shall comment on this
feature of the group of integral transforms, called the metaplectic group Mp(2;R).
(See also [48, Sect. 9.4].)

The generic case of Sp(2N;R) follows suit, as proved by Bargmann some years
later [49]. The polar decomposition is then into a real 2N � 2N orthosymplectic
matrix that represents the group U(N) of N � N unitary matrices, and again a
symmetric positive definite matrix [48, p. 173]. This U(N) group is the maximal
compact (i.e., of finite volume) subgroup of Sp(2N;R), and has been called the
Fourier group [50]. In the N D 2-dimensional case, U(2) contains the isotropic
and anisotropic fractional Fourier and gyration integral transforms [34, 36], as well
as joint rotations of position and momentum around the optical center and axis. In
turn, this U(2) is the direct product of a U(1) subgroup of isotropic fractional Fourier
transforms (a circle), times the group SU(2) of 2 � 2 matrices of unit determinant;
the latter is simply connected, so the onus of multivaluation falls on the former. For

N D 2 and the 4�4 Fourier matrix F D � D
�

0
�1

1
0

�
the relation between the LCT

and the 2D Fourier integral transform is thus CF D e�i�=2F .

1.4 LCTs Are Generated by Second-Order Differential
Operators

In retrospect it is obvious that unitary LCTs CM and self-adjoint second-order
differential operators OJ D ˛ Opi Opj C ˇ 1

2
.Oxi OpjCOpj Oxi/C � Oxi Oxj should be closely related,

the latter generating the former through CM.� / D exp.i� OJ/. The LCT integral kernels
CM.� /.x; x0/ are Green functions of quadratic Hamiltonians that can be found through

OJ f .x/ D �i
@

@�

Z

RN
dx0 CM.� /.x; x0/ f .x0/

ˇ̌
ˇ
�D0; (1.24)
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and CM.0/.x; x0/ D ıN.x � x0/, as was done in [51]. Probably the reason for not
having recognized this relation earlier was that since the time of Sophus Lie only
first-order differential operators, f .x/@x C g.x/, were used to generate Lie groups.

Writing CM � C.M/, we have the following N D 1 paraxial optical elements
generated by operators and their LCTs,

thin lens: exp
�

i 1
2
� Ox2
�

D C
�
1
�
0
1

�
; (1.25)

free flight: exp
�

i 1
2
� Op2

�
D C

�
1
0

��
1

�
; (1.26)

magnifier: exp
�

i 1
2
�.OpOx C OxOp/

�
D C

�
e��

0
0
e�

�
; (1.27)

repulsive guide: exp
�

i 1
2
�.Op2 � Ox2/

�
D C

�
cosh �

� sinh �
� sinh �

cosh �

�
; (1.28)

ei��=4 � Fourier�� : exp
�

i 1
2
�.Op2 C Ox2/

�
D C

�
cos �
sin �

� sin �
cos �

�
: (1.29)

For vanishing � , M.� / � 1 C �m, we can associate the generator operators

with traceless 2 � 2 matrices m: thin lens,
�
0
1
0
0

�
; free flight,

�
0
0

�1
0

�
; magnifier,��1

0
0
1

�
; repulsive guide,

�
0

�1
�1
0

�
; and harmonic guide,

�
0
1

�1
0

�
. This infinitesimal

“portion” of Sp(2;R) constitutes a linear space called its Lie algebra, denoted by
the lowercase name sp(2;R), and whose structure is determined by the commutators
of its elements. Under CM the “infinitesimal” matrices m 2 sp.2;R/ will transform
by similarity as m 7! m0 D M m M�1, and with all M 2 Sp.2;R/ we build the
orbit of m. Thus the generators of lenses and of free flights are in the same orbit

related by the Fourier matrix F D
�
0

�1
1
0

�
, and the generators of magnifiers are the

same with those of repulsive guides, related by the square root F1=2 D 1p
2

�
1

�1
1
1

�
.

Analysis shows that sp(2;R) has three orbits (excluding the orbit of 0): elliptic
containing (1.29); hyperbolic (1.27)–(1.28); and parabolic (1.25)–(1.26). The last
forms a cone in R3, the first and second fill the inside and outside of that cone.
This division into disjoint orbits in the R3 linear space of the algebra extends to

the group, but the group Sp(2;R) of matrices
�

a
c

b
d

�
has an extra non-exponential

region identified by the range of the trace, a C d 2 .�1;�2/, where the matrices
have no real logarithm. For N D 2 dimensions, the identification of generating
Hamiltonians in sp(4;R) with optical elements can be found in [48, Chap. 12]; there
are 4 continua of orbits and 12 isolated points, few of which have been exploited.

The relations (1.25)–(1.29) also determine that the eigenfunctions of an operator
OJ  � D E�  � (whose eigenvalues E� are common to all elements in its orbit), will
self-reproduce under the generated LCT as CM.� / � D ei�E� � . In particular, the
harmonic oscillator Hermite–Gauss eigenfunctions ‰n.x/ correspond to energies
En D n C 1

2
, n 2 f0; 1; 2; : : :g. Thus, the CF LCT of the eigenfunctions  M

n D CM n

of all operators in the elliptic orbit is
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CF 
M
n D exp

��i 1
2
�.n C 1

2
/
�
 M

n D e�i�=4.�i/n M
n ; (1.30)

having set � D � 1
2
� in (1.29) and in agreement with (1.21). Here again the phase

evinces the double cover of CF˛ 2 Mp.2;R/ over the circle of fractional Fourier
matrices F˛ 2 Sp.2;R/. We may also see the metaplectic phase as the energy of
the vacuum, E0 D 1

2
.

We have thus associated three classes of mathematical actors in the Sp(2;R)
troupe: LCT integral transforms, hyperdifferential (exponentials of second order)
operators, and matrices (modulo a sign). Product operations in one class correspond
with products in the other two. Hence, we can easily write Baker–Campbell–
Hausdorff relations between quadratic operators [6, Sect. 9.3.2], and the LCTs of the
eigenfunction set of one under LCTs generated by another, including phase space
translations [6, Chap. 10]. Certainly, other authors have considered various aspects
of the above constructions (see, e.g., [52]), so it is as grievous not to mention one as
it is to mention all.

1.5 Radial, Hyperbolic, and Other LCTs

Isotropic LCTs in N D 2 or more dimensions that are represented by matrices M D�
a1
c1

b1
d1

�
with diagonal submatrices can be reduced to

�
a
c

b
d

�
radial LCTs acting

on eigenspaces of functions of the radius and with definite angular momentum.
One may also ask for separation of variables in other sets of coordinates and select
eigenspaces under other operators, to find, e.g., hyperbolic LCTs. Not surprisingly, it
turns out that for N D 1 the theory of Sp(2;R) representations studied by Bargmann
[47], and Gel’fand and Naı̆mark [53]—also in the same year 1947, provides an
appropriate framework to phrase these and other derivate LCTs.

1.5.1 Radial Canonical Transforms

Shortly after completing the initial two papers on LCTs based on the 2�2 Sp(2;R)
matrices [3, 4], and Dr. Quesne having returned to Belgium, Marcos Moshinsky
extended his inquiry to canonical transformations which he deemed to be nonlinear,
but were closely related to the two-dimensional oscillator through the subgroup
chain Sp.4;R/ 	 SO.2/ ˝ Sp.2;R/, where SO(2) is the group of rotations
in the plane [54]. The representations of the two subgroups are conjugate, i.e.,
the representation m 2 Z of SO(2) fixes the discrete-series representation k D
1
2
.jmj C 1/ of Sp(2;R) (see below). This approach considered isotropic LCTs (1.2)

in the polar coordinates of R2,

x1 D r cos �; x2 D r sin �; r 2 RC
0 D Œ0;1/; � 2 R mod 2�: (1.31)
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Since angular momentum OL D �i.x1@2�x2@1/ D �i@� commutes with these LCTs,
we can isolate an eigenspace of functions f .x/ 
 f .r/ eim�=

p
2� with integer m 2 Z,

to find the corresponding “radial” LCTs (RLCTs). There, r2 D @2r C r�1@r C r�2@2�
where with @2� 7! �m2 is self-adjoint under the measure r dr. In order to have
“m-radial” spaces where @2r be self-adjoint, we need the inner product

.f ; g/L2.RC/ WD
Z 1

0

dr f .r/� g.r/ (1.32)

with measure dr, so previous operators should be transformed through OJ 7!p
r OJ=pr to keep self-adjointness.
To find the RLCT integral kernel under (1.32), we project out the Fourier series

coefficient of the eim� component of the N D 2 isotropic LCT kernel (1.13),

C.m/
M .r; r0/ D 1

2�

Z �

��
d� CM.x; x0/e�im� : (1.33)

Noting that only the factor e�ix�x0=b contains the mutual angle through x � x0 D
rr0 cos.� � � 0/, we fix the reference axes by x to perform the integration. This is
the angular momentum decomposition of the LCT, and defines the m-RLCT by

f .m/M .r/ � .C.m/M f /.r/ D
Z

RC

dr0 C.m/
M .r; r0/ f .r0/; (1.34)

C.m/
M .r; r0/ D ei�.mC1/=2

b
exp

� i

2b
.dr2 C ar02/

�
Jm

� rr0

b

�
; (1.35)

where Jm.z/ is the Bessel function of the first kind. An alternative derivation of this
kernel can be found in [55].

1.5.2 Hyperbolic Canonical Transforms

Hyperbolic canonical transforms are obtained when instead of the polar coordi-
nates (1.31), one introduces the two-chart hyperbolic coordinates [56],

� D C W x1 D  cosh �; x2 D  sinh �;
� D � W x1 D  sinh �; x2 D  cosh �;

�
; � 2 R;
� WD sign .x21 � x22/:

(1.36)

Here the subgroup chain to be used is Sp.4;R/ 	 O.1;1/ ˝ Sp.2;R/, where
now O(1; 1) consists of pseudo-orthogonal (“1+1 Lorentz”) matrices, and inversions
… W x D �x that also commute with Sp(2;R), reducing the range of the “hyperbolic
radius”  to Œ0;1/. Instead of the isotropic LCTs used for RLCTs above, we now



16 K.B. Wolf

consider LCTs of the form M D
�

a1
c1

b1
d1

�
with 1 WD

�
1
0

0
e�i�

�
, where the phase e�i�

is important. Then in (1.13) the first exponential term is x>b�1dx D �d2=b, and
only the term x>b�1x0 D �0 cosh.� � �0/ contains the boost “angle” � 2 R that
will be subject to integration.

Fourier integral decomposition of the LCT kernel (1.13) into plane waves and
parity yield the “hyperbolic” LCTs (HLCTs), characterized now by the Fourier
conjugate variable s 2 R and the parity eigenvalue $ 2 fC1;�1g. But note that
now there are also two charts � 2 fC;�g, so that functions should be represented

by two � -component functions with definite parity $ , as f$./ D
�

f C;$ ./
f �;$ ./

�
, with

f �;$./ D $ f �;$.�/, and the inner product

.f; g/L2.$;RC/ WD
X

�2fC;�g

Z 1

0

d f �;$./� g�;$./: (1.37)

The HLCT of a function f ./ is then

f$;sM ./ � .C$;sM f/./ D
Z

RC

d0 C.$;s/
M .; 0/ f.0/; (1.38)

where the matrix integral kernel is

C.$;s/
M .; 0/ D

�
GM;C;C.;

0/H
.$;s/
C;C

.0=b/ GM;C;�.;
0/H

.$;s/
C;�

.0=b/

GM;�;C.;
0/H

.$;s/
�;C

.0=b/ GM;�;�.;
0/H.$;s/

�;� .0=b/

�
; (1.39)

GM; �;� 0.; 0/ D
p
0

2� jbj exp
�

i
�d2 C � 0a02

2b

�
; (1.40)

H.$;s/
C;C .�/ D i�Œ$e��sH.1/

2is .�Ci0C/ �$e�sH.2/
2is .��i0C/� (1.41)

D $H.$;s/�;� .�/;

H.$;s/
C;� .�/ D 4c$;s� K2is.j�j/ D $H.$;s/

�;C .�/; (1.42)

and where H.1/
� and H.2/


 are Hankel functions of the first and second kind valued
above and below the branch cut, K� is the MacDonald function, cC1;s

� WD cosh�s

and c�1;s
� WD �sign � sinh�s.

1.5.3 LCTs as Representations of Sp(2; R)

In Sect. 1.3 I warned that the theory of 2 � 2 real matrices is more imbricate than
expected.4 Yet I believe that the natural context to understand the foundations and

4Once I said in front of a large student audience that I had devoted much work to understand 2� 2
matrices, the giggles in the hall were sobering.
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see the possible incarnations of linear canonical transformations is in the theory of
unitary irreducible representations of the Lorentz group SO(2; 1) of “2C1” special
relativity [46]. Let me now place LCTs in this context.

After relating paraxial optical elements to LCTs and second-order differential
operators in (1.25)–(1.29), we note further that the following operators

OJ1 WD 1

4

�
� d2

dr2
C �

r2
� r2

�
; (1.43)

OJ2 WD �i

4

�
r

d

dr
C d

dr
r
�
; (1.44)

OJ3 WD 1

4

�
� d2

dr2
C �

r2
C r2

�
; (1.45)

are essentially self-adjoint under the inner product (1.32) of L2.RC/, and that they
close into an algebra with the commutation relations

ŒOJ1; OJ2� D �iOJ3; ŒOJ2; OJ3� D iOJ1; ŒOJ3; OJ1� D iOJ2; (1.46)

that characterize the isomorphic algebras sp.2;R/ D so.2;1/. Instead of starting
with the preservation of the Heisenberg canonical commutation relations (1.6)
between the Schrödinger quantum position and momentum operators, here we
start from the preservation of the commutators (1.46) and their realization by
the three operators (1.43)–(1.45). Their commutators are preserved under linear

transformations with parameters taken from M D
�

a
c

b
d

�
2 Sp(2;R),

0
@

OJ1
OJ2
OJ3

1
A

�
a
c

b
d

�

�!

0
@
1
2
.a2�b2�c2Cd2/ bd�ac 1

2
.a2�b2Cc2�d2/

cd � ab adCbc �cd � ab
1
2
.a2Cb2�c2�d2/ �bd�ac 1

2
.a2Cb2Cc2Cd2/

1
A
0
@

OJ1
OJ2
OJ3

1
A : (1.47)

These 3 � 3 matrices form the “2+1” Lorentz group SO(2; 1) with metric .� � C/.
Since both M and �M yield the same 3�3matrix, this Lorentz group is covered 2:1
by Sp(2;R); however, their Lie algebras, defined by their commutation relations,
are the same.

In Sect. 1.4 we came upon the three orbits of sp.2;R/ D so.2;1/, which can be
also be characterized by the distinctive spectrum of the generator that we choose to
be the operator of position, fg, which can be discrete or continuous. We can use the
realization (1.43)–(1.45) in L2.RC/ for � > 0 to evince those spectra.5 The are:

5For � < 0 there is a doubling of the Hilbert space that requires some extra analytical finesse
[57], which stems from a separation in hyperbolic coordinates such as that seen in the previous
subsection.
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• In the ! D elliptic orbit of the compact “harmonic oscillator C�=r2” operator,
OJ3 in (1.45) has a discrete spectrum fg3 bounded from below, and equally spaced
by 1.

• In the ! D parabolic orbit of the “thin lens” generator in (1.25), here OJ� WD
OJ3�OJ1 D 1

2
r2 � 0, the spectrum fg� is continuous and non-negative. Its Fourier-

Bessel transform is OJC WD OJ3 C OJ1, which is the Hamiltonian of “free flight in a
�=r2 potential,” and has the same spectrum.

• In the ! D hyperbolic orbit of the “repulsive oscillator C�=r2” operator, OJ1
in (1.43), the spectrum fg1 is the real line.

Thus, while su.2/ D so.3/ contains a single orbit and the spectrum f
g
of any generator Jz can provide the row and column labels—positions—for the
spin j representation matrices and vectors, bound by integer-spaced j
j � j, in
sp.2;R/ D so.2;1/ we have three orbits and three choices for the position fg:
discrete, continuous positive, or real. Moreover, while the representations of so(3)
are simply labelled by the non-negative integers j 2 ZC

0 in the eigenvalues j.j C 1/

of the square angular momentum, the representation structure of so(2; 1) and the
bounds it imposes on fg are more complicated. The parameter � in (1.43)–(1.45)
is the strength of the centrifugal (� > 0) or centripetal potential (� < 0); the special
case � D 0 will remit us back to the original and best-known LCT face in (1.16)–
(1.17). This parameter � determines almost (see below) the representation of the
algebra through the eigenvalues of the so(2; 1) invariant Casimir operator,

OC WD OJ21 C OJ22 � OJ23 D .� 1
4
� C 3

16
/ 1 DW k.1 � k/ 1; (1.48)

� D .2k�1/2 � 1
4
; k D 1

2
.1˙

q
1
4
C�/: (1.49)

Here, k is the all-important Bargmann index; it distinguishes the two main series of
representations:

• Bargmann discrete Dk̇ representations [47] (called complementary by Gel’fand
and Naı̆mark [53]). When the coefficient � is of centrifugal origin in two
dimensions, angular momentum 
 2 Z determines � D 
2 � 1

4
� � 1

4
, which

implies the range k D 1
2
.j
j C 1/ 2 f 1

2
; 1; 3

2
; : : :g. This series can be extended

to continuous k 2 RC, representing multiple covers of so(2; 1). In particular
for k quarter-integers, they are faithful representations of Mp(2I R). The D�

k
representations are related to the DC

k ones by an outer automorphism of the group
that in geometric optics is reflection [48, Sect. 10.4].

• Bargmann continuous C"s representations (called principal by Gel’fand and
Naı̆mark). When � < 0, the potential is centripetal and we must further
distinguish the exceptional range � 1

4
� � < 0 where 1

2
� k < 1 is real, from

the principal range � < � 1
4

where k D 1
2

C is, with s D ˙ 1
2

p
.j� j� 1

4
/ 2 R,

and " 2 f0; 1
2
g is a multivaluation index. We shall exclude the exceptional range
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0 < k < 1 from further detailed considerations.6 We treat this interval as an
extension of the Dk̇ discrete series.

The best-known one-dimensional LCT in (1.16)–(1.17) occurs for � D 0, namely
the quarter-integers k D 1

4
and k D 3

4
, for the subspaces of even and odd functions

of , respectively—recall that here we are on the “radial” half-line for the inner
product (1.32) of L2.RC/.

Using Dirac’s shorthand notation, let jk; i! be a basis vector for the unitary
irreducible representation k (in DC

k or C"s ), with row  (discrete or continuous)
determined by the orbit ! of the chosen position operator. We may then understand
LCTs as the unitary irreducible representations of M 2 Sp.2;R/ acting on those
Hilbert space bases and functions,

f k;!
M ./ D S

0.k;!/
Dk;!
;0.M/ f .0/; (1.50)

Dk;!
;0.M/ WD !hk; jCMjk; 0i!; i.e., (1.51)

!hk; jfMi D !hk; jCMjf i D !hk; jCMjk; 0i! !hk; 0jf i; (1.52)

where S is a sum or integral over the range of eigenvalues of position .k; !/
allowed in the representation k, where the chosen position operator is in the orbit !.
The ranges of its “position coordinate” are:

DC
k C"s

! elliptic:  D kCn; n 2 ZC
0  � " 2 Z

! parabolic:  2 RC  2 RC ˚ RC
! hyperbolic:  2 R  2 R ˚ R

(1.53)

The orthogonality and completeness of the bases jk; 0i! guarantees that the
group composition property holds and that the transformation is unitary and hence
invertible,

S
0.k;!/

Dk;!
;0.M1/Dk;!

0;00.M2/ D Dk;!
;00.M1M2/; (1.54)

Dk;!
;0.M�1/ D Dk;!

0;
.M/�: (1.55)

The matrices and integral kernels Dk;!
;0.M/ are known in the literature. They

were written out for ! D elliptic by Bargmann [47]; for ! D hyperbolic by
Mukunda and Radhakrishnan [60]; and for ! D parabolic they are the radial
and hyperbolic LCT kernels of this section. In [57] all !hk; jCMjk; 0i!0

are listed,
including the mixed cases ! ¤ !0; these were later used to find the so(2; 1)

6The generators present a one-parameter family of self-adjoint extensions with non-equally spaced
spectra [58] and also harbor the Ek exceptional (or supplementary) representation series [59].
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Clebsch–Gordan coefficients between all representation series [61]. Finally, while
writing this chapter, I completed the work in [62], giving explicitly (in the present
notation) the six distinct faces of LCTs, Dk;!

;0.M/ for the three orbits in the two
nonexceptional representation series. I close this section reminding the readers that
there is a theorem stating that noncompact groups (i.e., of infinite volume) do not
have faithful finite-dimensional unitary representations; thus, Sp(2;R) only has

finite representations that are not unitary—such as the 2 � 2 matrix M D
�

a
c

b
d

�
,

the 3�3matrix in (1.47), or others of “spin” k given in [48, Eq. (13.6)] that are used
for Lie aberration optics.

1.6 Complex Extensions of LCTs

While LCTs allow a transparent formulation of the properties of resonators, where
a paraxial wavefield is bounced repeatedly between two end-mirrors, it is natural to
inquire about systems with loss or gain [10, 11]. On the other hand, applications to
clustering in nuclei [63] required the description of Gaussian packets in terms of the
raising and lowering operators of the harmonic oscillator [64], i.e.,

� Oz"
�iOz#

�
D 1p

2

�
1 �i
�i 1

��Ox
Op
�

D 1p
2

� Ox � iOp
�i.Ox C iOp/

�
; �i � e�i�=2: (1.56)

Issues related to the meshing between Bargmann and LCT transforms were
discussed in a think-tank at the Centre de Recherches Mathématiques (Université
de Montréal) during the closing months of 1973. It was also noted that the real

heat diffusion kernel to time t > 0 is the
�
1
0

�2it
1

�
complex LCTs with kernel


 exp.�.x � x0/2=4t/=
p

t; for t > 0 these transforms form a semi-group (i.e.,

without inverses). Indeed, one can extend the
�

a
c

b
d

�
parameters as long as the LCT

kernel (1.17) is a decreasing Gaussian in the argument x0 subject to integration,
namely Re .ia=b/ < 0. If a is real, this means that the complex value of b must be
in the lower complex half-plane, �� < arg b < 0.

But unitarity is a cherished property among group theorists, so the question was
posed to find appropriate Hilbert spaces to comply with this requirement. There was
the precedent of Bargmann’s space for analytic functions f .z/� D f .z�/ [49], so
it was not difficult [51] to follow his construction in proposing a measure for the
sesquilinear inner product that integrates over the whole complex plane z 2 C, of

L2.R/ functions that have been transformed by a complex M D
�

a
c

b
d

�
,

.fM; gM/BM WD
Z

C
d2
M.z; z

�/ fM.z/
� gM.z/ D .f; g/L2.R/; (1.57)

d2
M.z; z
�/ D �M.z; z

�/ d Re z d Im z; where (1.58)
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�M.z; z
�/ D

r
2

�v
exp

�uz2 � 2zz� C u�z� 2

2v

�
; (1.59)

u WD a�d � b�c; v WD 2 Im .a b�/ > 0: (1.60)

This defines Bargmann-type Hilbert spaces BM such that the complex LCT between
L2.R/ D B1 and BM is unitary, and can be inverted back to L2.R/ through

f .x/ D
Z

C
d2
M.z

0; z0 �/CM�1 .x; z0/ fM.z
0/: (1.61)

In the limit when M becomes real, the measure weight function �M.z; z�/ in (1.59)
is a Gaussian that collapses to a Dirac ı on the Re z0 axis [6, Sect. 9.2.2]. Of interest
to mathematicians is the use of the hyperdifferential operator realization of complex
LCTs to find an expression for Hermite polynomials, such as [51, App. A]

Hn.x/ D exp
�
�1
4

d2

dx2

�
.2x/n; x D exp

�1
4

d2

dx2

�
Hn.x/: (1.62)

Similar relations could be found for parabolic cylinder and other special functions,
but have not been investigated.

Radial LCTs can also be extended to the complex domain [55] when the radial
kernel (1.35) is a decreasing Gaussian, Re .ia=b/ < 0 as before. But now, noting
in (1.32) that the argument of the functions is r 2 Œ0;1/, it turns out that the
complex-transformed functions will be analytic only in the right half-plane % 2 CC
where Re % > 0. The Bargmann-type inner products that preserve the unitarity of
the complex RLCTs that map f .r/ 2 L2.RC/ to f .m/M .r/ 2 B.m/

M are

.f.m/M ; g.m/M /B.m/M
WD

Z

CC

d2
.m/
M .%; %�/ f .m/M .%/� g.m/M .%/ D .f; g/L2.RC/; (1.63)

d2
.m/
M .%; %�/ D �.m/M .%; %�/ d Re % d Im %; where (1.64)

�.m/M .%; %�/ D 2

�v
exp

�u%2 C u�%� 2

2v

�
Km

�%%�

v

�
; (1.65)

where Km.z/ is the MacDonald function, while u and v are given by (1.60). The
inversion and real limit properties are similar to those of the complex LCTs seen
above.

A specific case of interest is the treatment of the Barut–Girardello transform and
coherent state [65]. Similar to (1.62), one obtains a hyperdifferential form for the
Laguerre polynomials [55],

L.m/
n . 1

2
r2/ D .�1/n

nŠ 2n
r�m exp

h�1
2

� d2

dr2
C 1

r

d

dr
� m2

r2

�i
r2nCm: (1.66)

Finally, hyperbolic LCTs do not allow for any complex extension [56].
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1.7 Finite Data Sets and LCTs

Most data sets in the real world are finite and can be represented as N-component
vectors, f � ffmgN

mD1. If the numbers come from sensing a continuous wavefield f .x/
at N discrete points, how can we compute their propagation through an optical LCT
setup? The most direct answer is sampling the assumed smooth wavefield fm WD
f .xm/ and the LCT kernel (1.17) at the same points fxmgN

mD1, and simply performing

the product of the N � N matrix CM, function of M D
�

a
c

b
d

�
, and the vector f.

Following the discretization adopted in [66] for xm D m
p
.2�=N/, this is

.CM f/m WD
NX

m0D1

1p
N

exp
� i�

bN
.dm2 � 2mm0 C am02/

�
fm0 ; (1.67)

.CM f/m WD exp.i� cm2=aN/ fm when b D 0; (1.68)

where we leave out phases. Yet this transformation is only an approximation to the
LCT, and it is generally not unitary.

Regarding the spacing of the sampling points, Ding [67] has given a sampling
theorem that generalizes that of Shannon in terms of the desired extent of the
LCT transform signal. The requirement of unitarity on the kernels (1.67) is that
C�

MCM D 1; this occurs only for values of the parameter b such that 1=b is an integer
relatively prime to N [68]. Combining both results, in [69], the authors present
sufficient conditions on the sampling rate of fxmgN

mD1 for any one LCT to ensure
its unitarity. However, two such matrices will not concatenate as integral LCTs do
because, as we mentioned at the end of Sect. 1.5, Sp(2;R) has no finite-dimensional
unitary irreducible representations. Alternatively, if one discretizes the LCT kernel
by using the LCT sampling theorem [67, 70], a unitary discrete LCT which provides
a provably good approximation to the continuous LCT can be obtained [71, 72]. In
principle, one would like to have a relation between the discrete and continuous
LCTs that mirrors and generalizes the corresponding relation for ordinary Fourier
transforms. Such a relation has been provided in [71], showing that the discrete LCT,
as defined in [73], approximates the LCT in the same sense that the discrete Fourier
transform approximates the continuous Fourier transform, provided that the number
of samples and the sampling intervals are chosen according to the LCT sampling
theorem [67, 70–72].

There are some other problems to define subsets of finite LCTs that form a group,
which we can point out for finite analogues of fractional Fourier transforms. If we
search for a one-parameter subgroup of unitary N �N matrices F� 2 U.N/ such that
F�F
 D F�C
, with F1 D F being the well-known finite Fourier transform matrix,

Fm;m0 D 1p
N

exp
�

� i
2� m m0

N

�
; (1.69)
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which is unitary and idempotent, F4 D 1, what we find is a deluge of possibilities:
we can draw the N2 real parameters of unitary N �N matrices inside a sphere in RN2

space; the four matrix powers of F are but four points—with 1 on the origin. Unitary
matrices of unit determinant form the simply connected subgroup SU(N), whose
SO(2) subgroups of possible fractional F�’s are closed lines (picture them as circles)
that can be freely rotated keeping the origin fixed, and are only required to pass
through F for � D 1, since automatically the circles will pass also through its integer
powers. Clearly, for dimensions N > 2 there is a continuum of such circles that can
be drawn through two points. From that perspective, we analyzed this freedom in
[74] in terms of choosing “good” bases for the RN manifold. Alternative approaches
to define good bases to build finite fractional Fourier transform matrices have used
sampled harmonic oscillator wavefunctions, as done by Pei et al. [73, 75, 76], or
other candidates such as the Harper functions [77] by Ozaktas et al.

Additionally, there is a problem with the phase space interpretation of these
finite fractional Fourier transforms, which we can see through the commonly used
finite Wigner function [25]. The finite Fourier transform matrix F brings N-vectors
of position to N-vectors of momentum. And, being cyclic, Fm;m0 D FmCN;m0 D
Fm;m0CN leads to consider a phase space that is discrete and connected as a torus.
The “front face” of this torus is the origin of phase space m D 0 D m0. So, while the
integral fractional Fourier transform rotates the phase space plane around the origin,
we cannot rotate the front face of a torus without tearing it. Yet to be applicable,
finite LCTs must be computed efficiently for one- or two-dimensional signals and
images in real time. This line of research has been developed by Sheridan et al. in
[66, 78–81] with the strategy of separating the finite LCT in (1.67) into a Fourier
transform factor, for which the FFT algorithm exists, and factors of (1.68). Another
strategy for fast and accurate computation of LCTs has been developed by Ozaktas
et al. using the Iwasawa decomposition [82, 83]. Alternatively, a chirp-Fourier-chirp
factorization with a fast-convergent quadrature formula was proposed in [84].

Finally, we should mention another fast computation method that also involves
chirp multiplication, fast Fourier transform, and a second chirp multiplication [71]:
this method has the advantage of involving the least number of samples possible
as determined from the LCT sampling theorem [67, 70]. This discrete LCT has a
well-defined relation to the continuous LCT and can be made unitary by adding a
factor in front [71, 72]. This approach is attractive because it combines a desirable
analytic discrete LCT definition with a computational method that is nearly as fast
and accurate as the fast Fourier transform algorithm to compute continuous Fourier
transforms.

1.8 Conclusion

I was deeply honored by the invitation of the Editors to write some pages about
the development of linear canonical transforms, in company with distinguished res-
earchers who are applying them in encryption, metrology, holography, and optical
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implementations. Emeritus Professor Stuart Collins is still active and has registered
six patents to his name between 1982 and 2008; his work in optoelectronics has been
applied for space science. I was an apprentice of Marcos Moshinsky and developed
his work on quantum mechanics as a fruitful model for LCTs and related transforms.
Only later did I learn that LCTs were excellent tools for paraxial optics as used by
a community with whom I could then establish dialogue.

Perhaps a similar bifurcation of viewpoints may occur concerning finite LCTs.
The previous section contains problems which I regard as indicative that a different
approach can be useful to understand finite signals on phase space and their
canonical transformations. Based on the rotation algebra so(3), instead of the
Heisenberg–Weyl algebra of quantum mechanics, we have proposed a model
for discrete Hamiltonian systems where phase space is a sphere [85]. When the
number of position points and their density increase, the model contracts to that of
quantum mechanics, the sphere blowing up into the quantum phase space plane.
Canonical transformations in so(3) are those that preserve the surface elements of
the sphere. Linear transformations of N-point signals are the rigid rotations of that
sphere. Among these, the fractional Fourier-Kravchuk transform [86] describes the
time evolution of this finite harmonic oscillator. Moreover, nonlinear canonical
transformations can be defined in correspondence with optical aberrations as
matrices in the full U(N) group of linear transformations of N-vectors [87]. Based
on the Euclidean and Lorentz algebras, other discrete models are available in one
and two dimensions [88].

On the other hand, it is not clear that expansions in group-theoretic bases have
any advantage over other bases for expansion [89], since they do not seem amenable
to fast algorithms. Still, based on previous experiences, I harbor the hope that the
mathematical landscape succinctly described here can be of use to broaden the per-
spective we have of canonical transformations of phase space. The founders of this
field must have been quite unaware of the full panorama they opened for us to see.
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Chapter 2
The Linear Canonical Transformation:
Definition and Properties

Martin J. Bastiaans and Tatiana Alieva

Abstract In this chapter we introduce the class of linear canonical transformations,
which includes as particular cases the Fourier transformation (and its generalization:
the fractional Fourier transformation), the Fresnel transformation, and magnifier,
rotation and shearing operations. The basic properties of these transformations—
such as cascadability, scaling, shift, phase modulation, coordinate multiplication
and differentiation—are considered. We demonstrate that any linear canonical
transformation is associated with affine transformations in phase space, defined
by time-frequency or position-momentum coordinates. The affine transformation is
described by a symplectic matrix, which defines the parameters of the transforma-
tion kernel. This alternative matrix description of linear canonical transformations
is widely used along the chapter and allows simplifying the classification of such
transformations, their eigenfunction identification, the interpretation of the related
Wigner distribution and ambiguity function transformations, among many other
tasks. Special attention is paid to the consideration of one- and two-dimensional
linear canonical transformations, which are more often used in signal processing,
optics and mechanics. Analytic expressions for the transforms of some selected
functions are provided.

2.1 Introduction

In this chapter we introduce the class of linear canonical transformations and study
some of the basic properties of these transformations. In one dimension, this class
forms a three-parameter class of linear integral transformations, and includes such
operations as the well-known Fourier transformation, the Fresnel transformation
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(used in optics, for instance, to describe the paraxial propagation of light in free
space), and simple operations like scaling and multiplication by a quadratic-phase
function. In the D-dimensional case, the class has D.2D C 1/ free parameters and
includes additional operations, like rotation and shearing. Although we focus on the
two-dimensional case, with an occasional restriction to one dimension, many of the
results will hold for the general D-dimensional case. And although the results are
normally presented using higher-dimensional vectors and matrices, the reduction to
one dimension is throughout straightforward.

After a formal definition of the linear canonical transformation in Sect. 2.2, we
turn to a description in a so-called phase space in Sect. 2.3, where a matrix is
introduced with which the transformation is parameterized, and we derive some of
the transformation’s basic properties; this section contains also a number of linear
canonical transformations for the one-dimensional case, which are more easily to
visualize. Special cases of the transformation in two (and more) dimensions are
considered in Sect. 2.4, while decompositions of a general linear canonical transfor-
mation into cascades of simpler transformations are studied in Sect. 2.5. In Sect. 2.6
we derive the linear canonical transforms of some selected functions, like a Gaussian
signal, a harmonic signal, a periodic signal (with a short detour to Talbot imaging)
and the Hermite–Gauss modes; the transformation of these Hermite–Gauss modes
leads to a general class of Hermite–Gaussian type modes, with the Laguerre–Gauss
modes as a special case, which are very important in optics. The eigenvalues of the
transformation matrix are discussed in Sect. 2.7; the possible distributions of these
eigenvalues lead to a classification of the linear canonical transformation based on
simple nuclei, from which eigenfunctions may be derived. The final Sect. 2.8, deals
with the effect of the linear canonical transformation on the second-order moments
in phase space; we discuss, in particular, moment combinations that are invariant
under a linear canonical transformation.

We conclude this Introduction with some remarks about notation. We will
throughout denote column vectors by bold-face, lower-case symbols like r and
q, which in the two-dimensional case D D 2 read r D Œx; y� t and q D Œu; v� t,
while matrices and submatrices are denoted by bold-face, upper-case symbols,
like T D ŒA;BI C;D�; transposition of vectors and matrices is denoted by the
superscript t. The identity matrix is denoted by I. Submatrices may carry subscripts,
like in M D ŒMrr;MrqI Mqr;Mqq�. Scalars, including the entries of a 2 � 2 matrix,
will appear in normal face, like in T D Œa; bI c; d� and Mrq D Œmxu;mxvI myu;myv�.
Complex conjugation is denoted by the superscript �, and the combined action
of conjugation and transposition for vectors and matrices is denoted by the
superscript �: U� D U�t. Operators appear in calligraphic style, like L and F ,
and the symbols M and D are used to denote the special operators related to
coordinate multiplication and differentiation, respectively; brackets in connection
with operators will be used to avoid ambiguities, if necessary. While a normal face
font is used for signals and functions, a sans serif style is used for the Hermite–Gauss
modes Hm;n.r/ and Laguerre–Gauss modes Lm;n.r/. Unless otherwise stated, all
integrations and summations extend from �1 to C1, and the short-hand notation
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dr in higher-dimensional integrals is used for dx dy. Subscripts i and o, like in fi.ri/,
are throughout used to mark input and output signals and coordinates.

Finally: we will very often meet expressions of the form .i `/1=2 or .det i L/1=2.
They shall be interpreted as expŒi . 1

4
�/ sgn.`/� j`j1=2 or, with L a D � D matrix, as

expŒi . 1
4
�/D sgn.det L/� j det Lj1=2.

2.2 Definition of the Linear Canonical Transformation

With the two-dimensional column vector r defined as r D Œx; y� t, where t denotes
transposition, and dr D dx dy, the linear canonical transformation of the two-
dimensional signal f .r/, fi.ri/ ! fo.ro/ D L fi.ri/, is defined as

fo.ro/ D .det i �1Lio/
1=2

Z
expŒi�.r t

oLooro � 2r t
i Lioro C r t

i Liiri/� fi.ri/ dri ; (2.1)

where the 2 � 2 matrices Loo and Lii are symmetric: Loo D Lt
oo and Lii D Lt

ii.
We restrict ourselves to the case that the (not necessarily symmetric) 2 � 2 matrix
Lio is non-singular. Although we will focus on the two-dimensional case, with an
occasional restriction to one dimension, most of the results will hold for the general
D-dimensional case. The reduction to one dimension is throughout straightforward;
the one-dimensional version of Eq. (2.1), for instance, takes the form

fo.xo/ D .i �1`io/
1=2

Z
expŒi�.`oox2o � 2`ioxixo C `iix

2
i /� fi.xi/ dxi .`io ¤ 0/ :

(2.2)

Note that in the D-dimensional case, a symmetric D � D matrix has 1
2
D.D C 1/

degrees of freedom, and that the three matrices Loo, Lii and Lio together thus have
D.2D C 1/ degrees of freedom: 3 for D D 1 and 10 for D D 2. If Loo D Lii

and Lio D Lt
io, the transformation is symmetric and the roles of ro and ri can be

interchanged, as will be discussed in more detail in Sect. 2.3.1.2.
The linear canonical transformation is a unitary transformation in the sense that

Z
fo.r/ h�

o .r/ dr D
Z

fi.r/ h�
i .r/ dr; (2.3)

where � denotes complex conjugation, which relation is known as Parseval’s
theorem for lossless transformations; it yields the energy preservation law for
f .r/ D h.r/.

We finally remark that an additional phase factor exp.i'/ may be added to the
definition (2.1) without changing the main properties of the transformation. This is
sometimes done to get a better connection with the actual physical phenomenon that
the linear canonical transformation is describing.
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Among the many works on the linear canonical transformation, to which we refer
for further reading, we mention [7, 26, 32, 44, 46, 47, 51, 71–75].

2.3 Representation of the Linear Canonical
Transformation in Phase Space

To represent the linear canonical transformation in phase space, we use the Wigner
distribution W.r;q/ of the signal f .r/, defined as [11, 13, 18, 19, 27, 28, 43, 66–69]

W.r;q/ D
Z

f
	
r C 1

2
r0
 f � 	r � 1

2
r0
 expŒ�i 2� q tr0� dr0 : (2.4)

The column vector q can be considered as the frequency variable associated with r.
Note that the Wigner distribution is real, W.r;q/ D W�.r;q/, and that a constant
phase factor in the signal is no longer visible in the Wigner distribution: the signals
f .r/ and f .r/ exp.i'/ lead to the same Wigner distribution.

We derive the linear canonical transformation in terms of the phase-space
variables r and q by substituting from (2.1) into (2.4) and get the relationship (see
Appendix)

Wo.ro;qo/ D Wo.Ari C Bqi;Cri C Dqi/ D Wi.ri;qi/ ; (2.5)

where the input variables .ri;qi/ and the output variables .ro;qo/ are related by the
simple matrix relation

�
ro

qo

�
D
�

A B
C D

� �
ri

qi

�
� T

�
ri

qi

�
; (2.6)

in which the transformation matrix T D ŒA;BI C;D� has been introduced, and
where the matrices A, B, C and D are related to the matrices Loo, Lio and Lii by

A D L�1
io Lii ; B D L�1

io ; C D LooL�1
io Lii � Lt

io ; D D LooL�1
io ;

Loo D DB�1 ; Lii D B�1A ; Lio D B�1 :
(2.7)

Note that we can formulate the relationship between the frequency variables q and
the original variables r also in the form

��qi

qo

�
D
�

Lii �Lio

�Lt
io Loo

� �
ri

ro

�
: (2.8)
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In terms of the transformation matrix T, the linear canonical transformation can be
expressed in the form [26, 33, 40, 44, 74, 75]

fo.ro/ D L .T/fi.ri/ D .det i B/�1=2

�
Z

expŒi�.r t
oDB�1ro � 2r t

i B�1ro C r t
i B�1Ari/� fi.ri/ dri ; (2.9)

with det B ¤ 0. In the limiting case B ) 0, for which ro ) Ari, see (2.6), we have

fo.r/ D L .T/fi.r/ D j det Aj�1=2 expŒi� r tCA�1r� fi.A�1r/ ; (2.10)

which follows readily when we write the exponent in (2.9) as

expŒi� r t
oCA�1ro� expŒi�.ri � A�1ro/

tB�1A.ri � A�1ro/�

and recall that .det i B/�1=2 expŒi� r tB�1Ar� ) j det Aj�1=2 ı.r/ when B ) 0.
The singular case det B D 0, but B ¤ 0, will be dealt with in Sect. 2.4.4.1. For the
one-dimensional versions of Eqs. (2.9) and (2.10), we refer to Sect. (2.3.2), where
we will study one-dimensional transformations in more detail.

The symmetry of the matrices Loo and Lii reflects itself in the symplecticity of
the transformation matrix T:

T �1 D
�

A B
C D

��1
D
�

D t �B t

�C t At

�
D JT tJ with J � i

�
0 I

�I 0

�
: (2.11)

Note that J D J�1 D �J t D J�t D J�.
The symplectic 2D � 2D transformation matrix T has D.2D C 1/ degrees of

freedom (3 for the one-dimensional case and 10 for the two-dimensional case), the
same number as in the three D � D matrices Loo, Lii and Lio together. In the one-
dimensional case, the symplecticity condition (2.11) reduces to the much simpler
relation det T D ad � bc D 1.

The input–output relationship (2.5) implies that the Wigner distribution of the
output signal is simply a linearly distorted form of the Wigner distribution of the
input signal, with the value of the Wigner distribution at each point in phase space
being mapped to another point in phase space, without the need to calculate an
integral. Since the determinant of the transformation matrix T is equal to unity, this
pointwise geometrical distortion or deformation is area preserving; it distorts but
does not concentrate or deconcentrate the Wigner distribution.

An isolated distribution around a point .t; f / in a time-frequency phase space can
be considered as the representation of a short musical note at a certain time t with
a certain frequency f . The Wigner distribution can thus be considered as a musical
score, which tells us how a time signal can be composed as a superposition of notes.

In optics, such an isolated distribution around a point .r;q/ in a position-direction
phase space can be considered as an optical ray at a certain position r with a certain
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direction (i.e., spatial frequency) q, and the Wigner distribution then tells us how
the optical signal can be composed as a superposition of rays. This simultaneous
position-direction description closely resembles the ray concept in geometrical
optics, where the position and direction of a ray are also given simultaneously. The
Wigner distribution thus yields a ray pattern of the optical signal and, in a way,
W.r;q/ is the amplitude of a ray, passing through the point r with a direction q.

Simple optical systems like a thins lens, a section of free space in the Fresnel
approximation, and cascades of such systems are described by an input–output
relation of the form (2.1) and belong to the realm of what is called first-order
optics [33, 46]. The propagation of an optical signal through first-order optical
systems can most elegantly be described by the coordinate transformation (2.5) of
the signal’s Wigner distribution. It is thus obvious why phenomena in first-order
optics are often treated in a phase space [12, 64–66, 75].

We finally note that the concept of the Wigner distribution can directly be
applied to stochastic signals; we only have to replace in its definition (2.4) the
product f .r1/f �.r2/ by the two-point correlation function hf .r1/f �.r2/i, where h�i
denotes ensemble averaging. The phase-space description of the linear canonical
transformation is therefore not restricted to deterministic signals, but applies
immediately to stochastic signals, as well [13, 18, 19].

Instead of with the Wigner distribution W.r;q/, we could also have chosen to
work with the other well-known phase-space description, the ambiguity function
A.r0;q0/ defined as [76, Chap. 7]

A.r0;q0/ D
Z

f
	
r C 1

2
r0
 f � 	r � 1

2
r0
 expŒ�i 2� r tq0� dr ; (2.12)

for which we have the input–output relation Ao.Ar0 C Bq0;Cr0 C Dq0/ D Ai.r0;q0/,
which is similar to (2.5).

2.3.1 Basic Properties

For easy reference, the basic properties of the linear canonical transformation and
transforms, treated in this section, have been collected in Tables 2.1 and 2.2.

2.3.1.1 Cascadability

If two linear canonical transformations L .T1/ and L .T2/ are performed in
cascade, L .T2/L .T1/, the resulting operation is again a linear canonical trans-
formation L .T/ with a transformation matrix T D T2T1 that is the product of T2
and T1. An immediate consequence is that the inverse of the operation L .T/ is
parameterized by T �1: L �1.T/ D L .T �1/.
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Table 2.1 Some basic properties of the linear canonical transformation

Operator Transformation matrix Remark

L .T/

"
A B
C D

# "
A B
C D

#�1

D
"

D t �B t

�C t At

#

symplecticity condition

L .T2/L .T1/ cascadability T2T1

L �1.T/ D L .T �1/ inverse

"
D t �B t

�C t At

#

L . OT/ D L �.T �1/ reverse

"
D t B t

C t At

#
L .T/f �.r/ D ŒL .T �1/f .r/��

F Fourier transformation

"
0 I
�I 0

#

FL .T/F�1 D L .T t�1/

F�1L .T/F D L .T t�1/
duality

"
D �C
�B A

#
T , T t�1 implies

A , D
B , �C

The property of cascadability is true when we consider linear canonical trans-
formations as simple coordinate transformations in phase space. If we treat the
concatenation of operators in their integral representations (2.1) or (2.9), we will
encounter the possibility of an additional minus sign. This problem is known as the
metaplectic sign problem and is carefully studied in [74, Sect. 9.1.4, Composition
of transforms] and [75, Sect. C2. Linear canonical transforms] by considering the
integral (with complex-valued variables r and s)

Z

<
expŒi�.r2q2 C 2sq/� dq D �.r/ exp.i 1

4
�/r�1 exp.�i� s2r�2/ ; (2.13a)

with �.r/ D
 C1 when 0 � arg r � 1

2
� ;

�1 when �� � arg r � � 1
2
� :

(2.13b)

In this chapter we will ignore the metaplectic sign problem.

2.3.1.2 The Reverse System

If a system performs a linear canonical transformation L .T/, it is sometimes
advantageous to consider the behaviour of the so-called reverse system L . OT/,
with transformation matrix OT; note that this is not the same as the inverse system
L .T �1/. In the reverse system, the signal phases are reversed and the signals
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Table 2.2 Some basic properties of linear canonical transforms

Input signal Output signal Remark

fi.r/ fo.r/ D L .T/fi.r/ T D
"

A B
C D

#
.2:1/.2:9/.2:10/

X
n

anfn.r/
X

n

an L fn.r/ Linearity

fi.r/; hi.r/
Z

fi.r/ h�

i .r/ dr D
Z

fo.r/ h�

o .r/ dr
Parseval’s theorem

.2:3/

f �

i .r/ ŒL .T�1/fi.r/�� T�1 D
"

D t �B t

�C t At

#
Complex conjugation

.2:15/

M
nfi.r/ .D t

M � B t
D/nfo.r/ M D r

Multiplication

.2:23a/

D
nfi.r/ .�C t

M C At
D/nfo.r/ D D .i 2�/�1r t

Derivation

.2:23b/

fi.r/ exp.i 2� k tr/ fo.r � Bk/ exp.i 2� k tD tr/ exp.�i� k tB tDk/
Modulation

.2:25a/

fi.r � k/ fo.r/ exp.i 2� k tC tr/ exp.�i� k tC tAk/
Shift

.2:25b/

j det Wj�1=2fi.W�1r/ L .QT/fi.r/ QT D T

"
W 0
0 W t�1

#
Scaling

.2:43/

fi.�r/ L .�T/fi.r/ D fo.�r/
Scaling by �1
.2:43/ W D �I

exp.�� r tLir/
Œdet.A C i Li/�

�1=2 exp.�� r tLor/

with i Lo D .C C i DLi/.A C i BLi/
�1

Sect: 2:6:1 L D Lt

1 .det A/�1=2 exp.i� r tCA�1r/ Sect: 2:6:1

exp.i 2� k tr/
.det A/�1=2 exp.i� r tCA�1r/

� exp.�i� k tA�1Bk/ exp.i 2� k tA�1r/
Sect: 2:6:1

propagate in the opposite direction, which means that the frequency variable q has
to be reversed, i.e., replaced by �q, and that f �

o .ro/ now acts as the input signal
while f �

i .ri/ D L . OT/ f �
o .ro/ is the output signal. The transformation matrix OT of

the reverse system thus takes the form

OT D
�

I 0
0 �I

�
T �1

�
I 0
0 �I

�
D
�

A �B
�C D

��1
D
�

D t B t

C t At

�
: (2.14)
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Substituting fo.ro/ D L .T/ fi.ri/ into f �
i .ri/ D L . OT/ f �

o .ro/, we immediately
get f �

i .ri/ D L . OT/ ŒL .T/ fi.ri/�
� D L . OT/L �.T/ f �

i .ri/ and we conclude that
L .T/ D L �. OT �1/ and also

L .T/ f �.r/ D ŒL .T �1/ f .r/�� : (2.15)

The system is symmetric if OT D T, i.e., if A D D t, B D B t and C D C t. This
corresponds to Loo D Lii and Lio D Lt

io, as we already mentioned before.

2.3.1.3 Formulation in Terms of Fourier Transforms

For A D D D 0 and B D �C D I, the linear canonical transformation reduces to
the common Fourier transformation [apart from the phase factor .det i I/�1=2]

fo.ro/ D .det i I/�1=2
Z

expŒ�i 2� r t
i ro� fi.ri/ dri � .det i I/�1=2Nfi.ro/ � F fi.ri/ ;

(2.16)

whereas the inverse Fourier transformation arises for B D �C D �I; note
that .det i I/�1=2 D i �D=2 for a D-dimensional signal. We thus conclude that the
transformation matrices

�
0 I

�I 0

�
and

�
0 �I
I 0

�
(2.17)

correspond to a Fourier transformation and its inverse, respectively.
Using the Fourier transformation, we can easily express the linear canonical

transformation in terms of the Fourier transforms Nfi;o.q/ of the signals fi;o.r/:

Nfo.qo/ D F fo.ro/ D FL .T/ f .ri/ D FL .T/F�1Nfi.qi/ D L .T t�1/ Nfi.qi/ :

(2.18)

The transformation matrix T t�1 in the Fourier domain takes the dual form

T t�1 D
�

0 I
�I 0

� �
A B
C D

� �
0 �I
I 0

�
D
�

D �C
�B A

�
(2.19)

and is related to T by interchanging A , D and B , �C. Note that interchanging
F and F�1 leads to the same result.

2.3.1.4 Coordinate Multiplication and Differentiation

One of the main properties of the Fourier transformation is that a multiplication of
f .r/ by its argument r corresponds to a differentiation of its Fourier transform Nf .q/,
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and vice versa with a minus sign. With the operator M denoting multiplication by the
argument and the operator D denoting differentiation with respect to the argument
and dividing by .i 2�/, both resulting in a column vector, we can write

Mf .r/ D rf .r/ , �DNf .q/ D �.i 2�/�1r t Nf .q/ ; (2.20a)

MNf .q/ D q Nf .q/ , Df .r/ D .i 2�/�1r tf .r/ ; (2.20b)

where the nabla operator r, which after transposition takes the form of a column
vector, has been used to denote partial derivatives. We also define the operators
D

t and M
t where the vectors are transposed, and easily verify that D t

Mf .r/ D
.1C M

t
D/ f .r/. The operator D t

M�M
t
D thus corresponds to the identity operator.

We now turn our attention to the linear canonical transformation L and
determine the two transforms L ŒMf .r/� and L ŒDf .r/� in terms of L f .r/. After
some lengthy but straightforward calculation we get

L ŒMf .r/� D .D t
M � B t

D/L f .r/ ; (2.21a)

L ŒDf .r/� D .�C t
M C At

D/L f .r/ ; (2.21b)

and we easily verify that for the Fourier transformation, i.e., A D D D 0 and
B D �C D I, we get F ŒMf .r/� D �DŒF f .r/� and F ŒDf .r/� D MŒF f .r/�, see
Eqs. (2.20). The operators M and D in the input domain thus lead to the operators
MT and DT in the output domain, and the four operators are related by

�
MT

DT

�
D
�

A B
C D

� �
M

D

�
; (2.22)

in accordance with (2.6).
We also verify that D t

TMT � M
t
TDT is the identity operator. Indeed: D t

TMT �
M

t
TDT D .�M

tC t C D
tAt/.DM � BD/ � .M tD t � D

tB t/.�CM C AD/ D
M

t.�C tD C D tC/M C M
t.C tB � D tA/D C D

t.AtD � B tC/M C D
t.�AtB C

B tA/D D D
t
M � M

t
D, where we have used the symplecticity conditions C tD D

D tC, AtD � B tC D I and AtB D B tA. We note that an alternative development
of linear canonical transformations may be found in [74, Sect. 9.1.1, Posing the
operator problem], where Eq. (2.22) is taken as the defining characteristic of these
transformations and the integral form is subsequently defined.

The operators M and D can be applied an arbitrary number of times in cascade,
which leads to the following relations, cf. (2.21):

L ŒM nf .r/� D .D t
M � B t

D/nL f .r/ ; (2.23a)

L ŒD nf .r/� D .�C t
M C At

D/nL f .r/ : (2.23b)
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2.3.1.5 Coordinate Shift and Modulation

One of the other main properties of the Fourier transformation is that a modulation
of f .r/ by exp.i 2� k tr/ corresponds to a shift of the argument of its Fourier
transform Nf .q/, and vice versa with a minus sign:

f .r/ exp.i 2� k tr/ , Nf .q � k/ ; (2.24a)

f .r � k/ , Nf .q/ exp.�i 2� k tq/ : (2.24b)

Similar relations hold for the linear canonical transformations. With fo.r/ D L fi.r/
we write

L Œfi.r/ exp.i 2� k tr/� D fo.r � Bk/ exp.i 2� k tD tr/ exp.�i� k tB tDk/ ;

(2.25a)

L Œfi.r � k/� D fo.r/ exp.i 2� k tC tr/ exp.�i� k tC tAk/ ; (2.25b)

and we verify that for the Fourier transformation we get indeed Eqs. (2.24).
The important convolution property of the Fourier transformation,

Z
f .r � k/ h.k/ dk � .f � h/.r/ , Nf .q/ Nh.q/ ; (2.26)

does not have a nice counterpart for a general linear canonical transformation;
see [7], for instance. Nevertheless, for a transformation with the additional condition
A D 0, which is actually a Fourier transformation followed by a multipli-
cation with a quadratic-phase function, we can write fo.ro/ D L fi.ri/ D
.det i B/�1=2 exp.i� r t

oDB�1ro/ Nfi.B�1ro/ and thus

L Œ.fi � hi/.r/� D .det i B/�1=2 exp.i� r tDB�1r/ Nfi.B�1r/ Nhi.B�1r/

D .det i B/1=2 exp.�i� r tDB�1r/ fo.r/ ho.r/ : (2.27)

By analogy with the alternative representation of the convolution in the Fourier
domein, f1 � f2 D F�1fŒF f1.r/�ŒF f2.r/�g, we can introduce the generalized
canonical convolution as L .T3/fŒL .T1/f1.r/�ŒL .T2/f2.r/�g, which resembles the
common convolution and fractional convolution operations [4, 9, 39]. In particular,
if the transformation matrices used in the latter expression correspond to the
ones of the fractional Fourier transformation, we obtain the generalized fractional
convolution, whose applications for shift-variant filtering, encryption, etc., have
been proposed [4, 9, 31, 39, 77]. Since two-dimensional canonical transformations
include such operations as rotation, scaling, shearing, and fractional Fourier trans-
formation, the generalized canonical convolution can be helpful for resolving the
problem of scale-, rotation- and shear-invariant (or partially invariant) filtering and
pattern recognition.
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2.3.2 Simple Transformations for the One-dimensional Case

In this section we consider some simple transformations in the one-dimensional
case. We explicitly state the two governing equations for one dimension, cf. (2.9)
and (2.10):

fo.xo/ D .i b/�1=2
Z

expŒi� b�1.dx 2o � 2xoxi C ax 2i /� fi.xi/ dxi .b ¤ 0/ ;

(2.28a)

fo.x/ D jaj�1=2 expŒi� ca�1x 2� fi.a�1x/ .b D 0/ ; (2.28b)

and we study the result of a linear canonical transformation in phase space for
several simple cases. As an illustration, we consider the effect on a rectangularly
shaped Wigner distribution, see the top figure in Table 2.3.

2.3.2.1 Fourier Transformer

We already met the special case of a Fourier transformation,

fo.xo/ D i �1=2
Z

exp.�i 2� xoxi/ fi.xi/ dxi D i �1=2 Nfi.xo/ D F fi.xi/ ; (2.29)

which is connected to the transformation matrix Œ 0; 1I �1; 0 �. Its effect on the
Wigner distribution is a simple clockwise rotation in the xu plane through �=2.
In other words: whatever happened in the original Wigner distribution on the u axis,
now happens on the x axis, and whatever happened on the x axis, now happens on
the �u axis. We recall the well-known property of the Fourier transformation that
F 4 results in the identity operation.

2.3.2.2 Magnifier

Let us now turn our attention to some basic one-parameter transformations. We start
with two examples of the b D 0 class. The matrix Œ a; 0I 0; a�1�, associated with the
transformation

fo.x/ D jaj�1=2 fi.a
�1x/ � M .a/ fi.x/ ; (2.30)

leads to a scaling by a in the x direction and an inverse scaling by a�1 in the u
direction. We denote this transformation by the operator M .a/. In the example
we have chosen a D 2. We recognize the well-known property of the Fourier
transformation, that a scaling for the original variable x corresponds to an inverse
scaling for its Fourier conjugate u.
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2.3.2.3 Quadratic-Phase Modulator

Our second example for the b D 0 class is the transformation matrix Œ1; 0I c; 1�, with
the input–output relation

fo.x/ D exp.i� cx 2o / fi.x/ � Q.�c/ fi.x/ : (2.31)

The effect of this modulation by a quadratic-phase function leads to a shear in the u
direction. We denote this transformation by the operator Q.�c/. In the example we
have chosen �c D 1.

2.3.2.4 Fresnel Transformer

The dual of the previous example arises when a , d and b , �c; the resulting
transformation matrix then reads Œ1; bI 0; 1� and its effect is a shear in the x direction.
We denote this transformation, which is also known as the Fresnel transformation,

fo.xo/ D .i b/�1=2
Z

expŒi� b�1.xo � xi/
2� fi.xi/ dxi � S .b/fi.xi/ ; (2.32)

by the operator S .b/, expressible in terms of previously defined operators as
S .b/ D FQ.b/F�1. In the example we have chosen b D 1. We note that the
Fresnel transformation takes the form of a convolution with the quadratic-phase
function .i b/�1=2 exp.i� b�1x2/; in the Fourier domain such a convolution becomes
a multiplication with the quadratic-phase function, Nfo.u/ D exp.�i� bu2/ Nfi.u/,
which shows the duality between the quadratic-phase modulation and the Fresnel
transformation.

Now that we have introduced the Fresnel transformation, we can try and express
a magnifier M .s/ in terms of quadratic-phase modulators Q.�c/ and Fresnel
transformers S .b/. We easily verify that

Q.b�1
2 C b1b

�2
2 /S .b2/Q.b

�1
2 C b�1

1 /S .b1/ D M .�b2b
�1
1 / : (2.33)

A decomposition of linear canonical transformations in terms of quadratic-phase
modulators and Fresnel transformers is especially interesting in optics, where these
two basic transformations correspond to a lens Q.f �1/ with focal distance f and a
section of free space S .z/with distance z, respectively. In (2.33), we then recognize
the imaging condition f �1 D b�1

1 C b�1
2 , the magnification factor s D �b2b�1

1

and a phase-compensating lens with focal distance �sf . We easily verify that the
magnification factor is negative if b1, b2 and f are positive, and that we will see an
inverted image of the object, as expected.
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2.3.2.5 Fractional Fourier Transformer

When dealing with the Fourier transformation and its inverse, we saw that these
transformations resulted in a clockwise rotation by 1

2
� and � 1

2
� , respectively. If

the rotation takes a different value � , say, (with � typically between 0 and �), the
transformation matrix reads Œ cos �; sin � I � sin �; cos � �. We are now in the realm
of the fractional Fourier transformation [42, 45, 47, 57], denoted by the operator
F .�/:

fo.xo/ D exp.i 1
2
�/p

i sin �

Z
exp

�
i�

x2o cos � � 2xixo C x2i cos �

sin �

�
fi.xi/ dxi

� F .�/ fi.xi/ � F� .xo/ .� ¤ n�/ I (2.34)

we recall that .i sin �/1=2 is defined as expŒi . 1
4
�/ sgn.sin �/�j sin � j1=2. Note the ad-

ditional phase factor exp.i 1
2
�/, which has been added to get a better correspondence

to the physical process of Fourier transformation; in particular, the phase additivity
is preserved, F .�1/F .�2/ D F .�1 C �2/, and F . 1

2
�/ f .xi/ D Nf .xo/. With the

fractional angle � going from 0 via 1
2
� to � , F� .x/ goes from F0.x/ D f .x/ via

F�=2.x/ D Nf .x/ to F�.x/ D f .�x/. In the example we have chosen � D 1
4
� .

A fractional Fourier transformer can easily be realized as a cascade of
quadratic-phase modulators and Fresnel transformers. We have, for instance, the
relations [19, 38]

F .�/ D S .tan 1
2
�/Q.sin �/S .tan 1

2
�/ ; (2.35a)

F .�/ D Q.tan 1
2
�/S .sin �/Q.tan 1

2
�/ : (2.35b)

In coherent optics (with optical wavelength 	ı, say) this corresponds to cascades
of thin convex lenses (with focal length f > 0) and sections of free space (with
distance z > 0). Since we now work with real-world coordinates that are no longer
dimensionless, we need additional magnifiers M .w/ and M .w�1/, where w has the
dimension [m]. The real-world fractional Fourier transformer can then be described
as the cascade M .w/F .�/M .w�1/, and similar relations hold for the thin lens
and the section of free space. In real-world coordinates, the two Eqs. (2.35) read

M .w/F .�/M .w�1/ D S .w2 tan 1
2
�/Q.w�2 sin �/S .w2 tan 1

2
�/ ; (2.36a)

M .w/F .�/M .w�1/ D Q.w�2 tan 1
2
�/S .w2 sin �/Q.w�2 tan 1

2
�/ ; (2.36b)

and the corresponding cascades are depicted in Fig. 2.1(a) and (b), respectively.
The fractional angle � is related to z and f through the relation sin2. 1

2
�/ D z=2f

in both cascades, and the scaling parameter w is related to � and 	ız through the
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f

input output

f fz

input output

w 2 tan (γ/2) = λ◦ γ = 2arcsin /2f w2 sinγ = λ◦

0 ≤ /2f ≤ 1 0 ≤ γ ≤ π

(a) (b)

Fig. 2.1 Two optical realizations of the fractional Fourier transformer, consisting of lenses with
focal distance f and sections of free space with a distance z

relations w2 tan. 1
2
�/ D 	ız in cascade (a) and w2 sin � D 	ız in cascade (b).

A common Fourier transformation fo.x/ / w�1Nfi.xw�2/ occurs for z D f , while a
simple coordinate reversion fo.x/ / fi.�x/ occurs for z D 2f . The general formula
(in real-world coordinates) reads

fo.xo/ D exp.i 1
2
�/

w
p

i sin �

Z
exp

�
i�

x2o cos � � 2xixo C x2i cos �

w2 sin �

�
fi.xi/ dxi : (2.37)

2.3.2.6 Hyperbolic Expander

Our final example is the hyperbolic expander [75, p. 183, Example: Hyperbolic
expanders] with transformation matrix Œ cosh �; sinh � I sinh �; cosh � �. We denote
the corresponding operation by H .�/ and remark that it can be considered as
a magnifier M .exp �/ embedded in between two fractional Fourier transformers
F .� 1

4
�/ and F . 1

4
�/. With this decomposition in mind, we readily recognize the

effect of the hyperbolic expander in Table 2.3: the fractional Fourier transformer
F . 1

4
�/ rotates the Wigner distribution clockwise through 1

4
� , the magnifier

M .exp �/ scales by exp � in the x direction and by .exp �/�1 in the u direction,
and the final fractional Fourier transformer F .� 1

4
�/ rotates everything back to its

original orientation. In the example we have chosen � D 0:5, and thus exp � D
1:64872.

A hyperbolic expander can easily be realized again as a cascade of quadratic-
phase modulators and Fresnel transformers. The result shows a nice resemblance
to the fractional Fourier transformer; we only have to replace the quadratic-phase
modulations by their inverses:

H .�/ D S .tan 1
2
�/Q.� sin �/S .tan 1

2
�/ ; (2.38a)
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H .�/ D Q.� tan 1
2
�/S .sin �/Q.� tan 1

2
�/ : (2.38b)

In optics this corresponds to replacing in Fig. 2.1 the convex lenses (with a positive
focal length) by concave lenses (with a negative focal length).

2.3.2.7 Modified Iwasawa Decomposition

We end this section about the one-dimensional case with the important modified
Iwasawa decomposition [55] (see also [75, Sects. 9.5 and 10.2]) of a linear canonical
transformation L .T/ as a cascade of a fractional Fourier transformer, a magnifier
and a quadratic-phase modulator: L .T/ D Q.g/M .s/F .�/, with

s D
p

a2 C b2 ; g D �.ac C bd/=s2 and exp.i �/ D .a C i b/=s I

see also [47, Sect. 9.7.1, Quadratic-phase systems as fractional Fourier transforms].
Note that this decomposition holds for all values of the matrix entries a, b, c and
d. We can formulate an Iwasawa-type decomposition in the reversed order of the
operators, by finding the Iwasawa decomposition of the inverse transformation
L .T�1/ in its regular order, reversing the order of the operators, and replacing each
operator by its inverse. We then get L .T/ D F . O�/M .Os/Q.Og/, with

Os D 1=
p

d2 C b2 ; Og D �.cd C ab/ Os 2 and exp.i O�/ D .d C i b/ Os :

Many other possible decompositions, in particular as cascades of quadratic-phase
modulators Q, Fresnel transformers S , magnifiers M and Fourier transformers F ,
are known. If necessary, we can even restrict us to quadratic-phase modulators and
Fresnel transformers. We refer to [47, Sect. 3.4, Linear canonical transforms], where
some more detailed information about the linear canonical transformation for one-
dimensional signals can be found.

2.4 Special Cases of the Linear Canonical Transformation

In this section we consider some special cases of linear canonical transformers:

1. The case B D 0 and consequently A�1 D D t,
2. The case B�1 D �C t and consequently AD t D 0,
3. The case C D 0 and consequently A�1 D D t, and
4. The case that T is not only symplectic but also orthogonal, T �1 D T t.

The reduction from the higher-dimensional to the one-dimensional case is through-
out straightforward by simply substituting the general matrices A, B, C and D by
their scalar versions aI, bI, cI and dI, and leads to some additional formulas that
are not included in Table 2.3. Matrix transposition is no longer relevant for the
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Table 2.3 Some simple linear canonical transformations in one dimension

Operator Transformation matrix Example

(T) detT= ad −bc = 1
a b
c d

1 x

1

u

Fourier transformation

rotation in the xu plane throughγ = 1
2 π

0 1
−1 0 1

x

1

u

(T) −1 = (Tt−1)
d −c

−b a

Magnification

(a)

scaling in the x direction by a
scaling in the u direction by a−1

a 0
0 a−1

1 x

1

u a = 2

Quadratic-phase modulation

(−c)

shear in the u direction by c

1 0
c 1 1

x

1

u c = −1

Fresnel transformation

(b) = (b) −1

shear in the x direction by b

1 b
0 1

1 x

1

u b = 1

Fractional Fourier transformation

(γ) = (tan 1
2 γ) (sinγ) (tan1

2 γ)
(γ) = (tan 1

2 γ) (sinγ) (tan1
2 γ)

cosγ sinγ
−sinγ cosγ

x

1

u γ = 1
4 π

Hyperbolic expansion

(γ) = ( 1
4 π) (expγ) (− 1

4 π)
(γ) = (tan1

2 γ) (−sinγ) (tan1
2 γ)

(γ) = (− tan1
2 γ) (sinγ) (− tan1

2 γ)

coshγ sinhγ
sinhγ coshγ

1 x

1

u γ = 0.5

Iwasawa decomposition

(T) = (g) (s) (γ)
a b
c d

s =
√

a2 +b2

g = −(ac+bd)/s2

exp(iγ) = (a+ ib)/s
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one-dimensional case. A similar remark applies to the case of diagonal matrices
A, B, C and D, in which case we are actually dealing with a transformation that is
separable in multiple one-dimensional transformations.

2.4.1 The Case B D 0 and Consequently A�1 D D t

From the case B D 0, see (2.10), we first consider the particular case of a
D-dimensional magnifier

fo.ro/ D j det Aj�1=2fi.A�1ro/ � M .A/ fi.ri/ ; (2.39)

which results for C D 0. If, in the two-dimensional case, the 2 � 2 matrix A takes
the special form

A D
�

cos˛ sin˛
� sin˛ cos˛

�
� Ur.˛/ D U t

r
�1
.˛/ ; (2.40)

the magnifier M ŒUr.˛/� reduces to a rotator,

fo.xo; yo/ D fi.xo cos˛ � yo sin˛; xo sin˛ C yo cos˛/ � R.˛/ fi.xi; yi/ : (2.41)

Since an arbitrary 2�2matrix A can always be expressed as a product of a positive-
definite symmetric matrix S D .AAt/1=2 D S t and a rotation matrix Ur.˛/ D
.AAt/�1=2A, we can easily consider the general magnifier as the cascade of a rotator
and a pure magnifier: M .A/ D M .S/R.˛/. The symmetric matrix S on its turn
can be expressed in terms of its eigenvalues and eigenvectors as

S D
�

sxx sxy

sxy syy

�
D
�

cos's sin's

� sin's cos's

� �
s1 0
0 s2

� �
cos's � sin's

sin's cos's

�

� Ur.'s/ƒ.s1; s2/Ur.�'s/ ; (2.42)

so that such a pure magnifier can be realized as a separable magnifier, i.e., a
combination of two orthogonal one-dimensional magnifiers, oriented along the
principal axes of the symmetry ellipse determined by S by embedding this com-
bination in between two rotators: M .S/ D R.'s/M Œƒ.s1; s2/�R.�'s/. Each of
the two one-dimensional magnifiers, with magnification factor s1 and s2, can then
be decomposed, if necessary, in the form (2.33). The general magnifier M .A/ can
thus be decomposed as the cascade M .A/ D R.'s/M Œƒ.s1; s2/�R.�'s C ˛/:
a separable magnifier embedded in between two rotators (in general with different
rotation angles). Of course, instead of M .A/ D M .S/R.˛/, we may as well write
M .A/ D R.˛/M .S0/, where S0 D .AtA/1=2.

Now that we have introduced the magnifier, we can easily derive the linear
canonical transform of a scaled function and formulate the scaling theorem. We
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notice that scaling itself belongs to the class of linear canonical transformations,
and we can thus use the cascadability property. We then observe that scaling of the
input signal merely leads to a change of the parameterizing matrix. Indeed,

L .T/ j det Wj�1=2f .W�1r/ D L .T/M .W/ f .r/ D L . QT/ f .r/ ; (2.43a)

where QT takes the form

QT D
� QA QB

QC QD
�

D
�

A B
C D

� �
W 0
0 W t�1

�
D
�

AW BW t�1

CW DW t�1
�
: (2.43b)

It may be interesting to see under what conditions scaling of the input signal by
a matrix Wi produces only a scaling of the output signal by a (possibly different)
matrix Wo, i.e., L .T/M .Wi/ D M .Wo/L .T/. This has been extensively studied
in [7].

The second particular case is the D-dimensional quadratic-phase modulator

fo.r/ D expŒi� r tCr� fi.r/ � Q.�C/ fi.r/ ; (2.44)

which results for A D D D I (and hence also C D C t). Since C is
symmetric, it can again be expressed in terms of its eigenvalues and eigenvectors
and realized as a separable magnifier embedded in between two rotators: Q.�C/ D
R.'c/QŒ�ƒ.c1; c2/�R.�'c/.

The general case, represented by Eq. (2.10), which may be called a generalized
magnifier, results as the cascade of a magnifier M .A/ and a quadratic-phase
modulator Q.�CA�1/,

fo.r/ D Q.�CA�1/M .A/ fi.r/ (2.45)

and the transformation matrix has been decomposed as

T D
�

A 0
C At�1

�
D
�

I 0
CA�1 I

� �
A 0
0 At�1

�

D
�

I 0
CA�1 I

� �
.AAt/1=2 0

0 .AAt/�1=2
� �

Ur.˛/ 0
0 Ur.˛/

�
: (2.46)

We can of course change the order and write M .A/Q.�AtC/ instead. In one
dimension, the positive-definite matrix .AAt/1=2 reduces to jaj, and the rotation
matrix Ur.˛/ reduces to sgn a, which takes care of a possible negative sign in a. We
thus have Q.�ca�1/M .a/ D Q.�ca�1/M .jaj/M .sgn a/, but the decomposition
of the magnifier M .a/ into the cascade M .jaj/M .sgn a/ is rather irrelevant.

For easy reference, some linear canonical transformations for the case B D 0,
treated in this section, have been collected in Table 2.4.
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2.4.2 The Case B�1 D �C t and Consequently AD t D 0

Let us first consider the special case that both A and D vanish, for which the
integral (2.9) reduces to

fo.ro/ D .det i B/�1=2
Z

expŒ�i 2� r t
i B�1ro� fi.ri/ dri : (2.47)

We already studied the case B D I, which led to the common Fourier transfor-
mation. The general expression (2.47), with B ¤ I, can be interpreted as a scaled
Fourier transformation, i.e., a Fourier transformation with an additional scaling (and
rotation if B ¤ B t):

fo.ro/ D .det i B/�1=2Nfi.B�1ro/ D M .B/F fi.ri/ D FM .B t�1/ fi.ri/ : (2.48)

If, moreover, we allow D ¤ 0, we get an additional quadratic-phase modulation:

fo.r/ D Q.�DB�1/M .B/F fi.r/ : (2.49)

The case A ¤ 0 can be considered as the dual of the case D ¤ 0, as described in
Sect. 2.3.1.3; we only have to replace F fi.r/ by fi.r/, fo.r/ by F�1fo.r/, D by A
and B by �C in Eq. (2.49) and get

fo.r/ D FQ.AC�1/M .�C/ fi.r/ : (2.50)

For easy reference, some linear canonical transformations for the case B�1 D
�C t, treated in this section, have been collected in Table 2.4.

2.4.3 The Case C D 0 and Consequently A�1 D D t

We consider the case C D 0 as the dual of the case B D 0, see Sect. 2.4.1. We
thus start with the expression (2.45), replace the signals by their Fourier transforms,
replace A by D and C by �B, and get the general expression

Nfo.q/ D j det Dj�1=2Q.BD�1/ Nfi.D�1q/ ; (2.51)

which is the dual of (2.45). The case A D D D I (and hence also B D B t) is special
again and leads to a mere multiplication (but now in the frequency domain) by a
quadratic phase-function: Nfo.q/ D expŒ�i� q tBq� Nfi.q/. This is the Fourier domain
version of a D-dimensional Fresnel transformation, which in terms of the variables
ro and ri reads
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fo.ro/ D .det i B/�1=2
Z

expŒi�.ro � ri/
tB�1.ro � ri/� fi.ri/ dri

D F�1Q.B/F fi.ri/ � S .B/ fi.ri/ (2.52)

and takes the form of a convolution with a quadratic-phase function. The general
case with an additional scaling by A,

fo.ro/ D .det i B/�1=2
Z

expŒi�.ro � Ari/
t.BAt/�1.ro � Ari/� fi.ri/ dri

D S .BAt/M .A/ fi.ri/ D M .A/S .A�1B/ fi.ri/ ; (2.53)

may be called a scaled Fresnel transformation.
For easy reference, some linear canonical transformations for the case C D 0,

treated in this section, have been collected in Table 2.4.

2.4.4 The Case T �1 D T t: Phase-Space Rotators

We now concentrate on the important class of transformation matrices that are not
only symplectic, T �1 D JT tJ, but also orthogonal, T �1 D T t. We call such
matrices orthosymplectic. We easily see that A D D and B D �C, and that the
combination A C i B D U is a unitary matrix: U�1 D U�. We thus have

T D
�

A B
�B A

�
and .A � i B/t D U� D U�1 D .A C i B/�1 : (2.54)

In the one-dimensional case, with the scalar matrix entries a D d D cos � and
b D �c D sin � , the matrix T reduces to the rotation matrix Ur.�/. Note that this
represents a rotation in phase space,

xo D xi cos � C ui sin � ;
uo D �xi sin � C ui cos � ;

(2.55)

and that the corresponding operation is known as the fractional Fourier transfor-
mation, see Sect. 2.3.2. The extension from the one-dimensional case to a higher-
dimensional separable fractional Fourier transformer (with diagonal matrices A
and B, and possibly different fractional angles � for the different coordinates) is
straightforward.

In the two-dimensional case, we observe three basic systems with an orthogonal
transformation matrix: (1) the separable fractional Fourier transformer F .�x; �y/,
(2) the rotator R.'/, which we already met in Sect. 2.4.1, and (3) the gyrator G .'/.
Their unitary representations Uf .�x; �y/, Ur.'/ and Ug.'/ take the forms
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Table 2.4 Some linear canonical transformations for the cases B D 0, B�1 D �C t and C D 0

Operator Transformation matrix Remark

Magnifier

M .A/

"
A 0
0 At�1

#

Rotator

R.˛/

"
Ur.˛/ 0

0 Ur.˛/

#
Ur.˛/ D

"
cos˛ sin˛

� sin˛ cos˛

#

M .A/ D M .S1/R.˛/ D R.˛/M .S2/

"
A 0
0 At�1

# S1 D .AAt/1=2 D S t
1

Ur.˛/ D S�1
1 A D AS�1

2

S2 D .AtA/1=2 D S t
2

Pure magnifier

M .S/ D R.'s/M .ƒs/R.�'s/

"
S 0
0 S�1

#
S D S t D Ur.'s/ƒsU.�'s/

Quadratic-phase modulator

Q.�C/ D R.'c/Q.�ƒc/R.�'c/

"
I 0
C I

#
C D C t D Ur.'c/ƒcU.�'c/

Generalized magnifier

Q.�CA�1/M .A/ D M .A/Q.�AtC/

"
A 0
C At�1

#

Fourier transformation

F

"
0 I

�I 0

#

Scaled Fourier transformation

M .B/F D FM .B t�1/

"
0 B

�B t�1 0

#

Q.�DB�1/M .B/F

"
0 B

�B t�1 D

#

FQ.AC�1/M .�C/

"
A �C t�1

C 0

#

Fresnel transformation

S .B/ D F�1Q.B/F D FQ.B/F�1

"
I B
0 I

#
B D B t

Scaled Fresnel transformation

S .BAt/M .A/ D M .A/S .A�1B/

"
A B
0 At�1

#
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Uf .�x; �y/ D
�

exp.i �x/ 0

0 exp.i �y/

�
; Ur.'/ D

�
cos' sin'

� sin' cos'

�
;

and Ug.'/ D
�

cos' i sin'
i sin' cos'

�
: (2.56)

Note that detŒUf .�x; �y/� D expŒi .�xC�y/� and detŒUr.'/� D detŒUg.'/� D 1. These
three basic systems are additive in their parameters and correspond to rotations
in phase space: the rotator R.'/ performs a rotation in the xy and the uv planes,
the gyrator G .'/ in the xv and the yu planes, and the separable fractional Fourier
transformer F .�x; �y/ in the xu plane (through an angle �x) and the yv plane
(through an angle �y), see also [75, Sect. 10.3, U.2/ fractional Fourier transformers].
We remark that the symmetric fractional Fourier transformer F .�; �/ is described
by a scalar matrix Uf .�; �/ D exp.i �/ I and that it commutes with any other phase-
space rotator O.U/.

We easily verify, for instance, by expressing the unitary matrix U in the form

U D
�

exp.i �x/ cos' � expŒi .�y C �/� sin'
expŒi .�x � �/� sin' exp.i �y/ cos'

�
; (2.57)

that the input–output relation for a phase-space rotator can be expressed in the form

ro � i qo D U.ri � i qi/ ; (2.58)

which is an easy alternative for (2.6).
Any two-dimensional phase-space rotator can be realized as a cascade of the

three basic phase-space rotators, in which cascade only two different kinds are
actually needed. The gyrator G .'/, for instance, can be realized as the cascade
R.� 1

4
�/F .';�'/R. 1

4
�/, which represents in fact a separable fractional Fourier

transformer oriented at an angle of 1
4
� . Some important decompositions of an

arbitrary phase-space rotator are considered in the next section.
For easy reference, some linear canonical transformations for the case T �1 D T t,

treated in this section, have been collected in Table 2.5.

2.4.4.1 Decompositions of Phase-Space Rotators

If we start with the general expression (2.57) for the unitary matrix U, we are
immediately led to the decomposition

O.U/ D F
	
1
2
�;� 1

2
�


R.�'/F 	

�x � 1
2
�; �y C 1

2
�


; (2.59)
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Table 2.5 Some linear canonical transformations for the case T �1 D T t

Operator Transformation matrix Remark

General phase-space rotator

O.U/ D O.X C i Y/

"
X Y

�Y X

#
U D X C i Y I X D <U ;Y D =U
U�1 D U�

Rotator

R.'/

"
Xr 0
0 Xr

#
Ur.'/ D

"
cos' sin'

� sin' cos'

#
D Xr

Separable fractional FT

F .�x; �y/

"
Xf Yf

�Yf Xf

#
Uf .�x; �y/ D

"
exp.i �x/ 0

0 exp.i �y/

#

Gyrator

G .'/ D R.� 1
4
�/F .';�'/R. 1

4
�/

"
Xg Yg

�Yg Xg

#
Ug.'/ D

"
cos' i sin'

i sin' cos'

#

O.U/F .�; �/ D F .�; �/O.U/ Uf .�; �/ D exp.i �/ I

Table 2.6 Some useful decompositions of phase-space rotators

Cascade of basic phase-space rotators Equation Remark

O.U/ D F . 1
2
�;� 1

2
�/R.�'/F .�x � 1

2
�; �y C 1

2
�/ .2:59/

uxx D exp.i �x/ cos'

uxy D � expŒi .�y C �/� sin'

uyx D expŒi .�x � �/� sin'

uyy D exp.i �y/ cos'

O.U/ D R.�˛/G .�ˇ/F .� ; /F .�x; �y/ .2:60/
sin 2ˇ D sin 2' sin �

cos 2˛ D cos 2'= cos 2ˇ

tan D tan˛ tanˇ

O.U/ D R.'2/F .�1; �2/R.'1/ .2:61/ .2:61b/� .2:61g/; see also Œ5�

F .˙ 1
4
�;� 1

4
�/G .˙'/ D R.�'/F .˙ 1

4
�;� 1

4
�/

F .˙ 1
4
�;� 1

4
�/R.˙'/ D G .'/F .˙ 1

4
�;� 1

4
�/

R.˙ 1
4
�/F .˙';�'/ D G .�'/R.˙ 1

4
�/

G .˙ 1
4
�/F .˙';�'/ D R.'/G .˙ 1

4
�/

R.˙ 1
4
�/G .˙'/ D F .';�'/R.˙ 1

4
�/

G .˙ 1
4
�/R.˙'/ D F .�'; '/G .˙ 1

4
�/

where we recognize a rotator embedded in between two separable fractional Fourier
transformers. This decomposition, along with the other two that are introduced in
this section, have been collected in Table 2.6.

From the many other decompositions of a general phase-space rotator O.U/ into
the more basic ones, we mention in particular the cascade of a separable fractional
Fourier transformer, a gyrator and a rotator [25],
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O.U/ D R.�˛/G .�ˇ/F .�x �  ; �y C  / ; (2.60a)

which follows directly from the equality

F
	
1
2
�;� 1

2
�


R.�'/F 	� 1

2
�; 1

2
�

 D R.�˛/G .�ˇ/F .� ; /I

the angles ˛, ˇ and  in (2.60a) follow from � and ' in (2.59) by

sin 2ˇ D sin 2' sin � ; (2.60b)

cos 2' D cos 2˛ cos 2ˇ ; (2.60c)

tan D tan˛ tanˇ : (2.60d)

We will use this decomposition later in Sect. 2.8.3.
Another useful decomposition of a general phase-space rotator O.U/ takes

the form of a separable fractional Fourier transformer embedded in between two
rotators [5], see also [75, Sect. 10.3.3, SU.2/-Fourier transformer]:

O.U/ D R.'2/F .�1; �2/R.'1/ : (2.61a)

Without loss of generality, we may choose 0 � �2 � �1 < � and 0 � '1 < � , after
which the four angles are unambiguous [5]. With U D X C i Y, the two fractional
angles �1 and �2 follow easily from the relations

expŒi .�1 C �2/� D det U ; (2.61b)

cos.�1 � �2/ D det X C det Y I (2.61c)

and with X D Œx11; x12I x21; x22� and Y D Œy11; y12I y21; y22�, the rotation angles '1
and '2 follow from the equations

x11 C x22 � y12 C y21 D 2 cos.'1 C '2 C 1
2
�1 C 1

2
�2/ cos 1

2
.�1 � �2/; (2.61d)

x12 � x21 C y11 C y22 D 2 sin.'1 C '2 C 1
2
�1 C 1

2
�2/ cos 1

2
.�1 � �2/; (2.61e)

�x11 C x22 C y12 C y21 D 2 sin.'1 � '2 C 1
2
�1 C 1

2
�2/ sin 1

2
.�1 � �2/; (2.61f)

x12 C x21 C y11 � y22 D 2 cos.'1 � '2 C 1
2
�1 C 1

2
�2/ sin 1

2
.�1 � �2/: (2.61g)

For the details we refer to [5]. We will use this decomposition in Sect. 2.5 to treat
the case of a transformation matrix with det B D 0 but B ¤ 0. For completeness we
mention [22] that the eigenvalues exp.i#1/ and exp.i#2/, say, of the unitary matrix
U D Ur.'2/Uf .�1; �2/Ur.'1/, are related to the rotation angles '1 and '2 and the
fractional angles �1 and �2 by the relationship
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#1;2 D 1
2
.�1 C �2/˙ arccos

˚
cos.'1 C '2/ cos

�
1
2
.�1 � �2/

��
: (2.62)

For easy reference, we have collected in Table 2.6 also some useful relations
between the rotator R.'/, the gyrator G .'/, and the antisymmetric fractional
Fourier transformer F .';�'/, where the argument of one of them takes the value
˙ 1
4
� .

2.5 Modified Iwasawa Decomposition

Any symplectic matrix can be decomposed in the modified Iwasawa form [55] (see
also [75, Sects. 9.5 and 10.2]) as

�
A B
C D

�
D
�

I 0
�G I

� �
S 0
0 S�1

� �
X Y

�Y X

�
(2.63)

with

G D �.CAt C DB t/.AAt C BB t/�1 D G t ; (2.64a)

S D .AAt C BB t/1=2 D S t ; (2.64b)

X C i Y D .AAt C BB t/�1=2.A C i B/ D .X C i Y/� : (2.64c)

The first matrix is the transformation matrix of a quadratic-phase modulator Q.G/,
the second one of a pure magnifier M .S/, and the third one of a phase-space rotator
O.U/, with U � X C i Y. The Iwasawa decomposition thus leads to the following
cascade of any linear canonical transformer:

L .T/ D Q.G/M .S/O.U/ : (2.65)

We can formulate an Iwasawa-type decomposition L .T/ D O. OU/M . OS/Q. OG/
in the reversed order of the operators, by finding the Iwasawa decomposition of
the inverse transformation L .T�1/ in its regular order, reversing the order of the
operators, and replacing each operator by its inverse; see Table 2.7.

If we substitute the cascade (2.60a) into (2.65), the Iwasawa decomposition can
be expressed in the more detailed form

L .T/ D Q.G/M .S/R.�˛/G .�ˇ/F .�x �  ; �y C  / : (2.66)

We will use this particular decomposition in Sect. 2.8.3.
If we substitute the cascade (2.61a) into (2.65), the Iwasawa decomposition reads

L .T/ D Q.G/M .S/R.'2/F .�1; �2/R.'1/ ; (2.67)
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Table 2.7 Some useful decompositions of the linear canonical transformation

Operator Remark

L .T/ T D
"

A B
C D

# "
A B
C D

#�1

D
"

D t �B t

�C t At

#

Iwasawa decomposition

L .T/ D Q.G/M .S/O.U/

G D �.CAt C DB t/.AAt C BB t/�1 D G t

S D .AAt C BB t/1=2 D S t

U D .AAt C BB t/�1=2.A C i B/ D U�

Iwasawa decomposition in reversed order

L .T/ D O. OU/M .OS/Q. OG/

OG D �.C tD C AtB/.D tD C B tB/�1 D OG t

OS D .D tD C B tB/�1=2 D OS t

OU D .D C i B/.D tD C B tB/�1=2 D OU�

L .T/ D Q.�CA�1/M .A/S .A�1B/ det A ¤ 0

L .T/ D S .BD�1/M .D t�1/Q.�D�1C/ det D ¤ 0

L .T/ D Q.�DB�1/M .B/FQ.�B�1A/ det B ¤ 0 see below (i)

L .T/ D QŒ.I � D/B�1�S .B/QŒB�1.I � A/� det B ¤ 0 B D B t

L .T/ D S .AC�1/M .�C t�1/FS .C�1D/ det C ¤ 0 see below (ii)

L .T/ D S Œ.A � I/C�1�Q.�C/S ŒC�1.D � I/� det C ¤ 0 C D C t

M .B�1/Q.DB�1/L .T/Q.B�1A/ D F det B ¤ 0 (i)

M .�C t/S .�AC�1/L .T/S .�C�1D/ D F det C ¤ 0 (ii)

which enables us to treat the case det B D 0. To do this, we write the explicit
expression for the submatrix B,

B D S Ur.'2/

�
sin �1 0

0 sin �2

�
Ur.'1/ ; (2.68)

and conclude that, since S and Ur are non-singular, the case det B D 0 arises only
for sin �1 sin �2 D 0. The cascade (2.67) yields a clear physical interpretation of
the linear canonical transformation. The cascade starts with a rotator R.'1/ that
rotates the coordinate system such that the new axes coincide with the axes of
the separable fractional Fourier transformer F .�1; �2/. This separable fractional
Fourier transformer itself is responsible for a possible degeneration of the submatrix
B, but such a degeneration has a clear interpretation: it simply means that for one
coordinate (or maybe even for both coordinates) the separable fractional Fourier
transformer acts as an identity system. The cascade then continues with the rotator
R.'2/, followed by the pure magnifier M .S/ and the quadratic-phase modulator
Q.G/. Equation (2.67) provides a useful representation of the linear canonical
transformation, valid for any values of the transformation matrix. Note that this
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equation can also be used for numerical calculation of the canonical transform, using
the algorithms developed for the fractional Fourier transformation [47, Sect. 6.7,
Discrete computation of the fractional Fourier transform].

For completeness we recall that a different way to deal with a singular matrix B
has been presented in [44]. It was shown that any symplectic matrix with a singular
submatrix B can be decomposed as

�
A B
C D

�
D
�

I B0
0 I

� �
A � B0C B � B0D

C D

�
; (2.69)

in which B0 is a non-singular diagonal matrix and det.B � B0D/ ¤ 0. The
integral (2.9) can then be used for each of the two subsystems in this cascade
separately, thus avoiding the singular case. The way to find the diagonal matrix
B0, however, is not easy.

2.5.1 Other Decompositions

The modified Iwasawa decomposition is valid for all values of the submatrices A, B,
C and D. Many other decompositions are possible, where sometimes an additional
condition need be satisfied. A few of them are collected in Table 2.7, see also [47,
Sect. 3.4.4, Decompositions]. Two of these decompositions have been repeated at
the bottom of the table in a form that shows the possibility to bring an operator
L .T/ into a simple Fourier transformer F , for instance—if det B ¤ 0—by a pre-
modulation by Q.B�1A/, a post-modulation by Q.DB�1/, and a scaling by the final
magnifier M .B�1/.

2.6 Linear Canonical Transforms of Selected Functions

In this section we study the linear canonical transforms of

1. A Gaussian signal and a harmonic signal;
2. A periodic signal, with a short detour to Talbot imaging; and
3. Hermite–Gauss modes, in two dimensions leading to Hermite–Laguerre–Gauss

modes—with the Laguerre–Gauss modes as a special case—and to the design of
mode converters.

2.6.1 Gaussian Signal and Harmonic Signal

Let us consider the Gaussian signal

fi.r/ D exp.�� r tLir/ (2.70)
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and determine its linear canonical transform

fo.ro/ D L .T/fi.ri/ D .det i B/�1=2 exp.i� r t
oDB�1ro/

�
Z

expŒ�� r t
i .Li � i B�1A/ri � i 2� r t

i B�1ro/� dri

D .det i B/�1=2Œdet.Li � i B�1A/��1=2 exp.i� r t
oDB�1ro/

� expŒ��.B�1ro/
t.Li � i B�1A/�1.B�1ro/� ; (2.71)

where we have used the identity

Z
exp.�� s tPs � i 2� q ts/ ds D .det P/�1=2 exp.�� q tP�1q/ ; (2.72)

with P a symmetric matrix whose real part is positive definite. If we separate the
part of the exponent that depends on r from the part that does not depend on r, the
transform can be written as [7]

L .T/ exp.�� r tLir/ D Œdet.A C i BLi/�
�1=2 exp.�� r tLor/ ; (2.73)

where

i Lo D .C C i DLi/.A C i BLi/
�1 : (2.74)

We will meet the bilinear relationship (2.74) again in Sect. 2.8.4, cf. Eq. (2.128).
For A D D D 0 and B D �C D I, i.e., for a Fourier transformation, we get
F exp.�� r tLir/ D .det i Li/

�1=2 exp.�� r tL�1
i r/, as expected.

The linear canonical transform of the constant signal fi.r/ D 1 arises for Li D 0,
and reads .det A/�1=2 exp.i� r tCA�1r/; we have ignored convergence issues that
may arise from the fact that we have lost the positive definiteness of the real part
of Li. The transform of the harmonic signal fi.r/ D exp.i 2� k tr/ with frequency k
then follows after applying the modulation property (2.25a) and takes the form

L .T/ exp.i 2� k tr/ D .det A/�1=2 exp.�i� k tA�1Bk C i� r tCA�1r

Ci 2� k tA�1r/: (2.75)

In the limit A ) 0 and B D �C D I, i.e., for a Fourier transformation, we get
indeed the Dirac delta function ı.ro � k/.

2.6.2 Periodic Signal and Talbot Imaging

Let us consider a periodic signal with periods px and py in the x and y directions.
Such a signal can be represented as
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fi.r/ D
1X

m;nD�1
amn exp.i 2� k t

mnr/ ; k t
mn D Œm=px; n=py� : (2.76)

The canonical transform of this periodic signal reads [7]

fo.r/D.det A/�1=2
1X

m;nD�1
amn exp.�i� k t

mnA�1BkmnCi 2� k t
mnA�1rCi� r tCAr/ :

(2.77)
If k t

mnA�1Bkmn is an even integer for all m and n, we get

fo.r/ D .det A/�1=2 exp.i� r tCA�1r/ fi.A�1r/ ; (2.78)

which corresponds to generalized Talbot imaging, cf. Eq. (2.10): an affine transfor-
mation of the input signal, possibly with an additional modulation by a quadratic-
phase function.

Talbot imaging is well known in optics, where it appears for such a simple system
as free space. Free space propagation is governed by the Fresnel transformation
S .bI/, and the imaging condition now requires that k t

mnkmnb D .m2=p2x C n2=p2y/b
is an even integer. Since this equality has to hold for any integers m and n, we
conclude that Talbot imaging appears for such a value of b that both b=p2x and b=p2y
are even integers. In the case that b=p2x D `x and b=p2y D `y are integers, but not
necessarily even, a kind of pseudo-imaging appears: the expansion coefficients amn

are replaced by �amn for those .m; n/ combinations for which m2`x C n2`y is an
odd integer. Other simple examples of Talbot imaging are the separable fractional
Fourier transformer F .�x; �y/, for which the expression k t

mnA�1Bkmn leads to the
requirement that tan �x=p2x and tan �y=p2y should be even integers, and the gyrator
G .'/, for which we get the condition that tan'=pxpy is an integer [7].

2.6.3 Hermite–Gaussian-Type Modes and Mode Conversion

2.6.3.1 The One-dimensional Case

Based on the generating function exp.�s2C2sz/ for the Hermite polynomials Hk.z/,
k D 0; 1; : : : [2, Sect. 22, Orthogonal polynomials; see Eq. (22.9.17)],

1X
kD0

Hk.z/
sk

kŠ
D exp.�s2 C 2sz/ ; (2.79)

the one-dimensional Hermite–Gauss modes

Hk.x/ D 21=4.2kkŠ/�1=2Hk.
p
2�x/ exp.�� x2/ (2.80)
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follow easily from their generating function

1X
kD0

Hk.x/

�
2k

kŠ

�1=2
sk D 21=4 exp.�s2 C 2

p
2� sx � � x2/ : (2.81)

We recall that the Hermite–Gauss modes Hk.x/ form a complete orthonormal basis
on the interval �1 � x � 1:

Z
Hm.x/Hn.x/ dx D ım�n D


1 for m D n
0 for m ¤ n :

(2.82)

The linear canonical transforms L .T/Hk.x/ � HT
k .x/ of these Hermite–Gauss

modes follow from their generating function [6, 20, 22]

1X
kD0

HT
k .x/

�
2k

kŠ

�1=2
sk D 21=4p

a C i b
exp

�
�� d � i c

a C i b
x2
�

� exp

2
4�

 
s

r
a � i b

a C i b

!2
C 2

 
s

r
a � i b

a C i b

! p
2� x

a2 C b2

3
5 ; (2.83)

which function can be found by applying the integral (2.9) to the generating
function (2.81) and evaluating the integral using the identity (2.72). We compare
the right-hand side of (2.83) with the generating function (2.79) of the Hermite
polynomials and write

1X
kD0

HT
k .x/

�
2k

kŠ

�1=2
sk

D 21=4p
a C i b

exp

�
�� d � i c

a C i b
x2
� 1X

kD0
Hk

 p
2� xp

a2 C b2

! r
a � i b

a C i b

!k
sk

kŠ
;

(2.84)

from which we conclude that the transformed modes HT
k .x/ D L .T/Hk.x/ take the

form [75, p. 284, Example: Canonical transforms of Hermite functions]

HT
k .x/

D 21=4.2kkŠ/�1=2p
a C i b

 r
a � i b

a C i b

!k

Hk

 p
2� xp

a2 C b2

!
exp

�
�� d � i c

a C i b
x2
�
:

(2.85)
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In the special case of a fractional Fourier transformer, with a D d D cos � and b D
�c D sin � , the right-hand side of (2.85) can be written as Hk.x/ expŒ�i .k C 1

2
/��,

from which we conclude that the Hermite–Gauss modes Hk.x/ are eigenfunctions
of the fractional Fourier transformer with eigenvalues exp.�i k�/ [57]; note that
we have taken into account the additional constant phase factor exp.i 1

2
�/. The fact

that the Hermite–Gauss modes Hk.x/ are eigenfunctions of the fractional Fourier
transformation becomes also apparent when we inspect their Wigner distributions
WHk.x; u/ [16, 35], which depend on the combination x2 C u2 only:

WHk.x; u/ D 2.�1/k expŒ�2�.x2 C u2/�LkŒ4�.x
2 C u2/� ; (2.86)

where Lk.�/, k D 0; 1; : : :, are the Laguerre polynomials [2, Sect. 22, Orthogonal
polynomials]. This Wigner distribution is indeed invariant under rotation in the xu
plane.

2.6.3.2 The Two-dimensional Case

For the two-dimensional separable Hermite–Gauss modes Hm;n.r/ D Hm.x/Hn.y/
we have, with s D Œsx; sy�

t, the generating function

1X
mD0

1X
nD0

Hm;n.r/
�
2mCn

mŠnŠ

�1=2
sm

x sn
y D 21=2 exp.�s ts C 2

p
2� s tr � � r tr/ ; (2.87)

which is simply the two-dimensional version of (2.81). The linear canonical
transforms L .T/Hm;n.r/ � HT

m;n.r/ of these two-dimensional Hermite–
Gauss modes follow from the two-dimensional version of the generating
function (2.83) [6, 20–22]

1X
mD0

1X
nD0

HT
m;n.r/

�
2mCn

mŠnŠ

�1=2
sm

x sn
y D 21=2p

det.A C i B/
expŒ�s t.ACi B/�1.A�i B/s�

� expŒ2
p
2� s t.A C i B/�1r � � r t.D � i C/.A C i B/�1r� : (2.88)

Note that the complex symmetric matrix .A C i B/�1.A � i B/ is unitary and that the
real part .AAt C BB t/�1 of the complex symmetric matrix .D � i C/.A C i B/�1 is
positive definite. From the generating function (2.88) we can derive derivative and
recurrence relations for the transformed Hermite–Gauss modes [20] and also the
direct expressions [6, 22]

HT
m;n.r/ D 21=2Pm

x Pn
y expŒ�� r t.D � i C/.A C i B/�1r�

2mCn
p
�mCnmŠnŠ

p
det.A C i B/

; (2.89)
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HT
0;0.r/ D 21=2 expŒ�� r t.D � i C/.A C i B/�1r�

2mCn
p
�mCnmŠnŠ

p
det.A C i B/

; (2.90)

where the operators Px and Py are determined by

�
Px

Py

�
D 2�.A � i B/tŒ.D � i C/.A C i B/�1��

�
x
y

�
� .A � i B/t

�
@=@x
@=@y

�
; (2.91)

with P0
x and P0

y the identity operators.
The generating functions (2.83) and (2.88) represent a general class of Hermite–

Gaussian-type modes. If a member of this class, with defining matrix Ti D
ŒAi;BiI Ci;Di�, say, undergoes a linear canonical transformation with transformation
matrix T, the input matrix Ti is transformed into the output matrix To D
ŒAo;BoI Co;Do� by the simple matrix multiplication To D TTi.

2.6.3.3 Mode Conversion: Hermite–Laguerre–Gauss Modes

The transformation by phase-space rotators, for which A C i B D D � i C D U,
is important in optics for mode conversion. In that case, Eq. (2.91) reduces to�
Px;Py

� t D U�1.2� r � r t/, the transformed Hermite–Gauss modes HT
m;n.r/ can

be represented as [6]

HT
m;n.r/ D 21=2

2mCn
p
�mCnmŠnŠ

p
det U

Pm
x .T/P

n
y .T/ exp.�� r tr/ ; (2.92)

and the generating function (2.88) reduces to the simpler form

1X
mD0

1X
nD0

HT
m;n.r/

�
2mCn

mŠnŠ

�1=2
sm

x sn
y D 21=2p

det U
expŒ�.U�s/t.U�s/�

� expŒ2
p
2� .U�s/tr � � r tr� I (2.93)

note that in this case the Gaussian part exp.�� r tr/ of the Hermite–Gaussian-
type modes does not change. Moreover, since .d=dt � 2� t/k exp.�� t2/ D
exp.� t2/.d=dt/k exp.�2� t2/, the transformed modes can as well be expressed in
the more direct form

HT
m;n.r/ D 21=2.�1/mCn exp.� r tr/

2mCn
p
�mCnmŠnŠ

p
det U

U m
x U n

y exp.�2� r tr/ ; (2.94)

with the operators Ux and Uy defined as ŒUx;Uy�
t D U�1r t. As an example we

mention the phase-space rotator with
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U D 1p
2

�
cos 2˛ C i sin 2˛

sin 2˛ � cos 2˛ C i

�
� UHLG.˛/ ; (2.95)

which generates the recently introduced Hermite–Laguerre–Gauss modes [1] from
the separable Hermite–Gauss modes.

For the special case ˛ D 1
4
� , the matrix UHLG.˛/ takes the form

UHLG
	
1
4
�

 D 1p

2

�
i 1
1 i

�
� ULG D Ug

	� 1
4
�



Uf
	
1
2
�; 1

2
�


; (2.96)

and the Hermite–Laguerre–Gauss modes reduce to the Laguerre–Gauss modes,
whose generating function can be written in the form

21=2i �1 expf��.x2 C y2/C 2i sxsy � 2p� Œi sx.x C i y/ � sy.x � i y/�g : (2.97)

We remark that the latter expression depends only on the combinations x2 C y2,
sx.x C i y/ and sy.x � i y/, which shows the vortex behaviour of such modes. For
completeness, we recall the explicit form of the Laguerre–Gauss modes [53, 60]

Lm;n.r; '/ D 21=2
�
.minfm; ng/Š
.maxfm; ng/Š

�1=2
.
p
2� r/jm�nj expŒi .m � n/'�

� L.jm�nj/
minfm;ng.2� r2/ expŒ�� r2� ; (2.98)

where x D r cos' and y D r sin', and where L.˛/n .�/ are the generalized Laguerre
polynomials [2, Sect. 22, Orthogonal polynomials]. Note that the vortex behaviour
is clearly visible in the phase factor expŒi .m � n/'� and that the Laguerre–Gauss
modes are eigenfunctions of the rotator: R.˛/Lm;n.r; '/ D Lm;n.r; ' � ˛/.

Other phase-space rotators exist that convert the separable Hermite–Gauss modes
into Laguerre–Gauss modes [6, 20, 41, 53]. To find the operators that generate
modes with a vortex behaviour, we require that in the generating function (2.88)
the term s t.A C i B/�1r depends only on the combinations sx.x C i y/ and
sy.x � i y/, and the term r t.D � i C/.A C i B/�1r only on the combination x2 C y2.
These requirements lead to the class of linear canonical transformers that can
be decomposed as Q.cI/R.˛/G .� 1

4
�/F .�x; �y/. The generating functions of

the modes that arise at the output of this cascade have basically the same form
as the generating function (2.97); Eq. (2.97) itself arises for the special choice
�x D �y D 1

2
� (and ˛ D c D 0) [1], while the case �x D �y D 0 has been

reported in [53, Eq. (14)]. We remark that the important element in the cascade
Q.cI/R.˛/G .� 1

4
�/F .�x; �y/ is the gyrator. Since the separable Hermite–Gauss

modes are eigenfunctions of the separable fractional Fourier transformer, such a
transformer that precedes the gyrator does not change the character of these modes.
And once the gyrator has converted these modes to the Laguerre–Gauss mode,
the succeeding rotator, for which the Laguerre–Gauss mode is an eigenfunction,



2 The Linear Canonical Transformation: Definition and Properties 63

and the final isotropic quadratic-phase modulator, which corresponds to a simple
multiplication by exp.�i� cr tr/, do not destroy the vortex behaviour.

We remark that the Laguerre–Gauss modes Lm;n.r/ D G .� 1
4
�/Hm;n.r/ are

eigenfunctions of the symmetric fractional Fourier transformer F .�; �/ with eigen-
value expŒ�i .m C n/��,

F .�; �/Lm;n.r/ D F .�; �/G
	� 1

4
�



Hm;n.r/

D G
	� 1

4
�


F .�; �/Hm;n.r/

D G
	� 1

4
�



Hm;n.r/ expŒ�i .m C n/��

D Lm;n.r/ expŒ�i .m C n/�� ; (2.99)

where we have used the fact that the symmetric fractional Fourier transformer
F .�; �/ commutes with any other phase-space rotator O.U/ and that the separable
Hermite–Gauss modes Hm;n.r/ are eigenfunctions of the separable fractional Fourier
transformer F .�x; �y/ with eigenvalue expŒ�i .m�x C n�y/�.

2.7 Classification of the Linear Canonical Transformation
Based on the Distribution of the Eigenvalues
of Its Transformation Matrix

In this section we look for simple linear canonical transformations L .N/, called
nuclei, that are similar to a given transformation L .T/ in the sense [37]

L .T/ D L .Tı/L .N/L �1.Tı/ : (2.100)

An obvious guess would be to look for the eigenvalues and eigenvectors of the
transformation matrix T and express it in its Jordan form [30], T D QƒJQ�1,
but it is not guaranteed that the matrices ƒJ and Q are symplectic. Based on the
eigenvalues of T, we will be able to classify the linear canonical transformation
L .T/ and find a nucleus L .N/ for each class [23]. A general proof for the existence
of the decomposition (2.100) can be found in [37]; see, in particular, Theorem 41,
which deals with the real symplectic Jordan form.

We remark that once we have found the representation (2.100), the eigenfunc-
tionsˆ.r/ of the nucleus L .N/, i.e., L .N/ˆ.r/ D 
ˆ.r/, immediately lead to the
eigenfunctions ‰.r/ D L .Tı/ˆ.r/ of the transformation L .T/. Indeed,

L .T/‰.r/ D L .Tı/L .N/L �1.Tı/‰.r/

D L .Tı/L .N/ˆ.r/ D L .Tı/ 
ˆ.r/ D 
‰.r/:

The simpler the nucleus L .N/, the simpler it is to find its eigenfunctions.
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The different classes are defined by the possible distributions of the eigenvalues
of the transformation matrix T. We note that if 	 is an eigenvalue of a real symplectic
matrix T, then 	�, 1=	 and 1=	� are eigenvalues, too. Indeed, from the realness of
T, we conclude that the characteristic equation det.T�	I/ D 0 has real coefficients
and that the eigenvalues are thus real or come in complex conjugated pairs: if 	
is an eigenvalue, then 	� is an eigenvalue, too. Moreover, from the symplecticity
condition we get

det.T �1�	I/ D det.JT tJ�	I/ D detŒJ.T t �	I/J/ D det.T t �	I/ D det.T�	I/

and we conclude that if 	 is an eigenvalue, then 1=	 is an eigenvalue, too. So, for
real symplectic matrices and D � 2, the eigenvalues come in complex quartets (if
they are not unimodular and not real), or in complex conjugated pairs (if they are
unimodular, but not real), or in real pairs (in particular: double if they are equal to
C1 or �1). For D D 1, the two eigenvalues can of course only come as a single pair,
either unimodular or real.

2.7.1 Nuclei for the One-dimensional Case

Let us first consider the one-dimensional case, in which the two eigenvalues follow
from the characteristic equation 	2 � .a C d/	 C 1 D 0 and three different
distributions of the eigenvalues arise [23, 49]:

1. A pair of real eigenvalues � and ��1 .� ¤ ˙1/,
2. Two real eigenvalues 	 D 1 or 	 D �1, with only one eigenvector, and
3. A pair of unimodular, complex conjugated eigenvalues exp.i�/ and exp.�i�/.

The magnifier M .�/ is an obvious nucleus for class 1. Note that we can restrict
ourselves to the case � > 0; if the real eigenvalues are negative, we simply
add an additional coordinate reverter M .�1/ to the nucleus. The quadratic-phase
modulator Q.�c/ and the Fresnel transformer S .b/ are obvious nuclei for class 2.
Class 3 needs some more careful consideration, because the matrix of eigenvalues,
ƒŒexp.i �/; exp.�i �/�, is not symplectic and thus cannot act as the transformation
matrix of a nucleus. A proper nucleus for this class might be the fractional Fourier
transformer F .�/ [22].

For completeness we remark that for class 3—determined by the condition ja C
dj � 2—the transformation L .T/ can be decomposed as

L .T/ D Q.g/M .s/F .�/M .s�1/Q.�g/ ; (2.101)
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where � , s and g follow from a C d D 2 cos � , b D s sin � and a � d D 2gb. The
opposite case, ja C dj � 2, corresponds in fact to class 1. To stress the symmetry of
the two classes 1 and 3, we recall that for ja C dj � 2, the transformation L .T/ can
be decomposed as

L .T/ D Q.g/M .s/H .�/M .s�1/Q.�g/ ; (2.102)

where � , s and g follow from ja C dj D 2 cosh � , b sgn.a C d/ D s sinh � and
a � d D 2gb, and where H .�/ D F .� 1

4
�/M Œexp.�/�F . 1

4
�/ is known as

the hyperbolic expander [75, p. 183, Example: Hyperbolic expanders], see also
Sect. 2.3.2. We conclude that not only the magnifier M .�/ but also the hyperbolic
expander H .ln �/ can be a proper nucleus for class 1 [22].

Class 2, for which ja C dj D 2, has been extensively studied in [49, Sect. IV].
If a D d D ˙1 (and consequently bc D 0), the linear canonical transformer
is obviously either an identity operator (for b D c D 0), or a quadratic-phase
modulator Q.�c/ (for b D 0; c ¤ 0), or a Fresnel transformer S .b/ (for
b ¤ 0; c D 0), possibly with an additional coordinate reversion (if 	 D �1). For
a ¤ d (and consequently bc < 0), the linear canonical transformation L .T/ can
always be decomposed with a quadratic-phase modulator or a Fresnel transformer
as the nucleus L .N/. For more details we refer to [23, Sect. 4] and [49, Sects. IV.D
and IV.E].

2.7.2 Nuclei for the Two-dimensional Case

Concatenations of one-dimensional nuclei lead to separable two-dimensional nu-
clei. As a first example we mention the concatenation of a quadratic-phase
modulator Q.�cx/ in the x direction and a fractional Fourier transformer F .�y/ in
the y direction. The corresponding two-dimensional nucleus has the transformation
matrix

�
1 0

cx 1

�
˚
�

cos �y sin �y

� sin �y cos �y

�
D

2
664

1 0 0 0

0 cos �y 0 sin �y

cx 0 1 0

0 � sin �y 0 cos �y

3
775 :

As a second example we consider the class of phase-space rotators, described by
their unitary matrix U. It is well known that a unitary matrix has unimodular
eigenvalues 	 and can be diagonalized [36, Chap. 13]: U D PƒP�1. Moreover,
it is not difficult to show that the eigenvalue exp.i �/ of U corresponds to the
complex conjugated pair of eigenvalues exp.˙i �/ of the symplectic matrix T. The
matrix P that diagonalizes the unitary matrix U can itself be made unitary and then
corresponds to a symplectic matrix that diagonalizes the symplectic matrix T. We
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thus conclude that the separable fractional Fourier transformer F .�x; �y/, which is
clearly a concatenation of two one-dimensional fractional Fourier transformers with
transformation matrix

�
cos �x sin �x

� sin �x cos �x

�
˚
�

cos �y sin �y

� sin �y cos �y

�
D

2
664

cos �x 0 sin �x 0

0 cos �y 0 sin �y

� sin �x 0 cos �x 0

0 � sin �y 0 cos �y

3
775 ;

is an obvious nucleus of a phase-space rotator [22]. We recall that we already met
decompositions based on U D PƒP�1 in Table 2.6, where we find such cascades
as G .�/ D R.� 1

4
�/F .�;��/R. 1

4
�/ and R.�/ D G . 1

4
�/F .�;��/G .� 1

4
�/.

From these cascades we conclude that the antisymmetric separable fractional
Fourier transformer F .�;��/ can be decomposed as R. 1

4
�/G .�/R.� 1

4
�/ and

as G .� 1
4
�/R.�/G . 1

4
�/, and that the gyrator and the rotator can thus also act as a

nucleus in the special case that �x D ��y.
The four additional—inherently two-dimensional—classes correspond to the

four possible eigenvalue distributions that can only occur in two dimensions [23,
Sect. 5]:

4. A complex quartet of eigenvalues � exp.i �/, � exp.�i �/, ��1 exp.�i �/ and
��1 exp.i �/ .� ¤ ˙1/,

5. Two identical pairs of unimodular, complex conjugated eigenvalues exp.i �/ and
exp.�i �/, with only two linearly independent eigenvectors,

6. Two identical pairs of real eigenvalues � and ��1 .� ¤ ˙1/, with only two
linearly independent eigenvectors, and

7. Four real eigenvalues 	 D 1 or 	 D �1, with only one eigenvector.

We mention possible nuclei for these four classes.
A possible nucleus for class 4 is the (commuting) combination of a rota-

tor and a magnifier M .�I/R.�/ D R.�/M .�I/ with transformation matrix
Œ� Ur.�/; 0I 0; ��1Ur.�/�. The input–output relation for such a nucleus reads

� fo.�x; �y/ D fi.x cos � � y sin �; x sin � C y cos �/ (2.103)

or in polar coordinates (with x D r cos' and y D r sin'): � fo.�r; '/ D fi.r; 'C�/.
Like for class 1, an alternative nucleus for class 4 is the combination of a hyperbolic
expander (instead of a magnifier) and a rotator.

A possible nucleus for class 5 is the (commuting) combination of a rotator and
a quadratic-phase modulator Q.�cI/R.�/ D R.�/Q.�cI/ with transformation
matrix ŒUr.�/; 0I c Ur.�/;Ur.�/�. The input–output relation for this nucleus reads

fo.x; y/ D fi.x cos � � y sin �; x sin � C y cos �/ expŒi� c.x2 C y2/� (2.104)
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or in polar coordinates again: fo.r; '/ D fi.r; 'C�/ exp.i� cr2/. Like for class 2, an
alternative nucleus for class 5 is the combination of a Fresnel transformer (instead
of a quadratic-phase modulator) and a rotator.

For the remaining two classes we need a new element, the shearer Z (to be
defined shortly). A possible nucleus for class 6 is then the (commuting) shearer-
magnifier combination M .�I/Z D ZM .�I/ with transformation matrix

�
� ZC 0

0 ��1Z�

�
; where ZC D

�
1 1

0 1

�
and Z� D

�
1 0

�1 1
�

I (2.105)

the shearer itself results for � D 1. The input–output relation for this nucleus reads

� fo.�x; �y/ D fi.x � y; y/ ; (2.106)

which represents—apart from a magnification with �—a simple shearing of the x
coordinate.

A possible nucleus for the final class 7 is the (non-commuting!) combination of
a shearer and a quadratic-phase modulator Q.�cI/Z with transformation matrix
ŒZC; 0I c ZC;Z��. The input–output relation for this nucleus reads

fo.x; y/ D fi.x � y; y/ expŒi� c.x2 C y2/� : (2.107)

Again, an alternative nucleus is the combination of a Fresnel transformer (instead
of a quadratic-phase modulator) and a shearer.

The results of this section have been combined in Table 2.8, where for each of
the seven classes the corresponding nucleus can be extracted. Obvious concatena-
tions of one-dimensional nuclei have not been stated explicitly. Two examples in
reading the Table: (1) the nucleus for the (one-dimensional) class 3, i.e., a pair
of unimodular, complex conjugated eigenvalues exp.˙i �/, is a fractional Fourier
transformer F .�/. (2) possible nuclei for the (two-dimensional) class 7, i.e., four

Table 2.8 Seven classes of eigenvalue distributions 	 for linear canonical transformers and
their corresponding nuclei, composed of magnifiers M .�/ or hyperbolic expanders H .ln �/,
quadratic-phase modulators Q.�/ or Fresnel transformers S .�/, fractional Fourier transformers
F .�/, rotators R.�/, and shearers Z

	 M .�/ or H .ln �/ Q.�/ or S .�/ F .�/

Class 1 Class 2 Class 3

�; ��1 1; 1 ei � ; e�i �

Class 4 Class 5

R.�/ �ei � ; �e�i � ; ��1e�i � ; ��1ei � ei � ; ei � ; e�i � ; e�i �

Class 6 Class 7

Z �; �; ��1; ��1 1; 1; 1; 1

Z and fQ;S g do not commute !
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eigenvalues equal to 1 and with only one eigenvector, are a shearer Z followed by
a quadratic-phase modulator Q.�/ or followed by a Fresnel transformer S .�/, and
the two subsystems do not commute.

2.7.3 The Search for Eigenfunctions

The search for eigenfunctions‰.r/ of linear canonical transformations now reduces
to the search for eigenfunctions ˆ.r/ of the simple nuclei. The Dirac delta function
ı.x � �/ is an eigenfunction for any multiplication operator, with eigenvalue
exp.i� cx2/ in the particular case of a quadratic-phase modulator Q.�c/; and
the harmonic signal exp.i 2� ux/ is an eigenfunction for any convolution operator,
with eigenvalue exp.i� bu2/ in the particular case of a Fresnel transformer S .b/
(class 2). We also recall that the Hermite–Gauss modes (2.80) are eigenfunctions of
the fractional Fourier transformer F .�/, with eigenvalues exp.�i k�/ (class 3). And
while powers xk are evidently eigenfunctions of the nucleus M .�/ with eigenvalues
j� j�1=2��k (class 1), signals of the form rk exp.i m'/ are eigenfunctions of the
nucleus M .�I/R.�/ with eigenvalues ��1=2��k exp.i m�/ (class 4), and signals
of the form ı.r �/ exp.i m'/ are eigenfunctions of the nucleus Q.�cI/R.�/ with
eigenvalues exp.i m�/ exp.i� c2/ (class 5). Proper eigenfunctions of the nuclei
M .�I/Z and Q.�cI/Z for the classes 6 and 7 are still to be found.

From the eigenfunctions ˆ.r/ for a nucleus L .N/, we can generate eigenfunc-
tions ‰.r/ for the corresponding class of transformations L .Tı/L .N/L �1.Tı/
by letting the eigenfunctions ˆ.r/ propagate through L .Tı/: L .Tı/ˆ.r/ D
‰.r/. We already met the Hermite–Gaussian-type modes HTı

m;n.r/ for class 3, see
Sect. 2.6.3. As an example, we will find eigenfunctions for the one-dimensional
hyperbolic expander H .�/ (class 1), see [24].

Let us start with the powers xk, which are eigenfunctions of the magnifier M .�/,
and recall that H.�/ D F .� 1

4
�/M .exp �/F . 1

4
�/. We thus have to calculate the

integral

fo.xo/ D F
	� 1

4
�



xk
i D i 1=22�1=4

Z
xk

i expŒ�i�.x2o � 2p2xoxi C x2i /� dxi ;

(2.108)

for which we use the relationships

.�i 2�/k
p

p
Z

xk exp.�� px2 � i 2� ux/ dx D dk

duk
exp.�� p�1u2/ (2.109)

and

dk

duk
exp.�� p�1u2/ D .�

p
� p�1/k exp.�� p�1u2/Hk.u

p
� p�1/ ; (2.110)
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in which we substitute p D i , x D xi and u D �xo

p
2. Note that Eq. (2.109)

follows by differentiating the Fourier transform exp.�� p�1u2/ of exp.�� px2/,
and holds for <p > 0 and for Œ<p D 0;=p ¤ 0�, see, for instance, [50,
(2.3.15.4)] and also [75, Sect. C.2, p. 279, Remark: The integral of complex
Gaussians]; we may also refer to [50, (2.5.22.5)] and [34, (3.691.5) and (3.691.7)]
for k D 0, and to [50, (2.5.22.3)] and [34, (3.851.1) and (3.851.3)] for k D 1.
Equation (2.110) can be found, for instance, in [2, (7.1.19)]; see also Rodrigues’
formula for Hermite polynomials [2, (22.11.7)]. We readily conclude that fo.x/ is
proportional to Hk.

p
2�x i �1=2/ exp.i� x2/.

We note the remarkable resemblance between these eigenfunctions and the eigen-
functions of the fractional Fourier transformer—i.e., the Hermite–Gauss modes
Hk.x/, which are proportional to Hk.

p
2�x/ exp.�� x2/—and we conclude that

we can directly go from the fractional-Fourier-transformer case to the hyperbolic-
expander case by simply replacing x by .x i �1=2/.

2.8 The Effect of a Linear Canonical Transformation
on the Second-order Moments in Phase Space

With E D ’
W.r;q/ dr dq denoting the total energy of a signal, the normalized

second-order moments of its Wigner distribution are defined as

1

E

“ �
r
q

�
Œr t;q t�W.r;q/ dr dq �

"
Mrr Mrq

M t
rq Mqq

#
� M (2.111)

and constitute a real positive-definite symmetric moment matrix M. It can easily
be shown that when a signal undergoes a linear canonical transformation, fo.r/ D
L .T/ fi.r/, the moment matrices Mi and Mo are related by the relationship [12, 59]

Mo D TMiT t : (2.112)

We can easily prove the positive definiteness of the 2D � 2D moment matrix M
with the help of the input–output relationship (2.112). We therefore construct the
transformation matrix T as follows:

• We choose C D 0, with the immediate consequence D D At�1 and AB t D BAt

to satisfy the symplecticity condition.
• The matrix A is chosen as an upper triangular matrix with 1

2
D.D C 1/ non-

vanishing entries that can be chosen arbitrarily.
• The matrix B is chosen as an upper triangular matrix with D arbitrarily chosen

entries in its top row.
• The remaining 1

2
D.D � 1/ non-vanishing entries of B are determined from the

1
2
D.D � 1/ equations that follow from the required symmetry of the matrix AB t.
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The top row t t of the transformation matrix T can thus be constructed completely
arbitrarily. We now consider the upper left entry mxx;o of the matrix Mo in the left-
hand side of (2.112); this entry, which represents the square of an effective width, is
positive:

.mxx/o D 1

E

Z
x2
�Z

Wo.r;q/ dq
�

dr D 1

E

Z
x2 jfo.r/j2 dr > 0 :

On the other hand, this entry equals t tMit, where the vector t can be chosen
arbitrarily. We thus conclude that the quadratic form t tMit is positive for any
vector t, with which we have proved that the moment matrix Mi is positive definite.

The moment matrix 2� M can be represented in the form [18, Sect. 2.6, Second-
and higher-order moments]

2� M D 2�

"
Mrr Mrq

M t
rq Mqq

#
D 1

2

�
G�1
1 G�1

1 H
H tG�1

1 G2 C H tG�1
1 H

�
; (2.113)

where the matrices G1, G2 and H follow directly from the submatrices Mrr, Mrq

and Mqq:

G1 D .4�/�1M�1
rr D G t

1 (2.114a)

G2 D 4� .Mqq � M t
rqM�1

rr Mrq/ D G t
2 ; (2.114b)

H D M�1
rr Mrq : (2.114c)

The matrices G1 and G2 are positive definite, which follows immediately from the
positive definiteness of the quadratic form .q C Hr/tG�1

1 .q C Hr/ C r tG2r D
2Œq t; r t�M Œq t; r t� t, and a possible asymmetry of the matrix H is responsible for the
twist of the signal [10, 17, 29, 54, 56, 60, 61, 63]. We will study the twist later in
Sect. 2.8.2.

In the one-dimensional case, the twist is irrelevant and the 2 � 2 moment matrix
takes the form

M D 1

4�

�
g�1
1 hg�1

1

hg�1
1 g2 C h2g�1

1

�
D 1

4��

�
g�1 hg�1
hg�1 g C h2g�1

�
; (2.115)

with g D p
g1g2 > 0 and � D p

g1=g2 > 0. Note that det M D .4��/�2 and that
� is bounded by 1, � � 1, as a result of the uncertainty relation mxxmuu � .4�/�2.
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2.8.1 Moment Invariants for the Linear Canonical
Transformation

Using the symplecticity condition T �1 D JT tJ, the moment relation (2.112) can
be rewritten in the form of the similarity relation MoJ D TMiJT �1 [14], from
which we conclude that the (real!) eigenvalues of the matrix MJ are invariant under
a linear canonical transformation. The same holds, of course, for the coefficients of
the characteristic equation det.MJ � 	I/ D 0, which appears to be an equation in
	2. In the one-dimensional case this equation reads 	2 � det M D 0, from which we
conclude that det M is the (only) invariant. In the two-dimensional case we have

	4 � Œ.mxxmuu � m2
xu/C .myymvv � m2

yv/C 2.mxymuv � mxvmyu/�	
2 C det M D 0

(2.116)

and we thus find the two (independent) invariants

I1 D p
det M ; (2.117a)

I2 D .mxxmuu � m2
xu/C .myymvv � m2

yv/C 2.mxymuv � mxvmyu/: (2.117b)

The latter moment combination is known in optics as the beam quality parame-
ter [52]. Instead of I 21 D 	2x	

2
y and I2 D 	2x C 	2y , we might as well consider

the eigenvalues ˙	x;y of MJ themselves as invariants. We may arbitrarily choose
	x � 	y > 0, in which case 	x ˙ 	y D .I2 ˙ 2I1/1=2. Note that I2 � 2I1 and that the
equality sign arises for 	x D 	y.

In the special case of phase-space rotators, for which the symplectic transfor-
mation matrix is also orthogonal, T t D T �1, the relation Mo D TMiT t D
TMiT �1 between the moment matrices themselves takes the form of a similarity
transformation, and we conclude that the eigenvalues of M (or the coefficients of its
characteristic equation, like the determinant and the trace of M) are invariant. Note,
however, that some of these invariants are not new in the sense that they are identical
to or depend on the ones that we already found.

Another way to find moment invariants for phase-space rotators is to consider the
Hermitian matrix [8]

M0 D 1

E

“
.r�i q/ .r�i q/� W.r;q/ dr dq D MrrCMqqCi .Mrq�M t

rq/ (2.118)

and to use (2.58) to get the relation M0
o D UM0

iU
� D UM0

iU
�1, which is again

a similarity transformation. In the two-dimensional case, the matrix M0 can be
written as

M0 D
"

Q0 C Q1 Q2 C i Q3
Q2 � i Q3 Q0 � Q1

#
D Q0I C Q

"
cos# exp.i �/ sin#

exp.�i �/ sin# � cos#

#
(2.119)
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with

Q0 D 1
2 Œ.mxx C muu/C .myy C mvv/� ;

Q1 D 1
2 Œ.mxx C muu/ � .myy C mvv/� D Q cos# ;

Q2 D mxy C muv D Q sin# cos � ;
Q3 D mxv � myu D Q sin# sin � ;

(2.120)

where the moment parameters Qj (j D 0; 1; 2; 3) are the expectation values of the
Hermitian operators [58, 60, 62] associated with the symmetric and antisymmetric
fractional Fourier transformer, the gyrator, and the rotator, respectively; moreover,
the matrix M0 resembles the one introduced in [3], which is based on the operator
approach. We then find two invariants from the coefficients of the characteristic
equation det.M0 � �I/ D 0 D �2 � 2Q0� C Q2

0 � Q2 D .� � Q0/
2 � Q2: the two

parameters Q0 and Q2 D Q2
1 C Q2

2 C Q2
3 or the two eigenvalues �1;2 D Q0 ˙ Q.

Note that 2Q0, the trace of M0, is also the trace of M, and that Q2
0 � Q2 equals the

determinant of M0.
From the invariance of Q we conclude that the three-dimensional vector

.Q1;Q2;Q3/ D .Q cos#;Q sin# cos �;Q sin# sin �/ lives on a sphere with radius
Q, known as the Poincaré sphere [3, 8, 48]. A phase-space rotator will only change
the values of the angles # and � , but does not change the invariants Q0 and Q. To
transform a diagonal matrix M0, with � D # D 0, into the general form (2.119), we
can use, for instance, the cascade F . 1

2
�;� 1

2
�/R.� 1

2
#/F .� 1

2
�; 1

2
�/; we easily

verify

Uf
	
1
2
�;� 1

2
�



Ur
	� 1

2
#



Uf
	� 1

2
�; 1

2
�

 �Q0 C Q 0

0 Q0 � Q

�
Uf
	
1
2
�;� 1

2
�



� Uf
	� 1

2
�; 1

2
�

 D

�
Q0 C Q cos# Q exp.i �/ sin#

Q exp.�i �/ sin# Q0 � Q cos#

�
: (2.121)

In the special case that the phase-space rotator is a symmetric fractional Fourier
transformer, with a scalar matrix U, the matrix M0 itself is invariant, and so
is the complete vector .Q1;Q2;Q3/. For the (antisymmetric) fractional Fourier
transformer, the gyrator, and the rotator, one of the moment parameters Qj (j D
1; 2; 3) is invariant, while the other two undergo a rotation-type transformation, see
Table 2.9.

2.8.2 The Twist As an Invariant for Transformations
with B D 0

We will now consider an important parameter for two-dimensional signals that is
invariant under a linear canonical transformation with B D 0 (and A�1 D D t),
see (2.46). The invariant that we consider is known as the twist of the signal, which is
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Table 2.9 Second-order moment invariants for linear canonical transformations

Transformation Invariant Remark

L .T/
I1 D .det M/1=2 D 	x	y ˙ 	x;y are the eigenvalues of MJ
I2 D .mxxmuu � m2

xu/C .myymvv � m2
yv/C 2.mxymuv � mxvmyu/ D 	2x C 	2y

L .T/ B D 0 T D Œ.mxu � myv/mxy C mxvmyy � mxxmyu�=.mxxmyy � m2
xy/

1=2

O.U/
Q0 D 1

2
Œ.mxx C muu/C .myy C mvv/�

Q2 D Q2
1 C Q2

2 C Q2
3

F .';�'/ Q1 D 1
2
Œ.mxx C muu/� .myy C mvv/� .Q2 C i Q3/o D exp.i 2'/ .Q2 C i Q3/i

G .'/ Q2 D mxy C muv .Q3 C i Q1/o D exp.i 2'/ .Q3 C i Q1/i

R.�'/ Q3 D mxv � myu .Q1 C i Q2/o D exp.i 2'/ .Q1 C i Q2/i

F .�; �/ Q1;Q2;Q3

connected to the asymmetry of the matrix H D M�1
rr Mrq, see (2.114c). To measure

the degree of twist, we use the asymmetry of the normalized matrix

M1=2
rr .M

�1
rr Mrq/M1=2

rr D M�1=2
rr MrqM1=2

rr D M�1=2
rr .MrqMrr/M�1=2

rr

and we define the twist parameter T via the skew-symmetric matrix

MrqMrr � .MrqMrr/
t

.det Mrr/1=2
�
�
0 T

�T 0

�
I

hence

T D .mxu � myv/mxy C mxvmyy � mxxmyu

.mxxmyy � m2
xy/

1=2
: (2.122)

Note that the numerator in the above expression corresponds to the asymmetry of
MrqMrr, i.e., to the upper off-diagonal element of MrqMrr � .MrqMrr/

t. Using the
input–output relation Mo D TMiT t, we easily derive

.Mrr/o D A.Mrr/i At ; (2.123a)

.Mrq/o D A.Mrr/i C t C A.Mrq/i A�1 ; (2.123b)

.MrqMrr/o D A.Mrr/i C tA.Mrr/i At C A.MrqMrr/i At : (2.123c)

From (2.123a) we see that

.det Mrr/
1=2
o D .det Mrr/

1=2
i det A :

As the matrix A.Mrr/i C tA.Mrr/i At in (2.123c) is symmetric, the asymmetry of
.MrqMrr/o is equal to the asymmetry of A.MrqMrr/i At, which on its turn is equal to
the asymmetry of .MrqMrr/i det A. Both the numerator and the denominator in the
expression for T , see (2.122), scale with the same factor det A and we thus conclude
that the twist is invariant under a linear canonical transformation with B D 0.
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2.8.3 Williamson’s Theorem, Canonical Form and the Twist

An interesting property follows from Williamson’s theorem [25, 62, 70]: for any real
positive-definite symmetric matrix M, there exists a real symplectic matrix Tı such
that M D Tı�ıT tı, where �ı D T �1ı MT tı

�1 takes the canonical form

�ı D
�

ƒı 0
0 ƒı

�
with ƒı D

�
	x 0

0 	y

�
and 	x � 	y > 0 : (2.124)

From the similarity transformation MJ D Tı.�ıJ/T �1ı , we conclude that �ı
follows directly from the eigenvalues ˙	x and ˙	y of MJ and that Tı follows
from the eigenvectors of .MJ/2: .MJ/2Tı D Tı�2ı. Any moment matrix M can
thus be brought into the diagonal form �ı by means of a realizable canonical trans-
formation with ray transformation matrix T �1ı . We remark that the determination of
the canonical eigenvalues 	x and 	y is easy; they follow immediately from the two
moment invariants (2.117) I1 D 	x	y and I2 D 	2x C 	2y .

The system L .Tı/ that connects the moment matrix M with its canon-
ical form �ı through M D Tı�ıT tı, can be reduced—with the cas-
cade (2.66) in mind—to the cascade of a gyrator and a generalized magnifier
Q.Gı/M ŒSıUr.�˛ı/�G .�ˇı/; note that the separable fractional Fourier
transformer in (2.66) can be omitted because it does not affect the canonical
form and that we have combined the rotator with the pure magnifier. The system
Q.Gı/M ŒSıUr.�˛ı/� thus connects the moment matrix M with its generalized
canonical form Mı,

Mı D
"

Mı
rr Mı

rq

�Mı
rq Mı

rr

#
; Mı

rr C i Mı
rq D Ug.�ˇı/ƒı Ug.ˇı/ ;

Mı
rr C i Mı

rq D
�
	x cos2 ˇı C 	y sin2 ˇı i 1

2
.	x � 	y/ sin 2ˇı

�i 1
2
.	x � 	y/ sin 2ˇı 	x sin2 ˇı C 	y cos2 ˇı

�
:

(2.125)

Applying the definition of the twist (2.122) to the generalized canonical form Mı,
we readily conclude that the gyrator angle ˇı is completely determined by the twist
T and the two canonical eigenvalues 	x and 	y,

.	x � 	y/ sin 2ˇı D 2T
p
	x	yp

.	x C 	y/2 � T2
; (2.126)

and that the same holds for the generalized canonical form itself. Note that these
three parameters are indeed invariant under a linear canonical transformation of the
form Q.�CA�1/M .A/, for which B D 0.

Note that for the generalized canonical form Mı, the moment vector
.Q1;Q2;Q3/ reads .Q sin 2ˇı; 0;Q cos 2ˇı/ with Q D 	x � 	y, cf. (2.119), and
that Q3 corresponds to the left-hand side of (2.126). We easily verify that the
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maximum value of jTj is reached for ˇı D ˙ 1
4
� and that jTjmax D Q D

	x � 	y D p
I2 � 2I1. We also recall, see Sects. 2.6.3.3 and 2.8.1, that it is the

gyrator G .˙ 1
4
�/ that transforms the (vortex-free) Hermite–Gauss modes, with

.Q1;Q2;Q3/ D .Q; 0; 0/, into the (maximum-vortex) Laguerre–Gauss modes, with

.Q1;Q2;Q3/ D .0; 0;˙Q/.
In the special case that 	x D 	y D 	, the canonical form �ı D 	I takes the form

of a scalar matrix, and the system L .Tı/ that connects the moment matrix M to its
canonical form reduces to the cascade Q.Gı/M .Sı/. Note that the Poincaré sphere
for such a canonical form reduces to a single point: Q D 0. The case 	x D 	y is
known as the intrinsically isotropic case [25, 62] and the moment matrix M is now
proportional to a symplectic matrix. Symplecticity of a moment matrix is preserved
under a linear canonical transformation, and the moment relations Mo D TMiT t

and .MoJ/ D T.MiJ/T�1, which deal with 4 � 4 matrices, can be replaced by an
easier one that deals with 2 � 2 matrices; see Eq. (2.128) in the next section.

2.8.4 The Special Case of a Symplectic Moment Matrix

In this section we study the special case that in the moment representation (2.113)
we have the additional conditions H D H t, G1 D � G and G2 D ��1G, where
0 < � � 1; note that we are now dealing with a signal that has zero twist. The
matrix moment then takes the special form [14, 15]

2� M D 1

2�

�
G�1 G�1H

H tG�1 G C H tG�1H

�
; (2.127)

and the input–output relations for the moments Mo D TMiT t and .MoJ/T D
T.MiJ/ can now be expressed as ŒHo˙i Go�ŒACC.Hi˙i Gi/� D ŒCCD.Hi˙i Gi/�,
which leads to the bilinear relationship

Ho ˙ i Go D ŒC C D.Hi ˙ i Gi/�ŒA C C.Hi ˙ i Gi/�
�1 : (2.128)

This bilinear relationship, together with the invariance of det M D .4� �/�2,
completely describes the propagation of a symplectic moment matrix M when
the signal undergoes a linear canonical transformation. Note that the bilinear
relationship is identical to the so-called ABCD-law for chirp-like signals of the form
exp.i� r tHr/; we have only replaced the (real) chirp matrix H by the (generally
complex) matrix H ˙ i G, cf. (2.74). The bilinear relationship is also the basis for
the treatment of complex Gaussian functions, f .r/ D expŒ�i� r t.G � i H/r�, under
linear canonical transformations, see, for instance, [47, Sect. 3.4.6, Linear fractional
transformations].
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2.9 Conclusions

The mathematical formalism introduced in this chapter is used nowadays for
numerous applications, including the description of paraxial light propagation
through first-order optical systems, design and characterization of optical beams and
systems, development of filtering and encryption techniques in signal processing.

For example, the linear canonical transformation’s phase-space representation
allows associating the transformation parameters with the ray transformation matrix
known from geometrical optics and therefore establishing a relation between the
ray and the wave description of light. The matrix description of linear canonical
transformations drastically simplifies the design and analysis of the composed
optical systems, as well as the calculation of the beam propagation through them.
The use of the modified Iwasawa decomposition of the transformation matrix
together with the detailed analysis of the phase-space rotator matrix provides a clear
interpretation of the signal modification produced by the transformation. Thus, the
central role of the fractional Fourier transformation among other linear canonical
transformations is revealed. The affine transformation of the Wigner distribution
and the ambiguity function produced by such transformations is the key for the
establishing of phase-space tomography methods used for the characterization of
classical and quantum light. The corresponding transformation of the second-order
moments of the Wigner distribution, described in this chapter, is useful for global
beam analysis.

The diversity of the linear canonical transformation parameters (ten in the two-
dimensional case) is exploited, as it is discussed in the next chapters, in different
phase retrieval, filtering and encryption techniques.

Appendix

Derivation of the Phase-Space Relation (2.5)

We start with (2.4) and substitute from (2.1):

Wo.ro;qo/ D
Z

f
	
ro C 1

2
r0

o



f � 	ro � 1

2
r0

o



expŒ�i 2� q t

or0
o� dr0

o

D j det Lioj
•

expŒi�.E1 � E2 � 2q t
or0

o/� fi.r1/ f �
i .r2/ dr1 dr2 dr0

o

with

(
E1 D 	

ro C 1
2
r0

o


t
Loo

	
ro C 1

2
r0

o


 � 2r t
1Lio

	
ro C 1

2
r0

o


C r t
1Liir1 ;

E2 D 	
ro � 1

2
r0

o


t
Loo

	
ro � 1

2
r0

o


 � 2r t
2Lio

	
ro � 1

2
r0

o


C r t
2Liir2 :
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We reorder the exponent E1 � E2 to get

E1 � E2 D .r0
o

tLooro C r t
oLoor0

o/ � 2.r1 � r2/tLioro � .r1 C r2/tLior0
o

C.r t
1Liir1 � r t

2Liir2/ :

We substitute r1 D ri C 1
2
r0

i and r2 D ri � 1
2
r0

i and get

Wo.ro;qo/ D j det Lioj
•

expŒi�.E1 � E2 � 2q t
or0

o/�

�fi
	
ri C 1

2
r0

i



f �
i

	
ri � 1

2
r0

i



dri dr0

i dr0
o

with E1 � E2 D .r0
o

tLooro C r t
oLoor0

o/� r0
i

tLioro � 2r t
i Lior0

o C .r0
i

tLiiri C r t
i Liir0

i/ :

We substitute fi
	
ri C 1

2
r0

i



f �
i

	
ri � 1

2
r0

i


 D R
Wi.ri;qi/ expŒi 2� r0

i
tqi� dqi and

get

Wo.ro;qo/

D j det Lioj
ZZZZ

Wi.ri;qi/ expŒi�.E1 � E2 � 2q t
or0

o�

� expŒi 2� r0
i

tqi� dr0
i dr0

o dri dqi

D j det Lioj
“

Wi.ri;qi/

�Z
expŒi 2�.Looro � Lt

iori � qo/
tr0

o� dr0
o

�

�
�Z

expŒi 2�.Liiri � Lioro C qi/
tr0

i� dr0
i

�
dri dqi

D j det Lioj
“

Wi.ri;qi/ ı.Looro � Lt
iori � qo/ ı.Liiri � Lioro C qi/ dri dqi

D j det Lioj
Z

Wi.ri;Lioro � Liiri/ ı.Looro � Lt
iori � qo/ dri

D Wi

�
Lt

io
�1Looro � Lt

io
�1qo;Lioro � LiiLt

io
�1Looro C LiiLt

io
�1qo

�
:

After substituting from (2.7), we finally get

Wo.ro;qo/ D Wi.D tro � B tqo;�C tro C Atqo/

and hence Wo.Ar C Bq;Cr C Dq/ D Wi.r;q/, which is identical to (2.5).
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Chapter 3
Eigenfunctions of the Linear Canonical
Transform

Soo-Chang Pei and Jian-Jiun Ding

Abstract In this chapter, the eigenfunctions and the eigenvalues of the linear
canonical transform are discussed. The style of the eigenfunctions of the LCT is
closely related to the parameters fa, b, c, dg of the LCT. When ja C dj< 2, the
LCT eigenfunctions are the scaling and chirp multiplication of Hermite–Gaussian
functions. When ja C dj D 2 and b D 0, the eigenfunctions are the impulse trains.
When ja C dj D 2 and b ¤ 0, the eigenfunctions are the chirp multiplications of
periodic functions. When ja C dj> 2, the eigenfunctions are the chirp convolution
and chirp multiplication of scaling-invariant functions, i.e., fractals. Moreover, the
linear combinations of the LCT eigenfunctions with the same eigenvalue are also the
eigenfunctions of the LCT. Furthermore, the two-dimensional case is also discussed.
The eigenfunctions of the LCT are helpful for analyzing the resonance phenomena
in the radar system and the self-imaging phenomena in optics.

3.1 Introduction

The linear canonical transform (LCT) [1–6] is a generalization of the Fourier
transform and the fractional Fourier transform. Its formulas are

O.a;b;c;d/
LCT Œx.t/�D

s
1

j2�b
exp

�
jdu2

2b

�Z 1

�1
exp

��jut

b

�
exp

�
jat2

2b

�
x.t/dt for b ¤ 0;

O.a;b;c;d/
LCT Œx.t/�Dp

d exp
	
jcdu2=2



x.dt/ for b D 0:

(3.1)

The eigenfunctions of the LCT are important for analyzing the characteristics of
the LCT. They also play important roles in self-imaging phenomena analysis and
resonance phenomena analysis, since many optical systems and electromagnet wave
propagation system can be modeled by the LCT.
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It is well known that the eigenfunctions of the original Fourier transform (FT) is
the Hermite–Gaussian function:

�m.t/ D exp
	�t2=2



Hm.t/; (3.2)

where Hm(t) is the mth order Hermite function. Moreover, the eigenvalues corre-
sponding to �m(t) is (�j)m:

FT Œ�m.t/� D .�j/m�m.t/:

In fact, the Hermite–Gaussian function is also the eigenfunction of the fractional
Fourier transform (FRFT) [7, 8]:

FRFT˛ Œ�m.t/� D exp .�j˛m/ �m.t/; (3.3)

where [8]

FRFT˛ Œx.t/� D
r
1 � j cot˛

2�
exp

�
ju2 cot˛

2

�

Z 1

�1
exp .�jut cosec˛/ exp

�
jt2 cot˛

2

�
x.t/dt: (3.4)

Moreover, from the Talbot effect [9–12], the periodic function is the eigenfunction
of the Fresnel transform [13]. The fractal [14] (i.e., the scaling-invariant function)
is the eigenfunction of the scaling operation.

Note that the FT, the fractional Fourier transform, FRFT, the Fresnel transform,
and the scaling operation are all the special cases of the LCT. They correspond to
the LCT with parameters as follows:

FT W fa D 0; b D 1; c D �1; d D 1g ; FRFT W fa D cos˛; b D sin˛; c D � sin˛; d D cos˛g ;
Fresnel W fa D 1; b D 	z=2�; c D 0; d D 1g ; Scaling W fa D �; b D 0; c D 0; d D 1=�g :

(3.5)

In this chapter, we discuss the eigenfunctions of the LCT.

3.2 Eigenfunctions of the LCT for the Case Where ja C dj < 2

The eigenfunctions and eigenvalues of the LCT can be derived from the following
two theorems [15]:

Theorem 1. Suppose that ad � bc D a1d1 � b1c1 D a2b2 � b2c2 D 1 and
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�
a b
c d

�
D
�

a1 b1
c1 d1

� �
a2 b2
c2 d2

� �
d1 �b1

�c1 a1

�
; (3.6)

then the following equality is satisfied:

a C d D a2 C d2: (3.7)

This property can be proved by the facts that the eigenvalues of two similar matrices
are the same and that the diagonal sum of a matrix is the sum of its eigenvalues.

Theorem 2. Suppose that fa, b, c, dg, fa1, b1, c1, d1g, and fa2, b2, c2, d2g satisfy
the relation in (3.6). If

O.a2;b2;c2;d2/
LCT Œe.t/� D 	e.t/; (3.8)

then, from (3.6) and the additivity property of the LCT,

O
.a;b;c;d/
LCT

n
O
.a1;b1;c1;d1/
LCT Œe.t/�

o
D O

.a1;b1;c1;d1/
LCT

h
O
.a2;b2;c2;d2/
LCT

�
O
.d1;�b1;�c1;a1/
LCT

n
O
.a1;b1;c1;d1/
LCT Œe.t/�

o�i

D O
.a1;b1;c1;d1/
LCT

h
O
.a2;b2;c2;d2/
LCT .e.t//

i
D 	O

.a1;b1;c1;d1/
LCT Œe.t/� :

(3.9)

That is, if e(t) is the eigenfunction of the LCT with parameters fa2, b2, c2, d2g, then
O.a1;b1;c1;d1/

LCT Œe.t/� is the eigenfunction of the LCT with parameters fa, b, c, dg and
their corresponding eigenvalues are the same. Therefore, if the eigenfunctions and
eigenvalues of the LCT with parameters fa2, b2, c2, d2g are known, one can derive
the eigenfunctions and eigenvalues of the LCT with parameters fa, b, c, dg if fa, b,
c, dg and fa2, b2, c2, d2g are similar.

In the case where ja C dj< 2, in Theorem 2, one can choose fa2, b2, c2, d2g as
fcos ˛, sin ˛, �sin ˛, cos ˛g. Note that the LCT with these parameters is the FRFT
multiplied by some constant:

O.cos˛;sin˛;� sin˛;cos˛/
LCT Œx.t/� D

p
exp .�j˛/O˛

FRFT Œx.t/� : (3.10)

Then

�
a b
c d

�
D
�

a1 b1
c1 d1

� �
cos˛ sin˛

� sin˛ cos˛

� �
d1 �b1

�c1 a1

�
: (3.11)

Moreover, from Theorem 1, a C d D 2 cos ˛ should be satisfied. Therefore,

˛ D cos�1 ..a C d/ =2/ : (3.12)

There are several choices for fa1, b1, c1, d1g. We suggest that it is proper to choose
these parameters as
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�
a1 b1
c1 d1

�
D
�

� 0

����1 ��1
�
: (3.13)

Then, the LCT with parameters fa1, b1, c1, d1g is the combination of the scaling
operation and the chirp multiplication operation:

O.a1;b1;c1;d1/
LCT Œx.t/� D ��1=2 exp

	�j� t2=2�2



x .t=�/ : (3.14)

Then, from (3.11)

�
a b
c d

�
D
�

cos˛ C � sin˛ �2 sin˛
� 	�2 C 1



sin˛=�2 cos˛ � � sin˛

�
: (3.15)

Therefore, the values of � , � , and ˛ are

˛ D cos�1
�

a C d

2

�
D sin�1

�
sgn.b/

2

q
4 � .a C d/2

�
;

�2 D 2 jbjq
4 � .a C d/2

; � D sgn.b/ .a � d/q
4 � .a C d/2

:
(3.16)

Since the LCT with parameters fa2, b2, c2, d2g is the FRFT multiplied by some
constant, as in (3.10), and the eigenfunctions of the FRFT are known to be Hermite–
Gaussian functions, as in (3.3), from Theorem 2, we obtain [15, 16]:

Theorem 3. When ja C dj< 2, the eigenfunctions of the LCT are:

�.�;�/m .t/ D ��1=2 exp

�� .1C i�/

2�2
t2
�

Hm

� t

�

�
; (3.17)

where � and � are defined in (3.16), Hm(t) is the Hermite polynomial, and m is any
nonnegative integer. In other words, when ja C dj< 2, the eigenfunction of the LCT
is the scaling and chirp multiplication of Hermite–Gaussian functions. Moreover,
the corresponding eigenvalues are [exp(�j˛)]1/2exp(�j˛m):

O.a;b;c;d/
LCT

h
�.�;�/m .t/

i
D
p

exp .�j˛/ exp .�j˛m/ �.�;�/m .t/; (3.18)

where ˛ is also defined in (3.16).

As the case of the FRFT, the eigenfunctions of the LCT in (3.17) also form a
complete and orthogonal function set, i.e.,

Z 1

�1
�.�;�/m .t/�.�;�/n .t/ dt D 0 if m ¤ n; (3.19)

and any function can be expressed as a linear combination of �(� ,� )
m (t).
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3.3 Eigenfunctions of the LCT for the Case Where
ja C dj D 2

Note that the eigenfunctions given in Theorem 3 can only be applied in the
case where ja C dj< 2. When ja C dj> 2, in (3.12), ˛ cannot be solved. When
ja C dj D 2, the values of � and � in (3.16) will be infinite. Therefore, the
eigenfunctions of the LCT should have the form other than (3.17) in the case where
ja C dj � 2.

To derive the eigenfunctions in the case where ja C dj D 2, the method in
Theorem 2 can also be applied. However, from Theorem 1

a2 C d2 D ˙2 (3.20)

must be satisfied. Therefore, we choose fa2, b2, c2, d2g D f1, 0, �, 1g (i.e., the Fresnel
transform) when a2 C d2 D 2 and fa2, b2, c2, d2g D f�1, 0, �, �1g (i.e., the Fresnel
transform C the space reverse operation) when a2 C d2 D �2.

From the theory of the Talbot effect [9–12], if the original light distribution is
periodic, i.e., f (x, 0) D f (x C q, 0), then the light distribution at the distance z is the
same as the original one, i.e.,

f .x; z/ D f .x; 0/ where z D 2q2=	; (3.21)

and 	 is the wavelength. Then, together with the relation between the Fresnel
transform and the LCT, one can conclude that

O
.1;q2=�;0;1/
LCT Œe.t/� D e.t/ if e.t/ D e .t C q/ : (3.22)

More generally, from the fractional Talbot effect [11, 12], if g(t) D g(t C q), then

O
.1;q2N=�M;0;1/
LCT Œg.t/� D 1

M

M�1X
pD0

g
�

u � pq

M

�M�1X
nD0

exp

�
j
2�

M

	
pn � Nn2


�
; (3.23)

where N and M are some integers and N is prime to M. Therefore, if [1, A1, A2, : : : ,
AM�1]T is the eigenvector of the following matrix:

J D

2
666664

c0 cM�1 cM�2 � � � c1
c1 c0 cM�1 � � � c2
c2 c1 c0 � � � c3
:::

:::
:::

: : :
:::

cM�1 cM�2 cM�3 � � � c0

3
777775

where cp D 1

M

M�1X
nD0

exp

�
j
2�

M

	
pn � Nn2


�
;

(3.24)
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and its corresponding eigenvalue is �, then if g(t) D g(t C q) and

g.t/ W g .t C q=M/ W g .t C 2q=M/ W : : : � � � W g .t C .M � 1/ q=M/
D 1 W A1 W A2 W : : : � � � W AM�1 for x 2 .0; q=M/ ;

(3.25)

g(t) will be the eigenfunction of the LCT with parameters f1, Nq2/�M, 0, 1g and the
corresponding eigenvalue is �. Furthermore, it can be verified that the eigenvalues
of J have the form of

	k D exp
	�j2�Nk2=M



where k D 0; 1; 2; : : : ;M � 1: (3.26)

After the eigenvalues are known, the eigenvectors of J can be easily determined.
From the above results, one can conclude that the eigenfunctions of the LCT with

parameters f1, b, 0, 1g are periodic functions that satisfy

g.t/ D g .t C q/ where q D
p

jbj�M=N; (3.27)

and M and N are any positive integers that are prime to each other. Moreover, g(t)
should satisfy the symmetric relation in (3.25) and the corresponding eigenvalue is
as in (3.26). Since there are infinite possible values for the period q, the LCT with
parameters f1, b, 0, 1g has infinite sets of eigenfunctions.

Then, we discuss the eigenfunctions of the LCT with parameters f�1, b, 0, �1g.
Since

��1 b
0 �1

�
D
�
1 �b
0 1

� ��1 0

0 �1
�
; (3.28)

the eigenfunctions g(t) of the LCT with parameters f�1, b, 0, �1g should satisfy the
following two constraints:

.1/g.t/ D ˙g .�t/ : (3.29)

(Remember that O.�1;0;0;�1/
LCT Œg.t/� D p�1g .�t/).

(2) g(t) is the eigenfunction of the LCT with parameters f1, �b, 0, 1g.
Therefore, g(t) should satisfy (3.27) and (3.25) and must be a symmetric or an

asymmetric function that satisfy (3.29). Moreover, the corresponding eigenvalues
are

	k D p�1 exp
	�j2�Nk2=M



if g.t/ D g .�t/ ;

	k D �p�1 exp
	�j2�Nk2=M



if g.t/ D �g .�t/ :

(3.30)

After the eigenfunctions of the LCT with parameters f1, b, 0, 1g and
f1, �b, 0, 1g are determined, one can use Theorem 2 to derive the eigenfunctions of
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the LCT where ja C dj D 2. When a C d D 2 and b ¤ 0, the abcd matrix of the LCT
can be decomposed into

�
a b
c d

�
D
�
1 0

� 1

� �
1 �

0 1

� �
1 0

�� 1
�

D
�
1 � �� �

��2� 1C ��

�
; (3.31)

where � D b and � D .d � a/ =2b: (3.32)

When a C d D �2 and b ¤ 0, the abcd matrix of the LCT can be decomposed into

�
a b
c d

�
D
�
1 0

� 1

� ��1 �

0 �1
� �

1 0

�� 1
�

D
��1 � �� �

��2� �1C ��

�
; (3.33)

where � D b and � D .d � a/ =2b: (3.34)

Then, from Theorem 2 and the fact that the LCT with parameters f1, 0, � , 1g is the
multiplication of exp(j� t2/2), we obtain the following two theorems:

Theorem 4. When a C d D 2 and b ¤ 0, the eigenfunctions of the LCT are

�.b;�/.t/ D exp

�
j
d � a

4b
t2
�

g.t/; (3.35)

where g(t) is the periodic function that satisfies (3.27) and the symmetric relation in
(3.25). The corresponding eigenvalues are also 	k defined in (3.26):

O.a;b;c;d/
LCT

�
�.b;�/.t/

� D exp
	�j2�Nk2=M



�.b;�/.t/: (3.36)

Theorem 5. When a C d D �2 and b ¤ 0, the eigenfunctions of the LCT are

�.b;�/.t/ D exp

�
j
d � a

4b
t2
�

g.t/; (3.37)

where g(t) is the periodic function that satisfies (3.27) and (3.25). Moreover, it
should also satisfy the constraint that g(t) D ˙g(�t). The corresponding eigenvalues
are the same as those in (3.30):

O.a;b;c;d/
LCT

�
�.b;�/.t/

� D p�1 exp
	�j2�Nk2=M



�.b;�/.t/ if g.t/ D g .�t/ ;

O.a;b;c;d/
LCT

�
�.b;�/.t/

� D �p�1 exp
	�j2�Nk2=M



�.b;�/.t/ if g.t/ D �g .�t/ :

(3.38)

In both the cases, since there are infinite number of possible periods q for g(t),
as in (3.27), one can construct a complete and orthogonal eigenfunction set of the
LCT from the subset of �(b, �)(t).
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In the case where ja C dj D 2 but b D 0, one can prove that, since ad � bc D 1
should be satisfied, the values of a, b, c, d must be one of the following form:

�
a b
c d

�
D
�
1 0

c 1

�
or

�
a b
c d

�
D
��1 0

c �1
�
: (3.39)

Note that the LCT with parameters f1, 0, c, 1g is a chirp multiplication operation
and the LCT with parameters f�1, 0, c, �1g is the combination of time reverse and
chirp multiplication:

O.1;0;c;1/
LCT Œx.t/� D exp

	
jcu2=2



x.u/; (3.40)

O.�1;0;c;�1/
LCT Œx.t/� D p�1 exp

	�jcu2=2



x .�u/ : (3.41)

The eigenfunctions of a multiplication are impulse trains and the eigenfunctions
of a time reverse operation are symmetric or asymmetric functions. Therefore, we
obtain:

Theorem 6. In the case where ja C dj D 2 but b D 0, the parameters of the LCT
must have the form as in (3.39). When fa, b, c, dg D f1, 0, c, 1g, the eigenfunctions
are

�c.t/ D
1X

nD�1
Anı

�
t �

p
4n� jcj �1 C k

�
C

1X
mD�1

Bmı
�

t �
p
4m� jcj �1 C k

�
;

(3.42)

where 0 � k< 4� /jcj, An, Bm are any constants
and the corresponding eigenvalues are exp(jck/2):

O.1;0;c;1/
LCT Œ�c.t/� D exp .jck=2/ �c.t/: (3.43)

When fa, b, c, dg D f�1, 0, c, �1g, the eigenfunctions are

�c;e.t/ D
1X

nD�1
An

n
ı
�

t �
p
4n� jcj �1 C k

�
C ı

�
t �

p
4m� jcj �1 C k

�o
;

(3.44)

or �c;o.t/ D
1X

nD�1
An

n
ı
�

t �
p
4n� jcj �1 C k

�
� ı

�
t �

p
4m� jcj �1 C k

�o
;

(3.45)
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where 0 � k< 4 /jcj and An are any constants. The corresponding eigenvalues are
˙(�1)1/2exp(jck/2):

O.�1;0;c;�1/
LCT Œ�c;e.t/� D p�1 exp .jck=2/ �c;e.t/; (3.46)

O.�1;0;c;�1/
LCT Œ�c;o.t/� D �p�1 exp .jck=2/ �c;o.t/: (3.47)

Moreover, since two delta functions are orthogonal if the locations of the impulses
are different, one can always find a subset of (3.42) (or (3.44) and (3.45)) that forms
a complete and orthogonal eigenfunction set for the LCT.

3.4 Eigenfunctions of the LCT for the Case Where ja C dj > 2

In the case where ja C dj> 2, Theorem 2 can also be applied to derive the
eigenfunctions of the LCT. However, since a C d D a2 C d2, the parameters fa2, b2,
c2, d2g should be chosen properly such that ja2 C d2j> 2. We suggest that these
parameters can be chosen as

fa2; b2; c2; d2g D ˚
��1; 0; 0; �

�
when a C d > 2;

fa2; b2; c2; d2g D ˚���1; 0; 0;��� when a C d < �2:
(3.48)

The LCT with parameters f¢�1, 0, 0, ¢g is a scaling operation. The LCT with
parameters f�¢�1, 0, 0, �¢g is the combination of time reverse and the scaling
operation:

O
.��1;0;0;�/
LCT Œx.t/� D p

�x .� t/ ; O
.���1;0;0;��/
LCT Œx.t/� D p��x .�� t/ : (3.49)

It is known that the eigenfunctions of the scaling operation are scaling-invariant
function (i.e., the fractal) [14]. Some simple examples of scaling-invariant functions
are:

(a) constant:

O
.��1;0;0;�/
LCT ŒC� D p

�C; (3.50)

(b) delta function:

O
.��1;0;0;�/
LCT Œı.t/� D

p
��1ı.u/; (3.51)

(c) tn:

O
.��1;0;0;�/
LCT Œtn� D �nC1=2un: (3.52)
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Furthermore, the eigenfunctions of the LCT with parameters f�¢�1, 0, 0, �¢g
is the symmetric (or asymmetric) scaling-invariant function. From Theorem 2, the
LCT with parameters fa1, b1, c1, d1g for these scaling-invariant functions will be the
eigenfunctions of the LCT where ja C dj> 2.

In the case where a C d> 2, we suggest that fa1, b1, c1, d1g can be chosen as:
�

a1 b1
c1 d1

�
D
�
1 0

� 1

� �
1 �

0 1

�
D
�
1 �

� ��C 1

�
:

That is, the LCT with parameters fa1, b1, c1, d1g is the combination of chirp
convolution and chirp multiplication operation:

O.a1;b1;c1;d1/
LCT Œx.t/� D 1p

j2��
exp

�
j�u2

2

�Z 1

�1
exp

 
j.u � t/2

2�

!
x.t/dt: (3.53)

Then
�

a b
c d

�
D
�
1 �

� ��C 1

� �
��1 0
0 �

� �
��C 1 ��

�� 1

�

D

2
664

��C 1

�
� ��� �

�
� � 1

�

�

� 	�2�C �

 �
� � 1

�

�
.��C 1/ � � ��

�

3
775 ; (3.54)

where

� D
�

a C d ˙
q
.a C d/2 � 4

�
=2; � D sbq

.a C d/2 � 4
;

� D �2sc

s .d � a/C
q
.a C d/2 � 4

; s D sgn
	
� � ��1
 :

(3.55)

Therefore, we obtain the following theorem:

Theorem 7. In the case where a C d> 2, the eigenfunctions of the LCT are

��;�;�.t/ D exp

�
j�u2

2

�Z 1

�1
exp

 
j.u � t/2

2�

!
g.t/dt; (3.56)

where g(t) is a scaling-invariant function:
p
�g .� t/ D 	g.t/; (3.57)

and ¢ , £, ˜ are defined in (3.55). Moreover, the corresponding eigenvalue is also œ:

O.a;b;c;d/
LCT

�
��;�;�.t/

� D 	��;�;�.t/: (3.58)
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Similarly, for the case where a C d<�2, the abcd matrix can be decomposed
into

�
a b
c d

�
D
�
1 �

� ��C 1

� ����1 0

0 ��
� �
��C 1 ��

�� 1

�
: (3.59)

The values of £, ˜ are the same as those in (3.55), but ¢ and s are changed into

� D
�

�a � d ˙
q
.a C d/2 � 4

�
=2; s D sgn

	
��1 � �
 : (3.60)

Thus, we have the following theory:

Theorem 8. When a C d<�2, the eigenfunctions of the LCT are

��;�;�.t/ D exp

�
j�u2

2

�Z 1

�1
exp

 
j.u � t/2

2�

!
g.t/dt; (3.61)

where
p
�g .� t/ D 	g.t/; g.t/ D ˙g .�t/ (3.62)

£ and ˜ are defined the same as in (3.55) but ¢ and s are defined in (3.60). Moreover,
the corresponding eigenvalues are ˙(�1)1/2œ:

O.a;b;c;d/
LCT

�
��;�;�.t/

� D p�1	��;�;�.t/ if g.t/ D g .�t/ ; (3.63)

O.a;b;c;d/
LCT

�
��;�;�.t/

� D �p�1	��;�;�.t/ if g.t/ D �g .�t/ : (3.64)

As other cases, when ja C dj> 2, one can also find a subset of eigenfunctions
that forms a complete and orthogonal eigenfunctions set of the LCT.

In Table 3.1, we make a summation for the eigenfunctions of the LCT in all the
cases.

3.5 Self-Linear Canonical Functions

As the theories about the self-functions of the FT and the FRFT [17–22], the
summation of the eigenfunctions of the LCT with the same eigenvalues is also an
eigenfunction of the LCT.

For example, for the case where ja C dj< 2, the functions in (3.17)
are the eigenfunctions of the LCT and the corresponding eigenvalues are
[exp(�j’)]1/2exp(�j’m). It can be verified that when

˛ D arg

�
a C d

2
C j

�
sgn.b/

2

q
4 � .a C d/2

��
D 2�

P

Q
; (3.65)
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Table 3.1 The eigenfunctions of the LCT in all cases

Style of eigenfunctions
Explicit formulas for
eigenfunctions and eigenvalues

Case A
ja C dj< 2

Scaling and chirp multiplication of
Hermite Gaussian functions

(3.16), (3.17)

Case B
a C d D 2, b ¤ 0

Chirp multiplication of periodic
functions

(3.35), (3.36)

Case C
a C d D �2, b ¤ 0

Chirp multiplication of
(a)symmetric periodic functions

(3.37), (3.38)

Case D
a C d D 2, b D 0

Impulse trains (3.42), (3.43)

Case E
a C d D �2, b D 0

(A)symmetric impulse trains (3.44), (3.45), (3.46), (3.47)

Case F
a C d> 2

Chirp convolution and chirp
multiplication of scaling-invariant
functions

(3.56), (3.58)

Case G
a C d<�2

Chirp convolution and chirp
multiplication of (a)symmetric
scaling-invariant functions

(3.61), (3.63), (3.64)

where P and Q are some integers, then �(� ,� )
m (t), �.�;�/mCQ.t/, �

.�;�/
mC2Q.t/, : : : have the

same eigenvalue. Therefore, if

 .t/ D
1X

kD0
�k exp

�� .1C i�/

2�2
t2
�

HmCkQ

� t

�

�
where m D 0; 1; : : : ;Q � 1;

(3.66)

and —k are any constants, then §(t) is also the eigenfunction of the 2-D LCT:

O.a;b;c;d/
LCT Œ .t/� D

�
exp

�
�j2�

P

Q

��1=2
exp

�
�j2�

P

Q
m

�
 .t/: (3.67)

Furthermore, we can use this fact to define the “self-linear canonical function.”

Theorem 9. For any function f(t), if

fn.t/ D f .t/C exp .j�1/O.a1;b1;c1;d1/
LCT Œf .t/�C exp .j�2/O.a2;b2;c2;d2/

LCT Œf .t/�C � � �
C exp

	
j�Q�1



O
.aQ�1;bQ�1;cQ�1;dQ�1/
LCT Œf .t/� ;

(3.68)

where �S D �
S

Q
C 2�

S

Q
n; n D 0; 1; : : : ;Q � 1; S D 0; 1; : : : ;Q � 1; (3.69)
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�
aS bS

cS dS

�
D
�

cos .2�S=Q/C � sin .2�S=Q/ �2 sin .2�S=Q/
� 	�2 C 1



sin .2�S=Q/ =�2 cos .2�S=Q/ � � sin .2�S=Q/

�
;

(3.70)

Q is any integer, and £ and ¢ are any real constants, then fn(t) is the eigenfunction
of the LCT with parameters fa, b, c, dg:

O.a;b;c;d/
LCT Œfn.t/� D

�
exp

�
�j2�

P

Q

���1=2
exp

�
�j2�

Pn

Q

�
fn.t/; (3.71)

where P is any integer and

�
a b
c d

�
D
�

cos .2�P=Q/C � sin .2�P=Q/ �2 sin .2�P=Q/
� 	�2 C 1



sin .2�P=Q/ =�2 cos .2�P=Q/ � � sin .2�P=Q/

�
:

(3.72)

This theorem can be viewed as the extension of the self-Fourier functions and
the self-fractional Fourier functions in [17–22]. fn(t) in (3.68) can be named as the
self-linear canonical function.

Theorem 9 can be proven from the fact that f(t) can be expressed as a linear
combination of ¥m

(¢ ,£)(t) (defined in (3.17))

f .t/ D
1X

mD0
ˇm�

.�;�/
m .t/ where ˇm D

Z 1

�1
f .t/�.�;�/m .t/ dt; (3.73)

exp .j�S/O.aS;bS;cS;dS/
LCT

h
�.�;�/m .t/

i
D exp

�
j2�

S

Q
.n � m/

�
�.�;�/m .t/; (3.74)

fn.t/ D
1X

mD0
ˇm

Q�1X
SD0

exp

�
j2�

S

Q
.n � m/

�
�.�;�/m .t/ D

1X
kD0

NˇnCkN�
.�;�/
nCkN.t/: (3.75)

3.6 Eigenfunctions in the 2D Case

Recently, the eigenfunctions of the two-dimensional nonseparable linear canonical
transform (2-D NSLCT) were derived successfully [23, 24]. The 2-D NSLCT is the
two-dimensional counterpart of the 1-D LCT and is even useful in optical system
analysis [25, 26]. Its formula is:

O.A;B;C;D/
NSLCT Œf .x/� D .� det .B//�1=2

Z
exp

�
j
	
wDB�1wT � 2xB�1wT C xB�1AxT
 =2� f .x/ dx;
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where

x D �
x y
�T
; w D �

f h
�T
;

A D
�

a11 a12
a21 a22

�
; B D

�
b11 b12
b21 b22

�
; C D

�
c11 c12
c21 c22

�
; D D

�
d11 d12
d21 d22

�
:

(3.76)

The 2-D NSLCT has 16 parameters and is very complicated. However, using the
method similar to that in Theorem 2, the eigenfunctions and eigenvalues of the 2-D
NSLCT can still be derived successfully [23, 24].

To derive the eigenfunctions of the 2-D NSLCT, first, we determine the eigenval-
ues of the ABCD matrix, which is a 4 � 4 matrix with the following form:

�
A B
C D

�
: (3.77)

Then, according to whether the eigenvalues of the ABCD matrix are real and
whether these eigenvalues have unitary amplitudes, we divide the derivation into
five classes [24]. In different cases, the methods for deriving the eigenfunctions are
different.

For example, in the case where all the four eigenfunctions of the ABCD matrix
are real (i.e., Case 1 in [24]), the ABCD matrix can be decomposed into

�
A B
C D

�
D
�

A1 B1

C1 D1

� �
A2 B2

C2 D2

� �
A1 B1

C1 D1

��1
; (3.78)

where

�
A1 B1

C1 D1

�
D
�

I 0
Ea I

� �
I ˆ1

0 I

�"
E2 0
0
	
ET

2


�1
#
; Ea D

�
�1 �2
�2 �3

�
; ˆ1 D

�
�1 0

0 0

�

�1 D �22 .b12 � b21/C �2 .a11 C d11 � a22 � d22/C �3 .d12 C a21/C c12 � c21
�3 .b12 � b21/C a12 C d21

;

�1 D b12 � b21
a21 C d12 C �1 .b21 � b12/

; �2 and �3 are free to choose;

(3.79)

the columns of E2 are the eigenvectors of the matrix A3:
�

A3 B3

C3 D3

�
D
�

I �ˆ1

0 I

� �
I 0

�Ea I

� �
A B
C D

� �
I 0

Ea I

� �
I ˆ1

0 I

�
; (3.80)

and the diagonal entries of A2 are the eigenvalues of A3. In [24], we proved that
A2, B2, C2, and D2 in (3.79) are all real diagonal matrices and the 2-D NSLCT with
parameters fA2, B2, C2, D2g are the 2-D separable LCT. Therefore, if

O.a1;b1;c1;d1/
LCT Œe1.x/� D 	1e1.x/; O.a2;b2;c2;d2/

LCT Œe2.x/� D 	2e2.x/; (3.81)
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where a1, a2, b1, b2, c1, c2, d1, d2 are the diagonal entries of A2, B2, C2, and D2,
then

E .x; y/ D O.A1;B1;C1;D1/
NSLCT Œe1.x/e2.x/� ; (3.82)

is the eigenfunction of the 2-D NSLCT and the corresponding eigenvalue is œ1œ2.

3.7 Conclusion

The eigenfunctions and eigenvalues of the LCT are discussed in this chapter. The
discussion is divided into three cases: ja C dj< 2, ja C dj D 2, and ja C dj> 2. In
these cases, the eigenfunctions of the LCT are closely related to Hermite–Gaussian
functions, periodic functions, and scaling-invariant functions, respectively. The
eigenfunctions of the LCT in the 2-D case are also discussed briefly.

Moreover, the eigenfunctions of the gyrator transform, which is a special case of
the 2-D NSLCT, was discussed in [27]. The eigenfunctions of the offset LCT, which
is the time-shifting and modulation of the original LCT, was discussed in [28].

Since the optical system [4, 13, 29, 30], the radar system [31], and the gradient
index fiber system [32] can be modeled by the LCT, the eigenfunctions of the LCT
are helpful for analyzing the self-imaging phenomenon in the optical system and
the resonance phenomena in the radar system and the gradient-index fiber system.
These are discussed in [15, 16, 25, 26, 28].
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Chapter 4
Uncertainty Principles and the Linear
Canonical Transform

Ran Tao and Juan Zhao

Abstract In this chapter some uncertainty principles for the linear canonical
transform (LCT) have been introduced. For the Heisenberg’s principles there
exist different bounds for real and complex signals. Based on the LCT moments
properties the lower bounds related to the covariance of time and frequency
have been derived, which can reduce to different bounds for real and complex
signals because real signals have zero covariance. Furthermore, some extensions
of uncertainty principles including the logarithmic, entropic and Renyi entropic
uncertainty principles are deduced based on the relationship between the LCT and
the Fourier transform.

4.1 Introduction

The uncertainty principles are very important in signal processing. The classic
Heisenberg’s principle provides the lower bound on the spreads of the signal energy
in the time and frequency domains [1, 2]. Recently researchers have investigated
the Heisenberg’s principles for the linear canonical transform (LCT) [3–8] and its
special cases such as fractional Fourier transform (FrFT) [3, 9–13]. It is shown
that there exist different bounds for real and complex signals in the LCT and FrFT
domains.

The Heisenberg’s uncertainty principles are closely related to the signal mo-
ments. The LCT’s uncertainty relations can be derived by using properties of
the LCT moments. The lower bounds are related to the covariance of time and
frequency, which can explain the phenomenon of different bounds for real and
complex signals existing in the Heisenberg’s uncertainty relations proposed before
because real signals have zero covariance.

On the other hand, there are some different uncertainty principles such as
the logarithmic, entropic and Renyi entropic uncertainty principles, which are
extensions of the Heisenberg’s uncertainty principle. These uncertainty relations in
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the LCT and FrFT domains have been presented in [13–16]. It is shown that these
lower bounds are only relevant to the transform parameters and could possibly tend
to zeros.

4.2 Heisenberg’s Uncertainty Principles

The classical Heisenberg’s uncertainty principle in the Fourier transform (FT)
domain is very important in signal processing, particularly time-frequency analysis,
which states that a signal cannot be both time-limited and band-limited.

Assume that x.t/ is a complex signal such that tjx.t/j 2 L2.R/ and the energy of
the signal is

E D
Z C1

�1
jx.t/j2dt D

Z C1

�1
jX.!/j2d!:

For the convenience of analysis, we express the signal x.t/ and its FT X.!/ in terms
of their respective amplitudes and phases, i.e.,

x.t/ D jx.t/jej�.t/;X.!/ D jX.!/jej .!/:

The first and second order moments in the time and frequency domains are defined
as [2]

hti �D 1

E

Z C1

�1
tjx.t/j2dt (4.1)

ht2i �D 1

E

Z C1

�1
t2jx.t/j2dt (4.2)

h!i �D 1

E

Z C1

�1
!jX.!/j2d! D 1

E

Z C1

�1
�0.t/jx.t/j2dt (4.3)

h!2i �D 1

E

Z C1

�1
!2jX.!/j2d! D 1

E

Z 1

�1
jx0.t/j2dt; (4.4)

where .�/0 denotes derivative. Then

�t2�!2 � 1=4 (4.5)
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where

�t2
�D 1

E

Z C1

�1
.t � hti/2jx.t/j2dt D ht2i � hti2 (4.6)

�!2
�D 1

E

Z C1

�1
.! � h!i/2jX.!/j2d! D h!2i � h!i2 (4.7)

In [2] Cohen defined the first mixed moment of time and frequency

ht�0.t/i �D 1

E

Z C1

�1
t�0.t/jx.t/j2dt D � 1

E

Z C1

�1
! 0.!/jX.!/j2d! (4.8)

and the covariance of time and frequency

Covx
�D ht�0.t/i � htih!i (4.9)

It should be noted that h!i D 0 and ht�0.t/i D 0 for real signals according to (4.3)
and (4.8), which implies that Covx D 0 when x.t/ is real.

Furthermore, Cohen derived the following uncertainty principle, which is related
to the covariance of time and frequency [2].

Theorem 4.1. For an arbitrary signal x.t/ D jx.t/jej�.t/, then

�t2�!2 � .Covx/
2 C 1

4
(4.10)

Since the covariances can be zero for real and complex signals, (4.10) will reduce
to (4.5). That is to say, the lower bounds in the FT domain are the same for real and
complex signals.

4.2.1 The LCT Moments and Spreads

From (4.5) to (4.7), it is obvious that the Heisenberg’s uncertainty principles are
closely related to the signal moments. In this section we will present the properties
of the LCT moments, which will be useful for deriving Heisenberg’s uncertainty
relations for the LCT.

Assume the LCT of x.t/ with parameter M D .a; b; c; d/ is XM.u/ D
jXM.u/jej'.u/. The energy of the signal is

E D
Z C1

�1
jx.t/j2dt D

Z C1

�1
jX.!/j2d! D

Z C1

�1
jXM.u/j2du
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According to the definitions of signal moments in the time and frequency domains,
the first and second order moments in the LCT domain can be defined similarly,
which are, respectively, denoted by [7]

huMi �D 1

E

Z C1

�1
ujXM.u/j2du (4.11)

hu2Mi �D 1

E

Z C1

�1
u2jXM.u/j2du (4.12)

According to the additivity property of the LCT, the FT of XM.u/ is XFM.u/ ,
where F D .0; 1;�1; 0/ and FM D .c; d;�a;�b/ . The first and second order
moments of XFM.u/ are, respectively, denoted by

huFMi D 1

E

Z C1

�1
ujXFM.u/j2du D 1

E

Z C1

�1
'0.u/jXM.u/j2du (4.13)

hu2FMi D 1

E

Z C1

�1
u2jXFM.u/j2du D 1

E

Z 1

�1
jX0

M.u/j2du (4.14)

The first mixed moment of the LCT and its FT can also be defined as

huM'
0.uM/i �D 1

E

Z C1

�1
u'0.u/jXM.u/j2du (4.15)

and the covariance of the LCT and its FT is

CovXM

�D huM'
0.uM/i � huMihuFMi (4.16)

Then we consider the spreads of the signal in the LCT domain, which can be
expressed in terms of the first and second order moments in the LCT domains, i.e.,

�u2M
�D 1

E

Z C1

�1
.u � huMi/2jXM.u/j2du D hu2Mi � huMi2 (4.17)

The relations between the moments in the LCT domain and those in the time and
frequency domains for complex signals are given in Table 4.1. For real signals the
properties of the LCT moments can be simplified as shown in Table 4.2 because
h!i D 0 and ht�0.t/i D 0. The results of moments in the FrFT domain [17] are
special cases of Tables 4.1 and 4.2.

The derivations of the second order moment and first mixed moment are given
in Appendix. In addition, these relationships can be written in the following matrix
form, i.e.,

� hu2Mi huM'
0.uM/i

huM'
0.uM/i hu2FMi

�
D
�

a b
c d

�� ht2i ht�0.t/i
ht�0.t/i h!2i

��
a c
b d

�
(4.18)
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Table 4.1 Some properties of the LCT moments and spreads for complex
signals [7]

Classes Property

First order moment huMi D ahti C bh!i
huFMi D chti C dh!i

Second order moment hu2Mi D a2ht2i C b2h!2i C 2abht�0.t/i
hu2FMi D c2ht2i C d2h!2i C 2cdht�0.t/i

First mixed moment huM'
0.uM/i D acht2i C bdh!2i C .ad C bc/ht�0.t/i

huM'
0.uM/i C ht�0.t/i D d

b hu2Mi � a
b ht2i

The spread �u2M D a2�t2 C b2�!2 C 2abCovx

The covariance CovXM
D ac�t2 C bd�!2 C .ad C bc/Covx

CovXM
C Covx D d

b�u2M � a
b�t2

Table 4.2 Some properties
of the LCT moments and
spreads for real signals [7]

Classes Property

First order moment huMi D ahti
huFMi D chti

Second order moment hu2Mi D a2ht2i C b2h!2i
hu2FMi D c2ht2i C d2h!2i

First mixed moment huM'
0.uM/i D acht2i C bdh!2i

huM'
0.uM/i D d

b hu2Mi � a
b ht2i

The spread �u2M D a2�t2 C b2�!2

The covariance CovXM
D ac�t2 C bd�!2

CovXM
D d

b�u2M � a
b�t2

4.2.2 Uncertainty Principles for Complex and Real Signals

The Heisenberg’ uncertainty relations for the LCT and FrFT have been investigated
in [3–13], which are different from the uncertainty relations in the FT domain
shown by (4.5) that there exist different bounds for complex and real signals. In
the following the uncertainty relations for the LCT are given.

• For complex signal x.t/, then

�t2�u2M � b2

4
(4.19)

and the equality is achieved iff

x.t/ D
�
1

��2

� 1
4

e� .t�t0/
2

2�2 ej.� a
2b t2C˝tC'/ (4.20)

where t0; �;˝; ' are arbitrary real constants.
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Furthermore, for M1 D .a1; b1; c1; d1/ ;M2 D .a2; b2; c2; d2/, then

�u2M1
�u2M2

� .a1b2 � a2b1/
2

4
(4.21)

and the equality is achieved iff

x.t/ D
�

1

��t2

� 1
4

e� .t�t0/
2

2�t2 ej.� K
2 t2C˝tC'/; (4.22)

where �t2 D b21
2�2

C b22
.a1b2�a2b1/

2 2�
2, K D Œ

a1b1
2�2

C a2b2
.a1b2�a2b1/

2 2�
2�=�t2 and

t0; �;˝; ' are arbitrary real constants.
• For real signal x.t/, then

�t2�u2M � .a�t2/2 C b2

4
(4.23)

and

�u2M1
�u2M2

�
�

a1a2�t2 C b1b2
4�t2

�2
C .a1b2 � a2b1/

2

4
(4.24)

and the above two equalities are achieved iff

x.t/ D
�
1

��2

� 1
4

e� .t�t0/
2

2�2 (4.25)

where t0; � are arbitrary real constants.

The uncertainty principles in the FrFT domain [3, 9–13] are special cases of
the above results. These results show that the uncertainty principle for complex
signals can be achieved by a complex chirp signal with Gaussian envelope and the
uncertainty principle for real signals can be achieved by a Gaussian signal.

To explain the phenomenon of different lower bounds for real and complex
signals existing in the Heisenberg’s uncertainty relations proposed before. In the
following we present two Heisenberg’s uncertainty relations in the LCT domains,
which are related to the covariance of time and frequency.

Theorem 4.2 gives a tighter lower bound on the uncertainty product of the time
and LCT spreads [7].

Theorem 4.2. For an arbitrary signal x.t/ D jx.t/jej�.t/;M D .a; b; c; d/;XM.u/ D
jXM.u/jej'.u/ , then

�t2�u2M � .a�t2 C bCovx/
2 C b2

4
(4.26)
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Proof. Using the property of the LCT spread given in Table 4.1 and Theorem 4.1,
we can obtain

�t2�u2M D �t2.a2�t2 C b2�!2 C 2abCovx/

D .a�t2 C bCovx/
2 C b2Œ�t2�!2 � .Covx/

2�

� .a�t2 C bCovx/
2 C b2

4

The theorem is proved. ut
From Theorem 4.2, it is clear that the covariance of complex signals can make

the first term of the right part of (4.26) be zero. It will lead to different bounds for
real and complex signals in the LCT domain [3, 4]. That is to say, .a�t2/2 C b2

4
for

real signals and b2

4
for complex signals because real signals have zero covariance.

When M D .cos˛; sin˛;� sin˛; cos˛/, we can obtain the following uncertainty
relation in the FrFT domain, i.e.,

�t2�u2˛ � .cos˛�t2 C sin˛Covx/
2 C sin2 ˛

4
(4.27)

Furthermore, we consider the uncertainty relation in two LCT domains, which is
given by the following theorem [7].

Theorem 4.3. For an arbitrary signal x.t/ D jx.t/jej�.t/;M D .a; b; c; d/;XM.u/ D
jXM.u/jej'.u/ , then

�u2M1
�u2M2

� Œa1a2�t2Cb1b2�!
2C.a1b2Cb1a2/Covx�

2C .a1b2 � b1a2/
2

4
(4.28)

Proof. Using the additivity and inversity properties of the LCT, we have

XM2 .u/ D L.a2;b2;c2;d2/.x.t// D L.a2;b2;c2;d2/L.d1;�b1;�c1;a1/.XM1 .u//

D L.a3;b3;c3;d3/.XM1 .u//

where

�
a3 b3
c3 d3

�
D
�

a2 b2
c2 d2

��
d1 �b1

�c1 a1

�

From Theorem 4.2, we can obtain

�u2M1
�u2M2

� Œa3�u2M1
C b3CovXM1

�2 C b23
4

Substituting the property of the LCT spread and covariance given in Table 4.1
into the right part of the above inequality, (4.28) can be derived. ut
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The tighter lower bound given in Theorem 4.3 is also related to the covariance
of time and frequency of the signal, which can similarly explain the phenomenon
of different lower bounds for real and complex signals given in [5, 6] because real
signals have zero covariance.

Similarly, when M D .cos˛; sin˛;� sin˛; cos˛/, the uncertainty relation in the
FrFT domain is given below.

�u2˛�u2ˇ � Œcos˛ cosˇ�t2 C sin˛ sinˇ�!2 C sin.˛ C ˇ/Covx�
2 C sin2.˛ � ˇ/

4
(4.29)

Theorem 4.4. The tighter lower bound given in Theorems 4.2 and 4.3 can be
achieved when

x.t/ D
�

1

2��t2

� 1
4

e� .t�t0/
2

4�t2 ej.� K
2 t2C˝tC'/ (4.30)

where t0;˝; ' are arbitrary real constants.

Proof. In the following, by computation we will show that the tighter lower bound
given in Theorems 4.2 and 4.3 can be achieved by the signal given in (4.30). For
the signal given in (4.30), using the definitions of the moments and spreads, we can
obtain

h!i D �Kt0 C˝

h!2i D 1

4�t2
C K2ht2i C˝2 C 2K˝t0

�!2 D 1

4�t2
C K2�t2

ht�0.t/i D �Kht2i C˝t0

Covx D �K�t2

�u2M D �t2.a � bK/2 C b2

4�t2

For the time and LCT domains, we have

�t2�u2M D .a�t2 � bK�t2/2 C b2

4
D .a�t2 C bCovx/

2 C b2

4

i.e., the inequality (4.26) becomes equality. If K D a=b (or K D 0;˝ D 0; ' D 0)
with �t2 D �2=2 , we can obtain (4.19) (or (4.23)) and (4.20) (or (4.25)).

Furthermore, for two LCT domains, we can obtain

�u2M1
�u2M2

D
�
�t2.a1 � b1K/

2 C b21
4�t2

� �
�t2.a2 � b2K/

2 C b22
4�t2

�

D Œa1a2�t2 C b1b2K
2�t2 � .a1b2



4 Uncertainty Principles and the Linear Canonical Transform 105

C b1a2/K�t2�2 C b21b
2
2

.4�t2/2
C .a1b2 � b1b2K/

2 C .a2b1 � b1b2K/
2

4

D
�

a1a2�t2 C b1b2

�
1

4�t2
C K2�t2

�
� .a1b2 C b1a2/K�t2

�2

C .a1b2 � b1a2/
2

4

D Œa1a2�t2 C b1b2�!
2 C .a1b2 C b1a2/Covx�

2 C .a1b2 � b1a2/
2

4

i.e., the inequality (4.28) becomes equality. It can be verified that Theorem 4.3
reduces to the result given by (4.21) (or (4.24)) and (4.22) (or (4.25)) when

�t2 D b21
4�2

C b22
.a1b2�a2b1/

2 �
2 (or �t2 D �2=2) and K D Œ

a1b1
4�2

C a2b2
.a1b2�a2b1/

2 �
2�=�t2

(or K D 0;˝ D 0; ' D 0), where � is arbitrary real constant. ut

4.3 Extensions of Uncertainty Principles

There are some extensions of the Heisenberg’s uncertainty principle, such as the
logarithmic, entropic and Renyi entropic uncertainty principles [1, 18–20]. These
uncertainty relations in the FrFT and LCT domains have been presented in [13–16].
In this section we will derive these uncertainty principles in the LCT domain based
on the relationship between the LCT and the FT, and the signals achieving these
lower bounds are also given.

Firstly, we give the following relationship between the LCT and the FT, which
will be useful to derive the extensions of uncertainty principle in the LCT domain.
Let g.t/ D x.t/ej a

2b t2 ;M D .a; b; c; d/ , then

XM.u/ D e�j �4 ej d
2b u2

p
1=bG.u=b/ (4.31)

where G.u/ is the FT of g.t/. Equation (4.31) can be easily obtained according to
the definition of the LCT.

4.3.1 Logarithmic Uncertainty Principles

The logarithmic uncertainty principles in the LCT domain are shown by the
following theorem.
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Theorem 4.5. For arbitrary unit energy signal x.t/, M1 D .a1; b1; c1; d1/ ;M2 D
.a2; b2; c2; d2/, then

Z C1

�1
jXM1 .u/j2 ln jujdu C

Z C1

�1
jXM2 .u/j2 ln jujdu � � 0.1=4/

� .1=4/
C ln ja1b2 � a2b1j

(4.32)

where � .�/ is the Gamma function and ln stands for the natural logarithm. And the
equality is achieved if x.t/ satisfies

ja1b2 � a2b1j˛
Z C1

�1
juj�˛jXM2 .u/j2du D C˛

Z C1

�1
juj˛jXM1 .u/j2du (4.33)

where C˛ D � ..1 � ˛/=4/=� ..1C ˛/=4/; 0 � ˛ < 1.

Proof. Let g.t/ D x.t/ej a
2b t2 , using (4.31), we have

Z C1

�1
jG.u/j2 ln jujdu D

Z C1

�1
j1
b

jjG.u0

b
/j2 ln ju0

b
jdu0

D
Z C1

�1
jXM.u

0/j2 ln ju0

b
jdu0

D
Z C1

�1
jXM.u/j2 ln jujdu � ln jbj

According to the following logarithmic uncertainty relation in the FT
domain [1, 18],

Z C1

�1
jg.t/j2 ln jtjdt C

Z C1

�1
jG.u/j2 ln jujdu � � 0.1=4/

�.1=4/
(4.34)

and noting jx.t/j2 D jg.t/j2, we have

Z C1

�1
jx.t/j2 ln jtjdt C

Z C1

�1
jXM.u/j2 ln jujdu � � 0.1=4/

�.1=4/
C ln jbj (4.35)

Using the similar approach in Theorem 4.3, inequality (4.32) can be derived.
From [18] the inequality (4.34) becomes equality when g.t/ satisfies

Z C1

�1
juj�˛jG.u/j2du D C˛

Z C1

�1
jtj˛jg.t/j2dt
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Similarly, the inequality (4.35) becomes equality if x.t/ satisfies

jbj˛
Z C1

�1
juj�˛jXM.u/j2du D C˛

Z C1

�1
jtj˛jx.t/j2dt (4.36)

For two LCT domains, it is clear that the inequality (4.32) becomes equality when
x.t/ satisfies (4.33). ut

4.3.2 Entropic Uncertainty Principles

Entropic uncertainty principle is extension of the Heisenberg’s uncertainty principle
in information theory.

Definition 4.1. The Shannon entropy is defined as

E./ D �
Z C1

�1
.t/ ln .t/dt

As derived in Theorem 4.5, we can obtain the following entropic uncertainty
principles in the LCT domain.

Theorem 4.6. For arbitrary unit energy signal x.t/, M1 D .a1; b1; c1; d1/ , M2 D
.a2; b2; c2; d2/, then

E.jXM1 .u/j2/C E.jXM2 .u/j2/ � ln.�e/C ln ja1b2 � a2b1j (4.37)

And the equality is achieved if

x.t/ D
�

1

��t2

� 1
4

e� .t�t0/
2

2�t2 ej.� K
2 t2C˝tC'/ (4.38)

where�t2 D b21
2�2

C b22
.a1b2�a2b1/

2 2�
2;K D Œ

a1b1
2�2

C a2b2
.a1b2�a2b1/

2 2�
2�=�t2,and t0; �;˝; '

are arbitrary real constants.

Proof. Let g.t/ D x.t/ej a
2b t2 , using (4.31), we have

Z C1

�1
jG.u/j2 ln jG.u/j2du D

Z C1

�1
jG.u0

b
/j2j1

b
j ln jG

�
u0

b

�
j2du0

D
Z C1

�1
jXM.u

0/j2 ln.jXM.u
0/j2jbj/du0

D
Z C1

�1
jXM.u

0/j2 ln.jXM.u
0/j2/du0 C ln jbj
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According to the following entropic uncertainty relation in the FT domain
[1, 19, 20]

E.jg.t/j2/C E.jG.u/j2/ � ln.�e/ (4.39)

and noting jx.t/j2 D jg.t/j2, we have

E.jx.t/j2/C E.jXM.u/j2/ � ln.�e/C ln jbj (4.40)

Similarly to Theorem 4.5, inequality (4.37) can be derived.
From [20] inequalities (4.39) can be achieved if g.t/ is a Gaussian signal. It is

clear that the inequalities (4.40) become equalities when

x.t/ D
�

1

2��2

� 1
4

e� .t�t0/
2

4�2 ej.� a
2b t2C˝tC'/

where t0;˝; ' are arbitrary real constants. Using the result of Theorem 1 in [6], we
can similarly obtain that the inequalities (4.37) can be achieved if the signal x.t/ is
given by (4.38). ut

4.3.3 Renyi Entropic Uncertainty Principles

Renyi entropy is widely used in statistical physics and in signal or image processing,
which is a generalization of Shannon entropy.

Definition 4.2. The Renyi 	-entropy is defined as [20]

R	.f / D 1

1 � 	 ln

�Z C1

�1
f .t/	dt

�

for 	 ¤ 1.

When 	 ! 1 , the Renyi entropy converges to the Shannon entropy. Theorem 4.7
gives the uncertainty relations of Renyi entropy in the LCT domains.

Theorem 4.7. For arbitrary unit energy signal x.t/, M1 D .a1; b1; c1; d1/ , M2 D
.a2; b2; c2; d2/, then

R� .jXM1 .u/j2/CR	.jXM2 .u/j2/ � ln.�=�/

2.� � 1/C ln.	=�/

2.	 � 1/Cln ja1b2�a2b1j (4.41)

where 1
2
< � � 1; 1

�
C 1

	
D 2 . And the equality is achieved if the signal is given by

(4.38).
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Proof. Let g.t/ D x.t/ej a
2b t2 , using (4.31), we can obtain

ln

�Z C1

�1
.jG.u/j2/	du

�
D ln

�Z C1

�1
j1
b

j.jG.u0

b
/j2/	du0

�

D ln

�Z C1

�1
.jXM.u

0/j2/	jbj	�1du0
�

D ln

�Z C1

�1
.jXM.u

0/j2/	du0
�

� .1 � 	/ ln jbj

Using the following Renyi entropic uncertainty relation in the FT domain [20]

R� .jg.t/j2/C R	.jG.u/j2/ � ln.�=�/

2.� � 1/ C ln.	=�/

2.	 � 1/ (4.42)

and noting jx.t/j2 D jg.t/j2 , we can obtain

R� .jx.t/j2/C R	.jXM.u/j2/ � ln.�=�/

2.� � 1/ C ln.	=�/

2.	 � 1/ C ln jbj (4.43)

Since inequality (4.42) can be achieved if g.t/ is a Gaussian signal [20], using the
similar method in Theorem 4.6, inequality (4.41) can be derived and the equality is
achieved if the signal is given by (4.38). ut

4.4 Conclusions

The uncertainty principles are very important and some uncertainty principles
for the LCT have been summarized in this chapter. The Heisenberg’ uncertainty
principles for complex signals and real signals are reviewed and the lower bounds
related to the covariance of time and frequency have been derived based on the LCT
moments properties, which can explain the phenomenon of different lower bounds
for real and complex signals existing in the Heisenberg’s uncertainty relations
proposed before because real signals have zero covariance. Furthermore some
extensions of uncertainty principles such as the logarithmic, entropic and Renyi
entropic uncertainty principles are deduced based on the relationship between the
LCT and the Fourier transform.The uncertainty principles for all the special cases
of the LCT can be obtained from these uncertainty principles in the LCT domain.
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Appendix

Here we give the derivations of the second order moment and first mixed moment
shown in Table 4.1.

Proof. According to the following result (see Lemma 3 in [6]), we have

hu2Mi D a2ht2i C b2h!2i C jab.I� � I/=E (4.44)

where I D R C1
�1 tx0.t/x�.t/dt and .�/� denotes conjugate. Noting that

Im.I/ D Im

�Z C1

�1
tx0.t/x�.t/dt

�
D
Z C1

�1
t�0.t/jx.t/j2dt

(4.44) becomes

hu2Mi D a2ht2i C b2h!2i C 2abht�0.t/i (4.45)

and

hu2FMi D 1

E

Z 1

�1
jX0

M.u/j2du D c2ht2i C d2h!2i C 2cdht�0.t/i (4.46)

Then consider the first mixed moment, because x.t/ D L.d;�b;�c;a/.XM.u//, from
(4.45), we can obtain

huM'
0.uM/i D 1

2bd
.d2hu2Mi C b2hu2FMi � ht2i/

Substituting (4.45) and (4.46) into the above equation derives

huM'
0.uM/i D acht2i C bdh!2i C .ad C bc/ht�0.t/i (4.47)

In addition, (4.47) reduces to (4.8) when .a; b; c; d/ D .0; 1;�1; 0/. Substituting
(4.45) into (4.47), (4.47) can be expressed in a different form, i.e.,

huM'
0.uM/i C ht�0.t/i D d

b
hu2Mi � a

b
ht2i (4.48)

ut
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Chapter 5
The Linear Canonical Transformations
in Classical Optics

Tatiana Alieva, José A. Rodrigo, Alejandro Cámara, and Martin J. Bastiaans

Abstract In this chapter we consider the application of the linear canonical
transformations (LCTs) for the description of light propagation through optical
systems. It is shown that the paraxial approximation of ray and wave optics leads
to matrix and integral forms of the two-dimensional LCTs. The LCT description of
the first-order optical systems consisting of basic optical elements: lenses, mirrors,
homogeneous and quadratic refractive index medium intervals and their compo-
sitions is discussed. The applications of these systems for the characterization of
the completely and partially coherent monochromatic light are considered. For this
purpose the phase space beam representation in the form of the Wigner distribution
(WD), which reveals local beam coherence properties, is used. The phase space
tomography method of the WD reconstruction is discussed. The physical meaning
and application of the second-order WD moments for global beam analysis,
classification, and comparison are reviewed. At the similar way optical systems
used for manipulation and characterization of optical pulses are described by the
one-dimensional LCTs.

5.1 Introduction

In this chapter we consider the application of the linear canonical transformations
(LCTs) in classical optics. The phase space representation of the LCTs based on
matrix formalism, which has been introduced in [26], will be widely used here. It
significantly simplifies the solution of different problems making a bridge between
ray and wave optics.

We start considering the propagation of monochromatic electromagnetic waves
in isotropic, but not necessarily homogeneous, charge-free media. In this case the
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wave equations for the electric E and magnetic H field vectors can be written
for every Cartesian component Ex; Ey, and Ez (or correspondingly Hx; Hy, and
Hz) in the form of the Helmholtz equation. The paraxial approximation of the
Helmholtz equation allows using the LCTs for the description of beam propagation
in homogeneous and certain type of weakly inhomogeneous media.

Next section is devoted to the analysis of ray and wave propagation through, or
reflected from widely used optical elements such as lenses and mirrors. Again, the
corresponding transformations of the complex field amplitude lead to the LCTs in
the paraxial approximation. The combinations of these elements with intervals of
homogeneous medium (or inhomogeneous medium with quadratic refractive index)
form the so-called first-order optical systems considered. The ray matrix formalism
drastically simplifies their analysis and design.

In Sect. 5.4 we turn to the consideration of partially coherent beam and their
propagation through first-order optical systems. We benefit from describing the
beam in the phase space using the Wigner distribution (WD) (see [26]) since it
allows identical treatment of completely and partially coherent light. Notice that the
WD is real but not necessarily a positive function. This fact makes impossible its
direct measurement. Instead of the WD itself, the WD projections, corresponding
to the beam intensity distributions at the output plane of the systems described
by the LCTs can be easily measured and used for beam characterization. This
approach is discussed in Sect. 5.5. A global beam analysis according to the ISO
recommendations is based on the central second-order moments of the WD. The
physical meaning of these moments and their use for comparison and classification
of optical beams are considered in Sect. 5.6.

In the last section we show that the LCTs are also applied for the description of
the propagation of quasi-monochromatic plane waves in a homogeneous medium
with frequency dispersion. The approaches which are similar to ones used for the
description of the spatial beam structure are applied for pulse analysis. The chapter
ends with concluding remarks.

5.2 Helmholtz Equation in Paraxial Approximation:
Ray and Wave Pictures

5.2.1 Helmholtz Equation

Let us consider the wave equation written in the Cartesian coordinates r D Œx ; y ; z]t

for the electric field vector E.x; y; z; t/ in a charge-free weakly inhomogeneous
medium characterized by the permittivity " and the permeability 
, which can be
easily derived from the Maxwell equations (see, for example, [36, 55]),

r2E D "

@2

@t2
E; (5.1)
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where r2 D @2

@x2
C @2

@y2
C @2

@z2
is the Laplacian operator. The dependence on the time

variable t can be excluded if we consider the propagation of the monochromatic
wave E.r; t/ D E.r/ exp .�i!t/ with angular frequency !

r2E C k2E D 0: (5.2)

Here k D !
p
"
 D !=� is the wave number in the medium, which is related to the

wave number in vacuum, k0 D !=c, by the relation k D k0n being � and c the phase
velocity in the medium and vacuum, correspondingly, and n D c=� the refractive
index of the medium.

The Eq. (5.2) can be treated independently for every vector component Ex,
Ey, and Ez if n.r/ does not change significantly in distances of the order of the
wavelength 	 D 2�=k. Thus, using the notation �.r/ for one of the components of
the electric field vector we obtain the Helmholtz equation

r2� C k20n
2� D 0; (5.3)

which is a basic equation of the scalar diffraction theory. The same equation is valid
for the components of the magnetic field vector. In isotropic homogeneous medium
n is a constant.

There are two approximations which simplify solving the Helmholtz equation:
the eikonal and paraxial wave approximations. The eikonal approximation is the
base of geometrical optics, where the light propagation is described in form of rays.
The paraxial wave approximation leads to the LCTs, as we will see further, and it is
widely applied in wave optics for the description of the interference and diffraction
phenomena. Applying the paraxial approximation to the eikonal equation simplifies
the use of the LCTs by introducing the ray transformation matrix formalism, which
allows avoiding, in many cases, unnecessary integral calculations.

5.2.2 Eikonal Approximation

It is easy to prove that a plane wave, �.r/ D �0 exp.inkt
0r C i'/, is a solution of the

Helmholtz equation for a homogeneous medium (n D const), where k0 D !=c D
2�=	0 and 	0 is the wavelength in the vacuum. The direction of the wave vector,
k0, is defined by the boundary conditions.

In order to find the solution in the general case of inhomogeneous medium, n ¤
const, let us use the probe function

�.r/ D a.r/ exp.ik0bL.r//; (5.4)

where the amplitude a.r/ and the phase k0bL.r/ are real functions that depend on
the position vector r. Introducing this expression in the Eq. (5.3) and applying
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the Laplacian operator, we conclude that the real and the imaginary parts of the
following equation

r2a.r/C k20a.r/
h
n2.r/ � .rbL.r//2

i
C ik0

h
2ra.r/ � rbL.r/C a.r/r2bL.r/

i
D 0

(5.5)
have to be zero. In particular, we obtain that

r2a.r/C k20a.r/
h
n2.r/ � .rbL.r//2

i
D 0: (5.6)

In the approximation of the geometrical optics we suppose that the amplitude a.r/
changes significantly for distances d much larger than the wavelength 	. This means
that

ˇ̌r2a.r/=k20a.r/
ˇ̌ 
 .	=d/2 � 0: Then, the Eq. (5.6) is reduced to eikonal

equation

h
rbL.r/

i2 D n2.r/ (5.7)

which plays a fundamental role in geometrical optics.
The phase function bL.r/ is called eikonal, which comes from the Greek word

eikonal, meaning image. Let us consider its decomposition in Taylor series around a
point r0, i.e. bL.r/ � bL.r0/C .r � r0/rbL.r0/C � � � . If jr � r0j < 	, then a.r/ � a.r0/
and we obtain the following approximation for �.r/

�.r/ jr0 � a.r0/ exp
n
ik0
hbL.r0/ � r0rbL.r0/

io
exp.ik0rrbL.r0//: (5.8)

While first exponential term corresponds to a constant phase, the last one has the
form of a plane wave propagating in the direction of the unitary vector s defined
by s0 DrbL.r0/=n.r0/, where we have taken into account the eikonal equation (5.7).
Since this approximation is only valid in the neighborhood of r0, which might be
considered as a sphere of radius 	 with the center in that point, the wave is plane
only locally. In another point, r1, the propagation direction and its amplitude are
changed.

By analogy with a plane wave, the vector rbL.r0/, similar to the wave vector k; is
normal to the geometrical wavefront defined by the surface bL.r/ D const. Moreover,
considering the relation provided by the imaginary part of the Eq. (5.5) we can write

a.r/
h
2ra.r/ � rbL.r/C a.r/r2bL.r/

i
D r � .a2.r/rbL.r// D 0; (5.9)

which is the energy transport equation for geometrical optics, since the squared
amplitude is associated with the energy of the wave. We observe that the product
a2.r/rbL.r/ is analogue of the Poynting vector for the plane waves.

The above considerations allow describing light in eikonal approximation by
rays which define, for every point r, the direction of the energy propagation,
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s DrbL.r/=n.r/. The ray follows a certain curve in space that is characterized by
the position vector r.s/, where s is the arc longitude of the curve. Its tangential in
every point coincides with the ray vector s and can also be expressed as sD dr=ds.
From the tangent definition and the eikonal equation (see the Eq. (5.7)) we obtain
the ray equation

n.r/
dr
ds

D rbL.r/: (5.10)

For practical use it is more convenient to write the whole ray equation in terms
of the refraction index of the medium, n.r/. This can be achieved differentiating
the ray equation with respect to the curve parameter, s, taking into account that
d
ds D dr

ds � r D s � r; and the following relation

d

ds

h
rbL

i
D s � r

h
rbL

i
D 1

2n
rn2 D rn: (5.11)

Thus, we obtain another form for the ray equation which we will use further

d

ds

�
n .r/

dr
ds

�
D rn .r/ : (5.12)

It is easy to see that in a homogeneous medium, n D const ) rn D 0 and s D
const, the ray follows a linear trajectory. Below we consider the solutions of the
ray equation in the stratified media which yield in the paraxial approximation to the
matrix description of the ray propagation.

5.2.3 Ray Propagation in Linearly Stratified Medium

Let us consider the ray propagation in a stratified medium, that is, a medium in
which the refraction index depends on only one Cartesian coordinate, n .r/ D n.x/
for example. In this case the ray equation is reduced to

d

ds

�
n.x/

dr
ds

�
D ix

dn.x/

dx
; (5.13)

being ix, iy, and iz the unitary vectors in the directions of x, y, and z correspondingly.
To determine the ray trajectories we introduce the vector

a D ix�n.x/
dr
ds

D n.x/ ix � s: (5.14)
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Differentiating a with respect to the arc longitude s and using the relations
dix=ds D 0 and Eq. (5.13), we obtain da

ds D 0: It means that the vector a is constant
along the ray trajectory. Then taking into account the Eq. (5.14) we conclude that
the vectors s and ix are always perpendicular to a constant vector a. Therefore, the
ray curve is contained at the plane spanned by i and a vector that is perpendicular
to both a and i, i.e. i � a. This plane and the modulus of a are defined by an initial
condition, vector si.

Suppose that the ray belongs to the plane rt � iy D 0 and si is known at the point
ri D Œxi; 0; zi�

t. Considering the angle, � , formed by the vector s and the X axis we
obtain the Snell law for a stratified medium

a D jaj D n.x/ sin � D n.xi/ sin �i: (5.15)

Introducing dz D sin �ds and dx D cos �ds in the previous relation one obtains the
equation that relates the positions of the x and z coordinates of the ray trajectory:

dz

dx
D sin �ds

cos �ds
D tan � D ˙ ap

n2.x/ � a2
; (5.16)

where the sign ˙ is defined by the sign of the projection of s0 on the X axis at
the point ri, si;x D cos �i. Notice that the sign of dz=dx can change during ray
propagation (see Fig. 5.1). Thus at the point with coordinate xr such that n2.xr/ D a2

the derivative goes to infinity .dz=dx/xr D 1 and the ray reflects from the given
layer (see [66] for details). Therefore, the signs of sx and dz=dx change.

zr 0.2 0.4 0.6 0.8 1

−4

−2

0

8

2
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z (m)

x 
(m

m
)

Fig. 5.1 Rays propagating in a stratified medium with quadratic graded refractive index along X
direction. Both red and green rays are considered as paraxial rays due to relatively small angle
j�=2� �ij � 1, while the blue ray is out of this approximation. The point .xr; zr/ represents a
reflection of the ray from the layer where n2.xr/ D a2



5 The Linear Canonical Transformations in Classical Optics 119

Note that in the particular case a D 0 the ray follows a lineal trajectory parallel
to the X axis, since �i D 0 or �i D � , and dz=dx D 0.

To find the ray trajectory from the Eq. (5.16) we have to know the function n.x/
and the ray direction s0 at a given point r0. Let us consider the beam propagation
through the medium with a refractive index n.x/ satisfying the equation n2.x/ D
n20 � g2x2, which takes a maximum value n0 at x D 0. Note that such quadratic
graded refractive index (GRIN) media as well as axially stratified quadratic GRIN
ones, considered in Sect. 5.2.4 are applied in fiber optics telecommunication and
imaging. The ray equation, Eq. (5.16), is written in this case as

dxq
n20 � a2 � g2x2

D �dz

a
; (5.17)

where � D sign.cos �i/. Notice that for �i D �=2 and xi D 0 the ray follows the
lineal trajectory x D 0 which coincides with the Z axis. Indeed, this initial condition
yields a D n0 that holds only for x D 0.

For other cases nmax > a and it is easy to prove that the equation has a solution

x.z/ D
q

n20 � a2

g
sin
��g

a
.z � c/

�
: (5.18)

The constant c is defined from the initial conditions as

c D zi � �a

g
arcsin

0
B@ gxq

n20 � a2

1
CA ; (5.19)

that yields to the final expression for ray trajectory

x.z/ D xi cos
hg

a
.z � zi/

i
C cos �i

n.xi/

g
sin
hg

a
.z � zi/

i
: (5.20)

We observe that the ray trajectories in such media are periodic in z. The amplitude
and the period of the ray oscillation depend on the initial conditions. In general
the rays emergent from the same point but with different angles �i have different
periods T D 2�a=g, defined by a. In Fig. 5.1 we observe the propagation of three
rays emergent from the point .0; 0; 0/ with different angles �i. The red and the green
rays have similar value of a but different initial direction of propagation (due to the
sign of cos �i). The trajectories of these rays oscillate slower the one which belongs
to blue ray with smaller value of a.
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5.2.3.1 Paraxial Approximation

Let us now consider the ray propagation in the stratified media, n.x/, in paraxial
approximation, when the ray deviation from X or Z axes is small that corresponds
to the cases j� j  1 and 2 j�=2 � � j  1, respectively. These cases occur for
adequate initial conditions and sufficiently small changes of the refractive index.

In the first case we can use only the first term of the Taylor expansion for the sine
function sin � � � , which allows rewriting the Snell law as

a D n.x/� D n.xi/�i: (5.21)

Since jaj  1 and therefore n2.x/ � a2, the ray equation (5.16) is reduced to
dz D n.xi/�i

dx
n.x/ that yields the solution

zo D zi C n.xi/�i

Z xo

xi

dx

n.x/
D zi C n.xi/�iB: (5.22)

The coordinate z in this case is close to zi defined by the initial position of the ray.
The latter equation together with the Snell law in paraxial approximation, Eq. (5.21)
allow writing the relation between the position, z, and direction of propagation, � ,
of the ray at the input x D xi and output x D xo planes in the matrix form

�
zo

qo

�
D
�
1 B
0 1

� �
zi

qi

�
;

where qo D n.xo/�o D n.xi/�i D qi. In particular, for homogeneous media n.x/ D
n D const the matrix parameter is given by B D x=n, that as expected corresponds to
the line ray trajectory: z D zi Cx�i and � D �i: Correspondingly the ray propagation
through a medium containing J parallel layers of thickness dj and the refractive
index nj, is described by the ray transformation matrix

t D
"
1
PJ

jD1 dj=nj

0 1

#
: (5.23)

Further it will be used for the parametrization of the kernel of integral transform
which describes (also in paraxial approximation) the wave propagation through this
medium.

Let us now consider the ray propagation through the medium with refractive
index n, given by n2.x/ D n20 � g2x2 for the initial condition �i � �=2. In this case
we can ignore the differences in the period of ray oscillations discussed in Sect. 5.2.4
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and approximate it by T � 2�n0=g. By introducing an angle ˛i D �=2 � �i we
simplify the solution (5.20):

xo D xi cos

�
g

n0
.zo � zi/

�
C ˛i

n0
g

sin

�
g

n0
.zo � zi/

�
: (5.24)

Moreover, calculating the derivative dx=dz D .tan �/�1 D tan˛ � ˛, where ˛ is
the angle that the ray forms with axes z, we obtain the equation for the direction of
ray propagation:

˛o D �xig

n0
sin

�
g

n0
.zo � zi/

�
C ˛i cos

�
g

n0
.zo � zi/

�
: (5.25)

The last two equations again can be written in the matrix form as
�

xo

qo

�
D
�

cos � g�1 sin �
�g sin � cos �

� �
xi

qi

�
; (5.26)

where q D n0˛ and � D g .zo � zi/ =n0. By this way we connect the position and
the direction of the ray at two parallel planes defined by z D zo and z D zi. The
condition of paraxiality is satisfied for the red and green rays in Fig. 5.1, which
propagate almost with the same period.

5.2.4 Ray Propagation in Axially Stratified Medium

When the refractive index depends on two variables n.x; y/ the ray equation is
written as:

d

ds
.ns/ D d

ds

�
n

dr
ds

�
D ix

dn

dx
C iy

dn

dy
: (5.27)

Using cylindrical coordinates for the unitary vector s D Œcos � sin'; sin � sin';
cos'�t and taking into account that the right part of this equation does not depend
on z, we find that

d

ds

�
n

dz

ds

�
D 0: (5.28)

It corresponds to the Snell law for axially stratified medium

n
dz

ds
D nsz D n cos' D n.x0; y0/ cos'0 D a D const: (5.29)

Here we have defined the constant a and introduced the angle ' between the vector
s and the axes z. Since the normal to the surface describing the changes of n is
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perpendicular to z, we may express the Snell law in a common form n.x; y/ sin˛ D
n.xi; yi/ sin˛i using the angle ˛ between such a normal and the ray vector: ˛ D
�=2 � '. Note that if a D 0 (and correspondingly 'i D ˙�=2, and dz=ds D 0)
any curve describing the ray belongs to the plane XY . For the cases a ¤ 0, since
ds D .ndz/=a, the ray equations for the other two components of the vector s have a
form similar to one obtained for linear stratified media:

d

ds

�
n

dx

ds

�
D dn

dx
;

d

ds

�
n

dy

ds

�
D dn

dy
: (5.30)

Nevertheless, in this case the ray curve is not necessarily plane since x and y depend
on z.

Considering the medium with quadratic GRIN n.x; y/ given by:

n2.x; y/ D n20 � g2xx2 � g2yy2; (5.31)

following the same steps as in Sect. 5.2.3 we find the solution for ray trajectory

x.z/ D xi cos
hgx

a
.z � zi/

i
C cos �i sin'i

n.xi; yi/

gx
sin
hgx

a
.z � zi/

i
;

y.z/ D yi cos
hgy

a
.z � zi/

i
C sin �i sin'i

n.xi; yi/

gy
sin
hgy

a
.z � zi/

i
: (5.32)

For initial conditions yi D 0 and sin �i D 0 the ray curve belongs to the plane XZ
(see red ray in Fig. 5.2). If xi D 0 and cos �i D 0, it belongs to the plane YZ. While
in the case yi D 0 and cos �i D 0, xi D sin �i sin'i n.xi; yi/=g and gx D gy D g, the
ray follows the helical trajectory (see green ray in Fig. 5.2): x2.z/C y2.z/ D x2i :

In general the rays which do not belong to the meridional plane containing
the optical axes are known as skew rays. They are characterized by the nonzero
parameter xqy � yqx (see [101] for details).

Fig. 5.2 Ray propagation
(green and red color) through
a medium with axially graded
quadratic refractive index
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In the paraxial approximation, which corresponds to small angles 'i and small
variations of n, the rays have almost the same period because a � n0 (see
Eq. (5.29)). Introducing the variables qx;y D n0sx;y, where dx=ds � dx=dz D sx D
cos � sin' and dy=ds � dy=dz D sy D sin � sin', the relations between the
positions and directions of the ray at planes defined by z D zo and z D zi can
be written in the matrix form

2
664

xo

yo

qx.o/

qy.o/

3
775 D

2
664

cos �x 0 g�1
x sin �x 0

0 cos �y 0 g�1
y sin �y

�gx sin �x 0 cos �x 0

0 �gy sin �y 0 cos �y

3
775

2
664

xi

yi

qx.i/

qy.i/

3
775 ; (5.33)

where �x;y D gx;y.zo � zi/=n0. Further we will suppose that zi D 0 and zo D z.
This ray transformation matrix resembles the one used in [26] for parametrization

of the separable fractional Fourier transform kernel. It is not a coincidence,
since there is a deep connection between the ray and wave descriptions of light
propagation in paraxial approximation, as we will see further.

5.2.5 Paraxial Wave Approximation

Now we consider a coherent wave that propagates along a certain direction which
without loss of generality is denoted by the coordinate z. The paraxial approximation
assumes that the wave function, �.x; y; z/, changes more rapidly in the direction of
the wave propagation, z coordinate, than in the traversal, XY , plane. In this sense the
paraxial waves are similar to a plane wave defined as �0 exp .ikz/ and sometimes
are refereed as quasi-plane waves. In addition, if the electromagnetic wave is band-
limited in the XY plane, the wave is said to form a beam.

In order to simplify the Helmholtz equation by taking advantage of this approx-
imation, it is convenient to separate the rapid variation part, exp.ik0n0z/, from the
slow variation part, the complex field amplitude f .r; z/; in the field function � as

�.r; z/ D f .r; z/ exp.ik0n0z/: (5.34)

Here r D Œx; y� t is the position vector in the traversal plane and n0 is the average
value of the refractive index of the medium.

Introducing this expression in Eq. (5.3), one obtains the following equation for
the complex amplitude after some easy calculus

r2f .r; z/C k20f .r; z/
�
n2.r/ � n20

�C i2k0n0
@

@z
f .r; z/ D 0: (5.35)
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Since the rapid variations of �.r; z/ with respect to z are described by the
exponential term of Eq. (5.34), the changes of f in this direction occur at distances
d � 	; and therefore

k0n0
@

@z
f .r; z/ � @2

@z2
f .r; z/: (5.36)

Ignoring the smallest term we derive the paraxial equation for the complex field
amplitude

�?f .r; z/C k20f .r; z/
�
n2.r/ � n20

�C i2k0n0
@

@z
f .r; z/ D 0; (5.37)

where we have introduced the traversal Laplacian operator �? D @2

@x2
C @2

@y2
. This

equation is known in quantum mechanics as Schrödinger equation, where z plays
the role of time and n20 � n2.r/ corresponds to the potential energy. Hence, it is not
surprising that many problems in quantum mechanics and paraxial optics have the
same solutions. We will cover two special cases of the potential energy n20 D n2.r/
and n20 � n2.r/ D g2xx2 C g2yy2 that will lead to different LCT descriptions of beam
propagation. The consideration of more general case can be found in [53].

5.2.5.1 Propagation in Homogeneous Medium: Fresnel Transform

The first special case, n.r/ D n0, corresponds to a homogeneous medium. The
paraxial equation is reduced to

�?f .r; z/C i2k0n0
@

@z
f .r; z/ D 0: (5.38)

To solve this differential equation, the boundary conditions have to be known.
Assuming that the complex field amplitude at the plane z D 0 is given by fi.ri; 0/,
then the solution of this equation can be written as the well-known Fresnel integral

fo.ro; z/ D 1

i	z

Z
f .ri; 0/ exp

�
i�

	z
.ro � ri/

2

�
dri; (5.39)

as it can be easily proved by its substitution in the Eq. (5.38), where we have used
k D k0n0 D 2�=	. Here and further the integration

R
extends from −1 to +1.

5.2.5.2 Angular Spectrum

It is worth mentioning that the same integral solution can be obtained using the
angular spectrum decomposition method. This approach is based on the search of
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the solution of the Helmholtz equation (5.3) in the Fourier domain. For this purpose
� .r; z/ is expressed through the 2D Fourier transform (FT) with respect to the
vector r:

�.r; z/ D
Z
�.p; z/ exp.i2�rtp/dp; (5.40)

where �.p; z/ is the beam angular spectrum at the plane z D const defined as

�.p; z/ D
Z
�.r; z/ exp.�i2�rtp/dr: (5.41)

The vector p D Œu; v�t is formed by the spatial frequency components along x and
y directions, respectively. Substitution of �.r; z/ in the form (5.40) into Eq. (5.3)
yields the Helmholtz equation written for the angular spectrum:

@2

@z2
�.p; z/C �

k2 � 4�2.u2 C v2/
�
�.p; z/ D 0: (5.42)

This differential equation has a simple solution given by

�o.p; z/ D �i.p; 0/ exp
h
iz
p

k2 � 4�2.u2 C v2/
i
; (5.43)

where �i.p; 0/ is the angular spectrum of the beam at the plane z D 0, which
corresponds to the boundary condition of the problem.

We underline that the propagation in free space is equivalent to a linear filtering.
Notice that, neglecting the evanescent waves, which correspond to the condition
k2�4�2.u2Cv2/ � 0, the propagation only affects the phase of the angular spectrum
of the traveling waves.

Expression (5.40) represents the field function, � , as a superposition of plane
waves traveling in directions given by the direction cosines qx D 	u; qy D 	v;

and qz D
q
1 � q2x � q2y . For a quasi-plane wave propagating in the z direction, the

direction cosine in the transverse plane, qx and qy, are much smaller than qz, i.e.
qz � qx; qy and thus 	2

	
u2 C v2


  1. Then the square root in the Eq. (5.43) can
be approximated by its first term in its Taylor series,

p
k2 � 4�2.u2 C v2/ � k

�
1 � 2�2.u2 C v2/=k2

� D k � �	.u2 C v2/; (5.44)

deriving the angular spectrum evolution equation in the paraxial regime

�o.p; z/ D �i.p; 0/ exp.ikz/ exp
��i�	z.u2 C v2/

�
: (5.45)
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Finally, substituting this expression into Eq. (5.40) and applying the well-known
formula [80]

Z
exp

	
ibx C iax2



dx D

r
�

jaj exp

�
�i

b2

4a
x C i

�

4
sign .a/

�
; (5.46)

where a and b are real numbers and a ¤ 0, we obtain that �.r; z/ D f .r; z/ exp.ikz/
where the complex field amplitude f .r; z/ is given by the Eq. (5.39).

5.2.5.3 Beam Propagation in a Quadratic GRIN Medium

The second special case of the Eq. (5.37) studied in this chapter is associated with a
quadratic GRIN medium n20 � n2.r/ D g2xx2 C g2yy2. As we have seen in Sect. 5.2.4
the ray propagation through such media is described by the rotation matrix (5.33).

The equation for the complex field amplitude

�?f .r; z/ � k20f .r; z/
�
g2xx2 C g2yy2

�C i2k0n0
@

@z
f .r; z/ D 0; (5.47)

coincides with the well-known quantum mechanics equation for the harmonic
oscillator [70, 78]. The Hermite–Gaussian (HG) modes, beams with amplitudes
given by

f .r; z/ D HGm

�
x

wx

�
HGn

�
y

wy

�
D 21=2 .2mmŠ2nnŠ/�1=2

� Hm

�p
2�

x

wx

�
Hn

�p
2�

y

wy

�
exp

"
��

 
x2

w2x
C y2

w2y

!#
; (5.48)

which have been discussed in [26], are eigenfunctions of this equation with
eigenvalues exp

��i
	
m C 1

2



gxz=n0 � igyz

	
n C 1

2



gyz=n0

�
. Since the HG modes

form a complete orthonormal set, the general solution of the equation can be found
as their linear composition

f .r; z/ D
1X

m;nD0

fmnHGm

�
x

wx

�
HGn

�
y

wy

�
exp

�
�i

gxz

n0

�
m C 1

2

�
� i

gyz

n0

�
n C 1

2

��
;

(5.49)

where wx;y D
q
	0g�1

x;y and the coefficients are found from the boundary conditions

at the plane z D 0 as

fmn D 1

wxwy

Z
f .ri; 0/HGm

�
xi

wx

�
HGn

�
yi

wy

�
dri: (5.50)
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Substitution of fmn from Eq. (5.50) into Eq. (5.49) yields

fo.ro; z/ D
Z

f .ri; 0/K .ri; roI ; z/dri; (5.51)

where the kernel K .ri; roI ; z/ is defined by K .ri; roI ; z/ D Kx.xi; xoI z/
Ky.yi; yoI z/ with

Kx.xi; xoI z/ D
1X

mD0
HGm

�
xi

wx

�
HGm

�
xo

wx

�
exp

�
�i

�
m C 1

2

�
gxz=n0

�
: (5.52)

Using the Meller formula

1X
mD0

1

mŠ

�
�

2

�2
Hm.x/Hm.y/ D .1 � �2/�1=2 exp

�
2xyq � �2.x2 C y2/

1 � �2
�
; (5.53)

for � D exp.igxz=n0/ the kernel is transformed into the fractional Fourier transform
kernel K .ri; roI ; z/ D K�x.xi; xoI wx/K�y.yi; yoI wx/ D K�x;�y.ri; roI wx;wy/, where

K�x.xi; xoI wx/ D 1

wx
p

i sin �x
exp

i�
	
x2o cos �x � 2xoxi C x2i cos �x




w2x sin �x
; (5.54)

wx;y D p
	0=gx;yand the angles are defined as �x;y D gx;yz=n0. Thus, the paraxial

beam propagation through the quadratic GRIN media is described by the separable
fractional FT (see [26]). Fibers made from such media are widely used in practice.
The special case gx D gy corresponds to the so-called selfoc (self-focusing) fibers
and the propagation is described by the symmetric fractional FT with �x D �y D �

and wx D wy D w. They received such name because at a propagation distance
corresponding to � D 2�n the complex field amplitude equals the input one apart
from a scaling factor and constant phase shift.

It has been noted in [26] (see also [1, 4, 8, 9, 16, 79, 109]) that there are other
complete orthogonal sets of modes which are eigenfunctions of the symmetric
fractional FT. For instance, check the Laguerre–Gauss (LG), Hermite–Laguerre–
Gauss (HLG) [2], and Ince–Gauss (IG) [16] modes. Thus, the K� .ri; roI w/ kernel
can be also written as a superposition of modes of these sets. Probably, the most
important modes from this list are the LG modes defined as

LGm;n
	
rI wx;wy


 D 	
wxwy


�1=2
s

min .m; n/Š

max .m; n/Š

�p
2�

�
x

wx
C i sgn .m � n/

y

wy

��l

� Ll
p

"
2�

 
x2

w2x
C y2

w2y

!#
exp

"
��

 
x2

w2x
C y2

w2y

!#
; (5.55)



128 T. Alieva et al.

where min.�; �/ and max.�; �/ are the minimum and maximum functions, p D
min.m; n/, l D jm � nj, and Ll

p .�/ is the Laguerre polynomial of azimuthal
index l and radial index p. These beams are used for optical microparticle
manipulation, optical communications, laser ablation, metrology, etc. [108]. The
main characteristic of these beams is the singularity in the phase distribution
which has a vortex (helical) structure. This property is characterized by a
topological charge defined by ˙l [11, 28]. The symmetric fractional FT
kernel is expressed as a combination of the LG modes as K� .ri; roI w/ DP1

m;nD0 LGm;n .riI w;w/LGm;n .roI w;w/ exp Œ�i .m C n C 1/ ��.

5.3 First-Order Optical Systems

In the previous section we have studied two types of LCTs, the Fresnel transform
associated with a homogeneous medium and the fractional FT associated with a
quadratic GRIN medium. Both describe in the paraxial approximation the evolution
of the complex field amplitude during the beam propagation. We have also derived
that in the paraxial approximation of geometric optics, the ray transformation in
such media can be expressed in a matrix form. These matrices parametrize the
kernels of the corresponding LCTs. In this section we consider the basic optical
elements for image formation and signal processing systems—lenses and mirrors—
whose action in paraxial approximation is also described in the form of LCTs. We
show that the parameters of the kernel describing the integral transformation are
expressed by the parameters of the corresponding 4 � 4 ray transformation matrix
T, which provides the relation between the position and direction of the ray before
(ri and qi) and after (ro and qo) the optical elements:

�
ro

qo

�
D T

�
ri

qi

�
: (5.56)

5.3.1 Lens Description

5.3.1.1 Spherical Lens

We start from the consideration of the glass spherical lens which can be defined as
a portion of optically transparent material with refractive index nl, limited by two
spherical surfaces with radius R1 and R2, whose centers belong to the optical axis.
The radius has positive (negative) sign if the center of the spherical surface is on the
right (left) side with respect to the point of the surface intersection with the optical
axes. The distance between the intersection points of the two surfaces with the axes
is d.
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Fig. 5.3 Ray refraction in
paraxial approximation on
spherical surface separating
media with different
refractive index
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In order to describe the ray transformation produced by a lens let us consider
the refraction of a ray on the first surface. The incident and the refracted rays
at a point Q D .x; y; z/ are characterized by the unitary vectors si and so given
by si;o D �

qx.i;o/; qy.i;o/; qz.i;o/
�
=ni:o, respectively, where ni;o is the refraction index

of the corresponding medium, see Fig. 5.3. The coordinate origin coincides with
intersection point O D .0; 0; 0/. In paraxial approximation a spherical surface is
substituted by paraboloidal (symmetrical in revolution) one given by

z � x2 C y2

2R
D 0; (5.57)

where we have taken into account that x2Cy2  R2 and z�R < 0 (convex surface).
Applying the Snell law at the point Q of the surface f D z � 	

x2 C y2


= .2R/

nis � noso D hN; (5.58)

where N D .@f=@x; @f=@y; @f=@z/ is a normal to the surface at this point and h is a
constant, we obtain

hN Dh
�
� x

R
;� y

R
; 1
�

D 	
qx.i/ � qx.o/; qy.i/ � qy.o/; q � qz.o/



: (5.59)

Using again the paraxial approximation, h D qz.i/ � qz.o/ � ni � no, we can express
the relation between the ray vector components as

qx.o/ D qx.i/ C x
ni � no

R
;

qy.o/ D qy.i/ C y
ni � no

R
: (5.60)



130 T. Alieva et al.

Since the position of the ray does not change (ro D ri) and assuming that zo D
zi D 0 holds for all paraxial rays, we find the ray transformation matrix, T for the
refraction at the boundary spherical surface

T D
�

I 0
no�ni

R I I

�
; (5.61)

where ri;o D .xi;o; yi;o/
t and qi;o D 	

qx.i;o/; qy.i;o/



t and I stands for unity matrix
2 � 2.

The wave picture of light propagation through the spherical surface, which
separates two homogeneous media with different refractive index, yields the phase
modulation of the complex field amplitude due to the different phase velocities
in such media. Neglecting the light reflection on the frontier and using again the
paraxial approximation of the sphere by a paraboloid, the relation between the
complex field amplitudes on both sides of the surface is expressed by

fo.ro; 0/ D fi.ro; 0/ exp

�
i
k0.ni � no/

2R
r2o

�
; (5.62)

where k0 is a wave number in vacuum and r2o D .x2o C y2o/. We underline that this
relation corresponds to the quadratic phase modulation LCT (see [26]).

Taking into account the Eqs. (5.61) and (5.62) as well as the propagation of
paraxial rays and waves in homogeneous media (see Eqs. (5.23) and (5.39)) we can
now define the action of the lens in both cases.

The lens can be modeled as a system composed of three elements: a spherical
surface, a piece of homogeneous medium, and another spherical surface. Then, the
ray propagation through the lens is described by the product of the three matrices
corresponding to these systems:

1. The first spherical boundary of radius R1 separates the input medium with
refractive index nm from the lens medium with refractive index nl. The associated
matrix is

T1 D
"

I 0
nm�nl

R1
I I

#
: (5.63)

2. The ray propagation for a distance d inside the homogeneous medium with
refractive index nl—the lens—is described by the ray transformation matrix

T2 D
�

I d=nlI
0 I

�
: (5.64)

3. The second spherical boundary of radius R2 separates the lens medium with
refractive index nl from the output medium with refractive index nm. The
corresponding matrix is
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T3 D
"

I 0
� nm�nl

R2
I I

#
: (5.65)

Therefore, the relation between the position, ri, and direction, qi, of rays at the lens
input, z D 0, and output, z D d, planes is described by the ray transformation matrix
obtained after the matrix multiplication

T D T3T2T1 D
�

AI BI
CI DI

�

D

2
64

h
1C d.nm�nl/

nlR1

i
I d

nl
I

h
.nm � nl/

�
1

R1
� 1

R2

�
� d.nm�nl/

2

nlR1R2

i
I
h
1 � d.nm�nl/

nlR2

i
I

3
75 : (5.66)

The focal distance of the lens related to the parameter C is given by

f D �nm

�
.nm � nl/

�
1

R1
� 1

R2

�
� d.nm � nl/

2

nlR1R2

��1
: (5.67)

The matrix description of the ray propagation through a spherical lens is
summarized by Eq. (5.66). Now we will derive an analogous expression from the
point of view of wave optics. The lens again is modeled as the concatenation of an
input spherical boundary, a propagation in a homogeneous medium and an output
spherical boundary. The relation between the complex field amplitudes at the input
(ri; 0) and output (ro; d) planes of the lens can be found following these steps:

1. Phase modulation of the input amplitude, fi.ri; 0/, at the input surface boundary

f1.ri; 0/ D fi.ri; 0/ exp

�
i
k0.nm � nl/

2R1
r2i

�
: (5.68)

2. Calculation of the Fresnel transformation of f1.ri; 0/ which describes the propa-
gation through the homogeneous medium of the refractive index nl

f2.ro; d/ D nl

i	0d

Z
f1.ri; 0/ exp

�
i�nl

	0d
.r1 � ri/

2

�
dri: (5.69)

3. Phase modulation of the f2.ro; d/ field by the output surface boundary

fo.ro; d/ D f2.ro; d/ exp

�
i
k0.nl � nm/

2R2
r2o

�
: (5.70)

Following the latter scheme we conclude that fo.ro; d/ is defined by the LCT of
fi.ri; 0/
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fo.ro; d/ D nm

i	0B

Z
fi.ri; 0/ exp

i�nm
	
r2oD � 2rori C r2i A




	0B
dri

whose kernel is parametrized by the ray transformation matrix (5.66). The expres-
sion for �o.ro; d/ is obtained by adding a constant phase factor describing the
propagation inside the lens: �o.ro; d/ D exp .ik0nld/ fo.ro; d/. Note that absorption
inside the lens and reflections on the surfaces are neglected in this approximation.

5.3.1.2 Thin Lens Approximation

If the width of the lens d is very small comparing with the radii R1 and R2 we can
further simplify the lens action by substituting d D 0 in the ray transformation
matrix Eq. (5.66). This yields

T D
�

I 0
� nm

f I I

�
; (5.71)

where the focal length is defined by

f D
�
.nl=nm � 1/

�
1

R1
� 1

R2

���1
: (5.72)

The positive (negative) sign of f corresponds to convergent (divergent) lens. This
approximation is known as a thin lens approximation while the lens described by
the Eq. (5.66) is denoted as thick lens.

Since the form of the ray transformation matrix is similar to Eq. (5.61), the action
of the thin lens corresponds to a quadratic phase modulation analogous to Eq. (5.62)

fo.r; 0/ D fi.r; 0/ exp

�
�i

k0
2f

r2
�
: (5.73)

Here the propagation through the homogeneous medium that forms the lens is
neglected since we assume that the lens is thin. In this case the input and output
planes share the same transversal coordinates r.

Since the thin lens approximation is widely used in optics the LCT associated
with quadratic phase modulation is known as a lens transform (see [26]). In the rest
of this chapter we will consider thin lenses, except when stated otherwise. Moreover,
we will assume that the refractive index of the medium surrounding the lens is air
and, hence, nm D 1.
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5.3.1.3 Cylindrical and Generalized Lenses

In the previous sections we have studied the spherical lenses which are symmetric
with respect to rotation around the optical axes. Now we will study other quadratic
surfaces through which the beams propagate following an LCT description. Indeed,
instead considering the paraboloid of revolution (paraxial approximation of a
spherical surface) we may analyze the elliptic or hyperbolic paraboloids. For
example, we can assume that one of the lens surfaces is plane and the other one
is represented by an elliptical or hyperbolic paraboloid described by

z � x2

2Rx
� y2

2Ry
D 0: (5.74)

The elliptical or hyperbolic cases are obtained when Rx=Ry is positive or negative,
respectively. Following similar steps as in the previous subsection it can be
shown that the ray transformation matrix of this type of lenses, in the thin lens
approximation, is given by

T D
�

I 0
C I

�
; (5.75)

where submatrix C is not scalar but diagonal:

C D �
"

f�1
x 0

0 f�1
y

#
: (5.76)

Here the focal lengths are fx;y D Rx;y=.nl � 1/ where remember that nl is the
refraction index of the lens.

Correspondingly, the phase modulation of the complex field amplitude of the
beam propagating through the lens is described by elliptical (fx=fy > 0) or
hyperbolic (fx=fy < 0) functions

fo.r; 0/ D fi.r; 0/ exp

�
�i

k0
2

�
x2

fx
C y2

fy

��
: (5.77)

One special case of significant relevance is when Ry; fy ! 1, which describes
a cylindrical lens that modulates the phase only in the x direction. Notice that a
general elliptical or hyperbolic lens can be represented as a superposition of two
cylindrical ones.

Ideally, a cascade of thin lenses can be considered as an optical element which
can also be treated as a thin lens. Let us assume that all the cascade elements are
centered with respect to the optical axis, but every element can have a different
orientation of its transversal principal axis in the XY plane. If a cylindrical lens
is rotated at angle � with respect to the X axis, the corresponding submatrix C is
expressed as (see [26, 77, 89]):
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C D
�

cos� sin�
� sin� cos�

� �
0 0

0 �fy�1

� �
cos� � sin�
sin� cos�

�
D �f�1

y

�
sin2 � sin� cos�

sin� cos� cos2 �

�
:

(5.78)

Useful optical elements are obtained when several cylindrical lenses are assembled
in such a way that their transversal axes are rotated one with respect to another.
In the general case the lens can be composed by the series of m cylindrical lenses
of focal distance fi oriented according to the angles �i, where i D 1; : : : ; m. The
ray transformation matrix associated with this generalized lens is described by the
Eq. (5.75) whose symmetric submatrix C is defined by

C D
�

cxx cxy

cxy cyy

�
D �1

2

�Pm
iD1 f�1

i .1C cos 2�i/
Pm

iD1 f�1
i sin 2�iPm

iD1 f�1
i sin 2�i

Pm
iD1 f�1

i .1 � cos 2�i/

�
: (5.79)

The previous result has been obtained applying the ray transformation matrix
multiplication law, from where it is easy to obtain that for the cylindrical lens
cascade system C D Cm C � � � C C2 C C1, being Ci the submatrix associated
with the i-th rotated cylindrical lens. One example is a spherical lens, which can be
represented as a superposition of two cylindrical lenses with equal focal distances,
f1 D f2, whose principal axes are orthogonal, �1 D �2 C �=2.

5.3.1.4 Thin Lens from Wave Point of View

The phase modulation associated with the action of a generalized lens is
expressed by:

fo.r; z/ D fi.r; z/ exp

�
i
k0
2

�
cxxx2 C 2cxyxy C cyyy2

��
; (5.80)

where the cij coefficients are the submatrix C elements (see Eq. (5.79)). A gener-
alized lens composed by a pair of two identical convergent cylindrical lenses is
displayed in Fig. 5.4(a). The phase distribution associated with it is displayed for
different orientation of the lens principal axes: Fig. 5.4(b) 90ı and (c) 45ı. As an
example of hyperbolical lens composed by convergent and divergent cylindrical
lenses of the same focal length modulus, jf1j D jf2j is displayed in Fig. 5.4(d).
The phase distribution associated with such hyperbolical lens is shown for the lens-
rotation configurations: Fig. 5.4(e) 90ı and (f) 45ı.

5.3.2 Mirrors

The reflection from quadratic surfaces can also be described by an LCT. In order to
find the corresponding ray transformation matrix we will use the same notations and
approximations which were applied when the ray refraction at the spherical surface
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Fig. 5.4 (a) Generalized lens assembled as a set of two identical convergent cylindrical lenses
rotated respect the X axis the angles �1 and �2. Phase distribution associated with the assemble for
the case (b) �1 D �=2, �2 D 0 and (c) �1 D �=4 , �2 D 0. (d) Generalized lens assembled as a set
of two cylindrical lenses, one divergent and one convergent, in the same situation as in (a). Phase
distribution associated with the assemble for the case (e) �1 D �=2, �2 D 0 and (f) �1 D �=4,
�2 D 0. In these examples the focal lengths of the cylindrical lenses are the same, f D jf1j D jf2j

has been studied (see Sect. 5.3.1). Taking into account that the reflection inverts
the sign of the z component of the ray vector qz.o/ D �qz.i/, and that no D ni the
Eq. (5.58) is transformed into the law of reflection

si � so D 2N; (5.81)

where si and so are the unitary vectors of the incident and reflected ray. The constant
h in this case is given by h D qz.i/ � qz.o/ D 2qz.i/ � 2ni. It is easy to prove that the
ray reflection matrix can be obtained from the ray refraction matrix, Eq. (5.61) by
substitution .no � ni/ into 2ni

T D
�

I 0
2ni
R I I

�
: (5.82)

Notice that the case R ! 1 corresponds to the plane mirror.
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Similarly to the refracting surfaces, the reflecting surfaces can also be made in
the form of elliptical and hyperbolic paraboloids or cylinders. Therefore, a general
quadratic mirror reflection matrix has an identical form to the generalized lens
matrix, Eq. (5.75), associated with the corresponding phase modulation function,
Eq. (5.80). Nevertheless, we have to take into account that the reflection always
inverts the direction of the beam propagation along axes z. The quadratic surface
mirrors play an important role in optics, specially in the technology related with
resonators [63].

5.3.3 Programmable Optical Elements Working as Lenses
and Mirrors

Relevant applications in optics demand setups whose parameters can be changed
almost in real time. Programmable spatial light modulator devices (SLMs) are often
used in such setups. In particular they can work as dynamic phase modulating
optical element, as a thin lens or mirror.

There exist several technologies in which the SLMs are based. A liquid crystal
display SLM is one of the most used. Here we consider, as an example, pixelated
SLM based on the LCOS (liquid crystal on silicon chip) technology because it offers
important advantages such as high spatial resolution (e.g., 1920�1080 pixels, with a
pixel size about 8�m), compact design, versatility, and an affordable cost. This type
of SLMs can electronically address a digital or analogical signal via a conventional
PC, which makes easier its implementation in complex optical setups.

The signal to be implemented in the SLM can be sent as an image that represents
the desired phase modulation. For instance, if we want to implement a generalized
thin lens in the SLM, the signal to be sent to the SLM is given by the argument
of the lens phase modulation function: arg Œ�.x; y/� D k0

2

�
cxxx2 C 2cxyxy C cyyy2

�
.

In general an LCOS-SLM device modulates the phase of an incident (linear
polarized and monochromatic) beam up to one wavelength of phase shift (thus
up to 2�), which is quantized into N levels (often N D 256). This digital
image of the signal mod.arg Œ�.x; y/� ; 2�/ is real-time addressed into the pixelated
SLM device, which displays it as the phase-only modulation function �.x; y/ D
exp

�
i k0
2

	
cxxx2 C 2cxyxy C cyyy2


�
. This kind of programmable SLM device can

modify the displayed phase signal at video rate value, about 30 frames per second
(fps). For instance, it is possible to implement a temporal varifocal lens whose focal
length varies in time at 30 fps.

The pixelated structure of the SLM display produces some drawbacks, which
have to be mentioned. In particular, the pixelated structure itself works as a
diffraction grating that modulates and splits the input beam into several spatially
multiplexed signals. The true modulated signal can be separated from the other ones,
considered as an additive noise, by spatial filtering. For this task a well-known 4-f
setup [55] that consists in two glass-type spherical lenses working as a telescope is
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usually applied. The beam focused in the back focal plane of the first lens (Fourier
plane) is filtered using an aperture or iris diaphragm. From this filtered Fourier
spectrum the signal is properly reconstructed by using the second lens of the 4-f
setup. For successful filtering of a linear carrier phase 'c D 2�.u0x C v0y/ is added
into the digital signal, mod.�.x; y/C 'c; 2�/ in order to isolate the component of
the Fourier spectrum associated with the signal. The values of the spatial frequency
u0 and v0 are limited by the pixel size of the SLM. Another important drawback
is the energy lost due to the diffraction from the pixelated structure itself and the
corresponding filtering process.

The pixel size, ı, of an SLM display limits the sampling of the signal to be
addressed. Indeed, according to the Nyquist–Shannon sampling theorem, only the
signals with a maximum spatial frequency value given by 1=2ı can be correctly
sampled by the SLM display. This is an important fact because it limits the minimum
value of the focal length and the effective pupil diameter of the lens that the SLM
can address. Notice that a digital lens behaves as a discrete Fresnel lens according
to mod.arg Œ�.x; y/� ; 2�/ when implemented into the pixelated SLM. Only the
Fresnel lens zones with a size higher than 2ı are correctly displayed into the SLM.
Since the Fresnel zones far away from the lens center get thinner, the effective
lens pupil diameter is smaller as the focal length decreases. This drawback can be
minimized by using SLMs which provide a wider range of phase-shift modulation,
above the conventional 2� one.

Other programmable SLM devices such as deformable mirrors can implement
the elliptical or hyperbolical mirrors but they neither can address short focal lengths
because of the insufficient deformation (curvature) reachable by their membrane.
In addition, they are less versatile and much more expensive than the LCOS-
SLM devices. Nevertheless, a deformable mirror can change its phase modulation
functions faster than the LCOS-SLM devices (higher frames per second) without the
pixelated structure, and, thus, with higher light efficiency. Besides, the deformable
mirror is polarization independent and it does not suffer from chromatic aberration
because it works in reflection geometry. This fact is very important in relevant
optical applications such as imaging and beam characterization.

Regardless of their differences, both SLM devices have a similar active area with
a diameter about 10–20 mm and both can work in the visible and near infrared
ranges. The deformable mirror technology is often used as an adaptive optics for
advanced wavefront control within vision science and astronomical imaging, in
which compensation of spatial aberrations of the light beam is involved, while the
LCOS-SLM technology has found wider application in fields such as imaging, laser
beam shaping, and image processing.

5.3.4 Composite Systems

In the previous subsections we have found that beam propagation through the
homogeneous and weakly inhomogeneous quadratic GRIN media, and the action of
various optical elements such as the spherical, parabolical, and hyperbolical lenses
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and mirrors are described in paraxial approximation by certain LCT: Fresnel trans-
formation, fractional FT and quadratic phase modulation. Here we show following
the [74, 75] that the combination of these basic systems allows constructing one
corresponding to the LCT in more general form. The ray transformation matrix
formalism is used throughout since it significantly simplifies the system design for
the realization of a certain LCT [82]. We underline that, since the LCT description
of the basic systems is only valid in paraxial approximation, these assumptions are
kept for the composite system, which, for that reason, are called first-order optical
systems. Other common names are Gaussian or paraxial systems.

In optics, apart from the imaging systems described by the imager transform the
phase-space rotators (see [26]) are widely used for information processing tasks. We
remind that the Fourier transformer, which allows performing the filtering operation,
belongs to this class. The growing interest to the application of the fractional
FT [70, 78, 79] and gyrator transform [83, 84, 93] requires design a system with
tunable transformation parameters. Here we discuss only general approach for the
construction of such systems. The optical implementation of the LCTs is considered
in detail in [65].

It has been shown in [26] that the LCT in the most general form is characterized
by a 4�4 symplectic matrix with ten free parameters. As we have seen, the matrices
associated with the LCTs describing the basic optical elements correspond to the
ray transformation matrices. It is easy to prove that all of them are symplectic with
determinant equals one (see Table 5.1). From the cascadability property of the LCT
(see [26, Sect. 3.1.1]) it follows that we can design an optical system for its realiza-
tion using as bricks the basic elements: homogeneous medium sections, quadratic
GRIN-medium sections, lenses, mirrors, etc. Then the ray transformation matrix
T describing the composite system is described as a product of the corresponding
matrices Tn of the N basic elements .n D 1; 2; : : : ;N/, arranged in the reverse order
of element appearance in the cascade

T D TNTN�1 : : :T1:

The relation between the complex field amplitude at the input and output planes of
the composed system is given in the form of the LCT [42, 66, 71, 106, 107]

fo.ro/ D L .T/fi.ri/ D 	�1
0 .det i B/�1=2

�
Z

exp

�
i

k0
2
.r t

oDB�1ro � 2r t
i B�1ro C r t

i B�1Ari/

�
fi.ri/ dri ;

(5.83)

with det B ¤ 0 and

fo.r/ D L .T/fi.r/ D 	�1
0 j det Aj�1=2 exp

�
i

k0
2

r tCA�1r
�

fi.A�1r/ ; (5.84)
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Table 5.1 Summary of ray transformation matrices of basic first-order optical systems

System Transformation matrix

Propagation in free-space or in a homogeneous medium
"

I z
n I

0 I

#

(propagation distance z and constant refractive index n)

Reflection from a spherical surface
"

I 0
2n
R I I

#

(planar mirror if R ! 1)

Transmission through a thin spherical lens
"

I 0
� 1

f I I

#

(focal length f given by Eq. (5.72))

Transmission through a thin generalized lens
"

I 0
C I

#

(submatrix C is symmetric, Eq. (5.79))

Transmission through a graded index selfoc media
"

cos .wz/ I 1
n0w sin .wz/ I

�n0w sin .wz/ I cos .wz/ I

#

(z is the length of the inhomogeneous medium of refractive
index n D n0

p
1� w2r2, ray trajectories r.z/ inside it are

periodical with a frequency w)

for the limiting case B ) 0, for which ro ) Ari. The widely used composite
systems can be divided into two classes: imagers and phase-space rotators (PhSRs)
described correspondingly by the ray transformation matrices

TImager D
�

A 0
C A�1

�
;TPhSR D

�
A sX

�s�1X A

�
;

where s is a dimension normalization constant. According to the modified Iwasawa
decomposition (see [26, 92, 94, 96]) any optical system can be constructed (but
not in the most efficient way) as a cascade of phase-space rotator and imager.
The imagers are used for image formation and describe (of course, in paraxial
approximation) the functioning of microscope and telescope. The phase-space
rotators are mostly applied for optical signal processing tasks, that include signal
analysis, filtering and correlation operations.

As it has been shown in [26] the key phase-space rotator is the separable
fractional FT. We have seen that the beam propagation in the quadratic GRIN
medium yields in the paraxial approximation to the fractional FT relation between
its complex field amplitudes at the input and output planes. The use of such systems
may have benefits for the LCTs implementation in photonics. Nevertheless, their
application for performing other LCTs by introducing additional phase modulating
elements as well as the modification of the transformation parameter is rather
difficult. Then more often the phase-space rotator system consists of homogeneous
medium sections and phase modulators (thin lenses or mirrors). This is the case
of typical schemes for optical Fourier transformer (see [26, Fig. 2.1]). Certain
conditions, such as minimal number of elements, easier change of transformation
parameter, etc., have to be satisfied in order to design a system optimal for a given
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LCT realization. An example of the construction of a versatile phase-space rotator
system, which can be applied for the beam characterization (see Sects. 5.5 and 5.6)
is discussed in [65, 82, 85].

5.4 Completely and Partially Coherent Light

In the previous sections we have considered the propagation of the monochromatic
spatially coherent light through the first-order optical systems, here we turn to the
analysis of the partially coherent light.

5.4.1 Description of Partially Coherent Light

The models of spatially coherent and incoherent light, which are often used for
the description of imaging systems [55], are two extreme cases of the partially
coherent light. In spite of these models significantly simplify the solution of different
problems, they cannot always be applied. Moreover, several imaging modalities are
benefited from or based on the use of the partially coherent light [15, 36, 51, 54].
Statistical phenomena of light emission and detection, local fluctuations of the
refractive index of the medium where light propagates or surface from which
it reflects yield to the partially coherent light model. The theory of the optical
coherence can be found in the seminal books [36, 54, 68] among many others.

5.4.1.1 Mutual Intensity

Here we consider the statistical description of the linearly polarized monochromatic
light using again the paraxial wave approximation. Taking into account the different
temporal fluctuations of the phase in each point of space [36, 50, 56], we now cannot
describe the spatial structure of the optical field as a complex function of r as we
did in the previous sections, f .r/ D a.r/ exp Œi'.r/� : In this case the wide-sense
statistically stationary field is characterized by the two-point correlation function,
known as mutual intensity (MI)

�f .r1; r2/ D hf .r1/f �.r2/i ; (5.85)

which is a function of four variables: the vectors r1 and r2. Here the brackets h�i
stand for ensemble averaging that coincides with time averaging for the ergodic
processes, and the asterisk � stands for the complex conjugation operation.

The MI describes the correlation between the optical field oscillations at two
points r1 and r2. It is a non-negative definite Hermitian function of r1 and r2 [18,
67], i.e.,
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�f .r1; r2/ D � �
f .r2; r1/ and

Z
g.r1/ �f .r1; r2/ g�.r2/ dr1 dr2 � 0 (5.86)

for any smooth function g.r/.
The MI can be also written in the form, known as Mercer or coherent mode

expansion,

�f .r1; r2/ D
1X

nD0
ƒnfn.r1/f �

n .r2/; (5.87)

where the eigenvalues of the MI, ƒn, are real and non-negative and the eigenfunc-
tions fn.r/ form the complete orthonormal set [68]. The search of the eigenfunctions
of the MI which satisfy the relation

Z
�f .r1; r2/fn.r2/dr2 D ƒnfn.r1/;

is not easy, but their knowledge simplifies the calculation of the evolution of the MI
during field propagation.

If r1 D r2 D r the MI reduces to the intensity distribution I.r/ D �f .r; r/ DD
jf .r/j2

E
D P1

nD0 ƒn jf .r/j2, that explains the name “mutual intensity.” For

quantitative estimation of field correlation between two points r1 and r2 the complex
degree of spatial coherence is applied


.r1; r2/ D �f .r1; r2/p
�f .r1; r1/�f .r2; r2/

;

whose modulus equals one for the completely coherent light and it is proportional
to the Dirac delta function ı.r1 � r2/ for the incoherent case.

Notice that the two-dimensional (2D) problem of the description of the coherent
paraxial field is converted to the 4D one, when the partially coherent light model
has to be applied. The determination of the entire MI requires the application of
interferometric or tomographic techniques [36, 39, 49, 81]. The tomographic method
based on the registration and processing of the diffraction pattern obtained after the
beam propagation through the first-order optical systems is considered in Sect. 5.5.

For coherent fields, the brackets in the Eq. (5.85) can be omitted and MI is
transformed into the complex-amplitude product �f .r1; r2/ D f .r1/f �.r2/. The
incoherent light is described by the MI given by

�f .r1; r2/ D p.r1/ ı.r1 � r2/; (5.88)

where ı.r/ is the Dirac delta function and p.r1/ is proportional to the beam intensity
distribution I.r1/.
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The complexity of the MI reduces if it is separable in a certain coordinate system.
Thus, the so-called quasi-stationary light is described by the MI given by

�f .r1; r2/ D I..r1 � r2/=2/
.r1 � r2/: (5.89)

Here I.r/ is a real non-negative function corresponding to the intensity distribution
and 
.r/ is an Hermitian dimensionless function, 
.r/ D 
�.�r/, such that
j
.r/j � 
.0/ D 1:

Another important case corresponds to the field separable in the Cartesian
coordinates given by

�f .r1; r2/ D �fx.x1; x2/�fy.y1; y2/; (5.90)

where �f� .�1; �2/ D hf .�1/f �.�2/i and the problem of the 2D beam description
is reduced to the characterization of two 1D signals. Finally, we mention the
rotationally symmetric beams whose MI depends on only three variables written
in the polar coordinates as

Q�f .r1; �1; r2; �2/ D Q�f .r1; �1 C �0; r2; �2 C �0/; (5.91)

where x1;2 D r1;2 cos �1;2 and y1;2 D r1;2 sin �1;2: The use of these simplified but
rather realistic models of partially coherent light makes possible the experimental
measurements of the MI as well as the numerical simulation of its evolution during
beam propagation.

In many practical applications the partially coherent beams are described by
Gaussian functions. The MI of the most general Gaussian beam with ten degrees of
freedom, which is known as Twisted Gaussian Schell-Model (TGSM), is expressed
by three real 2 � 2 submatrices G0, G1, and H, in the form

� .r1; r2/ D 2
p

det G1 exp

�
�1
2
�.r1 � r2/

tG0.r1 � r2/
�

� exp


��rt

1

�
G1 � i

1

2
.H C Ht/

�
r1

�

� exp


��rt

2

�
G1 C i

1

2
.H C Ht/

�
r2

�

� exp
˚�i�rt

1.H � Ht/r2
�
; (5.92)

where the matrices G0 and G1 are positive definite and symmetric. Note that the
asymmetry of the matrix H is a measure for the twist or vorticity [22, 48, 91] of the
Gaussian light. When H is symmetric, i.e., H � Ht D 0, the general Gaussian light
reduces to zero-twist Gaussian Schell-model light with nine degrees of freedom
[57, 86]. In that case, the beam can be considered as spatially stationary with a
Gaussian power spectrum 2

p
det G1 exp

�� 1
2
�.r1 � r2/tG0.r1 � r2/

�
, modulated
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by a Gaussian function exp Œ��rt.G1 � iH/r�. Other simplifications lead to the
rotationally invariant case, i.e., H D h I, G0 D g0I, G1 D g1I, and the completely
coherent case, i.e., H D Ht, G0 D 0.

5.4.1.2 Wigner Distribution

Instead of the pure space description of a stochastic process by means of its
MI, we can describe an optical signal in space and spatial-frequency coordinates
simultaneously using the Wigner distribution function (WD), discussed in [12, 19,
26, 41, 103, 104].

The WD of an optical signal, Wf .r;p/, can be defined in terms of its MI:

Wf .r;p/D
Z
�f

�
r C 1

2
r0; r � 1

2
r0
�

exp.�i2�ptr0/ dr0: (5.93)

Here r is a position vector and p D q=	0 D .u; v/t is a spatial frequency vector,
where q is related to the direction of the ray propagation as it has been explained
in Sect. 5.2. Since the WD is the FT of a Hermitian function, Eq. (5.86), it is a real
function, though not always positive. Notice that the MI of the beam can be obtained
directly from the WD using the inverse FT:

�f .r1; r2/ D
Z

Wf

�
1

2
.r1 C r2/ ;p

�
exp

�
i2�pt .r1 � r2/

�
dp: (5.94)

For a coherent beam, its phase, apart from an additive constant, can be recovered
from the MI. In particular, if rı is a point in which the signal carries energy, i.e.,
f .rı/ ¤ 0, the phase can be obtained from

' .r/C 'ı D arg
�
�f .r; rı/

�
; (5.95)

where 'ı is an unknown constant.
The WD provides a unified description of completely and partially coherent

optical beams in phase-space formed by position and spatial frequency coordinates.
Comparing with the ray picture in geometrical optics the WD gives the next order
approximation of beam representation in space-frequency space which takes into
account the interference phenomena. The WD can be interpreted as the local power
distribution of the beam as a function of position-spatial frequency, in spite of not
being completely correct since the WD can take negative values. This description is
particularly useful for the analysis of the spatially non-stationary optical fields.
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The integral of the WD over the frequency variable,

Z
Wf .r;p/ dp D �f .r; r/; (5.96)

corresponds to the beam intensity distribution, whereas the integral over the space
variable yields its directional power spectrum N�f .p;p/:

Z
Wf .r;p/ dr D N�f .p;p/; (5.97)

where N�f .p1;p2/ is an FT of the �f .r1; r2/ with respect to the vectors r1 and r2.
Both �f .r; r/ and N�f .p;p/ are non-negative and can be easily measured as we will
see in the next section. The beam power, E, is given by integration of the WD
over the entire space-frequency domain, E D R

W.r;p/ dr dp D R
� .r; r/ dr DR N� .p;p/ dp.

The mapping of the MI into the WD allows working with a real function but for
the 2D optical field it is again a function of four variables that makes difficult its
graphical representation, experimental recovery, and numerical manipulation. The
hypothesis about the field spatial structure yielding the simplified form of the MI
also reduces the complexity of the corresponding WD. Indeed, the knowledge of
the MI coherent mode expansion, Eq. (5.87) allows expressing the WD as a sum of
the WDs of the corresponding modes, Wfn.r;p/;

Wf .r;p/ D
1X

nD0
ƒnWfn.r;p/: (5.98)

We recall that the modes are orthogonal and therefore do not interfere between each
other.

The WD for the quasi-homogeneous light, Eq. (5.89) has the form

Wf .r;p/ D I.r/ N
.p/; (5.99)

where N
.p/ is the FT of 
.r/. Taking into account Eq. (5.97) this kind of light
is completely characterized by its intensity distribution and directional power
spectrum. In the case of the incoherent light the WD depends only on position vector
r, thus Wf .r;p/ D N
0I.r/; where N
0 is a dimensional constant. In other words, the
light is radiated equally in all directions with intensity distribution I.r/.

It is easy to prove that the WD for the beams separable in the Cartesian
coordinates, Eq. (5.90), is also separable as

Wf .r;p/ D Wfx.x; u/Wfy.y; v/: (5.100)
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Table 5.2 MI and WD of some simple 2D example signals f .r/

Signal type f .r/ �f .r1; r2/ Wf .r;p/

Point source ı .r � r0/ ı .r1 � r0/ ı .r2 � r0/ ı .r � r0/

Plane wave exp
	
i2�pt

0r



exp
�
i2�pt

0 .r1 � r2/
�

ı .p � p0/

Spherical wave exp .i�artr/ exp
�
i�a

	
rt
1r1 � rt

2r2

�

ı .p � ar/

While the rotationally symmetrical beams, defined by Eq. (5.91), has the WD that
being expressed in the polar coordinates (x D r cos �r y D r sin �r, u D p cos �p

v D p sin �p) satisfies the following relation:

QWf
	
r; �r; p; �p


 D QWf
	
r; �r C �0; p; �p C �0



: (5.101)

Finally, regarding the partially coherent light, we mention the WD for the
TGSM beam [21, 95], whose MI is given by Eq. (5.92)

W.r;p/ D 4

s
det G1

det G2

exp

 
�2�

�
r
p

�t �
G1 C HG�1

2 Ht �HG�1
2

�G�1
2 Ht G�1

2

� �
r
p

�!
; (5.102)

where we have introduced the real and positive definite symmetric 2 � 2 matrix
G2 D G0 C G1.

The WDs of the coherent fields, often used as a simple but rather academic
models of light, are gathered in Table 5.2.

The two-dimensional HG beam is separable in Cartesian coordinates as

HGm;n
	
rI wx;wy


 � HGm .xI wx/HGn
	
yI wy



; (5.103)

where

HGm;n
	
rI wx;wy


 D p
2

Hm

�p
2�

x

wx

�
Hn

�p
2�

y

wy

�

p
2mmŠwx2nnŠwy

exp

"
��

 
x2

w2x
C y2

w2y

!#
:

(5.104)
Its WD, according to (see [26, 90]), can be written as

W .r;p/ D 4 .�1/mCn exp

"
�2�

 
x2

w2x
C y2

w2y
C w2xu2 C w2yv

2

!#

� Lm

�
4�

�
x2

w2x
C w2xu2

��
Ln

"
4�

 
y2

w2y
C w2yv

!#
: (5.105)
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Fig. 5.5 The Wigner distribution of a point source (a) with x0 D 1mm, a plane wave (b) with
u0 D 0:8mm�1, a spherical wave (c) with a D 1:4mm�2, and the 1D Hermite Gaussian beam
HG4.x=w/ (d) with w D 0:73mm. Note that the Wigner distribution of the last beam takes positive
and negative values

Taking advantage of that the considered examples correspond to signals separable
in Cartesian coordinates, we represent the WD for their x-part in Fig. 5.5.

5.4.2 Partially Coherent Beam Propagation Through
First-Order Optical Systems

Up to now, we have defined the beam at a given plane, let us say input plane. In
order to describe it in other planes, the information about the system (or medium) in
which it propagates is required. Note that we can also formulate the inverse problem:
To recover the parameters of the medium or the system from the knowledge of the
beam properties in two different planes, these two tasks are connected.

Let us consider a beam propagating through a deterministic system. Such a
system is characterized by its coherent point-spread function (PSF) h.ro; ri/, which
defines the response of the system to an impulse stimulus (a Dirac delta function).
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This means that if the input of the system is a Dirac delta function, ı.ro � ri/, the
output will be the PSF of the system, h.ri; ro/. Using that fi.r/ D R

ı.r�ri/ fi.ri/ dri

holds for the completely coherent case, we obtain a simple relation between the
input signal fi .ri/ and the output signal fo .ro/ via the PSF of the system:

fo.ro/ D
Z

h.ri; ro/ fi.ri/ dri: (5.106)

Similarly, the MI at the input plane, �i.r1i; r2i/, is transformed into the MI at the
output plane, �o.r1o; r2o/, according to

�o.r1o; r2o/ D
Z

h.r1i; r1o/ �i.r1i; r2i/ h�.r2i; r2o/ dr1i dr2i: (5.107)

The PSF of the first-order optical system is the kernel of the corresponding LCT,
Eq. (5.83). Therefore, the following expression

�o.r1o; r2o/ D exp
�
iko
	
rt
1oDB�1r1o � rt

2oDB�1r2o


=2
�

	20 det .iB/

�
Z

exp
�
iko
	
rt
1iB

�1Ar1i � rt
2iB

�1Ar2i

� 2rt
1iB

�1r1o C 2rt
2iB

�1r2o


=2
�

��i.r1i; r2i/ dr1i dr2i (5.108)

describes the MI evolution in this case.
In imaging systems the transformation of the MI can be reduced to a quadratic

phase term apart from an affine transformation of its coordinates (e.g., scaling,
rotation, etc.), as it follows:

�o.r1o; r2o/ D exp
�
ik0
	
rt
1oCA�1r1o � rt

2oCA�1r2o


=2
�

jdet .A/j �i.A�1r1o;A�1r2o/:

(5.109)

We observe that the MI and the complex degree of the spatial coherence are chang-
ing during beam propagation through the first-order optical system. Nevertheless, in
the case of coherent fields the modulus of the coherence degree j
.r1; r2/j remains
invariant.

As it has been shown in [26] the transformation of the WD for both cases is
written in a simple form that corresponds to an affine transformation of the phase
space coordinates. The relationship between the input WD, Wfi.r;p/, and the output
WD, Wfo.r;p/, of a beam that propagates through a first-order optical system is
given by

Wfo.Ar C 	0Bp; 	�1
0 Cr C Dp/ D Wfi.r;p/: (5.110)
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This relation underlines again the close connection between the ray and wave
phase-space field representations. It is easy to see that the beams separable in the
Cartesian coordinates remains separable during its propagation through the system
described by ray transformation matrix with diagonal A;B;C, and D. Similarly, the
rotationally symmetric beams preserve their symmetry if the submatrices are scalar.

In particular, Eq. (5.110) is helpful for the determination of the WD of the LG
modes defined by Eq. (5.55). It has been noted in [26] that the LG mode can
be obtained from the HG one by applying the gyrator transform. Then from the
expression for the WD of the HG mode, Eq. (5.105), we derive the WD of the LG
mode [90] preforming the corresponding rotation of the phase-space coordinates:

WLGmn .r;p/ D 4 .�1/mCn Lm

"
2�

 
x2

w2x
C y2

w2y
C u2w2x

Cv2w2y C 2xv
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� 2yu

wx

wy

!#
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x2
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w2y
C u2w2x C v2w2y � 2xv

wy

wx
C 2yu

wx

wy

!#

� exp

"
�2�

 
x2

w2x
C y2

w2y
C u2w2x C v2w2y

!#
: (5.111)

This approach of the WD calculation can be extended to another pair of the LCT
related completely or partially coherent beams with known expression of the WD
for one of them. We will further use it (see Sect. 5.6) for the determination of the
moments of the beam expanded in the different families of Gaussian functions.

5.4.2.1 Van Cittert–Zernike Theorem

We have underlined that a coherent beam remains coherent during its propagation
through any deterministic system and therefore through any first-order optical
system. Here we consider the propagation of an incoherent beam described by
the MI Eq. (5.88) through the first-order optical system. Substituting this particular
expression into Eq. (5.108) we find the MI at the output plane of the first-order
system

�fo.r1o; r2o/ D exp
�
ik0
	
rt
1oDB�1r1o � rt

2oDB�1r2o


=2
�

	20 det .iB/

�
Z

exp
��ik0rt

iB
�1 .r1o � r2o/

�
pi.ri/ dri: (5.112)
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This relation is known as van Cittert–Zernike theorem in honor of the scientists
(P.H. van Cittert and F. Zernike) who first formulated it for the case of propagation
in free space at distance z, described by the scalar submatrices D D I; B D zI:

We remark that the MI and the degree of spatial coherence change during
the propagation. Thus the propagation through a GRIN media yields to periodic
variation of these characteristics while the propagation in homogeneous media
provides the increasing of the coherence degree. For B ¤ 0 the MI at the output
plane is proportional to the FT of the intensity distribution of the incident incoherent
beam, apart from an affine coordinate transformation. Note that at the output plane
the modulus of the MI is stationary,

ˇ̌
�fo.r1o; r2o/

ˇ̌ D ˇ̌
�fo.r1o � r2o/

ˇ̌
, and the

intensity distribution �fo.ro; ro/ D Io is uniform. The last fact certainly does not
correspond to physical reality and it is a consequence of the use of Dirac delta
function for the description of incoherent light. From more rigorous consideration,
it follows that light is coherent at least in the area 	2 that brings to more realistic
approximation of the incoherent light. In that case the degree of coherence can be
represented by an extremely narrow Gaussian function. In spite of these details the
van Cittert–Zernike theorem is widely used for many applications. Here we mention
only some of them.

The thermal light sources (incandescent bulbs, gas discharge lamps, stars, etc.)
are rather accurate described by the incoherent light model. Nevertheless, for a
certain distance z from the plane source with a finite area a2, the light acquires a
certain degree of coherence which allows its description by a coherent model in
the area roughly estimated by A D .	z=a/2. Based on this fact, the phase contrast
techniques used for observation of weakly adsorbing specimens in optical and X-ray
microscopy have been established. We also have to mention the stellar Michelson
interferometer used in astronomy for the determination of the angular difference
between the stars or their size. It is based on the measurement of the degree of the
spatial coherence of light coming from the star which according to the Eq. (5.112)
is proportional to the FT of the intensity distribution and therefore to the size of the
source. As we will see in the next section, the beam coherence properties can be
estimated without an interferometer, but by acquisition of the intensity distributions
at the output planes of the appropriate first-order optical systems.

5.5 Phase Space Tomography

5.5.1 Fundamentals

As we have discussed, for the complete characterization of a monochromatic scalar
paraxial beam its MI, or complex field amplitude in the completely coherent case,
has to be identified. This task is important for the development of new imaging
techniques oriented to the extraction of quantitative information about the object
under study, which is encoded into the phase or statistical properties of the light
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propagated through or scattered from it. Here we consider the application of first-
order optical systems for characterization of partially coherent beams.

This problem is rather difficult because the partially coherent light is described
by functions of four variables (MI or WD). Moreover, these functions are not always
positive and therefore cannot be directly measured by light intensity detectors.
However, the measurable intensity distribution, see Eq. (5.96), corresponds to a
projection of the WD. Of course, one 2D projection is not enough for the recovery
of a 4D function (WD). A complete reconstruction of the WD can be achieved
from a proper set of projections. Such set can be acquired using phase-space rotator
setup. Indeed, the light propagation through first-order system described by a phase-
space rotator yields the rotation of the WD of the input beam (see [26]) and
therefore the output intensity distribution corresponds to a certain WD projection.
The optical phase-space rotator setup with tunable parameters allows registering a
set of different WD projections sufficient for the WD reconstruction. Then, applying
the inverse Radon transform to this projection set, the WD as well as the MI can be
recovered.

It has been mentioned [26] that any phase-space rotator can be expressed as a
separable fractional FT embedded into two image rotators, R.ˇ/F .�x; �y/R.˛/.
Since the action of the last image rotator, R.ˇ/, corresponds to the rotation of the
coordinate system at the detection plane, the phase-space rotator which can be used
for WD reconstruction is given in the form F .�x; �y/R.˛/. Taking into account that
the WD is a 4D function and the projections are 2D functions, only two additional
independent degrees of freedom are needed for the reconstruction. Thus, one of the
rotation parameters can be fixed. Usually ˛ D 0 is chosen, in which case the phase-
space rotator corresponds to the separable fractional FT.

Although the tomographic method for the WD reconstruction from its projections
was proposed almost 20 years ago [81], it has not been widely used for the
characterization of an arbitrary beam for two principal reasons: The lack of
robustness and easily controlled optical setup, both required for acquisition of
WD projections and the processing of a huge volume of data to obtain the WD.
While the first problem can be solved using the programmable setup described
in [85], which allows for acquisition of projections at video rate, the processing
of the obtained data requires significant computational resources unavailable in a
conventional laboratory.

To recover the MI of a beam without any information about its statistical
properties and partially overcome the computational problems mentioned above,
we may use a set of WD projections different from the fractional FT power spectra.
It has been shown in [40] that using the phase-space rotator F .�x; �y/R.˛/, where
�x is fixed (for example, �x D 0) and the other two angles �y and ˛ change
independently in a �-interval, we are able to perform both the projection acquisition
and processing tasks in parallel. The recovering of the MI for pairs of points
belonging to lines parallel to the y axis only requires the measurement of the WD
projections corresponding to ˛ D 0. Measuring all projections for variable �y

corresponding to a certain value of ˛, we can start processing the information while
measuring the next projection subset (corresponding to another value of ˛).
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Certain hypothesis about the beam symmetry and its coherence state can signifi-
cantly simplify both the beam characterization process and the optical setup suitable
for the acquisition of the WD projection set. For instance, in the case of coherent
beams the problem is reduced to a phase retrieval problem which can be solved by
applying iterative algorithms similar to the Gerchberg–Saxton algorithm [47, 52], or
the propagation intensity equation [99]. In this case only several WD projections are
needed. The number and diversity of the projections used for phase recovery are key
factors to reach successful algorithm convergence and accurateness. Phase retrieval
techniques are considered in detail in [60]. In the case of partially coherent fields, the
simplest case corresponds to quasi-homogeneous fields, see Eq. (5.89). In this case
only two WD projections corresponding to Fourier conjugated planes are needed.
Indeed, by measuring the intensity distribution of the beam, the function I is easily
determined while at the Fourier plane the intensity distribution, according to the WD
rotation rule, yields the N
.r/. The reduced number of the WD projections is required
for the characterization of beam which is rotationally symmetric, Eqs. (5.91) and
(5.100), or separable in Cartesian coordinates Eqs. (5.90) and (5.101). The last case
is considered in detail in the next subsection.

5.5.2 WD Reconstruction for Beams Separable
in Cartesian Coordinates

Let us show that for complete characterization of beams, separable in Cartesian
coordinates, it is sufficient to measure the WD projections corresponding to the
symmetric (�x D �y D � ) or antisymmetric (�x D ��y D � ) fractional FT power
spectra for � running in a �-interval.

If the mutual intensity of the beam is separable with respect to the x and y
Cartesian coordinates, i.e. �f .x1; x2/ D �fx.x1; x2/�fy.y1; y2/, then its fractional FT
spectra, S

�x;�y

f .r/, are also separable:

S
�x;�y

f .r/ D �F�x ;�y .r; r/ D
“

�fx.x1; x2/K�x.x1; xI s/K�x.x2; xI s/dx1dx2

�
“

�fy.y1; y2/K�y.y1; yI s/K�y.y2; yI s/dy1dy2

D S�x
fx
.x/S

�y

fy
.y/: (5.113)

Here we have used the Eqs. (5.108) and (5.109) and the separability of the kernel
of the fractional FT, K�x;�y.ri; roI wx;wy/ D K�x.xi; xoI wx/K�y.yi; yoI wy/, where
K�� .�i; �oI w� / is given by Eq. (5.54) and for simplicity wx D wy D s: The parameter
s has a dimension of length whose value depends on the optical system. Since the
WD function of a separable field is separable: Wf .r;p/ D Wfx.x; u/Wfy.y; v/ we
consider the reconstruction of x-part of the beam.
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To reconstruct Wfx.x; u/, and therefore the corresponding MI part, �fx.x1; x2/,
the set of WD projections S�x

fx
.x/ for angles �x covering the interval Œ�0; �0 C ��

is required. These projections can be obtained by integrating the 2D fractional FT
spectra, S

�x;�y

f .r/, over the y coordinate. Indeed, using the Parseval theorem for the
one-dimensional fractional FT [79] we derive that

Z
S˛f� .�/d� D

Z
Sˇf� .�/d� D A� ; (5.114)

where A� is a constant. Then the equations

Z
S
�x;�y

f .r/dy D AyS�x
fx
.x/; (5.115)

and

“
Wfx.x; u/Wfy.y; v/dydv D AyWfx.x; u/ (5.116)

hold for any angle value �y. The Wfy.y; v/ and its projections satisfy analogous
relations. Therefore, the problem of the WD reconstruction is reduced to the one-
dimensional case. The rotation of the WD under the fractional FT is schematically
represented as:

�fx.x1; x2/ �! Wf .x; u/
# #

�F�x .x1; x2/ �! WF�x .x; u/ D Wf .x0; u0/;
(5.117)

where the coordinates x0 and u0 are given by

x0 D x cos �x � s2u sin �x;

u0 D s�2x sin �x C u cos �x: (5.118)

Then the squared modulus of the fractional FT, S�x
fx
.x/:

S�x
fx
.x/ D

D
jF�x.x/j2

E
D �F

�x
x
.x; x/ D

Z
Wfx.x

0; u0/du (5.119)

corresponds to the WD projection of the input signal, described by �fx .x1; x2/, at
the plane associated with the angle �x.

The set of these projections for angles in a �-interval, �x 2 Œ�0; �0 C ��, is
called as Radon–Wigner transform. The WD associated with the x coordinate can
be found by applying the inverse Radon transform, or other algorithms often used
in tomography, to the one-dimensional Radon–Wigner transform
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S�x
x .x/ D

Z
Wfx.x cos �x � s2u sin �x; s

�2x sin �x C u cos �x/du: (5.120)

Following the same procedure the Wfy.y; v/ can be obtained. The product of
Wfx.x; u/ and Wfy.y; v/ corresponds to the WD of the original 2D separable beam.

Note that the Parseval expression, Eq. (5.114), can also be used to test the field
separability. In fact, only fields separable in Cartesian coordinates satisfy the relation

Z
S
�x;�y

f .r/dy
Z

S
�x;�y

f .r/dx D S
�x;�y

f .r/
Z

S
�x;�y

f .r/dxdy: (5.121)

Since the only requirement for the ranges of both angles �x and �y is to
cover a �-interval (not necessarily independently), the optical setup performing
the symmetric (�x D �y D � ) or antisymmetric (�x D ��y D � ) fractional FT
can be applied for the experimental realization of this phase-space tomography
method. In particular, we can use an optical setup comprising four convergent
cylindrical lenses suitable for the measurement of the antisymmetric fractional FT
power spectra, discussed in [39, 65]. Using the programmable setup for the WD
projections acquisition (see [65]) both antisymmetric and symmetric fractional FT
power spectra can be measured for the WD recovery.

As an example, let us consider the reconstruction of the WD of the coherent beam
given by the complex field amplitude proportional to

HG0;2

	
rI wx;wy


C 5HG1;2

	
rI wx;wy



; (5.122)

with wx D wy D 0:73mm, whose intensity distribution and phase are displayed in
Fig. 5.6. Its symmetric fractional FT power spectra, i.e. the intensity distributions at
the output of the setup, for several angles and the corresponding profiles obtained
by their integration in the x or y axes are shown in Fig. 5.7. The x-projected profiles
for the angles � 2 Œ�=2; 3�=2� are gathered in the 2D function S�fx.x/ while the
collection of the y-projected profiles yields S�fy.y/. These functions are the Radon–
Wigner transform of the x and y components of the separable beam, respectively.
They are displayed in Fig. 5.8(a), (d). The WDs of such 1D signals are reconstructed
by applying the inverse Radon transform [see Fig. 5.8(b)–(c) and (e)–(f)]. The
quality of the reconstruction depends on both the number of used projections and
the signal complexity, apart from the accuracy of the optical setup. In Fig. 5.8 the
WDs of the x and y parts of the beam reconstructed from 10 to 20 projections are
shown. It is easy to see that the quality of the reconstruction significantly increases
with the number of used projections. It proves the need of a setup for fast generation
and acquisition of WD projections, for example the one mentioned in [65, 85].

Notice that the WD projections associated with the antisymmetric fractional FT
can be also used for complete characterization of the rotationally symmetric beams
defined by the Eqs. (5.91) and (5.101) as it follows from the approach discussed
in [6].
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Fig. 5.6 Intensity (a) and phase (b) distributions of the beam HG0;2

	
rI wx;wy


 C
5HG1;2

	
rI wx;wy



with wx D wy D 0:73mm

dc

ba

Fig. 5.7 Symmetric fractional power spectra for the beam HG0;2

	
rI wx;wy


C5HG1;2

	
rI wx;wy



;

with wx D wy D 0:73mm for the angle � D 0ı (a), � D 30ı (b), � D 60ı (c), and � D 90ı (d).
The profiles obtaining by integrating the power spectra in the x and y directions are presented in
the vertical and horizontal 1D plots, respectively

We conclude that the phase space rotators are important tools for the analysis
of the paraxial beams. The process of the recovery of beam characteristics can be
optimized if an additional information about the beam is provided.
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Fig. 5.8 Radon–Wigner transform (a) and Wigner distribution reconstructed from 10 (b) and
20 (c) projections for the x part of beam described in Eq. (5.122), i.e. the 1D signal proportional
to HG0.xI wx/ C 5HG1.xI wx/ with wx D 0:73mm. Radon–Wigner transform (d) and Wigner
distribution reconstructed from 10 (e) and 20 (f) projections for the y part of beam described in
Eq. (5.122), i.e. the 1D signal 6HG2 with wy D 0:73mm

5.6 WD Moments for Beam Characterization

5.6.1 Definition and Measurement of WD Moments

The rather complicated procedure of beam characterization described in the pre-
vious section can be simplified if only the global beam properties are of interest.
For this purpose the moments of the WD are used. The moment 
p;q;r;t of the WD,
normalized with respect to the beam power E D R

W.r;p/ dr dp D R
I.r/ dr, is

defined by


p;q;r;t E D
Z

W.x; y; u; v/ xp uq yr vt dr dp (5.123)

D
Z

xpyr

.4� i/qCt

�
@

@x1
� @

@x2

�q �
@

@y1
� @

@y2

�t

� .x1; x2I y1; y2/

ˇ̌
ˇ̌
x1Dx2Dx
y1Dy2Dy

dr;

where the integers p, q, r, t � 0. The moments are organized in groups, or orders,
according to the sum of its indices: n D p C q C r C t. For two-dimensional signals
there are four moments of first order, ten moments of second order, twenty moments
of third order, etc. In general, there are N D .1=6/.n C 1/.n C 2/.n C 3/ moments
of n-th order. The more WD moments are known the more complete information of
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the beam is obtained. As in the case of phase space tomography, the experimental
determination of the moments is based on the measurements of the WD projections.

Some of the WD moments can be determined directly from measurements of the
intensity distribution in the image plane (q D t D 0), � .r; r/, according to


p;0;r;0 E D
Z

W.x; y; u; v/ xp yr dr dp D
Z
� .r; r/ xp yr dr; (5.124)

while for the calculation of the other ones, we have to exploit again the affine
transformation of the WD in phase-space during beam propagation through first-
order optical systems.

For simplicity, here we consider the systems separable with respect to the x and
y coordinates, that are described by the ray transformation matrix

T D
�

A B
C D

�
D

2
664

ax 0 s�1bx 0

0 ay 0 s�1by

scx 0 dx 0

0 scy 0 dy

3
775 : (5.125)

Taking into account the law of the WD evolution in a first-order optical system,
Eq. (5.110), we obtain the relation between the normalized moments of the beam at
the output plane of such system, 
out

p;q;r;t, and the normalized moments of the input
beam, 
in

p;q;r;t D 
p;q;r;t, [23, 24]


out
p;q;r;tE D

Z
Wout.x; y; u; v/ xp uq yr vt dr dp

D
Z

Win.dxx � bxu; dyy � byv;�cxx C axu;�cyy C ayv/ xp uq yr vt dr dp

D
Z

Win.x; y; u; v/.axxCbxu/p.cxxCdxu/q .ayyCbyv/
r .cyyCdyv/

t dr dp

D E
pX

kD0

qX
lD0

rX
mD0

sX
nD0

 
p

k

! 
q

l

! 
r

m

! 
t

n

!
ap�k

x bk
x cl

x dq�l
x

� ar�m
y bm

y cn
y ds�n

y 
p�kCl;q�lCk;r�mCn;t�nCm: (5.126)

In the particular case of intensity moments, i.e., q D t D 0, we have


out
p;0;r;0 D

pX
kD0

rX
mD0

 
p

k

! 
r

m

!
ap�k

x bk
x ar�m

y bm
y 
p�k;k;r�m;m: (5.127)

It is easy to see that for the Fourier conjugated system the relation between the
input and output moments is simplified as 
out

p;0;r;0 D bp
xbt

y
0;p;0;r, where bx;y D s2. In
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order to obtain all moments of n-th order (
p;q;r;t), using the Eq. (5.126), the intensity
distributions at the output planes of Ns different first-order optical systems have to
be measured. It has been shown in [23, 24] that the number of the required systems
is Ns D .1=4/.n C 2/2 for even n, and Ns D .1=4/.n C 3/.n C 1/ for odd n. Among
them, only n C 1 systems can be isotropic, i.e., ax D ay and bx D by. Moreover, two
systems with equal or proportional parameters ax;y and bx;y cannot be considered
different since they yield the same expression, Eq. (5.127).

For the determination of the first-order moments we may use two intensity
measurements in an isotropic (rotationally invariant) system corresponding, for
example, to the propagation in homogeneous medium. Calculating the first-order
intensity moments at input plane, 
1;0;0;0 and 
0;0;1;0, as well as in the output plane,

out
1;0;0;0 and 
out

0;0;1;0, the other two input moments 
0;1;0;0 and 
0;0;0;1 are obtained
from the following equations:


out
1;0;0;0 D ax
1;0;0;0 C bx
0;1;0;0; (5.128)


out
0;0;1;0 D ay
0;0;1;0 C by
0;0;0;1: (5.129)

The independence of such equations allows using the isotropic systems.
The determination of the second-order moments requires measurements of four

intensity distributions, one of which has to be obtained using anisotropic system,
for example, one which contains a cylindrical lens. From the measurements of the
intensity distribution at the input plane, three moments 
2;0;0;0, 
0;0;2;0, and 
1;0;1;0
can be calculated. For the determination of the other second-order moments, we
use the expressions for beam evolution during its propagation through a separable
system, Eq. (5.125):


out
2;0;0;0 D a2x
2;0;0;0 C 2axbx
1;1;0;0 C b2x
0;2;0;0; (5.130)


out
1;0;1;0 D axay
1;0;1;0 C axby
1;0;0;1 C aybx
0;1;1;0 C bxby
0;1;0;1 (5.131)


out
0;0;2;0 D a2y
0;0;2;0 C 2ayby
0;0;1;1 C b2y
0;0;0;2: (5.132)

The moments 
1;1;0;0, 
0;2;0;0, 
0;0;1;1, and 
0;0;0;2 can be determined by measuring
the intensity moments 
out

2;0;0;0 and 
out
0;0;2;0 at the output planes of other two systems

which might be isotropic, see Eqs. (5.130) and (5.132). The other three input
moments 
1;0;0;1, 
0;1;1;0, and 
0;1;0;1 are obtained from the intensity moments

out
1;0;1;0 at the output planes of three different systems, Eq. (5.131), one of which

has to be astigmatic. Indeed, by using the isotropic systems only the sum of the
moments 
1;0;0;1+ 
0;1;1;0 can be recovered.

Different optical schemes for the determination of the first- and the second-order
moments have been proposed (see, for instance, [46, 69, 77, 88]). For the calculation
of moments of arbitrary order, the system used for phase space tomography can be
applied.
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5.6.2 Physical Meaning of the Low-Order Moments

5.6.2.1 First-Order Moments

The normalized first-order moments can be shortly described by the four-
dimensional column vector m D Œmt

r; mt
p� DŒ
1;0;0;0; 
0;0;1;0; 
0;1;0;0; 
0;0;0;1�t,

defined by

mt D 1

E

Z
Œrt;pt�W.r;p/ dr dp: (5.133)

Taking into account the evolution of the WD during the beam propagation through
the first-order optical system, described by the ray transformation matrix T, it is
easy to obtain [13] the propagation law for the first-order moments as mout D QTm,
where the antidiagonal submatrices of T and QT are related as 	0B D QB and 	�1

0 C D
QC while the diagonal ones are equal: A D QA and D D QD. Note that the same
equation governs the paraxial ray propagation (see Eq. (5.56)). Therefore, the beam
description by the first-order moments is equivalent to its presentation by a single
ray whose position coincides with the beam center .
1;0;0;0; 
0;0;1;0/ and direction
is given by .
0;1;0:0; 
0;0;0;1/. This interpretation is clearly seen if we consider a
coherent beam whose moments are expressed through its complex field amplitude
f .r/ D a.r/ exp Œi'.r/� as

mt
r D 1

E

Z
rtf �.r/ f .r/ dr D 1

E

Z
rtI.r/ dr; (5.134)

mt
p D i

2kE

Z �
f .r/r t

rf �.r/ � f �.r/r t
rf .r/

�
dr D 1

kE

Z
I.r/r t

r'.r/dr;

(5.135)

where r t
r D Œ@=@x; @=@y�. Thus the vector mp is proportional to the mean intensity-

weighted phase gradient of the beam.
Following the discussion of ray propagation in the first-order optical system (see

Sects. 5.2 and 5.3) we can analogously define the trajectory of the beam centroid.
In a homogeneous medium it corresponds to a straight line given by mout

r .z/ D
mr C 	z mp. While during the beam propagation in a selfoc medium, described by
the symmetric fractional FT (�x D �y D � ), mout

r .�/ D mr cos �Cs2mp sin � , it can
also follow the plane periodic or spiral trajectory depending on the initial conditions
as it is displayed in Fig. 5.2.

For the description of beam propagation in the isotropic first-order systems the
beam centroid is commonly used as origin of coordinates in the XY plane.
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5.6.2.2 Second-Order WD Moments

According to the recommendations of an International Organization for Standard-
ization standard [61], the second-order moments of the WD form a basis for global
beam characterization. The ten second-order moments can be written in the form of
a 4�4 real symmetric matrix QM defined by

QM D 1

E

Z �
r
p

�
Œrt;pt�W.r;p/ dr dp D

2
664


2;0;0;0 
1;0;1;0 
1;1;0;0 
1;0;0;1

1;0;1;0 
0;0;2;0 
0;1;1;0 
0;0;1;1

1;1;0;0 
0;1;1;0 
0;2;0;0 
0;1;0;1

1;0;0;1 
0;0;1;1 
0;1;0;1 
0;0;0;2

3
775 :

(5.136)

Since the value of the moment depends on the choice of the coordinate origin then
the central second-order moments defined as

M D 1

E

Z �
r � mr

p � mp

�
Œ.r � mp/

t; .p � mp/
t�W.r;p/ drdp D QM � mmt D

"
Mrr Mrp

Mrp
t Mpp

#

(5.137)

are used for beam characterization. The first-order moments in such a coordinate
system are vanished. Moreover, the evolution of the second-order moments during
beam propagation through the first-order optical system, described by the ray
transformation matrix T, follows the simple law [13]

QMout D QT QM QTt
; (5.138)

if they are calculated with respect to the system axes. A similar expression can be
written for the central moments

Mout D QT QM QTt � QTm
� QTm

�t D QT 	M � mmt

 QTt D QTM QTt

: (5.139)

Taking into account that det QT D 1, the determinant of the moment matrix remains
invariant during beam propagation.

The moments mxx, myy, and mxy provide information about the beam spatial width
and orientation of the principal axes of its intensity distribution. As it was suggested
by M. Teague [98], the second-order moments define an ellipse corresponding to
the effective area of the beam, which can be parametrized by: Its long semi-axis a,
its short semi-axis b, and its orientation �, via

a2 D 2
h
mxx C myy C

q
.mxx � myy/2 C 4m2

xy

i
; (5.140)

b2 D 2
h
mxx C myy �

q
.mxx � myy/2 C 4m2

xy

i
; (5.141)

tan.2�/ D 2mxy

mxx � myy
: (5.142)
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Here � is an angle between the x-axis of the laboratory system and the beam
principal axis closer to it. The beam effective area Sr is proportional to the product
ab. Thus the first-order moments define the coordinate origin, while the second-
order moments composing Mrr determine the direction of the axes. Usually the
axes of the coordinate system are chosen such that mxy D 0. Correspondingly,
the moments muu, mvv , and muv describe the beam divergence or angular cone in
which the light is radiating. Taking into account the phase-space rotation properties
of the FT, these moments define the parameters of the ellipse roughly describing
the beam intensity distribution in the Fourier conjugated plane or in far field. In
Fig. 5.9 we show the position of centroid and the ellipse associated with the beams
given as a superposition of two Laguerre–Gaussian modes LG2;0 C LG4;0 with
4wx=3 D 4wy=5 D s D 0:73mm and two Hermite Gaussian modes HG0;2C5HG1;2

with wx D wy D s D 0:73mm at two Fourier conjugated planes. Here the scaling
of the FT equals s. We underline that the first beam belongs to the class of spiral
beams, whose intensity distribution does not change apart from rotation during
the propagation through the system described by the fractional FT with scaling
parameter s. The centroid of this beam coincides with the coordinate origin and
does not change during beam propagation. The centroid of the second beam varies
its position during beam propagation: its x coordinate is not zero in Fig. 5.9c, while
in the Fourier conjugated plane it coincides with coordinate origin.

Instead of beam characterization by its effective area in the XY (or UV) planes,
the beam propagation factor or beam quality factor parameter M2

x D 4�
p

mxxmuu (or
analogously M2

y D 4�
p

myymvv) is defined at the beam waist. The M2
x;y factor allows

predicting the evolution of the beam effective width during its propagation and, in
particular, determines the smallest spot size to which the beam can be focused. It
holds that M2

x;y = 1 and only for a Gaussian fundamental mode M2
x;y D 1:

The moments associated with the mixed spatial-frequency moments, Mrp; mxu

and myv determine the beam curvature and the longitudinal projection of the orbital
angular momentum carried by the beam. Indeed, the quadratic phase modulation

associated with the lens ray transformation matrix
h
I; 0I � QL; I

i
produces the

following modification of the moment matrix (5.137)

Mout D
"

Mrr �Mrr QL C Mrp

� QLMrr C Mt
rp

QLMrr QL � QLMrp � Mt
rp

QL C Mpp

#
: (5.143)

Suppose that Mrp D 0 and the principal axes of the beam and the lens coincide
with the laboratory axes (Mrr and QL D �Qlxx; 0I 0; Qlyy

�
are diagonal matrices) then

Qlxx D �mout
xu =mxx and Qlyy D �mout

yv =myy. In the general case, the beam curvature can
be found from the knowledge of the beam second order moments as [13]

QLD �M�1
rr

"
Mrp C �

Tr
	
Mrr� Mrp




Tr .Mrr/

#
; (5.144)
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where

� D
�
0 1

�1 0
�
: (5.145)

The mixed second-order moments are also used for the estimation of the lon-
gitudinal projection of the orbital angular momentum on the propagation direction
z (OAM), which is proportional to the moment difference (mxv � myu), while the
global beam vorticity [3], as we will see further, is closely related to the twist
parameter [22] (see also [26, Sect. 2.8.2])
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Fig. 5.9 Intensity (a) and power spectrum (b) of the beam LG2;0CLG4;0 with 4wx=3 D 4wy=5 D
0:73mm. Intensity (c) and power spectrum (d) of the beam HG0;2 C 5HG1;2 with wx D wy D
0:73mm. The white cross defines the beam centroid while the stripped white ellipse defines its
effective size defined by the spatial and angular a, b, and � parameters [see Eqs. (5.140)–(5.142)]
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T D �Tr
	
Mrr� Mrp



p

det Mrr
: (5.146)

These parameters are important for the characterization of vortex or singular beams,
which are widely applied in metrology, free-space optical communication and for
microparticle manipulation.

Although the higher-order WD moments provide more detailed information
about beam’s symmetry and its sharpness [44, 45] they have a little use in practice.
Their measurements require the acquisition of a relatively big number of the WD
projections, which can be applied for the reconstruction of the entire WD using
phase-space tomography methods.

5.6.3 Beam Classification and Comparison Based
on the Second-Order Moments

Apart from the valuable information about the global beam characteristics discussed
in the previous section (effective size, divergence, principal axes, etc.), the second-
order moments also provide the basis for beam classification and comparison.
When we compare two beams, the question about how different they are has to
be answered. However, as we have seen, the partially coherent paraxial beams
are described by 4D functions, for example the WD. The WD suffers affine
transformations during beam propagation through a first-order optical system. Can
two beams described by the same WD apart from its scaling, sharing, and rotation
in the phase-space be considered as different? The answer to this question of course
depends on the applications where the compared beams are involved. If we are
interested in their focusing properties, then the scaling is certainly important. If the
spatial structure of the beam is under study then the scaling can be ignored, but the
phase-space rotations cannot. So our first task is to represent the WD of the beam
in a normalized form suitable for the comparison with other ones. To find these
canonical coordinates in phase space, we will follow the method considered in [26,
Sect. 2.8.1] and [10, 25, 96].

According to Williamson’s theorem [13, 96, 105] for any positive-definite real
symmetric 4 � 4 matrix, in particular for the second-order moment matrix M,
there exists a real symplectic matrix QTc such that Mc D QTcM QTt

c takes a canonical
(diagonal) form:

Mc D
�

s2ƒ 0
0 s�2ƒ

�
with ƒ D

�
ƒx 0

0 ƒy

�
and ƒx � ƒy > 0: (5.147)

The dimensionless parametersƒx;y D 1
2
.Qı˙Q/ are defined by the two invariants I1

and I2 or (Q2ı D I2 C 2I1 and Q2 D I2 � 2I1) of the moment matrix during beam
propagation through a first-order optical system [20, 87]:
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I1 D p
det M;

I2 D �Tr
h
.MJ/2

i
D 2Tr

	
MrrMpp � M2

rp



; (5.148)

where s is a dimension factor. Since in the canonical form the second-order matrix
is diagonal, the effective volume of the WD (defined as ƒxƒy D p

det M) may
serve as a measure for the beam information capacity. The parameter 4

p
det M

is proportional to the global beam quality parameter [46] or effective beam
propagation ratio M2.

The canonical diagonalization of the momentum matrix also allows separating
two-dimensional signals into two classes [96]: intrinsically isotropic (Q D 0) and
anisotropic (Q ¤ 0). The value of the parameter Q defines the intrinsic beam
astigmatism that allows having a deeper look on the vortex properties of the optical
beams. Thus a beam with non-zero projection of its orbital angular momentum, but
with Q D 0, cannot be considered a vortex beam [7, 30] Moreover, it cannot be
transformed into it by any LCTs. On the other hand, an intrinsically anisotropic
beam with zero OAM projection may not be a vortex but may be transformed into it
by LCT. In particular, the non-vortex intrinsically anisotropic HG beam, for example
HG1;2.rI w/, is transformed into the vortex one, the LG beam LG1;2.rI w/, using the
gyrator transformation (see, for example, [26, 83]).

Apart from the beam classification, the knowledge of the canonical form of the
moment matrix allows identifying the LCT described by the ray transformation
matrix QT�1

c , which transforms the beam into this canonical state. The comparison of
the WDs or the WD projections of the beams being in the canonical state provides
the more objective information about their similarity.

We also may be interested in the analysis of the LCT which brings the beam
into the canonical state. Thus the modified Iwasawa decomposition of the QT�1

c [25]
allows disclosing the corresponding affine transformation of the phase space. Ne-
glecting the scaling and phase modulation operations, we might map the intrinsically
anisotropic beam on the orbital angular Poincarè sphere or radius Q in order to
indicate its vortex features. The details of this analysis can be found in [10, 25, 37].

5.6.4 LCTs for Calculation of Second-Order Moments
of a Beam Expressed as Mode Series

The beam expression given as a superposition of the orthonormal modes is often
used for beam design and analysis. For example, the MI can be expanded into
orthonormal HG modes as [5, 35]

� .r1; r2/ D
X
m;n

X
m0;n0

˝
am;na�

m0;n0

˛
HGm;n .r1I w/HGm0;n0 .r2I w/ ; (5.149)
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with
D
am;na�

m0;n0

E
the correlation coefficients where we assume that

P
m;n

D
jam;nj2

E
D 1.

Using the moment definition and some recurrence relations for the HG functions
(see [38] for further details) we derive the expressions for the first-order moments:

w�1mx C iwmu D
X
m;n

p
m C 1

˝
amC1;na�

m;n

˛
; (5.150)

w�1my C iwmv D
X
m;n

p
n C 1

˝
am;nC1a�

m;n

˛
: (5.151)

We underline that the centroids in both, XY and UV , planes are zero (i.e., coincide
with the origin of coordinates) if in the HG mode decomposition there are no
combinations of modes with consecutive indices.

The second-order moment matrix can be found analogously [29, 38]:

QM D 1

2�

2
6666664

w2
�

Kx C L
0

x

�
w2.M C N/

0 �L
00

x .M � N/
00

w2.M C N/
0

w2
�

Ky C L
0

y

�
�.M C N/

00 �L
00

y

�L
00

x �.M C N/
00

w�2
�

Kx � L
0

x

�
w�2.M � N/0

.M � N/
00 �L

00

y w�2.M � N/
0

w�2
�

Ky � L
0

y

�

3
7777775
;

(5.152)
where, following the notation of [29],

Kx D 1

2

X
m;n

.2m C 1/
D
jam;nj2

E
; Ky D 1

2

X
m;n

.2n C 1/
D
jam;nj2

E
; (5.153)

LxD
X
m;n

p
.m C 1/ .m C 2/

˝
am;na�

mC2;n
˛
; LyD

X
m;n

p
.n C 1/ .n C 2/

˝
am;na�

m;nC2
˛
;

(5.154)

MD
X
m;n

˝
am;nC1a�

mC1;n
˛p
.m C 1/ .n C 1/; ND

X
m;n

˝
am;na�

mC1;nC1
˛p
.m C 1/ .n C 1/;

(5.155)

A
0 � < .A/, and A

00 � = .A/. The matrix for central-order moments can be obtained
from Eq. (5.152) by subtracting the matrix mmt constructed from the first-order
moments.

Let us now find the second-order moment matrix for the beam whose MI is
expanded into series of LG modes, LGm;n .rI w/, as

� .r1; r2/ D
X
m;n

X
m0;n0

˝
am;na�

m0;n0

˛
LGm;n .r1I w/

�
LGm0

;n0 .r2I w/
��
: (5.156)

Notice that the LG mode decomposition is used for the generation of spiral
beams [1]. We recall that a HG mode is converted into an LG one under the gyrator
transform G �=4 Œ�� (see [26, 84]), i.e.,
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G �=4 ŒHGm;n .rI w/� D LGm;n
	
rI wx;wy



: (5.157)

In order to find the moments expression for the beam described by the Eq. (5.156)
we first consider a test beam whose MI is expanded in HG modes with the same

correlation coefficients
D
am;na�

m0;n0

E
as in the problem beam, Eq. (5.156):

O� .r1; r2/ D
X
m;n

X
m0;n0

˝
am;na�

m0;n0

˛
HGm;n .r1I w/HGm0;n0 .r2I w/ : (5.158)

Since the problem beam is obtained from O� applying the gyrator transform G �=4, its
moments are related to the moments of the test beam according to the propagation
equation (5.138) with QT corresponding to the gyrator transform: QA D QD D 2�1=2I
and w�2 QB D �w2 QC D 2�1=2J, where J D Œ0; 1I 1; 0�.

Using this simple method we derive the formulas for the first-order moments of
a signal expanded in LG modes,

p
2mx D w

X
m;n

�p
m C 1R

˝
amC1;na�

m;n

˛C p
n C 1 I

˝
am;nC1a�

m;n

˛�
; (5.159)

p
2my D w

X
m;n

�p
n C 1R

˝
am;nC1a�

m;n

˛C p
m C 1 I

˝
amC1;na�

m;n

˛�
; (5.160)

p
2mu D w�1X

m;n

�p
m C 1 I

˝
amC1;na�

m;n

˛ � p
n C 1R

˝
am;nC1a�

m;n

˛�
; (5.161)

p
2mv D w�1X

m;n

�p
n C 1 I

˝
am;nC1a�

m;n

˛ � p
m C 1R

˝
amC1;na�

m;n

˛�
; (5.162)

as well as for the second-order moments,

w�2
2;0;0;0 D 	
Kx C L0

x C Ky � L0
y



=2 � 	

N00 � M00
 ; (5.163)

w�2
0;0;2;0 D 	
Ky C L0

y C Kx � L0
x



=2 � 	

N00 C M00
 ; (5.164)

w2
0;2;0;0 D 	
Kx � L0

x C Ky C L0
y



=2C 	

N00 C M00
 ; (5.165)

w2
0;0;0;2 D 	
Ky � L0

y C Kx C L0
x



=2C 	

N00 � M00
 ; (5.166)


1;1;0;0 D 	
L00

y � L00
x



=2 � N0; (5.167)


0;0;1;1 D 	
L00

x � L00
y



=2 � N0; (5.168)

w�2
1;0;1;0 D M0 � 1

2

	
L00

x C L00
y



; (5.169)

w2
0;1;0;1 D M0 C 1

2

	
L00

x C L00
y



(5.170)


0;1;1;0 D �1
2

	
Ky � Kx C L0

x C L0
y



; (5.171)
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1;0;0;1 D �1
2

	
Kx � Ky C L0

x C L0
y



; (5.172)

where Kx;y, Lx;y, M, and N are defined in Eqs. (5.153)–(5.155). Notice that the
problem and test beams have the same effective volume of the WD. The beam
decomposition into the series of the LG modes is useful for beam synthesis and
analysis. In particular, the OAM of the beam expressed by Eq. (5.156) is given as a
weighted sum of the topological charges, i.e. index differences (n�m), of all modes:

OAMLG D 
1;0;0;1 � 
0;1;1;0 D
X
m;n

D
jam;nj2

E
.n � m/ : (5.173)

Similarly the moments of the beam expressed as the HLG mode superposition can
be obtained [38].

5.7 LCTs for Pulse Manipulation and Characterization

In the previous sections the propagation of monochromatic scalar paraxial beams
through first-order optical systems has been considered. In this section we show
that the LCTs also describe the optical wave propagation in dispersive media and
play an important role in the manipulation and characterization of ultrashort pulses.

5.7.1 Quasi-monochromatic Plane Waves in Dispersive Media

In Sect. 5.2 we have considered the solution of the wave equation, Eq. (5.1)
in nondispersive medium, where polarization P D 0 and therefore the electric
displacement D D "E, where " is the electric permittivity. Here we will study the
wave propagation through the isotropic homogeneous dispersive media described
by the following wave equation

rE � 1

c2
@2E
@t2

� 
0 @
2P
@t2

D 0; (5.174)

where P.r; t/ D R1
0

h.t0/E.r; t � t0/dt0, h is the medium impulse response and D D
"ECP. Let us consider a plane scalar quasi-monochromatic wave propagating in the
z direction in the medium with refractive index n.!/ depending on angular temporal
frequency!. Then its electric field E (and the polarization P) can be represented by
a scalar function of two variables z and t: E.z; t/ D f .z; t/ exp Œi .!0t � k0z/�, where
the exponential term describes the rapid changes of the electric field. The !0 is a
central angular frequency of the wave spectrum and k0 D !0=c. Assuming that f
changes slowly with time we can express it by three first terms of the Taylor series
at the point t
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f .z; t � t0/ � f .z; t/ � t0
@f

@t
C 	

t0

2 1
2

@2f

@t2
(5.175)

which yields

P.z; t/ D
�
�.!/f � i

@�

@!

@f

@t
� 1

2

@2�

@!2
@2f

@t2

�
exp Œi .!0t � k0z/� ; (5.176)

where �.!/ D R1
0

h.t0/ exp .�i!t0/ dt0 is electric susceptibility related to the
refractive index via n.!/ D p

1C �.!/: Using these approximations the wave
equation, Eq. (5.174) is transformed to

@f

@z
C 1

�

@f

@t
� i

2
g
@2f

@t2
C i

2

�
@2f

@z2
� 1

�2
@2f

@t2

�
D 0; (5.177)

being � D .@k=@!/�1 the group velocity, g D @2k=@!2 the parameter describing
the group velocity dispersion and k D k0n.!/. The last term Œ�� in the left side of

the equation is smaller than the rest. Notice that @
2f
@z2

� 1
�2

@2f
@t2

D 0 corresponds to the
wave equation for f moving in z with velocity � : f .z; t/ D fi.t � z=�/, where fi is
defined by the initial condition. The other terms in the Eq. (5.177) are related to the
derivatives of the complex field amplitude and therefore larger than Œ�� which will be
further neglected. Thus the evolution of f .z; t/ during plane wave propagation in the
dispersive medium in the second approximation of the dispersive theory is described
by equation

@f

@z
C 1

�

@f

@t
� i

2
g
@2f

@t2
D 0:

It can be rewritten in the alternative form for the temporal Fourier transform of the
envelop Nf .z; !/ as

@Nf
@z

� i

�
!

�
C !2g

2

�
Nf D 0:

which has an easy solution

Nf .z; !/ D Nf .0; !/ exp

�
�i

�
!

�
C !2g

2

�
z

�
(5.178)

Applying the inverse FT we obtain that the complex amplitude after the propagation
a distance z, fo.to/ D f .z; t�z=�/ is expressed as a Fresnel transform of the complex
field amplitude at the plane z D 0, fi.ti/;

fo.to/ D 1p
i2�gz

Z
fi.ti/ exp

"
i
.to � ti/

2

2gz

#
dti: (5.179)
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As well as in ray optics we may introduce temporal ray [100] defined by the vector
u D Œt; !�t measured with respect to center of the wave packet z=� and angular
frequency ! measured with respect to the spectrum center !0. These variables
compose the so-called chronocyclic phase space. The propagation of such rays in
the dispersive media is described by the 2 � 2 matrix �

�
to
!o

�
D �

�
ti
!i

�
; (5.180)

where

� D
�
1 gz
0 1

�
: (5.181)

As we will see below this analogy with spatial ray optics is useful for the description
of devices applied for pulse manipulation.

5.7.2 Pulse Description

A pulse of light is an optical field of finite time duration which is described by a
complex function E.t/ D f .t/ exp .i!0t/ D jf .t/j exp .i!0t C i'.t//, where f .t/ is
the complex envelop and !0 is a central angular frequency. Since we analyze only
the temporal pulse behavior the spatial coordinates have been suppressed. The asso-
ciated intensity distribution is given by I.t/ D jf .t/j2. Pulses can also be described
in the Fourier domain by its spectrum NE.!/ D .2�/�1=2

R
E.t/ exp .�i!t/ dt D

jE.!/j exp Œi�.!� and the so-called spectral intensity S.!/ D ˇ̌ NE.!/ˇ̌2. According to
the Fourier uncertainty relation (see [79, 97]) the narrower the spectral distribution
is, the larger is the temporal pulse envelop and vice versa. For example, a picosecond
pulse has spectral width around 500GHz, while for a femtosecond pulse it is more
than 500THz.

There exists a wide list of applications of ultrashort pulses, such as chemistry,
ultrafast microscopy, telecommunication, to name a few, which requires the de-
velopment of techniques for pulse generation, manipulation, and characterization.
Indeed, for the study of dynamics of ultrafast processes, the amplitude and phase of
the complex envelope f .t/ have to be known. It is a nontrivial problem because
the time response of the fastest available photodetector is significantly larger,

100 ps, than the pulse duration. Another problem is related to pulse manipulation
since the propagation through conventional optical elements such as lenses yields
pulse broadening due to dispersion. Different techniques of ultrafast metrology,
many of which are based on the application of optical elements whose action is
described by the LCTs, help to overcome these obstacles.



5 The Linear Canonical Transformations in Classical Optics 169

We also note that the pulse description by E.t/ is not sufficient to specify the
character of an ensemble of pulses which are usually slightly different one from
another. By analogy with the spatially partially coherent light, the temporal two-
point correlation function � .t1; t2/ D hE.t1/E�.t2/i is used for specification of
the pulse ensemble characteristics. Instead the correlation function we may use the
Wigner distribution defined by

W.t; !/ D .2�/�1=2
Z
� .t C �=2; t � �=2/ exp .�i!�/ d� (5.182)

which provides the representation of the pulse in chronocyclic phase space com-
prised by the time and frequency coordinates [27, 43].

5.7.3 Spectral and Temporal Chirp Filters

From Eq. (5.179) follows that the propagation through a dispersive media changes
the pulse shape. Similarly to the evolution of the angular spectrum during beam
propagation in homogeneous media, see Sect. 5.2.5.2, it has been shown that
the transformation of the pulse spectrum corresponds to quadratic chirp modula-
tion (5.178), which corresponds to the LCT parametrized by the transfer matrix,
Eq. (5.180).

There are other optical elements, known as chirp filters, which produce phase
modulation of the spectrum. They are based on different phenomena: angular
dispersion (gratings, holograms, prisms), interferometric dispersion (stratified me-
dia, Bragg gratings, resonators), polarization dispersion (wavelength dependence
of the anisotropic properties of materials), and nonlinear dispersion (wavelength
dependence of the nonlinear optical effects).

Let us consider first the angular dispersion chirp filter. An angular dispersion
element, for example, diffraction grating, changes the direction of propagation of
the monochromatic components that compose a polychromatic pulse. Thus, each
monochromatic component follows a different direction defined by angle, �.!/,
measured with respect to the angle of the component corresponding to the central
frequency. The spectral phase shift introduced by the angular dispersion chirp filter
at the frequency component ! is given by �.!/ D !l cos Œ�.!/� =c, where l is
the pathlength of the central component. Usually, the chirp filter is formed by four
identical dispersive elements (see, Fig. 5.10): the first spatially separates the spectral
components; the second collimates the directions of the components; and the other
two do the same in reversed order to recover the pulse, apart from an additional
phase indicated above, where in this case l is the optical pathlength overall the entire
system. If �.!/ is sufficiently small, then cos Œ�.!/� � 1� �2.!/=2. Moreover, the
slowly varying function �.!/ can be approximated by two first terms of the Taylor
series that yields to the following expression for the beam phase [102]

�.!0 C !/ � �0 C l

c
! C �00

2
!2 (5.183)
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Fig. 5.10 A spectral filter formed by four identical dispersive elements. Polychromatic light
entering the system (black arrow) is separated in its multiple spectral components (red, green,
and blue arrows) to be composed back to polychromatic light with chirp modulated spectrum at
the output of the system

where in this approximation �00 D @2�=@!2
ˇ̌
!0

� �l .d�=d!j !0/2 =c and the exact
expression depends on the used dispersive element. Note that for this kind of chirp
filters, �00 < 0. Thus we again obtain the LCT transformation described by the
matrix

� D
�
1 �00
0 1

�
: (5.184)

Let us now find the expression for �00 if a diffraction grating is used as dispersive
element. The diffraction of a plane wave of angular frequency !0 C ! on a grating
of period d is described by the following equation:

sin �i C sin Œ�0 C �.!/� D 2�c

!d
; (5.185)

where �i and �0C�.!/ are the angles between the normal of the grating and the wave
vector of the incident and emergent waves. Notice that for the central frequency
component �.!0/ D 0. Differentiating this equation we obtain that d�=d!j !0 D
�2�c=

	
!20d cos �0



, and thus �00 � �lc

�
2�=

	
!20d cos �0


�2
.

Another example of chirp filters is a Bragg grating, which is a stratified medium
with refractive index gradient parallel to the pulse propagation direction. This kind
of filters has frequency-dependent reflectance and transmittance properties, that
leads to frequency modulation of the pulse propagating through or reflecting from
it. If the grating has a periodic structure with period d, then only the waves with
wavelength 	 D 2d=m; where m is an integer, are reflected from it while the rest
of spectral components propagate through without any change. If the grating has a
pitch varying with position d.z/, the waves are reflected from the grating segment
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Fig. 5.11 Bragg grating
working in reflection mode as
a frequency chirp filter.
It reflects back the spectral
components of a
polychromatic pulse from
different positions according
to the chirped refractive index
variation, which yields a
spectral-selective behavior

which matches their wavelength. As a consequence, the phase of the reflected waves
depends on their wavelengths because they propagate for different distances inside
the grating. For instance, in the case of a grating that satisfies d�1.z/ D d�1

0 C z=� ,
as sketched in Fig. 5.11, the wave of frequency ! is reflected at the position
which satisfies the relation d.z!/ D �mc=! and, therefore, travels the distance
2z! D 2!�=.�mc/ � 2�=d0 inside the grating. This corresponds to a phase shift
'! D 2z!!=c. The associated spectral phase shift of the pulse has a quadratic form

� D 2�

cd0
! C 2�

�mc2
!2 (5.186)

which means that such Bragg grating can serve as a frequency chirp filter. The
parameter � , and hence �00, may take positive or negative values.

Another important operation is a temporal quadratic phase modulation

fo.t/ D fi.t/ exp

�
�i
'00t2

2

�
; (5.187)

whose associated LCT is parametrized by a transfer matrix similar to the one
describing the action of a lens:

� D
�
1 0

�'00 1

�
; (5.188)

where '00 D @2'=@t2
ˇ̌
0
. Therefore, it behaves as a time lens which produces

phase changes in time following a parabolic function. Such a temporal lens can
be experimentally implemented using an electro-optic phase modulator driven by
a sinusoidal radio-frequency voltage signal (e.g., based on the Pockels effect)
[14, 34, 64], by mixing the original pulse with a chirped pulse in a nonlinear crystal
[31], or by means of cross-phase modulation of the original pulse with an intense
pump pulse in a nonlinear fiber [72], to name a few.
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The combination of quadratic spectral and temporal chirp elements leads to the
general one-dimensional LCT described by the 2 � 2 symplectic matrix

� D
�

a b
c d

�
(5.189)

with det� D 1. Therefore, the equivalent transformations to the ones applied
to one-dimensional spatial beams—magnification, Fourier transformation, rotation
in phase space—can also be performed for temporal pulses. They are often used
for several ultrafast optical signal processing applications, such as waveform
magnification [33] based on temporal imaging [64]; waveform diagnosis based
on time-to-frequency conversion [17]; elimination of linear distortions [73] based
on optical Fourier transformation [62]. Some of these applications are briefly
considered below.

5.7.4 Pulse Manipulation and Characterization

One of the most important tasks in ultrafast optics is pulse power amplification.
The propagation of a high-peak-power pulse through an optical amplifier leads
to undesirable nonlinear effects which can prevent using pulse spectral chirping.
Indeed, the application of a spectral chirp filter with parameter �00

1 yields to pulse
stretching and, therefore, decreases the power of the pulse peak while maintaining
its total energy. This low-peak-power pulse can be successfully amplified increasing
the total pulse energy. In order to obtain a pulse with the same duration that the input
one, a chirp filter with parameter �00

2 D ��00
1 is applied after the amplifier.

Another application of temporal lenses and Fresnel transformation performed by
spectral chirp filters is a pulse compression [32]. The system used for this purpose
is similar to the beam magnifier. Indeed, based on the matrix formalism it is easy to
prove that a system constructed from a quadratic phase modulator with parameter
'00 embedded into two chirp filters with parameters �00

1;2 compresses the pulse by a
factor �o=�i D 1 C �00

2 '
00, where �o;i is the effective width of the output and input

pulses, respectively, if the following equation holds

'00 D 1

�00
1

C 1

�00
2

: (5.190)

By analogy with space optics we may construct chronocyclic phase-space
rotator—the fractional Fourier transformer—which is an important tool in pulse
metrology. We recall that the temporal intensity distribution of an ultrashort
pulse cannot be measured directly, while its spectral intensity can. The temporal
intensity distribution of the input pulse can be recovered from the spectral intensity
distribution of the pulse at the output of the Fourier transformer (called in this
case time–frequency converter). One possible implementation of a time–frequency
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converter is formed by a temporal lens with parameter '00 embedded into two
identical chirp filters with parameters �00 such that they satisfy the following relation
'00�00 D 1.

For the determination of the pulse correlation function or the pulse phase we
can use a phase-space tomography method similar to the one proposed for space
optics. Several schemes combining temporal lenses and chirp filters have been
proposed for this purpose [27, 43]. As an example we mention one which may
serve as a programmable temporal fractional Fourier transformer. Substituting in the
system sketched in Fig. 6.1a in [65] the free space intervals by identical frequency
chirp filters with parameter �00, and the SLMs, implementing spatial lenses, by
electro-optic crystals implementing temporal lenses with parameters '00

1;2.˛/, a
programmable chronocyclic phase-space rotator is obtained. The relation between
the parameters for the applied elements and the transformation angle ˛ is given by

�00'00
1 D 1 � .�00=s/ cot.˛=2/;

�00'00
2 D 2 � .s=�00/ sin˛;

(5.191)

where s is a constant system parameter. In such case, the spectral intensity of the
output pulse corresponds to the squared modulus of the fractional Fourier for angle
˛ of the complex envelop of the input pulse. Varying the temporal lens parameters
according to the above equations, a set of WD projections for ˛ 2 Œ�=2; 3�=2� can
be measured. The WD and, therefore, the two-point correlation function of the pulse
can be obtained applying the inverse Radon transform to this set.

5.8 Conclusions

In this chapter we have considered different approximations for the fundamental
equation of classical optics which lead to the description of the beam or pulse
propagation through various elements in the form of the LCTs. In spite of this
description is not complete, it is widely used in image formation and signal
processing tasks, as well as for optical beam and pulse metrology. The ray
transformation matrix formalism of the LCTs is beneficial for optical system design,
beam shaping, and phase-space signal analysis. In particular, the transformations of
the Wigner distribution of the beam during its propagation through the first-order
systems are easily expressed through the ray transformation matrices. Using this
approach the tomographic methods for the characterization of the spatial coherence
of monochromatic beams and the temporal coherence of optical pulses as well as
the systems for the implementation of these methods have been developed. While in
this chapter the scalar optical fields have been considered, the results can be easily
generalized into the vector case. Moreover, the modified LCTs allow describing the
beam propagation in optical systems with loss or gain [58, 76] and in misaligned
systems [59].
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Chapter 6
Optical Implementation of Linear Canonical
Transforms

M. Alper Kutay, Haldun M. Ozaktas, and José A. Rodrigo

Abstract We consider optical implementation of arbitrary one-dimensional and
two-dimensional linear canonical and fractional Fourier transforms using lenses and
sections of free space. We discuss canonical decompositions, which are generaliza-
tions of common Fourier transforming setups. We also look at the implementation
of linear canonical transforms based on phase-space rotators.

6.1 Introduction

In this chapter we consider the problem of designing systems for optically im-
plementing linear canonical transforms (LCTs) and fractional Fourier transforms
(FRTs). It is well known that an optical Fourier transformer can be realized by
a section of free space followed by a lens followed by another section of free
space, and also by a lens followed by a section of free space followed by another
lens. Another approach is to use a section of quadratic graded-index media. That
these approaches can also be used to implement FRTs has been realized in the
nineties. One-dimensional systems have been dealt with in [1, 8, 9, 12, 15, 17,
18, 20, 24, 25, 28, 29] and two-dimensional systems have been dealt with in
[9, 11, 15, 19, 23, 25, 29, 34, 36], among others. For an overview of the optical
implementation of the FRT, see [27].

LCTs can be interpreted as scaled FRTs with additional phase terms. Thus, in
principle, if we have an optical FRT system, we can obtain an LCT system with
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some modifications, although handling the scale and phase may not always be
convenient. On the other hand, since FRTs are special cases of LCTs, knowing how
to realize a desired LCT means we can also realize any FRT easily.

While the design of one-dimensional systems is relatively straightforward, two-
dimensional systems bring additional challenges, mostly arising from the fact that
the parameters in the two dimensions can be different and this brings a number
of constraints with it. We will deal with these challenges and show how all two-
dimensional LCTs can be realized [36].

6.2 FRTs and LCTs

Two-dimensional LCT can be defined as:

fo.ro/ D L .T/fi.ri/ D
Z

h.roI ri/fi.ri/ dri;

h.roI ri/ D .det i�1Lio/
1=2 exp

�
i�.rt

oLooro � 2rt
iLioro C rt

iLiiri/
�
; (6.1)

where we define the column vector r as r D Œx; y�t. Lii and Loo are symmetric 2 � 2
matrices and Lio is a non-singular 2 � 2 matrix given by:

Lii �
�
`iix 0

0 `iiy

�
; Lio �

�
`iox 0

0 `ioy

�
; Loo �

�
`oox 0

0 `ooy

�
; (6.2)

where `oox; `iox; `iix and `ooy; `ioy; `iiy are real constants. FRTs, Fresnel transforms,
chirp multiplication, and scaling operations are widely used in optics to analyze
systems composed of sections of free space and thin lenses. These linear integral
transforms belong to the class of LCTs. Any LCT is completely specified by its
parameters.

Alternatively, LCTs can be specified by using a transformation matrix:

fo.ro/ D L .T/fi.ri/ D .det iB/�1=2

�
Z

exp
�
i�.rt

oDB�1ro � 2rt
iB

�1ro C rt
iB

�1Ari/
�

fi.ri/ dri ; (6.3)

The transformation matrix of such a system specified by the parameters
`oox; `iox; `iix and `ooy; `ioy; `iiy is
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T �
�

A B
C D

�
�

2
664

Ax 0 Bx 0

0 Ay 0 By

Cx 0 Dx 0

0 Cy 0 Dy

3
775

�

2
664

`iix=`iox 0 1=`iox 0

0 `iiy=`ioy 0 1=`ioy

�`iox C `oox`iix=`iox 0 `oox=`iox 0

0 �`ioy C `ooy`iiy=`ioy 0 `ooy=`ioy

3
775 :

with AxDx � BxCx D 1 and AyDy � ByCy D 1 [5, 42].
Propagation in free-space (or a homogeneous medium) and through thin lenses

are special forms of LCTs. The transformation matrix for free-space propagation
over a distance z and with constant refractive index n can be expressed as

TS .z/ D

2
664

1 0 	z
n 0

0 1 0 	z
n

0 0 1 0

0 0 0 1

3
775 : (6.4)

Similarly, the matrix for a cylindrical lens with focal length fx along the x
direction is

TQx.fx/ D

2
6664

1 0 0 0

0 1 0 0
�1
	fx
0 1 0

0 0 0 1

3
7775 ; (6.5)

and the matrix for a cylindrical lens with focal length fy along the y direction is

TQy.fy/ D

2
6664

1 0 0 0

0 1 0 0

0 0 1 0

0 �1
	fy
0 1

3
7775 : (6.6)

More general anamorphic lenses may be represented by a matrix of the form:

TQxy.fx; fy; fxy/ D

2
6664

1 0 0 0

0 1 0 0
�1
	fx

�1
2	fxy

1 0
�1
2	fxy

�1
	fy

0 1

3
7775 : (6.7)
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The transformation matrix approach has several advantages. First of all, if several
systems are cascaded, the overall system matrix can be found by multiplying
the corresponding transformation matrices. Second, the transformation matrix
corresponds to the ray-matrix in optics [37]. Third, the effect of the system on
the Wigner distribution of the input function can be expressed in terms of this
transformation matrix. This topic is extensively discussed in [3–7].

The 2D FRT also belongs to the family of LCTs:

fo.ro/ D F .�x; �y/fi.ri/

D
Z

A�r expŒi�.rt
oCtro � 2rt

oCsri C rt
iCtri/�fi.ri/ dri; (6.8)

where

Ct D
�

cot �x 0

0 cot �y

�
; Cs D

�
csc �x 0

0 csc �y

�
;

A�r D A�x A�y ; A�x D e�i.� O�x=4��x=2/

pj sin �xj
; A�y D e�i.� O�y=4��y=2/

pj sin �yj

with O�x D sgn.�x/, O�y D sgn.�y/. �x and �y are rotational angles of the FRT in
the two dimensions, which are related to the fractional orders ax and ay through
�x D ax�=2 and �y D ay�=2.

The output of a fairly broad class of optical systems can be expressed as the FRT
of the input [27]. This is a generalization of the fact that in certain special planes one
observes the ordinary Fourier transform. However, when we are dealing with FRTs,
the choice of scale and dimensions must always be noted. To be able to handle the
scales explicitly, we will modify the definition of the FRT by introducing input and
output scale parameters. Also allowing for additional phase factors that may occur
at the output, the kernel can be expressed as

K�x;�y.x; yI x0; y0/ D A�x expŒi�x2px�

� exp

�
i�

�
x2

s22
cot �x � 2xx0

s1s2
csc �x C x02

s21
cot �x

��

� A�y expŒi�y2py�

� exp

�
i�

�
y2

s22
cot �y � 2yy0

s1s2
csc �y C y02

s21
cot �y

��
: (6.9)

In this definition, s1 stands for the input scale parameter, s2 stands for the output
scale parameter, and px and py are the parameters of the quadratic phase factors.
The transformation matrix corresponding to this kernel can be found as
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T �
�

A B
C D

�
; (6.10)

where

A D
"

s2
s1

cos �x 0

0 s2
s1

cos �y

#
; C D

"
1

s1s2
Œpx cos �x � sin �x� 0

0 1
s1s2

Œpy cos �y � sin �y�

#
;

(6.11)

B D
�

s1s2 sin �x 0

0 s1s2 sin �y

�
; D D

"
s1
s2

sin �x.px C cot �x/ 0

0 s1
s2

sin �y.py C cot �y/

#
:

(6.12)

It can be deduced from the above equation that any quadratic-phase system can
be implemented by appending lenses at the input and output planes of a fractional
Fourier transformer [22, 25, 27].

6.3 Canonical Decompositions, Anamorphic Sections of Free
Space, and Optical Implementation of LCTs

One way of designing optical implementations of LCTs is to employ the matrix
formulation given in (6.3). The LCT matrix can be decomposed into matrices that
corresponds to more elementary operations such as free-space propagation, thin
lenses, etc.

6.3.1 One-Dimensional Systems

We first discuss one-dimensional systems, presenting two decompositions that
reduce to familiar optical arrangements for the special case of the Fourier transform.

Canonical Decomposition Type-1

The LCT system matrix T can be decomposed as

T D TS .z2/TQx.f /TS .z1/: (6.13)

which corresponds to a section of free space of length z1, followed by a thin lens of
focal length f , followed by another section of free space of length z2, as shown in
Fig. 6.1.
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z1 z2

input output
f

Fig. 6.1 Type-1 system which realizes arbitrary one-dimensional linear canonical transforms [36]

Both the optical system in Fig. 6.1 and the LCT have three parameters. Thus, it
is possible to find the system parameters uniquely by solving the above equations.
Doing so, the equations for z1; z2 and f in terms of `oo, `io, `ii are found as

z1 D `io � `oo

	.`io
2 � `ii`oo/

; z2 D `io � `ii

	.`io
2 � `ii`oo/

; f D `io

	.`io
2 � `ii`oo/

: (6.14)

Since FRTs are a special case of LCTs, it is possible to implement one-
dimensional FRT of any desired order by using this optical setup. The scale
parameters s1 and s2 may be specified by the designer and the additional phase
factors px and py may be made equal to zero. Letting `oo D cot �=s22, `ii D
cot �=s21 and `io D csc �=s1s2, one recovers Lohmann’s type-1 fractional Fourier
transforming system [15]. In this case, the system parameters are found as

z1 D .s1s2 � s21 cos �/

	 sin �
; z2 D .s1s2 � s22 cos �/

	 sin �
; f D s1s2

	 sin �
: (6.15)

Since the additional phase factors are set to zero, they do not appear in the equations.
However, if one wishes to set px and py to a value other than zero, it is again possible
by setting `oo D px cot �=s22 and substituting it in Eq. (6.14).

Canonical Decomposition Type-2

In this case, instead of one lens and two sections of free space, we have two
lenses separated by a single section of free space, as shown in Fig. 6.2. Again, the
parameters z, f1 and f2 can be solved similar to that for the Type-1 decomposition:

z D 1

	`io
; f1 D 1

	.`io � `ii/
; f2 D 1

	.`io � `oo/
: (6.16)
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f1

z

input output
f2

Fig. 6.2 Type-2 system which realizes arbitrary one-dimensional linear canonical transforms [36]

If `oo D cot �=s22, `ii D cot �=s21 and `io D csc �=s1s2 are substituted in these
equations, the parameters required to obtain a FRT can be found. The designer can
again specify the scale parameters and zero phase factor at the output to find:

z D s1s2 sin �

	
; f1 D s21s2 sin �

s1 � s2 cos �
; f2 D s1s22 sin �

s2 � s1 cos �
: (6.17)

Equations (6.14) and (6.16) give the expressions for the system parameters
of type-1 and type-2 canonical systems. But for some values of `oo, `io, `ii, the
lengths of the free space sections required may turn out to be negative, which is
not physically realizable. This constraint will restrict the range of LCTs that can
be realized with the suggested setups. However, in Sect. 6.3.3, this constraint is
removed by employing an optical setup that simulates anamorphic and negative
valued sections of free space. This system is designed in such a way that its effect
is equivalent to propagation in free space with different (and possibly negative)
distances along the two dimensions.

6.3.2 Two-Dimensional Systems

Now we turn our attention to two-dimensional systems. We first present an
elementary result which allows us to analyze two-dimensional systems as two
one-dimensional systems, which makes the analysis of two-dimensional systems
remarkably easier. We write the output of the system in terms of its input as follows:

fo.ro/ D
Z

h.ro; ri/fi.ri/ dri:

If the kernel h.ro; ri/ is separable, that is, h.ro; ri/ D hx.xo; xi/ hy.yo; yi/; then the
response in the x direction is the result of the one-dimensional transform
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fx.xo; yi/ D
Z

hx.xo; xi/ f .xi; yi/ dxi; (6.18)

and similar in the y direction. Moreover if the function is also separable, that is, if
f .r/ D fx.x/ fy.y/, the overall response of the system is

fo.r/ D fox.x/ foy.y/;

where

fox.x/ D
Z

hx.x; xi/ fix.xi/ dxi;

foy.y/ D
Z

hy.y; yi/ fiy.yi/ dyi:

This result has a nice interpretation in optics which makes the analysis of two-
dimensional systems easier. For example, in order to design an optical setup that
realizes imaging in the x direction and Fourier transforming in the y direction, one
can design two one-dimensional systems that realize the given transformations.
When these two systems are merged, the overall effect of the system is imaging
in the x direction and Fourier transforming in the y direction. Similarly, if we
have a system that realizes a FRT with rotational angle �x in the x direction and
another system which realizes a FRT with rotational angle �y in the y direction,
then these two optical setups will together implement a two-dimensional FRT with
the rotational angles �x and �y. So the problem of designing a two-dimensional
fractional Fourier transformer reduces to the problem of designing two one-
dimensional fractional Fourier transformers.

Canonical Decomposition Type-1

According to the above result, the x and y directions can be considered independent
of each other, since the kernel given in Eq. (6.1) or Eq. (6.3) is separable. Hence
if two optical setups realizing one-dimensional LCTs are put together, one can
implement the desired two-dimensional FRT. The suggested optical system is shown
in Fig. 6.3 and employs the following parameters:

z1x D `iox � `oox

	.`io
2
x � `iix`oox/

; z2x D `iox � `iix

	.`io
2
x � `iix`oox/

; fx D `iox

	.`io
2
x � `iix`oox/

;

(6.19)

z1y D `ioy � `ooy

	.`io
2
y � `iiy`ooy/

; z2y D `ioy � `iiy

	.`io
2
y � `iiy`ooy/

; fy D `ioy

	.`io
2
y � `iiy`ooy/

:

(6.20)
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z1y

input output
fxfy

z2y

z1x z2x

Fig. 6.3 Type-1 system that realizes arbitrary two-dimensional linear canonical transforms [36]

Arbitrary two-dimensional fractional Fourier transforming systems can be
obtained as a special case by using:

`oox D cot �x=s22; `iix D cot �x=s21; `iox D csc �x=s1s2; (6.21)

`ooy D cot �y=s22; `iiy D cot �y=s21; `ioy D csc �y=s1s2: (6.22)

When these equations are substituted into (6.19) and (6.20), the parameters of the
fractional Fourier transforming optical system can be found.

We saw that the derivations of the required system parameters can be carried
out by treating x and y independently. However, z1x C z2x D zx D z1y C z2y D zy

should always be satisfied so that the actions in the x and y dimensions meet at a
single output plane. Another constraint that needs to be satisfied is the positivity
of the lengths of the free space sections. z1x,z1y,z2x,z2y should always be positive.
These two constraints restrict the set of LCTs that can be implemented. As before,
this restriction can be dealt with by simulating anamorphic sections of free space
which provides us a propagation distance of zx in the x direction and a distance of
zy in the y direction where zx and zy may take negative values. By removing the
restriction that the propagation distance in the two dimensions has to be equal and
positive, all LCTs can be realized. This problem is solved in Sect. 6.3.3.

Canonical Decomposition Type-2

Two type-2 systems can also realize arbitrary two-dimensional LCTs, by using the
parameters

zx D 1

	`iox
; f1x D 1

	.`iox � `iix/
; f2xD

1

	.`iox � `oox/
; (6.23)
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f1x

z

input output
f1y f2x f2y

Fig. 6.4 Type-2 system that realizes arbitrary two-dimensional linear canonical transforms [36]

zy D 1

	`ioy
; f1y D 1

	.`ioy � `iiy/
; f2y D 1

	.`ioy � `ooy/
: (6.24)

As before, if Eqs. (6.21) and (6.22) are substituted in (6.23) and (6.24), the design
parameters for the FRT can be obtained.

In the optical setup in Fig. 6.4, we have the constraint zx D zy D z, which is
even more restrictive than with type-1 systems. Again zx and zy cannot be negative.
In order to overcome these difficulties, in the following section, we show how to
simulate anamorphic sections of free space with physically realizable components.

6.3.3 Simulation of Anamorphic Sections of Free Space

While designing optical setups that implement one-dimensional LCTs, we treated
the lengths of the sections of free space as free parameters. But some LCTs specified
by the parameters `oo; `ii; `io, turned out to require the use of free space sections with
negative length. This problem is again encountered in the optical setups realizing
two-dimensional LCTs. Besides, two-dimensional optical systems may require
different propagation distances in the x and y directions. In order to implement all
possible one-dimensional and two-dimensional LCTs, we will design a physically
realizable optical system simulating the required, but physically unrealizable free
space sections.

The optical system in Fig. 6.5 is composed of a Fourier block, an anamorphic lens
and an inverse Fourier block. It can simulate two-dimensional anamorphic sections
of free space with propagation distance zx in the x direction and zy in the y direction.
When the analysis of the system in Fig. 6.5 is carried out, the relation between the
input light distribution fi.x; y/ and the output light distribution fo.x; y/ is found as
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input output
fxfy

Fourier
Block

Inverse Fourier
Block

fi (x,y) fo (x,y)

Fig. 6.5 Optical system that simulates anamorphic free space propagation [36]

fo.x; y/ D C
“

expŒi�.x � xi/
2=	zx C .y � yi/

2=	zy�fi.xi; yi/ dxi dyi;

(6.25)

where

zx D s4

	2fx
; zy D s4

	2fy
: (6.26)

and where s is the scale of the Fourier and inverse Fourier blocks. fx and fy can take
any real value including negative ones. Thus it is possible to obtain any combination
of zx and zy by using the optical setup in Fig. 6.5. The anamorphic lens which is
used to control zx and zy may be composed of two orthogonally situated cylindrical
thin lenses with different focal lengths. The Fourier block and inverse Fourier block
are 2-f systems with a spherical lens between two sections of free space. Thus,
simulating an anamorphic section of free space requires 2 cylindrical and two
spherical lenses.

The system in Fig. 6.5 can also be adapted for the one-dimensional case, allowing
us to simulate propagation with negative distances. When the required free space
sections in the type-1 and type-2 implementations are realized by the optical setup
in Fig. 6.5, the optical implementation of all separable LCTs can be realized.

Specializing to the FRT, it is possible to implement all combinations of orders
if we can replace the free space sections with sections of anamorphic free space, if
need be. All combinations of orders ax and ay can be implemented with full control
on the scale parameters s1; s2 and the phase factors px; py, the latter which we can
set to zero if desired.
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6.4 Iwasawa Decomposition, Phase-Space Rotators,
and Optical Implementation of LCTs

The modified Iwasawa decomposition [38, 41, 43] states that any ray transformation
matrix T can be written as the product

T D
�

A B
C D

�
D
�

I 0
�G I

� �
S 0
0 S�1

� �
X Y

�Y X

�
D TLTSTO; (6.27)

where

G D � .CAt C DBt/ .AAt C BBt/�1 D Gt;

S D .AAt C BBt/
1=2 D St;

X C iY D .AAt C BBt/
�1=2

.A C iB/ D .Xt � iYt/
�1
:

(6.28)

The first matrix TL corresponds to an anamorphic quadratic-phase modulation,
which can be realized with a generalized lens. TS is a scaling operation, which
corresponds to optical magnification or demagnification. The last one, TO, is an
ortho-symplectic matrix (both orthogonal

	
Tt

O D T�1
O



and symplectic) [39, 40, 43].

The key to implementing an arbitrary LCT by using the Iwasawa decomposition
above is the ortho-symplectic matrix, which corresponds to an optical phase-space
rotator. If we know how to realize optical phase-space rotators, we can implement
any desired LCT.

The design of an arbitrary phase-space rotator is significantly simplified by using
the FRT. Indeed, any phase-space rotator can be written as an FRT, F .�x; �y/,
embedded between two ordinary image rotators: R.ˇ/F .�x; �y/R.˛/ [30]. Thus,
ultimately, the design of arbitrary LCTs boils down to our ability to design arbitrary
FRTs.

a b

Fig. 6.6 (a) Optical system for the FRT using three generalized lenses separated by distance z.
(b) Experimental implementation of a programmable optical FRT setup: two reflective phase-only
SLMs are used to realize the generalized lenses L1 and L2. The output signal is registered by a
CCD camera in real time [33]
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Here we consider a flexible optical setup for the FRT that is suitable for use
in many applications. In this setup, a change of the fractional angle �x or �y does
not lead to an additional scaling and/or phase factor, that occurs in other proposed
systems [16, 21, 35]. Specifically, this FRT system consists of three generalized
lenses with a fixed distance z between them, as shown in Fig. 6.6a. The first and the
last lens are identical (L3 D L1). Each generalized lens Lj .j D 1; 2/ is an assembled
set of two crossed cylindrical lenses, active in the two orthogonal directions x
and y, with phase modulation functions expŒ�i�g.j/x x2=	� and expŒ�i�g.j/y y2=	�,
respectively, where we still have the possibility to choose a proper normalization
parameter s. The lens powers g.j/x and g.j/y are given by [31]

g.1/x z D 1 � .	z=s/ cot.�x=2/;

g.1/y z D 1 � .	z=s/ cot.�y=2/;

g.2/x z D 2 � .s=	z/ sin �x;

g.2/y z D 2 � .s=	z/ sin �y:

(6.29)

The multiplication of the matrices corresponding to the constituent optical elements
yields the FRT transformation matrix [31]. The cylindrical lenses are oriented
such that �.1;2/1 D 0 and �.1;2/2 D �=2, where the angles are measured in the
counterclockwise direction and � D 0 corresponds to the y axis. Using the matrix
formalism it is easy to prove that the matrix of the composite system corresponds
to the separable phase space rotator and therefore the relation of the complex field
amplitudes at the input fi.ri/ and output fo.ro/ D F .�x; �y/fi.ri/ planes are given
by the separable FRT.

If we choose the normalization parameter as s D 2	z, the lens powers are given
by g.1/x z D 1 � cot.�x=2/=2, g.1/y z D 1 � cot.�y=2/=2, g.2/x z D 2 � 2 sin �x

and g.2/y z D 2 � 2 sin �y. Although �x or �y may take any value in the interval
.0; 2�/, we use the interval Œ�=2; 3�=2� because it corresponds to convergent
lenses. This interval will be sufficient in most applications. Nevertheless, the entire
interval .0; 2�/ can be covered, if necessary, thanks to the relation F�xC�;�yC�.r/ D
F�x;�y.�r/.

The phase-space rotator R.�˛/F .�x; �y/R.˛/ can be easily realized by ro-
tating the above FRT system by an angle ˛ around the optical axis [30]. In other
words, the cylindrical lenses are now oriented according to the angles �.1;2/1 D ˛

and �.1;2/2 D ˛ C �=2. Thus, the phase modulation function associated with each
generalized lens Lj .j D 1; 2/ takes the form

‰.j/.x; y/ D exp

"
�i�

g.j/x

	
.x cos˛ � y sin˛/2

#

� exp

"
�i�

g.j/y

	
.y cos˛ C x sin˛/2

#
: (6.30)
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This optical configuration permits us to perform various attractive operations. For
example, for ˛ D 0 we recover the basic FRT setup, whereas for ˛ D �=4 and
�x D ��y D � , the gyrator operation R.��=4/F .�;��/R.�=4/ is obtained.

One way of implementing a generalized lens is to use a programmable SLM. This
type of digital lens implementation allows one to modify the transformation angles
˛, �x, �y in real time. The corresponding optical setup is shown in Fig. 6.6b, where
two reflective phase-only SLMs are used for the generalized lens implementation.
Note that the third generalized lens is not required here because it only modulates
the phase of the output beam, which will be recorded as an intensity image by a
CCD camera. The feasibility of such a programmable setup has been demonstrated
experimentally [33].

We note that for the special case �x D ��y D � , the corresponding setup can also
be built using glass cylindrical lenses (of fixed power) instead of digital lenses. This
subclass of phase-space rotators include the gyrator and the antisymmetric FRT. In
such a case, the generalized lens is an assembled set of two identical convergent
cylindrical lenses, which are in contact with each other. The distance z between the
generalized lenses Lj is fixed and the lens powers are set according to g.j/x D j=z

and g.j/y D j=z. Note that the first and last generalized lens are identical. While
the transverse axes of the cylindrical lenses form angles �.j/1 D '.j/ C ˛ C �=4

and �
.j/
2 D �'.j/ C ˛ � �=4 with the y axis, note that the two cylindrical

lenses cross at an angle �.j/1 � �
.j/
2 D 2 '.j/ C �=2. The angles '.1;2/ follow

from sin 2'.1/ D .	z=s/ cot.�=2/ and 2 sin 2'.2/ D .s=	z/ sin � , where s is the
normalization parameter. Because of the requirement j cot.�=2/j � 1, we conclude
that the angle interval � 2 Œ�=2; 3�=2� is covered if 	z=s D 1. This scheme (with
normalization parameter s D 	z) has been used for the experimental realization
of the gyrator (when ˛ D 0) reported in [32] and the antisymmetric fractional FT
(when ˛ D �=4) reported in [10].

6.5 Conclusion

We reviewed some methods for optical implementation of one-dimensional and two-
dimensional fractional Fourier transforms (FRTs) and linear canonical transforms
(LCTs).

The systems we discussed are good for realizing arbitrary LCTs, which are a
more general class of transforms than FRT. Thus, they can be specialized to obtain
FRTs with desired orders and parameters as well.

We considered two main groups of approaches. The first is based on canonical
decompositions and involves anamorphic sections of free space. The second is based
on the modified Iwasawa decomposition and involves phase-space rotators.

LCTs represent a fairly general and important class of optical systems. Thus,
their optical implementation is of interest for a variety of optical signal and
image processing systems. In particular, these systems can be used for optical
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implementations of filtering in fractional Fourier or LCT domains [2, 13, 14, 26]
and for optical mode converters [32, 33].

Acknowledgements H.M. Ozaktas acknowledges partial support of the Turkish Academy of
Sciences.
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Chapter 7
Linear Canonical Domains and Degrees
of Freedom of Signals and Systems

Figen S. Oktem and Haldun M. Ozaktas

Abstract We discuss the relationships between linear canonical transform (LCT)
domains, fractional Fourier transform (FRT) domains, and the space-frequency
plane. In particular, we show that LCT domains correspond to scaled fractional
Fourier domains and thus to scaled oblique axes in the space-frequency plane. This
allows LCT domains to be labeled and monotonically ordered by the corresponding
fractional order parameter and provides a more transparent view of the evolution
of light through an optical system modeled by LCTs. We then study the number of
degrees of freedom of optical systems and signals based on these concepts. We first
discuss the bicanonical width product (BWP), which is the number of degrees of
freedom of LCT-limited signals. The BWP generalizes the space-bandwidth product
and often provides a tighter measure of the actual number of degrees of freedom
of signals. We illustrate the usefulness of the notion of BWP in two applications:
efficient signal representation and efficient system simulation. In the first application
we provide a sub-Nyquist sampling approach to represent and reconstruct signals
with arbitrary space-frequency support. In the second application we provide a
fast discrete LCT (DLCT) computation method which can accurately compute a
(continuous) LCT with the minimum number of samples given by the BWP. Finally,
we focus on the degrees of freedom of first-order optical systems with multiple
apertures. We show how to explicitly quantify the degrees of freedom of such
systems, state conditions for lossless transfer through the system and analyze the
effects of lossy transfer.
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7.1 Introduction

Optical systems involving thin lenses, sections of free space in the Fresnel approx-
imation, sections of quadratic graded-index media, and arbitrary combinations of
any number of these are referred to as first-order optical systems or quadratic-phase
systems [1–5]. Mathematically, such systems can be modeled as linear canonical
transforms (LCTs), which form a three-parameter family of integral transforms [5,
6]. The LCT family includes the Fourier and fractional Fourier transforms (FRTs),
coordinate scaling, chirp multiplication, and convolution operations as its special
cases.

One of the most important concepts in Fourier analysis is the concept of the
frequency (or Fourier) domain. This domain is understood to be a space where the
frequency representation of the signal lives. Likewise, fractional Fourier domains
are well understood to correspond to oblique axes in the space-frequency plane
(phase space) [5, 7]. By analogy with this concept, the term linear canonical domain
has been used in several papers to refer to the domain of the LCT representation
of a signal [8–16]. Because LCTs are characterized by three independent param-
eters, LCT domains populate a three-parameter space, which makes them hard to
visualize. In this chapter, we discuss the relationships between LCT domains, FRT
domains, and the space-frequency plane. In particular, we show that each LCT
domain corresponds to a scaled FRT domain, and thus to a scaled oblique axis
in the space-frequency plane. Based on this many-to-one association of LCTs with
FRTs, LCT domains can be labeled and monotonically ordered by the corresponding
fractional order parameter, instead of their usual three parameters which do not
directly lend to a natural ordering. This provides a more transparent view of the
evolution of light through an optical system modeled by LCTs.

Another important concept is the number of degrees of freedom. For simplicity
we focus on one-dimensional signals and systems, though most of our results can
be generalized to higher dimensions in a straightforward manner. We first discuss
the bicanonical width product, which is the number of degrees of freedom of
LCT-limited signals. The conventional space-bandwidth product is of fundamental
importance in signal processing and information optics because of its interpretation
as the number of degrees of freedom of space- and band-limited signals [5, 17–32].
If, instead, a set of signals is highly confined to finite intervals in two arbitrary LCT
domains, the space-frequency (phase space) support is a parallelogram. The number
of degrees of freedom of this set of signals is given by the area of this parallelogram,
which is equal to the BWP, which is usually smaller than the conventional space-
bandwidth product. The BWP, which is a generalization of the space-bandwidth
product, often provides a tighter measure of the actual number of degrees of
freedom, and allows us to represent and process signals with fewer samples.

We illustrate the usefulness of the bicanonical width product in two applications:
efficient signal representation and efficient system simulation. First, we show how
to represent and reconstruct signals with arbitrary time- or space-frequency support,
using fewer samples than required by the classical Shannon–Nyquist sampling
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theorem. Although the classical approach is optimal for band-limited signals, it
is in general suboptimal for representing signals with a known space-frequency
support. Based on the LCT sampling theorem, we provide a sub-Nyquist approach
to represent signals with arbitrary space-frequency support. This approach geomet-
rically amounts to enclosing the support with the smallest possible parallelogram,
as opposed to enclosing it with a rectangle as in the classical approach. The number
of samples required for reconstruction is given by the BWP, which is smaller than
the number of samples required by the classical approach.

As a second application, we provide a fast discrete LCT (DLCT) computation
method which can accurately compute a (continuous) LCT with the minimum
number of samples given by the bicanonical width product. Hence the bicanonical
width product is also a key parameter in fast discrete computation of LCTs, and
hence in efficient and accurate simulation of optical systems.

Lastly, we focus on the degrees of freedom of apertured optical systems,
which here refers to systems consisting of an arbitrary sequence of thin lenses
and apertures separated by sections of free space. We define the space-frequency
window (phase-space window) and show how it can be explicitly determined for
such a system. Once the space-frequency window of the system is determined, the
area of the window gives the maximum number of degrees of freedom that can
be supported by the system. More significantly, it specifies which signals can pass
through the system without information loss; the signal will pass losslessly if and
only if the space-frequency support of the signal lies completely within this window.
When it does not, the parts that lie within the window pass and the parts that lie
outside of the window are blocked, a result which is valid to a good degree of
approximation for most systems of practical interest. These intuitive results provide
insight and guidance into the behavior and design of systems involving multiple
apertures and can help minimize information loss.

In the next section, some preliminary material will be reviewed. In Sect. 7.3 we
establish the relationships between LCT domains, FRT domains, and the space-
frequency plane [33, 34]. The relationships between the space-frequency support,
the bicanonical width product, and the number of degrees of freedom of signals
is the subject of Sect. 7.4 [33–35]. We then provide a sub-Nyquist approach to
represent signals with arbitrary space-frequency support in Sect. 7.5, which requires
the number of samples to be equal to the bicanonical width product [33, 34, 36]. In
Sect. 7.6 we review a fast DLCT computation method that works with this minimum
number of samples [35]. Section 7.7 discusses how to explicitly quantify the degrees
of freedom of optical systems with apertures and analyzes lossless and lossy transfer
through them [33, 37]. We conclude in Sect. 7.8.

While in this chapter we usually refer to the independent variable in our signals as
“space” and speak of the “space-frequency” plane due to the development of many
of these concepts in an optical context, virtually all of our results are also valid when
the independent variable is “time” or when we speak of the “time-frequency” plane.
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7.2 Background

In this section we review some preliminary material that will be used throughout the
chapter. This includes the definition and properties of LCTs and FRTs, the Iwasawa
decomposition, space-frequency distributions, and the LCT sampling theorem.

7.2.1 Linear Canonical Transforms

Optical systems involving thin lenses, sections of free space in the Fresnel approx-
imation, sections of quadratic graded-index media, and arbitrary combinations of
any number of these are referred to as first-order optical systems or quadratic-phase
systems. Mathematically, such systems can be modeled as LCTs. The output light
field fT.u/ of a quadratic-phase system is related to its input field f .u/ through [5, 6]

fT.u/ � .CTf /.u/ �
Z 1

�1
CT.u; u

0/f .u0/ du0; (7.1)

CT.u; u
0/ �

r
1

B
e�i�=4ei�. D

B u2�2 1B uu0C A
B u02/;

for B ¤ 0, where CT is the unitary LCT operator with parameter matrix T D
ŒA BI C D� with AD � BC D 1. In the trivial case B D 0, the LCT is defined simply
as fT.u/ � p

D expŒi�CDu2� f .Du/. Sometimes the three real parameters ˛ D D=B,
ˇ D 1=B, � D A=B are used instead of the unit-determinant matrix T whose
elements are A, B, C, D. (One of the four matrix parameters is redundant because
of the unit-determinant condition.) These two sets of parameters are equivalent and
either set of parameters can be obtained from the other [5, 6]:

T D
�

A B
C D

�
D
�

�=ˇ 1=ˇ

�ˇ C ˛�=ˇ ˛=ˇ

�
: (7.2)

The transform matrix T is useful in the analysis of optical systems because if several
systems are cascaded, the overall system matrix can be found by multiplying the
corresponding matrices.

The Fourier transform, FRT (propagation through quadratic graded-index me-
dia), coordinate scaling (imaging), chirp multiplication (passage through a thin
lens), and chirp convolution (Fresnel propagation in free space) are some of the
special cases of LCTs.

The ath-order FRT [5] of a function f .u/, denoted by fa.u/, can be defined as

fa.u/ � .Faf /.u/ �
Z 1

�1
Ka.u; u

0/f .u0/ du0; (7.3)
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Ka.u; u
0/ � A� ei�.cot�u2�2 csc�uu0Ccot�u02/;

A� D p
1 � i cot�; � D a�=2

when a ¤ 2k, and Ka.u; u0/ D ı.u � u0/ when a D 4k, and Ka.u; u0/ D ı.u C u0/
when a D 4k ˙ 2, where k is an integer. The FRT operator Fa is additive in index:
Fa2Fa1 D Fa2Ca1 and reduces to the Fourier transform (FT) and identity operators
for a D 1 and a D 0, respectively. The FRT is a special case of the LCT with
parameter matrix

Fa D
�

cos.a�=2/ sin.a�=2/
� sin.a�=2/ cos.a�=2/

�
; (7.4)

differing only by an inconsequential factor: CFa f .u/ D e�ia�=4Faf .u/ [5, 6].
Other than the FRT, another special case of the LCT is multiplication with a chirp

function of the form expŒ�i�qu2�, which corresponds to a thin lens in optics. The
corresponding LCT matrix is given by

Qq D
�
1 0

�q 1

�
: (7.5)

Yet another special case is convolution with a chirp function of the form
e�i�=4

p
1=r expŒi�u2=r�, which is equivalent to propagation through a section

of free space in the Fresnel approximation. The corresponding LCT matrix is
given by

Rr D
�
1 r
0 1

�
: (7.6)

The last special case we consider is the scaling operation, which maps a function
f .u/ into

p
1=Mf .u=M/ with M > 0. This is often used to model optical imaging.

The transformation matrix is

MM D
�

M 0

0 1=M

�
: (7.7)

7.2.2 Iwasawa Decomposition

An arbitrary LCT can be decomposed into an FRT followed by scaling followed by
chirp multiplication [5, 34]:

T D
�

A B
C D

�
D
�
1 0

�q 1

� �
M 0

0 1
M

� �
cos� sin�

� sin� cos�:

�
(7.8)
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The three matrices, respectively, correspond to the transformation matrices of
chirp multiplication with parameter q (multiplication by exp .�i�q u2/), coordinate
scaling with factor M > 0 (mapping of f .u/ into

p
1=Mf .u=M/), and ath order

FRT with � D a�=2 (transformation of f .u/ into fa.u/). The decomposition can be
written more explicitly in terms of the LCT and FRT domain representations of the
signal as

fT.u/ D exp
	�i�qu2


r 1

M
fa
� u

M

�
: (7.9)

This decomposition is a special case of the Iwasawa decomposition [38–40].
(For a discussion of the implications of this decomposition to the propagation
of light through first-order optical systems, see [34, 41]. For a discussion of the
implications for sampling optical fields, see [42, 43].) By appropriately choosing the
three parameters a, M, q, the above equality can be satisfied for any T D ŒA BI C D�
matrix. Solving for a, M, q in (7.8), we obtain the decomposition parameters in terms
of the matrix entries A, B, C, D:

a D
(

2
�

arctan
	

B
A



; if A � 0

2
�

arctan
	

B
A


C 2; if A < 0
(7.10)

M D
p

A2 C B2; (7.11)

q D
( � C

A � B=A
A2CB2

; if A ¤ 0

� D
B ; if A D 0:

(7.12)

The range of the arctangent lies in .��=2; �=2�.

7.2.3 Space-Frequency Distributions

The Wigner distribution (WD) Wf .u; 
/ of a signal f .u/ is a space-frequency
(phase-space) distribution that gives the distribution of signal energy over space
and frequency, and is defined as [5, 44–46]:

Wf .u; 
/ D
Z 1

�1
f .u C u0=2/f �.u � u0=2/e�i2� 
 u0

du0: (7.13)

We refer to the space-frequency region for which the Wigner distribution is
considered non-negligible as the space-frequency support of the signal, with the
area of this region giving the number of degrees of freedom [5]. A large percentage
of the signal energy is confined to the space-frequency support.
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All quadratic-phase systems result in an area-preserving geometric transforma-
tion in the u-
 plane. Explicitly, the WD of fT.u/ can be related to the WD of f .u/
by a linear distortion [5]:

WfT.u; 
/ D Wf .Du � B
;�Cu C A
/: (7.14)

The Jacobian of this coordinate transformation is equal to the determinant of the
matrix T, which is unity. Therefore, this coordinate transformation will geometri-
cally distort the support region of the WD but the support area (hence the number
of degrees of freedom) will remain unchanged.

7.2.4 LCT Sampling Theorem

Just as the LCT is a generalization of the Fourier transform, the LCT sampling
theorem [9, 47, 48] is an extension of the classical sampling theorem. According to
the LCT sampling theorem, if a function f .u/ has an LCT with parameter T which
has a compact support such that fT.u/ is zero outside the interval Œ��uT=2;�uT=2�,
then the function f .u/ can be reconstructed from its samples taken at intervals
ıu � 1=.jˇj�uT/. The reconstruction formula, which we will refer to as the LCT
interpolation formula, is given by

f .u/ D ıu jˇj�uT e�i��u2
1X

nD�1
f .n ıu/ ei��.n ıu/2sinc.ˇ �uT.u � n ıu//: (7.15)

This reduces to the classical sampling theorem, and to the FRT sampling theo-
rem [49–54] when the parameter matrix T is replaced with the associated matrices
of the FT and FRT operations.

The background material presented in this section employs dimensionless vari-
ables and parameters, for simplicity and purity. We assume that a dimensional
normalization has been performed and that the coordinates appearing in the defini-
tions of the FRT, LCT, Wigner distribution, etc., are all dimensionless quantities [5].
In Sect. 7.7, however, we will prefer to employ variables with real physical
dimensions. There, we will present dimensional counterparts of the background
material that we will need. The reader will be able to employ these to obtain
dimensional counterparts of other results in this chapter, should the need arise.

7.3 LCT Domains

Because LCTs are characterized by three independent parameters, LCT domains
populate a three-parameter space, which makes them hard to visualize. In this
section, we discuss the relationships between LCT domains, FRT domains, and the



204 F.S. Oktem and H.M. Ozaktas

space-frequency plane. In particular, we show that each LCT domain corresponds
to a scaled FRT domain, and thus to a scaled oblique axis in the space-frequency
plane. This provides a more transparent view of the evolution of light through an
optical system modeled by LCTs.

7.3.1 Relationship of LCT Domains
to the Space-Frequency Plane

One of the most important concepts in Fourier analysis is the concept of the
frequency (or Fourier) domain. This domain is understood to be a space where the
frequency representation of the signal lives. Likewise, fractional Fourier domains
are well understood to correspond to oblique axes in the space-frequency plane
(phase space) [5, 7], since the FRT has the effect of rotating the space-frequency
(phase space) representation of a signal. More explicitly, the effect of ath-order
fractional Fourier transformation on the Wigner distribution of a signal is to rotate
the Wigner distribution by an angle � D a�=2 [7, 55, 56]:

Wfa.u; 
/ D Wf .u cos� � 
 sin�; u sin� C 
 cos�/: (7.16)

The Radon transform operator RDN � , which takes the integral projection of the
Wigner distribution of f .u/ onto an axis making an angle � with the u axis, can be
used to restate this property in the following manner [5]:

fRDN �ŒWf .u; 
/�g.ua/ D jfa.ua/j2; (7.17)

where ua denotes the axis making angle � D a�=2 with the u axis. That is,
projection of the Wigner distribution of f .u/ onto the ua axis gives jfa.ua/j2, the
squared magnitude of the ath order FRT of the function. Hence, the projection axis
ua can be referred to as the ath-order fractional Fourier domain (see Fig. 7.1) [7, 55].
The space and frequency domains are merely special cases of the continuum of
fractional Fourier domains.

Fig. 7.1 The ath-order
fractional Fourier
domain [34]

μ

u

ua

μa

φ
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Fractional Fourier domains are recognized as oblique axes in the space-frequency
plane [5–7]. By analogy with this concept, the term linear canonical domain has
been used in several papers to refer to the domain of the LCT representation of
a signal [8–16]. However, it is not immediately obvious from these works where
these LCT domains exist and how they are related to the space-frequency plane; in
other words, while the effect of an LCT on the space-frequency representation of a
signal is well understood as a linear geometrical distortion, it is not immediate how
members of the three-parameter family of LCT domains are related to the space-
frequency plane, or how we should visualize them. LCTs are characterized by three
independent parameters, and hence LCT domains populate a three-parameter space,
which makes them hard to visualize. Below, we explicitly relate LCT domains to
the space-frequency plane [33, 34]. We show that each LCT domain corresponds
to a scaled FRT domain, and thus to a scaled oblique axis in the space-frequency
plane. Based on this many-to-one association of LCTs with FRTs, LCT domains can
be labeled and monotonically ordered by an associated fractional order parameter,
instead of their usual three parameters which do not directly lend to a natural
ordering.

We use the Iwasawa decomposition to relate the members of the three-parameter
family of LCT domains to the space-frequency plane. As given in (7.9), any arbitrary
LCT can be expressed as a chirp multiplied and scaled FRT. Thus, in order to
compute the LCT of a signal, we can first compute the ath-order FRT of the signal,
which transforms the signal to the ath-order fractional Fourier domain. Secondly,
we scale the transformed signal. Because scaling is a relatively trivial operation, we
need not interpret it as changing the domain of the signal, but merely a scaling of
the coordinate axis in the same domain. Finally, we multiply the resulting signal
with a chirp to obtain the LCT. Multiplication with a function is not considered an
operation which transforms a signal to another domain, but which alters the signal
in the same domain. (For instance, when we multiply the Fourier transform of a
function with a mask, the result is considered to remain in the frequency domain.)
Therefore, only the FRT part of the LCT operation corresponds to a genuine domain
change, and the linear canonical transformed signal essentially lives in a scaled
fractional Fourier domain. In other words, LCT domains are essentially equivalent
to scaled fractional Fourier domains. That is, despite their three parameters, LCT
domains do not constitute a richer family of domains than FRT domains. By using
the well-known relationship of FRT domains to the space-frequency plane, we can
state a similar relationship for the LCT domains as follows:

In the space-frequency plane, the LCT domain uT with parameter matrix T D ŒA BI C D�
corresponds to a scaled oblique axis making angle arctan .B=A/ with the u axis (or equiva-
lently, having slope B=A), and scaled with the parameter M where M D p

A2 C B2 [33, 34].

Note that any LCT domain is completely characterized by the two parameters A and
B (or equivalently by a and M, or by � and ˇ) instead of all three of its parameters.

We also note that the relation in (7.17) can be rewritten for the LCT of a signal as

1

M
fRDN �ŒWf .u; 
/�g

� u

M

�
D jfT.u/j2; (7.18)
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by using (7.17) and (7.9) (with s D 1). This is another way of interpreting scaled
oblique axes in the space-frequency plane as the LCT domain with parameter T.

7.3.2 Essentially Equivalent Domains

Observe that LCTs with the same value of B=A (or equivalently the same value of � )
will have the same value of a in the decomposition in (7.10), and therefore will be
associated with the same FRT domain. We refer to such LCT domains as well as
their associated FRT domain as essentially equivalent domains [33, 34]. Note that
if a signal has a compact support in a certain LCT domain, then the signal will also
have compact support in all essentially equivalent domains.

The concept of essentially equivalent domains we introduce allows many earlier
observations and results to be seen in a new light, making them almost obvious
or more transparent. For instance, it has been stated that if a particular LCT of
a signal is bandlimited, then another LCT of the signal cannot be bandlimited
unless B1=A1 D B2=A2 [10]. Since we recognize the domains associated with
two LCTs satisfying this relation to be essentially equivalent, this result becomes
obvious. Although we will not further elaborate, other results regarding the com-
pactness/bandlimitedness of different LCTs of a signal [57] can be likewise easily
understood in terms of the concept of essentially equivalent domains. As a final
example, we consider the LCT sampling theorem, according to which if the LCT
of a signal has finite extent �uT, then we should sample it with spacing �u �
jBj=�uT. Such a sampling scheme collapses when B D 0. It is easy to understand
why if we note that B D 0 implies that the LCT domain in question is essentially
equivalent to the a D 0th FRT domain; that is, the domain in which the signal is
specified to have finite extent is essentially equivalent to the domain in which we
are attempting to sample the signal.

7.3.3 Optical Interpretation

Let us now optically interpret the equivalence of LCT domains to FRT domains.
Consider a signal that passes through an arbitrary quadratic-phase system. Since the
light field at any plane within the system is related to the input field through an
LCT, the signal will incrementally be transformed through different LCT domains.
Because the three parameters of the consequential LCT domains are not sequenced,
it is not easy to give any interpretation or visualize the nature of the transformation
of the optical field. However, if we think of the LCT domains as being equivalent
to scaled FRT domains, it becomes possible to interpret every location along the
propagation axis as an FRT domain of specific order, which is equivalent to an
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oblique axis in the space-frequency plane. Moreover, it has been shown that if we
take the fractional order a to be equal to zero at the input of the system, then a
monotonically increases as a function of the distance along the optical axis [41, 58].
In other words, propagation through a quadratic-phase system can be understood as
passage through a continuum of scaled FRT domains of monotonically increasing
order, instead of passage through an unsequenced plethora of LCT domains [34].

To see that the FRT parameter a is monotonically increasing along the z axis,
observe from Eq. (7.10) that a / arctan.B=A/, so that a increases with B=A. Passage
through a lens involves multiplication with the matrix given in Eq. (7.5) which
does not change B=A. Passage through an incremental section of free space involves
multiplication with the matrix given in Eq. (7.6) which always results in a positive
increment in a. This is because r is proportional to the distance of propagation,
and the derivative of the new value of B=A with respect to r is always positive,
which implies that B=A always increases with r. A similar argument is possible
for quadratic graded-index media. A more precise development may be found in
[41, 58].

Therefore, the distribution of light is continually fractional Fourier transformed
through scaled fractional Fourier domains of increasing order, which we know
are oblique axes in the space-frequency plane. This understanding of quadratic-
phase systems yields much more insight into the nature of how light is transformed
as it propagates through such a system, as opposed to thinking of it in terms of
going through a series of unsequenced LCT domains whose whereabouts we cannot
visualize. For example, based on this understanding we show in Sect. 7.7 how to
explicitly quantify the degrees of freedom of optical systems with apertures and
give conditions for lossless transfer.

7.4 Degrees of Freedom of Signals and the Bicanonical
Width Product

The conventional space-bandwidth product is of fundamental importance in signal
processing and information optics because of its interpretation as the number of
degrees of freedom of space- and band-limited signals [5, 17–32]. In this section,
we discuss the bicanonical width product (BWP), which is the number of degrees
of freedom of LCT-limited signals. The bicanonical width product generalizes the
space-bandwidth product and often provides a tighter measure of the actual number
of degrees of freedom of signals [33–35].
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7.4.1 Space-Bandwidth Product: Degrees of Freedom
of Space- and Band-Limited Signals

Consider a family of signals whose members are approximately confined to an
interval of length �u in the space domain and to an interval of length �
 in
the frequency domain in the sense that a large percentage of the signal energy is
confined to these intervals. The space-bandwidth product N is then defined [5, 28] as

N � �u�
; (7.19)

and is always greater than or equal to unity because of the uncertainty relation.
The notion of space-bandwidth product, as degrees of freedom of space- and

band-limited signals, can be established in a number of different ways. Here we
provide two constructions: one based on Fourier sampling theorem, another based
on space-frequency analysis.

7.4.1.1 Construction Based on Fourier Sampling Theorem

The conventional space-bandwidth product is the minimum number of samples
required to uniquely identify a signal out of all possible signals whose energies
are approximately confined to space and frequency intervals of length �u and
�
. This argument is based on the Shannon–Nyquist sampling theorem, which
requires that the spacing between samples (in the space domain) not be greater than
ıu D 1=�
, so that the minimum number of samples over the space extent �u is
given by �u=ıu D �u�
. Alternatively, if we sample the signal in the frequency
domain, the spacing between samples should not be greater than ı
 D 1=�u, so
that the minimum number of samples over the frequency extent �
 is given by
�
=ı
 D �u�
. The minimum number of samples needed to fully characterize
an approximately space- and band-limited signal can be interpreted as the number
of degrees of freedom of the set of signals. This number of samples turns out to be
the same whether counted in the space or frequency domain, and is given by the
space-bandwidth product.

7.4.1.2 Construction Based on Space-Frequency Analysis

Another line of development involves space-frequency analysis. When the approxi-
mate space and frequency extents are specified as above, this amounts to assuming
that most of the energy of the signal is confined to a �u ��
 rectangular region in
the space-frequency plane, perpendicular to the space-frequency axes (Fig. 7.2). In
this case, the area of this rectangular region, which gives the number of degrees of
freedom, is equal to the space-bandwidth product.
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Fig. 7.2 Rectangular
space-frequency support with
area equal to the
space-bandwidth product
�u�
 [34]
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More generally, the number of degrees of freedom is given by the area of the
space-frequency support (phase space support), regardless of its shape [5, 30]. When
the space-frequency support is not a rectangle perpendicular to the axes, the actual
number of degrees of freedom will be smaller than the space-bandwidth product of
the signal [5, 30].

7.4.1.3 Discussion

The space-bandwidth product is a notion originating from the simultaneous spec-
ification of the space and frequency extents. Although this product is commonly
seen as an intrinsic property, it is in fact a notion that is specific to the Fourier
transform and the frequency domain. It is also possible to specify the extents in
other FRT or LCT domains. The set of signals thus specified will in general exhibit
a nonrectangular space-frequency support. (For example, we will next show that
when two such extents are specified, the support will be a parallelogram [33, 34].)
In all cases, the area of the support will correspond to the number of degrees of
freedom of the set of signals thus defined. If we insist on characterizing this set of
signals with conventional space and frequency extents, the space-bandwidth product
will overstate the number of degrees of freedom (see Fig. 7.3).

Obviously, specifying a finite extent in a single LCT domain does not define a
family of signals with a finite number of degrees of freedom, just as specifying a
finite extent in only one of the conventional space or frequency domains does not.
However, specifying finite extents in two distinct LCT domains allows us to define a
family of signals with a finite number of degrees of freedom. The number of degrees
of freedom will depend on both the specified LCT domains and the extents in those
domains.
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Fig. 7.3 Parallelogram shaped space-frequency support with area equal to the bicanonical width
product �uT1�uT2 jˇ1;2j, which is smaller than the space-bandwidth product �u�
 [34]

7.4.2 Bicanonical Width Product: Degrees of Freedom of
LCT-Limited Signals

We first define the space-canonical width product, which gives the number of
degrees of freedom of signals that are approximately confined to a finite interval
�u in the conventional space domain and to a finite interval �uT in some other
LCT domain [33–35]:

N � �u�uTjˇj: (7.20)

This is always greater than or equal to unity because of the uncertainty relation
for LCTs [5, 6, 10, 15]. Here T represents the three parameters of the LCT, where
ˇ is one of these three parameters. The space-canonical width product constitutes
a generalization of the space-bandwidth product, and reduces to it when the LCT
reduces to an ordinary Fourier transform, upon which �uT reduces to �
 and
ˇ D 1.

In the above, one of the two domains is chosen to be the conventional space
domain. More generally, the two LCT domains can both be arbitrarily chosen. In
this case, we use the more general term bicanonical width product (BWP) to refer
to the product [33–35]

N � �uT1�uT2 jˇ1;2j; (7.21)

where �uT1 and �uT2 are the extents of the signal in two LCT domains and ˇ1;2 is
the parameter of the LCT between these two domains (the LCT which transforms
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the signal from the first LCT domain to the second). Note that the bicanonical width
product is defined with respect to two specific LCT domains.

The notion of bicanonical width product as the degrees of freedom of LCT-
limited signals can also be established in two ways [34]: based on the LCT sampling
theorem, and based on space-frequency analysis. Before establishing this, we note
that if ˇ D 1 in (7.20) or ˇ1;2 D 1 in (7.21), then the product N will not be finite
and hence the number of degrees of freedom will not be bounded. This is because
when this parameter is infinity (that is, B D 0), the two domains are related to each
other simply by a scaling or chirp multiplication operation. But as discussed before,
domains related by such operations are essentially equivalent. Thus, specification of
the extent in two such domains does not constrain the family of signals more than
the specification of the extent in only one domain, which, as noted, is not sufficient
to make the number of degrees of freedom finite.

7.4.2.1 Construction Based on LCT Sampling Theorem

The space-canonical width product is the minimum number of samples required
to uniquely identify a signal out of all possible signals whose energies are
approximately confined to a space interval of �u and a particular LCT interval of
�uT. (This many number of samples can be used to reconstruct the signal.) This
argument can be justified by the use of the LCT sampling theorem. According
to the LCT sampling theorem, the space-domain sampling interval for a signal
that has finite extent �uT in a particular LCT domain should not be larger than
ıu D 1=.jˇj�uT/. If we sample the space-domain signal at this rate, the total
number of samples over the extent �u will be given by �u=ıu D �u�uTjˇj,
which is precisely equal to the space-canonical width product. Alternatively, if
we sample in the LCT-domain, the sampling interval should not be larger than
ıuT D 1=.jˇj�u/. Sampling at this rate, the total number of samples over the LCT
extent �uT is given by �uT=ıuT D �u�uTjˇj, which once again is the space-
canonical width product.

The derivation above can be easily replicated for the more general bicanonical
width product defined in (7.21). Therefore, the bicanonical width product can also
be interpreted as the minimum number of samples required to uniquely identify a
signal out of all possible signals whose energies are approximately confined to finite
intervals in two specified LCT domains, and therefore as the number of degrees of
freedom of this set of signals [33–35].

7.4.2.2 Construction Based on Space-Frequency Analysis

Another line of development involves space-frequency analysis. Here we show that
when the extents are specified in two LCT domains as above, the space-frequency
support becomes a parallelogram (see Fig. 7.4), and the area of this parallelogram,
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which gives the number of degrees of freedom, is equal to the bicanonical width
product [33, 34].

This result follows from the established relationship of LCT domains to the
space-frequency plane. Let us consider a set of signals, whose members are app-
roximately confined to the intervals Œ��uT1=2;�uT1=2� and Œ��uT2=2;�uT2=2�

in two given LCT domains, uT1 and uT2 . We want to investigate the space-frequency
support of this set of signals. Since LCT domains are equivalent to scaled fractional
Fourier domains, each finite interval in an LCT domain will correspond to a
scaled interval in the equivalent FRT domain. To see this explicitly, we again refer
to (7.9), which implies that if fT.u/ is confined to an interval of length �uT, so is
fa.u=M/. Therefore, the extent of fa.u/ in the equivalent ath-order FRT domain is
�uT=M. Thus, the set of signals in question is approximately limited to an extent of
�uT1=M1 in the a1th order FRT domain, and an extent of�uT2=M2 in the a2th order
FRT domain, where a1, a2 and M1, M2 are related to T1, T2 through Eqs. (7.10)
and (7.11).

It is well known that if the space-, frequency- or FRT-domain representation of
a signal is identically zero (or negligible) outside a certain interval, so is its Wigner
distribution [5, 59]. As a direct consequence of this fact, the Wigner distribution of
our set of signals is confined to corridors of width �uT1=M1 and �uT2=M2 in the
directions orthogonal to the a1th order FRT domain ua1 , and the a2th order FRT
domain ua2 , respectively. (With the term corridor we are referring to an infinite
strip in the space-frequency plane perpendicular to the oblique ua axis. The corridor
makes an angle .a C 1/�=2 with the u axis (see Fig. 7.5).) Now, if we intersect the
two corridors defined by each extent, we obtain a parallelogram, which gives the
space-frequency support of the signals (see Fig. 7.4). The area of the parallelogram
is equal to the bicanonical width product of the set of signals in question. This result
will be formally stated as follows:

Consider a set of signals, whose members are approximately confined to finite
extents �uT1 and �uT2 in the two LCT domains uT1 and uT2 , respectively. Let
ˇ1;2 denote the ˇ parameter of the LCT which transforms signals from the first
LCT domain to the second. Then, the space-frequency support of these signals
is given by a parallelogram defined by these extents (Fig. 7.4), and the area

Fig. 7.4 The
space-frequency support
when finite extents are
specified in two LCT
domains. The area of the
parallelogram is equal to
�uT1�uT2 jˇ1;2j [34]
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of the parallelogram-shaped support is equal to the bicanonical width product
�uT1�uT2 jˇ1;2j of the set of signals [33, 34].

Proof. The two heights of the parallelogram defined by the extents�uT1 and�uT2 ,
are�uT1=M1 and�uT2=M2, corresponding to the widths of the corridors. Moreover,
the angle between the corridors is �2 � �1. Then, the area of the parallelogram is

Area D �uT1

M1

�uT2

M2

j csc.�2 � �1/j (7.22)

D �uT1�uT2

M1M2j sin�2 cos�1 � cos�2 sin�1j (7.23)

D �uT1�uT2

jA1B2 � B1A2j (7.24)

D �uT1�uT2
jˇ1ˇ2j

j�1 � �2j (7.25)

D �uT1�uT2 jˇ1;2j; (7.26)

where the third and fourth equality follows from (7.8) and (7.2), respectively. The
final result can be obtained from the parameter matrix T2T�1

1 which transforms from
the first LCT domain to the second domain. ut

Since the number of degrees of freedom of a set of signals is given by the
area of their space-frequency support, this result provides further justification for
interpreting the bicanonical width product as the number of degrees of freedom of
LCT-limited signals.

Fig. 7.5 Illustration of a
space-frequency corridor [37]
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7.4.2.3 Discussion

When confronted with a space-frequency support of arbitrary shape, it is quite
common to assume the number of degrees of freedom to be equal to the space-
bandwidth product, without regard to the shape of its space-frequency support. In
reality, this is a worst-case approach which encloses the arbitrary shape within
a rectangle perpendicular to the axes, and overstates the number of degrees of
freedom.

The bicanonical width product provides a tighter measure of the number of
degrees of freedom than the conventional space-bandwidth product, and allows
us to represent and process the signals with a smaller number of samples, since
it is possible to enclose the true space-frequency support more tightly with a
parallelogram of our choice, as compared to a rectangle perpendicular to the axes,
or indeed any rectangle. In applications where the underlying physics involves LCT
type integrals (as is the case with many wave propagation problems and optical
systems), parallelograms may be excellently, if not perfectly, tailored to the true
space-frequency supports of the signals. In the next section, we illustrate how these
ideas are useful for representing and reconstructing signals with arbitrary time-
or space-frequency support, using fewer samples than required by the Shannon–
Nyquist sampling theorem. The developed approach geometrically amounts to
enclosing the support with the smallest possible parallelogram, as opposed to
enclosing it with a rectangle as in the classical approach.

Another important feature of the bicanonical width product is that it is invariant
under linear canonical transformation. The fact that LCTs model an important
family of optical systems, makes the bicanonical width product a suitable invariant
measure for the number of degrees of freedom of optical signals. On the other hand,
the space-bandwidth product, which is the area of the smallest bounding perpendic-
ular rectangle, may change significantly after linear canonical transformation. This
has an important implication in DLCT computation as will be discussed in Sect. 7.6.
With this computation method, we can accurately compute an LCT with a minimum
number of samples given by the bicanonical width product, so that the bicanonical
width product is also a key parameter in fast discrete computation of LCTs, and
hence in efficient and accurate simulation of optical systems [35].

Given the fundamental importance of the conventional space-bandwidth product
in signal processing and information optics, it is not surprising that the bicanonical
width product can also play an important role in these areas. In a later section, we
discuss how the bicanonical width product is useful for efficiently and accurately
simulating optical systems based on an elegant and natural formulation of DLCT
computation. Finally we note that the bicanonical width product has been originally
introduced in the context of LCTs [33, 35]. However, since the equivalence between
FRT and LCT domains has been shown [34], we can also speak of the bifractional
width product in the context of FRT domains.
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7.5 Sub-Nyquist Sampling and Reconstruction of Signals

In this section, we show how to represent and reconstruct signals with arbitrary time-
or space-frequency support, using fewer samples than required by the Shannon–
Nyquist sampling theorem [33, 36]. The classical Shannon–Nyquist sampling
theorem allows us to represent band-limited signals with samples taken at a
finite rate. Although the classical approach is optimal for band-limited signals, it
is in general suboptimal for representing signals with a known space-frequency
support. Application of the classical approach to signals with arbitrarily given space-
frequency support amounts to enclosing the support with a rectangle perpendicular
to the space and frequency axes. The number of samples is given by the area of
the rectangle and equals the space-bandwidth product, which may be considerably
larger than the area of the space-frequency support and hence the actual number
of degrees of freedom of the signals. When the space-frequency support is not a
rectangle perpendicular to the axes, it is possible to represent and reconstruct the
signal with fewer samples than implied by the space-bandwidth product. Light fields
propagating through optical systems is one example of an application where non-
rectangular supports are commonly encountered [37].

The FRT is a generalization of the Fourier transform and the FRT sampling
theorem [49–51] is an extension of the classical sampling theorem (while a special
case of the LCT sampling theorem). Based on this generalized sampling theorem,
here we provide a sub-Nyquist approach to represent signals with arbitrary space-
frequency support [33, 34, 36]. This approach reduces to the geometrical problem
of finding the smallest parallelogram enclosing the space-frequency support. The
area of the parallelogram given by the bicanonical width product is the number
of samples needed and the reconstruction is given by an explicit formula. This
allows us to represent signals with fewer samples than with the classical approach,
since it is possible to enclose the true space-frequency support more tightly with
a parallelogram of our choice, than with a rectangle perpendicular to the axes. A
Wigner-based approach to related problems has been given in [47, 60].

7.5.1 Constrained Signal Representation

Our goal is to determine the minimal sampling rate when the space-frequency
support is given and to show how to reconstruct the signal from those samples.
First we consider the (constrained) case where the signal needs to be sampled in a
specific domain, say the space domain u. In other words, we are not free to choose
the domain in which to sample the signal and must sample it in the specified domain.
Without loss of generality, suppose the specified domain is the space domain. In the
classical approach, the sampling rate in the space domain is determined by the extent
in the frequency domain. If we denote this extent by �
, then the spacing between
space-domain samples must not be greater than ıu D 1=�
, so that the minimum
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number of samples over the space extent �u is given by �u=.1=�
/ D �u�
,
which is the space-bandwidth product. (The space extent�u is the projection of the
space-frequency support onto the u axis.) This classical approach is geometrically
equivalent to enclosing the support with a rectangle perpendicular to the space and
frequency axes and having sides of length �u and �
. Its area equals �u�
 and
gives the number of samples required for interpolating the continuous signal in the
Nyquist–Shannon sense (Fig. 7.6).

For efficient sampling, it is desirable to approach the minimum number of
samples possible given by the area of the space-frequency support. When we use
the FRT sampling theorem, the sampling rate can be determined by the extent in the
FRT domain which minimizes the required number of the samples. Since signals
that are extent limited in two FRT domains have parallelogram shaped supports
(see Fig. 7.7), determining the optimal value of a is equivalent to the problem of
finding the smallest parallelogram enclosing the space-frequency support, under
the constraint that two sides of the parallelogram must be perpendicular to the
u axis (Fig. 7.6). (This constraint arises because the signal must be sampled
specifically in the space domain.) The minimum number of samples needed for
reconstruction (based on the FRT sampling theorem) is given by the area of this
enclosing parallelogram, which is equal to the bicanonical width product for the
two FRT domains orthogonal to the sides of the parallelogram. Reconstruction of
the continuous signal is possible through the interpolation formula associated with
the FRT sampling theorem, which is a special case of the LCT interpolation formula
in (7.15) [33, 34, 36].

This approach is illustrated in Fig. 7.6, where the shaded region shows the space-
frequency support. In the classical approach, we would be finding the smallest
rectangle perpendicular to the axes that encloses the space-frequency support of the
signal. With the proposed approach, we find the smallest enclosing parallelogram
with two sides perpendicular to the space axis. Since the FRT includes the ordinary
Fourier transform as a special case (and parallelograms include rectangles), the
proposed approach will never require more samples than the classical approach. On
the other hand, the freedom to optimally choose a can result in a fewer number of
samples being necessary [33, 34, 36]. (That is, the area of the fitting parallelogram
will be always less than or equal to the area of the fitting rectangle.)

Fig. 7.6 The smallest
enclosing parallelogram
(solid) and rectangle
(dashed), both under the
constraint that two sides be
perpendicular to the space
axis u. The shaded region is
the space-frequency
support [33, 36]
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Fig. 7.7 The
space-frequency support of
f .u/ (left) and fT.u/ (right)
for space- and LCT-limited
signals. The area of both
parallelograms are equal to
�u�uTjˇj [34]
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7.5.2 Unconstrained Signal Representation

In some applications we may have the freedom to process the analog signal prior
to sampling and hence to sample the signal at a domain of our choice. In this case
the number of samples can be further reduced [33]. This involves computing the
FRT of the analog signal prior to sampling. Such computations may involve chirp
modulators for time-domain signals and lenses for space-domain signals [5]. After
sampling, if necessary we can return back to the original domain in 
 N log N time
since discrete FRTs can be computed in this amount of time [35].

The FRT sampling theorem allows us to work with any two arbitrary domains
(the sampling domain and the domain where the extent determines the sampling
rate) since any such domains can be related through the FRT; hence, we are free to
determine the sampling rate from the extent in any FRT domain of our choice. This
allows us to further reduce the number of samples by enclosing the support with an
arbitrary parallelogram, instead of a rectangle. This approach reduces to a simple
geometrical problem which requires us to find the minimum-area parallelogram
enclosing the given space-frequency support. In contrast to the constrained case,
having the flexibility of sampling in any FRT domain removes the requirement that
the two sides of the parallelogram be perpendicular to the space domain, and allows
us to fit an arbitrary parallelogram. The number of samples required is given by
the area of the parallelogram, which is equal to the bicanonical width product. The
signal can be represented optimally through its samples at either of the two FRT
domains that are orthogonal to the sides of the best-fitting parallelogram. Note that
this approach gives us two optimal FRT domains in which the signal should be
sampled. It is also possible to represent the signal in any essentially equivalent LCT
domain, with the same sampling efficiency [33, 34].
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7.6 Efficient Discrete LCT Computation for System
Simulation

We now review how the bicanonical width product is useful for the efficient and
accurate simulation of optical systems, based on a natural formulation of discrete
LCT (DLCT) computation [35, 61]. It has been recently shown that if the number
of samples N is chosen to be at least equal to the bicanonical width product,
the DLCT can be used to obtain a good approximation to the continuous LCT,
limited only by the fundamental fact that a signal cannot have strictly finite extent
in more than one domain [35, 61]. The exact relation between the discrete and
continuous LCT precisely shows the approximation involved and demonstrates how
the approximation improves with increasing N [35]. Because this exact relation
generalizes the corresponding relation for Fourier transforms [62], the DLCT
defined in [63] approximates the continuous LCT in the same sense that the DFT
approximates the continuous Fourier transform, provided the number of samples and
the sampling intervals are chosen based on the LCT sampling theorem as specified
in [35, 61].

We also note that this DLCT can be efficiently computed in O.N log N/ time
by successively performing a chirp multiplication, a fast Fourier transform (FFT),
and a second chirp multiplication, by taking advantage of the simple form of
the DLCT [35, 52, 63]. This straightforward fast computation approach does not
require sophisticated algorithms or space-frequency support tracking for accurately
computing the continuous LCT, as opposed to other LCT computation methods
[64–69]. To summarize, a simple fast computation method, a well-defined rela-
tionship to the continuous LCT, and unitarity make this definition of the DLCT
an important candidate for being a widely accepted definition of the discrete version
of the LCT [35].

Note that in order to use any DLCT definition in practice, to approximately
compute the samples of the LCT of a continuous signal, it is necessary to know how
to choose the number of samples and the sampling intervals, based on some prior
information about the signal. The described computation approach (first discussed
in [61], and then independently developed in [35]) meets precisely this demand
and allows us to accurately compute LCTs with the minimum possible number
of samples. In this formulation, the extents of the signal in the input and output
LCT domains (the original space domain and the target LCT domain) are assumed
to be specified as prior information. This is equivalent to assuming an initial
parallelogram-shaped space-frequency support [33, 34, 70]. The minimum number
of samples required for accurate computation is then determined from the LCT
sampling theorem. This minimum number of samples is equal to the bicanonical
width product, which is also the area of the parallelogram support [33, 35]. The
DLCT defined in [63] works with this minimum number of samples without
requiring any oversampling at the intermediate stages of the computation, in contrast
to previously given approaches [66, 67] for the same DLCT. On the other hand, use
of the Shannon–Nyquist sampling theorem instead of the LCT sampling theorem, as
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in [66, 67], leads to problems such as the need to use a greater number of samples,
different sampling rates at intermediate stages of the computation, or different
numbers of samples at the input and output domains.

This natural DLCT computation method has been revisited in [70], where an
interpretation of the method has been given through phase-space diagrams. This
allows us to see from yet another perspective how this elegant and accurate LCT
computation method [35, 61] works with the minimum number of samples, without
requiring interpolation. The DLCT computation presented in [35, 61] and the phase-
space illustrations in [70, 71] assume that the extent of the signal is known at the
input and output of the system to be simulated. We now discuss how to optimally
simulate optical systems by using this DLCT computation method when the space-
frequency support of the input signal is specified [36] (rather than its extents in the
input and output domains). Different assumptions about the initial space-frequency
support have been made in the literature to explore efficient DLCT computation
[65–69, 72, 73]. Hence here we explore a unified method that works with any
initial support while still ensuring the minimality of the number of samples [36].
The idea is to find the number of samples by fitting a parallelogram to the given
space-frequency support, such that two opposing sides are perpendicular to the
u axis (the input domain) and the other sides are perpendicular to the oblique
axis corresponding to the output LCT domain. The area of the smallest fitting
parallelogram gives the number of samples that needs to be used for an accurate
DLCT computation [36]. Then the samples of the continuous signal at the output of
the optical system can be obtained by sampling the input signal at this rate and then
computing its DLCT as described in [35].

This elegant DLCT formulation is mainly achieved through the property that
the bicanonical width product is an invariant measure for the number of degrees
of freedom of signals under linear canonical transformation [33, 34]. To see this,
suppose a finite extent has been specified in the space domain and in some other
LCT domain. The corresponding space-frequency support is shown in Fig. 7.7a.
If we transform to precisely the same LCT domain in which the extent has been
specified, the new space-frequency support becomes as shown in Fig. 7.7b. Here
M and M0 are the scaling parameters associated with the LCT and inverse LCT
operations, respectively. Note that in both parts of the figure, the support is bounded
by a vertical corridor, perpendicular to the space domain in part a, and to the
LCT domain in part b. We are not surprised that the transformed support is
again a parallelogram, since the linear geometric distortion imparted by an LCT
always maps a parallelogram to another parallelogram. Moreover, the areas of both
parallelograms are equal to each other and given by the bicanonical width product
�u�uTjˇj, so that the number of degrees of freedom as measured by the bicanonical
width product remains the same after the LCT. This does not surprise us either, since
LCTs are known not to change the support area in phase space. The fact that LCTs
model an important family of optical systems makes the bicanonical width product
a suitable invariant measure for the number of degrees of freedom of optical signals.
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On the other hand, the space-bandwidth product, which is the area of the
smallest bounding perpendicular rectangle, may change significantly after linear
canonical transformation, and quadratic-phase optical systems. (This is the reason
why the number of samples must be increased at some intermediate stages of certain
previously proposed FRT and LCT algorithms which rely on the space-bandwidth
product either as the measure of the number of degrees of freedom or as the
minimum number of samples required [65–69, 72, 73]. In contrast, fast computation
of LCTs based on the results presented in [35, 61] allows us to work with the
same number of samples in both domains without requiring any oversampling. This
number of samples is the minimum possible for both domains based on the LCT
sampling theorem, and is given by the bicanonical width product [35].) This factor
makes the conventional space-bandwidth product undesirable as a measure of the
number of degrees of freedom, which we expect to be an intrinsic and conserved
quantity under invertible unitary transformations.

The so-called generalized space-bandwidth product, which essentially removes
the requirement that the rectangular support be perpendicular to the axes, has been
proposed [74] as an improvement over the conventional space-bandwidth product.
A related approach has also been studied [60]. It has been noted that this entity
is invariant under the FRT operation (rotational invariance), but it has also been
emphasized that “further research is required in obtaining other forms of generalized
space-bandwidth products that are invariant under a more general area preserving
space-frequency operations: the symplectic transforms” [74]. The bicanonical width
product meets precisely this demand and allows us to compute LCTs with the
minimum possible number of samples without requiring any interpolation or
oversampling at intermediate stages of the computation [35].

7.7 Degrees of Freedom of Optical Systems

We now discuss how to explicitly quantify the degrees of freedom of first-order
optical systems with multiple apertures, and give explicit conditions for lossless
transfer [33, 37]. In particular, we answer the following questions about apertured
optical systems, which here refers to systems consisting of an arbitrary sequence of
thin lenses and apertures separated by sections of free space:

• Given the space-frequency support of an input signal and the parameters of an
apertured optical system, will there be any information loss upon passage through
the system?

• Which set of signals can pass through a given apertured system without any
information loss? In other words, what is the largest space-frequency support
that can pass through the system without any information loss?

• What is the maximum number of spatial degrees of freedom that can be supported
by a given apertured system?
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The space-frequency support (phase-space support) of a set of signals may be
defined as the region in the space-frequency plane (phase space) in which a large
percentage of the total energy is confined [5, 30]. The number of degrees of
freedom is given by the area of the space-frequency support. We also define the
space-frequency window (phase-space window) of a system [33, 37] as the largest
space-frequency support that can pass through the system without any information
loss. Here we develop a simple method to find the space-frequency window of
a given system in terms of its parameters. Once the space-frequency window of
the system is determined, it specifies the set of all signals that can pass through
the system without information loss: the optical system preserves the information
content of signals whose space-frequency supports lie inside the system window. All
we need to do is to compare the space-frequency support of the input signal with the
space-frequency window of the system. If the signal support lies completely inside
the system window, the signal will pass through the system without any information
loss. Otherwise, information loss will occur.

The number of degrees of freedom of the set of signals which can pass through
a system can be determined from the area of the space-frequency window of the
system. Although the space-frequency window may in general have different shapes
[5, 30], it is often assumed to be of rectangular shape with the spatial extent
determined by a spatial aperture in the object or image plane, and the frequency
extent determined by an aperture in a Fourier plane. (Again, we consider one-
dimensional signals and systems for simplicity.) If these apertures are of length �x
and ��x respectively, then the number of degrees of freedom that can be supported
by the system is given by �x��x. More generally, for space-frequency windows of
different (non-rectangular) shapes, the number of degrees of freedom is given by the
area of the space-frequency window [33, 37].

Physical systems which carry or process signals always limit their spatial extents
and bandwidths to certain finite values. A physical system cannot allow the existence
of frequencies outside a certain band because there is always some limit to the
resolution that can be supported. Likewise, since all physical events of interest
have a beginning and an end, or since all physical systems have a finite extent, the
temporal duration or spatial extent of the signals will also be finite. For example,
in an optical system the sizes of the lenses will limit both the spatial extent of the
images that can be dealt with and their spatial bandwidths. More generally, we may
say that they will limit the signal to a certain region in the space-frequency plane.
We refer to this region as the space-frequency window of the system. It is these
physical limitations that determine the space-frequency support of the signals and
thus their degrees of freedom. Just as these may be undesirable physical limitations
which limit the performance of the system, they may also be deliberate limitations
with the purpose of limiting the set of signals we are dealing with. When a signal
previously represented by a system with larger space-frequency window is input
into a system with smaller space-frequency window, information loss takes place.

The conventional space-bandwidth product has been of fundamental importance
because of its interpretation as the number of degrees of freedom [5, 17–23, 25–28,
30–32, 75, 76]. In most works, the space-bandwidth product, as its name implies, is
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the product of a spatial extent and a spatial-frequency extent. This implies the
assumption of a rectangular space-frequency region. However, the set of input
signals may not exhibit a rectangular space-frequency support, and even if they do,
this support will not remain rectangular as it propagates through the system [33–35].
Likewise, the space-frequency windows of multi-component optical systems, as we
will see in this section, do not in general exhibit rectangular shapes. This possibility
and some of its implications were discussed in [30]. In [33, 37] we made concrete
the hypothetical concept of a non-rectangular space-frequency window, and showed
how it can be actually computed for a broad class of optical systems, as will be
discussed here. (To prevent possible confusion, we underline that we are dealing
with systems with sequentially cascaded apertures, and not systems with multiple
parallel apertures.)

We also note that the phase-space window has been referred to by different
names, such as the space-bandwidth product of the system (in short SWY)
[30, 77, 78], the system transmission range [77], and the Wigner or space-bandwidth
chart of the system [77, 78]. Also, the concept of degrees of freedom can be related
to other concepts such as Shannon number and information capacity of an optical
system [76], geometrical etendue [79], dimensionality, and so on.

In order to treat systems with real physical parameters, we first revisit some of the
background material discussed in Sect. 7.2, and translate them to their dimensional
counterparts. We then discuss how to find the phase-space window of an optical
system. Next, we treat the cases of lossless and lossy transfer separately, and finally
conclude with a discussion of applications.

7.7.1 Scale Parameters and Dimensions

Dimensionless variables and parameters were employed in the previous sections for
simplicity and purity (see Sect. 7.2). In this section, we will employ variables with
real physical dimensions. For this, we need to revisit a number of earlier definitions
and results. When dealing with FRTs, the choice of scale and dimensions must
always be noted, as this has an effect on the fractional order observed at a given
plane in the system [5, pp. 320–321]. Using x to denote a dimensional variable
(with units of length), the ath-order FRT [5] of a function Of .x/, denoted by Ofa.x/,
can be defined as

Ofa.x/ � . OFaOf /.x/ �
Z 1

�1
OKa.x; x

0/Of .x0/ dx0; (7.27)

OKa.x; x
0/ � A�

s
ei�

�
cot�

s2
x2�2 csc�

s2
xx0C cot�

s2
x02
�
:

Here s is an arbitrary scale parameter with dimensions of length. The scale
parameter s serves to convert the dimensional variables x and x0 inside the FRT
integral to dimensionless form. A hat over a function or kernel shows that it takes
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dimensional arguments [5, pp. 224–227]. The FRT definition above reduces to the
pure mathematical FRT definition with dimensionless arguments if we define the
dimensionless variables u D x=s and u0 D x0=s, or simply if we set s D 1 in
our measurement unit (meters, etc.). The choice s D 1 unit makes the expressions
simpler, but we feel that this merely hides the essential distinction between
dimensional and dimensionless variables and would actually be a disservice to the
reader.

We will denote the LCT of a function Of .x/with the dimensional parameter matrix
OT D Œ OA OBI OC OD� as Of OT.x/:

Of OT.x/ � . OC OTOf /.x/ �
Z 1

�1
OC OT.x; x

0/Of .x0/ dx0; (7.28)

OC OT.x; x
0/ �

s
1

OB e�i�=4ei�
�

OD
OB

x2�2 1
OB

xx0C OA
OB

x02
�
;

for OB ¤ 0. A hat over a parameter shows that it is the dimensional counterpart of the
same parameter without the hat. Any LCT can be decomposed into a (dimensional)
FRT followed by scaling followed by chirp multiplication [5, 37]:

OT D
� OA OB

OC OD
�

D
�
1 0

� q
s2
1

� �
M 0

0 1
M

� �
cos� s2 sin�
� sin�

s2
cos�

�
: (7.29)

The three matrices, respectively, correspond to the transformation matrices of
chirp multiplication with parameter q (multiplication by exp .�i� q

s2
x2/), coordinate

scaling with factor M > 0 (mapping of Of .x/ into
p
1=MOf .x=M/), and ath

order dimensional FRT with � D a�=2 (transformation of Of .x/ into Ofa.x/). The
decomposition can be written more explicitly in terms of the LCT and FRT domain
representations of the signal Of .x/ as

Of OT.x/ D exp
�
�i�

q

s2
x2
�r 1

M
Ofa
� x

M

�
: (7.30)

This is the dimensional version of the Iwasawa decomposition in (7.9).
By appropriately choosing the three parameters a, M, q, the above equality can

be satisfied for any OT D Œ OA OBI OC OD� matrix. Solving for a, M, q in (7.8), we obtain
the decomposition parameters in terms of the matrix entries OA, OB, OC, OD:

a D
8<
:

2
�

arctan
�
1
s2

OB
OA
�
; if OA � 0

2
�

arctan
�
1
s2

OB
OA
�

C 2; if OA < 0
(7.31)

M D
q

OA2 C . OB=s2/2; (7.32)
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q D
8<
:

�s2 OC
OA � 1

s2
OB= OA

OA2C. OB=s2/2
; if OA ¤ 0

�s2 OD
OB ; if OA D 0:

(7.33)

The range of the arctangent lies in .��=2; �=2�.

7.7.2 Phase-Space Window of Optical Systems

We now describe how to find the phase-space window (space-frequency window) of
an apertured optical system [33, 37]. Such systems consist of arbitrary concatena-
tions of apertures with quadratic-phase systems (which in turn consist of an arbitrary
number of lenses, sections of free space and quadratic graded-index media). Also
note that a lens with a finite aperture can be viewed as an ideal lens followed by a
finite aperture. Although beyond the scope of the present discussion, these results
can be extended to more general systems involving occlusions [80], prisms and
gratings [78], and bends and shifts of the optical axis.

Let us first introduce the notation. The input and output planes are defined along
the optical axis z at z D 0 and z D d, where d is the length of the system. If
the apertures did not exist, the amplitude distribution at any plane perpendicular
to the optical axis could be expressed as an LCT of the input. Hence each z plane
corresponds to an LCT domain. Let L denote the total number of apertures in the
system. zj and �j denote the location and extent of the jth aperture in the system,
where j D 1; 2; : : : ;L. The matrix OTj is used to denote the parameter matrix of the
system from the input to the position of the jth aperture; that is, the system lying
between 0 and zj excluding the apertures. The matrix OTj can be readily calculated
using the matrices for lenses, sections of free space, quadratic graded-index media,
and the concatenation property [5]. The matrix elements of OTj is denoted by OAj, OBj,
OCj, ODj. The associated Iwasawa decomposition parameters is denoted by aj, Mj, qj,
which can be computed from OAj, OBj, OCj, ODj by using the formulas (7.31), (7.32),
(7.33). The FRT order in the Iwasawa decomposition begins from 0 at the input of
the system, and then monotonically increases as a function of distance [5, 34].

For lossless transfer through the system, the extent of the signal just before each
aperture must lie inside the aperture. For simplicity we assume that both the aperture
and the signal extents are centered around the origin. Then, the following must be
satisfied for j D 1; 2; : : : ;L:

�x OTj
� �j; (7.34)

where�x OTj
denotes the extent of the signal in the x OTj

domain, which corresponds to
the LCT domain at the z D zj plane, where the jth aperture is situated.

As we have showed before, LCT domains are equivalent to scaled FRT domains
and thus to scaled oblique axes in the space-frequency plane [34]. Based on this
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equivalence, each finite interval in an LCT domain will correspond to a scaled
interval in the equivalent FRT domain. To see this explicitly in the dimensional case,
we refer to (7.30), which implies that if the linear canonical transformed signal Of OT.x/
is confined to an interval of length �x OT, so is Ofa.x=M/. Therefore, the extent of the
fractional Fourier transformed signal Ofa.x/ in the equivalent FRT domain is�x OT=M.
Thus, the condition in (7.34) can be reexpressed as

�xaj � �j=Mj; (7.35)

where �xaj denotes the extent of the signal in the ajth order (dimensional) FRT
domain.

FRT domains are often visualized in the dimensionless space-frequency plane
where the coordinates are scaled such that the space and frequency axes are
dimensionless. This is achieved by introducing the scaling parameter s and the
dimensionless scaled coordinates u D x=s and 
 D s�x. The condition for lossless
information transfer then becomes

�xaj=s � �j=Mjs; (7.36)

where �xaj=s denotes the extent of the signal in the ajth order (dimensionless) FRT
domain (along the oblique axis making angle aj�=2 with the u D x=s axis). In other
words, for every j D 1; 2; : : : ;L, the signal must be confined to the normalized
aperture extent of �j=Mjs along the oblique axis with angle aj�=2.

It is well known that if the space-, frequency-, or FRT-domain representation of
a signal is identically zero (or negligible) outside a certain interval, so is its Wigner
distribution [5, 59]. As a direct consequence of this fact, the condition in (7.36)
defines a corridor of width �j=Mjs in the direction orthogonal to the ajth order FRT
domain uaj . (With the term “corridor” we are referring to an infinite strip in the
space-frequency plane perpendicular to the oblique uaj axis.) The corridor makes
an angle .aj C 1/�=2 with the u D x=s axis in the dimensionless space-frequency
plane (see Fig. 7.5). Now, if we intersect the corridors defined by each aperture,
we obtain a bounded region in the space-frequency plane, which has the form of
a centrally symmetrical convex polygon (see Fig. 7.8 for L D 2 and Fig. 7.9 for
L D 4). We refer to this convex polygon defined by the normalized aperture extents
as the space-frequency window of the system [37].

The space-frequency window specifies the set of all signals that can pass through
the system without any loss: the optical system preserves the information content
of all signals whose supports lie inside the space-frequency window. The area
of the space-frequency window gives the number of degrees of freedom that can
pass through the system. This is also the minimum number of samples required to
faithfully represent an arbitrary signal at the output of the system.

We can summarize the steps for finding the phase-space window (space-
frequency window) as follows [37]:
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1. Compute the parameter matrix OTj for each aperture j D 1; 2; : : : ;L using the
matrices for lenses, sections of free space and quadratic graded-index media, and
the concatenation property. Recall that OTj was defined as the parameter matrix of
the system lying between the input plane and the location of the jth aperture.

2. Compute the corresponding Iwasawa decomposition parameters aj and Mj (the
fractional order and the magnification) by inserting the matrix entries OAj, OBj, OCj,
ODj into the formulas (7.31) and (7.32).

3. In the dimensionless space-frequency plane, draw a corridor of width �j=Mjs
making angle .aj C 1/�=2 with the x=s axis, for each j (see Fig. 7.9). The
corridor is explicitly defined by the following two lines: y D � cot.aj�=2/x ˙
�j

2Mjs
csc.aj�=2/.

4. Intersect the corridors from all apertures to determine the region lying inside all
the corridors. This is the phase-space window at the input plane z D 0.

5. Scale the horizontal and vertical coordinates by s and 1=s, respectively, to obtain
the phase-space window in the dimensional space-frequency plane x-�x.

A few remarks are in order at this point. First, the area of the window and
hence the number of degrees of freedom of the system remains the same whether

Fig. 7.8 Space-frequency
window of a system with two
apertures [37]
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Fig. 7.9 Space-frequency window of a system with four apertures [37]
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it is computed in dimensional or dimensionless space. Second, choice of the scale
parameter s is arbitrary and the system window in the dimensional space-frequency
plane is independent of the choice of s. However, choice of s does affect the value
of a as a function of z. Some choices better utilize the range of a (as in Fig. 7.10),
whereas poor choices lead to a changing too quickly over a short range of z and
then saturating [5, pp. 320–321, 377–378]. One approach is to choose s such that
the space and frequency extents in the dimensionless space-frequency plane are
comparable to each other. Third, the system window is computed with respect to
a chosen reference plane. Above, we compute it with respect to the input plane,
so that we can directly compare the input signal support with the system window.
The phase-space window at the input plane can be shortly referred to as the input
phase-space window of the system. If one desires to visualize the system window
with respect to a different reference plane, it can be transformed to the new plane
using the LCT transformation from the input plane to the new reference plane [37].
(More explicitly, if the ith corner of the system window is expressed as .x.i/; � .i/x /,
then after LCT transformation with matrix OT, the new corner will be described by
the coordinates OTŒx.i/ � .i/x �

T , where T is the transpose operation [33, 65].)
We now illustrate the method on a sample system. Figure 7.10a shows a system

consisting of several apertures and lenses, whose aperture sizes and focal lengths are
given right above them. The fractional transform order a and the scale parameter M
of the system are plotted in Fig. 7.10 as functions of distance z. The emphasis in this
paper is on computing aj and Mj at the aperture locations, since these allow us to
determine the system window. However, these quantities can also be computed for
all values of z in the system, revealing their continual evolution as we move along
the optical axis, as illustrated in Fig. 7.10b, c. We can compute a.z/ and M.z/ by
expressing OA; OB; OC; OD in terms of z and using them in Eqs. (7.31)–(7.33) [5, 41].

Figure 7.11a and c show the system window at the input plane z D 0. This region
defines the set of all input signals that can pass through the system without any
information loss. Input signals whose space-frequency support lies wholly inside
this region will not experience any loss. Similarly, Fig. 7.11b and d show the system
window at the output plane z D d. This region defines the set of all signals that
can be observed at the output of the system. The region in Fig. 7.11b is just a
propagated version of the region in Fig. 7.11a through the entire optical system.
This can be obtained by applying the concatenated LCT matrix OTL : : : OT2 OT1 to the
space-frequency window at the input plane, to take into account the linear distortion
due to the entire optical system (by multiplying the coordinates of each corner of
the window with the LCT matrix, as described before).

Just as the concatenation property of transformation matrices allows us to
represent the cumulative action of all optical elements present with a single entity,
the system window is an equivalent aperture that appropriately transforms and
combines the effects of all individual apertures in different domains, into a single
space-frequency aperture [37].

The space-frequency (phase-space) window of the system in Fig. 7.10a is
determined only by the 1st, 5th, 7th, and 8th apertures. The other apertures do
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Fig. 7.10 (a) An apertured
optical system with input
plane at z D 0 and output
plane at z D 2 m [37]. The
horizontal axis is in meters.
The lens focal lengths fj in
meters and the aperture sizes
�j in centimeters are given
right above them. (b) and (c)
Evolution of a.z/ and M.z/ as
functions of z. 	 D 0:5 �m
and s D 0:3mm [5, 41]
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not affect or limit the space-frequency window of the system and therefore can be
considered as redundant from the system’s viewpoint. (Removing the redundant
apertures from the system or replacing them with apertures of greater size will have
negligible effect on the behavior of the system, for any given input signal.)

It is also worth noting that the information loss caused by an aperture will depend
not only on the actual physical size of the aperture, but also the magnification of the
signal at that location. If the magnification at the aperture location is small, there
will be less or no information loss. For example, although the aperture sizes are the
same for the 2nd, 6th, and 8th apertures, only the 8th aperture limits the system
window (M.1:8/ � 2:5 whereas M.0:5/ � 1:2 and M.1:4/ � 1). This illustrates
that the magnification in the plane of the aperture is as important as the size of
the aperture in limiting the system window. If we have some flexibility during the
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Fig. 7.11 The space-frequency window of the system at the input plane in the dimensionless (a)
and dimensional spaces (c). The space-frequency window of the system at the output plane in the
dimensionless (b) and dimensional spaces (d) [37]

design of the optical system, careful choice of lens and aperture locations can help
information losses to be minimized, a process which will be aided by the space-
frequency approach and the graphs for M.z/ we have discussed.

7.7.3 Necessary and Sufficient Condition for Lossless Transfer

An input signal will pass through the system without any information loss if and only
if its space-frequency support is fully contained in the input space-frequency (phase-
space) window of the system. That is, if the signal support does not lie completely
inside the system window, information loss will occur [37].

Proof. LCT domains correspond to oblique axes in the space-frequency plane.
Consider corridors of varying width, orthogonal to such an oblique axis. The extent
of the signal in a given LCT domain can be determined from the space-frequency
support of the signal, by finding the width of the narrowest orthogonal corridor
enclosing the space-frequency support. First, let us consider an input signal whose
space-frequency support lies completely inside the input space-frequency window
of the system. This guarantees that along any oblique axis in the space-frequency
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plane corresponding to some LCT domain in which an aperture resides, the extent
of the signal will be smaller than the width of the aperture at that LCT domain,
and hence the signal will pass through that aperture unhindered. Repeating this
for all apertures, the input signal will pass through the whole system without
any information loss. (Recall that the space-frequency window is defined by the
intersection of the corridors defined by the apertures. If the extent of the signal was
larger than the width of the aperture at that LCT domain, the orthogonal corridor
enclosing the space-frequency support would have been wider than the corridor
defined by the aperture, so that the space-frequency support of the signal could not
lie within the space-frequency window of the system.)

Conversely, consider an input signal which passes through the system without
any loss. This implies that the signal extent was smaller than the aperture width for
each aperture, since otherwise irreversible information loss would occur. Recall that
each aperture defines a corridor perpendicular to the LCT domain in which it resides.
For any of these LCT domains, the space-frequency support of the signal must lie
within this corridor, since if not, the extent of the signal in that domain would not lie
within that aperture, leading to information loss and hence a contradiction. Since this
argument must be true for all apertures, it follows that the signal space-frequency
support must lie inside the region defined by the intersection of the corridors, which
is the space-frequency window of the system. This completes the proof. ut

A straightforward but lengthy way to determine whether information loss will
take place would be to trace the space-frequency support of the signal as it passes
through the whole system [33]. When the signal arrives at the first aperture, there
will have taken place a linear distortion on the initial space-frequency support of the
signal. After this linear distortion, if the extent of the signal in that LCT domain is
less than the aperture size, then the signal will pass through this aperture without any
information loss. Then another linear distortion will take place as the signal travels
to the next aperture. Again, we will determine whether there is any information
loss by comparing the extent in this domain to the aperture size. Repeating this
procedure throughout the system, we can determine whether the signal passes
through the system losslessly. This lengthy way of determining whether there will
be information loss is specific to a certain input signal and its support. On the other
hand, our method is general in the sense that, once the space-frequency window
of the system is determined, it specifies the set of all signals that can pass through
the system without information loss. The optical system preserves the information
content of all signals whose space-frequency support lies inside the space-frequency
window of the system.

7.7.4 Lossy Transfer

If the space-frequency window does not enclose the space-frequency support of
the input signal completely, then we would intuitively expect the following: The
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information contained within the intersection of the space-frequency support of the
signal and the space-frequency window of the system will be preserved, and the
rest will be lost (Fig. 7.12). This indeed turns out to be approximately true in most
cases [37]. In other words, just as a spatial aperture passes certain parts of a signal
and blocks the rest, the space-frequency window acts like an aperture in phase-
space, passing certain parts and blocking others. In particular, if the set of input
signals has a greater number of degrees of freedom than the number of degrees of
freedom the system can support, information loss will take place, since a region with
larger area can never possibly lie completely within a region with smaller area.

Given an arbitrary space-frequency support at the input, one can obtain the space-
frequency support at any position in the system by tracing the support throughout
the system [33, 65]. Whenever an aperture narrower than the signal extent is
encountered, the outlying parts of the signal will be truncated. The effect of this
truncation on the space-frequency support of the signal will be to likewise truncate
the regions of the support lying outside the corridor defined by the aperture. If this
were the only effect of the aperture in the space-frequency plane, then the statements
made above would be exact (rather than being approximate) and the space-frequency
support observed at the output could simply be found as follows: (a) Find the
intersection of the input space-frequency support and the system space-frequency
window at the input plane, (b) Propagate this space-frequency region to the output
plane. However, this simple and intuitive result is not exact because each aperture
that actually cuts off the outlying parts of the signal will also cause a broadening of
the support of the signal along the orthogonal domain, due to the Fourier uncertainty
relation.

We now argue that the broadening effects are generally negligible for most real
physical signals and systems, so that the simple and intuitive result above is usually
valid [37]. The effect of an aperture corresponds to multiplication with a rectangle
function. Let �j denote the size of the aperture. Firstly, if the signal extent before
the aperture is already smaller than �j, then the windowing operation will affect
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Fig. 7.12 (a) The signal support is wholly contained within the system window so there is no loss
of information. (b) The part of the signal support lying within the system window will pass, and
the parts lying outside will be blocked [37]
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neither the signal nor its space-frequency support. However, if the signal extent
in that domain is larger than �j, then the signal will be truncated and the space-
frequency support will also be affected. Because windowing involves multiplication
with a rectangle function, it implies convolution of the Wigner distribution of the
signal with the Wigner distribution of the rectangle function along the orthogonal
direction [44, 59]. (An expression for the Wigner distribution, OWrect.x; �x/ of the
rectangle function rect.x=�j/ is known [5, 56] but its exact form is not necessary
for our argument.) This operation will cause compaction of the Wigner distribution
of the signal to a corridor of width�j. Moreover, convolving the Wigner distribution
of the signal with that of the rectangle function along the orthogonal direction will
result in broadening of the Wigner distribution by an amount that is comparable with
the extent of OWrect in that direction. This extent is approximately 1=�j, and thus the
spread in the orthogonal direction after windowing will be 
 1=�j [56].

For simplicity, consider a rectangular region in the space-frequency plane, in
which case the space-bandwidth product can be taken as a measure of the number of
degrees of freedom. Let us denote the space-bandwidth product as N D �x��x � 1,
where�x ve��x denote the spatial and frequency extents. Noting that the apertures
can be modeled as rectangle functions, the frequency extent associated with the
rectangle function will approximately be the reciprocal of its spatial extent: 1=�j.
Let us assume that the aperture extent is a fraction & of the signal extent; that is
�j D &�x where & < 1. After the aperture, the new space-domain signal extent
will be given by �x0 D &�x. Moreover, since multiplication in the space-domain
implies convolution in the frequency domain, the new extent in the frequency
domain will be approximately the sum of the spectral extents of the signal and the
aperture. The frequency extent of the signal is ��x D N=�x and the frequency
extent of the window is 
 1=�j D 1=&�x D ��x=&N. Then, the new extent
in the frequency domain will be ��x

0 � ��x C ��x=&N D ��x.1 C 1=&N/.
Therefore, the space-bandwidth product of the signal after the aperture will be
�x0��x

0 � �x��x.& C 1=N/. Here, the first term corresponds to the reduced
space-frequency support resulting from the truncation inflicted by the aperture, and
the second term corresponds to the increase arising from the broadening in the
orthogonal direction. However, if & � 1=N, or equivalently N � 1=&, then we can
neglect the term 1=N in comparison with &. Thus, we can neglect the broadening
effect if N � 1=&. This condition will hold for most real physical signals and
systems. For a physical signal that contains any reasonable amount of information,
such as an image, the number of degrees of freedom will be much larger than unity
and also much larger than 1=&, as long as & is not very close to 0. The case where &
is very close to 0 is not very likely either, since apertures with very small & truncate
nearly all of the signal. For instance, consider a window that allows only 0:1 of
the extent of the signal to pass. Even in this case, N � 10 will be sufficient and
most information bearing signals will satisfy this condition easily. Therefore, the
broadening effect will be usually negligible when we are dealing with images and
other information bearing signals. This in turn means that it is fairly accurate to say
that when the space-frequency support of the signal does not wholly lie within the
system window, the part that does lie within will pass, and the remaining parts will
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be lost. On the other hand, this simple result will not hold for some signals that
do not exhibit too much spatial structure, such as a laser beam, and the broadening
effect must be taken into account.

7.7.5 Discussion and Applications

We considered optical systems consisting of an arbitrary sequence of lenses and
apertures separated by arbitrary lengths of free space (or quadratic graded-index
media). We defined the space-frequency window (phase-space window) and showed
how it can be explicitly determined for such a system. The area of the window gives
the maximum number of degrees of freedom that can be supported by the system.
More significantly, the window specifies which signals can pass through the system
without information loss; we showed that the signal will pass losslessly if and only
if the space-frequency support of the signal lies completely within this window.
A precondition for lossless passage is of course that the area of the space-frequency
support (and thus the number of degrees of freedom) of the set of input signals must
be smaller than the area of the space-frequency window (and thus the number of
degrees of freedom the system can support). We further saw that when the space-
frequency support does not lie completely within the space-frequency window, the
parts that lie within the window pass and the parts that lie outside of the window
are blocked. While the last result is not exact, we showed that it is valid to a good
degree of approximation for many systems of practical interest [33, 37].

These results are very intuitive and provide considerable insight and guidance
into the behavior and design of systems involving multiple apertures. They can help
designing systems in a manner that minimizes information loss, for instance by
ensuring that the magnifications are as small as possible at aperture locations. An
advantage of this approach is that it does not require assumptions regarding the
input signals during analysis or design, since the concept of a system window is
signal-independent.

Being able to determine the space-frequency window as a function of the system
parameters as we have shown, and the possibility of tailoring and optimizing it
has potential applications in areas including optical superresolution [77, 78, 81–85],
holographic imaging [75, 80, 86–89], optical encryption systems [90], analysis and
design of recording devices [76, 79], and comparison between different implemen-
tations of a particular system [91], where apertured optical systems are involved.
The system window approach can yield new perspectives and rigorous approaches
for such applications and other previously considered problems in the literature.

A potentially important area of application is optical superresolution and space-
bandwidth product adaptation [92]. In this area the goal is to adapt the space-
frequency support of the input signal to the space-frequency window of the system
based on available a priori information about the signals. In most work in this area,
the system window is commonly assumed to be, or approximated as, a rectangular
shape or some other simple shape. Being able to precisely calculate the system
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window for a quite broad class of optical systems will make this superresolution
approach more accurate, efficient, and widely applicable.

Moreover, in optical encryption [90], the system window can be used to investi-
gate the optimal design of the encryption system, the most efficient representation
of encrypted signals, and determination of the number of degrees of freedom that
can be encrypted.

Yet another application of the results of this paper is the selection and optimiza-
tion of recording devices. The system window at the output plane is of special
use for this purpose, since it describes the largest space-frequency support that
can be observed at the output of the system. This gives the position, maximum
spatial extent, maximum frequency bandwidth (or in general the maximum extent
in any LCT domain), and maximum space-bandwidth product (or more generally
the bicanonical width product) that can be observed at the output of the system.
The spatial extent of the system window should be matched to the location and
width of the detector to ensure the recording of the entire output. The number of
pixels required can be determined by fitting a rectangle to the system window and
computing its area. This gives the number of samples needed to reconstruct any
output signal from its Nyquist samples. Once the detector width and the number of
pixels are determined, the pixel size is also revealed. Such an approach constitutes
a new way of analyzing the optical efficiency of detectors [79]. Moreover, if
specifications of the detector are pre-determined by some design limitations (such
as limited spatial resolution), then the system can be adapted to work as best as it
can with the specified detector [60].

The system window can also be useful in comparing alternative implementa-
tions of an optical system. One can choose among different implementations by
investigating which implementation supports more degrees of freedom and hence
causes less information (or power) loss due to the apertures (by comparing the
areas of the system windows). Alternatively, the design goal can be to find the
system window that is more compatible with the given detector limitations. Such
approaches have been pursued, for example, for comparing different holographic
systems [89] and different implementations of optical FRTs [91]. However, these
previous approaches are either highly dependent on the input signal considered,
involve many simplifications to make the analysis feasible, or yield only limited
numerical results.

As a final note, we have mostly used the terms space-frequency window or phase-
space window to distinguish these entities living in the space-frequency plane, from
the physical apertures that act on signals in various LCT (or equivalently FRT)
domains. However, since we have seen that these windows block or pass the space-
frequency support of the signal in a manner very similiar to how apertures block or
pass the physical signals, we can also speak of space-frequency apertures or phase-
space apertures.
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7.8 Conclusion

We discussed the relationships between LCT domains, FRT domains, and the space-
frequency plane. In particular, we showed that LCT domains correspond to scaled
fractional Fourier domains and thus to scaled oblique axes in the space-frequency
plane. This allows LCT domains to be labeled and monotonically ordered by the
corresponding fractional order parameter and provides a more transparent view of
the evolution of light through an optical system modeled by LCTs.

We then studied the number of degrees of freedom of optical systems and
signals based on these concepts. We first discussed the bicanonical width product,
which is the number of degrees of freedom of LCT-limited signals. The bicanonical
width product generalizes the space-bandwidth product and often provides a tighter
measure of the actual number of degrees of freedom of signals. We illustrated the
usefulness of the notion of bicanonical width product in two applications: efficient
signal representation and efficient system simulation. In the first application we
provided a sub-Nyquist sampling approach to represent and reconstruct signals
with arbitrary space-frequency support. This approach geometrically amounts to
enclosing the support with the smallest possible parallelogram, as opposed to
enclosing it with a rectangle as in the classical approach. In the second application
we provided a fast DLCT computation method which can accurately compute a
(continuous) LCT with the minimum number of samples given by the bicanonical
width product. Thus the bicanonical width product is also a key parameter in
fast discrete computation of LCTs, and hence in efficient and accurate simulation
of optical systems. Given the fundamental importance of the conventional space-
bandwidth product in signal processing and information optics, we believe the
bicanonical width product will find other applications in these areas as well.

Finally, we focused on the degrees of freedom of optical systems consisting of
an arbitrary sequence of lenses and apertures separated by arbitrary lengths of free
space (or quadratic graded-index media). We defined the space-frequency window
(phase-space window) and showed how it can be explicitly determined for such
a system in terms of the system parameters. The area of the window gives the
maximum number of degrees of freedom that can be supported by the system.
More significantly, the window specifies which signals can pass through the system
without information loss; we showed that the signal will pass losslessly if and only
if the space-frequency support of the signal lies completely within this window.
A precondition for lossless passage is of course that the area of the space-frequency
support (and thus the number of degrees of freedom) of the set of input signals must
be smaller than the area of the space-frequency window (and thus the number of
degrees of freedom the system can support). We further saw that when the space-
frequency support does not lie completely within the space-frequency window, the
parts that lie within the window pass and the parts that lie outside of the window
are blocked. While the last result is not exact, we showed that it is valid to a good
degree of approximation for many systems of practical interest.

Thus, just as the concatenation property of transformation matrices allows us
to represent the cumulative action of all optical elements with a single entity, the
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system window is an equivalent aperture that appropriately transforms and combines
the effects of all individual apertures in different domains, into a single space-
frequency aperture. These results are very intuitive and provide considerable
insight and guidance into the behavior and design of systems involving multiple
apertures. For example, they can help designing systems in a manner that minimizes
information loss, with the advantage that no assumptions regarding the input signals
is required, since the system window is a signal-independent entity. We briefly
discussed some potential application areas where the system window approach can
yield new perspectives. These include optical superresolution, optical encryption,
holographic imaging, design and optimization of recording devices, and comparison
of alternative implementations of apertured optical systems.
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Chapter 8
Sampling and Discrete Linear Canonical
Transforms

John J. Healy and Haldun M. Ozaktas

Abstract A discrete linear canonical transform would facilitate numerical
calculations in many applications in signal processing, scalar wave optics, and
nuclear physics. The question is how to define a discrete transform so that it not
only approximates the continuous transform well, but also constitutes a discrete
transform in its own right, being complete, unitary, etc. The key idea is that the
LCT of a discrete signal consists of modulated replicas. Based on that result, it
is possible to define a discrete transform that has many desirable properties. This
discrete transform is compatible with certain algorithms more than others.

8.1 Introduction

Most of the literature on the LCTs, including many chapters of this book, ex-
plicitly or implicitly make use of the continuous transform. There are, however,
a number of situations in which it is desirable or necessary to use a discrete
transform. Most of these are obvious by analogy with situations in which the fast
Fourier transform (FFT) is used to numerically approximate the Fourier transform.
In addition, the LCT is of increasing relevance in situations where we wish to model
optical systems, including those with inherently discrete components such as spatial
light modulators or digital cameras. In this chapter, we will explore the relationship
of the LCTs with sampling, and the consequences for everything from the definition
of a corresponding discrete transform to how to perform sampling rate changes
accurately and efficiently.

The impact of this material should be clear to anyone who has had to comprehend
the details of calculations involving the FFT. For many users, the FFT is essentially
a black box that performs a Fourier transform on their data. This is close enough
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to the truth to make the FFT useful to users with even a primitive understanding
of Fourier analysis. Such ‘idiot-proofing’ arises from the definition of the discrete
Fourier transform (DFT), carefully chosen to be unitary, complete and have many
of the properties of the Fourier transform of continuous signals. Closer examination
reveals subtle differences such as circular convolution. Numerous papers from the
past two decades have developed parts of a theory of numerical approximation of
the LCTs. This chapter will provide a summary of some of these results, and a
discussion of how they fit together to build a complete picture of the relationship
between the continuous and discrete LCTs.

First, however, we must introduce some notation and certain key ideas which will
crop up repeatedly in this discussion.

8.1.1 Linear Canonical Transform and Notation

This material is covered well in numerous other chapters, most particularly Chap. 2,
and the reader is referred there for a broad introduction to the transform. However,
there may be some notational differences, and so we have included this brief section
for clarity.

Given a function of a single variable, f .x/, f W R ! C, the LCT of that function
for parameter matrix M D 	

a b
c d



is given by

FM.y/ D LMff .x/g.y/ D
(
.1=

p
jb/
R1

�1 f .x/ exp
�

j�
2b ax2 � 2xy C dy2

�
ifb ¤ 0p

d exp .j�cdy2/f .dy/ ifb D 0:

We will briefly discuss the extension to complex y and complex elements of M
later, but unless specified otherwise, these are taken to be real. We will also briefly
mention transforms of 2 D signals, but omit the transform definition here. Finally,
the b D 0 case is trivial, and it is generally assumed that b ¤ 0 without significant
consequence. The elements of M are referred to as the ABCD parameters, and M
has unit determinant.

8.1.2 Dirac Delta Function

A key idea in understanding the relationship between discrete and continuous
signals and systems is the Dirac delta function. Introduced by Paul Dirac, the delta
function is commonly used to model a sampling pulse. It is defined as follows:

Z
f .x/ı.x � �/ dx D f .�/: (8.1)
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This is called the sifting property of the delta function. Note the form of the
definition: the delta function is defined by its effect under integration. The following
inadequate definition of the delta function can be useful heuristically.

ı.x/ D
 1 ifx D 0

0 ifx ¤ 0:

The delta function may also be viewed as the limit of a series of functions.
Consider a rectangle function which has unit area

rL.x/ D

1=L ifjxj < L=2
0 otherwise:

Now consider the limit of this function as L ! 0. The function grows narrower
and taller, but always has unit area. Thus we can think of the delta function as being
a pulse that is infinitely tall, infinitely thin and has unit area.

8.1.3 Time-Frequency Representations

The Fourier transform of a time-varying signal decomposes the signal into a
weighted sum of its frequency components, but it doesn’t localize them in time.
Time-frequency representations of a signal attempt to overcome this limitation.
They have proven useful in a variety of applications, but appear here because of
their utility in discussing sampling problems associated with the LCTs.

The reader is referred to the introductory chapters of this book for a review
of the Wigner–Ville distribution function (WDF). Briefly, a time-varying function
f .t/ is mapped to a function of time and frequency, W.t; k/. Loosely, this function
identifies which frequencies are active and how active they are at any given time.
Strictly speaking, it is impossible to speak of an instantaneously occurring frequency
component—this would breach Heisenberg’s uncertainty principle—and so the
WDF is referred to as a pseudo-distribution. In an optical context, the time variable
is commonly replaced by a spatial variable without repercussion.

A significant simplification of the WDF which retains a lot of useful information
is the phase space diagram (PSD), see, e.g., [20, 32]. The idea is to pick an arbitrary
rectangle enclosing most of the WDF of a given signal. (The WDF must necessarily
be of infinite extent, so the whole signal cannot be encapsulated. Hence, we must
use nebulous terms like “most”. We must choose arbitrary limits, such as those
that enclose some proportion, �, of the signal power.) The evolution of this simple
geometric shape may then be trapped as the signal passed through an optical system.
Such tracking is possible because the effect of the LCT (in this case, implemented
as the optical system) is to perform a linear co-ordinate transformation in time-
frequency [1]. The resulting parallelograms indicate the width and bandwidth of the
signal throughout the system. Figure 8.1 illustrates such a PSD.
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Fig. 8.1 Contour maps of the WDF signal .3x2 � 5x C 1/e�x2 before (left) and after (right) free
space propagation. The red boxes are the PSDs for the same signal

The PSD has been expanded upon by a number of authors [32]. We will encounter
some of these at later points in this chapter, but let us mention one of the more
relevant examples: Hennelly and Sheridan systematized and applied PSDs to show
that by tracking the sampling requirements at each step of an algorithm consisting
of a series of LCTs, they could obtain satisfactory results from such algorithms [12].
The flaw in their result is that it does not account for the input to those algorithms
being discrete [7]. Shortly, we will see how that may be overcome.

8.2 Sampling

Shannon–Nyquist sampling is so broadly useful and applied that it is natural to
attempt to use it in relation to the LCT. However, the underlying assumption—that a
signal has finite bandwidth—does not in general lead to the most efficient result, nor
is it often the simplest choice. In this section, we will discuss a different assumption,
associated with the LCT, which leads to a sampling theorem more general than
that of Nyquist. This sampling theorem, which is essential for the theory of a
discrete transform, permits more efficient numerical calculations and has physical
significance in that it explains higher order diffraction terms in holography [13].
First however, in order to facilitate the reader’s comprehension of this more general
sampling theory, let us outline the Shannon–Nyquist sampling theorem, which is
associated with the Fourier transform (FT). You will recall that the FT is a special
case of the LCT, and so Shannon–Nyquist sampling similarly is a special case of the
more general theory.

Suppose we have a signal, f .x/, which we want to sample. Shannon–Nyquist
sampling starts with the assumption that the FT of f .x/, F.k/, is zero outside of
some finite range of k.
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F.k/ D 0; jkj > ˝:

The width of this finite range of support is then directly related to a sampling rate
for the signal, the Nyquist rate. Its reciprocal, T , is called the Nyquist period.

rs D 1=T D 2˝:

A reconstruction filter is specified which allows recovery of the continuous
signal, f .x/, from its samples, f .nT/ taken at not less than that rate.

f .x/ D
1X

nD�1
f .nT/

sin..x � nT//

�.x � nT/
:

It is illuminating to think about Shannon–Nyquist sampling in the Fourier
domain. Given a signal, f .x/, we sample it at a rate T . The resulting spectrum of
the sampled signal is as follows:

Fs.k/ D
1X

pD�1
F.k � pT/:

Hence, the effect of the sampling operation in the Fourier domain is to create
periodic copies of the signal. If the signal had finite support prior to sampling, and
if the separation between replicas is sufficiently large, we can obtain the original
signal from the copies by filtering. We can interpret the equivalent result for the
LCT, which we will examine next, in an identical fashion except that we no longer
consider the Fourier domain, but the output domain of the LCT.

8.2.1 Uniform Sampling

Prior to the general LCT case, a number of special cases were obtained. First, Franco
Gori derived the special case for the Fresnel transform [4], i.e. a theorem that, given
a signal that has compact support in some Fresnel plane, determines a sampling
rate such that the signal may be recovered from its samples taken at no less than
that rate. In the same paper, Gori also proved that a signal with finite bandwidth
could not have finite support in any Fourier domain. The equivalent of this latter
result for the LCT is more complicated [5] and depends on the ABCD parameters.
Results regarding the compactness and bandlimitedness of different LCTs can be
easily understood in terms of the concept of essentially equivalent LCT domains
[23]. Later, Xia was the first of several authors to derive the corresponding sampling
theorem for the fractional Fourier transform [34].

Ding proved that if a particular LCT of a signal is zero outside some range jxj <
˝, then the signal may be sampled at regular intervals of T D B=˝ [3]. Ding’s
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theorem generalizes those of Shannon and Nyquist, Gori, and Xia in the sense that
those theorems refer to special cases of the LCT, namely the Fourier, Fresnel and
fractional Fourier transforms, respectively. Ding’s proof resembles Gori’s, though
he does not cite Gori. Ding’s theorem was later independently derived by several
others, including Stern [29], Deng et al. [2] and Li et al. [17]. Stern’s proof uses
the Poisson formula for the comb function to derive the LCT of a sampled signal.
Deng et al.’s approach was to derive the convolution and multiplication theorems
for the LCT, and then calculate the LCT of the product of an arbitrary function
and a train of delta functions. Li et al.’s proof is similar to Ding’s. All of these
proofs use techniques from well-known proofs of the Shannon–Nyquist theorem,
and ultimately all of them are equivalent.

Similar to the Shannon–Nyquist theorem, Ding’s theorem shows that the effect of
sampling a signal on the LCT of that signal is to create an infinite number of shifted
copies of the signal, with a regular spacing that depends on the sampling rate. The
difference is that each replica is modulated, multiplied by a chirp; hence, the LCT
of a discrete signal is referred to as ‘chirp-periodic’. Again, as with the Shannon–
Nyquist theorem, if the LCT of the continuous signal has finite support we can
specify a sampling rate that ensures the replicas do not overlap, and it is possible to
extract the continuous signal from among the replicas using an appropriate filter.

We now sketch a proof of the theorem. This proof ignores some constants, but
the form of the solution is correct. Consider a signal, f .x/. Let us assume that g.x/ D
f .x/ exp .j�ax2=2b/ is bandlimited in the Fourier domain, i.e. G.k/ D 0 if jkj > !.
According to the Shannon–Nyquist theorem, if we sample g.x/ (equivalent to sam-
pling f .x/ first) with sample period T , its Fourier transform becomes periodic, i.e.

Gs.k/ D
1X

pD�1
G.k � p=T/:

If we scale Gs.k/ by a factor b, and substitute y D bk, we obtain

Gs.y/ D
1X

pD�1
G.y � p.b=T//:

Finally, we multiply this function by a chirp, yielding the LCT of f .nT/,

FM;s.y/ D exp .j�dy2=2b/
1X

pD�1
G.y � p.b=T//: (8.2)

The parameters of this LCT are given by

�
a b
c d

�
D
�
1 0

d=b 1

��
b 0

0 b�1
��

0 1

�1 0
��

1 0

a=b 1

�
:
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In other words, we decomposed the LCT into a series of steps, which are read from
right to left as follows: a chirp multiplication, a Fourier transform, magnification or
scaling, and a second chirp multiplication. The consequence of Eq. (8.2.1) is that the
LCT of a discrete signal is chirp-periodic. The replicas are spaced by b=T , so if the
LCT of the original, continuous signal is zero for jyj > ˝, sampling with sample
period not less than T D b=˝, we can filter out the replicas much as in the Fourier
case.

The complex parametered case was considered in [19]. By the complex parame-
tered case, we mean not only that the ABCD parameters are complex but so too is
the output variable, y. Here, the key result is as follows:

LMfOf .x//g.y/

D exp

�
j�dy2

2b

� 1X
mD�1

FM

�
y � mB

T

�
exp

�
�j�d

�
y � mB

T

�
=2b

�
:

Consequently, if we sample a function with sampling period T , its complex LCT
develops regularly spaced, modulated replicas along a line in the complex plane
that depends on the b parameter. The spacing of these replicas also depends on the
b parameter, and is given by b=T .

The discussion in this section does not account for noise. This issue has been
addressed in some recent papers [28, 38]. Neither does it account for quantisation
error, which has also been examined recently [25].

8.2.2 Sampling Rate Conversion

A common problem may be stated as follows. Given the samples of a signal
which have been taken at a given rate, how do we obtain the samples of the same
signal taken at a different rate without damaging the signal? Such sampling rate
conversions are often required to downsample signals for computational savings,
demodulation and many other applications. Zhao et al. have proposed methods
for sampling rate conversions [36] for signals that are bandlimited in some LCT
domain. Their work applies to rational number sampling rate changes. Previously
published methods for sampling rate conversion in the Fourier domain and the
fractional Fourier domain are special cases of their result.

There are two fundamental operations involved: interpolation and downsampling
or decimation. Interpolation was defined as follows:

g.n/ D


f .n=L/ if n
L D k; k 2 Z

0 otherwise:
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In the LCT domain, this does not alter the signal. Downsampling is defined as
follows:

g.n/ D x.Qn/;

where Q is the integer downsampling conversion factor. The consequence of this in
the LCT domain is as follows:

GT.y/ D 1

Q

Q�1X
kD0

FT

�
y � sgn .b/k

Q

�
exp

�
j2�kbd

.sgn .b/y � �k/

.QT/2

�
:

8.2.3 Nonuniform Sampling

We may have to deal with nonuniform sampling measurements in various settings,
e.g. tomography, or due to factors that impinge on our ability to sample regularly,
such as jitter, or dropped packets. A number of papers have addressed this issue
for a variety of special cases [18, 27, 31, 33, 35]. For example, in [31], Tao et al.
discussed two factors that affect the quality of reconstruction. One was truncation,
which we will discuss in the following section on the discrete transform. The other
is the situation where we have irregularly or nonuniformly sampled data. In this
latter case, four special cases are examined in [31].

The first of the four non-uniform cases considered by Tao et al. was that of signals
for which the locations of the samples are periodic. The second case considered is
a special case of the first. The sample locations are again assumed to be periodic,
but the locations in each period are assumed to be further divisible into groups with
a common inner period. The next case considered is where we nearly have uniform
sampling, but it has been degraded by a finite number of samples being taken at
incorrect locations.

Finally, a more general case was considered. Given a signal that is bandlimited in
some given LCT domain, such that LTff .x/g.y/ D 0 for jyj > ˝, then the original
signal is uniquely determined by its samples taken at locations tn if

ˇ̌
ˇ̌tn � n

b�

˝

ˇ̌
ˇ̌ � D <

b�

4˝
:

The reconstruction formulae for these cases are omitted here, and may be found
in [31].



8 Sampling and Discrete Linear Canonical Transforms 249

8.3 Exact Relation Between Discrete and Continuous LCTs

We have seen that the LCT of a discrete signal is chirp-periodic. In this section, we
will show how to use that fact to define a well-behaved discrete LCT. This section
is largely derived from [6, 22].

The obvious way to fashion a discrete transform is simply to sample the input
and output domains. The function to be transformed, f .x/, becomes a vector of
input samples, the nth element of which is given by f Œn� D f .nTx/. Similarly,
the transformed function becomes the vector FM , where the mth element is given
by FMŒm� D LMfOf .x//g.mTy/. Applying the same substitutions to the LCT kernel
allows us to relate the input and output samples by means of a matrix multiplication.

FM D Wf ; (8.3)

where W is a square matrix with elements,

WŒn;m� D K exp
j�

B
.A.nTx/

2 C nmTxTy C D.mTy/
2/:

W is obtained by sampling the kernel of the LCT as described in the preceding
paragraph. Here, K is some complex constant, which we determine by requiring the
discrete transform to be unitary, which concept we now define.

When discussing discrete transforms, one property we are often interested in is
whether or not they are unitary. This is often compared with the continuous property
of power conservation, and indeed it resembles it, but it fundamentally determines
whether or not the transform is invertible. Given a 1-D linear transformation such
as that of Eq. (8.3), then unitarity is the following requirement.

WW� D IN ;

where IN is the identity matrix of dimension N, and the � indicates the Hermitian
conjugate.

To our knowledge, the first proposed discrete LCT of this kind was by Pei
and Ding in [26]. It has since been found that the sampling rates, Tx and Ty, are
critical if we want a genuine discrete transform. The idea is elegant: since the
continuous LCT of a discrete signal is chirp-periodic, and hence the continuous
LCT of a chirp-periodic signal is discrete, then a true discrete LCT transforms a
discrete, chirp-periodic signal into another signal of that kind with the underlying
periodically replicated functions being related to each other through a continuous
LCT [22, 30]. Oktem and Ozaktas showed that such a relation exists with a discrete
transform if the number of samples is determined from the knowledge of the signal’s
extent in the input and output domains, implying a parallelogram-shaped support
in phase space [21]. Figure 8.2 demonstrates this using a series of modified PSDs.
Healy and Sheridan proposed that it was necessary to include the location of replicas
[10] (which neglects the cross-terms, though this is not critical [11]) and later also
incorporated the parallelogram bound [6].
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Fig. 8.2 The PSD of a continuous signal that is bandlimited in some LCT domain (a) before and
(b) after that LCT. The PSD of a discrete, chirp-periodic signal (c) before and (d) after a discrete
LCT. The green replicas alone in (c) constitute a chirp-periodic signal (and are transformed into a
discrete signal, exactly periodic in frequency—see the green replicas in (d)), while the blue replicas
are a consequence of the signal being discrete

The consequence of this idea of using discrete, chirp-periodic signals is that Tx

and Ty should both be chosen using Ding’s sampling theorem, i.e.

Tx D ˝y

jbj ;

and

Ty D ˝x

jbj ;

where ˝x and ˝y are the widths of the signal in the input and output domain,
respectively. In practice, the sampling periods are also not independent of one
another. Since ˝y D NTy,

Tx D N

jbjTy:

That is, the three parameters Tx, Ty, and N should be chosen using the preceding
three equations together. This choice of sampling rates was first implicitly proposed
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in [30] (though without any observation of the consequences). Oktem and Ozaktas
later independently proposed this rate, and indicated that this choice provides the
minimum possible number of samples to approximate the continuous LCT when
finite extents in the input and output domains are assumed [22]. Healy and Sheridan
interpreted the results in phase space [6], where chirp-periodic signals form a tiling
of parallelograms which packs the replicas optimally, indicating that the sampling
rate is optimal under these assumptions. Zhao et al. proved that the transform is
unitary, and additionally proved that integer multiples of the Ding sampling rate
also result in a unitary transform providing the integer is coprime with the number
of samples [37].

A key property of the continuous LCT is the fact that it forms a group, in the
sense that

LM2fLM1ff .x/g.y/g.z/ D LM2M1ff .x/g.z/:

For the special case of the Fourier transform, this reduces to a familiar property. The
DFT applied twice is equivalent to time reversal, applied three times is equivalent to
the inverse DFT, and applied four times is equivalent to the identity transformation.
For larger multiples, the pattern repeats, yielding n mod 4 instances of the DFT.
Zhao et al. have recently proven that providing we sample the input and output at a
coprime integer multiple of Ding’s sampling rate (just as for unitarity), the discrete
LCT exhibits the group property similar to the continuous LCT [9, 40].

The literature to date on decomposition based algorithms, e.g. [12, 14, 24] and
their two-dimensional and complex extensions [15, 16], has not explicitly used a
DLCT, but this discussion may nevertheless have relevance for those algorithms.

The LCT of 2 D signals may often be decomposed into 1D transforms in
orthogonal spatial directions, and so has received less attention, but there are cases
with independent significance. These 2 D non-separable LCTs have also been shown
to be unitary for appropriate sampling rates [39].

8.4 Comparison of Algorithms

We have fulfilled two thirds of our goal: we have a discrete transform and a sampling
theorem. However, the discrete LCT is not efficient enough for most purposes. We
turn now to algorithms for calculating the discrete transform quickly. This topic is
dealt with more comprehensively in Chap. 10 of this book. Here, we focus on the
consequences of our new understanding of discrete signals and their LCTs for two
such algorithms.

We believe Hennelly and Sheridan were the first to look at systematic ways
of accounting for sampling requirements at each stage of LCT algorithms based
on decomposition of the matrix of parameters, M, which they described in [12].
Around the same time, Ozaktas et al. demonstrated an Iwasawa-type decomposition
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with speed and accuracy comparable to the FFT [24]. Healy and Sheridan later
reduced many of the consequences of [12] to two parameters, the well-known space-
bandwidth product and a new metric they dubbed the space-bandwidth ratio [8].
However, these results are only accurate in certain circumstances where the replicas
due to sampling don’t substantially alter the calculations.

One interesting result of the analysis in [8] is that fast LCT algorithms of the kind
presented in [6] require at worst the same number of samples as two (and perhaps
many more) of the more common algorithms. The algorithm of [6] decomposes the
discrete transform matrix into smaller matrices iteratively in the style of the FFT,
while the others decompose the matrix of parameters, i.e. decompose the discrete
transform into a sequence of simpler discrete transforms. However, in practice,
the slowest step in algorithms of the second type are Fourier transforms, and
commercial FFT software is fast enough to overcome any advantages of algorithms
of the first kind have in terms of the number of samples required.

Let us turn to the consequences of discrete, chirp-periodic signals for the direct
and spectral methods [7]. First, let us define these algorithms. The direct method is
given by the following decomposition:

�
a b
c d

�
D
�
1 0

d=b 1

��
b 0

0 b�1
��

0 1

�1 0
��

1 0

a=b 1

�
:

This is the decomposition we used to prove Ding’s sampling theorem in Sect. 8.2.1.
The spectral method is given by a different decomposition [8].

�
a b
c d

�
D
�
1 0

c=a 1

��
a 0

0 a�1
��

0 �1
1 0

��
1 0

�b=a 1

��
0 1

�1 0
�
:

In both cases, the diagonal matrices are scalings (scaling factor given by the top left
character), the anti-diagonals are Fourier transforms (top right entry is 1) or inverse
Fourier transforms (top right entry is �1), and the remaining triangular matrices are
chirp multiplications with parameter given by the lower left entry.

Before we continue, an aside. In the discussion below, we will consider the
discrete LCT to transform one discrete, chirp-periodic signal into another. This can
be a source of confusion. The data input to such a discrete transform can be thought
of as merely a vector of numbers, or as the samples of a continuous signal under
examination. Indeed, the means of obtaining our input data may support one of
those interpretations. However, for the purposes of PSD-based analyses of discrete
signals, it is useful to think of the vector of numbers as being the samples of a
single period of a chirp-periodic signal, and hence of the input as a discrete, chirp-
periodic signal. It may be helpful for the reader to consider the special case of the
DFT, which can be thought of as relating discrete, periodic functions; necessarily so
because the input being discrete means the output is periodic, and the output being
discrete means the input is periodic.
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Fig. 8.3 Sequence of PSDs of signal undergoing the stages of (a) the direct method algorithm and
(b) the spectral method. Replicas are not shown for convenience. Note the resampling (green box)
necessary at the third step of the spectral method

Let us consider the direct method first. Given a signal that is discrete and chirp-
periodic, the first operation is a chirp multiplication. It is no coincidence that this
operation converts the signal into a simple discrete, periodic signal that is suitable
for the second operation—a Fourier transform (numerically implemented using an
FFT). The signal remains discrete and periodic after the Fourier transform and the
third operation—scaling. Finally, the second chirp multiplication converts the signal
to chirp-periodic. This sequence is illustrated in Fig. 8.3.

Now let us consider the spectral method. The first operation is a Fourier
transform, so we require the signal to be discrete and periodic in order to use
the FFT. (How can we require this? We implicitly impose this form on the signal
simply by assuming we can sample the input and output at some rates for which
aliasing is acceptable.) The resulting signal is also discrete and periodic. The second
operation is a chirp multiplication, which converts the signal to being discrete and
chirp-periodic. The third operation is a Fourier transform, for which we require a
discrete-periodic signal. This mismatch means that we must oversample the signal
at this point. Consequently, the spectral method is inherently less efficient than the
direct method.

A second mark against the spectral method is that it requires two FFTs to the
direct method’s one. Why then, does the spectral method remain useful? The two
algorithms make different assumptions about the signal. The direct method assumes
the signal is bounded in the output LCT domain, while the spectral method assumes
it is bounded in the Fourier domain. For certain domains where the ratio a=b is large,
such as Fresnel transforms for short distances (a D 1, b D 	z), the signal is much
more efficiently bound in the Fourier domain.
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There are many other algorithms that decompose the ABCD matrix, and each of
these may be analysed in this fashion.

8.5 Conclusion

While by no means an exhaustive treatment of the issues surrounding numerical
approximation of LCTs, this chapter has reviewed a number of key ideas. Central
to the topic is Ding’s sampling theorem, which shows that the LCT of a discrete
signal is ‘chirp-periodic’, and that a signal may be recovered from its samples
if it has finite support in some LCT domain such that the periodic replicas
do not overlap. The second really critical idea is that a discrete, chirp-periodic
signal may be transformed by certain LCTs (those on the manifolds given by
certain multiples of a particular ratio of parameters a=b) into discrete, chirp-
periodic signals. Completely equivalently, any discrete, chirp-periodic signal may be
transformed by LCT into another discrete, chirp-periodically providing the choice
of sampling rate is appropriately constrained. However we frame the discussion,
the resulting discrete transform exhibits a number of desirable properties including
unitarity and additivity. With these properties, the discrete LCT becomes a stable
and powerful tool in its own right.
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Chapter 9
Self-imaging and Discrete Paraxial Optics

Markus Testorf and Bryan Hennelly

To the memory of Adolf Lohmann (1926–2013)

Abstract Coherent self-imaging, also known as the Talbot effect, describes Fresnel
diffraction of strictly periodic wavefronts. Based on a phase-space interpretation
of optical signals and systems we review a number of self-imaging phenomena,
including the fractional Talbot effect. Recognizing Fresnel diffraction as merely one
particular instance of the wider class of linear canonical transforms allows us to
discuss various generalizations of self-imaging. Recognizing the discrete Fresnel
transformation as a special case of the fractional Talbot effect leads to a definition
of discrete linear canonical transformations, which preserve important properties
of the continuous transformation for a subset of paraxial signals and systems. This
subset can be used as a framework for practical implementations of discrete LCTs
discrete linear canonical transform.

9.1 Introduction

Coherent self-imaging, also known as the Talbot effect, is one of the most intriguing
optical phenomena. The Talbot effect describes the periodic revival of a periodic
complex amplitude distribution in equidistant diffraction planes along the optical
axis. Henry Fox Talbot, also known for his contributions to photography, was
the first to describe self-imaging in 1836 [76]. Almost half a century later, Lord
Rayleigh offered the first theoretical analysis [64]. It would require more than
another half century, however, before the Talbot effect would slowly start to emerge
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from relative obscurity to become part of the canon of Fourier optics. This can be
linked, at least in part, to the invention of the laser and the availability of high power
coherent light sources. What had required skillful experimentation in Talbot’s time
can now easily be observed with low cost optical equipment. This is also the basis
for applications of optical self-imaging, including the Talbot interferometer [51, 56],
wavefront restoration [26], wavefront sensing [62, 67, 71], and the design of Talbot
array generators [11, 48, 82]. The translation of the Talbot effect to the temporal
domain introduced the idea of dispersion management via temporal self-imaging
[15, 19, 43], and new concepts for clock distribution in fiber optical systems [16].
More recently, the temporal Talbot effect was used to demonstrate time-domain
filtering with diffractive optics [41, 42].

While self-imaging claimed its place as a practical tool for optical system
development, theoretical investigations of self-imaging phenomena revealed equally
fascinating details. This is particularly true for the study of the fractional Talbot
effect [89]. For all, but a few cases, the Fresnel diffraction integral has no
simple analytic solutions. However, the fractional Talbot effect defines a unique
class of problems, for which the diffraction amplitude can be understood as the
superposition of a finite number of shifted and modulated copies of the input signal
[33, 35, 55]. The number of copies, the lateral shift, and the modulation coefficients
depend on the specific diffraction plane, which is evaluated. This makes it possible
to identify fractional Talbot planes, for which the discrete samples of periodic
signals in the input and output plane are linked by discrete unitary transforms [9, 10].

This link between the continuous Fresnel diffraction integral of periodic func-
tions and a discrete transformation based on the fractional Talbot effect provides the
motivation for a more general exploration of the connection between the diffraction
of periodic signals and discrete paraxial optics, i.e. formulations of paraxial optics
suitable for numeric simulation. To this end, we study self-imaging for more general
classes of paraxial systems, also known as linear canonical transforms (LCTs). By
comparing the matrix formulation of the fractional Talbot effect with properties
of the discrete Fourier transform (DFT) we formulate conditions for constructing
discrete versions of LCTs, which preserve many of the properties of the continuous
LCT for bandlimited and periodic signals.

Motivated by attempts to formulate a working definition for the discrete frac-
tional Fourier transform [22, 24, 54, 69], much work has been directed toward
the development of discrete LCTs (DLCTs). Remarkably, the implementation of
DLCTs has remained an open problem, despite much efforts and a variety of
proposed solutions. A naive discretization of the generalized Fresnel transformation
as a Riemann sum is plagued with inherent problems. This includes the potential
loss of unitarity [91], and the problem of defining a proper inverse DLCT [28].
Furthermore, LCTs generally transform bandlimited signals into signals, which are
neither compact nor bandlimited [90]. Appropriate measures have to be taken to find
approximate solutions, which do not suffer from signal aliasing [38].

There are a number of excellent reviews of existing implementations of DLCTs
[37, 57], and it is not or goal to provide a comprehensive survey of DLCTs theory.
Instead, we want to demonstrate that the fractional Talbot effect provides a frame-
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work for constructing DLCTs. This is based on the insight that continuous, periodic
signals can be represented rigorously with discrete signals of finite dimension. The
fractional Talbot effect provides the interface between the diffraction of continuous,
periodic signals and their discrete representation.

Instrumental to this study of self-imaging discrete paraxial optics will be the
phase-space formulation of optical signals and systems. It was shown previously
how this can provide a rather intuitive way to study self-imaging phenomena in
general [78]. Here we emphasize the utility of phase-space optics to introduce
discrete formulations of optical phenomena by investigating the phase space of
periodic signals.

9.2 The Phase Space of Paraxial Optics

For our exploration of generalized self-imaging it will be convenient to rely on
phase-space optics as a formal representation of coherent optical signals and
systems. A systematic introduction to phase-space optics is beyond the scope of
our discussion and we refer to the growing literature on the subject [18, 83–85].
Here, we only summarize briefly those relationships, which we will require for our
exploration of self-imaging and discrete paraxial optics. We will limit the notation
to one-dimensional complex amplitudes. This will allow us to make efficient use of
phase-space diagrams, i.e. schematic graphical depictions of phase space.

For paraxial wavefronts we use the Wigner distribution function (WDF) [18] as
a suitable phase-space representation. The complex amplitude u.x/ of scalar wave
optics is transformed into

W.x; �/ D
Z 1

�1
u

�
x C x0

2

�
u�
�

x � x0

2

�
exp.�i2��x0/ dx0 (9.1)

which is a function of space x, as well as of spatial frequency �. The WDF
is a bilinear transformation of u.x/. This means, the sum of two signals will
be transformed into the respective WDFs, with additional interference or cross
terms added. For instance, a signal consisting of two plane waves, u1;2.x/ D
exp.i2��1x/C exp.i2��2x/, is transformed into

W1;2.x; �/ D ı.� � �1/C ı.� � �2/C 2 cosŒ2�.�1 � �2/�ı
�
� � �1 C �2

2

�
: (9.2)

Apart from the two signal components, which refer to the spatial frequencies of the
two plane waves, we encounter an additional frequency component. This frequency
is located halfway between the other two frequencies and is modulated by a cosine
function. The modulation frequency of the interference term reflects the spacing
between the unmodulated frequency terms.
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The WDF is symmetric with respect to the two variables x and �, and we find the
alternative definition,

W.x; �/ D
Z 1

�1
Qu
�
� C �0

2

�
Qu�
�
� � �0

2

�
exp

	
i2��0x



d�0; (9.3)

based on the Fourier transform of the signal

Qu.�/ D
Z 1

�1
u.x/ exp.�i2��x/dx: (9.4)

Intensity and power spectrum of the complex signal are calculated as projections
of the WDF,

Z 1

�1
W.x; �/d� D ju.x/j2; and

Z 1

�1
W.x; �/dx D jQu.�/j2; (9.5)

and it is possible to recover the original signal as a Fourier transformation of
the WDF. The projection theorems highlight the role of the interference term in
Eq. (9.2) as a representation of the mutual coherence of the two plane waves. Only
with the interference term being present does the projection of the WDF show the
interference pattern of two plane waves.

One of the most important properties associated with the phase-space concept
is the correspondence between the signal dynamics and the associated geometrical
transformation of phase space. The propagation of paraxial optical waves through
quadratic phase systems can be calculated as an LCT of the input signal uin.x/ [73],

uout.x/ D 1p
iB

Z 1

�1
uin.x

0/ exp

�
i�

B

	
A x02 � 2xx0 C D x2


�
dx0: (9.6)

For B D 0 the integral expression is replaced by a scaling and a chirping operation,

uout.x/ D 1p
A

uin.x=A/ exp

�
i�

C

A
x2
�
: (9.7)

The corresponding change of the WDF is given by the rules of ABCD-matrix optics
(see, for example, [68]). Each point .x; �/ in phase space represents the generalized
coordinates of a geometric optical ray, with x representing the position and � D
sin �=	 the direction of propagation determined by the angle � relative to the optical
axis. Thus, paraxial ray tracing corresponds to a linear coordinate transform, where
each optical element or system is represented by a 2 � 2 matrix, with

�
x
�

�

out

D
�

A B
C D

��
x
�

�

in

: (9.8)
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For paraxial signals and systems the geometrical transform in Eq. (9.8) not only
describes the evolution of the phase-space of geometrical optics, but equally the
phase-space of scalar wave optics. This means, the WDF of the input signal is
identical to the WDF at the output except that the input coordinate .x; �/in is
translated to a new coordinate .Ax C B�;Cx C D�/out at the output of the paraxial
system, or

Wout.x; �/ D Win.Dx � B�;�Cx C A�/: (9.9)

In other words, as long as the system function is given as a quadratic phase system
and diffraction at system apertures can be ignored, the WDF follows the rules of
paraxial ray optics.

In this scheme, paraxial free space propagation or Fresnel diffraction over a
distance z corresponds to a shear of the WDF parallel to the x axis,

Wz.x; �/ D W0.x � 	z�; �/: (9.10)

The Fourier dual operation is the modulation with a linear chirp function, i.e. the
function of a parabolic lens. For a convex lens of focal length f we find

WL.x; �/ D W0.x; � C x=.	f //: (9.11)

In Fig. 9.1b, c both operations are applied to the generic phase-space volume of
rectangular shape in Fig. 9.1a. The corresponding ABCD matrix is

Sz.	z/ D
�
1 	z
0 1

�
; and SL.�1=	f / D

 
1 0

� 1
	f 1

!
(9.12)

respectively. Figure 9.1d illustrates the effect of a fractional Fourier transformation,
which corresponds to a rotation of phase space by an angle ˛. The associated system
matrix reads

SF˛.˛/ D
�

cos˛ sin˛
� sin˛ cos˛

�
: (9.13)

The Fourier transformation, Fig. 9.1d, can be interpreted as a fractional Fourier
transformation with a rotation angle ˛ D �=2, and a system matrix SFT D
SF˛.�=2/. Equally important for our discussion is magnification or scaling, in
Fig. 9.1f. We may interpret scaling as perfect imaging with a magnification factor
m ¤ 1. Scaling of one of the coordinates is accompanied by the inverse scaling of
the conjugate coordinate, i.e.

Ss.m/ D
�

m 0

0 1=m

�
: (9.14)
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a b c

d e f

Fig. 9.1 Paraxial optics in phase space: (a) generic phase-space distribution of an optical signal;
(b) diagram of the signal after Fresnel diffraction, and (c) after passage through a thin lens
(chirping); (d) the fractional Fourier transform of the input signal corresponds to a rotation of
phase space, where (e) the ordinary Fourier transform corresponds to a rotation of �=2; (f) signal
scaling magnifies one coordinate of phase space and demagnifies the conjugate coordinate by the
same factor

Further rules for the use of phase-space optics govern the modulation and
convolution of two signals. For the product of two functions, u.x/ D g.x/ h.x/,
the corresponding WDFs are convolved with respect to the frequency variable

Wu.x; �/ D
Z 1

�1
Wg.x; �

0/Wh.x; � � �0/d�0 D Wg.x; �/ �� Wh.x; �/: (9.15)

The symmetry between x and � implies that the convolution between the two signals
is translated to a convolution between the corresponding WDFs with respect to x.

Important for our discussion will be the phase-space representation of a linear
chirp,

uch.x/ D expŒi2�.˛x2 C ˇx C �/�; (9.16)

and its WDF

Wch.x; �/ D ı.� � 2˛x � ˇ/: (9.17)

This provides us with an alternative interpretation of chirping and Fresnel diffraction
in phase space. Fresnel diffraction can be understood as a convolution of the
complex amplitude distribution with the point response function of free space,
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hFr.x; z/ D 1p
i	z

exp

�
i�

	z
x2
�
: (9.18)

This translates into

Wh.x; �/ D 1

j	zjı
�
� � x

	z

�
D ı.x � 	z�/; (9.19)

which is a straight line in phase space. From this we obtain Eq. (9.10) as the
convolution in x between the input WDF and Wh.x; �/. Similarly, convolution in �
of the oblique delta-line with the input WDF corresponds to the chirping operation
in Eq. (9.11).

9.3 The Talbot Effect

The classical Talbot effect is best defined as Fresnel diffraction of periodic
wavefronts. The phase-space interpretation relies on a generalization of Eq. (9.2).
Strictly periodic signals have a discrete spectrum and can be expanded into a Fourier
series,

u.x/ D u.x C xp/ D
1X

nD�1
un exp.i2�nx=xp/ (9.20)

with

un D Qus.n=xp/ (9.21)

and Qus.�/ being the Fourier transform of a single period of the signal us.x/ D
rect.x=xp/u.x/. The WDF of a periodic signal is calculated straightforwardly,

W.x; �/ D
1X

nD�1

1X
n0D�1

unu�
n0 ı

�
� � n C n0

2xp

�
exp

�
i2�

n � n0

xp
x

�
: (9.22)

Terms n D n0 in this series expansion correspond to the WDFs of individual
discrete frequencies in the Fourier series. All other terms n ¤ n0 are the associated
interference terms, which appear equidistantly spaced along the frequency axis at
integer multiples of 1=.2xp/. Figure 9.2 schematically depicts the WDF, with solid
lines representing the WDFs of individual signal harmonics.

Fresnel diffraction corresponds to a horizontal shear of phase space and we
recover the phase-space distribution of the input function, in Eq. (9.22), if the shear
moves the term at frequency 1=.2xp/ by exactly one period xp. In Fig. 9.2 line
S indicates this shear as the horizontal distance between the � axis and line S.
Recalling Eq. (9.10), the condition for self-imaging becomes
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Fig. 9.2 Phase-space diagram of a periodic function. Talbot imaging corresponds to a horizontal
shear of the phase-space distribution indicated by line S. In contrast, conventional image formation
requires all points of phase space along vertical lines I to map to the same distribution of vertical
lines in the phase space representation of the image

	zT
1

2xp
D xp (9.23)

or

zT D 2x2p
	

(9.24)

which is known as the Talbot distance or self-imaging distance. It is immediately
obvious that the same effect can be observed at multiples of the Talbot distance.
The phase space interpretation also illustrates the difference between self-imaging
and image formation based on a lens system. The point-to-point mapping of
conventional imaging would require phase-space points along vertical lines I to
map to vertical lines in the phase space of the image. Considering the projection
property of the WDF, in Eq. (9.5), only then is the signal of a single image point
formed by the signal of a single object point. Self-imaging relaxes this condition
and only requires the same phase-space distribution to occur irrespective of how the
signal energy of the input is redistributed in the space-spatial frequency plane.
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9.4 Self-imaging Beyond Fresnel Diffraction

Self-imaging is not limited to Fresnel diffraction, but can be observed for other
first order optical systems as well. In fact, self-imaging has been generalized in
more than one way. In each case, the phase-space interpretation either motivates the
generalization, or helps us to relate generalized self-imaging to the generic Talbot
effect. We highlight three possible ways to generalize self-imaging for paraxial
optics.

9.4.1 Spectral Self-imaging

The strong symmetry between signal and spectrum in phase space suggests a form
of self-imaging, where the roles of space and spatial frequency are reversed. In this
case, the signal is discrete

usT.x/ D
1X

nD�1
unı.x � n�x/ (9.25)

and the spectrum is periodic. The associated phase-space distribution consists of
discrete lines perpendicular to the space axis. We obtain the standard form of Talbot
self-imaging after rotating phase space by �=2, i.e by Fourier transforming usT.x/.
The Fourier dual LCT of Fresnel diffraction is a chirp modulation and the optical
interpretation of spectral self-imaging is that of a modulated pinhole array. Self-
imaging occurs, if the discrete signal is passing a lens with focal length f ,

uL.x/ D exp

�
�i�

x2

	f

�
; (9.26)

without any change to its complex amplitude distribution. Similar to finding the
Talbot distance for periodic functions, the self-imaging condition for discrete pulse
trains, i.e. periodic spectra is determined from the phase space of a point array,

WsT.x; �/ D
1X

nD�1

1X
n0D�1

unu�
n0 expŒi2�.n0 � n/�x�� ı

�
x � n C n0

2
�x

�
: (9.27)

The lens function corresponds to the vertical shear of the phase-space distribution,
in Eq. (9.11). To reproduce the WDF of the input pulse train, the vertical translation
at x D xp=2 has to be equal to the period of the spectrum 1=�x,

�x=2

	fS
D 1

�x
(9.28)
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or

fS D �x2

2	
: (9.29)

The spectral Talbot effect was first described for time domain signals [14, 88], and is
primarily discussed in the context of fiber optics. Recent work describes the spectral
Talbot effect in sampled fiber Bragg gratings with super-periodic structures [92] as
well as the demonstration of a comb optical filter [20]. This also includes a scheme
to implement the spectral Talbot effect with diffractive optics [23].

In the context of our discussion of self-imaging and discrete Fourier optics,
we may also contemplate signals, which are simultaneously discrete and periodic.
Here, any combination of Talbot self-imaging and spectral self-imaging results in
an image of the input signal.

9.4.2 Self-imaging of Discrete Chirps

Another way to interpret Fig. 9.2 and the formation of Talbot images is to recognize
that the shear of phase space has to occur parallel to the orientation of the discrete
periodically modulated lines, which define the harmonics of the periodic signals.
Lines at oblique angles in phase space can be identified as chirp functions [compare
Eq. (9.16)] and an array of equidistantly spaced chirp functions may be written as

uca.x/ D
X

n

un exp
	�i�˛x2 C i2�n x=xp



: (9.30)

We note that Eq. (9.30) may also be interpreted as the result of multiplying a discrete
signal with a chirp function, or as the result of a fractional Fourier transform of either
a periodic, or of a discrete signal.

It is now straightforward to relate the chirp array to the standard form of Talbot
self-imaging. If we first remove the chirp factor, which is common to all signal
harmonics, self-imaging of the remaining periodic signal occurs for multiples of
zT D 2x2p=	. To restore the original chirp array we only need to re-modulate the
result with the chirp function. This means, we observe self-imaging for the chirp
array in Eq. (9.30), with any system of the form

Sca D SL.�˛/ Sz.zT	/ SL.˛/ D
�
1C ˛zT	 zT	

�˛2zT	 1 � ˛zT	

�
: (9.31)
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9.4.3 Scaled Self-imaging

A further extension of self-imaging is based on relaxing the self-imaging condition
and by including cases, where magnified replica of the input signal are recovered.
This problem is typically discussed in the context of self-imaging with spherical
illumination [25, 56, 78]. Here we reinterpret this configuration as an extension
of self-imaging to a larger set of LCTs. We assume a periodic input function,
Eq. (9.20), as input signal. A lens, with focal length f , is used for chirping the
signal, thus creating a converging (or diverging) wave modulated with a periodic
signal. After free space propagation over a distance z a second lens, with focal length
�.f � z/, is used to remove the chirp in the self-imaging plane resulting in a scaled
replica of the input signal.

Given the magnification factor M we can now determine the self-imaging
condition as a function of the focal length of the lenses and the propagation distance.
In principle, it is again possible to use phase-space diagrams to a obtain the self-
imaging condition [78]. Here, we demonstrate how the system matrix can be used
for this purpose. The system matrix reads

Sscale D SL

�
1

	.f � z/

�
Sz.	z/SL

�
� 1

	f

�
D
 

f �z
f z	

0 f
f �z

!
: (9.32)

This system matrix can be interpreted as free space propagation followed by a
scaling operation,

Sscale D SM .M/ Sz.	z=M/; (9.33)

with M D .f � z/=f . Self-imaging occurs, if the free space propagation is equal to
the Talbot length of the input signal,

zsc D M
2x2p
	

D M zT : (9.34)

Clearly, we are again at liberty to extend the scaled self-imaging theory to include
spectral self-imaging and self-imaging of discrete chirp functions. We also note that
typically, in the discussion of Talbot imaging under spherical illumination, the lenses
in the input plane and in the exit plane of the system are not part of the system, but
part of the propagating signal. This means, the self-imaging condition is actually
further relaxed to include situations, where neither the complex amplitude of the
input signal, nor of the self-image are strictly periodic.
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9.4.4 Self-imaging as an Eigenvalue Problem

The Talbot effect reproduces the coherent amplitude after passing the input signal
through the optical system. All input signals, which exhibit self-imaging after
passage through a particular LCT can be interpreted as eigenfunctions of the
associated generalized Fresnel transformation [58, 59]. This perspective can be
used to develop a framework, which includes both self-imaging, and conventional
imaging [1]. As we mentioned before, the latter also reproduces the input signal,
albeit under more stringent conditions. Translating this notion to phase space, self-
imaging corresponds to a self-affine transformation of phase space [6].

One important example of generalized self-imaging, which is conveniently
discussed in this framework, is the fractional Fourier transform [3, 58, 59]. The
eigenfunctions in this case are Hermite-Gauss polynomials, and the associated
phase-space functions are Laguerre–Gauss polynomials, which have the required
rotational symmetry to ensure the self-affinity of phase-space rotations.

In this context, it is instructive to consider the explicit construction of self-
imaging functions for a subset of fractional Fourier transforms. Most importantly,
we recognize that four consecutive Fourier transforms reproduce the original input
signal. This corresponds to four �=2 rotations in phase space. Thus, for any signal
to reproduce itself under Fourier transformation, it has to have a fourfold rotational
symmetry in phase space. A simple way to construct signals with this symmetry is
to add for any signal the results obtained after each of the four Fourier transform
steps [49, 50]. For any signal u.x/, the associated signal

f .x/ D u.x/C Qu.x/C u.�x/C Qu.�x/ (9.35)

is equal to its own Fourier transform. Incidentally, f .x/ is also self-transform for
two and three consecutive Fourier transforms. The phase-space interpretation [29]
suggests that the same concept can be generalized to other LCTs [5], and in
particular to fractional Fourier transforms, where the order of the transform defines
an N-fold symmetry, i.e. the original signal is obtained after N consecutive fractional
Fourier transforms of the same order [4, 53].

The analysis of self-imaging as an eigenvalue problem also inspired self-imaging
of finite energy signals [60, 61]. In particular, in two dimensions this has motivated a
further extension of self-imaging to signals, which form scaled and rotated copies of
the input beam. Remarkably, the eigenvalue analysis even provides an interpretation
of the Gouy phase and, for two-dimensional signals, of the geometrical phase of
Gaussian beams in first order optical systems [7]. For a physical interpretation of
the Gouy phase in the context of phase-space optics, we refer to [79].
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9.5 The Fractional Talbot Effect

Self-imaging is remarkable in that it identifies instances, where the tedious evalua-
tion of the Fresnel diffraction integral can be bypassed and the diffraction amplitude
is known without further effort. In 1965 Winthrop and Worthington investigated
Fresnel diffraction at rational fractions of the Talbot distance, i.e. at distances
zP;Q D .P=Q/zT , with P and Q being integer numbers [89]. This, again, leads to
rather simple expressions for the propagation of periodic signals in free space. The
term “Fresnel image” is generally associated with the patterns observed in these
distinct diffraction planes. Several alternative formulations of the fractional Talbot
effect are available. The most compact notations express the complex amplitude of
Fresnel images as the superposition of a finite number of copies of the input signal.
Each copy is shifted laterally and multiplied with a complex coefficient, the so-
called Talbot coefficient. The number of copies which are superimposed depends on
the ratio P=Q.

Apart from an efficient means to analyze Fresnel diffraction the fractional
Talbot effect has been employed most prominently for the design of Talbot array
illuminators, which split the incoming wavefront into an array of high intensity
beams [34, 45, 48]. The fractional Talbot effect was also used for beam splitting
in multi-mode waveguide systems [72]. The counterpart of the fractional Talbot
effect in the temporal domain has been used to multiply the repetition rate of clock
pulses [13]. Both, the analysis and the design of array generators, in fact, is one of
the motivations to interpret self-imaging in phase space [77, 81].

a b

Fig. 9.3 Fresnel diffraction of a comb-function: (a) phase-space diagram of a comb function; (b)
sheared phase-space distribution of the comb function at zT=4. The horizontally sheared delta-
comb function can be interpreted as a vertically sheared comb-function of period xp=2
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9.5.1 Phase-Space Analysis of the Fractional Talbot Effect

Phase-space optics offers a rather elegant way to understand and derive formal
expressions for the fractional Talbot effect [78]. We continue to restrict our attention
to periodic signals, this time expressed as a periodic continuation of a single period
uxp.x/,

u.x/ D uxp.x/ �
1X

nD�1
ı
	
x � nxp


 D uxp.x/ � comb.x; xp/ (9.36)

with comb.x; xp/ defining the comb-function. The diffraction pattern after free space
propagation over a distance z can be expressed as an additional convolution with the
point spread function of free space,

u.x; z/ D u.x/ � hFr.x; z/: (9.37)

Since the order of computing convolutions can be exchanged, we are at liberty to
investigate the Fresnel diffraction of the delta-comb function first. This automat-
ically solves the Fresnel diffraction problem for any periodic function, assuming
the second convolution with the groove shape of the input signal is sufficiently
straightforward. Fresnel diffraction can be analyzed in phase space by calculating
the WDF of the comb-function,

Wcomb.x; �/ D 1

2xp

1X
nD�1

1X
n0D�1

.�1/n�n0

ı
�

x � n
xp

2

�
ı

�
� � n0 1

2xp

�
: (9.38)

The resulting grid of equidistant delta functions is shown in Fig. 9.3a. We note
the alternating sign of the delta functions (symbolically represented by C and
� signs), and the interference terms located at points interlaced with the grid of
integer multiples of xp and 1=xp. In general, the horizontal shear in phase space,
which corresponds to Fresnel propagation, will disperse the delta-functions without
yielding any simple solution to the diffraction problem. However, for certain shears,
the resulting pattern of delta functions can again be interpreted as the WDF of a
comb-function, now sheared in vertical direction. This is the case, when all delta
functions are arranged along a discrete set of equidistant vertical lines (Fig. 9.3b).
The period x0

p D xp=Q of the new delta-comb is decreased in x and increased in �
by the same integer factor Q. The corresponding propagation distance is determined
from the shear which moves point C at � D 1=xp horizontally by an integer multiple
of xp=Q to point C0, or

z1;2Q D 1

2Q
zT : (9.39)
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Here we restrict our attention to the case of even Q. For a complete discussion of
the fractional Talbot effect, we refer to [8, 12, 35, 78, 81].

We can now understand Fresnel diffraction of a comb-function at fractional
Talbot planes as a chirp modulation of a new comb-function with reduced period.
The chirp can be deduced from the vertical shear necessary to move point C00 to
point C0 in Fig. 9.3b. For z1;2Q we find

comb.x; xpI z/ D comb.x; xp/ � hFr.x; z1;2Q/ (9.40)

D 1p
Q

exp

 
i�

Q

x2p
x2
! 1X

nD�1
ı
	
x � nxp=Q




where the factor 1=
p

Q accounts for the conservation of energy, if the comb-
function is compressed by a factor of Q. The sampled chirp function can also be
written in terms of the original comb function,

comb.x; xpI z/ D 1p
Q

1X
nD�1

exp

"
i�

Q

x2p

�
n

xp

Q

�2#
ı
	
x � nxp=Q



(9.41)

D
2
4

Q�1X
qD0

cqı
	
x � qxp=Q



3
5 � comb.x; xpI 0/

with

cq D 1p
Q

exp.i�q2=Q/; (9.42)

and where we made use of the Q periodicity of the Talbot coefficients cq. We
are finally able to write down the solution of the Fresnel diffraction problem by
substituting Eq. (9.42) into Eqs. (9.36) and (9.37),

u.x; z/ D u0
xp.x/ � comb.x; xp/ (9.43)

with

u0
xp.x/ D uxp.x/ �

Q�1X
qD0

cqı
	
x � qxp=Q


 D
Q�1X
qD0

cquxp.x � qxp=Q/: (9.44)

Equation (9.44) is a valid expression for all 2Q diffraction planes zP;2Q, where each
plane requires a different set of Talbot coefficients. If P and 2Q have common
factors, some of the Q Talbot coefficients are typically zero.
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9.5.2 Generalizations to Other LCTs

Similar to the Talbot effect, it is possible to generalize the fractional Talbot
effect to other LCTs. In particular, the fractional spectral Talbot effect is obtained
straightforwardly by exchanging the roles of the coordinate axes in the phase-space
analysis [88].

A second case of particular interest for our discussion is the fractional Talbot
effect under spherical illumination. We express this problem as an LCT consisting
of a chirp modulation and Fresnel diffraction. Matrix optics allows us to find a
substitute system, to which Eq. (9.44) can directly be applied,

Ssf D Sz.	z/ SL

�
� 1

	f

�
D Ss.M/ SL

�
� M

	f

�
Sz

�
z	

M

�
(9.45)

with M D 1 � z=f . This means, spherical illumination followed by Fresnel
diffraction can be replaced by Fresnel diffraction followed by chirping and a scaling
operation. The fractional Talbot planes are again determined exclusively by the
initial propagation step, where z	=M now has to fulfill the condition for a fractional
Talbot plane [36]. In principle, the remaining chirp modulation of the Fresnel image
can be removed by multiplying the complex amplitude with a second chirp, and
ensuring a periodic output signal.

9.5.3 The Matrix Description of the Fractional Talbot Effect

Our analysis of the fractional Talbot effect was based on separating the particular
shape of a single period from the analysis of Fresnel diffraction. We can employ the
same concept again, if we consider periodic signals, which can be expressed via a
sampling expansion

uxp.x/ D ui.x=�x/ �
Q�1X
qD0

uqı.x � q�x/; (9.46)

with Q�x D xp. For bandlimited functions, the interpolation function is ui.x/ D
sinc.x/. Fresnel diffraction can now be analyzed as the fractional Talbot effect of
the discrete and periodic signal

us.x/ D
Q�1X
qD0

uqı.x � q�x/ � comb.x; xp/: (9.47)

At the fractional Talbot distance z1;2Q we find Q copies of the discrete period in
Eq. (9.46) shifted by a multiple of the sampling distance. Thus, we expect the
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Fresnel diffraction amplitude of the discrete signal to have the same structure as
Eq. (9.47), where the coefficients uq are replaced by a new set of coefficients wq,
with

wq D
Q�1X
q0D0

cq�q0uq0 : (9.48)

The Fresnel diffraction pattern, in this case, is completely characterized by a discrete
linear transformation of the Q samples which uniquely describe input and output
signal. The matrix C D cq�q0 can be applied multiple times, thus providing access
to planes zP;2Q.

The matrix description of the fractional Talbot effect was first formulated to
calculate Fresnel diffraction for staircase profiles and binary optics, with ui.x/ D
rect.x/ [9, 10]. However, the discrete formulation of Fresnel diffraction remains
valid for any sampling expansion of the form in Eq. (9.46).

It is interesting to interpret this model of Fresnel diffraction in phase space.
The sampled signal in Eq. (9.47) corresponds to a WDF of the form of Eq. (9.27).
Convolution with the WDF of the comb function with respect to x and sampling in �
results in a WDF of the discrete signal, which is a grid of delta functions, periodic in
x and �. Due to interference terms the WDF will be 2Q periodic in both coordinates,

Ws.x; �/ D
2Q�1X
qD0

2Q�1X
q0D0

Wq;q0ı.x � q�x=2/ı.� � q0=2xp/

�x;�

1X
nD�1

1X
n0D�1

ı
	
x � nxp



ı
	
� � n0=�x



; (9.49)

which is schematically depicted in Fig. 9.4. In passing, we note that coefficients
Wq;q0 , which are functions of the samples uq, may serve as a definition for a discrete
WDF [21, 65, 66].

The conditions for applying the matrix formulation of the fractional Talbot effect
correspond to a horizontal shear of phase space, which moves all points in Fig. 9.4
to an identical grid of ı-points. The first time this happens is represented by line T ,
i.e. the row with frequency 1=.2xp/ is translated in space by 1=.2�x/. Repeating this
operation Q times recovers the input distribution and is identical to the first Talbot
distance. It is intuitively clear that any LCT which preserves the sampling grid of
the WDF in Eq. (9.49) can be used to establish a linear transformation between
the samples of the respective signals. However, recalling the result of the previous
section on Fresnel imaging under spherical illumination, we can relax this constraint
to LCTs, where all points of the phase-space samples are aligned in discrete vertical
rows but dispersed along the frequency axis by the chirp modulation.

The matrix formulation was also promoted as an efficient way to simulate light
propagation, not only in free space, but also in fractional Fourier transform systems
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Fig. 9.4 WDF of a discrete, bandlimited, and periodic signal: schematic depiction of the discrete
non-zero locations in the space-frequency plane associated with the discrete signal; each period of
the WDF in both conjugate coordinates is represented with different symbols. Lines O, T , P refer
to the horizontal shear indicating the position of points on the � axis after Fresnel diffraction. Only
line T corresponds to a periodic and discrete transfer function of free space

[86] suggesting the possibility to use the matrix method for a more general class of
LCTs.

At this point, we may step back and restate the result of our discussion: For
a discrete set of diffraction problems, the continuous Fresnel diffraction integral
of periodic (and bandlimited) signals is uniquely described by a discrete linear
transformation of a finite set of samples. For this to be possible, it is necessary
to link the sampling interval to the propagation distance.

This close relationship between the continuous transformation of a periodic
function and its discrete counterpart is not unique. In particular, it is a well-
known fact of the Fourier transformation, and it is worthwhile to review briefly the
properties of the Fourier transform of periodic and sampled signals as a prototype
for the development of DLCTs in general.

9.6 Diffraction of Periodic Wavefronts and Discrete Optics

The DFT undoubtedly is the most widely used DLCT. The motivation for the DFT
is the desire to calculate the continuous Fourier integral transformation of a complex
signal u.x/ with a discrete linear transform suited for digital computation. There are
at least three ways to introduce the DFT. One possibility is to define the DFT as
an orthogonal expansion of discrete signals into a set of suitable basis functions.
Relationships between the continuous and the discrete transform are then treated as
premeditated coincidences.
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Alternatively, it is possible to interpret the DFT as the result of a staircase
approximation of the truncated Fourier integral [63],

Qu.�/ � �x
N�1X
nD0

u.n�x/ exp.�i2��n�x/: (9.50)

The DFT is found by sampling Qu.�/ up to the Nyquist frequency, which is equal to
the inverse of the sampling interval�x. This approximation of the Fourier transform
as a Riemann sum, however, deserves a fair amount of critique. It implies that the
DFT has to be interpreted as an approximate representation of the continuous signal,
where the accuracy of the DFT can always be improved by increasing the integration
window, and by decreasing the sampling interval �x. In addition, it implicitly uses
two different interpolation schemes to connect the discrete series representation
with the continuous signal. The sampling at discrete distances is connected with the
sampling theorem, and the continuous signal is derived from the discrete samples
with the help of a trigonometric sinc interpolation. The Riemann sum, in contrast,
approximates the signal with the simplest form of a polynomial type interpolation.
This inconsistency requires some “handwaving” to justify the DFT, without offering
a truly intuitive interpretation of potential computation errors.

We can choose a third option and restrict our attention to strictly periodic and
bandlimited functions, Qu.�/ D 0 for j�j > �0=2. Applying the sampling theorem to
Eq. (9.36) with �x D 1=�0, the signal can be re-written as

u.x/ D
8<
:

Q�1X
qD0

u.q�x/ı.x � q�x/

9=
; �

( 1X
nD�1

ı.x � nxp/

)
� ui.x=�x/; (9.51)

with ui.x/ D sinc.x/, and xp D Q�x. Equation (9.51) expresses the signal in terms
of a single signal period, which is sampled and periodically continued. Finally, the
discrete signal is interpolated to recover the continuous signal.

If the Fourier integral transformation is applied to Eq. (9.51), we obtain

Qu.�/ D
8
<
:

Q�1X
qD0

u.q�x/ exp.�i2��q�x/

9
=
;
1

xp

1X
nD�1

ı.� � n=xp/�x Qui.�x�/

D
8
<
:

Q�1X
qD0

u.q�x/ exp.�i2�nq=Q/

9
=
;
1

Q

1X
nD�1

ı.� � n=xp/ Qui.�x�/: (9.52)

The first term in Eq. (9.52) is Q periodic in n and we identify the DFT,

Qun D
Q�1X
qD0

uq exp.�i2�nq=Q/; (9.53)
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with Qun D Qu.n=xp/, uq D u.q�x/, and n; q D 0; : : : ;Q � 1. The Fourier
transformation of the continuous input signal, thus, can be re-written

Qu.�/ D 1

Q

8<
:

Q�1X
q0D0

Quq0ı.� � q0=xp/ �
1X

nD�1
ı.� � nQ=xp/

9=
; Qui.�x�/: (9.54)

Recovering the spectrum of the continuous transform is expressed as a multiplica-
tion with the Fourier transform of the interpolation function, in this case Qui.�/ D
rect.�/.

Here, the DFT is derived without introducing any type of approximation. Instead,
we identify a class of functions, periodic bandlimited signals, for which the
continuous integral transform is identical to the discrete transform, which operates
on the finite number of discrete samples necessary to represent the signal rigorously.
For the case of the Fourier transform no additional interpolation is needed to
recover the output of the continuous transform from the discrete output of the
discrete transform. Since the DFT is derived as the continuous Fourier transform
of generalized functions, we expect all properties of the integral transform to be
preserved for the DFT, as long as the discrete function can be interpreted as a
sampled periodic and bandlimited signal. We note that Fig. 9.4 again illustrates the
associated phase space. The Fourier transform rotates phase space by �=2 mapping
one point of the discrete WDF grid to another point of the grid. This means, the
continuous transform of the discrete signal, represented by a train of delta-functions,
is identical to the discrete transform of the sample values.

Having based our derivation exclusively on the sampling theorem, we can now
use the latter to explore what happens, if we choose more general sets of functions.
For instance, if we represent non-periodic functions in a truncated computation
window, we force implicit periodicity of the discrete function, which is no longer
bandlimited in a rigorous sense. However, it is possible to develop approximate
methods, such as windowing, to minimize the truncation effect.

In the remainder of the chapter, we seek definitions of DLCTs, which are inspired
by this interpretation of the DFT. The theory of the fractional Talbot effect will allow
us to develop a similar perspective for discrete Fresnel diffraction and for LCTs in
general. A valid implementation of DLCTs may be identified in the following way:
For a certain class of functions, which include periodic and bandlimited functions,
the signal can be represented by a finite number of discrete samples. The DLCT
of these samples should be identical, both to the sampled output of the LCT of
the signal, and to the continuous transform of the sampled input, the latter being
represented by a train of ı-functions.
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9.7 The Discrete Fresnel Transform

The starting point for our continuing exploration is Eq. (9.37), which describes free
space propagation as a convolution of the input signal and the point response of free
space. It is often convenient to express this convolution as a product in the frequency
domain. In optics, the spatial frequency is linked with the propagation angle of plane
wave modes, which has earned this approach the name “angular spectrum method”
[17, 31]. The efficiency of the FFT algorithm makes the angular spectrum method
attractive for numerical computations as well.

9.7.1 The Discrete Angular Spectrum Method

The discrete implementation of the angular spectrum method is arguably one of the
most widely used methods to simulate free space propagation, both for paraxial, and
for non-paraxial optical signals [30, 44, 52, 75, 80]. The convolution with the point
response of free space is transformed into a modulation of the spectrum with the
transfer function of free space,

Qu.�; z/ D Qu.x; 0/ QhFr.�; z/ D Qu.x; 0/ exp.�i�	z�2/; (9.55)

where QhFr.�; z/ is the Fourier transform of hFr.x; z/ in Eq. (9.18). The angular
spectrum method can be expressed as a system matrix,

Sz.	z/ D S�1
FT SL.	z/SFT: (9.56)

For numerical computations, the discrete input is the sampled version of the
continuous input signal. True to our theme, we consider strictly periodic and
bandlimited signals. Each period xp of the input signal is represented by Q samples,
and we again assume Q to be even. Then, the entire chain of using discrete
computation to calculate the Fresnel integral of the continuous signal u.x/ can be
summarized as

u.x; z/ D u.s/.x; z/ � ui.x=�x/; (9.57)

where the discrete output of the Fresnel transform reads

u.s/.x; z/ D
8<
:

Q�1X
qD0

uqı.x � q�x/

9=
; �

1X
nD�1

ı.x � nxp/ � hFr.x; z/; (9.58)

and with the uq are being the samples of the continues input signal u.x/ at
x D q�x. This is the Fresnel diffraction of the signal in Eq. (9.51). The first
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term corresponds to the samples of a single signal period, which is replicated
periodically by the comb-function. After Fresnel propagation the continuous Fresnel
diffraction amplitude can be obtained by convolution with the interpolation function
ui.x/ D sinc.x/. In the frequency domain, the spectrum of the signal reads

Qu.�; z/ D Qu.s/.�; z/�x Qui.�x�/

D 1

Q

8<
:

Q�1X
q0D0

Quq0ı.� � q0=xp/ �
1X

nD�1
ı.� � n=�x/

9=
; QhFr.�; z/Qui.�x�/

(9.59)

where coefficients Quq0 again refer to the DFT of the samples uq.
The discrete angular spectrum method is based on sampling the transfer function

in the frequency domain at discrete frequencies .q0 C Qn/=xp. In much of the
literature on the subject, conditions are derived to ensure the sampling of the transfer
function is done appropriately [30, 52]. However, for the class of signals we are
considering here, aliasing due to under-sampling the chirp of the transfer function
is not necessarily a fundamental issue. Since the signal is defined as being periodic,
any alias term can be interpreted physically as signal energy of one period spreading
through diffraction and leaking into the neighboring period. In some sense, we have
decided on a physical model, which shares the cyclic boundary conditions of the
discrete model.

A second issue for the class of periodic signals is often ignored. This concerns
the “out-of-bin” sampling of the transfer function [87]. In general, the samples of
the transfer function do not show the same inherent periodicity as the DFT of the
discrete samples. This is relevant, because the actual numerical implementation of
the angular spectrum method reads

Quasm.�; z/ D 1

Q

8
<
:QhFr.�; z/

Q�1X
q0D0

Quq0ı.� � q0=xp/ �
1X

nD�1
ı.� � n=�x/

9
=
; Qui.�x�/:

(9.60)

Only the first period of the spectrum is multiplied with the transfer function and
this truncated sequence is implicitly continued. We distinguish several cases, for
which Eq. (9.60) is equivalent to Eq. (9.59). Most importantly both equations are
equivalent, if we are only interested in the continuous output of the DLCT. The
bandlimit is restored by the sinc-interpolation. In this case, the frequency domain
equivalent is a perfect low pass filter, which truncates everything outside the
first period of the spectrum. In other words, the output of the discrete angular
spectrum algorithm is always a properly sampled version of the continuous Fresnel
diffraction pattern, and the latter, which is obtained via a sinc-interpolation of the
output samples, is a truthful representation of the Fresnel diffraction integral of the
continuous input function.
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The same does not hold for the discretized input of bandlimited and periodic
functions. Equation (9.59) samples the transfer function of free space with the entire
discrete and periodic spectrum instead of a single period, which is a truncated and
replicated period of the spectrum. Only if the sampled transfer function matches the
periodicity of the input spectrum can the discrete output of the angular spectrum
method be regarded as the Fresnel diffraction pattern of the discrete input.

It is worthwhile to explore this subtle point in some more detail. The sampled
transfer function shows Q periodicity when ��	zq02=x2p D ��	z.q0 C Q/2=x2p. For
even Q this is the case at integer multiples of

zs D 1

2Q

2x2p
	
: (9.61)

We recognize condition Eq. (9.61) as those fractional Talbot planes, which can be
related to the matrix description of Fresnel diffraction. In the frequency domain, the
matrix formulation of the fractional Talbot effect thus reads

Quq0.zs/ D Quq0 Qhq0.zs/ (9.62)

with Qhq0.zs/ D QhFr.q0=xp; zs/ D exp.�i�q02=Q/. This can be translated back into the
spatial domain, and the inverse DFT transforms the product into the discrete cyclical
convolution of the matrix method of the fractional Talbot effect,

uq.zs/ D
Q�1X
pD0

hq�pup: (9.63)

The matrix elements can be determined as the inverse DFT of Qhp.zs/, and with the
help of Gaussian sums [70] we find

hq.zs/ D exp.i�=4C i�q2=Q/; (9.64)

which reproduces the Talbot coefficients we found in Sect. 9.5.3. The matrix
formulation of the fractional Talbot effect was promoted as a possible alternative to
simulate Fresnel diffraction numerically [86]. However, in terms of numerical cost it
has to compete with the complexity of the FFT algorithm, which can be used for the
angular spectrum method. We emphasize, however, that as long as the condition
in Eq. (9.61) is fulfilled, all properties we encountered for the fractional Talbot
effect can be transferred to the discrete angular spectrum method. In particular,
it is possible to interpret Eq. (9.60) not merely as a valid sampling expansion for
bandlimited signals, but for any signal, which can be represented in this way. This
includes a rectangular interpolation function ui.x/ D rect.x/ as one important
example.

We can again employ the phase-space representation of periodic and discrete
signals to develop a better appreciation of the “out-of-bin” sampling condition, if the
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fractional Talbot condition is not met. In Fig. 9.4, line O corresponds to an out-of-bin
sampling of the transfer function. The original phase-space samples are moved away
from the sampling grid and the horizontal shift of positions into neighboring periods
is not at a multiple of the grid period. It is clear that the distorted grid corresponds to
additional samples of the delta train representation of the discrete signal. The same
is true for line P which in addition moves sampling points beyond the boundaries
of their respective period in space corresponding to alias terms of the propagated
signal. Only the case of line T and multiples of the associated propagation distance
ensure strict periodicity of the sampled transfer function.

The condition in Eq. (9.61), which links the number of samples per period
to the propagation distance was previously identified by Voelz and Roggemann
as the ideal sampling condition for optical signals, albeit without recognizing its
relationship with the fractional Talbot effect [87]. In the same work it is also argued
that alternative implementations of discrete Fresnel diffraction are subject to the
same discretization condition. In particular, for the so-called direct methods, which
sample the point response function hFr.x; z/ instead of the transfer function of free
space, we again encounter the issues of sampling the chirp of the response function
and to find conditions which ensure periodicity for both the continuous and the
discrete transformation. Some additional flexibility can be gained, however, by
considering non-periodic functions of finite support.

9.7.2 Signals with Finite Space-Bandwidth Product

While the class of periodic bandlimited signals has allowed us to define cases,
for which the discrete Fresnel transform yields the same result as the continuous
transformation, we are typically interested to simulate light propagation of signals
with finite support. Despite the fact that these signals are not bandlimited in any
strict sense we invoke the notion of the space-bandwidth product and assume an
effective bandlimit determined by the frequency, for which the signal spectrum
drops below the noise level. We can apply the angular spectrum method to this
wider class of signals, as long as we appreciate that any use of the DFT assumes an
implicit periodicity for both the signal and the spectrum. The implicit periodicity on
non-periodic signals of finite length is typically accommodated by zero-padding the
signal [47].

In this context, it is again beneficial to consider the propagation problem in
phase space [38]. Figure 9.5 schematically shows three cases, for which Fresnel
diffraction of a signal with finite space-bandwidth product is simulated. The signal
resides entirely within one cell of the implicitly periodic signal space. Figure 9.5a
demonstrates that we will always encounter aliasing, if the signal occupies the
entire phase-space cell defined by the periodicity of the discrete signal and its
sampling distance. A propagation step of any size will inevitably lead to a leakage
of the signal into the neighboring cell, which is no longer representing the physical
problem correctly. The Nyquist frequency is determined by the maximum frequency
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a b c

Fig. 9.5 Fresnel propagation of finite space-bandwidth products: (a) signal occupying the entire
phase-space cell, the inherently periodic discrete Fresnel diffraction. (b) Signal which is only zero-
padded in the spatial coordinate. (c) Signal with zero-padding in both space and frequency; only in
this case is alias-free propagation to the fractional Talbot distance zs possible

of the transfer function inside the unit phase-space cell, combined with the highest
frequency of the signal, contrary to some work, which emphasizes exclusively
the maximum frequency of the transfer (or response) function (see, for example,
reference [52]).

The phase-space diagram also reveals that it is not sufficient to zero-pad the
signal along the spatial coordinate, if we want to propagate the signal over the
ideal distance zs. The simulation with ideal sampling conditions will still suffer
from aliasing, unless zero-padding is done both in space and frequency. Only for the
configuration in Fig. 9.5c does the entire phase-space volume remain contained in a
single phase-space cell as we propagate the signal to the distinct fractional Talbot
plane zs. It is easy to show that we need at least a phase-space cell with four times
the space-bandwidth product of the signal. In practical applications zero padding is
often applied to only one of the two conjugate domains combined with a quadratic
phase propagator, which is not ideally sampled (Fig. 9.5b).

It is for non-ideal sampling conditions that the direct method, i.e. the sampling
of the response function, is distinct from the angular spectrum method. The former
requires large propagation distances and zero-padding in the frequency domain, to
avoid aliasing in the spectral domain. The latter is restricted to propagation distances
smaller than the ideal condition in Eq. (9.61) and requires zero-padding in the signal
domain. The spectral leakage related to out-of-bin sampling of the response or
transfer function is equally addressed through sufficient zero-padding [87].

9.7.3 Zooming Algorithms

In particular in the context of digital holography, there is considerable interest
to combine discrete Fresnel diffraction with zooming functions, where the image
shows parts of the object space with a specific scale. Apart from resampling and
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interpolation, the implementation of discrete diffraction can be used to control the
image scale. The angular spectrum method as introduced in the previous sections
maintains the sampling interval.

Zooming can be achieved through implementations of the aforementioned direct
simulation method. To this end, Fresnel diffraction is re-written as

Sz.	z/ D SL.1=	z/Ss.	z/SFTSL.1=	z/: (9.65)

The corresponding integral transform can be discretized with different sampling
intervals in the input and the exit plane. The resulting discrete transformation can
be written as [40]

u.n�x2; z/ D exp

�
i�.n�x2/2

	z

�

�
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u.m�x1/ exp

�
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	z

�
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��i2�nm�x2�x1
	z

�
:

(9.66)

The scaled discrete Fourier transformation in this expression reduces to the DFT, if

	z D N�x1�x2: (9.67)

This provides us with a practical condition to link input and output scale. More
interestingly, we find again a relationship between the sampling interval and the
propagation distance. In fact, for �x1 D �x2 we recover the condition in Eq. (9.61)
and we can identify Eq. (9.67) as an alternative ideal sampling condition. While
neither chirp modulation in Eq. (9.66) corresponds to ideal sampling, the overall
process again moves points of the grid in phase space to other points on the same
grid and spectral leakage is avoided.

It is worthwhile to highlight a second zooming algorithm in this context. By sand-
wiching the Fresnel propagation step between two additional chirp modulations [40]

Szoom D SL.1=	f2/Sz.	z/SFTSL.1=	z/ (9.68)

it is possible to simulate the propagation of a signal, which can be interpreted as
a modulated spherical wave. This, in effect, is equivalent to the discussion of the
Talbot effect and the fractional Talbot effect for the case of spherical illumination
in Sects. 9.4.3 and 9.5.2, respectively. The first lens of focal length f1 introduces
a convergent or divergent carrier, while the second lens f2 removes the remaining
chirp after a scaled propagation step. Maintaining the number of samples across one
period of the scaled wavefront provides the desired zooming functionality.

As we have pointed out in Sect. 9.5.2 the configuration in Eq. (9.68) can be
replaced by Fresnel diffraction over a scaled distance, followed by a single chirp
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modulation and scaling. This, in effect, can be used as the prototype for computing
arbitrary LCTs.

9.8 The Fractional Talbot Effect and DLCTs

One of the curios of paraxial optics is the perpetual problem of defining a universally
accepted definition of the general DLCTs. Various definitions provide working
solutions for estimating LCTs numerically, yet the growing body of literature on
the subject also highlights the difficulties of finding a definition, which is both
rigorous and practical. Much of the work on DLCTs is motivated by the need to find
numerical implementations of the fractional Fourier transformation, yet even for this
rather narrow set of LCTs no definition has found the same universal acceptance the
DFT enjoys as the discrete counterpart of the continuous Fourier transform.

In part, this may be attributed to the same reasons, which guides discussions
about the most suitable implementation of the discrete Fresnel transformation.
Rather than establishing conditions, for which the DLCT can be linked rigorously
to the continuous transform, many studies assume a priori that any numerical
scheme for computing LCTs inevitably has to be an approximation of the continuous
transform. However, after exploring the self-imaging phenomenon both for Fresnel
diffraction, and for more general classes of LCTs, we may well expect to carry the
general concept of constructing the discrete Fresnel diffraction algorithm over to
the general class of LCTs. Any LCT can be factorized into a sequence of DFTs,
chirp modulations and chirp convolutions. The implicit periodicity of finite discrete
signals introduced through the DFT suggests that we can apply a subset of LCTs to
bandlimited and periodic signals and obtain a rigorous formulation for the respective
DLCT of the finite number of samples. Those LCTs, which belong to this set, can
readily be identified, since they again move each point of the phase-space sampling
grid in Fig. 9.4 to another point of that sampling grid. Hence, we are limited to
chirps modulating either the signal or the spectrum corresponding to the vertical
or horizontal shear indicated by line T in Fig. 9.4. The modulation of the spectrum
corresponds to multiples of the fractional Talbot plane zs D z1;2Q, while the chirp of
the signal corresponds to a parabolic lens with a focal length of integer fractions of
zs. If these conditions are met, the discrete output signal, again, represents a periodic
and discrete signal in both phase-space coordinates. We can extend this class of
LCTs by accepting scaling transformations of the input and the output signal. This
is analogous to the optical Fourier transformation implemented with the help of a 2f-
system. The specific focal length of the Fourier transform lens introduces a scaling
of the Fraunhofer spectrum, which does not change the essence of the mathematical
operation, but which still corresponds to a different LCT.

This framework, however, is unsatisfying for several reasons. First, we are left
with a rather limited set of ABCD parameters, far less than necessary to accom-
modate even the most generic LCTs, namely the fractional Fourier transformation.
Even including scaling operations, it is not possible to establish conditions, which
move the points of a rotated cartesian grid to points of the same cartesian grid. This,



284 M. Testorf and B. Hennelly

in fact, may explain some of the difficulties of finding a universal definition for
DLCTs. Only for a small number of LCTs, which are compatible with the fractional
self-imaging condition in space and frequency, is there a unique and rigorous way
to accomplish this task.

Second, and perhaps more importantly, LCTs typically transform bandlimited
and compact signals into signals, which are neither bandlimited nor compact. This
means, we can no longer use a sinc-interpolation to establish a rigorous relationship
between the discrete samples and the continuous transform, even where the set of
sampling points in phase space maps to itself .

Finally, the mapping of the phase-space grid to itself is a sufficient, but not a
necessary condition for establishing rigorous conditions for DLCTs. We recall the
possibility to allow for signals carried by a chirp signal. Prior knowledge of the chirp
carrier allows us to remove the chirp modulation at any point in the process.

Thus, the remaining task is to find a definition for DLCTs, where we surrender
some of the properties we observed with the DFT and the discrete Fresnel transform,
but which allows us to establish relationships between the discrete and the contin-
uous signals without loss of rigor. Our particular interest is again directed toward
implementations based on self-imaging theory. A suitable factorization substitutes
the LCT with a Fresnel diffraction step followed by a chirp modulation and a scaling
operation,

�
A B
C D

�
D Ss.M/SL.�/Sz.ˇ/ D

�
M Mˇ
�

M
1Cˇ�

M

�
: (9.69)

The magnification M can be treated as a continuous parameter to accommodate the
matrix element A. In practical terms, we only need to consider the magnification
to relate the discrete signal to physical length or frequency, i.e. as part of the
interpolation from the discrete to the continuous representation and vice versa. The
sampling distance has to be defined explicitly for the sampling and the interpolation
step and the interpolation function has to be changed accordingly. The matrix
element B D ˇM is constrained by the conditions we derived for the fractional
Talbot effect and numerical Fresnel propagation.

The step which deserves slightly more attention is the chirp modulation, ex-
pressed by the matrix element C D �=M. Closer inspection reveals that it is not
necessary to match the condition for the spectral fractional Talbot effect to select � .
As long the output signal of LCTs is the last step in a line of numerical simulations,
we can in fact ignore any constraints on � . Even if the chirp is under-sampled, the
chirp modulation of the discrete signal always corresponds to a diagonal matrix,
i.e. a unitary, invertible operation. Since we know the chirp function explicitly, we
can always recover the samples of the simulation window as well as in all other
implicitly defined periods. By incorporating the chirp function into the interpolation
function we can also recover the correct continuous LCTs from under-sampled
discrete data.

This is accomplished, by what has become known as a form of generalized
sampling, applicable to signals which occupy a diagonal band in phase-space
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[39, 46, 74]. Any such signal can be interpreted as a chirped bandlimited signal.
Conceptually, the sampling interval does not need to match the overall bandlimited
of the signal, but corresponds to the inverse of the local bandwidth. The interpolation
of the continuous LCT corresponds to removing the sampled chirp function from
the discrete data, then performing a standard sinc-interpolation, and multiplying the
continuous chirp with the result of the interpolation. Reversely, the discrete output
of this DLCTs can be computed from the continuous output signal of the LCT
by sampling the signal and selecting the sampling frequency based on the Nyquist
sampling rate of the bandlimited input, which has to be scaled by the magnification
factor M.

It is also possible to chain several DLCTs. This can be accomplished by first
removing the chirp from the first LCT, and adding this chirp as the first step of the
consecutive LCT. The sequence of chirp-Fresnel propagation-chirp-magnification
can now be recast into the form in Eq. (9.69). In other words, with each step, we
increase the overall Fresnel propagation step and combine the necessary chirping
steps as a single chirp at the end of the LCT chain. This perspective of LCTs is
unique, since it allows us to deemphasize the difference between different types of
LCTs and identify the Fresnel propagation, and thus the fractional Talbot effect, as
the core operation concerning DLCTs. One key ingredient for this interpretation is
the observation that any LCT of a bandlimited signal can be regarded as a chirped
bandlimited signal [39].

Similar to the discrete Fresnel diffraction, for non-periodic signals with finite
space-bandwidth product we need to be concerned about aliasing which is in-
troduced by the propagation step. Zero-padding remains necessary to ensure the
fractional Talbot condition for the free space propagation step. Again, however,
sampling of the chirp modulation function does not require compliance with the
sampling theorem. Instead, this issue is shifted to the interpolation function and we
are not concerned about parts of the signal’s phase-space volume leaking into higher
and lower frequency periods of the phase-space grid in Fig. 9.5. The difference
between under-sampling the chirp of the propagation step in the frequency domain
and the chirp in the signal domain is related to the inherent properties of the DFT,
which is needed for any implementation of the Fresnel propagation step. Aliasing
artifacts only impact the computation, if the chirp modulation is followed by a DFT
operation, which forces implicit periodicity for both the signal and its spectrum.
This is the case, for instance, if several DLCTs need to be executed in consecutive
order, and which may be addressed in the way outlined above.

9.9 Test Case: The Fractional Fourier Transform

Much of the interest in DLCTs was motivated by the need for efficient and accurate
numerical implementations of the fractional Fourier transformation. The fractional
Fourier transform can be regarded as an important test case for exploring LCTs
beyond Fresnel diffraction. The relationship between the fractional Talbot effect
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and the calculation of fractional Fourier transforms has been noted by a number
of authors, who have highlighted parts of the framework outlined in the preceding
section [2, 32, 86].

The fractional Fourier transform corresponds to a rotation of phase space,
expressed by a system matrix with A D D D cos.�/, and B D �C D sin.�/. The
rotation angle � defines the order of the fraction Fourier transform, with � D �=2

corresponding to the ordinary Fourier transformation. For the factorization of the
LCTs this identifies M D cos.�/ as the scaling operation. Consequently, the chirp
modulation is given as � D � sin.�/ cos.�/. The Fresnel propagation step is
determined from two conditions. Given the number of samples Q used to compute
the DLCT, the window size xp and sampling interval �x are linked via xp=�x D Q.
In addition, the propagation step in Eq. (9.69) has to be ˇ D tan.�/ D xp�x. We find

�x D
�

tan.�/

Q

�1=2
: (9.70)

Figure 9.6 illustrates the phase-space transformation of the Cartesian grid under
these conditions. We observe that the rotated grid again aligns grid points in vertical
direction. The resulting grid can be interpreted as a chirped Cartesian grid. As
expected, this new grid corresponds to the new sampling interval �x0 D M�x.
Removing the chirp, in Fig. 9.7c, leaves us with a Fresnel diffracted signal, where
all grid points again coincide with a scaled Cartesian grid.

For the fractional Fourier transformation, there are a number of additional
properties, which we may wish to translate into the discrete formulation. Most
notably, this is the addition theorem of the respective phase-space rotations, i.e.

SF˛.˛1 C ˛2/ D SF˛.˛2/SF˛.˛1/: (9.71)

In the spirit of our exploration, Eq. (9.71), ˛1 C ˛2 as well as ˛1 have to be limited
to cases with in-bin sampling of the Fresnel diffraction.

For signals with finite support and finite bandwidth zero-padding is obligatory
to avoid aliasing of the actual signal. This also reduces the impact of out-of
bin sampling of the Fresnel diffraction step. As an example, Fig. 9.7 shows the
numerical result of applying our procedure to two Hermite-Gauss polynomials,
i.e. the eigenfunctions of the fractional Fourier transform. The computation was
performed for � D �=6, with Q D 210 samples of the polynomials of order 2
and 3. To compare the input and output of the DLCT, the output vector was divided
by the respective eigenvalue. Figure 9.7a was computed with ideal sampling, while
for Fig. 9.7b the number of samples were not matched to the propagation distance.
The accuracy of both results is virtually identical, which shows that the DLCT
based on self-imaging theory provides a sufficient condition. However, for practical
implementations, a satisfactory accuracy can always be obtained, if the number of
samples can be chosen freely. This returns our discussion of DLCTs to its starting
point. Rather than defining necessary conditions for an implementation of DLCTs,
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a

b c

Fig. 9.6 Fractional Fourier transform of the discrete phase space: (a) Cartesian grid of the discrete
bandlimited and periodic signal. (b) Fractional Fourier transformation of the grid in (a); rotation
angle and sampling are selected to align grid points in vertical direction. (c) Cartesian grid after
removing the chirp of the distribution in (b)

a b

Fig. 9.7 Fractional Fourier transform (� D �=6) of Hermite–Gauss polynomials of order 2 and 3.
The solid line and circles correspond to the input and output signal, respectively
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self-imaging defines an ideal case, which allows us to develop a more intuitive
understanding of discrete paraxial optics. This includes issues, which may arise,
if these ideal conditions cannot be implemented for practical reasons.

9.10 Conclusions

Our exploration of self-imaging and LCTs has revealed some interesting insights
into the relationship between continuous periodic signals and discrete representa-
tions. Undoubtedly, the theory of self-imaging provides an easily accessible physical
approach to explore numerical algorithms and in particular DLCTs. As we have
pointed out, we see the most important contribution of self-imaging in providing a
framework for thinking about problems involving discrete representations, rather
than as a solution to the problem of finding the most suitable and efficient
implementation.

One important advantage of restricting our attention to periodic bandlimited
functions is a rigorous definition of the number of degrees of freedom. The finite
number of discrete samples necessary to represent a single period of the continuous
signal contains all information available about the signal and there is no need to
resort to heuristic definitions of the space-bandwidth product for estimating the
number of independent variables. For paraxial signals and systems this corresponds
directly to configurations best explored in terms of self-imaging theory. As we
demonstrated, the propagation of these independent variables can be traced most
conveniently, if we restrict the set of operations to those compatible with the matrix
formulation of the fractional Talbot effect.

We also speculate that apart from the fractional Talbot effect of periodic func-
tions, other self-imaging phenomena, which we mentioned briefly in Sect. 9.4 could
be used to model optical signals and system more flexibly. In fact, some alternative
methods for defining DLCTs, such as the definition in terms of eigenfunctions
[22, 27] may find a more intuitive physical interpretation, if explored in the context
of generalized self-imaging.

Instrumental to our exploration was the phase-space formalism of paraxial optics.
The phase-space of discrete and periodic signals corresponding to a discrete and
double periodic phase space emphasizes a novel approach for obtaining geometrical
solutions for discrete optical problems. While closely associated with the properties
of phase-space optics in general, it aids our understanding of the increasingly
important link between continuous signals and discrete representations. In this
sense, we believe, discrete phase-space optics has the potential to assume a role in
optical system theory distinct from its continuous counterpart. Our narrowly focused
exploration of self-imaging and discrete paraxial optics may serve as an example of
how to exploit this theoretical framework.
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Chapter 10
Fast Algorithms for Digital Computation
of Linear Canonical Transforms

Aykut Koç, Figen S. Oktem, Haldun M. Ozaktas, and M. Alper Kutay

Abstract Fast and accurate algorithms for digital computation of linear canonical
transforms (LCTs) are discussed. Direct numerical integration takes O.N2/ time,
where N is the number of samples. Designing fast and accurate algorithms that
take O.N log N/ time is of importance for practical utilization of LCTs. There are
several approaches to designing fast algorithms. One approach is to decompose an
arbitrary LCT into blocks, all of which have fast implementations, thus obtaining
an overall fast algorithm. Another approach is to define a discrete LCT (DLCT),
based on which a fast LCT (FLCT) is derived to efficiently compute LCTs.
This strategy is similar to that employed for the Fourier transform, where one
defines the discrete Fourier transform (DFT), which is then computed with the fast
Fourier transform (FFT). A third, hybrid approach involves a DLCT but employs
a decomposition-based method to compute it. Algorithms for two-dimensional and
complex parametered LCTs are also discussed.

10.1 Introduction

Linear canonical transforms (LCTs) are commonly referred to as quadratic-phase
integrals or quadratic-phase systems in optics [1]. They have also been referred to
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by names such as generalized Huygens integrals [2], generalized Fresnel transforms
[3, 4], special affine Fourier transforms [5, 6], extended fractional Fourier transforms
(FRTs) [7], and Moshinsky–Quesne transforms [8], among other names. The
so-called ABCD systems widely used in optics [9] are also represented by LCTs.

One-dimensional (1D) LCTs [8, 10] constitute a three-parameter class of linear
integral transforms [1, 11, 12] which include among its special cases, the one-
parameter subclasses of FRTs, scaling operations, and chirp multiplication (CM)
and chirp convolution (CC) operations, the latter also known as Fresnel transforms.

LCTs appear widely in optics [2, 10, 11], electromagnetics, classical and
quantum mechanics [8, 13, 14], as well as in computational and applied math-
ematics [15]. The application areas of LCTs include, among others, the study
of scattering from periodic potentials [16–18], laser cavities [2, 19, 20], and
multilayered structures in optics and electromagnetics [21]. They can also be used
for fast and efficient realization of filtering in LCT domains [22].

Generalizations to two-dimensional (2D) transforms and complex-parametered
transforms are also present in the literature. Classification of first-order optical
systems and their representation through LCTs are studied in [23–27] for 1D and
2D cases, respectively. Bilateral Laplace transforms, Bargmann transforms, Gauss–
Weierstrass transforms [8, 28, 29], fractional Laplace transforms [30, 31], and
complex-ordered fractional Fourier transformations (CFRTs) [32–35] are all special
cases of complex linear canonical transforms (CLCTs).

The LCTs are of great importance in electromagnetic, acoustic, and other
wave propagation problems since they represent the solution of the wave equation
under a variety of circumstances. At optical frequencies, LCTs can model a
broad class of optical systems including thin lenses, sections of free space in the
Fresnel approximation, sections of quadratic graded-index media, and arbitrary
concatenations of any number of these, sometimes referred to as first-order optical
systems [1, 5, 6, 10, 12].

Given its ubiquitous nature and numerous applications, the discretization, sam-
pling, and efficient digital computation of LCTs are of considerable interest.

The 1D LCT of f .u/ with parameter matrix M is denoted as fM.u/ D .CMf /.u/:

.CMf /.u/ D
p
ˇe�i�=4

Z 1

�1
exp

�
i�.˛u2 � 2ˇuu0 C �u02/

�
f .u0/ du0; (10.1)

where ˛, ˇ, � are real parameters independent of u and u0 and where CM is the
LCT operator. The transform is unitary. The 2 � 2 matrix M whose elements are
A;B;C;D represents the same information as the three parameters ˛, ˇ, � which
uniquely define the LCT:

M D
�

A B
C D

�
D
�

�=ˇ 1=ˇ

�ˇ C ˛�=ˇ ˛=ˇ

�
D
�

˛=ˇ �1=ˇ
ˇ � ˛�=ˇ �=ˇ

��1
: (10.2)

The unit-determinant matrix M belongs to the class of unimodular matrices. More
on the group-theoretical structure of LCTs may be found in [8, 10].
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The result of repeated application (concatenation) of LCTs can be handled easily
with the above-defined matrix. When two or more LCTs are cascaded, the resulting
transform is again an LCT whose matrix is given by the product of the matrices of
the cascaded LCTs. For instance, if two LCTs with matrices M1 and M2 operate
successively, then the equivalent transform is an LCT with matrix M3 D M2M1.
LCTs are not commutative. The matrix of the inverse of an LCT is simply the inverse
of the matrix of the original LCT [8, 10].

There has been considerable work on defining discrete/finite FRTs and, to
a lesser degree, discrete/finite LCTs [36–55]. Definitions of the discrete FRT
(DFRT) [45, 53, 55] are more established and recognized than definitions of the
discrete LCT (DLCT). In this chapter the primary emphasis is not on sampling and
the definition of discrete transforms. We concentrate on fast and accurate algorithms
for digitally computing continuous LCTs, with careful attention to sampling issues,
so as to produce results that are nearly as accurate and fast as is theoretically
possible. Some approaches do involve the definition of a discrete transform, others
do not.

Historically, computation of the Fresnel diffraction integral, which is a special
case of LCTs, has received the greatest attention since it describes the propagation
of light in free space (see [56, 57] and the references therein). Since the Fresnel
integral is space-invariant and takes the form of a convolution, it can be computed
in O.N log N/ time. It is important to note that despite the fact that general LCTs
are not space-invariant (not in convolution form), so that a standard Fourier domain
approach cannot be used to obtain an O.N log N/-time algorithm, the algorithms
presented in this chapter are O.N log N/-time algorithms.

The Fourier transform (FT) is the most prominent special case of LCTs. Most
often, the continuous FT is approximated by the discrete Fourier transform (DFT)
and the DFT is computed with the fast Fourier transform (FFT) algorithm [58]
in O.N log N/ time. The FRT, another important special case of LCTs, is a
generalization of the FT. A fast algorithm for digital computation of the continuous
FRT was first developed in [59]. This fast FRT algorithm paved the way for
the development of fast algorithms for more general transforms, leading to the
algorithms for arbitrary LCTs that are discussed in Sects. 10.4, 10.7, and 10.8. The
algorithm in [59] serves as a basic building block within these fast linear canonical
transform (FLCT) algorithms.

In the next section, we present some preliminary material. In Sect. 10.3, we
discuss fast computation of the FRT. In Sect. 10.4, we turn our attention to
decomposition-based approaches to LCT computation. Next, in Sect. 10.5, we
present DLCT based methods. This is followed by Sect. 10.6, where we discuss
hybrid algorithms that involve the DLCT but employ a decomposition-based method
to compute it. Finally, we discuss extensions to two-dimensional (2D) and complex
transforms.
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10.2 Preliminaries

We begin by reviewing the concepts of compactness and the relationship of LCTs
to the Wigner distribution.

10.2.1 Compactness in Space, Frequency, and Phase Space

A function will be referred to as compact if its support is so. The support of a
function is the subset of the real axis in which the function is not equal to zero. In
other words, a function is compact if and only if its nonzero values are confined to
a finite interval. It is well known that a function and its Fourier transform cannot
both be compact (unless they are identically zero). In practice however, it seems
that we are always working with a finite space interval and a finite bandwidth. This
discrepancy between our mathematical idealizations and the real world is usually
not a problem when we work with signals of large space-bandwidth product. The
space-bandwidth product can be crudely defined as the product of the spatial extent
of the signal and its (double-sided) bandwidth. It is equal to the number of degrees
of freedom, the number of complex numbers required to uniquely characterize the
signal among others of the same space-bandwidth product.

We will assume that the space-domain representation of our signal is approx-
imately confined to the interval Œ��x=2;�x=2� and that its frequency-domain
representation is confined to the interval Œ���=2;��=2�. With this statement we
mean that a sufficiently large percentage of the signal energy is confined to these
intervals. For a given class of functions, this can be ensured by choosing �x and
�� sufficiently large. We then define the space-bandwidth product N � �x�� ,
which is always greater than unity, because of the uncertainty relation.

Let us now introduce the scaling parameter s with the dimension of space and
introduce scaled coordinates u D x=s and 
 D �s. With these new coordinates, the
space and frequency domain representations will be confined to intervals of length
�x=s and ��s. Let us choose s D p

�x=�� so that the lengths of both intervals
are now equal to the dimensionless quantity

p
���x which we will denote by �u.

In the newly defined coordinates, our signal can be represented in both domains
with N D �u2 samples spaced �u�1 D 1=

p
N apart.

From now on we will assume that this dimensional normalization has been
performed and that the coordinates appearing in the definition of the FRT, Wigner
distribution, etc. are all dimensionless quantities.

For a signal with rectangular space-frequency support, the space-bandwidth
product is equal to the number of degrees of freedom. This is not true for signals
with other support shapes. While LCTs do not change the number of degrees of
freedom of a signal, they may change its space-bandwidth product.
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10.2.2 Relationship of LCTs to the Wigner Distribution

The relationship between first-order optical systems (quadratic-phase systems or
LCTs) and the Wigner distribution has been extensively studied [1, 11, 12, 60, 61].
The Wigner distribution Wf .u; 
/ of a signal f .u/ can be defined as [62, 63]

Wf .u; 
/ D
Z 1

�1
f .u C u0=2/f �.u � u0=2/e�2� i
u0

du0: (10.3)

Roughly speaking, Wf .u; 
/ is a function which gives the distribution of signal
energy over space and frequency. Its infinite integral over space and frequency,
expressed as

R1
�1

R1
�1 Wf .u; 
/ du d
, gives the signal energy.

Let f denote a signal and fM be its LCT with parameter matrix M. Then, the
Wigner distribution (WD) of fM can be expressed in terms of the WD of f as [10]

WfM.u; 
/ D Wf .Du � B
;�Cu C A
/: (10.4)

This means that the WD of the transformed signal is a linearly distorted version of
the original distribution. The Jacobian of this coordinate transformation is equal to
the determinant of the matrix M, which is unity. Therefore this coordinate trans-
formation does not change the support area of the Wigner distribution. (A precise
definition of the support area is not necessary for the purpose of this paper; it may
be defined as the area of the region where the values of the Wigner distribution are
non-negligible, or the area of a region containing a certain high percentage of the
total energy.) The invariance of support area means that LCTs do not concentrate
or deconcentrate energy; that is, they do not carry energy in or out of the defined
support area, keeping the total energy within the support area constant. The support
area of the Wigner distribution can also be approximately interpreted as the number
of degrees of freedom of the signal. Therefore, the number of samples needed to
represent the signal does not change after an LCT operation.

10.3 Fast Computation of Fractional Fourier Transforms

Here we review the fast algorithm for computing the continuous FRT presented in
[59], both for historical reasons and since it constitutes an important building block
of the LCT algorithms we will later present in Sects. 10.4 and 10.7.

Let fF f g.u/ denote the Fourier transform of f .u/. Integral powers F j of
the operator F � F1 may be defined as its successive applications. Then we
have fF2f g.u/ D f .�u/ and fF4f g.u/ D f .u/. The ath order FRT fFaf g.u/ of
the function f .u/ may be defined for 0 < jaj < 2 as
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FaŒf .u/� � fFaf g.u/ �
Z 1

�1
Ka.u; u

0/f .u0/ du0;

Ka.u; u
0/ � A� exp

�
i�.u2 cot� � 2uu0 csc� C u02 cot�/

�
;

A� � exp.�i�sgn.sin�/=4C i�=2/

j sin�j1=2 ; (10.5)

where � � a�=2 and i is the imaginary unit. The kernel approaches K0.u; u0/ �
ı.u � u0/ and K˙2.u; u0/ � ı.u C u0/ for a D 0 and a D ˙2, respectively. The
definition is easily extended outside the interval Œ�2; 2� by remembering that F4j is
the identity operator for any integer j and that the FRT operator is additive in index,
that is, Fa1Fa2 D Fa1Ca2 .

The FRT, like all LCTs, can be broken down into a succession of simpler
operations, such as chirp multiplication, chirp convolution, scaling, and ordinary
Fourier transformation. Here we will concentrate on two particular decompositions
which lead to two distinct algorithms. By ensuring that the sampling interval
satisfies the Nyquist criterion at each stage of the decomposition, it becomes
possible to use the output samples to reconstruct good approximations of the
continuous FRT.

First, we consider decomposing the FRT into a chirp multiplication followed
by a chirp convolution followed by another chirp multiplication [59]. We assume
a 2 Œ�1; 1�. Manipulating Eq. (10.5), we can write

fa.u/ D expŒ�i�u2 tan.�=2/�g0.u/; (10.6)

g0.u/ D A�

Z 1

�1
expŒi�ˇ.u � u0/2�g.u0/ du0; (10.7)

g.u/ D expŒ�i�u2 tan.�=2/�f .u/; (10.8)

where g.u/ and g0.u/ represent intermediate results and ˇ D csc�. In the first step
[Eq. (10.8)] we multiply the function f .u/ by a chirp function. As shown in [59],
the bandwidth and space-bandwidth product of g.u/ can be as large as twice that
of f .u/. Thus, we require samples of g.u/ at intervals of 1=2�u. If the samples of
f .u/ spaced at 1=�u are given to begin with, we can interpolate these by a factor
of two and then multiply by the samples of the chirp function to obtain the desired
samples of g.u/. The next step is to convolve g.u/ with a chirp function, as given in
Eq. (10.7). To perform this convolution, we note that since g.u/ is bandlimited, the
chirp function can also be replaced with its bandlimited version without any effect.
That is,

g0.u/ D A�

Z 1

�1
expŒi�ˇ.u � u0/2�g.u0/ du0 D A�

Z 1

�1
h.u � u0/g.u0/ du0; (10.9)

where

h.u/ D
Z �u

��u
H.
/ exp.i2�
u/ d
; (10.10)
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where

H.
/ D 1p
ˇ

ei�=4 exp.�i�
2=ˇ/; (10.11)

is the Fourier transform of expŒi�ˇu2�. It is possible to express h.u/ explicitly in
terms of the Fresnel integral defined as F.z/ D R z

0
exp.�z2=2/ dz. Now, Eq. (10.7)

can be sampled, giving

g0 � m

2�u

�
D

NX
nD�N

h
�m � n

2�u

�
g
� n

2�u

�
: (10.12)

This convolution can be evaluated using a FFT. Then, after performing the last step
[Eq. (10.6)], we obtain the samples of fa.u/ spaced at 1=2�u. Since we assumed
that all transforms of f .u/ are bandlimited to the interval Œ��u=2;�u=2�, we finally
decimate these samples by a factor of 2 to obtain samples of fa.u/ spaced at 1=�u.
Then the continuous function fa.u/ can be reconstructed from these samples.

The second method does not require Fresnel integrals [59]. Equation (10.5) can
be alternatively put in the form:

fFaf g.u/ D A�ei�˛u2
Z 1

�1
e�i2�ˇuu0

h
ei�˛u02

f .u0/
i

du0; (10.13)

where ˛ D cot� and ˇ D csc�. We again assume that the Wigner distribution of
f .�/ is zero outside a circle of diameter �u centered around the origin. Under this
assumption, and by limiting the order a to the interval 0:5 � jaj � 1:5, the amount
of vertical shear in Wigner space resulting from the chirp modulation is bounded
by �u=2. Then the modulated function ei�˛u02

f .u0/ is band-limited to �u in the
frequency domain. Thus ei�˛u02

f .u0/ can be represented by Shannon’s interpolation
formula:

ei�˛u02

f .u0/ D
NX

nD�N

ei�˛. n
2�u /

2

f
� n

2�u

�
sinc

�
2�u

�
u0 � n

2�u

��
; (10.14)

where N D .�u/2. The summation goes from �N to N since f .u0/ is assumed to be
zero outside Œ��u=2;�u=2�. By using Eqs. (10.14) and (10.13), and changing the
order of integration and summation we obtain

fFaf g.u/ D A�ei�˛u2
NX

nD�N

ei�˛. n
2�u /

2

f
� n

2�u

�

�
Z 1

�1
e�i2�ˇuu0

sinc
�
2�u

�
u0 � n

2�u

��
du0: (10.15)
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The integral is equal to e�i2�ˇu n
2�u .1=2�u/rect.ˇu=2�u/. For the range of 0:5 �

jaj � 1:5, rect.ˇu=2�u/ will always be equal to unity on the support juj � �u=2
of the transformed function. Hence we can write

fFaf g.u/ D A�
2�u

NX
nD�N

ei�˛u2e�i2�ˇu n
2�u ei�˛. n

2�u /
2

f
� n

2�u

�
: (10.16)

Then, the samples of the transformed function are obtained as

fFaf g
� m

2�u

�
D A�
2�u

NX
nD�N

e
i�
�
˛. m

2�u /
2�2ˇ mn

.2�u/2
C˛. n

2�u /
2
�
f
� n

2�u

�
(10.17)

which is a finite summation allowing us to obtain the samples of the fractional
transform in terms of the samples of the original function. Direct computation of
this form would require O.N2/ multiplications. An O.N log N/ algorithm can be
obtained as follows. We put Eq. (10.17) into the following form after some algebraic
manipulations:

fFaf g
� m

2�u

�
D A�
2�u

ei�.˛�ˇ/. m
2�u /

2
NX

nD�N

ei�ˇ. m�n
2�u /

2

ei�.˛�ˇ/. n
2�u /

2

f
� n

2�u

�
:

(10.18)

It can be recognized that the summation is the convolution of ei�ˇ.n=2�u/2 and the
chirp modulated function f .�/. The convolution can be computed in O.N log N/ time
by using the FFT. The output samples are then obtained by a final chirp modulation.
Hence the overall complexity is O.N log N/.

10.4 Decomposition-Based LCT Algorithms

This section discusses decomposition-based approaches to fast and accurate digital
computation of continuous LCTs. These approaches begin with samples of the
continuous input signal and compute samples of the continuous LCT output signal
such that the continuous output can be interpolated from the computed output
samples. This is accomplished by decomposing the LCT operation into basic
building blocks that already have fast algorithms. The main approach we discuss
is based on the following decomposition involving the FRT, scaling, and chirp
multiplication [64, 65]:

M D
�

A B
C D

�
D
�
1 0

�q 1

� �
M 0

0 1=M

� �
cos � sin �

� sin � cos �

�
: (10.19)

Here � D a�=2 where a is the order of the FRT, q is the chirp multiplication
parameter, and M is the scaling factor. As we will see, these three parameters are
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a b

c

Fig. 10.1 Sequence of geometrical distortions for the decomposition in Eq. (10.19) [65]. (a) After
the first stage: FRT; (b) after the second stage: scaling; (c) after the third stage: CM

sufficient to satisfy the above equality for arbitrary ABCD matrices, so that this
decomposition is capable of representing arbitrary LCTs. Since the fast method
proposed in [59] and reviewed in the previous section can be used for fast
computation of the FRT, this decomposition directly leads to a fast algorithm for
arbitrary LCTs. This decomposition was inspired by the optical interpretation in [66]
and is also a special case of the widely known Iwasawa decomposition [26, 67, 68].
It was also proposed later in [64, 69]. Figure 10.1 illustrates the sequence of
geometrical distortions in phase space corresponding to this decomposition, which
is rotation, scaling, and shearing, respectively. The initial space-frequency support
is a circle of diameter �u.

To obtain the decomposition parameters in terms of the LCT parameters, we
multiply out the right-hand side of Eq. (10.19) and replace the matrix entries A, B,
C, D with ˛; ˇ; � , we obtain:

�
�=ˇ 1=ˇ

�ˇ C ˛�=ˇ ˛=ˇ

�
D
�

M cos � M sin �
�qM cos � � sin �=M �qM sin � C cos �=M

�
;

(10.20)
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which is equivalent to four equations which we can solve for a; q;M:

a D .2=�/cot�1�; (10.21)

M D
( p

1C �2=ˇ; � � 0;

�p1C �2=ˇ; � < 0;
(10.22)

q D �ˇ2=.1C �2/ � ˛: (10.23)

The ranges of the square root and the cot�1 both lie in .��=2; �=2�. In operator
notation this algorithm can be expressed as

CM D Qq Jk MM Fa
lc: (10.24)

In this method, the first operation is an FRT, whose fast computation in O.N log N/
time is presented in [59, 70]. Other works dealing with fast computation of the FRT
include [71, 72]. The first algorithm presented in [59] and reviewed above was based
on decomposing the FRT into a CM followed by a CC followed by a final CM, and
computed the samples of the continuous FRT in terms of the samples of the original
signal. Care was taken to ensure that the output samples uniquely represented
the continuous FRT in the Nyquist–Shannon sense. The presently discussed LCT
algorithm employs that algorithm as a subroutine. The only approximation in this
subroutine comes from the step involving chirp convolution in which a DFT/FFT is
used to approximate the samples of the continuous FT. No other approximation is
made, either in this subroutine or in any of the other operations that we employ. Thus
the only source of approximation can be traced to the evaluation of a continuous
FT by use of a DFT (implemented with an FFT), which is a consequence of the
fundamental fact that the signal energy cannot be confined to finite intervals in
both domains. The second operation in this method is scaling, which only involves
a reinterpretation of the same samples with a scaled sampling interval. The final
operation is CM which takes O.N/ time, leading to an overall complexity of
O.N log N/. As in the first method, it is again necessary to ensure that the final output
samples are sufficient to represent the transformed signal in the Nyquist–Shannon
sense. Since LCTs distort the original space-frequency support, both the space and
frequency extent of the signal, as well as its space-bandwidth product may increase,
despite the fact that the area of the support remains the same. Therefore, a greater
number of samples than �u2 may be needed to represent the transformed signal in
the Nyquist–Shannon sense (unless we use some specialized basis to represent the
signals) [64].

Delaying confrontation with the necessity to deal with this greater number of
samples until the very last step is a significant advantage of the present method.
Since the FRT corresponds to rotation, and scaling only to reinterpretation of the
samples, these steps do not require us to increase the number of samples. At the last
CM step, if we multiply the samples of the intermediate result with the samples of
the chirp, the samples obtained will be good approximations of the true samples of
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the transformed signal at that sampling interval. If these samples are sufficient for
our purposes, nothing further need be done. However, in general these samples will
be below the Nyquist rate for the transformed signal and will not be sufficient for
full recovery of the continuous function. To obtain a sufficient number of samples
that will allow full recovery, we must interpolate the intermediate result before chirp
multiplication at least by a factor k corresponding to the increase in space-bandwidth
product [65]:

k � 1C ˇ̌
� � ˛.1C �2/=ˇ2

ˇ̌
: (10.25)

For convenience we choose k to be the smallest integer satisfying this inequality.
We have considered several examples to illustrate and compare the presented

methods. We consider the chirped pulse function exp.��u2 � i�u2/, denoted
F1, and the trapezoidal function 1:5tri.u=3/ � 0:5tri.u/, denoted F2 (tri.u/ D
rect.u/ � rect.u/). Since these two functions are well confined to a circle with
diameter �u D 8 we take N D 82. We also consider the binary sequence 01101010
occupying Œ�8; 8� with each bit 2 units in length, so that N D 162. This binary
sequence is denoted by F3 and the function shown in Fig. 10.2 is denoted by F4,
again with N D 162. These choices for �u result in 
0 %, 0.0002 %, 0.47 %,
0.03 % of the energies of F1, F2, F3, F4, respectively, to fall outside the chosen
frequency extents. The chosen space extents include all of the energies of F2, F3,
F4 and virtually all of the energy of F1. We consider two transforms, the first (T1)
with parameters .˛; ˇ; �/ D .�3;�2;�1/, and the second (T2) with parameters
.�4=5; 1; 2/. The LCTs T1 and T2 of the functions F1, F2, F3, F4 have been
computed by the presented fast method (referred to as A2), another fast method
which will be presented shortly (referred to as A1), and by a highly inefficient brute
force numerical approach based on composite Simpson’s rule, which is here taken
as a reference.

The results are tabulated in Table 10.1 for both transforms (T1, T2). Also shown
are the errors that arise when using the DFT in approximating the FT of the same
functions, which serves as a reference. (The error is defined as the energy of the
difference normalized by the energy of the reference, expressed as a percentage.)
Results are shown for two algorithms denoted as A1 and A2, both of which appear
in [65] as Method I and Method II, respectively. The algorithm outlined above is A2.
The algorithm A1 will be summarized below after we discuss the results.

The key observations that can be made from this table are as follows. The errors
obtained depend on the function, since different functions have different amounts of
energy contained in their tails which fall outside the assumed space and frequency
extents (or assumed space-frequency region). For those cases in which the error
is large, such as F3, this means that we have determined the space-bandwidth
product less conservatively than the other examples, and the error can be reduced
by increasing N. Generally speaking, the errors obtained depend very little on the
transform parameters or which method we use, and are comparable to the error
arising when we use the DFT to approximate the FT. Since a DFT lies at the heart
of both methods, this is the smallest error one could hope for to begin with.
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Fig. 10.2 Example function F4 [65]

Table 10.1 Percentage errors for different functions F, transforms T, and algo-
rithms A [65]

A1 T1 A1 T2 A2 T1 A2 T2 DFT

F1 3:2 � 10�22 9:5 � 10�22 2:7 � 10�17 6:6 � 10�17 2:0 � 10�21

F2 7:8 � 10�4 8:1 � 10�4 11 � 10�4 9:9 � 10�4 6:2 � 10�4

F3 1:5 1:6 1:4 1:5 1:2
F4 9:7 � 10�2 11 � 10�2 8:9 � 10�2 9:9 � 10�2 8:3 � 10�2

Figure 10.3 shows the error versus number of sample points N for selected
functions and transforms. We observe that the error decreases steeply at first with
increasing N as expected, but saturates when we approach and exceed the space-
bandwidth product of the signals (here 64). This demonstrates that the number of
samples N can be chosen comparable to the space-bandwidth product, which is
the smallest number we can expect to work with, and need not be chosen larger.
Algorithm A2 was used to obtain this plot for illustration purposes but similar results
can also be obtained when we use Algorithm A1.

We now briefly summarize Algorithm A1, appearing in [65], where the use of
matrix factorizations to decompose LCTs into cascade combinations of elementary
LCT blocks has been studied exhaustively. Since each stage in such a decomposition
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Fig. 10.3 Percentage errors versus N for selected functions and transforms [65]

can be computed in at most O.N log N/ time, the overall LCT can also be. Numerous
such decompositions are possible [10, 73], but they are not equally suited for
numerical purposes. For instance, direct naive application of the decomposition
of chirp multiplication, Fourier transformation, scaling (magnification), and again
chirp multiplication, which suggests itself upon inspection of Eq. (10.1), will
in general lead to very high sampling rates if conventional Shannon–Nyquist
sampling is employed. We have carried out a systematic exhaustive analysis of
all possible decompositions of arbitrary LCTs into the three basic operations of
scaling, chirp multiplication (CM), and Fourier transformation (FT). All possible
decompositions with three, four, and five cascade blocks have been considered
and every permutation has been checked to see if that decomposition is capable
of expressing an LCT with arbitrary parameters. The resulting algorithm can be
summarized as follows:

• If j� j � 1, use the decomposition:

M D
�
1 0

˛ 1

� �
0 1

�1 0
� �

1 0

�=ˇ2 1

� �
ˇ 0

0 1=ˇ

�
;

CM D Q�˛ Jk=2 Flc Q��=ˇ2 J2Mˇ; (10.26)

where Jz represents the �z oversampling operation. The minimum value of k is
k � 1C j� j C j˛j.1C j� j/2=ˇ2.
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• If j� j > 1, use the decomposition:

M D
�

1 0

˛ � ˇ2=� 1
� �

0 1

�1 0
� �

1 0

��=ˇ2 1
� �

0 1

�1 0
� ���=ˇ 0

0 �ˇ=�
�
;

CM D Q�˛Cˇ2=� Jk=2 Flc Q�=ˇ2 J2 Flc M��=ˇ: (10.27)

The minimum value of k is k � 1C 1=j� j C .1C j� j/2j˛ � ˇ2=� j=ˇ2.
The above algorithm, A1, has been compared with the earlier presented FRT-based
algorithm A2, both in terms of computational complexity and accuracy, but no
significant difference has been found [65].

Another work dealing with decomposition-based methods to digitally compute
the fractional Fourier, Fresnel, and general LCTs is [69]. This work is of significance
because of two reasons. First, it reviews previous fast algorithms presented in the
literature for computing the several important special cases of LCTs such as FRT
and Fresnel transformation (FST), and distills them into a single decomposition-
based approach covering the general case. Second, it emphasizes the importance of
tracking the space-bandwidth product through successive stages of the decomposi-
tion as also stressed in [65]. It also sets forth a systematic, elegant, uniform, and
general approach to determining the overall increase in space-bandwidth product
of the final transformed signal and hence the number of samples needed for
Nyquist–Shannon interpolation. It is assumed that the input signal energy is initially
contained within some arbitrary four-sided shape in phase space that is defined
by the coordinates of the four corners, u1; 
1, u2; 
2, u3; 
3, u4; 
4. The spatial
and frequency extents of the signal are denoted by W0 and B0, respectively. The
resulting number of regularly placed samples required to represent the signal in the
Nyquist–Shannon sense is given by N0 D W0B0. Given the four corners of the initial
support as

S D
�

u1 u2 u3 u4

1 
2 
3 
4

�
; (10.28)

the new coordinates of the four corners of the region after the LCT is given by

S0 D
�

Au1 C B
1 Au2 C B
2 Au3 C B
3 Au4 C B
4
Cu1 C D
1 Cu2 C D
2 Cu3 C D
3 Cu4 C D
4

�
; (10.29)

where A,B,C,D are the LCT parameters.
Then, the spatial and frequency extents are the maximum distance between any

two of the u and any two of the 
 coordinates, respectively. To represent this,
the Max.� � � / notation is defined to denote the maximum element on each row of
the matrix it operates on Hennelly and Sheridan [69]. Finally, the resultant spatial,
WLCT, and frequency, BLCT, extents after the LCT are given by
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�
WLCT

BLCT

�
D Max

� jA.u1 � u2/C B.
1 � 
2/j jA.u1 � u3/C B.
1 � 
3/j
jC.u1 � u2/C D.
1 � 
2/j jC.u1 � u3/C D.
1 � 
3/j

jA.u1 � u4/C B.
1 � 
4/j jA.u2 � u3/C B.
2 � 
3/j
jC.u1 � u4/C D.
1 � 
4/j jC.u2 � u3/C D.
2 � 
3/j
jA.u2 � u4/C B.
2 � 
4/j jA.u3 � u4/C B.
3 � 
4/j
jC.u2 � u4/C D.
2 � 
4/j jC.u3 � u4/C D.
3 � 
4/j

�
:

(10.30)

By using the above procedure, the space-bandwidth of the signal can be tracked
through the intermediate stages of the LCT decomposition and the number of
samples required to represent the signal in the Nyquist–Shannon sense can be
determined.

The Fresnel transform has received a lot of attention, since it models free-space
propagation of waves under the Fresnel approximation. Hennelly and Sheridan
[69] also studies the problem of fast computation of the Fresnel transform and
reviews restrictions of several earlier approaches. Based on these observations, two
decompositions are proposed that work for arbitrary LCTs. One of them is based
on the Iwasawa decomposition that we have presented above [see Eq. (10.19)]. The
second is given by the following matrix equation:

�
A B
C D

�
D
�
1 0

C=A 1

� �
A 0

0 1=A

� �
1 B=A
0 1

�
: (10.31)

This is a chirp convolution, scaling, chirp multiplication decomposition. Although
it can indeed realize arbitrary LCTs, it uses both a chirp convolution and a chirp
multiplication that requires an unnecessary increase in the sampling rate. This is
partly avoidable by using more suitable decompositions [65].

10.5 DLCT Based Algorithms

In the previous section, we focused on algorithms for fast computation of continuous
LCTs that are based on decomposition of the LCT operation. In this section, we
discuss the approach involving the definition of a DLCT, but in which computation
is not based on decomposition into basic operations as in the previous section. In
this approach, fast digital algorithms for LCTs, which are often referred to as FLCT
algorithms, are derived by first defining a DLCT, which is to the continuous LCT
what the DFT is to the continuous Fourier transform, and then developing a fast
algorithm to compute the DLCT similar to the FFT algorithm.
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The key points of the derivation of [74] are given here. We first review the
derivation of the DLCT, which was first given in [75], and discuss the shifting
properties of this DLCT, which is the key component in the development of the
FLCT [74]. We start with the sampled version of a continuous signal f .u/ as

f ıu.u/ D f .u/ııu.u/ D
1X

nD�1
f .nıu/ı.u � nıu/ (10.32)

or in Fourier series form

f ıu.u/ D 1

ıu
f .u/

1X
nD�1

exp.i2�kfsu/; (10.33)

where ı.u/ is Dirac’s impulse, ıu is the sampling interval, and fs is the sampling
frequency. Let us recall the definition of the LCT with parameters ˛, ˇ, � , of a
function f .u/ as

.CMf /.u/ D
Z 1

�1
A expŒi�.˛u2 � 2ˇuu0 C �u02�f .u0/ du0: (10.34)

CM is the LCT operator. We note that in [74] and later in [76], ˛ ! �� , � ! �˛,
ˇ ! �ˇ, since the authors work with the inverse of the LCT matrix as defined here.
We omit the complex constant A in what follows. The key properties to be utilized
are the shifting theorems [74]:

CMŒexp.i2��u0/f .u0/�.u/ D exp.�i�˛�2=ˇ2/ exp.i2�u�˛=ˇ/

�CMŒf .u
0/�.u � �=ˇ/; (10.35)

CMŒf .u
0 � �/�.u/ D expŒi��2.� � ˛�2=ˇ2/� expŒi2�u�.˛�=ˇ � ˇ/�

�CMŒf .u
0/�.u � ��=ˇ/: (10.36)

When the LCT operator operates on the sampled signal in Eq. (10.32) we get:

CMŒf
ıu.u0/�.u/ D

Z 1

�1

" 1X
nD�1

f .n/ı.u0 � nıu/

#
exp.�i2�ˇuu0/

� expŒ�i�.�u02 C ˛u2/�du0

D exp.i�˛u2/
1X

nD�1
f .nıu/ expŒi��.nıu/2� exp.�i2�ˇunıu/:

(10.37)
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Equation (10.37) is the discrete time (or space) LCT (DTLCT) which is analogous
to the discrete time (or space) Fourier transform (DTFT). We can also apply the LCT
operator to the alternative expression of a sampled function as given in Eq. (10.33),
to obtain:

CMŒf
ıu.u0/�.u/ D 1

ıu

1X
nD�1

expŒ�i�.kıu/2˛=ˇ2�

� expŒi2�.k=ıu/˛u=ˇ�CMŒf .u
0/�.u � k=ıuˇ/: (10.38)

The above expression is important since it reveals the periodicity of the LCT of the
sampled signal, which is a crucial property in deriving the FLCT. The magnitude of
CMŒf ıu.u0/�.u/ is equal to the magnitude of CMŒf .u0/�.u/ repeated periodically with
the period 1=ıuˇ and the phase of CMŒf ıu.u0/�.u/ is also equal to that of CMŒf .u0/�.u/
repeated periodically with the same period 1=ıuˇ.

Denoting the DTLCT operator by DT LCT , analysis yields the following shift
theorem for the DTLCT [74]:

DT LCT MŒf ..n � l/ıu/�.u/

D expŒi� l2ıu2.� � ˛�2=ˇ2/�
� expŒi2�ulıu.˛�=ˇ � ˇ/�DT LCT MŒf .nıu/�.u � lıu�=ˇ/; (10.39)

which implies that when the input function is shifted and then a DTLCT is applied
to the result, the output will be the same as the DTLCT being directly applied to the
original input function, except that the result is shifted by an amount proportional
to the shift in the input function and has a linear phase factor and a constant phase
factor dependent on the shift amount.

For the DTLCT in Eq.(10.37), the summation is still infinite and the output
variable u is continuous. In order to achieve a true discrete transform definition
which maps discrete signals to discrete signals, we replace the infinite summation
with a finite summation over N samples, but we assume that N is chosen suffi-
ciently large so that the summation covers the interval over which the signal is
non-negligible:

exp.i�˛u2/
N=2�1X

nD�N=2

f .nıu/ expŒi��.nıu/2� exp.�i2�ˇunıu/: (10.40)

Now, we discretize the u variable by taking N samples in the following range:

� 1

2ıuˇ
� u � 1

2ıuˇ
� 1

Nıuˇ
(10.41)



310 A. Koç et al.

in steps of ıuM D 1=Nıuˇ [74]. The discrete transform thus obtained repeats itself
outside of this range. Thus we finally obtain the DLCT as a function of the discrete
output variable m as:

DLCT MŒf .nıu/�.mıuM/

D exp
�
i�˛.mıuM/

2
� N=2�1X

nD�N=2

f .nıu/ expŒi��.nıu/2� expŒ�i2�ˇ.nıu/.mıuM/�

D exp

"
i�˛

�
m

Nıuˇ

�2# N=2�1X
nD�N=2

f .nıu/ expŒi��.nıu/2� exp

�
� i2�nm

N

�
;

(10.42)

where m covers the range �N=2 � m � N=2� 1. A few remarks are in order at this
point. First, note that this DLCT definition [75] contains a finite sum which arises
from the sampling of the continuous input function and the continuous transform
kernel. Second, the only string attached to the definition is ıuM D 1=.Nıujˇj/;
hence, there are many ways to choose the parameters N, ıu, and ıuM, which
correspond to the number of samples, and the sampling intervals in the input and
output domains. In order to use this DLCT definition in practice to approximately
compute the continuous LCT, it is necessary to know how to choose the number of
samples N, and the sampling intervals ıu and ıuM based on some prior information
about the signal. The relationship between the DLCT and the continuous LCT is also
needed to provide a foundation for how to use the DLCT to approximately compute
the samples of the LCT of a continuous signal. The answers to these issues will
be provided in the next section based on [77, 78]. The resulting LCT computation
method allows us to work with the same number of samples in both the input and
output domains without requiring any oversampling. On the other hand, the use of
the Shannon–Nyquist sampling theorem instead of the LCT sampling theorem leads
to problems such as the need to use a greater number of samples, requiring different
sampling rates at intermediate stages of the computation, or different numbers of
samples at the input and output domains [79, 80].

Now we go back to our discussion of the derivation of the FLCT algorithm.
In [74], two important shifting properties of (10.42) have been derived. These
two properties are essential in deriving the FLCT from the DLCT, much like the
derivation of the FFT algorithm. These are:

exp

"
i�˛

�
m

Nıuˇ

�2# 1X
nD�1

Œf .nıu/ exp.i2��nıu/�

expŒi��.nıu/2� exp

�
� i2�nm

N

�
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D exp

"
�i�˛

�
�

ˇ

�2#
exp

�
i2�˛m�

Nıuˇ2

�
exp

"
i�˛

�
m � �Nıu

Nıuˇ

�2#

�
1X

nD�1
f .nıu/ expŒi��.nıu/2� exp

�
� i2�n.m � �Nıu/

N

�
;

(10.43)

exp

�
i2��m

Nıuˇ

�
exp

"
i�˛

�
m

Nıuˇ

�2#

1X
nD�1

f .nıu/ expŒi��.nıu/2� exp

�
� i2�nm

N

�

D exp

"
i�˛

�
m

Nıuˇ

�2# 1X
nD�1

f .nıu/ exp

�
i2��n�ıu

ˇ

�
exp

�
� i���2

ˇ2

�

exp

(
i��

��
n � �

ıuˇ

�
ıu

�2)
exp

�
� i2�m.n � �=ıuˇ/

N

�
: (10.44)

The properties given in Eqs. (10.43) and (10.44), in conjunction with the chirp
periodicity of the DLCT, enable us to use the time (or space) decomposition and
frequency (or spatial frequency) decomposition to derive the FLCT. The rest of the
derivation is quite long and may be found in [74]. The resulting algorithm converts
an N-point DLCT into four N=4-point DLCTs. Recursively applying this and by
properly choosing N D 2n for some integer n, we finally obtain 2 � 2 DLCTs to
calculate. This gives an O.N log N/ method to compute the DLCT. The procedure
is similar to that for the conventional FFT.

Another significant work on fast computation of LCTs is [76]. In this paper, the
DLCT and its fast algorithm, the FLCT, have been further studied by deriving an
advanced FLCT that can work with an input sample vector of almost any length.
The FLCT given in [74] is a radix-2 algorithm, so there is a restriction on the length
of the input vector such that N D 2n. For other lengths of the input vector, [76]
proposes the following DLCT that can be implemented in any radix:

DLCT MŒf .nıu/�.mıuM/ D
r
ˇ

2�
exp

��i�

4

� N=2�1X
nD�N=2

f .nıu/Wn;m
N ; (10.45)

where

Wn;m
N D expfi�Œ˛.m=Nıuˇ/2 � 2nm=N C �.nıu/2�g (10.46)
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and DLCT M stands for DLCT operator with LCT parameters .˛; ˇ; �/, ıu is the
sampling interval at the input, ıuM is the sampling interval at the output, and N is
the length of the input vector. The details of the derivation can be found in [76].
The important point about this FLCT is that it can be implemented to work with any
radix, so any input vector of any length can be DLCT-transformed with any desired
radix in a way that the computation cost is minimized. An arbitrary vector length can
be decomposed into its prime dividers and the corresponding radixes can be chosen
to optimize the computation. Note, however, that this does not work with vectors of
prime length. No LCT algorithm exists, as yet, that can work on prime-length input
vectors [76].

10.6 Hybrid LCT Algorithms

In Sect. 10.4, fast algorithms for computing continuous LCTs are discussed, which
are obtained by decomposing continuous LCTs. These algorithms produce output
vectors which are good approximations to the samples of the continuous transform,
limited only by the fundamental fact that a signal cannot have finite extent in more
than one domain. Since the sampling interval is ensured to satisfy the Nyquist
criterion at each stage of the decomposition, the output samples can be used to
reconstruct good approximations of the continuous LCT. While this approach is
nearly optimal in terms of speed and accuracy, it has two disadvantages. Although it
implicitly defines a discrete mapping from the vector of input samples to the vector
of transform samples, this discrete mapping does not constitute an analytically
elegant DLCT. More importantly, this type of approach sometimes requires an
increase in the sampling rate, either during computation at intermediate stages,
or in representation of the output. This is contrary to the fact that the area of the
time- or space-frequency support, and hence the total number of samples required
to represent a signal, remains unchanged when a signal undergoes linear canonical
transformation.

In Sect. 10.5, we reviewed works that first propose a definition of the DLCT and
then develop a fast algorithm for computing it. However, the issue of how to relate
this DLCT to the continuous LCT we are trying to approximate with it has not
been addressed in these works. In order to use these fast computation approaches
in practice to approximately compute the continuous LCT, it is necessary to know
how to choose the number of samples N, and the sampling intervals ıu and ıuM.
Note that the DLCT algorithm described in the last section has been developed with
the following condition only: ıuM D 1=.Nıujˇj/, leaving many ways to choose the
parameters N, ıu, and ıuM. Works that use the Shannon–Nyquist sampling theorem
instead of the LCT sampling theorem lead to problems such as the need to use a
greater number of samples or different numbers of samples at the input and output
domains [79, 80].

In this section, we will present a FLCT computation method [77, 78] based
on the DLCT defined in [75], which overcomes many of the limitations of
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previous algorithms. This approach works with the minimum number of samples
as determined by the LCT sampling theorem without requiring any sampling rate
change at the intermediate stages. Moreover, it provides a good approximation to
the continuous LCT as ensured by an exact relation between the DLCT and the
continuous LCT [78].

We first review the exact relation between the DLCT and the continuous
LCT given in [78], which provides a solid basis for how to use the DLCT to
approximately compute the samples of the LCT of a continuous signal. This exact
relation helps us use the DLCT to obtain a good and efficient approximation of the
continuous LCT by properly choosing the number of samples. We want to obtain
as good an approximation as possible, limited only by the fundamental fact that
a signal cannot have strictly finite extent in more than one domain. The answer
to this problem first appeared in [77], but became better established when it was
formulated as an exact relation between the DLCT and the continuous LCT [78] in
a manner similar to the classical theorem relating the DFT to the continuous Fourier
transform [81].

The DLCT of f .k ıu/ is defined as follows for m D �N=2; : : : ;N=2 � 1 [75]:

DLCT MŒf .kıu/�.mıuM/ � ıu
N=2�1X

kD�N=2

f .k ıu/KM.m ıuM; k ıu/;

KM.m ıuM; k ıu/ D
p
ˇ e� i�

4 e
i�

Njˇj
.˛

ıuM
ıu m2�2ˇkmC� ıu

ıuM
k2/
; (10.47)

where ıuM D .jˇjNıu/�1. Here ıu and ıuM are the sampling intervals in the
time (or space) and LCT domains, respectively. N is the number of samples.
This definition of DLCT can be made unitary by including an additional factorp
ıuM=ıu [78]. Let f .u/ and fM.u/ be a continuous-time signal and its LCT with

parameters ˛, ˇ, � . Define the following periodically replicated functions where
each period has been modulated with varying phase terms:

Nf .u/.M�1;�u/ �
1X

nD�1
f .u � n�u/e�i��n�u.2u�n�u/; (10.48)

NfM.u/.M;�uM/ �
1X

nD�1
fM.u � n�uM/e

i�˛n�uM.2u�n�uM/; (10.49)

where �u and �uM are arbitrary. These functions are chirp-periodic in the sense of
[42]. Then, the exact relation between continuous and discrete LCTs can be stated
as follows: The samples of the chirp periodic functions defined in Eqs. (10.48) and
(10.49) are exactly related to each other through the samples of the continuous
kernel [the DLCT matrix in Eq. (10.47)]:

NfM.m ıuM/.M;�uM/ D ıu
X

k2hNi
Nf .k ıu/.M�1;�u/KM.m ıuM; k ıu/; (10.50)
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for any m and any interval of length N denoted by hNi, and where the sampling
intervals and the number of samples depends on the periods �u and �uM as
follows:

ıu D 1

jˇj�uM
; ıuM D 1

jˇj�u
; N D �u�uMjˇj: (10.51)

This exact relation provides the underlying foundation for approximately com-
puting the samples of the LCT of a continuous signal by replacing the transform
integral with a finite sum. Because this exact relation generalizes the corresponding
relation for Fourier transforms, which has been regarded as a fundamental theorem
by Papoulis [81], this DLCT approximates the continuous LCT in the same sense
that the DFT approximates the continuous FT. We can use this exact relation to see
how this DLCT provides a good approximation of the continuous LCT. Consider an
arbitrary signal f .u/ that is not chirp-periodic. Let us assume that a large percentage
of the total energy of the signal is concentrated in the intervals Œ��u=2;�u=2� and
Œ��uM=2;�uM=2�, in the time (or space) and LCT domains, respectively. Then,
Nf .u/.M�1;�u/ � f .u/ and NfM.u/.M;�uM/ � fM.u/ in the respective intervals, and
from (10.50) the DLCT of the samples of the function are the approximate samples
of the continuous LCT of that function:

fM.m ıuM/ � ıu
N=2�1X

kD�N=2

f .k ıu/KM.m ıuM; k ıu/; (10.52)

where ıu, ıuM, and N are as in (10.51). If both the functions f .u/ and fM.u/ could be
identically zero outside of the given intervals, the mapping between the samples of
these functions would be exact. But, since the extent of a function and its LCT
cannot both be finite for ˇ ¤ 1 [61, 82], there will be overlaps between the
periodically replicated and phase modulated functions, and the DLCT will be an
approximation between the samples of the continuous signals. This approximation
for the LCT and FRT is similar to that for the FT, where in the FT case the limitation
is that the extent of the signal and its Fourier transform cannot both be finite. The
functions (10.48) and (10.49) reveal the precise nature of overlap and aliasing that
occurs, which is somewhat different than the Fourier case which is a pure periodic
replication. As with the DFT, the approximation improves with increasing N since
this decreases the overlap between the replicas.

Note that we need chirp-periodic functions in order to have an exact equivalence
between continuous and discrete LCTs, just as we need periodic functions to have
an exact equivalence between continuous and discrete FTs. However, our interest in
using this DLCT is mostly for non-chirp-periodic functions (just as we use the DFT
for non-periodic functions), in which case the DLCT provides a good approximation
to the continuous LCT, limited only by the fact that the extent of a function and its
LCT cannot both be finite for ˇ ¤ 1 [61, 82]. Moreover, the proper choice of the
sampling intervals and the number of samples for a good approximation is given by
the relations in (10.51).
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This elegant and natural, fast and accurate LCT computation method provides
a very different approach than that given in Sect. 10.4 [78]. In Sect. 10.4, we
assumed that the time (or space) and frequency extents of the signals are specified
in the conventional manner, defining an initial rectangular time- or space-frequency
support. The number of samples were determined from the standard Nyquist–
Shannon sampling theorem [59, 64, 65, 69, 79, 80, 83]. In this section, we assume
the extents are specified in the input and output LCT domains; that is, in the
original time or space domain, and the target LCT domain. This leads to an initial
parallelogram-shaped time- or space-frequency support [84, 85]. The number of
samples is determined from the LCT sampling theorem [78]. The minimum number
of samples required for computation is given by the so-called bicanonical width
product [78], which is also equal to the area of the parallelogram support. The DLCT
defined in [75] works with this minimum number of samples without requiring
any interpolation or oversampling at the intermediate stages of the computation, in
contrast to previously given approaches [79, 80] for the same DLCT. Also recall that,
sampling the input and output by using the Nyquist–Shannon sampling theorem, as
in these works and Sect. 10.4, usually leads to a greater number of samples and
sometimes requires different numbers of samples for the input and output signals.

So far, we discussed how this DLCT can be used to accurately compute the
samples of a continuous DLCT. Now, let us discuss how this DLCT can be
implemented in a fast way. As discussed previously, the DLCT in (10.47) can
be evaluated with either of two fast methods:

1. A direct approach by successively performing a chirp multiplication, a FFT and
a second chirp multiplication (by taking advantage of the simple form of the
DLCT) [42, 75, 78].

2. A radix-type approach that generalizes the FFT for the Fourier transform to the
LCT (by taking advantage of the shifting properties of the DLCT) [74, 76].

Both approaches yield efficient computation in O.N log N/ time. The first of these is
simpler, since by employing the FFT as a building block, it does not require us to get
into the complications of a radix-type approach [78]. This also has the advantage of
relying on widely available, highly optimized FFT implementations, whereas such
optimized implementations do not exist for the radix-type approach to fast LCT
computation.

The DLCT definition given in Eq. (10.47) has many desirable properties when
used with the parameters satisfying Eq. (10.51) [78]. It has a simple analytic
expression and is unitary. It can be efficiently computed in O.N log N/ time
by successively performing a chirp multiplication, a FFT, and a second chirp
multiplication. It has a well-defined relationship to the continuous LCT [77, 78].
Its accuracy is only limited by the fundamental fact that a signal cannot have strictly
finite extent in more than one domain. Therefore it is an important candidate for
being a widely accepted definition of the discrete version of the LCT.

We refer to this type of approach to LCT computation as a hybrid algo-
rithm. It involves both an analytically desirable definition of the DLCT and fast
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decomposition-based computation by successively performing a chirp multiplica-
tion, a FFT, and a second chirp multiplication. Thus, it combines the best features
of DLCT based algorithms and decomposition based algorithms. It conserves
computational resources by eliminating the interpolation/decimation steps, as well
as keeping the number of samples at the minimum possible [78].

This approach has been revisited in [85], where an interpretation of the method
has been given through phase-space diagrams, revealing the decomposition-based
nature of the algorithm (similar to the decompositions of the continuous LCT
discussed in Sect. 10.4). The decomposition consists of a chirp multiplication, mag-
nified FT, and a second chirp multiplication [63]. It first shears the parallelogram-
shaped initial support into a rectangle, then rotates it by 90ı, and then again shears
it back to a parallelogram with the same area as the initial parallelogram. During
these stages, no overlap is introduced between the replicated supports (arising
from sampling). Hence this phase-space picture allows us to see from yet another
perspective how this elegant and accurate LCT computation method [77, 78] works
with the minimum number of samples, without requiring interpolation.

Finally, before ending this section, we also mention another fast algorithm for
LCT computation which is based on an alternative form for the unitary DLCT
[86]. In this approach, a convergent quadrature definition for the continuous Fourier
transform is used to decompose arbitrary LCTs as a scaling, chirp, DFT, chirp,
scaling decomposition. The decomposition and the DFT definition developed in this
paper results in the following algorithm for fast digital computation of LCTs: Let
the vector g, of length N, stand for the samples of the LCT of f .u/ with parameters
A;B;C;D, evaluated at the points vj D 4Buj=� , where uj D . 2j�N�1p

2N
/�=2. Now,

1. Set up the vector p with pk D e�i� .k�1/.N�1/
N eiAu2k=2Bf .uk/, where k D 1; 2; : : : ;N.

This step corresponds to first scaling the input samples and then multiplying with
the chirp in the decomposition.

2. Take the conventional DFT of the vector p using the FFT algorithm and denote
the result as q.

3. Construct the diagonal matrix S as Sjk D �ei �
2
.N�1/2

Np
2N

e
iDv2j
2B e�i� N�1

N .j�1/p
2� iB

ıjk where
j; k D 1; 2; : : : ;N. This matrix serves to implement the second chirp multiplica-
tion. ıjk stands for the Kronecker delta.

4. Lastly, obtain the result vector g by multiplying the vector q with the diagonal
matrix S. The elements of the vector g correspond to samples of the continuous
LCT of f .u/ at the points vj D 4Buj=� .

None of the above steps takes more than O.N log N/ time, so that the overall
complexity is O.N log N/.
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10.7 Computation of Two-Dimensional LCTs

Two-dimensional separable LCTs are addressed in [8, 10, 87–91]. The most special
case is the isotropic 2D LCT in which the system is fully symmetric, orthogonal, and
the parameters for both dimensions are identical. This case can be represented by
only three parameters as in a 1D LCT [24]. When the system is still orthogonal
but the parameters for the orthogonal dimensions differ, the system becomes a
2D separable LCT, which is represented by six parameters [24]. Separable 2D
transforms do not pose much difficulty because the separable transform is essentially
two independent 1D transforms along the two dimensions and the dimensions can
be treated independently. However, the non-separable transform (2D NS LCT)
is significantly more general. The two dimensions are coupled to each other by
four additional cross-parameters, increasing the total number of parameters to ten.
This general case is non-separable, non-axially symmetric, non-orthogonal, and
anamorphic/astigmatic [2, 24, 27, 68, 73]. 2D NS LCTs are able to represent not
only systems involving anamorphic/astigmatic components and reference surfaces,
but also other interesting systems such as optical mode convertors and resonators
since they can represent the coupling between the dimensions [24, 92–94]. Another
prominent feature of 2D NS LCTs is their ability to represent systems with rotations
between any arbitrary planes in phase-space, like rotations and gyrations [24, 27].
These systems are collected under the general name of gyrators and are useful in
two-dimensional image processing, signal processing, mode transformation, etc.
[27, 95–98].

Given an algorithm for efficiently computing 1D LCTs [64, 65, 74], the efficient
computation of separable 2D transforms is straightforward because the kernel can
be separated and the 2D transform can be reduced to two successive 1D LCTs.
On the other hand, in the non-separable case, the two dimensions are coupled and
handling this case requires special attention. An alternative representation of LCTs
is presented and studied in [67]. This decomposition is based on the well-known
Iwasawa decomposition [99]. In [67], the authors further decompose the first matrix
of the Iwasawa decomposition into a two-dimensional separable fractional Fourier
transform (2D S FRT) that is sandwiched between two coordinate rotators. Earlier
in this chapter, we had mentioned the deployment of the 1D version of the Iwasawa
decomposition to develop a fast and efficient algorithm for 1D LCTs [64, 65]. By
using the 2D Iwasawa-type decomposition of [67], it becomes likewise possible to
derive an efficient algorithm for the computation of 2D NS LCTs [83].

The 2D NS LCT with parameter matrix M, of an input function f .u/, can be
expressed as [67, 100]

fM.u/ D .CMf /.u/

D 1p
det iB

Z 1

�1

Z 1

�1
expŒi�.u0TB�1Au0

�2u0TB�1u C uTDB�1u/�f .u0/ du0; (10.53)
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where u D Œux uy�
T, u0 D Œu0

x u0
y�

T with T denoting the transpose operation.
A;B;C;D are 2�2 submatrices defining the transformation matrix M of the system
that represents the 2D-LCT, B being nonsingular. The matrix M D ŒA BI C D� is
real and symplectic. From a group-theoretical point of view, 2D NS LCTs form the
ten-parameter symplectic group Sp.4;R/. (M has 16 parameters with six constraints
leaving ten independent parameters.) More on group-theoretical properties of LCTs
can be found in [8].

The Iwasawa decomposition is the core of our algorithm. After the dimensional
normalization explained in Sect. 10.2.1, any transformation matrix M can be written
in the following Iwasawa form [67, 99]:

M D
�

A B
C D

�
D
�

I 0
�G I

� �
S 0
0 S�1

� �
X Y

�Y X

�
; (10.54)

where

G D �.CAT C DBT/.AAT C BBT/�1; (10.55)

S D .AAT C BBT/1=2; (10.56)

X D .AAT C BBT/�1=2A; (10.57)

Y D .AAT C BBT/�1=2B: (10.58)

Given the 4 � 4 matrix M, we can determine 2 � 2 matrices G, S, X, Y by using
Eqs. (10.55)–(10.58). If we are able to develop a fast algorithm to compute the
three stages in O. QN log QN/ time, the overall transform can also be calculated in
O. QN log QN/ time where QN stands for the total number of samples in a 2D signal.
In this decomposition, the first operation is an orthosymplectic system, followed
by a scaling (magnification) system, finally followed by a two-dimensional chirp
multiplication (2D CM). (Note that each of the stages of the algorithm are special
cases of 2D NS LCTs.)

The first and the most sophisticated stage of the decomposition is the orthosym-
plectic system. This stage of the decomposition can be further decomposed into a
2D S FRT that is sandwiched between two coordinate rotators [67]:

�
X Y

�Y X

�
D Rr2 Fax;ay Rr1 ; (10.59)

where the 4 � 4 matrices Rr1 , Fax;ay , Rr1 are defined as:

Rr1 D

2
664

cos.r1/ sin.r1/ 0 0

� sin.r1/ cos.r1/ 0 0

0 0 cos.r1/ sin.r1/
0 0 � sin.r1/ cos.r1/

3
775 ; (10.60)
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Rr2 D

2
664

cos.r2/ sin.r2/ 0 0

� sin.r2/ cos.r2/ 0 0

0 0 cos.r2/ sin.r2/
0 0 � sin.r2/ cos.r2/

3
775 ; (10.61)

Fax;ay D

2
664

cos.ax�=2/ 0 sin.ax�=2/ 0

0 cos.ay�=2/ 0 sin.ay�=2/

� sin.ax�=2/ 0 cos.ax�=2/ 0

0 � sin.ay�=2/ 0 cos.ay�=2/

3
775 : (10.62)

Rr1 and Rr2 are rotation matrices that impose rotations of angles r1 and r2,
respectively, through the spatial variables .ux; uy/ and through their frequency
variables .
x; 
y/. Unlike these traditional rotators which rotate within space and
spatial frequency separately, the FRT rotates within the space-frequency planes of
each dimension. Fax;ay stands for the 2D S FRT that makes separable rotations of
angle ax�=2 in the .ux; 
x/ plane and of angle ay�=2 in the .uy; 
y/ plane. Since this
2D FRT operation is separable, it corresponds to two 1D FRT operations performed
over each of the dimensions. This amounts to first performing 1D FRTs with the
fractional order ax for each of the rows (or columns) and then performing 1D FRTs
with the fractional order ay for each of the columns (or rows) of the sampling grid.
It is this observation that enables us to implement this stage of the decomposition
efficiently in O. QN log QN/ time.

The interpretation of the coordinate rotators requires care. When we are working
with sampled functions, we know the value and coordinates (the location where
the particular sample is taken) of all the samples we have. A coordinate rotation
can be interpreted in this situation as a rotation of the locations of the samples
resulting in a new sampling grid, rather than a change in the sample values. If
we assume we start with a regular rectangular grid, after the coordinate rotation,
the grid would no longer coincide with the original grid unless the rotation is an
integer multiple of �=2. Unfortunately, in order to perform FRT operations along the
horizontal and vertical directions, we need the samples to be on a regular rectangular
grid in order to employ available fast algorithms. Therefore, we must carry out
an interpolation operation to determine the values of the function on a regular
rectangular grid. In summary, the first stage of our algorithm involves determining
the angle parameters for the first coordinate rotation, followed by two 1D FRTs over
each of the dimensions, and then followed by the second coordinate rotation. These
angles can be computed by equating the LCT matrix with the decomposition matrix
and solving for the angles. All these steps can be calculated in O. QN log QN/ time.

The second stage is the scaling operation and it seems to be the simplest of
the three stages. It is not, however, as trivial as in the 1D case [65]. In 1D, it
corresponds to only a reinterpretation of the spacing between the samples. The
sampling interval scales with the scaling parameter. Intuitively, it squeezes in or
stretches out the total number of samples as the word scaling implies. This means
there is no change in the total number of samples and thus no need to oversample



320 A. Koç et al.

the input samples. The analogue of the 1D scalar scaling parameter in the 2D case
is the matrix S. When S is diagonal, which means there is no coupling between
the two dimensions of the function for scaling purposes, the scaling is separable.
Due to this separability, this situation does not impose an increase in the space-
bandwidth products and thus does not require oversampling, just as in the 1D case.
But when the off-diagonal elements of S are non-zero, the scaling operation is no
longer so trivial. Computationally, such a scaling operation amounts to modifying
the information that tells us which coordinates the samples belong to. Nevertheless,
since it requires only the reinterpretation of the coordinates of the samples plus a
possible oversampling, it does not impose much computational load. The matrix
S can be easily used to determine the output samples by using the input–output
relation of the scaling operation:

fsc.u/ D 1p
det S

f .S�1u/; (10.63)

where f is the function to be scaled and fsc is the scaled function, and u D Œux uy�
T.

The last stage of the main Iwasawa decomposition is the 2D CM operation whose
parameters are given by the matrix G as defined in Eq. (10.55). The input–output
relation of this 2D-CM is given as:

fch.u/ D e�i�.G11u2xC.G12CG21/uxuyCG22u2y /f .u/; (10.64)

where fch stands for the chirp-multiplied function. The 2D CM operation is the
stage that is mainly burdened with any shears inherent in the 2D NS LCT to be
computed. Such shears may considerably increase the space-bandwidth products of
the function. Thus, before the 2D CM operation, the space-bandwidth products of
the function should be calculated carefully and any necessary oversampling should
be performed. This CM operation may turn out to be non-separable or separable for
particular 2D NS LCTs but regardless, it requires only one multiplication for each
sample, resulting in O. QN/ time computation.

As in the 1D case, this algorithm also has the ability to track the space-bandwidth
product of the function through each step in order to control the sampling rate
of the function with the goal of having enough samples to be able to reconstruct
the continuous function without information loss, and at the same time without
needlessly increasing the number of samples to maintain efficiency. However, the
sampling rate control mechanism is quite involved so we refer the reader to [83] for
details.

Above, we presented the 2D-NS-LCT fast computation algorithm based on the
Iwasawa decomposition, which is a generalization of the algorithm denoted as A2
in Sect. 10.4. In the same section, we also mentioned another algorithm, denoted
A1, which is also based on basic decompositions. In [101], generalization of the
A1 algorithm to 2D-NS-LCT computation has been considered. The results of both
approaches are comparable to each other both in 1D and 2D.
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10.8 Computation of Complex-Parametered Linear
Canonical Transforms

Extension of real-parametered LCTs to complex-parametered LCTs (CLCTs)
is rather involved. Bilateral Laplace transforms, Bargmann transforms, Gauss–
Weierstrass transforms, [8, 28, 29], fractional Laplace transforms [30, 31], and
CFRTs [32–35] are all special cases of complex LCTs. More on the mathematical
foundations and theory of CLCTs can be found in [8, 28, 102, 103].

Complex-parametered LCTs allow several kinds of optical systems to be repre-
sented, including lossy as well as lossless ones. Magnification (scaling), Fourier
transformation (FT), real fractional Fourier transformation (RFRT), real chirp
multiplication (CM), complex chirp multiplication (CCM), Gauss–Weierstrass
Transform, CFRT are all special cases of CLCTs that have optical realizations. The
CFRT is the generalization of the FRT where the order of the transformation is
allowed to be a complex number, and consequently the ABCD matrix elements are
in general complex. The optical interpretation of the CFRT, its properties and optical
realizations can be found in [32–35, 104].

The CLCT of f .u/ with complex parameter matrix MC is denoted as fMC.u/ D
.CMC f /.u/:

.CMC f /.u/ D
Z 1

�1
KC.u; u

0/f .u0/ du0;

KC.u; u
0/ D e�i�=4

q
ˇ exp

h
i�.˛u2 � 2ˇuu0 C �u02/

i
; (10.65)

where ˛, ˇ, � are complex parameters independent of u and u0 and where CMC is the
CLCT operator. MC again has unit-determinant and is given by

MC D
�

A B
C D

�
D
�

Ar C iAc Br C iBc

Cr C iCc Dr C iDc

�
D
�

�=ˇ 1=ˇ

�ˇ C ˛�=ˇ ˛=ˇ

�
; (10.66)

where Ar, Ac, Br, Bc, Cr, Cc, Dr, Dc are real numbers.
Fast digital computation algorithms based on decomposition approaches have

been developed. Here we will only show how given ABCD matrices can be
decomposed in a manner that leads to a fast algorithm for computation of CLCTs.
For further details, we refer to [105]. In the most general case, the matrix MC is
composed of the four complex parameters A,B,C,D, whose real and imaginary parts
add up to a total of eight parameters. These eight parameters are restricted by the
unimodularity condition on MC, which requires the real part of the determinant to be
1 and the imaginary part to be 0. Because of these two equations, the total number
of independent parameters of a general CLCT is 6. The following decomposition
will be the basis of the fast algorithm for CLCTs:
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MC D
�
1 0

�q3r 1

� �
1 0

�iq3c 1

� �
0 �1
1 0

� �
1 0

�q2r 1

� �
1 0

�iq2c 1

�

�
�
0 1

�1 0
� �

1 0

�q1r 1

� �
1 0

�iq1c 1

�
: (10.67)

The above algorithm can efficiently compute any arbitrary CLCT with complex
parameters but the output plane should be real, i.e. the variable at the transform
output is not complex. This is indeed the case for most of the real-world cases,
where one is interested in the output field on a particular plane. In [106], the above
algorithm has been further generalized to cover any complex variable at the output.
The sampling issues of CLCTs have also been studied in detail in [106].

Before ending this section, we mention that LCTs are a special case of the more
general family of oscillatory integrals of the form F.w/ D R

f .u/eiwg.u/du; w � 1.
Generally speaking, computation of such more general integrals is time consuming.
In [107], a method to convert any general oscillatory integral to a canonical form
F.w/ D R 1

�1 f .u/eiwudu and then compute it in O.N2/ time is presented.

10.9 Conclusion

In this chapter, we discussed algorithms for computation of LCTs from the N
samples of the input signal in O.N log N/ time. Our approach is based on concepts
from signal analysis and processing rather than conventional numerical analysis.
With careful consideration of sampling issues, N can be chosen very close to the
theoretical minimum required to represent the signals. The transform output may
have a higher time- or space-bandwidth product due to the nature of the transform
family, though it has the same bicanonical width product with the input.

We considered three groups of algorithms. In the first, the LCT operation is
decomposed into more elementary operations. Most elegant among these is based on
the Iwasawa decomposition, which involves the FRT. In the second, one first defines
a DLCT, and then obtains a FLCT algorithm for this DLCT, much like the FFT
algorithm for the DFT. In the third group, a DLCT is defined, but the computation
procedure is based on decompositions.

The algorithms can relate the samples of the input function to the samples of
the continuous LCT of this function in the same sense that the FFT implementation
of the DFT computes the samples of the continuous FT of a function. Since the
sampling rates are carefully controlled, the output samples obtained are accurate
approximations to the true ones and the continuous LCT can be recovered via
interpolation of these samples. The only inevitable source of deviation from
exactness arises from the fundamental fact that a signal and its transform cannot both
be of finite extent. This is the same source of deviation encountered when using the
DFT/FFT to compute the continuous FT. Thus the algorithms compute LCTs with
a performance similar to the DFT/FFT in computing the Fourier transform, both in
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terms of speed and accuracy. This limitation affects not only LCT algorithms, but
also the computation of Fourier transforms using the DFT. Thus this is a source of
error we cannot hope to overcome.

Compared to earlier approaches, these algorithms not only handle a much
more general family of integrals, but also effectively address certain difficulties,
limitations, or tradeoffs that arise in other approaches to computing the Fresnel
integral, which is of importance in the theory of diffraction.

Acknowledgement H.M. Ozaktas acknowledges partial support of the Turkish Academy of
Sciences.
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Chapter 11
Deterministic Phase Retrieval Using the LCT

Unnikrishnan Gopinathan, John J. Healy, Damien P. Kelly,
and John T. Sheridan

Abstract Phase retrieval is one of the most interesting and widely researched
inverse problems in optical sciences. Since all the forward problems based on real-
world physical phenomenon involve some loss of information, the corresponding
inverse problem is ill-posed unlike its forward counterpart. This makes the solution
of inverse problems quite challenging. A majority of the approaches to solve the
phase retrieval problem broadly fall into two categories. In the first category, one
uses a priori information of the signal to find one of the many possible approximate
solutions to the problem within an acceptable error criteria. One of the first and the
most widely used method in this category is the Gerchberg–Saxon (GS) algorithm
that uses a priori information of the signal at the input and output plane of an
optical system that performs a Fourier Transformation. The second category consists
of a direct approach based on a deterministic algorithm. The present chapter is
concerned with these approaches. Typically, these algorithms are based on linear
transformations on a set of intensity measurements of the signal. These intensity
measurements are performed at different planes as the signal propagates through an
optical system. In this chapter, we discuss the complex signal determination from
multiple intensity measurements. We derive a generic algorithm that can retrieve a
complex valued signal from two intensity measurements, one at the input plane and
the second at the output plane, of an arbitrary optical system that consists of thin
lenses (refractive or GRIN elements) separated by sections of free space.
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11.1 Introduction

Phase retrieval is one of the most interesting and widely researched inverse problems
in optical sciences [1]. Since all the forward problems based on real-world physical
phenomenon involve some loss of information, the corresponding inverse problem is
ill-posed unlike its forward counterpart. This makes the solution of inverse problems
quite challenging. In simple terms, the phase retrieval problem can be stated as
follows. Consider a signal propagating through an optical system. The optical
system may consist of a stretch of free space or many optical elements separated
by stretches of free space. From the signal intensity at the output of the optical
system as sensed by an irradiance detector, can the complete signal information
(characterized by amplitude and phase) be retrieved? It is not difficult to see that
this inverse problem is ill-posed since the phase information is lost during the
detection process, whereas the corresponding forward problem is well posed if the
transformation that characterizes the optical system is known.

A majority of the approaches to solve the phase retrieval problem broadly fall into
two categories. In the first category, one uses a priori information of the signal to find
one of the many possible approximate solutions to the problem within an acceptable
error criteria. One of the first and the most widely used method is the Gerchberg–
Saxon (GS) algorithm [2]. This method uses a priori information of the signal at the
input and output plane of an optical system that performs a Fourier Transformation.
The optical system may be a single refractive lens with two stretches of free space
corresponding to the focal length of the lens before and after the lens. It could also
be a stretch of free space with the distance large enough to satisfy the Fraunhofer
approximation. A commonly used attribute of the signal in the input plane of the
optical system is that the signal is real valued. At the output Fourier plane, the
intensity of the signal is known. The method finds an approximate solution within
acceptable error that satisfies the constraints in the input and Fourier domain by
iterating back and forth between these domains and applying the a priori information
of the signal as constraints. The starting guess for the unknown phase of the signal
that has to be determined is chosen as random in most cases. Many variants of the
GS algorithm have been proposed but all these algorithms have some features in
common. Firstly, these algorithms solve the following nonlinear equation:

jT Œf .x; y; zi/�j2 D I .x; y; zo/ ; (11.1)

where T is the transformation that relates the input and output domain, f (x, y, zi) is
the complex valued signal to be estimated at the input plane z D zi, and I(x, y, zo)
is the intensity measured at the output plane z D zo. Secondly, these algorithms are
iterative, non-deterministic, and seek approximate solution to the nonlinear equation
(11.1). The final solution arrived at depend on the initial starting point which is a
random guess in most cases.

The second set of approaches uses a direct approach based on a deterministic
algorithm [3–25]. The present chapter is concerned with these approaches. Typ-
ically, these algorithms are based on linear transformations on a set of intensity
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measurements of the signal. These intensity measurements are performed at dif-
ferent planes as the signal propagates through an optical system. Equivalently, the
measurements could be done at the outputs of different optical systems for the same
signal propagating through these systems. These methods estimate the complex
valued signal based on a linear transformation as given by:

T ŒI0; I1; : : : ; In� D f .x; y/ ; (11.2)

where T is a linear transformation and I0, I1, : : : ,In are the multiple intensity
measurements. These methods have been broadly referred to as non-interferometric
deterministic phase retrieval methods. The first of these methods were proposed
by Teague [3, 4] and Streibl [5] in separate works around the same time. They
proposed a method to determine the complex optical signal at the input plane
from two intensity measurements in sufficiently close planes at distances z and
z C�z. Since then non-interferometric deterministic phase retrieval methods have
received considerable attention. These methods have been used for a broad range
of applications from microscopy [6, 7] to astronomy [8], both with fully [9, 10]
and partially coherent sources [11, 12], and wavelengths ranging from the visible
to X-rays [13]. In a broad sense, all these methods extract the phase and thereby
the complete signal information from single or multiple intensity measurements
using a deterministic algorithm based on the underlying physical model. Most of
the deterministic phase retrieval methods are based on the Transport of Intensity
model including initial methods of Teague and Streibl.

As discussed in this chapter, non-interferometric deterministic phase retrieval
methods that reconstruct phase from multiple intensity measurements can also be
interpreted in terms of sampling phase space distribution functions [25] like the
Ambiguity Function (AF) [14–23, 26]. Hence these approaches are also generically
referred to as Phase Space Tomography. Since the phase space distributions
functions like AF contain the entire signal information, it is possible to reconstruct
the signal information by sampling the entire phase space distribution function in a
grid. Semichaevsky and Testorf [18] and Nugent [13] have presented a description of
the various deterministic phase retrieval techniques using phase space distribution
functions. Methods have been proposed to extract signal information by intensity
measurements in fractional Fourier transform (FRT) domains. Alieva et al. [20–22]
proposed a method to reconstruct the signal from intensity measurements in two
close FRT domains (i.e. different FRT order outputs from the same input). In the
context of metrology, intensity measurements in FRT domains have been used to
extract information regarding object tilt and translation [27–29].

It would appear that the signal extraction methods based on output intensity
measurements at two close FRT domains lead to a lesser number of necessary
samples. Unnikrishnan et al. [23] showed that the choice of the necessary fractional
order separation needs some a priori knowledge of the input signal. This is because:
(1) the bandwidth of the signal results in an upper bound on the fractional order
separation and, (2) more importantly, being a differential method the effect of noise
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in the system is deleterious and leads to a lower bound on the fractional order
separation.

In this chapter, we discuss the complex signal determination from multiple
intensity measurements. We derive a generic method that can retrieve a complex
valued signal from two intensity measurements one at the input plane and the second
at the output plane of a Quadratic Phase System (QPS) that consists of thin lenses
(refractive or GRIN elements) separated by sections of free space. A QPS performs
a Linear Canonical Transform (LCT) on the signal [30]. It is shown that the Fourier
transform of the input signal and output of the QPS (Linear Canonical Transformed
signal) corresponds to two slices of the Ambiguity Function map separated by an
angle related to the QPS parameters. The experimental result using an optical system
that performs a scale invariant fractional Fourier transform with a quadratic phase
signal generated by a lens is discussed.

11.2 Signal Description Using Ambiguity Function

An optical signal is most commonly described in the space domain or spatial
frequency domain. A space domain description gives the distribution of signal
energy in two or three dimensional space, whereas the spatial frequency domain
descriptions gives signal energy distribution in terms of spatial frequency content of
the signal. Space description of a signal is a function of spatial coordinates, whereas
spatial frequency description is a function of spatial frequency. In some situations
need arises for representing the signal in space as well as spatial frequency domains
simultaneously. This is especially true for the case of non-stationary signals where
the spatial frequency of the signal varies with spatial coordinates. In such cases,
one is interested in local distribution of energy as a function of frequency, or in
other words, local frequency spectrum. Of the many joint space–frequency signal
representations that are available in literature, we will be using the Ambiguity
Function as it is related to the Mutual Intensity and intensity of a signal. The
Ambiguity Function (AF) representation, which is referred to as AF map henceforth,
is a 2-D map for a 1-D signal and a 4-D map for a 2-D signal. Henceforth we
will use 1-D signal for our discussion for simplicity but extensions to 2-D is
straightforward. Consider a quasi-monochromatic signal f (x) which may be fully
or partially coherent. The signal is characterized by Mutual Intensity which is a
second order statistical function:

� .x1; x2/ D hf .x1/ ; f � .x2/i ; (11.3)

where brackets indicate an ensemble average over a set of realizations of the
function. The Mutual Intensity function can be expressed in terms of sum and
difference coordinates as follows:
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J .x; x/ D � .x1; x2/ ; (11.4)

where x D x1Cx2
2

I x D x1 � x2:
The Mutual Intensity and the AF are related by a Fourier Transform:

A .x; �/ D
Z

J .x; x/ exp .�i2��x/ dx; (11.5a)

J .x; x/ D
Z

A .x; �/ exp .i2��x/ d�: (11.5b)

The intensity of the signal can be obtained from the Mutual Intensity Function using
the relation:

I.x/ D J .x; 0/ : (11.6)

From Eqs. (11.5b) and (11.6), the intensity of the signal is related to the AF as:

I.x/ D
Z

A .0; �/ exp .i2��x/ d�: (11.7)

In the AF plane, A .0; �/ corresponds to a slice along the � axis, and the intensity of
the signal, I(x), is the inverse Fourier transform of this slice.

11.3 Propagation of the Signal Through an Optical System
and Its AF Representation

Let us consider the propagation of a signal through an optical system that consists of
thin lenses (refractive or GRIN) separated by sections of free space. Such a system is
referred to as a QPS. In the paraxial approximation, a QPS can be shown to perform
a LCT on the signal. The transformed signal is given by:

ff˛;ˇ;�g .x0/ D Lf˛;ˇ;�g ff .x/g .x0/
D exp

�
� j�

4

�p
ˇ

Z
f .x/ exp

h
j�
�
˛x2 � 2ˇxx0 C �x02

�i
dx:

(11.8)

It is to be noted that the propagation of a signal through a QPS does not change
the total energy of the signal as the LCT that characterizes the QPS is a unitary
transformation. Now, we consider the following question. How does the AF
representation of a signal change after propagation through a QPS? Interestingly,
the signal propagation through a QPS does not change the individual values of the
AF. The .x; �/ coordinates of the AF map undergoes an affine transformation as
given by:
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�
x
�

�
D
�

a b
c d

� �
x
�

�
D
"

�

ˇ
1
ˇ

� ˇ C ˛�

ˇ
˛
ˇ

#�
x
�

�
: (11.9)

It may be noted that the transformation matrix is the ABCD matrix that characterizes
the QPS whose determinant has unity value. The AF map of the signal after QPS
propagation is given by:

A
	
x; �


 D A
	
ax C b�; cx C d�



: (11.10)

The Mutual Intensity of the signal at the output of the QPS is given by:

J1
	
x; x

 D

Z
A
	
x; �



exp

	
j2��x



d�: (11.11)

The intensity of the signal at the output of the QPS is given by:

I1.x/ D J1 .x; 0/ D
Z

A
	
0; �



exp

	
j2��x



d�
�
: (11.12)

The intensity of the signal at the output of the QPS is the inverse Fourier
Transform of the slice of the AF map along the � axis in the transformed (x; �)
coordinate system. Equivalently, this corresponds to a slice of the AF along the line
ax C b� D 0 in the (x; �) coordinate system. Hence, we have seen that propagation
through QPS is equivalent to taking a slice along the line ax C b� D 0 in the AF
map. In terms of QPS parameters, this corresponds to the line, �x C � D 0. Along
this line the x and � are related as:

x D �k�; (11.13)

where k D b
a D 1

�
.

Thus the Fourier transform of the two intensity measurements at the input and
output of a QPS system corresponds to two slices in the AF map separated by

an angle �� D tan�1 	 b
a


 D tan�1
�
1
�

�
. This situation is illustrated in Fig. 11.1.

Let Ĩ0(.) and Ĩ1(.) represent the Fourier transform of the signal intensities at the
input and output of a QPS. Then we have:

QI0 .�/ D A .x; �/jxD0; (11.14a)

QI1 .�/ D A .x; �/
ˇ̌
ˇxD�k�: (11.14b)
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11.4 Signal Recovery from Intensity Measurements

We have seen that the Fourier Transform of the intensity measurements at input
and output plane of a QPS gives two slices of the AF separated by an angle

�� D tan�1
�
1
�

�
. Multiple intensity measurements performed at different planes

in a QPS are equivalent to different slices in the AF plane and all of them passing
through the origin. The angle between any two slices is determined by the section of
QPS between the two planes where the corresponding intensity measurements were
performed. In this manner, by doing sufficient intensity measurements in planes
suitably separated, one can reconstruct the entire AF which contains complete signal
information. But, for signal recovery, it is not necessary to reconstruct the entire AF
as the AF representation contains redundancy. In this section, we show that it is
possible to reconstruct the entire signal by doing two intensity measurements at
the input and output plane of a QPS that corresponds to two slices in the AF map
provided that the angle between the two slices is sufficiently small.

From Eqs. (11.14a) and (11.14b) we have:

QI1 .�/ � QI0 .�/
k�

D A .x; �/ jxD�k� � A .x; �/j xD0
k�

: (11.15)

In the above equation, k D tan �� where �� is the angle between the two slices.
When the angle between the two slices �� is sufficiently small, ��; k ! 0. Then
Eq. (11.15) can be written as:

QI1 .�/ � QI0 .�/
k�

D @A .x; �/

@x

ˇ̌
ˇ̌
xD0
: (11.16)

Fig. 11.1 A schematic diagram showing the relationship of the two slices of the Ambiguity
Function to the signal intensities at the input and output of a QPS
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In the Appendix, it is shown that:

@A .x; �/

@x

ˇ̌
ˇ̌
xD0

D i
Z

I0.x/
d'.x/

dx
exp .�j2��x/ dx: (11.17)

From Eqs. (11.16) and (11.17), we get:

d'.x/

dx
D �

I0.x/

�
I1.x/ � I0.x/

k

�
˝ sgn .�x/

�
; (11.18)

where sgn denotes signum function and ˝ denotes convolution operation. The
signum function is defined as:

sgn.x/ D
8<
:

�1 for x < 0
0 for x D 0

1 for x > 0
: (11.19)

To arrive at Eq. (11.18), we have used the following relation:

1

� i

Z
1

�
exp .�i2��x/ dx; � D sgn.x/: (11.20)

From Eq. (11.18), we can obtain ®(x) to within a constant C as:

'.x/ D
Z 

�

I0.x/

�
I1.x/ � I0.x/

k

�
˝ sgn .�x/

��
dx C C: (11.21)

Having obtained ®(x) from Eq. (11.21), the complete signal information may be
obtained as

p
I0.x/ '.x/.

11.5 Free Space Propagation and Fraction Fourier
Transformation

When the QPS corresponds to a stretch of free space given by distance Z, �� D
tan�1 .	Z/. When the QPS corresponds to an optical system that performs a scale
invariant fractional Fourier transform � , �� D � .
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11.6 How Close Should the Two Slices Be?

To retrieve complete signal information from two intensity measurements that
corresponds to two slices in AF plane, the angle between the two slices should be
small. We proceed to quantify this requirement.

Let ıx be the sampling period along the x axis of the AF map and �B be the full
bandwidth of the signal. �B may be obtained from the AF map by first projecting
the AF distribution appropriately:

�B

2
tan �� � ıx: (11.22)

To satisfy Nyquist criteria:

ıx � 1

�B
: (11.23)

Combining Eqs. (11.22) and (11.23), we get an expression for the upper bound of
��:

tan �� � 2

�B
2
: (11.24)

The lower bound of�� is dictated by the noise in the system. Let us assume that the
noise is a stationary random process. Let N0 be the noise in the system. The angle
between the two slices should satisfy the inequality:

Z �B
2

� �B
2

jI1 .�/ � I0 .�/j2d� > N0�B: (11.25)

The above equation suggests that the choice of �� should be such that the energy
difference signal jI1 � I0j .:/ should be greater than the noise power N0�B.

11.7 Estimating the Phase Profile of a Lens

Let us consider the above-mentioned method to estimate the phase profile of a
thin lens. A thin lens can be characterized by a quadratic phase signal f .x/ D
exp

�
2� i

	
2b2x2 C b1x C b0


�
. For this signal, the Ambiguity Function is given by:

A .x; �/ D
Z

exp Œ2� i .2b2xx C b1x/� exp .�2� i�x/ dx: (11.26)

From Eq. (11.14a), we have I0.x/ D 1.
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Substituting Eq. (11.26) into Eq. (11.17) and after some algebraic manipulations
we get:

�.x/ D d'.x/

dx
D 2b2x C b1: (11.27)

For this system, let us find out the upper bound and lower bound of ��, the angle
between the two slices in the Ambiguity Function space. If W is the width of the
detector array used for intensity measurements, the full bandwidth of the signal �B

is restricted to �B D 2Wb2. From Eq. (11.24) we get the upper bound on �� as:

tan �� � 1

2W2b22
: (11.28)

To determine the lower bound on ��, let us first determine Ĩ0(.)and Ĩ1(.) using
Eqs. (11.14a) and (11.14b) and (11.26).

QI0 .�/ D �ı .�/ ; (11.29a)

QI1 .�/ D �1
.2b2k C 1/

exp

� �2�b1k�i

.2b2k C 1/

�
ı .�/ ; (11.29b)

Substituting the values of Ĩ0(.) and Ĩ1(.) in Eq. (11.25) and after some algebraic
manipulations, we get the lower bound for the angle ��:

tan �� >
1

2b2

��p
2N0Wb2

��1 � 1
��1

: (11.30)

The above equation merits a close look at the three parameters that decide the lower
bound on the angle �� , namely N0, the system noise power; W, the width of the
detector array; and b2, the quadratic phase signal parameter which in turn depends
on the focal length of the lens used to generate the signal. As the system noise is
higher, N0 is higher resulting in a higher lower bound. The same is the case with
the detector width W. But a higher b2 results in a lower value for the lower bound.
Since b2 is inversely proportional to the focal length of the lens used to generate
the quadratic phase signal, a higher focal length lens results in a higher value for
the lower bound. Hence, a QPS system designed to measure the profile of a lower
focal length lens may not work for a higher focal length lens is the condition given
in Eq. (11.30) is not satisfied. This is actually demonstrated through an experiment
described below.

The optical system that performs a scale invariant fractional Fourier transform
on the input signal [31] (shown in Fig. 11.2) was used to estimate the curvature of a
field created by a thin spherical lens (focal length 8 mm, clear aperture 3 mm). For a
plane-wave input, under the paraxial approximation the field immediately after the
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Fig. 11.2 Schematic of a two
lens optical system that can
perform a two dimensional
scale invariant FRT. The two
lenses have the same focal
lengths. Planes A and B
represent input and output
planes of the system

Fig. 11.3 Experimental results for 8 mm focal length lens (diameter 3 mm) (a) spatial frequency
�x (b) spatial frequency �x with y direction averaged out; (c) spatial frequency �y (d) spatial
frequency �y with x direction averaged out; broken line in (b) and (d) indicate the predicted spatial
frequency corresponding to an 8 mm focal length lens

spherical lens is given by

f .x; y/ D exp

�
i�

�
x2 C y2

	fi

��
;

where fi is the focal length of the lens in the two orthogonal x and y directions. If
the lens is tilted with respect to the optical axis of the system, the value of b1 is
non-zero.

The optical system shown in Fig. 11.2 performs a scale invariant optical FRT with
the input and output coordinates scaled by a factor s D p

	f , where f is the focal
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length of the lens used in the FRT system. Accounting for this scaling, b2 D f /2fi
and the spatial frequency as measured by the system without any tilt is f /fi. With
the 8 mm lens placed at the input, the optical system is first configured to obtain
a FRT order ˛D� (f D 160 mm, d1 D 160 mm and d2 D 320 mm) and the first
intensity measurement is performed. This is preferred, for practical reasons, to ˛D 0
system configuration, where the input and output planes coincide with the plane of
the lenses. The second intensity measurement is done by perturbing the fractional
order by a small value�˛D 0.006 corresponding to a perturbation in d1 by 0.5 mm
and d2 by 1 mm. The intensity measurements were done using a CCD (Imperx
model 1024 � 1024 pixels, 7.6 �m square pixel). The width of the sensor array is
W D 8 mm in both x and y directions. Figure 11.3a shows the value of �x estimated
using Eq. (11.21). Figure 11.3b shows �x averaged along the y direction. Plotted in
broken line is the theoretically expected curve with the value b2 D 20 and b1 D 0
for f D 160 mm and fi D 8 mm. The difference in the experimentally determined
curve and the theoretically expected curve may be attributed to various experimental
errors. The main source of experimental errors is the positioning errors of the lenses
leading to errors in the distances d1 and d2, errors in collimation of the beam and tilt
of components with respect to the optical axis of the system. The estimated value
of focal length from the experimentally determined curve was fy D 8.36 mm and
fx D 8.3 mm.

Figure 11.4 shows the phase estimated from the spatial frequency shown in
Fig. 11.3. Figure 11.5 shows the plots corresponding to a lens of focal length 20 cm.
The measurements were carried out for the same FRT order separation�˛D 0.006,
used in the previous case. As can be seen from the plots this fractional order
separation leads to an erroneous detection of spatial frequency. For this case, the
value of b2 D 0.8 leads to a higher value of the lower bound as predicted by Eq.
(11.30).

For completeness, in Fig. 11.6 we show the results for the case when there
is no input signal. The measurements were carried out for the same FRT order
separation �˛D 0.006, used in the previous case and collimated illumination. The
result therefore corresponds to noise and drifts in the system and places a lower
threshold on performance.

11.8 Conclusion

In this chapter, we have described a method to reconstruct complete signal
information—amplitude and phase—from two intensity measurements. The Fourier
transform of the two intensity measurements at the input and output of a QPS may
be interpreted as two slices in the AF plane. The angular separation between the
two slices is determined by the QPS parameters. It is to be noted that some a priori
information of the signal regarding the bandwidth is required to chose an appropriate
QPS system that would ensure that the two intensity measurements does not lead to
an erroneous signal estimation. We discussed an experiment performed using an
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Fig. 11.4 Phase calculated from the estimated spatial frequency for 8 mm focal length lens

Fig. 11.5 Experimental results for 20 cm focal length lens: (a) spatial frequency �x (b) spatial
frequency �x with y direction averaged out; (c) spatial frequency �y (d) spatial frequency �y with
x direction averaged out. The broken line in (b) and (d) indicate the predicted spatial frequency
corresponding to an 20 cm focal length lens

optical system that performs scale invariant FRT to retrieve the phase information
of a quadratic phase signal generated using a lens.
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Fig. 11.6 Collimate beam input (a) spatial frequency �x (b) spatial frequency �x with y direction
averaged out; (c) spatial frequency �y (d) spatial frequency �y with x direction averaged out

Appendix

The AF can be written as:

A .x; �/ D
Z

f

�
x C x

2

�
f �
�

x � x

2

�
exp .�j2��x/ dx: (11.A1)

dA .x; �/

dx

ˇ̌
ˇ̌
xD0

D
Z

d
�
f
	
x C x

2



f � 	x � x

2


�

dx

ˇ̌
ˇ̌
ˇ
xD0

exp .�j2��x/ dx: (11.A2)

Let f .x/ D A.x/ exp Œi'.x/�, then

f

�
x C x

2

�
f �
�

x � x

2

�
D A

�
x C x

2

�
A

�
x � x

2

�

exp


i

�
'

�
x C x

2

�
� '

�
x � x

2

���
: (11.A3)
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Differentiating both sides with respect to xand substituting x D 0, we get:

d
�
f
	
x C x

2



f � 	x � x

2


�

dx

ˇ̌
ˇ̌
ˇ
xD0

D iI0.x/
d'.x/

dx
; (11.A4)

where I0.x/ D jA.x/j2

dA .x; �/

dx

ˇ̌
ˇ̌
xD0

D i
Z

I0.x/
d'.x/

dx
exp .�i2��x/ dx: (11.A5)
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Chapter 12
Analyzing Digital Holographic Systems
with the LCT

Damien P. Kelly and John T. Sheridan

Abstract Digital holography is an electronic means of measuring the complex
amplitude of an optical wavefield using CCD or CMOS arrays. With an appropriate
reconstruction algorithm the intensity values registered by the pixels produce images
of a particular (object) scene. These holographic systems are very sensitive to even
small vibrations or deformations of an object, mainly due to the phase information
that is also recovered by the measurement. Hence these systems are useful in a wide
array of different metrology problems. It is important that we somehow quantify
the information that can be recovered with such a detection scheme; better if we
can provide a theoretical framework to optimize an optical system design for a
given metrology problem. In this manuscript we show how the Linear Canonical
Transform can fulfill this role and can optimally match the space-bandwidth product
(SBP) of a signal to be measured with the SBP of a CCD/CMOS detector array. We
provide formulae that determine the performance of generalized holographic optical
systems (containing lenses and sections of free space), taking into account the finite
extent of the CCD array, the size of the pixels, and the spacing between them. Some
illustrative examples are presented, with associated numerical simulations.

12.1 Introduction

Recording holograms, using electronic detectors, has been of interest to the optical
community, since the first publications on this topic appeared, nearly 45 years ago
[1–3]. From the early nineties improvement in digital cameras revived interest in
modern digital holography, see for example [4–17]. Holography provides a means
of recovering the amplitude and phase of an optical wavefield by mixing the object
wave of interest with a known reference wave and recording the resulting intensity
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distribution. When the reference and object wave interfere with each other the
resulting intensity field at the camera plane can be written as [12–14]:

Ic.x/ D ju.x/C ur.x/j2;
Ic.x/ D I.x/C Ir.x/C c.x/C c�.x/; (12.1)

where I(x) and Ir(x) are the object and reference field intensities, respectively,
while c(x) D u(x)ur

*(x) and represents the real image term that we are interested in
recovering. The “*” indicates a complex conjugate operation. In digital holography
a CCD or CMOS camera is used to record this intensity distribution replacing the
traditional holographic plate. A significant advantage of the digital approach is that
the resulting electronic hologram can be processed in real time to give reconstructed
images of the amplitude and phase of the object of interest. Many different optical
setups for recording digital holograms exist such as the Fresnel or lens-less Fourier
systems [16, 18, 19]. Importantly, holograms recorded with these various optical
setups, exhibit different properties, and so it is useful to provide a general theoretical
framework for the analysis, and comparison, of different optical systems [16, 20].
In this chapter the use of the Linear Canonical Transform (LCT) to provide such
a general framework is reviewed and explored. Using this transform the imaging
performance of different setups can be compared, and indeed this approach also
provides a means of optimizing a given system to perform a particular imaging task.

The chapter is organized as follows: In Sect. 12.2.1, we begin with a description
of the optical systems examined and how an LCT-based analysis can include the
sphericity of the reference wave, and take into account the effect of illuminating
the object with either a converging or diverging spherical wave. We show how
several different optical systems including the Fresnel, Fourier, and inline Gabor
holographic systems can all be described in terms of the LCT. In Sect. 12.2.2
we discuss the effect of the camera on recovering the third term in Eq. (12.1), in
particular for the case when the Phase Shifting Interferometric (PSI) techniques
have been used to remove the DC and twin image terms [21–24]. It is assumed that
at the camera plane a series of lossy operations are performed: (1) the intensity
distribution recorded is limited by the finite extent of the camera which has
significant implications for the spatial frequencies that can be recovered; (2) the
averaging of the light intensity incident on the camera, by the finite size of the
camera pixels, tends to attenuate by differing amounts spatial frequencies present in
the object signal generally resulting in poorer imaging performance; and finally (3)
the effect of sampling the captured intensity produces an infinite series of replicas in
the reconstruction plane. If PSI techniques have been employed, then the sole effect
of the sampling operation is to define the distance between neighboring replicas in
the reconstruction plane. Provided that this distance is less than the actual extent of
the object field, then the recoverable detail in the numerically reconstructed field is
not affected by the sampling operation. Hence it is possible to recover frequencies
far higher than the Nyquist limit [13, 14, 16, 25–28]. In Sect. 12.2.3, we examine
the role of the DC and twin image terms, see Eq. (12.1), and how they impact
on the performance of the optical system. It is demonstrated that if an off-axis
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reference is used for single-shot capture then the sampling rate of the camera plays
a different role to that described in Sect. 12.2.2, and tends to be the dominant factor
in determining the spatial frequencies of the signal that can be recovered (see also
Section 3, in Ref. [14]). In Sect. 12.3, we present the result of some numerical
simulations that highlight several of the theoretical issues addressed in the previous
section. We finish with a brief conclusion.

12.2 Analysis

In this section we examine how the LCT may be used to describe the behavior of
several different types of digital holographic imaging systems.

12.2.1 A Description of the Problem

In Fig. 12.1, we present a schematic depicting a typical optical setup used to record a
digital hologram. Laser light is spatially filtered to improve the spatial coherence of
the light source (and hence the contrast of the recorded holograms), before being
collimated to form an approximately flat plane wave segment. This plane wave
segment passes through the first beam splitter (BS1) where it is separated into what
becomes the reference and object beams. A lens can be inserted in the reference arm,

CCD

PW

M

M

LI

object

BS

BS

LR

x XSpW

LCT

Fig. 12.1 A schematic depicting an LCT based digital holographic setup: BS beam splitter, M
mirror, LR reference field lens, LI illumination field lens
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see Fig. 12.1, to vary the curvature of the reference wave. In the object arm the plane
wave segment illuminates and interacts with the sample that we wish to examine.
Here we assume that we are operating in the paraxial regime and hence that the
Fresnel transform can be used to describe the process of free-space diffraction. We
also assume that the “thin lens” approximation holds and that a lens can be described
in the manner outlined by Goodman in Chapter 5 of Ref. [29]. The illuminating
plane wave segment interacts with the sample of interest in a complicated manner
to produce a scattered electromagnetic field in the 3D volume after the object. In the
analysis presented here we assume that this 3D field in (x, y, z) is generated by a 2D
complex amplitude distribution in a plane (x, y, z D 0) that lies immediately behind
the sample.

In what follows, for the sake of brevity we provide a 1D analysis (in x), and note
that the results can be extended in a straightforward manner to the 2D case. Hence
the field in a plane just after the sample can be described mathematically as:

U.X/ D Ui.X/T.X/; (12.2)

where Ui(X) is the wavefield that illuminates the sample which is modeled by the
transmittance function, T(X). We now wish to find a relationship between the field
U(X) and the diffracted object wavefield, u(x), that is incident on the camera. Our
analysis allows for the possibility that a series of lenses (of infinite extent) and
sections of free space can be inserted between plane X and the CCD plane, see
Fig. 12.1. This freedom means that the signal u(x) can be processed (by the optical
system) prior to capture. In this way the spatial and spatial frequency extents of
the signal can be controlled, so that the impact of the CCD array (e.g. any filtering
operations) can be minimized and the maximum amount of information about U(X)
preserved.

In geometrical optics, ray-tracing procedures are used to design optical systems.
This ray-tracing procedure can be described using a combination of different
matrices, each describing the effect of a specific sequential part of the optical
system. In the next section this formulism is used to describe: (1) the properties of
the optical system as they relate the object (input) plane X and the camera (output)
plane, and (2) the effect of the illumination and reference beams.

12.2.1.1 Bulk Optical System

Using the geometrical optics matrix formalism, the effect of a section of free space
propagation of length (z), i.e. the Fresnel transformation (FST), is described using
the following matrix:

Mz
FST D

�
1 z
0 1

�
: (12.3)
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The matrix describing a converging lens of focal length, f, is given by:

Mf
LENS D

�
1 0

� 1=f 1

�
: (12.4)

A diverging spherical beam can be described using Eq. (12.4) by simply changing
the sign of the focal length, f. These matrices can be combined, to describe the effect
of a series of lenses and sections of free space, giving an overall optical system
matrix. For example, a Fresnel transform, z1, followed by a lens, f1, and another
Fresnel transform, z2, produces the following total matrix:

�
As Bs

Cs Ds

�
D Mz1

FSTMf1
LENSMz1

FST: (12.5)

For the special case when z1 D z2 D f1 D f, Eq. (12.5) describes an optical Fourier
transform (OFT) system:

Mf
OFT D

�
0 f

� 1=f 0

�
: (12.6)

Many other types of optical systems can be described in a similar manner,
including the optical fractional Fourier transform (OFRT) [15]. Following the
formalism of Collins in Ref. [30], these ray-tracing matrices with unit determinants
are related to corresponding diffraction-type integrals. In the most general linear
lossless case the integral corresponds to the LCT. The resulting relationship between
the fields in the object, U(X), and camera planes, u(x), is:

u.x/ D LCTAsBsDs fU.X/g .x/ D 1p
j	Bs

Z 1

�1
U.X/ exp

�
j�

	Bs

	
Dsx

2 � 2xX C AsX
2

�

dX; (12.6)

where the parameters As, Bs, and Ds are those appearing in the matrix derived
using the geometrical analysis of the optical system. For example, assuming that
we have both plane wave illumination and a plane wave reference beam, a Fresnel
relationship between the input plane and the camera plane can be described by
setting the values of ABCD to those given in Eq. (12.3). In the next Sect. 12.2.1.2
we show how variations in the curvature of the illumination and reference beams
can be included in the overall system ABCD parameters.
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12.2.1.2 The Illumination and Reference Beams

Examining Fig. 12.1, we note that we can change the form of the reference wave,
ur(x), by inserting a lens into the reference arm. In this case:

ur.x/ D exp

�
j�

	zr
x2
�
; (12.7)

where zr is the distance to the focus of the lens LR, see Fig. 12.1, i.e. the spatial
location where a plane wave segment incident on lens LR would be focused.
Similarly we can place another lens, LI, see Fig. 12.1, in the illumination beam
to change the curvature of the wavefield incident on the sample, giving:

Ui.X/ D exp

��j�

	zi
X2
�
; (12.8)

where zi is the distance to the focus of the lens LI. Inserting Eqs. (12.2) and (12.8)
into Eq. (12.6) and using the conjugate of Eq. (12.7), we can directly write an
expression for the c(x) term in Eq. (12.1), as:

c.x/ D exp

�
� j�

	zr
x2
�

LCTAsBsDs


exp

�
j�

	zi
X2
�

T.X/

�
.x/ D LCTABD fT.X/g .x/:

(12.9)

From Eq. (12.9), we note that the function T(X) is multiplied by a lens function
which can be included using Eq. (12.4). Similarly we can also account for the
conjugate of the reference beam using Eq. (12.4). Hence the overall system ABCD
parameters are given by:

�
A B
C D

�
D
�

1 0

� 1=zr 1

��
As Bs

Cs Ds

��
1 0

� 1=zi 1

�
: (12.10)

The LCT-based model for digital holography systems presented in Eq. (12.10) is
suitable for a wide range of different types of optical arrangements. In the following
Sect. 12.2.1.3 we will examine three special cases to illustrate this feature.

12.2.1.3 Three Special Systems

In this subsection we will examine the ABCD parameters for 3 different optical
systems: System (1), Fresnel; System (2), Fourier; and System (3), inline Gabor.
In the case of the Fresnel setup, (1), plane waves are used to illuminate the object
under investigation and for the reference field. In this instance both zi and zr are
set to infinity, and a Fresnel transform relates the fields at the sample and camera
planes. Therefore the matrix describing the system, MS1, is given by:
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Fig. 12.2 A schematic
depicting a typical inline
Gabor holographic setup LCT

xX

CCD

X'

zi z

�
AMS1 BMS1

CMS1 DMS1

�
D
�
1 z
0 1

�
: (12.11)

For the case of Fourier system, (2), a spherical reference wave is used. A thin lens is
introduced which produces a diverging spherical wave, whose focal plane is located
at the same distance from the CCD, as from the object plane. We note that this
technique is sometimes referred to as a lens-less Fourier system since the diverging
spherical reference wave can also be formed by light emerging from a point-like
source, e.g. the tip of an optic fiber. In both instances the reference wave is described
using Eq. (12.7) and the overall system parameters change to become MS2, i.e.:

�
AMS2 BMS2

CMS1 DMS1

�
D
�

1 0

� 1=zr 1

��
1 z
0 1

�
D
�

1 z
� 1=zr 1 � z=zr

�
: (12.12)

Let us now consider our third case, (3), the inline Gabor holographic system [11].
Such a system is depicted in Fig. 12.2.

Here a spherical wave illuminates the sample that is assumed to be a weakly
scattering transparent object, e.g. a small biological sample. Making such a weak
phase approximation allows us to write T(X) as:

T.X/ D exp Œj'.X/� � 1C QT.X/; (12.13)

where QT.X/ D j'.X/. From Eq. (12.13) we see that two important things happen:
First, the illuminating beam passes through the sample negligibly changed, and is
then incident on the camera where it serves as a reference wave. Second the QT.X/
term acts to scatter the incident illumination field creating a weak secondary field
that contains the phase information about the sample. This is the object field, which
is illuminated with a diverging spherical wave. The situation where the illuminating
field produces both the reference field and the very weak scattered field follows from
the important approximation in Eq. (12.13). We can describe a Gabor setup with the
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following mathematical expression:

�
AMS3 BMS3

CMS3 DMS3

�
D
 

1 0

� 1
ziCz 1

!�
1 z
0 1

� 
1 0
1
zi
1

!
: (12.14)

Above we have shown how to use the LCT to systematically derive the system
parameters for three different types of commonly used holographic systems. Using
this approach many other types of holographic setups can be designed having
specific system parameters. These parameters play a crucial role in defining the
performance of a given holographic setup. As noted at the CCD plane a series of
filtering and sampling operations are performed that remove information from the
signal we wish to recover. By varying the system parameters prior to holographic
capture, we can change how the power of the object signal is distributed in phase
space, and control this process to recover as much information about that signal as
possible. To understand how to do this we more closely examine the role of the
digital CCD array in holographic imaging systems, in the next section.

12.2.2 The Role of the Digital Camera

The reference and object wavefields overlap and interfere with each other at the
camera plane, and the resulting intensity pattern is recorded, see Eq. (12.1). Several
filtering operations occur during this process. First the finite extent of the camera
means that only a portion of the intensity field is recorded. Second the camera pixels
themselves are of finite extent and record the average light intensity incident upon
their active area. Third and finally, the intensity field is sampled returning a 2D array
(x and y) of real values to the user. We express these mathematically as follows:

Wn D ˇpL.x/ı�.x/
�
Ic.x/ � p� .x/

�
; (12.15)

where ˇ is a constant of proportionality which is neglect from now on. The functions
pL(x) and p� (x) represent the effects of the finite extents of the camera and pixels,
respectively. We define them as:

pQ.x/ D

1 when jxj < Q
0 otherwise

: (12.16)

The finite extents of the camera and each individual pixel are 2L and 2� ,
respectively. The comb function ı�(x) is defined as:

ı�.x/ D
1X

nD�1
ı .x � n�/ ; (12.17)
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where � is the spacing between the centers of adjacent pixels and where ı(x) is a
Dirac delta functional. We now wish to gain insights into how these filtering and
sampling operations act together to modify the information captured. To do this we
follow the approach outlined in Ref. [16], whereby a specially selected function is
chosen to be the input to the system. This signal has finite extent and well-defined
spatial frequency content. Therefore by examining the effects of the capture process
at the digital camera on we can see how the field of view in the reconstruction plane
varies as a function of the sampling rate at the camera plane. We can also determine
the range of spatial frequencies that can be recovered by the imaging system. We
choose our input signal to be:

U.X/ D 1p
˛i

exp

��X2

˛i
2

�
cos .2� fxX/ : (12.18)

From Eq. (12.18) we see that most of the input signal energy is contained within
the range �2˛i < X < 2˛i and is centered at fx, spatial frequency component.
Substituting Eq. (12.18) into Eq. (12.6) and integrating produces the following
result [16]:

u.x/ D ufx.x/C u�fx.x/; (12.19)

where

ufx.x/ D Kc exp

"
� .x � 	Bfx/

2

˛2c

#
exp

�
j
	
� l

cx C �q
c x2

�
; (12.20)

and where Kc is a complex constant. � l
cx and �q

cx2 are linear and quadratic phase
terms, respectively. From Eq. (12.20), we see that the power of the input signal has
been equally split between two Gaussian limited functions centered at x D 	Bfx and
x D �	Bfx, each of extent, ˛c, where

˛c D

0
B@ �˛iq

A2�2˛4i C B2	2

1
CA

�1

: (12.21)

Whether a particular spatial frequency can be recovered depends on both the filtering
effect of the finite size pixels and on whether or not the power associated with
a spatial frequency has “walked off” the optical axis to such an extent that it is
no longer incident on the CCD array. Let us first examine the role of the finite
camera aperture. Since we know that the power associated with a particular spatial
frequency is mapped to a definite spatial location in the camera plane, we must
ensure that this spatial location lies within the CCD aperture. This condition is
satisfied when:
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L � 	Bfx C 2˛c: (12.22)

We now examine the role that averaging over the finite size pixel area has on the
light incident upon them. This is modeled as a convolution operation in the spatial
domain, see Eq. (12.15). The impact of this operation is most easily analyzed in
the Fourier domain. Our analysis allows us to illustrate the flexibility of the LCT
approach used here, since we can conveniently describe the effect of a general
LCT operation (that describes the physical LCT system), followed by a Fourier
transform as:

�
C=	 D=	
� A	 �B	

�
D
�
1=	 0

0 �	
��

0 1

� 1 0
��

A B
C D

�
: (12.23)

The extent of the signal in the Fourier domain is given by 2BW where:

BW D Dfx C 2 Q̨c; (12.24)

and

Q̨c D

0
B@ �˛iq

.C=	/2�2˛4i C D2

1
CA

�1

: (12.25)

Now that we understand how the signal’s power is distributed in the spatial
frequency domain we need to examine how the pixel acts to attenuate and eliminate
spatial frequencies. The Fourier transform of p� (x) is:

Qp� .v/ D 2� sin c .2��v/ ; (12.26)

where sin c(x) D sin(x)/x. In the text we use a “tilde” over a function and the use
of the spatial frequency variable, v, to indicate that we are in the Fourier domain.
Assuming a fill factor of 100 %, i.e. all the pixel area is active, then � D 2� .
Examining Eq. (12.26), we see that Qp� Œ1= .2�/�D 0, which was used to define the
maximum spatial frequency that could be recovered. Here we assume that spatial
frequencies higher than this limit are so severely attenuated that recovery is not
possible. Hence we have another constraint that can be summarized as the following
rule of thumb,

BW � 1= .2�/ : (12.27)

In relation to Eq. (12.27) we note that the bandwidth, BW, can be controlled, by
varying the parameters C and D. Significantly such variations can be quite easily
achieved by simply varying the curvature of the reference and illumination beams.
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The important role of sampling in general LCT systems has been discussed by
several authors, see Refs. [31–35]. In Ref. [14] experimental results were presenting
showing that it was possible to recover spatial frequencies higher than the Nyquist
limit in a Fresnel inline holographic setup. Based on our results we can now restate
the results derived elsewhere, see Refs. [8, 13]. When the term c(x) is sampled
at the camera plane at a rate of �, then a series of replicas are generated in the
reconstruction domain that are separated from each other by 	BN /�. Provided that
the input extent of the signal is less than this value, replicas in the reconstruction
domain will not overlap with each other. This condition can be expressed with the
following equation:

4˛i � 	BN=�; (12.28)

where BN is as defined in Eq. (12.29). To reconstruct the real image term requires
an inverse discrete LCT implementation. The parameters for this numerical LCT
operation are given by:

�
AN BN

CN DN

�
D
�

D �B
� C A

�
: (12.29)

In this section we have now discussed the limits on the performance of general
optical systems imposed by the use of a digital camera to capture the output field.
Some of the implications of these theoretical results will be examined in Sect. 12.3
where numerical simulations are presented to compare and contrast the performance
of the three different holographic systems discussed in Sect. 12.2.1.3.

12.2.3 The Twin Image and DC Terms

In the context of our analysis we now examine how the twin image and DC terms
affect the imaging performance of holographic systems.

12.2.3.1 Twin Image Term

We first note that the model used to describe the role of the camera is linear and
hence we can consider how the filtering and sampling operations act on each term
in Eq. (12.1) individually. From this statement we conclude that spatial frequencies
present in the twin image term, the fourth term in Eq. (12.1), will be filtered in
the same manner as the real image term. From Eq. (12.9) we find that c*(x) can be
expressed as:

c�.x/ D LCTABD fT�.X/g .x/; (12.30)
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where

�
A B
C D

�
D
�

A �B
� C D

�
: (12.31)

The flat line over the parameters indicates that we are referring to the twin
image term. If this term is present during the numerical reconstruction then the final
reconstructed form of the twin image term, Ūs(X) is given by:

Us.X/ D LCTAN BN DN
fc�.x/g .X/; (12.32a)

where

�
AN BN

CN DN

�
D
�

D �B
� C A

��
A �B

� C D

�
D
�

AD C BC �2BD
� 2AC BC C AD

�
: (12.32b)

Eqs. (12.32a) and (12.32b) imply that the reconstructed twin image will be
defocused and smeared out over the reconstructed plane, where it acts as a coherent
noise source. Exceptions to this include “lens-less” Fourier and object arm Fourier
transform systems, see Refs. [15, 20]. In both these systems the real and twin images
appear as focused and structured distributions.

We would like to make one final comment about the numerical reconstruction of
the twin image term. As was noted in the previous section, the sampling operation
that is performed in the CCD plane will define the spatial separation between
the resulting replicas that lie in the (numerical) reconstruction plane. This replica
distance or reconstruction window is given by 	BN /�. In some cases, for example,
the inline Gabor setup, the extent of the twin image term will in fact be greater than
this replica separation distance. For our example we may estimate the extent of the
twin image, TE, from the following formula:

TE D 	BNfx C 2˛c; (12.33)

where

˛c D

0
B@ �˛iq

A
2

N�
2˛4i C B2N	

2

1
CA

�1

: (12.34)

The effect of this is that some of the power associated with the reconstructed twin
image will move outside this reconstruction window to cause aliasing in higher
order replicas. We note however that the numerical algorithms used to calculate the
LCT distributions conserve power over the output reconstruction window, i.e. over
	BN /�. This means that when power associated with a reconstructed twin image
moves outside the reconstruction window, an equal amount of power from higher
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order replicas will move into the reconstruction window causing significant aliasing
but also ensuring that the total power over the reconstruction window remains
constant. A similar effect is discussed in Section 10.2.3 of Ref. [17]. In many
practical implementations of the Gabor inline setup this does not lead to significant
distortion of the reconstructed hologram as the power of the twin is spread over the
whole reconstruction window acting as a low constant background noise.

12.2.3.2 DC Image Terms

The DC image terms also act to degrade the quality of any reconstructed holograms
if steps are not taken to remove them. In some instances it is straightforward to
remove the Ir(x) term. For example in a Frensel system this can be achieved by
using a narrow filter in the Fourier domain that zeroes the values of a small number
of pixels at and around the DC spatial frequency location. Due to the nature of the
Ir(x) most of its power will be concentrated in a small region and hence this simple
filtering operation is quite effective. In the case of a Fourier-type system this removal
can be performed in the reconstruction domain using a digital notch filter (a similar
approach was taken in Ref. [24]). Other cases can be more problematic since the
power of the reference wave will not necessarily be localized in a Fourier domain;
however, in this case different phase space filtering strategies may be adopted.

Removing the object intensity, I(x), tends to be a more complicated problem.
This is because I(x) tends to have a structured distribution whose power tends not
be localized in any phase space plane. This makes notch filtering quite difficult to
implement effectively. One strategy that can be employed is to reduce the power
of the object arm relative to the reference arm. This will lead to a reduction in the
power in I(x), and when analyzing inline Gabor setups this term is often neglected
entirely for this reason.

This approach will also work in a standard Fresnel-type system. The relatively
strong reference wave acts to preserve the information contained in the interference
terms, c(x) and c*(x). However as the strength of object wave is decreased relative
to the reference wave, it has been observed experimentally that the quality of the
reconstructed hologram (particularly the phase distribution) will reduce [36].

Another approach to removing these two terms is to record I(x) and Ir(x)
separately and to numerically subtract these intensity distributions from Eq. (12.1)
leaving the interference terms as the remainder. While this approach does work
if done carefully it can lead to an increase in the noise level in the holographic
reconstructions [36].

12.2.3.3 Off-Axis Holography

The technique proposed by Leith and Upatnieks to overcome the difficulties
encountered when using the inline geometry is to employ an off-axis reference wave
to spatially separate the object, twin, and DC terms in the Fourier plane [37]. This
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approach allows for single-shot holographic capture. An off-axis reference wave
contains a linear phase term and can be expressed as:

uor.x/ D ur.x/ exp .j2�&x/ ; (12.35)

where & is the carrier frequency. Replacing ur(x) in Eq. (12.1) with uor(x) from Eq.
(12.35), and making use of the Fourier shift theorem, the Fourier transform of Ic(x)
is given by:

QIc.v/ D QIr.v/C QI.v/C Qc .v � &/C Qc� .v � &/ : (12.36)

From Eq. (12.36) we see that the twin and real image terms are now separated
from each other in the Fourier domain. By digitally filtering out the unwanted terms
we can recover the desired real image information. We must however make an
assumption about the nature of the c(x) term in Eq. (12.1), namely that its spatial
frequency extent, 2BW, is bounded. The c*(v) term also has a spatial frequency
extent of 2BW. Since QI.v/ D c.v/ � c�.v/, the spatial frequency extent of Ĩ(v) is
4BW.

Because we use a single-shot capture to spatially separate the individual terms
in the Fourier domain the sampling rate at the camera plane limits the total spatial
frequency extent to 1/�. Thus for an off-axis arrangement the maximum spatial
frequency extent that can be recovered is lower and bounded by:

f offaxis
max � 1

4T
: (12.37)

12.3 Numerical Simulations

In this section we present some numerical simulations that illustrate several different
features that arise when imaging the same object using the three holographic
systems that were discussed in Sect. 12.2.1.3: (1) Fresnel system, (2) “lens-less”
Fourier system, and (3) an inline Gabor setup.

In order to compare the relative imaging performance of the three systems we
must choose a realistic set of physical system parameter values. We proceed by
examining their ability to image a point source located a distance zps D 14 mm from
a digital CCD array, at a wavelength of 	D 633 nm. We also assume that c(x) has
been perfectly recovered using PSI. For System (1), the reference wave is a flat
plane wave normally incident on the camera. In System (2) the reference wave is a
spherical wave emerging from a point located at zr2 D 14 mm. Finally in System (3)
the point source used to illuminate the object is located at a distance of zi D 40 mm
behind the object, while the reference wave is located a distance zr3 D zi C zps from
the camera plane. Using these values we can calculate the ABCD matrix for each
system. The results are presented in Table 12.1.
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Since we expect the image of a point source to be relatively well localized in
space in the reconstruction domain, it will in general be well separated from any
neighboring replicas. Given a camera with 1200 pixels, separated from each other
by �D 10 �m with a 100 % fill factor, the camera extent is 2L D 12 mm. This
indicates that replicas arising due to the numerical reconstruction process are located
a distance of 	zps/� 886 mm from each other in the reconstruction domain. To
estimate what might limit the imaging performance for each system we return to
Eqs. (12.22), (12.24) and (12.27), and use them to determine the maximum spatial
frequency limits imposed by each filtering effect, i.e. the camera’s finite extent and
the finite pixel size.

Neglecting the ˛c term from Eq. (12.22), the maximum spatial frequency that
can be imaged is:

f L
max D L

	 zps
: (12.38)

Once again neglecting the Q̨c term in Eq. (12.24), and noting that Df �max D BW and
� D 2� , Eq. (12.27) can be rearranged to give:

f �max D 1

2�D
: (12.39)

In Table 12.1 values for Eqs. (12.38) and (12.39), for each system are presented. For
the system parameter values examined the averaging of the light intensity by the
pixels is the dominant factor limiting the system performance for both Systems 1
and 3. System 2 performs best, since D D 0 for this special case and therefore pixel
averaging does not limit the system performance at all. Instead it acts to attenuate
the complex amplitude of the signal in the reconstruction plane [16, 17, 20].

In Figs. 12.3, 12.4, and 12.5 we plot the intensity of the point spread functions,
h(X, znf), for each of these systems. When znf D 0, we are in the reconstructed object
plane and by varying znf we can numerically propagate the signal field to either side
of this plane.

From Fig. 12.3, we can see that the reconstructed point spread function intensity
distribution looks unusual in that the maximum intensity lies a small distance
from the object plane. This occurs because of the complex interaction of the pixel

Table 12.1 System parameters for the numerical results presented in
Figs. 12.3, 12.4 and 12.5

System 1 2 3 
A B

C D

!  
1 7=500

0 1

!  
1 7=500

� 500=7 0

!  
13=20 7=500

� 1000=27 20=27

!

f L
max 667 lines/mm 667 lines/mm 667 lines/mm

f
�
max 100 lines/mm 1 135 lines/mm
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Fig. 12.3 The magnitude distribution of the PSF for System 1: a Fresnel system

Fig. 12.4 The magnitude distribution of the PSF for System 2: a “lens-less” Fourier system

averaging and the finite camera extent which both act simultaneously to filter the
spatial frequencies of the input signal, see Section 10.3 of Ref. [15].

The superior performance of System 2 can be clearly seen in Fig. 12.4. The point
spread function appears well behaved with a clear maximum intensity peak located
at the actual point source. In Fig. 12.5, the intensity distribution of the point spread
function looks similar to that in Fig. 12.3. Once again two planes exist, located
symmetrically about znf D 0, where two different but equal maximum peak intensity
peaks are located. We note that the positions of these peaks in Figs. 12.3 and 12.5
differ. In Fig. 12.5, the peaks are located in planes that are closer to the correct
in-focus object plane. This perhaps reflects the fact that we expect a marginally
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Fig. 12.5 The magnitude
distribution of the PSF for
System 3: an inline Gabor
system

improved performance by System 3 compared to System 1, since System 3 has a D
value given by D D 22/27 and therefore can allows a higher spatial frequencies to
pass through, see Table 12.1.

12.4 Conclusion

In this manuscript we examined how the LCT can be used to analyze and design
modern digital holographic systems. Using a matrix formulism it is possible
to determine the imaging performance of a wide range of different types of
optical systems in a very convenient manner. The limiting factors determining
the performance of these systems arise due to the nature of digital cameras. The
capture of intensity values by these cameras acts to remove information from the
signal that has passed through the holographic system. This happens in three ways:
First, the finite extent of the camera aperture means that light not incident on the
camera cannot contribute to the final reconstructed image; Second, the finite extent
of the camera pixels acts to average the light intensity incident upon them again
limiting the maximum spatial frequencies that can be imaged, and finally; Third,
the period sampling by the camera pixels produces an infinite number of replicas in
the reconstruction domain separated from each other by a distance 	BN /�. In the
case of PSI holography this sampling operation will not effect the spatial frequencies
that can be imaged by the holographic system.

The role of the DC and twin image terms has also been examined. It has been
shown that in the case of off-axis holography, the maximum spatial frequency
allowed through the system will in most cases be limited by the sampling rate. In
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contrast to PSI techniques, all of the camera bandwidth, 1/�, is used to spatially
separate the DC, twin, and real terms from each other. The main theoretical results
presented in Sect. 12.2 have been summarized in a set of 4 simple rules of thumb
[camera aperture: Eq. (12.22), pixel averaging: Eq. (12.27), sampling: Eq. (12.28),
and finally an off axis reference wave system: Eq. (12.37)] that can be used to
quantify the performance of any LCT holographic system, including PSI or off-axis
setups.

In Sect. 12.3, some numerical results were presented contrasting the difference in
performance between the three different holographic systems whose characteristics
were derived in Sect. 12.2.1.3. It was shown that using the simple rules of
thumb derived in Sect. 12.2, we could accurately predict the expected and relative
performance of each of the different holographic systems.
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Chapter 13
Double Random Phase Encoding Based Optical
Encryption Systems Using Some Linear
Canonical Transforms: Weaknesses
and Countermeasures

Pramod Kumar, Joby Joseph, and Kehar Singh

Abstract During the last two decades or so, a large number of optical information
security systems have been proposed by researchers, by exploiting various inherent
advantages of optics, with a view to gaining superiority over the existing digital
security systems. Among them, double random phase encoding (DRPE) scheme
is the oldest and most exhaustively explored optical scheme. However, symmetric
nature and linearity prove to be bane of the DRPE scheme, and give an open
invitation to unauthorized users to crack the system by mounting different type
of attacks. Due to this fact, security of the DRPE scheme has been compromised,
making the system vulnerable to attacks. A number of schemes have also been
introduced based on the use of fractional Fourier-, Fresnel-, gyrator-, Hartley-,
and other transforms. However, vulnerabilities are not limited only to the Fourier
domain based systems. Fresnel- and fractional Fourier domain based systems
have also been found weak against the chosen-, and the known-plaintext attacks.
Resistance of many of the security enhanced DRPE schemes in some other linear
canonical transform domains has also been found to be weak against these attacks
or their modified forms. When linearity is claimed to be broken with introduction
of an amplitude mask at the Fourier plane, the DPRE scheme is able to nullify
the high level known-plaintext attack but susceptibility is found against a simple
impulse function attack. Recently, some strategies have been adopted to improve
the resistance of the DRPE based schemes against the impulse function attacks.
Some aspects of the problem have been discussed in the present chapter.
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13.1 Introduction

History tells us that each and every human civilization has always tried to achieve
“perfect” secrecy with their own methods like Greek with “Skytale,” Roman with
“Caeser cipher” and Indian with “Nirabhasha,” etc. But impossibility to attain it
in practice has consistently challenged human beings to develop newer methods
with enhanced security. Moreover from earlier days to the modern day society, the
necessity of information security has been never ending.

Cryptography, the science of securing information plays an important role in
information security, and is one of the tools that ensures security, integrity, and
authentication of data. In the present era, cryptography has been of immense use in
many application areas such as communication, defense, multimedia, e-commerce,
computer networks, software and hardware products, medical records, document
authentication, and intellectual property and copyright protection to name a few. The
evolution of secure information systems to curb the forgery and counterfeiting, etc.
rests on the state of the art of the relevant period. Therefore, newer methods/schemes
are continuously devised to overcome the existing vulnerabilities in the older
methods.

In the modern times, frauds have become increasingly common due to the
rapid advancements of technology in computers, charge-coupled devices, printers,
scanners, copiers, and image-processing software. As a result of this, it has become
possible to produce authentic-looking counterfeits portraits, logos, symbols, money
bills, and other complex patterns. Due to the increased threat and incidents of
terrorism worldwide, inspection requirements in public places, ports of entry, and
transportation hubs around the globe have increased. Therefore it is necessary that
the secret information sent from one place to another should be in a coded form.

13.1.1 Necessity of Optical Security Systems

In the present age, often termed the “information age,” flow of information is
playing an increasingly prominent role in our daily lives. Information security has
therefore become of utmost concern following a sharp rise in the rate at which
the information is being generated and disseminated. Storage and transmission of
information runs the risk of making sensitive and valuable information vulnerable
to unauthorized access. Nowadays digital information security systems, with the
advent of specialized electronic data processing machines and superfast computers,
have become more capable of protecting information from theft, damage, and noise,
etc. It would be interesting to know that most of the information protection ideas
have originated from the mathematics and computer science, but physics has also
played a major role in this area.

Although a large number of commercial digital encryption systems are playing
a major role in our daily lives, the required computing speed when large amount
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of data (e.g., high resolution images) is involved remains the bottleneck of these
systems. The quest for the optical information security techniques was therefore
undertaken to overcome the drawbacks of the digital security systems. Massively
parallel processing in optics, of two-dimensional image data, provides an edge over
the electronic processors which are limited to serial processing. Optics provides a
large number of degrees of freedom, as data can be encoded in various attributes
of light such as phase, amplitude, wavelength, spatial frequencies, polarization,
and orbital angular momentum. Speed of digital encryption systems becomes
poor as an increase in key length is required to make the system safer from
attacks, whereas the optical systems are inherently faster having multi-dimensional
capability. Further to break an optical security system, a hacker needs to employ
sophisticated optical techniques, which are less accessible and flexible compared
to the digital techniques. As a result, optical cryptography has become a burgeon-
ing area of research. Advantages of both digital and optical techniques can be
combined in hybrid optical-digital systems. Further, the use of photo refractive
and photopolymer materials has given ample space to record immense amount of
data three-dimensionally within these holographic media which afford high storage
densities.

13.1.2 Encryption Schemes Based on Various Optical
Transforms

A large number of optical security systems/schemes [1–8] have evolved over the
years, which are based on a variety of principles/methods. However, in the present
chapter it is impossible to include all of these. As a result, it has been possible to
mention only a limited number of techniques making use of some linear canonical
transforms (LCTs) which are a three parameter class of linear integral transforms.
LCTs can be used to describe the effect of propagation of a wave field through any
general quadratic phase system. Fortunately, optical implementation of most of the
LCTs with arbitrary parameters is now possible.

With the introduction of a number of transforms, security enhanced optical
encryption systems have been further explored to improve resistance and add
new encryption keys. Fractionalization of transforms gives us a new degree of
freedom for encoding information. Therefore a number of schemes have also been
introduced based on the use of fractional Fourier-, Fresnel-, gyrator-, Hartley-,
Hilbert-, Mellin-, Hadamard-, Gabor-, Hankel-, random sine and cosine, wavelet,
and other transforms. Of these, the security enhanced schemes based on Fourier-,
[9–45] Fresnel-, [21, 46–58], and fractional Fourier transform (FrFT) [59–113] have
been very widely reported in the literature. Since the optical security systems are,
to some extent, capable of providing resistance against frauds and counterfeiting to
ensure integrity, a tremendous intensification in the development of growth of optics
based identification systems useful in detecting fake passports, drivers’ licenses,
passes, credit cards, and other documents has been witnessed.
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The techniques using various canonical transforms, particularly Fourier-,
Fresnel-, and FrFT, and their variants, have also been used for information
hiding and watermarking. We had to leave out the studies on the techniques
using holography, polarization, and joint transform correlators (JTCs) in which
various transforms have been extensively used. Due to the constraint (framework)
of this chapter, a number of techniques developed in the area of optical information
security could not be listed. Already a large number of book chapters, special
issues of journals, and review papers in various scientific journals and conferences
have reported about different approaches and applications of the optical security
schemes.

A number of publications have illustrated the exhaustive research carried out
with successful experimental demonstration of the double random phase encoding
(DRPE) scheme in the Fourier domain. This technique has indeed provided a
foundation for many of the subsequent developments. Research in the field of DPRE
is confined not only to optics, but ideas from other areas have also been incorporated
to affect further improvements. Therefore, in the following sections, we will try
to draw an outline of the DPRE scheme in some LCT domains, namely Fourier-,
Fresnel-, and FrFT domains. Most recent concern is about security aspects of the
DRPE scheme which is not limited only to the Fourier domain, but has penetrated
the Fresnel-, fractional Fourier-, and other transform domains also. The attacks and
their countermeasures adopted to improve the security of the DRPE scheme will also
be discussed here. Although we have made sincere efforts to include all milestones
in the progress of the DRPE scheme, we express sincere regret for not being able to
mention/cite many of the advances which have been reported in the literature.

During the last two decades or so, a large number of optical encoding techniques
have been formulated; among them, the DRPE scheme [9] is the oldest and
most exhaustively investigated scheme. In the DRPE (Fig. 13.1), two statistically
independent random phase masks (RPMs) employed at the input-, and the Fourier
planes in a 4-f optical spatial filtering setup, encode a two-dimensional input
image into a stationary white noise. The input plane RPM Rin(x, y) is required to
convert an input image I(x, y) into non-stationary white noise after the first Fourier
transformation, while the Fourier plane RPM Rf(u, v) encodes the information into
stationary white noise. The encryption process is mathematically written as

E .x; y/ D FT�1 Œ.FT ŒI .x; y/Rin .x; y/�/Rf .u; v/� (13.1)

where FT[] and FT�1 Œ� represent, respectively, the Fourier-, and inverse Fourier
transform operations.

On the basis of form of the input image, the DRPE technique has two modes. In
the amplitude-based DRPE, the input image is of amplitude nature, due to which
only the Fourier plane RPM serves as the encryption key during decryption because
quantity of interest at the decryption plane is only the intensity of the input image.
In the phase-based DRPE, both the RPMs are required to retrieve the original phase
image. Fully phase-based DRPE provides more resistance against the additive noise
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Fig. 13.1 Schematic diagram for the DRPE scheme: (a) encryption and (b) decryption

in comparison with the amplitude-based DRPE encryption [16]. The phase nature
of the input information makes the phase-based DRPE resistant against copying, as
naked eye and intensity sensitive device like CCD which cannot record it. Detailed
description of the DRPE scheme can be found in a number of research papers and
review articles in the literature cited in the list of references. It is remarkable to
note that in spite of existence of a large body of literature, a formal treatment of
the optical technique was published [41] only in 2012. In this paper, the authors
proposed a new discrete model of the DRPE system that retains the properties of
its continuous counterpart and ensures correct sampling so as to avoid aliasing at
every stage of the simulation. The two diffusers are created so as to approximate the
transmission function of physical narrow band diffusers.

In recent years, double or multiple images have been encoded with the DRPE
technique into single encrypted image [4, 21, 26, 29, 36]. Encryption is also
performed in various domains like Fresnel-, and Fractional Fourier domain, etc.,
with different multiplexing techniques like wavelength- and position multiplexing.
But the quality of decrypted images with some of these multiplexing methods
has been found to deteriorate due to cross-talk among various decrypted images.
Initially, the DRPE scheme was designed for encoding binary-, and gray-scale
images into stationary white noise, but later color images were also encrypted [17].
For encryption of a color image, each decomposed constituent primary color is
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encoded individually with DPRE using wavelength multiplexing. In comparison
with gray-scale or monochromatic images, color images are able to offer more
information, therefore research related to color information has escalated in recent
years. Drawback of using three color channels is removed in an alternative and
more simplified method [77], where the indexed image formats of color image is
encrypted instead of each primary color image.

It may be pointed out that experimental optical implementation of many of the
proposals described in the literature on the DRPE or its variants has not yet been
demonstrated. However, the schemes have been validated by presenting results of
computer simulations.

13.1.3 Architecture for Optical Implementation

For the optical realization of the DRPE scheme, two classical optical pattern
recognition correlator architectures, i.e. 4-f vanderLugt- (VL) and JTC architectures
are adopted [2]. In both of these architectures, the input image is displayed either in
the form of a transparency or on a spatial light modulator (SLM). Due to continuous
technological improvements in both amplitude- and phase modulating electrically
addressed liquid crystal SLMs, these devices have been widely used for the purpose.
The random phase variation is obtained with the introduction of ground glass or
from the non-uniform random coating of gelatin on glass plates. Display of the
RPMs on the SLMs provides ease of use during the encryption and decryption
processes. Output of the DRPE encryption process is a stationary white noise, which
has complex nature. And this encrypted information obtained at the output plane
has random amplitude and phase, due to which holographic process is required for
recording.

Although both of the architectures (VLC and JTC) for the DRPE scheme require
two RPMs to convert amplitude or phase image into stationary white noise, the
complex nature of the encrypted image, stringent alignment for decryption, and
requirement of conjugate RPMs for decryption are the main drawbacks of the DRPE
in the VLC architecture. Problem arising due to complex nature of the encrypted
image is alleviated in the JTC architecture, as the encrypted information is real
and non-negative. Due to the shift invariance property of the JTC, a shift of the key
RPM only changes the position of the decrypted image, and therefore the problem of
stringent alignment of the RPM is alleviated. Employment of the same key RPM for
encryption and decryption further removes the necessity for the design of conjugate
RPM during decryption. Therefore, the DRPE performed in the JTC architecture
shows superiority over the DRPE in the VLC architecture.

Decryption process can be performed with two methods. In one of the methods,
original image is decrypted simply by reversing the optical setup, and employing
conjugate RPMs in place of the original RPMs. In this method, the encrypted
image is Fourier transformed, and the complex conjugate RPM at the Fourier
plane nullifies the effect of the encryption mask Rf(u, v). The subsequent inverse
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Fourier transform gives the decrypted image multiplied with the mask Rin(x, y) at
the decryption plane. Depending on the type of amplitude or phase-based DRPE,
either decrypted image is captured on CCD or multiplied with conjugate of input
plane RPM.

In the second method [14], need of conjugate RPMs during the decryption
process is eliminated, as the same set of encryption RPM keys are employed to
retrieve the decrypted image. This method for the decryption process is based on
the optical phase conjugation technique in which the conjugation of the encrypted
image is obtained with the use of optical phase conjugation in a photorefractive
crystal through four-wave mixing. The counter propagating phase conjugate beam
is able to nullify the effect of the RPMs in the decryption process.

13.2 Extension from the Fourier- to Other Transform
Domains

Security of the DRPE scheme is restricted either by a single or both RPMs
depending on the type of input image considered for encryption. Therefore new
encryption parameters in different members of the LCT family have been explored
to enlarge the key space by adding new encryption keys. Substitution of various
transforms in place of the Fourier transform results in improved strength of the
DRPE scheme.

13.2.1 Fractional Fourier Domain

FrFT has been widely used for encryption after its use was first demonstrated [59,
60] in the DRPE scheme. It is well known that the zero-order FrFT is equal to an
identity operation, whereas complete Fourier transform is of first order. From an
optical point of view, the FrFT is executed either by using quadratic graded index
media or by utilizing optical setup consisting of lenses. On the basis of using lenses
Lohmann’s type I and Lohmann’s type II systems are designed. In type I setup, a
lens is sandwiched between two equal free-space propagation distances, while in
type II system, between two lenses of equal focal length is a free-space propagation
distance.

Encryption process in the fractional domain is written as

E .xo; yo/ D FrFTˇ Œ.FrFT˛ ŒI .x; y/Rin .x; y/�/Rfr .u1; v1/� (13.2)

where Rfr(u1, v1): fractional plane RPM.
DRPE in the fractional domain (Fig. 13.2) is viewed as a generalization of the

DRPE in the Fourier plane method; here, the fractional-orders act as new encryption
keys in addition to the RPMs. Perfect decryption is possible only with correct



374 P. Kumar et al.

Input Image
(Amplitude)

( ),inR x y

RPM

Fractional Fourier 
transform of order a

Fractional Fourier 
transform of order b

Encrypted Image

( )1 1,frR u v

RPM

Encrypted image

Decrypted Image

( )*
1 1,frR u v

Conj RPM

Fractional Fourier 
transform of order b-

Fractional Fourier 
transform of order a-

a

b

Fig. 13.2 DRPE in the fractional Fourier domain: (a) encryption process and (b) decryption
process

fractional-orders in addition to the RPMs which are specified during the encryption
process. A slight variation of 0.05 in the fractional-order [59] would preserve the
information security, even if an attacker is able to acquire knowledge about the
RPMs.

13.2.2 Anamorphic FrFT Domain

Substitution of spherical lenses with a pair of cylindrical lenses having different
focal length in the Lohmann’s system transforms a function into an anamorphic
fractional Fourier domain. Therefore, the DRPE in the anamorphic domain encodes
a two-dimensional image with two different fractional-orders along the x- and y-
axes.

Introduction of anamorphic FrFT [61] further enlarges the encryption key space
of the DRPE scheme, as in this domain more freedom is available to choose different
fractional-orders along two orthogonal directions of an optical system. Therefore, it
becomes more difficult for an unauthorized user to crack the security of the DRPE
system.
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13.2.3 Anamorphic FrFT at an Angle

Usually, the cylindrical lenses are aligned either along x- or y-axis to perform the FT
or FrFT with these lenses in an optical systems. An arbitrary in-plane rotation of the
cylindrical lenses allows one to perform FT or FrFT with the modified Lohmann’s
second-type system (MLST) at that angle [80]. The FrFT at an angle obtained from
the MLST system is given by

G.˛1;˛2I�/ .u1; v1/ D CP exp
n
i�
�

u21
tanŒ˛1.�=2/�

C v21
tanŒ˛2.�=2/�

�o
1Z

�1

1Z

�1
g1 .x1; y1/ exp

n
�i�

�
x21

tanŒ˛1.�=2/�
C y21

tanŒ˛2.�=2/�

�o

exp
n
�i2�

�
x1u1

sinŒ˛1.�=2/�
C y1v1

sinŒ˛2.�=2/�

�o
dx1dy1

(13.3)

where ˛1 and ˛2 are the fractional-orders in the range [0, 1]

g .x; y/ D g1 .x1; y1/ (13.4)

g1(x1, y1) is new representation of image g(x, y) in rotated (x1, y1) plane.
The constant factor is

CP D exp.�i� sgnfsinŒ˛1.�=2/�g=4Ci˛1.�=4//

jsinŒ˛1.�=2/�j1=2
� exp.�i� sgnfsinŒ˛2.�=2/�g=4Ci˛2.�=4//

jsinŒ˛2.�=2/�j1=2
(13.5)

The relationship between the rotated and original axes is x1 D x sin � C y cos �,
and y1 D �x cos � C y sin �.

The anamorphic FrFT by the MLST system in operator form is denoted as

G .u1; v1/ D FrFT.˛1;˛2I�/ Œg1 .x1; y1/� (13.6)

where ˛1 and ˛2 are fractional-orders along x1- and y1-axes at an angle �, with
respect to the x-, and y-axes.

The anamorphic FrFTs of a zero padded input image (Lena; size 256 � 256

pixels Fig. 13.3), when the rotation angle is kept constant at 30ı for fractional-
orders (0.0, 0.25), (0.0, 0.50), (0.0, 0.75), and (0.0, 1.0) are illustrated, respectively,
in Fig. 13.3.

The encryption process in the anamorphic FrFT domain employing the MLST
systems S1 and S2 is written as

E .xo; yo/ D FrFT.˛3;˛4I�2/
h�

FrFT.˛1;˛2I�1/ ŒI .x; y/Rin .x; y/�
�

Rfr .u1; v1/
i

(13.7)
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Fig. 13.3 (a) Input image; FrFT at same angle of zero padded image at (b) (0.0, 0.25)
(c) (0.0, 0.50) (d) (0.0, 0.75) and (e) (0.0, 1.0)

Fig. 13.4 Numerical simulation results: (a) encrypted image, (b) decrypted image, (c) mean-
square-error (MSE) between the decrypted and the original image, with change in the rotation
angle of the MLST system S2 (d) decryption with change in the rotation of the MLST system S2:
by a 0.08ı, and (e) 0.2ı from the actual value

The anamorphic fractional-orders with in-plane rotation of the MLST systems
S1 and S2 are represented, respectively, as .˛1; ˛2I�1/ D .0:5; 0:9I 45ı/ and
.˛3; ˛4I�2/ D .0:7; 0:3I 60ı/. It can be seen that the original image shows no
resemblance to the encrypted image as illustrated in Fig. 13.4. Nearly perfect
decrypted image (Fig. 13.4) is obtained by using the conjugate of Rfr, with the
inverse anamorphic fractional-orders and keeping the in-plane rotation angle same
as during the encryption process. Decryption sensitivity with respect to the change
in the in-plane rotation of the MLST system S2 is plotted in Fig. 13.4.

It can be seen that a slight deviation of 0.08ı and 0.2ı from the original angle for
S2 results in partial decryption of the image (Fig. 13.4).

Qualitative experimental results for encryption and decryption process have
been performed with an arrangement shown in Fig. 13.5. Results are illustrated in
Fig. 13.6. A rotation of the MLST system S2 by a very small angle D 0.1ı results in
complete noise, having no information about the original image.
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Fig. 13.5 Experimental setup, BE: beam expander; BS1, BS2, BS3: beam splitter; M: mirror; S1,
S2: MLST system; L2: imaging lens; R1 D Rin and R2 D Rfr: RPM; and LiNbO3: photorefractive
crystal

Fig. 13.6 Experimental result image: (a) original, (b) encrypted, (c) decrypted, and (d) decrypted
with rotation of 0.1ı of S2 from the original

13.3 Strength Estimation of the DRPE in the Fractional
Domains

The DRPE scheme operates on real-valued amplitude images or phase-only input
images to encode them into stationary white noise. As only the Fourier plane RPM
is necessary for perfect decryption in the amplitude-based DRPE, the strength can be
estimated numerically in terms of the total number of attempts required to breach the
security of the system. Usually out of 256 phase levels any level can be chosen for
a pixel, therefore an RPM of size 100� 100 pixels will have 256.100�100/ number of
attempts for decryption, while in phase-based DRPE, both the RPMs are of utmost
importance. Therefore, for an authorized user, the total number of attempts becomes
2562�.100�100/.

Substitution of the FrFT in place of the FT enhances security of the DRPE system
with the addition of fractional-orders as new encryption keys. During the decryption,
the FrFT domain DRPE is found sensitive to a deviation of 0.05 from the actual
order [59]. An unauthorized user could plan to vary the order in step of 0.01 as the
fractional-order are in range [0, 1], and this leads to only 100 possible values in this
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range [80]. Inclusion of the second fractional-order with the same sensitivity will
lead to .100/2�2562�.100�100/ total number of orders. The anamorphic FrFT further
increases the task of an attacker as .100/4 � 2562�.100�100/ orders are required to
know the exact order. In-plane rotation angle of the MLST system [80] adds rotation
angle as new encryption key, whose sensitivity is found to be 0.2ı. When varied in
steps of 0.1ı, the numbers of possible attempts added due to rotation angle are 10�
180, as the MLST system could regain its original position only after 180ı rotation.
Therefore, the total number of attempts required for an anamorphic DRPE system
employing the MLST system [80] becomes .10 � 180/ � .100/4 � 2562�.100�100/.

Introduction of more number of keys results in enhancing the security of the
system, as the total number of attempts necessary to break the system becomes
extremely large. With the increase in computational load, for an attacker to try all
those combinations becomes intractable, but actually there is no need to attempt
all those combinations. The main conclusion drawn from this strength estimation
[80] is that there are only limited or fixed numbers of fractional-orders to break the
system, which was not earlier calculated.

13.4 Vulnerability of Various Schemes to Attacks

The security of an optical encryption scheme can only be trusted if these systems are
able to endure various attacks [28, 114–138] under specified conditions. Although
the DRPE scheme has shown great strength against different attacks like brute
force-, occlusion-, noise-, and misalignment, etc., but recent studies have exposed
the weaknesses against some of the attacks. Evaluation of the DRPE against blind
decryption is also not sufficient to judge its strength, as only a limited number of
keys are considered from a large key space. Further introduction of additional keys
in the form of the fractional-orders, and free-space propagation distance modify
the DRPE scheme into a computationally more complex cryptosystems, but search
within the limited key space is inadequate to evaluate the resistance of the DPRE-
based systems against attacks [119, 122].

13.4.1 Brute Force Attack

One of the simplest and obvious attacks is the brute force attack, where an exhaus-
tive search for the right key is carried out with every possible key combination in
the entire search space [119]. Due to the discrete nature of these cryptosystems, an
attacker with adequate knowledge about size of the RPMs, phase levels, wavelength,
and transform domain could make all possible set of probable combinations to
find one workable combination. But the number of combinations to search the
required key is very large, which further shoots up with the addition of more keys
or an increase in size of keys. Although these number of combinations seems to
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be intractable and huge search is required for the correct key, in practice all those
combinations are not required, as partially recognizable image can be sufficient for
many purposes.

13.4.2 Chosen-Cipher Text Attack

Realization of the DRPE employing the 4-f setup gives rise to the possibility
of impulse function (low level) attack, which is due to the transformation of an
impulse function into a unity amplitude function at the Fourier plane. Subsequent
transformation reveals the complete information about the Fourier plane RPM in
form of encrypted image [114]. When the attacker is denied the encryption system,
and accessible decryption system can only record the intensity, in this case the
repeated probing with a set of cipher texts could be designed to crack the system
[119]. Linearity of the DRPE system also gives rise to a variant form of the delta
function attack, where two similar looking input images differ only by the center
pixel, i.e. difference of these two images is a centered delta function [119]. This less
suspicious form of the delta function attack is also applicable in the phase-based
DRPE system where one-time impulse attack is not possible.

Applicability of the impulse function attack is not limited to only the Fourier
domain but it also works well in the Fresnel domain DRPE. If the attacker possesses
details about the Fresnel distance and the wavelength, then both the input- and the
Fresnel plane keys, i.e. RPMs are cracked with the attack, choosing a series of
impulse functions as specific plaintexts.

13.4.3 Chosen-Plaintext Attack

In comparison with the chosen-cipher text attack, more opportunities are available
to the attacker in choosing the input images during the chosen-plaintext attack.
Therefore with this attack, an unauthorized user is able to choose or design a series
of plaintexts necessary to encrypt, and corresponding encoded images are obtained.
The Fourier plane RPM, which is the most important key for the amplitude-based
DRPE scheme is easily divulged with simple and effective selection of plaintexts
with this attack. Security enhanced DRPE scheme in the Fresnel domain is also
found prone to this attack [118], as an unauthorized user cracks both input- and
transform plane keys, when one possesses information about the wavelength and
two free-space propagation distances.

Success of this attack is limited not only to the DRPE employed in optical 4-f
architecture, but security of the DRPE scheme in the joint transform architecture is
also broken with a single predefined chosen-plaintext and corresponding ciphertexts
[128]. In another method, acquisition of three encrypted images corresponding to
their respective predesigned chosen plaintexts with accessibility of the encryption
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machine completely determines the RPM employed during encryption process.
Information about the separation between the input image and encryption phase
mask is also not required in this attack.

13.4.4 Known-Plaintext Attack

Symmetric and linear natures are the inherent features of the DRPE scheme, and
due to these properties, an unauthorized user is able to try different attacks. A more
advanced attack, which requires very few resources in comparison with the earlier
mentioned attacks is the known-plaintext attack [117, 119, 121] in which only a
pair of plaintext-ciphertext is sufficient to retrieve the encryption keys. Recovery of
these input- and Fourier plane RPMs is performed with an ease by employing the
phase retrieval techniques, which is mainly carried out with Gerchberg–Saxton-,
Fienup’s hybrid input–output-, or other modified algorithms. With the advancement
in the computational algorithms, much faster iterative algorithms are coming up,
and attackers are able to breach the scheme in lesser time. This attack [119, 121]
provides more relaxation as no predefined input-ciphertext is necessary. The DRPE
in JTC architecture is also found vulnerable to the known-plaintext attack.

In the known-plaintext heuristic attack [116], an estimation of the Fourier plain
key is obtained with the application of simulated annealing heuristic algorithm.
With the convergence of simulated annealing algorithm, an unauthorized user is
able to obtain the cracked key, and information about the real-valued input image is
obtained with very low threshold error. The combination of hill climbing algorithm
with simulated annealing known as hybrid heuristic algorithm [124] significantly
reduces the searching time and decryption error. These heuristic approach based
attacks do not search for exact solution, but cracked key providing decryption with
slight error is acceptable.

Although security of the DRPE scheme in the FrFT domain is enhanced with the
introduction of fractional-orders as additional encryption keys, the scheme still lacks
the strength to endure the known-plaintext attack [125]. Here, a properly designed
strategy to determine the exact fractional-orders is needed to exhaustively search in
subdivided fractional domain space step-by-step with a very small fractional-order.
This search process is time-consuming, but powerful computer makes it possible in
reasonable time. Thereafter phase retrieval algorithm retrieves the two phase keys
from the known-plaintext pair.

Security flaws of the DRPE scheme employing JTC architecture also remain
unsettled, as the known-plaintext attack is able to shatter the resistivity with ease
[127]. This attack employs heuristic hybrid algorithm in combination with the
Gerchberg–Saxton algorithm, due to the intensity nature of the encrypted image
in the JTC architecture. Resistance of the DRPE scheme in JTC architecture is also
found feeble against this attack.
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13.4.5 Alternative Search Algorithm for Keys

As explained earlier, a number of attacks designed for cryptanalysis of the DRPE
reveal the weaknesses. Introducing additional encryption parameters using various
techniques further enlarges the key space, but such security enhanced systems are
also found vulnerable to attacks. Usually with these strategies an attacker tries to
extract the original key. Therefore, either the attacker must have proper knowledge
about the geometric keys like wavelength, free-space propagation distance, and
fractional-orders, etc. or an exhaustive search should be made to obtain these
geometric keys. However these exhaustive searches are time consuming, and it
becomes impractical to search the exact key in expanded large key space. Some
numerical technique could significantly lessen the computational complexity, but
increase in the image size exponentially enlarges complexity. Success of these
attacks is only possible, when all other geometric keys are known in advance.

Recently, a new method [129] has been described, where all the key parameters
are assumed to be wrong, so that the mismatch due to one key can be compensated
with other keys. The method is based on a strategy to derive an alternative region
of the possible keys. The keys retrieved from this method are completely different
from the original set of keys for the Fresnel domain DRPE. No constraint is imposed
on the choice of these parameters. The phase mask keys are retrieved with the phase
retrieval algorithms, when the attacker has information about a large number of
ciphertexts and their corresponding plaintexts. After several round of iterations, the
decrypted image is obtained with recognizable features.

13.5 Attack-Resistant DRPE Scheme

In order to improve the security of the conventional DRPE scheme against various
existing attacks, there is an urgent need to deeply investigate and understand
the behavior of these attacks in the scenario of this scheme. And with these
understandings, new methods could be developed to nullify these attacks. Recent
cryptanalysis relates the origin of these attacks due to the optical linearity of the
DRPE scheme. But, in recent years, with modification in the conventional DRPE
scheme, various methods have been formulated to overcome these attacks.

13.5.1 Impulse Attack-Free DRPE Scheme

As is well known, the Fourier transformation of a delta function yields a unity
function. As the conventional DRPE scheme employs two RPMs in 4-f optical
setup at input and transform plane, the consequence of this universal Fourier
transformation property and the 4-f geometry for encryption make the DRPE
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scheme vulnerable to a one time simple impulse function attack. Therefore to
negate such an attack, transformation of impulse function into a random function
is necessary. This could be achieved [31, 32] in the following ways.

13.5.1.1 Randomized Lens-Phase Function

Immunity against the impulse function attack is achieved with lens, LRa having
randomized surface, when the lens-phase function is modified by multiplying it with
a random function, which is similar to modification of the lens-phase function in the
presence of aberrations. Here the random lens phase-based FT is denoted as MFTLR

[31]. Due to the randomized lens-phase function, the MFTLR of a delta function
transforms into a random function as depicted in Fig. 13.7.

In the impulse attack-free DRPE scheme (Fig. 13.8) the usual FT lenses
are replaced with lenses LRa, LRb having randomized lens-phase functions in the
conventional DRPE scheme. The encryption scheme then becomes,

E .x; y/ D MFTLRb
�	

MFTLRa ŒI .x; y/Rin .x; y/�



Rf .u; v/
�

(13.8)

Fig. 13.7 (a) MFTLR of a delta function into randomized function, (b) normalized magnitude of
the randomized function

Fig. 13.8 Schematic diagram
for the impulse attack-free
DRPE scheme
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Fig. 13.9 Numerical simulation results: (a) input image, (b) encrypted image, (c) decrypted
image, (d) decrypted with the Fourier plane mask obtained from the FT of the impulse encrypted
image

In a case of the impulse attack on this scheme, the encrypted image is not the inverse
Fourier transform of the Fourier plane mask, but a complex function having random
amplitude as well as random-phase distribution, which is due to the two MFTLR

lenses.

E .x; y/ D MFTLRb
�	

MFTLRa Œı .0; 0/Rin .x; y/�



Rf .u; v/
�

(13.9)

The Fourier plane mask is not cracked even with the variant form of the impulse
function employing two similar looking images.

E .x; y/ D MFTLRb
�	

MFTLRa Œ.I1 .x; y/ � I2 .x; y//Rin .x; y/�



Rf .u; v/
�

(13.10)

For an input gray-scale image (Lena, 512 � 512 pixels, Fig. 13.9), the encrypted-
and decrypted images are shown, respectively, in Fig. 13.9. When an unauthorized
user is able to encrypt the impulse function as an input image, the noise pattern
(Fig. 13.9) is obtained in the form of decrypted image from the FT operations to
retrieve the key mask. As the randomization due to MFTLR lenses cannot be nullified
from the FT, the security is enhanced in addition to the immunity from the impulse
function attack and its variant form.

Schematic diagram for experimental demonstration of this impulse attack-free
scheme is illustrated in Fig. 13.10. Random phase variation is obtained from the FT
lenses of focal length 18 and 20 cm, when these lenses are coated with gelatin to
have random surface variations. Complex demagnified encrypted image is recorded
holographically in the Fe : LiNbO3 crystal, and decryption is performed with the
phase conjugation technique. Experimental results are illustrated in Fig. 13.11.

13.5.1.2 Introduction of an Additional RPM in Front of the Lenses

As the cause for the viability of an impulse function attack has become known,
another method to avoid the formation of a unity function at the Fourier plane is
also adopted, in which the RPMs are placed in front of both the FT lenses in a 4-f
optical setup. These RPMs in front of the FT lenses protect the DRPE scheme from
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Fig. 13.10 Experimental setup for the impulse attack-free scheme, BE: beam expander; BS: beam
splitter; M: mirror; R1 D Rin and R2 D Rf: RPM; LRa and LRb: lenses with randomized phase
functions; L2: imaging lens; and LiNbO3: photorefractive crystal

Fig. 13.11 Experimental results: (a) image to be encrypted; (b) encrypted image; (c) correctly
decrypted image; (d) decryption with lateral shift of 0.01 mm in lens LRb

the impulse function attack. Schematic diagram for the impulse attack-free DRPE
[32] is illustrated in Fig. 13.12. The encryption process is written as

E .x; y/ D 1
i	f exp

n
ik
2f

�
1 � d4

f

� 	
x2 C y2


o

� FT Œ.FRT	;d3 ŒUf .u; v/Rf .u; v/�/ � R4 .u1; v1/�
(13.11)

where

Uf .u; v/ D 1
i	f exp

n
ik
2f

�
1 � d2

f

� 	
u2 C v2


o

� FT Œ.FRT	;d1 ŒI .x; y/Rin .x; y/�/ � R2 .x1; y1/�
(13.12)

Suppose an unauthorized user is able to encrypt the impulse function into an
encrypted image, it is represented as,
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Fig. 13.12 Schematic diagram, Rin, R2, Rf, and R4: RPMs; I: original image to be encrypted; E:
encrypted image; L1 and L2: lenses of focal length f each; d1, d2, d3 and d4: free-space propagation
distances
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While in the conventional DRPE, the encrypted image is the inverse FT of the
Fourier plane, this modified DRPE scheme provides a random function due to
additional RPMs in front of the lenses in the 4-f optical setup.

An image of Lena (Fig. 13.13) .256 � 256 pixels/ embedded in a window of
size .512 � 512 pixels/ is assumed to be an input image. The size of the image,
RPMs, and the encrypted image are 1 cm � 1 cm each. Lenses are of focal length
20 cm each, while free-space propagation distances d1, d2, d3 and d4 taken to be
10 cm each. The encrypted image does have resemblance to the original image, and
perfect decryption results in the retrieval of decrypted image (Fig. 13.13). Suppose
an attacker is able to encrypt an impulse function, and assume this scheme to be the
conventional DRPE scheme. In that case without nullifying the effect of RPMs in
front of the lenses, the decryption performed with the cracked Fourier mask in the
conventional DRPE appears as noise shown in Fig. 13.14. In the absence of any of
the RPMs, only noise will be obtained as depicted respectively in Fig. 13.14.

13.5.2 Known-Plaintext Resistant Scheme

As pointed out earlier, in comparison with the various attacks on the DRPE scheme,
the known-plaintext attack is considered to be the most effective and destructive.
The success of this attack is not restricted to only the Fourier domain, as Fractional
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Fig. 13.13 Numerical simulation results: (a) input image; (b) encrypted image; and (c) perfectly
decrypted image

Fig. 13.14 Decryption performed under different conditions when the Fourier plane mask is
obtained with an impulse attack, (a) using classical DRPE setup; (b) when only R4 is known,
and (c) when only R2 is known

domain is also unable to endure this attack. To negate such an attack, amplitude
modulation has been performed at the Fourier plane in the DRPE scheme. This
could be achieved in the following ways [25, 130]:

13.5.2.1 Amplitude Modulation

Lapses in the security of the DRPE scheme originate due to existence of the linearity.
To make the scheme immune against the known-plaintext attack, linearity is claimed
to be broken with the introduction of undercover amplitude-modulation operation,
and the modified scheme is termed “double random phase-amplitude encoding”
(DRPAE) [25]. In addition to both the statistically independent RPMs Rin(x, y)
and Rf(u, v), a binary spatially random amplitude mask A(u, v) is bonded with the
Fourier plane mask in the known-plaintext attack-free DRPAE scheme (Fig. 13.15).
Encoding of the amplitude input image is mathematically represented as

Ei
drpae .x; y/ D FT�1 Œ.FT ŒI .x; y/Rin .x; y/�/ fRf .u; v/A .u; v/g� (13.15)
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Fig. 13.15 Schematic diagram for the DRPAE scheme

Fig. 13.16 Numerical simulation results for DRPAE: (a) input image, (b) Fourier plane amplitude
mask, (c) Fourier plane RPM, (d) decrypted image with all correct parameters

where the amplitude mask is represented as

A .u; v/ D

1 if .u; v/ 2 �
k if .u; v/ … � (13.16)

A predefined constant p denotes the ratio between the number of pixels having
value 1, and k for the amplitude � is the chosen point set in the mask.

Enhancement in the security of the DRPAE scheme is claimed due to fact that
the existence of the undercover amplitude mask remains hidden to the unauthorized
user, and skipping the correct form of the AM results in a false decryption. Even if
the attacker is able to possess the correct information about the values of k and p,
the decrypted image will result in noise only, due to inaccurate distribution of the
amplitude transmittance. The main characteristic feature of the DRPAE scheme is
the ability to thwart the powerful known-plaintext attack. The undercover amplitude
mask plays a significant role in enhancing the security as a key with removing the
linearity of the conventional DRPE scheme. Thus the original image is protected,
when the attacker is devoid of exact information about the amplitude mask. For
numerical simulation, a gray-scale image of Lena (Fig. 13.16) having 512 � 512
pixels is assumed to be an input image. The Rf(u, v) and A(u, v) are illustrated in
Fig. 13.16 respectively. The amplitude mask has random distribution of 1 and k D
0:01, while the factor p is chosen to be 30. Decrypted image (Fig. 13.16) is retrieved
only when all the correct parameters are considered.
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13.5.2.2 Uniform Amplitude at the Fourier Plane

The known-plaintext is able to crack the DPRE scheme, due to the fact that two
necessary inputs for the phase retrieval algorithm are amplitude components of
the input- and the encrypted image. In order to avoid this attack, amplitude of
the encrypted image could be made constant [130]. Due to this, an attacker fails
to breach the security, and encryption key could not be retrieved with the phase
retrieval algorithm.

13.6 Resistance of the Known-Plaintext Attack-Free DRPAE
Scheme against Impulse Attack

The DRPAE scheme [25] achieves immunity against the most powerful known-
plaintext attack, when linearity of the conventional DRPE scheme is broken with
the introduction of an undercover amplitude mask at the Fourier plane. Security
of the DRPE scheme is improved only due to the fact that without any prior
knowledge of the amplitude mask at the Fourier plane, an attacker would retrieve
noise as the cracked decrypted image. Although resistance of the non-linear DRPAE
scheme is assessed against the advanced and powerful known-plaintext attack,
the vulnerability to the impulse function attack [134] is found to persist, and
mathematically demonstrated in the following steps,

Eıdrpae .x; y/ D FT�1 Œ.FT Œı .0; 0/Rin .x; y/�/ fRf .u; v/A .u; v/g� (13.17)

The Fourier transformation of the above Eq. (13.15) becomes

fRf .u; v/A .u; v/g D FT
h
Eıdrpae .x; y/

i
(13.18)

Complete information with correct values of k, and p about the undercover
amplitude mask is cracked from the absolute of cracked mask. The Fourier plane
RPM is also obtained

Rf .u; v/ D fRf .u; v/A .u; v/g
abs fRf .u; v/A .u; v/g (13.19)

In the DRPAE scheme, the delta function is also Fourier transformed into a unity
function at the Fourier plane, and the subsequent inverse Fourier transformation
divulges the complete information about encryption keys in the form of the
encrypted image, similarly to that in the DRPE scheme. Therefore, an unauthorized
user is able to obtain the set of encryption keys, i.e. the amplitude mask (Fig. 13.17)
and Fourier plane RPM (Fig. 13.17). Therefore, with these keys the original image
is cracked (Fig. 13.17)
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Fig. 13.17 Impulse attack: (a) cracked RPM, (b) cracked amplitude mask, and (c) cracked original
image

ı .0; 0/ D I1 .x; y/ � I2 .x; y/ (13.20)

The encrypted images E1(x, y) and E2(x, y) obtained, respectively, from the input
images I1(x, y) and I2(x, y) are denoted as follows:

E1 .x; y/ D FT�1 Œ.FT ŒI1 .x; y/Rin .x; y/�/ fRf .u; v/A .u; v/g� (13.21)

E2 .x; y/ D FT�1 Œ.FT ŒI2 .x; y/Rin .x; y/�/ fRf .u; v/A .u; v/g� (13.22)

E1 .x; y/�E2 .x; y/DFT�1 Œ.FT ŒfI1 .x; y/ � I2 .x; y/g Rin .x; y/�/ fRf .u; v/A .u; v/g�
(13.23)

By replacement of the fI1 .x; y/ � I2 .x; y/g with the delta function, the above-
mentioned equation becomes

E1 .x; y/ � E1 .x; y/ D FT�1 Œ.FT Œfı .0; 0/g Rin .x; y/�/ fRf .u; v/A .u; v/g� (13.24)

Taking FT on both sides of Eq. (13.24) and according to Eq. (13.18), it becomes

fRf .u; v/A .u; v/g D FT ŒE1 .x; y/ � E2 .x; y/� (13.25)

This shows that the linearity persists in the DRPAE, similar to that in the con-
ventional DRPE scheme. And the DRPAE scheme is unable to nullify the impulse
function attack, it remains vulnerable this attack as the conventional DRPE scheme.
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13.7 Conclusions

In conclusion, we have re-emphasized the importance of cryptography to protect
information for certain applications in the present era. The progress made in the
area of optical cryptographic techniques, particularly using three special classes
of the LCTs, namely the Fourier-, fractional Fourier-, and Fresnel transforms, has
then been outlined. Many degrees of freedom to manipulate the physical parameters
of optical waves can be used for optical encryption, resulting in higher degree of
security.

A brief outline is also given of various attacks such as the brute force-, chosen-
ciphertext, chosen-plaintext-, known-plaintext-, and some heuristic attacks. Some
techniques developed recently by us, especially from the point of view of making
the optical cryptographic techniques immune to certain type of attacks, have been
discussed briefly.

It is now well recognized that the cryptosystems are indispensable to ensure
privacy and authentication of data. The field of optical cryptography is still growing
with newer techniques being reported. Hybrid systems based on digital and optical
systems make use of the advantages offered by the two techniques. However at the
same time, it is also well known from the Kerckhoff’s principle that the security
of a cryptosystem should depend only on the secret key(s) and not on the secrecy
of any part of the system. It has been found that some of the schemes published in
the literature do not meet this criterion. Only future investigations would reveal as
to how many of the digital, optical, and hybrid techniques will pass this test. Also
some methods are more suitable than others for transmission of secure information
via the Internet.
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Chapter 14
Complex-Valued ABCD Matrices and Speckle
Metrology

Steen G. Hanson, Michael L. Jakobsen, and Harold T. Yura

Abstract We demonstrate that within the paraxial ray approximation the propa-
gation of light through a complex optical system can be formulated in terms of a
Huygens principle expressed with the complete system’s ABCD-matrix elements.
As such, propagation through an optical system reduces to that of calculating the
relevant matrix elements and substituting these into the expressions derived here. We
have introduced complex-valued matrix element to represent apertures, thus having
diffraction properties inherent in the description.

We have extended the treatments of Baues and Collins to include partially
coherent light sources, optical elements of finite size, and distributed random
inhomogeneity along the optical path. In many cases (e.g., laser beam propagation
and Gaussian optics) we have been able to derive simple analytical expressions for
the optical field quantities at an observation plane.

A series of laser-based optical measurement systems have been analyzed and
analytical expressions for their main parameters have been given. Specifically,
scattering from rough surfaces not giving rise to a fully developed speckle field,
various anemometers and systems for measuring rotational velocity have been
treated in order to show the benefits of the complex ABCD matrices.

14.1 Introduction

We will in the following focus on the introduction of soft apertures, i.e. Gaussian
apodized, as a new and imaginary element in the ABCD-formalism. The primary use
of this will be the analysis of speckle-based optical systems and the related issues,
i.e. light penetration through optical turbulence, rough surface scattering, the effects
of optical misalignment, etc. The matrix formalism is similar to the concept of
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Canonical Transforms, but the mathematical correspondence will not be discussed
here, neither will the theoretical evaluation be presented in details. The following
treatise thus is meant for giving examples on how the matrix formalism can be used
in practice; therefore, most evaluations will be shown for scalar fields within the
paraxial approximation, only, and mostly in one dimension. The extension into 2D
will be displayed, as will examples treating a full vectorial scenario. Last but not
least, this chapter is intended for giving the reader a feel for the benefits—and the
shortcomings—of using the complex ABCD-method. To some extent, it is a simple
way quickly to analyze rather complicated optical systems giving a first-order
approximation to the relevant outcome for the setup. In short, the method specifies a
way to contract the entire optical system into one matrix having all the information
for the optical systems. In this way, analytical solutions to various parameters can
be obtained, and the optimization becomes utterly simplified, here most importantly
including diffraction due to inherent limiting apertures. Having obtained analytical
solutions to problems usually paves the way not only for increasing the intelligibility
but also for optimization. To some extent, one might therefore allocate this method
for the lazy scientist and the productive engineer!

Finally, we sincerely apologize for not presenting a full list of contributions
to this highly interesting field, but rather focus on our contribution to the field
of matrix-optics. Other contributors to this book have done an excellent job in
combining Canonical Transforms with Matrix Optics highlighting the history of the
field and thereby providing a deeper insight into the fundamentals of the underlying
principles. In this chapter of the book we will take a series of assumptions for
granted, without referring to previous authors who have performed the cumbersome
work of proving the basic results on which we build. A good overview of the use of
real-valued ABCD matrices has been given by Kloos [1].

This chapter of the book will be divided into the following sections: First we
will introduce the Gaussian aperture as a “new” matrix element and show how
diffraction becomes an integral part of the formalism. Section 14.2 shows how
to apply the Complex Matrix formalism to the analysis of scattering off rough
surfaces. Section 14.2 will be starting out with scattering off a structure giving rise to
fully developed speckles. Analytical expressions for integrated speckles, and sum-
and differences of integrated speckle signals are derived. Finally, this chapter will
present analytical expressions based on the matrix formalism for the dynamics of
speckle patterns due to various kinds of displacements of the scattering structures.

Section 14.3 will focus on deriving analytical expressions for light scattered off
structures having surface properties that do not give rise to fully developed speckles,
i.e. the field scattered off adjacent positions of the structure can no longer be
considered delta-correlated, or the rms. phase change due to the scattering process
is on the average lower than 2� . Expressions for spatial correlation between the
complex field and the intensities will be derived and presented as a function of
the complex parameters for the ABCD matrix applicable for the optical system
under consideration. Therefore, the results apply for any optical system within the
formalism, being it free space, Fourier transform, or imaging, all including apertures
and possible defocusing effects.
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The main thrust of our work with complex ray matrices has been for analyzing
and establishing new sensor schemes. A survey of the findings with focus on
the derivation based on matrix operations is presented in Sect. 14.4. Here we
concentrate on the evaluation of analytic expressions relevant for treating speckle-
based sensors aimed at probing the dynamics of solid targets. In particular, we will
discuss the results for speckle fields arising from linearly moving targets, being it
axial or lateral movement, and the results for rotating objects, again for all three
axes of rotation.

Section 14.5 highlights the way in which the real-valued ABCD-matrix method
can be used to gain not only first-order but also higher order moments for a field
that has passed spatially distributed optical turbulence. This evaluation is important
not only for beam propagation through optical turbulence but also for propagation
through scattering media, being it human tissue or scattering by aerosols in the
atmosphere.

14.2 ABCD Matrices with Complex Parameters

The physical-optics model employed in this analysis is based on the Huygens–
Fresnel formulation for an arbitrary initial source distribution and a general class of
optical elements, which have phase- or amplitude changes up to second order in the
transverse direction. Here, we consider the propagation of monochromatic beams
and, as such, omit the explicit time-dependence in the formulation presented below.
In all situations treated here we employ the well-known paraxial approximation
in determining the optical field, in which terms up through second order in
the transverse coordinates (with respect to the optical axis) are retained. This
approximation is valid when the separation of the optical elements is large compared
with the transverse spatial extent of the beam.

In this section we first consider an optical system without limiting apertures and
jitter and seek to determine the output field that results from an arbitrary given input
field. The physical situation is depicted in Fig. 14.1. Let Uin(x0, y0) be the field on the
input plane denoted by (x0, y0) located at z D 0. The field propagates through a train
of optical elements E1, E2,..... En located at arbitrary separations, to an observation
plane at distance znC1 from the final optical element EN . We assume that the index
of refraction of the intervening space between the optical elements is a smoothly
varying function of znC1. We also consider that the surface of the optical element at
zi has the form

zi D z0i C ˛i.z/ x2i C ˇi.z/ y2i ; (14.1)

where (xi, yi) are transverse coordinates of the ith optical element and ˛i(z) and ˇi(z)
are real. For simplicity in presentation, we depict all the optical elements as lying
along a straight line, the mutual separations indicated in Fig. 14.1 being the actual
distance along the optical axis between the corresponding optical elements in a



400 S.G. Hanson et al.

Fig. 14.1 Schematic representation of beam wave propagation through a train of optical elements

situation in which reflection or refraction is present. Under these assumptions it
has been shown [2, 3] that the Huygens–Fresnel 2D diffraction integral relating the
fields across the input and output planes can be expressed as

Uout .p/ D
Z

G .r;p/ Uin .r/ dr; (14.2a)

where the Green’s function is given by:

G .r;p/ D �i k
2�

p
Bx By

exp Œ�i k L�

exp
h
� i k
2Bx

	
Ax x2 � 2 xpx C Dx p2x


i

exp
h
� i k
2By

	
Ay y2 � 2 ypy C Dy p2y


i
:

(14.2b)

Here k is the optical wave number 2� /	, 	 being the free-space optical
wavelength, L is the optical distance along the z-axis, Ax,y, Bx,y, and Dx,y are the x-
and y-axis geometrical ray-matrix elements for the complete optical system between
input and output planes. For the case of media with no absorption or gain the ABCD
matrix is real-valued, and, when the input and output planes are in free space, its
determinant is unity: AD � BC D 1. The ray-transfer matrices of some elementary
optical structures are given in Fig. 14.2.

Examination of Eq. (14.2) reveals that if
ˇ̌
kAx;y d2x;y=Bx;y

ˇ̌2  1, where dx,y are the
characteristic lengths of the optical field in the object plane along the x- and y-axes,
respectively (i.e., in the far field), then the far-field optical wave function, apart from
a multiplicative phase factor, can be obtained directly from the corresponding wave
function for line-of-sight propagation by replacing the line-of-sight propagation
distance by Bx,y. In particular, the far-field irradiance pattern that is obtained after
propagation through an optical system that can be characterized by a ray-transfer
matrix can be obtained directly from the corresponding pattern for line-of-sight
propagation by replacing the propagation distance with B.
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Fig. 14.2 Relevant
real-valued ray matrices [4]

For a rotationally symmetric optical system, Ax D Ay � A etc., and in this case
Eq. (14.2) reduces to

Uout .p/ D
Z

G .r;p/ Uin .r/ dr; (14.3a)

where

G .r;p/ D �i k

2� B
exp Œ�i k L� exp

�
� i k

2B

	
A r2 � 2 r � p C D p2


�
: (14.3b)

Thus the propagation of light near the optical axis of an astigmatic optical system
can be described in the paraxial approximation by means of a Huygens–Fresnel
integral with the aid of the geometrical-optics ray matrices (ABCD matrices) for the
complete optical system. This formulation of propagation presents a rather simple
way of determining refraction effects involving arbitrary optical elements. Needless
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to say, diffraction effects are not present although phase information is retained. It is
necessary merely to multiply the relevant ray matrices together to find the complete
system matrix and then to perform the integration indicated in Eq. (14.2) or (14.3).

With the form of the ellipsoidal surfaces given in Eq. (14.1), one obtains two
independent 2 � 2 matrix transformations for the x- and y-directions, respectively. In
the more general case in which a term proportional to x � y is added to the right-hand
side of Eq. (14.1) one must deal with a symplectic 4 � 4 matrix transformation [2],
and for the case of an initial Gaussian-shaped beam Collins has obtained an analytic
form for the resulting complex field amplitude [3]. These results are algebraically
complex, and the interested reader is referred to the article for the details. Here, we
deal with the ellipsoidal form given by Eq. (14.1) and first summarize some previous
results of refs. [1, 2] valid for free-space laser beam propagation.

Without loss of generality we assume that the initial complex field amplitude at
the input plane is of the form [4, 5]:

Ui .x; y/ D A0 exp

�
� x2

!2xi

�
Hm

�p
2

x

!xi

�
exp

"
� y2

!2yi

#
Hn

�p
2

y

!yi

�
; (14.4)

where !xi and !yi are the initial 1/e field spot radii along the x- and y-axes,
respectively, Hi are Hermite-polynomials of order i, and A0 is a (complex) constant.
It is to be noted that the radius of curvature of the input beam is here taken to be
infinite (i.e., the input plane is assumed to be at the location of the beam waist).
This assumption does not limit our analysis, as a thin astigmatic lens of relevant
focal length in the x- and y-directions is assumed to be situated immediately to the
right of the input plane and is the first optical element that the laser beam passes
through. Substituting Eq. (14.4) into (14.2) and performing the integration yields, at
the output plane:
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px; py


 D A0
�
!yi!yi

!y!y

�
exp

��i
	
kL C 	

1
2
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ıx C 	

1
2

C n


ıy

�
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h
�i �p2x

	qx

i
Hm
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2 x
!x

i
exp

h
�i

�p2y
	qy

i
Hn

hp
2 y
!y

i
;

(14.5)

where:

qx;y D Ax;yqix;y C Bx;y

Cx;yqix;y C Dx;y
and

1

qix;y
D � i	

� !2ix;y
: (14.6)

The parameters in the output plane are

Spot size W !x;y D !ix;y

�
A2x;y C

�
2Bx;y=k !2ix;y

�2�1=2
;

Radius of curvature W 1
Rx;y

D
�
!ix;y

!x;y

�2 �
Ax;y Cx;y C Bx;y Dx;y

�
2

k !2 ix;y

�2�
;

and the phase shift ıx;y D Arctg

�
	Bx;y

� !2ix;y Ax;y

�
:

(14.7)
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The propagation of a simple TEM00 mode is a simple subset of the above
equations. We can now get the important parameters for propagation of a TEM00
Gaussian beam through a train of optical elements. A simple relation for the so-
called q-parameter for connecting the output of a Gaussian beam from input (qin) to
output (qout) exists. We have qout D .Aqin C B/ = .Cqin C D/. This relation remains
valid even when we as shown in the following introduce complex matrix elements
due to the introduction of apertures. It should also be noted that the concept of
complex q-parameters lends itself to the analysis of laser resonators. If we assign
a matrix for an entire passage in a cavity, the solution to a possible eigenmode is
derived by finding the q-parameter q0 given by q0 D .Aq0 C B/ = .Cq0 C D/.

14.2.1 Gaussian Apertures

Next, we will introduce the Gaussian apodized limiting aperture as a new element
in the matrix formalism. Remembering that the transmission function for a circular
symmetric lens with focal length f and the corresponding ray matrix are given by,
respectively:

bT Œr� D exp

�
� i k r2

2f

�
and bMlens D

(
1 0

� 1
f 1

)
: (14.8)

Based on the above, it seems reasonable to associate the transmission function of
a Gaussian aperture with 1/e2 intensity radius with a ray matrix, as shown [6, 7]:

bT Œr� D exp

"
�jrj2
�2

#
and bMaperture D


1 0

� 2i
k �2

1

�
: (14.9)

It should be emphasized that this matrix and the previously mentioned all have
the determinant equal to one in case the refractive indices are identical in the
input- and output plane. The determinant of the product of a series of matrices,
all having unity determinant, is unity as well. Thus it usually suffices to use three
matrix elements in the expressions for the observed fields. A compound complex ray
matrix for an optical system with inherent aperture(s) will usually display complex
values for all matrix elements. A simple example of the optical system is shown in
Fig. 14.3, consisting of a Gaussian input aperture � in, free space a distance f, a lens
with focal length f, an aperture �Four followed by free space a distance f. This gives
the following compound matrix:

bM D
8<
:

2f.f Ci k.�2inC�2Four//
.k�in�Four/

2 f � 2i f 2

k�2Four

�
�
1
f C 2i

k�2Four
C 4f

.k�in�Four/
2

�
� 2i f

k�2Four

9=
; : (14.10)
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Fig. 14.3 Fourier transforming system

For large apertures, it is noticed that the A-element vanishes, indicating that
the output position of a “ray” is independent of its input position. Note that in
the complex notation we shall be careful when using the term “ray” if we do not
associate diffraction as an inherent property. The same applies for the output slope
as a function of the input slope, due to the vanishing of the D-element. On the
other hand, the B- and the C-element will survive showing that the output position
of a “ray” will depend on its input slope, and vice versa. This indicates that for a
system without apertures, we have established an ideal Fourier transforming system.
But as apertures are introduced and decreased in diameter, even the real part of
the A-element will have a finite value indicating that we partly have “imaging,”
here pointing towards the onset of a pinhole camera. The leverage point at which
the refractive properties of the Fourier-transforming lens are superseded by its
diffractive properties is determined by the relation between f and k

	
�2Four C �2in



. A

closer examination of this shows that the number of supported modes in the optical
system determines the accuracy of the Fourier transformation, i.e. the correctness of
this approximation increases with the number of supported modes. This was based
on analyzing the A-element. The D-element divided by the B-element controls the
field curvature in the output plane, cf. Eq. (14.3). Here, the imaginary part of this
ratio defines the radius of the irradiance in the output plane, whereas its real part
gives the radius of curvature of the field. Again, for a large aperture of the Fourier-
transforming lens, the radius of the curvature will go to infinity, indicating plane
wave incidence.

An increased insight in the transformation by the Green’s function can be
obtained by a simple rewriting of Eq. (14.3):

G .r;p/ D
�i k

2� B
exp Œ�i k L� exp

�
� i k

2AB

�
.A r � p/2 C .AD � 1/ p2

��
;

(14.11)
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dividing the expression into a part responsible for “imaging” including diffraction
and a part controlling the curvature and irradiance in the output plane.

14.2.2 Scattering: Fully Developed Speckle Field

Next, we will use the matrix formalism to analyze a simple example, namely the
scattering off a structure giving rise to a fully developed speckle field. The scattered
field Usc(r, t) from any surface can be written:

Usc .r; t/ D ‰ .r; t/ Uinc .r/ ; (14.12)

where the incident field is time-independent, and given by Uinc(r). The scattering
structure is now assumed time-dependent and described by ‰(r, t). The model we
use for the scattering structure will determine the field in the output plane, as well
as its temporal development. The incident field is tacitly assumed time-independent.
If the scattering structure is stochastic in nature, we can only express its behavior in
terms of its relevant moments. For a structure giving rise to fully developed speckles,
we need to know that the field scattered off the structure obeys circular symmetric
Gaussian statistics. In other words: if we sample the field immediately after being
scattered off the structure, the probability density function (PDF) for the field has to
be distributed according to a 2D Gaussian bell, remembering that the field has a real-
and imaginary part, defined by its amplitude and phase. To have a field distribution
that is circular symmetric—in the complex plane—we need to have a scattered field
which includes all phases between 0 and 2� , evenly. In other words, the optical
depth of the scattering structure has to exceed the optical wavelength. In case of
backscattering from a rough structure, this is equivalent to having a surface RMS
roughness exceeding the wavelength. Additionally, in order to invoke the circular
symmetric Gaussian PDF, we need to add a fair number of wavelets with random
phase in the observation plane. This means that the illuminating spot on the object
has to exceed the smallest lateral scale of the surface structure and a certain amount
of blurring in the case of perfect imaging. These two constraints being met, we
can continue the analysis of the statistics of field parameters propagated through
an ABCD-system after being scattered off a rough surface, or after having passed a
strong diffuser [8].

The correlation between the field at one position and the field at an adjacent
position—at a later time—can thus be written:

B‰ Œr1; r2I �� � h‰ .r1; t/ ‰� .r2; t C �/i / 4�

k2
ı .r1 � r2 C v�/ : (14.13)

Here we have included the time-dependence and assumed the surface structure to
be rigid, i.e. it moves as a frozen pattern, usually named the Taylor’s hypothesis and
assumed stationarity in time and space. Additionally, there is a delta-correlation
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between scattering from adjacent positions; knowing the scattered field at one
position provides no information on the scattered field from a neighboring position.
As will be shown later, this assumption may lead to erroneous results in some
cases. To avoid this, it would be more correct to assign a smallest scale equal
to the wavelength. Finally, the reflection coefficient for the field is unity and the
factor 4� /k2 normalizes the intensity by assuming the power of the scattered light
being scattered evenly in a solid angle of 2� . The angular brackets here and in the
following stand for “ensemble average.”

Having the expression for the field in the input plane of the optical system
facilitates calculation of the field in the output plane by inserting Eq. (14.12) into
(14.3).

Uout .p; t/ D
Z

G .r;p/ ‰ .r; t/ Uinc .r/ dr;

where
G .r;p/ D �i k

2� B exp Œ�i k L� exp
�� i k

2B

	
A r2 � 2 r � p C D p2


�
:

(14.14)

The ensemble average of the field will vanish due to the ensemble average of the
scattering phase function having en ensemble average of zero, i.e. hUout .p; t/i DZ

G .r;p/ h‰ .r; t/ i Uinc .r/ dr D 0. We only know some statistical moments for

the scattering structure, usually not the full expression. Therefore, we can express
the ensemble average of the intensity:

hIout .p; t/i DZ 1

�1

Z 1

�1
G .r1;p/ G� .r2;p/ Uinc .r1/ U�

inc .r2/ h‰ .r1; t/‰� .r2; t/i dr1dr2 :

(14.15)

Inserting the delta-correlation for the scattering structure from Eq. (14.13)
immediately gives us an analytic expression for the intensity distribution in the
observation plane

hIout .p; t/i D
1

jBj2 exp
�
k Im

�
.D=B/ p2

��
Z 1

�1
dr Is .r/ exp Œ�2k Im Œ1=B� p � r� exp

�
k Im ŒA=B� r2

�
;

(14.16)

where Is(r) is the source intensity in the input plane. Please note that the above
equation is only valid in case we have at least one imaginary element in the matrix.
For a matrix with only real-valued elements, the integrated intensity, i.e. the power,
in the output plane does not converge. This stems from the fact that we have assumed
delta-correlation of the scattering structure. It would have been correct to assume a
lateral correlation length not to be below the wavelength [9].
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Of special importance when a coherent field is scattered from a rough surface
is the so-called speckle pattern that arises due to destructive and constructive
interference of light collected in the observation plane, but arising from different
parts of the input plane [10, 11]. Here we seek to determine the time-lagged
covariance of the photocurrent obtained from two spatially separated point detectors
that are located in an arbitrary observation plane, transverse to the optical axis of an
ABCD-system. This quantity is given by

C Œp1;p2I �� � hIout .p1; t/ Iout .p2; t C �/i � hIout .p1; t/i hIout .p2; t C �/i ;
(14.17)

where � is the time-lag, the dynamics is stationary in time and p1 and p2 are the two-
dimensional vector coordinates for the (point) detectors in the observation plane.
In case the rigid structure is displaced, being it transversely or axially, linearly
translated or rotated about one of the three principal axes, the speckle pattern will
undergo some kind of displacement, as well as decorrelation will set in, i.e. the
speckle pattern will display boiling properties as it moves, as shown in Fig. 14.4.
The time-lagged covariance will include information on the four most important
governing parameters for describing the dynamic speckle pattern in the observation
plane, viz.

• the intensity distribution
• the speckle size
• the speckle velocity as a function of the object movement
• the speckle decorrelation (boiling) as a function of the object movement.

We will here increase the complexity and correctness of the scattering structure
by assuming its lateral scale being finite but still moving as a solid body, i.e. Taylor’s

Fig. 14.4 Space-time correlation of speckle pattern due to displacement of the scattering structure
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hypothesis. This means that time-lagged scattering phase function reads.

B‰ Œr1; r2I �� D 4�

k2
1

�r2coh

exp

"
� .r1 � r2 � vt�/

2

r2coh

#
; (14.18)

where rcoh is a measure of the phase correlation length of the objects surface,
given by

rcoh D rh=�': (14.19)

Here rh is the lateral coherence length of the surface-height fluctuations, and �® is
the standard deviation of the reflected optical phase and vt is the transverse velocity
of the object. We assume diffuse reflection only. In particular, we take for granted
that the specular component of the reflected field is negligible in comparison with
the corresponding diffuse component, and hence we can assume that the reflected
field obeys circular complex Gaussian statistics. A stringent derivation of the time-
lagged intensity covariance would involve following the propagation of four fields
(product of two intensities) from the input plane to two positions in the output plane,
thus calling for knowledge of the fourth moment of the scattering phase function,
which usually is not available unless we assume Gaussian statistics. In Eq. (14.18)
we have introduced a model for the second-order statistical moment. In order to
proceed, we invoke Gaussian statistics for the field in the output plane, as it involves
summation of many statistically independent wavelets. As a result, all higher order
moments of the field can be broken into products of second-order correlations [10].
Especially in the case of the covariance, we get:

C Œp1;p2I �� � hIout .p1; t/ Iout .p2; t C �/i � hIout .p1; t/i hIout .p2; t C �/i
D ˇ̌˝

Uout .p1; t/U�
out .p2; t C �/

˛ˇ̌2
:

(14.20)

We can now derive an analytical expression for the time-lagged covariance for
any optical system that can be modeled with ABCD matrices. The expression to be
solved is:

C Œp1;p2I �� D ˇ̌˝
Uout .p1; t/U�

out .p2; t C �/
˛ˇ̌2 DZ 1

�1

Z 1

�1
dr1dr2 Uinc .r1/U�

inc .r2/B‰ .r1; r2I �/ G .r1;p1/G� .r2;p2/ :

(14.21)

Assuming a circular symmetric incident Gaussian beam with intensity radius !s

and using the expression for the Green’s function, Eq. (14.3), we get an analytical
expression for the covariance
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Cpower Œp1;p2I �� D C0 exp

�
�2p21 C p22

!2

�
j� Œ�pI ��j2; (14.22)

j� .�pI �/j D

exp

2
6664�

�
Im ŒA� � 2Re ŒB�

k !2s

�2
.v�/2 C

�
�p �

�
Re ŒA�C 2Im ŒB�

k !2s

�
.v�/

�2

20

3
7775 ;

(14.23)

were the normalized covariance is given by j� [�p; � ]j2. This calculation may be
derived with the aid of a symbolic computer program, such as Mathematica or
MathLab. The overall factor is given by

C0 D
�
8˛S P0
�!2s k220

�2
; (14.24)

with the speckle size 0 given by

0 D
 
8jBj2
k2!2s

C 4

k
Im
�
BA��C r2c

 
jAj2 C 4jBj2

k2!4s
C 4Im ŒBA��

k!2s

!!1=2
: (14.25)

In Eq. (14.24) the detector size is S, and the normalized covariance in Eq. (14.23)
is with respect to the signal including the factor ˛ converting incident power to
current. A closer look at the speckle size reveals its structure: The first term inversely
proportional to the illuminating beam radius stems from diffraction of the incident
beam, the second term arises due to diffraction in the optical system, whereas
the third term primarily is caused by magnification, jAj, of the object’s transverse
structure. As shown, the three contributions add geometrically. As long as rc  !s

the last two terms in the inner parenthesis are negligible. If this was not the case, the
assumption of Gaussian statistics would not be fulfilled due to the limited number
of independent wavelets being added up.

Due to the movement of the object, here assumed to be a linear translation,
the speckle pattern may be translated. The peak position for the time-lagged
covariance appears at the position where the two images acquired before and after
the translation are most alike. The peak position for a given time-delay � appears at
the position:

�ppeak D
�

Re ŒA�C 2Im ŒB�

k!2s

�
v�: (14.26)
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Note that the displacement of the speckle pattern is not exactly given by the
magnification of the optical system, but somewhat altered. To be more accurate, the
peak position of the cross covariance is “squeezed” slightly due to decorrelation. But
as the object moves, new scattering structures will be illuminated, and eventually
the speckle patterns before and after the movement will lose their similarity. This is
named the decorrelation length, and is given by

�rdecorrelation D jv� j D
ˇ̌
ˇ̌Im ŒA� � 2Re ŒB�

k!2s

ˇ̌
ˇ̌ 0: (14.27)

Finally, the radius if the irradiance in the observation plane becomes:

! D 0
jBj2

2
�

Im ŒBD�� Im ŒBA�� � ImŒB�2
�

C 4Im ŒBD�� jBj2= 	k!2s

 ; (14.28)

The above Eq. (14.28) here simplified for rc ! 0.
We have in the above first assumed that the illuminating field is collimated, its

radius of curvature being infinite, and secondly that the object moved laterally. In
case the incident beam has a finite curvature, this curvature can merely be included
by adding a synthetic lens with the correct focal length as a first optical element.
If the field is scattered off a target rotating about a transverse axis of radius Rc,
the above formulas apply after having inserted another synthetic lens with a focal
length Rc/2 and insert a velocity�Rc in the above equations, where� is the angular
velocity of the object. Please note that the transverse axis of radius Rc might not be
identical to the radius of curvature of the object, itself. Doing this, a simple set of
equations can be established for the analysis of dynamic speckles from a rotating
structure.

It is of importance when establishing a measurement system dedicated to
measure a certain displacement parameter, to know the relation between speckle
velocity—usually instrumental for the accuracy—and speckle decorrelation, which
often is detrimental for the measurement.

The expressions related to dynamic speckles apply for the field scattered off a
static object, as well, i.e. giving an extension of the Van Cittert–Zernike theorem
for optical systems within the ABCD-formalism, and not only for free-space
propagation. Therefore we can use Eqs. (14.25) and (14.28) with � D 0 and get
expressions for the intensity distribution in the observation plane and the transverse
speckle size, but the axial correlation length of the speckles cannot be derived from
these equations. It is well known that the speckles usually are structures that are
elongated primarily along the optical axis. To achieve this, we have to derive the
covariance between two intensity patterns now derived at two axially displaced
distances from the exit of the optical system as shown in Fig. 14.5.

To accomplish this, we again assume that the field in the observation plane
obeys circular symmetric Gaussian statistics, so that we can reduce the calculation
of intensity correlation (i.e., fourth-order in field) into merely finding the absolute
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Fig. 14.5 Setup for deriving the axial correlation length of a field

square of the ensemble average of the fields at the two axially displaced distances
�z [12]. The covariance, we have to calculate can be found in the same manner, as
was the case for Eq. (14.21):

C Œp1;p2I�z� D ˇ̌˝
Uout .p1; 0/ U�

out .p2;�z/
˛ˇ̌2 DZ 1

�1

Z 1

�1
dr1dr2 Uinc .r1/ U�

inc .r2/ B‰ .r1; r2/ G .r1;p1I 0/ G� .r2;p2I�z/ :

(14.29)

The Green’s function for propagation to the exit of the optical system is
G(r1, p1; 0), and the Green’s function for the axially displaced observation plane is
G(r2, p2;�z). The first is defined by the complex ABCD matrix as described in Eq.
(14.11), whereas the second is found by multiplying the same matrix with the matrix
for free-space propagation from the left a distance �z. If we intended to correlate
the intensity in case the object was axially displaced between the two recordings,
this would merely be accomplished by multiplying with the free-space matrix from
the right. In one dimension, the matrix relevant for G(r2, p2;�z) becomes:

bM�z D

1 �z
0 1

� 
A B
C D

�
D


A C C �z B C D �z
C D

�
: (14.30)

Like for the case of dynamic speckles, we can derive the normalized intensity
covariance in analytic form by Eq. (14.29), here derived assuming only a real-valued
matrix for the sake of clarity. The normalized covariance becomes:



412 S.G. Hanson et al.

C Œp1;p2I�z�

C Œp1;p2I 0� D
exp

"
� .D k!0�z/2

B4� Œ�z�
p2
#

� Œ�z�

with � Œ�z� �
�

B C D�z

B

�2
C
�

k!20�z

2B2

�2
:

(14.31)

The length of the speckles can be determined by the �z - value at which the
normalized covariance has decreased to 1/e. For speckles close to the optical axis,
the axial correlation length will become

lcoh Š 2B2=
	
k !20



: (14.32)

The speckle length will in loose terms be inversely proportional to the square
of the numerical aperture of the optical system, whereas the lateral speckle size
is inversely proportional to the numerical aperture. Equation (14.31) further shows
that the speckle length will decrease as we move away from the optical axis. The
properties for dynamics of speckles in three dimensions arising from a displaced
structure have previously been derived and analytic expressions obtained within the
complex ABCD-matrix formalism, cf. [12].

When one describes “speckle displacement,” the meaning usually is based on
observing how the speckles move in a (transverse) plane. This movement could be
due to a real transverse movement of a more or less rigid speckle structure, but
this could just as well be due to a partly axial movement of a collection of slanted
speckle grains. This issue has been analyzed by combining the 3D evaluation and
the method for investigating speckle dynamics [12]. It is here shown that in case
of linear transverse displacement and out-of-plane rotation of an object, the speckle
will suffer a purely transverse displacement, independent of the optical system. But
the speckles, themselves, will usually have a tilt with respect to the optical axis.

The derivations shown up until now should be considered as basic examples
how to apply the concept of complex ABCD matrices. A suite of issues are
open for further investigation, being it for deterministic fields, e.g. singularities,
or for fields that can only be described according to their stochastic properties.
Of special interest could be the analysis of optical angular momentum, vorticity,
energy flow, etc. In addition calculation of the correlation between two “images”
taken at different wavelengths, or with different apertures, can easily be calculated,
if so desired. Calculation of analytical expressions can be highly simplified by
taking advantage of programs for symbolic manipulation, such as Mathematica or
MathLab. Appendix provides a Mathematica program that will give the compound
matrix for a given sequence of optical components.
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14.3 Scattering from Surfaces Not Giving Rise to Fully
Developed Speckles (Field Statistics, Intensity Statistics)

The previously described statistics for scattering off a surface relied on a rather
simplistic model for the surface, due to the objective of showing the impact of the
optical system for the statistical parameters in the observation plane. Here, we will
expand the model to include a more realistic model. After having presented this
model and shown how the matrix method can cope with this issue, we will briefly
discuss the results. The analysis will here not be based on the assumption of circular
symmetric Gaussian statistics for the field.

The first issue that will be treated is field correlations. In the following we have
assumed unpolarized, monochromatic (Gaussian-shaped) laser beam illumination
of the surface, where the scalar Huygens–Fresnel theory applies. In particular, we
obtain image-plane first-order statistics (i.e., the mean and variance of both the real
and the imaginary parts of the complex field in the image plane) that are valid for
all values of the number of correlation areas of the surface that contribute to the
observed intensity. This is in contrast to previous work, which assumed uniform
illumination of the surface and was restricted to situations where the corresponding
number of correlation areas is much greater than unity (i.e., where the central-limit
theorem applies) [13]. As an illustrative example, we present analytic closed-form
results, as well as a highly accurate approximation based on elementary functions,
for the signal-to-noise ratio in situations where the scattered light is mixed with a
strong local oscillator.

Following Goodman [10] we model the surface-height fluctuations as a homoge-
neous and isotropic Gaussian random process and express the (reflected) optical
field correlation function, hexp Œi .' .r1/ � ' .r2//�i, in the input plane as (angle
brackets denote the ensemble average):

B.r/ D hexp Œi .' .r1/ � ' .r2//�i D exp
h
��2' .1 � h.r//

i
; (14.33)

where r1,2 denotes two-dimensional transverse position vectors in the input plane,
r D jr1 � r2j and ' .r/ is the reflected optical phase, �2

® is the corresponding phase
variance given by

�2' D .k .1C cos Œˇ�//2�2h ; (14.34)

where k is the optical wave number, �2
h is the corresponding variance of surface-

height fluctuations, h(r) is the normalized correlation function of the surface-height
fluctuations, and ˇ is the angle of incidence of the incident light, cf. Goodman [10].

The form for the correlation function given by Eq. (14.33) is often used in
analysis and is reasonably accurate if the surface slopes are small. In obtaining
Eq. (14.33) we have assumed that the reflection coefficient is equal to unity over
the entire surface. To obtain analytical results, we assume that the normalized
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correlation function of surface-height fluctuations is given by another Gaussian
distribution:

h.r/ D exp

�
� r2

r2h

�
: (14.35)

Our intention is to derive expressions for first-order intensity statistics. In order
to derive this, we write the scattered field from the scattering surface before
propagation through the optical ABCD-system as

U .r/ D U0 exp

�
� r2

!2s

�
exp Œ�i ' .r/� ; (14.36)

where U0 is a constant and !s is the 1/e2 intensity radius. Assuming a general
paraxial ABCD optical system, the corresponding complex field amplitude on the
axis in the observation plane Uout(0) can be expressed:

Uout .0/ D
Z 1

�1
U .r/ G .r; 0/ dr; (14.37)

where the Green’s function is given by G .r; 0/ D � ik
2�B exp

�� ik
2B A r2

�
.

Here, as in all the derivations, we have tacitly assumed the input and output plane
to be in the same medium. As we intend to derive various components of the field
statistics, we will derive the deviation from the field Ud that would be present in
case there was no phase perturbation imposed by the object, i.e. for ' .r/ D 0,
which corresponds to specular reflection. This perturbation on top of the specular
field will be named u and becomes

u D � ik

2�B Ud

Z 1

�1
U0 .r/ exp

�
�r2

�
1

!2e
C ik

2ze

��
dr; (14.38)

where

!e D
r

�2=
�

kIm
h
A=B

ii�
and ze D 1=Re ŒA=B� : (14.39)

Examination of Eq. (14.38) reveals that !e and ze can be interpreted as the
effective linear dimension of the surface that contributes to the observed intensity
under uniform illumination conditions and the effective free-space propagation
distance between the input and the output plane, respectively.

Equation (14.38) is the generalization to general ABCD optical systems of the
equivalent free-space propagation analog discussed by Jakeman for simple imaging
systems [14]. We note that all the stochastic parameters associated with the rough
surface are contained in the reduced field quantity u, and hence in the following we
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determine second-order field statistics of u. The relationship between the second-
order field statistics of u and the corresponding statistics of the real intensity is
given in Appendix [15].

All the second-order field statistics of u in the output plane can be obtained from
the knowledge of

ur � Re Œu� ; ui � Im Œu� ;
D
juj2

E
and

˝
u2
˛
: (14.40)

Using standard techniques for performing integrals of Gaussian form and noting

that hexp Œi'�i D exp
h
��2'=2

i
, it is straightforward to show that

huri D exp
h
��2'=2

i
and huii D 0: (14.41)

To calculate hjuj2i and hu2i on the basis of the correlation function given by
Eq. (14.1), we follow the procedure outlined in Sect. 2.7.2 of [10] and obtain

D
juj2

E
D 1F1

h
1; 1C 1Ci ı

2n I ��2'
i

and

˝
u2
˛ D 	

1Ci ı
2n


 �
h
1Ci ı
2n ;0;�2'

i

.�2'/
.1Ciı/=2n exp

h
��2'

i
;

(14.42)

where 1F1[a, b; z] is the confluent hypergeometric function, �[a, b, z] is the general-
ized incomplete gamma function.

ı D a
1Cb ; a D k!2e

2 ze
; b D !e

!s
; n D .r!=!s/

2

where 1
r2!

D 1
!2s

C 1
!2e
:

(14.43)

From Eqs. (14.37) and (14.38) it follows that r! is a measure of the linear
dimension of the input plane that contributes to the observed intensity. Hence n can
be interpreted as the effective number of independent correlation areas in the input
plane that contribute to the observed intensity. Note that the ray-matrix elements of
the optical system are contained in the two quantities n and ı [see Eqs. (14.39) and
(14.43)].

We get the three most important parameters from the above by using:

˝
u2r
˛ D 1

2

�D
juj2

E
C Re

˝
u2
˛�

˝
u2i
˛ D 1

2

�D
juj2

E
� Re

˝
u2
˛�

hur uii D 1
2
Im
˝
u2
˛
:

(14.44)

The above considerations show that analytical expressions can be derived even
for fields that do not obey Gaussian statistics. The direct application of second-
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order statistics is primarily of importance when considering optical systems based
on heterodyning of scattered light with an unperturbed local oscillator, viz. Lased
Ranging and Detection (LIDAR), vibrometry, etc.

In cases where scattered light from a surface not giving rise to fully developed
speckles, we need information on second-order intensity statistics, which is equal
to fourth-order field statistics. If, for instance, the speckled field scattered off a
rough surface—giving information on the surface displacement—is to be tracked,
the surface giving rise to the most pronounced speckle pattern has to be found. In
one extreme, when the surface roughness gives rise to fully developed speckles,
the modulation depth will be unity, but the diffusely scattered light will fill out the
entire half plane, thus giving a rather highly modulated but weak signal. In the other
extreme, when the surface roughness goes to zero, the specularly scattered light will
be strong, but having no modulation as the object is translated. The issue therefore
arises: What are the characteristics of a surface giving a maximum speckle variation,
arising when the diffusely scattered light is coherently mixed with the specularly
(i.e., unperturbed) part of the scattered light from the surface. To some extent,
the specularly scattered light will act as a coherent local oscillator that enhances
the diffusely scattered light. Needless to say, the modulation depth of this speckle
pattern is lower than unity, but the modulated part might be stronger than what
occurs in case of scattering off a surface giving rise to fully developed speckles. The
derivation to follow is based on a previous evaluation [15].

To obtain the expression for the intensity variance in case of scattering off a
surface not giving rise to fully developed speckles, we will reuse the previous
expressions Eqs. (14.33)–(14.44) obtained for the field statistical parameters. We
will here assume Gaussian statistics for the scattered field, limiting the parameter
space for which the following results are valid as compared to the previous.

In order to obtain Gaussian statistics for the observed field it is necessary that
n � 1. In addition, it is also necessary that the non-specular reflected (or scattered)
light from many independent correlation areas overlap at the observation point.
This latter condition will be obtained if 	 ze=rc .�/ >> rc .�/, where rc(� ) is a
measure of the effective lateral scale of the surface-height fluctuations, that is when
we are in the far field of the lateral scale of the surface-height fluctuations. For
� much less than or greater than unity we have rc � rh and rh/� , respectively,
and a convenient analytic approximation for arbitrary values of � is given by
rc D rh

p
1 � exp Œ��2�=� [16]. Both of these conditions are implicitly assumed

here. The corresponding variances of the real, �2
r , and imaginary part, �2

i , of the
field are obtained as

�2r D ˝
u2r
˛ � huri2 D 1

2

�D
juj2

E
C Re

�˝
u2
˛�� � exp

���2�

�2i D ˝
u2i
˛ � huii2 D 1

2

�D
juj2

E
� Re

�˝
u2
˛��
:

(14.45)

Having assumed Gaussian statistics for the scattered field gives the probability
function:
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p Œur; ui� D 1

2 � �r�i

p
1 � 2

exp

"
� 1

2 .1 � 2/

 
.ur � huri/2

�2r
C u2i
�2i

� 2 .ur � huri/ ui

�r�i

!#

where the correlation coefficient is given by

 D hur uii � huri huiiq
hu2r i � huri2

q˝
u2i
˛ � huii2

D Im
�˝

u2
˛�

2 �r�i
:

(14.46)

Inserting the relevant complex parameters for the optical system through
Eqs. (14.39)–(14.45) in the above expression gives the probability distribution
function for the real and imaginary part of the field. Having this, we can find the
higher order statistical parameters for, e.g., the phase, the intensity and the cross
products, if so desired. Examples for these statistical parameters can be found in
[15]. Here we will show a single example, viz. the variance of the speckle pattern
as it moves across a point detector. As discussed, we expect an increase in the
modulation—not the modulation depth—as the specularly reflected field mixes and
enhances the diffusely scattered field. The on-axis intensity covariance becomes

�2I D ˝
I2
˛ � hIi2 D 4 Is �

2
r C 2

	
�4r C �4i


C 42�2r �
2
i : (14.47)

Figure 14.6 shows the variance of the on-axis intensity for a surface giving rise to
partially developed speckle as a function of the surface roughness for three different
values of the lateral scale of the height fluctuations, rh. The example used in this

Fig. 14.6 The intensity variance given as a function the standard deviation of phase for various
values of rh
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calculation is based on having an illuminating beam radius of 1 mm, a wavelength
of 1 �m and a spherical scattering surface of diameter 4 mm placed at a distance of
7 mm from the point detector. Note that although we have free space propagation
and expect an A-value of unity, the spherical surface of the object in combination
with the distance provides for an A-value of 8.

This chapter has been dedicated to getting analytical expressions for the scattered
field statistics up to fourth order for scattering off solid surfaces giving rise to
partially developed speckles. The results are valid for optical systems having
apertures resulting in complex-valued matrix elements. Likewise, the results are
applicable when the partial developed speckle field is due to a low rms. roughness
of the target, or is due to the surface having low frequency lateral structures and
no high frequency undulations. The result when the surface under investigation has
two independent lateral scales has been treated elsewhere, and will not be displayed
here [16]. The issue of integrated speckle statistics and the associated differences
between displaced detectors has been displayed elsewhere, but will not be repeated
here, as the considerations do not highlight the use of complex matrices, but merely
is a straightforward use of the method [17]. For the same reason, we will not touch
upon the subject of optical misalignment and optical contamination [18] in optical
systems treated with the matrix method [19]. Here, as well, the treatment follows
directly from the fundamental properties of the formalism, but providing a closed
form description of the propagation of the field through the cascaded and perturbed
system. Needless to say, the basic formalism does not include optical systems with
aberrations, which would call for matrices of higher order.

In case of polarized light, the propagation of the spectral coherence matrix [20,
21] in optical ABCD-systems without apertures has been treated in two dimensions
[22, 23].

14.4 Sensor Systems Treated with the ABCD-Formalism

The major applications of complex-valued ABCD matrices for our group have been
within optical sensors, and specifically within optical sensors based on dynamic
speckles. We will in this chapter show the outcome for only one sensor treated
with this approach, namely the torsional vibrometer. A specific discussion of the
experimental results and the applications can be found elsewhere, and will not
be discussed. The aim here is to show how the formalism can pave the way for
analytical expressions that down the line will facilitate the optimization of the
measuring system.

Consider the setup shown in Fig. 14.7 [24]. A collimated laser beam is incident
on a cylinder with radius R rotating at an angular speed !.

We consider the distance between the object and the lens, and between the lens
and the observation plane, f Cz1 and f Cz2 respectively, as variables. The tangential
peripheral velocity of the object is R!. We can now use the formalism to derive the
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Fig. 14.7 Generic system for measuring rotational and peripheral velocity determined by the
distances z1 and z2 [25]

pertinent information on the speckle displacement when the object rotates a given
angle. These parameters are given directly by Eqs. (14.22)–(14.25) by inserting the
pertinent parameters for the optical system. In this way we get the irradiance, the
speckle size, the speckle decorrelation, and the speckle displacement as a function
of the angular displacement of the object. The compound matrix describing this
setup is:

bMtotal D

1 z2
0 1

� 
1 f
0 1

� 
1 0

� 1=f 1

� 
1 0

� 2i=
	
k�2



1

�
�


1 f
0 1

� 
1 z1
0 1

� 
1 0

� 2i=
	
k!20



1

� 
1 0

2=R 1

�
;

(14.48)

where !0 is the beam size for the incident, collimated Gaussian beam. By
incorporating this in the optical system we get a closed expression for the time-
lagged spatial covariance but have discarded information on the overall irradiance
in the observation plane. By multiplying the matrices, e.g. by applying the program
in Appendix, we have the necessary complex matrix elements that can be inserted in
Eqs. (14.23) and (14.25) to give the dynamical properties of the speckles and their
size, respectively. Note that the first optical element in the optical train is a synthetic
lens with focal length �R=2 due to the angular rotation of the object. In doing so, the
displacement of the target to be inserted in Eq. (14.23) is R!. The compound matrix
will not be given here. The peak position �p0 for the space time-lagged covariance
for .k � !0/

2 � z21 for an angular displacement �� of the object becomes:

�p0 D A R �� D �2 ��
�

f � z2
f

�
R

2
C z1

��
: (14.49)
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In the general case, the speckle displacement depends on both the distances and
the radius of rotation of the object. A unique measurement of the peripheral or
the angular displacement is not obtained. If we adjust the object and observation
distances to give imaging and Fourier transformation, i.e. z1 z2 D f 2 and z2 D f ,
respectively, we get for the peak position of the covariance:

Imaging W �p0 D R �� f=z1 for
	
z1 z2 D f 2



Fourier transformation W �p0 D �2 f �� for .z2 D 0/ :

(14.50)

Thus placing the CMOS array in Fig. 14.7 in the image plane of the object the
speckle displacement becomes proportional to the peripheral displacement; whereas
placing the array in the back focal plane . z2 D 0/, the speckles move according to
the angular displacement. Please note that the measurement of angular displacement
is independent of the distance to the object, z1, the wavelength and as required,
independent of the radius of rotation of the object, R. This method can be expanded
to derive the distribution of angular twist [26] and the 2D determination of out-of-
plane angular displacement [27].

The rotation of target rotating at an angular speed can usually not be followed
by a CMOS array, but will require an instantaneous measurement of the speckle
velocity. This is also the case for measuring linear velocity based on speckle
displacement. Here, spatial filtering velocimetry facilitates a good approach [28,
29]. The speckle pattern is sheared across a spatial filter with period ƒ resulting in
a temporal modulation of the transmitted irradiance with a frequency v/ƒ, where v
is the speckle velocity perpendicular to the grating lines. In fact, the spatial filter
here acts as a narrow bandpass filter applied to the speckle pattern. Following this
concept, the spectral content of the speckle pattern has to have a decent amount
of energy in the bandpass region, which in common terms shows that ideally the
average speckle size should be 1/� of the grating period. Generally, the total power
in the speckle pattern for a given setup is distributed throughout a range of spatial
frequencies, which is significantly larger than the bandwidth of the bandpass filter.
Therefore, a more efficient use of the power available in speckle patterns would be
beneficial. A method with which to shape a speckle spectrum and analyze this with
the matrix method has previously been shown [30].

Measurement of linear displacement is a fundamental problem, and is usually
optically performed with either the Laser Doppler Velocimeter or with the Time-of-
Flight velocimeter. The first one relies on crossing of two mutually coherent beams
in the measuring volume—in the case of flow measurement [31]—or on the object
in case of solid structures [32].

The second approach for measuring linear transverse velocity is based on
projecting two spots on the target, and recoding the time it takes the object to pass
from one spot to the next. Knowing the spot separation and measuring the transit
time between the two spots reveals the object velocity component [33]. Theoretical
studies of these systems have been conducted based on the complex ABCD-method
[16, 34–36]. Specifically [35] includes a discussion on scattering off solid structures
having multiple scales.
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14.5 Optical Turbulence

In the previous the optical elements have been discretely placed at fixed positions.
In the case of field propagating through optical turbulence or being guided through
a perturbing channel, the ABCD model might be advantageous. Good overviews of
field propagation through optical turbulence have been provided in the past [37].

In this chapter we will recollect the results previously obtained for field and
intensity propagation through optical turbulence. The results are based on two
previous articles [7, 38]. The formalism presented here has been extended in a
number of different scenarios [39] and has formed the basis for the analysis of
light penetration through human skin, specifically for analyzing Optical Coherence
Tomographical systems (OCT) [40].

We now consider the case in which the light beam propagates through an optical
system that contains a random inhomogeneous scattering medium. Here, we treat
for simplicity cylindrically symmetrical optical systems that contain no limiting
apertures (so that the ABCD matrix is real). It can now be shown that the effect of
the random distribution of scatters on the propagation of a light beam is to introduce
an additional multiplicative factor to the integral of Eq. (14.3). This factor is given
by exp [� (p, r)], where p D 	

px; py



and r D .x0; y0/, and � is the perturbation of
the Green’s function that is due to the random inhomogeneity along the propagation
path. The coordinates p and r represent a general observation point and a point in
the initial plane, respectively. Because we are dealing with random quantities, it is
appropriate to consider the statistical moments of the fields. Here, we shall obtain
explicit expressions for the first (i.e., average field) and mean irradiance of the light
beam in the observation plane.

The field in the observation plane is thus given by

U .p/ D
	� ik

2�B


 Z
dr Ui .r/ exp

h
‰
�

p; r
i

exp
�� ik

2B

	
A r2 � 2 p � r C D p2


�
:

(14.51)

Assuming the field � is stationary and taking the ensemble average of the above,
we get

hU .p/i D hexp Œ‰�i U0; (14.52)

where U0 is the field in the absence of the perturbation. Furthermore, it can be shown
that, correct to terms of second order in the fluctuations of the index of refraction of
the medium,

hexp Œ‰�i D exp

�
h�i C i h'i C 1

2

	˝
�2
˛C 2i h�'i � ˝

'2
˛
�
: (14.53)
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Here � and ® are the log-amplitude and phase of the Green’s function that is due to
the random inhomogeneity. In most cases the mean phase is zero, and additionally
h�i D � ˝�2˛ =2; and h�'i is much less than h®2i. Thus, we obtain

hexp Œ‰�i Š exp

�
�1
2

˝
'2
˛�
: (14.54)

The effect of this is not a damping of the power transmitted through the optical
channel, but merely a partial destruction of the coherence after passage. In fact,
an interference pattern arising from interference between the transmitted wave and
an unperturbed part of the beam will suffer a decrease in the modulation depth, as
indicated in the above result.

Next, we have to introduce the phase perturbation due to the optical turbulence
in the optical path. The three-dimensional spectrum of the index-of-refraction
fluctuations is ˚n[Q, z]. Here the fluctuations are allowed to vary in strength and
spectral contribution along the path, denoted z. The transverse coordinate along the
path is Q. Various models for the spectrum ˚n[Q, z] have been presented, based
on whether we are dealing with propagation through the atmosphere, plasmas or
probing light in human tissue. Here, we will not discuss these spectral models, as
they can be found elsewhere for atmospheric turbulence and scattering by aerosols.

The integrated phase disturbance is given by integrating ˚n[Q, z] over all
transverse spectral components and along the optical path:

D
�2'

E
D 2�

Z L

0

dz
Z 1

0

d2q ˆn ŒqI z�; (14.55)

where L is the total propagation path length through the optical system and
˚n[q, z] is the three-dimensional spectrum of the index-of-refraction fluctuations
evaluated at qz D 0. We have included path-length dependence on ˚n, because in
many applications the strength of the fluctuations may vary along the path (e.g.,
up-propagation through the atmosphere). For example, for propagation through
the atmosphere, ˚n is a sum of the contributions that are due to clear-air turbulence
and aerosols. The von karman spectrum describes a well-developed spectrum due
to temperature fluctuations. Here, we will assume the spectrum to be given by
the simpler spectrum, which is only valid within the inertial sub-range:

ˆn Š 0:033 C2
n.z/ Q�11=3: (14.56)

For atmospheric propagation, the above spectral approximation for the inertial
sub-range is valid for spatial structures scaled from approximately 1 mm to the
spectral value corresponding to the largest eddy, which is close to the height above
the ground. The strength of the optical turbulence is governed by the parameter
“c-sub-n-squared,” which attains an increasing value as the atmospheric density and
the temperature increase.
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An expression for the mean intensity I Œp� D
D
jU .p/j2

E
involving the Green’s

function for an arbitrary optical system can now be established by insertion in
the expression for the perturbed field, Eq. (14.51). After some simplifications and
rearranging we get:

I Œp� D ˇ̌
k
2�B

ˇ̌2Z
d2r exp

�
ik

B
p � r

�
K Œr� M Œr� ; where

K Œr� D
Z

d2R ui ŒR C r=2� u�
i ŒR � r=2� exp

�� ikA
B p � r

�

and M Œr� D hexp Œ‰ .r1;p/C‰� .r2;p/�i :

(14.57)

Here M[r] is the mutual coherence function of a point source located at the
observation point p and evaluated at position coordinates r1 and r2 in the initial
plane of the optical system, respectively. In writing Eq. (14.57) we have anticipated
the result that for a stationary inhomogeneous media all second-order statistical
quantities depend on the difference coordinates only. Hence M[r] is a function of
r1 � r2 only. Furthermore, we have the connection between the mutual coherence
function and the structure function Dw[r] given by M Œr� D exp Œ�Dw Œr� =2�. Finally,
the connection between the three-dimensional spectrum of the index-of-refraction
fluctuations and the wave-structure function is given by:

Dw Œr� D 4�k2
Z L

0

dz
Z

d2Q ˆn ŒQ; z� .1 � exp Œi Q � r.z/�/ : (14.58)

Here r(z) is the vector separation at a propagation distance z from the point p
between two rays, both of which originate at p and propagate backwards through
the optical system to vector positions r1 and r2 in the initial plane of the optical
system. This means that r(z) is given by

r.z/ D
�

B Œz�

B

�
r; (14.59)

where r D r1 � r2, B is the ray-transfer-matrix element of the complete system
for a ray whose origin is at p, and B(z) is the corresponding matrix element for
a ray whose origin is at p and whose endpoint is at a distance z from p; that is,
B(z) corresponds to the appropriate matrix element for a ray propagating backward
through the system. In short, the ABCD-matrix method is able to track the mutual
distance between the interfering rays in the observation plane by keeping track
of their mutual distance as they pass the optical system. This distance defines the
amount of phase disturbance which the two rays will undergo.

We are now able to give an expression for the irradiance after passage of an
optical system in which we have phase disturbances. We assume a Kolmogorov
spectrum given by the approximation in Eq. (14.56), and a Gaussian-shaped laser
beam with
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Ui D U0 exp

�
� r2

!2i

�
: (14.60)

Performing the integrations and simplifying yields:

I Œp� D 2PT

�!2
exp

�
�2p2

!2

�
; (14.61)

where PT is the transmitted power,

!2 D A2!2i C 4B2

k2!2i
C 8

k2 q2T
; (14.62)

and

qT Š
�
1:46 k2

Z L

0

dz C2
n.z/ BŒz�5=3

��3=5
: (14.63)

In obtaining this expression we have assumed an optical system without aper-
tures, and approximated the 5/3-power dependence in the exponent of M by 2.

14.6 Conclusions

We have demonstrated that within the paraxial ray approximation the propagation
of light through a complex optical system can be formulated in terms of a Huygens
principle expressed in terms of the complete system ABCD-matrix elements. As
such, propagation through an optical system reduces to that of calculating the
relevant matrix elements and substituting these into the expressions derived here.

We have extended the treatments of Baues [2] and Collins [3] to include partially
coherent light sources, optical elements of finite size, and distributed random
inhomogeneity along the optical path. In many cases (e.g., laser beam propagation
and Gaussian optics) we have been able to derive simple analytical expressions
for the optical field quantities at an observation plane. These expressions are
functions of the appropriate ray-transfer-matrix elements of the optical system under
consideration and the parameters that describe the initial light source. Hence, for a
given initial light source and a given optical system, one can compute the relevant
optical parameters at the observation plane (e.g., the irradiance profile). On the
other hand, given an initial light source and specified optical beam requirements
in the observation plane, the analytical expressions presented here are useful in the
synthesis of the appropriate optical system. Specifically in the case of speckle-based
systems, the formalism facilitates analytical expressions for various parameters of
importance for design and optimization.
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A.1 Appendix

MATHEMATICA program for calculation of the compound 1D matrix for a series
of optical elements:

(* Program: optics.m . Written by Lilybeth *)

(* This program displays the total matrix modeling
the elements in a complex optical system.
It is achieved by accumulating the product of partial
matrices from the predefined functions for a lens,
free space parameter, or a limited aperture parameter.

Further operations with the total matrix can be
accomplished by assigning it to a variable. *)

(* This program requires the standard package
ReIm.m. Reference:

Programming in Mathematica, by Maeder. Pag 243 *)

BeginPackage[“Optics‘”, “Algebra‘ReIm‘”]

Lens::usage D “Lens[f] generates a matrix that
models this element.”

Aperture::usage D “Aperture[r] generates a
matrix that models this element.”

FreeSpace::usage D “FreeSpace[z] generates
a matrix that models this element.”

t D ff1,0g, f0,1gg (* initializing global variable *)

Begin[“‘Private‘”]

Print[“This program generates a total matrix according
to the elements of your optical system.”];

Print[“Please select your choice by entering Lens[f],
Aperture[r,k], or FreeSpace[z].”]

Totalmatrix[m_] :D t D m.t;

Return[t]

Lens[f_] :D
Block[fmlg,

f/: Im[f] D 0;

ml D ff1,0g, f�1/f, 1gg;
Print[“Lens matrix is ”, ml];
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m D ml;

Totalmatrix[m]

]

Aperture[r_,k_] :D
Block[fmag,

r/: Im[r] D 0; k/: Im[k] D 0;

ma D ff1,0g, f�(2 I)/(k*rˆ2), 1gg;
Print[“Aperture matrix is”, ma];

m D ma;

Totalmatrix[m]

]

FreeSpace[z_] :D
Block[fmzg,

z/: Im[z] D 0;

mz D ff1,zg, f0,1gg;
Print[“FreeSpace matrix is”, mz];

m D mz;

Totalmatrix[m]

]

End[]

EndPackage[]
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Chapter 15
Linear Canonical Transforms on Quantum
States of Light

Gabriel F. Calvo and Antonio Picón

Abstract Many quantum information and quantum computation protocols exploit
high-dimensional Hilbert spaces. Photons, which constitute the main carrier of
information between nodes of quantum networks, can store high-dimensional
quantum bits in their spatial degrees of freedom. These degrees of freedom can be
tailored by resorting to the symplectic invariant approach based on lossless linear
canonical transformations. These transformations enable one to manipulate the
transverse structure of a single photon prepared in superpositions of paraxial modes.
We present a basic introduction of these transformations acting on photons and
discuss some of their applications for elementary quantum information processing.

15.1 Introduction

Most promising approaches for scalable quantum communication (QC) rely on the
use of photons as the main carriers of information among remote nodes of quantum
networks, where matter-based quantum memories are located [25, 29, 36, 39, 48,
71]. In such nodes the quantum computing schemes are implemented to process the
information. Photons, besides being the natural candidate for QC due to their long
decoherence time and the relative ease with which they can be manipulated, can
actually encode multiple quantum bits of information (qubits) into various degrees
of freedom. These include frequency, polarization, and linear momentum.

Beams propagating with a well-confined direction can also store quantum
information in their spatial-transverse profile, for example the paraxial modes of the
Hermite–Gauss or the Laguerre–Gauss. A photon with a well-defined paraxial mode
can be defined analogously to the photon with a well-defined linear momentum [20].
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In addition to the spin angular momentum related to the polarization of the photon,
the paraxial photon also transports an extra angular momentum related to its spatial-
transverse profile, the so-called orbital angular momentum (OAM). In particular, the
helical wave fronts of the Laguerre–Gaussian modes have a well-defined OAM „ `
per photon [5, 32, 64].

The spatial-transverse profile or the OAM has unique features for quantum
information tasks as it is possible to encode a qudit, i.e. a quantum bit of
information with dimension d, in a single photon. At variance with polarization,
in which only qubits (d D 2) are allowed, the spatial-transverse profile allows,
in principle, an infinity dimension d. The high-dimensional encoding is relevant
both for fundamental proof-of-principle experiments [24, 38, 68] and for several
quantum information protocols, to cite some of their advantages: creating more
complex quantum cryptography protocols [14, 17, 23, 35, 67], optimizing certain
computing arquitectures [34], simplifying the quantum logics [41], and performing
continuous-variable quantum computation [42, 61].

Here we focus on linear canonical transformations on paraxial modes at the
single photon level and their applications on quantum information. The chapter
is organized as follows: Sect. 15.2 gives a brief summary of the formalism on
symplectic groups and its connection with metaplectic groups. The latter group is
related to the linear canonical transformations on the spatial-transverse profile of a
paraxial beam. There are different existing approaches to introduce this formalism,
we have opted for following the approach described in [57]. Section 15.3 mainly
focuses on these transformations at the single photon level. First of all, we introduce
the general paraxial expression for a single-photon state and the concept of quantum
information bit encoded in its spatial-transverse profile. In the next stage, we
introduce the Poincaré Sphere representation for these quantum information bits.
Finally, we discuss the construction of single quantum gates for spatial-transverse
bit states by means of linear canonical transformations.

15.2 The Symplectic Group in Paraxial Wave Optics

Within a paraxial description of the propagation of a monochromatic wave of
frequency !, two main factors are required: a slowly variant amplitude and a carrier-
plane wave, Aei.kz�!t/ (without loss of generality, we consider the paraxial wave
propagating along the z-direction). The amplitude A varies slowly along z when
compared to the wavelength 	 D 2�=k, but allows the carrier-plane wave to have a
transverse profile with a characteristic beam waist w0 (where w0 � 	).

Henceforth we shall refer to  .rI z/ as the complex amplitude of a wave (or a
complex signal) across a transverse plane at z, and the vector r D .x; y/ to denote the
transverse coordinates. It is understood that, unless otherwise explicitly specified,
we will be dealing with transverse variables: the vector r and the two-dimensional
spatial frequency vector q. The coordinate z can be conceived as a continuous
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labeling parameter. Our aim is to translate the symplectic formalism in geometrical
optics onto the realm of a wave space, expanded by the Lebesgue space L2.R2;C/
of square-integrable complex-valued functions  .rI z/ 2 L2.R2;C/, where

L2.R2;C/ D

� W R2 ! C W

Z

R2

d2r j�.r/j2 < 1
�
:

We will be interested in analyzing the action of linear and lossless optical
elements on quantum states of light (single photon states). To do so, we will proceed
in various steps. To a given system of linear and lossless optical elements (taking
into account also the free propagation) we will associate a transformation matrix T
(see Chap. 2 for more details). These optical elements act on the wave function, so
they correspond to certain (unitary) operators defined on a Hilbert space H .

At this point it is convenient to introduce the Dirac’s bracket notation for the
inner product of two state vectors (kets) j�i; j'i 2 H

h'j�i D
Z

d2r '�.r/�.r/ ;

where � denotes complex conjugation.
Let  .r/ denote the value of  .rI z/ at z D 0, before the optical system. Then,

the value  .r/ D hrj i at the point r is thus the component of the ket j i on the
basis vector jri of the fjrig (position) representation, with hrjr0i D ı.r � r0/.

Lossless optical systems preserve the irradiance integrated over the transverse
plane. For a given paraxial wave function  , intensity and irradiance (power per
unit area) only differ by a multiplicative factor. The total power across a certain
transverse plane at z is

I.z/ D
Z

d2r j .rI z/j2 : (15.1)

For lossless propagation, I.z/ is independent of z. This fact can be expressed
succinctly within the Hilbert-space representation. Let j i; j 0i 2 H and let
h j i and h 0j 0i denote their norms. Suppose that j 0i D U.T/j i where
U.T/ is an operator corresponding to the transformation matrix of a (linear) lossless
optical system. Since I .z/ D h j i D h 0j 0i, it follows that lossless systems
should necessarily be represented by unitary operators OU W H ! H , that is
OU� OU D OU OU� D OI, where OU� is the adjoint of OU and OI the identity operator.
Therefore, let OU.T/ be a unitary operator corresponding to T, which acts on the
input wave state j i 2 H . Its action is thus described as [57]

OU.T/ W j i 2 H
T! j 0i D OU.T/j i; where j 0i 2 H ;

 .r/ D hrj i T!  0.r/ D hrj 0i D
Z

d2r0 hrj OU.T/jr0i .r0/ ; (15.2)
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where j 0i is the output wave state and hrj OU.T/jr0i is the kernel of the unitary
operator OU.T/. In Eq. (15.2) we have used the identity relation OI D R

d2r0 jr0ihr0j.
This is nothing else but a restatement of Parseval’s theorem for lossless transforma-
tions already encountered in Chap. 2. Moreover, from Eq. (15.2) it is clear that  0.r/
represents the output wave function of the input wave function  .r/ after traversing
the optical system with transformation matrix T. Hence, the OU.T/ represent linear
canonical transformations acting on the wave state j i 2 H .

From a geometrical optics point of view, we have seen in previous chapters that
a ray is defined by the phase-space vector � D .r;q/, and that the matrix T is a
symplectic matrix. That is, T 2 Sp.4;R/ with Sp.4;R/ denoting the Lie group of
4 � 4 real matrices with det .T/ D 1. Hence, matrix T transforms the phase-space

vector as �
T! �0 D T�. Within this framework the phase-space vector � becomes

the canonical linear Hermitian operator O� acting on the Hilbert space H [27]

� D

0
BB@

x
y
qx

qy

1
CCA ! O� D

0
BB@

Ox
Oy
Oqx

Oqy

1
CCA D

� Or
Oq
�
:

Just as the phase-space components of � satisfy the Poisson brackets f�˛; �ˇg
D �˛ˇ , with � being a 4 � 4 antisymmetric matrix1

� D

0
BB@

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

1
CCA ; (15.3)

the four canonical operator components of O� obey the commutation relations [57]

Œ O�˛; O�ˇ� D i ��˛ˇ ; (15.4)

where � D 1=k is the optical analog of Planck constant „ in quantum mechanics.
As in quantum mechanics, we find an ambiguous criterion when one wants to map
a phase-space function f .�/ onto an operator function f . O�/. To do this, there are
several routes, but the usual one is to resort to the Weyl or symmetric ordering [2, 3].
To connect the action of the optical system T on the paraxial waves with that found
in geometrical optics [57], we need the average position and momentum (direction)
of the paraxial wave

N�˛ � hO�˛i D h j O�˛j i=I.z/ ;

1We use a slightly different symplectic metric matrix � to that used in Chap. 2. For every T 2
Sp.4;R/, the symplecticity condition reads as T�TT D �.
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where I is the total irradiance (15.1). Thus, after transformation T, analogously to
the results of rays optics, we impose

N�0 D h 0j O�j 0i=I.z/ D h j OU�.T/ O� OU.T/ j i=I.z/ D T N� ;

which is satisfied for all j i when

OU�.T/ O� OU.T/ D T O� : (15.5)

Equation (15.5) is known as the Stone–von Neumann theorem and will be relevant
for further considerations. It connects the symplectic formalism for geometrical op-
tics with unitary operators acting on state vectors j i whose position representation
is provided by the paraxial wave  .r/. That is, each OU.T/ is in correspondence
with the symplectic transformation matrix T. The transformation fT O�g preserves
the commutation relations (15.4).

The unitary transformation OU.T/ can be expressed in an exponential form
OU.T/ D ei O‚, where O‚ is an Hermitian operator ( O‚ D O‚�). The structure
imposed by Eq. (15.5) indicates that the Hermitian operator O‚ is quadratic in the
components of O�. Indeed, O‚ can be cast as a real linear combination of a quadratic-
operator basis or generator OG˛ , i.e. O‚ D P

˛ c˛ OG˛ . By exploiting the Stone–von
Neumann theorem (15.5) it is possible to construct the generators for OU.T/. From
the generators G˛ for the symplectic group [6], i.e. T D eS, where S D P

c˛G˛ ,
one can establish a one-to-one mapping between G˛ and OG˛ to satisfy Eq. (15.5).
Often, in the Mathematics literature, G is called an element of the Lie algebra
of the symplectic group sp.4/. Using the property of the symplectic algebra that
any G˛ is in one-to-one correspondence with a real symmetric 4 � 4 matrix V;
G˛ ! V.G˛/ D �G˛ , we may cast the one-to-one mapping G˛ $ OG˛ as [57]

G˛ ! OG˛ � �1
2

O�T
V.G˛/ O� D �1

2
O�T
�G˛

O� : (15.6)

Using the well-known Campbell–Hausdorff formula [53] it is easy to check that
Eq. (15.6) directly fullfils condition (15.5). Hence, Eq. (15.6) is satisfied by any
element of the Lie algebra of the symplectic group, therefore S ! O‚.S/.

In conclusion, any unitary transformation composed by a linear combination
of Hilbert-space Hermitian operators that are quadratic in O�˛ can be mapped, in
general, to a symplectic matrix. We would like to emphasize the relevance of the
previous statement because of its generality. Here, our Hilbert-space is applied to the
transverse modes of light, but the same mathematical formalism can be applied to
other physical systems. For example, imagine the 2D quantum harmonic oscillator
[10]; the time evolution of any state is generated by its Hamiltonian that is quadratic
in O�˛ . Therefore, one can map the time-unitary evolution onto a symplectic matrix.

The above unitary operators OU.T/ are elements of the, so-called, Metaplectic
group OU.T/ 2 Mp.4/, and the operator generators OG˛ are elements of the algebra of
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the metaplectic group OG˛ 2 mp.4/. For an exhaustive description of the metaplectic
group, we refer the reader to [57]. Here, we underline the following properties:

1. The generators OG˛ 2 mp.4/ obey the Lie algebra of sp.4;R/,

�
� i

„
O‚.G˛/;� i

„
O‚.G˛0/

�
D � i

„
O‚.ŒG˛;G˛0 �/ : (15.7)

2. The mapping OU.T/ 2 Mp.4/ ! T 2 Sp.4;R/ from the unitary operators to the
symplectic matrices satisfies

OU.T/ ! T; OU.T0/ ! T0 ) OU.T/ OU.T0/ ! TT0 : (15.8)

3. The mapping introduced by the Stone–von Neumann theorem is defined up to
a global phase, that is ei˛ OU.T/ ! T. It can be proven [57] that the maximum
possible reduction is to have two unitary operators, OU.T/ and � OU.T/, for each
T 2 Sp.4;R/.2

To summarize, the linear canonical transformations acting on the wave state
j i 2 H are represented by OU.T/. The unitary operator OU.T/ belongs to the
metaplectic group Mp.4/. It follows that these unitary operators can be satisfactorily
parametrized, except for the sign ambiguity, by elements of the symplectic group
Sp.4;R/. The unitary operators can be physically implemented by an arrange of
cylindrical and spherical lenses [4, 58].

15.2.1 Canonical Operators on Paraxial Modes

In the previous section we established the connection of the unitary transformations
OU.T/ with the geometrical optics picture. That allowed us to build up the general
form of such unitary transformations. However, a detailed description of OU.T/ needs
the introduction of the canonical operators which define a suitable framework for the
next sections. The canonical operators have an identical structure to the well-known
creation/annihilation operators of the 2D quantum harmonic oscillator. Here, we
exploit this analogy to define the canonical operators acting on paraxial modes.

Any solution of the paraxial wave equation can be expressed in terms of a
complete, orthogonal basis, such as the well-known Hermite–Gaussian mode basis
or the Laguerre–Gaussian mode basis. In particular, we focus on the Hermite–
Gaussian mode basis where the connection with the 2D quantum harmonic oscillator
is straightforward. The Hermite–Gaussian modes read as [55]

2The metaplectic group is a double cover of the symplectic group.
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HGnx;ny.x; y; zI k/ D HGnx.x; zI k/HGny.y; zI k/ ;

HGnj.j; zI k/ �
s

21=2

2nj w.z/ njŠ
p
�

Hnj

 p
2 j

w.z/

!
exp

�
� j2

w2.z/

�

exp

�
i

k j2

2R.z/
� i

�
nj C 1

2

�
arctan

�
z

z0

��
; (15.9)

where the indices nx and ny are nonnegative integers, k is the wave vector,
w.z/ D w0

p
1C .z=z0/2, with w0 being the width of the mode at z D 0,

R.z/ D z
�
1C .z0=z/2

�
the phase-front radius, z0 D kw20=2 the Rayleigh range,

�.nx C ny C1/ arctan.z=z0/ the Gouy phase [30], and Hnj.�/ the associated Hermite
polynomials of order nj

Hnj.�/ D
Œnj=2�X
rD0

.�1/r nŠ

rŠ.n � 2r/Š
.2�/nj�2r :

The formal analogy between the Hermite–Gaussian modes (15.9) at z D 0 and the
2D harmonic-oscillator eigenstates offers the possibility of applying the operator
algebra of the harmonic oscillator to paraxial waves [47]. We will proceed to
analyze this connection with the harmonic oscillator Hamiltonian by defining,
using the Dirac’s bracket notation introduced in the previous section, hrjnx; nyi D
HGnx;ny.x; y; 0I k/. Note that in the brackets we only specify the indices nx and ny, but
one should bear in mind that there is also a nonexplicit dependence on the width w0
and wave vector k D 1=� of the Hermite–Gaussian mode at z D 0. The Hamiltonian
of a 2D harmonic oscillator can be written as [52]

HHO D w20
4�2

�Oq2x C Oq2y
�C 1

w20

�Ox2 C Oy2� D Oa�x Oax C Oa�y Oay C 1 ; (15.10)

where the annihilation Oax and creation Oa�x (adjoint of Oax) bosonic operators are
defined in terms of the canonical operators Ox and Oqx as [59]

Oax D 1

w0
Ox C i

w0
2�

Oqx ; and Oa�x D 1

w0
Ox � i

w0
2�

Oqx ; (15.11)

with analogous expressions for Oay and Oa�y . The only nonzero commutation relations
among these operators are ŒOax; Oa�x � D ŒOay; Oa�y � D 1. Inversely,

Ox D w0
2
.Oa�x C Oax/ ; and Oqx D i�

w0
.Oa�x � Oax/ ; (15.12)

and similarly for Oy and Oqy. Here, the ground state j0; 0i represents the Gaussian
mode whose spatial profile is given by Eq. (15.9) with z D 0 and nx D ny D 0.
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As in quantum mechanics, any state can be constructed by the action of canonical
operators on the fundamental state. In our case, the action of a canonical operator
on a wave state (such as Oa�x j0; 0i) changes the mode profile of the wave (Oa�x j0; 0i D
j1; 0i, which represents the first-order Hermite–Gaussian mode with transverse
indices nx D 1 and ny D 0). In general, a Hermite–Gaussian mode can be written as

jnx; nyi D .Oa�x/nx

p
nxŠ

.Oa�y/ny

p
nyŠ

j0; 0i ; (15.13)

whose spatial profile is given by Eq. (15.9) at z D 0. As a result, any transverse
profile j i D P

nx;ny
cnx;ny jnx; nyi can be decomposed in a Hermite–Gaussian basis

jnx; nyi or in canonical operators acting on the fundamental Gaussian mode. We
emphasize that the Hamiltonian (15.10) has the harmonic oscillator form due to
the structure of the Hermite–Gaussian mode (15.9) at z D 0. In general, if z ¤
0, HGnx;ny.x; y; 0I k/ does not satisfy the Hamiltonian (15.10). However, the free
propagation of a Hermite–Gaussian mode from z D 0 up to a certain position z can
be described by a linear canonical transformation.

In subsequent sections we will also use the Laguerre–Gaussian mode basis. The
wave state for a Laguerre–Gaussian mode will be denoted as j`; pi, where the
indices ` D 0;˙1;˙2; : : : and p D 0; 1; 2; : : : stand for the winding (or topological
charge) and the number of nonaxial radial nodes of the mode, respectively. The
spatial profile in cylindrical coordinates is [55]

LG`;p.r; �; zI k/ D
s

2pŠ

�.j`j C p/Š

1

w.z/

 p
2r

w.z/

!j`j
Lj`j

p

�
2r2

w2.z/

�

� exp

�
� r2

w2.z/

�
exp

�
i`� C i

kr2

2R.z/
C iˆG.z/

�
; (15.14)

where ˆG.z/ D �.2p C j`j C 1/ arctan.z=z0/ is the Gouy phase, and Lj`j
p .�/ is the

generalized Laguerre polynomial

Lj`j
p .�/ D

pX
mD0

.�1/m .j`j C p/Š

.p � m/Š .j`j C m/ŠmŠ
�m: (15.15)

In the position representation hrj`; pi D LG`;p.r; z D 0I k/. Analogously to
the Hermite–Gaussian basis, any paraxial wave can be expressed as j i DP

`;p c`;pj`; pi. The Hermite–Gaussian indices fnx; nyg and Laguerre–Gaussian
indices f`; pg are related by the mode-order number N D nx C ny D j`j C 2p.
The azimuthal structure of the LG`;p modes is related to the OAM of light [5];
specifically, they carry an OAM „ ` per photon.
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15.2.2 The Metaplectic Representation

In this subsection we make explicit the form of all possible unitary metaplectic
representations acting on H ; OU.T/ 2 Mp.4/ where T 2 Sp.4;R/. All these
unitary operations OU.T/ are generated by ten Hermitian generators OG˛ , quadratic
in O�, in correspondence with the ten generators of Sp.4;R/, see Eq. (15.6). The ten
Hermitian operators OG˛ can be split into two sets [6]: passive and active generators.
The passive set encompasses the maximal compact subgroup U.2/:

OLo D 1

4

	Oa�x Oax C Oax Oa�x C Oa�y Oay C Oay Oa�y

 D Ox2 C Oy2

2w20
C .Oq2x C Oq2y/w20

8�2
� 1

2
;

OLx D 1

2

	Oa�x Oax � Oa�y Oay

 D Ox2 � Oy2

2w20
C .Oq2x � Oq2y/w20

8�2
;

OLy D 1

2

	Oa�x Oay C Oa�y Oax

 D OxOy

w20
C Oqx Oqyw20

4�2
;

OLz D � i

2

	Oa�x Oay � Oa�y Oax

 D OxOqy � OyOqx

2�
: (15.16)

Here, Oax and Oay (Oa�x and Oa�y) are the annihilation (creation) bosonic operators for all
orthogonal transverse modes, see Eq. (15.11). The passive operators (15.16) have
the form of the well-known Stokes operators. They obey the usual commutation
relations Œ OLi; OLj� D i "ijk

OLk (i; j; k D x; y; z), where "ijk is the totally antisymmetric
Levi–Civita tensor. Of these U.2/ generators, OLo is the only commuting element
while OLz represents real spatial rotations on the transverse x–y plane. In contrast,

OLx and OLy describe simultaneous rotations in the four-dimensional phase-space:
OLx produces rotations in the x–px and y–py planes by equal and opposite amounts,

whereas OLy gives rise to rotations in the x–py and y–px planes by equal amounts.
Notice that OLo, when acting on paraxial modes, does not modify their transverse
profile (it just gives rise to a global phase), whereas OLz is proportional to the
longitudinal component of the OAM operator for a light beam [20]. It is also
important to mention that passive generators, due to their structure, preserve the
mode-order number N for Laguerre–Gaussian, N � j`j C 2p, and Hermite–
Gaussian, N D nx C ny, modes.

Figure 15.1 depicts the action of the unitary operator OU D e�is OLj , with j D
x; y; z and s 2 R, corresponding to the three passive generators OLx, OLy, and

OLz on two first order paraxial modes: the Laguerre–Gaussian mode LG`D1;pD0
and the Hermite–Gaussian mode HGnxD1;nyD0 for two different values of the

parameter s. It can be observed that OLz and OLx leave invariant LG`D1;pD0 and
HGnxD1;nyD0, respectively. More generally, the Laguerre–Gaussian mode state j`; pi
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LG1,0

HG1,0

L̂z

L̂zL̂x

L̂x L̂y

L̂y

s = 1/2

s = 1

s = 1/2

s = 1

Fig. 15.1 Transformation properties of three of the passive generators (15.16) on a Laguerre–
Gaussian mode LG`D1;pD0 and on a Hermite–Gaussian mode HGnxD1;nyD0. The transverse density
plots are given for increasing squeezing parameter s

and the Hermite–Gaussian mode state jnx; nyi are eigenvectors of OLz and OLx,
respectively [20]. Also, Laguerre- and Hermite–Gaussian bases are unitarily related:
LG`;p transforms into HGnx;ny via e�i.�=2/ OLy (see also Chap. 2 for the connection
between Hermite–Gaussian and Laguerre–Gaussian modes).

At variance with the passive set of generators, the active set is responsible for the
noncompactness of Sp.4;R):

OKx D �1
2
.Oa�x Oa�y C Oax Oay/ ;

OKy D 1

4
.Oa� 2x C Oa2x � Oa� 2y � Oa2y/ ;

OKz D � i

4
.Oa� 2x � Oa2x C Oa� 2y � Oa2y/ ;

OMx D � i

2
.Oa�x Oa�y � Oax Oay/ ;

OMy D i

4
.Oa� 2x � Oa2x � Oa� 2y C Oa2y/ ;

OMz D 1

4
.Oa� 2x C Oa2x C Oa� 2y C Oa2y/ : (15.17)
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K̂x K̂y K̂z M̂zM̂yM̂x
LG1,0

s = 1

s = 2

HG1,0
s = 1

s = 2

K̂x K̂y K̂z M̂zM̂yM̂x

Fig. 15.2 Transformation properties of the six active generators (15.17) on a Laguerre–Gaussian
mode LG`D1;pD0 and on a Hermite–Gaussian mode HGnxD1;nyD0. The transverse density plots are
given for increasing squeezing parameter s

They satisfy the following commutators:

Œ OLi; OKj� D i "ijk
OKk ; Œ OLi; OMj� D i "ijk

OMk ;

Œ OLo; OKj ˙ i OMj� D �. OKj ˙ i OMj/ ; Œ OKi; OMj� D i ıij
OLo ;

Œ OKi; OKj� D Œ OMi; OMj� D �i "ijk
OLk :

Figure 15.2 displays the action of the unitary operators OU D e�is OKj and OU D
e�is OMj , with j D x; y; z and s 2 R, corresponding to the six active generators (15.17)
on two first order paraxial modes: the Laguerre–Gaussian mode LG`D1;pD0 and the
Hermite–Gaussian mode HGnxD1;nyD0 for two different values of the parameter s. In
contrast to passive generators, the active ones scale (squeeze) the spatial modes and
change the order N, giving rise to infinite mode superpositions.

As any arbitrary sequence of symplectic transformations Tm is again another
symplectic transformation T D Q

m Tm, one concludes that the most general unitary
metaplectic operator OU.T/ corresponding to T is given by a single exponential
of i times real linear combinations of any of the above (15.16) and (15.17)
generators [19]:

OU.T/ D exp
�
�is � OG

�
; (15.18)
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where OG 2
n OL ; OK ; OM

o
and s a ten-parameter real vector. Together with the

four passive generators (15.16), only OKz and OMy suffice to describe the general
metaplectic operator (15.18) by recourse to the following passive-active-passive
(Euler) decomposition [6, 19]:

OU.T/ D exp
�
�i� � OL

�
exp

�
�i�y

OMy � i�z
OKz

�
exp

�
�i� � OL

�
; (15.19)

still requiring ten real parameters via the two four-component vectors � and � plus
constants �y and �z.

In the next sections we will elucidate how the action of the above generators can
be easily understood within the Wigner function formalism.

15.2.3 The Wigner Function of Paraxial Modes

The phase space picture, which is a fundamental concept in classical mechan-
ics, remains useful when passing to quantum mechanics. In a similar fashion
with probability density distribution functions in classical systems governed by
Liouville dynamics, quasiprobability distributions were already introduced in the
early foundations of quantum mechanics. They provide a description of quantum
systems at the level of density operators although not at the level of state vectors.
Among them, the Wigner function stands out because it is real, nonsingular, yields
correct quantum mechanical operator averages in terms of phase space integrals and
possesses non-negative-definite marginal distributions [37, 43, 54]. It is, however,
only positive for Gaussian pure states, according to the Hudson–Piquet theorem.

By exploiting the analogy between classical and quantum mechanics with
geometrical and wave optics, Wigner distributions have been used in the context
of classical wave optics of both coherent and partially coherent light fields [12,
27, 46, 59, 62, 63], where they are Fourier-related to the cross-spectral densities.
Particularly outstanding has been the symplectic invariant approach by Simon and
Mukunda [57], which has been applied to anisotropic Gaussian Schell-model beams
via the relation between ray-transfer matrices of first-order optical systems (FOS)
and metaplectic operators acting on wave amplitudes and cross-spectral densities.

The cross-spectral density wc.r; r0/ is defined by resorting to the density operator.
The density operator for a paraxial wave state j i (15.2) is O D j ih j. Here, we
deal with coherent waves, but this formalism is more general, and can be extended to
partially coherent waves. For a coherent wave, its amplitude .r/ D hrj i describes
the spatial form. In contrast, partially coherent waves do not have a deterministic
amplitude. They are described by an ensemble of amplitudes with an associated
probability. Within the density operator formalism, partially coherent waves can
be cast as O D P

k pk Ok D P
k pkj kih kj, where Ok is a coherent wave with an

associated probability pk. Of course,
P

k pk D 1 must be satisfied, as it is expected
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for a probability distribution. When we have only an amplitude, pk D 1, we return
to the coherent wave. Therefore, for both coherent and partially coherent waves, the
cross-spectral density is

wc.r; r0/ D hrj O jr0i ; (15.20)

where O is the density operator of the wave. For coherent waves, the cross-spectral
density reads as wc.r; r0/ D  .r/ �.r0/. As a density operator, we must impose
hermiticity ( O D O�) and nonnegativity ( O � 0). Notice that the total power (15.1)
can be written in the new formalism as I.z/ D R

d2r wc.r; r/ D Tr. O/. On the other
hand, when a symplectic transformation T acts on the state j i, we know that if
OU.T/ 2 Mp.4/, then j 0i D OU.T/j i, O T! O0 D OU.T/ O OU�.T/ and

wc.r; r0/ T! w0
c.r; r

0/ D
Z

d2r00
Z

d2r000 hrj OU.T/ jr00i wc.r00; r000/hr000j OU.T/ jr0i ;
(15.21)

where hrj OU.T/ jr0i is the kernel of the symplectic transformation [22]. The descrip-
tion of the symplectic transformation with the cross-spectral density is not trivial, as
one has to solve the integral in Eq. (15.21). Nevertheless, by resorting to the Wigner
function formalism, the action of symplectic transformations is remarkably simple.
The Wigner distribution W.r;q/ is a faithful representation of the cross-spectral
density

wc.r; r0/ D
Z

d2p W

�
r C r0

2
;q
�

eiq�.r�r0/ ;

or inversely

W.r;q/ D 1

.2�/2

Z
d2� wc

�
r C �

2
; r � �

2

�
e�iq��

D 1

.2�/2

Z
d2�

D
r C �

2

ˇ̌
ˇ O

ˇ̌
ˇr � �

2

E
e�iq�� ; (15.22)

where � D r � r0. For fully coherent waves, wc.r C �=2; r � �=2/

D  .r C �=2/ �.r � �=2/. We recall some of properties of the Wigner function:

• The Wigner function is real. This property is equivalent to the hermiticity of the
density operator.

• The nonnegativity of the density operator translates into the Wigner function.
The positivity condition O � 0 is equivalent to saying that O is nonnegative if and
only if Tr. O O0/ � 0 8 O0. For Wigner functions it reads as
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Tr. O O0/ D
Z

d2r
Z

d2r0 wc.r0; r/w0
c.r

0; r/

D .2�/2
Z

d2r
Z

d2q W.r;q/W 0.r;q/ � 0 ; 8 W 0 :

• In general, the Wigner function is not pointwise nonnegative, but its marginals
are always pointwise nonnegative

wc.r; r/ D
Z

d2q W.r;q/ � 0 ; 8 W ;

Qwc.q;q/ D
Z

d2r W.r;q/ � 0 ; 8 W ;

where Qwc.q;q0/ is the Fourier transform of wc.r; r0/. Here, wc.r; r/ and Qwc.q;q/
are the spatial and momentum probability distributions, respectively. For coher-
ent waves wc.r; r/ D j .r/j2 and Qwc.q;q/ D j Q .q/j2, where Q .q/ is the Fourier
transform of the wave amplitude. Thus, the total irradiance

I D
Z

d2r wc.r; r/ D
Z

d2r
Z

d2q W.r;q/ :

• Mapping Hermitian operators of the Hilbert space H onto phase-space is not
trivial, due to the noncommutativity of the operators. For example, suppose that
one wishes to map the Hermitian operator OxOqx onto the phase-space. As Ox does
not commute with Oqx, Oqx Ox is different from OxOqx. In fact, OxOqx D Oqx Ox C i�. If we
choose, for example, the following map OxOqx ! xqx and Oqx Ox ! qxx, naturally
xqx D qxx, thus two different Hermitian operators are mapped onto the same
phase-space dependence as a result of the chosen convention. As in quantum
mechanics ordering problems, there is not a basic principle that imposes a unique
convention. Some of the usual ordering conventions are the normal, antinormal,
and symmetric or Weyl-ordering schemes. As pointed out previously, we choose
here the Weyl-ordering. The Weyl-ordering can be set down by comparing the
components of the monomials 	 given by the correspondence

ei	�� $ ei	� O� ;

where 	 is a vector of the same dimension than �. In the Wigner representa-
tion, the Weyl operator fOx˛ Oqˇx Oy� OqıygW is in correspondence with the monomial

x˛qˇx y�qıy, where ˛, ˇ, � , and ı are arbitrary powers, and obeys the following
property

Tr. OfOx˛ Oqˇx Oy� OqıygW/

Tr. O/ D
R

d2r
R

d2q x˛qˇx y�qıy W.r;q/R
d2r

R
d2q W.r;q/

:
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We previously showed how the density operator and the cross-spectral density are
modified under symplectic transformations [see Eq. (15.21)]. However, the Wigner
function takes an advantage over such representations; symplectic transformations
are easily performed in the Wigner representation. Before going to the matter, it is
worth reexpressing (15.22) in a more appropriate form,

W.�/ D 1

.2�/4

Z
d4�0 ei�T��0

Tr. O ei�0T�O�/ ; (15.23)

where �0 D .r0;q0/.
When a paraxial wave crosses a linear lossless optical system with transformation

matrix T, its density operator changes as O T! OU.T/ O OU�.T/, whereas the Wigner
representation is transformed as a scalar field of the symplectic group,

W.�/ ! W.T�1�/ ; where T 2 Sp.4;R/ : (15.24)

The covariant property (15.24) will be crucial to describe in subsequent sections
the transformation of any paraxial wave along systems described by a symplectic
matrix T, since knowledge of both the Wigner function corresponding to the input
wave and the symplectic matrix T of the optical system, the output Wigner function
follows from Eq. (15.24). This property was firstly highlighted by Bastiaans in his
pioneering papers introducing the Wigner function in Optics [11, 12].

15.3 Linear Canonical Transformations for Quantum
Information

A controlled generation and manipulation of photon states encoded in their spatial
degrees of freedom is a crucial ingredient in many quantum information tasks
exploiting higher-than-two dimensional encoding. This section is mainly devoted
to quantum information applications, in particular, we focus on the manipulation
and control of quantum states encoded in the transverse spatial modes of light. Part
of this section is based on the symplectic formalism presented in Sect. 15.2.

First of all, we show how photons with a well-defined spatial-transverse profile
can be conceived in the quantum field theory framework. We also introduce the
Poincaré Sphere to represent the quantum information bits encoded in the spatial-
transverse profile. We will end this section with a discussion about quantum gates
in a single photon by using linear canonical transformations.

15.3.1 The General Paraxial Single-Photon State

Before describing the unitary transformations generated by passive (15.16) and
active (15.17) operators on the spatial mode of a photon, it is suitable at this stage
to introduce in a nutshell the concept of a photon in the paraxial approximation.
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In quantum electrodynamics the photon is interpreted as an excitation of the
quantized mode field [44, 45]. In general, this excitation is associated with a plane
wave: it has a well-defined linear momentum, energy, and polarization. However,
a superposition of photons with precise linear momentum, energy and polarization,
is still a photon [15]. Therefore, we can form a wavepacket with some spatial and
temporal localization. As it was shown in [20], the electromagnetic field can be
properly quantized accounting for the paraxial approximation and one can define
photons in a certain superposition of spatial modes. Within this quantization, we
can define a set of creation and annihilation operators: those that create a photon
from the vacuum with a certain paraxial transverse profile, for example with a well-
defined Laguerre–Gaussian mode or a Hermite–Gaussian mode.

The most general (paraxial) single-photon pure state can be described as [20]

j i D
X
�;nx;ny

Z 1

0

d! C�;nx;ny.!/ Ob��;nx;ny
.!/ jvaci : (15.25)

Here, Ob��;nx;ny.!/ denotes the bosonic creation operator of a photon with a Hermite–
Gaussian mode .nx; ny/, a linear polarization � , and a frequency ! acting on the
vacuum state jvaci. The commutation relations read as ŒOb�;nx;ny .!/ ; Ob�

� 0;n0
x;n

0
y
.!0/� D

ı�� 0ınxn0
x
ınyn0

y
ı.! � !0/. The complex coefficients C�;nx;ny.!/ can be interpreted as

the probability amplitudes for finding a photon in the state Ob��;nx;ny .!/ jvaci D
j�i ˝ jnx; nyi ˝ j!i. In the next sections we focus only on the spatial part of
Eq. (15.25) and assume that it consists of a finite superposition of d orthogonal
HG modes jnx; nyi / .Oa�x/nx.Oa�y/ny j0; 0i or d orthogonal LG modes j`; pi (for more
details about the canonical operators acting on spatial modes, we refer the reader to
Sect. 15.2.1, avoiding possible confusion between operators Oa with operators Ob).

The superposition of d orthogonal modes can be interpreted as a qudit. In the
normalized qudit form, we can either express

j i D
X
`;p

c`;p j`; pi ; (15.26)

in the Laguerre–Gaussian mode basis or

j i D
X
nx;ny

cnx;ny jnx; nyi : (15.27)

in the Hermite–Gaussian mode basis. Any qudit requires, at least, 2d independent
real parameters, albeit normalization and invariance under a global phase reduce
this number to 2.d � 1/. As expansions (15.26) and (15.27) suggest, one could
choose other complete basis of transverse modes, for example the Ince–Gaussian
(in elliptical coordinates) modes [8].
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15.3.2 Passive Generators: The Poincaré Sphere

The basic unit of information for most quantum information and quantum com-
puting schemes is the qudit which, for d D 2, becomes a qubit. The qubit can be
encoded in different degrees of freedom of a physical system, for example in the case
of photons the usual encoding is by exploiting its polarization state. The Poincaré
(also known as the Bloch) sphere representation is a convenient way to visualize the
transformations on qubits. For polarization states, the north and south poles of the
sphere correspond to left- j� D C1i and right-handed j� D �1i circularly polarized
eigenstates, respectively. More generally, any polarized state can be described as a
linear superposition of left- and right-handed circular polarization in the form (up to
a global phase)

j�; 'i D cos
�

2
j� D C1i C ei' sin

�

2
j� D �1i ; (15.28)

which, on the Poincaré sphere, corresponds to a point on the surface having polar
and azimuthal angular coordinates � and ', respectively.

Analogously, Padgett and Courtial introduced the orbital Poincaré sphere for
paraxial first-order-mode (N D 1) spatial beams carrying OAM [49]. Its underlying
SU(2) symmetry was subsequently shown [1]. In this picture, the poles of the
sphere correspond to Laguerre–Gaussian modes with radial-node number p D 0

and topological charge ` D ˙1 (plus and minus standing for the north and south
poles, respectively). Figure 15.3a illustrates the first-order mode orbital Poincaré
sphere. Hence, in complete analogy with Eq. (15.28), any state on the first-order-
mode sphere can be written as

j�; 'iND1 D cos
�

2
j` D 1; p D 0i C ei' sin

�

2
j` D �1; p D 0i : (15.29)

The Hermite–Gaussian modes with N D 1 are located in the equatorial plane of the
sphere, for example the superposition at � D �=2 and ' D 0 (� D �=2, ' D �)
gives rise to the Hermite–Gaussian mode with indexes nx D 1 and ny D 0 (nx D 0

and ny D 1).
One can obtain Eq. (15.29) by applying a unitary operator OU.T/ (induced by the

passive generators (15.16)) on a paraxial mode with N D 1. In particular, we can
express the state (15.29) as

j�; 'iND1 D exp.�i� OL � u'/j` D 1; p D 0i � OU.�; '/j` D 1; p D 0i :
(15.30)

Here, OL D . OLx; OLy; OLz/ is a vector of the passive generators satisfying the SU(2)
algebra, and u' D .� sin'; cos'; 0/ is a unit vector in the equatorial plane of the
sphere. The action of the unitary (metaplectic) operator OU.�; '/ can be interpreted
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HG1,0

LG1,0

LG−1,0 LG−2,0

LG2,0

HG2,0

〈r|θ, ϕ〉2,0〈r|θ, ϕ〉1,0

ϕ

θq

a b

Fig. 15.3 Orbital Poincaré sphere of (a) first and (b) second order modes. The poles of the sphere
correspond to Laguerre–Gaussian modes with (a) ` D ˙1; p D 0 and (b) ` D ˙2; p D 0

(positive and negative signs for north and south poles, respectively). The states in the equatorial
plane .� D �=2/ with ' D 0 and ' D � yield the Hermite–Gaussian modes having indexes
(a) nx D 1; ny D 0 and nx D 0; ny D 1 (not shown), respectively, and (b) nx D 2; ny D 0 and
nx D 0; ny D 2 (not shown), respectively

as a rotation of � following the unit vector ur D .cos' sin �; sin' sin �; cos �/ for
a given '. Due to the structure of the passive generators, which preserve the mode-
order number N, the operator OU.�; '/ acting on the state j` D 1; p D 0i always
yields states with N D 1.

15.3.3 The Poincaré Sphere for Higher-Order Modes

The first-order-mode orbital Poincaré sphere not only constitutes an elegant frame-
work to represent states with mode-order number N D 1, but also all the
transformations among them can be visualized as paths connecting points on the
sphere. However, higher-order modes cannot be described by Eq. (15.29). That is,
states on higher-order orbital Poincaré spheres involve more complex superpositions
of Laguerre–Gaussian modes.

A generalization of the Poincaré sphere for higher-order modes was introduced
in [18]. For each mode-order N an orbital Poincaré sphere O`;p was constructed by
applying the operator OU.�; '/ (15.30) on a Laguerre–Gaussian mode state j`; pi3

j�; 'i`;p D exp.�i� OL � u'/j`; pi : (15.31)

3For simplicity, we focus on the transverse profile of a single-photon, considering a certain
polarization � and a frequency !, see Eq. (15.25). Also, without loss of generality, we consider
all O`;p having ` � 0. Spheres with ` < 0 exhibit a state configuration identical to those with
` > 0, after inversion with respect to their centers.
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Therefore, the state j�; 'i`;p, represented by the point (�; ') on the orbital Poincaré
sphere O`;p, has mode-order N D 2p C j`j � 0. This generalization provides
a suitable framework to visualize the geometric phases in paraxial optical beams
under continuous mode transformations [33, 65]. An important observation is that
such a rotation gives rise to a superposition of Laguerre–Gaussian mode states that
can be cast as

j�; 'i`;p D
X̀
`0D�`

pX
p0D0

C`0;p0.�; 'I `; p/ j`0; p0i ; (15.32)

where 2p0 C j`0j D 2p C j`j D N. The complex coefficients C`0;p0.�; 'I `; p/
depend on the point .�; '/ on the Nth-order Poincaré sphere O`;p. For instance,
in the particular case of Eq. (15.29) one obtains C1;0.�; 'I 1; 0/ D cos �=2,
C0;0.�; 'I 1; 0/ D 0, and C�1;0.�; 'I 1; 0/ D ei' sin �=2. Figure 15.3b depicts
representative modes associated with their angular orientations on the second-order-
mode O`;p sphere (N D ` D 2).

The (�; ')-distribution of states on O`;p can be computed by employing the
Wigner function representation (15.22) of a photon in a pure state  .q/ D hqj i

W.�/ D 1

.2��/2

Z 1

�1
d2� exp.ir � �=�/ 

�
q C 1

2
�

�
 �

�
q � 1

2
�

�
: (15.33)

As shown in [18], it is possible to derive a closed-form expression for the Wigner
representation of states j�; 'i`;p without explicitly calculating the integrals in
Eq. (15.33). By invoking the Stone–von Neumann theorem (15.5), we know that
unitary operators whose generators are quadratic in O� [such as OU.�; '/] induce
linear canonical transformations, T W O�0 ! T O�, in the optical phase space.
Moreover, under the action of T the Wigner function (15.24) experiences a simple

point transformation (15.24) W.�/
T! W 0.�/ D W.T�1�/. In our case, the linear

canonical transformation generated by the quadratic operators (15.31) results from
the relation OU�1.�; '/ O� OU.�; '/ D T.�; '/ O�, and reads as

T.�; '/ D

0
BBBBB@

c� 0 � w20 s� s'
2�

w20 s� c'
2�

0 c�
w20 s� c'
2�

w20 s� s'
2�

2�s� s'
w20

� 2�s� c'
w20

c� 0

� 2�s� c'
w20

� 2�s� s'
w20

0 c�

1
CCCCCA
; (15.34)

where c� D cos.�=2/, s� D sin.�=2/, c' D cos', s' D sin' (recall that w0 is the
mode width at z D 0). Also, the action of T.�; �/ is independent of the chosen states
at � D ' D 0, that is, besides j`; pi, one could have chosen other state vectors, for
instance, Hermite–Gaussian states jnx; nyi with equal sphere-order N D nx C ny.
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The key point is thus to observe that owing to the unitary relation (15.31) between
states belonging to the same sphere O`;p, knowledge of the Wigner function of
any given state on O`;p allows one to determine the Wigner function of all states
on that same sphere. Laguerre–Gaussian states constitute the convenient choice
here. Using their Wigner representation [56] and Eq. (15.34), the found normalized
Wigner function is [18]

W`;p.�I �; '/ D .�1/N
�2�2

e�Q0L N�`
2
.Q0 � 4Q � ur/L NC`

2
.Q0 C 4Q � ur/ ; (15.35)

where Q0 D 2.x2 C y2/=w20 C .p2x C p2y/w
2
0=2�

2, Lm.�/ are the mth order Laguerre

polynomials, and the quadratic polynomials Q.�/ � .Qx;Qy;Qz/ follow from OLx,
OLy, and OLz in Eq. (15.16) by replacing O� ! �. When � D 0 (� D �) one recovers

from Eq. (15.35) the Wigner function of LG states j`; pi (j � `; pi). If � D �=2 and
' D 0 (� D �=2 and ' D �) one obtains the Wigner function of Hermite–Gaussian
states jnx;N � nxi (jN � ny; nyi).

Equation (15.35) is a strictly positive and angle-independent Gaussian distribu-
tion only when ` D p D 0 (in this case its associated Poincaré sphere becomes
degenerated, i.e. all points .�; '/ on the sphere represent the same Gaussian mode
state). This is in accordance with the Hudson–Piquet theorem which states that the
only non-negative Wigner function is a Gaussian distribution. Moreover, though
W`;p.�I �; '/ does not explicitly contain the propagation variable z, its spatial
evolution along z can be fully described by applying a Galilean boost r ! r � zq.

To conclude, it is interesting to mention that: (1) any two states belonging to
different spheres are mutually orthogonal; (2) if ` > 0 and p D 0, only states
corresponding to antipodal points on the orbital Poincaré sphere are mutually
orthogonal. However, if ` > 0 and p > 0, additional points exist on the sphere
(apart from the antipodal) where their associated states are also orthogonal; (3) when
` D 0, antipodal points no longer correspond to orthogonal states but to identical
states.

15.3.4 Quantum Gates Using Linear Canonical
Transformations

In the context of implementing quantum information protocols, a basic requirement
is the construction of a complete set of quantum gates [9, 21, 26]. Single qudit gates
assure that any given qudit state in the Hilbert space H can be transformed onto
any other qudit state belonging to the same Hilbert space H . Hence, a necessary
condition to perform unitary operators on (pure state) qudits j i D Pd

jD1 ˛jjji,
consisting of a d-dimensional superposition of orthogonal eigenmodes jji, is to
modify in a controlled way each of the complex coefficients ˛j. This requires, in
general, that the unitary operators obey the SU(d) algebra.
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Here we consider unitary operators OU.T/ corresponding to the linear canonical
transformations (see Sect. 15.2), acting on qudits encoded in the transverse-spatial
profile of a single photon, such as Eqs. (15.26) and (15.27). We will discuss
the validity of these operators to construct single qudit gates. In most of the
experimental realizations oriented towards the use of spatial degrees of photons
for high-dimensional encoding, phase holograms and reconfigurable spatial light
modulators have been employed to approximately manipulate specific combinations
of optical transverse modes [31, 64]. In practice, however, these elements do not
strictly preserve paraxiality but, rather, behave as non-unitary transformations,
thus constituting a source of mode noise that eventually destroys the desired
large, but finite, multidimensionality of the quantum states to be exploited. The
unitary operators OU.T/, implemented by lossless FOS [4, 13, 58], overcome these
difficulties as they preserve unitarity and paraxiality in a controlled fashion.

In [19] it was proven that it is impossible to arbitrarily modify d-dimensional
mode-superpositions of single-photon pure qudit states (15.27) for d > 2, via
unitary operations OU.T/ generated by symplectic transforms T 2 Sp(4,R). For
d D 2 the unitary operators generated by the passive generators (15.16) satisfy
the SU(2) algebra, therefore it is possible to construct single quantum gates on
the Hilbert space spanned by first-order (N D 1) paraxial modes. However, for
d > 2 the situation is different. For example, let us consider the Hilbert space with
dimension d D3 spanned by the paraxial modes fj0; 0i; j1; 0i; j0; 1ig. Here, passive
unitary operators cannot connect paraxial modes with different mode-order number,
hence we cannot carry out the conversion of the fundamental Gaussian mode j0; 0i
into a first-order Hermite–Gaussian mode. One may attempt to construct a qutrit
(qudit with d D 3) by using paraxial modes with the same mode-order number.
For example, by considering the Hilbert space spanned by fj2; 0i; j1; 1i; j0; 2ig.
In this case, one can perform some unitary transformations, but not all of them.
In particular, it is impossible to convert the mode j1; 1i into j2; 0i by means of
passive unitary operators. Furthermore, as unitary operators generated by active
generators (15.17) involve transformations with an infinity number of paraxial
modes, one cannot maintain mode conversion within a finite Hilbert space [19].

Hence, unitary operations OU.T/ generated by symplectic transforms T 2 Sp(4,R)
do not allow a complete set of quantum gates for d > 2. Nevertheless, in [19, 66] a
new set of non-Gaussian operations were introduced that truly enable the arbitrary
manipulation (up to global phases) of qutrits. These transformations are related to
aberrations [28, 70]. However, we will not describe these transformations here as
they are beyond the scope of this chapter.

Unitary operations OU.T/ can also be used for quantum tomography problems, in
which the spectrum of the spatial transverse profile can be reconstructed for a single
photon. Such spatial spectrum analyzer can be implemented with a small number of
elementary refractive elements embedded in a single Mach–Zehnder interferometer
[21, 51].
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15.4 Conclusions

The aim of this chapter has been to provide a condensed summary of how the
symplectic invariant approach of lossless linear canonical transformations can be
applied to manipulate the transverse spatial structure of single photons prepared
in superpositions of paraxial modes. By resorting to the Stone–von Neumann
theorem, we have made use of the well-known mapping (up to a global phase)
between unitary operators belonging to the metaplectic group and the symplectic
transformation matrices associated with linear-and-lossless optical elements. Par-
ticular emphasis has been put on the action of canonical unitary operations on
two relevant paraxial mode bases: Hermite- and Laguerre–Gaussian modes. Within
the metaplectic representation, the explicit form of all two-mode unitary operators
has been split into two sets of passive and active generators. The transformation
properties of the mode-order-preserving passive operators have been elucidated
by means of the orbital Poincaré sphere, where the OAM of the paraxial modes
displays an elegant geometric interpretation. We have also shown how the active
operators differ from the mode-order-preserving passive operators, giving rise to a
transverse squeezing and a change of order involving an infinite mode superposition.
We have made explicit the action of these generators within the Wigner function
formalism. We have ended the chapter by briefly discussing how linear canonical
transformations on spatial paraxial modes can be employed for elementary quantum
information tasks. It is noteworthy to remark that although the canonical operators
introduced in Eq. (15.11) represent transverse-spatial modes of a single photon state,
there is a vast literature about quantum information tasks with canonical operators,
having an analogous formalism, representing different physical actions on photon
states [7, 16, 40, 50, 60, 69].
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38. D. Kaszlikowski, P. Gnaciński, M. Żukowski, W. Miklaszewski, A. Zeilinger, Violations of

local realism by two entangled N-dimensional systems are stronger than for two qubits. Phys.
Rev. Lett. 85, 4418–4421 (2000)

39. H.J. Kimble, The quantum internet. Nature 453, 1023–1030 (2008)
40. E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear

optics. Nature 409, 46–52 (2001)
41. B.P. Lanyon, M. Barbieri, M.P. Almeida, T. Jennewein, T.C. Ralph, K.J. Resch, G.J. Pryde,

J.L. O’Brien, A. Gilchrist, A.G. White, Simplifying quantum logic using higher-dimensional
Hilbert spaces. Nat. Phys. 5, 134–140 (2009)

42. M. Lassen, G. Leuchs, U.L. Andersen, Continuous variable entanglement and squeezing of
orbital angular momentum states. Phys. Rev. Lett. 102, 163602 (2009)

43. H. Lee, Theory and application of the quantum phase-space distribution functions. Phys. Rep.
259, 147–211 (1995)

44. R. Loudon, The Quantum Theory of Light (Clarendon Press, Oxford, 1983)
45. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press,

New York, 1995)
46. W. Mecklenbraüker, F.F. Hlawatsch (eds.), The Wigner Distribution-Theory and Applications

in Signal Processing (Elsevier, Amsterdam, 1997)
47. G. Nienhuis, L. Allen, Paraxial wave optics and harmonic oscillators. Phys. Rev. A 48, 656–665

(1993)
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