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Preface

The workshop series ‘Lie Theory and Its Applications in Physics’ is designed to
serve the community of theoretical physicists, mathematical physicists and math-
ematicians working on mathematical models for physical systems based on geo-
metrical methods and in the field of Lie theory.

The series reflects the trend towards a geometrisation of the mathematical
description of physical systems and objects. A geometric approach to a system
yields in general some notion of symmetry which is very helpful in understanding
its structure. Geometrisation and symmetries are meant in their widest sense, i.e.,
representation theory, algebraic geometry, number theory infinite-dimensional Lie
algebras and groups, superalgebras and supergroups, groups and quantum groups,
noncommutative geometry, symmetries of linear and nonlinear PDE, special
functions, functional analysis. This is a big interdisciplinary and interrelated field.

The first three workshops were organized in Clausthal (1995, 1997, 1999), the
4th was part of the 2nd Symposium ‘Quantum Theory and Symmetries’ in Cracow
(2001), the 5th, 7–10th were organized in Varna (2003, 2007, 2009, 2011, 2013),
the 6th was part of the 4th Symposium ‘Quantum Theory and Symmetries’ in Varna
(2005), but has its own volume of proceedings.

The 11th Workshop of the series (LT-11) was organized by the Institute of
Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences
(BAS) in June 2015 (15–21), at the Guest House of BAS near Varna on the
Bulgarian Black Sea Coast.

The overall number of participants was 76 and they came from 21 countries.
The scientific level was very high as can be judged by the speakers. The plenary

speakers were: Luigi Accardi (Rome), Loriano Bonora (Trieste), Branko Dragovich
(Belgrade), Malte Henkel (Nancy), Stefan Hollands (Leipzig), Evgeny Ivanov
(Dubna), Toshiyuki Kobayashi (Tokyo), Zohar Komargodski (Weizmann), Ivan
Penkov (Bremen), Birgit Speh (Cornell U.), Ivan Todorov (Sofia), Joris Van Der
Jeugt (Ghent), Joseph A. Wolf (Berkeley), Milen Yakimov (Louisiana SU), George
Zoupanos (Athens).

The topics covered the most modern trends in the field of the workshop:
Symmetries in String Theories and Gravity Theories, Conformal Field Theory,
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Integrable Systems, Representation Theory, Supersymmetry, Quantum Groups,
Vertex Algebras, Application of Symmetry to Probability, Dynamical Symmetries.

There is some similarity with the topics of preceding workshops, however, the
comparison shows how certain topics evolve and that new structures were found
and used. For the present workshop we mention more emphasis on: representation
theory, on conformal field theories, integrable systems, vertex algebras, number
theory, higher-dimensional unified theories.

The International Organizing Committee was: Vladimir Dobrev (Sofia) and
H.-D. Doebner (Clausthal) in collaboration with G. Rudolph (Leipzig).

The Local Organizing Committee was: Vladimir Dobrev (Chairman), L.K.
Anguelova, V.I. Doseva, A.Ch. Ganchev, D.T. Nedanovski, T.V. Popov, D.R.
Staicova, M.N. Stoilov, N.I. Stoilova, S.T. Stoimenov.
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∗–Lie Algebras Canonically Associated
to Probability Measures on RRR with All
Moments

Luigi Accardi, Abdessatar Barhoumi, Yun Gang Lu
and Mohamed Rhaima

Abstract In the paper Accardi et al.: Identification of the theory of orthogonal
polynomials in d–indeterminates with the theory of 3–diagonal symmetric interact-
ing Fock spaces onCd , submitted to: IDA–QP (Infinite Dimensional Anal. Quantum
Probab. Related Topics), [1], it has been shown that, with the natural definitions of
morphisms and isomorphisms (that will not be recalled here) the category of orthog-
onal polynomials in a finite number of variables is isomorphic to the category of
symmetric interacting fock spaces (IFS) with a 3–diagonal structure. Any IFS is
canonically associated to a ∗–Lie algebra (commutation relations) and a ∗–Jordan
algebra (anti–commutation relations). In this paper we continue the study of these
algebras, initiated in Accardi et al. An Information Complexity index for Probability
Measures onRwith all moments, submitted to: IDA–QP (Infinite Dimensional Anal.
Quantum Probab. Related Topics), [2], in the case of polynomials in one variable,
refine the definition of information complexity index of a probability measure on
the real line, introduced there, and prove that the ∗–Lie algebra canonically asso-
ciated to the probability measures of complexity index (0, K , 1), defining finite–
dimensional approximations, in the sense of Jacobi sequences, of the Heisenberg
algebra, coincides with the algebra of all K × K complex matrices.

L. Accardi (B)
Centro Vito Volterra, Facoltá di Economia, Università di Tor Vergata,
Via di Tor Vergata, 00133 Roma, Italy
e-mail: accardi@volterra.mat.uniroma2.it

A. Barhoumi
Department of Mathematics, Nabeul Preparatory Engineering Institute,
University of Carthage, Carthage, Tunisia
e-mail: abdessatar.barhoumi@ipein.rnu.tn

Y.G. Lu
Dipartimento di matematica, Università di Bari, Bari, Italy
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Department of Mathematics, Faculty of Sciences of Tunis,
University of Tunis El-Manar, Tunisia, Tunisia
e-mail: mohamed.rhaima@fst.rnu.tn

© Springer Nature Singapore Pte Ltd. 2016
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Keywords Interacting fock space · Quantum decomposition of a classical random
variable · Information complexity index

AMS Subject Classification Primary 60J65 · Secondary 60J45 · 60J51 · 60H40

1 Introduction

Let μ ∈ Prob∞(R), the family of probability measures on R with all moments. The
quantum decomposition of the classical random variable with distributionμ (see [3]),
implies that to every such a measure one can naturally associate different algebraic
structures, in particular a ∗–Lie algebra and a Jordan algebra structure.

It follows that any classification of these algebraic structures induces a classifica-
tion of the corresponding probability measures on R.

In the paper [2] we have started this classification program with the study of the
∗–Lie algebra associated to a generic μ ∈ Prob∞(R). A necessary condition for the
finite dimensionality of this Lie algebra is that, starting from a certain index K , the
principal Jacobi sequence of μ is the solution of a difference equation of finite order
(see Theorem 1 in Sect. 4.1).

This condition is not sufficient. In fact, if the order of the difference equation
is ≥3, then the ∗–Lie algebra associated to μ is infinite dimensional (see Theorem
7 in Sect. 5.4). This produces a new class of infinite dimensional ∗–Lie algebras,
canonically associated to probability measures and not previously considered in the
literature.

Motivated by Theorem1 and byKolmogorov’s idea [4] to define the complexity of
a sequence as the minimal length of a program that generates it, we have introduced
a complexity index on Prob∞(R) that defines a hierarchy among the probability
measures on R, based on their complexity.

In fact, if the principal Jacobi sequence of ameasure satisfies a difference equation
of the form (∂nω)m = 0, the entire information of the sequence (ωk) can be condensed
in the n real parameters characterizing the solutions of this difference equation (see
[5]).

The simplest complexity index is given by a pair of natural integers (n, K ) depend-
ing only on the principal Jacobi sequence (ωn) of μ, where n is the minimum natural
integer such that, for any m ≥ K +1, the finite difference equation mentioned above
begins to hold.

For example, the complexity class defined by the index (0, K ) consists of those
measures whose principal Jacobi sequence is constant starting from the index K .
If this constant is equal to 0 one finds, when K varies, all the measures with finite
support. If it is >0, one finds the semi–circle–arcsine class, called in this way for
reasons explained below (see Sect. 5.1.4).

It is interesting to notice that the semi–circle law (the Gaussian for free
independence) is in the class (0, 0), the arcsine law (the Gaussian for monotone
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independence) is in the class (0, 1), and the class (0, 2) naturally appears in the
study of central limits of quantum random walks in the sense of Konno (see [6, 7]).
The structure of the measures in the classes (0, K ), with K ≥ 3 is not known at the
moment.

The class (1, 0) includes themean zeroGaussians (the unique symmetricmeasures
in this class) and the Poisson. The corresponding ∗–Lie algebra is the Heisenberg
algebra. The class (2, 0) includes the three non–standard Meixner classes and the
corresponding ∗–Lie algebra is sl(2,R). Starting with n ≥ 3, the ∗–Lie algebra of
the class (n, 0) is infinite–dimensional, and these are the new classes we referred to
in the beginning of this section.

In the case of measures with finite support, the connection between Lie algebras
and orthogonal polynomials has been studied, from a point of view different from
the present one, by several authors (see the paper by Jafarov, Stoilova and Van der
Jeugt [8] for references).

2 ∗–Lie and ∗–Jordan Algebras Canonically Associated
to Interacting Fock Spaces (IFS)

The notion of Interacting Fock Spaces (IFS)was introduced in [2] in themore general
framework of Hilbert modules. Here we recall from [1] a variant of this notion for
pre–Hilbert spaces.

For any pair of pre–Hilbert spaces (H, 〈 · , · 〉H ), (K , 〈 · , · 〉K ), denote
La((H, 〈 · , · 〉H ), (K , 〈 · , · 〉K )), or simply, when no confusion is possible,
La(H, K ), the space of all adjointable pre–Hilbert space maps A : H → K , such
that there exists a linear map A∗ : K → H satisfying

〈 f, Ag〉K = 〈A∗ f, g〉H ; ∀g ∈ H , ∀ f ∈ K

If H = K L(K , 〈 · , · 〉K ) has a natural structure of ∗–algebra and we simply write
La(K ).

Definition 1 Let V be a vector space. An interacting Fock space on V is a pair:

{
(Hn, 〈 · , · 〉n)n∈N), a+}

(1)

such that:

• (
Hn, 〈 · , · 〉n

)
n∈N is a sequence of pre–Hilbert spaces with

H0 =: C · Φ0 ; ‖Φ0‖ = 1

Φ0 is called the vacuum or Fock vector;
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• denoting 〈 · , · 〉 the unique pre–Hilbert space scalar product on the vector space
direct sum of the family

(
Hn

)
n∈N which makes this direct sum

H :=
⊕

n∈N
(Hn, 〈 · , · 〉n) (2)

an orthogonal sum, the linear operator

a+ : V → La ((Hn, 〈 · , · 〉n)n∈N)

satisfies the following conditions:

Hn+1 = lin-span
{{

a+(V )Hn
}} ; ∀n ∈ N (3)

For each v ∈ V , one fixes a choice of adjoint a∗(v), denoted a−(v) (or simply av)
so that

a(v)Φ0 = 0 Fock prescription ; ∀v ∈ V (4)

The operators a+(v) ( f ∈ V ) are called creators and their adjoints a−(v) – annihi-
lators. The spaces

(
Hn

)
n∈N are called the n−particle spaces, if n = 0 one speaks

of the vacuum space.

Definition 1 implies that, for all u, v ∈ V , a+
u av and ava+

u are homogeneous linear
operators on H of degree zero, i.e.

a+
u av(Hn) , ava+

u (Hn) ⊆ Hn ; ∀n ∈ N

Then one can associate to the pairs (a+
u , av):

(i) The smallest ∗–Lie algebra containing all the av and the a+
u , with brackets given

by the usual commutator
[av, a+

u ] := ava+
u − a+

u av

(ii) The smallest ∗–Jordan algebra containing (T, T +), with brackets given by the
usual anti–commutator

{av, a+
u } := ava+

u + a+
u av

Many ∗–Lie and ∗–Jordan algebras that play an important role in physics arise in
this way.

3 Notations on Orthogonal Polynomials

The assignment of a probability distribution μ ∈ Prob∞(R) (the space of probabil-
ity measures on R with all moments), allows to identify the multiplication operator
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(X f )(x) := x f (x)with a real valued classical random variable with all moments. In
this identification, the ∗–algebra P , of complex polynomials in a single indetermi-
nate, with the pointwise operations (the involution is complex conjugacy) is identified
with the ∗–algebra of complex valued polynomial functions of X . The identity

〈P, Q〉 :=
∫

R

P(x)Q(x)μ(dx) (5)

defines a pre–scalar product 〈 · , · 〉 hence a pre–Hilbert algebra structure on P .
The normalized orthogonal polynomials Φ̃n are defined inductively, in terms of the
monic orthogonal polynomials Φn , as follows:

Φ̃0 := 1

P0] := Φ̃0Φ̃
∗
0

where for any pre–Hilbert space K and any unit vector ξ ∈ K, we use the notation

ξ∗(η) := 〈ξ, η〉 ; ∀η ∈ K (6)

and, having defined the pairs (Φ̃m, Pm]) (m ∈ {1, . . . , n}), the next pair is defined by

Φn+1 := Xn+1 − Pn](Xn+1) (7)

Φ̃n+1 :=
{ Φn+1

‖Φn+1‖ , if ‖Φn+1‖ �= 0
Φn+1, if ‖Φn+1‖ = 0

(8)

Pn+1] :=
∑

j∈{1,...,n+1}
Φ̃ j Φ̃

∗
j (9)

By construction one has,

‖Φ̃n‖ = 1 or 0 ; ∀n ∈ N

P =
⊕

n∈N
C · Φ̃n (10)

Pn] := {P ∈ P : degree(P) ≤ n}

Define the creation, annihilation, preservation (CAP) operators respectively by

a+ =
∑

n∈N

√
ωn+1Φ̃n+1Φ̃

∗
n (11)
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a− = (a+)∗ =
∑

n∈N

√
ωnΦ̃nΦ̃

∗
n+1 (12)

a0 =
∑

n∈N
αnΦ̃nΦ̃

∗
n (13)

where (αn) and (ωn) are the Jacobi sequences of μ and the Φ̃n are defined by (8).
The basic property of the sequence (ωn) is:

ωn ≥ 0 ; ∀n ∈ N ; ωn = 0 ⇒ ωp = 0 , ∀p ≥ n (14)

With the above notations, the quantum decomposition of the classical random
variable X (see [3]) is

X = a+ + a0 + a−

Defining the number operator, associated to the orthogonal gradation (10), by

Λ :=
∑

n∈N
nΦ̃nΦ̃

∗
n = Λ+ (15)

the commutations relations [a−, a+] are

[a−, a+] = ωΛ+1 − ωΛ =:
∑

(ωn+1 − ωn)Φ̃nΦ̃
∗
n (16)

where, for any function F : n ∈ N → Fn ∈ C,

FΛ :=
∑

n∈N
FnΦ̃nΦ̃

∗
n

The anti–commutations relations [a−, a+] are

{a−, a+} = (ωΛ+1 + ωΛ)

4 ∗–Lie Algebras Canonically Associated to μ

Definition 2 The ∗–Lie algebra generated by the adjointable operators on the pre–
Hilbert space P

a+ , a−

i.e. the smallest ∗–Lie algebra containing these operators, will be denoted L0
X (or

simply L).
Our goal is to describe the structure of L0

X .
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Remark The natural ∗–Lie algebra LX , canonically associated to μ and generated
by all the CAP operators of μ

{a+ , a0 , a−}

Thus to restrict one’s attention toL0
X , as we will do in the present paper, is equivalent

to consider only symmetric measures.

Definition 3 The left–shift operator T and the difference operators ∂(k) (k ∈ N
∗ :=

N \ {0}) are defined on the space of complex valued sequences respectively by:

(T F)n := Fn−1 ; ∀n ∈ N (17)

with the convention
Fh = 0 ; ∀h < 0 (18)

(∂(k)F)n := Fn − (T k F)n = Fn − Fn−k ; ∀n ∈ N (19)

Remark We will use the notation

∂Fn := ∂(1)Fn = Fn − Fn−1 (20)

Remark Using the basis (10), one extends the operators T, ∂(k), ∂ to linear operators
on the pre–Hilbert spaceP , still denotedwith the same symbols, by the prescriptions:

Z

( ∞∑

n=0

FnΦ̃n

)

:=
∞∑

n=0

(Z F)nΦ̃n ; Z ∈ {T, ∂(k), ∂}

Lemma 1 For any k ∈ N and any function F : n ∈ N → Fn ∈ C, one has:

[a+k, FΛ] = −∂(k)FΛa+k ; [ak, FΛ] = ak∂(k) F̄Λ (21)

where F̄ denotes the complex conjugate of F.

Proof See [2].

4.1 The Dimension of L0
X

From this section on, we use the identification: L0
X ≡ LX . It is clear that, if

dim(L2(R,μ)) < +∞ then also L0
X will be finite–dimensional. Therefore the prob-

lem to distinguish between finite and infinite dimensional L0
X is non–trivial only if

dim(L2(R,μ)) = +∞, and this is the case if and only if

ωn > 0 ; ∀n ∈ N
∗ (22)
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or equivalently
‖Φn‖ �= 0 ; ∀n ∈ N (23)

On the other hand, independently of a0,L0
X must contain the ∗–Lie algebra generated

by
a− , a+ , [a−, a+] = ∂ωΛ

Therefore, a sufficient condition for LX to be infinite dimensional is that this algebra
is infinite dimensional. For a symmetric random variable, i.e. a0 = 0, this condition
is also necessary.

Theorem 1 Under the assumption (23), for a random variable X with principal
Jacobi sequence (ωm), a necessary condition for L0

X to be finite dimensional is that
there exists n, K ∈ N such that

(∂nω)m = 0 ; ∀m ≥ K + 1 (24)

Proof See [2].

5 Indices of Information Complexity

Theorem 1 suggests that, among all the probability measures μ ∈ Prob∞(R), the
simplest ones are those whose principal Jacobi sequence (ωn) satisfies a difference
equation of the form (24).

In this section we give a quantitative formulation of this intuition.
We do not assume that ωn > 0 for each n ∈ N.

Definition 4 The index of information complexity (or simply complexity index)
of a probability measure μ ∈ Prob∞(R), with principal Jacobi sequence (ωn), is the
pair C(μ) ∈ N

2 defined as follows:

C(μ) :=
{

(k, K ), if k = min{n ∈ N : (∂n+1ω)m = 0 , ∀m ≥ K + 1}
+∞, if no pair (n, K ) ∈ N

2 with the above property exists
(25)

Remark Notice that the relation

μ ∼ ν ⇐⇒ C(μ) = C(ν) ; μ, ν ∈ Prob∞(R) (26)

is an equivalence relation and that it involves only the principal Jacobi sequence
ω ≡ (ωn).
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5.1 The Case C(μ) = (0, K ) (K ∈ NNN)

According to Definition4 a probability measure μ ∈ Prob∞(R)with principal Jacobi
sequence (ωm) belongs to the information complexity class (0, K ) (K ∈ N) if

(∂ω)m = 0 ; ∀m ≥ K + 1 (27)

and K is smallest number with respect to the property (27).

Theorem 2 Let μ ∈ Prob∞(R) be a probability measure with principal Jacobi
sequence (ωn) and information complexity C(μ) = (0, K ), (K ∈ N). Then, with the
convention that

x ≤ 0 ⇒ {1, . . . , x} := ∅ (28)

and for K as in (27), one of the following alternatives takes place:
(i) |supp(μ)| = K − 2 and (ωn) has the form

ωn =
{

arbitrary > 0 if n ∈ {1, . . . , K − 1}
0, if n ≥ K

(29)

Moreover all probability measures μ ∈ Prob∞(R) with principal Jacobi sequence
satisfying (29) are in this class.
(ii) |supp(μ)| = ∞ and (ωn) has the form

ωn =
{

arbitrary, > 0 , if n ∈ {1, . . . , K }
ω > 0, , if n ≥ K + 1

(30)

Proof See [2].

In the following we discuss some examples of measures in this class.

5.1.1 The Case C(μ) = (0, 0), ω = 0: The δ–Measures

If C(μ) = (0, 0) and ω = 0, then ∂ωn = 0 for all n ≥ 1. In particular

∂ω1 = ω1 − ω0 = ω1 = μ(X2) − μ(X)2 = 0

and this condition characterizes the δ–measures, i.e. those μ such that

μ = δc for some c ∈ R
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5.1.2 The Case C(μ) = (0, 0), ω > 0: The Semi–circle Laws

In this case, if μ has infinite support, ωn =: a > 0 for all n ≥ 1 and it is known
(see e.g. the table in [9]) that this class coincides with the class of Semi–circle
distributions.

The associated commutation relations are trivial and the algebra generated by a+
and a is abelian. Thus, from the point of view of the canonical quantum decomposi-
tion, the semi–circle laws are the most commutative among all probability measures.

5.1.3 The Case C(μ) = (0, 1), ω > 0: The Arcsine Laws

In this case, if μ has infinite support,

ωn =
{

a > 0, if n = 1
0 < b �= a, if n ≥ 2

and it is known (see e.g. the table in [9]) that this class coincides with the class of
Arcsine laws.

5.1.4 The Case C(μ) = (0, K ), ω = b > 0, K ≥ 2: The Extended
Semi–circle–arcsine Laws

It is clear that the structure of the measures in this class is a natural extension of the
semi–circle and arcsine laws.

5.2 The Case C(μ) = (1, K )

According to Definition 4 the probability measures belonging to the information
complexity class (1, K ) are those for which there exists K ∈ N such that

∂2ωn = 0 ; ∀n ≥ K + 1 (31)

and both the exponent 2 and the number K are the smallest ones with respect to
property (31).

Theorem 3 The class of probability measures μ ∈ Prob∞(R) with information
complexity C(μ) = (1, K ), (K ∈ N) is characterized by the fact that their principal
Jacobi sequence (ωn) has the following structure:
there exists b ∈ R

∗+ and c ∈ R such that, with the convention (28), (ωn) has the form
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ωn =
{

arbitrary > 0, if n ∈ {1, . . . , K }
bn + c > 0, if n ≥ K + 1

(32)

In particular, if c is positive, then it can be arbitrary while, if negative, it must satisfy

|c| < b(K + 1) (33)

Proof See [2].

5.2.1 The Case Cω(μ) = (1, 0): Gaussian and Poisson

For the measures in the complexity class C(μ) = (1, 0), ωn = bn + c for all n ≥ 1
with b ∈ R

∗+, c ∈ R+.
In particular, for c = 0, ωn = bn > 0 for all n ≥ 1 and it is known (see e.g. the

table in [9]) that this class includes both the Gaussian distribution with mean 0 and
variance b and the Poisson distribution with intensity b (see [9]).

5.2.2 The ∗–Lie Algebra of the Class Cω(μ) = (1, 0) is The Heisenberg
Algebra

Theorem 4 Let μ ∈ Prob∞(R) be a probability measure with principal Jacobi
sequence (ωn) and information complexity C(μ) = (1, 0), then the 3–dimensional
linear space L0

X generated by the operators

{
a−, a+, ∂ωΛ

}

is a ∗–Lie algebra isomorphic to the Heisenberg Lie algebra.

Proof IfC(μ) = (1, 0) then, from Theorem 3, (ωn) has the form bn+c for all n ≥ 1.
Therefore ωΛ − ωΛ−1 = b · 1 and the commutation relations become

[a−, a+] = b · 1 ; [a−, b · 1] = [a+, b · 1] = 0

which are the defining relations of the Heisenberg ∗–Lie algebra.

5.3 The Classes Cω(μ) = (2, K )

According to Definition 4 the probability measures belonging to the information
complexity class (2, K ) are those for which there exists K , n ∈ N such that

∂3ωn = 0 ; ∀n ≥ K + 1 (34)
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and both the exponent 3 and the number K are minimal with respect to the property
(36).

Theorem 5 The class of probability measures on R with information complexity
C(μ) = (2, K ), (K ∈ N) is characterized by the fact that their principal Jacobi
sequence (ωn) has the following structure:
there exists b, c, d ∈ R such that b > 0 and, with the convention (28) (ωn) has the
form

ωn =
{

arbitrary > 0, if n ∈ {1, . . . , K }
bn2 + cn + d > 0, if n ≥ K + 1

(35)

In particular, if c, d are positive, then they can be arbitrary while, if one of them is
negative, then their choice is constrained by the fact that the right hand side of (35)
must be strictly positive.

Proof If C(μ) = (2, K ), (K ∈ N), then we know that there exists K ∈ N such that

∂3ωn = 0 ; ∀n ≥ K + 1 (36)

Therefore, there exists b, c, d ∈ R such that

ωn = bn2 + cn + d > 0 ; ∀n ≥ K + 1 (37)

In particular, since ωn > 0 for each n, one must have b > 0. Conversely, given a
triple b, c, d such that bn2 + cn + d > 0 for all n ≥ K + 1, for any choice of
the strictly positive numbers ω0, . . . ,ωK , by Favard Lemma, the sequence (ωn)n∈N
defines a unique symmetric state on P . The remaining statements are clear.

5.3.1 The Case C(μ) = (2, 0)

In this case (ωn)n has the form bn2 + cn + d for all n ≥ 1, (b ∈ R
∗+, c ∈ R−). In

particular, if d = 0 then ωn = bn2 + cn > 0 for all n ≥ 1 and it is known that this
class coincides with the class of non–standard (i.e. neither Gaussian nor Poisson)
Meixner distributions (see [9]).

5.3.2 The ∗–Lie Algebra of the Class Cω(μ) = (2, 0) is sl(2,R)

Theorem 6 Let μ ∈ Prob∞(R) be a probability measure with principal Jacobi
sequence (ωn) and information complexity C(μ) = (2, 0), then the 3–dimensional
linear space L0

X generated by the operators

{
a−, a+, ∂ωΛ

}
(38)
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is a ∗–Lie algebra isomorphic to a (necessarily trivial) central extension of the
sl(2,R) Lie algebra.

Proof If C(μ) = (2, 0) then from Theorem 5 (ωn) has the form ωn = bn2 + cn + d
for all n ≥ 1, with b > 0. This implies that

∂ωΛ = 2bΛ + c ; ∂2ωΛ = 2b

Hence, from Lemma 1 we have the commutation relations

[a−, a+] = ∂ωΛ = 2bΛ + c

[a−, ∂ωΛ] = [a−, 2bΛ + c] = 2b[a−,Λ] = 2ba−∂Λ = 2ba−

Consequently
[a+, ∂ωΛ] = −2ba+

where elements ofR are identified tomultiples of a central element of the Lie algebra.
The statement then follows from the definition of the sl(2,R) ∗–Lie algebra and from
the known fact that all its central extensions are trivial.

5.4 The Case C(μ) = (3, 0)

Theorem 7 Let μ ∈ Prob∞(R) be a probability measure with principal Jacobi
sequence (ωn) and information complexity C(μ) = (3, 0), then the Lie algebra L0

X
generated by the operators {

a−, a+, ∂ωΛ

}

is an ∞–dimensional ∗–Lie algebra.

Proof See [2].

6 Refinement of the Information Complexity Index

A refinement of the complexity index can be obtained by considering, in each class
(n, K ), those measures such that the initial segment (ω1, . . . ,ωK ) also satisfies a
difference equation (possibly of order different from n). This allows to introduce a
complexity hierarchy also in the class of finitely supported measures.

In particular the class (0, K , 1) is defined by the condition
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ωn =
{
arbitrary 0 , if n < K

ω ≥ 0 , if n ≥ K

In the following we discuss the structure of the ∗–Lie algebra associated to this class.

6.1 Algebras Associated to the Class (0, K, 1), with ω = 0

This class is characterized by the condition

ωn =
{

ω , if n < K

0 , if n ≥ K

In this case
‖a+nΦ0‖2 = ωk ! = 0 , for n ≥ K ;

‖ΦK−1‖2 = ‖a+(K−1)Φ0‖2 = ωK−1! = ωK−1

One has
P =

⊕

n∈{0,1,...,K−1}
C · Φn ⊕ N ∼ C

K ⊕ N

where N denotes the sub–space of P consisting of zero–norm vectors.

a+K Φn =
{

Φn+1 , if n < K

0 , if n ≥ K

In this case, the associated ∗–Lie algebra has dimensions at most K 2.
For the associated Jordan ∗–algebra one finds

{a−, a+}Pn = 2ω ; ∀ n ≥ K

Thus the Jordan ∗–algebra, canonically associated to this class of probability mea-
sures, is a K–dimensional generalization of the Fermi algebra, which corresponds
to the case K = 1.

6.2 Algebras Associated to the Class (0, K, 1), with ω = 0
and K > 0

The class (0, K , 1) is the sub–class of the class (0, K ) defined by the additional
condition that the non–zero ωn satisfy a first order difference equation. Equivalently:
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ωn = cn + a ; c > 0 (c > |a| if a < 0) , ∀n ∈ {1, . . . , K − 1}

Theorem 8 The ∗–Lie algebra generated by the creator and annihilator of any
measure in the class (0, K , 1) with ω = 0 (i.e. ωn = 0 for n ≥ K ) coincides with
the ∗–Lie algebra MK (C), of all K × K complex matrices.

Proof Let μ be any measure in the class (0, K , 1). Denote by a− and a+ its creation
and annihilation operators and H the ∗–Lie algebra generated by them. In the fol-
lowing, for any linear adjointable operator Z on P , we use the notation Z ∈̃ H to
mean that Z = Z ′ + N , where N is an operator whose range is contained in the
zero–norm vectors. Under our assumptions, up to zero–norm vectors, one has

[a−, a+]Φn =

⎧
⎪⎨

⎪⎩

cΦn , if n < K − 1

−a+a−ΦK−1 = −(c(K − 1) + a)ΦK−1 , if n = K − 1

= 0 , if n ≥ K

or equivalently

[a−, a+] = cPK−2] − (c(K − 1) + a)Φ̃K−1Φ̃
∗
K−1 =: L1 ∈̃ H (39)

where Φ̃n denotes the n–th normalized orthogonal polynomial of μ. (Thus the ∗–Lie
algebra generated by a− and a+ on the quotient space of non–zero–normpolynomials
of degree ≤ K − 2, can be considered as a (K − 2)–th order approximation of the
Heisenberg ∗–Lie algebra).

In order to compute the commutator

[a+, L1] = [a+, cPK−2] − ωK−1Φ̃K−1Φ̃
∗
K−1] =

= c[a+, PK−2]] − ωK−1[a+, Φ̃K−1Φ̃
∗
K−1]

let us compute separately [a+, PK−2]] and [a+, Φ̃K−1Φ̃
∗
K−1].

To this goal notice that the relations

a−Φ̃n = √
ωnΦ̃n−1 ; a+Φ̃n = √

ωn+1Φ̃n+1 (40)

imply that

[a+, Φ̃nΦ̃
∗
n ] = a+Φ̃nΦ̃

∗
n − Φ̃nΦ̃

∗
n a+ = √

ωn+1Φ̃n+1Φ̃
∗
n − (a−Φ̃nΦ̃

∗
n )∗

= √
ωn+1Φ̃n+1Φ̃

∗
n − (

√
ωnΦ̃n−1Φ̃

∗
n )∗ = √

ωn+1Φ̃n+1Φ̃
∗
n − √

ωnΦ̃nΦ̃
∗
n−1

i.e.
[a+, Φ̃nΦ̃

∗
n ] = √

ωn+1Φ̃n+1Φ̃
∗
n − √

ωnΦ̃nΦ̃
∗
n−1 (41)
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Taking the adjoint and changing sign, one has:

[a−, Φ̃nΦ̃
∗
n ] = √

ωnΦ̃n−1Φ̃
∗
n − √

ωn+1Φ̃nΦ̃
∗
n+1 (42)

Recalling that

PK−2] =
K−2∑

n=0

Φ̃hΦ̃
∗
h

one has

[a+, PK−2]] =
K−2∑

n=0

[a+, Φ̃nΦ̃
∗
n ] =

K−2∑

n=0

(
√

ωn+1Φ̃n+1Φ̃
∗
n − √

ωnΦ̃nΦ̃
∗
n−1)

Similarly, since Φ̃K has zero norm, up to norm–zero operators, one has

[a+, Φ̃K−1Φ̃
∗
K−1] = √

ωK Φ̃K Φ̃∗
K−1 − √

ωK−1Φ̃K−1Φ̃
∗
K−2 ≡

≡ −√
ωK−1Φ̃K−1Φ̃

∗
K−2

hence
[a+, L1] = [a+, cPK−2] − ωK−1Φ̃K−1Φ̃

∗
K−1] =

= c[a+, PK−2]] − ωK−1[a+, Φ̃K−1Φ̃
∗
K−1] =

= c
K−2∑

n=0

(
√

ωn+1Φ̃n+1Φ̃
∗
n − √

ωnΦ̃nΦ̃
∗
n−1) + ωK−1

√
ωK−1Φ̃K−1Φ̃

∗
K−2

=
K−2∑

n=0

(c
√

ωn+1Φ̃n+1Φ̃
∗
n − c

√
ωnΦ̃nΦ̃

∗
n−1) + ωK−1

√
ωK−1Φ̃K−1Φ̃

∗
K−2

= c
√

ωK−1Φ̃K−1Φ̃
∗
K−2 − c

√
ω0Φ̃1Φ̃

∗
−1) + ωK−1

√
ωK−1Φ̃K−1Φ̃

∗
K−2

= c
√

ωK−1 (1 + ωK−1) Φ̃K−1Φ̃
∗
K−2 ∈̃ H

because Φ̃−1 := 0. Therefore also Φ̃K−1Φ̃
∗
K−2 =: L2∈̃ H, hence

L∗
2 = Φ̃K−2Φ̃

∗
K−1∈̃ H. Taking commutator, we find

[L2, L∗
2] = [Φ̃K−1Φ̃

∗
K−2 , Φ̃K−2Φ̃

∗
K−1]

= Φ̃K−1Φ̃
∗
K−1 − Φ̃K−2Φ̃

∗
K−2 =: L3 ∈̃ H (43)

Therefore
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L1 + ωK−1L3 =
K−2∑

n=0

Φ̃hΦ̃
∗
h − ωK−1Φ̃K−1Φ̃

∗
K−1 + ωK−1(Φ̃K−1Φ̃

∗
K−1 − Φ̃K−2Φ̃

∗
K−2)

=
K−2∑

n=0

Φ̃hΦ̃
∗
h − ωK−1Φ̃K−2Φ̃

∗
K−2 =: L4 ∈̃ H

hence also

[L4, L2] =
[

K−2∑

n=0

Φ̃hΦ̃
∗
h − ωK−1Φ̃K−2Φ̃

∗
K−2 , Φ̃K−1Φ̃

∗
K−2

]

= −Φ̃K−1Φ̃
∗
K−2 + ωK−1Φ̃K−2Φ̃

∗
K−2 = −L2 + ωK−1Φ̃K−2Φ̃

∗
K−2 ∈̃ H (44)

that implies Φ̃K−2Φ̃
∗
K−2 ∈̃ H. The combination of (43) and (44) implies that

Φ̃K−1Φ̃
∗
K−1 ∈̃ H. In conclusion, for m = 0, 1, 2:

Φ̃K−mΦ̃∗
K−(m−1) ; Φ̃K−(m−1)Φ̃

∗
K−m ; Φ̃K−mΦ̃∗

K−m ∈̃ H

Suppose by induction that, for every 0 ≤ m ≤ n ≤ K , one has

Φ̃K−mΦ̃∗
K−(m−1) ; Φ̃K−(m−1)Φ̃

∗
K−m ; Φ̃K−mΦ̃∗

K−m ∈̃ H

It follows that, for every 0 ≤ m ≤ n ≤ K , one has also

[a+, Φ̃K−nΦ̃
∗
K−n] = √

ωK−(n−1)Φ̃K−(n−1)Φ̃
∗
K−n − √

ωK−nΦ̃K−nΦ̃
∗
K−(n+1) ∈̃ H

and since, by the induction assumption

√
ωK−(n−1)Φ̃K−(n−1)Φ̃

∗
K−n ∈̃ H

this implies that √
ωK−nΦ̃K−nΦ̃

∗
K−(n+1) ∈̃ H

Since in our case ωK−n �= 0, this is equivalent to

Φ̃K−nΦ̃
∗
K−(n+1) , Φ̃K−(n+1)Φ̃

∗
K−n ∈̃ H

which implies

[Φ̃K−nΦ̃
∗
K−(n+1) , Φ̃K−(n+1)Φ̃

∗
K−n] = Φ̃K−nΦ̃

∗
K−n − Φ̃K−(n+1)Φ̃

∗
K−(n+1) ∈̃ H
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Since, by the induction assumption Φ̃K−nΦ̃
∗
K−n is in H, it follows that

Φ̃K−(n+1)Φ̃
∗
K−(n+1) ∈̃ H. Therefore, by induction, one has

Φ̃nΦ̃
∗
n−1 , Φ̃n−1Φ̃

∗
n , Φ̃nΦ̃

∗
n ∈̃ H ; ∀n ∈ {0, 1, . . . , K − 1} (45)

with the convention that Φ̃−1 := 0. Denote L the ∗–Lie sub–algebra ofH generated
by the set (45). Since

[Φ̃n−1Φ̃
∗
n , Φ̃m−1Φ̃

∗
m] = Φ̃n−1Φ̃

∗
n Φ̃m−1Φ̃

∗
m − Φ̃m−1Φ̃

∗
mΦ̃n−1Φ̃

∗
n =

= δ∗
n+1,mΦ̃n−1Φ̃

∗
n+1 − δ∗

m,n−1Φ̃n−2Φ̃
∗
n

=

⎧
⎪⎨

⎪⎩

0 , if , m /∈ {n − 1, n + 1}
Φ̃n−1Φ̃

∗
n+1 , if , m = n + 1

−Φ̃n−2Φ̃
∗
n , if , m = n − 1

Suppose by induction that, for given 2 < h < K , one has

{
ΦmΦ̃∗

n : |m − n| ≤ h , 0 ≤ m, n ≤ K
}

⊆̃ L (46)

and notice that, if |m − n| = h, the one can always suppose that n = m + h up to
exchange of m and n. Under this assumption:

[Φ̃m−1Φ̃
∗
m, Φ̃mΦ̃∗

n ] = Φ̃m−1Φ̃
∗
mΦ̃mΦ̃∗

n − Φ̃mΦ̃∗
n Φ̃m−1Φ̃

∗
m = Φ̃m−1Φ̃

∗
n ∈̃ L

Since n − (m − 1) = n − m + 1 = h + 1, it follows by induction that L contains all
the matrix units em,n := Φ̃mΦ̃∗

n of MK (C), hence L = H = MK (C).
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Special Conformal Transformations
and Contact Terms

Loriano Bonora

Abstract In this contribution I construct the Ward identity of special conformal
transformations in momentum space and discuss some of its consequences on con-
formal field theory correlators. I show a few examples of covariant correlators in
dimension 2 and 3 dimensions and in particular of those made of pure contact terms.
I discuss in some detail the odd parity correlator in 3d and its connection with the
gravitational Chern–Simons theory in 3d.

1 Introduction

Correlators in conformal field theories can be formulated both in configuration space
and, via Fourier transform, in momentum space. In the first form they may happen to
be singular at coincident insertion points and in need of regularization. In coordinate
space they are therefore simply distributions. In the simplest cases such distributions
have been studied and can be found in textbooks. But in general the correlators of
CFT are very complicated expressions and their regularization has to be carried out
from scratch. It is often convenient to do it in momentum space, [1] via Fourier trans-
form, and regularize the Fourier transform of the relevant correlators. This procedure
produces various types of terms, which we refer to as non-local, partially local and
local terms. Local terms, a.k.a contact terms, are represented by polynomials of the
external momenta in momentum space, or by delta functions and derivatives of delta
functions in configuration space. The unregularized correlators will be referred to as
bare correlators; they are ordinary regular functions at non-coincident points and are
classified as non-local in the previous classification.While regularizing the latter one
usually produces not only local terms, but also intermediate ones, which are product
of bare functions and delta functions or derivatives thereof. These are referred to as
partially local.
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Many general results are known nowadays about bare correlators in CFT, [2, 3].
But a complete analysis of the contact terms permitted by conformal symmetry in
various dimensions is still lacking. In this contribution I would like to argue that such
an analysis is possible and can be conveniently carried out in momentum space. The
basic tool for this analysis is the special conformal transformation Ward identity in
momentum space. The paper is intended to be an introduction to the subject and is
mostly pedagogical. I start with some basic definitions about the conformal alge-
bra in momentum space. Then I formulate the Ward Identities of special conformal
transformations in momentum space and their consistency conditions, which lead to
the corresponding cohomology, or K-cohomology. Finally I show a few examples of
covariant correlators in 2 and 3 dimensions and in particular those made of pure con-
tact terms. I discuss in some detail the odd parity correlator in 3d and its connection
with the gravitational Chern–Simons theory in 3d.

2 The Conformal Algebra and SCT’s

In this section we briefly introduce the conformal transformations in d dimensions,
in particular the special conformal (SCT) ones, which are the main subject of this
presentation. The conformal group is made of the usual Poincaré transformation plus
dilatations xμ → λxμ, with generator D, and special conformal transformations with
generator Kμ. A special conformal transformation (SCT)

x
′μ = xμ + bμx2

1 + 2b·x + b2x2
≈ xμ + bμx2 − 2b·x xμ,

for bμ small, can be seen as a diffeomorphism xμ → xμ + ξμ where ξμ = bμx2 −
2b·x xμ. Introducing a metric ημν , this implies a transformation ημν → ημν + δξημν ,
where

δξημν = ∂μξν + ∂νξμ = −4b·x ημν (1)

which is a Weyl rescaling. On the other hand the square line element

dx
′2 → x2 (1 − 4b·x)

which confirms that SFT’s are Weyl rescaling, because this can be viewed as a
transformation ημν → ημν(1 − 4b·x).

The conformal generators are

Pμ = −i∂μ

D = −i xμ ∂μ

Lμν = i(xμ∂ν − xν∂μ)

Kμ = −i(2xμx
ν∂ν − x2∂μ)
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They form the Lie algebra

[Lμν, Lλρ] = i
(
ημλLνρ − ημρLνλ − ηνλLμρ + ηνρLμλ

)

[Pμ, Pν] = 0

[Lμν, Pλ] = i
(
ημλPν − ηνλPμ

)

[Pμ, D] = i Pμ

[K μ, D] = −i K μ

[Pμ, K ν] = 2iημνD + 2i Lμν

[K μ, K ν] = 0

[Lμν, D] = 0

[Lμν, K λ] = iηλμK ν − iηλνK μ (2)

which is isomorphic to the Lie algebra of SO(d,2).

2.1 Momentum Space Algebra

If we Fourier transform the generators of the conformal algebra we get (a tilde
represents the transformed generator and ∂̃ = ∂

∂k )

P̃μ = −kμ

D̃ = i(d + kμ∂̃μ)

L̃μν = i(kμ∂̃ν − kν ∂̃μ)

K̃μ = 2d ∂̃μ + 2kν ∂̃
ν ∂̃μ − kμ�̃

Notice that P̃μ is a multiplication operator and K̃μ is a quadratic differential operator.
The Leibniz rule does not hold for K̃μ and P̃μ with respect to the ordinary product.
However it does hold for the convolution product:

K̃μ( f̃ � g̃) = (K̃μ f̃ ) � g̃ + f̃ � (K̃μ g̃)

where ( f̃ � g̃)(k) = ∫
dp f (k − p)g(p).

Nevertheless these generators form a closed algebra under commutation

[D̃, P̃μ] = i P̃μ

[D̃, K̃μ] = i K̃μ

[K̃μ, K̃ν] = 0

[K̃μ, P̃ν] = i(ημν D̃ − L̃μν)

[K̃λ, L̃μν] = i(ηλμKν − ηλνKμ)
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[P̃λ, L̃μν] = i(ηλμPν − ηλνPμ)

[L̃μν, L̃λρ] = i(ηνλ L̃μρ + ημρ L̃νλ − ημλ L̃νρ − ηνρ L̃μλ

One should however remember that they do not generate infinitesimal transformation
in momentum space.

Our purpose is to use this formulation in momentum space to study the coho-
mology of SCT’s, referred to as K-cohomology, and in particular the polynomial
K-cohomology. As explained in the introduction polynomials in momentum space
represent contact terms in field theory and the latter are important in two respects,
as action terms and as anomalies. To arrive at the cohomology corresponding to a
given symmetry one needs the Ward identities of that symmetry. So the next step is
to formulate the Ward identities of SCT’s (the WI’s of the scaling transformation is
rather trivial and is understood to be always satisfied).

2.2 Ward Identities for SCT’s

Since currents and energy-momentum tensor will play the main role in the sequel,
we start with their transformation properties under SCT’s

i[Kλ, Jμ] = (
2(d − 1)xλ + 2xλ x ·∂ − x2∂λ

)
Jμ + 2

(
xα Jαηλμ − xμ Jλ

)
(3)

i[Kλ, Tμν] = (
2dxλ + 2xλ x ·∂ − x2∂λ

)
Tμν

+ 2
(
xαTανηλμ + xαTμαηλν − xμTλν − xνTμλ

)
(4)

In momentum representation they are given by

K̃μ J̃λ(k) = (−2∂̃μ − 2k ·∂̃ ∂̃μ + kμ�̃) J̃λ + 2(∂̃α J̃αημλ − ∂̃λ J̃μ) (5)

K̃μT̃λρ(k) = (−2k ·∂̃ ∂̃μ + kμ�̃)T̃λρ

+ 2(∂̃αT̃αρημλ − ∂̃λT̃μρ + ∂̃αT̃λαημρ − ∂̃ρT̃λμ) (6)

where T̃μν(k), J̃μ(k) denote the Fourier transforms of Tμν(x), Jμ(x), respectively.
In order to formulate Ward Identities (WI) on correlators let us couple Tμν to

an external source hμν (this will eventually be identified with the background met-
ric fluctuation: gμν ≈ ημν + hμν), [6]. The generating function of connected Green
functions is

W [hμν] =
∞∑

n=1

i n+1

2nn!
∫ n∏

i=1

dxi h
μiνi (xi ) 〈0|T {Tμ1ν1(x1) . . . Tμnνn (xn)}|0〉c,

In order for W to be invariant under SCT’s the external source hμν must transform
as δbhμν = [bλKλ(x), hμν(x)] ≡ [b·K (x), hμν(x)], where
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i[Kλ(x), hμν(x)] (7)

= (
2xλ x ·∂ − x2∂λ

)
hμν + 2

(
xαhανηλμ + xαhμαηλν − xμhλν − xνhμλ

)

Invariance of W [h] leads to

0 = δbW =
∫

dd x
δW

δhμν
δhμν =

∫
ddx [b·K , hμν(x)]〈〈Tμν(x〉〉

= −
∫

ddx hμν(x)[b·K , 〈〈Tμν(x〉〉] = 0 (8)

where

〈〈Tμν(x)〉〉 = 2
δW [h]
δhμν(x)

= 1

n!
∞∑

n=1

∫
dx1 . . .

∫
dxnh

μ1ν1(x1) . . . hμnνn (xn)

×〈0|T {Tμ1ν1(x1) . . . Tμnνn (xn)}|0〉c (9)

Differentiating twice (8) with respect hμν and integrating by parts we get

(b·K (x) + b·K (y))〈0|T Tμν(x)Tλρ(y)〉|0〉 = 0 (10)

Differentiating three times (8)

(b·K (x) + b·K (y) + b·K (z))〈0|T Tμν(x)Tλρ(y)Tαβ(z)〉|0〉 = 0 (11)

In both equations it is understood that the Lorentz part of b·K (x) acts on the indices
μν only, b·K (y) on the indices λρ and b·K (z) on αβ alone.

Due to translational invariance we can set y = 0 in (10) and z = 0 in (11). These
equations become

b·K (x)〈0|T Tμν(x)Tλρ(0)〉|0〉 = 0 (12)

and

(b·K (x) + b·K (y))〈0|T Tμν(x)Tλρ(y)Tαβ(0)〉|0〉 = 0 (13)

In these equations Kμ(·) is understood as the differential operator at the RHS’s of
(3), (4). So far the results are classical. But we know that a SCT produces a conformal
factor ∼ b·x . Therefore the RHS of (10) and (11) may no vanish if we take the trace
of the e.m. tensor:

(b·K (x) + b·K (y))〈0|T T μ
μ (x)Tλρ(y)〉|0〉 = Aλρ(x, y) (14)

(b·K (x) + b·K (y) + b·K (z))〈0|T T μ
μ (x)Tλρ(y)Tαβ(z)〉|0〉 = Aλραβ(x, y, z)
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The RHS’s are linear in b. They are unintegrated anomalies. Using translational
invariance we can set

b·K (x)〈0|T T μ
μ (x)Tλρ(0)〉|0〉 = Aλρ(x) (15)

(b·K (x) + b·K (y))〈0|T T μ
μ (x)Tλρ(y)Tαβ(0)〉|0〉 = Aλραβ(x, y) (16)

As is well known the above anomalies have to satisfy consistency conditions, which
we are going to derive next.

Coupling the current Jμ(x) with a background gauge field Aμ(x), it is easy to
derive similar WI’s also for current correlators.

2.3 Consistency Conditions

Let us start again from W [h] and perform two SCT’s on a row. We get

δb2δb1W = δb2

∫
dd x

δW

δhμν(x)
δb1h

μν(x)

=
∫

dd y
∫

dd x

{
δ2W

δhμν(x)δhλρ(y)
δb1h

μν(x)δb2h
λρ(y)

+ δW

δhμν(x)

δδb1h
μν(x)

δhλρ(y)
δb2h

λρ(y)

}

=
∫

dd y
∫

dd x

{
[b1 ·K (x), hμν(x)][b2 ·K (y), hλρ(y)] δ2W

δhμν(x)δhλρ(y)

+ δW

δhμν(x)
[b1 ·K (x), δ(x − y)][b2 ·K (y), hμν(y)]

}

=
∫

dd y
∫

dd x

{
[b1 ·K (x), hμν(x)][b2 ·K (y), hμν(y)] δ2W

δhμν(x)δhλρ(y)

−
[
b1 ·K (x),

δW

δhμν(x)

]
δ(x − y)

[
b2 ·K (y), hμν(y)

]
}

after integration by parts in x . Integrating over y and integrating again by parts one
finally gets

δb2δb1W =
∫

dd y
∫

dd x

{
[b1 ·K (x), hμν(x)][b2 ·K (y), hμν(y)] ×

× δ2W

δhμν(x)δhλρ(y)
+ [

b1 ·K (x),
[
b2 ·K (x), hμν(x)

]] δW

δhμν(x)

}
(17)
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Making the transformations in reverse order and taking the difference one gets

0 = δb2δb1W − δb1δb2W =
∫

dd x hμν(x)

{[
b1 ·K (x),

[
b2 ·K (x),

δW

δhμν(x)

]]

−
[
b2 ·K (x),

[
b1 ·K (x),

δW

δhμν(x)

]]}
(18)

This is equivalent to promoting b to an anticommuting parameter and writing

∫
dd x hμν(x)

[
b·K (x),

[
b·K (x),

δW

δhμν(x)

]]
= 0 (19)

In fact differentiating (18) with respect to bμ
1 and bν

2 and (19) first with respect to b
μ

and then wrt to bν one gets the same result. From now on we will use the second
formulation, i.e. b anticommuting.

Differentiating (19) wrt to h several times one gets the consistency conditions for
(10) and (11). For instance

b·K (x) b·K (x)〈0|T Tμν(x)Tλρ(y)〉|0〉 +
+ b·K (y) b·K (y)〈0|T Tμν(x)Tλρ(y)〉|0〉 = 0

The RHS is strictly 0 even in the quantum theory. Due to translational invariance we
can rewrite this equation as

b·K (x) b·K (x)〈0|T Tμν(x)Tλρ(0)〉|0〉 = 0 (20)

and (14) becomes the consistency condition

b·K (x)Aλρ(x) = b·K (x)Aλρ(x) = 0 (21)

We can Fourier transform this equation and obtain

b· K̃ (k) Ãλρ(k) = 0 (22)

where K̃ (k) is given by Eq. (6).

3 Examples

We consider now a few simple examples of the approach outlined above. Here we
limit ourselves 0-cocycles (i.e. invariants) of the K-cohomology. The analysis of
1-cocycles, i.e. anomalies, requires additional tools and will not be considered here.
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In momentum representation the CFT correlators must be annihilated by b· K̃ .
For instance the 2-pt function of a scalar field of weight Δ is ∼ (k2)Δ− d

2 and

K̃μ(k
2)Δ− d

2 = (2Δ − d) · 0 · (k2)Δ− d
2 −1 = 0 (23)

in any dimension. A less trivial, but still simple, example is the 2-pt function of two
currents in 3d

〈 J̃i (k) J̃ j (−k)〉 = δi j k2 − ki k j

|k| (24)

Working out the expression

(
2(b·∂̃) − (b·k�̃ − 2k ·∂̃ b·∂̃)

)
〈 J̃i (k) J̃ j (−k)〉

+ 2(bl∂i − bi ∂̃
l)〈 J̃l(k) J̃ j (−k)〉 + 2(bl∂ j − b j ∂̃

l)〈 J̃l(k) J̃l(−k)〉 (25)

one can check that it is 0.
The 2-pt function of the energy momentum tensor in 3d has three possible (con-

served) tensorial structures, which are given by the expression

〈
Tμν (k) Tρσ (−k)

〉 = − i τ

|k|
(
kμkν − ημνk

2
) (
kρkσ − ηρσk

2
)

− i τ ′

|k|
[(
kμkρ − ημρk

2
) (
kνkσ − ηνσk

2
) + μ ↔ ν

]
(26)

+ κ

192π

[
εμρτk

τ
(
kνkσ − ηνσk

2
) + εμστk

τ
(
kνkρ − ηνρk

2
) + μ ↔ ν

]
(27)

where τ , τ ′,κ are (model-dependent) constants, [4, 5].
Let us show that these structures satisfy the SCT Ward identities. We have

b· K̃ kμkνkλkρ

|k| = (d − 3)
bμkνkλkρ + kμbνkλkρ + kμkνbλkρ + kμkνkλbρ

|k|
−(d − 3)b·k kμkνkλkρ

|k|3 (28)

b· K̃ kμkνk2

|k| = (d − 3)(bμkν + kμbν)|k| + (d − 3)
b·k
|k| kμkν (29)

and

b· K̃ |k|3 = 3(d − 3)b·k |k| (30)
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Therefore the even (nonlocal) tensorial structures (26) satisfy the SCT WI.
The third tensorial structure in 3d is parity-odd, traceless and local

〈T̃μν(k)T̃λρ(−k)〉 ∼ εμλσk
σ
(
kνkρ − ηνρk

2
) +

(
μ ↔ ν
λ ↔ ρ

)
≡ F̃μνλρ(k) (31)

Acting on it with b·K we find

b·K F̃μνλρ =
(
−2k ·∂̃ b·∂̃ + b·k�̃

)
F̃μνλρ + 2(bμ∂̃

τ − bτ ∂̃μ)F̃τνλρ

+2(bν ∂̃
τ − bτ ∂̃ν)F̃μτλρ

= −2(d − 2) b·k εμλσk
σηνρ − 2bσεσμλ(kνkρ − ηνρk

2)

+2(d − 2)kσεσμλbνkρ + 2 bτkσελτσ(kρημν + kνημρ)

+4bτkσετλσkμηνρ +
(

μ ↔ ν
λ ↔ ρ

)
(32)

This vanishes thanks to the identities

bσεσμλkν − bνετμλk
τ + bτ ετλσk

σημν − bτ ετμσk
σηνλ = 0 (33)

bσεσμλk
2 + bσbσεσλτkμk

τ − bσεσμτkτkλ − b·k kτ ετμλ = 0 (34)

which are consequences of

ημνελρσ − ημλενρσ + ημρενλσ − ημσενλρ = 0

Therefore also the parity-odd structure satisfies the SCT Ward identity. Actually the
two terms in the RHS of (31) are separately invariant under a SCT. What determines
the relative − sign is the em tensor conservation.

4 Massive Fermions and Chern–Simons Theory in 3d

The examples of CFT correlators we have met before (31) were polynomials of the
coordinates divided by powers of the relative distances between the insertion points
(or their Fourier transforms). Equation (31) represents a new kind of correlator, which
corresponds in momentum space to a polynomial of the momenta. By Fourier anti-
transforming it we get,

Fμνλρ(x, y) ∼ εμλσ∂σ
(
∂ν∂ρ − ηνρ�

)
δ(3)(x − y) +

(
μ ↔ ν
λ ↔ ρ

)
(35)

This expression is completely localized in coordinate space, that is made solely of
delta functions and derivative of delta functions. Such expressions are called contact
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terms. The previous ones, like the even parity structures in 3d, are nonlocal terms.
It is interesting to dwell on (31) and (35) for several reasons. These formulas are
a 2-point correlator of the e.m. tensor, which has been derived only on the basis of
conformal symmetry properties. One question we may ask is whether, like in other
cases, this correlator can be obtained from the regularization of a bare one. Another
question is whether this may come from some free matter field theory, as it often
happens in other cases. The answer is negative for both questions. So it is legitimate
to ask: what is the conformal theory that supports such correlator? Well, in a sense
(31) can indeed be obtained from a free field theory, but not in the usual way, and in
another sense there is a theory that supports such correlators, but it is not free. Let
us see how.

Consider the theory of a massive fermion in 3d, minimally coupled to a metric
gμν ≈ ημν + hμν :

S[g] =
∫

d3x e
[
iψ̄Eμ

a γa∇μψ − mψ̄ψ
]
, (36)

∇μ = ∂μ + 1

2
ωμbc�

bc, �bc = 1

4

[
γb, γc

]
.

The corresponding energy momentum tensor

Tμν = i

4
ψ̄

(
γμ

↔∇ν + γν

↔∇μ

)
ψ. (37)

is covariantly conserved on shell as a consequence of the diffeomorphism invariance
of the action.

∇μTμν(x) = 0 (38)

The presence of a mass term breaks parity. From (7), the lowest term of the effective
action in an expansion in hμν comes from the two-point function of the e.m. tensor.
So let us compute the two-point function of the e.m. tensor in this theory with
the Feynman diagram technique. The corresponding contribution comes from the
bubble diagram (one graviton entering and one graviton exiting with momentum k,
one fermionic loop):

T̃μνλρ(k) = (39)

= 1

64

∫
d3 p

(2π)3

[
Tr

(
1

/p − m
(2p − k)μγν

1

/p − /k − m
(2p − k)λγρ

)
+

(
μ ↔ ν
λ ↔ ρ

)]

Working out the calculations involved (which requires also subtracting a divergent
term) yields
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〈Tμν(k) Tλρ(−k)〉P−odd = κg(k2/m2)

192π
εσνρ k

σ
(
kμkλ − k2ημλ

) +
(

μ ↔ ν
λ ↔ ρ

)
(40)

with

κg(k
2/m2) = 3m

k2

(
2m + k2 − 4m2

|k| arctan
|k|
2m

)
, |k| ≡

√
−k2 (41)

It is worth recalling that (40) is conserved and traceless.
Now let us take the IR limit of κg , i.e. the limit in which the energy |k| = √

k2

becomes much smaller than the mass |m|. We get

κI R = lim
|k|
m →0

κg = κ = m

|m| (42)

Therefore we recover the form of (31) with a precise coefficient in front, which is
the same as in (27) with κ = ±1. It is remarkable that also in the UV there exists a
similar limit, [8].

Now let us Fourier anti-transform (31)

〈Tμν(x)Tλρ(y)〉P−odd = κ

192π
εμλσ∂σ

(
∂ν∂ρ − ηνρ�

)
δ(3)(x − y) +

+
(

μ ↔ ν
λ ↔ ρ

)
(43)

Saturating it with hμν(x) and hλρ(y) and integrating over x and y (according to the
formula (2.2), one gets

κ

192π

∫
εμλσ

(
∂σhμν∂ν∂ρh

λρ − ∂σhμν�hλ
ν

)
(44)

This represents, to lowest order of approximation, the 3d CS action. It can in fact be
obtained from

CS = − κ

96π

∫
d3x εμνλ

(
∂μω

ab
ν ωλba + 2

3
ωμa

bωνb
cωλc

a

)
(45)

by expanding the spin connection ω in terms of hμν , [7].

5 Comments

In this paper I have defined K-cohomology, and discussed some of its 0-cocycles,
i.e. correlators that satisfy the WI of special conformal transformations. It is inter-
esting to find out that there are correlators made out only of contact terms, that is
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corresponding to local action terms. I have shown the well-known example of 3d,
where there exists a two-point function of the e.m. tensor, which is of this type, and
corresponds to the lowest order expansion of the gravitational CS action. What is not
so well-known, perhaps, is that the higher order terms of the CS action correspond
to three, four, ... -point functions of the e.m. tensor. However these correlators are
not included in the usual classification of the conformal correlators, because the lat-
ter are only required to be naively conserved, i.e. in momentum representation they
are required to be transverse to the total momentum, or in configuration space to
divergenceless. Such a requirement is totally adequate for the bare correlators, but
not for correlators containing contact terms, such as (31). For the latter the usual
requirement of transversality is only adequate for two-point functions, not for higher
order ones. For instance for a three-point e.m. tensor correlator, its divergence does
not vanish but satisfies an equation that involves also the two-point correlators, and
so on, [6]. To be more concrete we show the example of 2- and 3-point function for
a current Jaμ . Their conservation laws takes the form

kμ J̃ abμν (k) = 0 (46)

− iqμ J̃ abcμνλ(k1, k2) + f abd J̃ dc
νλ (k2) + f acd J̃ db

λν (k1) = 0 (47)

where q = k1 + k2 and J̃ abμν (k) and J̃ abcμνλ(k1, k2) are Fourier transform of the 2- and
3-point functions, respectively. A similar relation holds for the e.m. tensor. This part
of the research program on conformal correlators is still largely unexplored, [8].
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On Nonlocal Modified Gravity
and Its Cosmological Solutions
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Abstract During hundred years of General Relativity (GR), many significant grav-
itational phenomena have been predicted and discovered. General Relativity is still
the best theory of gravity. Nevertheless, some (quantum) theoretical and (astrophys-
ical and cosmological) phenomenological difficulties of modern gravity have been
motivation to search more general theory of gravity than GR. As a result, many
modifications of GR have been considered. One of promising recent investigations is
Nonlocal Modified Gravity. In this article we present a brief review of some nonlocal
gravity models with their cosmological solutions, in which nonlocality is expressed
by an analytic function of the d’Alembert-Beltrami operator �. Some new results
are also presented.
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1 Introduction

General relativity (GR) was formulated one hundred years ago and is also known as
Einstein theory of gravity. GR is regarded as one of the most profound and beautiful
physical theories with great phenomenological achievements and nice theoretical
properties. It has been tested and quite well confirmed in the Solar system, and it
has been also used as a theoretical laboratory for gravitational investigations at other
spacetime scales. GR has important astrophysical implications predicting existence
of black holes, gravitational lensing and gravitational waves.1 In cosmology, it pre-
dicts existence of about 95% of additional new kind of matter, which makes dark
side of the universe. Namely, if GR is the gravity theory for the universe as a whole
and if the universe is homogeneous and isotropic with the flat Friedmann-Lemaître-
Robertson-Walker (FLRW) metric at the cosmic scale, then it contains about 68%
of dark energy, 27% of dark matter, and only about 5% of visible matter [2].

Despite of some significant phenomenological successes and many nice theo-
retical properties, GR is not complete theory of gravity. For example, attempts to
quantize GR lead to the problem of nonrenormalizability. GR also contains singu-
larities like the Big Bang and black holes. At the galactic and large cosmic scales
GR predicts new forms of matter, which are not verified in laboratory conditions and
have not so far seen in particle physics. Hence, there are many attempts to modify
General relativity.Motivations for its modification usually come from quantum grav-
ity, string theory, astrophysics and cosmology (for a review, see [22, 60, 63]). We
are mainly interested in cosmological reasons to modify Einstein theory of gravity,
i.e. to find such extension of GR which will not contain the Big Bang singularity and
offer another possible description of the universe acceleration and large velocities in
galaxies instead ofmysterious dark energy and darkmatter. It is obvious that physical
theory has to be modified when it contains a singularity. Even if it happened that
dark energy and dark matter really exist it is still interesting to know is there a mod-
ified gravity which can imitate the same or similar effects. Hence, adequate gravity
modification can reduce role and rate of the dark matter/energy in the universe.

Any well founded modification of the Einstein theory of gravity has to contain
general relativity and to be verified at least on the dynamics of the Solar system. In
otherwords, it has to be a generalization of the general theory of relativity.Mathemat-
ically, it should be formulated within the pseudo-Riemannian geometry in terms of
covariant quantities and take into account equivalence of the inertial and gravitational
mass. Consequently, the Ricci scalar R in gravity Lagrangian Lg of the Einstein-
Hilbert action should be replaced by an adequate function which, in general, may
contain not only R but also some scalar covariant constructions which are possible in
the pseudo-Riemannian geometry. However, we do not know what is here adequate
function and there are infinitelymany possibilities for its construction.Unfortunately,
so far there is no guiding theoretical principle which could make appropriate choice
between all possibilities. In this context the Einstein–Hilbert action is the simplest

1While we prepared this contribution, the discovery of gravitational waves was announced [1].
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one, i.e. it can be viewed as realization of the principle of simplicity in construction
of Lg .

One of promising modern approaches towards more complete theory of gravity is
its nonlocal modification. Motivation for nonlocal modification of general relativity
can be found in string theory which is nonlocal theory and contains gravity. We
present here a brief review and some new results of nonlocal gravity with related
bounce cosmological solutions. In particular, we pay special attention to models in
which nonlocality is expressed by an analytic function of the d’Alembert operator
� = 1√−g ∂μ

√−ggμν∂ν like nonlocality in string theory. In these models, we are
mainly interested in nonsingular bounce solutions for the cosmic scale factor a(t).

In Sect. 2 we mention a few different approaches to nonlocal modified gravity.
Section3 contains rather general modified action with an analytic nonlocality and
with corresponding equations of motion. Cosmological equations for the FLRW
metric is presented in Sect. 4. Cosmological solutions for constant scalar curvature
are considered separately in Sect. 5. Some new examples of nonlocal models and
related Ansätze are introduced in Sect. 6. At the and a few remarks are also noticed.

2 Nonlocal Modified Gravity

We consider here nonlocal modified gravity. Usually a nonlocal modified gravity
model contains an infinite number of spacetime derivatives in the form of a power
series expansion with respect to the d’Alembert operator � = 1√−g ∂μ

√−ggμν∂ν.

In this article, we are mainly interested in nonlocality expressed in the form of
an analytic function F (�) = ∑∞

n=0 fn�n, where coefficients fn should be deter-
mined from various theoretical and phenomenological conditions. Some conditions
are related to the absence of tachyons and ghosts.

Before to proceed with this analytic nonlocality it is worth to mention some other
interesting nonlocal approaches. For approaches containing �−1 one can see, e.g.,
[26, 27, 42, 43, 45–47, 61, 66, 67] and references therein. For nonlocal gravity with
�−1 see also [8, 58]. Many aspects of nonlocal gravity models have been considered,
see e.g. [16–18, 20, 36, 59] and references therein.

Our motivation to modify gravity in an analytic nonlocal way comes mainly from
string theory, in particular from string field theory (see the very original effort in
this direction in [3]) and p-adic string theory [15, 38–40, 65]. Since strings are
one-dimensional extended objects, their field theory description contains spacetime
nonlocality expressed by some exponential functions of d’Alembert operator �.

At classical level analytic non-local gravity has proven to alleviate the singularity
of the Black-hole type because the Newtonian potential appears regular (tending to
a constant) on a universal basis at the origin [9, 11, 41]. Also there was significant
success in constructing classically stable solution for the cosmological bounce [11,
13, 48, 51, 55].
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Analysis of perturbations revealed a natural ability of analytic non-local gravities
to accommodate inflationary models. In particular, the Starobinsky inflation was
studied in details and new predictions for the observable parameters were made [24,
53]. Moreover, in the quantum sector infinite derivative gravity theories improve
renormalization, see e.g. while the unitarity is still preserved [53, 56, 57] (note that
just a local quadratic curvature gravity was proven to be renormalizable while being
non-unitary [64]).

3 Modified GR with Analytical Nonlocality

To better understand nonlocal modified gravity itself, we investigate it here without
presence ofmatter.Models of nonlocal gravity whichwemainly investigate are given
by the following action

S =
∫

d4x
√−g

(
M2

P

2
R − Λ + λ

2
P(R)F (�)Q(R)

)
, (1)

where R is the scalar curvature, Λ is the cosmological constant,F (�) =
∞∑

n=0

fn�n

is an analytic function of the d’Alembert–Beltrami operator � = ∇μ∇μ where ∇μ

is the covariant derivative. The Planck mass MP is related to the Newtonian constant
G as M2

P = 1
8πG and P ,Q are scalar functions of the scalar curvature. The spacetime

dimensionality D = 4 and our signature is (−,+,+,+). λ is a constant and can be
absorbed in the rescaling ofF (�). However, it is convenient to remain λ and recover
GR in the limit λ → 0.

Note that to have physically meaningful expressions one should introduce the
scale of nonlocality using a new mass parameter M . Then the function F would

be expanded in Taylor series as F (�) =
∞∑

n=0

f̄n�n/M2n with all barred constants

dimensionless. For simplicity we shall keep M2 = 1. We shall also see later that
analytic function F (�) = ∑∞

n=0 fn�n, has to satisfy some conditions, in order to
escape unphysical degrees of freedom like ghosts and tachyons, and to have good
behavior in quantum sector (see [9, 10, 41]).

Varying the action (1) by substituting

gμν → gμν + hμν (2)

to the linear order in hμν , removing the total derivatives and integrating from time
to time by parts one gets

δS =
∫

d4x
√−g

hμν

2

[
− Gμν

]
, (3)
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where

Gμν ≡ M2
PGμν + gμνΛ − λ

2
gμνPF (�)Q + λ(Rμν − Kμν)V − λ

2

∞∑

n=1

fn

×
n−1∑

l=0

(
P (l)

μ Q(n−l−1)
ν + P (l)

ν Q(n−l−1)
μ − gμν(g

ρσ P (l)
ρ Q(n−l−1)

σ + P (l)Q(n−l))
) = 0

(4)
presents equations of motion for gravitational field gμν in the vacuum. In (4) Gμν =
Rμν − 1

2gμνR is the Einstein tensor,

Kμν = ∇μ∇ν − gμν�, V = PRF (�)Q + QRF (�)P,

where the subscript R indicates the derivative w.r.t. R (asmany times as it is repeated)
and

P (l) = �l P, P (l)
ρ = ∂ρ�l P with the same for Q, PR, . . .

In the case of gravity with matter, the full equations of motion are Gμν = Tμν, where
Tμν is the energy-momentum tensor. Thanks to the integration by parts there is always
the symmetry of an exchange P ↔ Q.

When λ = 0 in (4)we recognize the Einstein’s GR equationwith the cosmological
constant Λ. If fn = 0 for n ≥ 1 then (4) corresponds to equations of motion of an
f (R) theory.

4 Cosmological Equations for FLRWMetric

We use the FLRW metric

ds2 = −dt2 + a2(t)

(
dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdφ2

)

and look for some cosmological solutions. In the FLRW metric the Ricci scalar
curvature is

R = 6

(
ä

a
+ ȧ2

a2
+ k

a2

)

and
� = −∂2

t − 3H∂t ,

where H = ȧ
a is the Hubble parameter.We use natural system of units in which speed

of light c = 1.
Due to symmetries of the FLRW spacetime, in (4) there are only two linearly

independent equations. They are: trace and 00, i.e. when indices μ = ν = 0.
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The trace equation and 00-equation, respectively, are

M2
P R − 4Λ + 2λPF (�)Q − λ(R + 3�)V

−λ

∞∑

n=1

fn

n−1∑

l=0

(
gρσ ∂ρ�l P ∂σ�n−l−1Q + 2�l P �n−l Q

) = 0,
(5)

M2
pG00 − Λ + λ

2
PF (�)Q + λ(R00 − ∇0∇0 − �)V − λ

2

∞∑

n=1

fn

×
n−1∑

l=1

(
2∂0�l P ∂0�n−l−1Q + gρσ ∂ρ�l P ∂σ�n−l−1Q + �l P �n−l Q

) = 0.

(6)

5 Cosmological Solutions for Constant
Scalar Curvature R

When R is a constant then P and Q are also some constants andwehave that�R = 0,
F (�) = f0. The corresponding equations of motion (5) and (6) contain solutions as
in the local case. However, metric perturbations at the background R = const. can
give nontrivial cosmic structure due to nonlocality.

Let R = R0 = constant 	= 0. Then

6
( ä
a

+ ( ȧ
a

)2 + k

a2

)
= R0. (7)

The change of variable b(t) = a2(t) transforms (7) into equation

3b̈ − R0b = −6k. (8)

Depending on the sign of R0, the following solutions of Eq. (8) are

b(t) = 6k

R0
+ σe

√
R0
3 t + τe−

√
R0
3 t

, R0 > 0,

b(t) = 6k

R0
+ σ cos

√−R0

3
t + τ sin

√−R0

3
t, R0 < 0,

(9)

where σ and τ are some constant coefficients.
Substitution R = R0 into equations of motion (5) and (6) yields, respectively,
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M2
p R0 − 4Λ + 2λP f0Q − λR0V0 = 0, (10)

M2
pG00 − Λ + λ

2
P f0Q + λR00V0 = 0, (11)

where V0 = f0(PRQ + QRP)|R=R0 and G00 = R00 + R0
2 .

Combining Eqs. (10) and (11) one obtains

M2
p R0 − 4Λ + 2λP f0Q − λR0V0 = 0, (12)

4R00 + R0 = 0. (13)

Equation (12) connects some parameters of the nonlocalmodel (1) in the algebraic
form with respect to R0, while (13) implies a condition on the parameters σ, τ, k and
R0 in solutions (9). Namely, R00 is related to function b(t) as

R00 = −3ä

a
= 3

4

(ḃ)2 − 2bb̈

b2
. (14)

Replacing R00 in (13) by (14) and using different solutions for b(t) in (9) we obtain

9k2 = R2
0στ, R0 > 0,

36k2 = R2
0(σ

2 + τ 2), R0 < 0.
(15)

5.1 Case: R0 > 0

• Let k = 0. From 9k2 = R2
0στ follows that at least one of σ and τ has to be zero.

Thus there is possibility for an exponential solution for a(t) and a(t) = 0. Taking
τ = 0 and σ = a20 one has

b(t) = a20 e
√

R0
3 t

. (16)

• If k = +1 one can find ϕ such that σ + τ = 6
R0

cosh ϕ and σ − τ = 6
R0

sinh ϕ.
Moreover, we obtain

b(t) = 12
R0

cosh2 1
2

(√
R0
3 t + ϕ

)
,

a(t) =
√

12
R0

cosh 1
2

(√
R0
3 t + ϕ

)
.

(17)
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• If k = −1 one can transform b(t) and a(t) to

b(t) = 12
R0

sinh2 1
2

(√
R0
3 t + ϕ

)
,

a(t) =
√

12
R0

∣
∣
∣ sinh 1

2

(√
R0
3 t + ϕ

) ∣
∣
∣.

(18)

5.1.1 Case: R = 12γ 2

This is a special case of R0, which simplifies the above expressions and yields de
Sitter-like cosmological solutions.

• k = 0:

b(t) = a20 e
2 γ t , a(t) = a0 e

γ t . (19)

• k = +1:

b(t) = 1

γ 2
cosh2

(
γ t + ϕ

2

)
,

a(t) = 1

|γ | cosh
(
γ t + ϕ

2

)
.

(20)

• k = −1:

b(t) = 1

γ 2
sinh2

(
γ t + ϕ

2

)
,

a(t) = 1

|γ |
∣
∣
∣ sinh

(
γ t + ϕ

2

)∣
∣
∣.

(21)

5.2 Case: R0 < 0

• When k = 0 then σ = τ = 0, and consequently b(t) = 0.
• If k = −1 one can define ϕ by σ = −6

R0
cosϕ and τ = −6

R0
sin ϕ, and rewrite b(t)

and a(t) as

b(t) = −12

R0
cos2

1

2

(√

− R0

3
t − ϕ

)
,

a(t) =
√

−12

R0

∣
∣
∣ cos

1

2
(

√

− R0

3
t − ϕ)

∣
∣
∣.

(22)
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• In the last case k = +1, by the same procedure as for k = −1, one can transform
b(t) to expression

b(t) = 12

R0
sin2

1

2

(√

− R0

3
t − ϕ

)
, (23)

which is not positive and hence yields no solution.

5.3 Case: R0 = 0

The case R0 = 0 can be considered as limit of R0 → 0 in both cases R0 > 0 and
R0 < 0. When R0 > 0 there is condition 9k2 = R2

0στ in (15). From this condition,
R0 → 0 implies k = 0 and arbitrary values of constants σ and τ . The same con-
clusion obtains when R0 < 0 with condition 36k2 = R2

0(σ
2 + τ 2). In both these

cases there is Minkowski solution with b(t) = constant > 0 and consequently
a(t) = constant > 0, see (9).

6 Some Models and Related Ansätze for Cosmological
Solutions

6.1 Nonlocal Gravity Model Quadratic in R

Nonlocal gravity model which is quadratic in R was given by the action [11, 12]

S =
∫

d4x
√−g

( R − 2Λ

16πG
+ RF (�)R

)
. (24)

This model is important because it is ghost free and has some nonsingular bounce
solutions, which can be regarded as a solution of the Big Bang cosmological singu-
larity problem.

The corresponding equations of motion can be easily obtained from (5) and (6).
To evaluate related equations of motion, the following Ansätze were used:

• Linear Ansatz: �R = r R + s, where r and s are constants.
• Quadratic Ansatz: �R = qR2, where q is a constant.
• Qubic Ansatz: �R = CR3, where C is a constant.
• Ansatz �n R = cn Rn+1, n ≥ 1, where cn are constants.

These Ansätze make some constraints on possible solutions, but simplify formalism
to find a particular solution (see [29] and references therein).
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6.1.1 Linear Ansatz and Nonsingular Bounce Cosmological Solutions

Using Ansatz �R = r R + s a few nonsingular bounce solutions for the scale factor

are found: a(t) = a0 cosh
(√

Λ
3 t

)
(see [11, 12]), a(t) = a0e

1
2

√
Λ
3 t

2
(see [48, 49])

and a(t) = a0(σeλt + τe−λt ) [30]. The first two consequences of this Ansatz are

�n R = rn(R + s

r
), n ≥ 1, F (�)R = F (r)R + s

r
(F (r) − f0), (25)

which considerably simplify nonlocal term.
Generalization of the above quadratic model in the form of nonlocal term

RpF (�)Rq , where p and q are some natural numbers, was recently considered
in [28]. Here cosmological solution for the scale factor has the form a(t) = ao e−γ t2 .

6.2 Gravity Model with Nonlocal Term R−1F (�)R

This model was introduced in [31] and its action may be written in the form

S =
∫

d4x
√−g

( R

16πG
+ R−1F (�)R

)
, (26)

whereF (�) = ∑∞
n=0 fn�n and f0 = − Λ

8πG plays role of the cosmological constant.
The nonlocal term R−1F (�)R in (26) is invariant under transformation R →

CR. This nonlocal term does not depend on the magnitude of scalar curvature R, but
on its spacetime dependence, and in the FLRW case is relevant only dependence of R
on time t . Term f0 = − Λ

8πG is completely determined by the cosmological constant
Λ, which according to ΛCDM model is small and positive energy density of the
vacuum. Coefficients fi , i ∈ N can be estimated from other conditions, including
agreement with dynamics the Solar system. In comparison to the model quadratic
in R (24), complete Lagrangian of this model remains to be linear in R and in such
sense is simpler nonlocal modification than (24).

In this model are also used the above Ansätze. Especially quadratic Ansatz�R =
qR2,whereq is a constant, is effective to consider power-law cosmological solutions,
see [31–33, 37].

6.3 Some New Models and Ansätze

It is worth to consider some particular examples of action (1) when P = Q = (R +
R0)

m, i.e.
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S =
∫ ( 1

16πG
R − Λ + λ

2
(R + R0)

mF (�)(R + R0)
m
)√−g d4x, (27)

where R0 ∈ R, m ∈ Q, and which have scale factor solution as

a(t) = A tneγ t2 , γ ∈ R. (28)

To this end we consider the Ansatz

�(R + R0)
m = p(R + R0)

m, (29)

where p is a constant and � is the d’Alembert operator in FLRW metric.
From Ansatz (29) and scalar curvature R for k = 0, we get the following system

of equations:

72m(1 + 2m − 3n)n2(−1 + 2n)2 = 0,

36n(−1 + 2n)(−np + 2n2 p + mR0 − mnR0 + 12mγ + 48mnγ − 72mn2γ ) = 0,

12n(−1 + 2n)(pR0 + 12pγ + 48npγ − 6mR0γ + 312mγ 2 − 192m2γ 2 − 288mnγ 2) = 0,

pR2
0 + 24pR0γ + 96npR0γ + 144pγ 2 + 576npγ 2 + 3456n2 pγ 2 + 96mR0γ

2+
+ 288mnR0γ

2 + 1152mγ 3 + 8064mnγ 3 + 13824mn2γ 3 = 0,

96γ 2(pR0 + 12pγ + 48npγ + 6mR0γ + 24mγ 2 + 96m2γ 2 + 432mnγ 2) = 0,

2304γ 4(p + 12mγ ) = 0.
(30)

The system of Eq. (30) has 5 solutions:

1. p = −12mγ , n = 0, R0 = −12γ , m = 1
2

2. p = −12mγ , n = 2m+1
3 , R0 = −28γ , m = 1

2
3. p = −12mγ , n = 0, R0 = −4γ , m = 1
4. p = −12mγ , n = 1

2 , R0 = −16γ , m = 1
5. p = −12mγ , n = 1

2 , R0 = −36γ , m = − 1
4

We shall now shortly consider each of the above cases.

6.3.1 Case 1: a(t) = A eγ T 2
, m = 1

2

Here Ansatz is �
√
R + R0 = p

√
R + R0, where R0 = −12γ, p = −6γ and γ is a

parameter. The scale factor is a(t) = A eγ t2 .

The first consequences of this Ansatz are

��
√
R + R0 = p�

√
R + R0, � ≥ 0,

F (�)
√
R + R0 = F (p)

√
R + R0,

R(t) = 12γ (1 + 4γ t2).
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Relevant action is

S =
∫ ( 1

16πG
R − Λ + λ

2

√
R − 12γF (�)

√
R − 12γ

)√−g d4x . (31)

Equations of motion follow from (5) and (6), where P = Q = √
R − 12γ .

Straightforward calculation gives cosmological solution a(t) = A eγ t2 with condi-
tions:

F (p) = γ − 4πGΛ

16γπGλ
, F ′(p) = 4πGΛ − 3γ

192γ 2πGλ
, p = −6γ.

6.3.2 Case 2: a(t) = A t2/3eγ t2, m = 1
2

In this case the Ansatz is �
√
R + R0 = p

√
R + R0, where R0 and p are real con-

stants.
The first consequences of this Ansatz are

��
√
R + R0 = p�

√
R + R0, � ≥ 0,

F (�)
√
R + R0 = F (p)

√
R + R0.

For scale factor a(t) = A t2/3eγ t2 the Ansatz �
√
R + R0 = p

√
R + R0 is satisfied

if and only if R0 = −28γ and p = −6γ .
Direct calculation shows that

R(t) = 44γ + 4

3
t−2 + 48γ 2t2,

��
√
R − 28γ = (−6γ )�

√
R − 28γ , � ≥ 0,

F (�)
√
R − 28γ = F (−6γ )

√
R − 28γ ,

Ṙ = 96γ 2t − 8

3
t−3.

The related action is

S =
∫ ( 1

16πG
R − Λ + λ

2

√
R − 28γF (�)

√
R − 28γ

)√−g d4x . (32)

The corresponding trace and 00 equations of motion are satisfied under conditions:

F (p) = − 1

8πGλ
, F ′(p) = 0, γ = 4

7
πGΛ, p = −6γ.
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6.3.3 Case 3: a(t) = A eγ T 2
, m = 1

In this case �(R − 4γ ) = −12γ (R − 4γ ), what is an example of already above
considered linear Ansatz. The corresponding action is

S =
∫ ( 1

16πG
R − Λ + λ

2
(R − 4γ )F (�)(R − 4γ )

)√−g d4x . (33)

Equations of motion have cosmological solution a(t) = A eγ t2 under conditions:

F (p) = − 1

512πGλγ
, F ′(p) = 0, p = −12γ, γ = 8πGΛ.

6.3.4 Case 4: a(t) = A
√
teγ t2, m = 1

This case is quite similar to the previous one. Now Ansatz is �(R − 16γ ) =
−12γ (R − 16γ ) and action

S =
∫ ( 1

16πG
R − Λ + λ

2
(R − 16γ )F (�)(R − 16γ )

)√−g d4x . (34)

Scale factor a(t) = A
√
teγ t2 is solution of equations of motion if the following

conditions are satisfied:

F (p) = − 1

320πGλγ
, F ′(p) = 0, p = −12γ, γ = 8πGΛ.

6.3.5 Case 5: a(t) = A
√
t eγ t2, m = − 1

4

According to the Ansatz, in this case p = 3γ , n = 1
2 , R0 = −36γ. However the

action

S =
∫ ( 1

16πG
R − Λ + λ

2

√
R − 36γF (�)

√
R − 36γ

)√−g d4x . (35)

has no solution a(t) = A
√
t eγ t2 for the Ansatz�(R + R0)

m = p(R + R0)
m, m =

− 1
4 .
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7 Concluding Remarks

In this paper we presented a brief review of nonlocal modified gravity, where nonlo-
cality is realized by an analytic function of the d’Alembert operator �. Considered
models are presented by actions, their equations of motion, related Ansätze and some
cosmological solutions for the scale factor a(t). A few new models are introduced,
and they deserve to be further investigated, especially Case 1 and Case 2 in Sect. 6.

Many details on (1) and its extended versions can be found in [9, 10, 13, 49–
51]. Perturbations and physical excitations of the equations of motion of action (24)
around the de Sitter background are considered in [34, 35], respectively. As some
recent developments in nonlocal modified gravity, see [21, 25, 41, 44, 53, 68].

Notice that nonlocal cosmology is related also to cosmological models in which
matter sector contains nonlocality (see, e.g. [4, 6, 7, 19, 38, 39, 52]). String field
theory and p-adic string theorymodels have played significant role in motivation and
construction of such models. One particular aspect in which non-local models prove
important is the ability to resolve the Null Energy Condition obstacle [5] common to
many models of generalized gravity. In short, that is an ability to construct a healthy
modelwhich has sumof energy and pressure of thematter positive and thereby avoids
ghosts in the spectrum alongside with a nonsingular space-time structure [23].

Nonsingular bounce cosmological solutions are very important (as reviews on
bouncing cosmology, see e.g. [14, 62]) and their progress in nonlocal gravity may
be a further step towards cosmology of the cyclic universe [54].
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Kinetics of Interface Growth: Physical
Ageing and Dynamical Symmetries

Malte Henkel

Abstract Dynamical symmetries and their Lie algebra representations, relevant for
the non-equilibrium kinetics of growing interfaces are discussed. Physical conse-
quences are illustrated in the ageing of the 1D Glauber-Ising and Arcetri models.

1 Introduction

Theories of the effective long-time and long-distance behaviour of strongly interact-
ing many-body systems have raised a considerable amount of conceptual, computa-
tional and experimental challenges. Modern formulations are always almost cast in
the framework of a renormalisation group, which usually allows to identify a small
number of ‘relevant’ physical scaling operators. Much insight has been obtained
through the study of paradigmatic systems, where the specific formulation of models
often allow to formulate question in such a way that the predictions derived from
general theoretical schemes can be brought to explicit tests, either through numeri-
cal simulations and occasionally exact solution and, under favourable circumstances,
even through experiments [1, 10, 22, 39].

Here, we shall concentrate on the long-time and large-distance behaviour in the
kinetics of growing interfaces. Interfaces are grownon a substrate, ontowhich particle
are allowed to deposit, according to certainmicroscopic rules. The interface separates
those particles which are already absorbed, from empty space, and is described in
terms of a possibly time-dependent height variable hi (t), attached to each site i of
the substrate. The set of all heights hi (t) at a given time t is an interface configuration
{h}. In Fig. 1, one such adsorption event is illustrated.
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Fig. 1 Schematic evolution of an interface, described in terms of a time-dependent height config-
uration. Upon adsorption of a particle, the height configuration evolves locally. Below the heights,
the local slope is also indicated. The adsorption process corresponds to a biased exchange reaction
−+ −→ +− of a tasep between the slopes on two neighbouring links

In a coarse-grained description, most of the ‘details’ of the precise microscopic
rules which govern an adsorption event will not enter into the long-time and large-
distance behaviour, they are ‘irrelevant’ in the renormalisation-group sense. For
example, the interface shown in Fig. 1 has the property that the height differences
between nearest neighbours may only take the values hi+1(t) − hi (t) = ±1. If such
an rsos-condition is used to select admissible adsorption events, one can show that
a coarse-grained description, in the continuum limit describes the height function
h = h(t, r) as a solution of the Kardar-Parisi-Zhang (kpz) equation [27]

∂t h = ν∇2h + μ

2
(∇h)2 + η (1)

where ∇ is the spatial gradient, η is a centred gaussian white noise, with co-variance
〈
η(t, r)η(t ′, r′)

〉 = 2νT δ(t − t ′)δ(r − r′) (2)

and where ν,μ, T are material-dependent parameters. On the other hand, if the
rsos-constraint is not imposed, the continuum equation obtained is (1) with μ = 0,
which is known as the Edwards-Wilkinson (ew) equation [13].

The exponents used to describe the interface are conventionally defined as follows.
One is mainly interested in the fluctuations around the spatially averaged height1

h(t) := L−d
∑

r∈Λ h(t, r), where the sum runs over the lattice sites. All analysis is
built around the Family-Viscek scaling [14] of the interface width, where 〈.〉 denotes
an average over many independent samples.

w2(t; L) := 1

Ld

∑

r∈Λ

〈(
h(t, r) − h(t)

)〉2 = L2α fw
(
t L−z

) ∼ (3)

∼
{

t2β ; if t L−z 	 1
L2α ; if t L−z 
 1

1Throughout, we consider a hyper-cubic lattice Λ ⊂ Z
d with Ld sites.
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Here,α = βz is the roughness exponent,β the growth exponent and z > 0 the dynam-
ical exponent and 〈.〉 denotes an average overmany independent samples black(under
the same thermodynamic conditions). Physically, one says that the interface is rough
when β > 0 and smooth if β ≤ 0. Throughout, the L → ∞ limit will be taken and
the initial state is always a flat, uncorrelated substrate. Relaxational properties of the
interface are characterised by the two-time correlations and (linear) responses

C(t, s; r) := 〈(
h(t, r) − 〈

h(t)
〉) (

h(s, 0) − 〈
h(s)

〉)〉 = s−b FC

(
t

s
; r

s1/z

)
(4)

R(t, s; r) := δ
〈
h(t, r) − h(t)

〉

δ j (s, 0)

∣
∣
∣
∣
∣

j=0

= 〈
h(t, r)̃h(s, 0)

〉 =

= s−1−a FR

(
t

s
; r

s1/z

)
(5)

where j is an external field conjugate to h and spatial translation-invariance is
assumed. The long-time dynamical scaling is formulated by analogy with the ageing
as it occurs in simple magnets [5, 10, 22]. Generalised Family-Viscek forms are
expected in the long-time limit, for the waiting time s and the observation time t ,
where not only t, s 
 τmicro, but also t − s 
 τmicro is required (τmicro is a micro-
scopic reference time). Some entries of a dictionary between the ageing of simple
magnets and interface growth are listed in Table1.

In (5),we quote a result from Janssen-deDominicis theory expressing the response
function as a correlator of the height scaling operator h(t, r) with the associated

Table 1 Analogies between the critical dynamics in magnets and growing interfaces. The average
〈.〉c denotes a connected correlator. Some models, with the equilibrium hamiltonian for magnets,
are defined through their kinetic equations

Magnets Interfaces

Order parameter/height φ(t, r) h(t, r)

Width/variance
〈
(φ(t, r) − 〈φ(t, r)〉)2〉 ∼

∼ t−2β/(νz)
w2(t) = 〈(h(t, r) − h(t))2〉 ∼

∼ t2β

Autocorrelator C(t, s) = 〈φ(t, r)φ(s, r)〉c C(t, s) = 〈h(t, r)h(s, r)〉c

Autoresponse R(t, s) =
δ〈φ(t, r)〉/δh(s, r)|h=0

R(t, s) =
δ〈h(t, r)〉/δ j (s, r)| j=0

Models

Gaussian field/ew H[φ] = − 1
2

∫
dr (∇φ)2

∂tφ = D∇2φ + η ∂t h = ν∇2h + η

Ising model/kpz H[φ] =
− 1

2

∫
dr [(∇φ)2 + g

2φ4]
∂tφ = D(∇2φ + gφ3) + η ∂t h = ν∇2h + μ

2 (∇h)2 + η
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Table 2 Exponents of the ageing of growing interfaces
Model d z β a b λC λR Ref.

kpz 1 3/2 1/3 −1/3 −2/3 1 1 [23, 27, 29]

2 1.61(2) 0.2415(15) 0.30(1) −0.483(3) 1.97(3) 2.04(3) [33]

2 1.61(2) 0.241(1) −0.483 1.91(6) [18]

2 1.627(4) 0.229(6) [28]

ew <2 2 (2 − d)/4 d/2 − 1 d/2 − 1 d d

2 2 0(log) 0 0 2 2 [13, 36]

>2 2 0 d/2 − 1 d/2 − 1 d d

Arcetri 1

T = Tc <2 2 (2 − d)/4 d/2 − 1 d/2 − 1 3d/2 − 1 3d/2 − 1

2 2 0(log) 0 0 2 2 [24]

>2 2 0 d/2 − 1 d/2 − 1 d d

T < Tc d 2 1/2 d/2 − 1 −1 d/2 − 1 d/2 − 1

response scaling operator h̃(s, r′). This will be needed for an analysis of the dynam-
ical symmetries of R(t, s) below.

Turning to the exponents defined in (4), (5), one notes that b = −2β [11, 26],
but the relationship of a to other exponents seems to depend on the universality
class. For example, one finds a = b in the ew-universality class [36], and 1 + a =
b + 2/z in the 1D kpz-class [23]. The exponents λC ,λR of the autocorrelator and the
autoresponse, respectively, are defined from the asymptotics FC,R(y, 0) ∼ y−λC,R/z

as y → ∞. A rigorous bound states that λC ≥ (d + zb)/2 [24].
Concerning the values of the exponents λC ,λR , an important difference arises

between simple magnets and growing interfaces, notably for those in the kpz univer-
sality class. In simple magnets, with so-called with a non-conserved order parameter
and with disordered initial conditions, renormalisation-group studies strongly indi-
cate that λC ,λR are independent of those describing the stationary state [5, 39]. In
contrast, for the kpz class, for dimensions d < 2 it was shown that λC = d, to all
orders in perturbation-theory [29], but this analysis breaks down for d ≥ 2 [39]. This
is because of a strong-coupling fixed point, not reachable by a perturbative analysis,
and analysed through the non-perturbative renormalisation-group [28]. In Table2,
we list values of these exponents, either exact results or simulational estimates.

Remarkably, in recent years several new experiments on interface growth have
been carried out, which furnish several non-trivial examples in the 1D kpz univer-
sality class. For a list of the measured values of the exponents, see [24].

This work is organised as follows. In Sect. 2, we shall define the recently intro-
duced exactly solvable ‘Arcetri models’. In Sect. 3, we recall some elements of the
theory of local scale-invariance (lsi), which in particular permits to predict the shape
of the scaling functions defined above. It has turned out that the usual way of extend-
ing global scale-invariance to a more local scaling, as so successfully used in the
study of conformal invariance at equilibrium phase transitions, is not always flexible
enough to take into account what is going on far from a stationary state. Technically,
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this requires to consider more general representations. In Sect. 4, we present such
extensions, first for the conformal algebra and then give the extensions also for lsi.
Applications to the first Arcetri model and the 1D Glauber-Isingmodel will be given.
Section5 gives our conclusions.

2 The Arcetri Models: Exact Solution

Important recent work on the exact solution of the 1D kpz-equation relates the prob-
ability distributionP(h) of the fluctuation h − h with the extremal value statistics of
the largest eigenvalue of random matrices, see [6, 37]. Here, we rather look for dif-
ferent universality classes with exactly solvable members, not as straightforward to
treat as the ew-equation but still not confined to d = 1 dimensions. Inspiration comes
from the well-studied spherical model of a ferromagnet [3, 30]. Therein, the tradi-
tional Ising spin variables σi = ±1, attached to the sites i of a lattice withN sites, are
replaced by ‘spherical spins’ Si ∈ R and subject to the constraint

∑
i

〈
S2

i

〉 = N . A
conventional nearest-neighbour interaction leads to an exactly solvablemodel, which
undergoes a non-mean-field phase transition in 2 < d < 4 dimensions [3, 30]. The
relaxational properties can be likewise analysed exactly [35].

How can one find an useful analogy with growing interfaces? Considering Fig. 1,
we see that the slopes hi+1(t) − hi (t) = ±1 might be viewed as analogues of Ising
spins. Then at least in d = 1 dimensions, from the kpz-equation one has for the
local slope u = ∇h the (noisy) Burgers equation. A ‘spherical model variant’ of the
kpz-universality class might be found by relaxing the rsos-constraints ui = ±1 to
a ‘spherical constraint’

∑
i u2

i = N [24]. More precisely, this leads to the variants:
1. Start from the Burgers equation and replace its non-linearity as follows

∂t u = ν∇2u + μu∇u + ∇η �→ ∂t u = ν∇2u + z(t)u + ∇η (6)

with a Lagrange multiplier z(t). Its value is determined by the spherical constraint∑〈u2〉 = N , where the sums runs over all sites of the lattice [24]. The variance (2)
of the gaussian white noise η(t, r) defines the ‘temperature’ T .

2. Treat the non-linearity of the Burgers equation as follows

∂t u = ν∇2u + μu∇u + ∇η �→ ∂t u = ν∇2u + z(t)∇u + ∇η (7)

and find the Lagrange multiplier z(t) from the constraint
∑〈u2〉 = N [12].

3. Finally, start directly from the kpz equation, and replace

∂t h = ν∇2h + 1

2
μ (∇h)2 + η �→ ∂t h = ν∇2h + z(t)∇h + η (8)

where z(t) is to be found from
∑〈(∇h)2〉 = N [12].
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Equations (6)–(8) would define the first, second and third Arcetri models,2 respec-
tively. However, it turns out that Eqs. (7) and (8) lead to undesirable properties of the
height and slope profiles in the stationary state, as well as to internal inconsistencies
[12]. Therefore, a more careful definition is required.

In one spatial dimension, the slope profile u(t, r) = 1 − 2�(t, r) has an interesting
relationship with the dynamics of interacting particles, of density �(t, r). In the kpz
universality class, u(t, r) = ±1 from the rsos-constraint. Then denote by • an occu-
pied site with � = 1 ⇔ u = +1 and by ◦ an empty site with � = 0 ⇔ u = −1. The
interface growth process leads to the only admissible reaction •◦ −→ ◦•, between
neighbouring sites, see Fig. 1. This is a totally asymmetric exclusion process (tasep),
see [11, 17, 31]. For the Arcetri model(s), the exact rsos-constraint is relaxed to

the mean ‘spherical constraint’
〈∑

r u(t, r)2
〉 != N . Hence, the noise-averaged,3 and

spatially averaged, particle-density ρ̄(t) becomes [12]

ρ̄(t) := 1

N
∑

r

〈�(t, r)〉 != 1

N
∑

r

〈
�(t, r)2

〉 ≥ 0 (9)

where the equality follows from the constraint. Notably, the non-averaged density
variable �(t, r) ∈ R has no physical meaning, but the constraint (9) ensures that the
measurable disorder-averaged observables take physically reasonable values.

2.1 First Arcetri Model

On a hypercubic lattice of N = N d sites, in Fourier space the slopes ûa(t,p) =
i sin

(
2π
N

)
ĥ(t,p) are related to the heights, hence the disordered, uncorrelated initial

state is specified by
〈̂
h(0,p)

〉 = N d H0δp,0 and
〈̂
h(0,p)̂h(0,q)

〉 = N d H1δp+q,0, with
H1 = H 2

0 . From (6) and using the definition

g(t) := exp

(
−2

∫ t

0
dt ′ z(t ′)

)
(10)

the spherical constraint can be cast into the form of a Volterra integral equation

H1 f (t) + 2νT
∫ t

0
dτ g(τ ) f (t − τ ) = dg(t) (11)

with the kernel f (t) = d
4νt e−4νt I1(4νt) (I0(4νt))d−1 and the In are modified Bessel

functions. This is readily solved in terms of Laplace transformations, viz. g(p) =

2The name comes from the location of the Galileo Galilei Institute of Physics, near to the village
of Arcetri (Florence, Italy), where these models were invented in spring 2014.
3Here, the average is both over ‘thermal’ as well as over ‘initial’ noise.
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H1 f (p)
[
d − 2T f (p)

]−1
. The location of the singularity defines the ‘critical tem-

perature’ [24]

1

Tc(d)
= 2

d
f (0) =

∫ ∞

0
dt

exp(−dt)

2t
I1(t)I0(t)

d−1 =
⎧
⎨

⎩

2 ; if d = 1
2π/(π − 2) ; if d = 2
9.53099 . . . ; if d = 3

(12)
such that Tc(d) > 0 for all d > 0. Interesting long-time scaling behaviour is found
whenever T ≤ Tc(d). In particular, one has the long-time asymptotic behaviour
g(t) ∼ t�, where

� =
⎧
⎨

⎩

d/2 − 1 ; if T = Tc(d) and 0 < d < 2
0 ; if T = Tc(d) and 2 < d
−(d/2 + 1) ; if T < Tc(d)

(13)

This implies that for t → ∞, z(t) � −�

2t . Height correlators and responses (4) and

(5) read, where Fr(τ ) := ∏d
a=1 e2ντ Ira (2ντ ) and the Heaviside function Θ(τ )

C(t, s; r) = H1√
g(t)g(s)

Fr(t + s) + 2νT√
g(t)g(s)

∫ s

0
dτ g(τ )Fr(t + s − 2τ )

(14)

R(t, s; r) = Θ(t − s)

√
g(s)

g(t)
Fr(t − s) (15)

Straightforward calculation verify the non-equilibrium dynamical scaling of simple
ageing, as expressed in (4) and (5), with the exponents listed in Table2 [24].

Considering the correlators and responses of the slope u(t, r), it can be shown that
in these variables the first Arcetri model is identical to (i) the p = 2 spherical spin
glass [9] with T = 2TSG and (ii) the statistics of the gap of the largest eigenvalues
of gaussian unitary matrices [15].

2.2 Second and Third Arcetri Models

Since the equations of motion (7) and (8) do not conserve parity, it is preferable to
separate into an even part a(t, r) = a(t,−r) and an odd part b(t, r) = −b(t,−r).
Formally, u(t, r) := a(t, r) + ib(t, r) obeys Eq. (7) of the second Arcetri model and
h(t, r) := a(t, r) + ib(t, r) obeys Eq. (8) of the third Arcetri model. In both cases,
the Lagrange multiplier z(t) ∈ iR [12]. The spherical constraint is quite distinct from
(11). For instance, in the second model with initially uncorrelated slopes, we find
[12]

J0(4νt, 2Z(t)) + 2νT
∫ t

0
dτ e4ντ )J2(4ν(t − τ ), 2Z(t) − 2Z(τ )) = e4νt (16)



60 M. Henkel

where Z(t):= ∫ t
0 dτz(τ ),J0(A, Z) = I0(

√
A2 + Z2 ) andJ2(A, Z) = ∂2

ZJ0(A, Z).
For temperature T = 0, we find the long-time asymptotics Z(t) � √

t ln(4πνt) .
[Analogous results hold in the third model.] The logarithmic factor in Z(t) leads to
a breaking of dynamical scaling. For example, the equal-time slope correlator

Cn(t) = 〈a(t, n)a(t, 0) + b(t, n)b(t, 0)〉 � (17)

� exp

[

−
(

n√
32νt

)2
]

cos

[
n√

2t/ ln 4νπt

]

displays two marginally different length scales. The two-time slope autocorrelator

C(t, s) � e−y2/32 ; with y := t−s
s

√
ln 4πνs fixed (18)

shows logarithmic sub-ageing, distinct from simple ageing (4), but known from the
kinetic T = 0 spherical model with a conserved order-parameter (‘model B’) [4, 8].

3 Dynamical Scaling Far from Equilibrium
and Symmetries

In order to prepare the discussion of dynamical symmetries of the Arcetri mod-
els in Sect. 4, we now recall several known results on the dynamical symmetries
of non-equilibrium systems. Much of this discussion is based on analogies with
conformal invariance at 2D equilibrium critical points. Working in complex coor-
dinates z = x + iy, the basic representation of the conformal algebra generators is
�n − zn+1∂z − Δ(n + 1)zn [7] with the conformal weight Δ ∈ R, which obey the
commutator [�n, �m] = (n − m)�n+m for n, m ∈ Z. Writing the Laplace operator
S := 4∂z∂z̄ , and provided Δ = 0, the commutator

[S, �n]φ(z, z̄) = −(n + 1)znSφ(z, z̄) − 4Δ(n + 1)nzn−1∂z̄φ(z, z̄) (19)

expresses the conformal invariance of the space of solutions of Sφ = 0.
An analogue for dynamical scaling, with dynamical exponent z = 2, is the

Schrödinger-Virasoro algebra sv(d) algebra [19, 20], with generators

Xn = −tn+1∂t − n + 1

2
tnr · ∇r − M

4
(n + 1)ntn−1r2 − n + 1

2
xtn

Y ( j)
m = −tm+1/2∂ j −

(
m + 1

2

)
tm−1/2Mr j (20)

Mn = −tnM ; R( jk)
n = −tn

(
r j∂k − rk∂ j

) = −R(k j)
n

where ∂ j := ∂/∂r j and ∇r = (∂1, . . . , ∂d)
T. The non-vanishing commutators are
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[
Xn, Xn′

] = (n − n′)Xn+n′ ,
[
Xn, Y ( j)

m

] =
(n

2
− m

)
Y ( j)

n+m

[
Xn, Mn′

] = −n′Mn+n′ ,
[
Xn, R( jk)

n′
] = −n′ R( jk)

n+n′
[
Y ( j)

m , Y (k)
m ′

] = δ j,k
(
m − m ′) Mm+m ′ ,

[
R( jk)

n , Y (�)
m

] = δ j,� Y (k)
n+m − δk,� Y ( j)

n+m
[
R( jk)

n , R(�i)
n′

] = δ j,i R(�k)
n+n′ − δk,� R( j i)

n+n′ + δk,i R( j�)
n+n′ − δ j,� R(ik)

n+n′ (21)

with integer indices n, n′ ∈ Z, half-integer indices m, m ′ ∈ Z + 1
2 and i, j, k, � ∈

{1, . . . , d}. Itwas alreadyknown to Jacobi andLie that themaximalfinite-dimensional
sub-algebra of sv(d), namely the thoroughly-analysed Schrödinger algebra

sch(d) :=
〈
X0,±1, Y ( j)

±1/2, M0, R( jk)

0

〉

j,k=1,...d
, leaves the solution spaceof free-particle

motion or of the free diffusion equation invariant. For our purposes, we want to
use symmetries as sch(d) to derive Ward identities for co-variant n-point functions
〈φ1(t1, r1) . . . φn(tn, rn)〉. Since the generator M0 ∈ sch(d) is central, the Bargman
superselection rule [2]

(M1 + · · · + Mn) 〈φ1(t1, r1) . . . φn(tn, rn)〉 = 0 (22)

follows, where the φ j are scaling operators of the physical theory. This feature
distinguishes Schrödinger-invariance from conformal invariance [19, 22].

The importance of (22) appears if one recalls that models of non-equilibrium
statistical mechanics are often specified via a stochastic Langevin equation, viz.

2M∂tφ = ∇r · ∇rφ − δV[φ]
δφ

+ η (23)

and a Ginzburg–Landau potential V[φ]. In the context of Janssen-de Dominicis the-
ory [39], this can be recast as the variational equation of motion of a dynamic func-
tional J [φ, φ̃] = J0[φ, φ̃] + Jb[φ̃] where the term J0[φ, φ̃] contains the determin-
istic terms coming from the Langevin equation and Jb[φ̃] contains the stochastic
terms generated by averaging over the thermal noise and the initial condition. In this
context, the two-time linear response function (spatial arguments are suppressed)

R(t, s) = δ〈φ(t)〉
δh(s)

∣
∣
∣
∣
h=0

=
∫
DφDφ̃ φ(t)φ̃(s)e−J [φ,̃φ] = 〈

φ(t)φ̃(s)
〉

(24)

is expressed as a correlator with the associated response operator φ̃.

Theorem ([34]) Consider the functional J [φ, φ̃] = J0[φ, φ̃] + Jb[φ̃]. If J0 is
Galilei-invariant with non-vanishing masses such that (22) holds, then all responses
and correlators reduce to averages only involving J0[φ, φ̃].
Proof Define the average 〈X〉0 = ∫DφDφ̃ X [φ]e−J0[φ,̃φ] with respect to the func-
tional J0[φ, φ̃]. For illustration, consider merely R(t, s). From (24)
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R(t, s) =
〈
φ(t)φ̃(s)e−Jb [̃φ]

〉

0
=

∞∑

k=0

(−1)k

k!
〈
φ(t)φ̃(s)Jb[φ̃]k

〉
0 = 〈

φ(t)φ̃(s)
〉
0

The superselection rule (22) in the last step implies that only the k = 0 term is kept.
Hence the response R(t, s) = R0(t, s) does not depend explicitly on the noise.

q.e.d.
Hence a symmetry analysis of systems described by Langevin equations (23)

reduces to the symmetries of its ‘deterministic part’, with the noise η �→ 0. Physi-
cists’ conventions require that ‘physical masses’Mi ≥ 0. One must define a formal
‘complex conjugate’φ∗ of the scaling operatorφ, such that itsmassM∗ := −M ≤ 0
becomes negative. This rôle is played by φ̃.

Example 1 The ageing algebra age(d) := 〈X0,1, Y ( j)
± 1

2
, M0, R( jk)

0 〉 with j, k =
1, . . . , d does not include time-translations X−1. Starting from the representation
(20), the generators Xn now read [21, 34]

Xn = −tn+1∂t − n + 1

2
tnr · ∇r − n + 1

2
xtn − n(n + 1)ξtn − n(n + 1)

4
Mtn−1r2

(25)
The Bargman rule (22) still holds. The Schrödinger operator is S = 2M∂t − ∂2

r +
2Mt−1

(
x + ξ − d

2

)
and commutes with all generators of age(d), up to

[S, X0] = −S , [S, X1] = −2tS (26)

without any constraint, neither on x nor on ξ [38]. Remarkably, each non-equilibrium
scaling operator φ must at least be characterised by two distinct, independent scaling
dimensions, here labelled x , ξ.

An explicit example for this is given by the 1D kinetic Ising model with Glauber
dynamics. The model’s configurations σ = {σ1, . . . ,σN } of Ising spins σi = ±1
evolve in discrete time, according to a Markov process with the Glauber rates [16]

P (σi (t + 1) = ±1) = 1

2

[
1 ± tanh

(
1

T
(σi−1(t) + σi+1(t) + hi (t))

)]
(27)

where hi (t) is a time-dependent external field and T is the temperature. The exact
solution gives at T = 0 in the scaling limit t, s → ∞ with t/s kept fixed, the auto-
correlator and autoresponse (independently of the initial conditions) are

C(t, s) = 2/π arctan
√
2[t/s − 1]−1 ; R(t, s) = (2π2)−1/2s−1(t/s − 1)−1/2.

(28)
We read off the scaling dimensions x = 1

2 , ξ = 0 for the magnetisation and x̃ = 0,
ξ̃ = 1

4 for the response operator [21, 25].
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4 Representations and Invariant Equations

We now give several extensions of the representations discussed so far. The basic
new fact, first observed in [32], is compactly best stated for the conformal algebra.

Proposition 1 ([25]) Let γ be a constant and g(z) a non-constant function. Then

�n = −zn+1∂z − nγzn − g(z)zn (29)

obey the conformal algebra [�n, �m] = (n − m)�n+m for all n, m ∈ Z.

Proposition 2 ([25]) If φ(z) is a quasi-primary scaling operator under the repre-
sentation (29) of the conformal algebra 〈�±1,0〉, its co-variant two-point function is
given by, up to normalisation and with �i (z) :=
= zγi exp

(
− ∫ z

1 dζ
g(ζ)

ζ

)

〈φ1(z1)φ2(z2)〉 = δγ1,γ2 (z1 − z2)
−γ1−γ2�1(z1)�2(z2). (30)

Proof Re-write 〈φ1(z1)φ2(z2)〉 = �1(z1)�2(z2)�(z1, z2) and show that �(z1, z2)
obeys the Ward identities of standard conformal invariance, where γi play the rôles
of conformal weights. q.e.d.

Proposition 3 ([25]) If one replaces in the representation (20) the generator Xn as
follows, with n ∈ Z

Xn = −tn+1∂t − n + 1

2
tnr · ∇r − n + 1

2
xtn − (31)

− n(n + 1)ξtn − Ξ(t)tn − n(n + 1)

4
Mtn−1

where x, ξ are constants and Ξ(t) is an arbitrary (non-constant) function, then the
commutators (21) of the Lie algebra sv(d) are still satisfied.

This resultwasfirst obtained, for theSchrödinger algebra sch(d), byMinic,Vaman
andWu [32]. They also take the dependence on the massM in u(t) into account and
write down terms up to order O(1/M) and O(1). The representation (25) of age(d)

is a special case, with arbitrary ξ, but with Ξ(t) = 0. Explicit two- and three-point
functions, co-variant under either sch(d) or age(d), are derived in [32].

Proposition 4 ([25]) Consider the representation (20), with the generators Xn

replaced by (31), of either age(d), or sch(d). The invariant Schrödinger operator is

S = 2M∂t − ∇2
r + 2Mu(t), u(t) = (x + ξ − d/2)t−1 + Ξ(t)t−1 (32)

such that a solution of Sφ = 0 is mapped onto another solution of the same equation.
For the algebra age(d), there is no restriction, neither on x, nor on ξ, nor on Ξ(t).
For the algebra sch(d), one has the additional condition x = d

2 − 2ξ.
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Proof For brevity, restrict to d = 1 and reproduce (26). First look at age(1). Con-
sideration of X0 gives t u̇(t) + u − Ξ̇(t) = 0 and considering X1 gives x + ξ −
1
2 + Ξ(t) + tΞ̇(t) − 2tu(t) − t2u̇(t) = 0, where the dot denotes the derivative with
respect to t . The second relation can be simplified to x + ξ − 1

2 + Ξ(t) − tu(t) = 0
which gives the assertion. Going over to sch(1), the condition [S, X−1] = 0 leads to
ξ/t2 + Ξ̇(t)/t − Ξ(t)/t2 − u̇(t) = 0. This is only compatible with the result found
before for age(1), if ξ = −x − ξ + 1

2 , as asserted. q.e.d.

Example 2 These results have an immediate application in the first Arcetri models,
discussed in Sect. 2. In the continuum limit, the slopes ua(t, r) = ∂h(t, r)/∂ra satisfy
a Langevin equation ∂t ua(t, r) = ∇2

r ua(t, r) + z(t)ua(t, r) + ∂
∂ra

η(t, r), analogous
to (6). Because of the theorem in Sect. 2, we can compare the deterministic part of
this with the invariant Schrödinger operator (32). Clearly, for the first Arcetri model
with T ≤ Tc(d), one has Ξ(t) = 0 and d

2 − � = x + ξ, using the definition (10) of
g(t) and recalling the values (13) of the universal exponent �.

The second and third Arcetri model do not obey simple ageing. It remains open
if their long-time behaviour can be cast into a simple local sub-ageing scaling form.

5 Conclusions

The kinetics of growing interfaces furnish paradigmatic examples for case studies of
extended dynamic scaling. Scaling operators in non-equilibrium dynamical scaling
are characterised by at least two distinct and independent scaling dimensions, x and
ξ. These arise from new representations of the Schrödinger and ageing algebras.
Explicit examples include the exactly solved Glauber-Ising and Arcetri models.
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News on SU(2|1) Supersymmetric Mechanics

Evgeny Ivanov and Stepan Sidorov

Abstract We report on a recent progress in exploring the SU(2|1) supersymmetric
quantum mechanics. Our focus is on the harmonic SU(2|1) superspace formalism
which provides a superfield description of the multiplet (4, 4, 0) and its “mirror”
version.We present the σ-model andWess–Zumino type actions for these multiplets,
in both the superfield and the component approaches. An interesting new feature
as compared to the flat N = 4, d = 1 case is the absence of the explicit SU(2|1)
invariantWess–Zumino term for the ordinary (4, 4, 0)multiplet and yet the existence
of such a term for the mirror multiplet. The superconformal subclass of the SU(2|1)
invariant (4, 4, 0) actions is also described. Its main distinguishing features are the
“trigonometric” realization of the d = 1 conformal group SO(2, 1) and the oscillator-
type potential terms in the component actions.

1 Introduction

In [1], we started a systematic study of a new type ofN = 4 supersymmetric quantum
mechanics (SQM) based on the worldline realizations of the supergroup SU(2|1). It
can be treated as a deformation of the standard N = 4 SQM by an intrinsic mass
parameterm. The idea to consider such a deformation was motivated by the growing
interest in theories with a curved rigid supersymmetry (see, e.g., [2]). In the subse-
quent papers [3–5], the study of the deformed SU(2|1) mechanics was continued.

We proceeded from the universal way of constructing supersymmetric theories,
viz the superfield approach. The real and complex SU(2|1) superspaces were defined
in [1] as appropriate cosets of the supergroup SU(2|1) (and its central extension).
It was shown that all off-shell multiplets of flat N = 4, d = 1 supersymmetry have
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their SU(2|1) analogs. For instance, the SU(2|1) analog of the (1, 4, 3) multiplet is
described by a superfield which “lives” on the real SU(2|1) superspace, and it yields
the “weak supersymmetry” models of Ref. [6]. The supergroup SU(2|1) possesses
also invariant complex chiral supercosets which are carriers of the chiral multiplets
(2, 4, 2). We also showed that the (2, 4, 2) multiplet can be generalized [3] in such
a way that the Lagrangian of the super Kähler oscillator [7, 8] can be constructed
on its basis. The superconformal D(2, 1;α) invariant SQM models in the SU(2|1)
superspace formulation were studied in [4]. Their characteristic feature is that they
naturally yield the trigonometric realization of the d = 1 conformal group SO(2, 1)
[9, 10].

In the contribution to the proceedings of the previous Workshop from this series
[11], we reviewed the superfield approach and SU(2|1) SQM models based on
deformed analogs of the standardN = 4, d = 1 superspaces. Here, we describe the
deformed SQM models in the framework of the harmonic SU(2|1) superspace [5],
which is a deformation of theN = 4, d = 1 harmonic superspace [12]. We consider
the (4, 4, 0) multiplet, as well as its “mirror” (4, 4, 0) counterpart, and construct the
general σ-model and WZ (Wess–Zumino) type Lagrangians for both multiplets. It is
shown that an external SU(2|1) invariant WZ term can be defined only for the mir-
ror multiplet (4, 4, 0), in a crucial distinction from the flat N = 4, d = 1 case. The
general expressions for the relevant supercharges, in both the classical and quantum
cases, as well as the explicit spectrum of the corresponding Hamiltonian for a few
simple models can be found in [5]. We also present here the superconformal subclass
of the (4, 4, 0) SU(2|1) invariant actions. As in the case of superconformal actions
for the multiplets (1, 4, 3) and (2, 4, 2) [4], when constructing the superconformal
(4, 4, 0) actions, we capitalize on the notable property of the conformal superalgebra
D(2, 1;α) to be a closure of its two su(2|1) subalgebras related to each other via the
reflection of the corresponding intrinsic mass parameter.

2 Harmonic SU(2|1) Superspace

2.1 Superalgebra

The basic relations of the central-extended superalgebra ŝu(2|1) are as follows:

{Qi, Q̄j} = 2m
(
I ij − δijF

) + 2δijH ,
[
I ij , I

k
l

] = δkj I
i
l − δil I

k
j ,

[
I ij , Q̄l

] = 1

2
δij Q̄l − δil Q̄j ,

[
I ij ,Q

k
] = δkj Q

i − 1

2
δijQ

k,

[
F, Q̄l

] = − 1

2
Q̄l ,

[
F,Qk

] = 1

2
Qk . (1)

Here, the generators I ij and F form the internal symmetry group SU(2)int × U(1)int.
The central charge generator H is identified with the time-translation generator
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becoming the Hamiltonian in the relevant SQM models. The limit m = 0 yields
the standard flat N = 4, d = 1 Poincaré superalgebra.

Using the notations

Q1 ≡ Q+, Q2 ≡ Q−, Q̄1 ≡ Q̄−, Q̄2 ≡ −Q̄+,

I++ ≡ I12 , I−− ≡ I21 , I0 ≡ I11 − I22 = 2I11 , (2)

we can rewrite the (anti)commutation relations of the superalgebra ŝu(2|1) as

{Q−, Q̄+} = mI0 − 2H + 2mF, {Q+, Q̄−} = mI0 + 2H − 2mF,

{Q±, Q̄±} = ∓ 2mI±±,
[
I0, I±±] = ± 2I±±,

[
I++, I−−] = I0,

[
I0, Q̄±] = ± Q̄±,

[
I++, Q̄−] = Q̄+,

[
I−−, Q̄+] = Q̄−,

[
I0,Q±] = ±Q±,

[
I++,Q−] = Q+,

[
I−−,Q+] = Q−,

[
F, Q̄±] = −1

2
Q̄± ,

[
F,Q±] = 1

2
Q±. (3)

We can also add, to the superalgebra ŝu(2|1), the automorphism group SU(2)ext
with the generators {T 0,T++,T−−} which rotate the supercharges in the precisely
same way as the internal SU(2)int generators {I0, I++, I−−} do. For consistency,
the SU(2)ext generators should rotate, in the same way, the indices of the SU(2)int
generators I ij , so these two SU(2) groups form a semi-direct product

[T , I] ∝ I. (4)

2.2 Harmonic SU(2|1) Superspace as a Coset Superspace

We introduce the following harmonic coset of the extended supergroup:

{H,Q±, Q̄±,F, I±±, I0,T±±,T 0}
{F, I++, I0, I−− − T−−,T 0} ∼ (

t(A), θ
±, θ̄±, w±

i

) =: ζH . (5)

It is a deformation of the standard “flat” N = 4 , d = 1 harmonic superspace [12].
We can consider the harmonic superspace (5) as an extension of the SU(2|1)

superspace SU(2|1) [1] by harmonic variables w±
i satisfying

w+iw−
i = 1 . (6)

Such an extension will be referred to as the central basis of the harmonic SU(2|1)
superspace, while the parametrization (5) as the analytic basis.

In the central basis of the harmonic SU(2|1) superspace,
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ζC = (
t, θi, θ̄

j, w±
i

)
, (7)

the world-line supergroup SU(2|1) is realized by the following transformations:

δθi = εi + 2m ε̄kθkθi , δθ̄j = ε̄i − 2m εk θ̄
k θ̄i, δt = i

(
εk θ̄

k + ε̄kθk
)
,

δw+
i = −m

(
1 − m θ̄lθl

) (
θ̄kεj + θk ε̄j

)
w+

k w+
j w−

i , δw−
i = 0 . (8)

The explicit relation with the analytic basis coordinates (5) is given by

θiw−
i = θ−, θiw+

i = θ+ (
1 + m θ̄+θ− − m θ̄−θ+)

,

θ̄kw−
k = θ̄−, θ̄kw+

k = θ̄+ (
1 + m θ̄+θ− − m θ̄−θ+)

,

t = t(A) + i
(
θ̄−θ+ + θ̄+θ−)

. (9)

Then the coordinates
{
t(A), θ̄

±, θ±, w±
i

}
transform as

δθ+ = ε+ + m θ̄+θ+ε−, δθ̄+ = ε̄+ − m θ̄+θ+ε̄−,

δθ− = ε− + 2m ε̄−θ−θ+, δθ̄− = ε̄− + 2m ε−θ̄−θ̄+,

δt(A) = 2i
(
ε−θ̄+ + θ+ε̄−)

,

δw+
i = −m

(
θ̄+ε+ + θ+ε̄+)

w−
i , δw−

i = 0 , (10)

where

ε± = εiw±
i , ε̄± = ε̄iw±

i . (11)

The analytic subspace closed under the SU(2|1) transformation is defined as the set

ζA := (
t(A), θ̄

+, θ+, w±
i

)
. (12)

One can define the analytic subspace integration measure

dζ−−
(A) := dw dt(A) dθ̄+dθ+, (13)

which is invariant under the supersymmetry transformations (10). The corresponding
full integration measure dζH in the analytic basis can be written as

dζH := dw dt(A) dθ̄−dθ−dθ̄+dθ+ (
1 + m θ̄+θ− − m θ̄−θ+)

, (14)

and it transforms as

δ (dζH) = dζH

[
− m

(
θ̄−ε+ + θ−ε̄+) (

1 − m θ̄+θ− + m θ̄−θ+)

−m
(
θ̄+ε− + θ+ε̄−) ]

. (15)
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One can check that there is no way to achieve the SU(2|1) invariance of this measure:
no a scalar factor can be picked up to compensate the non-zero variation (15).

2.3 Covariant Derivatives and SU(2|1) Harmonic Analyticity

The SU(2|1) covariant derivatives in the analytic basis (5) were defined in [5]. The
(anti)commutation relations among them mimic those of the superalgebra (3):

{D̄+,D−} = mD0 − 2mF̃ + 2iD(A) ,

{D̄−,D+} = mD0 + 2mF̃ − 2iD(A) ,

{D±, D̄±} = ∓ 2mD±±,
[D++,D−−] = D0,

[D0,D±±] = ± 2D±±,
[D++,D−] = D+,

[D−−,D+] = D−,
[D0,D±] = ±D±,

[D++, D̄−] = D̄+,
[D−−, D̄+] = D̄−,

[D0, D̄±] = ± D̄±, (16)

F̃D± = −1

2
D±, F̃ D̄± = 1

2
D̄±. (17)

Here, F̃ is a matrix part of the U(1)int generator F. The harmonic derivative D−− ,
together with D++ and D0, form an SU(2) algebra. To define the analyticity condi-
tions, it is enough to explicitly know the covariant derivatives D+, D̄+ and D++:

D++ = (
1 + m θ̄+θ− − m θ̄−θ+)−1

∂++ + 2i θ+θ̄+∂(A) − 2m θ+θ̄+F̃

+ θ+ ∂

∂θ− + θ̄+ ∂

∂θ̄− ,

D+ = ∂

∂θ− + m θ̄−D++,

D̄+ = − ∂

∂θ̄− − m θ−D++. (18)

The explicit expressions for the rest of covariant derivatives are given in [5].
The spinor derivatives D+ , D̄+, together with D++ and D0, form the so-called

CR (“Cauchy–Riemann”) structure [13]

{D+, D̄+} = − 2mD++,
{D+,D+} = {D̄+, D̄+} = 0 ,

[D++,D+] = [D++, D̄+] = 0 ,
[D0,D+] = D+ ,

[D0, D̄+] = D̄+ ,
[D0,D++] = 2D++ . (19)

By commuting this set withD−−, one can restore the whole algebra (18). Worthy of
note is the first relation in (19). It implies that in the SU(2|1) case, with m2 �= 0 , the
Grassmannharmonic analyticity is necessarily accompaniedby the bosonic harmonic
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analyticity. No such a property is exhibited by the harmonic formalism in the flat
N = 4, d = 1 case [12].

2.4 Harmonic SU(2|1) Superfields

The passive odd transformation of the harmonic superfields in the analytic basis
Φ (ζH) can be written as

δΦ = −m
[
2

(
θ̄+ε− − θ+ε̄−)

F̃ + (
θ̄+ε− + θ+ε̄−)D0

+ (
θ̄−ε− + θ−ε̄−)D++

]
Φ. (20)

The superfields Φ are assumed to have definite U(1) charges, F̃Φ = κΦ , D0Φ =
qΦ.

We can write the general σ-model-type action as

S =
∫

dt L =
∫

dζH K (Φ1, Φ2, . . . ΦN ) . (21)

HereK is an arbitrary function of superfieldsΦ1, Φ2, . . . ΦN . It satisfies the following
restrictions:

F̃K (Φ1, Φ2, . . . ΦN ) = D0K (Φ1, Φ2, . . . ΦN ) = 0 , (22)

which are implied by the requirement of SU(2|1) invariance of the action (21) (mod-
ulo a total derivative in the variation of the integrand).

The analytic superfields with the harmonic U(1) charge +q are defined by the
constraints:

D+ϕ+q = D̄+ϕ+q = 0 ⇒ D++ϕ+q = 0 . (23)

In contrast to the standard case [12], the Grassmann analyticity conditions in the
SU(2|1) case lead to the harmonic analyticity condition. This is a consequence of
the first relation in (19).

3 The Multiplet (4, 4, 0)

The SU(2|1) multiplet (4, 4, 0) is described by an analytic harmonic superfield q+a

satisfying the analyticity constraints (23). Here a = 1, 2 is the doublet index of the
“Pauli-Gürsey” SU(2) symmetry. Equation (23) yield the following solution for q+a:
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q+a (ζA) = xiaw+
i + θ+ψa + θ̄+ψ̄a − 2iθ+θ̄+ẋiaw−

i . (24)

The superfield q+a and its components are transformed as

δq+a = −m
(
θ̄+ε− + θ+ε̄−)

q+a ⇒
δxia = − εiψa − ε̄iψ̄a,

δψ̄a = 2iεk ẋ
k
a − m εkx

k
a , δψa = 2iε̄k ẋak + m ε̄kxak . (25)

3.1 The σ-Model Actions

The most general σ-model type invariant action is written as:

S
(
q±a

) =
∫

dζH L
(
q+aq−

a

)
, q−a = D−−q+a , (26)

and, in components, yields:

L = G

[
ẋiaẋia + i

2

(
ψ̄aψ̇

a − ˙̄ψaψ
a
)

+ m

2
ψaψ̄a

]
− i

2
ẋia∂icG

(
ψaψ̄

c + ψcψ̄a
)

− ΔxG

16

(
ψ̄

)2
(ψ)2 + m

2
x2G′ ψaψ̄a − m2

4
x2 G , (27)

where

∂ia = ∂/∂xia, Δx = εikεab∂ia∂kb , x2 = xiaxia ,

G
(
x2

) = ΔxL

(
1

2
x2

)
. (28)

The free model corresponds to the choice Lfree
(
q+aq−

a

) = 1
4q

+aq−
a and G = 1 .

3.2 The Absence of WZ Type Actions

The most general Wess–Zumino (WZ) action [12] is given by the integral over the
analytic subspace

SWZ(q
+a) = − i

2

∫
dζ−−

A L++ (
q+a, w±

i

)
. (29)

Since the analytic superfield (24) is not deformed by the parameter m, this action
coincides with the non-deformed WZ action for the multiplet (4, 4, 0) given in [12].
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The action (29) can be shown to respect no SU(2|1) invariance for any choice of
L++. This just means the absence of the independent WZ action for the multiplet
(4, 4, 0) in the case of SU(2|1) supersymmetry.1

4 Mirror (4, 4, 0) Multiplet

In the flat case (m = 0), the full automorphism group of theN = 4 , d = 1 Poincaré
superalgebra is

SU(2) × SU ′(2). (30)

The multiplet (4, 4, 0) has its “mirror” cousin for which two commuting SU(2)
automorphism groups of the N = 4 , d = 1 superalgebra switch their roles. Since
these SU(2) groups enter the game in the entirely symmetric way, there is a full
equivalence between these two types of the (4, 4, 0) supermultiplet - in the sense
that the actions including only one sort of such multiplets are indistinguishable from
each other.2 In the SU(2|1) deformed case the symmetry between the two former
automorphism su(2) algebras of the flat superalgebra proves to be broken: one of
these su(2) becomes su(2)int ⊂ ŝu(2|1), while only one U(1) generator F from the
group SU ′(2) is inherited by the ŝu(2|1) superalgebra. So one can expect an essential
difference between the (4, 4, 0) multiplets of two sorts in the SU(2|1) case.

Let us consider the mirror (4, 4, 0)multiplet [14, 15] in the framework of the har-
monic SU(2|1) superspace. The superfield describing the mirror SU(2|1) multiplet
(4, 4, 0) is

(
YA

)† = ȲA,A = 1, 2 , constrained by

D̄+YA = D+Ȳ A = 0 , D+YA = − D̄+Ȳ A , D++YA = D++Ȳ A = 0 ⇒
mF̃ ȲA = − m

2
Ȳ A, mF̃ YA = m

2
YA. (31)

Note that the SU(2) group acting on the index A is a sort of the Pauli-Gürsey group
commuting with SU(2|1). The solution of the constraints (31) is

YA
(
ζ(3)
(A)

) = yA − θ+ψiAw−
i + θ−ψiAw+

i − 2i θ−θ̄+ẏA + 2i θ−θ+ ˙̄yA
+m θ−θ̄+yA + m θ−θ+ȳA − 2i θ−θ+θ̄+ψ̇iAw−

i ,

Ȳ A
(
ζ̄(3)
(A)

) = ȳA − θ̄+ψiAw−
i + θ̄−ψiAw+

i − 2i θ+θ̄− ˙̄yA + 2i θ̄+θ̄−ẏA

−m θ+θ̄−ȳA − m θ̄+θ̄−yA − 2i θ̄−θ+θ̄+ψ̇iAw−
i . (32)

The superfields YA, Ȳ A and their components transform as

1In the case of non-zero U(1) charge, F̃q+a = κ(σ3)
a
bq

+b, there appears a bosonic WZ term for
xia in the σ-model action, with the strength ∼ κ .
2As opposed to the actions including both sorts simultaneously.
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δYA = −m
(
θ̄+ε− − θ+ε̄−)

YA, δȲ A = m
(
θ̄+ε− − θ+ε̄−)

Ȳ A ⇒
δyA = − εiψ

iA, δȳA = − ε̄iψ
iA,

δψiA = ε̄i
(
2iẏA − myA

) − εi
(
2i ˙̄yA + mȳA

)
. (33)

We observe that the field content of YA is just (4, 4, 0) , but the SU(2) assignment
of the involved fields is different from that of the previous (4, 4, 0) multiplet. The
harmonic superfield q+a describing the multiplet (4, 4, 0) contains the bosonic field
xia and the fermionic field ψi′a. Here we have the opposite realizations of SU(2)
groups on the fermionic and bosonic fields, respectively.

4.1 The σ-Model Actions

One can write the general SU(2|1) invariant action in terms of the function L̃ as

S̃
(
Y , Ȳ

) =
∫

dt L̃ =
∫

dζH L̃
(
Y , Ȳ

)
, (34)

with m
(
yB∂B − ȳB∂̄B

)
L̃ (y, ȳ) = 0 .

Then the general component Lagrangian reads

L̃ =
[
2 ẏA ˙̄yA + i

2
ψiAψ̇iA − i

2
ψiAψiC

(
ẏC∂A + ˙̄yC ∂̄A

)
(35)

+ 1

48
ψiAψk

Aψ
B
i ψkB Δy

]
G̃ − im

(
ẏAȳA − yA ˙̄yA

)
G̃

+ 2im
(
ẏA∂AL̃ − ˙̄yA∂̄AL̃

)
− mψiAψB

i ∂A∂̄BL̃

+ m

4
ψiAψiC

(
yC∂AG̃ − ȳC ∂̄AG̃

)
+ m2

2
yAȳA G̃

− m2
(
yA∂AL̃ + ȳA∂̄AL̃

)
,

where

G̃ := ΔyL̃ , Δy = − 2 εAB∂A∂̄B , ∂A = ∂

∂yA
, ∂̄B = ∂

∂ȳB
. (36)

4.2 Wess–Zumino Term

For the mirror (4, 4, 0) multiplet, the independent WZ term can be constructed as an
integral over the analytic superspace
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S̃WZ
(
Y , Ȳ

) = − γ

∫
dζ−−

(A)

(
θ̄+D̄+ + θ+D+)

f
(
Y , Ȳ

)
. (37)

For ensuring the SU(2|1) invariance, we need to impose the analyticity condition
(23) on the Lagrangian density in (37)

(
θ̄+D̄+ + θ+D+)

f
(
Y , Ȳ

)
. (38)

It amounts to the following condition on f :

Δyf = 0 . (39)

In addition, the requirement of SU(2|1) invariance implies a new constraint on f
at m �= 0 :

mF̃f
(
Y , Ȳ

) = 0 ⇒ m
(
yB∂B − ȳB∂̄B

)
f (y, ȳ) = 0 . (40)

In the limit m = 0 , the matrix generator F̃ becomes an external automorphism gen-
erator and the condition (40) is satisfied trivially, without imposing any constraints
on f

(
YA, Ȳ B

)
.

The component Lagrangian corresponding to the action (37) reads

L̃WZ = 2γ
{
i
(
ẏA ∂Af − ˙̄yA ∂̄Af

) − m

2

(
yA ∂Af + ȳA∂̄Af

)

− 1

2
ψiAψB

i ∂A∂̄Bf
}
. (41)

Employing the conditions (39), (40), one can directly check that this Lagrangian is
indeed invariant under the supersymmetry transformations (33).

5 Superconformal Models

5.1 The Superalgebra D(2, 1;α) as a Closure of Its Two
su(2|1) Subalgebras

The most general N = 4 , d = 1 superconformal group is D(2, 1;α) [16, 17]:

{Qαii′ ,Qβjj′ } = 2
(
εijεi′j′Tαβ + α εαβεi′j′Jij − (1+α) εαβεijLi′j′

)
, (42)

[
Tαβ,Qγii′

] = −i εγ(αQβ)ii′ ,
[
Tαβ,Tγδ

] = i
(
εαγTβδ + εβδTαγ

)
,

[
Jij,Qαki′

] = −i εk(iQαj)i′ ,
[
Jij, Jkl

] = i
(
εikJjl + εjlJik

)
,

[
Li′j′ ,Qαik′

] = −i εk′(i′Qαij′) ,
[
Li′j′ ,Lk′l′

] = i
(
εi′k′Lj′l′ + εj′l′Li′k′

)
.
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Here, Qαii′ are eight supercharges and the bosonic subalgebra is

su(2) ⊕ su(2)′ ⊕ so(2, 1) ≡ {Jik} ⊕ {Li′k′ } ⊕ {Tαβ}. (43)

Switchingα asα ↔ −(α + 1) amounts to switching SU(2) generators as Jik ↔ Li′k′ .
At α = −1, 0, the superalgebra D(2, 1;α) is reduced to

D (2, 1;α) ∼= PSU(1, 1|2) � SU(2)ext . (44)

How to implement D(2, 1;α) in the SU(2|1) superspaces? The crucial property
allowing to do this is the existence of two different subalgebras su(2|1) ⊂ D(2, 1;α),
so that the latter is a closure of these two. These subalgebras are defined by the
following relations

(I). {Qi, Q̄j} = 2m(μ) I ij + 2δij[H(μ) − m(μ)F] , (45)

m(μ) := −αμ , H(μ) := H + μF , H = Ĥ + μ2

4
K̂ ,

(Ĥ, K̂) ∈ so(2, 1) , F ∈ su(2)′, I ij ∈ su(2) ,

(II). {Si, S̄j} = 2m(−μ) I ij + 2δij[H(−μ) − m(−μ)F]. (46)

Here, Qi := −
(
Q1i1′ + i

2 μQ2i1′
)
, Si := −

(
Q1i1′ − i

2 μQ2i1′
)
. The remaining

D (2, 1;α) generators appear in the anticommutators of S and Q.
The subgroup SU(2|1) corresponding to the su(2|1) subalgebra (I) is identified

with the manifest superisometry of the SU(2|1) superspace; then the second SU(2|1)
subgroup is realized on the superspace coordinates and superfields as a hidden sym-
metry. Themost salient feature of the relevant realizations ofD(2, 1;α) is the trigono-
metric form of the realization of the d = 1 bosonic conformal generators:

Ĥ = i

2
[1 + cosμt ] ∂t , K̂ = 2i

μ2
[1 − cosμt ] ∂t , D̂ = i

μ
sin μt ∂t . (47)

The basic constraints for both types of the multiplet (4, 4, 0) considered in the pre-
vious sections are D (2, 1;α) covariant for any α.

The superconformal subclasses of the general SU(2|1) actions are singled out
by requiring them to be even functions of μ , in accord with the above structure of
D (2, 1;α) as a closure of two su(2|1) subalgebras with ±μ.

5.2 Superconformal Actions for the Multiplet (4, 4, 0)

After redefining the fermionic fields as

ψa → ψae
i
2 μt, ψ̄a → ψ̄ae− i

2 μt, m = −αμ , (48)
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the transformations (25) are modified as

δxia = − εiψae
i
2 μt − ε̄iψ̄ae− i

2 μt,

δψ̄a = (
2iεk ẋ

k
a + αμ εkx

k
a

)
e

i
2 μt, δψa = (

2iε̄k ẋak − αμ ε̄kxak
)
e− i

2 μt (49)

These transformations correspond to the subalgebra (45) of D (2, 1;α). The second
type of transformations, corresponding to the subalgebra (46), can be found via
replacing μ → −μ in (49).

The superconformal superfield actions for the multiplet (4, 4, 0) are written as

S(α)
sc (q2) =

∫
dζH L(α)

sc

(
q2

)
, (50)

where the superfield function L(α)
sc

(
q2

)
is given by

L(α)
sc

(
q2

) =
{

α2

4(1+α)

(
q2

) 1
α for α �= −1, 0,

1
4

(
q2

)−1
ln

(
q2

)
for α = −1,

⇒

⇒ G
(
xia

) = (
xiaxia

) 1−α
α (51)

The relevant trigonometric superconformal component Lagrangian is given, for any
α �= 0, by

L(α)
sc =

[
ẋiaẋia + i

2

(
ψ̄aψ̇

a − ˙̄ψaψ
a
)

− i

2

(
ψaψ̄

c + ψcψ̄a
)
ẋia∂ic

− 1

16

(
ψ̄

)2
(ψ)2 Δx − α2μ2

4
xiaxia

]
(
xiaxia

) 1−α
α . (52)

It is a deformation of the parabolic (m = 0) superconformal Lagrangian by the oscil-
lator term [10].

5.3 Superconformal Actions for the Mirror Multiplet (4, 4, 0)

Passing to the new basis (45) of su(2|1) implies the following field redefinitions
(cf. (48)):

yA → yAe− i
2 μt, ȳA → ȳAe

i
2 μt, m = −αμ . (53)

They bring the transformations (33) to the form:
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δyA = − εiψ
iAe

i
2 μt, δȳA = − ε̄iψ

iAe− i
2 μt, (54)

δψiA = ε̄i
[
2iẏA + (1 + α)μ yA

]
e− i

2 μt − εi
[
2i ˙̄yA − (1 + α)μ ȳA

]
e

i
2 μt .

These transformations, together with those in which the replacement μ → −μ is
made, once again generate superconformal D(2, 1;α) transformations.

The superconformal superfield actions are written as

S̃
(
Y , Ȳ

) =
∫

dζH L̃
(
Y , Ȳ

)
, (55)

where L̃ is chosen to be

L̃(α)
sc

(
Y , Ȳ

) =
{

− (1+α)2

2α

(
YAȲA

)− 1
1+α for α �= −1, 0,

− 1
2

(
YAȲA

)−1
ln

(
YAȲA

)
for α = 0,

⇒ G̃ = (
yAȳA

)− 2+α
1+α . (56)

The component superconformal Lagrangian for the mirror multiplet (4, 4, 0) reads

L̃(α)
sc =

[
2 ẏA ˙̄yA + i

2
ψiAψ̇iA − i

2
ψiAψiC

(
ẏC∂A + ˙̄yC ∂̄A

)

+ 1

48
ψiAψk

Aψ
B
i ψkB Δy − (1 + α)2 μ2

2
yAȳA

]
(
yAȳA

)− 2+α
1+α . (57)

The trigonometric superconformal models of both (4, 4, 0) multiplets are equiv-
alent to each other, up to the substitutions

xia ↔ yi
′A, ψi′a ↔ ψiA α ↔ − (1 + α) . (58)

The interchange α ↔ − (1 + α) amounts to permuting the SU(2) and SU ′(2) gener-
ators inD (2, 1;α). So such an interchange is an automorphismof the superconformal
superalgebra.

In the special case α = −1 for YA, Ȳ B (α = 0 for q+a), superconformal action
can be obtained via a standard trick described in [10].

6 Summary and Outlook

In this contribution, we reviewed the construction of the d = 1 harmonic super-
space approach to the supergroup SU(2|1) as a deformation of the flatN = 4, d = 1
supersymmetry and presented the general superfield and component actions for the
SU(2|1) multiplet (4, 4, 0) and its “mirror” version. We also explained how to select
the superconformal subclass of general SU(2|1) invariant actions of these multiplets.
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In contrast to the flat harmonic superspace, there is no direct equivalence between
the two types of the (4, 4, 0) supermultiplet. One of the manifestations of this non-
equivalence is the non-existence of the SU(2|1) invariant WZ action for q±a and
the existence of such an action for the mirror multiplet. On the other hand, the
superconformal models of both (4, 4, 0) multiplets are equivalent to each other.

As some particular research prospects, it is worth to mention the construction of
SQMmodels for the SU(2|1)multiplet (3, 4, 1)which should have a natural descrip-
tion in the analytic harmonic superspace, the construction of the multi-particle SQM
models involving various types of the SU(2|1) multiplets, and generalizations of
the harmonic superspace approach to higher-rank deformed d = 1 supersymme-
tries, e.g., SU(2|2) , which can be viewed as a deformation of the flatN = 8, d = 1
supersymmetry [1]. It would be also interesting to generalize, to the SU(2|1) case,
some important notions of the flat N = 4, d = 1 supersymmetry, such as the semi-
dynamical spin multiplets [18], the gauging procedure in the N = 4 SQM mod-
els [19], etc. There also remains the problem of recovering SU(2|1) SQM models
through the direct dimensional reduction from the higher-dimensional theories with
the curved analogs of the Poincaré supersymmetry. Recently, a few SU(2|1) SQM
models were reobtained in this way [20–22] and used for clarifying some properties
of the “parent” theories.
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Intrinsic Sound of Anti-de Sitter Manifolds

Toshiyuki Kobayashi

Abstract As is well-known for compact Riemann surfaces, eigenvalues of the
Laplacian are distributed discretely and most of eigenvalues vary viewed as func-
tions on the Teichmüller space.We discuss a new feature in the Lorentzian geometry,
or more generally, in pseudo-Riemannian geometry. One of the distinguished fea-
tures is that L2-eigenvalues of the Laplacian may be distributed densely in R in
pseudo-Riemannian geometry. For three-dimensional anti-de Sitter manifolds, we
also explain another feature proved in joint with F. Kassel [Adv. Math. 2016] that
there exist countably many L2-eigenvalues of the Laplacian that are stable under any
small deformation of anti-de Sitter structure. Partially supported by Grant-in-Aid for
Scientific Research (A) (25247006), Japan Society for the Promotion of Science.
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1 Introduction

Our “common sense” for music instruments says:

“shorter strings produce a higher pitch than longer strings”,

“thinner strings produce a higher pitch than thicker strings”.

Let us try to “hear the sound of pseudo-Riemannian locally symmetric spaces”.
Contrary to our “common sense” in the Riemannian world, we find a phenomenon
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that compact three-dimensional anti-de Sittermanifolds have “intrinsic sound”which
is stable under any small deformation. This is formulated in the framework of spectral
analysis of anti-de Sittermanifolds, ormore generally, of pseudo-Riemannian locally
symmetric spaces XΓ . In this article, we give a flavor of this new topic by comparing
it with the flat case and the Riemannian case.

To explain briefly the subject, let X be a pseudo-Riemannian manifold, and Γ a
discrete isometry group acting properly discontinuously and freely on X . Then the
quotient space XΓ := Γ \X carries a pseudo-Riemannian manifold structure such
that the covering map X → XΓ is isometric. We are particularly interested in the
case where XΓ is a pseudo-Riemannian locally symmetric space, see Sect. 3.2.

Problems we have in mind are symbolized in the following diagram:

existence problem deformation versus rigidity
Geometry Does cocompact Γ exist? Higher Teichmüller theory

versus rigidity theorem
(Sect. 4.1) (Sect. 4.2)

Analysis Does L2-spectrum exist? Whether L2-eigenvalues vary
or not

(Problem 1) (Problem 2)

2 A Program

In [5, 6, 12] we initiated the study of “spectral analysis on pseudo-Riemannian
locally symmetric spaces” with focus on the following two problems:

Problem 1 Construct eigenfunctions of the Laplacian ΔXΓ
on XΓ . Does there exist

a nonzero L2-eigenfunction?

Problem 2 Understand the behaviour of L2-eigenvalues of the Laplacian ΔXΓ
on

XΓ under small deformation of Γ inside G.

Even when XΓ is compact, the existence of countably many L2-eigenvalues is
already nontrivial because the Laplacian ΔXΓ

is not elliptic in our setting. We shall
discuss in Sect. 2.2 for further difficulties concerning Problems 1 and 2 when XΓ is
non-Riemannian.

We may extend these problems by considering joint eigenfunctions for “invariant
differential operators” on XΓ rather than the single operatorΔXΓ

. Here by “invariant
differential operators on XΓ ” we mean differential operators that are induced from
G-invariant ones on X = G/H . In Sect. 7,we discuss Problems 1 and 2 in this general
formulation based on the recent joint work [6, 7] with F. Kassel.
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2.1 Known Results

Spectral analysis on a pseudo-Riemannian locally symmetric space XΓ = Γ \X =
Γ \G/H is already deep and difficult in the following special cases:

(1) (noncommutative harmonic analysis on G/H ) Γ = {e}.

In this case, the group G acts unitarily on the Hilbert space L2(XΓ ) = L2(X)

by translation f (·) �→ f (g−1·), and the irreducible decomposition of L2(X)

(Plancherel-type formula) is essentially equivalent to the spectral analysis of
G-invariant differential operators when X is a semisimple symmetric space.
Noncommutative harmonic analysis on semisimple symmetric spaces X has
been developed extensively by thework ofHelgason, Flensted-Jensen,Matsuki–
Oshima–Sekiguchi, Delorme, van den Ban–Schlichtkrull among others as a
generalization of Harish Chandra’s earlier work on the regular representation
L2(G) for group manifolds.

(2) (automorphic forms) H is compact and Γ is arithmetic.
If H is a maximal compact subgroup ofG, then XΓ = Γ \G/H is a Riemannian
locally symmetric space and the Laplacian ΔXΓ

is an elliptic differential opera-
tor. Then there exist infinitely many L2-eigenvalues ofΔXΓ

if XΓ is compact by
the general theory for compact Riemannian manifolds (see Fact 1). If further-
more Γ is irreducible, thenWeil’s local rigidity theorem [18] states that nontriv-
ial deformations exist only when X is the hyperbolic plane SL(2,R)/SO(2), in
which case compact quotients XΓ have a classically-known deformation space
modulo conjugation, i.e., their Teichmüller space. Viewed as a function on the
Teichmüller space, L2-eigenvalues vary analytically [1, 20], see Fact 11.
Spectral analysis on XΓ is closely related to the theory of automorphic forms
in the Archimedean place if Γ is an arithmetic subgroup.

(3) (abelian case) G = R
p+q with H = {0} and Γ = Z

p+q .
We equip X = G/H with the standard flat pseudo-Riemannian structure of
signature (p, q) (see Example 1). In this case, G is abelian, but X = G/H
is non-Riemannian. This is seemingly easy, however, spectral analysis on the
(p + q)-torus Rp+q/Zp+q is much involved, as we shall observe a connection
with Oppenheim’s conjecture (see Sect. 5.2).

2.2 Difficulties in the New Settings

If we try to attack a problem of spectral analysis on Γ \G/H in the more general
case where H is noncompact and Γ is infinite, then new difficulties may arise from
several points of view:

(1) Geometry. The G-invariant pseudo-Riemannian structure on X = G/H is not
Riemannian anymore, and discrete groups of isometries of X do not always act
properly discontinuously on such X .
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(2) Analysis. The Laplacian ΔX on XΓ is not an elliptic differential operator. Fur-
thermore, it is not clear if ΔX has a self-adjoint extension on L2(XΓ ).

(3) Representation theory. IfΓ acts properly discontinuously on X = G/H with H
noncompact, then the volume of Γ \G is infinite, and the regular representation
L2(Γ \G) may have infinite multiplicities. In turn, the group G may not have
a good control of functions on Γ \G. Moreover L2(XΓ ) is not a subspace of
L2(Γ \G) because H is noncompact. All these observations suggest that an
application of the representation theory of L2(Γ \G) to spectral analysis on XΓ

is rather limited when H is noncompact.

Point (1) creates some underlying difficulty to Problem 2: we need to consider
locally symmetric spaces XΓ for which proper discontinuity of the action of Γ on
X is preserved under small deformations of Γ in G. This is nontrivial. This question
was first studied by the author [9, 11]. See [4] for further study. An interesting
aspect of the case of noncompact H is that there are more examples where nontrivial
deformations of compact quotients exist than for compact H (cf . Weil’s local rigidity
theorem [18]). Perspectives from Point (1) will be discussed in Sect. 4.

Point (2) makes Problem 1 nontrivial. It is not clear if the following well-known
properties in the Riemannian case holds in our setting in the pseudo-Riemannian
case.

Fact 1 Suppose M is a compact Riemannian manifold.

(1) The Laplacian ΔM extends to a self-adjoint operator on L2(M).
(2) There exist infinitely many L2-eigenvalues of ΔM.
(3) An eigenfunction of ΔM is infinitely differentiable.
(4) Each eigenspace of ΔM is finite-dimensional.
(5) The set of L2-eigenvalues is discrete in R.

Remark 1 We shall see that the third to fifth properties of Fact 1 may fail in the
pseudo-Riemannian case, e.g., Example 6 for (3) and (4), and M = R

2,1/Z3 (Theo-
rem 7).

In spite of these difficulties, we wish to reveal a mystery of spectral analysis of
pseudo-Riemannian locally homogeneous spaces XΓ = Γ \G/H . We shall discuss
self-adjoint extension of the Laplacian in the pseudo-Riemannian setting in Theorem
13, and the existence of countable many L2-eigenvalues in Theorems 8, 12 and 13.

3 Pseudo-Riemannian Manifolds

3.1 Laplacian on Pseudo-Riemannian Manifolds

A pseudo-Riemannian manifold M is a smooth manifold endowed with a smooth,
nondegenerate, symmetric bilinear tensor g of signature (p, q) for some p, q ∈ N.
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(M, g) is a Riemannian manifold if q = 0, and is a Lorentzian manifold if q = 1.
The metric tensor g induces a Radon measure dμ on X , and the divergence div. Then
the Laplacian

ΔM := div grad,

is a differential operator of second order which is a symmetric operator on the Hilbert
space L2(X, dμ).

Example 1 Let (M, g) be the standard flat pseudo-Riemannian manifold:

R
p,q := (Rp+q , dx21 + · · · + dx2p − dx2p+1 − · · · − dx2p+q).

Then the Laplacian takes the form

ΔRp,q = ∂2

∂x21
+ · · · + ∂2

∂x2p
− ∂2

∂x2p+1

− · · · − ∂2

∂x2p+q

.

In general, ΔM is an elliptic differential operator if (M, g) is Riemannian, and is a
hyperbolic operator if (M, g) is Lorentzian.

3.2 Homogeneous Pseudo-Riemannian Manifolds

A typical example of pseudo-Riemannian manifolds X with “large” isometry groups
is semisimple symmetric spaces, forwhich the infinitesimal classificationwas accom-
plished byM. Berger in 1950s. In this case, X is given as a homogeneous spaceG/H
where G is a semisimple Lie group and H is an open subgroup of the fixed point
group Gσ = {g ∈ G : σg = g} for some involutive automorphism σ of G. In partic-
ular, G ⊃ H are a pair of reductive Lie groups.

More generally, we say G/H is a reductive homogeneous space if G ⊃ H are a
pair of real reductive algebraic groups. Then we have the following:

Proposition 1 Any reductive homogeneous space X = G/H carries a pseudo-
Riemannian structure such that G acts on X by isometries.

Proof By a theorem of Mostow, we can take a Cartan involution θ of G such that
θH = H . Then K := Gθ is a maximal compact subgroup of G, and H ∩ K is that
of H . Let g = k + p be the corresponding Cartan decomposition of the Lie algebra
g of G. Take an Ad(G)-invariant nondegenerate symmetric bilinear form 〈 , 〉 on g
such that 〈 , 〉|k×k is negative definite, 〈 , 〉|p×p is positive definite, and k and p are
orthogonal to each other. (If G is semisimple, then we may take 〈 , 〉 to be the Killing
form of g.)

Since θH = H , the Lie algebra h of H is decomposed into a direct sum h = (h ∩
k) + (h ∩ p), and therefore the bilinear form 〈 , 〉 is nondegenerate when restricted
to h. Then 〈 , 〉 induces an Ad(H)-invariant nondegenerate symmetric bilinear form
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〈 , 〉g/h on the quotient space g/h, with whichwe identify the tangent space To(G/H)

at the origin o = eH ∈ G/H . Since the bilinear form 〈 , 〉g/h is Ad(H)-invariant, the
left translation of this form is well-defined and gives a pseudo-Riemannian structure
g on G/H of signature (dim p/h ∩ p, dim k/h ∩ k). By the construction, the group
G acts on the pseudo-Riemannian manifold (G/H, g) by isometries. �

3.3 Pseudo-Riemannian Manifolds with Constant Curvature,
Anti-de Sitter Manifolds

Let Qp,q(x) := x21 + · · · + x2p − x2p+1 − · · · − x2p+q be a quadratic form onRp+q of
signature (p, q), and we denote by O(p, q) the indefinite orthogonal group preserv-
ing the form Qp,q . We define two hypersurfaces Mp,q

± in Rp+q by

Mp,q
± := {x ∈ R

p+q : Qp,q(x) = ±1}.

By switching p and q, we have an obvious diffeomorphism

Mp,q
+ 	 Mq,p

− .

The flat pseudo-Riemannian structure R
p,q (Example 1) induces a pseudo-

Riemannian structure on the hypersurfaceMp,q
+ of signature (p − 1, q)with constant

curvature 1, and that on Mp,q
− of signature (p, q − 1) with constant curvature −1.

The natural action of the groupO(p, q)onRp,q induces an isometric and transitive
action on the hypersurfaces Mp,q

± , and thus they are expressed as homogeneous
spaces:

Mp,q
+ 	 O(p, q)/O(p − 1, q), Mp,q

− 	 O(p, q)/O(p, q − 1),

giving examples of pseudo-Riemannian homogeneous spaces as in Proposition 1.
The anti-de Sitter space AdSn = Mn−1,2

− is a model space for n-dimensional
Lorentzian manifolds of constant negative sectional curvature, or anti-de Sitter n-
manifolds. This is a Lorentzian analogue of the real hyperbolic space Hn . For the
convenience of the reader, we list model spaces of Riemannian and Lorentzian man-
ifolds with constant positive, zero, and negative curvatures.

Riemannian manifolds with constant curvature:

Sn = Mn+1,0
+ 	 O(n + 1)/O(n) : standard sphere,

R
n : Euclidean space,

Hn = Mn,1
− 	 O(1, n)/O(n) : hyperbolic space,
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Lorentzian manifolds with constant curvature:

dSn = Mn,1
+ 	 O(n, 1)/O(n − 1, 1) : de Sitter space,

R
n−1,1 : Minkowski space,
AdSn = Mn−1,2

− 	 O(2, n − 1)/O(1, n − 1) : anti-de Sitter space,

4 Discontinuous Groups for Pseudo-Riemannian Manifolds

4.1 Existence Problem of Compact Clifford–Klein Forms

Let H be a closed subgroup of a Lie group G, and X = G/H , and Γ a discrete
subgroup of G. If H is compact, then the double coset space Γ \G/H becomes a
C∞-manifold for any torsion-free discrete subgroup Γ of G. However, we have to
be careful for noncompact H , because not all discrete subgroups acts properly dis-
continuously on G/H , and Γ \G/H may not be Hausdorff in the quotient topology.
We illustrate this feature by two general results:

Fact 2 (1) (Moore’s ergodicity theorem [15]) Let G be a simple Lie group, and Γ

a lattice. Then Γ acts ergodically on G/H for any noncompact closed subgroup
H. In particular, Γ \G/H is non-Hausdorff.

(2) (Calabi–Markus phenomenon [2, 8]) Let G be a reductive Lie group, and Γ

an infinite discrete subgroup. Then Γ \G/H is non-Hausdorff for any reductive
subgroup H with rankR G = rankR H.

In fact, determining which groups act properly discontinuously on reductive
homogeneous spaces G/H is a delicate problem, which was first considered in full
generality by the author; we refer to [13, Sect. 3.2] for a survey.

Suppose now a discrete subgroup Γ acts properly discontinuously and freely on
X = G/H . Then the quotient space

XΓ := Γ \X 	 Γ \G/H

carries a C∞-manifold structure such that the quotient map p : X → XΓ is a cover-
ing, through which XΓ inherits any G-invariant local geometric structure on X . We
say Γ is a discontinuous group for X and XΓ is a Clifford–Klein form of X = G/H .

Example 2 (1) If X = G/H is a reductive homogeneous space, then any Clifford–
Klein form XΓ carries a pseudo-Riemannian structure by Proposition 1.

(2) If X = G/H is a semisimple symmetric space, then any Clifford–Klein form
XΓ = Γ \G/H is a pseudo-Riemannian locally symmetric space, namely, the
(local) geodesic symmetry at every p ∈ XΓ with respect to the Levi-Civita con-
nection is locally isometric.
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By space forms, we mean pseudo-Riemannian manifolds of constant sectional
curvature. They are examples of pseudo-Riemannian locally symmetric spaces. For
simplicity, we shall assume that they are geodesically complete.

Example 3 Clifford–Klein forms of Mp+1,q
+ = O(p + 1, q)/O(p, q) (respectively,

Mp,q+1
− = O(p, q + 1)/O(p, q)) are pseudo-Riemannian space forms of signature

(p, q)with positive (respectively, negative) curvature. Conversely, any (geodesically
complete) pseudo-Riemannian space form of signature (p, q) is of this form as far
as p �= 1 for positive curvature or q �= 1 for negative curvature.

A general question for reductive homogeneous spaces G/H is:

Question 1 Does compact Clifford–Klein forms of G/H exist?

or equivalently,

Question 2 Does there exist a discrete subgroup Γ of G acting cocompactly and
properly discontinuously on G/H?

This question has an affirmative answer if H is compact by a theorem of Borel.
In the general setting where H is noncompact, the question relates with a “global
theory” of pseudo-Riemannian geometry: how local pseudo-Riemannian homoge-
neous structure affects the global nature of manifolds? A classic example is space
form problem which asks the global properties (e.g. compactness, volume, funda-
mental groups, etc.) of a pseudo-Riemannian manifold of constant curvature (local
property). The study of discontinuous groups for Mp+1,q

+ and Mp,q+1
− shows the

following results in pseudo-Riemannian space forms of signature (p, q):

Fact 3 Space forms of positive curvature are

(1) always closed if q = 0, i.e., sphere geometry in the Riemannian case;
(2) never closed if p ≥ q > 0, in particular, if q = 1 (de Sitter geometry in the

Lorentzian case [2]).

The phenomenon in the second statement is called the Calabi–Markus phenomenon
(see Fact 2 (2) in the general setting).

Fact 4 Compact space forms of negative curvature exist

(1) for all dimensions if q = 0, i.e., hyperbolic geometry in the Riemannian case;
(2) for odd dimensions if q = 1, i.e., anti-de Sitter geometry in the Lorentzian case;
(3) for (p, q) = (4m, 3) (m ∈ N) or (8, 7).

See [13, Sect. 4] for the survey of the space form problem in pseudo-Riemannian
geometry and also of Question 1 for more general G/H .

A large and important class of Clifford–Klein forms XΓ of a reductive homoge-
neous space X = G/H is constructed as follows (see [8]).

Definition 1 A quotient XΓ = Γ \X of X by a discrete subgroup Γ of G is called
standard if Γ is contained in some reductive subgroup L of G acting properly on X .
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If a subgroup L acts properly on G/H , then any discrete subgroup of Γ acts
properly discontinuously on G/H . A handy criterion for the triple (G, H, L) of
reductive groups such that L acts properly on G/H is proved in [8], as we shall
recall below. Let G = K exp a+K be a Cartan decomposition, where a is a maximal
abelian subspace of p and a+ is the dominant Weyl chamber with respect to a fixed
positive system �+(g, a). This defines a map μ : G → a+ (Cartan projection) by

μ(k1e
Xk2) = X for k1, k2 ∈ K and X ∈ a.

It is continuous, proper and surjective. If H is a reductive subgroup, then there exists
g ∈ G such that μ(gHg−1) is given by the intersection of a+ with a subspace of
dimension rankR H . By an abuse of notation, we use the same H instead of gHg−1.
With this convention, we have:

Properness Criterion 5 ([8]) L acts properly on G/H if and only if μ(L) ∩
μ(H) = {0}.
By taking a lattice Γ of such L , we found a family of pseudo-Riemannian locally
symmetric spaces XΓ in [8, 13]. The list of symmetric spaces admitting stan-
dard Clifford–Klein forms of finite volume (or compact forms) include Mp,q+1

− =
O(p, q + 1)/O(p, q) with (p, q) satisfying the conditions in Fact 4. Further, by
applying Properness Criterion 5, Okuda [16] gave examples of pseudo-Riemannian
locally symmetric spaces Γ \G/H of infinite volume where Γ is isomorphic to the
fundamental group π1(�g) of a compact Riemann surface �g with g ≥ 2.

For the construction of stable spectrum on XΓ (see Theorems 10 and 12 (2)
below), we introduced in [6, Sect. 1.6] the following concept:

Definition 2 A discrete subgroup Γ of G acts strongly properly discontinuously (or
sharply) on X = G/H if there exists C , C ′ > 0 such that for all γ ∈ Γ ,

d(μ(γ),μ(H)) ≥ C‖μ(γ)‖ − C ′.

Here d(·, ·) is a distance in a given by a Euclidean norm ‖ · ‖which is invariant under
the Weyl group of the restricted root system �(g, a). We say the positive number C
is the first sharpness constant for Γ .

If a reductive subgroup L acts properly on a reductive homogeneous space G/H ,
then the action of a discrete subgroup Γ of L is strongly properly discontinuous
([6, Example 4.10]).

4.2 Deformation of Clifford–Klein Forms

Let G be a Lie group and Γ a finitely generated group. We denote by Hom(Γ,G)

the set of all homomorphisms of Γ to G topologized by pointwise convergence. By
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taking a finite set {γ1, · · · , γk} of generators of Γ , we can identify Hom(Γ,G) as a
subset of the direct product G × · · · × G by the inclusion:

Hom(Γ,G) ↪→ G × · · · × G, ϕ �→ (ϕ(γ1), · · · ,ϕ(γk)). (1)

If Γ is finitely presentable, then Hom(Γ,G) is realized as a real analytic variety
via (1).

Suppose G acts continuously on a manifold X . We shall take X = G/H with
noncompact closed subgroup H later. Then not all discrete subgroups act properly
discontinuously on X in this general setting. The main difference of the following
definition of the author [9] in the general case from that of Weil [18] is a requirement
of proper discontinuity.

R(Γ,G; X) := {ϕ ∈ Hom(Γ,G) : ϕ is injective, (2)

and ϕ(Γ ) acts properly discontinuously and freely on G/H}.

Suppose now X = G/H for a closed subgroup H . Then the double coset space
ϕ(Γ )\G/H forms a family of manifolds that are locally modelled on G/H with
parameter ϕ ∈ R(Γ,G; X). To be more precise on “parameter”, we note that the
conjugation by an element of G induces an automorphism of Hom(Γ,G) which
leaves R(Γ,G; X) invariant. Taking these unessential deformations into account,
we define the deformation space (generalized Teichmüller space) as the quotient set

T (Γ,G; X) := R(Γ,G; X)/G.

Example 4 (1) LetΓ be the surface groupπ1(�g) of genus g ≥ 2,G = PSL(2,R),
X = H 2 (two-dimensional hyperbolic space). Then T (Γ,G; X) is the classical
Teichmüller space, which is of dimension 6g − 6.

(2) G = R
n , X = R

n , Γ = Z
n . Then T (Γ,G; X) 	 GL(n,R) (see (4) below).

(3) G = SO(2, 2), X = AdS3, and Γ = π1(�g). Then T (Γ,G; X) is of dimension
12g − 12 (see [6, Sect. 9.2] and references therein).

Remark 2 There is a natural isometry between Xϕ(Γ ) and Xϕ(gΓ g−1). Hence, the
set Specd(Xϕ(Γ )) of L2-eigenvalues is independent of the conjugation of ϕ ∈
R(Γ,G; X) by an element ofG. By an abuse of notationwe shall write Specd(Xϕ(Γ ))

for ϕ ∈ T (Γ,G; X) when we deal with Problem 2 of Sect. 2.

5 Spectrum on R
p,q/Z p+q and Oppenheim Conjecture

This section gives an elementary but inspiring observation of spectrumonflat pseudo-
Riemannian manifolds.
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5.1 Spectrum of R p,q/ϕ(Z p+q)

Let G = R
n and Γ = Z

n . Then the group homomorphism ϕ : Γ → G is uniquely
determined by the image ϕ(e j ) (1 ≤ j ≤ n) where e1, . . ., en ∈ Z

n are the standard
basis, and thus we have a bijection

Hom(Γ,G)
∼← M(n,R), ϕg �→g (3)

by ϕg(m) := gm form ∈ Z
n, or equivalently, by g = (ϕg(e1), . . . ,ϕg(en)).

Let σ ∈ Aut(G) be defined by σ(x) := −x. Then H := Gσ = {0} and X :=
G/H 	 R

n is a symmetric space. The discrete group Γ acts properly discontin-
uously on X via ϕg if and only if g ∈ GL(n,R). Moreover, since G is abelian, G
acts trivially on Hom(Γ,G) by conjugation, and therefore the deformation space
T (Γ,G; X) identifies with R(Γ,G; X). Hence we have a natural bijection between
the two subsets of (3):

T (Γ,G; X)
∼← GL(n,R). (4)

Fix p, q ∈ N such that p + q = n, and we endow X 	 R
n with the standard

flat indefinite metric R
p,q (see Example 1). Let us determine Specd(Xϕg(Γ )) 	

Specd(R
p,q/ϕg(Z

n)) for g ∈ GL(n,R) 	 T (Γ,G; X).
For this, we define a function on X = R

n by

fm(x) := exp(2π
√−1 tmg−1x) (x ∈ R

n)

for each m ∈ Z
n where x and m are regarded as column vectors. Clearly, fm is

ϕg(Γ )-periodic and defines a real analytic function on Xϕg(Γ ). Furthermore, fm is
an eigenfunction of the Laplacian ΔRp,q :

ΔRp,q fm = −4π2Qg−1 Ip,q tg−1(m) fm,

where, for a symmetric matrix S ∈ M(n,R), QS denotes the quadratic form on R
n

given by
QS(y) := tySy for y ∈ R

n.

Since { fm : m ∈ Z
n} spans a dense subspace of L2(Xϕg(Γ )), we have shown:

Proposition 2 For any g ∈ GL(n,R) 	 T (Γ,G; X),

Specd(Xϕg(Γ )) = {−4π2Qg−1 Ip,q tg−1(m) : m ∈ Z
n}.

Here are some observation in the n = 1, 2 cases.

Example 5 Let n = 1 and (p, q) = (1, 0). Then Specd(Xϕg(Γ )) = {−4π2m2/g2 :
m ∈ Z} for g ∈ R

× 	 GL(1,R) by Proposition 2. Thus the smaller the period |g| is,
the larger the absolute value of the eigenvalue | − 4π2m2/g2| becomes for each fixed
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m ∈ Z \ {0}. This is thought of as a mathematical model of a music instrument for
which shorter strings produce a higher pitch than longer strings (see Introduction).

Example 6 Let n = 2 and (p, q) = (1, 1). Take g = I2, so that ϕg(Γ ) = Z
2 is the

standard lattice. Then the L2-eigenspace of the Laplacian ΔR1,1/Z2 for zero eigen-
value contains W := {ψ(x − y) : ψ ∈ L2(R/Z)}. Since W is infinite-dimensional
and W �⊂ C∞(R2/Z2), the third and fourth statements of Fact 1 fail in this pseudo-
Riemannian setting.

By the explicit description of Specd(Xϕ(Γ )) for allϕ ∈ T (Γ,G; X) in Proposition
2, we can also tell the behaviour of Specd(Xϕ(Γ )) under deformation of Γ by ϕ.
Obviously, any constant function on Xϕ(Γ ) is an eigenfunction of the Laplacian
ΔXϕ(Γ )

= ΔRp,q/ϕ(Zp+q) with eigenvalue zero. We see that this is the unique stable
L2-eigenvalue in the flat compact manifold:

Corollary 1 (non-existence of stable eigenvalues) Let n = p + q with p, q ∈ N.
For any open subset V of T (Γ,G; X),

⋂

ϕ∈V
Specd(Xϕ(Γ )) = {0}.

5.2 Oppenheim’s Conjecture and Stability of Spectrum

In 1929, Oppenheim [17] raised a question about the distribution of an indefinite
quadratic forms at integral points. The following theorem, referred to asOppenheim’s
conjecture, was proved by Margulis (see [14] and references therein).

Fact 6 (Oppenheim’s conjecture) Suppose n ≥ 3 and Q is a real nondegenerate
indefinite quadratic form in n variables. Then either Q is proportional to a form
with integer coefficients (and thus Q(Zn) is discrete in R), or Q(Zn) is dense in R.

Combining this with Proposition 2, we get the following.

Theorem 7 Let p + q = n, p ≥ 2, q ≥ 1, G = R
n, X = R

p,q and Γ = Z
n. We

define an open dense subset U of T (Γ,G; X) 	 GL(n,R) by

U : = { g ∈ GL(n,R) : g−1 Ip,q
tg−1 is not proportional

to an element of M(n,Z) }

Then the set Specd(Xϕ(Γ )) of L2-eigenvalues of the Laplacian is dense in R if and
only if ϕ ∈ U.

Thus the fifth statement of Fact 1 for compact Riemannian manifolds do fail in the
pseudo-Riemannian case.
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6 Main Results—Sound of Anti-de Sitter Manifolds

6.1 Intrinsic Sound of Anti-de Sitter Manifolds

In general, it is not clear whether the Laplacian ΔM admits infinitely many L2-
eigenvalues for compact pseudo-Riemannian manifolds. For anti-de Sitter 3-
manifolds, we proved in [6, Theorem 1.1]:

Theorem 8 For any compact anti-de Sitter 3-manifold M, there exist infinitely many
L2-eigenvalues of the Laplacian ΔM.

In the abelian case, it is easy to see that compactness of XΓ is necessary for the
existence of L2-eigenvalues:

Proposition 3 Let G = R
p+q , X = R

p,q , Γ = Z
k , and ϕ ∈ R(Γ,G; X). Then

Specd(Xϕ(Γ )) �= ∅ if and only if Xϕ(Γ ) is compact, or equivalently, k = p + q.

However, anti-de Sitter 3-manifolds M admit infinitely many L2-eigenvalues even
when M is of infinite-volume (see [6, Theorem 9.9]):

Theorem 9 For any finitely generated discrete subgroup Γ of G = SO(2, 2) acting
properly discontinuously and freely on X = AdS3,

Specd(XΓ ) ⊃ {l(l − 2) : l ∈ N, l ≥ 10C−3}

where C ≡ C(Γ ) is the first sharpness constant of Γ .

The above L2-eigenvalues are stable in the following sense:

Theorem 10 (stable L2-eigenvalues) Suppose that Γ ⊂ G = SO(2, 2) and M =
Γ \AdS3 is a compact standard anti-de Sitter 3-manifold. Then there exists a
neighbourhood U ⊂ Hom(Γ,G) of the natural inclusion with the following two
properties:

U ⊂ R(Γ,G;AdS3), (5)

#

⎛

⎝
⋂

ϕ∈U
Specd(XΓ )

⎞

⎠ = ∞. (6)

The first geometric property (5) asserts that a small deformation of Γ keeps proper
discontinuity, whichwas conjectured byGoldman [3] in theAdS3 setting, and proved
affirmatively in [11]. Theorem 10was proved in [6, Corollary 9.10] in a stronger form
(e.g., without assuming “standard” condition).
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Figuratively speaking, Theorem 10 says that compact anti-de Sitter manifolds
have “intrinsic sound” which is stable under any small deformation of the anti-de
Sitter structure. This is a new phenomenon which should be in sharp contrast to the
abelian case (Corollary 1) and the Riemannian case below:

Fact 11 (see [20, Theorem 5.14]) For a compact hyperbolic surface, no eigenvalue
of the Laplacian above 1

4 is constant on the Teichmüller space.

We end this section by raising the following question in connection with the flat
case (Theorem 7):

Question 3 Suppose M is a compact anti-de Sitter 3-manifold. Find a geometric
condition on M such that Specd(M) is discrete.

7 Perspectives and Sketch of Proof

The results in the previous section for anti-de Sitter 3-manifolds can be extended to
more general pseudo-Riemannian locally symmetric spaces of higher dimension:

Theorem 12 ([6, Theorem 1.5]) Let XΓ be a standard Clifford–Klein form of a
semisimple symmetric space X = G/H satisfying the rank condition

rank G/H = rank K/H ∩ K . (7)

Then the following holds.

(1) There exists an explicit infinite subset I of joint L2-eigenvalues for all the differ-
ential operators on XΓ that are induced from G-invariant differential operators
on X.

(2) (stable spectrum) IfΓ is contained in a simple Lie group L of real rank one acting
properly on X = G/H, then there is a neighbourhood V ⊂ Hom(Γ,G) of the
natural inclusion such that for any ϕ ∈ V , the action ϕ(Γ ) on X is properly
discontinuous and the set of joint L2-eigenvalues on Xϕ(Γ ) contains the infinite
set I .

Remark 3 We do not require XΓ to be of finite volume in Theorem 12.

Remark 4 It is plausible that for a general locally symmetric space Γ \G/H with
G reductive, no nonzero L2-eigenvalue is stable under nontrivial small deformation
unless the rank condition (7) is satisfied. For instance, suppose Γ = π1(�g) with
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g ≥ 2 and R(Γ,G; X) �= ∅. (Such semisimple symmetric space X = G/H was
recently classified in [16].) Then we expect the rank condition (7) is equivalent to
the existence of an open subset U in R(Γ,G; X) such that

#

⎛

⎝
⋂

ϕ∈U
Specd(Xϕ(Γ ))

⎞

⎠ = ∞.

It should be noted that not all L2-eigenvalues of compact anti-de Sitter manifolds
are stable under small deformation of anti-de Sitter structure. In fact, we proved
in [7] that there exist also countably many negative L2-eigenvalues that are NOT
stable under deformation, whereas the countably many stable L2-eigenvalues that
we constructed in Theorem 9 are all positive. More generally, we prove in [7] the
following theorem that include both stable and unstable L2-eigenvalues:

Theorem 13 LetG bea reductive homogeneous spaceand L a reductive subgroupof
G such that H ∩ L is compact. Assume that the complexification XC is LC-spherical.
Then for any torsion-free discrete subgroup Γ of L, we have:

(1) the Laplacian ΔXΓ
extends to a self-adjoint operator on L2(XΓ );

(2) # Specd(XΓ ) = ∞ if XΓ is compact.

By “LC-spherical” we mean that a Borel subgroup LC has an open orbit in XC. In
this case, a reductive subgroup L acts transitively on X by [10, Lemma 5.1].

Here are some examples of the setting of Theorem 13, taken from
[13, Corollary 3.3.7].

Examples for Theorem 13 include Table1 (ii) for all n ∈ N, whereas we need
n ∈ 2N in Theorem 12 for the rank condition (7).

Table 1 Triple (G, H, L) satisfying the condition of Theorem 13

G H L

(i) SO(2n, 2) SO(2n, 1) U (n, 1)

(ii) SO(2n, 2) U (n, 1) SO(2n, 1)

(iii) SU (2n, 2) U (2n, 1) Sp(n, 1)

(iv) SU (2n, 2) Sp(n, 1) U (2n, 1)

(v) SO(4n, 4) SO(4n, 3) Sp(1) × Sp(n, 1)

(vi) SO(8, 8) SO(8, 7) Spin(8, 1)

(vii) SO(8,C) SO(7,C) Spin(7, 1)

(viii) SO(4, 4) Spin(4, 3) SO(4, 1) × SO(3)

(ix) SO(4, 3) G2(R) SO(4, 1) × SO(2)
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The idea of the proof for Theorem 12 is to take an average of a (nonperi-
odic) eigenfunction on X with rapid decay at infinity over Γ -orbits as a general-
ization of Poincaré series. Geometric ingredients of the convergence (respectively,
nonzeroness) of the generalized Poincaré series include “counting Γ -orbits” stated
in Lemma 1 below (respectively, the Kazhdan–Margulis theorem, cf. [6, Proposi-
tion 8.14]). Let B(o, R) be a “pseudo-ball” of radius R > 0 centered at the origin
o = eH ∈ X = G/H , and we set

N (x, R) := #{γ ∈ Γ : γ · x ∈ B(o, R)}.

Lemma 1 ([6, Corollary 4.7])

(1) If Γ acts properly discontinuously on X, then N (x, R) < ∞ for all x ∈ X and
R > 0.

(2) If Γ acts strongly properly discontinuously on X, then there exists Ax > 0 such
that

N (x, R) ≤ Ax exp(
R

C
) for all R > 0,

where C is the first sharpness constant of Γ .

The key idea of Theorem 13 is to bring branching laws to spectral analysis
[10, 12], namely, we consider the restriction of irreducible representations of G
that are realized in the space of functions on the homogeneous space X = G/H and
analyze the G-representations when restricted to the subgroup L . Details will be
given in [7].
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Sphere Partition Functions and the Kähler
Metric on the Conformal Manifold

Efrat Gerchkovitz and Zohar Komargodski

Abstract We discuss marginal operators inN = 2 Superconformal Field Theories
in four dimensions. These operators are necessarily exactly marginal and they lead
to a manifold,M, of Superconformal Field Theories. The spaceM is argued to be a
Kähler manifold. We further argue that upon a stereographic projection of R4 to S4,
the partition function ZS4 measures the Kähler potential. These results are established
by a careful study of the interplay between conformal anomalies and the spaceM.

1 The Superconformal Algebra

A special class of Quantum Field Theories (QFTs) are those that have no intrinsic
length scale. This happenswhen the correlation length of the corresponding theory on
the lattice diverges. In addition, such theories often arise when we take generic QFTs
and scale the distances to bemuch larger ormuch smaller than the typical inversemass
scales. Of course, one may sometimes encounter gapped theories at long distances,
but there are also many examples in which one finds nontrivial theories in this way.

In general, we are interested here in QFTs which are invariant under the Poincaré
group of R4. The Poincaré group consists of rotations in SO(4) (generated by Mμν ,
with (μ, ν = 1, . . . , 4)) and translations (generated by Pμ). If the theory has no
intrinsic length scale then the Poincaré group is enhanced by adding the generator
of dilations, Δ. Oftentimes, the symmetry is further enhanced to SO(5, 1), which
includes the original Poincaré generators, the dilation Δ, and the so-called special
conformal transformations Kμ.
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The commutation relations are

[
Δ,Pμ

] = Pμ ,
[
Δ,Kμ

] = −Kμ ,
[
Kμ,Pν

] = 2
(
δμνΔ − iMμν

)
,

[
Mμν,Pρ

] = i
(
δμρPν − δνρPμ

)
,

[
Mμν,Kρ

] = i
(
δμρKν − δνρKμ

)
,

[
Mμν,Mρσ

] = i
(
δμρMνσ + δνσMμρ − δνρMμσ − δμσMνρ

)
.

They can be realized by the differential operators acting on R4:

Mμν = −i
(
xμ∂ν − xν∂μ

)
,

Pμ = −i∂μ ,

Kμ = i
(
2xμx.∂ − x2∂μ

)
,

Δ = x.∂ .

A primary operator, Φ(x), is, by definition, an operator that is annihilated by Kμ

when placed at the origin:
[Kμ, Φ(0)] = 0 . (1)

The origin of R4 is fixed by rotations and dilations. Therefore we can characterise
Φ(0) by its quantum numbers under rotations and dilations. In d = 4 the group
of rotations, SO(4), is locally just SU(2) × SU(2) and hence a primary operator is
labeled by ( j1, j2;Δ).1 We will be only interested in unitary theories, where the
allowed representations of the conformal algebra do not have negative-norm states.

It is sometimes the case that the conformal field theory has primary operators of
dimension 4,

[Δ,OI(x)] = i(x.∂ + 4)OI(x) .

If we add such operators to the action with couplings λI then we get

S → S +
∑

I

λI
∫

d4xOI(x) . (2)

A simple example is the free conformal field theory in d = 4 to which we can add a
quartic interaction. The coupling λI is dimensionless but in general there may be a
nontrivial beta function

βI ≡ dλI

d logμ
= (β(1))IJKλJλK + · · · . (3)

1If there is a global symmetry G, then the primary operators would furnish some representations
of G.
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Therefore, conformal symmetry is broken at second order in λ. (If we add to the
action an operator of Δ �= 4 then conformal symmetry is already broken at first
order in the coupling constant.)

Under some special circumstances it may happen that βI = 0 as a function of
λI . Then we say that the deformation (2) is exactly marginal. We therefore have a
manifold of conformal field theories, M, with coordinates {λI}. This manifold has
a natural Riemannian structure given by the Zamolodchikov metric

〈OI(∞)OJ (0)〉{λI } = gI J (λ
I) . (4)

One situation in which exactly marginal operators are common is in Super-
conformal Field Theories (SCFTs). The conformal algebra is enlarged by adding
N Poincaré supercharges Qi

α, Q̄iα̇ and N superconformal supercharges Sα
i , S̄iα̇

(i = 1, ..,N ). In addition, we must add the R-symmetry group, U(N ), whose gen-
erators are Ri

j . This furnishes the superalgebra SU(2, 2|N ).
We do not list all the commutation relations. They can be found in [5]. All we

need to know for our purposes is summarised below.
Our main interest in this note lies in N = 2 theories. The maximally supersym-

metric theory withN = 4 would be a special case. The R-symmetry group inN = 2
theories is SU(2)R × U(1)R. We denote the U(1)R charge by r.

• It is consistent to impose at the origin, in addition to (1),

[Sα
i , Φ(0)] = [S̄iα̇, Φ(0)] = 0 .

(The quantum numbers of Φ(0) are omitted.) Such operators are called super-
conformal primaries. In every unitary representation the operators with the lowest
eigenvalues of Δ are superconformal primaries.

• If one further imposes
[Q̄iα̇, Φ(0)] = 0 , (5)

one obtains a short representation (such representations may or may not exist in a
given model). The operator Φ(0) satisfying (5) is called a chiral primary.2 Chiral
primary operators are necessarily SU(2)R singlets and they obey a relationship
between their U(1)R charge and their scaling dimension

Δ = r .

• Marginal operators that preserveN = 2 supersymmetry are necessarily thedescen-
dants of chiral primary operators withΔ = r = 2.We can upgrade the formula (2)
to a superspace formula

S → S + λI
∫

d4x d4θΦI(x, θ) + λ̄Ī
∫

d4x d4θ̄Φ̄Ī(x, θ̄) . (6)

2We henceforth assume chiral primary operators carry no spin, see [4] for a discussion.
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which shows that N = 2 supersymmetry is indeed preserved. We denote the
dimension 4 descendant of ΦI by OI . Therefore, (6) is just

S → S + λI
∫

d4x OI(x) + λ̄Ī
∫

d4x ŌĪ(x) . (7)

The Zamolodchikov metric is defined by the two-point function
〈OI(∞)ŌJ̄ (0)〉. (This is proportional to 〈ΦI(∞)Φ̄ J̄ (0)〉.)
It remains to argue that for the deformations (6) the beta function βI = 0 iden-

tically. The argument is along the lines of [11]. There is a scheme in which the
superpotential is not renormalized. Then if the beta function is nonzero it has to be
reflected by a D-term in the action

∫
d4x d8θO with O some real primary operator.

But since the λI are classically dimensionless, Δ(O) = 0 in the original fixed point.
Therefore,O has to be the unit operator and the deformation

∫
d4x d8θO is therefore

trivial. This proves that βI = 0.
The {λI , λ̄Ī} are therefore coordinates on the manifold M of N = 2 SCFTs. In

the next section we will argue thatM is a Kähler manifold, i.e. the Zamolodchikov
metric (4) satisfies

gI J̄ = ∂I∂ J̄ K(λI , λ̄Ī) . (8)

Then we will argue that the Kähler potential can be extracted from the S4 partition
function and we will use supersymmetric localization to compute it in some simple
N = 2 SCFTs. Large parts of the discussion in the next two sections follows [10].

2 Conformal Anomalies and the Zamolodchikov Metric

Let us for a moment consider the definition (4) more carefully, and in arbitrary
dimension. The Zamolodchikov metric on the conformal manifold is given by

〈OI(x)OJ (0)〉λ = gI J (λ)

x2d
, (9)

where 0 �= x ∈ Rd . In momentum space the two-point function (9) takes the form

〈OI(p)OJ (−p)〉λ ∼ gI J (λ)

{
pd d = 2n + 1

p2n log
(

μ2

p2

)
d = 2n

(10)

with n ∈ N. Thus, if we rescale μ the even-dimensional result will change by a
polynomial in p2 (delta function in position space). It follows that the separated
points correlation function is covariant under such rescaling while the coincident
points correlation function is not covariant. The appearance of such a logarithm in
conformal field theories signifies a conformal anomaly, which manifests itself as a



Sphere Partition Functions and the Kähler … 105

non-vanishing contribution to the trace of the stress-energy tensor. By promoting the
exactly marginal couplings λI to spacetime dependent background fields λI(x), such
that they act as sources of the exactly marginal operators OI(x), one can detect a
contribution to the trace anomaly of the schematic form

Tμ
μ ⊃ gI Jλ

I� d
2 λJ . (11)

The precise action of the derivatives in the formula above will be determined below.
The trace anomaly

〈
Tμ

μ

〉
can be derived from the variation of the free energy,

δσ logZ , under an infinitesimal Weyl rescaling,

δσγμν = 2δσ γμν , (12)

where γμν is the spacetime metric. δσ log Z must be local in γμν , δσ and λ, and its
form is constrained by the Wess–Zumino consistency condition, which is simply
the statement that Weyl transformations commute; δσδσ′ log Z = δσ′δσ logZ . It also
needs to be invariant under coordinate transformations in spacetime, and under coor-
dinate transformations in the conformal manifold. If we have some symmetry that is
respected by the class of regulators we consider (supersymmetry for example), we
will require δσ logZ to preserve this symmetry as well.

In addition, δσ logZ is defined only up to terms that can bewritten as δσW for some
local functional W (which also needs to respect the symmetry constraints described
above), as such terms can be removed by adding local counterterms to the free energy
(in other words these terms can be removed by choosing an appropriate regulator
and therefore they do not contribute to the anomaly, which cannot be removed with
any choice of regulator). Thus, in order to find the allowed form of the anomaly one
needs to solve a cohomology problem.

In four dimensional CFTs, the local functional that produces the Weyl variation
of (10) is3

δσ logZ ⊃ 1

192π2

∫
d4x

√
γ δσ

(
gI J �̂λI�̂λJ

− 2 gI J∂μλ
I

(
Rμν − 1

3
γμνR

)
∂νλ

J

)
, (14)

where coordinate invariance in M requires introducing a connection

�̂λI = �λI + Γ I
JK∂μλJ∂μλ

K , (15)

3The normalization conventions from now on will be such that the exactly marginal deformation is

S → S + 1

π2 λI
∫

d4x OI (x) . (13)

The convention we use for Rμνρσ is [∇μ,∇ν ]Vρ = RμνρσV σ .
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and the Wess–Zumino consistency condition forces this connection to be the
Christoffel connection on M:

Γ I
JK = gIR (∂KgRJ + ∂JgRK − ∂RgJK) . (16)

The anomaly (14) needs to be added to the well-known conformal anomalies4:

δσ logZ ⊃ 1

16π2

∫
d4x

√
γ δσ

(
c CμνρσCμνρσ − aE4

)
, (17)

which do not depend on the coordinates λI .
Let us now discuss theN = 2 superconformal manifold. We will assume that the

superconformal theory is regulated in away that preserves diffeomorphism invariance
and N = 2 supersymmetry, i.e. we assume that the physics at coincident points is
supersymmetric and diffeomorphism invariant.5 The assumption above constrains
the way the anomaly and the allowed counterterms can depend on the parameters
of the theory and on the spacetime geometry. A convenient way to implement these
constraints is to derive the anomaly and the counterterms as supergravity invariants
that are constructed from supergravity multiplets. For this sake the parameters of the
theory and of the geometry need to be embedded into supergravity multiplets.

According to Eq. (6) the exactly marginal operators are integrals over half super-
space of chiral and antichiral superfields with Δ = r = 2. Thus, the corresponding
couplings need to be realized as bottom components of chiral and antichiral super-
fields, ΛI and Λ̄Ī , with Δ = r = 0.6 In addition, the Weyl variation δσ is embedded
in the bottom component of the chiral Weyl superfield δ� (see, e.g. [13] for details)
and the integration measure

√
γ is promoted to the density measure superfield E. In

terms of these superfields, the supersymmetrization of the anomaly (14) is given by
the superspace integral

δ� logZ ⊃ 1

192π2

∫
d4x d4θ d4θ̄ E(δ� + δ�̄)K(ΛI , Λ̄Ī) . (18)

When this integral is expanded in components, one finds (among many other terms)
the anomaly (14) with

gI J̄ = ∂I∂ J̄ K . (19)

4E4 denotes the Euler density and Cμνρσ is the Weyl tensor.
5Note that we cannot assume that the coincident points physics is conformal invariant since this
would contradict (10).
6Note that ΛI (x, θ) = λI (with constant λI ) is consistent with the supersymmetry variations of a
chiral multiplet, and that substituting this in

∫
d4x d4θΛI (x, θ)ΦI (x, θ) + c.c. one gets Eq. (6) back.

After constructing the anomaly and counterterms in terms of the superfields ΛI (x, θ), Λ̄Ī (x, θ̄) we
substitute the constant background values. We do a similar thing with the geometry background
parameters.
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We therefore conclude that for N = 2 SCFTs, the Zamolodchikov metric is
Kähler. This statement, which is true also for N = 1 SCFTs, was proven in [1]
using superconformal Ward identities.

Expanding (18) in components while keeping only the bottom component of ΛI ,
Λ̄Ī and the metric background (setting the auxiliary fields in the gravity multiplet to
zero) one ends up with the following anomaly:

δ� log Z ⊃ 1

96π2

∫
d4x

√
γ

{
δσRIK̄ J L̄∇μλI ∇μλ

J ∇νλ̄K̄ ∇νλ̄
L̄ (20)

+ δσgI J̄

(
�̂λI �̂λ̄ J̄ − 2

(
Rμν − 1

3
R γμν

)
∇μλ

I ∇νλ̄
J̄

)

+ 1

2
K �2δσ + 1

6
K ∇μR∇μδσ + K

(
Rμν − 1

3
γμνR

)
∇μ∇νδσ

− 2 gI J̄ ∇μλI ∇νλ̄ J̄ ∇μ∇νδσ + i gI J̄
(
∇̂μ∇̂νλI ∇νλ̄

J̄ − ∇̂μ∇̂νλ̄ J̄ ∇νλ
I
)

∇μδa

− i

2

(
∇̂I ∇̂JK ∇μλI∇μλ

J − ∇̂Ī ∇̂ J̄ K ∇μλ̄Ī∇μλ̄
J̄ + ∇IK �̂λI

− ∇ĪK �̂λ̄Ī
)

�δa + i

(
Rμν − 1

3
R γμν

)(
∇IK ∇μλ

I − ∇ĪK ∇μλ̄
Ī
)

∇νδa

}

where, as before, the hats denote covariant derivatives with respect to coordi-
nate transformations in the conformal manifold,RI J̄KL̄ = ∂I∂ J̄gKL̄ − gMN̄ ∂IgKL̄ ∂ J̄
gMN̄ , and δσ + iδa is the bottom component of δ�. Note that the anomaly (14)
appears in the second line.

Setting λ, λ̄ to constants, we remain with a non-vanishing contribution:

δ� logZ ⊃ 1

96π2
K(λ, λ̄)

∫
d4x

√
γ

(
1

2
�2δσ + 1

6
∇μR∇μδσ

+
(
Rμν − 1

3
γμνR

)
∇μ∇νδσ

)
(21)

= δσ

(
1

96π2
K(λ, λ̄)

∫
d4x

√
γ

[
1

8
E4 − 1

12
�R + f (λ, λ̄)C2

])
,

where f (λ, λ̄) is an arbitrary function onM, E4 is the Euler density and Cμνρσ is the
Weyl tensor.

Note that this expression is not cohomologically trivial. The second line in (21)
is written as a Weyl variation of a local term, but this is not a supersymmetric local
term. Thus, this contribution cannot be removed with a supersymmetric regulator.
In the next section we will show that, as a result of this term, the sphere partition
function has a universal (i.e. regularization independent) content - it computes the
Kähler potential on the superconformal manifold.
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3 Sphere Partition Functions

Any conformal field theory onRd can be placed on Sd using the stereographic projec-
tion. Since thismap is a conformal transformationwe can obtain correlation functions
inRd from the corresponding correlation functions in Sd by applying the inversemap.
The sphere is compact and therefore the theory on the sphere is free from infrared
divergences. Since the sphere is locally equivalent to Rd , the ultraviolet divergences
on the sphere are the same as in flat space.

In the recent years the exact computation of some supersymmetric observables
in N = 2 theories on S4 became possible due to the technique of supersymmetric
localization in which the path integral is reduced to a finite dimensional integral.
In particular, sphere partition functions for Lagrangian N = 2 theories (not neces-
sarily conformal) can be computed exactly, including all perturbative and instanton
contributions [15]. In this section we will show that the sphere partition function for
N = 2 SCFTs computes the Kähler potential on the superconformal manifold. This
was proved in [7, 8, 10]. Here, we will follow [10], in which this statement was
derived from the anomaly (21).

According to Eq. (21), the sphere partition function, when regulated in a super-
symmetry preserving fashion, contains the contribution7:

logZS4 ⊃ 1

96π2
K(λ, λ̄)

∫

S4
d4x

√
γ

(
1

8
E4 − 1

12
�R

)
= 1

12
K(λ, λ̄) . (22)

An additional contribution comes from the usual a-anomaly. Together, the two con-
tributions give

ZS4 =
(
r

r0

)−4a

eK(λ,λ̄)/12 , (23)

where r is the radius of the sphere and r0 a scheme dependent scale. Thus, the
sphere partition function computes the Kähler potential on the superconformal man-
ifold. This is reminiscent of a known result in two-dimensional theories. For d = 2,
N = (2, 2) SCFTs the Zamolodchikov metric is Kähler and the sphere partition
function, which has been computed using localization in [3, 6], computes the Kähler
potential on the superconformal manifold [9, 12].

Note that the Kähler potential is defined up to a holomorphic ambiguity,

K(λ, λ̄) → K(λ, λ̄) + F(λ) + F̄(λ̄) . (24)

This ambiguity in logZS4 is due to the existence of a supersymmetric counterterm
that depends on an arbitrary holomorphic function of λI . This counterterm can be
constructed from the supergravity invariant

7We dropped the Weyl tensor since it vanishes on the conformally flat sphere.
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∫
d4x d4θ EF(Λ)

(
Ξ − WαβWαβ

) + c.c. (25)

Here E is a chiral density superfield. The chiral superfields Ξ andWαβ can be found
in [13]. In the sphere geometry background, and with the substitutionΛI(x, θ) = λI ,
this evaluates to F(λ) + F̄(λ̄) (up to a numerical coefficient). This counterterm was
first constructed from N = 2 supergravity in [8].

Asmentioned above, (22) cannot be removed by anN = 2 supersymmetric coun-
terterm and therefore the sphere partition function has a universal meaning inN = 2
SCFTs. If we only assume that the regularization scheme preserves N = 1 super-
symmetry we would have a counterterm that depends on a general function of λ
and λ̄.8 Thus, N = 1 supersymmetry of the regulator is not enough to give a uni-
versal meaning to ZS4 . For the same reason the λ-dependence of the sphere partition
function ofN = 1 SCFTs or of non-supersymmetric CFTs is regularization scheme
dependent. The only universal contribution to the sphere partition function of a non-
supersymmetric CFT is the contribution due to the conformal anomaly a, which is
independent of the exactly marginal couplings.

As an example for the computation of the Zamolodchikov metric using Eq. (23),
consider an SU(2) gauge theory with 4 hypermultiplets in the fundamental rep-
resentation. This theory is superconformal, with one exactly marginal parameter
τ = θ

2π + 4πi
g2
, where g is the Yang–Mills coupling and θ is the theta angle. The

sphere partition function can be computed using localization, and one finds:

ZS4(τ , τ̄ ) =
∫ ∞

−∞
da e−4π Imτ a2(2a)2

H(2ia)H(−2ia)

[H(ia)H(−ia)]4 |Zinst(a, τ )|2 , (26)

whereH(x) is given in terms of theBarnesG-function byH(x) = G(1 + x)G(1 − x),
and Zinst is Nekrasov’s instanton partition function on the Omega background [14].
By expanding the integrand in powers of g2 we can compute ZS4 to any order in
perturbation theory. We can also include instanton corrections, up to any instan-
ton number. It is then straightforward to compute the Zamolodchikov metric via
gττ̄ = ∂τ∂τ̄ logZS4 .9 The perturbative result for the metric is:

gττ̄ = 3

8

1

(Imτ )2
− 135ζ(3)

32π2

1

(Imτ )4
+ 1575ζ(5)

64π3

1

(Imτ )5
+ O

(
1

(Imτ )6

)
. (27)

The first two terms in this result were checked against an explicit, two-loop, Feynman
diagrams computation in [2]. The one-instanton correction for the perturbative result
is given by

8See Sect. 4 of [7].
9Here we dropped the factor of 12.
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g1-instτ τ̄ = cos θ e
− 8π2

g2

(
3

8

1

(Imτ )2
+ 3

16π

1

(Imτ )3
− 135ζ(3)

32π2

1

(Imτ )4
(28)

+ O
(

1

(Imτ )5

))
.
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Real Group Orbits on Flag Ind-Varieties
of SL(∞,C)

Mikhail V. Ignatyev, Ivan Penkov and Joseph A. Wolf

Abstract We consider the complex ind-group G = SL(∞, C) and its real forms
G0 = SU(∞,∞), SU(p,∞), SL(∞, R), SL(∞, H). Our main object of study are
theG0-orbits on an ind-varietyG/P for an arbitrary splitting parabolic ind-subgroup
P ⊂ G, under the assumption that the subgroups G0 ⊂ G and P ⊂ G are aligned
in a natural way. We prove that the intersection of any G0-orbit on G/P with a
finite-dimensional flag variety Gn/Pn from a given exhaustion of G/P via Gn/Pn
for n → ∞, is a single (G0 ∩ Gn)-orbit. We also characterize all ind-varieties G/P
on which there are finitely many G0-orbits, and provide criteria for the existence of
open and closed G0-orbits on G/P in the case of infinitely many G0-orbits.

Keywords Homogeneous ind-variety · Real group orbit · Generalized flag

AMS Subject Classification: 14L30 · 14M15 · 22F30 · 22E65

1 Introduction

This study has its roots in linear algebra. Witt’s Theorem claims that, given any two
subspaces V1, V2 of a finite-dimensional vector space V endowed with a nondegener-
ate bilinear or Hermitian form, the spaces V1 and V2 are isometric within V (i.e., one
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is obtained from the other via an isometry of V ) if and only if V1 and V2 are isomet-
ric. When V is a Hermitian space, this is a statement about the orbits of the unitary
group U (V ) on the complex grassmannian Gr(k, V ), where k = dim V1 = dim V2.
More precisely, the orbits of U (V ) on Gr(k, V ) are parameterized by the possible
signatures of a, possibly degenerate, Hermitian form on a k-dimensional space of V .

A general theory of orbits of a real formG0 of a semisimple complex Lie groupG
on a flag variety G/P was developed by the third author in [22, 24]. This theory has
become a standard tool in semisimple representation theory and complex algebraic
geometry. For automorphic forms and automorphic cohomology we mention [9,
21, 26]. For double fibration transforms and similar applications to representation
theory see [14, 28]. For the structure of real group orbits and cycle spaces with other
applications to complex algebraic geometry see, for example, [2, 3, 8, 9, 15–17,
24–28]. Finally, applications to geometric quantization are indicated by [19, 20].

The purpose of the present paper is to initiate a systematic study of real group
orbits on flag ind-varieties or, more precisely, on ind-varieties of generalized flags.
The study of the classical simple ind-groups like SL(∞, C) arose from studying
stabilization phenomena for classical algebraic groups. By now, the classical ind-
groups, their Lie algebras, and their representations have grown to a separate subfield
in the vast field of infinite-dimensional Lie groups and Lie algebras. In particular,
it was seen in [5] that the ind-varieties G/P for classical ind-groups G consist of
generalized flags (rather than simply of flags) which are, in general, infinite chains
of subspaces subject to two delicate conditions, see Sect. 2.3 below.

Here we restrict ourselves to the ind-group G = SL(∞, C) and its real forms
G0. We study G0-orbits on an arbitrary ind-variety of generalized flags G/P , and
establish several foundational results in this direction. Our setting assumes a certain
alignment between the subgroups G0 ⊂ G and P ⊂ G.

Our first result is the fact that any G0-orbit in G/P , when intersected with a
finite-dimensional flag variety Gn/Pn from a given exhaustion of G/P via Gn/Pn
for n → ∞, yields a singleG0

n-orbit forG
0
n = G0 ∩ Gn . Thismeans that themapping

{G0
n-orbits on Gn/Pn} → {G0

n+1-orbits on Gn+1/Pn+1}

is injective. Using this feature, we are able to answer the following questions.

1. When are there finitely many G0-orbits on G/P?
2. When is a given G0-orbit on G/P closed?
3. When is a given G0-orbit on G/P open?

The answers depend on the type of real form and not only on the parabolic sub-
group P ⊂ G. For instance, if P = B is an upper-triangular Borel ind-subgroup
of SL(∞, C) (B depends on a choice of an ordered basis in the natural represen-
tation of SL(∞, C)), then G/B has no closed SU(∞,∞)-orbit and has no open
SL(∞, R)-orbit.

We see the results of this paper only as a first step in the direction of understanding
the structure of G/P as a G0-ind-variety for all real forms of all classical ind-groups
G (and all splitting parabolic subgroups P ⊂ G). Substantial work lies ahead.
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2 Background

In this section we review some basic facts about finite-dimensional real group orbits.
We then discuss the relevant class of infinite-dimensional Lie groups and the corre-
sponding real forms and flag ind-varieties.

2.1 Finite-Dimensional Case

Let V be a finite-dimensional complex vector space. Recall that a real structure on
V is an antilinear involution τ on V . The set V 0 = {v ∈ V | τ (v) = v} is a real form
of V , i.e., V 0 is a real vector subspace of V such that dimR V 0 = dimC V and the
C-linear span 〈V 0〉C coincides with V . A real form V 0 of V defines a unique real
structure τ on V such that V 0 is the set of fixed point of τ . A real form of a complex
finite-dimensional Lie algebra g is a real Lie subalgebra g0 of g such that g0 is a real
form of g as a complex vector space.

Let G be a complex semisimple connected algebraic group, and G0 be a real form
of G, i.e., G0 is a real closed algebraic subgroup of G such that its Lie algebra g0

is a real form of the Lie algebra g of G. Let P be a parabolic subgroup of G, and
X = G/P be the corresponding flag variety. The group G0 naturally acts on X . In
[22] the third author proved the following facts about the G0-orbit structure of X ,
see [22, Theorems 2.6, 3.3, 3.6, Corollary 3.4] (here we use the usual differentiable
manifold topology on X ).

Theorem 2.1

(i) Each G0-orbit is a real submanifold of X.
(ii) The number of G0-orbits on X is finite.
(iii) The union of the open G0-orbits is dense in X.
(iv) There is a unique closed orbit Ω on X.
(v) The inequality dimR Ω ≥ dimC X holds.

Here is how this theorem relates to Witt’s Theorem in the case of a Hermitian
form. Let V be an n-dimensional complex vector space and G = SL(V ). Fix a
nondegenerate Hermitian form ω of signature (p, n − p) on the vector space V and
denote by G0 = SU(V,ω) the group of all linear operators on V of determinant 1
which preserve ω. Then G0 is a real form of G. Given k ≤ n, the group G naturally
acts on the grassmannian X = Gr(k, V ) of all k-dimensional complex subspaces of
V . To eachU ∈ X one can assign its signature (a, b, c), where the restricted formω|U
has rank a + bwith a positive squares and b negative ones, c equals the dimension of
the intersection of U and its orthogonal complement, and a + b + c = k. By Witt’s
Theorem, two subspaces U1, U2 ∈ X belong to the same G0-orbit if and only if
their signatures coincide. Set l = min{p, n − p}. Then one can verify the following
formula for the number |X/G0| of G0-orbits on X :



114 M.V. Ignatyev et al.

|X/G0| =

⎧
⎪⎨

⎪⎩

(−k2 − 2l2 − n2 + 2kn + 2ln + k + n + 2)/2, if n − l ≤ k,

(l + 1)(2k − l + 2)/2, if l ≤ k ≤ n − l,

(k + 1)(k + 2)/2, if k ≤ l.

Furthermore, a G0-orbit of a subspaceU ∈ X is open if and only if the restriction of
ω to U is nondegenerate, i.e., if c = 0. Therefore, the number of open orbits equals
min{k + 1, l + 1}. There is a unique closed G0-orbit Ω on X , and it consists of all
k-dimensional subspaces of V such that c = min{k, l} (the condition c = min{k, l}
maximizes the nullity of the form ω|U for k-dimensional subspaces U ⊂ V ). In
particular, if k = p ≤ n − p, then Ω consists of all totally isotropic1 k-dimensional
complex subspaces of V . See [22] for more details in this latter case.

2.2 The Ind-Group SL(∞,C) and Its Real Forms

In the rest of the paper, V denotes a fixed countable-dimensional complex vec-
tor space with fixed basis E . We fix an order on E via the ordered set Z>0, i.e.,
E = {ε1, ε2, . . .}. Let V∗ denote the span of the dual system E∗ = {ε∗

1, ε∗
2, . . .}. By

definition, the group GL(V, E) is the group of invertible C-linear transformations
on V that keep fixed all but finitely many elements of E . It is not difficult to verify
that GL(V, E) depends only on the pair (V, V∗) but not on E . Clearly, any operator
fromGL(V, E) has awell-defined determinant. By SL(V, E)we denote the subgroup
of GL(V, E) of all operators with determinant 1. In the sequel G = SL(V, E) and
we also write SL(∞, C) instead of G.

Express the basis E as a union E = ⋃ En of nested finite subsets. Then V is
exhausted by the finite-dimensional subspaces Vn = 〈En〉C, i.e., V = lim−→ Vn . To
each linear operator ϕ on Vn one can assign the operator ϕ̃ on Vn+1 such that
ϕ̃(x) = ϕ(x) for x ∈ Vn, ϕ̃(εm) = εm for εm ∈ E \ En . This gives embeddings
SL(Vn) ↪→ SL(Vn+1), so thatG = SL(V, E) = lim−→SL(Vn). Inwhat followswe con-
sider this exhaustion of G fixed, and set Gn = SL(Vn).

Recall that an ind-variety overR orC (resp., an ind-manifold) is an inductive limit
of algebraic varieties (resp., of manifolds): Y = lim−→ Yn . Below we always assume
that Yn form an ascending chain

Y1 ↪→ Y2 ↪→ . . . ↪→ Yn ↪→ Yn+1 ↪→ . . . ,

where Yn ↪→ Yn+1 are closed embeddings. Any ind-variety or ind-manifold is
endowed with a topology by declaring a subset U ⊂ Y open if U ∩ Yn is open for
all n in the corresponding topologies. Amorphism f : Y = lim−→ Yn → Y ′ = lim−→ Y ′

n is
a map induced by a collection of morphisms { fn : Yn → Y ′

in
}n≥1 for i1 < i2 < · · ·,

such that the restriction of fn+1 to Yn coincides with fn for all n ≥ 1. A morphism

1In what follows we use the terms isotropic and totally isotropic as synonyms.
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f : Y → Y ′ is an isomorphism if there exists a morphism g : Y ′ → Y for which
f ◦ g = idY ′ and g ◦ f = idY , where id is a morphism induced by the collection of
the identity maps.

A locally linear algebraic ind-group is an ind-variety G = ⋃Gn such that all
Gn are linear algebraic groups and the inclusions are group homomorphisms. In
what follows we write ind-group for brevity. Clearly, G is an ind-group. By an ind-
subgroup of G we understand a subgroup of G closed in the direct limit Zariski
topology. By definition, a real ind-subgroup G0 of G is called a real form of G, if G
can be represented as an increasing unionG = ⋃Gn of its finite-dimensional Zariski
closed subgroups such that Gn is a semi-simple algebraic group and G0 ∩ Gn is a real
form of Gn for each n. Below we recall the classification of real forms of G due to
A. Baranov [1].

Fix a real structure τ on V such that τ (e) = e for all e ∈ E . Then each Vn is
τ -invariant. Denote byGL(Vn, R) (resp., by SL(Vn, R)) the group of invertible (resp.,
of determinant 1) operators on Vn defined over R. Recall that a linear operator on
a complex vector space with a real structure is defined over R if it commutes with
the real structure, or, equivalently, if it maps the real form to itself. For each n,
the map ϕ �→ ϕ̃ gives an embedding SL(Vn, R) ↪→ SL(Vn+1, R), so the direct limit
G0 = lim−→SL(Vn, R) is well defined. We denote this real form of G by SL(∞, R).

Fix a nondegenerateHermitian formω onV . Suppose that its restrictionωn = ω|Vn

is nondegenerate for all n, and that ω(εm, Vn) = 0 for εm ∈ E \ En . Denote by pn the
dimension of a maximal ωn-positive definite subspace of Vn , and put qn = dim Vn −
pn . Let SU(pn, qn) be the subgroup of Gn consisting of all operators preserving
the form ωn . For each n, the map ϕ �→ ϕ̃ induces an embedding SU(pn, qn) ↪→
SU(pn+1, qn+1), sowe have a direct limitG0 = lim−→SU(pn, qn). If there exists p such
that pn = p for all sufficiently large n (resp., if limn→∞ pn = limn→∞ qn = ∞), then
we denote this real form of G by SU(p,∞) (resp., by SU(∞,∞)).

Finally, fix a quaternionic structure J on V , i.e., an antilinear automorphism of V
such that J 2 = −idV . Assume that the complex dimension of Vn is even for n ≥ 1,
and that the restriction Jn of J to Vn is a quaternionic structure on Vn . Furthermore,
suppose that

J (ε2i−1) = −ε2i , J (ε2i ) = ε2i−1

for i ≥ 1. Let SL(Vn, H) be the subgroup of Gn consisting of all linear operators
commuting with Jn , then, for each n, the map ϕ �→ ϕ̃ induces an embedding of
the groups SL(Vn, H) ↪→ SL(Vn+1, H), and we denote the direct limit by G0 =
SL(∞, H) = lim−→SL(Vn, H). This group is also a real form of G.

The next result is a corollary of [1, Theorem 1.4] and [6, Corollary 3.2].

Theorem 2.2 If G = SL(∞, C), then SL(∞, R), SU(p,∞), 0 ≤ p < ∞,
SU(∞,∞), SL(∞, H) are all real forms of G up to isomorphism. These real forms
are pairwise non-isomorphic as ind-groups.
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2.3 Flag Ind-Varieties of the Ind-Group G

Recall some basic definitions from [5]. A chain of subspaces in V is a linearly
ordered (by inclusion) set C of distinct subspaces of V . We write C ′ (resp., C ′′) for
the subchain of C of all F ∈ C with an immediate successor (resp., an immediate
predecessor). Also, we write C† for the set of all pairs (F ′, F ′′) such that F ′′ ∈ C ′′
is the immediate successor of F ′ ∈ C ′.

A generalized flag is a chain F of subspaces in V such that F = F ′ ∪ F ′′ and
V \ {0} = ⋃

(F ′,F ′′)∈F† F ′′ \ F ′. Note that each nonzero vector v ∈ V determines a
unique pair (F ′

v, F
′′
v ) ∈ F† such that v ∈ F ′′

v \ F ′
v . IfF is a generalized flag, then each

ofF ′ andF ′′ determinesF , because if (F ′, F ′′) ∈ F†, then F ′ = ⋃
G ′′∈F ′′, G ′′�F ′′ G ′′,

F ′′ = ⋂
G ′∈F ′, G ′�F ′ G ′ (see [5, Proposition 3.2]).Wefix a linearly ordered set (A,�)

and an isomorphism of ordered sets A → F† : a �→ (F ′
α, F ′′

α ), so that F can be
written as F = {F ′

α, F ′′
α , α ∈ A}. We will write α ≺ β if α � β and α �= β for

α,β ∈ A.
A generalized flag F is called maximal if it is not properly contained in another

generalized flag. This is equivalent to the condition that dim F ′′
v /F ′

v = 1 for all
nonzero vectors v ∈ V . A generalized flag is called a flag if the set of all proper
subspaces of F is isomorphic as a linearly ordered set to a subset of Z.

We say that a generalized flag F is compatible with a basis E = {e1, e2, . . .} of
V if there exists a surjective map σ : E → A such that every pair (F ′

α, F ′′
α ) ∈ F† has

the form F ′
α = 〈e ∈ E | σ(e) ≺ α〉C, F ′′

α = 〈e ∈ E | σ(e) � α〉C. By [5, Proposition
4.1], every generalized flag admits a compatible basis. A generalized flagF isweakly
compatiblewith E ifF is compatiblewith a basis L ofV such that the set E \ (E ∩ L)

is finite. Two generalized flagsF ,G are E-commensurable if both of them areweakly
compatible with E and there exist an isomorphism of ordered sets φ : F → G and a
finite-dimensional subspace U ⊂ V such that

(i) φ(F) +U = F +U for all F ∈ F;
(ii) dim φ(F) ∩U = dim F ∩U for all F ∈ F .

Given a generalized flag F compatible with E , denote by X = XF ,E = F�(F , E)

the set of all generalized flags in V , which are E-commensurable with F .
To endow X with an ind-variety structure, fix an exhaustion E = ⋃

En of E by
its finite subsets and denote Fn = {F ∩ 〈En〉C, F ∈ F}. Given α ∈ A, denote

d ′
α,n = dim F ′

α ∩ 〈En〉C = |{e ∈ En | σ(e) ≺ α}|,
d ′′

α,n = dim F ′′
α ∩ 〈En〉C = |{e ∈ En | σ(e) � α}|,

where | · | stands for cardinality. We define Xn to be the projective varieties of flags
in 〈En〉C of the form {U ′′

α,U ′′
α, α ∈ A}, where U ′

α, U
′′
α are subspaces of 〈En〉C of

dimensions d ′
α,n , d

′′
α,n respectively, U ′

α ⊂ U ′′
α for all α ∈ A, and U ′′

α ⊂ U ′
β for all

α ≺ β. (If A is infinite, there exist infinitely many α, β ∈ A such that U ′′
α = U ′

β .)
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Define an embedding ιn : Xn → Xn+1 : {U ′′
α,U ′′

α, α ∈ A} �→ {W ′′
α ,W ′′

α , α ∈ A} by

W ′
α = U ′

α ⊕ 〈e ∈ En+1 \ En | σ(e) ≺ α〉C,

W ′′
α = U ′′

α ⊕ 〈e ∈ En+1 \ En | σ(e) � α〉C.
(1)

Then ιn is a closed embedding of algebraic varieties, and there exists a bijection from
X to the inductive limit of this chain of morphisms, see [5, Proposition 5.2] or [10,
Sect. 3.3]. This bijection endows X with an ind-variety structurewhich is independent
on the chosen filtration

⋃
En of the basis E . We will explain this bijection in more

detail in Sect. 3.
From now on we suppose that the linear span of En coincides with Vn and V∗

coincideswith the span of the dual system E∗ = {e∗
1, e

∗
2, . . .}.We assume also that the

inclusion Gn ↪→ Gn+1 induced by this exhaustion of E coincides with the inclusion
ϕ �→ ϕ̃ defined above, i.e., that 〈En+1 \ En〉C = 〈En+1 \ En〉C. Denote by H the ind-
subgroup of G = SL(∞, C) of all operators from G which are diagonal in E ; H is
called a splitting Cartan subgroup of G (in fact, H is a Cartan subgroup of G in
terminology of [7]). We define a splitting Borel (resp., parabolic) subgroup of G to
be and ind-subgroup of G containing H such that its intersection with Gn is a Borel
(resp., parabolic) subgroup of Gn . Note that if P is a splitting parabolic subgroup of
G and Pn = P ∩ Gn , then G/P = ⋃

Gn/Pn is a locally projective ind-variety, i.e.,
an ind-variety exhausted by projective varieties. One can easily check that the group
G naturally acts on X . Given a generalized flag F in V which is compatible with E ,
denote by PF the stabilizer of F in G. For the proof of the following theorem, see
[5, Proposition 6.1, Theorem 6.2].

Theorem 2.3 Let F be a generalized flag compatible with E, X = F�(F , E) and
G = SL(∞, C).
(i) The group PF is a parabolic subgroup of G containing H , and the mapF �→ PF
is a bijection between generalized flags compatible with E and splitting parabolic
subgroups of G.
(ii) The ind-variety X is in fact G-homogeneous, and the map g �→ g · F induces an
isomorphism of ind-varieties G/PF ∼= X.
(iii) F is maximal if and only if PF is a splitting Borel subgroup of G.

Example 2.4 (i) A first example of generalized flags is provided by the flag F =
{{0} ⊂ F ⊂ V }, where F is a proper nonzero subspace of V . If F is compatible
with E , then we can assume that F = 〈σ〉C for some subset σ of E . In this case
the ind-variety X is called an ind-grassmannian, and is denoted by Gr(F, E). If
k = dim F is finite, then a flag {{0} ⊂ F ′ ⊂ V } is E-commensurable with F if
and only if dim F = k, hence Gr(F, E) depends only on k, and we denote it by
Gr(k, V ). Similarly, if k = codim V F is finite, thenGr(F, E) depends only on E and
k (but not on F) and is isomorphic to Gr(k, V∗): an isomorphism Gr(F, E) → {F ⊂
V∗ | dim F = k} = Gr(k, V∗) is induced by the map Gr(F, E) � U �→ U # = {φ ∈
V∗ | φ(x) = 0 for all x ∈ U }. Finally, if F is both infinite dimensional and infinite
codimensional, then Gr(F, E) depends on F and E , but all such ind-varieties are
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isomorphic and denoted by Gr(∞), see [18] or [10, Sect. 4.5] for the details. Clearly,
in each case one has F ′ = {{0} ⊂ F}, F ′′ = {F ⊂ V }.

(ii) Our second example is the generalized flag F = {{0} = F0 ⊂ F1 ⊂ . . .},
where Fi = 〈e1, . . . , ei 〉C for all i ≥ 1. This clearly is a flag. A flag F̃ = {{0} =
F̃0 ⊂ F̃1 ⊂ . . .} is E-commensurable withF if and only if dim Fi = dim F̃i for all i ,
and Fi = F̃i for large enough i . The flag F is maximal, and F ′ = F , F ′′ = F \ {0}.

(iii) Put F = {{0} = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ F−2 ⊂ F−1 ⊂ V }, where
Fi = 〈e1, e3, . . . , e2i−1〉C, F−i = 〈{e j , j odd} ∪ {e2 j , j > i}〉C for i ≥ 1. This gen-
eralized flag is clearly not a flag, and is maximal. Here F ′ = F \ V , F ′′ = F \ {0}.
Note also that F̃ ∈ X = F�(F , E) does not imply that F̃i = Fi for i large enough.
For example, let F̃1 = Ce2,

F̃i = 〈e2, e3, e5, e7, . . . , e2i−1〉C

for i > 1, and F̃−i = 〈{e j , j odd, j ≥ 3} ∪ {e2} ∪ {e2 j , j > i}〉C, i ≥ 1, then F̃ ∈
X , but F̃i �= Fi for all i .

Remark 2.5 In all above examples X = G/PF , where PF is the stabilizer of F in
G. The ind-grassmannians in (i) are precisely the ind-varieties G/PF for maximal
splitting parabolic ind-subgroups PF ⊂ G. The ind-variety F�(F , E), where F is
the flag in (ii), equals G/PF where PF is the upper-triangular Borel ind-subgroup
in the realization of G as Z>0 × Z>0-matrices.

3 G0-Orbits as Ind-Manifolds

In this section, we establish a basic property of the orbits onG/P of a real formG0 of
G = SL(∞, C). Precisely, we prove that the intersection of a G0-orbit with Xn

is a single orbit. Consequently, each G0-orbit is an infinite-dimensional real ind-
manifold.

We start by describing explicitly the bijection X → lim−→ Xn mentioned in Sect. 2.3.
Let F be a generalized flag in V compatible with the basis E , and X = F�(F , E)

be the corresponding ind-variety of generalized flags. Recall that we consider X as
the inductive limit of flag varieties Xn , where the embeddings ιn : Xn ↪→ Xn+1 are
defined in the previous subsection. Put E ′

m = {e1, e2, . . . , em} and Vm = 〈E ′
m〉C.

The construction of ιn can be reformulated as follows.
The dimensions of the spaces of the flag F ∩ Vm form a sequence of integers

0 = dm,0 < dm,1 < . . . < dm, sm−1 < dm, sm = dim Vm = m.

Let F�(dm,Vm) be the flag variety of type dm = (dm,1, . . . , dm,sm−1) in Vm . Since
either sm+1 = sm or sm+1 = sm + 1, there is a unique jm such that dm+1,i = dm,i + 1
for 0 ≤ i < jm and dm+1, jm > dm, jm . Then, for jm ≤ i < sm , dm+1,i = dm,i + 1 in
case sm+1 = sm , and dm+1,i = dm,i−1 + 1 in case sm+1 = sm + 1. In other words,
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jm ≤ sm is the minimal nonnegative integer for which there is α ∈ A with

dim F ′′
α ∩ Vm+1 = dim F ′′

α ∩ Vm + 1.

Now, for each m we define an embedding ξm : F�(dm,Vm) ↪→ F�(dm+1,Vm+1):
given a flag Gm = {{0} = Gm

0 ⊂ Gm
1 ⊂ . . . ⊂ Gm

sm = Vm} ∈ F�(dm,Vm), we
set ξm(Gm) = Gm+1 = {{0} = Gm+1

0 ⊂ Gm+1
1 ⊂ . . . ⊂ Gm+1

sm+1
= Vm+1} ∈ F�(dm+1,

Vm+1), where

Gm+1
i =

⎧
⎪⎨

⎪⎩

Gm
i , if 0 ≤ i < jm,

Gm
i ⊕ Cem+1, if jm ≤ i ≤ sm+1 and sm+1 = sm,

Gm
i−1 ⊕ Cem+1, if jm ≤ i ≤ sm+1 and sm+1 = sm + 1.

(2)

For any G ∈ X we choose a positive integer mG such that F and G are com-
patible with bases containing {ei | i ≥ mG}, and VmG contains a subspace which
makes these generalized flags E-commensurable. In addition, we can assume that
mF ≤ mG for all G ∈ X (in fact, we can set mF = 1 because F is compatible with
E). Let mF ≤ m1 < m2 < . . . be an arbitrary sequence of integer numbers. For
n ≥ 1, denote En = E ′

mn
, Vn = Vmn . Then Xn = F�(dmn ,Vmn ) and, according to (1),

ιn = ξmn+1−1 ◦ ξmn+1−2 ◦ . . . ◦ ξmn . The bijection X → lim−→ Xn from Sect. 2.3 now has
the form G �→ lim−→Gn , where Gn = {F ∩ Vn, F ∈ G} for n such that mn ≥ mG . By
a slight abuse of notation, in the sequel we will denote the canonical embedding
Xn ↪→ X by the same letter ιn .

Let G0 be a real form of G = SL(∞, C) (see Theorem 2.2). The group
Gn = SL(Vn) naturally acts on Xn , and the map ιn is equivariant: g · ιn(x) =
ιn(g · x), g ∈ Gn ⊂ Gn+1, x ∈ Xn . Put also G0

n = G0 ∩ Gn . Then G0
n is a real form

of Gn . For the rest of the paper we fix some specific assumptions on Vn for different
real forms. We now describe these assumptions case by case.

Let G0 = SU(p,∞) or SU(∞,∞). Recall that the restriction ωn of the fixed
nondegenerate Hermitian form ω to Vn is nondegenerate. From now on, we assume
that if e ∈ En+1 \ En , then e is orthogonal to Vn with respect to ωn+1. Next, let
G0 = SL(∞, R). Here we assume that mn is odd for each n ≥ 1, and that 〈En〉R is a
real form of Vn . Finally, forG0 = SL(∞, H), we assume thatmn is even for all n ≥ 1
and that J (e2i−1) = −e2i , J (e2i ) = e2i−1 for all i . These additional assumptions align
the real form G0 with the flag variety X .

Our main result in this section is as follows.

Theorem 3.1 If ιn(Xn) has nonempty intersection with a G0
n+1-orbit, then that

intersection is a single G0
n-orbit.

Proof The proof goes case by case.
Case G0 = SU(∞,∞). (The proof for G0 = SU(p,∞), 0 ≤ p < ∞, is com-

pletely similar.) Pick two flags
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A = {{0} = A0 ⊂ A1 ⊂ . . . ⊂ Asmn
= Vn},

B = {{0} = B0 ⊂ B1 ⊂ . . . ⊂ Bsmn
= Vn}

in Xn such that Ã = ιn(A) and B̃ = ιn(B) belong to a given G0
n+1-orbit.

Put

Ã = {{0} = Ã0 ⊂ Ã1 ⊂ . . . ⊂ Ãsmn+1
= Vn+1},

B̃ = {{0} = B̃0 ⊂ B̃1 ⊂ . . . ⊂ B̃smn+1
= Vn+1}.

There exists ϕ̃ ∈ SU(ωn+1, Vn+1) satisfying ϕ̃(Ã) = B̃, i.e., ϕ̃( Ãi ) = B̃i for all i
from 0 to smn+1 . To prove the result, we must construct an isometry ϕ : Vn → Vn

satisfyingϕ(A) = B. Of course, one can scaleϕ to obtain an isometry of determinant
1. By Huang’s extension of Witt’s Theorem [11, Theorem 6.2], such an isometry
exists if and only if Ai and Bi are isometric for all i from 1 to smn , and

dim(Ai ∩ A⊥,Vn
j ) = dim(Bi ∩ B⊥,Vn

j ) (3)

for all i < j from 1 to smn . (Here U⊥,Vn denotes the ωn-orthogonal complement
within Vn of a subspace U ⊂ Vn .) Pick i from 1 to smn . Since en+1 is orthogonal to
Vn and ϕ̃ establishes an isometry between Ãi and B̃i , the first condition is satisfied.
So it remains to prove (3).

To do this, denote Cn = 〈En+1 \ En〉C. Since Cn is orthogonal to Vn , for given
subspaces U ⊂ Vn , W ⊂ Cn one has (U ⊕ W )⊥,Vn+1 = U⊥,Vn ⊕ W⊥,Cn . Hence, if
Ãk = Ak ⊕ Wk, B̃k = Bk ⊕ Wk for k ∈ {i, j} and some subspaces ofWi ,Wj ⊂ Cn ,
then

Ãi ∩ Ã⊥,Vn+1
j = (Ai ⊕ Wi ) ∩ (A⊥,Vn

j ⊕ W⊥,Cn
j ) = (Ai ∩ A⊥,Vn

j ) ⊕ (Wi ∩ W⊥,Cn
j ),

and the similar equality holds for B̃i ∩ B̃⊥,Vn+1
j . The result follows.

Case G0 = SL(∞, R). Here we first prove that if A and B are flags in Vn ,
Ã and B̃ are their images in Vn+1 under the map ξn , and there exists
ϕ ∈ GL(Vn+1, R) satisfyingϕ(Ã) = B̃, then there exists an operator ν ∈ GL(Vn, R)

such that ν(A) = B.
Consider first the case when ϕ(en+1) /∈ Vn . Denote ϕ(en+1) = v + ten+1, v ∈ Vn ,

t ∈ R, t �= 0. Then t−1ϕ ∈ GL(Vn+1, R) maps Ã to B̃, so we can assume that t = 1,
i.e., ϕ(en+1) = v + en+1. Since

ϕ(A jn ⊕ Cen+1) = ϕ( Ã jn ) = B̃ jn = Bjn ⊕ Cen+1,
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the vector v belongs to Bi for all i ≥ jn . Let ψ ∈ GL(Vn+1, R) be defined by

ψ(x + sen+1) = x + s(en+1 − v), x ∈ Vn, s ∈ C.

Clearly, ψ(ϕ(en+1)) = en+1.
If i < jn and x ∈ Ai , then ϕ(x) ∈ Bi ⊂ Vn , so ψ(ϕ(x)) = ϕ(x) ∈ Bi . If i ≥ jn

and x ∈ Ar , where r = i for sn+1 = sn and r = i − 1 for sn+1 = sn + 1, then we put
ϕ(x) = y + sen+1, y ∈ Bi , s ∈ C. One has

ψ(ϕ(x)) = ψ(y + sen+1) = y + s(en+1 − v) ∈ Br ⊕ Cen+1 = B̃i .

In both cases the operator ψ ◦ ϕ maps Ãi to B̃i for all i from 0 to sn+1. Hence
we may assume without loss of generality that ϕ(en+1) = en+1. Then the operator
ν = π ◦ ϕ|Vn

, where π : Vn+1 → Vn is the projection onto Vn along Cen+1, is invert-
ible, is defined over R, and maps each Ai to Bi , 0 ≤ i ≤ sn , as required.

Suppose now that ϕ(en+1) = b ∈ Vn . In this case sn+1 = sn because the condition

ϕ(A jn−1 ⊕ Cen+1) = ϕ( Ã jn ) = B̃ jn = Bjn−1 ⊕ Cen+1

contradicts the equality sn+1 = sn + 1. Arguing as above, we see that b ∈ Bi for all
i ≥ jn . If ϕ−1(en+1) = a /∈ Vn , then one can construct ν as in the case when b /∈ Vn

with ϕ−1 instead of ϕ. Therefore, we may assume that a ∈ Ai for all i ≥ jn . Let
U 0 be an R-subspace of V0

n such that V0
n = U 0 ⊕ Rb, then Vn = U ⊕ Cb, where

U = C ⊗R U 0. If a, b are linearly independent, we choose U 0 so that a ∈ U 0.
Define ν as follows: if ϕ(x) = y + sb + ren+1, x ∈ Vn , y ∈ U , s, r ∈ C, then put
ν(x) = y + (s + r)b. One can easily check that ν satisfies all required conditions.

Nowwe are ready to prove the result forG0 = SL(∞, R). Namely, letA,B ∈ Xn ,
and ϕ ∈ SL(Vn, R) satisfy ϕ(ιn(A)) = ιn(B), then ϕ belongs to GL(Vmn+1 , R).
Hence there exists ν ′ ∈ GL(Vmn+1−1, R) which maps ξmn+1−2 ◦ . . . ◦ ξmn (A) to
ξmn+1−2 ◦ . . . ◦ ξmn (B) because ιn = ξmn+1−1 ◦ ξmn+1−2 ◦ . . . ◦ ξmn . Continuing this
process, we see that there exists an operator ν ′′ ∈ GL(Vn, R) such that
ν ′′(A) = B. Since Vn is odd-dimensional, one can scale ν ′′ to obtain a required
operator ν ∈ SL(Vn, R).

Case G0 = SL(∞, H). LetA,B be twoflags inV2n and Ã = ξ2n+1 ◦ ξ2n(A), B̃ =
ξ2n+1 ◦ ξ2n(B). Let ϕ ∈ SL(V2n+2, H) satisfy ϕ(Ã) = B̃. Our goal is to construct
ν ∈ SL(V2n, H) such that ν(A) = B. Then, repeated application of this procedure
will imply the result.

For simplicity, denote e = e2n+1, e′ = e2n+2. Recall that J (e) = −e′, J (e′) =
e, and note that b = ϕ(e) ∈ V2n if and only if b′ = ϕ(e′) ∈ V2n , because V2n is
J -invariant and ϕ commutes with J .
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First, suppose that both b and b′ do not belong to V2n . The vector b admits a
unique representation in the form b = v + te + t ′e′ for v ∈ V2n , t, t ′ ∈ C. Then

b′ = ϕ(e′) = ϕ(−J (e)) = −J (ϕ(e)) = −J (b) = v′ − t̄ ′e + t̄ e′,

where v′ = −J (v) ∈ V2n . Set

T =
(
t −t̄ ′
t ′ t̄

)
, d = det T = |t |2 + |t ′|2 ∈ R>0.

Let ψ ∈ GL(V2n+2) be the operator defined by ψ(x) = x , x ∈ V2n ,

ψ(e) = −d−1(t̄(v + e) − t ′(v′ + e′)),

ψ(e′) = −d−1(t̄ ′(v + e) + t (v′ + e′)).

It is easy to see that ψ commutes with J , det ψ = det T−1 ∈ R>0, and ψ(b) = e,
ψ(b′) = e′. Furthermore, one can check that ν = π ◦ ψ ◦ ϕ|V2n

: V2n → V2n com-
mutes with J and maps A to B, where π : V2n+2 → V2n is the projection onto V2n

along Ce ⊕ Ce′. Since det ν ∈ R>0, one can scale ν to obtain an operator from
SL(V2n, H), as required.

Second, suppose that b, b′ ∈ V2n . If a = ϕ−1(e) and a′ = ϕ−1(e′) do not belong
to V2n , one can argue as in the first case with ϕ−1 instead of ϕ, so we may assume
without loss of generality that a, a′ ∈ V2n . (Note that if a, a′, b, b′ are linearly
dependent, then Ca ⊕ Ca′ = Cb ⊕ Cb′.) In this case, denote by U a J -invariant
subspace ofV2n spanned by some basic vectors ei such thatV2n = U ⊕ Cb ⊕ Cb′. (If
a, a′, b, b′ are linearly independent, we chooseU such that a, a′ ∈ U .) Define ν by
the following rule: ifϕ(x) = y + sb + sb′ + re + r ′e′, x ∈ V2n , y ∈ U , s, s ′, r, r ′ ∈
C, then ν(x) = y + (s + r)b + (s ′ + r ′)b′. One can check that det ν = det ϕ = 1, ν
commutes with J (so ν ∈ SL(V2n, H)) and maps each Ai , 0 ≤ i ≤ sn , to Bi . Thus,
ν satisfies all required conditions. �

The following result is an immediate corollary of this theorem.

Corollary 3.2 Let Ω be a G0-orbit on X , and Ωn = ι−1
n (Ω) ⊂ Xn. Then

(i) Ωn is a single G0
n-orbit;

(ii) Ω is an infinite-dimensional real ind-manifold.

Proof (i) Suppose A, B ∈ Ωn . Then there exists m ≥ n such that images of A and
B under the morphism ιm−1 ◦ ιm−2 ◦ . . . ◦ ιn belong to the same G0

m-orbit. Applying
Theorem 3.1 subsequently to ιm−1, ιm−2, . . ., ιn , we see that A and B belong to the
same G0

n-orbit.
(ii) By definition, Ω = lim−→ Ωn . Next, (i) implies that Ω is a real ind-manifold.

By Theorem 2.1 (v), we have dimR Ωn ≥ dimC Xn . Since limn→∞ dimC Xn = ∞,
we conclude that Ω is infinite dimensional. �
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4 Case of Finitely Many G0-Orbits

We give now a criterion for X = F�(F , E) to have a finite number of G0-orbits, and
observe that, if this is the case, the degeneracy order on the G0-orbits in X coincides
with that on the G0

n-orbits in Xn for large enough n. Recall that the degeneracy order
on the orbits is the partial order Ω ≤ Ω ′ ⇐⇒ Ω ⊆ Ω

′
.

A generalized flag F is finite if it consists of finitely many (possibly infinite-
dimensional) subspaces. We say that a generalized flagF has finite type if it consists
of finitely many subspaces of V each of which has either finite dimension or finite
codimension in V . A finite type generalized flag is clearly a flag. An ind-variety
X = F�(F , E) is of finite type if F is of finite type (equivalently, if any F̃ ∈ X is
of finite type).

Proposition 4.1 For G0 = SU(∞,∞), SL(∞, R) and SL(∞, H), the number of
G0-orbits on X is finite if and only if X is of finite type. For G0 = SU(p,∞),
0 < p < ∞, the number of G0-orbits on X is finite if and only if F is finite. For
G0 = SU(0,∞), the number of G0-orbits on X equals 1.

Proof
Case G0 = SU(∞,∞). First consider the case X = Gr(F, E), where F is a sub-
space of V . Clearly, X is of finite type if and only if dim F < ∞ or codim V F < ∞.
Note that for ind-grassmannians, the construction of ιn from (1) is simply the fol-
lowing. Given n, let Wn+1 be the span of En+1 \ En , and Un+1 be a fixed (kn+1 −
kn)-dimensional subspace of Wn+1, where ki = dim F ∩ Vi . Then the embedding
ιn : Xn = Gr(kn, Vn) → Xn+1 = Gr(kn+1, Vn+1) has the form ιn(A) = A ⊕Un+1

for A ∈ Xn .
Recall that if codim V F = k, then the map

U �→ U # = {φ ∈ V∗ | φ(x) = 0 for all x ∈ U }

induces an isomorphism Gr(F, E) → {F ′ ⊂ V∗ | dim F ′ = k} = Gr(k, V∗); we
denote this isomorphism by D. To each operator ψ ∈ GL(V, E) one can assign
the linear operator ψ∗ on V∗ acting by (ψ∗(λ))(x) = λ(ψ(x)), λ ∈ V∗, x ∈ V . This
defines an isomorphism SL(V, E) → SL(V∗, E∗), and D becomes a G-equivariant
isomorphism of ind-varieties. Hence, for X of finite type, we can consider only the
case when dim F = k.

If dim F = k, then X consists of allk-dimensional subspaces ofV . Pick A, B ∈ X .
There exists n such that Xn = Gr(k, Vn) and A, B ∈ ιn(Xn). Witt’s Theorem shows
that, for eachm ≥ n, A and B belong to the sameG0

m-orbit if and only if the signatures
of the forms ωm |A and ωm |B coincide. Since ωm |A,B = ω|A,B , we conclude A and B
belong to the sameG0-orbit if and only if their signatures coincide. Thus, the number
of G0-orbits on X is finite.

On the other hand, if dim F = codim V F = ∞, then

lim
n→∞ kn = lim

n→∞(dim Vn − kn) = ∞.
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In this case, the number of possible signatures of the restriction of ωn to a kn-
dimensional subspace tends to infinity, hence the number of G0

n-orbits tends to infin-
ity. By Theorem 3.1, the number of G0-orbits on X is infinite.

Now, consider the general case X = F�(F , E). Let F be of finite type. Then
F = A ∪ B where A and B are finite type subflags of F consisting of finite-
dimensional and finite-codimensional subspaces from F respectively. Note that A
and B are compatible with the basis E , hence there exists N such that if n ≥ N , then
A ⊆ Vn for all A ∈ A and codim Vn (B ∩ Vn) = codim V B for all B ∈ B. Set

A = {A1 ⊂ A2 ⊂ . . . ⊂ Ak},
B = {B1 ⊂ B2 ⊂ . . . ⊂ Bl},

and ai = dim Ai , 1 ≤ i ≤ k, bi = codim V Bi , 1 ≤ i ≤ l.
Denote by s(U ) the signature of ω|U for a finite-dimensional subspace U ⊂ V .

According to [11, Theorem 6.2], to check that the number of G0-orbits on X is finite,
it is enough to prove that all of the following sets are finite:

SA = {s(A) | A ⊂ Vn, n ≥ N , dim A = ai for some i},
SB = {s(B) | B ⊂ Vn, n ≥ N . codim Vn B = bi for some i},
PA = {dim A ∩ A⊥,Vn

0 | A, A0 ⊂ Vn, n ≥ N ,

dim A = ai , dim A0 = a j for some i < j},
PB = {dim B ∩ B⊥,Vn

0 | B, B0 ⊂ Vn, n ≥ N ,

codim Vn B = bi , codim Vn B0 = b j for some i < j},
PAB = {dim A ∩ B⊥,Vn | A, B ⊂ Vn, n ≥ N ,

dim A = ai , codim Vn B = b j for some i, j}.

The finiteness of SA and PA is obvious. In particular, this implies that the number of
G0-orbits on F�(A, E) is finite. Applying the map U �→ U # described above, we
see that the number of G0-orbits on F�(B, E) is finite. Consequently, the sets SB
and PB are finite. Finally, since ωn = ω|Vn

is nondegenerate for each n, we see that if
B ⊂ Vn and codim Vn B = bi for some i , then dim B⊥,Vn = codim Vn B = bi . Hence
PAB is finite. Thus, if F is of finite type then the number of G0-orbits on F�(F , E)

is finite.
On the other hand, suppose that F is not of finite type. If there is a space F ∈ F

with dim F = codim V F = ∞, then we are done, because the map

X → Gr(F, E) : G �→ the subspace in G corresponding to F

is a G-equivariant epimorphism of ind-varieties, and the number of G0-orbits on the
ind-grassmannian Gr(F, E) is infinite by the above.

If all F ∈ F are of finite dimension or finite codimension, there exist subspaces
Fn ∈ F of arbitrarily large dimension or arbitrarily large codimension. In the former
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case the statement follows from the fact that the number of possible signatures of
such spaces tends to infinity, and in the latter case the statement gets reduced to the
former one via the map U �→ U #.

Case G0 = SU(p,∞), 0 < p < ∞. First suppose that F is finite, i.e., |F | =
N < ∞. Given n ≥ 1, denote Sn = {s(A) | A ⊂ Vn} and Pn = {dim A ∩ B⊥,Vn |
A ⊂ B ⊂ Vn}. Let s(A) = (a, b, c) for some subspace A of Vn . Then, clearly, a ≤ p
and c ≤ p, hence |Sn| ≤ p2. On the other hand, if A ⊂ B are subspaces of Vn

then A⊥,Vn ⊃ B⊥,Vn , so A ∩ B⊥,Vn ⊂ A ∩ A⊥,Vn . But dim A ∩ A⊥,Vn = c ≤ p. Thus
|P| ≤ p. Now [11, Theorem 6.2] shows that the number of G0

n-orbits on Xn is less
or equal to N |Sn|N 2|Pn| ≤ N 3 p3. Hence, by Theorem 3.1, the number of G0-orbits
on X is finite.

Now suppose that F is infinite. In this case, given m ≥ 1, there exists n such
that the length of each flag from Xn is not less than m, the positive index of ω|Vn

(i.e., the dimension of a maximal positive definite subspace of Vn) equals p, and
codim Vn Fm ≥ p, where Fn = {F1 ⊂ . . . ⊂ Fm ⊂ . . . ⊂ Vn}. It is easy to check that
the number of G0

n-orbits on Xn is not less than m. Consequently, by Theorem 3.1,
the number of G0-orbits on X is not less than m. The proof for SU(p,∞), p > 0, is
complete.

Case G0 = SU(0,∞). Evident.
Case G0 = SL(∞, R). First, let X = Gr(F, V ) for a subspace F ⊂ V compati-

ble with E . If dim F = k < ∞, then X consists of all k-dimensional subspaces of
V . We claim that the number of G0-orbits on X equals k + 1. Indeed, pick A, B ∈ X
and n ≥ k + 1 such that A, B ∈ ιn(Xn) (recall that dim Vn = 2n − 1). Clearly, if A
and B belong to the same G0-orbit, then

dim A ∩ τ (A) = dim B ∩ τ (B). (4)

Since n ≥ k + 1 and Vn is τ -stable, dim A ∩ τ (A) can be an arbitrary integer number
from 0 to k, hence the number of G0-orbits on X is at least k + 1.

On the other hand, suppose that (4) is satisfied. Let A′, B ′ be complex subspaces
of A, B respectively such that A = A′ ⊕ (A ∩ τ (A)) and B = B ′ ⊕ (B ∩ τ (B)).
Clearly, A′ ∩ τ (A′) = B ′ ∩ τ (B ′) = 0. Furthermore, it is easy to see that

A + τ (A) = (A ∩ τ (A)) ⊕ (A′ ⊕ τ (A′)),
B + τ (B) = (B ∩ τ (B)) ⊕ (B ′ ⊕ τ (B ′)).

For simplicity, set Aτ = A + τ (A), A′
τ = A′ ⊕ τ (A′), Aτ = A ∩ τ (A), and define

Bτ , B ′
τ , B

τ similarly. Then Aτ = Aτ ⊕ A′
τ , Bτ = Bτ ⊕ B ′

τ . Note that all these sub-
spaces are defined over R. By [12, Lemma 2.1], the SL(A′

τ , R)-orbit of A′ is open in
the corresponding grassmannian. Furthermore, there are two open SL(A′

τ , R)-orbits
on this grassmannian, and their union is a single GL(A′

τ , R)-orbit. Hence there exists
an operator ψ : Aτ → Bτ which is defined over R and maps A′

τ , A
′, Aτ to B ′

τ , B
′, Bτ

respectively. Since Aτ and Bτ are defined over R (i.e., are τ -invariant), there exist
τ -invariant complements A0, B0 of Aτ , Bτ in Vn . Thus one can extend ψ to an oper-
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ator ν ∈ GL(Vn, R) such that ν(A) = B. Finally, since dim Vn is odd, we can scale
ν to obtain an operator from SL(Vn, R) which maps A to B, as required.

At the contrary, assume that dim F = ∞. As it was shown above, given m ≥ n,
two finite-dimensional spaces A, B ∈ Vn belong to the same G0

m-orbit if and only
if dim A ∩ τ (A) = dim B ∩ τ (B), so the number of G0

m-orbits on the grassmannian
of kn-subspaces of Vn equals kn + 1. But we have limn→∞ kn = ∞, so the number
of G0-orbits on X is infinite by Theorem 3.1.

Now, consider the general case X = F�(F , E). We claim that, given a type
d = (d1, . . . , dr ), there exists a number u(d) such that the number of G0

n-orbits on
the flag variety F�(d, Vn) is less or equal than u(d), i.e., this upper bound depends
only on d, but not on the dimension of Vn . To prove this, denote by Kn = SO(Vn)

the subgroup of Gn preserving the bilinear form

βn(x, y) =
dim Vn∑

i=1

xi yi , x =
dim Vn∑

i=1

xi ei , y =
dim Vn∑

i=1

yi ∈ Vn.

By Matsuki duality [4], there exists a one-to-one correspondence between the set of
Kn-orbits and the set of G0

n-orbits on F�(d, Vn). Hence our claim follows imme-
diately from (3), because [11, Theorem 6.2] holds for nondegenerate symmetric
bilinear forms.

Finally, suppose thatF is of finite type. LetA,B, N be as for SU(∞,∞). Note that
the form βn is nondegenerate, hence the βn-orthogonal complement to a subspace
B ⊂ Vn is of dimension codim Vn B. Arguing as for SU(∞,∞) and applying our
remark about Matsuki duality, we conclude that there exists a number u(F) such
that the number of G0

n-orbits on Xn is less or equal to u(F) for every n ≥ N . It
follows from Theorem 3.1 that the total number of G0-orbits on X is also less or
equal to u(F). Finally, ifF is not of finite type, then, as in the case of SU(∞,∞), one
can use G-equivariant projections from X onto ind-grassmannians to show that the
number of G0-orbits on the ind-variety X is infinite. The proof for G0 = SL(∞, R)

is complete.
Case G0 = SL(∞, H). Denote by κn an antisymmetric bilinear form on Vn

defined by

κn(e2i−1, e2i ) = 1, κn(e2i , e2i−1) = −1, κn(ei , e j ) = 0 for |i − j | > 1.

Let Kn be the subgroup of Gn preserving this form. Then Kn ∩ G0
n is a maximal

compact subgroup ofG0
n (see, e.g., [9]), so, by duality, given d, there exists a bijection

between the set of Kn-orbits and the set of G0
n-orbits on the flag variety F�(d, Vn).

Since Kn is isomorphic to Spdim Vn
(C), we can argue as for SL(∞, R) to complete

the proof. �
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Example 4.2 Let X = Gr(k, V ) for k < ∞. Then

|X/G0| =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(p + 1)(2k − p + 2)/2 for G0 = SU(p,∞), p ≤ k,

(k + 1)(k + 2)/2 for G0 = SU(p,∞), k ≤ p,
(k + 1)(k + 2)/2 for G0 = SU(∞,∞),

k + 1 for G0 = SL(∞, R),

[k/2] + 1 for G0 = SL(∞, H).

For SU(p,∞) and SU(∞,∞), this follows from the formula for the number
of SU(p, n − p)-orbits on a finite-dimensional grassmannian, see Sect. 2.1. For
SL(∞, R), this was proved in Proposition 4.1; the proof for SL(∞, H) is similar
to the case of SL(∞, R).

As a corollary of Theorem 3.1, we describe the degeneracy order on the set X/G0

of G0-orbits on an arbitrary ind-variety X = F�(F, E) of finite type. By definition,
Ω ≤ Ω ′ ⇐⇒ Ω ⊆ Ω

′
. We define the partial order on the set Xn/G0

n of G
0
n-orbits

on Xn in a similar way.

Corollary 4.3 Suppose the number of G0-orbits on X = F�(F , E) is finite. Then
there exists N such that X/G0 is isomorphic as partially ordered set to Xn/G0

n for
each n ≥ N.

Proof Given a G0-orbit Ω on X , there exists n such that Ω ∩ ιn(Xn) is nonempty.
Since there are finitely many G0-orbits on X , there exists N such that Ω ∩ ιN (XN )

is nonempty for each orbitΩ . By Theorem 3.1, given n ≥ N and aG0-orbitΩ on X ,
there exists a unique G0

n-orbit Ωn on Xn such that ι−1
n (Ω ∩ ιn(Xn)) = Ωn . Hence,

the map
αn : X/G0 → Xn/G

0
n, Ω �→ Ωn

is well defined for each n ≥ N . It is clear that this map is bijective. It remains to note
that, by the definition of the topology on X , a G0-orbit Ω is contained in the closure
of a G0-orbit Ω ′ if and only if Ωn is contained in the closure of Ω ′

n for all n ≥ N .
Thus, αn is in fact an isomorphism of the partially ordered sets X/G0 and Xn/G0

n
for each n ≥ N . �

5 Open and Closed Orbits

In this section we provide necessary and sufficient conditions for a given G0-orbit
on X = F�(F , E) to be open or closed. We also prove that X has both an open and
a closed orbit if and only if the number of orbits is finite.

First, consider the case of open orbits. Pick any n. Recall [13, 23] that the G0
n-obit

of a flag A = {A1 ⊂ Ak ⊂ . . . ⊂ Ak} ∈ Xn is open if and only if
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for G0 = SU(p,∞) or SU(∞,∞) : all Ai ’s are nondegenerate with respect to ω;
for G0 = SL(∞, R) : for all i, j, dim Ai ∩ τ (A j ) is minimal,

i.e., equals max{dim Ai + dim A j − dim Vn, 0};
for G0 = SL(∞, H) : for all i, j, dim Ai ∩ J (A j ) is minimal in the above sense.

Note that, for any two generalized flags F1 and F2 in X , there is a canonical
identification of F1 and F2 as linearly ordered sets. For a space F ∈ F1, we call the
image of F under this identification the space in F2 corresponding to F .

Fix an antilinear operator μ on V . A point G in X = F�(F , E) is in general
position with respect to μ if F ∩ μ(H) does not properly contain F̃ ∩ μ(H̃) for
all F, H ∈ G and all G̃ ∈ X , where F̃ , H̃ are the spaces in G̃ corresponding to
F , H respectively. A similar definition can be given for flags in Xn . Note that, for
G0 = SL(∞, R) or SL(∞, H), the G0

n-orbit of A ∈ Xn is open if and only if A is
in general position with respect to τ or J respectively.

With the finite-dimensional case in mind, we give the following

Definition 5.1 A generalized flag G is nondegenerate if

for G0 = SU(p,∞) or SU(∞,∞) :
each F ∈ G is nondegenerate with respect to ω;

for G0 = SL(∞, R) or SL(∞, H) :
G is in general position with respect to τ or J respectively.

Remark 5.2 Ageneralized flag being nondegeneratewith respect toω can be thought
of as being “in general position with respect to ω”. Therefore, all conditions in
Definition 5.1 are clearly analogous.

Proposition 5.3 The G0-orbitΩ of G ∈ X is open if and only if G is nondegenerate.

Proof By the definition of the topology on X , Ω is open if and only if
Ωn = ι−1

n (Ω ∩ ιn(Xn)) is open for each n.
First, suppose G0 = SU(p,∞) or SU(∞,∞). To prove the claim in this case, it

suffices to show that A ∈ G is nondegenerate with respect to ω if and only if ω|A∩Vn

is nondegenerate for all n for which mn ≥ mG . This is straightforward. Indeed, if
A is degenerate, then there exists v ∈ A such that ω(v,w) = 0 for all w ∈ A. Let
v ∈ Vn0 for some n0 withmn0 ≥ mG . Then ω|A∩Vn0

is degenerate. On the other hand,
if v ∈ A ∩ Vn is orthogonal to all w ∈ A ∩ Vn for some n such that mn ≥ mG , then
v is orthogonal to all w ∈ A because em is orthogonal to Vn for m > n. The result
follows.

Second, consider the caseG0 = SL(∞, R). SupposeΩ is open, soΩn is open for
each n satisfying mn ≥ mG . Assume G ∈ X is not nondegenerate. Then there exist
G̃ ∈ X and A, B ∈ G such that Ã ∩ τ (B̃) � A ∩ τ (B), where Ã, B̃ are the subspaces
in G̃ corresponding to A, B respectively. Let v ∈ (A ∩ τ (B)) \ ( Ã ∩ τ (B̃)), and n be
such that v ∈ Vn . Since Vn is τ -invariant, we have v ∈ (An ∩ τ (Bn)) \ ( Ãn ∩ τ (B̃n))
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where An = A ∩ Vn , Bn = B ∩ Vn , Ãn = Ã ∩ Vn , B̃n = B̃ ∩ Vn . This means that
Ãn ∩ τ (B̃n) is properly contained in An ∩ τ (Bn). Hence, Gn is not in general position
with respect to τ |Vn

, which contradicts the condition that Ωn is open.
Now, assume that Ωn is not open for some n with mn ≥ mG . This means that

there exist An, Bn ∈ Gn = ι−1
n (G) and G̃n ∈ Xn so that An ∩ τ (Bn) properly contains

Ãn ∩ τ (B̃n), where Ãn and B̃n are the respective subspaces in G̃n corresponding
to An and Bn . Since τ (en+1) = en+1, the space An+1 ∩ τ (Bn+1) properly contains
Ãn+1 ∩ τ (B̃n+1), where An+1, Bn+1, Ãn+1, B̃n+1 are the respective images of An , Bn ,
Ãn , B̃n under the embedding Xn ↪→ Xn+1. Repeating this procedure, we see that G
is not nondegenerate. The result follows.

The case G0 = SL(∞, H) can be considered similarly. �

We say that two generalized flags have the same type if there is an automorphism
of V transforming one into the other. Clearly, two E-commensurable generalized
flags always have the same type. On the other hand, it is clearly not true that two
generalized flags having the same type are Ẽ-commensurable for some basis Ẽ .

It turns out that, for G0 = SU(p,∞) and SU(∞,∞), the requirement for the
existence of an open orbit on an ind-variety of the form F�(F , E) imposes no
restriction on the type of the flag F . More precisely, we have

Corollary 5.4 If G0 = SU(p,∞), 0 ≤ p < ∞, then X always has an G0-open
orbit. If G0 = SU(∞,∞), then there exist a basis Ẽ of V and a generalized flag F̃
such that F and F̃ are of the same type and X̃ = F�(F̃, Ẽ) has an open G0-orbit.

Proof For SU(p,∞), let n be a positive integer such that the positive index of ω|Vn

equals p. Let Gn ∈ Xb be a flag in Vn consisting of nondegenerate subspaces (i.e.,
the G0

n-orbit of Gn is open in Xn). Denote by g a linear operator from Gn such that
g(Fn) = Gn , where Fn = ι−1

n (F) ∈ Xn . Then, clearly, g(F) belongs to X and is
nondegenerate. Therefore the G0-orbit of g(F) on X is open.

Now consider the case G0 = SU(∞,∞). Let Ẽ be an ω-orthogonal basis of V .
Fix a bijection E → Ẽ . This bijection defines an automorphism V → V . Denote
by F̃ the generalized flag consisting of the images of subspaces from F under
this isomorphism. Then F̃ and F are of the same type, and each space in F̃ is
nondegenerate as it is spanned by a subset of Ẽ . Thus the G0-orbit of F̃ on X̃ is
open. �

Remark 5.5 Of course, in general an ind-variety X̃ = F�(F̃, Ẽ) having an open
SU(∞,∞)-orbit does not equal a given X = F�(F , E).

The situation is different for G0 = SL(∞, R). While an ind-grassmannian
Gr(F, E) has an open orbit if and only if either dim F < ∞ or codim V F < ∞,
an ind-variety of the form X̃ = F�(F̃, Ẽ), where F̃ has the same type as the flag
F from Example 2.4 (ii), cannot have an open orbit as long as the basis Ẽ satisfies
τ (̃e) = ẽ for all ẽ ∈ Ẽ . Indeed, suppose F̂ = {{0} = F̂0 ⊂ F̂1 ⊂ . . .} ∈ X̃ . As we
pointed out in Example 2.4 (ii), there exists N such that F̂n = F̃n = 〈̃e1, . . . , ẽn〉C

for n ≥ N . Pick n so that mn ≥ max{2N , m̃F̂ }, where m̃F̂ is an integer such that F̃
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and F̂ are compatible with respect to bases containing {̃ei , i ≥ m̃F̂ }. Then the flag
F̂n = ι−1

n (F̂) ∈ X̃n contains the subspace F̂N which is defined over R. Thus, F̂n is
not in general position with respect to τ |Vn

, so the G0
n-orbit of F̂n in X̃n is not open.

Consequently, the G0-orbit of F̂ in X̃ is not open.
Let now X̃ = F�(F̃ , Ẽ) where F̃ is a generalized flag having the same type as

the generalized flag F from Example 2.4 (iii). Recall that

F = {{0} = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ F−2 ⊂ F−1 ⊂ V },

where Fi = 〈e1, e3, . . . , e2i−1〉C, F−i = 〈{e j , j odd} ∪ {e2 j , j > i}〉C for i ≥ 1.We
claim that X̃ also cannot have an open orbit. Indeed, assume F̂ is Ẽ-commensurable
to F̃ . Then F̂ is compatible with a basis Ê of V such that Ê \ Ẽ is finite. This
means that there exists ẽ ∈ Ẽ and a finite-dimensional subspace F ∈ F̂ with ẽ ∈ F .
Now, pick n so that F ⊂ Vn and mn ≥ max{2 dim F, m̃F̂ }. Then F ∩ τ (F) �= 0, so
F̂n = ι−1

n (F̂) ∈ Xn is not in general position with respect to τ |Vn
.

Finally, let G0 = SL(∞, H). In this case, clearly, an ind-grassmannian Gr(F, E)

may or may not have an open orbit. A similar argument as for SL(∞, R) shows that
if F is as in Example 2.4 (ii), then X̃ cannot have an open orbit. Surprisingly, for
G0 = SL(∞, H) and X as in Example 2.4 (iii), X̃ may have an open orbit. Consider
first the case of X = F�(F , E) itself. It it easy to check that if dim Vn = n then Fn

is in general position with respect to J |Vn
for each n, so the orbit of F is open. On

the other hand, if F̃ and F have the same type and each 2n-dimensional subspace
in F̃ is spanned by the vectors ẽ1, ẽ2, ẽ5, ẽ6, . . . , ẽ4n−3, ẽ4n−2, then X̃ does not
have an open orbit because each generalized flag Ẽ-commensurable to F̃ contains a
finite-dimensional subspace F such that F ∩ J (F) �= {0}.

We now turn our attention to closed orbits. The conditions for an orbit to be closed
are based on the same idea for each of the real forms, but (as was the case for open
orbits) the details differ.

Suppose G0 = SU(∞,∞) or SU(p,∞). We call a generalized flag G in X
pseudo-isotropic if F ∩ H⊥,V is not properly contained in F̃ ∩ H̃⊥,V for all F, H ∈
G and all G̃ ∈ X , where F̃, H̃ are the subspaces in G̃ corresponding to F, H respec-
tively. A similar definition can be given for flags in Xn . An isotropic generalized
flag, as defined in [5], is always pseudo-isotropic, but the converse does not hold.
In the particular case when the generalized flag G is of the form {{0} ⊂ F ⊂ V },
G is pseudo-isotropic if and only if the kernel of the form ω|F is maximal over all
E-commensurable flags of the form {{0} ⊂ F̃ ⊂ V }.

Next, suppose G0 = SL(∞, R). A generalized flag G in X is real if τ (F) = F
for all F ∈ G. This condition turns out to be equivalent to the following condition:
F ∩ τ (H) is not properly contained in F̃ ∩ τ (H̃) for all F, H ∈ G and all G̃ ∈ X ,
where F̃, H̃ are the subspaces in G̃ corresponding to F, H respectively.

Finally, suppose G0 = SL(∞, H). We call a generalized flag G in X pseudo-
quaternionic if F ∩ J (H) is not properly contained in F̃ ∩ J (H̃) for all F, H ∈ G
and all G̃ ∈ X , where F̃, H̃ are the subspaces in G̃ corresponding to F, H
respectively. If G is quaternionic, i.e., if J (F) = F for each F ∈ G, then G is
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clearly pseudo-quaternionic, but the converse does not hold. If the generalized
flag G is of the form {{0} ⊂ F ⊂ V }, then G is pseudo-quaternionic if and only
if codim F (F ∩ J (F)) ≤ 1.

Proposition 5.6 The G0-orbit Ω of G ∈ X is closed if and only if

G is pseudo-isotropic for G0 = SU(∞,∞) and SU(p,∞);

G is real for G0 = SL(∞, R);

G is pseudo-quaternionic for G0 = SL(∞, H).

Proof First consider the finite-dimensional case, where there is a unique closed G0
n-

orbit on Xn (see Theorem 2.1). For all real forms the conditions of the proposition
applied to finite-dimensional flags in Vn are easily checked to be closed conditions
on points of Xn . Therefore, the G0

n-orbit of a flag in Vn is closed if and only if this
flag satisfies the conditions of the proposition at the finite level.

LetG0 = SU(∞,∞) or SU(p,∞). SupposeΩ is closed, soΩn is closed for each
n satisfying mn ≥ mG . Assume G is not pseudo-isotropic. Then there exist G̃ ∈ X
and A, B ∈ G such that Ã ∩ B̃⊥,V

� A ∩ B⊥,V , where Ã, B̃ are the subspaces in
G̃ corresponding to A, B respectively. Let v ∈ ( Ã ∩ B̃⊥,V ) \ (A ∩ B⊥,V ), and n be
such that v ∈ Vn andmn ≥ mG . Then v ∈ ( Ãn ∩ B̃⊥,Vn

n ) \ (An ∩ B⊥,Vn
n ), where An =

A ∩ Vn , Bn = B ∩ Vn , Ãn = Ã ∩ Vn , B̃n = B̃ ∩ Vn , because B⊥,V ∩ Vn = B⊥,Vn
n .

This means that An ∩ B⊥,Vn
n is properly contained in Ãn ∩ B̃⊥,Vn

n . Hence Gn is not
pseudo-isotropic, which contradicts the condition that Ωn is closed.

Now, assume that Ωn is not closed for some n with mn ≥ mG . This means that
there exist An, Bn ∈ Gn = ι−1

n (G) and G̃n ∈ Xn such that An ∩ B⊥,Vn
n is properly

contained in Ãn ∩ B̃⊥,Vn
n , where Ãn, B̃n are the subspaces in G̃n corresponding to

An , Bn respectively. Since each e ∈ En+1 \ En is orthogonal to Vn , An+1 ∩ B⊥,Vn+1
n+1

is properly contained in Ãn+1 ∩ B̃⊥,Vn+1
n+1 , where An+1, Bn+1, Ãn+1, B̃n+1 are the

respective images of An , Bn , Ãn , B̃n under the embedding Xn ↪→ Xn+1. Repeating
this procedure, we see that G is not pseudo-isotropic. The result follows.

Let G0 = SL(∞, R). As above, given n, denote Gn = ι−1
n (G). Note that, given

F ∈ G, τ (F) = F if and only if Fn is defined over R, i.e., τ (Fn) = Fn where
Fn = F ∩ Vn , because Vn is τ -invariant. The G0

n-orbit Ωn of Gn is closed if and
only if each subspace in Gn is defined over R. Hence if τ (F) = F for all F ∈ G, then
Ωn is closed for each n (so Ω is closed), and vice versa.

The proof for G0 = SL(∞, H) is similar to the case of SU(∞,∞) and is based
on the following facts: if A is a subspace of V , then J (A) ∩ Vn = J (A ∩ Vn) for all
n; the subspace 〈En+1 \ En〉C is J -invariant for all n. �

Corollary 5.7 If G0 = SU(p,∞) for 0 ≤ p < ∞, or SL(∞, R), then X =
F�(F , E) always has a closed orbit.

Proof For G0 = SU(p,∞) one can argue as in the proof of Corollary 5.4. For
G0 = SL(∞, R), the G0-orbit of the generalized flag F is closed because τ (e) = e
for all basic vectors e ∈ E . �
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Let G0 = SU(∞,∞). Obviously, the ind-grassmannian Gr(F, E) may have or
may not have a closed orbit. If X̃ = F�(F̃, Ẽ), where F̃ is a generalized flag having
the same type as the generalized flag F from Example 2.4 (ii) and Ẽ satisfies all
required conditions, then X̃ does not have a closed orbit. Indeed, assume F̂ ∈ X̃ ,
then F̂n contains Vk for certain n and k. The form ω|Vk

is nondegenerate, hence F̂n

is not isotropic. There exists an isotropic subspace I of V of dimension n = dim F̂n

containing F̂n ∩ F̂⊥,V
n , and it is easy to see that there exists F̂0 ∈ X̃ such that I is the

subspace of F̂0 corresponding to F̂n . Thus, F̂ is not pseudo-isotropic.
Now, suppose F is as in Example 2.4 (iii). Here X̃ may or may have not a

closed orbit. For example, assume that Ẽ is an ω-orthogonal basis of V . Then each
F̂ ∈ X̃ contains a nonisotropic finite-dimensional subspace, and, arguing as in the
previous paragraph,we see that F̂ is not pseudo-isotropic. On the other hand, suppose
that e2i−1 = e′

2i−1 + e′
2i and e2i = e′

2i−1 − e′
2i for all i , where {e′

1, e′
2, . . .} is an ω-

orthogonal basis withω(e′
2i−1, e

′
2i−1) = −ω(e2i , e2i ) = 1. In this case, one can easily

check that F is pseudo-isotropic, so its G0-orbit in X is closed.
Finally, let G0 = SL(∞, H). Here, in all three cases (i), (ii), (iii) of Example 2.4,

if X̃ = F�(F̃, Ẽ) for a generalized flag F̃ having the same type as F , then X̃ may
or may not have a closed orbit. Consider, for instance, case (ii). The flag F itself
is pseudo-quaternionic, so its G0-orbit in X is closed. On the other hand, if each
(4n + 2)-dimensional subspace in F̃ is spanned by {ei , i ≤ 4n} ∪ {e4n+1, e4n+3},
then X̃ does not have a closed orbit.

If G0 = SU(p,∞), then, by Corollaries 5.4 and 5.7, X always has an open and
a closed orbit. Combining our results on the existence of open and closed orbits, we
now obtain the following corollary for all other real forms.

Corollary 5.8 For a given real form G0 of G = SL(∞, C), G0 �= SU(p,∞),
0 < p < ∞, an ind-variety of generalized flags X = F�(F , E) has both an open
and a closed G0-orbits if, and only if, there are only finitely many G0-orbits on X.

Proof If X has finitelymanyG0-orbits, then the existence of an open orbit is obvious,
and the existence of a closed orbit follows immediately from Corollary 4.3.

Assume that X has both an open and a closed G0-orbit. Let
G0 = SU(∞,∞). Fix a nondegenerate generalizedflagH ∈ X (lyingon anopenG0-
orbit). Suppose that there exists a subspace F ∈ H satisfying dim F = codim V F =
∞. Since X has a closed G0-orbit, there exists a pseudo-isotropic generalized flag
H̃ ∈ X . Let F̃ be the subspace in H̃ corresponding to F . Since H and H̃ are E-
commensurable to F , there exists n such that F = A ⊕ B and F̃ = Ã ⊕ B, where
A, Ã are subspaces of Vn and B is the span of a certain infinite subset of E \ En; in
particular, B is a subspace of V n = 〈E \ En〉C.

The restriction ofω to B is nondegenerate, because Vn and V n are orthogonal. This
implies that B⊥,V n ∩ B = {0}. But F̃⊥,V = Ã⊥,Vn ⊕ B⊥,V n , hence
F̃ ∩ F̃⊥,V = Ã ∩ Ã⊥,Vn . Clearly, if B �= V n , then B⊥,V n �= {0}. In this case, there
exists v ∈ V n \ B contained in F̃ , and one can easily construct a generalized
flag Ĥ ∈ X such that F̃ ∩ F̃⊥

� F̂ ∩ F̂⊥,V , where F̂ is the subspace in Ĥ corre-
sponding to F̃ , a contradiction. Thus, B = V n , but this contradicts the condition
codim V F̃ = ∞.
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We conclude thatH = A ∪ B, where each subspace inA (resp., in B) is of finite
dimension (resp., of finite codimension). Assume that F is not finite, then at least
one of the generalized flags A and B is infinite. Suppose A is infinite. (The case
when B is infinite can be considered using the map U �→ U #.) Let n be such thatH
and H̃ are compatible with bases containing E \ En . Let F be a subspace inA such
that F does not belong to Vn . Then, arguing as in the previous paragraph, one can
show that H̃ cannot be pseudo-isotropic, a contradiction.

Now, letG0 = SL(∞, R). Suppose thatH ∈ X is in general position with respect
to τ , and H̃ ∈ X is real. As above, pick n so thatH and H̃ are compatible with bases
of V containing E \ En . Suppose for a moment that there exists a subspace F ∈ H
such that F �⊂ Vn , then F = A ⊕ B, where A is a subspace of Vn , and B is a nonzero
subspace of V n spanned by a subset of E \ En . Similarly, the corresponding subspace
F̃ ∈ H̃ has the form F̃ = Ã ⊕ B, where τ ( Ã) = Ã and τ (B) = B. Suppose also that
B �= V n , then there exist e ∈ E ∩ B and e′ ∈ (E \ En) \ B. Let B ′ ⊂ V n be spanned
by ((E ∩ B) \ {e}) ∪ {e + ie′}. It is easy to check that there exists Ĥ ∈ X such that
the subspace F̂ ∈ Ĥ corresponding to F has the form A ⊕ B ′. Thus, F ∩ τ (F)

properly contains F̂ ∩ τ (F̂), a contradiction. It remains to note that if F is not of
finite type, then such a subspace F always exists (if necessary, after applying the
map U �→ U #).

Finally, let G0 = SL(∞, H). Suppose that H ∈ X is in general position with
respect to J , and H̃ ∈ X is pseudo-quaternionic. As above, pick n so that H and H̃
are compatible with bases of V containing E \ En . Suppose for a moment that there
exists a subspace F ∈ H such that F �⊂ Vn , then F = A ⊕ B, where A is a subspace
of Vn , and B is a nonzero subspace of V n = 〈E \ En〉C spanned by a subset of
E \ En . The corresponding subspace F̃ ∈ H̃ has the form F̃ = Ã ⊕ B, where Ã
is a subspace of Vn . Suppose also that dim B ≥ 2 and codim V n

B ≥ 2. There exist
a subspace B ′ ⊂ V n and Ĥ ∈ X such that the subspace F̂ ∈ Ĥ corresponding to
F has the form A ⊕ B ′, and B ′ ∩ J (B ′) is either properly contains or is properly
contained in B ∩ J (B). Thus, either H is not in general position with respect to J ,
or H̃ is not pseudo-quaternionic, a contradiction. It remains to note that if F is not
of finite type, then such a subspace F always exists (possibly, after applying the map
U �→ U #). �
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Derived Functors and Intertwining
Operators for Principal Series
Representations of SL2(RRR)

Raul Gomez and Birgit Speh

Abstract We consider the principal series representations Iν induced from a char-
acter ν of the upper triangular matrices B and its realization on the Frechet space
of C∞-sections of a line bundle over G/B. Its continuous dual is denoted by I∗ν . Let
N ⊂ B be the nilpotent subgroup whose diagonal entries are 1 and denote by n its
Lie algebra. We determine H0(n, I∗ν ) and H1(n, I∗ν ) and conclude that space of the
intertwining operators T : Iν → I−ν is 2 dimensional for some integral parameter,
otherwise it is one dimensional. The intertwining operators are identified with dis-
tributions. We show that for certain parameters the support of this distribution is a
point, i.e. that the intertwining operator is a differential intertwining operator.

1 Introduction

In this note we revisit the well known theory of intertwining operators for principal
series representations for G = SL(2,R). We consider intertwining operators as a
special case of symmetry breaking operators for principal series representations
Iν → I−ν and analyze them using mostly geometry and homological algebra instead
of analysis. This leads to a different perspective of a theory developed almost 50
years ago and to some new insights. These ideas is also essential in determining the
invariant trilinear functionals on tensor products of principal series representations
[5].

We do not consider the usual realization of the principal series representations
on a Banach or Hilbert space, but instead we take the representation space of the
induced representation to be the space of C∞-sections of the G-equivariant vector
bundle G ×B (χν,C) → G/B, so that I∞ν � Iν is the Fréchet globalization having
moderate growth in the sense of Casselman–Wallach [10]. Here B = MAN is the
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Borel subgroup of upper triangular matrices, χν = ε ⊗ eν is a character of B and ε
is a character of the center of G. The representation is denoted by Iν,ε. It is called
spherical if ε is trivial on the center ofG and is denoted by Iν . The parametrization is
chosen so that the spherical representation Iν is reducible if and only if |ν| is an odd
integer. For an odd positive integer i the principal series representations I−i contains
a finite-dimensional representation F(i) as the unique subrepresentation.

The dual space, the space of tempered distributions, is also a U(g)-module, and
a realization I∗ε,ν of the contragredient representation of Iε,ν .

The results ofW.Casselman andN.Wallach [10] imply that to compute the dimen-
sion of the space intertwining operators it suffices to determine the MA-modules
H0(n, Iε,ν), respectively H0(n, I∗ε,ν).

To determine the n cohomology of I∗ε,ν , respectively the n-homology of Iε,ν , we
proceed as follows:

There is a stratification of G/B by orbits of N; one orbit NwB � R is open and
dense and one orbit is a closed point eB � O and we get an exact sequence to
n-modules.

0 → S(R) → Iε,ν → SO(R) → 0

On the dual side we have an exact sequence

0 → S∗
O
(R) → I∗ε,ν → S∗(R) → 0

and so obtain a long exact sequence in n-cohomology

0 ← S∗
O
(R)n ← (I∗ε,ν)

n ← S∗(R)n ← H1(n,S∗
O
(R)) ← H1(n, I∗ε,ν) ← · · ·

We show that S∗
O
(R) is isomorphic to the restriction of a Verma module to b. The

dimension ofH0(n,S∗(R))= (S∗(R))n is one and thus to determine the cohomology
it suffices to compute the n–cohomology of aVermamodule aswell as the connection
homomorphism

H0(n,S∗(R)) ← H1(n,S∗
O
(R)).

Lastly, we analyze the action of the diagonal matrices A on the cohomology. Thus
we obtain

Theorem 1 Let Iε,ν be a principal series representation.

1. If ν is not a negative integer then

dim H0(n, Iε,ν) = 2 and dim H1(n, Iε,ν) = 0

2. If ν ≡ +εmod 2 is a negative integer, then

dim H0(n, Iε,ν) = 2 and dim H1(n, Iε,ν) = 0
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3. If ν ≡ ε + 1mod 2 is a negative integer, then

dim H0(n, Iε,ν) = 3 and dim H1(n, Iε,ν) = 1

Corollary 2

1. Under the assumptions (2) the support of both distributions in (I∗ε,ν)N is the
identity.

2. Under the assumptions (3) the support of 2 distributions in (I∗ε,ν)N is at the identity
and one distribution has support on G/B.

After analyzing the action of A on the cohomology we conclude

Theorem 3 Let Iε,ν be a principal series representation. Then

1. If ν is not a non positive integer then

dim HomG(Iε,ν, Iε,−ν) = 1

and the intertwining operator is an integral operator.
2. If ν ≡ ε + k mod 2 then

dim HomG(Iε,ν, Iε,−ν) = 1.

If ν is a non positive integer then the intertwining operator is a differential
operator.

3. If ν = ε + k − 1 mod 2 is a nonpositive integer then

dim HomG(Iε,ν, Iε,−ν) = 2

One intertwining operator is an integral operator and the other intertwining
operator is a differential operator.

The article is organized as follows:

1. Notation and generalities
2. Iν and I∗ν as a U(n)–modules
3. The n-cohomology and n-homology
4. The main theorem
5. Application to intertwining operators
6. Closing Remarks

2 Notation and Generalities

In this section we establish the notations and recall some well known results about
the Casselman-Wallach-model of principal series representations of SL(2,R).
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2.1 LetG be the special linear group SL(2,R). The Lie algebra of any subgroup of G
is denoted by the corresponding lower case Gothic letter and the enveloping algebras
of a Lie subalgebra h ⊂ g by U(h). We choose the usual basis

E =
(
0 1
0 0

)
, H =

(
1 0
0 −1

)
, F =

(
0 0

−1 0

)

of g.

We fix a Borel group B of upper triangular matrices. LetN =
(
1 n
0 1

)
its nilpotent

subgroup with diagonal entries 1. The connected component of the group of diago-

nal matrices is denoted by A, M = (−1)i
(
1 0
0 1

)
and K = SO(2). Then B = MAN ,

G = KAN . We denote by N̄ the transpose of N . Then N̄B is dense in the group G.

2.2 The space G/B is isomorphic to the projective space

P
1 = {[x : y]|(x, y) ∈ R

2 − (0, 0)}.

The group N acts on P
1 by [x : y] → [x + ny : y]. So we have 2 orbits: the closed

orbit: [x : 0] and the open orbit [x : y], y �= 0.

2.3 We denote by α the positive root. A character of B is determined by a character
of B/N = MA

εχν : MA → C

where
εχν : ma → ε(m)e( (ν)

2 α(log(a))

Here ν ∈ C and the character ε can be identified with an element in Z2. If ε is trivial
we simplify the notation and write only χν for the character of MA.

We consider the principal series representation

Iν = indGBχν+1.

in its Casselman-Wallach realization as continuous representation [10] acting on the
Frechet space

Iν = {f ∈ C∞(G) | f (nag) = χν+1(a)f (g) for g ∈ G, b ∈ B}

We also consider the dual representation I∗ν acting on the space I∗ν of tempered
distributions on Iν .

2.4 The character χν defines a linear functional on b and hence on U(b) which we
denote by the same letter. We define the Verma module

M(ν) = U(g) ⊗U(b) χν−1.
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Recall that for positive integral parameter ν the Verma module has a composition
series of length 2with the finite dimensional representation as the irreducible quotient
and subrepresentation M(−ν − 2). Otherwise the modules are irreducible [6].

3 A Filtration of the Representations Iν and I∗ν

In this section we use the N-orbits G/B by N to define a filtration of Iν and I∗ν by
n-modules and to analyze it.

3.1We consider the restriction of the representation Iν to n and define a filtration of
I∗ν as follows:

For ν ∈ a∗ we have the U(n)–module

Uν = {f ∈ Iν | f and all its derivatives vanish on the closed orbit [x : 0]},

It is isomorphic as a U(n)-module to U under f �→ f |K .
We define Wν by the exact sequence

0 → Uν → Iν → Wν → 0.

and obtain an exact sequence of U(n)-modules. On the dual side we have the exact
sequence

0 → W
∗
ν → I∗ν → U

∗
ν → 0.

3.2 Let w =
(
0 −1
1 0

)
and define maps

T 0
ν : Iν → C∞(R)

and
T∞

ν : Iν → C∞(R)

by

T 0
ν (f )(x) =

(
π

([
1 x
1

])
f

)
(w),

and

T∞
ν (f )(x) =

(
π

([
1
y 1

])
f

)
(w),

respectively.
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Lemma 1

1. T∞
ν (Uν) = S(R), where S(R) is the Schwartz space for R.

2. If x �= 0, then
T∞

ν (f )(1/x) = |x|ν+1T 0
ν (f )(x). (1)

Proof The first part follows immediately from the definition of T 0
ν .

For the second part, observe that

[
1 y
0 1

]
=

[
1 y

y2+1

1

][
1√
1+y2

0
√
1 + y2

] ⎡

⎣
1√
1+y2

−y√
1+y2

y√
1+y2

1√
1+y2

⎤

⎦

and [
0 −1
1 0

] [
1
x 1

]
=

[
1 −x

x2+1
1

][
1√
1+x2

0
√
1 + x2

] [ x√
1+x2

−1√
1+x2

1√
1+x2

x√
1+x2

]

.

Now observe that if we set y = 1/x, then

[
1 1/x

1

]
=

[
1 x

x2+1
1

] [ x√
1+x2

0
√
1+x2
x

] [ x√
1+x2

−1√
1+x2

1√
1+x2

x√
1+x2

]

.

It follows immediately that

T∞
ν (f )(1/x) = |x|ν+ρT 0

ε,ν(f )(x). �

Corollary 4 U
∗
ν is isomorphic to the tempered distributions on R.

3.3We analyze next the module Wν .

Lemma 2 The map
f �→ (f (e),Ff (e),F2f (e), . . .)

induces an isomorphism between Wν and

∞∏

k=0

C = {(a0, a1, . . .) | ak ∈ C for all k ≥ 0},

where the last space is endowed with the projective limit topology.

Proof Any linear functional on W
′
ν corresponds to a linear functional on Iε,ν that

vanishes on Uν . Under the map f �→ T∞
ν (f ), this corresponds to distributions on R

supported at the origin. From well-known results from functional analysis, we know
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that this space of distributions is the inductive limit generated by derivatives of the

delta-functional 0. For F =
(

0 0
−1 0

)

T∞
ν (Ff )(y) = d

dy
T∞

ε,ν(f )(y),

we see that this space correspond to the inductive limit generated by the linear
functionals Fkδe, where δe is the delta-function at the identity. The lemma now
follows immediately. �

Lemma 3 For all f ∈ Iν,

(FkEf )(e) = −k(ν + k)f k−1f (e)

and
(FkHf )(e) = (ν + 2k + 1)Fkf (e).

Proof We will prove this formulas by induction on k. For k = 0 the formulas are
trivially true. Assume that the formulas are valid for all j ≤ k. Then

(Fk+1Ef )(e) = (FkEF)f (e) − (FkHf )(e)

= −k(ν + k)(FkF)f (e) − (ν + 2k + 1)(Fkf )(e)

= [−k2 − kν − ν − 2k − 1]Fkf (e)

= −[ν(k + 1) + (k + 1)2]Fkf (e)

= −[(k + 1)(ν + (k + 1)]Fkf (e).

Similarly,

(Fk+1Hf )(e) = (FkHF)f (e) + 2(Fk+1)(e)

= (ν + 2k + 1)(Fk+1)f (e) + 2(Fk+1)(e)

= (ν + 2(k + 1) + 1)(Fk+1)f (e).

Corollary 5 As a U(n)-module

W
∗
ν = M(−ν)|U(n).

4 The n-Cohomology and n-Homology

In this section we give a definition of H∗(n, I∗ν ) and H∗(n, Iν). For details see [2],
Sect. I.
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4.1 Let H be a (connected) real Lie group and let V be a h-module. For n ∈ N let

Cn = Cn(h, V ) = Hom(∧hn, V )

and d : Cn → Cn+1 defined by

df (X0,X1, . . . ,Xn) = =
∑

i

(−1)iXif (X0, . . . , X̂i, . . . ,Xn)

+
∑

i<j

f ([Xi,Xj],X0, . . . , X̂i, . . . , X̂j, ....,Xn).

Similarly we define the homology with coefficients in an h–module by the complex

Bn = Bn(h,W ) = ∧nh ⊗ W

and δ by

δ(X1 ∧ · · · ∧ Xn ⊗ w) =
∑

1≤j<k≤n

(−1)j+k−1[Xj,Xk] ∧ X1 ∧ · · · X̂j · · · X̂k · · · ∧ Xn ⊗ w

+
∑

1≤l≤n

(−1)l ∧ X1 ∧ · · · X̂l · · · ∧ Xn ⊗ Xlw,

4.2

Example 1 The Schwarz space S(U) = Uν is a smooth N-module. Given f ∈ Uν ,
set

Jν(f ) =
∫

R

f

(
w

[
1 x
1

])
dx =

∫

R

T 0
ν (f )(x) dx.

Then Jν induces an isomorphism between (Uν)n and C. On the other hand we may
consider [Jν] ∈ (U∗

ν)
N = H0(n,U∗

ν). Furthermore,

H1(n,Uν) = H1(n,U∗
ν) = 0 for all ν ∈ a∗

Example 2 Wν andW∗
ν are a n-modules. If ν is not an strictly negative integer, then

the Verma module W
∗
ν = M(−ν) is irreducible and the map f �→ f (e) induces an

isomorphism between (Wν)n andC and thusH0(n,Wν) = C. Furthermore the class
of the δe–distribution is nontrivial in H0(n,W∗

ν). In this case,

H1(n,Wν) = 0 = H1(n,W∗
ν)

On the other hand, if ν is an strictly negative integer then the Verma module
W

∗
ν = M(−ν) is reducible. For a nontrivial generator F of n, the map f �→

(f (e), (F−ν f )(e)) induces an isomorphism between (Wν)n and C
2. In this case the

classes of the δe–distribution and of F−νδe are spanning H2(n,W∗
ν). Furthermore
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dimH1(n,Wν) = 1 and this space is generated by an element f ∈ Iν such that
F−ν−1f (e) �= 0 and Fjf (e) = 0 for all j �= −ν − 1.

4.3 The n–modules I∗ν and Iν are smooth and nuclear. Furthermore, Iν is also a
Frechet space. We define

TornN (Iν,C) = Hn(n, Iν)

and
ExtnN (C, I∗ν ) = Hn(n, I∗ν ).

Note that
Hn(n, Iν)

∗ = Hn(n, I∗ν )

The short exact sequences

0 → W
∗
ν → I∗ν → U

∗
ν → 0

and
0 → Uν → Iν → Wν → 0

of U(n)–modules induce the long exact sequences

0 ← H1(n,U∗
ν) ← H1(n, I∗ν ) ← H1(n,W∗

ν) ← (U∗
ν)

n ← (I∗ν )n ← (W∗
ν)

n ← 0

and

0 → H1(n,Uν) → H1(n, Iν) → H1(n,Wν) → (Uν)n → (Iν)n → (Wν)n → 0.

The sequences are dual to each other.

5 The Main Theorem

In this section we state and prove the main theorem.

5.1 First we determine the n-cohomology of I∗ν .

Proposition 1 Let Iν be a spherical principal series representation. Then

1. If ν is not a negative integer then

dim H0(n, Iν) = 2 and dim H1(n, Iν) = 0
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2. If ν is a non zero even negative integer, then

dim H0(n, Iν) = 2 and dim H1(n, Iν) = 0

3. If ν is a non odd negative integer, then

dim H0(n, Iν) = 3 and dim H1(n, Iν) = 1

Remark For the equivalent statement for the p-adic general linear group GL(2,Qp)

see [3].

Proof of Proposition 1: Suppose first that ν is not a negative integer. Then by the
previous section dim (Wν)n = dim (Uν)n = 1 and the sequence

0 → (Uν)n → (Iν)n → (Wν)n → 0

is exact. In particular,
dim (Iν)n = 2.

and
H1(n, Iν) = 0

Now suppose that ν is a negative integer. Then we have the exact sequence

0 → H1(n, Iν) → H1(n,Wν) → (Uν)n → (Iν)n → (Wν)n → 0.

and so we have to understand the connection homomorphism C = H1(n,Wν) →
(Uν)n = C. Let f ∈ Iν be such that

T∞
ν f (y) = yk−1

in a neighborhood of 0. Then 0 �= [f ] ∈ H1(n,Wν). To compute the action of the
connecting homomorphism, we use Eq. (1) to get the following identity in a neigh-
borhood of ∞ for x:

(1/x)k−1 = T∞
ν f (1/x) = |x|−k+1T 0

ν f (x).

In other words, if |x| � 0, then

T 0
ν f (x) = sgn(x)−k+1.
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Now, it’s straightforward to check that

J−k(∂f ) =
∫ ∞

−∞

(
d

dx
T 0

ν f (x)

)
(x) dx

= lim
x→∞ sgn(x)−k+1 − sgn(−x)−k+1

= 1 − (−1)−k+1.

Since Jν defines an isomorphism betweenUν andCwe conclude that The connecting
homomorphism ∂ is trivial if an only if

0 ≡ k − 1 mod 2.

Thus if ν = −k is a negative integer then

dim Ik =
{
3 if 0 ≡ k − 1 mod 2
2 if 0 ≡ k mod 2

5.2 Similarly we determine the n-cohomology for the principal representations Iε,ν
for nontrivial ε and prove

Theorem 6 Let Iε,ν be a principal series representation. Then

1. If ν is not a negative integer then

dim H0(n, Iε,ν) = 2 and dim H1(n, (Iε,ν) = 0

2. If ν ≡ ε + k mod 2, then

dim H0(n, Iεν) = 2 and dim H1(n, (Iε,ν) = 0

3. If ν ≡ ε + k − 1 mod 2 is a non odd negative integer, then

dim H0(n, Iε,ν) = 3 and dim H1(n, (Iε,ν) = 1

Since the n–cohomology is finite dimensional we can conclude

Corollary 7 Let Iε,ν be a principal series representation.

1. Under the assumptions of Theorem 6 (2) the support of both distributions in
(I∗ε,ν)N is the identity.

2. Under the assumptions of Theorem 6 (3) the support of 2 distributions in (I∗ε,ν)N
is at the identity and one distribution has support on G/B.
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6 Application to Intertwining Operators

Wefirst determine theMA-moduleH0(n, Iν). Thenwe review the connection between
the Jacquet module H0(n, Iν) and intertwining operators between principal series
representations in their Casselman-Wallach realization, to complete the proof of
Corollary I. 3. For another approach see Chap. VII. of [7].

6.1 The diagonal matrices A act on n and hence on H0(n, Iν). An eigenvector Vμ

transforming according to the character χμ defines an intertwining operator

Vμ : Iν → Iμ

There is always a linear functional in H0(n, Iν)∗ with Eigenvalue ν corresponding
to the delta distribution at the identity, It corresponds to the identity intertwining
operator.

6.2 Since A normalizes n we consider (Iν)n and hence (I∗ν )n as an A–module. If ν is
nonsingular then [4] implies that the action of A on H0(n, Iν) is semi simple. If ν is
not a negative integer, zero or if ν ≡ ε + k mod 2, then A acts by the characters χν

and χ−ν on H0(n, Iε,ν).

6.3 Suppose now that Iν is a spherical principal series representation and ν = 0. Let

Ũ0,ν = {f ∈ I0,ν | f (e) = 0}

and observe, that, if we assume that Reν > −1, then the integral

J0,ν(f ) =
∫

R
f

(
w

[
1 x
1

])
dx

is absolutely convergent. On the other hand, if 1ν ∈ I0,ν is the element such that
1ν |K ≡ 1, then for Reν > 0

J0,ν(1ν) =
∫

R
(1 + x2)−

ν+1
2 dx = B(ν/2, 1/2),

where

B(x, y) = �(x)�(y)

�(x + y)

is the Beta function. Let

K0,ν = J0,ν − J0,ν(1ν)δe

= J0,ν − B(ν/2, 1/2)δe.

Then it is straightforward to check thatK0,ν iswell defined forReν > 0.Furthermore,
since I0,ν = Ũ0,ν ⊕ 〈1ν〉, the map K0,ν has holomorphic continuation to Reν > −1
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and

(I ′0,ν)
n = Span

C
{δe,K0,ν}.

Now, observe that
H · δe = −(ν + 1)δe

and

H · K0,ν = (ν − 1)J0,ν + (ν + 1)B(ν/2, 1/2)δe
= (ν − 1)K0,ν + 2νB(ν/2, 1/2)δe,

that is, the action of H on (I ′0,ν)n corresponds to the matrix

[−ν − 1 2νB(ν/2, 1/2)
ν − 1

]
.

Taking the limit as ν → 0, we get

H ↔
[−1 4

−1

]
.

In particular, this implies that although dim(I ′0,0)n = 2, we have

dim HomG(I0,0, I0,0) = 1.

and thus we have another proof of the well known fact that I0,0 is irreducible.

7 Closing Remarks

Remark on analytic continuation: A. Knapp and E. Stein [8] introduced in 1967
intertwining operators for principal series of Lie groups realized on the Hilbert Space
of L2–sections of a vector bundle Vν . These operators were initially defined only for
parameters in a region in the positive Weyl chamber then a normalized operator was
defined and analytically continued to all continuous parameters. The main tool was
L2-harmonic analysis. The normalized linear functional

Aε,ν f (e) = 1

�( ε+ν−1
2 )

∫

G/B
χν(p

−1)f (pg)dg

defines an intertwining operator. This operator coincides on the C∞-vectors with the
operator defined by A. Knapp and E. Stein, since we have multiplicity one for the
operators and the actions coincide on the minimal K-types.
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Remark on differential intertwining operators: Differential intertwining opera-
tors were discovered around 1974 by B. Kostant [9]. Differential intertwining oper-
ators for rank one principal series representations were considered by B. Boe and
D. Collingwood [1]. It is known which of these differential intertwining operators
are residues of integral intertwining operators and which ones define truly new
additional operators.
Remark on N-cohomology for p-adic representations: For the p-adic principal
series representations we can proceed as in the real case. In this case the functions in
theSchwartz space onQp have compact support andS(O) is the trivial representation.
Its N-homology is concentrated in degree 0. The cohomology is also concentrated
in degree 0. and we always have a unique nontrivial integral intertwining operator.
See also the argument in Bump’s book.

Acknowledgements Research by B. Speh partially supported by NSF grant DMS-1500644.
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Hyperlogarithms and Periods in Feynman
Amplitudes

Ivan Todorov

Abstract The role of hyperlogarithms and multiple zeta values (and their general-
izations) in Feynman amplitudes is being gradually recognized since the mid 1990s.
The present lecture provides a concise introduction to a fast developing subject that
attracts the interests of a wide range of specialists – from number theorists to particle
physicists.

1 Introduction

Observable quantities in particle physics: scattering amplitudes, anomalousmagnetic
moments, are typically expressed in perturbation theory as (infinite) sums ofFeynman
amplitudes– integrals over internal position ormomentumvariables corresponding to
Feynmangraphs (ordered by the number of internal vertices or by the number of loops
– the first Betti number of a graph). Whenever these integrals are divergent (which
is often the case) one writes them as Laurent expansions in a (small) regularization
parameter ε. (In the commonly used dimensional regularization ε is half of the
deviation of spacetime dimension from four: 2ε = 4 − D. We shall encounter in
Sect. 2 a more general regularization with similar properties.) It was observed –
first as an unexpected curiosity in more advanced calculations (beyond one loop),
then in a more systematic study – that the resulting integrals involved interesting
numbers like values of the zeta function at odd integers. Such numbers, first studied
by Euler, but then forgotten for over two centuries, attracted independently, at about
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the same time the interest ofmathematicianswho defined theQ-algebraP of periods.
According to the elementary definition of Kontsevich and Zagier [29] periods are
complex numbers whose real and imaginary parts are given by absolutely convergent
integrals of rational differential forms:

I =
∫

Σ

P

Q
dx1 . . . dxn (∈ P), (1)

where P and Q are polynomials with rational coefficients and the integration domain
Σ is given by polynomial inequalities again with rational coefficients.

Remarkably, the set of periods is denumerable – they form a tiny (measure zero)
part of the complex numbers but they suffice to answer all questions in particle
physics. More precisely, it has been proven [6] that for rational ratios of invariants
andmasses all Laurent coefficients of dimensionally regularized Euclidean Feynman
amplitudes are periods. Brown [17] announces a similar result for convergent “gen-
eralized Feynman amplitudes” (that include the residues of primitively divergent
graphs) without specifying the regularization procedure.

Amplitudes are, in general, functions of the external variables – coordinates or
momenta – and of the masses of “virtual particles” associated with internal lines.
Just like the numbers – periods (that appear as special values of these functions) the
resulting family of functions, the iterated integrals [21], has attracted independently
the interest ofmathematicians. Here belong the hyperlogarithmswhich possess a rich
algebraic structure and appear in a large class of Feynman amplitudes, in particular,
in conformally invariant massless theories.

The topic has become the subject of specialized conferences and research
semesters.1 The present lecture is addressed, by contrast, to a mixed audience of
mathematicians and theoretical physicists working in a variety of different domains.
Its aim is to introduce the basic notions and to highlight some recent trends in the
subject. We begin in Sect. 2 with a shortcut from the early Euler’s work on zeta to the
amazing appearance of his alternating (“φ-function”) series in the calculation of the
electron (anomalous) magnetic moment. Section3 reviews the appearance of periods
as residues of primitively divergent Feynman amplitudes. Section4 introduces the
double shuffle algebra of hyperlogarithms appearing inter alia in the calculation of
position space conformal 4-point amplitudes. In Sect. 5 we introduce implicitly the
formal multiple zeta values (MZV) defined by the double shuffle relations including
“divergent words” and setting ζ(1) = 0. The generating series L(z) and Z “= L(1)”
are used to write down the monodromy around the possible singularities at z = 0
and z = 1 of the multipolylogarithms. We also display the periods of the “zig-zag
diagrams” of Broadhurst and Kreimer and of the six-loop graph where a double
zeta value (ζ(3, 5)) first appears. In Sect. 6 we define the “multiple Deligne values”

1To cite a few: “Loops and Legs in Quantum Field Theory” Bi-annualWorkshop taking place (since
2008) in various towns in Germany; Durham Workshop: “Polylogarithms as a Bridge between
Number Theory and Particle Physics” [43]; Research Trimester “Multiple Zeta Values, Multiple
Polylogarithms, and Quantum Field Theory”, ICMAT, Madrid, 2014, [39, 40].
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(involving N th roots of one) and provide a superficial glance at motivic zeta values
[4, 13, 14, 17] using them (following [13]) to derive theZagier formula for the dimen-
sions of the weight spaces of (motivic) MZVs. Finally, in Sect. 7 we give an outlook
(and references to) items not treated in the text: single valued and elliptic hyperlog-
arithms and give, in particular, a glimpse on the recent work of Francis Brown [17]
that views the “motivic Feynman periods” as a representation of a “cosmic Galois
group” revealing hidden structures of Feynman amplitudes.

2 From Euler’s Alternating Series to the Electron Magnetic
Moment

Euler’s interest in the zeta function and its alternating companion φ(s),

ζ(s) =
∞∑

n=1

1

ns
, φ(s) =

∞∑

n=1

(−1)n−1

ns
(= (1 − 21−s) ζ(s) for s > 1

)
(2)

was triggered by theBasel problem [42] (posed by PietroMengoli inmid 17 century):
to find a closed form expression for ζ(2). Euler discovered the non-trivial answer,
ζ(2) = π2

6 , in 1734 and tenyears later found an expression for all ζ(2n),n = 1, 2, . . . ,
as a rational multiple of π2n . An elementary (Euler’s style) derivation of the first few
relations uses the expansion of cot(z) in simple poles (see [7]):

z cot(z) = 1 − 2 z2
∞∑

n=1

1

n2 π2 − z2
= 1 − 2

∞∑

n=1

ζ(2n)

(
z2

π2

)n

= 1 − z2

2 + z4

4! − . . .

1 − z2
3! + z4

5! . . .
=⇒ ζ(2) = π2

6
, ζ(4) = π4

90
, . . . . (3)

Euler tried to extend the result to odd zeta values but it did not work [22]. (We still
have no proof that ζ(3)

π3 is irrational.) Trying to find polynomial relations among zeta
values Euler was led by the stuffle product

ζ(m) ζ(n) = ζ(m, n) + ζ(n,m) + ζ(n + m) (4)

to the concept of multiple zeta values (MZVs):

ζ(n1, . . . , nd) =
∑

0<k1<...<kd

1

kn11 . . . kndd
. (5)
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The alternating series φ(s) (2) (alias the Dirichlet eta function2) provide faster con-
vergence in a larger domain. While ζ(s) has a pole for s = 1, we have

φ(1) = ln 2. (6)

Applying the stuffle relation for φ2(1):

φ2(1)(= (ln 2)2) = 2φ(1, 1) + ζ(2) (7)

where

φ(m, n) =
∑

0<k<�

(−1)k+�

km�n
< 0 (8)

Euler expressed ζ(2) in terms of amuch faster converging series (eventually guessing
and then deriving ζ(2) = π2

6 – see Sect. 3 of [3]):

ζ(2) = φ(1)2 − 2φ(1, 1) = (ln 2)2 +
∞∑

n=1

1

n22n

and computed it up to six digits (ζ(2) ≈ 1.644934).
Remarkably, it is the same φ-function which enters the g-factor of the magnetic

moment of the electron µ = g e
2m s – probably the most precisely measured and

calculated quantity in physics [28]. Up to third order in α
π
, where α = e2

4π�c is the
fine structure constant, the anomalous magnetic moment ae = g−2

2 is given by [30,
35]:

ae = 1

2

α

π
+

[
φ(3) − 6φ(1)φ(2) + φ(2) + 197

24 32

] (α

π

)2

+
[
2

32
(83φ(2)φ(3) − 43φ(5)) − 50

3
φ(1, 3) + 13

5
φ(2)2 (9)

+ 278

3

(
φ(3)

32
− 12φ (1)φ(2)

)
+ 34202

33 5
φ(2) + 28259

25 34

](α

π

)3 + . . . .

Schwinger’s 1947 calculation of the first term
(

α
2π

)
, contributing a 10−3 correction

to Dirac’s magnetic moment, won him (together with Tomonaga and Feynman) the
1965 Nobel Prize in physics. The second term (of order

(
α
π

)2
) was finally correctly

calculated only 10 years later (by Peterman and Sommerfield). If Schwinger’s work
amounted to computing a single 1-loop (triangular) graph with 3 internal lines each,
the 2-loop calculation involved 7 graphs, each new loop adding three additional lines

2Nowadays the term is usually associated with the Dedekind η-function η(τ ) = ei
πτ
12

∞∏
n=1

(1 − qn),

q = e2πiτ , defined on the upper half plane τ .
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(and as many new integrations in the Schwinger parameters – see [27, 28, 37]). The
three-loop calculation involving 72 graphs was completed first numerically (compar-
ing with partial analytic results) by Kinoshita in 1995 and then fully analytically by
Laporte and Remiddi a year later. The accuracy of both experimental measurement
and theoretical computation (going nowadays beyond 4 loops!) is improving and the
results match in a record of 12 significant digits (with uncertainty a part in a trillion):

ae = 1.159652 180 91 (± 26) × 10−3 (experiment)

ae = 1.159652 181 13 (± 86) × 10−3 (theoretical).

In the words of “a spectator” in the “tennis match between theory and experiment”
[27] “20-year-long experiments are matched by 30-year-long calculations”.

It is hard to overestimate the beauty and the significance of a formula like (9) given
the precisionwithwhich it is confirmed experimentally. The perturbative expansion is
likely to be divergent but is believed to be asymptotic. Individual terms have a mean-
ing of their own, both as special exactly known numbers and as measured quantity
(the higher powers of α

π
provide at least a hundred times smaller contribution).

The φ-function appearing in (9) had a more than passing interest for Euler. In
a 1740 paper (5 years after publishing his discovery of the formulas for ζ(2n),
n = 1, 2, . . . , 6) he wrote ζ(n) = Nπn indicating that for n-even, N is rational while
for n odd he conjectures that N is a function of ln 2 (Sect. 6 of [3]) – a natural
conjecture in view of (6). In another paper of 1749 (of his Berlin period) after playing
with some divergent series Euler proposes the functional equation for φ(s) writing:
“I shall hazard the following conjecture:

φ(1 − s)

φ(s)
= −Γ (s)(2s − 1) cos πs

2

(2s−1 − 1)πs
(10)

is true for all s.” From here and from (2) the functional equation for ζ(s), proven by
Riemann 110 years later (in 1859), follows immediately. Euler then admits that his
earlier conjecture about odd zeta values went astray: “I have already observed that
φ(n) can only be computed for even n.When n is odd all my efforts have been useless
up to now.” (Sect. 7 of [3].) Euler last returned to the topic in 1772. (He continued
doing mathematics – and dictating papers – already completely blind until his death
in 1783.)

3 Residues of Primitively Divergent Amplitudes

Let Γ be a connected graph with finite sets E of edges (internal lines) and vertices V ,
such that each edge e ∈ E is incident with a pair of different vertices (vi , v j , vi �= v j

– we do not allow for tadpoles). To each such graph we make correspond a position
space Feynman integrand
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GΓ (x) =
∏

e∈E
Ge(xi j ) , xi j = xi − x j (xi = (xα

i ,α = 1, . . . , D))

1 ≤ i, j ≤ V , x = (x1, . . . , xN ) , N = D(V − 1) (11)

where i, j label the vertices vi , v j , incident with the edge e, V = |V| is the number of
vertices, D is the spacetime dimension (D = 4, 6, . . .). We are in fact just interested
in the case D = 4. Each propagator Ge(x) is assumed to be locally integrable away
from the origin. In the Euclidean picture, to be used below (in which square intervals
are given by x2 = ∑

α
(xα)2) the integrands (11) are actually smooth bounded (usually

going to zero) at infinity functions away from the large diagonal (xi = x j for some
i �= j). In Minkowski space Ge is, generally, singular on the light cone x2 = 0. The
integrand (11) is said to be ultraviolet (UV) convergent if it is locally integrable
(at the diagonal) and hence gives rise to a (unique, tempered) distribution in R

N .
Otherwise, it is called (UV) divergent.

A (proper) subgraph γ of Γ is defined to contain a proper subset of vertices of
Γ together with the adjacent half edges and to contain every edge in Γ incident
with a pair of vertices v1, v2 of γ. A divergent integrand GΓ is said to be primitively
divergent if for any (connected) subgraph γ ⊂ Γ the corresponding integrand Gγ

is convergent. In a massless quantum field theory (QFT) in which every propagator
Ge(x) is a rational homogeneous function of x ,

Ge(x) = pe(x)

(x2)μe
, μe ∈ N , pe(λ x) = λν pe(x) for λ > 0 (12)

(ν ≤ 2μe), there are simple convergence criteria in terms of homogeneity degrees
[31].

Proposition-Definition 1 A homogeneous density G(x) dN x is convergent if its
homogeneity degree is (strictly) positive. Otherwise, for

G(λ x) dNλ x = λ−κ G(x) dN x (dN x = dx1 . . . dxN ) , κ ≥ 0 (13)

it is called superficially divergent with degree of superficial divergence κ.

In a (massless) scalar QFT, in which all polynomials pe(x) are constants, one
proves that superficially divergent amplitudes are divergent. For more general spin
tensor fieldswhose propagators have polynomial numerators a superficially divergent
amplitude may, in fact, turn out to be convergent (see Sec. 5.2 of [31]).

The following proposition (cf. [31]) serves as a definition of both the residue
ResG and of renormalized primitively divergent amplitude Gρ(x).

Proposition 2 If G(x) is primitively divergent then for any non-zero smooth semi-
norm ρ(x) on R

N there exists a distribution ResG with support at the origin such
that
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(ρ(x))2εG(x) − 1

ε
ResG(x) = Gρ(x) + O(ε) (14)

where Gρ(x) is a distribution valued extension of G(x) toRN . The calculation of the
distribution ResG can be reduced to the case κ = 0 of a logarithmically divergent
amplitude by using the identity

(ResG)(x) = (−1)κ

κ! ∂i1 . . . ∂iκRes(x
i1 . . . xiκG(x)) (15)

where summation is assumed (from 1 to N) over the repeated indices i1, . . . , iκ. For
a (reduced) G that is homogeneous of degree −N we have

ResG(x) = resG δ(x) (whenever ∂i (xiG) = 0 for x �= 0). (16)

Here the numerical residue resG is given by an integral over the (compact) projective
space PN−1:

resG = 1

πN/2

∫
G(x)

N∑

i=1

(−1)i−1xi dx1 ∧ . . . ∧ d̂x i ∧ . . . ∧ dxN (17)

(the hat over dxi means that it should be omitted).

We note that for D (and hence N ) even N − 1 is odd so that the space PN−1 is
orientable.

Schnetz (Definition-Theorem 2.7 of [35]) gives six equivalent expressions for
the “period of a graph” (i.e. for the residue of the corresponding amplitude). The
statement, formulated for the massless ϕ4 theory in D = 4 is actually valid for any
homogeneous of degree −N (= D(1 − V ) – i.e. logarithmic) primitively divergent
amplitude. In particular, the residue of a position space integrand G(x1, . . . , xV ) in
a scalar QFT can be written as an (N − D) dimensional integral

resG =
∫ (

V−1∏

i=2

dDxi
πD/2

)

G(e, x2, . . . , xV−1, 0) (18)

where e is any (D-dimensional) unit vector e2 = 1. For D > 2 the Schwinger para-
meter representation gives a still lower, (L − 1)-dimensional, projective integral
representation for the residue. (For a 4-point graph in the ϕ4 theory the number
of internal lines L is related to the number of vertices V by L = 2(V − 1) so that
L − 1 < D(V − 2) for D > 2.)

In the important special case of a (massless) ϕ4 theory in D = 4 Schnetz [35,
36] associates with each 4-point graph Γ (i.e. a graph with 4 external half edges
incident to four different vertices) a completed 4-regular vacuum graphΓ . He proves
(Proposition 2.6 and Theorem 2.7 of [35]) that all primitive 4-point graphs with the
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same primitive vacuum completion have the same residues. Moreover, there is a
simple criterion allowing to tell when a 4-regular vacuum graph is primitive: namely,
if the onlyway to split it by a four edge cut is by splitting off one vertex. (See examples
in Sect. 5.)

4 Conformal 4-Point Functions and Hyperlogarithms

Each primitively divergent 4-point Feynman amplitude in a (classically) conformally
invariant QFT defines (upon integration over the internal vertices) a conformally
covariant, locally integrable function away from the small diagonal x1 = · · · = x4.
On the other hand, every four points, x1, . . . , x4 can be confined by a conformal
transformation to a 2-plane (by sending, say, a point to infinity and another to the
origin). Then one can represent each Euclidean point xi by a complex number zi so
that

x2i j = |zi j |2 = (zi − z j )(z̄i − z̄ j ). (19)

In order to make the map x → z explicit we fix a unit vector e ∈ R
4 and let n be a

variable unit vector orthogonal to e parametrizing a 2-sphere S2. Then any Euclidean
4-vector x can be written (in spherical coordinates) in the form

x = r(cos ρ e + sin ρ n) , e2 = 1 = n2 , en = 0 , r ≥ 0 , 0 ≤ ρ ≤ π. (20)

We make correspond to the vector (20) a complex number z such that

z = r eiρ → x2(= r2) = zz̄ , (x − e)2 = |1 − z|2 = (1 − z)(1 − z̄); (21)

∫

n∈ S2

d4x

π2
= |z − z̄|2 d2z

π

(∫

S2
δ(x) d4x = δ(z) d2z

)
. (22)

The 4-point amplitude with four distinct external vertices in the ϕ4 theory has scale
dimension 12 (in mass or inverse length units) and can be written in the form

G(x1, . . . , x4) = f (u, v)
∏

i< j
x2i j

= F(z)
∏

i< j
|zi j |2 . (23)

Here the (positive real) variables u, v; and the (complex) z are conformally invariant
cross ratios

u = x212 x
2
34

x213 x
2
24

= zz̄ , v = x214 x
2
23

x213 x
2
24

= |1 − z|2 , z = z12 z34
z13 z24

. (24)
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The cross ratios z, z̄ are the simplest realizations of the argument of a hyperloga-
rithmic function whose graded Hopf algebra we proceed to define [10, 12].

Letσ0 = 0,σ1, . . . ,σN be distinct complex numbers corresponding to an alphabet
X = {e0, . . . , eN }. Let X∗ be the set of (finite) words w in this alphabet, including
the empty word ∅. The hyperlogarithm Lw(z) is an iterated integral [12, 21] defined
recursively in any simply connected open subset U of the punctured complex plane
D = C\Σ , Σ = {σ0, . . . ,σN } by the unipotent differential equations 3

d

dz
Lwσ(z) = Lw(z)

z − σ
, σ ∈ Σ , L∅ = 1, (25)

and the initial condition

Lw(0) = 0 for w �= 0n = (0, . . . , 0︸ ︷︷ ︸
n

) , L0n = (ln z)n

n! . (26)

There is a correspondence between iterated integrals and multiple power series;
setting n′

i = ni − 1, k ′
i = ki − 1 (and assuming σi �= 0 for 1 ≤ i ≤ d) we find

(−1)d L
0n0 σ1 0

n′
1 ...σd 0

n′
d
(z) = (27)

∑

k0≥0,ki≥ni for i=1,...,d
k0+...+kd=n0+...+nd

(−1)k0+n0
d∏

i=1

(
k ′
i

n′
i

)
L0k0 (z) Lik1...kr

(
σ2

σ1
, . . . ,

σd

σd−1
,
z

σd

)

where

Lik1...kr (z1, . . . , zr ) =
∑

0<m1<...<mr

zm1
1 . . . zmr

r

mk1
1 . . .mkr

r

. (28)

The number of letters |w| = n0 + · · · + nd of a word w defines its weight, while the
number d of non-zero letters is its depth. The product Lw Lw′ of two hyperlogarithms
of weights |w|, |w′| and depths d, d ′ can be expanded in hyperlogarithms of weight
|w| + |w′| and depth d + d ′, since the product of simplices can be expanded into a
sum of higher dimensional simplices. In fact, the set X∗ of words can be equipped
with a commutative shuffle product w w′ defined recursively by

∅ w = w(= w ∅), au bv = a(u bv) + b(au v) (29)

where u, v, w are (arbitrary) words while a, b are letters (note that the empty word
is not a letter). Denote by OΣ the ring of regular functions on D:

3We use, following [13, 36], concatenation to the right. Other authors [8, 24] use the opposite
convention.
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OΣ = C

[

z,

(
1

z − σα

)

α=0,1,...,N

]

. (30)

Extending by OΣ -linearity the correspondence w → Lw one proves that it defines
a homomorphism of shuffle algebras OΣ ⊗ C(X) → LΣ where LΣ is the OΣ span
of Lw, w ∈ X∗. The commutativity of the shuffle product is reflected in the identity

Lu v = Lu Lv (= Lv Lu). (31)

If the shuffle relations are suggested by the expansion of products of iterated integrals,
the product of series expansions of type (28) suggests another commutative stuffle
product.We illustrate the corresponding rule on the example of the product of a depth
one and a depth two factors:

Lin1,n2(z1, z2) Lin3(z3) = Lin1,n2,n3(z1, z2, z3) + Lin1,n3,n2(z1, z3, z2)

+ Lin3,n1,n2(z3, z1, z2) + Lin1,n2+n3(z1, z2z3)

+ Lin1+n3,n2(z1z3, z2). (32)

(The corresponding product of words u = z1 0n
′
1 z2 0n

′
2 , v = z3 on

′
3 is denoted by

u ∗ v.) Clearly, the stuffle product also respects the weight but only filters the depth
(there are terms of depth two and three in the right hand side of (32) always not
exceeding the total depth – three – of the left hand side). The shuffle and stuffle
products give a number of relations among hyperlogarithms of the same weight. The
monodromies of the multivalued hyperlogarithms around the possible singularities
for z = σα ∈ Σ providemore (not easy tofind) such relations. Thebialgebra structure
of hyperlogarithms introduced by Goncharov [26] (see also Theorem 3.8 of [13] and
Sect. 5.3 of [24]) allow to reduce the calculation of monodromies and discontinuities
of higherweight hyperlogarithms to those of simple logarithms (see e.g. [1]). Herewe
shall just reproduce the coproduct for the special case of the classical polylogarithm:

Δ Lin(z) = Lin(z) ⊗ 1 +
n−1∑

k=0

(ln z)k

k! ⊗ Lin−k(z), (33)

the natural logarithm appearing as primitive element,

Δ Lσ(z) = Lσ(z) ⊗ 1 + 1 ⊗ Lσ(z) , Lσ(z) = ln
(
1 − z

σ

)
= −Li1

( z

σ

)
(34)

for σ �= 0 , L0(z) = ln z.

In order to apply (33) to the specialization to z = 1, Lin(1) = ζ(n) for n even we
need to quotient the algebra of hyperlogarithms by ζ(2) or, better, by ln(−1) = iπ (=√−6 ζ(2)) introducing the Hopf algebra H:
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H := LΣ/ iπLΣ so that LΣ = H[iπ]. (35)

(Otherwise the relation ζ(4) = 2
5 ζ2(2) would not be respected by the coproduct Δ

satisfying, according to (33), Δζ(n) = ζ(n) ⊗ 1 + 1 ⊗ ζ(n).)
The coaction Δ is extended to LΣ by

Δ : LΣ → H ⊗ LΣ , Δ(iπ) = 1 ⊗ iπ. (36)

The asymmetry of the coproduct is reflected on its relation to differentiation and to
discontinuity dsicσ = Mσ − 1 (where Mσ stands for the monodromy around z = σ):

Δ

(
∂

∂z
F

)
=

(
∂

∂z
⊗ id

)
ΔF , Δ(discσ F) = (id ⊗ discσ)ΔF. (37)

(One easily verifies, for instance, that both sides of (37) give the same result for
F = Li2(z).) This allows us to consider LΣ as a differential graded Hopf algebra.

The resulting structure allows to read off the symmetry properties of hyperloga-
rithms from the simpler properties of ordinary logarithms, as illustrated in Example
25 of [24] which begins with a derivation of the inversion formula for the dilog:

Li2

(
1

x

)
= iπ ln x − Li2(x) − 1

2
ln2 x + 2ζ(2).

5 Multiple Zeta Values and Feynman Periods

The multiple zeta values (MZVs) are the values of the hyperlogarithms (28) at argu-
ments equal to one:

ζ(n1, . . . , nd) = Lin1...nd (1, . . . , 1) = (−1)d ζ
10n

′
1 ...10n

′
d

(n′
i = ni − 1) (38)

(cf. (27)). The corresponding series is convergent for nd > 1. In order to recover the
known relations among MZVs of the same weight one needs along with the shuffle
and stuffle products of convergent words also a relation involving multiplication with
the “divergent word” e1 (in the case of a 2-letter alphabet,Σ = {0, 1}, X = {e0, e1}):

ζu v = ζu ζv = ζu∗v , ζ(e1 w − e1 ∗ w) = 0 (39)

for all convergent words u, v and w. We note that the divergent words (with nd = 1)
in the last Eq. (39) cancel out. For instance, setting (n) = −e1 e

n−1
0 , we find

ζ((1) (n) − (1) ∗ (n)) =
n−1∑

i=1

ζ(i, n + 1 − i) − ζ(n + 1) = 0, n ≥ 2 (40)
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a relation known to Euler. (Already for n = 2 the resulting formula, ζ(1, 2) = ζ(3),
is nontrivial.) Setting (−ζ1 =)ζ(1) = 0 and using the relations (39) one can write the
generating series Z of MZVs (also calledDrinfeld’s associator) in terms of multiple
commutators of e0, e1:

Z = L(1) = 1 + ζ(2)[e0, e1] + ζ(3) [[e0, e1], e0 + e1] + . . . ,

for L(z) = 1 + ln z e0 + ln(1 − z) e1 +
∑

|w|≥2

Lw(z) w (w ∈ X∗, X = {e0, e1}).
(41)

(The limit of L(z) for z → 1 in the expression for Z involves a regularization so that

the divergent series for −ζ1 = lim
z→1

∞∑

n=1

zn

n is substituted by 0.) The generating series

(41) allow to express in a compact form the monodromy of the multipolylogarithms
Lw(z) around the (possible) singularities at z = 0 and z = 1:

M0L(z) = e2πie0L(z),

M1L(z) = Z e2πie1 Z−1L(z). (42)

(In writing Z−1 we observe that any formal power series starting with 1 is invertible.)
There are infinitely many primitive vacuum graphs in the (massless) ϕ4 theory.

They are completions of 4-point graphswith increasing number of loops � = 3, 4, . . .
Their periods, up to � = 6, are MZVs of weight not exceeding 2� − 3. Broadhurst
and Kreimer [9] discovered a remarkable sequence of zig-zag graphs whose periods
are rational multiples of ζ(2� − 3). Their completions are n-vertex vacuum graphs

Γ
(2)
n (n = � + 2) which admit a hamiltonian cycle that passes through all vertices

in consecutive order in such a way that each vertex i is also connected with i ± 2
mod n (see Fig. 1a for the n = 8 graph).

Fig. 1 Eight point vacuum completions of six-loop 4-point graphs in ϕ4 : Per (Γ (2)
8 ) = 24 ζ(9),

Per (Γ
(3)
8 ) = 32P3,5
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Their periods depend on the parity of �:

Per
(
Γ

(2)
�+2

)
= 4 − 43−�

�

(
2� − 2

� − 1

)
ζ(2� − 3) for � = 3, 5, . . .

= 4

�

(
2� − 2

� − 1

)
ζ(2� − 3) for � = 4, 6, . . . (43)

(a result conjectured in [9] and proven in [18]). The 8-vertex graph on Fig. 1b also
admits a hamiltonian cycle but with vertices i connected with i ± 3 mod 8. Its
period, computed numerically in [9], is the first that involves a double zeta value:

Per
(
Γ

(2)
8

)
= 32 P3,5 = 288

{
2

5
[29 ζ(8) − 12 ζ(3, 5)] − 9 ζ(3) ζ(5)

}
. (44)

(The notation P3,5 conforms with that of Brown [17].) The first Feynman period,
not expressible as a rational linear combination of MZVs was identified at 7 loops
by E. Panzer [32] (following suggestions by Broadhurst and Schnetz) in 2014, as
rational linear combination of hyperlogarithms at sixth roots of 1 (called multiple
Deligne values in [8]). The 9-vertex vacuum completion of the graph in question is of
type F (3)

9 : it again admits a hamiltonian cycle with hords joining vertices congruent

mod 3 (as in the graph Γ
(3)
8 displayed on Fig. 1b).

6 Generalized and Motivic MZVs

Remarkably, MZVs ζw labeled by words in the (N + 1)-point alphabet
X = {e0, e1, . . . , eN ) corresponding to Σ = {0, 1,λ, . . . ,λN−1} where λ is a primi-
tive N th root of unity again close a double shuffle (i.e. a shuffle and a stuffle) algebra
and hence represent a natural generalization of the classical MZVs. In particular, the
Euler φ-function corresponds to Σ = {0, 1,−1}:

φ(n) = L−10n′ (1) = −Lin(−1) (n′ = n − 1).

Given the many relations these generalized MZVs ζw satisfy, the question arises
to find a basis of such periods independent over the rationals. This question is wide
open even for the classical MZVs (for which w is a word in the two letter alphabet
corresponding to Σ = {0, 1}). We know the relations coming from (39) but have
no proof that there are no more relations for weights |w| > 4. If we denote by dn
the dimension of the space of MZVs of weight |w| = n we only know that d1 = 0,
d2 = d3 = d4 = 1. (The reader is invited to verify – using the relations (39) and (40)
– that all MZVs of weight 4 are integer multiples of ζ(1, 3) = π4

360 – see Eq. (B.8) of
[38].) We do not even have a proof that ζ(5) is irrational. A way to get around the
resulting (difficult!) problem amounts to substitute the real MZVs by some abstract
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objects as formal MZVs (defined by the relations (39) – see [34, 39]) andmotivic zeta
values [8, 13] whose application for calculating the dimensions dn of the motivic
MZVs of weight n we proceed to sketch.

Consider the concatenation algebra C defined as the free algebra over the rational
numbers Q on the countable alphabet { f3, f5, . . .}. The algebra of motivic MZVs
is identified (non-canonically) with the algebra C[ f2] of polynomials in a single
variable f2 with coefficients in C:

C[ f2] = C ⊗Q Q[ f2], C = Q〈 f3, f5, . . .〉. (45)

The algebra C[ f2] is graded by the weight (the sum of indices of fi ) and it is straight-
forward to compute the dimensions dn of the weight spaces C[ f2]n . Indeed, the gen-
erating (Hilbert-Poincaré) series for the dimensions dC

n of the weight n subspaces of
C is given by

∑

n≥0

dC
n tn = 1

1 − t3 − t5 − . . .
= 1 − t2

1 − t2 − t3
, (46)

while the generating series of Q[ f2] is (1 − t2)−1. Multiplying the two series we
obtain the dimensions dn of the weight spaces of (motivic) MZVs conjectured by
Don Zagier:

∑

n≥0

dn t
n = 1

1 − t2 − t3
⇒ d0 = 1, d1 = 0, d2 = 1, dn+2 = dn + dn−1. (47)

The concatenation algebra C can be equipped with a Hopf algebra structure (with
fi as primitive elements) with the deconcatenation coproductΔ : C → C ⊗ C given
by

Δ( fi1 . . . fir ) = 1 ⊗ fi1 . . . fir + fi1...ir ⊗ 1 +
r−1∑

k=1

fi1 . . . fik ⊗ fik+1 . . . fir . (48)

The coproduct can be extended to the trivial comodule C[ f2] (45) by setting

ΔC[ f2] → C ⊗ C[ f2] , Δ( f2) = 1 ⊗ f2 (49)

(and assuming that f2 commutes with fodd). There exists a surjective period map of
C[ f2] onto the space Z of real MZVs. The main conjecture in the theory of MZVs
says that the period map is also injective, – i.e., it defines an isomorphism of graded
algebras. If true itwould imply that the infinite sequence of numbersπ, ζ(3), ζ(5), . . .
are transcendentals algebraically independent over the rationals [41]. It would also
give dim Zn = dn . Presently, we only know that

dim Zn ≤ dn (dim Zn = dn for n ≤ 4). (50)
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For weights n ≤ 7 one can express all MZVs in terms of (products of) simple
(depth 1) zeta values. For n ≥ 8 this is no longer possible (as illustrated by the
presence of ζ(3, 5) in (44)). Brown [14] has established that the Hoffman elements
ζ(n1, . . . , nd) with ni ∈ {2, 3} form a basis of motivic zeta values for all weights
(see also [22, 41]).

7 Outlook

We shall sketch in this concluding section three complementary lines of development
in the topic of our review.

Thefirst goes in the direction of further specializing the class of functions and asso-
ciated numbers (periods) appearing in the Feynman amplitudes of interest. Euclidean
picture conformal amplitudes are singlevalued (as argued in [23, 25]). Knowing the
monodromy (42) one can construct a shuffle algebra of single valued hyperloga-
rithms [10, 11] which belong to the tensor product LΣ ⊗ LΣ of hyperlogarithms
and their complex conjugates (see also [38, 39] for lightened reviews). The resulting
functions and numbers, [15, 36], are also encountered in superstring calculations
(for a review see [20]).

A second trend proceeds to considering massive Feynman amplitudes as well as
higher order massless amplitudes which requires extending the family of functions
(and periods) of interest. The new functions appearing in the sunrise (or sunset)
graph in two and four dimensions are elliptic hyperlogarithms (for recent reviews
and further references – see [2, 5, 33]). Modular forms and associated L-functions
are also expected to play a role [7, 16, 19].

We do not touch another lively development championed by Goncharov and a
group of physicists who also proceed to extending the mathematical tools – using,
in particular, cluster algebras – in order to describe multileg amplitudes in N = 4
supersymmetric Yang-Mills theory (for a review and references – see [40]).

A third approach attempts to reveal structures common to all Feynman amplitudes.
Brown [17] gives a new meaning of the notion of cosmic Galois group (a term
introduced by Cartier in 1998) of motivic periods: it is associated with the family of
graphs with a fixed number of external lines and a fixed maximal number of different
masses. Thus C4,0 is the cosmic Galois group associated with the 4-point amplitudes
in a massless (say ϕ4-) theory). Every Feynman amplitude of this class defines
canonically a motivic period that gives rise to a finite dimensional representation of
C4,0. One can associate a weight to motivic periods that generalizes the weight of
MZVs. Brown proves that the space of motivic Feynman periods of a given type
(say, the type (4, 0) above) of weight not exceeding k is finite dimensional (Theorem
5.2 of [17]). This theorem allows to predict the type of periods of a given weight
in amplitudes of any order. An illustration of what this means is the observation by
Schnetz [35] that the combination 2

5 [29ζ(8) − 12ζ(3, 5)] of the period of the six loop
graph corresponding to Γ

(3)
8 (see (44)) also appears in a 7 loop period (multiplied
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by 252ζ(3) – see Eq. (6.2) of [17]). Brown remarks that the motivic version of the
anomalous magnetic moment of the electron a = g−2

2 (Sect. I) also displays some
compatibility with the action of the cosmic Galois group on periods.
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The Parastatistics Fock Space and Explicit
Infinite-Dimensional Representations
of the Lie Superalgebra osp(2m + 1|2n)
N.I. Stoilova and J. Van der Jeugt

Abstract The defining triple relations of m pairs of parafermion operators f ±
i and

n pairs of paraboson operators b±
j with relative parafermion relations can be con-

sidered as defining relations for the Lie superalgebra osp(2m + 1|2n) in terms of
2m + 2n generators. As a consequence of this the parastatistics Fock space of order
p corresponds to an infinite-dimensional unitary irreducible representationV(p) of
osp(2m + 1|2n), with lowest weight (− p

2 , . . . ,− p
2 | p2 , . . . ,

p
2 ). An explicit construc-

tion of the representationsV(p) is given for anym and n, as well as the computation
of matrix elements of the osp(2m + 1|2n) generators.

1 Introduction

Standard quantum mechanics considers two types of particles, bosons B±
j ([a, b] =

ab − ba)

[B−
j , B+

l ] = δ jl , [B−
j , B−

l ] = [B+
j , B+

l ] = 0, (1)

and fermions F±
i ({a, b} = ab + ba)

{F−
i , F+

k } = δik, {F−
i , F−

k } = {F+
i , F+

k } = 0, (2)

and the corresponding quantum statistics, Bose-Einstein and Fermi-Dirac statistics.
The n-boson Fock space with vacuum vector |0〉 satisfies
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〈0|0〉 = 1, B−
j |0〉 = 0, (B±

j )† = B∓
j (3)

and the other orthogonal normalized basis vectors are defined by

|k1, . . . , kn〉 = (B+
1 )k1 · · · (B+

n )kn√
k1! · · · kn! |0〉, k1, . . . , kn ∈ Z+. (4)

Similarly, the m-fermion Fock space is defined by

〈0|0〉 = 1, F−
i |0〉 = 0, (F±

i )† = F∓
i (i = 1, . . . ,m). (5)

and the basis vectors are as follows

|θ1, . . . , θm〉 = (F+
1 )θ1 · · · (F+

m )θm |0〉, θ1, . . . , θm ∈ {0, 1}. (6)

Bose-Einstein and Fermi-Dirac statistics were generalized by Green [3] in 1953. He
has shown that tensor fields can be quantizedwith creation and annihilation operators
b±
j (parabosons), which satisfy the triple relations

[{bξ
j , b

η
k }, bε

l ] = (ε − ξ)δ jlb
η
k + (ε − η)δklb

ξ
j , (7)

whereas for spinor fields he has introduced parafermions f ±
j postulating the com-

mutation relations

[[ f ξ
j , f η

k ], f ε
l ] = 1

2
(ε − η)2δkl f

ξ
j − 1

2
(ε − ξ)2δ jl f

η
k , (8)

where j, k, l ∈ {1, 2, . . .} and η, ε, ξ ∈ {+,−} (or, in the algebraic expressions,
η, ε, ξ ∈ {+1,−1}). The paraboson Fock space V (p) is the Hilbert space with vac-
uum vector |0〉, defined by means of

〈0|0〉 = 1, b−
j |0〉 = 0, (b±

j )
† = b∓

j ,

{b−
j , b

+
k }|0〉 = p δ jk |0〉, (9)

and by irreducibility under the action of the algebra spanned by the elements b+
j ,

b−
j , subject to (7). In the same way, the parafermion Fock space W (p) is the Hilbert

space with unique vacuum vector |0〉, defined by

〈0|0〉 = 1, f −
j |0〉 = 0, ( f ±

j )† = f ∓
j ,

[ f −
j , f +

k ]|0〉 = p δ jk |0〉, (10)

and by irreducibility under the action of the algebra spanned by the elements f +
j , f

−
j ,

subject to (8). In both cases the parameter p is known as the order of the correspond-
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ing para system. For p = 1 the paraboson (parafermion) Fock space coincides with
the boson (fermion) Fock space. The paraboson and parafermion Fock spaces can in
principle be constructed by the so-called Green ansatz [3]. However the explicit con-
struction of these para Fock spaces has been an open problem for many years because
of the difficulties of finding a proper basis of an irreducible constituent of a p-fold
tensor product [4]. In recent papers [8, 12, 13], these problems of giving complete
constructions of the paraboson and parafermion Fock spaces were solved. The solu-
tions rely on the facts that paraboson and parafermion statistics are incorporated into
algebraic structures. More precisely, a finite set of parafermions f ±

j , i = 1, 2, . . . ,m
subject to the parafermion relations (8) defines the Lie algebra so(2m + 1) by means
of generators and relations [7, 11]. The Fock space W (p) is the unitary irreducible
representation of so(2m + 1) with lowest weight (− p

2 ,− p
2 , . . . ,− p

2 ). In a similar
way, n paraboson operators b±

j subject to (7) are generating elements of the orthosym-
plecticLie superalgebraosp(1|2n) [2]. TheFock spaceV (p) is the unitary irreducible
representation of osp(1|2n) with lowest weight (

p
2 ,

p
2 , . . . ,

p
2 ). If one considers an

infinite number of parafermions (parabosons) the creation and annihilation operators
generate the infinite-dimensional algebra so(∞) (superalgebra osp(1|∞)) [13].

In the case of a mixed system consisting of parafermions f ±
j and parabosons

b±
j the relative commutation relations among paraoperators were studied by Green-

berg and Messiah [4]. They have shown that there can exist at most four types of
relative commutation relations: straight commutation, straight anticommutation, rel-
ative paraboson, and relative parafermion relations and the most interesting case
is the latter one. Palev [10] proved that m parafermions f ±

j (8) and n parabosons
b±
j (7) with relative parafermion relations generate the orthosymplectic Lie super-

algebra osp(2m + 1|2n). Therefore the parastatistics Fock space corresponds to an
infinite-dimensional unitary representation of osp(2m + 1|2n). For its explicit con-
struction, the techniques developed in [8, 12] can be applied, namely the branching
osp(2m + 1|2n) ⊃ gl(m|n), an induced module construction, a basis description for
the covariant tensor representations of gl(m|n) [14], Clebsch-Gordan coefficients of
gl(m|n) [14], and the method of reduced matrix elements.

In Sect. 2, we define m parafermions f ±
j (8) and n parabosons b±

j (7) with rel-
ative parafermion relations and the parastatistics Fock space V(p). In Sect. 3, we
consider the important relation between parastatistics operators and the Lie super-
algebra osp(2m + 1|2n), and give a description ofV(p) in terms of representations
of osp(2m + 1|2n). The rest of this section is devoted to the analysis of the repre-
sentations V(p) for osp(2m + 1|2n) and to the matrix elements for any m and n.
These matrix elements were recently computed [15]. We conclude the paper with
some final remarks.
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2 The Parastatistics Algebra and Its Fock SpaceV( p)

Consider a system of m pairs of parafermions f ±
i ≡ c±

i , i = 1, . . . ,m and n pairs
of parabosons b±

j ≡ c±
m+ j , j = 1, . . . , n with relative parafermion relations among

them. The defining triple relations for such a system are given by

[[[[c+
j , c

−
k ]], c+

l ]] = 2δklc
+
j , [[[[c+

j , c
+
k ]], c+

l ]] = 0,

[[c−
j , [[c+

k , c−
l ]]]] = 2δ jkc

−
l , [[[[c−

j , c
−
k ]], c−

l ]] = 0 (11)

or

[[[[cξ
j , c

η
k ]], cε

l ]] = −2δ jlδε,−ξε
〈l〉(−1)〈k〉〈l〉cη

k + 2ε〈l〉δklδε,−ηc
ξ
j , (12)

ξ, η, ε = ± or ± 1; j, k, l = 1, . . . , n + m,

where
[[a, b]] = ab − (−1)deg(a)deg(b)ba (13)

and

deg(c±
i ) ≡ 〈i〉 =

{
0 if j = 1, . . . ,m
1 if j = m + 1, . . . , n + m.

(14)

In the case j, k, l = 1, . . . ,m (12) reduces to (8) and in the case j, k, l = m +
1, . . . ,m + n (12) reduces to (7).

The parastatistics Fock space V(p) is the Hilbert space with vacuum vector |0〉,
defined by means of ( j, k = 1, 2, . . . ,m + n)

〈0|0〉 = 1, c−
j |0〉 = 0, (c±

j )
† = c∓

j ,

[[c−
j , c

+
k ]]|0〉 = pδ jk |0〉, (15)

and by irreducibility under the action of the algebra spanned by the elements c+
j , c

−
j ,

j = 1, . . . ,m + n, subject to (12). The parameter p is referred to as the order of the
parastatistics system.

In 1982 Palev [10] proved the following theorem.

Theorem 1 (Palev) The Lie superalgebra generated by 2m even elements f ±
i ≡

c±
i (i = 1, . . . ,m) and 2n odd elements b±

j ≡ c±
m+ j ( j = 1, . . . , n) subject to the

relations (12) is the orthosymplectic Lie superalgebra osp(2m + 1|2n). The Fock
spaceV(p) is the unitary irreducible representation of osp(2m + 1|2n) with lowest
weight (− p

2 , . . . ,− p
2 | p2 , . . . ,

p
2 ).

Constructing a basis for the parastatistics Fock space V(p) for general (integer)
p-values turns out to be a difficult problem, for which we describe the solution in
the rest of the paper.
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3 The Lie Superalgebras osp(2m + 1|2n) and a Class
of osp(2m + 1|2n) Explicit Representations

The orthosymplectic Lie superalgebra B(m|n) ≡ osp(2m + 1|2n) [5] consists of
(2m + 2n + 1 × 2m + 2n + 1) matrices of the form

⎛

⎜
⎜
⎜
⎜
⎝

a b u x x1
c −at v y y1

−vt −ut 0 z z1
yt1 xt1 zt1 d e

−yt −xt −zt f −dt

⎞

⎟
⎟
⎟
⎟
⎠

, (16)

with a any (m × m)-matrix, b and c antisymmetric (m × m)-matrices, u and v

(m × 1)-matrices, x, y, x1, y1 (m × n)-matrices, z and z1 (1 × n)-matrices, d any
(n × n)-matrix, and e and f symmetric (n × n)-matrices. The even elements have
x = y = x1 = y1 = 0, z = z1 = 0 and the odd elements are those with a = b = c =
0, u = v = 0, d = e = f = 0. Denote the row and column indices running from 1
to 2m + 2n + 1 and by ei j the matrix with zeros everywhere except a 1 on posi-
tion (i, j). The Cartan subalgebra h of osp(2m + 1|2n) is the subspace of diagonal
matrices with basis hi = eii − ei+m,i+m (i = 1, . . . ,m), hm+i = e2m+1+ j,2m+1+ j −
e2m+1+n+ j,2m+1+n+ j ( j = 1, . . . , n). Denote by εi (i = 1, . . . ,m), δ j ( j = 1, . . . , n)
the dual basis of h∗.

Introducing the following multiples of the even vectors with roots ±ε j ( j =
1, . . . ,m)

c+
j = f +

j = √
2(e j,2m+1 − e2m+1, j+m),

c−
j = f −

j = √
2(e2m+1, j − e j+m,2m+1), (17)

and of the odd vectors with roots ±δ j ( j = 1, . . . , n)

c+
m+ j = b+

j = √
2(e2m+1,2m+1+n+ j + e2m+1+ j,2m+1),

c−
m+ j = b−

j = √
2(e2m+1,2m+1+ j − e2m+1+n+ j,2m+1), (18)

it is easy to verify that these operators satisfy the triple relations (12).
The operators c+

j are positive root vectors, and the c−
j are negative root vectors.

We are interested in the construction of the parastatistics Fock spaceV(p) defined
by (15). It is straightforward to see that

[c−
i , c+

i ] = −2hi (i = 1, . . . ,m), and {c−
m+ j , c

+
m+ j } = 2hm+ j ( j = 1, . . . , n).

(19)
Therefore indeed Theorem 1 holds.
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In general the representationsV(p) can be constructed using an induced module
procedure (see [15] for more details). The relevant subalgebras of osp(2m + 1|2n)

are as follows.

Proposition 1 A basis for the even subalgebra so(2m + 1) ⊕ sp(2n) of osp(2m +
1|2n) is given by

[cξ
i , c

η
k ], cε

l (i, k, l = 1, . . . ,m); {cξ
m+ j , c

η
m+s} ( j, s = 1, . . . , n, ξ, η = ±).

(20)
The elements

[[c+
j , c

−
k ]] ( j, k = 1, . . . ,m + n) (21)

constitute a basis for the subalgebra u(m|n).

Note that with the notation 1
2 [[c+

j , c
−
k ]] ≡ E jk , the triple relations (12) imply the

relations
[[Ei j , Ekl]] = δ jk Eil − (−1)deg(Ei j )deg(Ekl )δli Ek j . (22)

Therefore, the elements [[c+
j , c

−
k ]] form, up to a factor 2, the standard basis elements

of u(m|n) or gl(m|n).
The subalgebra u(m|n) can be extended to a parabolic subalgebraP of osp(2m +

1|2n)

P = span{c−
j , [[c+

j , c
−
k ]], [[c−

j , c
−
k ]] | j, k = 1, . . . ,m + n}. (23)

Because of the fact that [[c−
j , c

+
k ]]|0〉 = p δ jk |0〉, with [c−

i , c+
i ] = −2hi

(i = 1, . . . ,m,) and {c−
m+ j , c

+
m+ j } = 2hm+ j ( j = 1, . . . , n), the space spanned by |0〉

is a trivial one-dimensional u(m|n)moduleC|0〉 of weight (− p
2 , . . . ,− p

2 | p2 , . . . ,
p
2 ).

As c−
j |0〉 = 0, the u(m|n)moduleC|0〉 can be extended to a one-dimensionalP mod-

ule. The induced osp(2m + 1|2n) module V(p) is defined by

V(p) = Indosp(2m+1|2n)

P C|0〉. (24)

This is an osp(2m + 1|2n) representation with lowest weight (− p
2 , . . . ,− p

2 | p
2 ,

. . . ,
p
2 ). By the Poincaré-Birkhoff-Witt theorem [6], a basis for V(p) is given by

(c+
1 )k1 · · · (c+

m+n)
km+n ([[c+

1 , c+
2 ]])k12([[c+

1 , c+
3 ]])k13 · · ·

· · · ([[c+
m+n−1, c

+
m+n]])km+n−1,m+n |0〉,

k1, . . . , km+n, k12, k13 . . . , km−1,m, km+1,m+2, km+1,m+3 . . . ,

km+n−1,m+n ∈ Z+,

k1,m+1, k1,m+2 . . . , k1,m+n, k2,m+1, . . . , km,m+n ∈ {0, 1}. (25)

In general V(p) is not an irreducible representation of osp(2m + 1|2n). Let M(p)
be the maximal nontrivial submodule of V(p). Then the irreducible module, corre-
sponding to the parastatistics Fock space, is



The Parastatistics Fock Space and Explicit Infinite-Dimensional … 175

V(p) = V(p)/M(p). (26)

Now the aim is to determine the vectors belonging toM(p), and thus find the structure
of V(p), and to compute the matrix elements of the algebra generators.

For this purpose, let us first consider the character ofV(p): this is a formal infinite
series of termsνx j1

1 x j2
2 . . . x jm

m y jm+1
1 y jm+2

2 . . . y jm+n
n , where the exponents carry aweight

( j1, . . . , jm | jm+1, . . . , jm+n) of V(p) and ν is the dimension of this weight space.
The vacuum vector |0〉 of V(p), of weight (− p

2 , . . . ,− p
2 | p2 , . . . ,

p
2 ), yields a term

x
− p

2
1 . . . x

− p
2

m y
p
2
1 . . . y

p
2
n in the character charV(p) and from the basis vectors (25) it

follows that

charV(p) = (x1)−p/2 · · · (xm)−p/2(y1)p/2 · · · (yn)p/2 ∏
i, j (1 + xi y j )

∏
i (1 − xi )

∏
i<k(1 − xi xk)

∏
j (1 − y j )

∏
j<l(1 − y j yl)

. (27)

Such expressions can be expanded in terms of supersymmetric Schur functions, valid
for general m and n.

Proposition 2 (Cummins and King) Consider two sets of variables

(x) = (x1, x2, . . . , xm), (y) = (y1, y2, . . . , yn).

Then [1]

∏
i, j (1 + xi y j )

∏
i (1 − xi )

∏
i<k(1 − xi xk)

∏
j (1 − y j )

∏
j<l(1 − y j yl)

=
∑

λ∈H
sλ(x1, . . . , xm |y1, . . . , yn) =

∑

λ∈H
sλ(x|y). (28)

In the right hand side, the sum is over all partitions λ satisfying the so called hook
condition λm+1 ≤ n (λ ∈ H), and sλ(x|y) is the supersymmetric Schur function [9]
defined by

sλ(x|y) =
∑

τ

sλ/τ (x)sτ ′(y) =
∑

σ,τ

cλ
στ sσ(x)sτ ′(y),

where �(σ) ≤ m, �(τ ′) ≤ n and |λ| = |σ| + |τ |. Herein, some standard notation [9]
is used: for a partition λ, �(λ) is the length of λ and |λ| its weight; τ ′ is the partition
conjugate to τ ; cλ

στ are the Littlewood-Richardson coefficients; and sν(x) is the
ordinary Schur function.

Now it is well known that the characters of the irreducible covariant u(m|n) tensor
representations V ([�λ]) are given by such supersymmetric Schur functions sλ(x |y)
(λ ∈ H). The relation between the partitions λ = (λ1,λ2, . . .), λm+1 ≤ n and the
highestweights�λ ≡ [μ]r ≡ [μ1r , . . . ,μmr |μm+1,r . . . ,μrr ] (r = m + n) of the irre-
ducible covariant u(m|n) tensor representations is known [16]:
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μir = λi , 1 ≤ i ≤ m,

μm+i,r = max{0,λ′
i − m}, 1 ≤ i ≤ n, (29)

where λ′ is the partition conjugate [9] to λ. Therefore the formula (28) gives the
branching to u(m|n) of the osp(2m + 1|2n) representation V(p). This also gives a
possibility to label the basis vectors ofV(p). For each irreducible covariant u(m|n)

tensor representations one can use the Gelfand-Zetlin basis (GZ) [14] and the union
of all these GZ basis is then the basis forV(p). In such a way the new basis ofV(p)
consists of vectors of the form

|μ) ≡ |μ)r =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

μ1r · · · μm−1,r μmr μm+1,r · · · μr−1,r μrr

μ1,r−1 · · · μm−1,r−1 μm,r−1 μm+1,r−1 · · · μr−1,r−1
...

...
...

...
... . .

.

μ1,m+1 · · · μm−1,m+1 μm,m+1 μm+1,m+1

μ1m · · · μm−1,m μmm

μ1,m−1 · · · μm−1,m−1
... . .

.

μ11

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (30)

which satisfy the conditions

1. μir ∈ Z+ are fixed and μ jr − μ j+1,r ∈ Z+, j �= m, 1 ≤ j ≤ r − 1,
μmr ≥ #{i : μir > 0, m + 1 ≤ i ≤ r};

2. μi p − μi,p−1 ≡ θi,p−1 ∈ {0, 1}, 1 ≤ i ≤ m; m + 1 ≤ p ≤ r;
3. μmp ≥ #{i : μi p > 0, m + 1 ≤ i ≤ p}, m + 1 ≤ p ≤ r;
4. if μm,m+1 = 0, then θmm = 0;
5. μi p − μi+1,p ∈ Z+, 1 ≤ i ≤ m − 1; m + 1 ≤ p ≤ r − 1;
6. μi, j+1 − μi j ∈ Z+ and μi, j − μi+1, j+1 ∈ Z+,

1 ≤ i ≤ j ≤ m − 1 or m + 1 ≤ i ≤ j ≤ r − 1.

(31)

Note that the last m lines of the triangular GZ-array correspond to a GZ-pattern
of gl(m), whereas the last n columns correspond to a GZ-pattern for gl(n). The con-
ditions above follow from the correspondence between a highest weight in partition
notation and its coordinates, see (29), and from the fact that for covariant represen-
tations, the decomposition from u(m|n) to u(m|n − 1) is governed by

sλ(x|y) =
∑

σ

sσ(x|y1, . . . , yn−1) y
|λ|−|σ|
n . (32)

In this last expression, the sum is over all partitions σ such that λ − σ is a vertical
strip [9]. That actually explains why the θi,p’s in (31) take values in {0, 1}.

Now the task is to give the explicit action of the generating elements c±
i (12) of

osp(2m + 1|2n). For this purpose, we introduce the following notations:
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|μ) ≡ |μ)r =
∣
∣
∣
∣
[μ]r
|μ)r−1

)
,

([μ]r ) = (μ1r ,μ2r , . . . ,μrr ) and ([μ]r±k) = (μ1r , . . . ,μkr ± 1, . . . ,μrr ). Then

Proposition 3 The explicit actions of the Lie superalgebra generators c±
j on a basis

of V(p) are as follows:

c+
j |μ) =

∑

k,μ′

( [μ]r
|μ)r−1 ;

10 · · · 00
10 · · · 0
· · ·
0

∣
∣
∣
∣
[μ]r+k|μ′)r−1

)
× Gk([μ]r )

∣
∣
∣
∣
[μ]r+k|μ′)r−1

)
, (33)

c−
j |μ) =

∑

k,μ′

( [μ]r−k|μ′)r−1 ;
10 · · · 00
10 · · · 0
· · ·
0

∣
∣
∣
∣
[μ]r
|μ)r−1

)
× Gk([μ]r−k)

∣
∣
∣
∣
[μ]r−k|μ′)r−1

)
. (34)

The first factor in the right hand sides of (33) and (34) is a u(m|n) Clebsch-Gordan
coefficient (CGC) given by formulae (4.9)–(4.17) in [14], and the second factor is a
reduced matrix element. The reduced matrix elements Gk (k = 1, . . . ,m + n = r)
are given by:

Gk(μ1r ,μ2r , . . . ,μrr ) =
⎛

⎝− (Em(μkr + m − n − k) + 1)
∏m

j �=k=1(μkr − μ jr − k + j)
∏�m/2�

j �= k
2 =1

(μkr − μ2 j,r − k + 2 j)(μkr − μ2 j,r − k + 2 j + 1)

⎞

⎠

1/2

×
n∏

j=1

(
μkr + μm+ j,r + m − j − k + 2

μkr + μm+ j,r + m − j − k + 2 − Em+μm+ j,r

)1/2

(35)

for k ≤ m and k even;

Gk(μ1r ,μ2r , . . . ,μrr ) = (p − μkr + k − 1)1/2 ×
(Om(μkr + m − n − k) + 1)1/2

(∏m
j �=k=1(μkr − μ jr − k + j)

)1/2

(∏�m/2�
j �= k+1

2 =1
(μkr − μ2 j−1,r − k + 2 j − 1)(μkr − μ2 j−1,r − k + 2 j)

)1/2

×
n∏

j=1

(
μkr + μm+ j,r + m − j − k + 2

μkr + μm+ j,r + m − j − k + 2 − Om+μm+ j,r

)1/2

(36)

for k ≤ m and k odd. The remaining expressions for k = 1, 2, . . . , n are
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Gm+k(μ1r ,μ2r , . . . ,μrr ) = (−1)μm+k+1,r+μm+k+2,r+...+μrr

× (
(Oμm+k,r (μm+k,r − k + n) + 1)(Em+μm+k,r (p + μm+k,r + m − k) + 1)

)1/2

×
( ∏�m/2�

j=1 (Em+μm+k,r (μ2 j,r + μm+k,r − 2 j − k + m + 1) + 1)
∏�m/2�

j=1 (Em+μm+k,r (μ2 j−1,r + μm+k,r − 2 j − k + m + 1) + 1)

)1/2

×
(∏�m/2�

j=1 (Om+μm+k,r (μ2 j−1,r + μm+k,r − 2 j − k + m + 2) + 1)
∏�m/2�

j=1 (Om+μm+k,r (μ2 j,r + μkr − 2 j − k + m) + 1)

)1/2

×
n∏

j �=k=1

(
μm+ j,r − μm+k,r − j + k

μm+ j,r − μm+k,r − j + k − Oμm+ j,r−μm+k,r

)1/2

. (37)

Herein E and O are the even and odd functions defined by

E j = 1 if j is even and 0 otherwise,

O j = 1 if j is odd and 0 otherwise; (38)

where obviously O j = 1 − E j , but it is still convenient to use both notations. Also,
note that products such as

∏s
j �=k=1 means “the product over all j-values running

from 1 to s, but excluding j = k”. The notation �a� (resp. �a�) refers to the floor
(resp. ceiling) of a, i.e. the largest integer not exceeding a (resp. the smallest integer
greater than or equal to a).

Now, taking into account the general conditions (31), the only factor in the right
hand sides of (35)–(37) that may become zero appears in (36) and is

p − μkr + k − 1 (k ≤ m and k odd).

For k = 1 this factor is (p − μ1r ), and μ1r is the largest integer in the first row of the
GZ-pattern (30) (which is also the first part of the partition λ, see (29)). Starting from
the vacuum vector, with a GZ-pattern consisting of all zeros, one can raise the entries
in the GZ-pattern by applying the operators c+

j . However, when μ1r has reached the
value p it can no longer be increased. As a consequence, all vectors |μ)with μ1r > p
belong to the submodule M(p). This gives the structure of V(p).

Theorem 2 An orthonormal basis for the space V(p) is given by the vectors |μ),
see (30) and (31), with μ1r ≤ p. The action of the Cartan algebra elements of
osp(2m + 1|2n) is:

hk |μ) =
⎛

⎝− p

2
+

k∑

j=1

μ jk −
k−1∑

j=1

μ j,k−1

⎞

⎠ |μ), k = 1, . . . ,m;

hk |μ) =
⎛

⎝ p

2
+

k∑

j=1

μ jk −
k−1∑

j=1

μ j,k−1

⎞

⎠ |μ), k = m + 1, . . . , r. (39)
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The action of the operators c±
j , j = 1, . . . , r is given by (33) and (34), where the

CGCs are found in [14] (see formulae (4.9)–(4.17)) and the reduced matrix elements
are given by (35)–(37).

4 Summary and Conclusion

In the present paper we have constructed the Fock spaces V(p) of m parafermions
and n parabosons with relative parafermion relations among them, which are the uni-
tary irreducible representations of osp(2m + 1|2n) with lowest weight of the form
(− p

2 , . . . ,− p
2 | p2 , . . . ,

p
2 ). The subalgebra u(m|n) of osp(2m + 1|2n), generated by

all supercommutators of the parafermions and parabosons, and its covariant tensor
representations play a crucial role in the analysis. For each irreducible covariant
u(m|n) tensor representation the known Gelfand-Zetlin basis follows the decompo-
sition u(m|n) ⊃ u(m|n − 1) ⊃ . . . ⊃ u(m|1) ⊃ u(m) ⊃ u(m − 1) ⊃ . . . ⊃ u(1).

The real interest is in such quantum systems (mixed systems of parafermions and
parabosons) with infinite degrees of freedom (m → ∞ and n → ∞). It is clear that
the GZ-basis used here cannot be used for such a purpose: asm → ∞ in (30), there is
no longer control over n. In order to investigate such systems one should construct the
irreducible covariant tensor representations ofu(n|n) in anotherGelfand-Zetlin basis,
namely following the decomposition u(n|n) ⊃ u(n|n − 1) ⊃ u(n − 1|n − 1) . . . ⊃
u(2|2) ⊃ u(2|1) ⊃ u(1|1) ⊃ u(1). We hope to report this result soon.
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Stepwise Square Integrable Representations:
The Concept and Some Consequences

Joseph A. Wolf

Abstract There are some new developments on Plancherel formula and growth of
matrix coefficients for unitary representations of nilpotent Lie groups. These have
several consequences for the geometry of weakly symmetric spaces and analysis
on parabolic subgroups of real semisimple Lie groups, and to (infinite dimensional)
locally nilpotent Lie groups.Manyof these consequences are still under development.
In this note I’ll survey a fewof these new aspects of representation theory for nilpotent
Lie groups and parabolic subgroups.

1 Introduction

There is a well developed theory of square integrable representations of nilpo-
tent Lie groups [17]. It is based on the general representation theory of Kirillov
[12] for connected nilpotent real Lie groups. A connected simply connected Lie
group N with center Z is called square integrable if it has unitary representations
π whose coefficients fu,v(x) = 〈u,π(x)v〉 satisfy | fu,v| ∈ L2(N/Z). If N has one
such square integrable representation then there is a certain polynomial function
P(γ) on the linear dual space z∗ of the Lie algebra of Z that is key to harmonic
analysis on N . Here P(γ) is the Pfaffian of the antisymmetric bilinear form on n/z
given by bλ(x, y) = λ([x, y]) where γ = λ|z. The square integrable representations
of N are certain easily-constructed representations πγ where γ ∈ z∗ with P(γ) �= 0,
Plancherel almost irreducible unitary representations of N are square integrable, and
up to an explicit constant |P(γ)| is the Plancherel density of the unitary dual N̂ at
πλ. This theory has some interesting analytic consequences [26].
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More recently there was a serious extension of that theory [27]. Under certain
conditions, the nilpotent Lie group N has a decomposition into subgroups that have
square integrable representations, and the Plancherel formula then is synthesized
explicitly in terms of the Plancherel formulae of those subgroups. In particular the
extended theory applies to nilradicals of minimal parabolic subgroups [27]. With a
minor technical adjustment it has just been extended to nilradicals of arbitrary real
parabolics [32]. The consequences include explicit Plancherel and Fourier inver-
sion formulas. Applications include analysis on minimal parabolic subgroups [28]
and, more generally, on maximal amenable subgroups of parabolics [32], They also
include analysis on commutative spaces, i.e. on Gelfand pairs [31]. We sketch some
of these developments. Due to constraints of time and space we pass over many
aspects of operator theory and orbit geometry, for example those described in [2–4],
related to stepwise square integrable representations.

In Sect. 2 we recall the basic facts [17], with a few extensions, on square integrable
representations of nilpotent Lie groups. In Sect. 3 we recall the concept and main
results for stepwise square integrable nilpotent Lie group.

In Sect. 4 we show how nilradicals of minimal parabolic subgroups have the
required decomposition for stepwise square integrability. This is a construction based
on concept of strongly orthogonal restricted roots.

In Sect. 5 we indicate the consequences for homogeneous compact nilmanifolds,
and in Sect. 6 we mention the application to analysis on commutative nilmanifolds.

In Sect. 7 we start the extension of stepwise square integrability results from the
nilradical N of a minimal parabolic P = MAN to various subgroups that contain
N . This section concentrates on the subgroup MN and takes advantage of principal
orbit theory. That gives a sharp simplification to the Plancherel and Fourier Inversion
formulae. In Sect. 8 we look at P and its subgroup AN . They are not unimodular, so
we introduce the Dixmier–Pukánszky operator D whose semi-invariance balances
that of the modular function. It is a key point for the Plancherel and Fourier Inversion
formulae.

Sections9 and 10 are a short discussion of work in progress on the extension of
results fromminimal parabolics to parabolics in general. There are two places where
matters diverge from theminimal parabolic case. First, there is a technical adjustment
to the definition of stepwise square integrable representation, caused by the fact that
in the non-minimal case the restricted roots need not form a root system. Second,
again for technical reasons, the explicit Plancherel Formula only comes through for
the maximal amenable subgroups U AN of G, and not for all of the parabolic.

This work was partially supported by a Simons Foundation grant and by the
award of a Dickson Emeriti Professorship. It expands a talk at the 11-th International
Workshop “Lie Theory and Its Applications in Physics” in Varna. My thanks to Prof.
Vladimir Dobrev and the others on the organizing committee for hospitality at that
Workshop.
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2 Square Integrable Representations

Let G be a unimodular locally compact group with center Z , and let π be an
irreducible unitary representation. We associate the central character χπ ∈ Ẑ by
π(z) = χπ(x) · 1 for z ∈ Z . Consider a matrix coefficient fu,v : x �→ 〈u,π(x)v〉.
Then | fu,v| is a well defined function on G/Z . Fix Haar measures μG on G, μZ on
Z and μG/Z on G/Z such that dμG = dμZ dμG/Z . The following results are well
known.

Theorem 2.1 The following conditions on π ∈ Ĝ are equivalent.

(1) There exist nonzero u, v ∈ Hπ with | fu,v| ∈ L2(G/Z).
(2) | fu,v| ∈ L2(G/Z) for all u, v ∈ Hπ .
(3) π is a discrete summand of the representation Ind G

Z (χπ).

Theorem 2.2 If the conditions ofTheorem2.1 are satisfied for an irreducibleπ ∈ Ĝ,
then there is a number degπ > 0 such that

∫

G/Z
fu,v(x) fu′,v′(x)dμG/Z (x Z) = 1

degπ
〈u, u′〉〈vv′〉 (1)

for all u, u′, v, v′ ∈ Hπ . If π1,π2 ∈ Ĝ are inequivalent and satisfy the conditions of
Theorem 2.1, and χπ1 = χπ2 , then

∫

G/Z
〈u,π1(x)v〉〈u′,π2(x)v′〉dμG/Z (x Z) = 0 (2)

for all u, v ∈ Hπ1 and all u′, v′ ∈ Hπ2 .

The main results of [17] shows exactly how this works for nilpotent Lie groups.

Theorem 2.3 Let N be a connected simply connected Lie group with center Z, n
and z their Lie algebras, and n∗ the linear dual space of n. Let λ ∈ n∗ and let πλ

denote the irreducible unitary representation attached to Ad∗(N )λ by the Kirillov
theory [12]. Then the following conditions are equivalent.

(1) πλ satisfies the conditions of Theorem 2.1.
(2) The coadjoint orbit Ad∗(N )λ = {ν ∈ n∗ | ν|z = λ|z.
(3) The bilinear form bλ(x, y) = λ([x, y]) on n/z is nondegenerate.
(4) The universal enveloping algebra U(z) is the center of U(n).

The Pfaffian polynomial Pf (bλ) is a polynomial function P(λ|z) on z∗, and the set
of representations πλ for which these conditions hold, is parameterized by the set
{γ ∈ z∗ | P(γ) �= 0} (which is empty or Zariski open in z∗).

Wewill say that the connected simply connected Lie group N is square integrable
if there existsλ ∈ n∗ such that P(λ|z) �= 0}. For conveniencewewill sometimeswrite
P(λ) for P(λ|z) and πγ for πλ where γ = λ|z.
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Theorem 2.4 Let N be a square integrable connected simply connected Lie group
with center Z. Then Plancherel measure on N̂ is concentrated on {πλ | P(λ) �= 0},
and there the Plancherel measure is given by the measure |P(λ)dλ| on z∗ and the
formal degree degπλ = |P(λ|z)|.

Given γ ∈ z∗ with P(γ) �= 0 and a Schwartz class (C(N )) function f on N we
write O(γ) for the co-adjoint orbit Ad∗(N )γ = γ + z⊥, fγ for the restriction of
f · exp to O(γ), and f̂γ for the Fourier transform of fγ on O(γ).

Theorem 2.5 Let N be a square integrable connected simply connected Lie group
with center Z and f ∈ C(N ). If γ ∈ z∗ with P(γ) �= 0 then the distribution character
of πγ is given by

Θπγ
( f ) = trace

∫

N
f (x)πγ(x)dμG(x) = c−1|P(γ)|−1

∫

ν∈O(γ)

f̂γ dν (3)

where c = d!2d and d = dim(n/z)/2 and dν is ordinary Lebesgue measure on the
affine space O(γ). The Fourier Inversion formula for N is

f (x) = c
∫

z∗
Θγ(rx f )|P(γ)| dγ where (rx f )(y) = f (yx) (right translate). (4)

There also are multiplicity results on L2(N/Γ ) where N is square integrable and
Γ is a discrete co-compact subgroup, but they are the same as in the stepwise square
integrable case, so we postpone their description.

3 Stepwise Square Integrability

In order to go beyond square integrable nilpotent groups, we suppose that the con-
nected simply connected nilpotent Lie group decomposes as

N = L1L2 . . . Lm−1Lm where

(a) each Lr has unitary representations with coeff inL2(Lr/Zr ),

(b) Nr := L1L2 . . . Lr is normal in N with Nr = Nr−1 � Lr ,

(c) [lr , zs] = 0 and [lr , ls] ⊂ v for r > s with lr = zr + vr

where n = s + v, s = ⊕ zr and v = ⊕ vr .

(5)
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We will use the following notation.

(a) dr = 1
2 dim(lr/zr ) so 1

2 dim(n/s) = d1 + · · · + dm ,

and c = 2d1+···+dm d1!d2! . . . dm !
(b) bλr : (x, y) �→ λ([x, y]) viewed as a bilinear form on lr/zr

(c) S = Z1Z2 . . . Zm = Z1 × · · · × Zm where Zr is the center of Lr

(d) P : polynomial P(λ) = Pf (bλ1)Pf (bλ2) . . . Pf (bλm ) on s∗

(e) t∗ = {λ ∈ s∗ | P(λ) �= 0}
(f) πλ ∈ N̂ for λ ∈ s∗ with P(λ) �= 0, irreducible unitary representation

of N = L1L2 . . . Lm constructed as follows.

(6)

Start with the representation πλ1 ∈ N̂1 specified by λ1 ∈ z∗1 with Pf (bλ1) �= 0.
Choose an invariant polarization p′

1 ⊂ n2 for the linear functional λ′
1 ∈ n∗

2 that agrees
with λ1 on n1 and vanishes on l2. Since Lr centralizes Sr−1, ad∗(l2)(λ′

1)|z1+l2 = 0,
so p′

1 = p1 + l2 where p1 is an invariant polarization for λ1 ∈ n∗
1. The associated

representations are π′
λ1

∈ N̂2 and πλ1 ∈ N̂1. Note that N2/P ′
1 = N1/P1, so the rep-

resentation spaces Hπ′
λ1

= L2(N2/P ′
1) = L2(N1/P1) = Hπλ1

. In other words, π′
λ1

extends πλ1 to a unitary representation of N2 on the same Hilbert space Hπλ1
, and

dπλ′
1
(z2) = 0. Now the Mackey Little Group method gives us

Lemma 3.1 The irreducible unitary representations of N2, whose restrictions to N1

are multiples of πλ1 , are the π′
λ1

⊗̂γ where γ ∈ L̂2 = N̂2/N1.

Givenλ2 ∈ z∗2 withPf (bλ2) �= 0wehaveπλ2 ∈ L̂2 with coefficients inL2(L2/Z2).
In the notation of Lemma 3.1 we define

πλ1+λ2 ∈ N̂2 by πλ1+λ2 = π′
λ1

⊗̂πλ2 . (7)

Proposition 3.2 The coefficients fz,w(xy) = 〈z,πλ1+λ2(xy)w〉 of πλ1+λ2 belong to

L2(N2/S2), in fact satisfy || fz,w||2L2(Nr /Sr )
= ||z||2||w||2

deg(πλ1 )... deg(πλr )
.

Proposition 3.2 starts a recursion using Nr+1 = Nr � Lr+1. We fix nonzero
λi ∈ z∗i for 1 � i � r + 1, and we start with the representation πλ1+···+λr constructed
step by step from the square integrable representations πλi ∈ L̂ i for 1 � i � r . The
representation space Hπλ1+···+λr

= Hπλ1
⊗̂ · · · ⊗̂Hπλr

. The coefficients of πλ1+···+λr

have absolute value in L2(Nr/Sr ). They satisfy

|| fz,w||2L2(Nr /Sr )
= ||z||2||w||2

deg(πλ1 )... deg(πλr )
. (8)

Then πλ1+···+λr extends to a representation π′
λ1+···+λr

of Lr+1 on the same Hilbert
space Hπλ1+···+λr

, and it satisfies dπ′
λ1+···+λr

(zr+1) = 0. As in Lemma 3.1,
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Lemma 3.3 The irreducibles π ∈ N̂r+1, whose restrictions to Nr are multiples of
πλ1+···+λr , are the π′

λ1+···+λr
⊗̂γ where γ ∈ L̂r+1 = ̂Nr+1/Nr .

As in Proposition 3.2, define πλ1+···+λr+1 = π′
λ1+···+λr

⊗̂πλr+1 . Then

Proposition 3.4 The coefficients fz,w(x1 . . . xr+1) = 〈z,πλ1+···+λr+1(x1x2 · · · xr+1)

w〉 of πλ1+···+λr+1 belong to L2(Nr+1/Sr+1), in fact satisfy

|| fz,w||2L2(Nr+1/Sr+1)
= ||z||2||w||2

deg(πλ1 )... deg(πλr+1 )
.

Since degπλr = |Pf (bλr )|, Proposition 3.4 is the recursion step for our construc-
tion. Passing to the end case r + 1 = m we see that Plancherel measure is concen-
trated on {πλ | λ ∈ t∗}. Using (5)(c) to see that conjugation by elements of Ls has
no effect on the Pf (bλr ) for r < s, we arrive at

Theorem 3.5 Let N be a connected simply connected nilpotent Lie group that satis-
fies (5). Then Plancherel measure for N is concentrated on {πλ | λ ∈ t∗, P(λ) �= 0}.
If λ ∈ t∗, P(λ) �= 0 and u, v ∈ Hπλ

, then the coefficient fu,v(x) = 〈u,πν(x)v〉 sat-
isfies

|| fu,v||2L2(N/S) = ||u||2||v||2/|P(λ)| . (9)

The distribution character Θπλ
: f �→ trace

∫
G f (x)π(x)dx of πλ is given by

Θπλ
( f ) = c−1|P(λ)|−1

∫

O(λ)

f̂λ(ξ)dνλ(ξ) for f ∈ C(N ) (10)

whereC(N ) is the Schwartz space,O(λ) = Ad∗(N )λ = s⊥ + λ, fλ is the lift fλ(ξ) =
f (exp(ξ)), f̂λ is its classical Fourier transform, anddνλ is the translate of normalized
Lebesgue measure from s⊥ to Ad∗(N )λ. Further,

f (x) = c
∫

t∗
Θπλ

(rx f )|P(λ)|dλ for f ∈ C(N ). (11)

Definition 3.6 The representations πλ of (6)(f) are the stepwise square integrable
representations of N relative to (5). ♦

The left action (l(x) f )(g) = f (x−1g) and the right action (r(y) f )(g) = f (gy)
of N on functions carries over to coefficients of π as l(x)r(y) fu,v = fπ(x)u,π(y)v . If
π = πλ stepwise square integrable,u, v ∈ Hπλ

areC∞ vectors, and ifΦ andΨ belong
to the universal enveloping algebra U(n), then l(Φ)r(Ψ ) fu,v = fdπ(Ψ )u,dπ(Φ)v is just
another coefficient, C∞ and L2(N/S). If ζλ ∈ Ŝ is the quasicentral character of πλ

it follows that fu,v belongs to the relative Schwartz space C(N/S, ζλ). In particular
it follows that | fu,v| ∈ Lp(N/S) for all p � 1. Taking Schwartz class wave packets
over S of coefficient functions of stepwise square integrable representations of N one
can express the Plancherel formula of Theorem 3.5 in terms of coefficient functions.
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4 Nilradicals of Minimal Parabolics

Fix a real simple Lie groupG, an Iwasawa decompositionG = K AN , and aminimal
parabolic subgroup Q = MAN in G. Let m = rank RG = dimR A. As usual, write
k for the Lie algebra of K , a for the Lie algebra of A, and n for the Lie algebra of N .
Complete a to a Cartan subalgebra h of g. Then h = t + a with t = h ∩ k. Now we
have root systems

Δ(gC, hC): roots of gC relative to hC (ordinary roots),

Δ(g, a): roots of g relative to a (restricted roots),

Δ0(g, a) = {α ∈ Δ(g, a) | 2α /∈ Δ(g, a)} (nonmultipliable).

(12)

Here Δ(g, a) and Δ0(g, a) are root systems in the usual sense. Any positive root
system Δ+(gC, hC) ⊂ Δ(gC, hC) defines positive systems

Δ+(g, a) = {γ|a | γ ∈ Δ+(gC, hC) and γ|a �= 0},
Δ+

0 (g, a) = Δ0(g, a) ∩ Δ+(g, a).
(13)

We can (and do) choose Δ+(g, h) so that

n is the sum of the positive restricted root spaces and

if γ ∈ Δ(gC, hC) and γ|a ∈ Δ+(g, a) then γ ∈ Δ+(gC, hC).
(14)

Two roots are called strongly orthogonal if their sum and their difference are not
roots. Then they are orthogonal. The Kostant cascade construction is

β1 ∈ Δ+(g, a) is a maximal positive restricted root and

βr+1 ∈ Δ+(g, a) is a maximum among the roots of Δ+(g, a)

that are orthogonal to all βi with i � r

(15)

Then the βr are mutually strongly orthogonal. Each βr ∈ Δ+
0 (g, a), and β1 is unique

because Δ(g, a) is irreducible. For 1 � r � m define

Δ+
1 = {α ∈ Δ+(g, a) | β1 − α ∈ Δ+(g, a)} and

Δ+
r+1 = {α ∈ Δ+(g, a) \ (Δ+

1 ∪ · · · ∪ Δ+
r ) | βr+1 − α ∈ Δ+(g, a)}. (16)

Lemma 4.1 If α ∈ Δ+(g, a), either α ∈ {β1, . . . ,βm} or α belongs to just one Δ+
r .

Lemma 4.2 Δ+
r ∪ {βr } = {α ∈ Δ+ | α ⊥ βi for i < r and 〈α,βr 〉 > 0}. In partic-

ular, [lr , ls] ⊂ lt where t = min{r, s}.
Lemma 4.1 shows that the Lie algebra n of N is the direct sum of its subspaces

lr = gβr +
∑

Δ+
r
gα for 1 � r � m (17)
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and Lemma 4.2 shows that n has an increasing foliation by ideals

nr = l1 + l2 + · · · + lr for 1 � r � m. (18)

Nowwewill see that the corresponding group level decomposition N = L1L2 . . . Lm

and the semidirect product decompositions Nr = Nr−1 � Lr satisfy (5). Denote

sβr is the Weyl group reflection in βr and

σr : Δ(g, a) → Δ(g, a) by σr (α) = −sβr (α).
(19)

Note that σr (βs) = −βs for s �= r ,+βs if s = r . If α ∈ Δ+
r we still have σr (α) ⊥ βi

for i < r and 〈σr (α),βr 〉 > 0. If σr (α) < 0 then βr − σr (α) > βr contradicting
maximality of βr . Thus, using Lemma 4.2, σr (Δ

+
r ) = Δ+

r .

Lemma 4.3 If α ∈ Δ+
r then α + σr (α) = βr . (It is possible that α = σr (α) = 1

2βr

when 1
2βr is a root.). If α,α′ ∈ Δ+

r and α + α′ ∈ Δ(g, a) then α + α′ = βr .

Lemma 4.4 Let n be a nilpotent Lie algebra, z its center, and v a vector space
complement to z in n. Suppose that v = u + u′, u = ∑

ua and u′ = ∑
u′
a, and z =∑

zb with dim zb = 1 in such a way that (i) each [ua, ua] = 0 = [u′
a, u

′
a], (ii) if

a1 �= a2 then [ua1 , u′
a2 ] = 0 and (iii) for each a there is a nondegenerate pairing

ua ⊗ u′
a → zba , by u ⊗ u′ �→ [u, u′]. Then n is a direct sum of Heisenberg algebras

zba + ua + u′
a and the commutative algebra that is the sum of the remaining zb.

Now one runs through a number of special situations: (1) If g is the split real
form of gC then each Lr has square integrable representations. (2) If g is simple
but not absolutely simple then each Lr has square integrable representations. (3) If
G is the quaternion special linear group SL(n; H) then L1 has square integrable
representations. (4) If G is the group E6,F4 of collineations of the Cayley projective
plane then L1 has square integrable representations. (5) The group L1 has square
integrable representations. (6) If g is absolutely simple then each Lr has square
integrable representations. Putting these together, Theorem 3.5 applies to nilradicals
of minimal parabolic subgroups:

Theorem 4.5 Let G be a real reductive Lie group, G = K AN an Iwasawa decom-
position, lr and nr the subalgebras of n defined in (17) and (18), and Lr and Nr

the corresponding analytic subgroups of N . Then the Lr and Nr satisfy (5). In
particular, Plancherel measure for N is concentrated on {πλ | λ ∈ t∗}. If λ ∈ t∗,
and if u and v belong to the representation space Hπλ

of πλ, then the coefficient

fu,v(x) = 〈u,πλ(x)v〉 satisfies || fu,v||2L2(N/S)
= ||u||2||v||2

|P(λ)| .The distribution character

Θπλ
of πλ satisfies Θπλ

( f ) = c−1|P(λ)|−1
∫
O(λ)

f̂λ(ξ)dνλ(ξ) for f ∈ C(N ). Here

C(N ) is the Schwartz space, O(λ) is the coadjoint orbit Ad∗(N )λ = s⊥ + λ, fγ is
the lift fγ(ξ) = f (exp(ξ)) to s⊥ + λ, f̂γ is its classical Fourier transform, and dνλ is
the translate of normalized Lebesgue measure from s⊥ to Ad∗(N )λ. The Plancherel
formula on N is f (x) = c

∫
t∗ Θπλ

(rx f )|P(λ)|dλ for f ∈ C(N ).
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5 Compact Nilmanifolds

Here are the basic facts on discrete uniform (i.e. co-compact) subgroups of connected
simply connected nilpotent Lie groups. See [21, Chap.2] for an exposition.

Proposition 5.1 The following are equivalent.

• N has a discrete subgroup Γ with N/Γ compact.
• N ∼= NR where NR is the group of real points in a unipotent linear algebraic group
defined over the rational number field Q.

• n has a basis {ξ j } for which the coefficients cki, j in [ξi , ξ j ] = ∑
cki, jξk are rational

numbers.

Under those conditions letn
Q
denote the rational spanof {ξ j }and letnZ

be the integral
span. Then exp(n

Z
) generates a discrete subgroup NZ of N = NR and NR/NZ is

compact. Conversely, if Γ is a discrete co-compact subgroup of N then the Z-span
of exp−1(Γ ) is a lattice in n for which any generating set {ξ j } is a basis of n such
that the coefficients cki, j in [ξi , ξ j ] = ∑

cki, jξk are rational numbers.

The conditions of Proposition 5.1 hold for the nilpotent groups studied in Sect. 4;
there one can choose the basis {ξ j } of n so that the cki, j are integers.

The basic facts on square integrable representations that occur in compact quo-
tients N/Γ , as described in [17, Theorem 7], are

Proposition 5.2 Let N be a connected simply connected nilpotent Lie group that
has square integrable representations, and let Γ a discrete co-compact subgroup.
Let Z be the center of N and normalize the volume form on n/z by normalizing Haar
measure on N so that N/ZΓ has volume 1. Let P be the corresponding Pfaffian
polynomial on z∗. Note that Γ ∩ Z is a lattice in Z and exp−1(Γ ∩ Z) is a lattice
(denote it Λ) in z. That defines the dual lattice Λ∗ in z∗. Then a square integrable
representation πλ occurs in L2(N/Γ ) if and only if λ ∈ Λ∗, and in that case πλ

occurs with multiplicity |P(λ)|.
Definition 5.3 Let N = NR be defined over Q as in Proposition 5.1, so we have a
fixed rational form NQ. We say that a connected Lie subgroup L ⊂ N is rational if
L ∩ NQ is a rational form of L , in other words if l ∩ n

Q
contains a basis of l. We say

that a decomposition (5) is rational if the subgroups Lr and Nr are rational. ♦
The following is immediate from this definition.

Lemma 5.4 Let N be defined over Q as in Proposition 5.1 with rational structure
defined by a discrete co-compact subgroup Γ . If the decomposition (5) is rational
then each Γ ∩ Zr in Zr , each Γ ∩ Lr in Lr , each Γ ∩ Sr in Sr , and each Γ ∩ Nr

in Nr , is a discrete co-compact subgroup defining the same rational structure as the
one defined by its intersection with NQ.
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Now assume that N and Γ satisfy the rationality conditions of Lemma 5.4. Then
for each r , Zr ∩ Γ is a lattice in the center Zr of Lr , and Λr := log(Zr ∩ Γ ) is a
lattice in its Lie algebra zr . That defines the dual lattice Λ∗

r in z∗r . We normalize the
Pfaffian polynomials on the z∗r , and thus the polynomial P on s∗, by requiring that
the Nr/(Sr · (Nr ∩ Γ )) have volume 1.

Theorem 5.5 Let λ ∈ t∗. Then a stepwise square integrable representation πλ of N
occurs in L2(N/Γ ) if and only if each λr ∈ Λ∗

r , and in that case the multiplicity of
πλ on L2(N/Γ ) is |P(λ)|.

6 Commutative Spaces

A commutative space X = G/K , or equivalently a Gelfand pair (G, K ), consists
of a locally compact group G and a compact subgroup K such that the convolution
algebra L1(K\G/K ) is commutative. When G is a connected Lie group it is equiva-
lent to say that the algebraD(G, K ) of G-invariant differential operators on G/K is
commutative.We say that the commutative spaceG/K is a commutative nilmanifold
if it is a nilmanifold in the sense that some nilpotent analytic subgroup N of G acts
transitively. When G/K is connected and simply connected it follows that N is the
nilradical of G, that N acts simply transitively on G/K , and that G is the semidi-
rect product group N � K , so that G/K = (N � K )/K . In this section we study
the role of square integrability and stepwise square integrability for commutative
nilmanifolds G/K = (N � K )/K .

The cases where G/K and (G, K ) are irreducible in the sense that [n, n] (which
must be central) is the center of n and K acts irreducibly on n/[n, n], have been
classified by E.B. Vinberg [22, 23]. See [26, Sect. 13.4B] for the Lie algebra structure
v × v → z. The classification of commutative nilmanifolds is based on Vinberg’s
work and was completed by O. Yakimova in [34, 35].

It turns out that almost all commutative manifolds correspond to nilpotent groups
that are square integrable. The exceptions are those with a certain direct factor, and
in those cases the nilpotent group is stepwise square integrable in two steps, so in
those cases the Plancherel formula follows directly from the general result above.
See [31] for the details.

7 Minimal Parabolics: Subgroup MN

Fix an Iwasawa decompositionG = K AN for a simple Lie groupG and theminimal
parabolic subgroup Q = MAN . As usual, write k for the Lie algebra of K , a for the
Lie algebra of A, m for the Lie algebra of M , and n for the Lie algebra of N .
Complete a to a Cartan subalgebra h of g. Then we have root systems Δ(gC, hC),
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Δ(g, a) and Δ0(g, a) described in (12). M is the centralizer of A in K . Write 0 for
identity component; then Q0 = M0AN .

Recall the Pf-nonsingular set t∗ = {λ ∈ s∗ | Pf (bλ) �= 0} of (6)(e); so Ad∗
(M)t∗ = t∗. Further, if λ ∈ t∗ and c �= 0 then cλ ∈ t∗, in fact Pf (bcλ) = cdim(n/s)/2

Pf (bλ).
Fix an M-invariant inner product (μ, ν) on s∗. So Ad∗(M) preserves each sphere

s∗
t = {λ ∈ s∗ | (λ,λ) = t2}. TwoorbitsAd∗(M)μ andAd∗(M)ν are of the sameorbit
type if the isotropy subgroups Mμ and Mν are conjugate, and an orbit is principal if
all nearby orbits are of the same type. Since M and s∗

t are compact, there are only
finitely many orbit types of M on s∗

t , there is only one principal orbit type, and the
union of the principal orbits forms a dense open subset of s∗

t whose complement has
codimension �2. See [5, Chap. 4, Sect. 3] for a complete treatment of this material,
or [10, Part II, Chap. 3, Sect. 1] modulo references to [5], or [18, Chap. 5] for a basic
treatment, still with some references to [5].

The action of M on s∗ commutes with dilation so the structural results on the st
also hold on s∗ = ⋃

t>0 s
∗
t . Define the Pf-nonsingular principal orbit set as follows:

u∗ = {λ ∈ t∗ | Ad∗(M)λ is a principal M-orbit on s∗}. (20)

Nowprincipal orbit set u∗ is a dense open set with complement of codimension� 2 in
s∗. If λ ∈ u∗ and c �= 0 then cλ ∈ u∗ with isotropy Mcλ = Mλ. If λ ∈ u∗

t := u∗ ∩ s∗
t ,

soAd∗(M)λ is a Pf-nonsingular principal orbit ofM on the sphere s∗
t , thenAd

∗(M0)λ
is a principal orbit of M0 on s∗

t . Principal orbit isotropy subgroups of compact
connected linear groups are studied in [11] and the possibilities for the isotropy
(M0)λ are essentially known. The following lets us go from (M0)λ to Mλ.

Proposition 7.1 ([28]) Suppose that G is connected and linear. Then M = FZGM0

where ZG is the center of G, F = (exp(ia) ∩ K ) is an elementary abelian 2-group,
and Ad∗(F) acts trivially on s∗. If λ ∈ u∗ then the isotropy Mλ = FZG(M0)λ.

Thus the groups Mλ are specified by the work of W.-C. and W.-Y. Hsiang [11].
Given λ ∈ u∗ the stepwise square integrable representation πλ ∈ N̂ one proves

that the Mackey obstruction ε ∈ H 2(Mλ;U (1)) is trivial, and in fact that πλ extends
to a unitary representation π†

λ of N � Mλ on the representation space of πλ.
Each λ ∈ u∗ now defines classes

E(λ) :=
{
π†

λ ⊗ γ | γ ∈ M̂λ

}
, F(λ) :=

{
Ind NM

NMλ
(π†

λ ⊗ γ) | π†
λ ⊗ γ ∈ E(λ)

}

(21)

of irreducible unitary representations of N � Mλ and NM . The Mackey little group
method, plus the fact that the Plancherel density on N̂ is polynomial on s∗, and
s∗ \ u∗ has measure 0 in t∗, gives us

Proposition 7.2 Plancherel measure for NM is concentrated on
⋃

λ∈u∗ F(λ),
equivalence classes of irreducible representations ηλ,γ := Ind NM

NMλ
(π†

λ ⊗ γ) such that

π†
λ ⊗ γ ∈ E(λ) and λ ∈ u∗. Further
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ηλ,γ |N =
(
Ind NM

NMλ
(π†

λ ⊗ γ)
)∣
∣
∣
N

=
∫

M/Mλ

(dim γ)πAd∗(m)λ d(mMλ).

There is a Borel section σ to u∗ → u∗/Ad∗(M) that picks out an element in each
M-orbit so that M has the same isotropy subgroup at each of those elements. In other
words in each M-orbit on u∗ we measurably choose an element λ = σ(Ad∗(M)λ)

such that those isotropy subgroups Mλ are all the same. Let us denote

M♦: isotropy subgroup of M at σ(Ad∗(M)λ) for every λ ∈ u∗ (22)

We replace Mλ by M♦, independent of λ ∈ u∗, in Proposition 7.2. That lets us
assemble to representations of Proposition 7.2 for a Plancherel Formula, as follows.
Since M is compact, we have the Schwartz space C(NM) just as in the discussion
of C(N ) between (6) and Theorem 3.5, except that the pullback exp∗ C(NM) �=
C(n + m). The same applies to C(N A) and C(N AM).

Proposition 7.3 Let f ∈ C(NM) and write ( fm)(n) = f (nm) = (n f )(m) for n ∈
N and m ∈ M. The Plancherel density at Ind NM

NM♦(π†
λ ⊗ γ) is (dim γ)|Pf (bλ)| and

the Plancherel Formula for NM is

f (nm) = c
∫

u∗/Ad∗(M)

∑

F(λ)

trace ηλ,γ(n fm) · dim(γ) · |Pf (bλ)|dλ

where c = 2d1+···+dm d1!d2! . . . dm !, from (6), as in Theorem 3.5.

8 Minimal Parabolics: MAN and AN

LetG be a separable locally compact group of type I. Then [14, Sect. 1] the Plancherel
formula for G has form

f (x) =
∫

Ĝ
trace π(D(r(x) f ))dμG (π) (23)

where D is an invertible positive self adjoint operator on L2(G), conjugation-semi-
invariant ofweight equal to themodular function δG , andμ is a positiveBorelmeasure
on the unitary dual Ĝ. If G is unimodular then D is the identity and (23) reduces to
the usual Plancherel formula. The point is that semi-invariance of D compensates
any lack of unimodularity. See [14, Sect. 1] for a detailed discussion. D ⊗ μ is unique
(up to normalization of Haar measures) and one tries to find a “best” choice of D.
Given any such pair (D,μ) we refer to D as a Dixmier–Pukánszky Operator on G
and to μ as the associated Plancherel measure on Ĝ. We will construct a Dixmier–
Pukánszky Operator from the Pfaffian polynomial Pf (bλ).
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Let δAN and δQ denote the modular functions on AN and on Q = MAN . As M
is compact and AdQ(N ) is unipotent on p, they are determined by their restrictions
to A, where they are given by δ(exp(ξ)) = exp(trace (ad(ξ))) with ξ = log a ∈ a.

Lemma 8.1 Let ξ ∈ a. Then 1
2 (dim lr + dim zr ) ∈ Z for 1 � r � m and

(i) the trace of ad(ξ) on lr is
1
2 (dim lr + dim zr )βr (ξ),

(ii) the trace of ad(ξ) on n and on p is 1
2

∑
r (dim lr + dim zr )βr (ξ),

(iii) the determinant of Ad(exp(ξ)) on n and on p is
∏

r exp(βr (ξ))
1
2 (dim lr+dim zr ),

(iv) δQ(man) = ∏
r exp(βr (log a))

1
2 (dim lr+dim zr ) and δAN = δQ |AN .

Now compute

Lemma 8.2 Let ξ ∈ a and a = exp(ξ) ∈ A. Then ad(ξ)Pf = (
1
2

∑
r dim(lr/ zr )

βr (ξ)
)
Pf and Ad(a)Pf =

(∏
r exp(βr (ξ))

1
2 dim(lr / dim zr )

)
Pf .

At this point it is convenient to introduce some notation and definitions.

Definition 8.3 The algebra s is the quasi-center of n. The polynomial function
Dets∗(λ) := ∏

r (βr (λ))dim gβr on s∗ is the quasi-center determinant.

For ξ ∈ a and a = exp(ξ) ∈ A compute (Ad(a)Dets∗)(λ) = Dets∗(Ad∗(a−1)

(λ)) = ∏
r (βr (Ad(a−1)∗λ))dim gβr = ∏

r (βr (exp(βr (ξ))λ))dim gβr . In other words,

Lemma 8.4 Let a = exp(ξ) ∈ A. Then Ad(a)Dets∗ = (∏
r exp(βr (ξ))

dim zr
)
Dets∗

where ξ = log a ∈ a.

Combining Lemmas 8.1, 8.2 and 8.4 we have

Proposition 8.5 The product Pf · Dets∗ is an Ad(MAN )-semi-invariant (and thus
Ad(AN )-semi-invariant) polynomial on s∗ of degree 1

2 (dim n + dim s) and of weight
equal to the respective modular functions of Q and AN.

Fromn = v + swehave N = V SwhereV = exp(v) and S = exp(s).Nowdefine

D : Fourier transform of Pf · Dets∗ , acting on the S variable of N = V S. (24)

Theorem 8.6 The operator D of (24) is an invertible self-adjoint differential oper-
ator of degree 1

2 (dim n + dim s) on L2(MAN ) with dense domain C(MAN ), and
it is Ad(MAN )-semi-invariant of weight equal to the modular function δMAN . In
other words |D| is a Dixmier–Pukánszky Operator on MAN with domain equal to
the space of rapidly decreasing C∞ functions. This applies as well to AN.

Since λ ∈ t∗ has nonzero projection on each summand z∗r of s∗, and a ∈ A acts
by the positive real scalar exp(βr (log(a))) on zr ,

Aλ = exp({ξ ∈ a | each βr (ξ) = 0}), independent of λ ∈ t∗. (25)

Because of this independence, and using a♦ = {ξ ∈ a | each βr (ξ) = 0}, we define

A♦ = Aλ for any (and thus for all) λ ∈ t∗. (26)
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Lemma 8.7 If λ ∈ σ(u∗) then the stabilizer (MA)λ = M♦A♦.

There is no problem with the Mackey obstruction:

Lemma 8.8 Let λ ∈ σ(u∗). Recall the extension (before (21)) π†
λ of πλ to NM♦.

Then π†
λ extends to π̃λ ∈ ̂NM♦A♦ with the same representation space as πλ.

When λ ∈ σ(u∗), Â♦ consists of the unitary characters exp(iφ) : a �→ eiφ(log a)

with φ ∈ a∗
♦. The representations of Q corresponding to λ are the

πλ,γ,φ := Ind NMA
NM♦A♦(π̃λ ⊗ γ ⊗ exp(iφ)) where γ ∈ M̂♦ and φ ∈ a∗

♦ . (27)

Ad∗(A) fixes γ because A centralizes M , and it fixes φ because A is commutative,
so

πλ,γ,φ · Ad((ma)−1) = πAd∗(ma)λ,γ,φ (28)

Proposition 8.9 Plancherel measure for Q is concentrated on the set of all πλ,γ,φ

for λ ∈ σ(u∗), γ ∈ M̂♦ and φ ∈ a∗
♦. The equivalence class of πλ,γ,φ depends only on

(Ad∗(MA)λ, γ,φ).

Representations of AN are the case γ = 1. In effect, let π′
λ denote the obvious

extension π̃λ|AN of the stepwise square integrable representation πλ from N to N A♦
where π̃λ is given by Lemma 8.8. Denote

πλ,φ = Ind N A
N A♦(π′

λ ⊗ exp(iφ)) where λ ∈ u∗ and φ ∈ a∗
♦. (29)

Corollary 8.10 Plancherel measure for AN is concentrated on the set of all πλ,φ for
λ ∈ u∗ and φ ∈ a∗

♦. The equivalence class of πλ,φ depends only on (Ad∗(MA)λ,φ).

A result of C.C. Moore implies

Lemma 8.11 The Pf-nonsingular principal orbit set u∗ is a finite union of open
Ad∗(MA)-orbits.

Let {O1, . . . ,Ov} denote the (open) Ad∗(MA)-orbits on u∗. Denote λi = σ(Oi ),
so Oi = Ad∗(MA)λi and (MA)λi = M♦A♦ for 1 � i � v. Then Proposition 8.9
becomes

Theorem 8.12 Plancherel measure for M AN is concentrated on the set (of equiva-
lence classes of) unitary representations πλi ,γ,φ for 1 � i � v, γ ∈ M̂♦ and φ ∈ a∗

♦.

The Plancherel Formula (or Fourier Inversion Formula) for MAN is

Theorem 8.13 Let Q = MAN be a minimal parabolic subgroup of the real reduc-
tive Lie group G. Given πλ,γ,φ ∈ M̂ AN as described in (27) let Θπλ,γ,φ

: h �→
trace πλ,γ,φ(h) denote its distribution character. Then Θπλ,γ,φ

is a tempered distri-
bution. If f ∈ C(MAN ) then
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f (x) = c
v∑

i=1

∑

γ∈̂M♦

∫

a∗♦
Θπλi ,γ,φ

(D(r(x) f ))|Pf (bλi )| dim γ dφ

where c > 0 depends on normalizations of Haar measures.

The Plancherel Theorem for N A follows similar lines. For the main computation
in the proof of Theorem 8.13 we omit M and γ. That gives

∫

a∗♦
trace πλ0,φ(Dh) dφ =

∫

Ad∗(A)λ0

trace πλ(h)|Pf (bλ)|dλ (30)

In order to go from an Ad∗(A)λ0 to an integral over u∗ we use M to parameterize
the space of Ad∗(A)-orbits on u∗. If λ ∈ u∗ one proves Ad∗(A)λ ∩ Ad∗(M)λ = {λ}.
That leads to

Proposition 8.14 Plancherel measure for N A is concentrated on the equivalence
classes of representations πλ,φ = Ind N A

N A♦(π′
λ ⊗ exp(iφ)) where λ ∈ Si := Ad∗(M)

λi , 1 � i � v, π′
λ extends πλ from N to N A� and φ ∈ a∗�. Representations πλ,φ and

πλ′,φ′ are equivalent if and only if λ′ ∈ Ad∗(A)λ and φ′ = φ. Further, πλ,φ|N =∫
a∈A/A♦ πAd∗(a)λda.

Theorem 8.15 Let Q = MAN be a minimal parabolic subgroup of the real reduc-
tive Lie group G. If πλ,φ ∈ ÂN let Θπλ,φ

: h �→ trace πλ,φ(h) denote its distribution
character. Then Θπλ,φ

is a tempered distribution. If f ∈ C(AN ) then

f (x) = c
v∑

i=1

∫

λ∈Ad∗(M)λi

∫

a∗♦
trace πλ,φ(D(r(x) f ))|Pf (bλ)|dλdφ.

where c > 0 depends on normalizations of Haar measures.

9 Parabolic Subgroups in General: The Nilradical

In Sects. 7 and 8 we studied minimal parabolic subgroups Q = MAN in simple Lie
groups, along with certain of their subgroups MN and AN . This section and the next
form a glance at more general parabolics. This material is taken from [32], which is
a work in progress, and is limited to the part that I’ve written down. We start with
the structure of the nilradical.

The condition (c) of (5) does not always hold for nilradicals of parabolic sub-
groups. In this section and the next we weaken (5) to
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N = L1L2 . . . Lm−1Lm where

(a) eachLr has unitary representations with coefficients in L2(Lr/Zr ),

(b) each Nr := L1L2 . . . Lr = Nr−1 � Lr semidirect,

(c) if r � s then [lr , zs] = 0.

(31)

The conditions of (31) are sufficient to construct stepwise square integrable repre-
sentations, but are not always sufficient to compute the Pfaffian that is the Plancherel
density. So we refer to (5) as the strong computability condition and make use of the
weak computability condition

Let lr = l′r ⊕ l′′r where l
′′
r ⊂ zr and vr ⊂ l′r ; then [lr , ls] ⊂ l′′s + vs for r > s. (32)

where we retain lr = zr + vr and n = s + v.
Consider an arbitrary parabolic subgroup of G. It contains a minimal parabolic

Q = MAN . Let Ψ denote the set of simple roots for the positive system Δ+(g, a).
Then the parabolic subgroups of G that contain Q are in one to one correspondence
with the subsets Φ ⊂ Ψ , say QΦ ↔ Φ, as follows. Denote Ψ = {ψi } and set

Φred =
{
α =

∑

ψi∈Ψ
niψi ∈ Δ(g, a) | ni = 0 whenever ψi /∈ Φ

}

Φnil =
{
α =

∑

ψi∈Ψ
niψi ∈ Δ+(g, a) | ni > 0 for some ψi /∈ Φ

}
.

(33)

On the Lie algebra level, qΦ = mΦ + aΦ + nΦ where

aΦ = {ξ ∈ a | ψ(ξ) = 0 for all ψ ∈ Φ} = Φ⊥ ,

mΦ + aΦ is the centralizer of aΦ in g, so mΦ has root system Φred , and

nΦ =
∑

α∈Φnil
gα , nilradical of qΦ , sum of the positive aΦ-root spaces.

(34)

Since n = ∑
r lr , as given in (17) and (18) we have

nΦ =
∑

r
(nΦ ∩ lr ) =

∑

r

(
(gβr ∩ nΦ) +

∑

Δ+
r
(gα ∩ nΦ)

)
. (35)

As ad(m) is irreducible on each restricted root space, if α ∈ {βr } ∪ Δ+
r then gα ∩ nΦ

is 0 or all of gα.

Lemma 9.1 Suppose gβr ∩ nΦ = 0. Then lr ∩ nΦ = 0.

Lemma 9.2 Suppose gβr ∩ nΦ �= 0. Define Jr ⊂ Δ+
r by lr ∩ nΦ = gβr + ∑

Jr
gα.

Decompose Jr = J ′
r ∪ J ′′

r where J ′
r = {α ∈ Jr | σrα ∈ Jr }and J ′′

r = {α ∈ Jr | σrα /∈
Jr }. Then gβr + ∑

J ′′
r
gα belongs to a single aΦ-root space in nΦ , i.e. α|aΦ

= βr |aΦ
,

for every α ∈ J ′′
r .
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Lemma 9.3 Suppose lr ∩ nΦ �= 0. Then the algebra lr ∩ nΦ has center gβr +
∑

J ′′
r
gα, and lr ∩ nΦ = (gβr + ∑

J ′′
r
gα) + (

∑
J ′
r
gα)). Further, lr ∩ nΦ =

(∑
J ′′
r
gα

)

⊕
(
gβr +

(∑
J ′
r
gα

))
direct sum of ideals.

It will be convenient to define sets of simple aΦ-roots

Ψ1 = Ψ and Ψs+1 = {ψ ∈ Ψ | 〈ψ,βi 〉 = 0 for 1 � i � s}. (36)

Note that Ψr is the simple root system for {α ∈ Δ+(g, a) | α ⊥ βi for i < r}.
Lemma 9.4 If r > s then [lr ∩ nΦ , gβs + ∑

J ′′
s
gα] = 0.

For our dealingswith arbitrary parabolics it is not sufficient to consider linear func-
tionals on

∑
r gβr . Insteadwehave to look at linear functionals on

∑
r

(
gβr + ∑

J ′′
r
gα

)
.

of the form λ = ∑
λr where λr ∈ g∗

βr
such that bλr is nondegenerate on

∑
r

∑
J ′
r
gα.

We know that (5)(c) holds for the nilradical of the minimal parabolic q that con-
tains qΦ . In view of Lemma 9.4 it follows that bλ(lr , ls) = λ([lr , ls] = 0 for r > s.
For this particular type of λ, the bilinear form bλ has kernel

∑
r

(
gβs + ∑

J ′′
s
gα

)
and

is nondegenerate on
∑

r

∑
J ′
r
gα. Then NΦ = (L1 ∩ NΦ)(L2 ∩ NΦ) . . . (Lm ∩ NΦ)

satisfies the first two conditions of (5). That is enough to carry out the construction
of stepwise square integrable representations πλ of NΦ , but one needs to do more to
deal with Pfaffian polynomials as in (5)(c) and (32).

Let I1 = {i | βi |aΦ
= βq1 |aΦ

} where q1 is the first index of (5) with βq1 |aΦ
�= 0.

Next, I2 = {i | βi |aΦ
= βq2 |aΦ

}where q2 is the first index of (5) such that q2 /∈ I1 and
βq2 |aΦ

�= 0. Continuing as long as possible, Ik = {i | βi |aΦ
= βqk |aΦ

}where qk is the
first index of (5) such that qk /∈ (I1 ∪ · · · ∪ Ik−1) and βqk |aΦ

�= 0. Then I1 ∪ · · · ∪ I�
consists of all the indices i for which βi |aΦ

�= 0. For 1 � j � � define

lΦ, j =
∑

i∈I j
(li ∩ nΦ) =

(∑

i∈I j
li

)
∩ nΦ and l†Φ, j =

∑

k� j
lΦ,k . (37)

Lemma 9.5 If k � j then [lΦ,k, lΦ, j ] ⊂ lΦ, j . For each index j , lΦ, j and l†Φ, j are

subalgebras of nΦ and lΦ, j is an ideal in l†Φ, j .

Lemma 9.6 If k > j then [lΦ,k , lΦ, j ] ∩ ∑
i∈I j gβi = 0.

In the notation of Lemma 9.2, if r ∈ I j then

lr ∩ nΦ = l′r + l′′r where l
′
r = gβr +

∑

J ′
r

gα and l′′r =
∑

J ′′
r

gα . (38)

For 1 � j � � define

zΦ, j =
∑

i∈I j
(gβi + l′′i ) (39)
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and decompose

lΦ, j = l′Φ, j + l′′Φ, j where l
′
Φ, j =

∑

i∈I j
l′i and l′′Φ, j =

∑

i∈I j
l′′i . (40)

Lemma 9.7 Recall l†Φ, j = ∑
k� j lΦ,k from (37). For each j , both zΦ, j and l′′Φ, j are

central ideals in l†Φ, j , and zΦ, j is the center of lΦ, j .

Decompose

nΦ = zΦ + vΦ where zΦ =
∑

j

zΦ, j , vΦ =
∑

j

vΦ, j and vΦ, j =
∑

i∈I j

∑

α∈J ′
i

gα .

(41)
Then Lemma 9.7 gives us (32) for the lΦ, j : lΦ, j = l′Φ, j ⊕ l′′Φ, j with l′′Φ, j ⊂ zΦ, j and
vΦ, j ⊂ l′Φ, j .

Lemma 9.8 For genericλ j ∈ z∗Φ, j the kernel of bλ j on lΦ, j is just zΦ, j , in otherwords
bλ j is nondegenerate on vΦ, j � lΦ, j/zΦ, j . In particular LΦ, j has square integrable
representations.

Theorem 9.9 Let G be a real reductive Lie group and Q a real parabolic sub-
group. Express Q = QΦ in the notation of (33) and (34). Then its nilradical NΦ has
decomposition NΦ = LΦ,1LΦ,2 . . . LΦ,� that satisfies the conditions of (5) and (32)
as follows. The center ZΦ, j of LΦ, j is the analytic subgroup for zΦ, j and

(a) each LΦ, j has unitary representations with coefficients in L
2(LΦ, j/ZΦ, j )

(b) each NΦ, j := LΦ,1LΦ,2 . . . LΦ, j is a normal subgroup of NΦ

with NΦ, j = NΦ, j−1 � LΦ, j semidirect,

(c) [lΦ,k, zΦ, j ] = 0 and [lΦ,k, lΦ, j ] ⊂ vΦ, j + l′′Φ, j for k > j.
(42)

In particular NΦ has stepwise square integrable representations relative to the
decomposition NΦ = LΦ,1LΦ,2 . . . LΦ,�.

10 Amenable Subgroups of Semisimple Lie Groups

In this section we apply the results of Sect. 9 to certain important subgroups of the
parabolic QΦ = MΦ AΦNΦ , specifically its amenable subgroups AΦNΦ ,UΦNΦ and
UΦ AΦNΦ where UΦ is a maximal compact subgroup of MΦ .

The theoryof thegroupUΦNΦ goes exactly as inSect. 7.When NΦ = LΦ,1LΦ,2 . . .

LΦ,� is weakly invariant we can proceed more or less as in [28]. The argument, but
not the final result, will make use of
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Definition 10.1 The decomposition NΦ = LΦ,1LΦ,2 . . . LΦ,� of Theorem 9.9 is
invariant if each ad(mΦ)zΦ, j = zΦ, j , equivalently if each Ad(MΦ)zΦ, j = zΦ, j , in
other words whenever zΦ, j = g[Φ,β j0 ]. The decomposition NΦ = LΦ,1LΦ,2 . . . LΦ,�

is weakly invariant if each Ad(UΦ)zΦ, j = zΦ, j . ♦
Set

r∗Φ = {λ ∈ s∗
Φ | P(λ) �= 0 and Ad(UΦ)λ is a principal UΦ-orbit on s

∗
Φ}. (43)

Then r∗Φ is dense, open and UΦ-invariant in s∗
Φ . By definition of principal orbit the

isotropy subgroups of UΦ at the various points of r∗Φ are conjugate, and we take a
measurable section σ to r∗Φ → UΦ\r∗Φ on whose image all the isotropy subgroups
are the same,

U ′
Φ : isotropy subgroup of UΦ at σ(UΦ(λ)), independent of λ ∈ r∗Φ . (44)

The principal isotropy subgroups U ′
Φ are pinned down in [11]. Given λ ∈ r∗Φ and

γ ∈ Û ′
Φ let π†

λ denote the extension of πλ to a representation of U ′
ΦNΦ on the space

of πλ and define
πλ,γ = Ind UΦ NΦ

U ′
Φ NΦ

(γ ⊗ π†
λ). (45)

The first result in this setting, as in [28, Proposition 3.3], is

Theorem 10.2 Suppose that NΦ = LΦ,1LΦ,2 . . . LΦ,� as in (31). Then thePlancherel
density on ÛΦNΦ is concentrated on the representations πλ,γ of (45), the Plancherel
density at πλ,γ is (dim γ)|P(λ)|, and the Plancherel Formula for UΦNΦ is

f (un) = c
∫

r∗
Φ/Ad∗(UΦ)

∑

γ∈Û ′
Φ

trace Ind UΦ NΦ

U ′
Φ NΦ

run( f ) · dim(γ) · |P(λ)|dλ

where c = 2d1+···+d�d1!d2! . . . d�! as in (6).
Recall the notion of amenability. A mean on a locally compact group H is a

linear functional μ on L∞(H) of norm 1 and such that μ( f ) � 0 for all real-valued
f � 0. H is amenable if it has a left-invariant mean. Solvable groups and compact
groups are amenable, as are extensions of amenable groups by amenable subgroups.
In particular EΦ := UΦ AΦNΦ and its closed subgroups are amenable.

We need a technical condition [16, p. 132]. Let H be the group of real points in
a linear algebraic group whose rational points are Zariski dense, let A be a maximal
R-split torus in H , let ZH (A) denote the centralizer of A in H , and let H0 be
the algebraic connected component of the identity in H . Then H is isotropically
connected if H = H0 · ZH (A). More generally we will say that a subgroup H ⊂ G
is isotropically connected if the algebraic hull of AdG(H) is isotropically connected.

Proposition 10.2 [16, Theorem 3.2]. The groups EΦ := UΦ AΦNΦ are maximal
amenable subgroups of G. They are isotropically connected and self-normalizing.
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The various Φ ⊂ Ψ are mutually non-conjugate. An amenable subgroup H ⊂ G is
contained in some EΦ if and only if it is isotropically connected.

The isotropy subgroups are the same at every λ ∈ t∗Φ ,

A′
Φ : isotropy subgroup of AΦ at λ ∈ r∗Φ . (46)

Given a stepwise square integrable representation πλ where λ ∈ s∗
Φ , write π†

λ for
the extension of πλ to a representation of A′

ΦNΦ on the same Hilbert space. That
extension exists because the Mackey obstruction vanishes. The representations of
A′

ΦNΦ corresponding to πλ are the

πλ,φ := Ind AΦ NΦ

A′
Φ NΦ

(exp(iφ) ⊗ π†
λ) where φ ∈ a′

Φ . (47)

Note also that

πλ,φ · Ad(an) = πAd∗(a)λ,φ for a ∈ AΦ and n ∈ NΦ . (48)

The resulting formula f (x) = ∫
Ĥ trace π(D(r(x) f ))dμH (π), H = AΦNΦ , is

Theorem 10.3 Let QΦ = MΦ AΦNΦ be a parabolic subgroup of the real reductive
Lie group G. Given πλ,φ ∈ ÂΦNΦ as described in (47), its distribution character
Θπλ,φ

: h �→ trace πλ,φ(h) is a tempered distribution. If f ∈ C(AΦNΦ) then

f (x) = c
∫

(a′
Φ)∗

(∫

s∗
Φ/Ad∗(AΦ)

Θπλ,φ
(D(r(x) f ))|Pf (bλ)|dλ

)

dφ

where c = 2d1+···+d�d1!d2! . . . d�!.
The representations of UΦ AΦNΦ corresponding to πλ are the

πλ,φ,γ := Ind UΦ AΦ NΦ

U ′
Φ A′

Φ NΦ
(γ ⊗ exp(iφ) ⊗ π†

λ) where φ ∈ a′
Φ and γ ∈ Û ′

Φ . (49)

Combining Theorems 10.2 and 10.3 we arrive at

Theorem 10.4 Let QΦ = MΦ AΦNΦ be a parabolic subgroup of the real reductive
Lie group G and decompose NΦ = LΦ,1LΦ,2 . . . LΦ,� as in (31). Then the Plancherel
density on ̂UΦ AΦNΦ is concentrated on the πλ,φ,γ of (49), the Plancherel density
at πλ,φ,γ is (dim γ)|P(λ)|, the distribution character Θπλ,φ,γ

: h �→ trace πλ,φ,γ(h) is
tempered, and if f ∈ C(UΦ AΦNΦ) then

f (x) = c
∑

Û ′
Φ

∫

(a′
Φ)∗

(∫

s∗
Φ/Ad∗(UΦ AΦ)

Θπλ,φ,γ
(D(r(x) f )) deg(γ) |Pf (bλ)|dλ

)

dφ

where c = 2d1+···+d�d1!d2! . . . d�!.
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Higher-Dimensional Unified Theories
with Continuous and Fuzzy Coset Spaces
as Extra Dimensions

G. Manolakos and G. Zoupanos

Abstract We first briefly review the Coset Space Dimensional Reduction (CSDR)
programme and present the results of the best model so far, based on the N = 1,
d = 10, E8 gauge theory reduced over the nearly-Kähler manifold SU (3)/U (1) ×
U (1). Then, we present the adjustment of the CSDR programme in the case that the
extra dimensions are considered to be fuzzy coset spaces and then, the best model
constructed in this framework, too, which is the trinification GUT, SU (3)3.

1 Introduction

During the last decades, unification of the fundamental interactions has focused the
interest of theoretical physicists. This has led to the rise of very interesting and well-
established approaches. Important and appealing are the ones that elaborate extra
dimensions. A consistent framework in this approach is superstring theories [1] with
the Heterotic String [2] (defined in ten dimensions) being the most promising, due
to the possibility that in principle could lead to experimentally testable predictions.
More specifically, the compactification of the 10-dimensional spacetime and the
dimensional reduction of the E8 × E8 initial gauge theory lead to phenomenologi-
cally interesting Grand Unified theories (GUTs), containing the SM gauge group.

A few years before the development of the superstring theories, another impor-
tant framework aiming at the same direction was employed, that is the dimensional
reduction of higher-dimensional gauge theories. Pioneers in this field were Forgacs-
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Manton and Scherk-Schwartz studying the Coset Space Dimensional Reduction
(CSDR) [3–5] and Scherk-Schwarz group manifold reduction [6], respectively. In
both of these approaches, the higher-dimensional gauge fields are unifying the gauge
and scalar fields, while the 4-dimensional theory contains the surviving components
after the procedure of the dimensional reduction. Moreover, in the CSDR scheme,
the inclusion of fermionic fields in the initial theory leads to Yukawa couplings in the
4-dimensional theory. Furthermore, upgrading the higher-dimensional gauge theory
toN = 1 supersymmetric, i.e. grouping the gauge and fermionic fields of the theory
into the same vector supermultiplet, is a way to unify further the fields of the initial
theory, in certain dimensions [7, 8]. A very remarkable achievement of the CSDR
scheme is the possibility of obtaining chiral theories in four dimensions [9, 10].

The above context of the CSDR adopted some very welcome suggestions com-
ing from the superstring theories (specifically from the Heterotic String [2]), that
is the dimensions of the space-time and the gauge group of the higher-dimensional
supersymmetric theory. In addition, taking into account the fact that the superstring
theories are consistent only in ten dimensions, the following important issues have
to be addressed, (a) distinguish the extra dimensions from the four observable ones
by considering an appropriate compactification of the metric and (b) determine the
resulting 4-dimensional theory. Additionally, a suitable choice of the compactifica-
tion manifolds could result into N = 1 supersymmetry, aiming for a chance to be
led to realistic GUTs.

Aiming at the preservation of an N = 1 supersymmetry after the dimensional
reduction, Calabi–Yau (CY) spaces serve as suitable compact internal manifolds
[11]. However, the emergence of the moduli stabilization problem, led to the study
of flux compactification, in the context of which a wider class of internal spaces,
called manifolds with SU (3)-structure, was suggested. In this class of manifolds, a
non-vanishing, globally defined spinor is admitted. This spinor is covariantly constant
with respect to a connection with torsion, versus the CY case, where the spinor is
constant with respect to the Levi-Civita connection. Here, we consider the nearly-
Kähler manifolds, that is an interesting class of SU (3)-structure manifolds [12–
15]. The class of homogeneous nearly-Kähler manifolds in six dimensions consists
of the non-symmetric coset spaces G2/SU (3), Sp(4)/(SU (2) ×U (1))non−max and
SU (3)/U (1) ×U (1) and the group manifold SU (2) × SU (2) [15] (see also [12–
14]). It is worth mentioning that 4-dimensional theories which are obtained after
the dimensional reduction of a 10-dimensionalN = 1 supersymmetric gauge theory
over non-symmetric coset spaces, contain supersymmetry breaking terms [16, 17],
contrary to CY spaces.

Another very interesting framework which admits a description of physics at the
Planck scale is non-commutative geometry [18–38]. Regularizing quantum field the-
ories, or even better, building finite ones are the features that render it as a promis-
ing framework. On the other hand, the construction of quantum field theories on
non-commutative spaces is a difficult task and, furthermore, problematic ultraviolet
features have emerged [21] (see also [22, 23]. However, non-commutative geometry
is an appropriate framework to accommodate particle models with non-commutative
gauge theories [24] (see also [25–27]).
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It is remarkable that the two frameworks (superstring theories and
non-commutative geometry) found contact, after the realization that, in M-theory
and open String theory, the effective physics on D-branes can be described by a
non-commutative gauge theory [28, 29], if a non-vanishing background antisym-
metric field is present. Moreover, the type IIB superstring theory (and others related
with type IIB with certain dualities) in its conjectured non-perturbative formulation
as a matrix model [30], is a non-commutative theory. In the framework of non-
commutative geometry, Seiberg andWitten [29] contributed themost with their study
(map between commutative and non-commutative gauge theories) based on which
notable developments [31, 32] were achieved and afterwards a non-commutative
version of the SM was constructed [33]. Unfortunately, such extensions fail to solve
the main problem of the SM, which is the presence of many free parameters.

A very interesting development in the framework of the non-commutative geome-
try is the programme inwhich the extra dimensions of higher-dimensional theories are
considered to be non-commutative (fuzzy) [34–38]. This programme overcomes the
ultraviolet/infrared problematic behaviours of theories defined in non-commutative
spaces. A very welcome feature of such theories is that they are renormalizable, ver-
sus all known higher-dimensional theories. This aspect of the theory was examined
from the 4-dimensional point of view too, using spontaneous symmetry breakings
which mimic the results of the dimensional reduction of a higher-dimensional gauge
theory with non-commutative (fuzzy) extra dimensions. In addition, another inter-
esting feature is that in theories constructed in this programme, there is an option
of choosing the initial higher-dimensional gauge theory to be abelian. Then, non-
abelian gauge theories result in lower dimensions in the process of the dimensional
reduction over fuzzy coset spaces. Finally, the important problem of chirality in this
framework has been addressed by applying an orbifold projection on aN = 4 SYM
theory. After the orbifolding, the resulting theory is anN = 1 supersymmetric, chiral
SU (3)3.

2 The Coset Space Dimensional Reduction
of a D-Dimensional YMD Lagrangian

An obvious and crudeway to realize a dimensional reduction of a higher-dimensional
gauge theory is to demand that all the fields of the theory are independent of the extra
coordinates (trivial reduction) and therefore the Lagrangian is independent, too. A
much more elegant way is to allow for a non-trivial dependence considering that a
symmetry transformation on the fields by an element that belongs in the isometry
group S of the compact coset space B = S/R formed by the extra dimensions is a
gauge transformation (symmetric fields). Therefore, the a priori consideration of the
Lagrangian as gauge invariant, renders it independent of the extra coordinates. The
above way of getting rid of the extra dimensions is the basic concept of the CSDR
scheme [3–5].
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Let us now consider the action of the D-dimensional YM theory with gauge
symmetry G, coupled to fermions defined on MD with metric gMN

A =
∫

d4xdd y
√−g

[
−1

4
Tr(FMN FKΛ)gMK gNΛ + i

2
ψ̄Γ MDMψ

]
, (1)

where DM = ∂M − θM − AM , with θM = 1

2
θMNΛΣNΛ the spin connection of MD

and FMN = ∂M AN − ∂N AM − [AM , AN ], where M,N = 1 . . . D and AM , ψ are
D-dimensional symmetric fields. The fermions can be accommodated in any repre-
sentation F of G, unless an additional symmetry, e.g. supersymmetry, is considered.

Let ξα
A, (A = 1, . . . , dimS and α = dimR + 1, . . . , dimS the curved index) be

the Killing vectors which generate the symmetries of S/R and WA, the gauge trans-
formation associated with ξA. The following constraint equations for scalar φ, vector
Aα and spinor ψ fields on S/R, derive from the definition of the symmetric fields,
that is the S−transformations of the fields are gauge transformations

δAφ = ξα
A∂αφ = D(WA)φ, (2)

δA Aα = ξ
β
A∂β Aα + ∂αξ

β
A Aβ = ∂αWA − [WA, Aα], (3)

δAψ = ξα
A∂αψ − 1

2
GAbcΣ

bcψ = D(WA)ψ , (4)

where WA depend only on internal coordinates y and D(WA) represents a gauge
transformation in the corresponding representation where the fields belong. Solving
the above constraints (2)–(4), we result with [3, 4] the unconstrained 4-dimensional
fields, as well as with the remaining 4-dimensional gauge symmetry.

We proceed by analysing the constraints on the fields in the theory. We start with
the gauge field AM on MD , which splits into its components as (Aμ, Aα) corre-
sponding to M4 and S/R, respectively. Solving the corresponding constraint, (3), we
obtain the following information: First, the 4-dimensional gauge field, Aμ is com-
pletely independent of the coset space coordinates and second, the 4-dimensional
gauge fields commute with the generators of the subgroup R in G. This means that
the surviving gauge symmetry, H , is the subgroup of G that commutes with R, that
is the centralizer of R in G, i.e. H = CG(RG). The Aα(x, y) ≡ φα(x, y), transform
as scalars in the 4-dimensional theory and φα(x, y) act as intertwining operators
connecting induced representations of R acting on G and S/R. In order to find the
representation in which the scalars are accommodated in the 4-dimensional theory,
we have to decompose G according to the embedding

G ⊃ RG × H , ad jG = (ad j R, 1) + (1, ad j H) +
∑

(ri , hi ) , (5)

and S under R

S ⊃ R , ad j S = ad j R +
∑

si . (6)
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Therefore, we conclude that for every pair ri , si , where ri and si are identical irre-
ducible representations of R, there remains a scalar (Higgs) multiplet which trans-
forms under the representation hi of H . All other scalar fields vanish.

As far as the spinors are concerned [4, 9, 10, 39], the analysis of the corresponding
constraint, (4), is quite similar. Again, solving the constraint, one finds that the
spinors in the 4-dimensional theory are independent of the coset coordinates and act
as intertwining operators connecting induced representations of R in SO(d) and in
G. In order to obtain the representation of H , where the fermions are accommodated
in the resulting 4-dimensional theory, one has to decompose the initial representation
F of G under the RG × H ,

G ⊃ RG × H , F =
∑

(ri , hi ), (7)

and the spinor of SO(d) under R

SO(d) ⊃ R , σd =
∑

σ j . (8)

Therefore, for each pair ri and σi , where ri and σi are identical irreducible repre-
sentations, there exists a multiplet, hi of spinor fields in the 4-dimensional theory.
As for the chirality of the surviving fermions, if one begins with Dirac fermions in
the higher-dimensional theory it is impossible to result with chiral fermions in the
4-dimensional theory. Further requirements have to be imposed in order to result with
chiral fermions in the 4-dimensional theory. Indeed, imposing the Weyl condition in
the chiral representations of an even higher-dimensional initial theory, one is led to
a chiral theory in four dimensions. This is not the case in an odd higher-dimensional
initial theory, in whichWeyl condition cannot be imposed. The most interesting case
is the D = 2n + 2 even higher dimensional initial theory, in which starting with
fermions in the adjoint representation the Weyl condition leads to two sets of chiral
fermions with the same quantum numbers under H of the 4-dimensional theory. This
doubling of the fermionic spectrum can be eliminated after imposing the Majorana
condition. The two conditions are compatible when D = 4n + 2, which is the case
of our interest.

Now, let us move on and determine the 4-dimensional effective action. The first
and very important step is to compactify the space MD to M4 × S/R, with S/R a
compact coset space. After the compactification, the metric will be transformed to

gMN =
(

ημν 0
0 −gab

)
, (9)

where ημν = diag(1,−1,−1,−1) and gab is the metric of the coset. Inserting the (9)
into the initial action and taking into account the constraints of the fields, we obtain
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A = C
∫

d4x

[
−1

4
Ft

μνF
tμν + 1

2
(Dμφα)t (Dμφα)t + V (φ) + i

2
ψ̄Γ μDμψ −

− i

2
ψ̄Γ aDaψ

]
, (10)

where Dμ = ∂μ − Aμ and Da = ∂a − θa − φa , with θa = 1
2θabcΣ

bc the connection
of the space and C is the volume of the space. The potential V (φ) is given by the
following expression

V (φ) = −1

4
gacgbdT r( f CabφC − [φa,φb])( f DcdφD − [φc,φd ]), (11)

where, A = 1, . . . , dimS and f ’s are the structure constants appearing in the com-
mutators of the Lie algebra of S. Considering the constraints of the fields, (2)–(3),
one finds that the scalar fields φa have to obey the following equation:

f Dai φD − [φa,φi ] = 0 , (12)

where the φi are the generators of RG . Consequently, some fields will be filtered out,
while others will survive the reduction and will be identified as the genuine Higgs
fields. The potential V (φ), written down in terms of the surviving scalars (the Higgs
fields), is a quartic polynomial which is invariant under the 4-dimensional gauge
group, H . Then, it follows the determination of the minimum of the potential and the
finding of the remaining gauge symmetry of the vacuum [40–42]. In general, this is
a rather difficult procedure. However, there is a case in which one could obtain the
result of the spontaneous breaking of the gauge group H very easily, whether the
following criterion is satisfied. Whenever S has an isomorphic image SG in G, then
the 4-dimensional gauge group H breaks spontaneously to a subgroup K , where K
is the centralizer of SG in the gauge group of the initial, higher-dimensional, theory,
G [4, 40–42]. This can be illustrated in the following scheme,

G ⊃ SG × K

∪ ∩
G ⊃ RG × H (13)

In addition, the potential of the resulting 4-dimensional gauge theory is always of
spontaneous symmetry breaking form, when the coset space is symmetric.1 A neg-
ative result in this case is that, after the dimensional reduction, the fermions end up
being supermassive, as in the Kaluza–Klein theory.

Let us now summarize a few results coming from the dimensional reduction of
the N = 1, E8 SYM over the nearly-Kähler manifold SU (3)/U (1) ×U (1). The
4-dimensional gauge group will be derived by the following decomposition of E8

1A coset space is called symmetric when f cab = 0.
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under R = U (1) ×U (1)

E8 ⊃ E6 × SU (3) ⊃ E6 ×U (1)A ×U (1)B . (14)

Satisfying the above criterion, the surviving gauge group in four dimensions is

H = CE8(U (1)A ×U (1)B) = E6 ×U (1)A ×U (1)B . (15)

The surviving scalars and fermions in four dimensions are obtained by the decom-
position of the adjoint representation of E8, that is the 248, under U (1)A ×U (1)B .
Applying the CSDR rules, one obtains the resulting 4-dimensional theory, which is
an N = 1, E6 GUT, with U (1)A,U (1)B global symmetries. The potential is fully
determined after a lengthy calculation and can be found in Ref. [17]. Subtracting
the F− and D− terms contributing to this potential, one can determine also scalar
masses and trilinear scalar terms, which can be identified with the scalar part of the
soft supersymmetry breaking sector of the theory. In addition, the gaugino obtains a
mass, which receives a contribution from the torsion, contrary to the rest soft super-
symmetry breaking terms. The imortant point to note is that the CSDR leads to the
soft supersymmetry breaking sector without any additional assumption.

In order to break further the E6 GUT, one has to employ the Wilson flux mech-
anism. Due to the space limitation we cannot describe here the mechanism and its
application in the present case. The details can be found in Ref. [14]. The resulting
theory is a softly brokenN = 1, chiral SU (3)3 theory which can break further to an
extension of the MSSM.

3 Fuzzy Spaces

3.1 The Fuzzy Sphere

In order to introduce the non-commutative space of the fuzzy sphere, we are going to
begin with the familiar ordinary sphere S2 and extend it to its fuzzy version. The S2

may be considered as a manifold embedded into the 3-dimensional Euclidean space,
R

3. This embedding allows us to specify the algebra of the functions on S2 through
R

3, by imposing the constraint

3∑

a=1

x2a = R2 , (16)

where xa are the coordinates of R3 and R is the radius of S2. The isometry group of
S2 is a global SO(3), which is generated by the three angular momentum operators,
La = −iεabcxb∂c, due to the isomorphism SO(3) � SU (2).



210 G. Manolakos and G. Zoupanos

If we write the three operators La in terms of the spherical coordinates θ,φ, the
generators are expressed as La = −iξα

a ∂α, where the greek index, α, denotes the
spherical coordinates and ξα

a are the components of the Killing vector fields which
generate the isometries of the sphere.2

The spherical harmonics, Ylm(θ,φ), are the eigenfunctions of the operator

L2 = −R2�S2 = −R2 1√
g
∂a(g

ab√g∂b) . (17)

Acting with L2 on Ylm(θ,φ), one obtains its eigenvalues,

L2Ylm = l(l + 1)Ylm , (18)

where l is a non-negative integer. In addition, the Ylm(θ,φ) obey the orthogonality
condition ∫

sin θdθdφY †
lmYl ′m ′ = δll ′δmm ′ . (19)

Since Ylm(θ,φ) form a complete and orthogonal set of functions, any function on
S2 can be expanded on this set

a(θ,φ) =
∞∑

l=0

l∑

m=−l

almYlm(θ,φ) , (20)

where alm are complex coefficients. Alternatively, spherical harmonics can also be
expressed in terms of the coordinates of R3, xa , as

Ylm(θ,φ) =
∑

a

f lma1...al x
a1...al , (21)

where f lma1...al is an l−rank (traceless) symmetric tensor.
Let us now make the extension of S2 to its fuzzy version. Fuzzy sphere is a

typical case of a non-commutative space, meaning that the algebra of functions is
not commutative, as it is on S2, with l having an upper limit. Therefore, due to this
truncation, one obtains a finite dimensional (non-commutative) algebra, in particular
l2 dimensional. Thus, it is natural to consider the truncated algebra as amatrix algebra
and it is consistent to consider the fuzzy sphere as a matrix approximation of the S2.

According to the above, it follows that we are able to expand N -dimensional
matrices on a fuzzy sphere as

â =
N−1∑

l=0

l∑

m=−l

almŶlm , (22)

2The S2 metric can be expressed in terms of the Killing vectors as gαβ = 1

R2 ξα
a ξ

β
a .
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where Ŷlm are spherical harmonics of the fuzzy sphere, which are now given by

Ŷlm = R−l
∑

a

f lma1...al X̂
a1 · · · X̂ al , (23)

where

X̂a = 2R√
N 2 − 1

λ(N )
a , (24)

where λ(N )
a are the SU (2) generators in the N -dimensional representation and f lma1...al

is the same tensor that we met in (21). The Ŷlm also satisfy the orthonormality
condition

TrN
(
Ŷ †
lmŶl ′m ′

)
= δll ′δmm ′ . (25)

Moreover, there is a relation between the expansion of a function, (20), and that
of a matrix, (22) on the original and the fuzzy sphere, respectively

â =
N−1∑

l=0

l∑

m=−l

almŶlm → a =
N−1∑

l=0

l∑

m=−l

almYlm(θ,φ) . (26)

The above relation is obviously a map from matrices to functions. Since we intro-
duced the fuzzy sphere as a truncation of the algebra of functions on S2, considering
the same alm was just the most natural choice. Of course, the choice of the map is
not unique, since it is not obligatory to consider the same expansion coefficients alm .
The above is a 1 : 1 mapping given by [43],

a(θ,φ) =
∑

lm

TrN (Ŷ †
lmâ)Ylm(θ,φ) . (27)

The matrix trace is mapped to an integral over the sphere:

1

N
TrN → 1

4π

∫
dΩ . (28)

Summing up, the fuzzy sphere is a matrix approximation of the ordinary sphere,
S2. The truncation of the algebra of the functions results to loss of commutativity,
ending up with a non-commutative algebra, that of matrices, Mat(N ;C). Therefore,
the fuzzy sphere, SN , is the non-commutative manifold with X̂a being the coordinate
functions. As given by (24), X̂a are N × N hermitian matrices produced by the
generators of SU (2) in the N -dimensional representation. Obviously they have to
obey both the condition

3∑

a=1

X̂a X̂a = R2 , (29)
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which is the analogue of (16), and the commutation relations

[X̂a, X̂b] = iαεabc X̂c , α = 2R√
N 2 − 1

. (30)

Equivalently, one can consider the algebra on SN being described by the antihermitian
matrices

Xa = X̂a

iαR
, (31)

also satisfying the modified relations (29), (30)

3∑

a=1

XaXa = − 1

α2
, [Xa, Xb] = CabcXc , (32)

where Cabc = 1

R
εabc.

Let us proceed by briefly mentioning the differential calculus on the fuzzy sphere,
which is 3-dimensional and SU (2) covariant. The derivations of a function f, along
Xa are

ea( f ) = [Xa, f ] , (33)

and consequently, the Lie derivative on f is

La f = [Xa, f ] , (34)

where La obeys the Leibniz rule and the commutation relation of su(2)

[La,Lb] = CabcLc . (35)

Working on the framework of differential forms, θa are the 1−forms dual to the
vector fields ea , namely 〈ea, θb〉 = δba . Therefore, the exterior derivative, d, acting
on a function f , gives

d f = [Xa, f ]θa , (36)

and the action of the Lie derivative on the 1−forms θb gives

Laθ
b = Cabcθ

c . (37)

The Lie derivative obeys the Leibniz law, therefore its action on any 1−form ω =
ωaθ

a gives
Lbω = Lb(ωaθ

a) = [Xb,ωa]θa − ωaC
a
bcθ

c , (38)

where we have applied (34), (37). Therefore, one obtains the result
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(Lbω)a = [Xb,ωa] − ωcC
c
ba . (39)

After having stated the differential geometry of fuzzy sphere, one could extend the
study of the differential geometry of M4 × S2N , which is the product of Minkowski
space and fuzzy sphere with fuzziness level N − 1. For example, any 1−form A of
M4 × S2N can be expressed in terms of M4 and S2N , that is

A = Aμdx
μ + Aaθ

a , (40)

where Aμ, Aa depend on both xμ and Xa coordinates.
Furthermore, instead of functions on the fuzzy sphere, one can examine the case

of spinors [34]. Moreover, although we do not include them in the present review,
studies of the differential geometry of other higher-dimensional fuzzy spaces (e.g.
fuzzy CPM ) have been done [34].

3.2 Gauge Theory on the Fuzzy Sphere

Let us consider [44] a field φ(Xa) on the fuzzy sphere, depending on the powers of
the coordinates, Xa . The infinitesimal transformation of φ(Xa) is

δφ(X) = λ(X)φ(X) , (41)

where λ(X) is the parameter of the gauge transformation. If λ(X) is an antihermitian
function of Xa , the (41) is an infinitesimal (abelian) U (1) transformation. On the
other hand, if λ(X) is valued in Lie(U (P)), that is the algebra of P × P hermitian
matrices, then the (41) is infinitesimal (non-abelian), U (P). Naturally, it holds that
δXa = 0, which ensures the invariance of the covariant derivatives under a gauge
transformation. Therefore, in the non-commutative case, left multiplication by a
coordinate is not a covariant operation, that is

δ(Xaφ) = Xaλ(X)φ , (42)

and in general it holds that

Xaλ(X)φ �= λ(X)Xaφ . (43)

Motivated by the non-fuzzy gauge theory, one may introduce the covariant coordi-
nates φa , such that

δ(φaφ) = λφaφ , (44)

which holds if
δ(φa) = [λ,φa] . (45)



214 G. Manolakos and G. Zoupanos

Usual (non-fuzzy) gauge theory also guides one to define

φa ≡ Xa + Aa , (46)

with the Aa being interpreted as the gauge potential of the non-commutative theory.
Therefore, the covariant coordinates φa are the non-commutative analogue of the
covariant derivative of ordinary gauge theories. From (46), (45) one is led to the
transformation of Aa , that is

δAa = −[Xa,λ] + [λ, Aa] , (47)

a form that encourages the interpretation of Aa as a gauge field. In correspondence
with the non-fuzzy gauge theory, one proceeds with defining a field strength tensor,
Fab, as

Fab ≡ [Xa, Ab] − [Xb, Aa] + [Aa, Ab] − Cc
ab Ac = [φa,φb] − Cc

abφc (48)

It can be proven that the transformation of the above field strength tensor is covariant:

δFab = [λ, Fab] . (49)

4 Ordinary Fuzzy Dimensional Reduction and Gauge
Symmetry Enhancement

Let us now proceed by performing a simple (trivial) dimensional reduction in order to
demonstrate the structure we sketched in the previous section. Starting with a higher-
dimensional theory on M4 × (S/R)F , with gauge group G = U (P), we determine
the produced 4-dimensional theory after performing the reduction and finally we
make comments on the results. Let (S/R)F be a fuzzy coset, e.g. the fuzzy sphere,
S2N . The action is

SYM = 1

4g2

∫
d4xkTrtrGFMN F

MN , (50)

with trG the trace of the gauge group G and kTr3 denotes the integration over
(S/R)F , i.e. the fuzzy coset which is described by N × N matrices. FMN is the
higher-dimensional field strength tensor, which is composed of both 4-dimensional
spacetime and extra-dimensional parts, i.e. (Fμν, Fμa, Fab). The components of FMN

in the extra (non-commutative) directions, are expressed in terms of the covariant
coordinates φa , as follows

3In general, k is a parameter related to the size of the fuzzy coset space. In the case of the fuzzy
sphere, k is related to the radius of the sphere and the integer l.
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Fμa = ∂μφa + [Aμ,φa] = Dμφa

Fab = [Xa, Ab] − [Xb, Aa] + [Aa, Ab] − Cc
ba Aac .

Putting the above equations in (50), the action takes the form

SYM =
∫

d4xTrtrG

(
k

4g2
F2

μν + k

2g2
(Dμφa)

2 − V (φ)

)
, (51)

where V (φ) denotes the potential, derived from the kinetic term of Fab, that is

V (φ) = − k

4g2
TrtrG

∑

ab

FabFab

= − k

4g2
TrtrG

([φa,φb][φa,φb] − 4Cabcφ
aφbφc + 2R−2φ2

)
. (52)

It is natural to consider (51) as an action of a 4-dimensional theory. Let λ(xμ, Xa)

be the gauge parameter that appears in an infinitesimal gauge transformation of G.
This transformation can be interpreted as a M4 gauge transformation. We write

λ(xμ, Xa) = λI (xμ, Xa)T I = λh,I (xμ)T hT I , (53)

where T I denote the hermitian generators of the gauge groupU (P). λI (xμ, Xa) are
the N × N antihermitian matrices, therefore they can be expressed as λI,h(xμ)T h ,
where T h are the antihermitian generators of U (N ) and λI,h(xμ), h = 1, . . . , N 2,
are the Kaluza-Klein modes of λI (xμ, Xa). In turn, we can assume that the fields
on the right hand side of (53) could be considered as one field that takes values in
the tensor product Lie algebra Lie (U (N )) ⊗ Lie (U (P)), which corresponds to the
algebra Lie (U (N P)). Similarly, the gauge field Aν can be written as

Aν(x
μ, Xa) = AI

ν(x
μ, Xa)T I = Ah,I

ν (xμ)T hT I , (54)

which is interpreted as a gauge field on M4 that takes values in the Lie (U (N P))

algebra. A similar consideration can also be applied in the case of scalar fields.4

It is worth noting the enhancement of the gauge symmetry of the 4-dimensional
theory compared to the gauge symmetry of the higher-dimensional theory. In other
words, we can start with an abelian gauge group in higher dimensions and result with
a non-abelian gauge symmetry in the 4-dimensional theory. A defect of this theory is
that the scalars are accommodated in the adjoint representation of the 4-dimensional
gauge group, which means that they cannot induce the electroweak symmetry break-
ing. This motivates the realization of non-trivial dimensional reduction schemes, like
the one that follows in the next section.

4Also, TrtrG is interpreted as the trace of the U (N P) matrices.
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5 Fuzzy CSDR

In order to result with a less defective 4-dimensional gauge theory, we proceed by
performing a non-trivial dimensional reduction, that is the fuzzy version of theCSDR.

So, in this section we adopt the CSDR programme in the non-commutative frame-
work, where the extra dimensions are fuzzy coset spaces [34],5 in order to result with
a smaller number of both gauge and scalar fields in the 4-dimensional action (51). In
general, the group S acts on the fuzzy coset (S/R)F , and in accordance with the com-
mutative case, CSDR scheme suggests that the fields of the theory must be invariant
under an infinitesimal group S−transformation, up to an infinitesimal gauge transfor-
mation. Specifically, the fuzzy coset in this case is the fuzzy sphere, (SU (2)/U (1))F ,
so the action of an infinitesimal SU (2)−transformation should leave the scalar and
gauge fields invariant, up to an infinitesimal gauge transformation

Lbφ = δWb = Wbφ (55)

Lb A = δWb A = −DWb , (56)

where A is the gauge potential expressed as an 1−form, see (40), and Wb is an anti-
hermitian gauge parameter depending only on the coset coordinates Xa . Therefore,
Wb is written as

Wb = W I
b T I , I = 1, 2, . . . , P2 , (57)

where T I are the hermitian generators of U (P) and (W I
b )† = −W I

b , where the †

denotes the hermitian conjugation on the Xa coordinates.
Putting into use the covariant coordinates, φa , (46), and ωa , defined as

ωa ≡ Xa − Wa , (58)

the CSDR constraints, (55) and (56), convert to

[ωb, Aμ] = 0 (59)

Cbdeφ
e = [ωb,φd ] . (60)

Due to the fact that Lie derivatives respect the su(2) commutation relation, (35), one
results with the following consistency condition

[ωa,ωb] = Cc
abωc , (61)

where the transformation of ωa is given by

ωa → ω′
a = gωag

−1 . (62)

5See also [45].
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In the case of spinor fields, the procedure is quite similar [34].
Let us nowconsider a higher-dimensional theorywith gauge symmetryG = U (1).

We are going to perform a fuzzy CSDR, in which the fuzzy sphere is (S/R)F = S2N .
The ωa = ωa(Xb) are N × N antihermitian matrices, therefore they can be consid-
ered as elements of Lie(U (N )). At the same time, they satisfy the commutation
relation of Lie(SU (2)), as in the consistency condition, (61). So we have to embed
Lie(SU (2)) into Lie(U (N )). Therefore, if T h, h = 1, . . . , N 2 are the Lie(U (N ))

generators, in the fundamental representation, then the convention h = (a, u), a =
1, 2, 3 , u = 4, 5, . . . , N 2 can be used, obviously with the generators T a satisfying
Lie(SU (2))

[T a, T b] = Cab
c T c . (63)

At last, the embedding is defined by the identification

ωa = Ta . (64)

So, the constraint (59) implies that the gauge group of the 4-dimensional theory, K ,
is the centralizer of the image of SU (2) into U (N ), that is

K = CU (N )(SU (2)) = SU (N − 2) ×U (1) ×U (1) , (65)

where the second U (1) in the right hand side is present due to

U (N ) � SU (N ) ×U (1) . (66)

Therefore, Aμ(x, X) are arbitrary functions over x , but they depend on X in a way
that take values in Lie(K ) instead of Lie(U (N )). That means that we result with a
4-dimensional gauge potential which takes values in Lie(K ).

Let us now study the next constraint, (60). This one gets satisfied choosing

φa = rφ(x)ωa , (67)

meaning that the degrees of freedom remaining unconstrained are related to the scalar
field, φ(x), which is singlet under the 4-dimensional gauge group, K .

Summing up the results from the above reduction, the consistency condition (61),
dictated the embedding of SU (2) into U (N ). Although the embedding was realized
into the fundamental representation ofU (N ), we could have used the irreducible N -
dimensional representation of SU (2) by identifying ωa = Xa . If so, the constraint
(59) would lead to theU (1) to be the 4-dimensional gauge group, with Aμ(x) getting
values in U (1). The second constraint, (60), implies that, in this case too, φ(x) is a
scalar singlet.

To conclude thewhole procedure, one startswith aU (1)higher-dimensional gauge
theory on M4 × S2N and because of the consistency condition, (61), an embedding
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of SU (2) into U (N ) is required.6 So, the first fuzzy CSDR constraint, (59), gives
the 4-dimensional gauge group and from the second one, (60), one obtains the 4-
dimensional scalar fields, surviving from the dimensional reduction.

As far as the fermions are concerned, we briefly mention the results of the above
dimensional reduction. According to the extended analysis [34], it is proven that the
appropriate choice of embedding is

S ⊂ SO(dimS) , (68)

which is achieved by Ta = 1

2
CabcΓ

bc, respecting (63). Therefore, ψ functions as an

intertwining operator between the representations of S and SO(dimS). In accordance
to the commutative (non-fuzzy) case, [4], in order to find the surviving fermions in
the 4-dimensional theory, one has to decompose the adjoint representation ofU (N P)

under the product SU (N P) × K , that is

U (N P) ⊃ SU (N P) × K , (69)

adjU (N P) =
∑

i

(si , ki ) . (70)

Also, the decomposition of the spinorial representation σ of SO(dimS) under S is

SO(dimS) ⊃ S , (71)

σ =
∑

e

σe . (72)

Thus, if the two irreducible representations si ,σe are identical, the surviving fermions
of the 4-dimensional theory (4-dimensional spinors) belong to the ki representation
of gauge group K .

Before we move on, this is a suitable point to compare the higher-dimensional
theory M4 × (S/R), to its fuzzy extension, M4 × (S/R)F . The first similarity has
to do with the fact that fuzziness does not affect the isometries, both spaces have
the same, SO(1, 3) × SO(3). The second is that the gauge couplings defined on
both spaces have the same dimensionality. But, on the other hand, a very striking
difference is that of the two, only the non-commutative higher-dimensional theory
is renormalizable.7 In addition, a U (1) initial gauge symmetry on M4 × (S/R)F , is
enough in order to result with non-abelian structures in four dimensions.8

6This embedding is achieved non-uniquely, specifically in pN ways, where pN is the possible ways
one can partition the N into a set of non-increasing, positive integers [46].
7The number of counter-terms required to eliminate the divergencies is finite.
8Technically, this is possible because N × N matrices can be decomposed on theU (N ) generators.
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6 Orbifolds and Fuzzy Extra Dimensions

The introduction of the orbifold structure (similar to the one developed in [47]) in
the framework of gauge theories with fuzzy extra dimensions was motivated by the
necessity of chiral low energy theories. In order to justify further the renormaliz-
ability of the theories constructed so far using fuzzy extra dimensions, we were led
to consider the reverse procedure and start from a renormalizable theory in four
dimensions and try to reproduce the results of a higher-dimensional theory reduced
over fuzzy coset spaces [35–37]. This idea was realized as follows: one starts with a
4-dimensional gauge theory including appropriate scalar fields and a suitable poten-
tial leading to vacua that could be interpreted as dynamically generated fuzzy extra
dimensions, including a finite Kaluza-Klein tower of massive modes. This reverse
procedure gives hope that an initial abelian gauge theory does not have to be higher-
dimensional and the non-abelian gauge theory structure could emerge from fluctua-
tions of the coordinates [48]. The whole idea eventually seems to have similarities
to the idea of dimensional deconstruction introduced earlier [49].

The inclusion of fermions in such models was desired too, but the best one could
achieve for some time containedmirror fermions in bifundamental representations of
the low-energy gauge group [36, 37]. Mirror fermions do not exclude the possibility
to make contact with phenomenology [50], nevertheless, it is preferred to result with
exactly chiral fermions.

Next, the plan that was sketched above is realized. Specifically, we are going
to deal with the Z3 orbifold projection of the N = 4 Supersymmetric Yang Mills
(SYM) theory [51], examining the action of the discrete group on the fields of the
theory and the superpotential that emerges in the projected theory.

6.1 N = 4 SYM Field Theory and Z3 Orbifolds

So, let us begin with an N = 4 supersymmetric SU (3N ) gauge theory defined on
the Minkowski spacetime. The particle spectrum of the theory (in the N = 1 ter-
minology) consists of an SU (3N ) gauge supermultiplet and three adjoint chiral
supermultiplets Φ i , i = 1, 2, 3. The component fields of the above supermultiplets
are the gauge bosons, Aμ, μ = 1, . . . , 4, six adjoint real (or three complex) scalars
φa, a = 1, . . . , 6 and four adjoint Weyl fermions ψ p, p = 1, . . . , 4. The scalars and
Weyl fermions transform according to the 6 and 4 representations of the SU (4)R
R-symmetry of the theory, respectively, while the gauge bosons are singlets.

Then, in order to introduce orbifolds, the discrete group Z3 has to be considered
as a subgroup of SU (4)R . The choice of the embedding of Z3 into SU (4)R is not
unique and the options are not equivalent, since the choice of embedding affects the
amount of the remnant supersymmetry [47]:

• Maximal embedding of Z3 into SU (4)R is excluded because it would lead to
non-supersymmetric models,
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• Embedding of Z3 in an SU (4)R subgroup:

– Embedding into an SU (2) subgroupwould lead toN = 2 supersymmetricmod-
els with SU (2)R R-symmetry

– Embedding into an SU (3) subgroupwould lead toN = 1 supersymmetricmod-
els with U (1)R R-symmetry.

We focus on the last embedding which is the desired one, since it leads toN = 1
supersymmetric models. Let us consider a generator g ∈ Z3, labeled (for conve-
nience) by three integers a = (a1, a2, a3) [52] satisfying the relation

a1 + a2 + a3 = 0 mod 3 . (73)

The last equation implies thatZ3 is embedded in the SU (3) subgroup, i.e. the remnant
supersymmetry is the desired N = 1 [53].

It is expected that since the various fields of the theory transform differently
under SU (4)R , Z3 will act non-trivially on them. Gauge and gaugino fields are
singlets under SU (4)R , therefore the geometric action of the Z3 rotation is trivial.
The action of Z3 on the complex scalar fields is given by the matrix γ(g)i j = δi jω

ai ,
where ω = e

2π
3 and the action of Z3 on the fermions φi is given by γ(g)i j = δi jω

bi ,

where bi = −1

2
(ai+1 + ai+2 − ai ).9 In the case under study the three integers of the

generator g are (1, 1,−2), meaning that ai = bi .
The matter fields are not invariant under a gauge transformation, thereforeZ3 acts

on their gauge indices, too. The action of this rotation is given by the matrix

γ3 =
⎛

⎝
1N 0 0
0 ω1N 0
0 0 ω21N

⎞

⎠ . (74)

There is no specific reason for these blocks to have the same dimensionality (see
e.g. [54–56]). However, since the projected theory must be free of anomalies, the
dimension of the three blocks is the same.

After the orbifold projection, the spectrum of the theory consists of the fields
that are invariant under the combined action of the discrete group, Z3, on the
“geometric”10 and gauge indices [52]. As far as the gauge bosons are concerned
being singlets, the projection is Aμ = γ3Aμγ

−1
3 . Therefore, taking into consid-

eration (74), the gauge group of the initial theory breaks down to the group
H = SU (N ) × SU (N ) × SU (N ) in the projected theory.

As we have already stated, the complex scalar fields transform non-trivially under
the gauge and R−symmetry, so the projection is φi

I J = ω I−J+ai φi
I J , where I, J are

9Also modulo 3.
10In case of ordinary reduction of a 10-dimensional N = 1 SYM theory, one obtains an N = 4
SYM Yang-Mills theory in four dimensions having a global SU (4)R symmetry which is identified
with the tangent space SO(6) of the extra dimensions [16, 17].
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gauge indices. Therefore, J = I + ai , meaning that the scalar fields surviving the
orbifold projection have the form φI,J+ai and transform under the gauge group H as

3 · (
(N , N̄ , 1) + (N̄ , 1, N ) + (1, N , N̄ )

)
. (75)

Similarly, fermions transform non-trivially under the gauge group and
R−symmetry, too with the projection being ψi

I J = ω I−J+bi ψi
I J . Therefore, the

fermions surviving the projection have the form ψi
I,I+bi

accommodated in the same
representation of H as the scalars, that is (75), a fact demonstrating theN = 1 rem-
nant supersymmetry. It is worth noting that the representations (75) of the resulting
theory are anomaly free.

The fermions, summing up the above results, are accommodated into chiral repre-
sentations of H and there are three fermionic generations since, aswe havementioned
above, the particle spectrum contains three N = 1 chiral supermultiplets.

The interactions of the projectedmodel are given by the superpotential. In order to
specify it, one has to begin with the superpotential of the initialN = 4 SYM theory
[51]

WN=4 = εi jkTr(Φ
iΦ jΦk) , (76)

where, Φ i , Φ j , Φk are the three chiral superfields of the theory. After the projec-
tion, the structure of the superpotential remains unchanged, but it encrypts only the
interactions among the surviving fields of the N = 1 theory, that is

W (proj)
N=1 =

∑

I

εi jkΦ
i
I,I+ai Φ

j
I+ai ,I+ai+a j

Φk
I+ai+a j ,I . (77)

6.2 Dynamical Generation of Twisted Fuzzy Spheres

From the superpotential W proj
N=1 that is given in (77), the scalar potential can be

extracted:

V proj
N=1(φ) = 1

4
Tr

([φi ,φ j ]†[φi ,φ j ]) , (78)

where,φi are the scalar component fields of the superfieldΦ i . The potential V proj
N=1(φ)

is minimized by vanishing vevs of the fields, so modifications have to be made,
in order that solutions interpreted as vacua of a non-commutative geometry to be
emerged.

So, in order to result with a minimum of V proj
N=1(φ), N = 1 soft supersymmetric

terms of the form11

11The SSB terms that will be inserted into V proj
N=1(φ), are purely scalar. Although this is enough for

our purpose, it is obvious that more SSB terms have to be included too, in order to obtain the full
SSB sector [57].
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VSSB = 1

2

∑

i

m2
i φ

i†φi + 1

2

∑

i, j,k

hi jkφ
iφ jφk + h.c. (79)

are introduced, where hi jk = 0 unless i + j + k ≡ 0mod 3. The introduction of
these SSB terms should not come as a surprise, since the presence of an SSB sector
is necessary anyway for amodel with realistic aspirations, see e.g. [57]. The inclusion
of the D-terms of the theory is necessary and they are given by

VD = 1

2
D2 = 1

2
DI DI , (80)

where DI = φ†
i T

Iφi , where T I are the generators in the representation of the cor-
responding chiral multiplets.

So, the total potential of the theory is given by

V = V proj
N=1 + VSSB + VD . (81)

A suitable choice for the parameters m2
i and hi jk in (79) is m2

i = 1, hi jk = εi jk .
Therefore, the total scalar potential, (81), takes the form

V = 1

4
(Fi j )†Fi j + VD , (82)

where Fi j is defined as
Fi j = [φi ,φ j ] − iεi jk(φk)† . (83)

The first term of the scalar potential, (82), is always positive, therefore, the global
minimum of the potential is obtained when

[φi ,φ j ] = iεi jk(φ
k)† , φi (φ j )† = R2 , (84)

where (φi )† denotes the hermitian conjugate of φi and [R2,φi ] = 0. It is clear that
the above equations are related to a fuzzy sphere. This becomes more transparent by
considering the untwisted fields φ̃i , defined by

φi = Ωφ̃i , (85)

where Ω �= 1 satisfy the relations

Ω3 = 1 , [Ω,φi ] = 0 , Ω† = Ω−1 , (φ̃i )† = φ̃i ⇔ (φi )† = Ωφi . (86)

Therefore, (84) reproduces the ordinary fuzzy sphere relations generated by φ̃i

[φ̃i , φ̃ j ] = iεi jk φ̃
k , φ̃i φ̃i = R2 , (87)
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exhibiting the reason why the non-commutative space generated by φi is a twisted
fuzzy sphere, S̃2N .

Next, one can find configurations of the twisted fields φi , i.e. fields satisfying (84).
Such configuration is

φi = Ω(13 ⊗ λi
(N )) , (88)

where λi
(N ) are the SU (2) generators in the N -dimensional irreducible representation

and Ω is the matrix

Ω = Ω3 ⊗ 1N , Ω3 =
⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ , Ω3 = 1 . (89)

According to the transformation (85), the “off-diagonal” orbifold sectors (75) convert
to the block-diagonal form

φi =
⎛

⎝
0 (λi

(N ))(N ,N̄ ,1) 0
0 0 (λi

(N ))(1,N ,N̄ )

(λi
(N ))(N̄ ,1,N ) 0 0

⎞

⎠ = Ω

⎛

⎝
λi

(N ) 0 0
0 λi

(N ) 0
0 0 λi

(N )

⎞

⎠ .

(90)
Therefore, the untwisted fields generating the ordinary fuzzy sphere, φ̃i , are written
in a block-diagonal form. Each block can be considered as an ordinary fuzzy sphere,
since they separately satisfy the corresponding commutation relations (87). In turn,
the above configuration in (90), which corresponds to the vacuum of the theory, has
the form of three fuzzy spheres, appearing with relative angles 2π/3. Concluding,
the solution φi can be considered as the twisted equivalent of three fuzzy spheres,
conforming with the orbifolding.

Note that the Fi j defined in (83), can be interpreted as the field strength of the
spontaneously generated fuzzy extra dimensions. The second term of the potential,
VD , induces a change on the radius of the sphere (in a similar way to the case of the
ordinary fuzzy sphere [35, 37, 58]).

6.3 Chiral Models After the Fuzzy Orbifold Projection - the
SU(3)c × SU(3)L × SU(3)R Model

The resulting unification groups after the orbifold projection are various because of
the different ways the gauge group SU (3N ) is spontaneously broken. The minimal,
anomaly free models are SU (4) × SU (2) × SU (2), SU (4)3 and SU (3)3.12

We focus on the breaking of the latter, which is the trinification group SU (3)c ×
SU (3)L × SU (3)R [60, 61] (see also [62–66] and for a string theory approach see

12Similar approaches have been studied in the framework of YM matrix models [59], lacking
phenomenological viability.
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[49]). At first, the integer N has to be decomposed as N = n + 3. Then, for SU (N ),
the considered embedding is

SU (N ) ⊃ SU (n) × SU (3) ×U (1) , (91)

from which it follows that the embedding for the gauge group SU (N )3 is

SU (N )3 ⊃ SU (n) × SU (3) × SU (n) × SU (3) × SU (n) × SU (3) ×U (1)3 .

(92)
The threeU (1) factors are ignored13 and the representations are decomposed accord-
ing to (92), (after reordering the factors) as

SU (n) × SU (n) × SU (n) × SU (3) × SU (3) × SU (3) ,

(n, n̄, 1; 1, 1, 1) + (1, n, n̄; 1, 1, 1) + (n̄, 1, n; 1, 1, 1) + (1, 1, 1; 3, 3̄, 1)
+ (1, 1, 1; 1, 3, 3̄) + (1, 1, 1; 3̄, 1, 3) + (n, 1, 1; 1, 3̄, 1) + (1, n, 1; 1, 1, 3̄)
+ (1, 1, n; 3̄, 1, 1) + (n̄, 1, 1; 1, 1, 3) + (1, n̄, 1; 3, 1, 1) + (1, 1, n̄; 1, 3, 1) . (93)

Taking into account the decomposition (91), the gauge group is broken to SU (3)3.
Now, under SU (3)3, the surviving fields transform as

SU (3) × SU (3) × SU (3) , (94)
(
(3, 3̄, 1) + (3̄, 1, 3) + (1, 3, 3̄)

)
, (95)

which correspond to the desired chiral representations of the trinification group.
Under SU (3)c × SU (3)L × SU (3)R , the quarks and leptons of the first family trans-
form as

q =
⎛

⎝
d u h
d u h
d u h

⎞

⎠ ∼ (3, 3̄, 1) , qc =
⎛

⎝
dc dc dc

uc uc uc

hc hc hc

⎞

⎠ ∼ (3̄, 1, 3) , (96)

λ =
⎛

⎝
N Ec v
E Nc e
vc ec S

⎞

⎠ ∼ (1, 3, 3̄) ,

respectively. Similarly, one obtains the matrices for the fermions of the other two
families.

It is worth noting that this theory can be upgraded to a two-loop finite theory (for
reviews see [62, 67–69]) and give testable predictions [62], too. Additionally, fuzzy
orbifolds can be used to break spontaneously the unification gauge group down to
MSSM and then to the SU (3)c ×U (1)em .

13As anomalous gaining mass by the Green-Schwarz mechanism and therefore they decouple at
the low energy sector of the theory [55].
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Summarizing this section let us emphasize the general picture of the model that
has been constructed. At very high-scale regime, we have an unbroken renormaliz-
able theory. After the spontaneous symmetry breaking, the resulting gauge theory is
accompanied by a finite tower of massive Kaluza-Klein modes. Finally, the theory
breaks down to an extension of MSSM in the low scale regime. Therefore, we con-
clude that fuzzy extra dimensions can be used in constructing chiral, renormalizable
and phenomenologically viable field-theoretical models.

A natural extension of the above ideas and methods have been reported in ref
[70] (see also [71]), realized in the context of Matrix Models (MM). At a funda-
mental level, the MMs introduced by Banks–Fischler–Shenker–Susskind (BFSS)
and Ishibashi–Kawai–Kitazawa–Tsuchiya (IKKT), are supposed to provide a non-
perturbative definition of M-theory and type IIB string theory respectively [30, 72].
On the other hand, MMs are also useful laboratories for the study of structures which
could be relevant from a low-energy point of view. Indeed, they generate a plethora
of interesting solutions, corresponding to strings, D-branes and their interactions
[30, 73], as well as to non-commutative/fuzzy spaces, such as fuzzy tori and spheres
[74]. Such backgrounds naturally give rise to non-abelian gauge theories. Therefore,
it appears natural to pose the question whether it is possible to construct phenomeno-
logically interesting particle physics models in this framework as well. In addition,
an orbifold MM was proposed by Aoki-Iso-Suyama (AIS) in [75] as a particular
projection of the IKKT model, and it is directly related to the construction described
above in which fuzzy extra dimensions arise with trinification gauge theory [38]. By
Z3 - orbifolding, the original symmetry of the IKKT matrix model with matrix size
3N × 3N is generally reduced from SO(9, 1) ×U (3N ) to SO(3, 1) ×U (N )3. This
model is chiral and has D = 4, N = 1 supersymmetry of Yang-Mills type as well
as an inhomogeneous supersymmetry specific to matrix models. The Z3 - invariant
fermion fields transform as bifundamental representations under the unbroken gauge
symmetry exactly as in the constructions described above. In the future we plan to
extend further the studies initiated in refs [70, 71] in the context of orbifolded IKKT
models.

Our current interest is to continue in two directions. Given that the two approaches
discussed here led to the N = 1 trinification GUT SU (3)3, one plan is to examine
the phenomenological consequences of these models. The models are different in the
details but certainly there exist a certain common ground. Among others we plan to
determine in both cases the spectrum of the Dirac and Laplace operators in the extra
dimensions and use them to study the behaviour of the various couplings, including
the contributions of themassiveKaluza-Kleinmodes. These contributions are infinite
or finite in number, depending on whether the extra dimensions are continuous or
fuzzy, respectively. We should note that the spectrum of the Dirac operator at least
in the case of SU (3)/U (1) ×U (1) is not known.

Another plan is to start with an abelian theory in ten dimensions and with a simple
reduction to obtain an N = (1, 1) abelian theory in six dimensions. Finally, reducing
the latter theory over a fuzzy sphere, possibly with Chern-Simons terms, to obtain
a non-abelian gauge theory in four dimensions provided with soft supersymmetry
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breaking terms. Recall that the last feature was introduced by hand in the realistic
models constructed in the fuzzy extra dimensions framework.
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33. Calmet X., Jurčo B., Schupp P., Wess J., Wohlgenannt M., Eur. Phys. J. C 23 (2002), 363–376,
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Higher Genus Amplitudes in SUSY
Double-Well Matrix Model for 2D IIA
Superstring

Fumihiko Sugino

Abstract We discuss a simple supersymmetric double-well matrix model which is
considered to give a perturbation formulation of two-dimensional type IIA super-
string theory on a nontrivial Ramond-Ramond background. Full nonperturbative
contributions to the free energy are computed by using the technique of random
matrix theory, and the result shows that supersymmetry (SUSY) is spontaneously
broken by nonperturbative effects due to instantons. In addition, one-point functions
of operators that are not protected by SUSY are obtained to all orders in genus
expansion.

1 Introduction

Nonperturbative aspects of noncritical bosonic string theory were vigorously inves-
tigated around 1990 by using solvable matrix models (For a review, see [2].), while
little has been known for superstring theory, in particular which possesses target-
space supersymmetry (SUSY). We here consider a solvable matrix model describ-
ing superstring theory with target-space SUSY. We hope our analysis is helpful to
understand nonperturbative dynamics of matrix models of super Yang-Mills type for
critical superstring theory [1, 3, 10].

2 Supersymmetric Double-Well Matrix Model

We start with a simple matrix model given by the action [13]:

S = N tr

[
1

2
B2 + i B(φ2 − μ2) + ψ̄(φψ + ψφ)

]
. (1)
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B and φ are N × N hermitian matrices, and ψ and ψ̄ are N × N matrices whose
components are Grassmann numbers. The action S is invariant under SUSY trans-
formations generated by Q and Q̄:

Qφ = ψ, Qψ = 0, Qψ̄ = −i B, QB = 0, (2)

Q̄φ = −ψ̄, Q̄ψ̄ = 0, Q̄ψ = −i B, Q̄B = 0, (3)

from which one can see the nilpotency: Q2 = Q̄2 = {Q, Q̄} = 0. After integrating
out B, we have a scalar potential of a double-well shape: 1

2 (φ
2 − μ2)2. In case of

μ2 > 2, a large-N saddle point solution for the eigenvalue distribution of the matrix
φ: ρ(x) ≡ 1

N tr δ(x − φ) is given by

ρ(x) =
{

ν+
π
x

√
(x2 − a2)(b2 − x2) (a < x < b)

ν−
π

|x | √(x2 − a2)(b2 − x2) (−b < x < −a),
(4)

where a = √
μ2 − 2 and b = √

μ2 + 2. The filling fractions (ν+, ν−) satisfying ν+ +
ν− = 1 indicate that ν+N (ν−N ) eigenvalues are around the right (left) minimum
of the double-well. The large-N free energy and the expectation values

〈
1
N tr B

n
〉

(n = 1, 2, . . .) evaluated at the solution turn out to all vanish [13]. This strongly
suggests that the solution preserves SUSY. Thus, we conclude that the SUSYminima
are infinitely degenerate and parametrized by (ν+, ν−) at large N . On the other hand,
in case of μ2 < 2, non SUSY saddle point solution is obtained [14]. Transition
between the SUSY phase (μ2 > 2) and the SUSY broken phase (μ2 < 2) is of the
third order.

Thepartition function after B,ψ and ψ̄ are integrated out is expressed as aGaussian
one-matrix model by the Nicolai mapping H = φ2, where the H -integration is over
the positive definite hermitian matrices, not over all the hermitian matrices. Refer-
ences [6, 12] discuss that the difference of the integration region has only effects
which are nonperturbative in 1/N , and the model can be regarded as the standard
Gaussian matrix model at each order of genus expansion.

TheNicolaimapping changes the operators 1
N tr φ

2n (n = 1, 2, . . .) to regular oper-
ators 1

N tr H
n . Hence, the behavior of their correlators is expected to be described

by the Gaussian one-matrix model (the c = −2 topological gravity) at least pertur-
batively in 1/N . However, the operators 1

N tr φ
2n+1 (n = 0, 1, 2, . . .) are mapped to

± 1
N tr H

n+1/2 that are singular at the origin. They are not observables in the c = −2
topological gravity, while they are natural observables as well as 1

N tr φ
2n in the

original setting (1). Correlation functions among operators

1

N
tr φ2n+1,

1

N
tr ψ2n+1,

1

N
tr ψ̄2n+1 (n = 0, 1, 2, . . .) (5)

at the solution (4) exhibit logarithmic singular behavior of powers of ln(μ2 − 2) [15].
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3 2D Type IIA Superstring

The two-dimensional type II superstring theory discussed in Refs. [7, 11, 17, 19]
has the target space (ϕ, x) ∈ (Liouville direction) × (S1 with self-dual radius). The
holomorphic energy-momentum tensor on the string world-sheet is

T = −1

2
(∂x)2 − 1

2
ψx∂ψx − 1

2
(∂ϕ)2 + ∂2ϕ − 1

2
ψ�∂ψ� (6)

excluding ghosts’ part. ψx and ψ� are superpartners of x and ϕ, respectively. Target-
space supercurrents in the type IIA theory

q+(z) = e− 1
2 φ(z)− i

2 H(z)−i x(z), q̄−(z̄) = e− 1
2 φ̄(z̄)+ i

2 H̄(z̄)+i x̄(z̄) (7)

exist only for the S1 target space of the self-dual radius. φ (φ̄) is the holomorphic
(anti-holomorphic) bosonized superconformal ghost, and the fermions are bosonized
as ψ� ± iψx = √

2 e∓i H , ψ̄� ± iψ̄x = √
2 e∓i H̄ . In addition, we should care about

cocycle factors in order to realize the anticommuting nature between q+ and q̄−.
See [16] for details in the cocycle factors. The supercharges

Q+ =
∮

dz

2πi
q+(z), Q̄− =

∮
dz̄

2πi
q̄−(z̄) (8)

are nilpotent Q2+ = Q̄2− = {Q+, Q̄−} = 0, which indeed matches the property of the
supercharges Q and Q̄ in the matrix model.

The spectrum except special massive states is represented by the NS vertex oper-
ator (in (−1) picture):

Tk = e−φ+ikx+p�ϕ, T̄k̄ = e−φ̄+i k̄ x̄+p�ϕ̄, (9)

and by the R vertex operator (in (− 1
2 ) picture):

Vk, ε = e− 1
2 φ+ i

2 εH+ikx+p�ϕ, V̄k̄, ε̄ = e− 1
2 φ̄+ i

2 ε̄H̄+i k̄ x̄+p�ϕ̄ (10)

with ε, ε̄ = ±1. Details in cocycle factors for the vertex operators are also presented
in [16]. Locality with the supercurrents, mutual locality, superconformal invariance
(including the Dirac equation constraint) and the level matching condition determine
physical vertex operators. As discussed in [11], there are two consistent sets of
physical vertex operators - “momentum background” and “winding background”.
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Let us consider the “winding background”.1 The physical spectrum in the “winding
background” is given by

(NS, NS) : Tk T̄−k (k ∈ Z + 1
2 ),

(R+,R−) : Vk, +1 V̄−k,−1 (k = 1
2 ,

3
2 , · · · ),

(R−,R+) : V−k, −1 V̄k,+1 (k = 0, 1, 2, · · · ),
(NS, R−) : T−k V̄−k, −1 (k = 1

2 ,
3
2 , · · · ),

(R+,NS) : Vk,+1 T̄k (k = 1
2 ,

3
2 , · · · ),

(11)

where we take a branch of p� = 1 − |k| satisfying the locality bound p� ≤ Q/2 =
1 [22]. We can see that the vertex operators

V 1
2 ,+1 V̄− 1

2 , −1, T− 1
2
V̄− 1

2 , −1, V 1
2 , +1 T̄ 1

2
, T− 1

2
T̄ 1

2
(12)

form a quartet under Q+ and Q̄− which are isomorphic to (2) and (3), respectively.
It leads to correspondence of single-trace operators in the matrix model to integrated
vertex operators in the type IIA theory:

Φ1 = 1

N
tr φ ⇔ Vφ(0) ≡ g2s

∫
d2z V 1

2 , +1(z) V̄− 1
2 , −1(z̄),

Ψ1 = 1

N
tr ψ ⇔ Vψ(0) ≡ g2s

∫
d2z T− 1

2
(z) V̄− 1

2 , −1(z̄),

Ψ̄1 = 1

N
tr ψ̄ ⇔ Vψ̄(0) ≡ g2s

∫
d2z V 1

2 , +1(z) T̄ 1
2
(z̄),

1

N
tr (−i B) ⇔ VB(0) ≡ g2s

∫
d2z T− 1

2
(z) T̄ 1

2
(z̄), (13)

where the bare string coupling gs is put in the right hand sides to count the number
of external lines of amplitudes in the IIA theory. Furthermore, it can be naturally
extended as

Φ2k+1 = 1

N
tr φ2k+1 + (mixing) ⇔ Vφ(k) ≡ g2s

∫
d2z Vk+ 1

2 , +1(z) V̄−k− 1
2 ,−1(z̄),

Ψ2k+1 = 1

N
tr ψ2k+1 + (mixing) ⇔ Vψ(k) ≡ g2s

∫
d2z T−k− 1

2
(z) V̄−k− 1

2 , −1(z̄),

Ψ̄2k+1 = 1

N
tr ψ̄2k+1 + (mixing) ⇔ Vψ̄(k) ≡ g2s

∫
d2z Vk+ 1

2 , +1(z) T̄k+ 1
2
(z̄) (14)

for higher k(= 1, 2, · · · ). “(mixing)” means lower-power operators needed to sub-
tract nonuniversal contributions. In (14), we see that the powers of matrices are
interpreted as windings or momenta in the S1 direction of the type IIA theory.

1We can repeat the parallel argument for “momentum background” in the type IIB theory, which
is equivalent to the “winding background” in the type IIA theory through T-duality with respect to
the S1 direction.
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Note that (R−, R+) operators are singlets under the target-space SUSYs Q+, Q̄−,
and appear to have no counterpart in the matrix model side. Since the expectation
value of operators measuring an RR charge Φ2k+1 at the solution (4) does not van-
ish [15], the matrix model is considered to correspond to the type IIA theory on
a nontrivial background of the (R−, R+) fields. We may introduce the (R−, R+)
background in the form of vertex operators, when the strength of the background
(ν+ − ν−) is small. In this treatment of the background, various correlation func-
tions among the above vertex operators in the type IIA theory are computed in [16],
which provides a number of evidence of correspondence between the matrix model
and the type IIA theory.

4 Nonperturbative SUSY Breaking in the Matrix Model

In this section, we obtain the full nonperturbative free energy of the matrix model as
the Tracy-Widom distribution in random matrix theory in the double scaling limit

N → ∞, μ2 → 2 with s ≡ N 2/3(μ2 − 2) fixed (15)

as discussed in [5, 20]. In its weakly coupled region (s: large), instanton effects can
be seen in the matrix model which are nonperturbative in 1/N . Although such effects
are typically of the order e−N and vanish in the simple large-N limit, interestingly
we will see that they are nonvanishing in the double scaling limit (15).

The partition function of the matrix model given by the action (1) is expressed as

Z =
∫

dN 2
φ e−N 1

2 tr(φ
2−μ2)2 det(φ ⊗ 1 + 1 ⊗ φ)

= C̃N

∫ ( N∏

i=1

dλi

)
�(λ)2

N∏

i, j=1

(λi + λ j ) e
−N

∑N
i=1

1
2 (λ2

i −μ2)2 , (16)

after integrating out matrices other than φ. Here, 1 is an N × N unit matrix, λi (i =
1, · · · , N ) are eigenvalues of φ, and �(λ) denotes the Vandermonde determinant
�(λ) = ∏

i> j (λi − λ j ). C̃N is an numerical factor depending only on N given by

1

C̃N

=
∫ ( N∏

i=1

dλi

)
�(λ)2 e−N

∑N
i=1

1
2 λ2

i = (2π)
N
2

∏N
k=0 k!
N

N2
2

. (17)

Contributions to the partition function are divided by sectors labeled by the filling
fraction (ν+, ν−) as

Z =
N∑

ν−N=0

N !
(ν+N )!(ν−N )! Z(ν+,ν−) (18)
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with

Z(ν+,ν−) ≡ C̃N

∫ ∞

0

(
ν+N∏

i=1

dλi

) ∫ 0

−∞

⎛

⎝
N∏

j=ν+N+1

dλ j

⎞

⎠

(
N∏

n=1

2λn

)

×
{

∏

n>m

(λ2
n − λ2

m)2

}

e−N
∑N

i=1
1
2 (λ2

i −μ2)2 . (19)

Here, it is easy to see
Z(ν+,ν−) = (−1)ν−N Z(1,0), (20)

which leads to the vanishing partition function:

Z = (1 + (−1))N Z(1,0) = 0. (21)

In order for expectation values normalized by the partition function to be well-
defined, we regularize the partition function by introducing a factor e−iαν−N with
small α in front of Z(ν+,ν−). The regularized partition function becomes

Zα ≡
N∑

ν−N=0

N !
(ν+N )!(ν−N )! e

−iαν−N Z(ν+,ν−) = (1 − e−iα)N Z(1,0). (22)

Notice that calculations in large-N expansion [15] concern the partition function in
a single sector (Z(ν+,ν−)), in which this kind of regularization was not needed. On
the other hand, since nonperturbative contributions to be computed here possibly
communicate among various sectors of filling fractions, we should consider the total
partition function (18) and its vanishing value requires the regularization.

The expectation value of 1
N tr(i B) under the regularization (22) is expressed as

〈
1

N
tr (i B)

〉

α

= 1

N 2

1

Zα

∂

∂(μ2)
Zα

= 1

N 2

1

Z(1,0)

∂

∂(μ2)
Z(1,0) =

〈
1

N
tr (i B)

〉(1,0)

(23)

due to a cancellation of the factor (1 − e−iα)N in (22) between the numerator and
the denominator. The regularized expectation value

〈
1
N tr (i B)

〉
α
is independent of

α and well-defined in the limit α → 0, and thus serves as an order parameter for
spontaneous SUSY breaking.
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4.1 Tracy-Widom Distribution

Under the change of variables xi = −λ2
i + μ2 (the Nicolai mapping), the partition

function Z(1,0) defined in (19) reduces to Gaussian matrix integrals

Z(1,0) = C̃N

∫ μ2

−∞

(
N∏

i=1

dxi

)

�(x)2 e−N
∑N

i=1
1
2 x

2
i . (24)

It seems almost trivial, but a nontrivial effect arises from the upper bound of the
integration region. Techniques in random matrix theory [23] give a closed form for
the partition function in the double scaling limit (15):

F(s) = − ln Z(1,0) =
∫ ∞

s
(x − s)q(x)2dx, (25)

where q(x) satisfies a Painlevé II differential equation

q(x)′′ = xq(x) + 2q(x)3 (26)

with the boundary condition

q(x) → Ai(x) (x → +∞). (27)

Such a solution is unique and known as the Hastings-McLeod solution [9]. Since
Eq. (15) indicates that the string coupling constant gs ∼ 1/N is proportional to s−3/2,
the region of s � 1 (0 < s � 1) describes the weakly (strongly) coupled IIA strings.

4.2 Weak Coupling Expansion

The partition function is given by the Fredholm determinant of the Airy kernel [23]

Z(1,0) = Det(1 − K̂Ai|[s,∞)), (28)

where the operator K̂Ai|[s,∞) can be represented as the integration kernel on the
interval [s,∞):

KAi(x, y) ≡ Ai(x)Ai′(y) − Ai′(x)Ai(y)
x − y

. (29)

From the above fact, it turns out that theweak coupling expansion (large-s expansion)
of the free energy is expressed as an instanton sum
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F = − ln Z(1,0) =
∞∑

k=1

Fk−inst. (30)

with

Fk−inst. = 1

k

∫ ∞

s
dt1 . . . dtk KAi(t1, t2) KAi(t2, t3) · · · KAi(tk, t1)

∼ 1

k

(
1

16πs3/2
e− 4

3 s
3/2

)k [
1 + a(k)

1 s−3/2 + a(k)
2 s−3 + · · ·

]
. (31)

Some of the coefficients are

a(1)
1 = −35

24
, a(1)

2 = 3745

1152
, a(1)

3 = −805805

82944
, · · ·

a(2)
1 = −35

12
, a(2)

2 = 619

72
, a(2)

3 = −592117

20736
, · · ·

a(3)
1 = −35

8
, a(3)

2 = 2059

128
, a(3)

3 = −184591

3072
, · · ·

a(4)
1 = −35

6
, a(4)

2 = 3701

144
, a(4)

3 = −1112077

10368
, · · ·

· · · . (32)

The contribution to the free energy has no perturbative part and starts from non-
perturbative effects of the instanton action 4

3 s
3/2 ∝ N and its fluctuations expanded

by s−3/2 ∝ N−1. It seems plausible that the nonperturbative contributions are pro-
vided by D-brane like objects. The order parameter of the SUSY breaking (with the

wave function renormalization factor N 4/3) N 4/3.
〈
1
N tr(i B)

〉(1,0) = −F ′(s) remains
nonzero, implying that the target-space SUSY in the two-dimensional IIA theory
is spontaneously broken by D-brane like objects. Corresponding Nambu-Goldstone
fermions are identified with 1

N trψ̄ and 1
N trψ associated with the breaking of Q and

Q̄, respectively [5].

4.3 Strong Coupling Expansion

The Taylor series expansion of (25) around s = 0 is

F(s) = 0.0311059853 − 0.0690913807s + 0.0673670913s2

−0.0361399144s3 + · · · , (33)

which gives strong coupling expansion of the IIA superstring theory. The strong
coupling limit is regular and finite. In particular, the expression is smooth around
s = 0 and there is no obstruction to be continued to the s < 0 region (i.e., μ2 < 2),
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whereas in Sect. 2 we had mentioned the third order phase transition across the
point μ2 = 2 in the planar limit. Thus, the singularity in the planar limit becomes
completely smeared out in the double scaling limit. In the string-theory perspective,
singular behavior at the string tree level is smoothed out by quantum effects. Similar
phenomenon can be seen in the unitary one-matrix model [21].

5 Higher Genus Amplitudes in the Matrix Model

In this section, we calculate the one-point function ofΦ2k+1 to all orders in the string
perturbation theory. Since the operators are not protected by SUSY, nontrivial large-
order behavior is expected here. As discussed in [15], the one-point function at the
(ν+, ν−) filling fraction is simply related to that at the (1, 0) filling fraction by

〈
1

N
trΦ2k+1

〉(ν+,ν−)

= (ν+ − ν−)

〈
1

N
trΦ2k+1

〉(1,0)

. (34)

So, it is sufficient to consider the sector of the (1, 0) filling fraction alone. The object
is recast to the contour integral of the resolvent of φ2 as

〈
1

N
trΦ2k+1

〉(1,0)

=
∮

[a,b]
dz

2πi
z2k+1 · 2z

〈
1

N
tr

1

z2 − φ2

〉(1,0)

+ · · · , (35)

where the integration contour surrounds the support of the eigenvalue distribution
[a, b]. “· · · ” stands for nonuniversal analytic terms in s which we will ignore below.
Notice that the resolvent is protected by SUSY because φ2 is essentially equivalent
with the auxiliary variable B. The resolvent can be explicitly computed at each order
of the 1/N expansion by using the result of the Gaussian matrix model [8]. After
taking the double scaling limit (15), we end up with the following genus expansion:

N
2
3 (k+2)

〈
1

N
trΦ2k+1

〉(1,0)

=

= 1

2π3/2
Γ

(
k + 3

2

) [ k+2
3 ]∑

h=0

(
− 1

12

)h sk−3h+2

h!(k − 3h + 2)! ln s

+ (−1)k+1

2π3/2
Γ

(
k + 3

2

) ∞∑

h=[ k+2
3 ]+1

(3h − k − 3)!
h!

sk+2−3h

12h
. (36)

The infinite series in the third line is divergent and not Borel summable. In fact, the
Borel resummation leads to
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(2nd line) � 1

4π

1

3k+5/2

sk+2

(k + 3
2 )(k + 5

2 )

∫ ∞

0
dz

(
1 − z2

z20

)k+5/2

e−z

+(less singular) (37)

with z0 ≡ 4
3 s

3/2. The integrand has a branch cut singularity at z = z0 which sits
on the integration contour. The result of the integral changes depending on avoid-
ing the singularity upwards or downwards. The difference gives the amount of the
nonperturbative ambiguity:

i(−1)k+1 Γ (k + 3
2 )

2π · 3k+5/2

sk+2

(k + 3
2 )(k + 5

2 )

∫ ∞

z0

dz

(
z2

z20
− 1

)k+5/2

e−z, (38)

that is of the order e− 4
3 s

3/2
coinciding with the leading instanton contribution (31).

Recently, resurgence theory has been discussed in quantum mechanical systems
and matrix models, which tells that ambiguity from large-order behavior of pertur-
bation series should cancel with ambiguity from instanton contributions so that the
total expression is well-defined (For example, see [4, 18].). It is interesting to com-
pute instanton effects to the one-point function and check whether the resurgence
program works in our case.

6 Summary and Discussion

We have discussed a SUSY double-well matrix model and its correspondence to
two-dimensional type IIA superstring theory on a nontrivial (R−, R+) background.
This is an interesting example of matrix models for superstrings with target-space
SUSY, in which various amplitudes are explicitly calculable.

We have seen that nonperturbative effects in the matrix model spontaneously
break the SUSY. Since the effects survive in the double scaling limit (15), the result
indicates spontaneous SUSY breaking in the type IIA theory by nonperturbative
contributions. It is interesting to investigate dynamics of D-branes in the type IIA
theory and to reproduce the instanton contributions seen here.

In addition, the one-point function of the non-SUSY operator Φ2k+1 has been
computed to all orders in genus expansion. The series is divergent and not Borel
summable. It is interesting to see that the ambiguity arising from the Borel resum-
mation procedure cancels with that from instanton contributions as the resurgence
theory suggests.
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Kruskal–Penrose Formalism
for Lightlike Thin-Shell Wormholes

Eduardo Guendelman, Emil Nissimov, Svetlana Pacheva
and Michail Stoilov

Abstract The original formulation of the “Einstein–Rosen bridge” in the classic
paper of Einstein and Rosen (1935) is historically the first example of a static
spherically-symmetric wormhole solution. It is not equivalent to the concept of
the dynamical and non-traversable Schwarzschild wormhole, also called “Einstein–
Rosen bridge” in modern textbooks on general relativity. In previous papers of ours
we have provided a mathematically correct treatment of the original “Einstein–Rosen
bridge” as a traversable wormhole by showing that it requires the presence of a spe-
cial kind of “exotic matter” located on the wormhole throat – a lightlike brane (the
latter was overlooked in the original 1935 paper). In the present note we continue
our thorough study of the original “Einstein–Rosen bridge” as a simplest example
of a lightlike thin-shell wormhole by explicitly deriving its description in terms of
the Kruskal–Penrose formalism for maximal analytic extension of the underlying
wormhole spacetime manifold. Further, we generalize the Kruskal–Penrose descrip-
tion to the case of more complicated lightlike thin-shell wormholes with two throats
exhibiting a remarkable property of QCD-like charge confinement.
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1 Introduction

The principal object of study in the present note is the class of static spherically
symmetric lightlike thin-shell wormhole solutions in general relativity, i.e., space-
times with wormhole geometries and “throats” being lightlike (“null”) hypersur-
faces (for the importance and impact of lightlike hypersurfaces, see Refs. [1–3]).
The explicit construction of lightlike thin-shell wormholes based on a self-consistent
Lagrangian action formalism for the underlying lightlike branes occupying the worm-
hole “throats” and serving as material (and electrical charge) sources for the gravity to
generate the wormhole spacetime geometry was given in a series of previous papers
[4–8].1

The celebrated “Einstein–Rosen bridge”, originally formulated in the classic paper
[10], is historically the first and simplest example of a static spherically-symmetric
wormhole solution – it is a 4-dimensional spacetime manifold consisting of two iden-
tical copies of the exterior Schwarzschild spacetime region matched (glued together)
along their common horizon.

Let us immediately emphasize that the original construction in [10] of the
“Einstein–Rosen bridge” is not equivalent to the notion of the dynamical Schwarz-
schild wormhole, also called “Einstein–Rosen bridge” in several standard textbooks
(e.g. Ref. [11]), which employs the formalism of Kruskal–Szekeres maximal analytic
extension of Schwarzschild black hole spacetime geometry. Namely, the two regions
in Kruskal–Szekeres manifold corresponding to the outer Schwarzschild spacetime
region beyond the horizon (r > 2m) and labeled (I ) and (I I I ) in Ref. [11] are
generally disconnected and share only a two-sphere (the angular part) as a com-
mon border (U = 0, V = 0 in Kruskal–Szekeres coordinates), whereas in the orig-
inal Einstein–Rosen “bridge” construction the boundary between the two identical
copies of the outer Schwarzschild space-time region (r > 2m) is a three-dimensional
lightlike hypersurface (r = 2m). Physically, the most significant difference is that
the “textbook” version of the “Einstein–Rosen bridge” (Schwarzschild wormhole) is
non-traversable, i.e., there are no timelike or lightlike geodesics connecting points
belonging to the two separate outer Schwarzschild regions (I ) and (I I I ). This is in
sharp contrast w.r.t. the original Einstein–Rosen bridge (within its consistent formu-
lation as a lightlike thin-shell wormhole [5]), which is a traversable wormhole (see
also Sect. 3 below).

However, as explicitly demonstrated in Refs. [5, 6], the originally proposed in [10]
Einstein–Rosen “bridge” wormhole solution does not satisfy the vacuum Einstein
equations at the wormhole “throat”. The mathematically consistent formulation of the
original Einstein–Rosen “bridge” requires solving Einstein equations of bulk D = 4
gravity coupled to a lightlike brane with a well-defined world-volume action [12–
15]. The lightlike brane locates itself automatically on the wormhole throat gluing
together the two “universes” - two identical copies of the external spacetime region of
a Schwarzschild black hole matched at their common horizon, with a special relation

1For the general construction of timelike thin-shell wormholes, see the book [9].
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between the (negative) brane tension and the Schwarzschild mass parameter. This is
briefly reviewed in Sect. 2.

Traversability of the correctly formulated Einstein–Rosen bridge as a lightlike
thin-shell wormhole is explicitly demonstrated in Sect. 3 in the sense of passing
through the wormhole throat from the “left” to the “right” universe within finite
proper time of a travelling observer.

In Sect. 4 we explicitly construct the Kruskal–Penrose maximal analytic extension
of the proper Einstein–Rosen bridge wormhole manifold. In particular, the pertinent
Kruskal–Penrose manifold involves a special identification of the future horizon
of the “right” universe with the past horizon of the “left” universe, which is the
mathematical manifestation of the wormhole traversability.

In Sect. 5 we extend our construction of Kruskal–Penrose maximal analytic exten-
sion of the total wormhole manifold to the case of a physically interesting wormhole
solution with two “throats” which exhibits a remarkable property of charge and elec-
tric flux confinement [16] resembling the quark confinement property of quantum
chromodynamics.

Section 6 contains our concluding remarks.

2 Einstein–Rosen Bridge as Lightlike Thin-Shell Wormhole

The Schwarzschild spacetime metric is the simplest static spherically symmetric
black hole metric, written in standard coordinates (t, r, θ,ϕ) (e.g. [11]):

ds2 = −A(r)dt2 + 1

A(r)
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
, A(r) = 1 − r0

r
, (1)

where r0 ≡ 2m (m – black hole mass parameter):

• r > r0 defines the exterior spacetime region; r < r0 is the black hole region;
• r0 is the horizon radius, where A(r0) = 0 (r = r0 is a non-physical coordinate

singularity of the metric (1), unlike the physical spacetime singularity at r = 0).

In constructing the maximal analytic extension of the Schwarzschild spacetime
geometry – the Kruskal–Szekeres coordinate chart – essential intermediate use is
made of the so called “tortoise” coordinate r∗ (for light rays t ± r∗ = const):

dr∗

dr
= 1

A(r)
−→ r∗ = r + r0 ln |r − r0| . (2)

The Kruskal–Szekeres (“light-cone”) coordinates (v,w) are defined as follows
(e.g. [11]):

v = ± 1√
2kh

ekh

(
t+r∗

)
, w = ∓ 1√

2kh
e−kh

(
t−r∗

)
(3)
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with all combinations of the overall signs, where kh = 1
2∂r A(r)

∣
∣
r=r0

= 1
2r0

is the so

called “surface gravity” (related to the Hawking temperature as kh
2π

= kBThawking).
Equation (3) are equivalent to:

∓ vw = 1

kh
e2khr∗

, ∓ v

w
= e2kh t , (4)

wherefrom t and r∗ are determined as functions of vw.
Depending on the combination of the overall signs Eq. (3) define a doubling the

regions of the standard Schwarzschild geometry [11]:

(i) (+,−) – exterior Schwarzschild region r > r0 (region I );
(ii) (+,+) – black hole r < r0 (region I I );

(iii) (−,+) – second copy of exterior Schwarzschild region r > r0 (region I I I );
(iv) (−,−) – “white” hole region r < r0 (region I V ).

The metric (1) becomes:

ds2 = Ã(vw)dvdw + r2(vw)
(
dθ2 + sin2 θdϕ2

)
, Ã(vw) ≡ A

(
r(vw)

)

k2
hvw

, (5)

so that now there is no coordinate singularity on the horizon (v = 0 or w = 0) upon
using Eq. (2): Ã(0) = −4.

In the classic paper [10] Einstein and Rosen introduced in (1) a new radial-like
coordinate u via r = r0 + u2 and let u ∈ (−∞,+∞):

ds2 = − u2

u2 + r0
dt2 + 4(u2 + r0)du

2 + (u2 + r0)
2
(
dθ2 + sin2 θ dϕ2

)
. (6)

Thus, (6) describes two identical copies of the exterior Schwarzschild spacetime
region (r > r0) for u > 0 and u < 0, which are formally glued together at the horizon
u = 0.

Unfortunately, there are serious problems with (6):

• The Einstein–Rosen metric (6) has coordinate singularity at u = 0:
det ‖gμν‖u=0 = 0.

• More seriously, the Einstein equations for (6) acquire an ill-defined non-vanishing
“matter” stress-energy tensor term on the r.h.s., which was overlooked in the orig-
inal 1935 paper!

Indeed, as explained in [5], from Levi-Civita identity R0
0 = − 1√−g00

∇2
(3)

(√−g00
)

we deduce that (6) solves vacuum Einstein equation R0
0 = 0 for all u �= 0. However,

since
√−g00 ∼ |u| as u → 0 and since ∂2

∂u2 |u| = 2δ(u), Levi-Civita identity tells us
that:

R0
0 ∼ 1

|u|δ(u) ∼ δ(u2) , (7)
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and similarly for the scalar curvature R ∼ 1
|u|δ(u) ∼ δ(u2).

In [5] we proposed a correct reformulation of the original Einstein–Rosen bridge
as a mathematically consistent traversable lightlike thin-shell wormhole introducing
a different radial-like coordinate η ∈ (−∞,+∞), by substituting r = r0 + |η| in
(1):

ds2 = − |η|
|η| + r0

dt2 + |η| + r0

|η| dη2 + (|η| + r0)
2
(
dθ2 + sin2 θ dϕ2

)
. (8)

Equation (8) is the correct spacetime metric for the original Einstein–Rosen
bridge:

• Equation (8) describes two “universes” – two identical copies of the exterior
Schwarzschild spacetime region for η > 0 and η < 0.

• Both “universes” are correctly glued together at their common horizon η = 0.
Namely, the metric (8) solves Einstein equations:

Rμν − 1

2
gμνR = 8πT (brane)

μν , (9)

where on the r.h.s. T (brane)
μν = Sμνδ(η) is the energy-momentum tensor of a special

kind of lightlike brane located on the common horizon η = 0 – the wormhole
“throat”.

• The lightlike analogues of W. Israel’s junction conditions on the wormhole “throat”
are satisfied [5, 6].

• The resulting lightlike thin-shell wormhole is traversable (see Sect. 3 below).

The energy-momentum tensor of lightlike branes T (brane)
μν is self-consistently

derived as T (brane)
μν = − 2√−g

δSLL
δgμν from the following manifestly reparametrization

invariant world-volume Polyakov-type lightlike brane action (written for arbitrary
D = (p + 1) + 1 embedding spacetime dimension and (p + 1)-dimensional brane
world-volume):

SLL = −1

2

∫
d p+1σ Tb

p−1
2

0

√−γ
[
γabḡab − b0(p − 1)

]
, (10)

ḡab ≡ gab − 1

T 2

(
∂au + qAa

) (
∂bu + qAb

)
, Aa ≡ ∂a X

μAμ . (11)

Here and below the following notations are used:

• γab is the intrinsic Riemannian metric on the world-volume with γ = det ‖γab‖;
b0 is a positive constant measuring the world-volume “cosmological constant”;
(σ) ≡ (σa) with a = 0, 1, . . . , p ; ∂a ≡ ∂

∂σa .
• Xμ(σ) are the p-brane embedding coordinates in the bulk D-dimensional space-

time with Riemannian metric gμν(x) (μ, ν = 0, 1, . . . , D − 1). Aμ is a spacetime
electromagnetic field (absent in the present case).
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• gab ≡ ∂a Xμgμν(X)∂bXν is the induced metric on the world-volume which
becomes singular on-shell – manifestation of the lightlike nature of the brane.

• u is auxiliary world-volume scalar field defining the lightlike direction of the
induced metric and it is a non-propagating degree of freedom.

• T is dynamical (variable) brane tension (also a non-propagating degree of free-
dom).

• Coupling parameter q is the surface charge density of the LL-brane (q = 0 in the
present case).

The Einstein Eq. (9) imply the following relation between the lightlike brane
parameters and the Einstein–Rosen bridge “mass” (r0 = 2m):

− T = 1

8πm
, b0 = 1

4
, (12)

i.e., the lightlike brane dynamical tension T becomes negative on-shell – manifesta-
tion of “exotic matter” nature.

3 Einstein–Rosen Bridge as Traversable Wormhole

As already noted in [5, 6] traversability of the original Einstein–Rosen bridge is a
particular manifestation of the traversability of lightlike “thin-shell” wormholes.2

Here for completeness we will present the explicit details of the traversability within
the proper Einstein–Rosen bridge wormhole coordinate chart (8) which are needed
for the construction of the pertinent Kruskal–Penrose diagram in Sect. 4.

The motion of test-particle (“observer”) of mass m0 in a gravitational background
is given by the reparametrization-invariant world-line action:

Sparticle = 1

2

∫
dλ

[
1

e
gμν ẋ

μ ẋν − em2
0

]
, (13)

where ẋμ ≡ dxμ

dλ
, e is the world-line “einbein” and in the present case (xμ) =

(t, η, θ,ϕ).
For a static spherically symmetric background such as (8) there are conserved

Noether “charges” – energy E and angular momentum J . In what follows we will
consider purely “radial” motion (J = 0) so, upon taking into account the “mass-
shell” constraint (the equation of motion w.r.t. e) and introducing the world-line
proper-time parameter τ ( dτ

dλ
= em0), the timelike geodesic equations (world-lines

of massive point particles) read:

2Subsequently, traversability of the Einstein–Rosen bridge has been studied using Kruskal–Szekeres
coordinates for the Schwarzschild black hole [17], or the 1935 Einstein–Rosen coordinate chart (6)
[18].
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(dη

dτ

)2 = E2

m2
0

− A(η) ,
dt

dτ
= E

m0A(η)
, A(η) ≡ |η|

|η| + r0
. (14)

where A(η) is the “−g00” component of the proper Einstein–Rosen bridge metric
(8).

For a test-particle starting for τ = 0 at initial position in “our” (right) universe
η0 = η(0) , t0 = t (0) and infalling towards the “throat” the solutions of Eq. (14) read:

E
2khm0

∫ 2khη0

2khη(τ )

dy

√

(1 + |y|)
[
(1 + (

1 − m2
0

E2

)|y|
]−1 = τ , (15)

1

2kh

∫ 2khη0

2khη(τ )

dy
1

|y|

√

(1 + |y|)
[
(1 + (

1 − m2
0

E2

)|y|
]

= t (τ ) − t0 . (16)

• Equation (15) shows that the particle will cross the wormhole “throat” (η = 0) for
a finite proper-time τ0 > 0:

τ0 = E
2khm0

∫ 2khη0

0
dy

√

(1 + |y|)
[
(1 + (

1 − m2
0

E2

)|y|
]−1

. (17)

• It will continue into the second (left) universe and reach any point η1 = η(τ1) < 0
within another finite proper-time τ1 > τ0.

• On the other hand, from (16) it follows that t (τ0 − 0) = +∞, i.e., from the point of
view of a static observer in “our” (right) universe it will take infinite “laboratory”
time for the particle to reach the “throat” – the latter appears to the static observer
as a future black hole horizon.

• Equation (16) also implies t (τ0 + 0) = −∞, which means that from the point of
view of a static observer in the second (left) universe, upon crossing the “throat”,
the particle starts its motion in the second (left) universe from infinite past, so that
it will take an infinite amount of “laboratory” time to reach the point η1 < 0 – i.e.
the “throat” now appears as a past black hole horizon.

In analogy with the usual “tortoise” coordinate r∗ for the Schwarzschild black
hole geometry (2) let us now introduce Einstein–Rosen bridge “tortoise” coordinate
η∗ (recall r0 = 1

2kh
):

dη∗

dη
= |η| + r0

|η| −→ η∗ = η + sign(η)r0 ln |η| . (18)

Let us note here an important difference in the behavior of the “tortoise” coordinates
r∗ (2) and η∗ (18) in the vicinity of the horizon. Namely:

r∗ → −∞ for r → r0 ± 0 , (19)
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i.e., when r approaches the horizon either from above or from below, whereas when
η approaches the horizon from above or from below:

η∗ → ∓∞ for η → ±0 . (20)

For infalling/outgoing massless particles (light rays) Eqs. (15)–(18) imply:

t ± η∗ = const . (21)

For infalling massive particles towards the “throat” (η = 0) starting at η+
0 > 0 in

“our” (right) universe and crossing into the second (left) universe, or starting in the
second (left) universe at some η−

0 < 0 and crossing into the “our” (right) universe,
we have correspondingly (replacing τ -dependence with functional dependence w.r.t.
η using first Eq. (14)):

[
t ± η∗](η) = ±1

2kh

∫ 2khη
±
0

2khη

dy

(
1 + 1

|y|
)

⎡

⎣

√

(1 + |y|)
[
(1 + (

1 − m2
0

E2

)|y|
]−1 − 1

⎤

⎦

(22)

4 Kruskal–Penrose Diagram for Einstein–Rosen Bridge

We now define the maximal analytic extension of original Einstein–Rosen wormhole
geometry (8) via introducing Kruskal-like coordinates (v,w) as follows:

v = ± 1√
2kh

e±kh(t+η∗) , w = ∓ 1√
2kh

e∓kh(t−η∗) , (23)

implying:

− vw = 1

2kh
e±2khη

∗
, − v

w
= e±2kh t . (24)

Here and below η∗ is given by (18).

• The upper signs in (23) and (24) correspond to region I (v > 0, w < 0) describing
“our” (right) universe η > 0.

• The lower signs in (23) and (24) correspond to region I I (v < 0, w > 0)describing
the second (left) universe η < 0.

The metric (8) of Einstein–Rosen bridge in the Kruskal-like coordinates (23)
reads:
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ds2 = Ã(vw)dvdw + r̃2(vw)
(
dθ2 + sin2 θdϕ2

)
, (25)

r̃(vw) = r0 + |η(vw)|
(
r0 ≡ 1

2kh

)
,

Ã(vw) =
A
(
η(vw)

)

k2
hvw

= − 4e−2kh |η(vw)|
1 + 2kh |η(vw)| , (26)

where η(vw) is determined from (24) and (18) as:

− vw = |η|
2kh

e2kh |η| −→ |η(vw)| = 1

2kh
W(−4k2

hvw) , (27)

W(z) being the Lambert (product-logarithm) function (z = W(z)eW(z)).
Using the explicit expression (18) for η∗ in (24) we find for the metric (25) and

(26):

• “Throats” (horizons) – at v = 0 or w = 0;
• In region I the “throat” (v > 0, w = 0) is a future horizon (η = 0 , t → +∞),

whereas the “throat” (v = 0, w < 0) is a past horizon (η = 0 , t → −∞).
• In region I I the “throat” (v = 0, w > 0) is a future horizon (η = 0 , t → +∞),

whereas the “throat” (v < 0, w = 0) is a past horizon (η = 0 , t → −∞).

It is customary to replace Kruskal-like coordinates (v,w) (23) with compactified
Penrose-like coordinates (v̄, w̄):

v̄ = arctan(
√

2kh v) , w̄ = arctan(
√

2kh w) , (28)

mapping the various “throats” (horizons) and infinities to finite lines/points:

• In region I : future horizon (0 < v̄ < π
2 , w̄ = 0); past horizon (v̄ = 0,−π

2 <

w̄ < 0).
• In region I I : future horizon (v̄ = 0, 0 < w̄ < π

2 ); past horizon (−π
2 < v̄ < 0,

w̄ = 0).
• i0 – spacelike infinity (t = fixed, η → ±∞):
i0 = ( π

2 ,− π
2 ) in region I ; i0 = (− π

2 ,
π
2 ) in region I I .

• i± – future/past timelike infinity (t → ±∞, η = fixed):
i+ = ( π

2 , 0), i− = (0,−π
2 ) in region I ; i+ = (0, π

2 ), i− = (− π
2 , 0) in region I I .

• J+ – future lightlike infinity (t → +∞, η → ±∞, t ∓ η∗ = fixed):
J+ = (v̄ = π

2 ,− π
2 < w̄ < 0) in region I ;

J+ = (− π
2 < v̄ < 0, w̄ = π

2 ) in region I I .
• J− – past lightlike infinity (t → −∞, η → ±∞), t ± η∗ = fixed):

J− = (0 < v̄ < π
2 , w̄ = − π

2 ) in region I :
J− = (v̄ = −π

2 , 0 < w̄ < π
2 ) in region I I .

For infalling light rays starting in region I and crossing into region I I we have the
lightlike geodesic t + η∗ = c1 ≡ const. Thus, according to (23) we must identify the
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Fig. 1 Kruskal–Penrose diagram of the original Einstein–Rosen bridge

crossing point A on the future horizon of region I having Kruskal-like coordinates
(v = 1√

2kh
ekhc1 , 0) with the point B on the past horizon of region I I where the light

rays enters into region I I whose Kruskal-like coordinates are (v = − 1√
2kh

e−khc1 , 0).
Similarly, for infalling light rays starting in region I I and crossing into region I

we have t − η∗ = c2 ≡ const. Therefore, the crossing point C on the future horizon
of region I I having Kruskal-like coordinates (0, w = 1√

2kh
ekhc2) must be identified

with the exit point D (0, w = − 1√
2kh

e−khc2) on the past horizon of region I .
Inserting Eqs. (18)–(22) into the definitions of Kruskal-like (23) and Penrose-like

(28) coordinates and taking into account the above identifications of horizons, we
obtain the following visual representation of the Kruskal–Penrose diagram of the
proper Einstein–Rosen bridge geometry (8) as depicted in Fig. 1:

• Future horizon in region I is identified with past horizon in region I I as:

(v̄, 0) ∼
(
v̄ − π

2
, 0

)
. (29)

Infalling light rays cross from region I into region I I via paths P1 → A ∼ B →
P2 – all the way within finite world-line time intervals (the symbol ∼ means
identification according to (29)). Similarly, infalling massive particles cross from
region I into region I I via paths Q1 → E ∼ F → Q2 within finite proper-time
interval.

• Future horizon in I I is identified with past horizon in I :

(0, w̄) ∼
(

0, w̄ − π

2

)
. (30)
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Infalling light rays cross from region I I into region I via paths R2 → C ∼ D →
R1 where C ∼ D is identified according to (30).

5 Kruskal–Penrose Formalism for Two-Throat Lightlike
Thin-Shell Wormhole

Now we will briefly discuss the extension of the construction of Kruskal–Penrose
diagram for the proper Einstein–Rosen bridge wormhole to the case of lightlike
“thin-shell” wormholes with two throats. To this end we will consider the physically
interesting example of the charge-confining two-throat “tube-like” wormhole studied
in [16]. It is a solution of gravity interacting with a special non-linear gauge field
system and both coupled to a pair of oppositely charged lightlike branes (cf. Eqs.
(10) and (11) above).

The full wormhole spacetime consists of three “universes” glued pairwise via the
two oppositely charged lightlike branes located on their common horizons:

• Region I : right-most non-compact electrically neutral “universe” – exterior region
beyond the Schwarzschild horizon of a Schwarzschild-de Sitter black hole;

• Region I I : middle “tube-like” “universe” of Levi-Civita–Bertotti–Robinson type
[19–21] with finite radial-like spacial extend and compactified transverse spacial
dimensions;

• Region I I I : left-most non-compact electrically neutral “universe” – exterior
region beyond the Schwarzschild horizon of a Schwarzschild-de Sitter black hole,
mirror copy of the left-most “universe”.

• Most remarkable property is that the whole electric flux generated by the two
oppositely charged lightlike branes sitting on the two “throats” is completely con-
fined within the finite-spacial-size middle “tube-like” universe – analog of QCD
quark confinement!

For a visual representation, see Fig. 2 [16].
Generically, the metric of a spherically symmetric traversable lightlike thin-shell

wormhole with two “throats” reads [16] (−∞ < η < ∞):

ds2 = −A(η)dt2 + dη2

A(η)
+ r2(η)

(
dθ2 + sin2 θdϕ2) ,

(31)

A(η1) = 0 , A(η2) = 0 , a(1)(±) = ± ∂

∂η
A

∣
∣
η1±0> 0 , a(2)(±) = ± ∂

∂η
A

∣
∣
η2±0> 0 .

Accordingly, for the wormhole “tortoise” coordinate η∗ defined as in first Eq. (18)
we have in the vicinity of the two horizons η1,2:
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Fig. 2 Shape of t = const and θ = π
2 slice of charge-confining wormhole geometry. The whole

electric flux is confined within the middle cylindric “tube” (region I I ) connecting the two infinite
“funnels” (region I and region I I I ). The rings on the edges of the “tube” depict the two oppositely
charged lightlike branes

η∗ = sign(η − η1)a
(1)
(±) ln |η − η1| + O

(
(η − η1)

2
)
, (32)

η∗ = sign(η − η2)a
(2)
(±) ln |η − η2| + O

(
(η − η2)

2
)
. (33)

Now we can introduce the Kruskal-like and the compactified Kruskal–Penrose
coordinates (v̄, w̄) for the maximal analytic extension of the two-throat lightlike
thin-shell wormhole generalizing formulas (23) and (28) as follows:

• In region I (right-most universe) – (+∞ > η > η1):

v̄, w̄ = ± π

2
√
a(1)(−)

± 1
√
a(1)(+)

arctan
(
e

1
2 a

(1)
(+)(η

∗±t)
)

(34)

• In region I I (middle universe) – (η1 > η > η2); here a(1)(−) = a(2)(+) which is satisfied
in the case of the charge-confining two-throat “tube” wormhole:

v̄, w̄ = ± 1
√
a(1)(−)

arctan
(
e

1
2 a

(1)
(−)(η

∗±t)
)
. (35)

• In region I I I (left-most universe) – (η2 > η > −∞):

v̄, w̄ = ∓ π

2
√
a(2)(−)

± 1
√
a(2)(−)

arctan
(
e

1
2 a

(2)
(−)(η

∗±t)
)
. (36)
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Fig. 3 Kruskal–Penrose diagram of “charge-confining” two-throat wormhole

The resulting Kruskal–Penrose diagram is depicted on Fig. 3.
In particular, infalling light ray starting in region I arrives in region I I I within

finite world-line time interval (“proper-time” in the case of massive particle) on the
path P1 → A1 ∼ A2 → B2 ∼ B3 → P3, where the symbol ∼ indicates identifica-
tion of the pertinent future and past horizons of the “glued” together neighboring
“universes” analogous to the identification (29), (30) in the simpler case of Einstein–
Rosen one-throat wormhole.

And similarly for an infalling light ray starting in region I I I and arriving in region
I within finite world-line time interval on the path Q3 → C3 ∼ C2 → D2 ∼ D1 →
Q1.

6 Conclusions

The mathematically correct reformulation [5] of original Einstein–Rosen “bridge”
construction, briefly reviewed in Sect. 2 above, shows that it is the simplest example
in the class of static spherically symmetric traversable lightlike “thin-shell” worm-
hole solutions in general relativity. The consistency of Einstein–Rosen “bridge” as
a traversable wormhole solution is guaranteed by the remarkable special properties
of the world-volume dynamics of the lightlike brane, which serves as an “exotic”
thin-shell matter (and charge) source of gravity.

In the present note we have explicitly derived the Kruskal-like extension and
the associated Kruskal–Penrose diagram representation of the mathematically cor-
rectly defined original Einstein–Rosen “bridge” [5] with the following significant
differences w.r.t. Kruskal–Penrose extension of the standard Schwarzschild black
hole defining the corresponding “textbook” version of Einstein–Rosen “bridge” (the
Schwarzschild wormhole) [11]:
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• The pertinent Kruskal–Penrose diagram for the proper Einstein–Rosen bridge
(Fig. 1) has only two regions corresponding to “our” (right) and the second (left)
“universes” unlike the four regions in the standard Schwarzschild black hole case
(no black/white hole regions).

• The proper original Einstein–Rosen bridge is a traversable static spherically sym-
metric wormhole unlike the non-traversable non-static “textbook” version. Tra-
versability is equivalent to the pairwise specific identifications of future with past
horizons of the neighboring Kruskal regions.

We have also extended the Kruskal–Penrose diagram construction to the case of
lightlike “thin-shell” wormholes with two throats.
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Metric-Independent Spacetime
Volume-Forms and Dark Energy/Dark
Matter Unification

Eduardo Guendelman, Emil Nissimov and Svetlana Pacheva

Abstract Themethod of non-Riemannian (metric-independent) spacetime volume-
forms (alternative generally-covariant integration measure densities) is applied to
construct a modified model of gravity coupled to a single scalar field providing
an explicit unification of dark energy (as a dynamically generated cosmological
constant) and dust fluid dark matter flowing along geodesics as an exact sum of
two separate terms in the scalar field energy-momentum tensor. The fundamental
reason for the dark species unification is the presence of a non-Riemannian volume-
form in the scalar field action which both triggers the dynamical generation of the
cosmological constant as well as gives rise to a hidden nonlinear Noether symmetry
underlying the dust dark matter fluid nature. Upon adding appropriate perturbation
breaking the hidden “dust”Noether symmetrywepreserve the geodesic flowproperty
of the dark matter while we suggest a way to get growing dark energy in the present
universe’ epoch free of evolution pathologies. Also, an intrinsic relation between the
above modified gravity + single scalar field model and a special quadratic purely
kinetic “k-essence” model is established as a weak-versus-strong-coupling duality.

1 Introduction

According to the standard cosmological model (ΛCDM model [1–3]) the energy
density of the late time Universe is dominated by two “dark” components - around
70% made out of “dark energy” [4–6] and around 25% made out of “dark matter”
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[7–9]. Since more than a decade a principal challenge in modern cosmology is to
understand theoretically from first principles the nature of both “dark” species of the
universe’s substance as a manifestation of the dynamics of a single entity of matter.
Among the multitude of approaches to this seminal problem proposed so far are
the (generalized) “Chaplygin gas” models [10–13], the “purely kinetic k-essence”
models [14–17] based on the class of kinetic “quintessence” models [18–21], and
more recently – the so called “mimetic” darkmatter model [22, 23] and its extensions
[24, 25], as well as constant-pressure-ansatz models [26].

Herewewill describe a new approach achieving unified description of dark energy
and dark matter based on a class of generalized models of gravity interacting with
a single scalar field employing the method of non-Riemannian volume-forms on
the pertinent spacetime manifold [27–31] (for further developments, see Refs. [32,
33]). Non-Riemannian spacetime volume-forms or, equivalently, alternative gener-
ally covariant integrationmeasure densities are defined in termsof auxiliarymaximal-
rank antisymmetric tensor gauge fields (“measure gauge fields”) unlike the standard
Riemannian integration measure density given in terms of the square root of the
determinant of the spacetime metric. These non-Riemannian-measure-modified
gravity-matter models are also called “two-measure gravity theories”.

Let us particularly stress that the method of non-Riemannian spacetime volume-
forms is a very powerful one having profound impact in any (field theory) models
with general coordinate reparametrization invariance, such as general relativity and
its extensions [27–39]; strings and (higher-dimensional) membranes [40, 41]; and
supergravity [42, 43]. Among its main features we should mention:

• Dynamical generation of cosmological constant as arbitrary integration constant
in the solution of the equations of motion for the auxiliary “measure” gauge fields
(see also Eq. (6) below).

• Using the canonical Hamiltonian formalism for Dirac-constrained systemswe find
that the auxiliary “measure” gauge fields are in fact almost pure gauge degrees of
freedom except for the above mentioned arbitrary integration constants which are
identified with the conserved Dirac-constrained canonical momenta conjugated to
the “magnetic” components of the “measure” gauge fields [38, 39].

• Applying the non-Riemannian volume-form formalism to minimal N = 1 super-
gravity the appearance of a dynamically generated cosmological constant triggers
spontaneous supersymmetry breaking andmass generation for the gravitino (super-
symmetric Brout-Englert-Higgs effect) [42, 43]. Applying the same formalism to
anti-de Sitter supergravity allows to produce simultaneously a very large physical
gravitinomass and a very small positive observable cosmological constant [42, 43]
in accordance with modern cosmological scenarios for slowly expanding universe
of the present epoch [4–6].

• Employing two independent non-Riemannian volume-forms produces effective
scalar potential with two infinitely large flat regions [37, 38] (one for large neg-
ative and another one for large positive values of the scalar field ϕ) with vastly
different scales appropriate for a unified description of both the early and late uni-
verse’ evolution. A remarkable feature is the existence of a stable initial phase of
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non-singular universe creation preceding the inflationary phase – stable “emergent
universe” without “Big-Bang” [37].

In Sect. 2 below we briefly discuss a non-standard model of gravity interacting
with a single scalar field which couples symmetrically to a standard Riemannian
as well as to another non-Riemannian volume form (spacetime integration measure
density). We show that the auxiliary “measure” gauge field dynamics produces an
arbitrary integration constant identified as a dynamically generated cosmological
constant giving rise to a the dark energy term in the pertinent energy-momentum
tensor. Simultaneously, a hidden strongly nonlinear Noether symmetry of the scalar
Lagrangian action is revealed leading to a “dust” fluid representation of the second
term in the energy-momentum tensor, which accordingly is identified as a “dust”
dark matter flowing along geodesics. Thus, both “dark” species are explicitly unified
as an exact sum of two separate contributions to the energy-momentum tensor.

In Sect. 3 some implications for cosmology are briefly considered. Specifically,we
briefly study an appropriate perturbation of our modified-measure gravity + scalar-
field model which breaks the above crucial hidden Noether symmetry and introduces
exchange between the dark energy and darkmatter components, while preserving the
geodesic flow property of the dark matter fluid. Further, we suggest how to obtain
a growing dark energy in the present day universe’ epoch without invoking any
pathologies of “cosmic doomsday” or future singularities kind [44–46].

In Sect. 4 below we couple the above modified-measure scalar-field model to a
quadratic f (R)-gravity. We derive the pertinent “Einstein”-frame effective theory
which turns out be a very special quadratic purely kinetic “k-essence” gravity-matter
model. The main result here is establishing duality (in the standard sense of weak
versus strong coupling) between the latter and the original quadratic f (R)-gravity
plusmodified-measure scalar-fieldmodel, whosematter part delivers an exact unified
description of dynamical dark energy and dust fluid dark matter.

Section5 contains our concluding remarks.
For further details, in particular, canonical Hamiltonian treatment and Wheeler-

DeWitt quantization of the above unified model of dark energy and dark matter, see
Refs. [36, 47].

2 Gravity-Matter Theory with a Non-Riemannian
Volume-Form in The Scalar Field Action – Hidden
Noether Symmetry and Unification of Dark Energy
and Dark Matter

Let us consider the following simple particular case of a non-conventional gravity-
scalar-field action – a member of the general class of the “two-measure” gravity-
matter theories [28–31] (for simplicity we use units with the Newton constant
GN = 1/16π):
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S =
∫

d4x
√−g R +

∫
d4x

(√−g + Φ(B)
)
L(ϕ, X) . (1)

Here R denotes the standard Riemannian scalar curvature for the pertinent
Riemannian metric gμν . The second term in (1) – the scalar field action is con-
structed in terms of two mutually independent spacetime volume-forms (integration
measure densities):

(a)
√−g ≡ √− det ‖gμν‖ is the standard Riemannian integration measure density;

(b) Φ(B) denotes an alternative non-Riemannian generally covariant integration
measure density independent of gμν and defining an alternative non-Riemannian
volume-form:

Φ(B) = 1

3!ε
μνκλ∂μBνκλ , (2)

where Bμνλ is an auxiliary maximal rank antisymmetric tensor gauge field indepen-
dent of the Riemannian metric, also called “measure gauge field”.

L(ϕ, X) is general-coordinate invariant Lagrangian of a single scalar field ϕ(x),
the simplest example being:

L(ϕ, X) = X − V (ϕ) , X ≡ −1

2
gμν∂μϕ∂νϕ , (3)

As it will become clear below, the final result about the unification of dark energy and
dark matter resulting from an underlying hidden Noether symmetry (see (9) below)
of the scalar field action (second term in (1)) does not depend on the detailed form
of L(ϕ, X) which could be of an arbitrary generic “k-essence” form [18–21]:

L(ϕ, X) =
N∑

n=1

An(ϕ)Xn − V (ϕ) , (4)

i.e., a nonlinear (in general) function of the scalar kinetic term X .
Due to general-coordinate invariance we have covariant conservation of the scalar

field energy-momentum tensor:

Tμν = gμνL(ϕ, X) +
(
1 + Φ(B)√−g

)
∂L

∂X
∂μϕ ∂νϕ , ∇νTμν = 0 . (5)

Equivalently, energy-momentum conservation (5) follows from the second-order
equation of motion w.r.t. ϕ. The latter, however, becomes redundant because the
modified-measure scalar field action (second term in (1)) exhibits a crucial new
property – it yields a dynamical constraint on L(ϕ, X) as a result of the equations
of motion w.r.t. “measure” gauge field Bμνλ:
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∂μL(ϕ, X) = 0 −→ L(ϕ, X) = −2M = const , (6)

in particular, for (3):

X − V (ϕ) = −2M −→ X = V (ϕ) − 2M , (7)

where M is arbitrary integration constant. The factor 2 in front of M is for later con-
venience, moreover, wewill takeM > 0 in view of its interpretation as a dynamically
generated cosmological constant.1 Indeed, taking into account (6), the expression (5)
becomes:

Tμν = −2Mgμν +
(
1 + Φ(B)√−g

)
∂L

∂X
∂μϕ∂νϕ . (8)

As already shown in Ref. [36] the scalar field action in (1) possesses a hidden
strongly nonlinearNoether symmetry, namely (1) is invariant (up to a total derivative)
under the following nonlinear symmetry transformations:

δεϕ = ε
√
X , δεgμν = 0 , δεBμ = −ε

1

2
√
X

gμν∂νϕ
(
Φ(B) + √−g

)
, (9)

where Bμ ≡ 1
3!ε

μνκλBνκλ. Under (9) the action (1) transforms as
δεS = ∫

d4x∂μ

(
L(ϕ, X)δεBμ

)
. Then, the standardNoether procedure yields the con-

served current:

∇μ J
μ = 0 , Jμ ≡

(
1 + Φ(B)√−g

)√
2Xgμν∂νϕ

∂L

∂X
. (10)

Tμν (8) and Jμ (10) can be cast into a relativistic hydrodynamical form:

Tμν = −2Mgμν + ρ0uμuν , Jμ = ρ0u
μ , (11)

where:

ρ0 ≡
(
1 + Φ(B)√−g

)
2X

∂L

∂X
, uμ ≡ ∂μϕ√

2X
, uμuμ = −1 . (12)

For the pressure p and energy density ρ we have accordingly (with ρ0 as in (12)):

p = −2M = const , ρ = ρ0 − p =
(
1 + Φ(B)√−g

)
2X

∂L

∂X
+ 2M , (13)

1The physical meaning of the “measure” gauge field Bμνλ (2) as well as the meaning of the integra-
tion constantM are most straightforwardly seen within the canonical Hamiltonian treatment of (1)
[36]. For more details about the canonical Hamiltonian treatment of general gravity-matter theories
with (several independent) non-Riemannian volume-forms we refer to [38, 39].
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where the integration constant M appears as dynamically generated cosmological
constant.

Thus, Tμν (11) represents an exact sumof two contributions of the two dark species
with p = pDE + pDM and ρ = ρDE + ρDM:

pDE = −2M , ρDE = 2M ; pDM = 0 , ρDM = ρ0 , (14)

i.e., the dark matter component is a dust fluid (pDM = 0).
Covariant conservation of Tμν (11) immediately implies both (i) the covariant

conservation of Jμ = ρ0uμ (10) describing dust dark matter “particle number” con-
servation, and (ii) the geodesic flow equation of the dust dark matter fluid:

∇μ

(
ρ0u

μ
) = 0 , uν∇νuμ = 0 . (15)

3 Some Cosmological Implications

Let us now consider a perturbation of the initial modified-measure gravity + scalar-
field action (1) by some additional scalar field Lagrangian L̂(ϕ, X) independent of
the initial scalar Lagrangian L(ϕ, X):

Ŝ =
∫

d4x
√−g R +

∫
d4x

(√−g + Φ(B)
)
L(ϕ, X) +

∫
d4x

√−g L̂(ϕ, X) . (16)

An important property of the perturbed action (16) is that once again the scalar field
ϕ-dynamics is given by the unperturbed dynamical constraint Eq. (6) of the initial
scalar Lagrangian L(ϕ, X), which is completely independent of the perturbing scalar
Lagrangian L̂(ϕ, X).

Henceforth, for simplicity we will take the scalar Lagrangians in the canonical
form L(ϕ, X) = X − V (ϕ) , L̂(ϕ, X) = X −U (ϕ), whereU (ϕ) is independent of
V (ϕ).

The associated scalar field energy-momentum tensor now reads (cf. Eqs. (11)–
(13)):

T̂μν = ρ̂0uμuν + gμν

(−4M + V −U
)

, ρ̂0 ≡ 2(V − 2M)

(
1 + Φ(B)√−g

)
,

(17)
or, equivalently:

T̂μν = (
ρ̂ + p̂

)
uμuν + p̂ gμν , p̂ = −4M + V −U , (18)

ρ̂ = ρ̂0 − p̂ = 2(V − 2M)
(
1 + Φ(B)√−g

)
+ 4M +U − V , (19)

where (7) is used.
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The perturbed energy-momentum (17) conservation ∇μT̂μν = 0 now implies:

• The perturbed action (16) does not anymore possess the hidden symmetry (9) and,
therefore, the conservation of the dust particle number current Jμ = ρ0uμ (11) is
now replaced by:

∇μ
(
ρ̂0uμ

) + √
2(V − 2M)

(
∂V

∂ϕ
− ∂U

∂ϕ

)
= 0 . (20)

• Onceagainweobtain thegeodesicflowequation for the darkmatter “fluid” (second
Eq. (15)). Let us stress that this is due to the fact that the perturbed pressure p̂
(second relation in (18)), because of the dynamical constraint (7) triggered by the
non-Riemannian volume-form in (16), is a function of ϕ only but not of X .

Thus, we conclude that the geodesic flow dynamics of the cosmological fluid
described by the action (16) persist irrespective of the presence of the perturbation
(last term in (16)) as well as of the specific form of the latter.

In the cosmological context, when taking the spacetime metric in the standard
Friedmann–Lemaitre–Robertson–Walker (FLRW) form, the scalar field is assumed
to be time-dependent only: ϕ = ϕ(t). Thus, in this case the dynamical constraint Eq.
(7) and its solution assume the form:

ϕ̇2 = 2
(
V (ϕ) − 2M

) −→
∫ ϕ(t)

ϕ(0)

dϕ
√
2
(
V (ϕ) − 2M

) = ±t . (21)

Choosing the + sign in (21) corresponds to ϕ(t) monotonically growing with t
irrespective of the detailed form of the potential V (ϕ). The only condition due to
consistency of the dynamical constraint (first Eq. (21)) is V (ϕ) > 2M for the whole
interval of classically accessible values ofϕ. Also, note the “strange” looking second-
order (in time derivatives) form of the first Eq. (21):

..
ϕ −∂V/∂ϕ = 0, where we

specifically stress on the opposite sign in the force term. Thus, it is fully consistent
for ϕ(t) to “climb” a growing w.r.t. ϕ scalar potential.

As already stressed above, the dynamics of the ϕ(t) does not depend at all on the
presence of the perturbing scalar potential U (ϕ). Therefore, if we choose the per-
turbation U (ϕ) in (16) such that the potential difference U (ϕ) − V (ϕ) is a growing
function at large ϕ (e.g., U (ϕ) − V (ϕ) ∼ eαϕ, α small positive) then, when ϕ(t)
evolves through (21) to large positive values, it (slowly) “climbs”U (ϕ) − V (ϕ) and
according to the expression ρ̂DE = 4M +U (ϕ) − V (ϕ) = − p̂ for the dark energy
density (cf. (17) and (18)), the latter will (slowly) grow up! Let us emphasize that in
thiswayweobtain growingdark energyof the “late” universewithout anypathologies
in the universe’ evolution like “cosmic doomsday” or future singularities [44–46].
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4 Duality to Purely Kinetic “K-Essence”

Let us now consider a different perturbation of the modified-measure gravity +
scalar-field action (1) by replacing the standard Einstein-Hilbert gravity action (the
first term in (1)) with a f (R) = R − αR2 extended gravity action in the first-order
Palatini formalism:

S(α) =
∫

d4x
√−g

(
R(g, Γ ) − αR2(g, Γ )

) +
∫

d4x
(√−g + Φ(B)

)
L(ϕ, X) , (22)

where R(g, Γ ) = gμνRμν(Γ ), i.e., with a priori independent metric gμν and affine
connection Γ

μ
νλ.

Since the scalar field action – the second term in (22) – remains the same as in the
original action (1), and the hidden nonlinear Noether symmetry (9) does not affect the
metric, all results in Sect. 2 remain valid. Namely, theNoether symmetry (9) produces
“dust” fluid particle number conserved current (first Eq. (15)) and interpretation
of ϕ as describing simultaneously dark energy (because of the dynamical scalar
Lagrangian constraint (6)) and dust darkmatter with geodesic dust fluid flow (second
Eq. (15)) remains intact.

However, the gravitational equations of motion derived from (22) are not of the
standard Einstein form:

Rμν(Γ ) = 1

2 f ′
R

[
Tμν + f (R)gμν

]
, (23)

where f (R) = R(g, Γ ) − αR2(g, Γ ) , f ′
R = 1 − 2αR(g, Γ ) and Tμν is the same

as in (8).
The equations of motion w.r.t. independent Γ

μ
νλ resulting from (22) yield (for

an analogous derivation, see [28]) the following solution for Γ
μ
νλ as a Levi-Civita

connection:

Γ
μ
νλ = Γ

μ
νλ(g) = 1

2
gμκ

(
∂νgλκ + ∂λgνκ − ∂κgνλ

)
, (24)

w.r.t. to the Weyl-rescaled metric gμν :

gμν = f ′
R gμν , (25)

so that gμν is called (physical) “Einstein-frame” metric. In passing over to the
“Einstein-frame” it is also useful to perform the following ϕ-field redefinition:

ϕ → ϕ̃ =
∫

dϕ
√(

V (ϕ) − 2M
) , X → X̃ = −1

2
gμν∂μϕ̃∂νϕ̃ = 1

f ′
R

, (26)

where the last relation follows from the Lagrangian dynamical constraint (7) together
with (25).
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Derivation of the explicit expressions for the Einstein-frame gravitational equa-
tions, i.e., equations w.r.t. Einstein-frame metric (25) and the Einstein-frame scalar
field (first Eq. (26)), yields the latter in the standard form of Einstein gravity equa-
tions:

Rμν − 1

2
gμνR = 1

2
T μν . (27)

Here the following notations are used:

(i) Rμν and R are the standard Ricci tensor and scalar curvature of the Einstein-
frame metric (25).

(ii) The Einstein-frame energy-momentum tensor:

T μν = gμνLeff − 2
∂Leff

∂gμν (28)

is given in terms of the following effective ϕ̃-scalar field Lagrangian of a specific
quadratic purely kinetic “k-essence” form:

Leff(X̃) =
(

1

4α
− 2M

)
X̃2 − 1

2α
X̃ + 1

4α
. (29)

Thus, the Einstein-frame gravity+scalar-field action reads:

Sk−ess =
∫

d4
√−g

[
R +

( 1

4α
− 2M

)
X̃2 − 1

2α
X̃ + 1

4α

]
. (30)

The Einstein-frame effective energy-momentum-tensor (28) in the perfect fluid
representation reads (taking into account the explicit form of Leff (29)):

T̄μν = gμν p̃ + ũμũν
(
ρ̃ + p̃

)
, ũμ ≡ ∂μϕ̃√

2X̃
, gμν ũμũν = −1, (31)

p̃ =
(

1

4α
− 2M

)
X̃2 − 1

2α
X̃ + 1

4α
, ρ̃ = 3

(
1

4α
− 2M

)
X̃2 − 1

2α
X̃ − 1

4α
(32)

Let us stress that the quadratic purely kinetic “k-essence” scalar Lagrangian (29)
is indeed a very special one:

• The three coupling constants in (29) depend only on two independent parameters
(α, M), the second one being a dynamically generated integration constant in the
original theory (22).

• The quadratic gravity term −αR2 in (22) is just a small perturbation w.r.t. the
initial action (1) when α → 0, whereas the coupling constants in the Einstein-
frame effective action (30) diverge as 1/α, i.e., weak coupling in (22) is equivalent
to a strong coupling in (30).
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• Due to the apparent Noether symmetry of (29) under constant shift of ϕ̃ (ϕ̃ → ϕ̃ +
const) the corresponding Noether conservation law is identical to the ϕ̃-equations
of motion:

∇μ

(
gμν∂νϕ̃

∂ L̃eff

∂ X̃

)
= 0 , (33)

where ∇μ is covariant derivative w.r.t. the Levi-Civita connection (24) in the gμν-
(Einstein) frame. Equation (33) is the Einstein-frame counterpart of the “dust”
Noether conservation law (10) in the original theory (1) or (22).

Thus, we have found an explicit duality in the usual sense of “weak versus strong
coupling” between the original non-standard gravity+scalar-field model providing
exact unified description of dynamical dark energy and dust fluid dark matter in the
matter sector, on one hand, and a special quadratic purely kinetic “k-essence” gravity-
matter model, on the other hand. The latter dual theory arises as the “Einstein-frame”
effective theory of its original counterpart.

To make explicit the existence of smooth strong coupling limit α → 0 on-shell in
the dual “k-essence” energy density ρ̃ and “k-essence” pressure p̃ (32) in spite of the
divergence of the corresponding constant coefficients, let us consider a reduction of
the dual quadratic purely kinetic “k-essence” gravity + scalar-field model (30) for
the Friedmann–Lemaitre–Robertson–Walker (FLRW) class of metrics:

ds2 = −N 2(t)dt2 + a2(t)
[ dr2

1 − Kr2
+ r2(dθ2 + sin2θdφ2)

]
. (34)

The FLRW reduction of the φ ≡ ϕ̃-equation of motion (33) (using henceforth the
gauge N = 1) reads:

dpφ

dt
= 0 −→ pφ = a3

[
− 1

2α
φ̇ + ( 1

4α
− 2M

)
φ̇3

]
, (35)

where pφ is the constant conserved canonically conjugated momentum of φ ≡ ϕ̃.
Thus, the velocity φ̇ = φ̇(pφ/a3) is a function of the Friedmann scale factor a(t)
through the ratio pφ/a3 and solves the cubic algebraic equation (35) for any α. For
small α we get:

φ̇(pφ/a
3) 	 √

2 + α
(
4
√
2M + pφ

a3

)
+ O(α2) . (36)

Then, inserting (36) into the FLRW-reduced X̃ = 1
2 φ̇

2 and substituting it into the
expressions (32) we obtain for the small-α asymptotics of the “k-essence” energy
density and “k-essence” pressure:
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ρ̃ = 2M + √
2
pφ

a3
+ α

[
16M2 + 4

√
2M

pφ

a3
+ 1

2

( pφ

a3
)2] + O(α2) , (37)

p̃ = −2M − α
[
16M2 − 1

2

( pφ

a3
)2] + O(α2) . (38)

The limiting values ρ̃ = 2M + √
2 pφ

a3 and p̃ = −2M precisely coincide with the
corresponding values of ρ and p (13) in the FLRW reduced original theory (1) [36].

5 Conclusions

In the present notewe have demonstrated the power of themethod of non-Riemannian
spacetime volume-forms (alternative generally-covariant integration measure den-
sities) by applying it to construct a modified model of gravity coupled to a single
scalar field which delivers a unification of dark energy (as a dynamically generated
cosmological constant) and dust fluid dark matter flowing along geodesics (due to a
hidden nonlinear Noether symmetry). Both “dark” species appear as an exact sum of
two separate contributions in the energy-momentum tensor of the single scalar field.
Upon perturbation of the scalar field action, which breaks the hidden “dust” Noether
symmetry but preserves the geodesic flow property, we show how to obtain a grow-
ing dark energy in the late Universe without evolution pathologies. Furthermore, we
have established a duality (in the standard sense of weak versus strong coupling) of
the above model unifying dark energy and dark matter, on one hand, and a specific
quadratic purely kinetic “k-essence” model. This duality elucidates the ability of
purely kinetic “k-essence” theories to describe approximately the unification of dark
energy and dark matter and explains how the “k-essence” description becomes exact
in the strong coupling limit on the “k-essence” side.
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Large Volume Supersymmetry Breaking
Without Decompactification Problem

Hervé Partouche

Abstract Weconsider heterotic string backgrounds in four-dimensionalMinkowski
space, whereN = 1 supersymmetry is spontaneously broken at a low scalem3/2 by a
stringy Scherk-Schwarz mechanism.We review how the effective gauge couplings at
1-loop may evade the “decompactification problem”, namely the proportionality of
the gauge threshold corrections, with the large volume of the compact space involved
in the supersymmetry breaking.

1 Introduction

A sensible physical theory must at least meet two requirements: Be realistic and
analytically under control. The first point can be satisfied by considering string the-
ory, which has the advantage to be, at present time, the only setup in which both
gravitational and gauge interactions can be described consistently at the quantum
level. In this review, we do not consider cosmological issues and thus analyze mod-
els defined classically in four-dimensional Minkowski space. The “no-scale models”
are particularly interesting since, by definition, they describe in supergravity or string
theory classical backgrounds, in which supersymmetry is spontaneously broken at
an arbitrary scalem3/2 in flat space [1]. In other words, even if supersymmetry is not
explicit, the classical vacuum energy vanishes.

The most conservative way to preserve analytical control is to ensure the validity
of perturbation theory. In string theory, quantum loops can be evaluated explicitly,
when the underlying two-dimensional conformal field theory is itself under control.
Clearly, this is the case, when one considers free field on the world sheet, for instance
in toroidal orbifold models [2] or fermionic constructions [3]. In these frameworks,
theN = 1 → N = 0 spontaneous breaking of supersymmetry can be implemented
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at tree level via a stringy version [4] of the Scherk-Schwarz mechanism [5].1 In
this case, the supersymmetry breaking scale is of order of the inverse volume of the
internal directions involved in the breaking. For a single circle of radius R, one has

m3/2 = Ms

R
, (1)

where Ms is the string scale, so that having a low m3/2 = O(10 TeV) imposes the
circle to be extremely large, R = O(1017) [6]. Such large directions yield towers
of light Kaluza–Klein states and a problem arises from those charged under some
gauge group factor Gi . In general, their contributions to the quantum corrections
to the inverse squared gauge coupling is proportional to the very large volume and
invalidates the use of perturbation theory.

To be specific, let us consider in heterotic string the 1-loop low energy running
gauge coupling gi (μ) , which satisfies [7]

16π2

g2i (μ)
= ki

16π2

g2s
+ bi ln

M2
s

μ2
+ Δi . (2)

In this expression, gs is the string coupling and ki is the Kac–Moody level of Gi .
The logarithmic contribution, which depends on the energy scale μ, arises from the
massless states and is proportional to the β-function coefficient bi , while the massive
modes yield the threshold corrections Δi . The main contributions to the latter arise
from the light Kaluza–Klein states, which for a single large radius yield

Δi = Ci R − bi ln R2 + O
(
1

R

)
, (3)

whereCi = Cbi − C ′ki , for some non-negative C andC ′ that depend on other mod-
uli. When Ci = O(1), requiring in Eq. (2) the loop correction to be small compared
to the tree level contribution imposes g2s R < 1. In other words, for perturbation
theory to be valid, the string coupling must be extremely weak, gs < O(10−6.5). If
Ci > 0, which implies Gi is not asymptotically free, Eq. (2) imposes the running
gauge coupling to be essentially free, gi (μ) = O(gs), and Gi describes a hidden
gauge group. However, if Ci < 0, which is the case if Gi is asymptotically free, the
very large tree level contribution proportional to 1/g2s must cancel Ci R, up to very
high accuracy, for the running gauge coupling to be of order 1 and have a chance to
describe realistic gauge interactions. This unnatural fine-tuning is a manifestation of
the so-called “decompactification problem”, which actually arises generically, when
a submanifold of the internal space is large, compared to the string scale, i.e. when

1Note that non-perturbative mechanisms based on gaugino condensation could also be considered,
but only at the level of the low energy effective supergravity, thus at the price of loosing part of the
string predictability.
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the internal conformal field theory allows a geometrical interpretation in terms of a
compactified space.

To avoid the above described behavior, Ci can be required to vanish. This is
trivially the case in the N = 4 supersymmetric theories, where actually bi = 0 and
Δi = 0. The condition Ci = 0 remains valid in the theories realizing theN = 4 →
N = 2 spontaneous breaking, providedN = 4 is recovered when the volume is sent
to infinity [8]. In this case, the threshold corrections scale logarithmically with the
volume and no fine-tuning is required for perturbation theory to be valid. In Sect. 2,
we review the construction of models that realize anN = 1 → N = 0 spontaneous
breaking at a low scale m3/2, while avoiding the decompactification problem. The
corresponding threshold corrections are computed in Sect. 3 [9, 10].

2 The Non-supersymmetric Z2 × Z2 Models

In the present work, we focus on heterotic string backgrounds in four-dimensional
Minkowski space and analyze the gauge coupling threshold corrections. At 1-loop,
their formal expression is [7, 11, 12]

Δi =
∫

F

d2τ

τ2

(
1

2

∑

a,b

Q[
a
b

]
(2v)

(
P2
i (2w̄) − ki

4πτ2

)
τ2 Z

[
a
b

]
(2v, 2w̄) − bi

) ∣
∣
∣
∣
v=w̄=0

+ bi log
2 e1−γ

π
√
27

, (4)

where F is the fundamental domain of SL(2,Z) and Z
[
a
b

]
(2v, 2w̄) is a refined

partition function for given spin structure (a, b) ∈ Z2 × Z2.Pi (2w̄) acts on the right-
moving sector as the squared charge operator of the gauge group factor Gi , while
Q[

a
b

]
(2v) acts on the left-moving sector as the helicity operator,2

Q[
a
b

]
(2v) = 1

16π2

∂2
v (θ

[
a
b

]
(2v))

θ
[
a
b

]
(2v)

− i

π
∂τ log η ≡ i

π
∂τ

(

log
θ
[
a
b

]
(2v)

η

)

. (5)

Fromnowon,we considerZ2 × Z2 orbifoldmodels [2] or fermionic constructions
[3] in which the marginal deformations parameterized by the Kähler and complex
structuresTI ,UI , I = 1, 2, 3, associated to the three internal 2-tori are switchedon [9,
14]. In both cases, orbifolds or “moduli-deformed fermionic constructions”,N = 1
supersymmetry is spontaneously broken by a stringy Scherk-Schwarz mechanism
[4]. The associated genus-1 refined partition function is

2Our conventions for the Jacobi functions θ
[
a
b

]
(ν|τ ) (or θα(ν|τ ), α = 1, . . . , 4) and Dedekind

function can be found in [13].
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Z(2v, 2w̄) = 1

τ2(ηη̄)2
× (6)

1

2

∑

a,b

1

2

∑

H1,G1

1

2

∑

H2,G2

(−1)a+b+ab θ
[
a
b

]
(2v)

η

θ
[a+H1
b+G1

]

η

θ
[a+H2
b+G2

]

η

θ
[a+H3
b+G3

]

η
×

1

2N
∑

hiI ,g
i
I

SL
[
a, hiI , HI

b, giI ,GI

]
Z2,2

[
hi1
gi1

∣
∣
∣H1
G1

]
Z2,2

[
hi2
gi2

∣
∣
∣H2
G2

]
Z2,2

[
hi3
gi3

∣
∣
∣H3
G3

]
Z0,16

[
hiI , HI

giI ,GI

]
(2w̄),

where our notations are as follows:

• The Z2,2 conformal blocks arise from the three internal 2-tori. The genus-1 surface
having two non-trivial cycles, (hiI , g

i
I ) ∈ Z2 × Z2, i = 1, 2, I = 1, 2, 3 denote

associated shifts of the six coordinates. Similarly, (HI ,GI ) ∈ Z2 × Z2 refer to the
twists, where we have defined for convenience (H3,G3) ≡ (−H1 − H2,−G1 −
G2). Explicitly, we have

Z2,2

[
h1I , h

2
I

g1I , g
2
I

∣
∣
∣HI
GI

]
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ2,2

[
h1I , h

2
I

g1I , g
2
I

]
(TI ,UI )

(ηη̄)2
,

when (HI ,GI ) = (0, 0) mod 2 ,
4ηη̄

θ
[1−HI
1−GI

]
θ̄
[1−HI
1−GI

] δ∣∣
∣h

1
I HI

g1I G I

∣
∣
∣,0mod 2

δ∣∣
∣h

2
I HI

g2I G I

∣
∣
∣,0mod 2

otherwise ,

(7)

where Γ2,2 is a shifted lattice that depends on the Kähler and complex structure
moduli TI ,UI of the I th 2-torus. The arguments of the Kronecker symbols are
determinants.

• When defining each model, linear constraints on the shifts (hiI , g
i
I ) and twists

(HI ,GI ) may be imposed, leaving effectively N independent shifts.
• Z0,16 denotes the contribution of the 32 extra right-moving world sheet fermions.
Its dependance on the shifts and twists may generate discrete Wilson lines, which
break partially E8 × E8 or SO(32).

• The first line contains the contribution of the spacetime light-cone bosons, while
the second is that of the left-moving fermions.

• SL is a conformal block-dependent sign that implements the stringy Scherk-
Schwarz mechanism. A choice of SL that correlates the spin structure (a, b) to
some shift (hiI , g

i
I ) implements the N = 1 → N = 0 spontaneous breaking.

The Z2 × Z2 models contain three N = 2 sectors. For the decompactification
problem not to arise, we impose one of them to be realized as a spontaneously
broken phase ofN = 4. This can be done by demanding the Z2 action characterized
by (H2,G2) to be free. The associated generator twists the 2nd and 3rd 2-tori (i.e.
the directions X6, X7, X8, X9 in bosonic language) and shifts some direction(s) of
the 1st 2-torus, say X5 only. To simplify our discussion, we take the generator of the
other Z2, whose action is characterized by (H1,G1), to not be free : It twists the 1st

and 3rd 2-tori, and fixes the 2nd one. Similarly, we suppose that the product of the two
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generators, whose action is characterized by (H3,G3), twists the 1st and 2nd 2-tori,
and fixes the 3rd one. These restrictions impose the moduli T2,U2 and T3,U3 not to
be far from 1, in order to avoid the decompactification problem to occur from the
remaining two N = 2 sectors. However, our care in choosing the orbifold action is
allowing us to take the volume of the 1st 2-torus to be large.

The above remarks have an important consequence, since the final stringy Scherk-
Schwarz mechanism responsible of the N = 1 → N = 0 spontaneous breaking
must involve the moduli T1,U1 only, for the gravitino mass to be light. Thus, this
breaking must be implemented via a shift along the 1st 2-torus, say X4, and a non-
trivial choice of SL . Therefore, the sector (H1,G1) = (0, 0) realizes the pattern of
spontaneous breakingN = 4 → N = 2 → N = 0, while the other twoN = 2 sec-
tors,which have 2nd and 3rd 2-tori respectively fixed, are independent of T1 andU1 and
thus remain supersymmetric. As a result, we have in the two following independent
modular orbits:

SL = (−1)ag11+bh11+h11g
1
1 , when (H1,G1) = (0, 0) ,

SL = 1 , when (H1,G1) �= (0, 0) .

(8)

Given the fact that we have imposed (h21, g
2
1) ≡ (H2,G2), the 1st 2-torus lattice

takes the explicit form

Γ2,2

[
h11, H2

g11 ,G2

]
(T1,U1) =

∑

mi ,ni

(−1)m
1g11+m2G2 e2iπτ̄[m1(n1+ 1

2 h
1
1)+m2(n2+ 1

2 H2)] ×

e− πτ2
Im T1ImU1

|T1(n1+ 1
2 h

1
1)+T1U1(n2+ 1

2 H2)+U1m1−m2|2 (9)

This expression can be used to find the squared scales of spontaneous N = 4 →
N = 2 and N = 2 → N = 0 breaking. For Re (U1) ∈ (− 1

2 ,
1
2 ], they are

M2
s

Im T1 ImU1
, m2

3/2 = |U1|2M2
s

Im T1 ImU1
, (10)

where the latter is nothing but the gravitino mass squared of the full N = 0 theory.
For these scales to be small compared to Ms, we consider the regime Im T1 � 1,
U1 = O(i).

3 Threshold Corrections

The threshold corrections can be evaluated in each conformal block [9]. Starting
with those where (H1,G1) = (0, 0), the discussion is facilitated by summing over
the spin structures. Focussing on the relevant parts of the refined partition function
Z , we have
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1

2

∑

a,b

(−1)a+b+ab (−1)ag11+bh11+h11g
1
1 θ

[
a
b

]
(2v) θ

[
a
b

]
θ
[a+H2
b+G2

]
θ
[a−H2
b−G2

] =

(−1)h
1
1g

1
1+G2(1+h11+H2) θ

[
1−h11
1−g11

]2
(v) θ

[
1−h11+H2

1−g11+G2

]2
(v) , (11)

which shows how many odd θ1(v) ≡ θ[11](v) functions (or equivalently how many
fermionic zero modes in the path integral) arise for given shift (h11, g

1
1) and twist

(H2,G2).

Conformal block A : (h11, g
1
1) = (0, 0), (H2,G2) = (0, 0)

This block is proportional to θ
[
1
1

]4
(v) = O(v4). Up to an overall factor 1/23, it is the

contribution of the N = 4 spectrum of the parent theory, when neither the Z2 × Z2

action nor the stringy Scherk-Schwarz mechanism are implemented. Therefore, it
does not contribute to the 1-loop gauge couplings.

Conformal blocks B : (h11, g
1
1) �= (0, 0), (H2,G2) = (0, 0)

They are proportional to θ
[
1−h11
1−g11

]4
(v) = O(1). The parity of the winding number

along the compact direction X4 being h11, the blocks with h11 = 1 involve states,
which are super massive compared to the pure Kaluza–Klein modes. These blocks
are therefore exponentially suppressed, compared to the block (h11, g

1
1) = (0, 1).

Up to an overall factor 1/22, the latter arises from the spectrum considered in the
conformal block A, but in the N = 4 → N = 0 spontaneously broken phase, and
contributes to the gauge couplings.

Conformal blocks C : (h11, g
1
1) = (0, 0), (H2,G2) �= (0, 0)

They are proportional to θ
[
1
1

]
(v)2θ

[1−H2
1−G2

]2
(v) = O(v2) and do contribute to Δi , due

to the action of the helicity operator. Reasoning as in the previous case, the parity of
the winding number along the compact direction X5 is H2, which implies the blocks
with H2 = 1 yield exponentially suppressed contributions, compared to that asso-
ciated to the block (H2,G2) = (0, 1). Up to an overall factor 1/22, the latter arises
from a spectrum realizing the spontaneousN = 4 → NC = 2 breaking, which con-
tributes to the couplings.

Conformal blocks D : (h11, g
1
1) = (H2,G2) �= (0, 0)

They are proportional to θ
[1−H2
1−G2

]2
(v)θ

[
1
1

]
(v)2 = O(v2). The situation is identical to

that of the conformal blocksC , except that the generator of theZ2 free action respon-
sible of the partial spontaneous breaking ofN = 4 twists X6, X7, X8, X9 and shifts
X4, X5. The dominant contribution to the threshold corrections arises again from
the block (H2,G2) = (0, 1), which describes a spectrum realizing the spontaneous
N = 4 → ND = 2 breaking.

Conformal blocks E :
∣
∣
∣
h11 H2

g11 G2

∣
∣
∣ �= 0
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The remaining conformal blocks have non-trivial determinant
∣
∣
∣
h11 H2

g11 G2

∣
∣
∣, which implies

θ
[
1−h11
1−g11

]2
(v) θ

[
1−h11+H2

1−g11+G2

]2
(v) = O(1). However, this condition is also saying that

(h11, H2) �= (0, 0), which means the modes in these blocks have non-trivial wind-
ing number(s) along X4, X5 or both. Therefore, their contributions to the gauge
couplings are non-trivial but exponentially suppressed.

Having analyzed all conformal blocks satisfying (H1,G1) = (0, 0), we proceed
with the study of the modular orbit (H1,G1) �= (0, 0), where the sign SL is trivial.
Since the 1st 2-torus is twisted, these blocks are independent of themoduli T1,U1 and
thus m3/2. They can be analyzed as in the case of Z2 × Z2, N = 1 supersymmetric
models. Actually, summing over the spin structures, the relevant terms in the refined
partition function Z become

1

2

∑

a,b

(−1)a+b+abθ
[
a
b

]
(2v) θ

[a+H1
b+G1

]
θ
[a+H2
b+G2

]
θ
[a−H1−H2
b−G1−G2

] =

(−1)(G1+G2)(1+H1+H2) θ
[
1
1

]
(v) θ

[1−H1
1−G1

]
(v) θ

[1−H2
1−G2

]
(v) θ

[1+H1+H2
1+G1+G2

]
(v) ,(12)

which invites us to split the discussion in three parts.

N = 2 conformal blocks, with fixed 2nd 2-torus : (H2,G2) = (0, 0)
They are proportional to θ

[
1
1

]2
(v)θ

[1−H1
1−G1

]2
(v) = O(v2). The 2nd internal 2-torus is

fixed by the non-free action of the Z2 characterized by (H1,G1). Adding the con-
formal block A, we obtain an N = 2 sector of the theory, up to an overall factor
1/2 associated to the second Z2. This spectrum leads to non-trivial corrections to the
gauge couplings.

N = 2 conformal blocks, with fixed 3rd 2-torus : (H1,G1) = (H2,G2)

Thy are proportional to θ
[
1
1

]2
(v)θ

[1−H1
1−G1

]2(v) = O(v2). Actually, (H3,G3) = (0, 0),
which means that the 3rd 2-torus is fixed by the combined action of the generators
of the two Z2’s. Adding the conformal block A, one obtains the last N = 2 sector
of the theory, up to an overall factor 1/2. Again, this spectrum yields a non-trivial
contribution to the gauge couplings.

N = 1 conformal blocks :
∣
∣H1 H2
G1 G2

∣
∣ �= 0

The remaining blocks have non-trivial determinant,
∣
∣H1 H2
G1 G2

∣
∣ �= 0, which implies they

are proportional to θ
[
1
1

]
(v) θ

[1−H1
1−G1

]
(v) θ

[1−H2
1−G2

]
(v) θ

[1+H1+H2
1+G1+G2

]
(v) = O(v). Acting on

them with the helicity operator, the result is proportional to

∂2
v

(
θ
[
1
1

]
(v) θ

[1−H1
1−G1

]
(v) θ

[1−H2
1−G2

]
(v) θ

[1+H1+H2
1+G1+G2

]
(v)

)∣
∣
∣
v=0

∝
∂2

v

(
θ1(v) θ2(v) θ3(v) θ4(v)

)∣
∣
∣
v=0

= 0 , (13)
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thanks to the oddness of θ1(v) and evenness of θ2,3,4(v). Thus, these conformal blocks
do not contribute to the thresholds.

In the class ofmodelswe consider, the effective running gauge coupling associated
to some gauge group factor Gi has a universal form at 1-loop [9]. It can be elegantly
expressed in terms of three moduli-dependent squared mass scales arising from the
corrections associated to the conformal blocks B,C, D,

M2
B = M2

s

|θ2(U1)|4 Im T1 ImU1
, M2

C = M2
s

|θ4(U1)|4 Im T1 ImU1
,

M2
D = M2

s

|θ3(U1)|4 Im T1 ImU1
, (14)

which are of order m2
3/2, and two more scales

M2
I = M2

s

16
∣
∣η(TI )|4

∣
∣η(UI )|4 Im TI ImUI

, I = 2, 3, (15)

of order M2
s that encode the contributions of the N = 2 sectors associated to the

fixed 2nd and 3rd internal 2-tori. It is also useful to introduce a “renormalized string
coupling” [11],

16π2

g2renor
= 16π2

g2s
− 1

2
Y (T2,U2) − 1

2
Y (T3,U3) , (16)

where Y (T,U ) = 1

12

∫

F

d2τ

τ2
Γ2,2(T,U )

[(
Ē2 − 3

πτ2

) Ē4 Ē6

η̄24
− j̄ + 1008

]
,

in which Γ2,2 = Γ2,2
[0, 0
0, 0

]
is the unshifted lattice, while for q = e2iπτ , E2,4,6 = 1 +

O(q) are holomorphic Eisenstein series of modular weights 2, 4, 6 and j = 1/q +
744 + O(q) is holomorphic andmodular invariant. The inverse squared 1-loop gauge
coupling at energy scale Q2 = μ2 π2

4 is then

16π2

g2i (Q)
= ki

16π2

g2renor
− biB

4
ln

(
Q2

Q2 + M2
B

)
− biC

4
ln

(
Q2

Q2 + M2
C

)
− (17)

− biD
4

ln

(
Q2

Q2 + M2
D

)
− bi2

2
ln

(
Q2

M2
2

)
− bi3

2
ln

(
Q2

M2
3

)
+ O

(
m2

3/2

M2
s

)

,

which depends only on five model-dependent β-function coefficients and the Kac–
Moody level. In this final result, we have shifted M2

B,C,D → Q2 + M2
B,C,D in order

to implement the thresholds at which the sectors B, C or D decouple, i.e. when Q
exceeds MB , MC or MD . Thus, this expression is valid as long as Q is lower than the
mass of the heavy states we have neglected the exponentially suppressed contribu-
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tions i.e. the string or GUT scale, depending on the model. Taking Q lower than at
least one of the scalesMB ,MC orMD , the r.h.s. of Eq. (17) scales as ln Im T1, which is
the logarithm of the large 1st 2-torus volume, as expected for the decompactification
problem not to arise.

To conclude, we would like to mention two important remarks. First of all, we
stress that the Z2 × Z2 models, where a Z2 is freely acting and a stringy Scherk-
Schwarz mechanism responsible of the final breaking of N = 1 takes place, have
non-chiralmassless spectra. This is due to the fact that in theN = 1,Z2 × Z2 models,
chiral families occur from twisted states localized at fixed points. In the models we
have considered, fixed points localized on the 2nd and 3rd 2-tori can arise but are
independent of the moduli T1,U1 i.e. m3/2. Thus, taking the large volume limit of
the 1st 2-torus, where N = 2 supersymmetry is recovered, one concludes that the
twisted states are actually hypermultiplets i.e. couples of families and anti-families.

Second, we point out that in the models analyzed in the present work, the confor-
mal block B is the only non-supersymmetric and non-negligible contribution to the
partition function Z , and thus to the 1-loop effective potential. In Refs. [10, 15], it
is shown that in some models, the latter is positive semi-definite. The motion of the
moduli T2,U2 and T3,U3 is thus attracted to points [16], where the effective potential
vanishes, allowing m3/2 to be arbitrary. In other words, the defining properties of the
no-scale models, namely arbitrariness of the supersymmetry breaking scale m3/2 in
flat space, which are valid at tree level, are extended to the 1-loop level. This very
fact, characteristic of the so-called “super no-scale models”, may have interesting
consequences on the smallness of a cosmological constant generated at higher orders.
In Ref. [17], other models having 1-loop vanishing cosmological constant are also
considered, which however suffer from the decompactification problem.
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Glueball Inflation and Gauge/Gravity Duality

Lilia Anguelova

Abstract We summarize our work on building glueball inflation models with the
methods of the gauge/gravity duality. We review the relevant five-dimensional con-
sistent truncation of type IIB supergravity. We consider solutions of this effective
theory, whosemetric has the form of a dS4 foliation over a radial direction. By turning
on small (in an appropriate sense) time-dependent deformations around these solu-
tions, one can build models of glueball inflation. We discuss a particular deformed
solution, describing an ultra-slow roll inflationary regime.

1 Introduction

Composite inflation models [1, 2] provide a possible resolution to the well-known
η-problem [3, 4] of inflationary model-building. However, they are quite challenging
to study with standard QFT methods, since they involve a strongly-coupled gauge
sector. This has motivated interest in developing descriptions of such models via a
string-theoretic tool aimed precisely at studying the nonperturbative regime of gauge
theories, namely the gauge/gravity duality. Gravitational duals, in which the inflaton
arises from the position of a D3-brane probe have been considered in [5–9]. Instead,
in [10–12] we studied models, whose inflaton arises from the background fields of
the gravitational solution and is thus a glueball in the dual gauge theory.

The backgrounds of interest for us solve the equations of motion of the 5d consis-
tent truncation of type IIB supergravity established in [13]. The latter encompasses
a wide variety of prominent gravity duals, like [14–18], as special solutions and thus
provides a unifying framework for gauge/gravity duality investigations. The work
[10] obtained new non-supersymmetric classes of solutions of this theory, whose
metric is of the form of a dS4 fibration over the fifth direction. These backgrounds
provide a useful playground for studying certain strongly-coupled gauge theories in
de Sitter space. To have an inflationary model, however, one needs a time-dependent

L. Anguelova (B)
Institute for Nuclear Research and Nuclear Energy, BAS, 1784 Sofia, Bulgaria
e-mail: anguelova@inrne.bas.bg

© Springer Nature Singapore Pte Ltd. 2016
V. Dobrev (ed.), Lie Theory and Its Applications in Physics,
Springer Proceedings in Mathematics & Statistics 191,
DOI 10.1007/978-981-10-2636-2_18

285



286 L. Anguelova

Hubble parameter. Therefore, in [12] we investigated time-dependent deformations
around a solution of [10], in order to search for gravity duals of glueball inflation.

It is worth pointing out that the main cosmological observables of an inflationary
model (like the scalar spectral index ns and the tensor-to-scalar ratio r) are entirely
determined by the Hubble parameter and inflaton field as functions of time [19].
Hence, once one has a deformed background in the above set-up, one can immedi-
ately compute the desired quantities. This is the sense, in which the time-dependent
deformations of the previous paragraph give models of cosmological inflation. In
that vein, in [12] we calculated the slow roll parameters for a solution we found there
and thus established that it gives a gravity dual of ultra-slow roll glueball inflation.
The ultra-slow roll regime may play an important role in understanding the observed
low l anomaly in the power spectrum of the CMB. Hence it deserves further study.
We also discuss here perspectives for building gravity duals of standard slow roll
inflationary models.

2 Effective 5d Theory

In this section we summarize necessary material about the 5d consistent truncation
of type IIB supergravity relevant for our considerations. We also recall a particular
solution of this theory, whose time-dependent deformations we will investigate in
the next subsection.

2.1 Action and Field Equations

Let us briefly review the basic characteristics of the five-dimensional consistent trun-
cation of [13]. Using a particular ansatz for the bosonic fields of type IIB supergravity
in terms of certain 5d fields and integrating out five compact dimensions, one reduces
the ten-dimensional IIB action to the following five-dimensional one:

S =
∫

d5x
√−detg

[
−R

4
+ 1

2
Gij(Φ)∂IΦ

i∂IΦ j + V (Φ)

]
. (1)

Here {Φ i} is a set of 5d scalar fields, that arise from the components of the 10d ones
including metric warp factors, V (Φ) is a rather complicated potential, Gij(Φ) is a
diagonal sigma-model metric and, finally, R is the Ricci scalar of the 5d spacetime
metric gIJ . The full expressions for V (Φ) and Gij(Φ) can be found in [13]; for a
more concise summary, see also [10]. The field equations that the action (1) implies
are:
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∇2Φ i + G i
jk gIJ(∂IΦ

j)(∂JΦ
k) − V i = 0 ,

−RIJ + 2Gij (∂IΦ
i)(∂JΦ

j) + 4

3
gIJV = 0 , (2)

where V i = GijVj , Vi = ∂V
∂Φ i and G i

jk are the Christoffel symbols of the sigma-
model metric Gij.

2.2 A Solution with dS4 Slicing

Wewill be interested in time-dependent deformations around a particular solution of
the system (2) found in [10]. So let us first recall its form. In the notation of [10] and
working within the same subtruncation as there (i.e., with zero NS flux), we have six
scalars in the 5d effective theory:

{Φ i(xI)} = {p(xI), x(xI), g(xI),φ(xI), a(xI), b(xI)} . (3)

The work [10] found three families of solutions of (2) with a 5d metric of the form

ds25 = e2A(z)

[

−dt2 + s(t)2
3∑

m=1

(dxm)2

]

+ dz2 , (4)

where s(t) = eHt with H = const. In all of them, three of the scalars Φ i vanish
identically, namely:

g(xI) = 0 , a(xI) = 0 , b(xI) = 0 . (5)

Two of those solutions are numerical and one is analytical. For convenience, we will
study deformations around the latter. Denoting its metric functions and scalar fields
by the subscript 0, we have [10]:

A0(z) = ln(z + C) + 1

2
ln

(
7

3
H2

0

)
,

p0(z) = −1

7
ln(z + C) − 1

14
ln

(
7N2

9

)
,

x0(z) = −6 p0(z) , φ0 = 0 , (6)

where C and N are constants.
Let us mention in passing that the form of (6) is consistent with ALD (asymptoti-

cally linear dilaton) behavior at large z. This is not obvious at first sight due to the use
of a different coordinate system (in string frame) compared to the conventional one
(in Einstein frame), in which the holographic renormalization of ALD backgrounds
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was developed [20]. This issue was discussed in more detail in [10, 11], where it
was also pointed out that the same kind of asymptotics characterizes the walking
solutions of [16] as well.

3 Deforming the dS4 Solution

Now we are ready to turn to the investigation of solutions of the system (2), which
are deformations around the zeroth order background (6). Since our aim is to study
glueball inflation, we would like to find solutions, whose 5d metric is of the form (4)
but with Ḣ �= 0. Recall that the Hubble parameter is defined as

H = ṡ

s
, (7)

where for convenience we have denoted ˙ ≡ ∂
∂t . Now, one of the slow roll conditions

widely used in inflationary model building1 is the following [19]:

− Ḣ
H2

<< 1 . (8)

In view of that, we will look for solutions with time-dependent H by considering
small, in the sense of (8), deformations around an H = const solution.

For that purpose, let us introduce a small parameter γ, satisfying

γ << 1 , (9)

and search for solutions that are expansions in powers of this parameter. To do this,
we make the following ansatz for the nonvanishing 5d fields:

p(t, z) = p0(z) , x(t, z) = x0(z) ,

φ(t, z) = γ φ(1)(t, z) + γ3φ(3)(t, z) + O(γ5) ,

A(t, z) = A0(z) + γ2A(2)(t, z) + O(γ4) ,

H(t, z) = H0 t + γ2H(2)(t, z) + O(γ4) , (10)

where H(t, z) is a warp factor defined via

ds25 = e2A(t,z)

[

−dt2 + e2H(t,z)
3∑

m=1

(dxm)2

]

+ dz2 . (11)

1One should keep in mind, though, that there are more exotic inflationary regimes, in which one or
more of the slow roll conditions can be violated; see [21–23], for instance.
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In other words, we keep the scalars p(xI) and x(xI) the same as in (6), while allowing
small deviations around that zeroth order solution in the scalar φ and the metric
functions A and H.

It is worth commenting a bit more on the form of the deformation ansatz (10). First
of all, in order to obtain solutions with Ḣ �= 0, we need to turn on time dependence
in at least one scalar. It is convenient to take this scalar to be φ since, unlike p and
x, it vanishes at zeroth order and, furthermore, it is a flat direction of the potential;
see [12]. Therefore, φ will play the role of the inflaton in our set-up. Also note that,
although we would like to have t-dependent H only, we have allowed z-dependence
too, for more generality. And, finally, the different powers of γ in the expansion of
φ, compared to the expansions of the warp factors, will be of great significance for
finding an analytical solution, as will become clear below.

3.1 Equations of Motion

Let us now substitute the ansatz (10) in the system (2) and study the result order by
order in γ. Clearly, since we are expanding around a zeroth order solution, there is
no contribution at order γ0.

At order γ, we have the following field equation [12]:

φ̈(1) + 3H0 φ̇(1) = e2A0
(
φ′′

(1) + 4A′
0φ

′
(1)

)
, (12)

where ′ ≡ ∂
∂z . To find a solution, let us make the ansatz

φ(1) = Φ1(t)Φ2(z) (13)

and solve the eigen-problems

Φ̈1 + 3H0Φ̇1 = λ Φ1 and e2A0
(
Φ ′′

2 + 4A′
0Φ

′
2

) = λ Φ2 (14)

with λ being some constant. One easily obtains that [12]:

Φ1(t) = C1 e
k+t + C2 e

k−t , where k± = −3H0

2
±

√
9H2

0 + 4λ

2
(15)

and C1,2 are integration constants, while

Φ2(z) = C3(z + C)α+ + C4(z + C)α− with α± = −3

2
± 3

2

√

1 + 4λ

21H2
0

(16)

and C3,4 being integration constants.
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Note that if λ = 0, then one is free to add an arbitrary constant to the φ(1) solution,
determined by (14). This will be important in the following.

At order γ2, we find a coupled system for the warp factor deformations A(2) and
H(2), namely [12]:

E1 : − H2
0

(
7

3
(z + C)2A′′

(2) + 56

3
(z + C)A′

(2) + 7(z + C)H ′
(2) + 6A(2)

)

+ H0
(
3Ȧ(2) + 6Ḣ(2)

) + 3Ä(2) + 3Ḧ(2) + 1

2
φ̇2

(1) = 0 ,

E2 : H2
0

(
7

3
(z + C)2

[
A′′

(2) + H ′′
(2)

] + 56

3
(z + C)A′

(2) + 49

3
(z + C)H ′

(2)

+ 6A(2)

)
− H0

(
5Ȧ(2) + 6Ḣ(2)

) − Ä(2) − Ḧ(2) = 0 ,

E3 : 4A′′
(2) + 3H ′′

(2) + 2

z + C

(
4A′

(2) + 3H ′
(2)

) + 1

2
φ′ 2

(1) = 0 ,

E4 : 3Ȧ′
(2) + 3Ḣ ′

(2) + 3H0 H
′
(2) + 1

2
φ̇(1)φ

′
(1) = 0 . (17)

To solve this rather involved system, let us take for convenience the φ(1) solution to
be:

φ(1) = Cφ + C̃ekt(z + C)α with Cφ , C̃ = const , (18)

where k is any of k± and α is any of α±. Note that the addition of the arbitrary
constant Cφ in (18) makes no difference for the solutions of (17), since the function
φ(1) enters those equations only through its derivatives. However, the presence of Cφ

will turn out to be useful later. Plus, it will become clear shortly that it is consistent
with (14).

Now, the form of E3 in (17), together with (18), suggests looking for a solution
with the following ansatz:

A(2)(t, z) = e2kt Â(z) and H(2)(t, z) = ĈH + e2ktĤ(z) , (19)

where ĈH = const. Again, we have included an arbitrary constant ĈH , since H(2)

enters the system (17) only via its derivatives. Substituting (19) and (18) into (17),
one can see that the time-dependence factors out. Thus, one is left with a coupled
system of ODEs for the functions Â(z) and Ĥ(z). A detailed investigation in [12]
showed that this system has a solution only for2

α = 0 , (20)

2To prove this, one also needs to use the fact that (15) and (16) imply the following relation between

k and α: k = − 3
2H0 ±

√
84α2+252α+81

6 H0.
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in which case both Â = const and Ĥ = const. Substituting α = 0 in (16), we find
that λ = 0 as well. This in turn implies that we are free to add the constant Cφ in
(18), as commented below (16). Finally, from (15) we now have:

k = −3H0 , (21)

where we have taken the value of k− in order to have time-dependence in the inflaton
field φ.

3.2 Ultra-Slow Roll Inflation

The solutionwe described above gives a dual description of an ultra-slow roll glueball
inflationmodel. To see this, let us compute the inflationary slow-roll parameters. They
are defined in terms of the inflaton field and Hubble parameter as [19]:

ε = − Ḣ
H2

and η = − φ̈

Hφ̇
. (22)

From the results of Sect. 3.1, we have that φ and H are given by:

φ =
(
Cφ + C̃ e−3H0t

)
γ + O(γ3) ,

H = H0 − CH e−6H0t γ2 + O(γ4) , (23)

where CH is some constant; for more details, see [12].3

Substituting (23) in (22),wefind that the slow roll parameters behave as ε = O(γ2)

and η = 3 + O(γ2); see [12] formore detailed expressions. In otherwords, at leading
order we have:

ε << 1 and η = 3 . (24)

These are precisely the values of ε and η for the ultra-slow regime, considered in
[24, 25]. In fact, our result for the inflaton in (23) also agrees completely with the
expression in [25].

It is worth pointing out a similarity between our model and the constant-rate-of-
roll solutions of [23]. For that purpose, let us introduce the following series of slow
roll parameters:

3Note that, since the correctionA(2) to thewarp factorA(t, z) in (11) also depends on t, as can be seen
from (19), one should, in principle, first perform a coordinate transformation t → τ that absorbs
that dependence, before computing the physical Hubble parameter H(τ ) and inflaton field φ(τ ).
However, in the present case, this leads to exactly the same expressions as (23) with t substituted
by τ , with the only difference being the numerical value of the constant CH. So we will not discuss
the details of that transformation here.
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ε1 = − Ḣ
H2

and εn+1 = ε̇n

Hεn
, (25)

where obviously ε1 ≡ ε. One can easily compute that, at large t, our solution gives
[12]:

ε2n+1 → 0 and ε2n → −6 . (26)

This is the same asymptotics as in [23]. It would be interesting to investigate whether
there is a deeper underlying reason for that.

In conclusion, let us make a few comments regarding other inflationary models in
our framework. Although an ultra-slow roll inflationary regime may be desirable to
account for the low l anomaly in the CMB power spectrum, it is rather short-lived. So
it has to be succeeded by regular slow roll, in order to have enough expansion and thus
give a complete inflationary model. To obtain such solutions in our gauge/gravity
duality set-up, onemay need to study deformations around the numerical solutions of
[10], insteadof the analytical one (6). It could also be that duals of regular slow roll can
be found by modifying the initial ansatz for the deformations around the analytical
solution. Finally, it would be interesting to investigate what kind of models can be
obtained by going to the next order in γ in the expansions (10), while taking φ(1),
A(2) and H(2) to vanish. This seems to open much wider possibilities for inflationary
model building, as the equations of motion for A(4) and H(4) would be independent
of φ(3). Thus, many of the restrictions we encountered here (and as a result of which
we ended up with ultra-slow roll) would not occur.

Acknowledgements I have received partial support from the European COST Action MP-1210
and the Bulgarian NSF grant DFNI T02/6.
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Degenerate Metrics and Their Applications
to Spacetime

Ovidiu Cristinel Stoica

Abstract The Lie groups preserving degenerate quadratic forms appear in various
contexts related to spacetime. The homogeneous Galilei group is the intersection of
two such groups. The structure group of sub-Riemannian geometry and of singular
semi-Riemannian geometry, as well as of some submanifolds of semi-Riemannian
manifolds, is of this kind. Such groups are shown to replace the Lorentz group at a
very large class of singularities in general relativity. Also, these groups are shown to
be fundamental in Kaluza-Klein theory and in gauge theory, where they provide an
explanation why we may not be able to probe extra-dimensional lengths.

1 Introduction

In the following, we will discuss somemodern applications of the degenerate metrics
in the physics of spacetime. While normally spacetime is considered endowed with
a non-degenerate metric, we will see some situations where the spacetime metric is
degenerate and what are the implications. These situations include Galilei spacetime,
spacetime singularities, and Kaluza theories. But first, let us remind some definitions
and fix some notations.

Let (V, g) be a vector space endowed with a symmetric bilinear form g, which in
the following will be named inner product or metric. The signature of g is (r, s, t)
if g can be diagonalized to diag(−It, Is,Or). We denote by O(t, s, r) the group of
transformations of the vector spaceRnwhich preserve this bilinear form.Themetric g
is called degenerate if r > 0. For example, the orthogonal group O(n) = O(0, n, 0)
preserves the non-degenerate metric diag(1, . . . , 1), the Lorentz group O(1, 3) =
O(1, 3, 0) preserves the Lorentz metric diag(−1, 1, 1, 1), which is non-degenerate,
and the general linear group GL(n) = O(0, 0, n) preserves the degenerate metric
g = 0. In this article, we are interested in O(t, s, r) with r > 0.
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We define the morphism � : V → V ∗ by u �→ u• := �(u) = u� = g(u, _). The
radical V ◦ := ker � = V⊥ is the set of isotropic vectors in V . The radical annihilator
V • := im � ≤ V ∗ is the image of �. It has the property that for any η ∈ V •, η|V ◦ =
0. The inner product g induces on V • an inner product defined by g•(u

�
1, u

�
1) :=

g(u1, u2), which is the inverse of g iff det g 	= 0. The quotient V • := V/V ◦ consists
in the equivalence classes of the form u + V ◦. On V •, g induces an inner product
g•(u1 + V ◦, u2 + V ◦) := g(u1, u2).

These definitions can be applied to the tangent space of a manifold. Until recently,
the state of the art of spacetimes with degenerate metric was the work of D. Kupeli
[1, 2], but there were two limitations. The first was that the theory worked only
for metrics with constant signature, while in general relativity the signature has
to change, if singularities are involved. The second limitation is that the method
is not invariant,depending on the choice of a distribution transversal to ker g. But
the approach introduced in [3] applies to both constant and changing signature, is
invariant, and generalize both Riemann’s and Kupeli’s results.

For example, degenerate metrics have applications to Galilei’s spacetime. The
laws of Newtonian mechanics are invariant to Galilei transformations of the space G
with coordinates (t, x, y, z). Galilei’s transformations are those linear transformations
which preserve a degeneratemetric on the underlying vector space (also denoted here
by G), and one on its dual space G∗ [4–6]. The degenerate metric gspace ij on G∗ has
the rank equal to 3, and its radical is the three-dimensional space S < G. It induces
a three-dimensional (sub-Riemannian) metric gspace ij on S, which is the Euclidean
metric of space. The other degenerate metric is gtime ij := t ⊗ t, where t is the one-
form t defining the time, and which annihilates S.

In the following,wewill see some applications of degeneratemetrics to spacetime,
in the higher-dimensional theories like Kaluza’s, and in the problem of singularities
in general relativity.

2 Gauge Theory and Kaluza Theory

Let us consider a fiber bundle (E,M,π,F), with total space E, fiber F, and projection
π : E → M, where the base space is a semi-Riemannianmanifold with metric g. The
pull-back of the metric g is a degenerate metric g̃ = π∗g on the total space E. The
vertical bundle V := ker(dπ) is a sub-bundle of TE. The vertical tangent space Vp

at a point p ∈ E is the radical of g̃p, ker(dπ)p = ker g̃p.
If there is a free group action of a groupG onE, then (E,M,π,F,G) is a principal

G-bundle, and the dimension of the fiber F is dim F = d = dimG. In gauge theory,
the gauge connection A = Aμ

a defines a horizontal distribution H < TE on the prin-
cipal bundle. Also, on the vertical bundle is defined a metric h̃V . Both of them are
gauge invariant, and together they are equivalent to a gauge invariant metric h̃ on TE
which is degenerate onH, given by h̃(X,Y) = h̃V (πV X,πV Y), where πV : TE → V
is the projection on V along H, and H = ker h̃.
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The metric g̃ induces a non-degenerate metric g̃H on the horizontal distributionH.
Because g̃|V = 0,H, V and g̃H allows one to recover g̃ by g̃(X,Y) = g̃H(πHX,πHY),
where πH : TE → H is the projection on H along V .

The Kaluza metric ĝ0 on E is obtained from the two metrics g̃H on H and h̃V on
V by ĝ0(X,Y) = g̃(X,Y) + h̃(X,Y). The components of ĝ0 in a frame composed of
a horizontal and a vertical frame are denoted by

ĝ0 =
(

gab 0
0 hαβ

)
. (1)

Locally, one can identify E to the product E = M × F. The metric ĝ0 in a frame
made of a frame of M and one of F is obtained by a transformation preserving the
fibers and projecting the horizontal space Hp onto the space TpM,

S =
(
I4 A
0 Id

)
. (2)

Then, the Kaluza metric (1) takes in an M × F-frame the form

ĝij = Sĝ0S
T =

(
gab + hμνAμ

aA
ν
b hμβAμ

a
hανAν

b hαβ

)
, (3)

in terms of the Lorentzian metric gab on M and the metric hμν on the fiber. This is
the Kaluza metric, generalized to an arbitrary gauge group (see eg Kerner [7]).

In particular, if G = U(1) and h = 1, one obtains the original Kaluza theory. The
Lagrangian density in the Kaluza theory is the scalar curvature corresponding to ĝ,
leading to the Einstein-Maxwell equations, which include the source-free Maxwell
equations, and the Einstein equation on M with the electromagnetic stress-energy
tensor Tab = 1

μ0

(
FasFb

s − 1
4FstFstgab

)
.

Because the metric g̃ vanishes on the fiber, any experiments aiming to detect extra
dimensions will fail, and the only evidence of extra dimensions are the gauge fields
and gauge symmetry.

3 Degenerate Metrics in Singular General Relativity

The two big problems of general relativity are the occurrence of singularities [8],
and the fact that quantum gravity is perturbatively non-renormalizable. There are two
types of singularities: malign singularities, which have components gab → ∞, and
benign singularities, whose components gab are smooth and finite, but det g → 0,
so the reciprocal metric gab is undefined or singular. Both these types of singulari-
ties cause problems which prevent us from using the standard geometric tools. The

Christoffel symbolsΓ c
ab = 1

2
gcs(∂agbs + ∂bgsa − ∂sgab), needed to define covariant
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derivatives, blow up even in the benign case, because gab is singular. This makes writ-
ing partial differential equations impossible. Because Christoffel’s symbols are used
in writing the Riemann curvature Rd

abc = Γ d
ac,b − Γ d

ab,c + Γ d
bsΓ

s
ac − Γ d

csΓ
s
ab,

the Ricci curvature Rab = Rs
asb, and the scalar curvature R = gpqRpq, these are also

singular, making Einstein’s tensor

Gab = Rab − 1

2
Rgab (4)

singular too. Even if gab are all finite, these equations contain gab, and gab → ∞
when det g → 0.

Fortunately, we can define other geometric objects, which allow us to do what
covariant derivative and curvature do outside the singularities, but can also work at
singularities. The constructions associated to a metric on a vector space, introduced
in Sect. 1, also applies to the tangent bundle TM of a manifold M. In the following,
we will work on a manifold M endowed with a metric g which can be degenerate.

The Koszul object is defined as K : X (M)3 → R, K(X,Y ,Z) := 1

2
{X〈Y ,Z〉 +

Y〈Z,X〉 − Z〈X,Y〉 − 〈X, [Y ,Z]〉 + 〈Y , [Z,X]〉 + 〈Z, [X,Y ]〉}. In local coordi-
nates, Kabc = K(∂a, ∂b, ∂c) = Γabc. When the metric is non-degenerate, the Levi-
Civita connection is obtained by ∇XY = K(X,Y , _)�. For the degenerate case, when
the contraction with gab is not defined, we can instead successfully work in many
cases with the lower covariant derivative of a vector field Y in the direction of a
vector field X,

(∇�

XY)(Z) := K(X,Y ,Z). (5)

The covariant derivative of differential forms is defined by

(∇Xω) (Y) := X (ω(Y)) − g•(∇�

XY ,ω), (6)

∇X(ω1 ⊗ . . . ⊗ ωs) := ∇X(ω1) ⊗ . . . ⊗ ωs + . . . + ω1 ⊗ . . . ⊗ ∇X(ωs), (7)

where the 1-forms ω,ω1, . . . ,ωs ∈ Γ (T •M). For non-degenerate metrics it becomes
the usual covariant derivative. We denote the space of these sections by A•(M).
Similarly, we define the covariant derivative of a tensor T ∈ ⊗k T •M, by (∇XT)

(Y1, . . . ,Yk) = X (T(Y1, . . . ,Yk)) − ∑k
i=1 K(X,Yi, •) T(Y1, , . . . , •, . . . ,Yk),

where • stands for contraction with g•.
A semi-regular semi-Riemannian manifold is defined by the condition that vector

fields admit double covariant derivative, ∇X∇�

YZ ∈ A•(M). This is equivalent to
K(X,Y , •)K(Z,T , •) ∈ F(M). We can define the Riemann curvature by

R(X,Y ,Z,T) = (∇X∇�

YZ)(T) − (∇Y∇�

XZ)(T) − (∇�

[X,Y ]Z)(T). (8)

The Riemann curvature defined above is a smooth radical annihilator tensor field and
has the same symmetry properties as the usual Riemann curvature [3].
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The Ricci decomposition

Rabcd = Sabcd + Eabcd + Cabcd (9)

where Sabcd = 1
n(n−1)R(g ◦ g)abcd , Eabcd = 1

n−2 (S ◦ g)abcd , Sab := Rab − 1
nRgab, and

(h ◦ k)abcd := hackbd − hadkbc + hbdkac − hbckad , holds as well for degenerate met-
rics [9]. If the Ricci decomposition is such that all of the terms are smooth, then the
metric is called quasi-regular. Examples include isotropic singularities (obtained by
conformally scaling a non-degenerate metric), degenerate warped products B ×f F
with dim B = 1 and dim F = 3 (in particular, FLRW singularities), Schwarzschild
singularities [9]. The Weyl curvature tensor Cabcd = Rabcd − Sabcd − Eabcd satisfies
Cabcd → 0 as approaching a quasi-regular singularity [10].

In dimension n = 4, if the metric is quasi-regular, we can cast Einstein’s equation
in the form

(G ◦ g)abcd + �(g ◦ g)abcd = κ(T ◦ g)abcd . (10)

This is equivalent to Einstein’s equation if the metric is non-degenerate, but in addi-
tion it also holds smoothly at quasi-regular singularities [9].

We apply now the new methods to the Friedmann-Lemaître-Robertson-Walker
spacetime, which is the warped product I ×a � between a three dimensional
Riemannian manifold (�, g�) (representing the space) and a one-dimensional Rie-
mannian manifold (I,−dt2),

ds2 = −dt2 + a2(t)d�2. (11)

In general the warping function a ∈ F(I) is taken a(t) > 0 for every t ∈ I . Here we
allow a(t) ≥ 0, including possible singularities, which turn out to be quasi-regular
[11, 12]. By taking the time component and the trace of Einstein’s equation, we get
theFriedmann equation, the acceleration equation, and the fluid equation expressing
the conservation of mass-energy,

ρ = 3

κ

ȧ2 + k

a2
, ρ + 3p = − 6

κ

ä

a
, ρ̇ = −3

ȧ

a
(ρ + p) . (12)

We see that ρ, and in general also p, become singular for a = 0. This is because
they are defined in an orthonormal frame, but when a = 0, the metric (11) is degen-
erate, and there is no orthonormal frame.

To obtain the total mass at t, one integrates the 3-form ρdvol3 , where dvol3 :=√
g�tdx ∧ dy ∧ dz = a3

√
g�dx ∧ dy ∧ dz = i∂tdvol, where dvol is the volume form,

or volume element, dvol := √−gdt ∧ dx ∧ dy ∧ dz = a3
√

g�dt ∧ dx ∧ dy ∧ dz.
Hence, one should rewrite the equations using 4-forms or scalar densities ρ̃ =

ρ
√−g = ρa3

√
g� and p̃ = p

√−g = pa3
√

g� , which luckily can be defined in any
coordinates/frames. The Friedmann equation and the acceleration equation become
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ρ̃ = 3

κ
a

(
ȧ2 + k

) √
g�, ρ̃ + 3̃p = − 6

κ
a2ä

√
g�. (13)

Hence, ρ̃ and p̃ are smooth, as it is the densitized stress-energy tensor

Tab
√−g = (ρ̃ + p̃) uaub + p̃gab. (14)

The equations are smooth in any frame. Consequently, the Einstein tensor density
Gab

√−g is smooth too, so we can use a densitized version of Einstein’s equation,
which has all involved quantities finite at the singularity.

The case of black-hole singularities is a bit more difficult, because the singularity
r = 0 is malign. The Schwarzschild metric is in Schwarzschild coordinates

ds2 = −
(
1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1

dr2 + r2dσ2, (15)

where dσ2 = dθ2 + sin2 θdφ2. The singularities r = 0 and r = 2m aremalign, since
there gab has infinite components. The singularity r = 2m can be removed by the
Eddington–Finkelstein coordinates [13, 14]. But the singularity r = 0 cannot be
removed like this. However it can be made semi-regular by the coordinate transfor-

mation

{
r = τ 2

t = ξτ 4 [15]. The four-metric becomes:

ds2 = − 4τ 4

2m − τ 2
dτ 2 + (2m − τ 2)τ 4 (4ξdτ + τdξ)2 + τ 4dσ2, (16)

which is smooth and analytic and quasi-regular at r = 0 [9, 15].
The new form of the Schwarzschild metric extends analytically at and beyond

r = 0. It can be used to construct globally hyperbolic spacetimes with singularities,
including evaporating black holes which preserve the spacetime structure [16].

For the Reissner–Nordström metric

ds2 = −
(
1 − 2m

r
+ q2

r2

)
dt2 +

(
1 − 2m

r
+ q2

r2

)−1

dr2 + r2dσ2, (17)

we choose the coordinates ρ and τ , so that

{
t = τρT

r = ρS
,

{
S ≥ 1
T ≥ S + 1

.

The metric has, in the new coordinates, the following form

ds2 = −�ρ2T−2S−2 (ρdτ + Tτdρ)2 + S2�−1ρ4S−2dρ2 + ρ2Sdσ2, (18)

where � = ρ2S − 2mρS + q2. In the new coordinates (τ , ρ,φ, θ) the metric is ana-
lytic at r = 0. The electromagnetic potential is A = −qρT−S−1 (ρdτ + Tτdρ), and
the electromagnetic field is F = q(2T − S)ρT−S−1dτ ∧ dρ, and they are analytic
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everywhere, including at the singularity ρ = 0 [17]. Similar results apply to the
Kerr–Newman black holes [18].

Wehave seen thus that the use of degeneratemetrics allowedus to remove infinities
in important examples of spacetime singularities. Singularities are therefore not as
bad as were considered. In addition, it turned out that they may be useful in quantum
gravity. In various approaches to quantum gravity, the evidence accumulated so far
suggests, or even requires, that in the UV limit there is a dimensional reduction to two
dimensions [19].What is under debate is themeaning, the nature, the explicit cause of
this spontaneous dimensional reduction. The singularities are naturally accompanied
by some of the dimensional reduction effects which were postulated ad-hoc in vari-
ous approaches to quantum gravity. Consequently, if in the perturbative expansions
one accounts for the fact that the point-particles in general relativity are spacetime
singularities, the dimensional reduction effects appear naturally [20].
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The Heun Functions and Their Applications
in Astrophysics

Denitsa Staicova and Plamen Fiziev

Abstract The Heun functions are often called the hypergemeotry successors of the
21st century, because of the wide number of their applications. In this proceeding we
discuss their application to the problem of perturbations of rotating and non-rotating
black holes and highlight some recent results on their late-time ring-down obtained
using those functions.

1 The Heun Functions

The Heun functions are gaining popularity due to the vast number of their appli-
cations. The Heun project, a site dedicated to gathering scientists working in this
area, has already accumulated more than 500 articles on the theory and the appli-
cations of those functions. Among the topics are the Schrödinger equation with
anharmoic potential, the Teukolsky linear perturbation theory for the Schwarzschild
and Kerr metrics, transversable wormholes, quantum Rabi models, confinement of
graphene electrons in different potentials, quantum critical systems, crystallinemate-
rials, three-dimensional atmospheric and ocean waves, single polymer dynamics,
economics, genetics e.t.c (see the bibliography section in [10]).

The general Heun function is defined as the local solution of the following second
order Fuchsian ordinary differential equation (ODE) [5, 6]:
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d2

dz2
H(z) +

[
γ

z
+ δ

z − 1
+ ε

z − a

]
dH(z)

dz
+ αβz − q

z(z − 1)(z − a)
H(z) = 0 (1)

normalized to 1 at z = 0. Here ε = α + β − γ − δ + 1. This equation posses 4 reg-
ular singularities: z = 0, 1, a,∞ and it generalizes the hypergeometric function, the
Lamé function, the Mathieu function, the spheroidal wave functions etc. Its group of
symmetries is of order 192.

For comparison, the hypregeometric differential equation has 3 regular singulari-
ties z(z − 1) d

2w(z)
dz2 + [c − (a + b + 1)z] dw(z)

dz − abw(z) = 0 with group of symme-
tries of order 24.

Recalling the definition of irregular singularity:

Definition 1 For an ODE of the form: P(x)y′′(x) + Q(x)y′(x) + R(x)y(x) = 0,
the point x0 is singular if Q(x)/P(x) or R(x)/P(x) diverge at x = x0. If the limits
limx→x0

Q(x)
P(x) (x − x0) and limx→x0

R(x)
P(x) (x − x0)2 exist and are finite then the point

x0 is regular singularity, otherwise, it is irregular or essential singularity. The point
x0 = ∞ is treated the same way under the change x = 1/z.

The general Heun function has 4 regular singularities, from which under
the process called confluence of singularities, one obtains 4 different types of
confluent Heun functions with fewer singularities but of higher s-rank (See Fig. 1 for
illustration).

General Heun function (GHE)
Singularities: regular={0, 1, a,∞}

d2

dz2
H(z)+

γ

z
+

δ

z − 1
+

z − a

d

dz
H(z)+

αβz − q

z(z − 1)(z − a)
H(z) = 0

Confluent Heun function (CHE)
Singularities: regular={0, 1}, irregular={∞1}
d2

dz2
H(z)+

γ

z
+

δ

z − 1
+

d

dz
H(z)+

q − αβ

z − 1
−

q

z
H(z) = 0

Biconfluent Heun function (BHE)
Singularities: regular={0}, irregular={∞2}

d2

dz2
H(z)+ −2z−β+

1 + α

z

d

dz
H(z)+ γ−α−2−

(1+α)β+δ

2z
H(z)=0

Doubleconfluent Heun function (DHE)
Singularities: regular={}, irregular={−11 , 11}

d2

dz2
H(z)−

α + 2z + αz2 − 2z3

(z + 1)2(z − 1)2

d

dz
H(z)+

δ + (2α + γ)z + βz2

(z − 1)3(z + 1)3
H(z)=0

Triconfluent Heun function (THE)
Singularities: regular={}, irregular={∞3}

d2

dz2
H(z)− (γ + 3z

2)
d

dz
H(z)+(α + βz − 3z)H(z)=0

Fig. 1 A scheme of the different confluent ODEs obtainable from the ODE of the general Heun
function (in Maple’s notations). The subscript next to the irregular singularities is their rank
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For the confluent Heun function which we will use below, this process means the
redefinition of β = βa, ε = εa, q = qa and taking the limit a → ∞. This gives us
the following ODE:

d2

dz2
H(z) −

(
ε − δ

z − 1
− γ

z

)
d

dz
H(z) −

(
α β − qz

z − 1
+ q

z

)
H(z) = 0 (2)

In Maple notations, the default form of the solution of this type of ODE
is denoted as HeunC(α,β, γ, δ, η, z) which we adopt. To obtain from Maple’s
default form Eq.1, one needs to set α = −(ε20 − 4q0)1/2,β = γ0 − 1, γ = −1 + δ0,
δ=−α0β0 + (1/2)δ0ε0 + (1/2)ε0γ0, η = −(1/2)δ0γ0 − (1/2)ε0γ0 + q0 + 1/2 and
vise versa (the “0” subscript denotes the parameters in Eq.2.

2 Applications of the Heun Functions in Astrophysics

2.1 Teukolsky Angular Equation and Teukolsky
Radial Equation

In the frame of the Teukolsky linear perturbations theory, the late-time ringing of a
black hole due to a perturbation of different spin is described by oneMaster equation.
Under the substitution �(t, r, θ,φ) = ei(ωt+mφ)S(θ)R(r) (where m = 0,±1,±2)
this equation splits in two second order ODEs of the confluent Heun type – The
Teukolsky Angular Equation (TAE):

d

du

( (
1−u2

) d

du
Slm(u)

)
+

(
(aωu)2 + 2aωsu+E−s2 − (m+su)2

1−u2

)
Slm(u) = 0,

(3)
and the Teukolsky Radial Equation (TRE):

d2Rl,m(r)

dr2
+(1 + s)

(
1

r − r+
+ 1

r − r−

)
dRl,m(r)

dr
+ +

(
K 2

(r − r+) (r − r−)
−

is

(
1

r − r+
+ 1

r − r−

)
K − λ − 4 isωr

)
Rl,m(r)

(r − r+)(r − r−)
= 0 (4)

where Δ = r2 − 2Mr + a2 = (r − r−)(r − r+), K = −ω(r2 + a2) − ma,
λ = E − s(s + 1) + a2ω2 + 2amω and u = cos(θ). Here r± = M ± √

M2 − a2

are the inner and outer horizon of the rotating black hole. Being interested in elec-
tromagnetic perturbations we fix the spin to s = −1.

In this system, the unknownquantities are the complex frequenciesωl,m,n giving us
the spectrum and the constant of separation El,m,n which for a = 0 is E = l(l + 1)
(for s = −1). The only physical parameters of the system, in agreement with the



306 D. Staicova and P. Fiziev

No-Hair Theorem, are the rotational parameter a and the mass of the black hole M ,
which we here fix to M = 1/2.

The singularities of the two equations are as follows: for the TRE r = r± – regular
and r = ∞ – irregular. For the TAE, the regular singularities are: θ = ±π and the
irregular is again θ = ∞.

2.2 Boundary Conditions

In order to find the spectrum, we need to solve the central two-point connection
problem, imposing appropriate boundary conditions on two of the singular points.
Details on the boundary conditions, as well as on the whole approach and the explicit
values of the parameters, can be found in [1–4, 7–9]. In brief, we require:

1. On the TAE:

a. Quasi-normal modes (QNMs): we require angular regularity. This translate
into the following determinant

W [S1, S2] = HeunC′(α1,β1, γ1, δ1, η1, (cos (π/6))2)

HeunC(α1,β1, γ1, δ1, η1, (cos (π/6))2)
+

HeunC′(α2,β2, γ2, δ2, η2, (sin (π/6))2)

HeunC(α2,β2, γ2, δ2, η2, (sin (π/6))2)
+ p = 0 (5)

where details on the parameters can be seen in [1, 4, 7, 8].
b. Jet modes: A qualitatively new boundary condition has been used in [8] to

obtain the so-called primary jet modes. The condition was that of angular
singularity which translates into polynomial condition for the solutions of
the TAE, i.e.:

δ

α
+ β + γ

2
+ N + 1 = 0

ΔN+1(μ) = 0

where ΔN+1(μ) is tridiagonal determinant [3].

2. On the TRE:

a. Black hole boundary conditions: For any m, the solution R2 is valid
for frequencies for which �(ω) /∈ (− ma

2Mr+ , 0) and also that: sin(arg(ω)+
arg(r))< 0.

b. Quasi-bound boundary conditions: For any m, the solution R1 is valid
for frequencies for which �(ω) /∈ (− ma

2Mr+ , 0) and also that: sin(arg(ω)+
arg(r))> 0.



The Heun Functions … 307

Fig. 2 Examples of the different spectra obtained from the spectral system. a Complex plot of the
first 7 modes in the QNMs (crosses) and primary jet modes (diamonds) b QNMs (point-line) and
the non-physical spurious modes (solid lines) for a = [0, M]

2.3 Numerical Results

The so described boundary conditions lead to a two-dimensional spectral system
on the unknowns ω and E . Because of the complexity of the confluent Heun func-
tions, we use an algorithm developed by the team to find the roots of the system.
The numerical results give different spectra of discrete complex frequencies some
of which can be seen on Fig. 2. As part of our study, we examined how those spectra
change with introduction of rotation (a �= 0), up to the limit a→M , and we tested
the numerical stability of the so-obtained frequencies, in order to ensure they rep-
resent physical quantities and not a numerical artifact (an example can be seen on
Fig. 2b).

The physically interesting results are the qualitatively different spectra
(Fig. 2a), depending on the boundary conditions imposed on the system, which can
be used as an independent tool to discover the nature of the physical object emitting
electromagnetic or gravitational waves.

3 Conclusion

In this proceeding we discussed the application of the Heun functions to the problem
of quasinormal modes of rotating and non-rotating black holes. We presented some
of our latest numerical results, key to which is the development of the theory of the
Heun functions and their numerical implementation.
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Part III
Integrable Systems



Boundary Effects on the Supersymmetric
Sine-Gordon Model Through Light-Cone
Lattice Regularization

Chihiro Matsui

Abstract In this report, we discuss how the boundary condition of the spin-1 XXZ
chain affects its low-energy effective field theory. The low-energy effective field
theory of the spin-1 XXZ model is known as the supersymmetric (SUSY) sine-
Gordon model. As a SUSY model, the theory consists of two subspaces called the
Neveu–Schwarz (NS) sector and the Ramond (R) sector. In the Bethe-ansatz contest,
the spin chain and its effective field theory are connected via the light-cone lattice
regularization in the sense that these two models share the same transfer matrices.
Conversely, the effective field theory is obtained in the scaling limit of the spin chain.
Using the nonlinear integral equations (NLIEs) for the eigenvalues of the transfer
matrices, we derived the scattering matrices of the SUSY sine-Gordon model from
the large volume limit analysis of the spin-1 XXZ chain with boundary magnetic
fields. At the same time, we derived the conformal dimensions of the SUSY sine-
Gordon model in the small volume limit. From these quantities, we found that the
different sector of the SUSY sine-Gordon model is realized from the spin-1 XXZ
chain depending on the values of boundary magnetic fields.

1 Introduction

Since any real material is a finite-size system, it is important to know boundary
effects on physical quantities. To study finite-size systems is important also because
they show interesting features such as edge states and boundary critical exponents.
Nevertheless, existence of boundaries often destroys good symmetry obtained for
infinite systems. This makes it difficult to analyze systems with boundaries.

For the reasons described above, it would be nice to find good symmetries which
hold for finite-size systems. One of such examples is the integrable boundary system,
whose exact solvability is ensured by the Yang–Baxter equation and the reflection
relation [1, 2]. Due to the Yang–Baxter equation and the reflection relation, many-
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body scatterings are decomposed into a sequence of two-body scatterings which
allows us to find exact scattering and reflection matrices.

An example which possesses these symmetries is the XXZ spin chain associated
with Uq(sl2). The R-matrix is obtained as a solution of the Yang–Baxter equation
of the Uq(sl2)-type, while the K -matrices as the diagonal solutions of the reflection
relation describe the boundary reflections under boundary magnetic fields. Another
example is the sine-Gordon (SG) typemodelwithDirichlet boundary conditions. The
model is obtained through bosonization of the spin chain with boundary magnetic
fields. The model serves as the low-energy effective field theory of the spin chain.
These two models share the same R-matrix and the K -matrices associated with the
Uq(sl2) [3, 4].

Different methods have been developed for spin chains and quantum field the-
ories, since the former are discrete systems, while the latter are continuum mod-
els. The transfer matrix method is often used to solve spin chains by regarding a
two-dimensional lattice with time sequence of the transfer matrix. The Bethe-ansatz
method is oneof themost successfulmethods to diagonalize a transfermatrix [5]. This
method is applied to a system with non-trivial boundaries, as long as the reflection
relation holds for the system. For instance, the XXZ model with boundary magnetic
fields was solved by the coordinate Bethe-ansatz method [6] and then the method
was algebraically reformulated for the diagonal boundary case by introducing the
double-row transfer matrix [2].

On the other hand, exact analysis of a continuum theory has been achieved through
the bootstrap approach [7]. This method allows us to compute a scattering matrix
between any asymptotic states including bound states subsequently from a scattering
between asymptotic soliton states. The S-matrix between asymptotic soliton states
satisfies theYang–Baxter equation. The boundary reflectionmatrix for the asymptotic
soliton state is obtained as the solution of the reflection relation. Analogous to the
bulk case, the boundary bootstrap principle was developed which subsequently gives
reflection matrices for the asymptotic boundary bound states [8].

If one knows the complete correspondence between a spin chain and a quan-
tum field theory, the methods independently developed for discrete and continuum
systems can be applied to each other. Therefore, our aim is to derive exact corre-
spondence between a spin chain and a quantum field theory.

In this report, we consider to discretize a quantumfield theory, instead of taking the
continuum limit of a spin chain. The notion to discretize an integrable quantum field
theory was used in the context of the quantum inverse scattering method first in [9].
Among various discretization, we employ the light-cone lattice regularization [10–
12]. The light-cone lattice regularization is achieved by setting discrete trajectories of
particles. A discretized light-cone then looks like a two-dimensional lattice system.
A right-mover runs over a line from left-bottom to right-top, while a left-mover runs
over a line from right-bottom to left-top. A scattering occurs only at a vertex. The
amplitudes depend on the states of four legs around a vertex, i.e. the presence or
absence of a particle. Thus, the scattering amplitudes of the quantum field theory are
regarded as the Boltzmann weights of the two-dimensional lattice, i.e. the R-matrix
of the spin chain, through the light-cone lattice regularization.
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Therefore, through the light-cone lattice regularization, characteristic quantities
in quantum field theories, such as S-matrices and conformal dimensions, are derived
through the diagonalization of the transfer matrices defined on the light-cone lattice.
The diagonalization of the transfer matrices is achieved by two methods. The first
one is based on the physical Bethe-ansatz equations, the derivation of which requires
the string hypothesis [13–17]. The second is to use the nonlinear integral equations
(NLIEs) derived from the analyticity structure of the eigenvalue functions of the
transfermatrices [18–21]. In the framework of thismethod, there is no need to assume
the string solutions to the Bethe-ansatz equations. Since Bethe strings deviate at the
order of the inverse system size, we use the latter method throughout this report in
order to deal with the finite-size system.

Correspondence between the spin chain and the quantum field theory for the
spin- 12 case has been closely studied for both the periodic boundary case and the
open boundary case with boundary magnetic fields [22–24]. What was found for
the periodic spin chain is that the conformal dimension of the sine-Gordon (SG)
model admits only an even winding number through the light-cone lattice approach.
This is due to the technical problem of the light-cone lattice regularization, which
requires the spin chain of even length. Later in [24], it has been suggested that an
odd winding number is obtained from the spin-1/2 XXZ chain consisting of odd
length, although it has not been found yet how to construct the transfer matrix for
the odd-length chain on the light-cone lattice. On the other hand, it was found that
the spin chain with boundary magnetic fields results in the SG model with Dirichlet
boundaries [22, 23]. In this case, the allowed winding number relies on the values
of boundary parameters.

Our interest is to find more variation of the exact correspondence between spin
chains and quantum field theories. Here we focus on the boundary effects on the
supersymmetric sine-Gordon (SSG) model [25]. The SSG model [26] is obtained as
the low-energy effective field theory of the spin-1 Zamolodchikov–Fateev (ZF) spin
chain [27–29]. Although the SSG model has been discussed through the light-cone
approach for both the periodic case [30–32] and the Dirichlet boundary case [28],
only the NS sector was obtained, since the authors of [28] limited the range of bound-
ary parameters. Performing analytic continuation, we obtained distinct three regimes
of boundary parameters each of which is characterized by a different NLIE. From
each set of NLIEs, we derived the scattering matrix and the conformal dimension.
We found the Ramond sector in one of three parameter regimes [33].

The plan of this report is as follows. Throughout this report, we analyze the SSG
model withDirichlet boundaries.We focus on the repulsive regimewhere no breather
exists. In Sect. 2, we introduce the SSG model and review known results from both
viewpoints of the perturbation of the conformal field theory (CFT) and the integrable
quantum field theory. The light-cone lattice regularization is also explained in this
section in connectionwith the spin chain. In Sect. 3, we derive theNLIEs of the spin-1
ZF chain. We show the three distinct regimes of boundary parameters, each of which
is characterized by a different NLIE. In the next section, scattering and reflection
amplitudes are discussed by taking the infrared (IR) limit. We show that the different
NLIEs for three boundary regimes are connected via the boundary bootstrap method.
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Then in Sect. 5, the ultraviolet (UV) limit is considered. Conformal dimensions are
computed for three distinct regimes and then we show one of them belongs to the R
sector. The last section is devoted to concluding remarks and future works.

2 SSG Model with Dirichlet Boundary Conditions

The SSGmodel is an integrable (1 + 1)-dimensional quantumfield theory consisting
of a real scalar field Φ and a Majorana fermion Ψ . On a finite system size L , the
action of the SSG model is given by

ASSG =
∫ ∞

−∞
dt

∫ L

0
dx LSSG(x; t),

LSSG = 1

2
∂μΦ∂μΦ + i

2
Ψ̄ γμ∂μΨ − m0

2
cos(βΦ)Ψ̄ Ψ + m2

0

2β2
cos2(βΦ),

(1)

where

Ψ =
(

ψ

ψ̄

)
, γ0 =

(
0 i
−i 0

)
, γ1 =

(
0 i
i 0

)
. (2)

Amass parameterm0 determined in such away that realizes a proper scaling limit [34]
is related to the physical soliton mass via the relation found in [35].

The theory behaves differently depending on a value of the coupling constant β.
In the attractive regime (0 < β2 < 4π

3 ), solitons form bound states called breathers,
while the repulsive regime ( 4π3 < β2 < 4π) does not admit breathers. Throughout
this report, we concentrate on the repulsive regime.

The Dirichlet boundary conditions are given by fixing the value of a scalar field
at the boundaries:

Φ(0; t) = Φ−, Φ(L; t) = Φ+. (3)

2.1 SSG Model as a Perturbed CFT

From a viewpoint of the renormalization group theory, the SSG model is a perturba-
tion from the N = 1 superconformal field theory [30]. The N = 1 superconformal
field theory consists of free bosons and free fermions compactified on a cylinder
with radius R = 4

√
π

β
. The third term in the Lagrangian (1) serves as an irrelevant

perturbation in the UV limit (m0L → 0). In an arbitrary compactification radius, the
following two boundary conditions are allowed for a fermion:
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Ψ (0; t) = Ψ (L; t), Ψ̄ (0; t) = Ψ̄ (L; t), (4)

Ψ (0; t) = −Ψ (L; t), Ψ̄ (0; t) = −Ψ̄ (L; t) (5)

where the first condition is called the NS boundary condition, while the second is
called the R boundary condition.

The highest weight vectors of the current algebra |m, n〉 are generated from the
vacuum |0, 0〉 by using the vertex operator:

|m, n〉 = V(m,n)(z, z̄)|0, 0〉, (6)

V(m,n) =: ei(mR+ n
R )φ(z)+i(mR− n

R )φ̄(z̄) : Ψ̄ Ψ. (7)

Here we used the normal order : ∗ :. φ and φ̄ are the holomorphic and anti-
holomorphic part of a normalized boson defined by

Φ = 1

4
√

π
(φ(z) + φ̄(z̄)). (8)

Using the vertex operator (7), one finds that the perturbation term in (1) is the primary
operator proportional to V(1,0) + V(−1,0).

The winding number m represents the number of windings of a boson which is
compactified on a cylinder with radius R (Fig. 1). The momentum number n in (7)
must be zero in the presence of boundaries since there is no momentum flux at the
boundary.

The energy is given by

E(L) = − π

24L
(c − 24Δ) + O(L−2), (9)

where the central charge c and the conformal dimension Δ consist of the boson part
and fermion part:

c = cB + cF, Δ = ΔB + ΔF, (10)

τ

σＲ

z, z

Re

Imτ, σ

Fig. 1 A conformal map from a cylinder with radius R onto a complex plane. The circles in the
complex plane represent the contours with respect to time τ
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each of which is written by using the winding number and compactification radius:

cB = 1, cF = 1
2 ,

ΔB = 1
2

(
1√
π
(Φ+ − Φ−) + mR

)2
, ΔF = 0, 1

2 ,
1
16 ,

(11)

where ΔF = 0, 1
2 is for the NS sector and ΔF = 1

16 is for the R sector.

2.2 Scattering Theory of the SSG Model

Supersymmetric solitons are generated by non-commuting operators A
ε j
a j a j+1 . The

superscript denotes a soliton charge ε j ∈ {±}, while the subscript denotes an RSOS
index a j ∈ {0,±1}. A set of the RSOS indices must satisfies the adjacency condition
|a j − a j+1| = 1.

2.2.1 Bulk S-Matrix

The soliton creation operator satisfies the following commutation relations:

Aε1
ab(θ1)A

ε2
bc(θ2) =

∑

ε′
1,ε

′
2

∑

d

Sε1ε2
ε′
1ε

′
2
|acbd(θ1 − θ2)A

ε′
2
ad(θ2)A

ε′
1
dc(θ1), (12)

which gives the scattering amplitudes between solitons. The parameter θ j is rapidity
of a supersymmetric soliton.

Since the SSG model is an integrable quantum field theory, the S-matrix satisfies
the Yang–Baxter equation. The S-matrix of the SSG model is decomposed into a
tensor product of the SG part and the RSOS part [17, 36]:

Sε1ε2
ε′
1ε

′
2
|acbd(θ) = Sε1ε2

ε′
1ε

′
2
(θ) × Sacbd(θ). (13)

As a result, the SG part and the RSOS part independently satisfy the Yang–Baxter
equation:

Sε1ε2
ε′
1ε

′
2
(θ1 − θ2)S

ε′
1ε3

ε′′
1ε

′
3
(θ1 − θ3)S

ε′
2ε

′
3

ε′′
2ε

′′
3
(θ2 − θ3) =

= Sε2ε3
ε′
2ε

′
3
(θ2 − θ3)S

ε1ε
′
3

ε′
1ε

′′
3
(θ1 − θ3)S

ε′
1ε

′
2

ε′′
1ε

′′
2
(θ1 − θ2), (14)

Sacbg (θ1 − θ2)S
gd
ce (θ1 − θ3)S

ac
bg (θ2 − θ3) =

= Sbdcg′(θ2 − θ3)S
ag′
b f (θ1 − θ3)S

f d
g′e (θ1 − θ2). (15)
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The solution to the SG part has been derived in [7, 37]:

Sεε
εε(θ) = S(θ), (16)

Sε−ε
ε−ε(θ) = sinh λθ

sinh λ(iπ − θ)
S(θ), S−εε

ε−ε(θ) = i
sin πλ

sinh λ(iπ − θ)
S(θ),

where ε ∈ {±}. The solution is closely related to the R-matrix of the six-vertex
model [37]. By setting u = iθ, the overall factor S(θ) is written by

S(θ) = −
∞∏

l=1

Γ (2(l − 1)λ − λu
π

)Γ (2lλ + 1 − λu
π

)

Γ ((2l − 1)λ − λu
π

)Γ ((2l − 1)λ + 1 − λu
π

)
/(u → −u) (17)

= exp

[

i
∫ ∞

0

dt

t

sin θt
π
sinh( 1

λ
− 1) t

2

cosh t
2 sinh

t
2λ

]

. (18)

The parameter λ is determined by a coupling constant β via λ = 2π
β2 − 1

2 [28].
The solution to the RSOS part has been derived in [8, 38–40]:

Sacbd(θ) = Xac
bd(θ)K (θ), (19)

where

X±±
00 (θ) = 2(iπ−θ)/2πi cos

(
θ

4i
− π

4

)
, X00

±±(θ) = 2θ/2πi cos

(
θ

4i

)
, (20)

X±∓
00 (θ) = 2(iπ−θ)/2πi cos

(
θ

4i
+ π

4

)
, X00

±∓(θ) = 2θ/2πi cos

(
θ

4i
− π

2

)
.

The overall factor K (θ) is written by

K (θ) = 1√
π

∞∏

k−1

Γ (k − 1
2 + θ

2πi )Γ (k − θ
2πi )

Γ (k + 1
2 − θ

2πi )Γ (k + θ
2πi )

(21)

= −i√
2 sinh θ−iπ

4

exp

[

i
∫ ∞

0

dt

t

sin θt
π
sinh 3t

2

sinh 2t cosh t
2

]

. (22)

2.2.2 Boundary Reflection Matrix

In a finite and non-periodic system, a soliton is reflected at a boundary. The soliton
creation operator obeys the reflection relation given by

Aε
ab(θ)B =

∑

c

∑

ε′
Rε

ε′ |bac Aε′
bc(−θ)B. (23)
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Here we denote the boundary creation operator by B.
As in the case of the bulk S-matrix, the reflection matrix of the SSG model is

decomposed into a tensor product of the SG part and the RSOS part [39]:

Rε
ε′ |cab(θ) = Rε

ε′(θ) × Rc
ab(θ). (24)

Thus, the reflection relation independently holds for the SG part and the RSOS part:

Sε1ε2
ε′
2ε

′
1
(θ1 − θ2)R

ε′
2

ε′′
2
(θ2)S

ε′′
2ε

′
1

ε′′
1ε

′′′
2
(θ1 + θ2)R

ε′′
1

ε′′′
1
(θ1) =

= Rε1
ε′
1
(θ1)S

ε′
1ε2

ε′′
2ε

′
1
(−θ1 − θ2)R

ε′
2

ε′′
2
(θ2)S

ε′
2ε

′′
1

ε′′′
1 ε′′′

2
(−θ1 + θ2), (25)

Sacb f (θ1 − θ2)R
f
ag(θ2)S

gc
f d(θ1 + θ2)R

d
ge(θ1) =

= Rb
a f ′(θ1)S

f ′c
bg′ (−θ1 − θ2)R

g′
f ′e(θ2)S

ec
g′d(−θ1 + θ2). (26)

The solution which leads to the Dirichlet boundaries is given by the diagonal
matrix [8]:

R±
±(θ) = cos(ξ ± λu)R0(u)

σ(θ, ξ)

cos ξ
, (27)

where R0(u) is given by

R0(u) =
∞∏

l=1

[
Γ (4lλ − 2λu

π
)Γ (4λ(l − 1) + 1 − 2λu

π
)

Γ ((4l − 3)λ − 2λu
π

)Γ ((4l − 1)λ + 1 − 2λu
π

)
/(u → −u)

]

. (28)

The overall factor σ(θ, ξ) is written by [41, 42]

σ(θ, ξ) = cos ξ

cos(ξ + λu)

∞∏

l=1

{[
Γ ( 12 + ξ

π
+ (2l − 1)λ − λu

π
)

Γ ( 12 − ξ
π

+ (2l − 2)λ − λu
π

)
×

× Γ ( 12 − ξ
π

+ (2l − 1)λ − λu
π

)

Γ ( 12 + ξ
π

+ 2lλ − λu
π

)

]

/(u → −u)

}

(29)

= cos ξ

cos(ξ + λu)
(R±

1 (θ) + R2(θ)),

where

R+
1 (θ) = exp

[

i
∫ ∞
0

dt

t

(
sinh(1 − 2ξ

πλ ) t2

2 sinh t
2λ cosh t

2
+ sinh( ξ

π − 
 ξ
π − 1

2 � − 1) tλ
sinh t

2λ

)

sin
θt

π

]

(30)

R−
1 (θ) = exp

[

i
∫ ∞
0

dt

t

sinh(1 − 2ξ
πλ ) t2

2 sinh t
2λ cosh t

2
sin

θt

π

]

, (31)
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R2(θ) = exp

[

i
∫ ∞
0

dt

t

sinh 3t
4 sinh( 1λ − 1) t4

sinh t sinh t
4λ

]

. (32)

A boundary parameter ξ is connected to field values at boundaries through ξ± =
2π
β

Φ± [28].
The solution of the RSOS part has been derived in [39, 40]. Different solutions

were obtained for two sectors of the superconformal field theory. For the NS sector,
the solution is given by

R0
σσ(θ; ξ) = P(θ; ξ), (33)

R±1
00 (θ; ξ) =

(
cos

ξ

2
± i sinh

θ

2

)
2iθ/πK (θ − iξ)K (θ + iξ)P(θ; ξ), (34)

where

P(θ, ξ) = sin ξ − i sinh θ

sin ξ + i sinh θ
P0(θ), (35)

P0(θ) =
∞∏

k=1

[
Γ (k − θ

2πi )Γ (k − θ
2πi )

Γ (k − 1
4 − θ

2πi )Γ (k + 1
4 − θ

2πi )
/(θ → −θ)

]

(36)

= exp

(

− θ

2π
ln 2 + 1

8

∫ ∞

0

dt

t

sin 2θt
π

cosh2 t cosh2 t
2

)

. (37)

Thus only diagonal matrix elements are non-zero in the reflection matrix of the NS
sector.

On the other hand, the solution to the R sector is obtained as

R0
σσ(θ; ξ) = cos

ξ

2
K (θ − iξ)K (θ + iξ)P(θ; ξ), (38)

R0
−σσ(θ; ξ) = −irσ sinh

θ

2
K (θ − iξ)K (θ + iξ)P(θ; ξ), (39)

Rσ
00(θ; ξ) = 2iθ/πP(θ; ξ). (40)

Unlike the NS sector, the reflection matrix of the R sector has non-diagonal ele-
ments R0±∓(θ; ξ). The matrices (38)–(40) have the block diagonal structure. The
subspace which includes the non-diagonal elements is diagonalized with the eigen-
values cos ξ

2 ± i sinh θ
2 . Thus, we obtain the common eigenvalues for the NS and R

sectors from the reflection matrix up to the factor 2iθ/π , which can be removed by a
similarity transformation.
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2.3 Light-Cone Lattice Regularization

The light-cone lattice regularization of a quantum field theory is achieved by setting
discrete trajectories of particles with a lattice spacing a [10–12]. A discretized light-
cone forms a two-dimensional lattice. A right-mover runs over a line from left-bottom
to right-top, while a left-mover runs over a line from right-bottom to left-top, (Fig. 2).

Particle scatterings occur only at vertices. The amplitudes depend on the states
of four legs around a vertex, i.e. the presence or absence of a particle. Thus, the
scattering amplitudes of the quantum field theory are regarded as the Boltzmann
weights of the two-dimensional lattice through the light-cone lattice regularization.
For an integrable quantum field theory, the two-dimensional lattice obtained as the
light-cone lattice is identified with an integrable lattice model. For instance, the light-
cone lattice of the SG model is regarded as the time sequence of the transfer matrix
of the spin- 12 XXZ model, while that of the SSG model is obtained in the spin-1 ZF
model [28, 32]. Thus, particle trajectories in an integrable quantum field theory are
described by the transfer matrix of the corresponding integrable spin chain.

Now we focus on the SSG model connected to the spin-1 ZF model. The spin-1
ZF model is defined by

H =
N−1∑

j=1

[
Tj − (Tj )

2 − 2 sin2 γ (T z
j + (Szj )

2 + (Szj+1)
2 − (T z

j )
2) + (41)

+ 4 sin2 γ
2 (T⊥

j T
z
j + T z

j T
⊥
j )

]
+ HB,

where
Tj = S j · S j+1, T⊥

j = Sx
j S

x
j+1 + Sy

j S
y
j+1, T z

j = Szj S
z
j+1. (42)

θ+ θ+ θ+ θ+θ− θ− θ− θ−

θ+ = θ + Θ
θ− = θ − Θ

a

space direction

time direction

auxiliary space

right moverleft mover

Fig. 2 The light-cone latticewith a lattice spacing a. A right-mover runs over a line from left-bottom
to right-top, while a left-mover runs over a line from right-bottom to left-top. The inhomogeneities
denoted by ±Θ give the rapidities of the right-movers and left-movers
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The operator Sα
j (α ∈ {x, y, z}) is the three-dimensional SU (2) generator which

nontrivially acts on the j th space of the N -fold tensor product. The parameter γ is
an anisotropy parameter which determines a coupling constant of the SSG model
via β2 = 4(π − 2γ). Since β2 is a real value, γ must be less than π

2 . In a spin chain
realm, the condition γ < π

2 indicates that the system is gapless.
Dirichlet boundaries of the SSG model are realized by imposing boundary mag-

netic fields on the spin-1 ZF model. Since the Dirichlet boundaries do not change
the soliton charge, the boundary magnetic fields are imposed in the direction of the
z-axis:

HB = h1(H−)Sz1 + h2(H−)(Sz1)
2 + h1(H+)SzN + h2(H+)(SzN )2, (43)

where two functions h1 and h2 share the same parameter H :

h1(H) = 1
2 sin 2γ

(
cot γH

2 + cot γ(H+2)
2

)
, (44)

h2(H) = 1
2 sin 2γ

(
− cot γH

2 + cot γ(H+2)
2

)
. (45)

The boundary fields are 2π
γ
-periodic functions with respect to H (Fig. 3). The

periodic unit consists of two domains [−2 + 2πn
γ

, 2πn
γ

] and [ 2π(n−1)
γ

,−2 + 2πn
γ

]
(n ∈ Z), in each of which we expect different physics.

The transfermatrix of the ZFmodel is obtained from the R-matrix of the 19-vertex
model [26]:

T (θ) = R0,2N (
γ
π
(θ − ξ2N ))R0,2N−1(

γ
π
(θ + ξ2N−1)) · · · R02(

γ
π
(θ − ξ2)) ×

× R01(
γ
π
(θ + ξ1)),

T̂ (θ) = R10(
γ
π
(θ + iπ + ξ1))R20(

γ
π
(θ + iπ − ξ2)) · · ·

· · · R2N−1,0(
γ
π
(θ + iπ + ξ2N−1))R2N ,0(

γ
π
(θ + iπ − ξ2N )), (46)

H

h2(H)

h1(H)

- 10 - 5 5 10

- 6

- 4

- 2

2

4

6

Fig. 3 The boundary magnetic fields as functions of the boundary parameter H . The anisotropy
parameter is taken to be γ = π

5 . Both functions h1(H) and h2(H) possess the 2π
γ -periodicity. In

each periodic unit, two distinct domains are obtained
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where ξ j is an inhomogeneity parameter which to be taken as 0 for the spin chain.
The double-row transfer matrix [4] allows us to deal with boundary reflection:

T = tr0[K+(θ)T (θ)K−(θ)T̂ (θ)]θ=0. (47)

As we discussed, particle trajectories in the SSGmodel are described by the same
transfer matrix. Corresponding to the rapidity of a right-mover and a left-mover, we
choose the inhomogeneity parameters as

ξ2n−1 = Θ, ξ2n = −Θ (n ∈ N). (48)

Then the transfer matrices are independently given for the right-mover and the left-
mover:

TR = tr0[K+(θ)T (θ)K−(θ)T̂ (θ)]θ=Θ,

TL = tr0[K+(θ)T (θ)K−(θ)T̂ (θ)]θ=−Θ. (49)

TheHamiltonian and totalmomentum are expressed by using the double-row transfer
matrices:

H = iγ

2πa
[ln TR + ln TL], P = iγ

2πa
[ln TR − ln TL]. (50)

3 Nonlinear Integral Equations

3.1 Analyticity Structure of the Transfer Matrix

There are two independent transfer matrices corresponding to the two- and three-
dimensional representations of the auxiliary space. The eigenvalues of the two trans-
fer matrices are given by [28]

T1(θ) = l1(θ) + l2(θ), (51)

T2(θ) = λ1(θ) + λ2(θ) + λ3(θ), (52)

where

l1(θ) = sinh γ
π
(2θ + iπ)B+(θ)φ(θ + iπ)

Q(θ − iπ)

Q(θ)
,

l2(θ) = sinh γ
π
(2θ − iπ)B−(θ)φ(θ − iπ)

Q(θ + iπ)

Q(θ)

(53)
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and

λ1(θ) = sinh γ
π
(2θ − 2iπ)B−(θ − iπ

2 )B−(θ + iπ
2 ) ×

× φ(θ − 3iπ
2 )φ(θ − iπ

2 )
Q(θ + 3iπ

2 )

Q(θ − iπ
2 )

,

λ2(θ) = sinh γ
π
(2θ)B+(θ − iπ

2 )B−(θ + iπ
2 ) ×

× φ(θ − iπ
2 )φ(θ + iπ

2 )
Q(θ + 3iπ

2 )Q(θ − 3iπ
2 )

Q(θ − iπ
2 )Q(θ + iπ

2 )
,

λ3(θ) = sinh γ
π
(2θ + 2iπ)B+(θ − iπ

2 )B+(θ + iπ
2 ) ×

× φ(θ + 3iπ
2 )φ(θ + iπ

2 )
Q(θ − 3iπ

2 )

Q(θ + iπ
2 )

. (54)

The function φ(θ) gives the phase shift:

φ(θ) = sinhN γ
π
(θ − Θ) sinhN γ

π
(θ + Θ) (55)

and the functions B±(θ) give the boundary effects:

B±(θ) = sinh γ
π
(θ ± iπH+

2 ) sinh γ
π
(θ ± iπH−

2 ). (56)

The function Q(θ) becomes zero at the Bethe roots:

Q(θ) =
M∏

j=1

sinh γ
π
(θ − θ j ) sinh

γ
π
(θ + θ j ). (57)

The functions T1(θ) and T2(θ) are symmetric under θ j ↔ −θ j , and therefore the
Bethe roots symmetrically locate to the origin in a complex plane.

Note that the following relation holds for T1(θ) and T2(θ):

T1(θ − iπ
2 )T1(θ + iπ

2 ) = l2(θ − iπ
2 )l1(θ + iπ

2 ) + sinh γ
π
(2θ)T2(θ). (58)

This is the fusion relation obtained for the transfer matrices [43] and later alge-
braically formulated in the context of the thermodynamic Bethe-ansatz [44].

Now we discuss the analyticity structure of the T -functions. The function T2(θ)
is analytic and nonzero (ANZ) around the real axis except for the origin and the
positions of holes. Since the hole indicates an excitation particle, rapidity of a soliton
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Fig. 4 The contours C1 and
C2. The vertical lines are
taken at ±∞

Im θ

C1

Re θ
0

iε

-iε

iπ/2+i ε

-iπ/2-i ε

C2

is characterized by the hole. By writing the positions of holes in the real axis by
h j ∈ R, we have the following integral equation through the Cauchy theorem:

∮

C1

dθ eikθ[ln T2(θ)]′′ = 2πk

1 − e−πk

(
1 +

∑

h j∈R
eikh j

)
. (59)

The contour C1 is shown in Fig. 4.
For the function T1(θ), we need the analyticity structure of Imθ ∈ [−π

2 , π
2 ). By

writing the positions of holes by h(1)
j , the following integral equation is obtained:

∮

C2

dθ eikθ[ln T1(θ)]′′ = 2πk

1 − e−πk

(
1 +

∑

Imh(1)
j ∈[− π

2 , π
2 )

eikh
(1)
j

)
, (60)

where the contour C2 is shown in Fig. 4.
Thus, we obtained two integral equations from the T -functions. In the next sub-

section, we derive coupled integral equations by rewriting the left-hand sides of
equations.

3.2 Nonlinear Integral Equations

We consider the auxiliary functions [45] defined by

b(θ) = λ1(θ) + λ2(θ)

λ3(θ)
, b̄(θ) = λ3(θ) + λ2(θ)

λ1(θ)
= b(−θ),

y(θ) = sinh γ
π
(2θ)T2(θ)

l2(θ − iπ
2 )l1(θ + iπ

2 )
.

(61)
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We also define
B(θ) = 1 + b(θ), B̄(θ) = 1 + b̄(θ),

Y (θ) = 1 + y(θ).
(62)

The auxiliary functions have different analyticity structure from the T -functions.
Besides the origin and the positions of holes, the function B(θ) has zeros at the
positions of roots ± iπ

2 (θ = θk ± iπ
2 ). Note that these positions become two-string

centers in the IR limit [46].
Substituting (61) and (62) into the integral equations (59) and (60), we obtain the

nonlinear integral equations (NLIEs) [33]:

ln b(θ) =
∫ ∞

−∞
dθ′ G(θ − θ′ − iε) ln B(θ′ + iε) −

−
∫ ∞

−∞
dθ′ G(θ − θ′ + iε) ln B̄(θ′ − iε)

+
∫ ∞

−∞
dθ′ GK (θ − θ′ − iπ

2 + iε) ln Y (θ′ − iε) +

+ i Dbulk(θ) + i DB(θ) + i D(θ) + C (2)
b (63)

ln y(θ) =
∫ ∞

−∞
dθ′ GK (θ − θ′ + iπ

2 − iε) ln B(θ′ + iε) +

+
∫ ∞

−∞
dθ′ GK (θ − θ′ − iπ

2 + iε) ln B̄(θ′ − iε)

+ i DSB(θ) + i DK (θ) + Cy . (64)

The integration constants Cb and Cy are determined from the asymptotic behaviors
of the NLIEs. The functions G(θ) and GK (θ) show the phase shift coming from
soliton-soliton scatterings:

G(θ) =
∫ ∞

−∞
dk

2π

e−ikθ sinh( π
γ

− 3) πk
2

2 cosh πk
2 sinh( π

γ
− 2) πk

2

, GK (θ) =
∫ ∞

−∞
dk

2π

e−ikθ

2 cosh πk
2

. (65)

The effect of the bulk phase shift is contained in

Dbulk(θ) = 2N arctan
sinh θ

coshΘ
. (66)

This is the only term which concerns the scaling limit given by a → 0 by fixing

L = Na, m0 = 2

a
e−Θ. (67)
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As a result, the scaling limit of Dbulk(θ) is written by the mass parameter and the
system length of the SSG model:

2N arctan
sinh θ

coshΘ
→ 2im0L sinh θ. (68)

The effects of the existence of particles are obtained in

D(θ) =
∑

j

c j {g( j)(θ − θ̃ j ) + g( j)(θ + θ̃ j )},

g(θ) = 2γ
∫ ∞

0
dθ′ G(θ′), gK (θ) = 2γ

∫ ∞

0
dθ′ GK (θ′),

(69)

where θ̃ j − sgn(Imθ j )
iπ
2 is an effective Bethe root. The form of the function g( j)(θ)

depends on the types of particles:

g( j)(θ ± θ̃ j ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g(θ ± θ̃ j ) + g(θ ± θ̃ j − iπ sgn(Im θ)) π < |Imθ̃ j | < π2

2γ − π
2

g(θ ± θ̃ j + iε) + g(θ ± θ̃ j − iε) |Imθ̃ j | = π2

2γ − π
2

gK (θ ± θ̃ j ) θ̃ j = h(1)
j

g(θ ± θ̃ j ) otherwise,
(70)

where we choose

c j =
{

+1 for holes

−1 otherwise.
(71)

The term DK (θ) is interpreted as the effects of the existence of kinks:

DK (θ) = lim
ε→+0

D̃K (θ + iπ
2 − iε)

D̃K (θ) =
∑

j

c j {g(1)
( j)(θ − θ̃ j ) + g(1)

( j)(θ + θ̃ j )}, (72)

where g(1)
( j)(θ) is defined by

g(1)
( j)(θ ± θ̃ j ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

gK (θ ± θ̃ j ) + gK (θ ± θ̃ j − iπ sgn(Im θ) ) = 0 :
π < |Imθ̃ j | < π2

γ
− π

2 ;
gK (θ ± θ̃ j + iε) + gK (θ ± θ̃ j − iε) :

|Imθ̃ j | = π2

γ
− π

2 ;
gK (θ ± θ̃ j ) : otherwise.

(73)

The boundary terms DB(θ) and DSB(θ) have different forms depending on the
boundary parameters. By writing the boundary terms by
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DB(θ) = F(θ; H+) + F(θ; H−) + J (θ) (74)

DSB(θ) = Fy(θ; H+) + Fy(θ; H−) + JK (θ), (75)

the last terms do not depend on the boundary parameters:

J (θ) =
∫ ∞

0
dθ′

∫ ∞

−∞
dk e−ikθ′ cosh

πk
4 sinh( π

γ
− 3) πk

4

cosh πk
2 sinh( π

γ
− 2) πk

2

, (76)

JK (θ) = 2̃gK (θ) = lim
ε→+0

2gK (θ + iπ
2 − iε). (77)

The functions F(θ; H) and Fy(θ; H) include the integrands which cross the branch
cut when H = ±1. Taking into account of the periodicity with respect to H , there
are three distinct regimes:

Regime (a): 1 < H± ≤ 2π
γ

− 1

F(θ; H) =
∫ ∞

0
dθ′

∫ ∞

−∞
dk e−ikθ′ sinh( π

γ
− H) πk

2

2 cosh πk
2 sinh( π

γ
− 2) πk

2

, (78)

Fy(θ; H) = 0. (79)

Regime (b): −1 < H± ≤ 1

F(θ; H) = −
∫ ∞

0
dθ′

∫ ∞

−∞
dk e−ikθ′ sinh( π

γ
+ πH − 2) πk

2

2 cosh πk
2 sinh( π

γ
− 2) πk

2

, (80)

Fy(θ; H) = g̃K (θ − iπ(1−H)

2 ) + g̃K (θ + iπ(1−H)

2 ). (81)

Regime (c): − 2π
γ

+ 1 < H± ≤ −1

F(θ; H) = −
∫ ∞

0
dθ′

∫ ∞

−∞
dk

2π
e−ikθ′ sinh( π

γ
+ H) πk

2

2 cosh πk
2 sinh( π

γ
− 2) πk

2

, (82)

Fy(θ; H) = 0. (83)

3.3 Ground State and Boundary Bound States

In this subsection, we discuss the boundary effects on the ground state from the view-
point of Bethe roots. Under the presence of strong enough boundary magnetic fields,
it has been found that boundary bound states emerge. The existence of boundary
bound states was first discussed in [8] as poles in the reflection matrix. Then later,
it was discussed by using the q-deformed vertex operator [47] and the Bethe-ansatz
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method [42, 48]. In a realm of the Bethe-ansatz method, boundary bound states are
obtained as imaginary roots of the Bethe-ansatz equations.

The existence of boundary bound states modifies the root density of the bulk in
the order of the inverse of the system size. Here we determine the root component
of the ground state through calculation of the boundary energy.

The eigenenergy of the SSG model is calculated from the transfer matrix [49].
From (50), the eigenenergy is obtained as

E = 1

4ia

(
d

dθ
ln T2(θ)

∣
∣
∣
θ=Θ+ iπ

2

− d

dθ
ln T2(θ)

∣
∣
∣
θ=Θ− iπ

2

)

= Ebulk + EB + Eex + EC,

(84)

where the bulk, particle excitation, and Casimir energy are respectively given by

Ebulk = 0, (85)

Eex = m0

NH∑

j=1

cosh h j − m0

MC∑

j=1

cosh c̃ j , (86)

EC = m0

2π
Im

∫ ∞−iε

−∞−iε
dθ e−θ ln B̄(θ). (87)

The boundary energy is given by

EB = m0 + Eb(H+) + Eb(H−), (88)

Eb(H) =
{
0 |H | > 1,

m0 cos
π(1−H)

2 |H | < 1.
(89)

The boundary dependence of the ground-state and first-excitation energy subtracted
by EC is shown in Fig. 5.

Taking into account that the rapidity of a boundary bound state approaches iπ
2 (1 −

H±) in the thermodynamic limit [33], we find that the two-string state (depicted by
bold dotted line) gives the boundary excitation state for 0 < H < 1 and −2 < H <

−1. And, subsequently, this implies that the ground state includes a boundary bound
state. This fact is numerically checked in the isotopic case for (H+, H−) = (1.5, 2.2),
(1.5, 0.3), and (1.5,−1.8). FromFig. 6, it seems that the rapidity of a boundary bound
state is fixed at θ = iπ

2 (1 − H−).

4 Boundary Effect on the Scattering Theory

Nowwe discuss the boundary effect of the scattering theory of the SSGmodel. Since
the scattering and reflection matrices of a quantum field theory are defined between
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H

H

E - EC

h1

h2

- 8 - 6 - 4 - 2 0 2
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- 4

- 2

2
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6

Fig. 5 The ground-state and first-excitation energy subtracted by the Casimir energy is shown
together with the behavior of the boundary magnetic fields. The energy of the two-string state is
given by the bold dotted line. The anisotropy parameter is taken as γ = π

5 and the mass parameter
by m0 = 1
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(a) (H+,H−) = (1.5,−2.2)
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(b) (H+,H−) = (1.5, 0.3)
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Fig. 6 Analyticity structure of T1(θ) and T2(θ) is plotted for three regimes. The zeros of T -functions
are depicted by black dots, while the roots by gray dots. These are numerically calculated for the 4
two-string roots in the N = 8 isotropic chain
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the asymptotic states obtained long before and after the scattering, we analyze the
NLIEs in the IR limit m0L → ∞.

In the IR limit, the first and second terms of (63) and (64) become negligibly
small [32]. Therefore, we obtain the NLIEs in the IR limit as follows:

ln b(θ) =
∫ ∞

−∞
dθ′ GK (θ − θ′ − iπ

2 + iε) ln Y (θ′ − iε) + 2im0L sinh θ

+ i DB(θ) + i D(θ) + iπC (2)
b , (90)

ln y(θ) =i DSB(θ) + i DK (θ) + iπC (2)
y . (91)

Since the auxiliary function B(θ) has zeros at the positions of holes, the function
b(θ) satisfies the quantization condition given by

b(h j ) = −1. (92)

On the other hand, the quantization condition in a realm of the scattering theory [13,
16] is written in terms of the scattering and reflection amplitudes:

e2im0L sinh θ j R(θ j ; ξ+) ·
n∏

l=1
l �= j

S(θ j − θl)S(θ j + θl) · R(θ j ; ξ−) = 1. (93)

By comparing the above two conditions, we obtain the relation between theNLIEs
and the scattering theory:

ln R+
1 (θ) = i F (r)(θ; H) (r = a, b, c),

ln R2(θ) = i J (θ).
(94)

The function F (r)(θ; H) has different forms depending on the regimes denoted by
the superscript r . Remind that the ground state includes a boundary bound state for
−2 < H < −1 and 0 < H < 1 (Fig. 5). Thus, change of the function at H = 1 is
understood as coming from change of the ground-state description. Indeed, we obtain
the boundary bootstrap relation between two functions:

i F (b)(θ; H) = i F (a)(θ; H) + ig(θ − iπ
2 (1 − H)) + ig(θ + iπ

2 (1 − H),

i F (b)
y (θ; H) = i F (a)

y (θ; H) + i g̃K (θ − iπ
2 (1 − H)) + i g̃K (θ + iπ

2 (1 − H)),
(95)

where the rapidity of theboundarybound state iswhatweobtained from thenumerical
calculation (Fig. 6). Similarly, the change of the function at H = −1 is understood
from the emergence of a boundary bound state. The boundary bootstrap relation is
obtained as



Boundary Effects on the Supersymmetric Sine-Gordon Model … 331

Table 1 The relation between parameters in the NLIEs and the scattering theory. Three domains
require different relations. These domain separation matches that obtained in Fig. 3

H > 0 0 > H > −2 −2 > H

H = − 2ξ
πλ + 1

λ + 1 H = − 2ξ
πλ + 1

λ − 1 H = − 2ξ
πλ − 1

λ − 3

i F (c)(θ; H) = i F (b)(θ; H) + ig(θ − iπ
2 (1 + H)) + ig(θ + iπ

2 (1 + H)),

i F (c)
y (θ; H) = i F (b)

y (θ; H) + i g̃K (θ + iπ
2 (1 + H)) + i g̃K (θ − iπ

2 (1 + H)).
(96)

Thus, we obtain the relation between parameters in the NLIEs and the scattering
theory as Table1. The parameter relation for the regime (c) is realized from that
for the regime (a) through the transformation H → −H − 2π

γ
− 2, which gives the

soliton-antisoliton exchange transformation:

i F (a)(θ;−H − 2π
γ

− 2) = i F (c)(θ;−H − 2π
γ

− 2) = ln R−
1 (θ), (97)

while this transformation maps the relation for the regime (b) to itself:

i F (b)(θ;−H − 2) − igK (θ − iπ
2 (−H − 2)) − igK (θ + iπ

2 (−H − 2)) = ln R−
1 (θ).
(98)

Here we used the 2π
γ
-periodicity of the reflection amplitude with respect to H . This

fact supports our assumption that the two domains obtained in Fig. 3 are described
by different physics.

5 Boundary Effect on the UV Behavior

The SSG model shows the conformal invariance in the UV limit m0L → 0. The
N = 1 super CFT obtained from the UV limit of the SSG model consists of the NS
and R sectors, which are realized by the different boundary conditions of fermions.
The UV limit of the SSG model has been studied for the periodic case [30–32] and
the limited regime of the Dirichlet boundaries [28], and it was found that only the
NS sector is realized through the light-cone lattice regularization. We study how the
UV behavior is affected by the boundaries in this section.

In the UV limit, some Bethe roots stay finite, while the others go to infinity. Such
roots that go to infinity behave as θ ∼ θ̂ − lnm0L in the limit m0L → 0 [18]. We
introduce the scaling function defined by f +(θ̂) = f (θ̂ − lnm0L), which is a step-
like function [18, 21, 50]. By focusing on the roots which go to infinity, the NLIEs
in the UV limit are written as

ln b+(θ̂) =
∫ ∞

−∞
d θ̂′ G(θ̂ − θ̂′ − iε) ln B+(θ̂′ + iε) −



332 C. Matsui

−
∫ ∞

−∞
d θ̂′ G(θ̂ − θ̂′ + iε) ln B̄+(θ̂′ − iε)

+
∫ ∞

−∞
d θ̂′ GK (θ̂ − θ̂′ − iπ

2 + iε) ln Y+(θ̂′ − iε) + ieθ̂ +

+ i
∑

j

c jg( j)(θ̂ − θ̂ j ) + iπĈb, (99)

ln y+(θ̂) =
∫ ∞

−∞
d θ̂′ GK (θ̂ − θ̂′ + iπ

2 − iε) ln B+(θ̂′ + iε)

+
∫ ∞

−∞
d θ̂′ GK (θ̂ − θ̂′ − iπ

2 + iε) ln B̄+(θ̂′ − iε) +

+ i
∑

j

c jg
(1)
( j)(θ̂ − θ̂ j ) + iπĈy, (100)

where Ĉb and Ĉy are determined from the asymptotic behavior of the NLIEs.
The eigenenergy in the UV limit is calculated through the formula (50). Since

the central charge and conformal dimensions show up in the particle excitation and
Casimir energy, we define:

ECFT(L) = E(L) − (Ebulk + EB) = Eex(L) + EC(L),

Eex(L) = 1

2L

∑

j=1

eĥ j − 1

2L

∑

π
2 <|Imθ j |< 3π

2

eθ̂ j− iπ
2 Imθ j ,

EC(L) = 1

2πL
Im

∫ ∞

−∞
d θ̂ eθ̂ ln B̄+(θ̂).

(101)

Then ECFT(L) is expressed by

ECFT(L) = 1

4πL
{L+(b+(∞)) − L+(b+(−∞)) + L+(b̄+(∞)) − L+(b̄+(−∞))

+ L+(y+(∞)) − L+(y+(−∞))}
+ i

8πL

[{
eθ̂ +

∑

j

c jg( j)(θ̂ − θ̂ j ) + πĈb

}
(ln B+(θ̂) − ln B̄+(θ̂))

]∞
−∞

+ i

8πL

[{ ∑

j

c jg
(1)
( j)(θ̂ − θ̂ j ) + πĈy

}
ln Y+(θ̂)

]∞
−∞

,

(102)
using the dilogarithm function defined by

L+(x) = 1

2

∫ x

0
dy

(
ln(1 + y)

y
− ln y

1 + y

)
. (103)

From the formula obtained for the dilogarithm function [44, 51–56], we have
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ECFT(L) = − π

L
+ π

2L

{
1√
π

(
− γ(H+ + 1)

2
√

π − 2γ
− γ(H− + 1)

2
√

π − 2γ

)
+ m

√
π

π − 2γ

}2

+ 1

16

(1
2
(sgn(1 − H+) + sgn(1 − H−) + sgn(1 + H+) + sgn(1 + H−))

)

mod 2
,

(104)

where

m = −S + 1
4 (sgn(1 − H+) + sgn(1 − H−) + sgn(1 + H+) + sgn(1 + H−)). (105)

We used the effective soliton charge S defined in [33]. By setting the compactification
radius R and the boundary parameters Φ± as

R =
√

π

π − 2γ
, Φ± = ∓γ(H± + 1)

2
√

π − 2γ
, (106)

the energy (104) is the form of

ECFT = − π

24L

(
cB + cF − 24(ΔB + ΔF)

)
, (107)

where c = cB + cF is the central charge and Δ = ΔB + ΔF is the conformal dimen-
sion given by

cB = 1, cF = 1

2
, (108)

ΔB = 1

2

(Φ+ − Φ−√
π

+ mR
)2

, (109)

ΔF = 1

16

(1
2
(sgn(1 − H+) + sgn(1 − H−) + sgn(1 + H+) + (110)

+ sgn(1 + H−))
)

mod 2
. (111)

Consequently, m defined in (105) is interpreted as the winding number. Thus, the
sector of the SUSY realized through the light-cone lattice regularization depends on
the boundary parameters H±. In Fig. 7, we showed the boundary dependence of the
sectors obtained through the light-cone lattice regularization. This indicates that the
R sector is also obtained by properly choosing the boundary parameters, although
the sector separation does not match the domain separation obtained in the boundary
magnetic fields (Fig. 3).

6 Conclusions

We discussed the boundary effects on the light-cone lattice regularization of the SSG
model with Dirichlet boundaries. By regarding the light-cone lattice with the time
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Fig. 7 The boundary
dependence of the sectors
obtained through the
light-cone lattice
regularization. A proper
choice of boundary
parameters admits the R
sector 0-1 1

H+

H-

NS

NS

NS

NS

NS R

R

R

R

1

-1

sequence of the transfer matrix of the spin-1 ZF model, we calculated the scattering
matrix and the conformal dimensions of the SSG model through the NLIEs.

As a result, we obtained a boundary bound state for certain values of the boundary
parameters. The emergence of a boundary bound state was understood from the
boundary bootstrap principle of the scattering theory, and subsequently, it explains
the three different forms of the NLIEs. The boundary dependence of the NLIEs
also leads to the conformal dimension as a function of the boundary parameters. By
choosing the boundary parameters properly, we found that both of two sectors of the
N = 1 SUSY CFT are obtained through the light-cone lattice regularization.

However, the domain separation obtained in the IR limit does not match the sec-
tor separation in the UV limit. Therefore, it is important to understand the physics
of the SSG model in an intermediate volume. At the same time, it is an interest-
ing problem to ask how is determined the sector obtained from a certain set of
the boundary parameters. Recently, the supercharges were introduced to the inte-
grable spin chain [57, 58]. In order to properly define the super algebra on the spin
chain, they used the supercharges which change the length of the integrable spin
chain by one. Thus, the supercharges defined in this way connect the even-length
chain and odd-length chain, which we expect that give the new insights to the quan-
tum field theories obtained through the light-cone lattice regularization.
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Infinite Dimensional Matrix Product States
for Long-Range Quantum Spin Models

Roberto Bondesan and Thomas Quella

Abstract We describe a systematic construction of long-range 1D and 2D SU(N)
quantum spin models which is based on the algebraic structure of an underlying
Wess–Zumino–Witten conformal field theory. The resulting Hamiltonians are put
into the context of the Haldane-Shastry model, the paradigmatic example of long-
range spin models.

1 Introduction

The analysis of quantum spin models has led to profound insights into the properties
of strongly correlated quantum systems. The study of exactly solvable models, the
idea of renormalization, the effective field theory approach, including the relevance
of topological contributions to the action functional; there are many areas where the
conceptual advancement of theoretical physics has gone hand in hand with questions
originally posed in spin systems. One of the reasons for the prominent role of spin
models is their simplicity. Due to their extremely high degree of symmetry, they have
a very clear and concise mathematical description. In spite of this, various natural
questions such as those about the existence or absence of gaps, the presence of phase
transitions, the breaking of symmetries or the nature of excitations are physically
deep and mathematically challenging.

Here we would like to present recent progress in understanding connections
between quantum many-body physics and quantum information theory. Our goal
is the systematic design of quantum states and systems with definite properties. To
be specific, we will use quantum information theoretic methods to impose a certain
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(a)
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|zk − zl |

(b)

Sl

Sk

Si

(c)

Pk Sl

Sk

Fig. 1 a The spin configuration in the Haldane-Shastry model and the interactions with the spin
Sk . b The three-spin interactions encountered in the parent Hamiltonian (5). c Sketch of the action
of the operator Pk({zl }) (Color figure online)

entanglement structure on the aspired ground state of an SU(N) quantum spin system
and we will associate a natural Hamiltonian with it which is then studied in detail.
Technically, this goes under the name of infinite dimensional matrix product states
(∞MPS). Both the construction of the ground state and of the Hamiltonian will make
heavy use of the machinery of conformal field theory (CFT) (see [8]).

The physical systemswewish to design are lattice realizations of one-dimensional
critical systems or two-dimensional gapped chiral spin liquids, prominent examples
of topological phases of matter. Since the latter exhibit massless degrees of freedom
at their boundary, these two types of systems are, in fact, intimately related, see the
seminal work by Moore and Read for a discussion in the context of continuous frac-
tional quantum Hall samples [17]. While predominantly interested in the realization
of 1D critical systems we will also briefly review progress on the 2D side. In this
contribution we are aiming at a presentation of the basic philosophy to a non-expert
audiencewhile referring to the original articles formost of themore technical aspects.

2 The Haldane-Shastry Model as a Paradigm

Amongall known spin chains, theHaldane-Shastrymodel [11, 24] plays a special role
due its analytical tractability and its connections to numerous fields of physics and
mathematics. In its original definition for SU(2), it was regarded as a basic model for
spin-1/2 degrees of freedomwith long-range interactions on a circular 1D lattice with
L equidistant sites zk = exp( 2πiL k) in the complex plane, see Fig. 1a. The interactions
take an inverse-square form in the cord distance |zk − zl |2 = 4 sin2 π

L (k − l) in the
2D plane. In standard normalization, the Hamiltonian reads

HHS =
(2π
L

)2 ∑

k<l

Sk · Sl
|zk − zl |2 =

(π

L

)2 ∑

k<l

Sk · Sl
sin2 π

L (k − l)
. (1)

This normalization ensures that, for L → ∞ and |k − l| � L , the leading contribu-
tion reduces to the usual Heisenberg Hamiltonian without L-dependent prefactors.

TheHaldane-Shastrymodel exhibits a rather peculiar type of integrability. Indeed,
the Hamiltonian may be shown to commute with the generators of an infinite-
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dimensional Yangian Y(sl2) [14]. This statement is true for arbitrary chain lengths
and it allows for a convenient decomposition of the quantum mechanical Hilbert
space into irreducible Yangian multiplets inside of which all states are energetically
degenerate. The explicit decomposition and determination of the energy levels can
be achieved using the theory of degenerate affine Hecke algebras and symmetric
polynomials [20]. Using the exact knowledge of the ground state wave function, one
also has access to (dynamical) correlation functions [16].

One of the important physical insights which can be inferred from the analysis of
the Haldane-Shastry model is that the elementary excitations are spinons (rather than
magnons), i.e. particles which carry half-integer spin and obey fractional exclusion
statistics.A configuration of spinons can be described in terms of so-calledmotifs [13]
whose combinatorial structure provides an explicit implementation of a generalized
formof Pauli’s exclusion principle [12]. A detailed discussion of theHaldane-Shastry
model, including a more comprehensive guide to the literature, can be found in
Haldane’s review [13] and in recent work by Greiter [10].

In the thermodynamic limit L → ∞, the Haldane-Shastry model provides a real-
ization of the SU(2)1 WZW conformal field theory. It is thus not surprising that this
CFT also admits an action of the Yangian Y(sl2) and that its spectrum may be orga-
nized in terms of Yangian multiplets [1, 23]. The investigation of these connections
led to remarkable results on finitized (i.e. truncated) characters for representations
of affine Lie algebras such as ŝl2, see [4] and references therein. In contrast to the
usual ones in terms of the Weyl–Kac character formula, these expressions have been
termed fermionic since they are manifestly positive and do not involve alternating
sums. This is due to the absence of null states and signals that the spinons indeed
provide the correct basis for the description of quasi-particle excitations.

Since this aspect is important for the motivation of our work let us emphasize that
some of the main features of the Haldane-Shastry model differ considerably from
those of systems which are solvable by standard Bethe ansatz methods. This is even
true for the spin-1/2 Heisenberg model which realizes the same SU(2)1 WZWmodel
as L → ∞. For the Heisenberg model, the Hamiltonian can be constructed from the
Yangian Y(sl2) but does not commute with it. The Yangian hence plays the role of
a spectrum generating symmetry. On a technical level, this is the reason why Bethe
ansatz may be used to derive the full spectrum. The Yangian only becomes a true
symmetry as L → ∞ [6].1

This simple fact has profound physical consequences. First of all, the spinon exci-
tations are interacting in the Heisenberg model but non-interacting in the Haldane-
Shastrymodel. This is reflected in the spinon’s scatteringmatrix which is momentum
dependent in the former case while it is a purely statistical phase factor for the lat-
ter. Similarly, the Heisenberg model only realizes the SU(2)1 WZW model up to
logarithmic corrections while the latter are absent in the Haldane-Shastry model.
In view of the non-interacting nature of the spinons and the absence of logarithmic
corrections we are tempted to think of the Haldane-Shastry model as providing an

1The quantum affine algebra Uq (ŝl2) of this paper degenerates into the Yangian Y(sl2) as q → 1.
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(a)

1D chain

(b)

square

(c)

triangular

(d)

honeycomb

(e)

random 2D

Fig. 2 Examples of 1D and 2D lattices that are of potential interest in physical applications.
Different colors denote distinct representations of the physical spin (Color figure online)

“optimal discretization” of the SU(2)1 WZWmodel. It is currently unclear whether
similar “optimal discretizations” also exist for all other WZW theories.

The last statement immediately brings us to the central motivation for our study
of ∞MPS. While the Hamiltonian (1) of the Haldane-Shastry model can, of course,
immediately be defined for any Lie algebra with an invariant and non-degenerate
bilinear form (such that Sk · Sl can be defined), the special properties mentioned
above only arise for SU(N) and spins transforming in the fundamental (or anti-
fundamental) representation. The goal of this note is to come up with natural gener-
alizations of the Haldane-Shastry model which relax its inherent restrictions while
trying to preserve its nice properties. In particular, we would like to allow for other
symmetry groups, spins transforming in arbitrary representations and general loca-
tions on the circle or even in the complex plane. A sketch of possible situations of
interest can be found in Fig. 2. As we will see below, all three generalizations can be
achieved conveniently in the framework of ∞MPS. The latter provide a convenient
tool to imprint the desired entanglement structure on the aspired ground state.

3 Matrix Product States and Their Parent Hamiltonians

The description of a general quantum state in the Hilbert space H = V⊗L of a spin
model requires the specification of an exponentially large number of coefficients.
However, recent studies suggest that ground states of quantum spin systems have
very particular properties and only populate a tiny corner of the full Hilbert space.
This statement can be made rather rigorous for gapped 1D systems and it implies
that the ground state of all such systems admits a good approximation in terms of a
so-called matrix product state (MPS)2

|ψ〉 =
∑

{kl }
tr(Ak1 · · · AkL ) |k1 · · · kL〉 ∈ V⊗L . (2)

The symbols Ak in this formula refer tomatrices acting on an auxiliary spaceBwhose
(arbitrary but fixed) dimensionality d depends on the system under consideration

2For simplicity we restrict our attention to translation invariant configurations.
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(a)
1
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B B∗
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V

3

Ak3
B B∗

V

4

Ak4
B B∗

V

(b)
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φk2 (z2)

3
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Fig. 3 Sketch of an MPS (left) and of an ∞MPS (right). In both cases, the states are defined by
coupling the physical degrees of freedom (blue) to an auxiliary entanglement layer (green) which
reflects the spatial structure of the system and encodes the state’s entanglement (Color figure online)

[21]. It is convenient to view the symbols A as intertwiners B ⊗ B∗ → V . This has
the physical interpretation of attaching two auxiliary spins B and B∗ to each physical
space V . The matrix multiplication and the trace in Eq. (2) then simply correspond
to the formation of singlet bonds between auxiliary spins on neighboring physical
sites, see Fig. 3 for an illustration.

Let us now try to extract the essential properties of the physical systemwhich gave
rise to a specific state |ψ〉. More precisely, we wish to construct a new prototypical
Hamiltonian H which ideally should have |ψ〉 as its unique zero energy ground
state and reflect the basic physical properties of the original system. This so-called
parent Hamiltonian is constructed as follows. We start with two-site Hamiltonians
h(2) which are specific projectors chosen as to annihilate |ψ〉 (see [21]). If B ⊗ B∗ is
a subspace of the two-site Hilbert space V ⊗ V , these operators can simply be chosen
to project onto the orthogonal complement (B ⊗ B∗)⊥. By way of construction, the
translation invariant sum H = ∑

k h
(2)
k,k+1 satisfies H ≥ 0 and H |ψ〉 = 0. In other

words, the MPS defined in Eq. (2) is a ground state of the Hamiltonian. If the system
under study admits the action of a symmetry group and the matrices A have been
chosen to be intertwiners, then H will also be invariant. Under certain technical
assumptions (and sometimes more generally), the ground state will, moreover, be
unique and gapped. Whenever the last two properties fail to be true they can be
restored at the cost of block renormalizing the physical spin and the Hamiltonian.
Effectively, this introduces interactions beyond neighboring sites.

Let us once more emphasize the change of perspective that we introduced through
the back-door. The fundamental object in the previous paragraph was the MPS |ψ〉
whose properties are fully characterized by the coupling of the physical spins to the
auxiliary entanglement layer, i.e. by the matrices Ak . The associated parent Hamil-
tonian H only entered in a second step and should hence be regarded as a derived
concept. The construction is motivated by the hope that the knowledge of the ground
state |ψ〉 will generally be sufficient in order to determine the essential features of
the (low energy) physics of the associated quantum system. In the next section we
will lift this philosophy to an even more sophisticated level by generalizing MPS to
∞MPS.
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4 From CFT to Long-Range Spin Models

In the present note we are mainly interested in the realization of critical 1D systems
and 2D gapped chiral topological phases. In both cases, the size of the matrices
Ak needs to grow beyond any limit, as can be inferred from the respective scaling
laws for the entanglement entropy (see, e.g., [9]). It is then natural to replace the
matrices Ak by operators of an auxiliary quantum field theory (QFT) and the trace
by a correlation function since this involves a natural prescription of how to deal
with products of operators on an infinite dimensional (auxiliary) Hilbert space. The
state in the associated quantum spin system then reads

|ψ〉 =
∑

{ki }
〈
φk1(z1) · · · φkL (zL)

〉

︸ ︷︷ ︸
QFT correlator

|k1, . . . , kL〉 ∈ V⊗L . (3)

We note that the coordinates {zl} and hence also the dimensionality of the QFT
simply play the role of parameters. In a general QFT, the expression (3) will usually
only be defined perturbatively. However, if the underlying QFT is a 2D CFT, the
correlator coincides with a chiral conformal block and is mathematically absolutely
well-defined. This is the case we will focus on from now on. In the CFT context, a
subtle point concerns the fact that conformal blocks are usually not single-valued.
Uniqueness (up to phase factors) imposes strong restrictions on the fields which have
to be used in Eq. (3). In particular, it is custom to choose the fields φ(z) to be primary
fields with abelian fusion in order to avoid an exponential ground state degeneracy.

As we have discussed in Sect. 3, for any MPS of the usual kind there is an asso-
ciated parent Hamiltonian which is constructed as a sum over projectors. For an
∞MPS, this type of construction turns out to be impossible. When the underlying
CFT is a WZWmodel based on a Lie group G [8], one can nevertheless easily come
up with linear operators Pk

({zl}
)
for each physical site k which annihilate the quan-

tum state |ψ〉 that has been defined in Eq. (3). This is due to the existence of null fields
χ(z) which are descendants of the primary fields φ(z), i.e. which can be reached by
applying the symmetry generators of the WZW model [8]. A parent Hamiltonian
associated with the ∞MPS |ψ〉 can then be defined as [5]

H =
∑

k

Pk
({zl}

)† · Pk
({zl}

)
. (4)

As before, the Hamiltonian is manifestly hermitean, positive and invariant under the
action of G. Actually it is more appropriate to speak about a whole family of Hamil-
tonians which are parametrized by the choice of positions {zk}. The construction can
easily be adapted to also allow for varying representations of the physical spins.
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5 Application to SU(N) Spin Models

The procedure just sketched has been suggested in [5] and then further refined in [18].
In these publications it was also established that the parent Hamiltonian associated
with the SU(2)1 WZW model, in fact, basically reproduces the Haldane-Shastry
model. A generalization of this analysis to SU(N)1 WZW models has been studied
in [2, 27]. The new feature that arises here is the possibility to study alternating
setups in which part of the physical spins reside in the fundamental representation
and others in the anti-fundamental, see Fig. 2a.

For the WZW model at level 1, the relevant null vectors χ(zk) for fields φ(zk)
transforming in the fundamental or the anti-fundamental representation are located
at the first energy level. The associated algebraic operators which annihilate the
∞MPS |ψ〉 can then be chosen to bePa

k

({zl}
) = ∑

l(�=k) wkl Pa
k bS

b
l withwkl = (zk +

zl)/(zk − zl) [2, 27]. Here,Pa
k b is a specific projectionmatrixwhich involves the spin

operator Sk at site k and a is an slN Lie algebra index. The action of Pa
k

({zl}
)
on the

physical spins is sketched in Fig. 1c. Using the concrete form of the projection matrix
Pa
k b and dk ∈ {0, 1} to distinguish between the two different types of representations,

one finally finds the parent Hamiltonian

H =
∑

k

Pk,a
({zl}

)†Pa
k

({zl}
) =

∑

k

∑

i, j (�=k)

w̄kiwk j S
a
i Pk,abS

b
j (5)

=
∑

k

∑

i, j (�=k)

w̄kiwk j

{
− i

4
N+2
N+1 fabc S

a
i S

b
j S

c
k − N (−1)dk

4(N+1) dabc S
a
i S

b
j S

c
k +

+ N+2
2(N+1) Si · S j

}
.

In contrast to theHamiltonian of theHaldane-Shastrymodel, this expression involves
SU(N)-invariant long-range couplings between two and three spins (see Fig. 1b)
which are mediated by the structure constants fabc and by the completely symmetric
rank-3 tensor dabc. In the general form (5), the Hamiltonian can be used to describe
1D or 2D quantum spin systems with arbitrary positions of the spins.

Let us now specialize to the 1D setup where all spins transform in the fundamental
representation and the spin locations are chosen equidistantly on the unit circle.Under
these circumstances, the Hamiltonian (5) simplifies considerably and reads

H = C1

∑

k �=l

Sk · Sl
|zk − zl |2 + C2 S2 + C3 dabcS

a SbSc︸ ︷︷ ︸
coupling to total spin S

+C4 , (6)

with L-dependent constants Ci . We have thus succeeded in recovering the SU(N)
Haldane-Shastry model from the ∞MPS construction, at least up to terms which
couple the total spin to generalized chemical potentials. Of course, these terms do
not affect the solvability of the model.
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The previous considerations may easily be generalized to 1D configurations in
which the spins alternate between the fundamental and the anti-fundamental rep-
resentation. While the resulting model does not appear to be solvable, numerical
evidence using either ground state entanglement scaling [27], the determination of
spin-spin correlation functions [27] or exact diagonalization [2] suggests that the
theory is critical. For the last type of analysis it is convenient to interpret the sys-
tem as a loop model at fugacity N = dim(V). This procedure, which is based on a
generalized Schur–Weyl duality of SU(N) with a walled Brauer algebra, allows for
a convenient graphical representation of the states and of the Hamiltonian. In this
way, computations can be carried out efficiently for arbitrary values of N [2], provid-
ing substantial evidence for a critical thermodynamic limit which deviates from the
SU(N)1 WZWmodel. Nevertheless, the precise identification of the critical theory is
an open problem. Since the SU(N)1 WZWmodel underlying the∞MPS construction
admits a free field representation in terms of N − 1 bosons (or N complex fermions
modulo a boson), writing down concrete expressions for the CFT correlator featuring
in Eq. (3) and hence the∞MPS |ψ〉, the unique ground state of H , is straightforward,
independent of the particular arrangement of spins [2, 27].

6 Conclusions and Outlook

In this note we have reviewed the general philosophy underlying the construction
of ∞MPS states and their associated parent Hamiltonians. As an application we
have discussed the specific example of SU(N)1 WZW models. As we have seen,
the resulting family of Hamiltonians provides a natural generalization of the SU(N)
Haldane-Shastry model which is recovered for particular types of spins and their
positions. A full exposition of our results can be found in the article [2].

The SU(N)1 WZW theories are rather special in that they admit a realization in
terms of free fields. Non-abelian features will only become visible if one considers
higher level theories, i.e. SU(N)k with k ≥ 2. To our knowledge, an “optimal dis-
cretization” of these theories in the sense of Sect. 2 is currently not available. It is
an interesting question whether the ∞MPS construction can remedy this deficiency.
Another goal which can be pursued with ∞MPS is the systematic search for parent
Hamiltonians which realize 2D non-abelian chiral SU(N) spin liquids. Since these
will always be long-ranged, it is also natural to study the effect of truncating the
interaction range, see [19] for the corresponding study in the context of SU(2).

Besides tuning the WZW level one can also modify the symmetry group. Here,
implementations of the∞MPS formalism have already been considered for U(1) and
SO(N) [25, 26]. It immediately suggests itself to generalize the construction to spins
transforming under the supergroup SU(M|N) or close derivatives such as GL(M|N)
[3]. Beyond potential applications in string theory, disordered systems and statistical
physics this may also provide lattice discretizations of logarithmic CFTs which are
naturally associated with supergroupWZWmodels [22]. It would also be interesting
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to leave the realm of WZW models and to apply the ∞MPS construction to other
types of CFTs such as minimal models.

One of the appealing features of the ∞MPS construction is the exact knowledge
of the ground state of the associated Hamiltonian. The ground state can indeed be
used to provide a detailed characterization of the system and to verify a number of
properties, both in 1D and in 2D. First of all, this includes its criticality or topolog-
ical non-triviality. The scaling of the ground state entanglement indeed gives direct
access to the central charge (in 1D) and to the total quantum dimension of anyonic
excitations (in 2D), respectively (see [27] for examples and additional references).
Via the calculation of spin-spin correlation functions and ground state overlaps one
can also infer data characterizing expected excitations such as conformal dimensions
(in 1D) [18, 27] and topological spins of anyons and their modular data (in 2D) [7].
For the latter it is necessary to extend the ideas presented here from the complex
plane to higher genus Riemann surfaces such as the torus.

The complete solution of a quantum system, including its thermodynamic proper-
ties, also requires knowledge about the excited states. For SU(2)1 it has been shown
how low-lying excited states may be constructed systematically in∞MPS form [15]
using CFT correlators involving descendant fields. Whether this still holds true for
other symmetries and/or higher levels remains to be investigated.

Let us finally return to the most important aspect of the ∞MPS construction: The
systematic design of quantum entanglement in a state through the coupling to an
auxiliary entanglement layer. It is tempting to speculate whether this intimate link
may allow to lift special structures which are, a priori, only defined in the underlying
continuum theory to the associated quantum lattice model. A simple example would
be the aforementioned study of excitations (in the spin model) in terms of descendent
fields (excitations in the CFT). More interestingly, the continuum theory may exhibit
additional structures such as a Yangian symmetry which may also be reflected in the
lattice model, at least in disguise.While this is known to be true for the∞MPS based
on SU(N)1 WZW theories, at least as long as the quantum spins all transform in the
fundamental representation, the further exploration of these connections may lead to
fruitful new insights into the properties of general quantum spin models.
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Group Analysis of a Class of Nonlinear
Kolmogorov Equations

Olena Vaneeva, Yuri Karadzhov and Christodoulos Sophocleous

Abstract A class of (1+2)-dimensional diffusion-convection equations (nonlinear
Kolmogorov equations) with time-dependent coefficients is studied with Lie sym-
metry point of view. The complete group classification is achieved using a gauging
of arbitrary elements (i.e., via reducing the number of variable coefficients) with the
application of equivalence transformations. Two possible gaugings are discussed in
order to show how equivalence group can serve in making the optimal choice.

1 Introduction

Second-order partial differential equations of the form

ut = Duyy + ν [K (u)]x , (1)

where D and ν are nonzero constants, K is a smooth nonlinear function of the depen-
dent variable u, appear in various applications. In particular, they describe diffusion-
convection processes [1], model an interaction of particles with two kinds of particles
on a lattice [2], arise in mathematical finance, when studying agents’ decisions under
risk [3, 4]. Equations (1) are called in the literature diffusion-advection equations,
nonlinear ultraparabolic equations and nonlinear Kolmogorov equations. They were
studied from various points of view. An important study of partial differential equa-
tions and especially nonlinear ones is finding Lie groups of point transformations
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that leave an equation under study invariant. Such symmetry transformations allow
one to apply powerful and what is most important algorithmic method for finding
exact solutions of a given nonlinear equation. Moreover, Lie symmetries can serve
as a selection criterion of physically important models among possible ones [5]. Lie
symmetries of Eq. (1) and the corresponding group invariant solutions were classi-
fied by Demetriou et al. [6]. There are also some studies on Lie symmetries of lin-
ear Kolmogorov equations [7, 8] and of constant coefficient nonlinear Kolmogorov
equations of the form ut − uyy − uux = f (u) [9].

An attempt of group classification of more general than (1) class of diffusion-
convection equations in (1+2)-dimensions, namely, the equations with time depen-
dent coefficients

ut = f (t)uyy − g(t)[K (u)]x , f gKuu �= 0, (2)

where f and g are smooth nonvanishing functions of the variable t, K is a smooth
nonlinear function of u,was recentlymade [10].Nevertheless the classification of Lie
symmetries was not achieved therein, in particular, the case K = u ln u was missed
and dimensions of maximal Lie symmetry algebras as well as some of their basis
elements for the other cases of extensions were presented incorrectly. Moreover, the
important for applications case K = u2 was not studied with Lie symmetry point of
view at all.

In this paper we perform the complete group classification of Eq. (2). As class (2)
is parameterized by three arbitrary elements, K (u), f (t) and g(t), the group clas-
sification problem appears to be too complicated to be solved completely without
modern approaches based on the usage of point equivalence transformations. One
of such tools is the gauging of arbitrary elements by equivalence transformations
(i.e., reducing of a class to its subclass with fewer number of arbitrary elements). To
use this technique, we firstly look for the equivalence group of class (2) in Sect. 2.
A gauging of arbitrary elements is performed in the same section. In Sect. 3 Lie
symmetries of the simplified class are exhaustively classified. In Sect. 4 we discuss
how to choose an optimal gauging among possible ones. To illustrate that the chosen
gauging is optimal we also adduce results on group classification of class (2) carried
out for alternative gauging.

2 Equivalence Transformations

Equivalence transformations are nondegenerate point transformations, that preserve
the differential structure of the class under study, change only its arbitrary elements
and form a group. There are several kinds of equivalence groups. The usual equiva-
lence group, used for solving group classification problems since late 50’s, consists of
the nondegenerate point transformations of the independent and dependent variables
and of the arbitrary elements of the class, where transformations for independent and
dependent variables do not involve arbitrary elements of the class [11]. The notion of
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the generalized equivalence group, where transformations of variables of given DEs
explicitly depend on arbitrary elements, appeared in works by Meleshko in middle
nineties [12, 13]. The extended equivalence group is an equivalence group whose
transformations include nonlocalities with respect to arbitrary elements [14]. The
generalized extended equivalence group possesses the properties of both generalized
and extended equivalence groups. The group classification problem becomes simpler
for solving if one use the widest possible equivalence group, the comparison of usage
of usual and generalized extended equivalence groups was presented recently in [15].
Moreover, in some cases the usage of generalized extended equivalence groups is
the only way to present the complete group classification, see, e.g., [16].

To derive the equivalence group of the class under consideration we use the direct
method [17]. The details of calculations are skipped for brevity and we only present
the results.

As it is more convenient for the study of Lie symmetries to consider the equivalent
form of the above class,

ut = f (t)uyy − g(t)k(u)ux , f gku �= 0, (3)

where f and g are smooth nonvanishing functions of the variable t, k is an arbitrary
smooth nonconstant function of u, we present transformations for both K and k = Ku

in the theorems below.

Theorem 1 The generalized extended equivalence group Ĝ∼ of class (2) (resp. (3))
is formed by the transformations

t̃ = T (t), x̃ = δ1x + δ2

∫
g(t)dt + δ3, ỹ = δ4y + δ5, ũ = δ6u + δ7,

f̃ (t̃) = δ4
2

Tt
f (t), g̃(t̃) = ε1

Tt
g(t),

K̃ (ũ) = δ6

ε1
(δ1K (u) + δ2u + ε2) ,

(
resp. k̃(ũ) = 1

ε1
(δ1k(u) + δ2),

)

where δi , i = 1, . . . , 7, ε1 and ε2 are arbitrary constants with δ1δ4δ6ε1 �= 0, T (t) is
an arbitrary smooth function with Tt �= 0.

The usual equivalence group of class (2) (resp. (3)) consists of the above trans-
formations with δ2 = 0.

It appears that if K = u2 (resp. k = u) the class of equations under study admits
a wider equivalence group.

Theorem 2 The generalized extended equivalence group Ĝ∼
1 of the class

ut = f (t)uyy − g(t)uux , f g �= 0, (4)

comprises the transformations



352 O. Vaneeva et al.

t̃ = T (t), x̃ = X (t)x + δ3

∫
g(t)X (t)2dt + δ4, ỹ = δ1y + δ2,

ũ = δ5

(
u

X (t)
− δ6x + δ3

)
, g̃(t̃) = X (t)2g(t)

δ5Tt
, f̃ (t̃) = δ21 f (t)

δ5Tt
,

where X (t) = (
δ6

∫
g(t)dt + δ7

)−1
, δi , i = 1, . . . , 7, are arbitrary constants with

δ1δ5(δ
2
6 + δ27) �= 0, and T (t) is an arbitrary smooth function with Tt �= 0.

The usual equivalence group of class (4) consists of the above transformations
with δ3 = δ6 = 0.

Equivalence transformations generate a subset of a set of admissible transforma-
tions [18] which can be interpreted as triples, each of which consists of two fixed
equations from a class and a point transformation that links these two equations. The
set of admissible transformations considered with the standard operation of compo-
sition of transformations is also called the equivalence groupoid [19]. Theorems1
and 2 give the descriptions of the equivalence groupoids of class (3) with nonlinear
k and of class (4), respectively.

As there is one arbitrary function, T (t), in the transformations from the group Ĝ∼,
we can set one of the arbitrary elements f or g of the initial class equals to a nonzero
constant value. We choose to perform the gauging g = 1 by using the equivalence
transformation

t̃ =
∫

g(t)dt, x̃ = x, ũ = u. (5)

Then, any equation from class (2) (resp. (3)) is mapped to an equation from its
subclass that is singled out by the condition g = 1. The detailed discussion on optimal
choice of gauging is presented in Sect. 4.

Without loss of generality, we can restrict ourselves to the study of the class (2)
with g = 1 or, what is more convenient, its equivalent form

ut = f (t)uyy − k(u)ux , f ku �= 0, (6)

since all results on symmetries, conservation laws, classical solutions and other
related objects can be found for Eq. (3) using the similar results derived for Eq. (6).

The equivalence groups of class (6) and its subclass with k = u are presented in
the following theorems.

Theorem 3 The usual equivalence group G∼ of class (6) consists of the transfor-
mations

t̃ = ε1t + ε0, x̃ = δ1x + δ2t + δ3, ỹ = δ4y + δ5, ũ = δ6u + δ7,

f̃ (t̃) = δ4
2

ε1
f (t), k̃(ũ) = 1

ε1
(δ1k(u) + δ2),

where δi , i = 1, . . . , 7, ε1 and ε0 are arbitrary constants with δ1δ4δ6ε1 �= 0.
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Theorem 4 The usual equivalence group G∼
1 of the class

ut = f (t)uyy − uux , f �= 0, (7)

is formed by the transformations

t̃ = αt + β

γt + δ
, x̃ = κx + μt + ν

γt + δ
, ỹ = λy + ε,

ũ = 1

Δ
(κ(γt + δ)u − κγx + δμ − γν) , f̃ (t̃) = λ2

Δ
(γt + δ)2 f (t),

where α, β, γ, δ, κ, μ, and ν are arbitrary constants defined up to a nonzero
multiplier with Δ = αδ − βγ �= 0, κ �= 0; λ and ε are arbitrary constants, λ �= 0.

Theorem 4 implies that any Eq. (7) with f = a(t + b)−2, where a �= 0 and b are
constants, is mapped by a point transformation to a constant-coefficient equation
from the same class.

We present also the results on equivalence transformations for the subclass of
class (3) singled out by the condition f = 1, which we will use for the comparison
of the cases f = 1 and g = 1 in Sect. 4.

Theorem 5 The generalized extended equivalence group Ĝ∼
2 of the class

ut = uyy − g(t)k(u)ux , gku �= 0, (8)

comprises the transformations

t̃ = δ24 t + δ0, x̃ = δ1x + δ2

∫
g(t)dt + δ3, ỹ = δ4y + δ5, ũ = δ6u + δ7,

g̃(t̃) = ε1

δ24
g(t), k̃(ũ) = 1

ε1
(δ1k(u) + δ2) ,

where δi , i = 0, 1, . . . , 7, and ε1 are arbitrary constants with δ1δ4δ6ε1 �= 0.

Theorem 6 The generalized extended equivalence group Ĝ∼
3 of the class

ut = uyy − g(t)uux , g �= 0, (9)

consists of the transformations

t̃ = δ21 t + δ2, x̃ = x + δ4

γ1
∫
g(t)dt + γ2

+ δ5, ỹ = δ1y + δ3,

ũ = δ6

((
γ1

∫
g(t)dt + γ2

)
u − γ1(x + δ4)

)
, g̃(t̃) = g(t)

δ21δ6
(
γ1

∫
g(t)dt + γ2

)2 ,

where δi , i = 1, . . . , 6, γ1 and γ2 are arbitrary constants with δ1δ6(γ
2
1 + γ2

2) �= 0.
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3 Lie Symmetries

The group classification problem for class (3) up to Ĝ∼-equivalence reduces to the
similar problem for class (6) up to G∼-equivalence (resp. the group classification
problem for class (4) up to Ĝ∼

1 -equivalence reduces to such a problem for class (7)
up toG∼

1 -equivalence). To solve the group classification problem for class (6) we use
the classical approach based on integration of determining equations implied by the
infinitesimal invariance criterion [11]. We search for symmetry operators of the form
Q = τ (t, x, y, u)∂t + ξ(t, x, y, u)∂x + η(t, x, y, u)∂y + θ(t, x, y, u)∂u generating
one-parameter Lie groups of transformations that leave Eq. (6) invariant [11, 20]. It
is required that the action of the second prolongation Q(2) of the operator Q on (6)
vanishes identically modulo equation (6),

Q(2){ut − f (t)uyy + k(u)ux }|ut= f (t)uyy−k(u)ux = 0. (10)

The infinitesimal invariance criterion (10) implies the determining equations, sim-
plest of which result in

τ = τ (t), ξ = ξ(t, x), η = η1(t)y + η0(t), θ = ϕ(t, x, y)u + ψ(t, x, y),

where τ , ξ, η1, η0, ϕ and ψ are arbitrary smooth functions of their variables. Then
the rest of the determining equations are

τ ft = (2η1 − τt ) f, 2 f ϕy = −η1
t y − η0

t , (11)

(ϕu + ψ)ku + (τt − ξx )k = ξt , (12)

(ϕxu + ψx )k + (ϕt − f ϕyy)u + ψt − f ψyy = 0. (13)

Firstly we integrate equations (12) and (13) for k up to the G∼-equivalence taking
into account that ku �= 0. The method of furcate split [21, 22] is further used. For
any operator Q ∈ Amax Eq. (12) gives some equations on k of the general form

(au + b)ku + ck = d, (14)

where a, b, c, and d are constants. The number s of such independent equations is
not greater than two, otherwise such equations form incompatible system for k. If
s = 0, then (14) is not an equation on k but an identity, this corresponds to the case
of arbitrary k. If s = 1, then the integration of (14) up to the G∼-equivalence gives
three different cases: (i) k = un , n �= 0, 1; (ii) k = eu; (iii) k = ln u. If s = 2, then
the function k is linear in u, k = u mod G∼.

The determining Eq. (13) implies that there exist two essentially different cases
of classification: I. kuu �= 0, and II. kuu = 0, i.e. k = u mod G∼.

Consider firstly the case of arbitrary function k. In this case Eqs. (12) and (13)
should be split with respect to k and ku . The splitting results in the equations
ϕ = ψ = ξt = τt − ξx = 0. Therefore τ = c1t + c2, ξ = c1x + c3. As ϕ = 0, the
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Table 1 The group classification of class (6) up to the G∼-equivalence
No. f (t) Basis of Amax

Arbitrary k

1 ∀ ∂x , ∂y

2 tρ ∂x , ∂y, 2t∂t + 2x∂x + (ρ + 1)y∂y

3 et ∂x , ∂y, 2∂t + y∂y

4 1 ∂x , ∂y, ∂t , 2t∂t + 2x∂x + y∂y

k = un , n �= 0, 1

5 ∀ ∂x , ∂y, nx∂x + u∂u

6 tρ ∂x , ∂y, nx∂x + u∂u , 2t∂t + 2x∂x + (ρ + 1)y∂y

7 et ∂x , ∂y, nx∂x + u∂u , 2∂t + y∂y

8 1 ∂x , ∂y, nx∂x + u∂u , ∂t , 2t∂t + 2x∂x + y∂y

k = eu

9 ∀ ∂x , ∂y, x∂x + ∂u

10 tρ ∂x , ∂y, x∂x + ∂u, 2t∂t + 2x∂x + (ρ + 1)y∂y

11 et ∂x , ∂y, x∂x + ∂u, 2∂t + y∂y

12 1 ∂x , ∂y, x∂x + ∂u, ∂t , 2t∂t + 2x∂x + y∂y

k = ln u

13 ∀ ∂x , ∂y, t∂x + u∂u

14 tρ ∂x , ∂y, t∂x + u∂u , 2t∂t + 2x∂x + (ρ + 1)y∂y

15 et ∂x , ∂y, t∂x + u∂u , 2∂t + y∂y

16 1 ∂x , ∂y, t∂x + u∂u , ∂t , 2t∂t + 2x∂x + y∂y

Here n and ρ are arbitrary nonzero constants, and n �= 1

second equation of (11) implies η1
t = η0

t = 0, i.e. η1 = c4, and η0 = c5. Here ci ,
i = 1, . . . , 5, are arbitrary constants. Then the general form of the infinitesimal
generator is Q = (c1t + c2)∂t + (c1x + c3)∂x + (c4y + c5)∂y and the first equation
of (11) takes the form

(c1t + c2) ft = (2c4 − c1) f. (15)

This is the classifying equation for f. If f is an arbitrary nonvanishing smooth func-
tion, then the latter equation should be split with respect to f and its derivative, which
results in c1 = c2 = c4 = 0. Therefore, the kernel A∩ of the maximal Lie invariance
algebras of equations from class (6) is A∩ = 〈∂x , ∂y〉 (Case 1 of Table1). To per-
form the further classification we integrate equation (15) up to the G∼-equivalence.
All G∼-inequivalent values of f that provide Lie symmetry extensions for equations
from class (6) with arbitrary k are exhausted by the following values: f = tρ, ρ �= 0;
f = et ; f = 1.The corresponding bases ofmaximal Lie invariance algebras are pre-
sented by Cases 2–4 of Table1.

If k = un , n �= 0, 1, then splitting Eqs. (12) and (13) with respect to different
powers of u leads to the system ξt = ψ = ϕx = 0, ϕt = f ϕyy , nϕ + τt − ξx = 0.
These equations together with (11) imply τ = c1t + c2, ξ = (c1 + nc6)x + c3,
η = c4y + c5, ϕ = c6, where ci , i = 1, . . . , 6, are arbitrary constants. The classi-
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fying equation for f takes the form (15). Therefore, the cases of Lie symmetry
extensions are given by the same forms of f as in previous case, namely, arbitrary,
power, exponential and constant. See Cases 5–8 of Table1. The dimensions of the
respective Lie symmetry algebras increase by one in comparing with the case of
arbitrary k. The highest dimension is five, not six as it was stated in the paper by
Kumar et al. [10].

The consideration of the cases k = eu and k = ln u is rather similar to the case of
k = un withn �= 0, 1, therefore,weomit the details of calculations. The classification
results are presented in Cases 9–16 of Table1.

Consider the case of linear k, then up to the equivalence we can assume k = u.
We substitute k = u to Eqs. (12) and (13) and further split them with respect to
different powers of u. This leads to the system ψ = ξt , τt − ξx + ϕ = 0, ϕx = 0,
ψx + ϕt − f ϕyy = 0, and ψt − f ψyy = 0. We differentiate the first and the sec-
ond equation of this system with respect to the variable y and get the additional
conditions ϕy = ψy = 0. Then also ψt = ψxx = ϕt t = 0 and the second equa-
tion of (11) gives η1

t = η0
t = 0. The general form of the infinitesimal operator Q

is Q = (c2t2 + c1t + c0)∂t + ((c2t + c4)x + c3t + c5)∂x + (c6y + c7)∂y + ((c4 −
c1 − c2t)u + c2x + c3)∂u, where ci , i = 0, . . . , 7, are arbitrary constants. The clas-
sifying equation for f is

(c2t
2 + c1t + c0) ft = (2c6 − c1 − 2c2t) f. (16)

If this is not an equation on f but an identity then c0 = c1 = c2 = c6 = 0. There-
fore, the constants c3, c4, c5, c7 appearing in the infinitesimal generator Q are
arbitrary and the maximal Lie invariance algebra of the Eq. (7) with arbitrary f is
the four-dimensional algebra 〈∂x , ∂y, x∂x + u∂u, t∂x + ∂u〉 (Case 1 of Table2).

The further group classification of Eq. (6) with k = u, i.e. Eq. (7), is equivalent to
the integration of the equation on f of the form

(at2 + bt + c) ft = (d − 2at) f, (17)

where a, b, c and d are arbitrary constants with (a, b, c) �= (0, 0, 0). Up to G∼
1 -

equivalence the parameter quadruple (a, b, c, d) can be assumed to belong to the set
{(1, 0, 1,σ), (0, 1, 0, ρ), (0, 0, 1, 1), (0, 0, 1, 0)},whereσ,ρ are nonzero constants,
ρ ≤ −1. The proof is similar to ones presented in Vaneeva et al. [16, 23]. It is based
on the fact that transformations from the equivalence group G∼

1 can be extended to
the coefficients a, b, c and d as follows

ã = μ(aδ2 − bγδ + cγ2), b̃ = μ(−2aβδ + b(αδ + βγ) − 2cαγ),

c̃ = μ(aβ2 − bαβ + cα2), d̃ = μ(dΔ + 2aβδ − 2bβγ + 2cαγ),

where Δ = αδ − βγ and μ is an arbitrary nonzero constant.
Integration of the Eq. (17) for four inequivalent cases of the quadruple (a, b, c, d)

gives respectively f = eσ arctan t

t2+1 , f = tρ, ρ �= 0, f = et and f = 1. We further sub-
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Table 2 The group classification of class (7) up to the G∼
1 -equivalence

No. f (t) Basis of Amax

1 ∀ ∂x , ∂y, x∂x + u∂u , t∂x + ∂u

2 eσ arctan t

t2+1
∂x , ∂y, x∂x + u∂u , t∂x + ∂u, (t2 + 1)∂t + t x∂x + 1

2σy∂y
+(x − tu)∂u

3 tρ ∂x , ∂y, x∂x + u∂u , t∂x + ∂u, 2t∂t + (ρ + 1)y∂y − 2u∂u

4 et ∂x , ∂y, x∂x + u∂u , t∂x + ∂u, 2∂t + y∂y

5 1 ∂x , ∂y, x∂x + u∂u , t∂x + ∂u, ∂t , 2t∂t + y∂y − 2u∂u

Here ρ and σ are arbitrary constants with ρ �= 0,−2. Moreover ρ ≤ −1 mod G∼
1

stitute the obtained inequivalent values of f into Eq. (16) and find the corresponding
values of constants ci and, therefore, the general forms of the infinitesimal generators.
The results of the group classification of class (7) are presented in Table2.

The classification lists presented in Tables1 and 2 give exhaustive group classifi-
cation of the class of variable coefficient nonlinear Kolmogorov equations (3).

4 Discussion on the Choice of the Optimal Gauging

Appropriate choice of gauging of the arbitrary elements is a crucial step in solving
group classification problems. In our case the gauging f = 1 could seem more con-
venient if one look for the determining equations for finding Lie symmetries. For
class (8) they have the form

2ηy = τt , ηyy − ηt = 2ϕy, (ϕu + ψ)gku + [τgt + (τt − ξx )g]k = ξt ,

(ϕxu + ψx )gk + (ϕt − ϕyy)u + ψt − ψyy = 0.

For the case k �= u the difference in classification is not so crucial (cf. Table1 with
Table3). Though one can see that for k = ln u the operator t∂x + u∂u appearing in
Cases 13–16 of Table1 transforms to various forms in the respective cases of Table3.
For the case k = u the difficulty of group classification of the class (3) with f = 1
increases essentially in comparison with the gauging g = 1. Solving the determining
equations results in the following form of the infinitesimal generator

Q = (c1t + c0)∂t + [(c2x + c3)
∫
g(t)dt + c4x + c5]∂x +

( 12c1y + c6)∂y + [(c7 − c2
∫
g(t)dt)u + c2x + c3]∂u,

where ci , i = 0, . . . , 7, are arbitrary constants. The classifying equation for g is
the integro-differential equation (c1t + c0)gt + (

c1 − c4 + c7 − 2c2
∫
g(t)dt

)
g = 0

(cf. with the classifying Eq. (16) for f that is much simpler). The results of group
classification for class (9) are presented in Table4. Comparing Tables2 and 4 one can
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Table 3 The group classification of class (8) up to the Ĝ∼
2 -equivalence

No. g(t) Basis of Amax

Arbitrary k

1 ∀ ∂x , ∂y

2 tρ ∂x , ∂y, 2t∂t + 2(ρ + 1)x∂x + y∂y

3 et ∂x , ∂y, ∂t + x∂x
4 1 ∂x , ∂y, ∂t , 2t∂t + 2x∂x + y∂y

k = un , n �= 0, 1

5 ∀ ∂x , ∂y, nx∂x + u∂u

6 tρ ∂x , ∂y, nx∂x + u∂u , 2t∂t + 2(ρ + 1)x∂x + y∂y

7 et ∂x , ∂y, nx∂x + u∂u , ∂t + x∂x
8 1 ∂x , ∂y, nx∂x + u∂u , ∂t , 2t∂t + 2x∂x + y∂y

k = eu

9 ∀ ∂x , ∂y, x∂x + ∂u

10 tρ ∂x , ∂y, x∂x + ∂u , 2t∂t + 2(ρ + 1)x∂x + y∂y

11 et ∂x , ∂y, x∂x + ∂u , ∂t + x∂x
12 1 ∂x , ∂y, x∂x + ∂u , ∂t , 2t∂t + 2x∂x + y∂y

k = ln u

13 ∀ ∂x , ∂y,
∫
g(t)dt ∂x + u∂u

14a tρ, ρ �= −1 ∂x , ∂y, tρ+1∂x + (ρ + 1)u∂u , 2t∂t + 2(ρ + 1)x∂x + y∂y

14b t−1 ∂x , ∂y, ln t ∂x + u∂u, 2t∂t + y∂y

15 et ∂x , ∂y, et∂x + u∂u, ∂t + x∂x
16 1 ∂x , ∂y, t∂x + u∂u, 2t∂t + 2x∂x + y∂y, ∂t

Here n and ρ are arbitrary nonzero constants

Table 4 The group classification of class (9) up to the Ĝ∼
3 -equivalence

No. g(t) Basis of Amax

1 ∀ ∂x , ∂y, x∂x + u∂u ,
∫
g(t)dt ∂x + ∂u

2 1
t cos2(ν ln t)

∂x , ∂y, x∂x + u∂u , tan(ν ln t)∂x + ν∂u,

t∂t + νx tan(ν ln t)∂x + 1
2 y∂y + ν(νx − tan(ν ln t)u)∂u

3 1
cos2 t

∂x , ∂y, x∂x + u∂u , tan t∂x + ∂u , ∂t + x tan t∂x + (x − u tan t)∂u

4a tρ ∂x , ∂y, x∂x + u∂u , tρ+1∂x + (ρ + 1)∂u , 2t∂t + 2(ρ + 1)x∂x + y∂y

4b t−1 ∂x , ∂y, x∂x + u∂u , ln t ∂x + ∂u , 2t∂t + y∂y

5 et ∂x , ∂y, x∂x + u∂u , et∂x + ∂u , ∂t + x∂x
6 1 ∂x , ∂y, x∂x + u∂u , t∂x + ∂u, ∂t , 2t∂t + 2x∂x + y∂y

Here ρ and ν are arbitrary nonzero constants. Moreover ρ < −1 mod Ĝ∼
3 , ρ �= −2

conclude that forms of the basis operators of the maximal Lie invariance algebras
are more cumbersome in Table4.

The links between equations of the form (9) are also more tricky than between
equations from class (7). For example, the equation



Group Analysis of a Class of Nonlinear Kolmogorov Equations 359

ut = uyy − 1

t cosh2(ν ln t)
uux ,

where the variable coefficient can be rewritten as 4
t (tν+t−ν )2

, admits the
five-dimensional maximal Lie invariance algebra with the basis operators ∂x , ∂y,

tanh(ν ln t)∂x + ν∂u, x∂x + u∂u, and t∂t − νx tanh(ν ln t)∂x + 1
2 y∂y − ν(νx −

tanh(ν ln t)u)∂u . The equivalence of this equation and the equation

ũ t̃ = ũ ỹ ỹ − t̃2ν−1ũũ x̃

from the same class does not seem obvious. Nevertheless, there exists transformation
from the equivalence group that establishes a link between these equations, which is

t̃ = t, x̃ = 1

4
x(t2ν + 1), ỹ = y, ũ = u

t2ν + 1
+ ν

2
x .

This shows that the distinguishing inequivalent cases of Lie symmetry extensions
for class (9) is also more difficult task than for class (7).

Therefore, the gauging g = 1 is without a doubt the right choice to perform a
group classification for the class (3) and especially its subclass (4).

So, is there a regular way that can help one to indicate which gauging is prefer-
able among several possible ones? Equivalence group appears to be that indicator
showing the right choice of gauging. Indeed, if we compare equivalence groups pre-
sented in Theorems3 and 4 with those adduced in Theorems5 and 6, we can see
that equivalence groups of class (6) and its subclass (7) are of the usual type whereas
equivalence groups of class (8) and its subclass (9) remain to be generalized extended
as the equivalence group of the initial class. Transformations from the generalized
extended groups become point only after fixing arbitrary elements and integrals of
g then naturally appear in the forms of Lie symmetry generators and even in the
classifying equation. This of course makes the calculations more difficult.

Therefore, the widest possible equivalence group should be necessarily found
even before applying Lie invariance criterion to the equations under study in order
to choose the optimal gauging and to optimize the process of group classification.

5 Conclusion

The complete group classification of class (2) is performed using the gauging of
arbitrary elements by the equivalence transformations. We presented classification
lists for the equivalent form of this class, namely, for class (3). The correspondences
between k and K are the following: k = un , n �= 0,−1, ↔ K = un+1; k = u−1 ↔
K = ln u; k = eu ↔ K = eu ; k = ln u ↔ K = u ln u.

Application of the widest possible (generalized extended) equivalence groups
allowed us to write down classification lists in an explicit and concise form. We have
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also shown that the equivalence group is that indicator which helps one to choose
the optimal gauging among several possible ones.

The derived Lie symmetries can be now used to to reduce the nonlinear Kol-
mogorov equations (2) to ordinary differential equations and, therefore, for finding
exact solutions. The reductions can be achieved using two-dimensional subalgebras
of the corresponding maximal Lie invariance algebras.
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Thermoelectric Characteristics of Zk
Parafermion Coulomb Islands

Lachezar S. Georgiev

Abstract Using the explicit rational conformal field theory partition functions for
the Zk parafermion quantum Hall states on a disk we compute numerically the ther-
moelectric power factor for Coulomb-blockaded islands at finite temperature. We
demonstrate that the power factor is rather sensitive to the neutral degrees of free-
dom and could eventually be used to distinguish experimentally between different
quantum Hall states having identical electric properties. This might help us to con-
firm whether non-Abelian quasiparticles, such as the Fibonacci anyons, are indeed
present in the experimentally observed quantum Hall states.

1 Introduction: Non-Abelian Anyons and Topological
Quantum Computation

We shall start this sectionwith the question of what non-Abelian statistics is. It is well
known that when we exchange indistinguishable particles the quantum state acquires
a phase eiπ(θ/π) which is proportional to the statistical angle θ/π. In three-dimensional
coordinate space this phase can be either 0 when the particles are bosons, or 1 when
the particles are fermions. In two-dimensional space, however, this restriction is not
valid and the particles can have any statistical angle between 0 and 1, that’s why they
are called anyons. For example, the Laughlin anyons corresponding to the fractional
quantumHall (FQH) state with filling factor 1/3 have θL/π = 1/3. In addition, while
the n-particle quantum states in three dimensions are constructed as representations
of the symmetric group Sn , which are symmetric for bosons and antisymmetric for
fermions, in two dimensions the n-particle states are build up as representations of
the braid group Bn . The non-Abelian anyons are such particles in two dimensional
space whose n-particle states belong to representations of Bn whose dimension is
bigger than 1. In terms of n-particle states this means that the non-Abelian anyons’
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wave functions belong to degenerate multiplets and that the statistical angle θ may
be a non-trivial matrix, in which case the statistical phase eiθ would be non-Abelian.

The anyonic states of matter are labeled by fusion paths [1] which are defined as
concatenation of fusion channels and can be displayed in Bratteli diagrams. The
fusion channels are denoted by the index ‘c’ in the fusion process of two par-

ticles of type a and b which is denoted symbolically as Ψa × Ψb =
g∑

c=1
Nab

cΨc,

where the fusion coefficients (Nab)
c are integers which are symmetric and asso-

ciative [2]. Put another way, a collection of particles {Ψa} are non-Abelian anyons
if Nab

c �= 0 for more than one c. As an example we consider the Ising anyons

ΨI (z) = σ(z) : ei 1
2
√
2
φ(z) : realized in a conformal field theory (CFT) with û(1) ×

Ising symmetry, where φ(z) is a normalized û(1) boson and σ is the chiral spin field
in the Ising CFT model,

σ × σ = I + ψ.

Besides the fact that non-Abelian statistics is a new fundamental concept in particle
physics it is also important for the so-called topological quantum computation (TQC)
[3, 4]. In this context quantum information is encoded into the fusion channels

|0〉 = (σ,σ)I ←→ σ × σ → I

|1〉 = (σ,σ)ψ ←→ σ × σ → ψ,

which is a topological quantity–it is independent of the fusionprocess details, depend-
ing only on the topology of the coordinate space. Fusion channel is also independent
of the anyon separation and is preserved when the two particles are separated–if we
fuse two particles and then split them again, their fusion channel does not change.

The basic idea of TQC is that quantum information can be encoded into the fusion
channels and the quantumgates can be implemented bybraiding non-Abelian anyons.
As an illustration we can consider 8 Ising anyons, which in the quantum information
language can be used to encode 3 topological qubits, and transport adiabatically
anyon number 7 along a complete loop around anyon number 6. Then the 8-anyons

states are multiplied by a statistical phase
(
B(8,+)
6

)2 = X3 which implements the

NOT gate X3 = I2 ⊗ I2 ⊗ X on the third qubit [3, 5].
Another promising example of non-Abelian anyons are the Fibonacci anyons

[6] realized in the diagonal coset of the Z3 parafermion FQH states [7, 8] (or, in
the three-state Pots model) as the parafermion primary field ε corresponding to the
nontrivial orbit of the simple-current’s action I = {Λ0 + Λ0,Λ1 + Λ1,Λ2 + Λ2}
ε = {Λ0 + Λ1,Λ1 + Λ2,Λ0 + Λ2} with fusion rules

I × I = I, I × ε = ε, ε × ε = I + ε.
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The information encoding for Fibonacci anyons is again in the fusion channels,
denoted by the field I and ε of the resulting fusion, however, this time for triples of
anyons [6]

|0〉 = ((ε, ε)I, ε)ε

|1〉 = ((ε, ε)ε, ε)ε,

and the third state ((ε, ε)ε, ε)I, having a trivial quantum dimension, decouples from
the previous two and is called non-computational [6].

Given that non-Abelian statistics is a new concept a natural question arises: how
can it be discovered? In the rest of this paper we will discuss, how non-Abelian
statistics might be observed in Coulomb-blockade conductance spectrometry and by
measuring certain thermoelectric characteristics of Coulomb-blockaded islands.

2 Coulomb Island Spectroscopy

Let us consider a Coulomb-blockaded island, which can be realized as a quantum dot
with drain, source and a side gate which is equivalent to single-electron transistor,
like in Ref. [9]. This setup is an almost closed quantum system, which still has
discrete energy levels and is like a large artificial atom but is highly tunable by
Aharonov–Bohm flux and side-gate voltage.

2.1 Coulomb Island’s Conductance–CFT Approach

In this section we are going to use the chiral Grand canonical partition function
for a disk fractional quantum Hall sample to calculate its thermoelectric properties.
In such samples the bulk is inert due to the nonzero mobility gap while the edge
is mobile and can be described by a rational unitary CFT [2, 10, 11]. The Grand
partition function is

Zdisk(τ , ζ) = trHedge e
−β(H−μN ) = trHedge e

2πiτ (L0−c/24)e2πiζ J0 , (1)

where H = �
2πvF
L

(
L0 − c

24

)
is the edge Hamiltonian expressed in terms of the zero

mode L0 of theVirasoro stress-energy tensor (with a central charge c), N = −√
νH J0

is the particle number on the edge expressed in terms of the J0 zero mode of the û(1)
current and νH is the FQH filling factor. The trace is taken over the edge-states’
Hilbert space Hedge which depends on the number of quasiparticles localized in
the bulk. The temperature T and chemical potential μ are related to the modular
parameters [2] τ and ζ by
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τ = iπ
T0
T

, T0 = �vF

πkB L
, ζ = i

μ

2πkBT
,

where vF is the Fermi velocity at the edge and L is the circumference of the edge.
The CFT disk partition function in presence of AB flux φ = eB.A/h, threading the
disk, is modified by simply shifting the chemical potential [12]

ζ → ζ + φτ , Zφ
disk(τ , ζ) = Zdisk(τ , ζ + φτ ).

It is interesting to note that the side-gate voltage Vg affects the quantum dot (QD)
in the same way as the AB flux [13], through the (continuous) externally induced
electric charge [14] on the QD−CgVg/e ≡ νHφ = Qext, whereCg is the capacitance
of the gate.

The thermodynamic Grand potential on the edge is defined as usual asΩ(T,μ) =
−kBT ln Zdisk(τ , ζ) and the electron number can be computed as [15]

〈Nel(φ)〉β,μN = νH

(
φ + μN

Δε

)
+ 1

2π2

(
T

T0

)
∂

∂φ
ln Zφ(T,μN ) (2)

Similarly the edge conductance in the linear-response regime can be computed by
[15]

G(φ) = e2

h

(
νH + 1

2π2

(
T

T0

)
∂2

∂φ2
ln Zφ(T, 0)

)
. (3)

There are certain difficulties in measuring QD conductance and distinguishing FQH
states: experiments are performed in extreme conditions (high B, very low T ) with
expensive samples. Moreover, there are many doppelgangers [16], i.e., distinct states
with the same conductance patterns with differences in the neutral sector where G
is not sensitive. Under these conditions the sequential tunneling of electrons one-
by-one is dominating the cotunneling, which is a higher-order process associated
with almost simultaneous virtual tunneling of pairs of electrons [14], that will not be
considered here.

3 Thermopower: A Finer Spectroscopic Tool

The thermopower, or the Seebeck coefficient, is defined [13, 14] as the potential
difference V between the leads of the SET when ΔT = TR − TL 
 TL , under the
condition that I = 0. Usually thermopower is expressed as S = GT /G, where G
and GT are electric and thermal conductances, respectively. However, for the SET
configuration GT → 0 and G → 0 in the Coulomb blockade valleys, so that it is
more appropriate to use another expression [14]
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S ≡ − lim
ΔT→0

V

ΔT

∣
∣
∣
∣
I=0

= −〈ε〉
eT

,

where 〈ε〉 is the average energy of the tunneling electrons. In the CFT approach
using the Grand partition function for the FQH edge of the QD we can express the
average tunneling energy as the difference between the energy of the QDwith N + 1
electrons and that of the QD with N electrons

〈ε〉φβ,μN
= Eβ,μN+1

QD (φ) − Eβ,μN
QD (φ)

〈N (φ)〉β,μN+1 − 〈N (φ)〉β,μN

The total QD energy (in the Grand canonical ensemble) can be written as

Eβ,μN
QD (φ) =

N0∑

i=1

Ei + 〈HCFT(φ)〉β,μN ,

where Ei , i = 1, . . . , N0 are the occupied single-electron states in the bulk of the
QD, and 〈· · ·〉β,μ is the Grand canonical average of HCFT on the edge at inverse
temperature β = (kBT )−1 and chemical potential μ. The chemical potentials μN

and μN+1 of the QD with N and N + 1 electrons can be chosen as [13]

μN = −1

2
Δε, μN+1 = 1

2
Δε, Δε = �

2πvF

L
.

Another important observable is the thermoelectric power factor [13] PT which is
defined as the electric power P generated by the temperature difference ΔT

P = V 2/R = PT (ΔT )2, PT = S2G, (4)

where R = 1/G is the electric resistance of the CB island. The average tunneling
energy can be expressed in terms of the CFT averages of the Hamiltonian and particle
number as follows [13]

〈ε〉φβ,μN
= 〈HCFT(φ)〉β,μN+1 − 〈HCFT(φ)〉β,μN

〈N (φ)〉β,μN+1 − 〈N (φ)〉β,μN

. (5)

The electron number average can be computed from Eq. (2) and the edge energy
average can be obtained from the Grand potential Ωφ(T,μN ) = −kBT ln Zφ(T,μ)

in presence of AB flux φ as

〈HCFT(φ)〉β,μN = Ωφ(T,μN ) − T
∂Ωφ(T,μN )

∂T
− μN

∂Ωφ(T,μN )

∂μ
. (6)
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4 Zk Parafermion Quantum Hall Islands

The CFT for the Zk parafermion quantum Hall islands (or QDs) contains an electric
charge part û(1) and a neutral part which is realized as a parafermion diagonal coset
[7] (

û(1) ⊗ ŝu(k)1 ⊕ ŝu(k)1

ŝu(k)2

)Zk

The total disk partition function for the Zk parafermion quantum Hall islands [7] is
labeled by two integers l mod k + 2 and ρ mod k satisfying l − ρ ≤ ρ mod k and
can be written as follows

χl,ρ(τ , ζ) =
k−1∑

s=0

Kl+s(k+2)(τ , kζ; k(k + 2))ch(Λl−ρ+s + Λρ+s)(τ ), (7)

where Kl(τ , kζ; k(k + 2)) are the chiral partition functions of the û(1) part while
ch(Λμ + Λρ)(τ ) are the characters of the neutral part of the CFT. The û(1) part
corresponds to Luttinger liquid partition function (with compactification radius Rc =
1/m)

Kl(τ , ζ;m) = CZ

η(τ )

∞∑

n=−∞
q

m
2 (n+ l

m )
2

e2πiζ(n+ l
m ),

where the modular parameter is related to the temperature

q = e−βΔε = e2πiτ , Δε = �
2πvF

L

and the Dedekind function and Cappelli–Zemba factors [2, 11] are given by

η(τ ) = q1/24
∞∏

n=1

(1 − qn), CZ = e−πνH
(Im ζ)2

Im τ .

The neutral partition function are labeled by a level-2 weight Λμ + Λρ with the
condition 0 ≤ μ ≤ ρ ≤ k − 1 and have the form [7]

chσ,Q(τ ) = qΔ(σ)− c
24

∞∑

m1,m2,...,mk−1=0
k−1∑

i=1
i mi≡Q mod k

qm.C−1.(m−Λσ)

(q)m1 · · · (q)mk−1

,

(q)n =
n∏

j=1

(1 − q j ), Δ(σ) = σ(k − σ)

2k(k + 2)
, c = 2(k − 1)

k + 2
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Fig. 1 Conductance peaks (right Y scale) and thermopower (left Y scale) for the Z3 parafermion
FQH state without bulk quasiparticles

where m = (m1, . . . ,mk−1), 0 ≤ σ ≤ Q ≤ k − 1 and C−1 is the inverse Cartan
matrix for su(k). The coset weight labels are related to σ and Q by μ = Q − σ,

ρ = Q. Using the explicit formulas (5) for the thermopower in terms of the average
tunneling energy expressed in terms of the Grand canonical averages (2) and (6) and
the partition function (7), as well as Eq. (3) for the conductance, we can compute the
thermopower for theZ3 parafermion FQH state.We plot in Fig. 1 the electric conduc-
tance and thermopower as functions of the AB flux φ, or, equivalently as functions
of the side-gate voltage Vg for the Z3 parafermion FQH state without quasiparticles
in the bulk, i.e., for l = 0 and ρ = 0. Just like the thermopower of metallic quantum
dots [14], we see in Fig. 1 that the peaks of the conductance precisely corresponds
to the (continuous in the limit T → 0) zeros of the thermopower.

Similarly,we can compute fromEq. (4) the power factorPT for theZ3 parafermion
FQH state without quasiparticles in the bulk (l = 0 and ρ = 0), which is plotted
together with the conductance in Fig. 2.

5 Conclusion and Perspectives

The thermoelectric characteristics of Coulomb blockaded QDs, such as the ther-
mopower and especially the thermoelectric power factor, appear to be more sensitive
to the neutral modes in the FQH liquid than the tunneling conductance. These could
be used as experimental signatures to identify (non-Abelian) Fibonacci anyons [6],
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Fig. 2 Power factor and conductance for the Z3 parafermion FQH state without bulk quasiparticles

which are believed to exist in the νH = 12/5 quantumHall state. This experimentally
observed FQH state [17] might be a realization of the particle–hole conjugate of the
Z3 parafermion quantum Hall state in the second Landau level with filling factor
νH = 3 − k/(k + 2) for k = 3.

A recent experiment [18] demonstrated that the power factor of a Coulomb block-
aded quantum dot might be directly measurable like the observable plotted in Fig. 3c
there. This could allowus to estimate from the experiment the ratio between the Fermi
velocities of the charged and neutral edge modes by comparing with the power factor
profile computed theoretically from the CFT [8]. Finally, this possibility to distin-
guish neutral characteristics of FQH states is bringing a new hope that we could
eventually decide whether Fibonacci anyons are indeed realized in Nature.
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First Order Hamiltonian Operators
of Differential-Geometric Type in 2D

Paolo Lorenzoni and Andrea Savoldi

Abstract We present an alternative approach to the problem of classification of first
order Hamiltonian operators of differential-geometric type in 2D.

1 Introduction

Multi-dimensional Hamiltonian operators of hydrodynamic type have been intro-
duced in 1984 by Dubrovin and Novikov [1]. In two dimensions, they are given
by

Pi j = gi j (u)
d

dx
+ bi jk (u)ukx + g̃i j (u)

d

dy
+ b̃i jk (u)uky, (1)

where u = (u1, . . . , un). In the non-degenerate case g and g̃ define a pair of com-
patible flat (pseudo)-metrics [1–3] and satisfy a set of additional constraints coming
from the skew-symmetry condition and the Jacobi identity [2].

Hamiltonian operators of this kind have been classified up to n = 4 components
[4]. A full classification has also been obtained in some special cases: in the semi-
simple case (that is, when the affinor Li

j = g̃ikgk j has distinct eigenvalues) [3], and
in the case of a direct sum of Jordan blocks with distinct eigenvalues [4].

In this paper we are going to present an alternative approach to the classification
problem. For simplicity we will consider the case of a direct sum of Jordan blocks
with distinct eigenvalues, providing full details in the cases n = 2, 3.
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1.1 Mokhov’s Conditions Rewritten

The set of relations determining when an operator of the form (1) defines a Hamil-
tonian operator was found byMokhov (see [2, 3] for further details). Recently, it has
been proved that these conditions can be rewritten in the following form [4]:

Theorem 1 Two flat metrics g and g̃ define a two-dimensional first order Hamil-
tonian operator of hydrodynamic type if and only if the following conditions are
satisfied:

• the contravariant (pseudo)-metric g̃ jk is linear in the flat coordinates of gi j ,
• the Nijenhuis torsion of the affinor Li

j = g̃ilgl j vanishes,
• g̃ is a Killing tensor of g: ∇ i g̃k j + ∇k g̃i j + ∇ j g̃ik = 0.

Moreover, the flatness of g and the above conditions imply the flatness of g̃.

The classification approach presented in [4] is based on the fact that a pair of
symmetric (constant) bivectors can be reduced to a normal form called the Segre
normal form. The procedure used can be summarized as follows. Working in the
flat coordinates of the first metric g, and setting g̃i j = ai jk u

k + g̃
i j
0 (where ai jk and g̃

i j
0

are constant), we have that g and g̃0 can be fixed using the Segre classification. The
unknowns ai jk can be found imposing first of all the Killing condition, and then the
vanishing of the Nijenhuis torsion.

2 Mokhov’s Relations in a Non Holonomic Frame

We can address the problem of classification in a different way. Let us consider the
case where L is one Jordan block.

As stated in [5] there exists a moving frame e(1), . . . , e(n) such that:

Li
ke

k
(p) = λei(p) + ei(p−1),

gi j e
i
(p)e

j
(q) = ±ηpq ,

where we set ei(p−1) = 0 if p = 1, the metric ηpq = δp,n+1−q is the usual constant
anti-diagonal metric and λ is the eigenvalue of L . We point out that the frame is not
assumed to be holonomic, which means that

[e(p), e(q)] = cspqe(s). (2)

Let us now write the Mokhov’s conditions in the non holonomic frame e(i),

i = 1, . . . , n.
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• Vanishing of the Nijenhuis torsion.
According to [5] the vanishing of the Nijenhuis torsion of L implies that

e(p)(λ) = 0, ∀p = 1, . . . , n − 1. (3)

Using this condition, we obtain

[Le(i), Le( j)] − L[e(i), Le( j)] − L[Le(i), e( j)] + L2[e(i), e( j)] =
= (L − λI )2[e(i), e( j)] − (L − λI )[e(i), e( j−1)] − (L − λI )[e(i−1), e( j)] +
+ [e(i−1), e( j−1)] − e(i)(λ)e( j−1) + e( j)(λ)e(i−1) =

=
n−2∑

k=1

(ck+2
i j − ck+1

i, j−1 − ck+1
i−1, j + cki−1, j−1)e(k) − (cni, j−1 + cni−1, j −

− cn−1
i−1, j−1)e(n−1) + cni−1, j−1e(n) − e(i)(λ)e( j−1) + e( j)(λ)e(i−1) = 0.

• Killing condition
In a non holonomic frame, the Christoffel symbols are defined as

∇e(p)e(q) = Γ s
qpe(s), (4)

and can be written in terms of the coefficients of the commutators [e(p), e(q)] and
of the scalar products ηpq = gi j ei(p)e

j
(q) as

Γ s
qp = 1

2
ηst (cqtp + cptq − ctqp), (5)

where ctqp = ηtl clqp. In this context, the Killing condition reads

(∇l L
k
m)gkn + (∇n L

k
l )gkm + (∇mL

k
n)gkl = 0. (6)

Multiplying by el(p), e
m
(q), e

n
(r), taking the sum over l,m, n, we get, after some

computations

∇e(p) (L
k
m)em(q)gkne

n
(r) + (∇e(r)L

k
l )e

l
(p)gkme

m
(q) + (∇e(q)

Lk
n)e

n
(r)gkle

l
(p) =

cn+1−p
r,q−1 + cn+1−r

p,q−1 + cn+1−r
q,p−1 + cn+1−q

r,p−1 + cn+1−q
p,r−1 + cn+1−p

q,r−1

+e(p)(λ)ηqr + e(r)(λ)ηpq + e(q)(λ)ηrp = 0.

• Vanishing of the curvature:

e(q)(Γ
s
rp) − e(r)(Γ

s
rq) + Γ l

rpΓ
s
lq − Γ l

rqΓ
s
lp + clpqΓ

s
rl = 0. (7)
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Thus, summarizing we have the following conditions

1. e(p)(λ) = 0, ∀p = 1, . . . , n − 1
2. For i < j :

n−2∑

k=1

(ck+2
i j − ck+1

i, j−1 − ck+1
i−1, j + cki−1, j−1)e(k) − (cni, j−1 + cni−1, j −

− cn−1
i−1, j−1)e(n−1) + cni−1, j−1e(n) − e(i)(λ)e( j−1) + e( j)(λ)e(i−1) = 0.

3. For p ≤ q ≤ r :

cn+1−p
r,q−1 + cn+1−r

p,q−1 + cn+1−r
q,p−1 + cn+1−q

r,p−1 + cn+1−q
p,r−1 + cn+1−p

q,r−1 +
e(p)(λ)ηqr + e(r)(λ)ηpq + e(q)(λ)ηrp = 0.

4. Vanishing of the curvature (7).

Let us know discuss in detail the cases n = 2, 3.

2.1 One 2× 2 Jordan Block

Let us consider the case n = 2. Applying the previous conditions we obtain

c112 = 0, c212 = e(2)(λ).

In other words we have the following commutations relation

[e(1), e(2)] = e(2)(λ)e(2).

Applying the definition, let us compute now the Christoffel symbols in the non
holonomic frame. We have

Γ 1
11 = −e(2)(λ), Γ 2

11 = 0, Γ 1
12 = 0, Γ 1

21 = 0,

Γ 1
22 = 0, Γ 2

12 = 0, Γ 2
21 = e(2)(λ), Γ 2

22 = 0.

The vanishing of the curvature (7) implies

e(1)(e(2)(λ)) = (
e(2)(λ)

)2
, (8)

e(2)(e(2)(λ)) = 0. (9)

It is a straightforward computation to check that the above condition coincides with
the condition

[ẽ(1), ẽ(2)] = 0,
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for the frame

(ẽ(1), ẽ(2)) = (e(1), e(2)) J−1, (10)

where J is the orthogonal transformation

J =
( 1

e(2)(λ)
0

0 e(2)(λ)

)
.

Therefore, the new frame ẽ(1), ẽ(2) is holonomic. Notice that after this orthogonal
transformation we have

J L J−1 =
(

λ 1

(e(2)(λ))
2

0 λ

)

In the Mokhov case this is exactly the transformation reducing the affinor to the
Mokhov’s form.

The system given by (8) and (9) for the unknown function f = e(2)(λ), written
in the new holonomic frame ẽi = ∂

∂ũi , reads

∂ f

∂ũ1
= f 3, (11)

∂ f

∂ũ2
= 0. (12)

The general solution is given by f (ũ1) = 1√
−2ũ1+C1

. Using (10), one can easily see

that
ẽ(1)(λ) = 0, ẽ(2)(λ) = 1,

which implies λ = ũ2 + C2.
Notice that up to shifts of ũ1, ũ2, L coincides with Mokhov’s example.

Remark 1 The case λ = const is trivial. Indeed, the starting frame is already holo-
nomic, and Mokhov’s condition implies L = const .

2.2 One 3× 3 Jordan Block

Let us consider the case n = 3. In this case applying conditions 1, 2 and 3 we obtain

c212 = c312 = c313 = c123 = 0, c223 = −c113, c
2
13 = e(3)(λ),

c323 = 1

2
e(3)(λ), c112 = −1

2
e(3)(λ).
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In other words, we have the following commutations relations

[e(1), e(2)] = −1

2
e(3)(λ)e(1),

[e(1), e(3)] = c113e(1) + e(3)(λ)e(2),

[e(2), e(3)] = −c113e(2) + 1

2
e(3)(λ)e(3),

where c113 is an arbitrary function of u1, u2, u3.
Assuming e(3)(λ) �= 0 we can reduce L to the Mokhov’s form by an orthogonal

transformation:

J L J−1 =

⎛

⎜
⎜
⎝

λ − 1
e(3)(λ)

−4 c113
(e(3)(λ))3

0 λ − 1
e(3)(λ)

0 0 λ

⎞

⎟
⎟
⎠ ,

J =

⎛

⎜
⎜
⎝

1
e(3)(λ)

−2 c113
(e(3)(λ))2

−2 (c113)
2

(e(3)(λ))3

0 −1 −2 c113
(e(3)(λ))

0 0 e(3)(λ)

⎞

⎟
⎟
⎠ .

Applying the definition, let us compute now the Christoffel symbols in the non
holonomic frame. We have

Γ 1
11 = 0, Γ 2

11 = 0, Γ 3
11 = 0, Γ 1

12 = −1

2
e(3)(λ), Γ 2

12 = 0, Γ 3
12 = 0,

Γ 1
13 = −c113, Γ 2

13 = 0, Γ 3
13 = 0, Γ 1

31 = 0, Γ 2
31 = e(3)(λ), Γ 3

31 = 0,

Γ 1
21 = −e(3)(λ), Γ 2

21 = 0, Γ 3
21 = 0, Γ 1

22 = c113, Γ 2
22 = 0, Γ 3

22 = 0,

Γ 1
23 = 0, Γ 2

23 = 0, Γ 3
23 = 0, Γ 1

32 = 0, Γ 2
32 = −c113, Γ

3
32 = 1

2
e(3)(λ),

Γ 1
33 = 0, Γ 2

33 = 0, Γ 3
33 = c113.

The vanishing of the curvature (7) implies

e(3)(e(3)(λ)) = c113e(3)(λ), (13)

e(1)(c
1
13) = 1

2
[e(3)(λ)]2, (14)

e(2)(c
1
13) = 1

2
c113e(3)(λ), (15)

e(3)(c
1
13) = 2[c113]2. (16)
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It is a straightforward computation that the above condition coincide with the con-
dition

[ẽ(i), ẽ( j)] = 0,

for the frame

(ẽ(1), ẽ(2), ẽ(3)) = (e(1), e(2), e(3)) J−1. (17)

Thus, again the new frame is holonomic. Using the commutativity conditions and
conditions

e(1)(λ) = 0, (18)

e(2)(λ) = 0, (19)

we can complete the system (13)–(16) for the unknown functions f = e(3)(λ) and
c = c113 obtaining

e(1)( f ) = 0, e(2)( f ) = 1

2
f 2, e(3)( f ) = c f,

e(1)(c) = 1

2
f 2, e(2)(c) = 1

2
c f, e(3)(c) = 2c2.

This system written in the new holonomic frame ẽi = ∂
∂ũi has the general solution

c = 4ũ1 + C2

(2C1 + ũ2)3
, f = 2

2C1 + ũ2
.

Finally, using (17)–(19), one can easily see that

ẽ(1)(λ) = 0, ẽ(2)(λ) = 0, ẽ(3)(λ) = 1,

and then λ = u3 + C3. Up to a shift of ũ1, ũ2 and ũ3, this result coincides with the
functions providing Mokhov’s solutions.

If λ is constant we obtain

[e(1), e(2)] = 0, [e(1), e(3)] = ce(1), [e(2), e(3)] = −ce(2),

with

e(1)(c) = 0, e(2)(c) = 0, e(3)(c) = 2c2.

It is easy to check that the frame

ẽ(1) = c
1
2 e(1), ẽ(2) = c− 1

2 e(2), ẽ(3) = c− 3
2 e(3)
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is holonomic. Using this fact one can prove that c = (ũ3)2 and that

L̃ =
⎛

⎝
λ (ũ3)−2 0
0 λ (ũ3)−2

0 0 λ

⎞

⎠ , η̃ = (ũ3)2

⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠

In the new coordinates û1 = ũ1 − (ũ2)2

2ũ3 , û2 = − ũ2

ũ3 , û
3 = − 1

ũ3 we obtain the
formulas

L̂ =
⎛

⎝
λ û3 −2û2

0 λ û3

0 0 λ

⎞

⎠ , η̂ =
⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠

that coincide with those obtained in [4].
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Exact Solutions for Generalized KdV
Equations with Variable Coefficients
Using the Equivalence Method

Oksana Braginets and Olena Magda

Abstract Using an example of variable-coefficient KdV equations we compare
effectiveness of the “equivalence method” and the “extended mapping transforma-
tion method”. It is shown that the “equivalence method” is more efficient. A formula
for generation of exact solutions for variable-coefficient KdV equations is derived.

1 Introduction

A number of models for different types of wave processes (including gravity waves
and waves in plasma) are reducible to the classical Korteweg–de Vries (KdV) equa-
tion or its generalizations. This explains a great interest of researchers in seeking new
techniques for finding exact solutions of such equations. Unfortunately the majority
of the proposed techniques lead to the equivalent forms of the solutions which are
known already. This is because the equivalence of the models and the corresponding
solutions is not systematically investigated.

In [1] exact solutions for the “general” KdV equations with variable coefficients
of the form

ut − 3Mγ(t)uux + γ(t)uxxx + 2β(t)u + (α(t) + β(t)x)ux = 0, (1)

withMγ �= 0were constructed using the so-called extendedmapping transformation
method. Here α, β and γ are arbitrary smooth functions of the variable t with γ �= 0
and M is a nonzero constant.
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In this paper we would like to show that the equivalence transformations are much
more efficient tools for finding exact solutions for this model.

2 Derivation of the Solution Formula via
the Equivalence Method

It was shown in [2] that any equation from the class (1) is reduced to the standard
KdV equation

ũ t̃ − 6ũũ x̃ + ũ x̃ x̃ x̃ = 0 (2)

by a point transformation (see Example 4 therein). We derive the most general form
of this transformation, that is

t̃ = δ31

∫
γ(t)e−3

∫
β(t)dtdt + δ0 (3)

x̃ = δ1e
− ∫

β(t)dt x +
∫
e− ∫

β(t)dt
(
δ2γ(t)e

−2
∫

β(t)dt − δ1α(t)
)
dt + δ3, (4)

ũ = M

2δ21
e2

∫
β(t)dtu − δ2

6δ31
,

where δ j , j = 0, 1, 2, 3, are arbitrary constants with δ1 �= 0. Then the formula for
the generating solutions of Eq. (1) from solutions of the Eq. (2) has the form

u = 2δ21
M

e−2
∫

β(t)dt

[
ũ

(
t̃, x̃

) + δ2

6δ31

]
, (5)

where ũ is an exact solution of the Eq. (2) and the variables t̃ and x̃ should be
replaced by expressions (3) and (4), respectively. See a collection of solutions of the
KdV equation (2), for example, in [3].

Using (5) one can construct a number of exact solutions (of different types!) for
equations from the class (1). For example, the two-soliton solution of (2) has the
form

ũ = −2
∂2

∂ x̃2
ln

(
1 + b1e

a1 x̃−a31 t̃ + b2e
a2 x̃−a32 t̃ + Ab1b2e

(a1+a2)x̃−(a31+a32 )t̃
)
,

where a1, a2, b1 and b2 are arbitrary constants, A =
(
a1−a2
a1+a2

)2
. This solution leads to

the following solution of the Eq. (1):

u = δ2

3Mδ1
e−2

∫
β(t)dt − 4

M

∂2

∂x2
ln

(
1 + b1e

θ1 + b2e
θ2 + Ab1b2e

θ1+θ2
)
,
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where a1, a2, b1 and b2 are arbitrary constants, A =
(
a1−a2
a1+a2

)2
,

θi = aiδ1e
− ∫

β(t)dt x + ci +
+ ai

∫
e− ∫

β(t)dt
(
(δ2 − a2i δ

3
1)γ(t)e

−2
∫

β(t)dt − δ1α(t)
)
dt,

where ci = aiδ3 − a3i δ0 are constants, i = 1, 2. Using the formula (5) one can con-
struct multi-soliton, rational, “one-soliton+one-pole” solutions and, of course, solu-
tions in terms of Jacobi elliptic functions for equations from the class (1) from known
solutions of the classical KdV equation.

Concerning the method suggested in [1], it is based mainly on seeking “new
general solutions” of first-order ordinary differential equation

φ′2 = a0 + a1φ + a2φ
2 + a3φ

3 + a4φ
4,

where φ = φ(ξ) is the unknown function and ai , i = 0, . . . , 4, are constant para-
meters. It is well known for a long time that solutions of such equations can be
expressed in terms of Jacobi elliptic functions (which are reduced for some values of
parameters to trigonometric, hyperbolic or rational functions) [4]. Note that seeking
solutions of this equation in the form (4) of [1] does not provide new solutions but
only equivalent forms of known solutions. This is a common error in finding exact
solutions described in [5]. Consider for simplicity the trigonometric solution found
in [1] (see Case 3). It can be checked by direct substitution that in fact this is a
solution only for r = ±1. Thus, consider the particular solution

φ = 1 + sin ξ

1 + sin ξ ± cos ξ
(6)

of the equation φ′2 = 1
4

(
1 − 2φ + 2φ2

)2
. This is the equation appearing in Case 3

of [1] for r = ±1. Its general solution is

φ = 1

2

(
1 ± tan

ξ + C

2

)
= 1

2

(

1 ± sin ξ+C
2 cos ξ−C

2

cos ξ+C
2 cos ξ−C

2

)

= 1

2

cos ξ + cosC ± sin ξ ± sinC

cos ξ + cosC
,

where C is an arbitrary constant. If we set C = π/4 and perform the shift of the vari-
able ξ on −π/4 then, taking into account that sin(ξ − π/4) = √

2(sin ξ − cos x)/2,
cos(ξ − π/4) = √

2(sin ξ + cos ξ)/2, we get exactly (6) with the positive sign of
cos ξ. The solution (6) with the negative sign is equivalent to that with the pos-
itive sign up to the reflection ξ → −ξ and the simultaneous shift on π since
cos(π − x) = − cos ξ and sin(π − x) = sin ξ.
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Consider one more equation on φ presented in [1], i.e., the equation

φ′2 = 1

4

(
2φ2 + (1 − m)(1 − 2φ)

) (
2φ2 + (1 + m)(1 − 2φ)

)
.

Using the “improved method” particular solutions of this equation were constructed
in the form

φ = cn(ξ,m)

±1 ± sn(ξ,m) + cn(ξ,m)
, φ = cn(ξ,m)

±1 ∓ sn(ξ,m) + cn(ξ,m)
,

whereas its general solution can be represented as

φ = 1

2
+ 1

2δ
sn

(
δ

2
ξ + C, m̃

)
,

where C is an arbitrary constant, δ = m + √
m2 − 1 and m̃ = (1 + 8m2(m2 − 1) +

4m(2m2 − 1)
√
m2 − 1)− 1

2 .Formulas for various connections between Jacobi elliptic
functions can be found, for example, in [6].

3 Conclusion

In this paper we have shown that each equation from the class (1) is similar to the
classical KdV equation (2) with respect to a point transformation. For such equations
the equivalence-based approach [2, 7] works much better than other existing meth-
ods since it allows one to use the variety of known solutions of the classical KdV
equation. Moreover, we have also shown that the “extended mapping deformation
method” cannot provide new solutions but only equivalent to known ones. When
one deals with variable coefficients KdV or mKdV equations it is necessary to check
firstly whether equations under study are reducible to the classical KdV or mKdV
equations. The corresponding criteria are given, e.g., in [2] in the course of the study
admissible transformations (called also form-preserving or allowed transformations,
see definitions in [8–10]) within the classes

ut + f (t)uux + g(t)uxxx + h(t)u + (p(t) + q(t)x)ux + k(t)x + l(t) = 0

and

ut + f (t)u2ux + g(t)uxxx + h(t)u + (p(t) + q(t)x)ux + k(t)uux + l(t) = 0.

Acknowledgements O. Braginets (néeKuriksha) is grateful to theOrganizing Committee of LT-11
for the hospitality and support.
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Part IV
Representation Theory



Classifying Aq(λ) Modules by Their
Dirac Cohomology

Pavle Pandžić

Abstract This talk is a preliminary report on the joint work with Jing-Song Huang
and David Vogan. The main question we address is: to what extent is an Aq(λ)

module determined by its Dirac cohomology? The focus of the talk is not so much
on explaining this question and its answer, which are mentioned briefly at the end.
Rather, the focus is on introducing the whole setting and giving some background
material about representation theory, especially the notion of Dirac cohomology.

1 Real Reductive Groups and Their Representations

1.1 Real Reductive Groups

A Lie group G is called reductive if its complexified Lie algebra g is reductive, i.e.,
g is the direct sum of its center and simple ideals. We are interested in connected real
reductive Lie groups G, with Cartan involution θ, such that K = Gθ is a (maximal)
compact subgroup of G.

The main examples of G, which are sufficient for our purposes, are closed sub-
groups of GL(n,C), stable under θ(g) =t ḡ−1. For example, G could be SL(n,R),
U (p, q), Sp(2n,R), or O(p, q)0. (Here the subscript 0 denotes the connected
component of the identity.) The corresponding K are SO(n) ⊂ SL(n,R); U (p) ×
U (q) ⊂ U (p, q); U (n) ⊂ Sp(2n,R); (O(p) × O(q))0 ⊂ O(p, q)0.
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1.2 Representations

A representation of G is a complex topological vector space V with a continuous
G-action by linear operators. More precise definitions would require that the action
map

G × V → V

be continuous, or that the map
G → GL(V )

be continuous, where GL(V ) denotes the groups of invertible continuous linear
operators on V equippedwith strong topology. These conditions are equivalent under
reasonable assumptions on V .

Group representations are the main objects of harmonic analysis and have many
applications.

1.3 (g, K )-Modules

To study algebraic properties of representations, it is convenient to introduce their
algebraic analogs, (g, K )-modules. For a representation V of G, let VK be the space
of K -finite vectors in V , i.e., the space of vectors v ∈ V such that the span of Kv is
finite-dimensional. The space VK has an action of the Lie algebra g0 of G. Namely,
one can show that each K -finite vector satisfies an elliptic differential equation, so it
is in particular smooth. This implies that one can differentiate the G-action to obtain
an action of g0 on such vectors. Thus the complexified Lie algebra g = (g0)C also
acts on VK .

A (g, K )-module is a vector space M with a Lie algebra action of g and a locally
finite action of K , which are compatible, i.e., induce the same action of k0, the Lie
algebra of K . A typical example is M = VK as above.

Any (g, K )-module M can be decomposed under K as

M =
⊕

δ∈K̂
mδEδ.

Here K̂ denotes the set of (isomorphism classes of) irreducible finite-dimensional
representations of K , and for each δ ∈ K̂ , Eδ is the space of δ and mδ is the multi-
plicity of δ in M . All δ with mδ > 0 are called the K -types of M . The existence of
such a decomposition is one of the basic properties of locally finite representations
of compact groups.

M is a Harish-Chandra module if it is finitely generated and all mδ are finite.
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1.4 Example: G = SU(1, 1) ∼= SL(2,R).

The complexified Lie algebra of G is g = sl(2,C), consisting of 2x2 matrices of
trace 0. g has a basis

h =
(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
.

The possible irreducible (g, K )-modules can be described by the following pic-
tures:

• • • . . .

k k + 2 k + 4 . . .
(1)

. . . • • •
. . . −k − 4 −k − 2 −k

(2)

• • . . . •
−n −n + 2 . . . n

(3)

. . . • • • . . .

. . . i − 2 i i + 2 . . .
(4)

where k > 0, n ≥ 0 and i are integers.
Each dot represents a K -type, which is in this case simply a one-dimensional

h-eigenspace. The numbers are the h-eigenvalues. e raises the eigenvalue by 2, and
f lowers it by 2.
Each of the first three pictures determines a unique irreducible (g, K )-module.

There are however many non-isomorphic modules corresponding to the fourth pic-
ture. In order to distinguish between them, one can use the concept of infinitesimal
character which we introduce below.

1.5 Infinitesimal Character

Let U (g) be the universal enveloping algebra of g, i.e., the associative algebra with
unit, generated by g, with relations

xy − yx = [x, y], x, y ∈ g.
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Let Z(g) be the center of U (g). By a version of Schur’s lemma, all z ∈ Z(g) act as
scalars on any irreducible (g, K )-module M . This defines the infinitesimal character
of M , χM : Z(g) → C.

Harish-Chandra proved that Z(g) ∼= P(h∗)W , where P(h∗) denotes the algebra
of polynomial functions on the dual of a Cartan subalgebra h of g, andW is theWeyl
group of (g, h), a certain finite group generated by reflections. In typical matrix
examples, h can be taken to consist of diagonal matrices in g, and W acts on h∗ by
operations like permuting, or changing signs, of coordinates.

Since any character of the polynomial algebra P(h∗) is given by evaluation at an
element of h∗, it follows that infinitesimal characters correspond to the elements of
h∗/W .

The simplest nontrivial element of Z(g) is the Casimir element

Casg =
∑

bidi ,

where bi and di are dual bases of g with respect to the (slightly modified) Killing
form B. For semisimple Lie algebras, the Killing form is defined by

B(x, y) = tr(ad x ad y), x, y ∈ g

and if g has a center, B can be modified on the center in order to get a nondegenerate
form. For matrix groups, another choice is to take

B(x, y) = tr(xy) x, y ∈ g.

For g = sl(2,C), Z(g) consists of polynomials in

Casg = 1

2
h2 + e f + f e.

The infinitesimal character of an irreducible module M can thus be determined from
the scalar by which Casg acts on M . To complete the list of irreducible modules in
Sect. 1.4, one shows that for each complex λ which is not an integer of the same
parity as i + 1, there is a unique module corresponding to the picture (4) on which
Casg acts by λ2.

2 Dirac Operators and Dirac Cohomology

2.1 The Clifford Algebra for G

Let g = k ⊕ p be the Cartan decomposition. Here k and p are the ±1 eigenspaces
of the Cartan involution, which was already mentioned as an involution of G, but
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now it is differentiated and complexified to get an involution of g. Note that k is the
complexified Lie algebra of K .

The Clifford algebra C(p) of p with respect to B is the associative algebra with
unit, generated by p, with relations

xy + yx = −2B(x, y).

2.2 The Dirac Operator for G

Let bi be any basis of p and let di be the dual basis with respect to B. The Dirac
operator for G is defined by the formula

D =
∑

i

bi ⊗ di ∈ U (g) ⊗ C(p).

It is easy to see that D is independent of the choice of bi , and K -invariant for the
adjoint action on both factors.

This Dirac operator was introduced by Parthasarathy [21] in order to construct
the discrete series representations. He also proved that D2 is the spin Laplacean:

D2 = −Casg ⊗1 + CaskΔ
+ constant.

Here Casg respectively CaskΔ
are the Casimir elements of U (g) respectively U (kΔ),

and kΔ is the diagonal copy of k in U (g) ⊗ C(p), defined by k ↪→ U (g) and
k → so(p) ↪→ C(p).

2.3 Dirac Cohomology

Let M be a (g, K )-module, and let S be a spin module for C(p). Recall that S is
constructed by choosing a pair of dual maximal isotropic subspaces p+ and p− and
putting

S =
∧

p+,

with p+ acting bywedging and p− by contracting. If dim p is even, then p = p+ ⊕ p−,
so this completely determines S, and one shows that S is the unique simple C(p)-
module. If dim p is odd, there is an element Z of p such that B(Z , Z) = 1, and such
that p = p+ ⊕ p− ⊕ CZ . In this case there are two ways to make Z act on S: either
by i on

∧even p+ and by −i on
∧odd p+, or by −i on

∧even p+ and by i on
∧odd p+.

This gives two non-isomorphic C(p)-modules, both of them simple, and these two
are the only simple C(p)-modules. They are both called spin modules.
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Now we consider M ⊗ S as a module for the algebraU (g) ⊗ C(p) in the obvious
way. In particular, the Dirac operator D acts on M ⊗ S. Following [28], we define
the Dirac cohomology of M as

HD(M) = ker D/ Im D ∩ ker D.

Then HD(M) is a module for the spin double cover K̃ of K .
Suppose M is unitary, i.e., there is a Hermitian inner product 〈 , 〉 on M such that

K acts by unitary operators and the real Lie algebra g0 of G acts by skew-Hermitian
operators. Then there is a natural Hermitian inner product on M ⊗ S such that D is
self adjoint with respect to this inner product. It follows that

HD(M) = ker D = ker D2.

Furthermore, D2 ≥ 0. The last inequality is called Parthasarathy’s Dirac inequality
and it was proved in [22]. It is a very useful necessary condition for unitarity, and it
was used in several classification results.

2.4 Example: G = SU(1, 1) ∼= SL(2,R)

The modules corresponding to pictures (1)–(3) have HD = 0. For each such M ,
HD(M) consists of K̃ -types corresponding to the highest weight+1 and/or the lowest
weight−1.

The modules corresponding to picture (4) all have HD = 0.

2.5 Vogan’s Conjecture

Let h = t ⊕ a be a fundamental Cartan subalgebra of g (i.e., t is a Cartan subalgebra
of k). View t∗ ⊂ h∗ via extension by 0 over a.

The following result was conjectured by Vogan [28], and proved by Huang-
Pandžić [6].

Theorem 1 Assume M has infinitesimal character and HD(M) contains a K̃ -type
Eγ of highest weight γ ∈ t∗.

Then the infinitesimal character of M is γ + ρk up to the Weyl group of (g, h).
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2.6 Motivation

Irreducible unitary M with HD = 0 are interesting:

• discrete series representations (implicit in [21]);
• many of the Aq(λ) modules [10];
• unitary highest weight modules [9, 11];
• some unipotent reps [2, 3];
• also finite-dimensional modules [10, 17].

The study of Dirac cohomology is related to the unitarity problem, for example
through Dirac inequality and its improvements. Furthermore, irreducible unitary M
with HD = 0 should form a nice part of the unitary dual. Dirac cohomology is
also related to classical topics like generalized Weyl character formula, generalized
Bott–Borel–Weil Theorem, construction of the discrete series representations, and
multiplicities of automorphic forms. See [8] for details.

There are connections between Dirac cohomology and n-cohomology in spe-
cial cases [9], and to (g, K )-cohomology [10] (more details below). There are also
relations to characters and branching problems [12]. Furthermore, there are several
generalizations to other settings:

• quadratic subalgebras [17], with D replaced by a cubic version [5, 16];
• certain Lie superalgebras [7];
• affine Lie algebras [14];
• graded affine Hecke algebras and p-adic groups [4];
• noncommutative equivariant cohomology [1, 18].

It is also possible to construct reps with HD = 0 via “algebraic Dirac induction”
[20, 23, 24]. Finally, there is a translation principle for the Euler characteristic of
HD , i.e., the Dirac index [19].

2.7 (g, K )-Cohomology

Let X be a (g, K )-modulewith the same infinitesimal character as afinite-dimensional
module F . The (twisted) (g, K )-cohomology of X is the space H(g, K ; X) =
Ext·(g,K )(F, X).

If X is unitary, then

H(g, K ; X) = Hom K̃ (HD(F), HD(X)).

(Or twice this if dim p is odd.) See [10] for details and explanations.
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3 Aq(λ) Modules

3.1 Definition of Aq(λ) Modules

Let q = l ⊕ u be a θ-stable parabolic subalgebra of g, i.e., the sum of nonnegative
eigenspaces of ad(H), where H is some fixed element of it0 (recall that h0 = t0 ⊕ a0
is a fundamental Cartan subalgebra of g0). The Levi subalgebra l of q is the zero
eigenspace of ad(H), while the nilradical u of q is the sum of positive eigenspaces
of ad(H). We choose positive roots for (g, h) and for (l, h) so that

Δ+(g) = Δ+(l) ∪ Δ(u).

As usual, we denote by ρ the half sum of roots in Δ+(g), etc.
The Levi subalgebra l of q is real, i.e., l is the complexification of a subalgebra

l0 of g0. Let L denote the connected subgroup of G corresponding to l0. Let λ ∈ l∗
be admissible, i.e., λ is the complexified differential of a unitary character of L
satisfying the following positivity condition:

〈α,λ|t〉 ≥ 0, for all α ∈ Δ(u).

Then λ is orthogonal to all roots of l, so we can view λ as an element of h∗.
Aq(λ) modules can be defined by the following result of Vogan and Zuckerman

[29].

Theorem 2 ([27, 29]) Let q be a θ-stable parabolic subalgebra of g and let λ ∈ h∗
be admissible as above. Then there is a unique irreducible unitary (g, K )-module
Aq(λ) with the following properties:

(i) The restriction of Aq(λ) to k contains the representation with highest weight
μ(q,λ) = λ|t + 2ρ(u ∩ p), where ρ(u ∩ p) denotes the half sum of (positive) roots
in u ∩ p;

(ii) Aq(λ) has infinitesimal character λ + ρ;
(iii) If the representation of k occurs in Aq(λ), then its highest weight is of the

form
μ(q,λ) +

∑

β∈Δ(u∩p)

nββ (5)

with nβ non-negative integers. In particular, μ(q,λ) is the lowest K -type of Aq(λ)

(and its multiplicity is 1).

Vogan and Zuckerman proved in [29] that every irreducible unitary module with
nonzero (g, K )-cohomology is an Aq(λ) module. More generally, it is proved in
[25] that any irreducible unitary module with strongly regular infinitesimal character
is an Aq(λ) module. In particular, any unitary module with the same infinitesimal
character as a finite-dimensional module is an Aq(λ) module.
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3.2 Construction of Aq(λ) Modules

The module Aq(λ) is constructed by the so called cohomological induction, starting
from the one-dimensional (l, L ∩ K )-module Cλ, on which any x ∈ l acts by the
scalar λ(x). This module is now shifted by the one-dimensional (l, L ∩ K )-module∧top u. From here, there are two versions of the construction. In the first version,
we define a q-action on Z = Cλ ⊗ ∧top u by letting u act by zero, and consider the
produced (g, L ∩ K )-module

HomU (q)(U (g), Z)L∩K−finite,

with naturally defined actions. One now applies the derived Zuckerman functor in the
middle degree to obtain a (g, K )-module. (The Zuckerman functor roughly speaking
extracts the K -finite part of a (g, L ∩ K ) module, but this is very often zero, so one
needs to use derived functors.)

The other construction is to first make Z into a q̄-module by letting ū act by zero,
then consider the induced (g, L ∩ K )-module

U (g) ⊗U (q̄) Z ,

and finally apply the derived Bernstein functor in the middle degree. (The Bernstein
functor is similar to the Zuckerman functor, it is defined by a dual construction.)

3.3 Dirac Cohomology of Aq(λ) Modules

As shown in [10], Aq(λ) has nonzero Dirac cohomology precisely when θλ = λ,
and in this case the Dirac cohomology is given by the formula

HD(Aq(λ)) =
⊕

w∈W (l,t)1

2[dima/2]Ew(λ+ρ)−ρk .

Here as before, h = t ⊕ a is a fundamental Cartan subalgebra of g. Positive root
systems for (g, h), (g, t), (k, t) and (l, t) are chosen in a compatible way, and ρ and
ρk are the half sums of positive roots for (g, h) respectively (k, t). W (l, t)1 consists
of the elements of the Weyl group W (l, t) which take the dominant l-chamber into
the dominant l ∩ k-chamber. For each integral μ ∈ t∗, Eμ denotes the K̃ -type with
highest weight μ.
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3.4 Question

Is an Aq(λ) module uniquely determined by its Dirac cohomology? More precisely,
suppose that q and q′ are θ-stable parabolic subalgebras of g such that the semisimple
parts of the real forms of the Levi subalgebras l and l′ have no compact factors.
Assuming that HD(Aq(λ)) = HD(Aq′(λ′)), canwe conclude that q = q′ andλ = λ′?

This question arises in the study of elliptic tempered characters (Huang). It is also
a natural classification question. Furthermore, it is related to Dirac induction and the
issue of reconstructing modules from their Dirac cohomology.

3.5 Answer [HPV]

Yes, if the real forms of l and l′ do not have factors so(2n, 1), sp(p, q) or the nonsplit
f4. In particular, the answer is always yes if g is of type A, D, E or G. It is also always
yes if (g, k) is Hermitian.

The question boils down to the issue whether W (l, t)1 generates W (l, t). The
answer involves the study ofmodifications of Vogan diagrams by simple noncompact
reflections.

3.6 Example: g0 = so(2n, 1)

For each k = 1, . . . , n, there is a θ-stable parabolic subalgebra qk with the semisimple
part of the real form of the Levi factor equal to so(2k, 1).

The modules Aqk (0) are different, but they all have the same Dirac cohomology,
consisting of two K -types, with highest weights

(
n − 1

2
, . . . ,

3

2
,
1

2

)
and

(
n − 1

2
, . . . ,

3

2
,−1

2

)
.

(We are using the usual coordinates.)
There are also two discrete series representations with infinitesimal character ρ,

each with a single K -type in the Dirac cohomology.
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13. J.-S. Huang, P. Pandžić, D.A. Vogan, Jr., Classifying Aq(λ) modules by their Dirac cohomol-

ogy, in preparation.
14. V.P. Kac, P. Möseneder Frajria, P. Papi,Multiplets of representations, twisted Dirac operators

and Vogan’s conjecture in affine setting, Adv. Math. 217 (2008), 2485–2562.
15. A.W. Knapp, D.A. Vogan, Jr., Cohomological Induction and Unitary Representations, Prince-

ton University Press, 1995.
16. B. Kostant, A cubic Dirac operator and the emergence of Euler number multiplets of represen-

tations for equal rank subgroups, Duke Math. J. 100 (1999), 447–501.
17. B. Kostant,Dirac cohomology for the cubic Dirac operator, Studies in Memory of Issai Schur,

Progress in Mathematics, Vol. 210 (2003), 69–93.
18. S. Kumar, Induction functor in non-commutative equivariant cohomology and Dirac cohomol-

ogy, J. Algebra 291 (2005), 187–207.
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B–Orbits in Abelian Nilradicals of Types B,C
and D: Towards a Conjecture of Panyushev

Nurit Barnea and Anna Melnikov

Abstract Let B be a Borel subgroup of a semisimple algebraic group G and let m
be an abelian nilradical in b = Lie(B). Using subsets of strongly orthogonal roots in
the subset of positive roots corresponding to m, D. Panyushev [1] gives in particular
classification of B−orbits in m and m∗ and states general conjectures on the closure
and dimensions of the B−orbits in bothm andm∗ in terms of involutions of theWeyl
group. Using Pyasetskii correspondence between B−orbits in m and m∗ he shows
the equivalence of these two conjectures. In this Note we prove his conjecture in
types Bn,Cn and Dn for adjoint case.

1 Abelian Nilradicals and Panyushev’s Conjecture

1.1 Minimal Nilradicals

Let G be a semisimple linear algebraic group over C and let g be its Lie algebra. Let
B be its Borel subgroup and b = Lie(B). Let g = n ⊕ h ⊕ n− be its corresponding
triangular decomposition, where b = n ⊕ h. B acts adjointly on n. For x ∈ n let B.x
denote its orbit.

Since the description of B−orbits in n immediately reduces to simple Lie algebras
in what follows we assume that g is simple.

Let R be the root system of g and W its Weyl group. For α ∈ R let sα be the
corresponding reflection in W .

LetR+ (resp.R−) denote the subset of positive (resp. negative) roots. Forα ∈ R let
Xα denote the standard root vector in g so that n = ⊕

α∈R+
CXα. LetΔ = {αi}ni=1 ⊂ R+

be a set of simple roots. Let θ be the maximal root in R+.
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Recall that any standard parabolic subgroup P of G is of the form P = L � M
where L is a standard Levy subgroup andM is the unipotent radical of P. If RL is the
root system of l = Lie(L) then ΔL = Δ ∩ RL. Let WP denote Weyl group of l. Let
ŵ be the longest element of WP.

P is maximal if and only if ΔL = Δ \ {αi}. We will write Pαi = P, Mαi = M,
Rαi = RL, R+

αi
= R+

L andWαi = WP in this case. We put R
+
αi

:= R+ \ R+
αi
. Putmαi :=

Lie(Mαi) = ⊕

α∈R+
αi

CXα.

A nilradicalm is abelian if and only ifm = mαi and in θ =
n∑

j=1
kjαj one has ki = 1

(cf. [1] for details).

1.2 Strongly Orthogonal Sets and B−Orbits in
An,Bn,Cn,Dn

A set S ⊂ R+ is called strongly orthogonal if α ± β /∈ R for any α,β ∈ S. Given
a strongly orthogonal set S = {βi}ki=1 put σS :=

k∏

i=1
sβi . Note that this is an involu-

tion. As it is shown in [1] each B−orbit in an abelian nilradical mαi has a unique
representative of form

∑

α∈S
Xα where S ⊂ R

+
αi
is strongly orthogonal.

We choose the following root systems:

• In An : R = {ej − ei}1≤i �=j≤n+1, R+ = {ej − ei}1≤i<j≤n+1, Δ = {ei+1 − ei}ni=1;• In Cn : R = {±(ej ± ei)}1≤i<j≤n ∪ {±2ei}ni=1, R
+ = {ej ± ei}1≤i<j≤n ∪ {2ei}ni=1,

Δ = {2e1, ei+1 − ei}n−1
i=1 ;• In Bn : R = {±(ej ± ei)}1≤i<j≤n ∪ {±ei}ni=1, R+ = {ej ± ei}1≤i<j≤n ∪ {ei}ni=1,

Δ = {e1, ei+1 − ei}n−1
i=1 ;• In Dn : R = {±(ej ± ei)}1≤i<j≤n, R+ = {ej ± ei}1≤i<j≤n,

Δ = {e2 + e1, ei+1 − ei}n−1
i=1 .

We call roots α = ej ± ei or α = ei(2ei), β = el ± ek or β = ek(2ek) disjoint if
{i, j} ∩ {k, l} = ∅.

In An and Cn the roots α,β are strongly orthogonal iff they are disjoint. In these
two cases, (as well as inDn) root vector Xα is of nilpotency order two. As it is shown
in [2, 3] in theses two cases each B−orbit of nilpotency order two in n has a unique

representative of the form
k∑

i=1
Xβi where {βi}ki=1 ⊂ R+ is a strongly orthogonal (i.e.

pairwise disjoint) set. On the other hand, each involution of W can be written as a
(commutative) product of pairwise disjoint reflections in the unique way, so there is
a one-to-one correspondence between the strongly orthogonal sets and involutions
of W so that B−orbits of nilpotency order 2 are indexed by involutions in these two
cases.
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As for the cases Bn and Dn there is no bijection between B−orbits of nilpotent
order 2 in n and involutions of W because of two reasons. First of all, a root vec-
tor Xei in Bn and a sum of strongly orthogonal root vectors Xej−ei + Xej+ei (roots
ej − ei and ej + ei are strongly orthogonal in son) are matrices of nilpotency order 3
both in Bn and Dn. The second obstacle is that different sets of strongly orthogonal
roots correspond to the same involution in W, for example, σ{ej−ei,ej+ei} = σ{ei,ej}
but Xej−ei + Xej+ei and Xei + Xej are representatives of different B−orbits (of nilpo-
tency order 3) in Bn. Exactly in the same way σ{ei,ej,ek ,el} is connected to 3 different
strongly orthogonal sets in Dn namely {et1 − es1 , et1 + es1 , et2 − es2 , et2 + es2} where
{s1, s2, t1, t2} = {i, j, k, l} and sr < tr for r = 1, 2 (and additional 7 different strongly
orthogonal sets in Bn) and the corresponding sums of roots are representatives of
different B−orbits (of nilpotency order 3). However when we restrict ourselves to
abelian nilradicals there is a bijection between the sets of strongly orthogonal roots
in R

+
αi

and subset of involutions of W so that B−orbits are indexed by involutions
inside abelian nilradicals in the unique way. Some of these orbits are of nilpotency
order 3.

1.3 Abelian Nilradicals in An,Bn,Cn,Dn

Abelian nilradicals in An,Bn,Cn,Dn are (cf. [1], for example for the details).

(i) In sln any mek+1−ek is abelian so that there are n − 1 abelian nilradicals. They
are of the form

mek+1−ek =
⊕

1≤i≤k<j≤n

CXej−ei

One can see at once that in this case mek+1−ek is a subspace of matrices of
nilpotency order 2 and respectively all B−orbits there are indexed by sets of
pairwise disjoint roots {ejs − eis}ms=1 where is ≤ k and js ≥ k + 1 for any s :
1 ≤ s ≤ m.

(ii) In sp2n the abelian nilradical is unique and it is

m2e1 =
⊕

1≤i<j≤n

CXej+ei ⊕
n⊕

i=1

CX2ei .

Again this is a subspace ofmatrices of nilpotencyorder 2, so that all theB−orbits
there are indexed by sets of pairwise disjoint roots {2eis}ls=1 ∪ {ekt + ejt }mt=1.

(iii) In so2n+1 the abelian nilradical is unique and it is

men−en−1 =
n−1⊕

i=1

CXen−ei ⊕
n−1⊕

i=1

CXen+ei ⊕ CXen .
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By [1] {Xen ,Xen±ei ,Xen−ei + Xen+ei}n−1
i=1 is the set of the (unique) representatives

of B−orbits in the form of sums of strongly orthogonal root vectors. Note that
the corresponding set of involutions {sen , sen±ei , sensei}n−1

i=1 is defined uniquely
on this subset.

(iv) In so2n there are 3 abelian nilradicals; two of them are isomorphic, namely,
me2−e1

∼= me2+e1 . It is enough to consider

me2+e1 =
⊕

1≤i<j≤n

CXej+ei

This is the subspace of matrices of nilpotency order 2 and a B−orbit in it has
a unique representative in the form

∑m
s=1 Xejs+eis where {ejs + eis}ms=1 is a set of

pairwise disjoint roots.
The third nilradical is

men−en−1 =
n−1⊕

i=1

Xen−ei ⊕
n−1⊕

i=1

Xen+ei .

By [1] {Xen±ei , Xen−ei + Xen+ei}n−1
i=1 is the set of the (unique) representatives of

B−orbits in the form of sums of strongly orthogonal root vectors. Note that the
corresponding set of involutions {sen±ei , sensei}n−1

i=1 is defined uniquely on this
subset.

In particular, as we see, all B−orbits in an abelian nilradical for An,Bn,Cn andDn are
indexed by strongly orthogonal subsets in R

+
αi
. For a strongly orthogonal set S ⊂ R

+
αi

put BS := B.(
∑

α∈S
Xα).

1.4 Panyushev’s Conjecture

To formulate the conjecture we need the following notation. For w ∈ W put �(w)

to be its length, that is �(w) := #{α ∈ R+ : w(α) ∈ R−}. For a strongly orthogonal
set S let #(S) denote its cardinality. Let ≤ denote Bruhat order on W.

Respectively, for (coadjoint) B−orbits in m∗
α Panyushev shows that they are

labeled by the same strongly orthogonal sets S and we denote them by B∗
S .

Conjecture 1 (Panyushev) Let mα be an abelian nilradical in a simple g, and Wα

be the corresponding Weyl group. Let ŵ denote the longest element of Wα.
Let S,S ′ ⊂ R

+
α be strongly orthogonal and let σ = σS ,σ′ = σS ′ . Then

(i) BS ⊂ BS ′ if and only if ŵσŵ ≤ ŵσ′ŵ.
(ii) dim BS = �(ŵσŵ)+ #(S)

2 ;
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Respectively, for coadjoint orbits one has

(i∗) B∗
S ⊂ B∗S ′ if and only if σ ≤ σ′.

(ii∗) dimB∗
S = �(σ)+#(S)

2 ;

Panyushev shows, using Pyasetskii correspondence that these two conjectures are
equivalent.

Taking into account that by [4] for B−orbits B,B′ one has B′ is in the boundary
of B iff codimBB′ = 1 the part (ii) of the conjecture follows straightforwardly from
part (i).

In cases of An and Cn both adjoint and coadjoint B−orbits of nilpotency order 2
are indexed by involutions [2, 3, 5, 6] and by [5, 6] for involutions σ,σ′ ∈ W one
has B∗

σ ⊂ B∗
σ′ if and only if σ ≤ σ′ so that the conjecture is a private case of a more

general phenomenon.
As for Bn and Dn we were informed by M. Ignatyev that general description

of inclusions of coadjoint B−orbit closures of nilpotent order 2 is not given by
restriction of Bruhat order to involutions. We think that this happens because of the
same difficulties with bijection between the strongly orthogonal sets and involutions
that are described above.

For adjoint orbits in An and Cn, in general, the combinatorial order on involutions
defined by the inclusion of B−orbit closures of nilpotency order 2 is not connected
to Bruhat order. However, for B−orbits in an abelian nilradical the conjecture is
obtained as a straightforward corollary of [2, 3].

In this Note we reprove the conjecture for An and Cn and prove it for Bn and
Dn for adjoint case. We also provide a simple combinatorial expression for �(σ) for
involutions in Sn,WCn and WDn . To do this we introduce link patterns. May be the
expression can be obtained from the results of F. Incitti and is known to experts, but
we have not found this result in the literature.

2 Link Patterns and �(σ) for the Weyl Group

Recall that Weyl group of sln is Sn and its action on roots is obtained by extend-
ing linearly w(ei) = ew(i). Weyl group WCn of either sp2n or so2n+1 is a group
of maps from {−n, . . . ,−1, 1, . . . , n} onto itself symmetric around zero, namely
i �→ j ⇔ −i �→ −j and its action on roots is obtained by extending linearly
w(ei) = sign(w(i))e|w(i)|. Finally, Weyl group WDn is a subgroup of WCn of maps
sending even number of positive numbers to negative numbers. It acts on roots
exactly in the same way as WBn .

A link pattern on n points with k arcs is a graph on n (numbered) vertexes (drawn
on a horizontal line) with k disjoint edges {(is, js)}ks=1 (that is, {is, js} ∩ {it, jt} = ∅
for 1 ≤ s �= t ≤ k) drawn over the line and called arcs. Vertex f /∈ {is, js}ks=1 is called
a fixed point.

A strongly orthogonal set {ejs − eis}ks=1 in sln (or corresponding involution in
Sn) can be drawn as a link pattern on 1, . . . , n with edges {is, js}ks=1; respectively
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a strongly orthogonal set in Cn (or corresponding involution in WCn ) can be drawn
as a link pattern symmetric around zero on −n, . . . ,−1, 1, . . . , n where 2ei corre-
sponds to arc (−i, i) and ej ± ei for 0 < i < j ≤ n corresponds to two arcs (∓i, j)
and (±i,−j). Respectively, for an involution ofWCn to be an element ofWDn we need
the even number of cycles of type (−i, i) so that it can be drawn as a link pattern on
−n, . . . ,−1, 1, . . . , n symmetric around zero with even number of arcs over zero.

Given a strongly orthogonal set S = {ejs − eis}ms=1 (resp. S = {ejs ∓ eis}ls=1 ∪
{e2kt }mt=1) let PS be the corresponding link pattern. Let |S| denote the number of
arcs in PS . Note that in case of sln one has #(S) = |S|; in case of Cn or Dn one has
#(S) ≤ |S| ≤ 2#(S) (depending on the roots).

Let (a1, b1) . . . (am, bm), where m = |S|, be the list of arcs of PS written in such
a way that ai < bi. We also need the following statistics on PS :

(i) set c(as, bs) := #{t : at < as < bt < bs} to be the number of arcs crossing the

given arc (as, bs) on the left and c(S) :=
m∑

s=1
c(as, bs) to be the total number of

crosses;
(ii) set r(as, bs) := #{t : at > bs} to be the number of arcs to the right of the given

arc (as, bs) and r(S) :=
m∑

s=1
r(as, bs) to be the total number of arcs to the right

of some arc;
(iii) set b(as, bs) := #{p : as < p < bs and p /∈ {at, bt}mt=1} to be the number of

fixed points under the given arc (bridge) (as, bs); and b(S) :=
m∑

s=1
b(as, bs) to

be the total number of fixed points under the arcs, or in other words the total
number of bridges over all fixed points.

For example, let S = {e2 − e1, e6 + e3, 2e4} in C6, then

PS =
-6 -5 -4 -3 -2 -1 1 2 3 4 5 6

and |S| = 5, c(S) = 3, r(S) = 1, b(S) = 2.

Proposition 1 Let S be a strongly orthogonal set in either sln or Cn (Dn) and let
σ = σS be an involution in the corresponding Weyl group.

1. For S = {ejs − eis}ks=1 in sln one has

�(σ) = 2|S|2 − |S| + 2b(S) − 4r(S) − 2c(S)

2. For S = {ejs − eis}as=1 ∪ {2eks}ds=1 ∪ {ems + els}fs=1 in Cn one has for σ in WCn

�(σ) = |S|2 − a + b(S) − c(S) − 2r(S)
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3. For S = {ejs − eis}as=1 ∪ {eks}2ds=1 ∪ {ems + els}fs=1 so that σ ∈ WDn one has

�(σ) = |S|2 − |S| + a + b(S) − c(S) − 2r(S)

Proof We prove (1) by the induction on |σ| and induction on n. It is trivial for
n = 2. Assume it is true for σ ∈ Sn−1 and show for σ ∈ Sn. Recall that sej−ei = (i, j)
in cyclic form so that |S| = 1 iff σS = (i, j). If (i, j) �= (1, n) we can regard it as
an element of Sn−1 so that �((i, j)) is obtained by induction. For (1, n) one has
that (1, n)(et − es) is negative iff t = n or s = 1 so that �((1, n)) = 2n − 3. On the
other hand b((1, n)) = n − 2 and c((1, n)) = r((1, n)) = 0 so that the expression is
satisfied.

Now assume this is true for σS ′ ∈ Sn where |S ′| ≤ k − 1 and show for σS of
|S| = k. Let σ = σ′(i, j) where σ′ = (i1, j1) . . . (ik−1, jk−1) and j > js for any 1 ≤
s ≤ k − 1. If j < n we can regard σ as an element of Sn−1 and the result is obtained
by induction on n. If j = n one has

σ(et − es) = σ′(i, n)(et − es) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−(en − ei) if (s, t) = (i, n) (I)
ei − σ′(es) if t = n, s �= i (II)
en − σ′(es) if t = i (III)
σ′(et) − en if s = i, t < n (IV )

σ′(et − es) otherwise (V )

Take into account that

• σ′(en − ei) = en − ei so that case (I) adds 1 to the length;
• σ′(en − es) = en − σ′(es) ∈ R+. On the other hand ei − σ′(es) ∈ R− exactly for
n − 1 − i roots since for every i < s < n either σ′(s) = s or there exists r < j
such that σ′(r) = s. Thus (II) adds (n − 1 − i) to the length;

• σ(ei − es) = en − σ′(es) ∈ R+ always. On the other hand for any (is, js) such that
is < i < js one has σ′(ei − eis) = ei − ejs ∈ R− so that in case (III) we have to
reduce c(i, n) from the length;

• σ(et − ei) = σ′(et) − en ∈ R− for all t : i < t and σ′(et − ei) = σ′(et) − ei ∈ R−
iff t = js where is < i < js < j. Thus case (IV ) adds n − 1 − i − c(i, n) to the
length;

• Case (V ) does not add anything to the length.

Summarizing, we get �(σ) = 2(n − i) − 1 − 2c(i, n) + �(σ′).
Put u(i, n) := #{t : i < it, jt < n} to be the number of arcs under (i, n). One has:

c(S) = c(S ′) + c(i, n);
b(S) = b(S ′) − c(i, n) + (n − 1 − i) − c(i, n) − 2u(i, n) = b(S ′) + (n − 1 − i)
− 2c(i, n) − 2u(i, n)
r(S) = r(S ′) + (k − 1) − c(i, n) − u(i, n) since for any (is, js) it is either to the left
of (i, n) or under (i, n) or crosses it on the left.
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Taking all this into account we get straightforwardly �(σ) = 2k2 − k + 2b(S) −
2c(S) − 4r(S) in accordance with the expression.

(2) Let S = {ejs − eis}as=1 ∪ {2eks}ds=1 ∪ {ems + els}fs=1 in Cn so that |S| = 2a +
d + 2f and let σ = σS . Taking into account that s2ei = (−i, i), sej±ei = (∓i, j)
(±i,−j) by (i) its length as an element of S2n is �S2n(σ) = |S|2 − |S| + 2b(S) −
4r(S) − 2c(S). On the other hand, inCn all the short roots are sums (up to sign) of two
roots in sl2n. Let x(σ) be the number of positive long roots 2es such that σ(2es) ∈ R−.

Then �(σ) = 1
2 (�S2n(σ) + x(σ)). Further, note that sej−ei(2es) ∈ R+ always,

s2ek (2es) =
{−2es if s = k;
2es otherwise.

and sej+ei(2es) =
{−2es if s = i, j;
2es otherwise.

Thus x(σ) = d + 2f = |S| − 2a. Summarizing, we get �(σ) = |S|2 − a + b(S) −
c(S) − 2r(S).

(3) Finally let S = {ejs − eis}as=1 ∪ {eks}2ds=1 ∪ {ems + els}fs=1 so that |S| = 2a +
2d + 2f and σ ∈ WDn . By (2) its length as an element ofWBn is �Bn(σ) = |S|2 − a +
b(S) − c(S) − 2r(S). Let x(σ) be the number of positive short roots es such that
σ(es) ∈ R−

Bn
. Then �(σ) = �Bn(σ) − x(σ). As it is shown in (2) x(σ) = |S| − 2a. By

a straightforward computation we get expression (3) which completes the proof.

3 The Proof of Panyushev’s Conjecture

3.1 Case sln

It is known that the conjecture is true for sln (cf. [1]). The proof is straightforward
and we provide it in short here since we use it in what follows.

Let Sn denote a standard symmetric group and S[i,j] a symmetric group on the
elements i, i + 1, . . . , j. For a strongly orthogonal set S ⊂ R+ let πi,j(S) = S ∩
{el − ek}i≤k<l≤j. By [3], BS ′ ⊂ BS for S,S ′ ⊂ R+ strongly orthogonal sets in sln iff
for any i, j : 1 ≤ i < j ≤ n one has |πi,j(S ′)| ≤ |πi,j(S)|.Moreover these inclusions
are generated by elementary moves on link patterns defined as follows:

1. Let ej − ei ∈ S and let S ′ be obtained from S by exclusion of this root. Then
BS ′ ⊂ BS ;

2. Let ej − ei ∈ S and let k > j be a fixed point of PS . Let S ′ be obtained from S
by changing ej − ei to ek − ei, then BS ′ ⊂ BS ;

3. Let ej − ei ∈ S and let k < i be a fixed point of PS . Let S ′ be obtained from S
by changing ej − ei to ej − ek , then BS ′ ⊂ BS ;

4. Let el − ei, ek − ej ∈ S be such that i < j < k < l. Let S ′ be obtained from S by
changing el − ei, ek − ej to ek − ei, el − ej, then BS ′ ⊂ BS .

5. Let ej − ei, el − ek ∈ S be such that j < k. LetS ′ be obtained fromS by changing
ej − ei, el − ek to ek − ei, el − ej, then BS ′ ⊂ BS ;
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For mek+1−ek one has Wek+1−ek = Sk × S[k+1,n] and ŵ = [k, . . . , 1, n, . . . , k + 1].
Note thatBS ⊂ mek+1−ek iff S = {ejs − eis}ms=1, is≤k,js≥k+1, and therefore, ŵσSŵ =

σŜ where Ŝ = {en+1−js − ek+1−is}ms=1.
Since on one hand inclusion ofB−orbit closures is generated by elementarymoves

on link patterns and on the other hand Bruhat order is generated by products by (i, j)
we have only to compare these two actions.

For S = {ejs − eis}ms=1 put 〈σS〉 := {is, js}ms=1 to be the list of end points of PS .
We have to take into account that the restriction of Bruhat order to involutions is
generated by σ < σ(i, j) only if {i, j} ∩ 〈σ〉 = ∅, otherwise we have to compare σ
and (i, j)σ(i, j).

Let σ = σS where S ⊂ R
+
ek+1−ek . Note that in order for (i, j)σ in the first case

(resp. (i, j)σ(i, j) in the second case) to be σS ′ for S ′ ⊂ R
+
ek+1−ek one needs to choose

i ≤ k and j ≥ k + 1 (resp. either i, j ≤ k or i, j ≥ k + 1).

(i) σ → σ(i, j): Let S ′ = {ejs − eis}ls=1 and let ej − ei be strongly orthogonal to S ′

then S = S ′ ∪ {ej − ei} is strongly orthogonal so that BS ′ ⊂ BS by (1) on one
hand and on the other hand ŵ(i, j)σS ′ŵ = (k + 1 − i, n + 1 − j)σŜ ′ > σŜ ′ ;

(ii) σ → (i, j)σ(i, j) where either i, j ≤ k or i, j ≥ k + 1 and |{i, j} ∩ 〈σ〉| = 1: Let
S = {ej1 − ei1} ∪ T where T = {ejs − eis}ms=2. Let j = i1 and i /∈ {is}ms=1 (resp.
i = j1 and j /∈ {js}ms=1). Let S ′ = {ej1 − ei} ∪ T (resp. S ′ = {ej − ei1} ∪ T ).
Then on one hand by (2) BS ′ ⊂ BS iff i < i1 (resp. by (3) iff j > j1). On
the other hand ŵσS ′ŵ = (k + 1 − i, n + 1 − j1)σT̂ (resp. ŵσS ′ŵ = (k + 1 −
i1, n + 1 − j)σT̂ ) and ŵσSŵ = (k + 1 − i1, n + 1 − j1)σT̂ so that ŵσS ′ŵ <

ŵσSŵ iff i < i1 (resp. j > j1).
(iii) σ → (i, j)σ(i, j) where {i, j} ⊂ 〈σ〉 : Let S = {ej1 − ei1 , ej2 − ei2} ∪ T

where i1 < i2(≤ k) and (i, j) = (i1, i2) (this is equal to action on σ by (i, j) =
(j1, j2)). Then (i, j)σ(i, j) = σS ′ where S ′ = {ej1 − ei2 , ej2 − ei1} ∪ T . On one
hand by (4) BS ′ ⊂ BS iff j1 > j2, on the other hand ŵσS ′ŵ = (k + 1 − i1, n +
1 − j2)(k + 1 − i2, n + 1 − j1)σT̂ and ŵσSŵ = (k + 1 − i1, n + 1 − j1)(k +
1 − i2, n + 1 − j2)σT̂ so that ŵσS ′ŵ < ŵσSŵ iff j2 < j1.

3.2 Case sp2n

For sp2n the unique abelian nilradical is m2e1 . In this case W2e1 = Sn and ŵ =
[n, . . . , 1]. One has BS ⊂ m2e1 iff S = {2eks}ds=1 ∪ {ems + els}fs=1.

In this case the conjecture is obtained as a straightforward corollary of the result
for sl2n and the following facts:

1. A set of strongly orthogonal roots S in Cn can be considered as a set S̃ of |S|
strongly orthogonal roots in sl2n. In these terms forBS ,BS ′ ⊂ R+ in sp2n one has
by [2] BS ′ ⊂ BS iff they are restriction to sp2n of the orbits B

′̃
S ,B′̃

S ′ from sl2n

such that B′̃
S ′ ⊂ B

′
S̃ ;
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2. m2e1 of sp2n is the restriction to sp2n of men+1−en of sl2n;
3. σ,σ′ ∈ WCn are elements of S2n and σ′ < σ in WCn iff σ′ < σ in S2n – this is

shown for example in [7, Sect. 4];
4. ŵ ∈ W2e1 is identified with the maximal element of Sn × S[n+1,2n].

3.3 Case so2n+1

For so2n+1 the unique abelian nilradical is men−en−1 . In this case Wen−en−1 = WBn−1

and ŵ = se1 . . . sen−1 .
BS ⊂ men−en−1 if either S = {en} or S = {en ± ei}, or S = {en − ei, en + ei}

for 1 ≤ i < n. Note that ŵsen±eiŵ = sen∓ei , ŵsenŵ = sen and ŵσ{en−ei,en+ei}ŵ =
σ{en−ei,en+ei}.

The restriction of Bruhat order to our set of involutions is as follows (cf. [7], for
example):

sen+en−1 > sen+en−2 > · · · > sen+e1 > sen−e1 > · · · > sen−en−1 ;
sen > sen−e1 ; (i)
sen−en−1sen+en−1 > · · · > sen−e1sen+e1 > sen ;
sen−ei sen+ei > sen+ei (ii)

Also sen+ei and sen are incompatible for any i < n. As for inclusions of B−orbit
closures one has

(i) In order to show B{en−ei−1} ⊂ B{en−ei} note that Exp(aXei−ei−1).Xen−ei =
Xen−ei − aXen−ei−1 so that by torus action we get Xen−ei−1 ∈ B{en−ei}. This cor-
responds to sen+ei > sen+ei−1 for i : 2 ≤ i ≤ n − 1.
Let us show thatB{en+e1} ⊂ B{en−e1}. Indeed,Exp(aXe1).Xen−e1 = Xen−e1 − aXen −
a2

2 Xen+e1 . Further by torus action we get Xen+e1 ∈ B{en−e1}. This corresponds to
sen+e1 > sen−e1 .
To show B{en+ei+1} ⊂ B{en+ei} note that Exp(aXei+1−ei).Xen+ei = Xen+ei +
aXen+ei+1 so that by torus action we get Xen+ei+1 ∈ B{en+ei}. This corresponds
to sen−ei > sen−ei+1 for i : 1 ≤ i ≤ n − 2.
Exactly in the sameway,Exp(aXe1).Xen = Xen + aXen+e1 and then by torus action
we get Xen+e1 ∈ B{en} which corresponds to sen−e1 < sen .
Obviously B{en−ei} and B{en} are incompatible.

(ii) To showB{en−ei,en+ei} ⊂ B{en−ej,en+ej} for 1 ≤ i < j ≤ n − 1wenote as before that
Exp(a(Xej−ei + Xej+ei)).(Xen−ej + Xen+ej )=Xen−ej + Xen+ej − a(Xen−ei + Xen+ei)

and then by torus actionwe getXen−ei + Xen+ei ∈ B{en−ej,en+ej} which corresponds
to sen−ej sen+ej > sen−ei sen+ei for 1 ≤ i < j ≤ n − 1.
To show B{en} ⊂ B{en−ej,en+ej} for 1 ≤ j ≤ n − 1 note that Exp(

√
2Xej ).(Xen−ej +

Xen+ej ) = Xen−ej −
√
2Xen and then by torus action we get Xen ∈ B{en−ej,en+ej} for

any 1 ≤ j ≤ n − 1 which corresponds to sen−ej sen+ej > sen for 1 ≤ j ≤ n − 1.
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Obviously by torus action we get Xen−ei ∈ B{en−ei,en+ei} which provides
sen−ei sen+ei > sen+ei for 1 ≤ i ≤ n − 1.

3.4 Case so2n

Recall that there are 3 abelian nilradicals in the case of so2n namelyme2−e1
∼= me2+e1

and men−en−1 .
Let us start with men−en−1 which can be obtained from the previous case. In this

case Wen−en−1 = WDn−1 and

ŵ =
{
se1 . . . sen−1 if n = 2k + 1;
se2 . . . sen−1 if n = 2k;

BS ⊂ men−en−1 if either S = {en ± ei} or S = {en − ei, en + ei} for 1 ≤ i < n.

Note that ŵsen±eiŵ = sen∓ei for i > 1, ŵsen±e1ŵ =
{
sen±e1 if n = 2k;
sen∓e1 if n = 2k + 1; and

ŵsen−ei sen+eiŵ = sen−ei sen+ei . The restriction of Bruhat order from WBn to WDn pro-
vides

sen+en−1 > sen+en−2 > · · · > sen+e1 , sen−e1 > sen−e2 >

> · · · > sen−en−1; (i)
sen+e2 > sen−e1 , sen+e1 > sen−e2; (ii)

sen−en−1sen+en−1 > · · · > sen−e1sen+e1 , sen−ei sen+ei >

> sen+ei , sen−e1sen+e1 > sen±e1 (iii)

The only differences withWBn are that sen+e1 , sen−e1 are incompatible (they are of the
same length by Proposition 1) and sen /∈ WDn . As for inclusions of B−orbit closures
we have to take into account that inclusions of B−orbit closures in Dn implies the
inclusions of corresponding B−orbit closures in Bn so that we have to check only
the corresponding cases from Sect. 3.3. We get:

(i)+ (ii) Exactly as in so2n+1 one has B{en−ei−1} ⊂ B{en−ei} for i : 2 ≤ i ≤ n − 1
which corresponds to sen+en−1 > · · · > sen+e2 and sen+e2 >{
sen+e1 if n = 2k + 1;
sen−e1 if n = 2k; . Further note that Exp(aXe2+e1).Xen−e2 = Xen−e2 −

aXen+e1 so that by torus action we get Xen+e1 ∈ Ben−e2 which corresponds to

sen+e2 >

{
sen−e1 if n = 2k + 1;
sen+e1 if n = 2k;

Exactly as in so2n+1 one has Ben+ei+1 ⊂ B{en+ei} for 1 ≤ i ≤ n − 2. This cor-
responds to sen−ei > sen−ei+1 for i : 2 ≤ i ≤ n − 2 and sen−e2

<

{
sen−e1 if n = 2k + 1;
sen+e1 if n = 2k; .

Let us show that B{en+e2} ⊂ B{en−e1}. Indeed, Exp(aXe2+e1).Xen−e1 =
Xen−e1 + aXen+e2 so that by torus action we get Xen+e2 ∈ B{en−e1}. This cor-
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responds to sen−e2 <

{
sen+e1 if n = 2k + 1;
sen−e1 if n = 2k; .

To finish (i) and (ii) we have to check that Ben+e1 �⊂ Ben−e1 . This is obtained
straightforwardly from the fact dimBen+e1 = dimBen−e1 = n − 1.

(iii) Exactly as in Sect. 3.3 one has B{en−ei, en+ei} ⊂ B{en−ej,en+ej} for 1 ≤ i < j ≤
n − 1. Obviously by torus action we get Xen−ej ∈ B{en−ej,en+ej} and Xen±e1 ∈
B{en−e1,en+e1} so we get all the relations from (iii).

Since me2+e1
∼= me2−e1 it is enough to consider me2+e1 . One has

me2+e1 =
⊕

1≤i<j≤n

CXej+ei

Comparing me2+e1 with m2e1 of spn one can see at once that root vectors here cor-
respond (up to sign in the sum) to root vectors in m2e1 for short roots. In particular,
this is a subspace of matrices of nilpotency order 2. The truth of the conjecture for
me2+e1 is obtained from its truth for m2e1 by the following facts:

1. The sets of strongly orthogonal roots in me2+e1 coincide with the sets of strongly
orthogonal short roots in m2e1 .

2. Only for rootα = ej − ei the action ofExp(aXα) on rootsXek+es can be non-trivial
both inCn andDn and this action in both cases coincide up to sign, apart from case

Exp(aXej−ei).Xej+ei =
{
Xej+ei + 2aX2ej in Cn;
Xej+ei in Dn; which is irrelevant here. Thus,

XS ′ ∈ BS for strongly orthogonal sets S ′, S in me2+e1 iff XS ′ ∈ BS in m2e1 .
3. ŵ of We2+e1 (in WDn ) is equal to ŵ of W2e1 (in WCn ).
4. Bruhat order restricted tomultiplication of reflections of strongly orthogonal roots

of type ei + ej coincides for WCn and WDn . (cf., for example [7, Sect. 4]).
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Anti de Sitter Holography
via Sekiguchi Decomposition

Vladimir Dobrev and Patrick Moylan

Abstract In the present paper we start consideration of anti de Sitter holography
in the general case of the (q + 1)-dimensional anti de Sitter bulk with boundary
q-dimensional Minkowski space-time. We present the group-theoretic foundations
that are necessary in our approach.Comparingwhat is done forq = 3 the newelement
in the present paper is the presentation of the bulk space as the homogeneous space
G/H = SO(q, 2)/SO(q, 1), which homogeneous space was studied by Sekiguchi.

1 Introduction

For the last fifteen years due to the remarkable proposal of [1] the AdS/CFT corre-
spondence is a dominant subject in string theory and conformal field theory. Actually
the possible relation of field theory on anti de Sitter space to conformal field theory
on boundaryMinkowski space-time was studied also before, cf., e.g., [2–7]. The pro-
posal of [1] was further elaborated in [8] and [9]. After that there was an explosion
of related research which continues also currently.

Let us recall that the AdS/CFT correspondence has 2 ingredients [1, 8, 9]: 1.
the holography principle, which is very old, and means the reconstruction of some
objects in the bulk (that may be classical or quantum) from some objects on the
boundary; 2. the reconstruction of quantum objects, like 2-point functions on the
boundary, from appropriate actions on the bulk.

Our focus is on the first ingredient. We note that until recently the explicit
presentation of the holography principle was realized in the Euclidean case, i.e.,
for the group SO(q + 1, 1) relying on Wick rotations of the final results, cf., e.g.,
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[9, 10]. Yet it is desirable to show the holography principle by direct construction in
Minkowski space-time, i.e., for the conformal group SO(q, 2).

This was done for the case q = 3 in detail in [11]. In the present paper we start
consideration of the general case of the (q + 1)-dimensional anti de Sitter bulk
with boundary q-dimensional Minkowski space-time. Actually, here we only lay
the group-theoretic foundations that are necessary in our approach while the actual
construction is postponed to [12]. As historical remark wemention that this approach
originated in the construction of the discrete series of unitary representations in [13,
14], which was then applied in [15] for the Euclidean conformal group SO(4, 1). A
different approach was applied to the general Euclidean case SO(N, 1) in [10]. Also
the nonrelativistic Schrödinger algebra case was considered in [16].

The new element in the present paper is the presentation of the bulk space as
the homogeneous space G/H = SO(q, 2)/SO(q, 1). For this we use the Sekiguchi
decomposition [17]

G ∼= |loc ÑAH

whereA is the subgroupof dilatations, Ñ is isomorphic to the subgroupof translations.
The above means that the subgroup ÑAH is an open dense set of G, and thus the
homogeneous space G/H is locally isomorphic to bulk space ÑA.

2 Preliminaries

We need some well-known preliminaries to set up our notation and conventions. The
Lie algebra G = so(q, 2) may be defined as the set of (q + 2) × (q + 2) matrices X
which fulfil the relation:

tXη + ηX = 0, (1)

where the metric η is given by

η = (ηAB) = diag(−1, 1, . . . , 1,−1), A,B = 0, 1, · · · , q + 1 (2)

Then we can choose a basis XAB = −XBA of G satisfying the commutation relations

[XAB,XCD] = ηACXBD + ηBDXAC − ηADXBC − ηBCXAD. (3)

We list the important subalgebras of G:
• K = so(q) ⊕ so(2), generators: XAB : (A,B) ∈ {1, . . . , q}, {0, q + 1}, maximal
compact subalgebra;

• Q, generators: XAB : A ∈ {1, . . . , q}, B ∈ {0, q + 1}, non-compact completion of
K;

• A = so(1, 1), generator: D
.= Xq,q+1 , dilatations;
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• M = so(q − 1, 1), generators: XAB : (A,B) ∈ {0, . . . , q − 1}, Lorentz
subalgebra;

• N , generators: Tμ = Xμq + Xμ,q+1, μ = 0, . . . , q − 1, translations;
• Ñ , generators:Cμ = Xμq − Xμ,q+1, μ = 0, . . . , q − 1, special conformal transfor-
mations;

• A0 = so(1, 1) ⊕ so(1, 1), generators: X0,q−1,Xq,q+1 ;
• M0 = so(q − 2), generators: XAB : (A,B) ∈ {1, . . . , q − 2};
• N0, generators: Tμ, μ = 0, . . . , q − 1, T ′

μ = Xμ0 + Xμ,q−1, μ = 1, . . . , q − 2,
extended translations;

• Ñ0, generators: Cμ, μ = 0, . . . , q − 1, C′
μ = Xμ0 − Xμ,q−1, μ = 1, . . . , q − 2,

extended special conformal transformations;
• H = so(q, 1), generators: XAB : (A,B) ∈ {0, . . . , q}.
The last subalgebra is the analog of themaximal compact subalgebra so(q + 1) of the
Euclidean conformal algebra so(q + 1, 1) of q-dimensional Euclidean space. Thus,
it may result from theWick rotation of the Euclidean conformal algebra so(q + 1, 1)
to the Minkowskian conformal algebra so(q, 2).

Thus, we have several decompositions:

• G = K ⊕ Q, Cartan decomposition;
• G = K ⊕ A0 ⊕ N0, (also N0 → Ñ0), Iwasawa decomposition;
• G = N0 ⊕ M0 ⊕ A0 ⊕ Ñ0, minimal Bruhat decomposition;
• G = N ⊕ M ⊕ A ⊕ Ñ , maximal Bruhat decomposition;
• G = H ⊕ A ⊕ N , (also N → Ñ ), Sekiguchi decomposition [17].

The subalgebra P0 = M0 ⊕ A0 ⊕ Ñ0 is a minimal parabolic subalgebra of G. The
subalgebra P = M ⊕ A ⊕ Ñ is a maximal parabolic subalgebra of G.

Finally, we introduce the corresponding Lie groups:
G = SO0(q, 2) with Lie algebra G = so(q, 2), H = SO(q, 1) with Lie algebra
H = so(q, 1), K = SO(q) × SO(2) is the maximal compact subgroup of G, A0 =
exp(A0) = SO0(1, 1) × SO0(1, 1) is abelian simply connected, N0 = exp(N0) ∼=
Ñ0 = exp(Ñ0), are abelian simply connected subgroups ofG preserved by the action
of A0. The group M0

∼= SO0(q − 2) (with Lie algebra M0) commutes with A0.
Further A = exp(A) = SO0(1, 1) is abelian simply connected, N = exp(N ) ∼= Ñ =
exp(Ñ ), are abelian simply connected subgroups of G preserved by the action of A.
The group M ∼= SO0(q − 1, 1) (with Lie algebra M) commutes with A.

We mention also some group decompositions:

G = KA0N0, (alsoN0 → Ñ0), Iwasawa decomposition; (4a)

G ∼= |loc ÑAMN,maximal Bruhat decomposition; (4b)

G ∼= |loc ÑAH, (also Ñ → N),Sekiguchi decomposition (4c)

In (4b, 4c) the groups on the RHS are open dense subsets of G. We should note that
in [17] was studied the more general case SO0(q, r + 1)/SO(q, r).

The subgroup P0 = M0A0N0 is a minimal parabolic subgroup of G. The sub-
group P = MAN is a maximal parabolic subgroup of G. Parabolic subgroups are
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important because the representations induced from themgenerate all admissible irre-
ducible representations of semisimple groups [18, 19]. The group (algebra) SO0(q, 2)
(so(q, 2)) has one more maximal (cuspidal) parabolic subgroup (subalgebra) which
we do not give here for the lack of space, cf., e.g., [20, 21] for q = 4.

3 Elementary Representations

We use the approach of [22] which we adapt in a condensed form here.Wework with
so-called elementary representations (ERs). They are induced from representations
of the parabolic subgroups. Here we work with the maximal parabolic P = MAN ,
where we use (non-unitary) finite-dimensional representations λ of M = SO(q −
1, 1) in the space Vλ , (non-unitary) characters of A represented by the conformal
weight Δ, and the factor N is represented trivially. For further use we give explicit
parametrization of λ:

λ = (λ1 , . . . ,λq̂) , q̂
.= [ 12q] (5)

where [w] is the largest integer not greater than w. The numbers λi are all integer or
all half-integer and they fulfill the following conditions:

|λ1| ≤ λ2 ≤ · · · ≤ λq/2 , for q even (6)

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λ(q−1)/2 , for q odd

The data λ,Δ is enough to determine a weight χ ∈ H∗
G , where HG is the Cartan

subalgebra of G, cf. [22]. Thus, we shall denote the ERs by Cχ. Sometimes we shall
write: χ = [λ,Δ]. The representation spaces are C∞ functions on G/P, or equiv-
alently, on the locally isomorphic group N with appropriate asymptotic conditions
(which we do not need explicitly, cf., e.g., [21, 22]). We recall that Ñ is isomor-
phic to q-dimensional Minkowski space-timeMwhose elements will be denoted by
x = (x0, . . . , xq−1), while the corresponding elements of Ñ will be denoted by nx .
The Lorentzian inner product inM is defined as usual:

〈x, x′〉 .= x0x
′
0 − · · · − xq−1x

′
q−1 , (7)

and we use the notation x2 = 〈x, x〉 .

The representation action is given as follows:

(Tχ(g)ϕ)(x) = y−Δ Dλ(m)ϕ(x′) (8)

the various factors being defined from the local Bruhat decomposition (4b) G ∼=loc

ÑAMN :
g−1 ñx = ñx′ a−1

y m−1n−1 , (9)
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where y ∈ R+ parametrizes the elements a ∈ A, m ∈ M, Dλ(m) denotes the repre-
sentation action of M on the space Vλ, n ∈ N .

On these functions the infinitesimal action of our representations looks as follows:

Tμ = ∂μ, ∂μ
.= ∂

∂xμ
, μ = 0, . . . , q − 1, (10)

D = −
q−1∑

μ=0

xμ∂μ − Δ,

X0a = x0∂a + xa∂0 + s0a, a = 1, . . . , q − 1,

Xab = −xa∂b + xb∂a + sab, 1 ≤ a < b ≤ q − 1,

Cμ = −2ημμ xμD + x2∂μ − 2
q−1∑

ν=0

xνsμν,

where sμν are the infinitesimal generators of Dλ(m) .
We recall several facts about elementary representations [15, 22]:

• The Casimir operators Ci of G have constant values on the ERs:

Ci({X})ϕ(x) = χi(λ,Δ)ϕ(x), i = 1, . . . , rankG = [
1
2q

] + 1, (11)

where {X} denotes symbolically the generators of the Lie algebraG ofG, the action
of which is given in (10).

• On the ERs are defined the integral Knapp–Stein Gχ operators which intertwine
the representation χwith the representation χ̃

.= [λ̃, q − Δ], where λ̃ is the mirror
image of λ. We recall that the mirror image λ̃ is equivalent to λ when q is odd,
while for q even and λ parametrized as in (5): λ = (λ1,λ2, . . . ,λq/2) we have
λ̃ = (−λ1,λ2, . . . ,λq/2).

• The representations χ and χ̃ are called partially equivalent due to the existence
of the intertwining operator Gχ between them. The representations are called
equivalent if the intertwining operator Gχ is onto and invertible.

• We also recall that the Casimirs χi have the same values on the partially equivalent
ERs:

χi(λ,Δ) = χi(λ̃, q − Δ) (12)

In the above general definition ϕ(x) are considered as elements of the finite-
dimensional representation space V λ in which act the operators Dλ(m). The repre-
sentation space Cχ can be thought of as the space of smooth sections of the homo-
geneous vector bundle (called also vector G-bundle) with base space G/P and fibre
Vλ , (which is an associated bundle to the principal P-bundle with total space G).
Actually, we do not need this description, but following [22] we replace the above
homogeneous vector bundle with a line bundle again with base space G/P. The
resulting functions ϕ̂ can be thought of as smooth sections of this line bundle.
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In the case when the representation λ is of symmetric traceless tensors of rank
�, i.e., λ = (0, . . . , 0, �), we can be more explicit following [15]. Namely, the func-
tions ϕ̂ are scalar functions over an extended space M × M0, where M0 is a cone
parametrized by the variable ζ = (ζ0, . . . , ζq−1) subject to the condition:

ζ2 = 〈ζ, ζ〉 = ζ20 − · · · − ζ2q−1 = 0. (13)

The functions on the extended space will be denoted as ϕ̂(x, ζ). The internal
variable ζ will carry the representationDλ. Thus, on the functions ϕ̂ the infinitesimal
generators sμν from (10) are given as follows:

s0a = ζ0
∂

∂ζa
+ ζa

∂

∂ζ0
, sab = −ζa

∂

∂ζb
+ ζb

∂

∂ζa
, (14)

4 Bulk Representations

It is well known that the group SO(q, 2) is called also anti de Sitter group, as it is the
group of isometry of (q + 1)-dimensional anti de Sitter space:

ξA ξB ηAB = 1 , A,B = 0, . . . , q + 1 . (15)

There are several ways to parametrize anti de Sitter space. For q = 3 in the paper [11]
was utilized the same local Bruhat decomposition (4b) that we used in the previous
section. In the present paper we shall use the Sekiguchi decomposition (4c), i.e.,
the factor-space G/H ∼= ÑA. In fact, we use isomorphic (w.r.t. [11]) coordinates
(x, y) = (x0, . . . , xq−1, y), y ∈ R+ . In this setting anti de Sitter space is called bulk
space, while q-dimensional Minkowski space-time is called boundary space, as it is
identified with the bulk boundary value y = 0.

It is natural to discuss representations on anti de Sitter space ÑAwhich are induced
from the subgroup H = SO(q, 1). Namely, we consider the representation space:

Ĉτ = {φ ∈ C∞(Rq × R>0 , V̂τ )} (16)

where τ is an arbitrary finite-dimensional irrespective of H, V̂τ is the finite-
dimensional representation space of τ , with representation action:

(T̂ τ (g)φ)(x, y) = D̃τ (h)φ(x′, y′) (17)

where the Sekiguchi decomposition is used:

g−1ñxay = ñx′ay′h−1, g ∈ G, h ∈ H, nx, nx′ ∈ N, ay, ay′ ∈ A (18)
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and D̃τ (k) is the representation matrix of τ in V̂τ . For later use we give the parame-
trization of the relevant subgroups:

H =
{
h =

[
h′ 0
0 ±1

]
|h ∈ SO0(q, 2), h′ ∈ SO0(q, 1),

}
∼= SO(q, 1) (19)

A =
⎧
⎨

⎩
ay =

⎛

⎝
Iq 0 0
0 cosh(s) sinh(s)
0 sinh(s) cosh(s)

⎞

⎠ |y = es, s ∈ R

⎫
⎬

⎭
(20)

Ñ =

⎧
⎪⎪⎨

⎪⎪⎩
ñx =

⎡

⎢
⎢
⎣

I1 0 t t
0 Iq−1 s† s†

t −s 1 + t2

2 − s2

2
t2

2 − s2

2

−t s s2

2 − t2

2 1 + s2

2 − t2

2

⎤

⎥
⎥
⎦ | (t, s) = x√

2
∈ R

q

⎫
⎪⎪⎬

⎪⎪⎭
(21)

The infinitesimal generators of (17) are given as follows:

T̂μ = ∂μ, μ = 0, . . . , q − 1 (22)

D̂ = −
q−1∑

μ=0

xμ∂μ − y∂y,

X̂0a = x0∂a + xa∂0 + s0a, a = 1, . . . , q − 1

X̂ab = −xa∂b + xb∂a + sab, 1 ≤ a < b ≤ q − 1

Ĉμ = −2ημμ xμD + (x2 + y2)∂μ − 2
q−1∑

ν=0

xνsμν − 2yΓμ,

where sμν, Γμ are infinitesimal generators of D̃τ (h), such that (due to the compati-
bility of λ and τ ) sμν = 1

4 [Γμ, Γν], [sμν, Γρ] = ηνρΓμ − ημρΓν .
Note that the realization of so(q, 2) on the boundary given in (10)may be obtained

from (22) by replacing y∂y → Δ and then taking the limit y → 0.
What is important is that, unlike the ERs, the representations (17) are highly

reducible. Our aim is to extract from Ĉτ representations that may be equivalent to
Cχ ,χ = [λ,Δ]. The first condition for this is that theM-representationλ is contained
in the restriction of the H-representation τ toM, i.e., λ ∈ τ |M . Another condition is
that the two representations would have the same Casimir values λi(λ,Δ).

This procedure is actually well understood and used in the construction of the
discrete series of unitary representations, cf. [13, 14], (also [11, 15] for q = 4).
The method utilizes the fact that in the bulk the Casimir operators are not fixed
numerically. Thus,when a vector-field realization of the anti de Sitter algebra so(q, 2)
(e.g., (22)) is substituted in the bulkCasimirs the latter turn into differential operators.
In contrast, the boundary Casimir operators are fixed by the quantum numbers of the
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fields under consideration.Then the bulk/boundary correspondence forces eigenvalue
equations involving theCasimir differential operators.Actually the 2ndorderCasimir
is enough for this purpose. That corresponding eigenvalue 2nd order differential
equation is used to find the two-point Green function in the bulk which is then used
to construct the boundary-to-bulk integral intertwining operator. This operator maps
a boundary field to a bulk field. For our setting this will be given in detail in [12].

Having in mind the degeneracy of Casimir values for partially equivalent repre-
sentations (e.g., (12))we add also the appropriate asymptotic condition. Furthermore,
from now on we shall suppose that Δ is real.

Thus, the representation (partially) equivalent to the ER χ is defined as:

Ĉτ
χ = { φ ∈ Ĉτ : Ci({X̂})φ(x, y) = λi(λ,Δ)φ(x, y), ∀i, λ ∈ τ |M,

φ(x, y) ∼ yΔ ϕ(x) for y → 0 } (23)

where X̂ denotes the action (22) of G on the bulk fields.
In the case of symmetric traceless tensors of rank � for bothM andH wecan extend

the functions on the bulk extended also with the coneM0 . These extended functions
will be denoted by φ(x, y, ζ). On these functions we have the infinitesimal action
given by (22) with sμν are given by (14), while Γμ are certain finite-dimensional
matrices which we shall give in [12].

5 Two Parametrizations of Bulk Space

As we mentioned in [11] we used as parametrization of the bulk space the coset
G/MN = |loc ÑA. The local coordinates of this coset come from the Bruhat decom-
position:

g = {gAB} = ñxaymn (24)

which exists for g ∈ G forming a dense subset of G. The local coordinates of the
above bulk are:

y = 1
2 (gqq + gq,q+1 + gq+1,q + gq+1,q+1) , (25)

xμ = gμ,q + gμ,q+1

gqq + gq,q+1 + gq+1,q + gq+1,q+1
, μ = 0, . . . , q − 1

The parametrization used in the present paper for the bulk space is the coset
G/H = |loc ÑA. Certainly, it is isomorphic to the bulk above, however, the local
coordinates are different, namely, the latter. come from the Sekiguchi decomposition:

g = {gAB} = ñxayh (26)
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Explicitly, they are given as follows:

y = |gq+1,q + gq+1,q+1| (27)

xμ = gμ,q+1

gq+1,q + gq+1,q+1
μ = 0, . . . , q − 1

Comparing the two parametrizations (25) and (27) we see that the latter is simpler
and thus easier to implement. Thus, in the follow-up paper [12] we shall use the
Sekiguchi decomposition (26).
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Localization and the Canonical
Commutation Relations

Patrick Moylan

Abstract LetWn(R) be the Weyl algebra of index n. We have shown that by using
extension and localization, it is possible to construct homomorphisms of Wn(R)

onto its image in a localization, or a quotient thereof, of U(so(2, q)), the universal
enveloping algebra of so(2, q), for n depending upon q [1]. Here we treat the so(2, 1)
case in complete detail. We establish an isomorphism of skew fields, specifically,
D̃(so(2, 1)) � D(1,1)(R)whereD1,1(R) is the fraction field ofW1.1(R) � W1(R) ⊗
R(y)with R(y) being the ring of polynomials in the indeterminate y and D̃(so(2, 1))
is a certain extension of the skew field of fractions of U(so(2, 1)), which is described
below. We give applications of this result to representations. In particular we are
able to construct representations of W1(R) out of representations of so(2, 1). Thus,
we are able, for this lowest dimensional case, to obtain the canonical commutation
relations and representations of them out of so(2, 1) symmetry. Using similar results
in higher dimensions [1] we are able to construct representations of Wn(R) out of
representations of so(2, q).

1 Introduction

Localization, or formation of quotients, is a powerful tool in mathematics with many
knownapplications. It is used to relate different algebraic structureswhich share some
common similarities. An important example is the Gelfand-Kirillov conjecture [2]
which is very much related to what we do here. Another example, extremely inter-
esting from the physical viewpoint, is an isomorphism between Lie field extensions
of SO0(1, 4) and the Poincaré group which was first demonstrated in [3].

In this paper we study a physically interesting problem similar in nature to the
ones just mentioned, namely, given a real Lie algebra, L, is it possible to obtain an
embedding ofWn(R) (for certain n depending upon L) into a commutative algebraic
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extension of a localization of U(L) or a suitable quotient thereof? We have studied
in some detail the case of L = so(2, q) and have reported some of our results in [1].
Our method of approach rests upon the conformal realization of so(2, q) as vector-
valued differential operators on a q dimensional pseudo-Euclidean space of signature
(1, q − 1) and it essentially amounts to obtaining of the canonical commutation rela-
tions out of conformal symmetry. Usually the canonical commutation relations are
derived from some form of translational symmetry (homogeneity of space) with
additional assumptions, e.g. a system of imprimitivity [4, 5]. The arguments pre-
sented herein rest solely upon conformal symmetry and extension and localization.
For us, the noncommutativity of the momentum and position operators comes from
the noncommutativity of pseudorotations in different directions of conformal space.
Our arguments provide a different and perhapsmore convincing derivation than those
presented in the just mentioned references.

2 Facts About Enveloping Algebras, Weyl Algebras
and SO0(2, 1)

U(L) denotes the universal enveloping algebra of a Lie algebra L over R. It is a
ring with identity which we denote by 1. U(L) is a filtered algebra i.e. Ur(L) =
{pr(X1,X2, ...Xn)|deg(pr) ≤ i;Xi ∈ L}withU0(L) = R, U1(L) = R · 1 + L andUr

(L) Us(L) ⊂ Ur+s(L). A basis for Ur(L) is Xq1
1 Xq2

2 . . .Xqn
n with q1 + q2 + . . . qn ≤ i.

The graded algebra associated with U(L) is G = G0 ⊕ G1 ⊕ . . . ⊕ Gi ⊕ . . . with
Gi = Ui(L)/Ui−1(L) (U−1(L) = 0). U(L) admits a fraction field which we denote
by D(L) [6]. Denote the centers of U(L) and D(L) by Z(L) and c(L), respectively.

The Weyl algebra Wn(R) is determined by the 2n generators p1, . . . ,
pn, q1, . . . , qn with relations

[pi, pj] = [qi, qj] = 0 (1)

[pi, qj] = δij (2)

for all i, j ≤ n. Given a collection of free variables y1, . . . , ys we define

Wn,s(R) := Wn(R) ⊗ R[y1, . . . , ys]. (3)

Being a Noetherian domain [7] the algebra Wn,s(R) also admits a field of fractions
denoted Dn,s(R). In Wn,s(R) we have the filtration Wn,s(R)0 ⊂ Wn,s(R)1 ⊂ . . .

whereWn,s(R)i is set of all polynomials of degree ≤ i in q1, . . . , qn, p1, . . . , pn with
coefficients in R[y1, . . . , ys]. The associated graded ring Gn,s(R) is isomorphic to
the polynomial ring R[p1, . . . , ps; q1, . . . , qs; y1, . . . , ys].

Let R[xi, . . . xj] be the ring of polynomial functions in n variables x1, x2, ..., xn
with coefficients in R. We have a homomorphism ρ from Wn(R) into End
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(R[xi, . . . xj]) determined by ρ(pi) = ∂/∂xi(= ∂i) and ρ(xj) = “multiplication by”
xj. SinceWn(R) is simple [6], it is easy to see that ρ is injective. Thus this represen-
tation ofWn(R) is isomorphic toWn(R). From an algebraic standpoint, we can and
shall use this representation ofWn(R) interchangeably withWn(R).

SO(2, 1) = {g ∈ SL(3, R)|g†β0g = β0} (β0 = diag(1, 1,−1)). SO0(2, 1) is the
connected component and so(2, 1) = {X ∈ sl(3, R)|X†β0 + β0X = 0} is the Lie
algebra of SO0(2, 1). A basis of g = so(2, 1) is Lij (i, j = −1, 0, 1, i < j). We
let Lij = −Lji for i > j, and the Lij satisfy the following commutation relations:

[Lab, Lbc] = −eb Lac (4)

with e−1 = e0 = −e1 = 1. All other commutators vanish. The relation of the Lij to
a basis for (2, R) is H = −2iL−10 , X± = L−11 ∓ iL01 where H and X± are the
basic generators of (2, R). The ∗ structure on the complexification (2, C) of so(2, 1)
compatible with physical requirements of skew-symmetry of the so(2, 1) generators
is: L†

ij = −Lij ⇐⇒ H† = H, X±† = −X∓. The Casimir operator of SO0(2, 1) is:

Δ = L2
−10 − L2

01 − L2
−11 = X+X− + 1

4
H2 − 1

2
H − 1

4
. (5)

It generates the center z(so(2, 1)) of the enveloping algebra U(so(2, 1)).
Some subgroups of SO0(2, 1) which we shall need are:

K =
⎧
⎨

⎩
k(u) =

⎡

⎣
u1 u2 0

−u2 u1 0
0 0 1

⎤

⎦

∣
∣
∣
∣
∣
∣
u =

(
u1 u2

−u2 u1

)
∈ SO(2)

⎫
⎬

⎭
(6)

A =
⎧
⎨

⎩
a(τ ) =

⎡

⎣
ch(ø) 0 sh(τ )

0 1 0
sh(τ ) 0 ch(ø)

⎤

⎦

∣
∣
∣
∣
∣
∣
τ ∈ R

⎫
⎬

⎭
(7)

H =
⎧
⎨

⎩

⎡

⎣
1 0 0
0 p̂0 p̂
0 p̂ p̂0

⎤

⎦

∣
∣
∣
∣
∣
∣

(
p̂0 p̂
p̂ p̂0

)
∈ SO0(1, 1) (p̂20 − p̂2 = 1, p0 > 0)

⎫
⎬

⎭
(8)

N =
⎧
⎨

⎩
n(a) =

⎡

⎣
1 − a2

2 a a2

2−a 1 a
− a2

2 a 1 + a2

2

⎤

⎦

∣
∣
∣
∣
∣
∣
a ∈ R

⎫
⎬

⎭
(9)

Ñ =
⎧
⎨

⎩
ñ(x) =

⎡

⎣
1 − x2

2 −x − x2

2
x 1 x
x2

2 x 1 + x2

2

⎤

⎦

∣
∣
∣
∣
∣
∣
x ∈ R

⎫
⎬

⎭
. (10)
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For SO0(2, 1) the centralizer of A in K , which is denoted by M, turns out to be the
trivial subgroup i.e. M = CA(K) = {I} where I is the identity on R

3. Well known
decompositions of SO0(2, 1) are the Iwasawa decomposition: SO0(2, 1) � KAN ;
and the Bruhat decomposition: SO0(2, 1) � ÑMAN . The Langlands decomposition
of the parabolic subgroup is P = MAN .

3 Parabolic Induction: Elementary Representations

A character of A is a homomorphism χ : A → C. Let A∗ be the space of all char-
acters. For σ ∈ C let χσ ∈ A∗  χσ(a(τ )) = e−(σ+1/2)τ . Let ρ be an irreducible
representation of M. Since M = {I}, ρ(I) = (+1) and ρ = 1, i.e. the identity repre-
sentation. Consider 1 ⊗ χσ : MA → C and extend this mapping to a mapping from
the parabolic subgroup P = MAN to C by requiring that it act trivially on N . Thus
P  p = ma(τ )n −→ (1 ⊗ χσ ⊗ 1)(p) = χσ(a(τ )) ∈ C. The elementary represen-
tations (or generalized principal series) are thus defined as [8]:

IndGP (1 ⊗ χσ ⊗ 1) = {F ∈ C∞(G)|F(gp) = (1 ⊗ χσ ⊗ 1)(p)F(g), g ∈ G, p ∈ P}

= {F ∈ C∞(G)| F(gp) = e−(σ+1/2)τF(g), g ∈ G, p = ma(τ )n ∈ P}. (11)

G (= SO0(2, 1)) acts by left translation: F(g)

g1
−→ F(g1g).

Parallelizations of IndGP (1 ⊗ χσ ⊗ 1) associatedwith the IwasawaandBruhat decom-
positions are defined as follows. LetL(σ)(G/P) is the line bundle overu ∈ G/Pwhose
elements are equivalence classes of ordered pairs (u, s) ∈ G × C with respect to the
equivalence relation (p = ma(τ )n ∈ P):

(u, s) ∼ (up, ρ(m)χσ(a(τ ))s). (12)

Let C∞(G/P,L(σ)) be the space of all C∞ sections of L(σ)(G/P). The Iwasawa
decomposition gives us the isomorphism

C∞(G/P,L(σ))  ψ −→ φ ∈ C∞(K/M). (13)

This defines a parallelization of the bundle L(σ)(G/P), which we call the “spherical
parallelization.” There is a similar description for the Bruhat decomposition which
parallelization we call the “flat parallelization.” It associates sections of L(σ)(G/P)

with functions on C∞(Ñ) with appropriate asymptotic conditions which we do not
specify [9].
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Table 1 Presentations of the infinitesimal generators in the spherical and flat parallelizations

Generator Spherical parallelization Flat parallelizationa

L−1,1 sin θ∂θ + w cos θ S + w

L0,1 cos θ∂θ − w sin θ (1 − x20
4 )∂0 + 1

2 x0(S + w)

L−1,0 −∂θ (1 + x2
4 )∂0 − 1

2 x0(S + w)

ax0 = 2x, ∂0 = ∂x0 , S = x0∂0, and w = σ + 1
2

The action of IndGP (1 ⊗ χσ ⊗ 1) on C∞(K/M) (spherical parallelization) is:

πσ(g)φ(u) = e−(σ+1/2)τφ(g−1u) = e−(σ+1/2)τφ(g−1u) (14)

where u ∈ K/M � K , and g−1k(u) = k(u′)a(τ )n with g−1u := u′. The action of
IndGP (1 ⊗ χσ ⊗ 1) onC∞(Ñ) (flat parallelization) is related to the action in the curved
parallelization by

ψ(x) =
(

2

1 + u1

)−(σ+1/2)

φ(u) (15)

where K∗/M  u → x = π(u) ∈ Ñ is that of stereographic projection from
K∗/M � S1\{P} onto Ñ � R with P the excluded point of the projection and
K∗ � K\{P}.
Let Lijf = dπσ(Lij)f := dπσ(etLij )

dt

∣
∣
∣
t=0

f for f a C∞ function on either K/M (spherical

parallelization) or Ñ (flat parallelization). Using this we obtain the values given
in Table1 for the infinitesimal action of the generators Lij of g = so(2, 1) in the
representation IndGP (1 ⊗ χσ ⊗ 1).

4 An Embedding of D(so(2, 1)) into D1,1(RRR)

and the Isomorphism D̃(so(2, 1)) � D1,1(RRR)

Recall that W1,1(R) = W1(R) ⊗ R[Y ] with associated skew field D1,1(R). Based
on the results in Table1 we define τ̃ : so(2, 1) → W1,1(R) by

τ̃ (L−11) = S + Y · 1 = x0∂0 + Y · 1 (16)

τ̃ (L01) = −∂0 + 1

4
x0S + 1

2
Y x0 (17)

τ̃ (L−10) = −∂0 − 1

4
x0S − 1

2
Y x0. (18)
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τ̃ extends to a homomorphism τ̃ : U(so(2, 1)) → W1,1(R) with τ̃ (1) = 1. Since
so(2, 1) is simple we can show that ker(τ̃ ) = 0, so that τ̃ extends to an injective
homomorphism of D(so(2, 1)) intoD1,1(R). Calculations show that

τ̃ (Δ) = τ̃ (L2
−10 − L2

01 − L2
−11) = Y 2 − Y . (19)

The polynomial equation Δ − Z2 + Z = 0 has no solution in D(so(2, 1), so
Y /∈ τ̃ (U(so(2, 1))). Thuswe let τ̃ (Z) = Y and consider the (commutative) extension
field

D̃(so(2, 1)) = {a + Zb | a, b ∈ D(so(2, 1))with [Z, a] = 0 ∀ a} . (20)

Theorem 1 τ̃ : D̃(so(2, 1))→ D1,1(R) is an isomorphism.

Proof The only nontrivial part is to prove surjectivity. For this we define

P0 := −1

2
(L−10 + L01) and Q0 := (L−11 − Z)P−1

0 (21)

and show that
τ̃ (P0) = ∂0, and τ̃ (Q0) = x0. �� (22)

A physically acceptable ∗ structure on D1,1(R) is: x†0 = x0 and ∂†
0 = −∂0 i.e.

x0 is symmetric and ∂0 is skew-symmetric. The physically acceptable ∗ structure
associated with D̃(so(2, 1)) is: L†

ij = −Lij. We want τ̃ to be compatible with these ∗
structures i.e. τ̃ should preserve these ∗ structures. Define Z† such that Z + Z† = 1
and τ̃ (Z†) = Y †. Then

Δ† = Δ ⇐⇒ (Y 2)† = (Y †)2. (23)

Theorem 2 For Z† such that Z + Z† = 1, τ̃ is compatible with the ∗ structures on
D̃(so(2, 1)) and D1,1(R), i.e.

τ̃ (Q†
0) = x†0 and τ̃ (P†

0) = −∂†
0 . (24)

Proof Straightforward calculation.

5 Applications: Representations of W1(RRR)

from Representations of so(2, 1)

Let τ = τ̃−1 then τ : W1(R) −→ D̃(so(2, 1)) is an isomorphism onto its image in
D̃(so(2, 1)) such that τ (∂0) = P0 and τ (x0) = Q0. In order to construct represen-
tations of W1(R) out of representations of U(so(2, 1)) by using τ , we need the
following Lemma which is proved in [6]:
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Lemma 1 Suppose f : R −→ R1 is a ring homomorphism and Q is a left (resp.
right) quotient ring of R with respect to S. If f (s) is a unit in R1 for every s ∈ S, then
there exists a (unique) ring homomorphism g : Q −→ R1 which extends f .

This criterion implies for our case that the action of P0 in a given representation dπ
of U(so(2, 1)) must be invertible. For Hilbert space representations this means that
zero should lie in the resolvent set of dπ(P0). Likely candidates for representations of
so(2, 1) for which dπ(P0) is invertible are highest or lowest weight representations.
The reason for this is the following [10]. Let dπ(so(2, 1)) be a lowest (highest)weight
representation of so(2, 1). If dπ comes from a unitary representation of SO0(2, 1),
then we say that it is an infinitesimally unitarizable lowest (highest) weight repre-
sentation. A linear operator A on a Hilbert space H is positive if

(ψ,Aψ) ≥ 0 for all ψ ∈ H

(similarly for strictly positive). dπ(P0) is a positive, self adjoint operator if and only
if dπ(so(2, 1)) is an (infinitesimally) unitarizable lowest weight representation of
so(2, 1).

The unitary irreducible representations of SO0(2, 1) are contained as a sub-
set in a famous work of V. Bargmann [11]. They are: i) trivial representation; ii)
principal series: IndGP (1 ⊗ χσ=iρ ⊗ 1) (0 < ρ < ∞) ; iii) D+

0 and D−
0 :VK = V+ ⊕

V−⊂ IndGP (1 ⊗ χσ=− 1
2
⊗ 1) (V+ positive & V− negative energy). U(g) acts on the

quotient module VK/Y0 via the quotient action of g on VK/Y0 and D+
0 = V+/Y0,

D−
0 = V−/Y0. Furthermore

ι π
0 → Y0 → VK → VK/Y0 → 0

is short exact sequence

of g equivariant U(g) module homomorphisms; iv) discrete series: D+
� and D−

�

(� = 1, 2, 3, ...): (same description of quotient structure); v) complementary series:
IndGP (1 ⊗ χσ=−c ⊗ 1) (0 < c ≤ 1

2 ). None of these representations satisfy both the
conditions of Theorem 2 and of the Lemma. In order to find a representation which
satisfies all conditions of the Theorem2 and also of the Lemma,we found it necessary
to go to a covering group of SO0(2, 1).

Theorem 3 (Ørsted, Segal (IES)) [12] Let ¯̄G denote the four-fold cover of SO0(2, 1)

and consider the representation of ¯̄G induced from P̄ of weight w = 1
2 (σ = 0). This

representation is equivalent to the direct sum of two unitary positive and negative

energy irreducible representations of ¯̄G.

Proposition 1 Let H+
1/2 and H−

1/2 respectively denote the positive and negative
energy subspaces of the Hilbert space associated with the representation in Theorem
3. Then on either H+

1/2 or H−
1/2, P0 acts as a skew-symmetric operator and Q0 acts

as a well-defined symmetric operator. Thus we have onH+
1/2 orH−

1/2 representations
of W1(R) in which x0 and ∂0 act, respectively, as symmetric and skew-symmetric
operators.

We also have the result that D̃(so(2, 1)) � D̃(iso(1, 1)) where iso(1, 1) � H � N
[13]. (This result is a lower dimensional and hence much simpler case of the iso-



430 P. Moylan

morphism established in ref. [3].) Combining this with D̃(so(2, 1)) � D1,1(R) we
get

D̃(so(2, 1)) � D1,1(R) � D̃(iso(1, 1)) (25)

From this it is clear that D1,1(R) is stable under the Lie algebra contraction
so(2, 1) → iso(1, 1). In other words, Planck’s constant remains unchanged as the
contraction parameter goes to zero, i.e. as the conformal invariant radius of S1

becomes infinite [14]. We have obtained generalizations to SO(2, q) groups like
SO(2, 3) and SO(2, 4), results of which are partially described in [1].
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Permutation-Symmetric Three-Body O(6)
Hyperspherical Harmonics in Three Spatial
Dimensions

Igor Salom and V. Dmitrašinović

Abstract We have constructed the three-body permutation symmetric O(6) hyper-
spherical harmonics which can be used to solve the non-relativistic three-body
Schrödinger equation in three spatial dimensions. We label the states with eigen-
values of the U(1) ⊗ SO(3)rot ⊂ U(3) ⊂ O(6) chain of algebras and we present the
corresponding K ≤ 4 harmonics. Concrete transformation properties of the harmon-
ics are discussed in some detail.

1 Introduction

Hyperspherical harmonics are an important tool for dealingwith quantum-mechanical
three-body problem, being of a particular importance in the context of bound states
[1–6]. However, before our recent progress [7], a systematical construction of
permutation-symmetric three-body hyperspherical harmonics was, to our knowl-
edge, lacking (with only some particular cases being worked out – e.g. those with
total orbital angular momentum L = 0, see Refs. [5, 8]).

In this note, we report the construction of permutation-symmetric three-body
O(6) hyperspherical harmonics using the U(1) ⊗ SO(3)rot ⊂ U(3) ⊂ O(6) chain of
algebras, where U(1) is the “democracy transformation”, or “kinematic rotation”
group for three particles, SO(3)rot is the 3D rotation group, and U(3),O(6) are the
usual Lie groups. This particular chain of algebras is mathematically very natural,
since the U(1) group of “democracy transformations” is the only nontrivial (Lie)
subgroup of full hyperspherical SO(6) symmetry (the symmetry of nonrelativistic
kinetic energy) that commutes with spatial rotations. Historically, this chain was also
suggested in the recent review of the Russian school’s work, Ref. [9], and indicated
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by the previous discovery of the dynamicalO(2) symmetry of the Y-string potential,
Ref. [10]. The name “democracy transformations” comes from the close relation
of these transformations with permutations: (cyclic) particle permutations form a
discrete subgroup of this U(1) group.

2 Three-Body Hyperspherical Coordinates

Anatural set of coordinates for parametrization of three-bodywave functionΨ (ρ,λ)

(in the center-of-mass frame of reference) is given by the Euclidean relative position
Jacobi vectors ρ = 1√

2
(x1 − x2), λ = 1√

6
(x1 + x2 − 2x3). The overall six compo-

nents of the two vectors can be seen as specifying a position in a six-dimensional
configuration space xμ = (λ,ρ), which, in turn, can be parameterized by hyper-

spherical coordinates as Ψ (R,�5). Here R =
√

ρ2 + λ2 is the hyper-radius, and
five angles �5 parametrize a hyper-sphere in the six-dimensional Euclidean space.
Three (�i; i = 1, 2, 3) of these five angles (�5) are just the Euler angles associ-
ated with the orientation in a three-dimensional space of a spatial reference frame
defined by the (plane of) three bodies; the remaining two hyper-angles describe the
shape of the triangle subtended by three bodies; they are functions of three inde-
pendent scalar three-body variables, e.g. ρ · λ, ρ2, and λ2. Due to the connection
R =

√
ρ2 + λ2, this shape-space is two-dimensional, and topologically equivalent

to the surface of a three-dimensional sphere. A spherical coordinate system can be
further introduced in this shape space. Among various (in principle infinitely many)
ways that this can be accomplished, the one due to Iwai [6] stands out as the one
that fully observes the permutation symmetry of the problem. Namely, of the two

Iwai (hyper)spherical angles (α, φ): (sinα)2 = 1 −
(
2ρ×λ
R2

)2
, tan φ =

(
2ρ·λ

ρ2−λ2

)
, the

angle α does not change under permutations, so that all permutation properties are
encoded in the φ-dependence of the wave functions.

Nevertheless, in the construction of hyperspherical harmonics, we will, unlike the
most of the previous attempts in this context, refrain from use of any explicit set of
angles, and express harmonics as functions of Cartesian Jacobi coordinates.

3 O(6) Symmetry of the Hyperspherical Approach

The motivation for hyperspherical approach to the three-body problem comes from
the fact that the equal-mass three-body kinetic energy T is O(6) invariant and can be
written as

T = m

2
Ṙ2 + K2

μν

2mR2
. (1)
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Here,Kμν , (μ, ν = 1, 2, . . . , 6) denotes theSO(6) “grand angular”momentum tensor

Kμν = m
(
xμẋν − xν ẋμ

)

= (
xμpν − xνpμ

)
. (2)

Kμν has 15 linearly independent components, that contain, among themselves
three components of the “ordinary” orbital angular momentum: L = lρ + lλ =
m

(
ρ × ρ̇ + λ × λ̇

)
.

It is due to this symmetry of the kinetic energy that the decomposition of the
wave function and potential energy into SO(6) hyperspherical harmonics becomes a
natural way to tackle the three-body quantum problem.

In this particular physical context, the six dimensional hyperspherical harmonics
need to have some desirable properties. Quite generally, apart from the hyperangular
momentum K, which labels the O(6) irreducible representation, all hyperspherical
harmonics must carry additional labels specifying the transformation properties of
the harmonic with respect to (w.r.t.) certain subgroups of the orthogonal group. The
symmetries of most three-body potentials, including the three-quark confinement
ones, are: parity, rotations and permutations (spatial exchange of particles).

Therefore, the goal is to find three-body hyperspherical harmonics with well
defined transformation properties with respect to thee symmetries. Parity is directly
related toK value:P = (−1)K, the rotation symmetry implies that the hyperspherical
harmonics must carry usual quantum numbers L and m corresponding to SO(3)rot ⊃
SO(2) subgroups and permutation properties turn out to be related with a continuous
U(1) subgroup of “democracy transformations”, as will be discussed below.

4 Labels od Permutation-Symmetric Three-Body
Hyperspherical Harmonics

We introduce the complex coordinates:

X±
i = λi ± iρi, i = 1, 2, 3. (3)

Nine of 15 hermitian SO(6) generators Kμν in these new coordinates become

iLij ≡ X+
i

∂

∂X+
j

+ X−
i

∂

∂X−
j

− X+
j

∂

∂X+
i

− X−
j

∂

∂X−
i

, (4)

2Qij ≡ X+
i

∂

∂X+
j

− X−
i

∂

∂X−
j

+ X+
j

∂

∂X+
i

− X−
j

∂

∂X−
i

. (5)
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Here Lij have physical interpretation of components of angular momentum vector L.
The symmetric tensor Qij decomposes as (5) + (1) w.r.t. rotations, while the trace:

Q ≡ Qii =
3∑

i=1

X+
i

∂

∂X+
i

−
3∑

i=1

X−
i

∂

∂X−
i

(6)

is the only scalar under rotations, among all of the SO(6) generators. Therefore,
the only mathematically justified choice is to take eigenvalues of this operator for an
additional label of the hyperspherical harmonics. Besides, this traceQ is the generator
of the forementioned democracy transformations, a special case of which are the
cyclic permutations – which in addition makes this choice particularly convenient
on an route to construction of permutation-symmetric hyperspherical harmonics.
The remaining five components of the symmetric tensor Qij, together with three
antisymmetric tensors Lij generate the SU(3) Lie algebra, which together with the
single scalar Q form an U(3) algebra, Ref. [9].

Overall, labelling of the O(6) hyperspherical harmonics with labels K,Q,L and
m corresponds to the subgroup chain U(1) ⊗ SO(3)rot ⊂ U(3) ⊂ SO(6). Yet, these
four quantum numbers are in general insufficient to uniquely specify an SO(6)
hyperspherical harmonic and an additional quantum number must be introduced
to account for the remaining multiplicity. This is the multiplicity that necessarily
occurs when SU(3) unitary irreducible representations are labelled w.r.t. the chain
SO(2) ⊂ SO(3) ⊂ SU(3) (where SO(3) is “matrix embedded” into SU(3)), and thus
is well documented in the literature. In this context the operator:

VLQL ≡
∑

ij

LiQijLj (7)

(where Li = 1
2εijkLjk andQij is given by Eq. (5)) has often been used to label the mul-

tiplicity of SU(3) states. This operator commutes both with the angular momentum
Li, and with the “democracy rotation” generator Q:

[VLQL,Li
] = 0; [VLQL,Q

] = 0

Therefore we demand that the hyperspherical harmonics be eigenstates of this oper-
ator:

VLQLYKQν
L,m = νYKQν

L,m ;

Thus, ν will be the fifth label of the hyperspherical harmonics, beside the
(K,Q,L,m).
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5 Tables of Hyperspherical Harmonics of Given K,Q,L,M
and ν

Below we explicitly list all hyperspherical harmonics for K ≤ 4, labelled by the
quantum numbers (K,Q,L,m, ν) (we will not delve here into lengthy details of
the derivation of the expressions). We list only the harmonics with m = L and
Q ≥ 0, as the rest can be easily obtained by acting on them with standard lower-
ing operators and by using the permutation symmetry properties of hyperspheri-
cal harmonics: YKQν

L,m (λ, ρ) = (−1)K−LYK−Q−ν
L,m (λ,−ρ). We use the (more compact)

spherical complex coordinates: X±
0 ≡ λ3 ± iρ3, X

±
(±) ≡ λ1 ± iρ1 + (±)(λ2 ± iρ2),

|X±|2 = X±
+X

±
− + (X±

0 )2, while we are also explicitly writing out the K ≤ 3 har-
monics in terms of Jacobi coordinates.

Y0,0,0
0,0 (X) = 1

π3/2

Y1,1,−1
1,1 (X) =

√
3
2X

+
+

π3/2R
=

√
3
2 (λ1 + i (λ2 + ρ1 + iρ2))

π3/2
√

λ2
1 + λ2

2 + λ2
3 + ρ21 + ρ22 + ρ23

Y2,0,0
1,1 (X) =

√
3
(
X−

+X
+
0 − X+

+X
−
0

)

π3/2R2
= 2

√
3 (λ3 (ρ2 − iρ1) + i (λ1 + iλ2) ρ3)

π3/2
(
λ2
1 + λ2

2 + λ2
3 + ρ21 + ρ22 + ρ23

)

Y2,0,0
2,2 (X) =

√
3X+

+X
−
+

π3/2R2
=

√
3 (λ1 + i (λ2 + ρ1 + iρ2)) (λ1 + iλ2 − iρ1 + ρ2)

π3/2
(
λ2
1 + λ2

2 + λ2
3 + ρ21 + ρ22 + ρ23

)

Y2,2,0
0,0 (X) =

√
2|X+|2
π3/2R2

=
√
2(2iλ1ρ1+2iλ2ρ2+2iλ3ρ3+λ2

1+λ2
2+λ2

3−ρ21−ρ22−ρ23)
π3/2(λ2

1+λ2
2+λ2

3+ρ21+ρ22+ρ23)

Y2,2,−3
2,2 (X) =

√
3
2

(
X+

+
)2

π3/2R2
=

√
3
2 (λ1 + i (λ2 + ρ1 + iρ2))

2

π3/2
(
λ2
1 + λ2

2 + λ2
3 + ρ21 + ρ22 + ρ23

)

Y3,1,3
1,1 (X) =

√
6
(
X−+ |X+|2− 1

2R
2X++

)

π3/2R3

=
√
6((λ1+iλ2−iρ1+ρ2)((λ1+iρ1)

2+(λ2+iρ2)
2+(λ3+iρ3)

2))
π3/2(λ2

1+λ2
2+λ2

3+ρ21+ρ22+ρ23)
−

√
6
2 (λ1+i(λ2+ρ1+iρ2))

π3/2(λ2
1+λ2

2+λ2
3+ρ21+ρ22+ρ23)
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Y3,1,−5
2,2 (X) =

√
5X+

+
(
X−

+X
+
0 − X+

+X
−
0

)

π3/2R3

= 2
√
5 (λ1 + i (λ2 + ρ1 + iρ2)) (λ3 (ρ2 − iρ1) + i (λ1 + iλ2) ρ3)

π3/2
(
λ2
1 + λ2

2 + λ2
3 + ρ21 + ρ22 + ρ23

)3/2

Y3,1,−2
3,3 (X) =

√
15

(
X+

+
)2
X−

+
2π3/2R3

=
√
15 (λ1 + i (λ2 + ρ1 + iρ2))

2 (λ1 + iλ2 − iρ1 + ρ2)

2π3/2
(
λ2
1 + λ2

2 + λ2
3 + ρ21 + ρ22 + ρ23

)3/2

Y3,3,−1
1,1 (X) =

√
3X++ |X+|2
π3/2R3

=
√
3(λ1+i(λ2+ρ1+iρ2))(2iλ1ρ1+2iλ2ρ2+2iλ3ρ3+λ2

1+λ2
2+λ2

3−ρ21−ρ22−ρ23)
π3/2(λ2

1+λ2
2+λ2

3+ρ21+ρ22+ρ23)
3/2

Y3,3,−6
3,3 (X) =

√
5

(
X+

+
)3

2π3/2R3
=

√
5 (λ1 + i (λ2 + ρ1 + iρ2))

3

2π3/2
(
λ2
1 + λ2

2 + λ2
3 + ρ21 + ρ22 + ρ23

)3/2

Y4,0,0
0,0 (X) = −

√
3

(
R4 − 2

∣
∣X−∣

∣2
∣
∣X+∣

∣2
)

π3/2R4

Y4,0,−√
105

2,2 (X) =
−12

√
14R2X++X−+ +

√
105

(
11−√

105
)
(X−+)

2|X+|2+
√
105

(
11+√

105
)
(X++)

2|X−|2
14π3/2R4

Y4,0,
√
105

2,2 (X) =
−12

√
14R2X++X−+ +

√
105

(
11+√

105
)
(X−+)

2|X+|2+
√
105

(
11−√

105
)
(X++)

2|X−|2
14π3/2R4

Y4,0,0
3,3 (X) = 3

√
5X+

+X
−
+

(
X−

+X
+
0 − X+

+X
−
0

)

2π3/2R4

Y4,0,0
4,4 (X) =

3
√

5
2

(
X+

+
)2 (

X−
+

)2

2π3/2R4

Y4,2,2
1,1 (X) = 3

(
X−

+X
+
0 − X+

+X
−
0

) ∣
∣X+∣

∣2

π3/2R4
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Y4,2,2
2,2 (X) =

√
3
7X

+
+

(
5X−

+
∣
∣X+∣

∣2 − 2R2X+
+

)

π3/2R4

Y4,2,−13
3,3 (X) =

3
√

5
2

(
X+

+
)2 (

X−
+X

+
0 − X+

+X
−
0

)

2π3/2R4

Y4,2,−5
4,4 (X) =

√
15

(
X++

)3
X−+

2π3/2R4

Y4,4,0
0,0 (X) =

√
3

∣
∣X+∣

∣4

π3/2R4

Y4,4,−3
2,2 (X) =

3
√

5
14

(
X+

+
)2 ∣

∣X+∣
∣2

π3/2R4

Y4,4,−10
4,4 (X) =

√
15

(
X+

+
)4

4π3/2R4

6 Permutation Symmetric Hyperspherical Harmonics

There is a small step remaining from obtaining the hyperspherical harmonics labelled
by quantum numbers (K,Q,L,m, ν) to achieving our goal, which is to construct
hyperspherical functions with well-defined values of parity P = (−1)K, rotational
group quantum numbers (L,m), and permutation symmetryM (mixed), S (symmet-
ric), and A (antisymmetric).1 In this section we clarify how to obtain the latter as
linear combinations of the former.

Properties under particle permutations of the functions YKQν
J,m (λ,ρ) are inferred

from the transformation properties of the coordinates X±
i : under the transpositions

(two-body permutations) {T12, T23, T31} of pairs of particles (1,2), (2,3) and (3,1),
the Jacobi coordinates transform as:

1The mixed symmetry representation of the S3 permutation group being two-dimensional, there
are two different state vectors (hyperspherical harmonics) in each mixed permutation symmetry
multiplet, usually denoted by Mρ and Mλ.
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T12 : λ → λ, ρ → −ρ,

T23 : λ → −1

2
λ +

√
3

2
ρ, ρ → 1

2
ρ +

√
3

2
λ, (8)

T31 : λ → −1

2
λ −

√
3

2
ρ, ρ → 1

2
ρ −

√
3

2
λ.

That induces the following transformations of complex coordinates X±
i :

T12 : X±
i → X∓

i ,

T23 : X±
i → e± 2iπ

3 X∓
i , (9)

T31 : X±
i → e∓ 2iπ

3 X∓
i .

None of the quantum numbers K,L andm change under permutations of particles,
whereas the values of the “democracy label” Q and multiplicity label ν are inverted
under all transpositions: Q → −Q, ν → −ν.

Apart from the changes in labels, transpositions of two particles generally also
result in the appearance of an additional phase factor multiplying the hyperspherical
harmonic. For values of K,Q,L and m with no multiplicity, we readily derive (Ref.
[7]) the following transformation properties of h.s. harmonics under (two-particle)
particle transpositions:

T12 : YKQν
L,m → (−1)K−JYK,−Q,−ν

L,m ,

T23 : YKQν
L,m → (−1)K−Le

2Qiπ
3 YK,−Q,−ν

L,m , (10)

T31 : YKQν
L,m → (−1)K−Le− 2Qiπ

3 YK,−Q,−ν
L,m .

There are three distinct irreducible representations of the S3 permutation group
- two one-dimensional (the symmetric S and the antisymmetric A ones) and a two-
dimensional (the mixed M one). In order to determine to which representation of the
permutation group any particular h.s. harmonic YKQν

L,m belongs, one has to consider
various cases, with and without multiplicity, see Ref. [7]; here we simply state the
results of the analysis conducted therein. The following linear combinations of the
h.s. harmonics,

YK|Q|ν
L,m,± ≡ 1√

2

(
YK|Q|ν
L,m ± (−1)K−LYK,−|Q|,−ν

L,m

)
. (11)

are no longer eigenfunctions of Q operator but are (pure sign) eigenfunctions of the
transposition T12 instead:

T12 : YK|Q|ν
L,m,± → ±YK|Q|ν

L,m,±.
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They are the appropriate h.s. harmonics with well-defined permutation properties:

1. for Q �≡ 0 (mod 3), the harmonics YK|Q|ν
L,m,± belong to the mixed representation M,

where the ± sign determines theMρ,Mλ component,
2. for Q ≡ 0 (mod 3), the harmonic YK|Q|ν

L,m,+ belongs to the symmetric representation

S and YK|Q|ν
L,m,− belongs to the antisymmetric representation A.

The above rules define the representation of S3 for any given h.s. harmonic.

7 Summary

In this paper we have reported on our recent construction of permutation symmet-
ric three-body SO(6) hyperspherical harmonics. In the Sect. 5 we have displayed
explicit forms the harmonic functions labelled by quantum numbers K,Q,L,m and
ν, postponing explanation of their derivation to [7]. In Sect. 6 we demonstrated that
simple linear combinations YK|Q|ν

L,m,± of these functions have well defined permutation
properties. To our knowledge, this is the first time that such hyperspherical harmonics
are constructed in full generality.
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Quantum Plactic and Pseudo-Plactic
Algebras

Todor Popov

Abstract We review the Robinson–Schensted–Knuth correspondence in the light
of the quantum Schur–Weyl duality. The quantum plactic algebra is defined to be
a Schur functor mapping a tower of left modules of Hecke algebras into a tower of
Uqgl-modules. The functions on the quantum group carry aUqgl-bimodule structure
whose combinatorial spirit emerges in the RSK algorithm. The bimodule structure
on the algebra of biletter words is used for a functorial formulation of the quantum
pseudo-plactic algebra. The latter algebra has been proposed by Daniel Krob and
Jean-Yves Thibon as a higher noncommutative analogue of the quantum torus.

1 Schur–Weyl Duality

Let us denote byS the tower of the symmetric groupsSr ,S = ⊔
r≥0 Sr . The group

algebra C[Sr] is the space of functions onSr . The algebra C[Sr] is a left and right
module over itself. Similarly, the space of functions C[S] is a left and right module
on itself, provided that each C[Sr] acts nontrivially only on its own level r.

The Hecke algebra Hr(q) is a deformation of the group algebra C[Sr]

TiTi+1Ti = Ti+1TiTi+1 i = 1, . . . , r − 1
TiTj = TjTi |i − j| ≥ 2
T 2
i = 1 + (q − q−1)Ti i = 1, . . . , r − 1.

(1)

The specialization of the formal parameter q to q = 1 yields the Coxeter relations
of the symmetric groupSrgenerated by the elementary transpositions si = (i i + 1).
For generic values of q one has an isomorphism of algebras Hr(q) ∼= C[Sr].
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In full parallel with C[S] we define the tower of algebras H(q) = ⊕
r≥0 Hr(q).

The algebraH(q) is a left and right module over itself. For q in generic position the
H(q)-bimodule H(q) is isomorphic to the C[S]-bimodule C[S].

The Drinfeld-Jimbo R-matrix R̂q ∈ End(V⊗2) in the basis V = ⊕
i∈I C(q)ei is

R̂q =
∑

i,j∈I
qδij eij ⊗ eji + (q − q−1)

∑

i,j∈I:i<j

eij ⊗ eij eij ∈ gl(V ). (2)

R̂q satisfies the Hecke relation R̂2
q = 11 + (q − q−1)R̂q and provides a representation

of the Hecke algebra π(Hr(q)) ∈ End(V⊗r) with generators π(Ti) = R̂qii+1.
The coordinate ring of GL(V ) is the algebra of the regular functions C[GL(V )]

generated by the matrix elements (xij)i,j∈I on GL(V ). The algebra C[GL(n)] is a
Hopf algebra with a coproduct Δxij = ∑

s x
i
s ⊗ xsj .

The dual Hopf algebra of C[GL(V )] is the Universal Enveloping Algebra (UEA)
Ugl(V ) ∼= C[GL(V )]∗, that is, the algebra of the vector fields on GL(V ).

The coordinate ring of the quantum groupGLq(V ) is the (Hopf algebra) deforma-
tion of the commutative algebra C[GL(V )] to a noncommutative algebra
CR̂q

[GL(V )] with Faddeev-Reshetikhin-Takhtadjan (FRT) relations

∑

a,b

(R̂q)
ij
abx

a
k x

b
l =

∑

a,b

xiax
j
b(R̂q)

ab
kl . (3)

The Hopf algebra dual to CR̂q
[GL(V )] is the Drinfeld quantum UEA Uqgl(V ).

The FRT relations live in the centralizer of the representation ρ of the Hecke
algebra EndH2(q)(V

⊗2), similarly to the relations of C[GL(V )], xak xbl = xbl x
a
k which

live in EndS2(V
⊗2), the centralizer of the (place permutation) action of S2.

The classical Schur–Weyl duality is the statement that on the tensor powerV⊗r the
(place permutation) action ofC[Sr] and the diagonal action bymatrix multiplication
of the group GL(V ) (which is dense in gl(V )), are commutant of each other,

C[Sr] = EndGL(V )(V
⊗r) C[GL(V )]r = EndSr (V

⊗r).

The dual formulation of Schur–Weyl duality is the double centralizing property
between the UEA Ugl(V ) and C[Sr] in End(V⊗r).

The quantum Schur–Weyl duality is the double centralizing property in End(V⊗r)

between the actions ofHr(q) and the quantum group GLq(V ) (through the coaction
ofCR̂q

[GL(V )]). Its dual formulation is between the actions of the Drinfeld quantum
UEA Uqgl(V ) and the Hecke algebra Hr(q).

The quantum Schur–Weyl duality implies that the (Uqgl(V ),Hr(q))-bimodule
V⊗r splits into irreducible leftUqgl(V )-modulesVλ (Schurmodules) and rightHr(q)-
modules Sλ (Specht modules), V⊗r ∼= ⊕

λ�r Vλ ⊗ Sλ. The left Schur module Vλ is
the image of the Schur functor Sλ(__) determined by the left Specht module Sλ as
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Vλ = Sλ(V ) := V⊗r ⊗Hr(q) Sλ.

In the classical limit q = 1 we get a (Ugl(V ), C[Sr])-bimodule V⊗r .

2 RSK Correspondence

The celebrated Robinson–Schensted–Knuth (RSK) algorithm sets bijection between
words written with letters of an alphabet I (an ordered set) and pairs of Young
Tableaux [4]. The set of words becomes a free monoid I∗ when one takes as mul-
tiplication the juxtaposition of words. Let the alphabet be the index set I of an
ordered basis {ei}i∈I of a vector space V = ⊕i∈ICei. The linear combinations of
words w = w1w2 . . . wr ∈ I∗ with coefficients in C span the free associative algebra
generated in V , i.e., the tensor algebra T(V ) = ⊕

r≥0 V
⊗r , graded by the word’s

length.
There are three layers in the Robinson–Schensted–Knuth correspondence [4]

stemming from three levels in the representation theory;
(i) The Robinson bijection stems from the decomposition ofC[S] into irreducible

Specht left C[Sr]-modules Sλ and right C[Sr]-modules (Sλ = HomC[Sr](S˘, C))

C[S] ∼=
⊕

r≥0

(
⊕

λ�r
Sλ ⊗ Sλ

)

(4)

The basis vectors in the Specht modules Sλ and Sλ are in bijection with the Standard
Young Tableaux STab(λ) of shape λ.

The basis in C[Sr] is labelled by permutations σ ∈ Sr . The Robinson correspon-
dence is between a word without repetition (identified with a permutation σ ∈ Sr)
and a pair of standard Young tableaux with r boxes reflecting the decomposition (4)

Sr ←→ ⊔
λ�r STab(λ) × STab(λ)

σ ←→ (P(σ),Q(σ))
.

(ii) The Robinson–Schensted bijection parallels the decomposition of the tensor
algebra T(V ) as a (Ugl(V ), C[S])-bimodule

T(V ) ∼=
⊕

r≥0

(
⊕

λ�r
Sλ(V ) ⊗ Sλ

)

.

The basis of the irreducible (left) Schur module Vλ = Sλ(V ) is indexed by the semi-
standard Young tableaux Tab(λ, I) of shape λ, while the basis of the right Specht
module Sλ is indexed by STab(λ).
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A word w = w1w2 . . . wr ∈ I∗r is identified with a tensor algebra element in V⊗r .
Robinson–Schensted algorithm maps a word w ∈ I∗ to a pair of Young tableaux:
a (left) semistandard Young tableau P(w) with entries in I and a (right) standard
Young tableau Q(w)

I∗r ←→ ⊔
λ�r Tab(λ, I) × STab(λ)

w ←→ (P(w),Q(w))
.

The pair (P(w),Q(w)) in the Robinson–Schensted bijection is asymmetric, the
left tableau P(w) is semistandard and the right one Q(w) is standard. The symmetry
is restored by extending the correspondence to biwords.

(iii) TheRobinson–Schensted–Knuth bijection is the combinatorial counterpart of
the Peter–Weyl theorem. The polynomial functionsC[GL(V )] are dense in the space
C[V ∗ ⊗ V ]. The decomposition of the (Ugl(V ),Ugl(V ))-bimoduleC[V ∗ ⊗ V ] into
irreducible left and right Schur modules yields

C[GL(V )] ∼=
⊕

r≥0

C[V ⊗ V ∗]r ∼=
⊕

r≥0

(
⊕

λ�r
Sλ(V

∗) ⊗ Sλ(V )

)

. (5)

The basis of the product of left and right Schur modules is labelled by pairs of left
and right semistandard Young tableaux as in the RSK bijection.

Abiword
[ u
v

]
is awordwritten in biletters

(
ui
vi

)
∈ I × I ,

[ u
v

]
=

[u1 . . . ur
v1 . . . vr

]
.An

element in C[V ⊗ V ∗]r is encoded into the commutative biword, i.e., the monomial
written in commutative biletters.1

We conclude that the RSK correspondence between (the commutative class of) a

biword
[ u
v

]
and a pair of semistandard Young tableaux mirrors decomposition (5)

I∗r × I∗r ←→ ⊔
λ�r Tab(λ, I) × Tab(λ, I)

[ u
v

]
←→ (P(u),Q(v))

.

Although the parallel driven between RSK bijection and representation theory
in terms of the classical Schur–Weyl duality is suggestive, one can be puzzled by
the apparent absence of symmetry on the side of the combinatorial objects. It turns
out that the symmetries Ugl(V ) and C[Sr] are present but in a sense are “frozen”
on the combinatorial side. To really understand the symmetry behind the RSK
algorithm one has to consider first the quantum Schur–Weyl duality, i.e., to consider
the representations of Uqgl(V ) and H(q) and then to take in these representations
the singular crystal limit q = 0. This idea appeared for the first time in the seminal

1It is worth noting that a noncommutative word w = w1w2 . . . wr can be written as a monomial in

commutative biletters

(
wi
i

)
, e.g.,

[
w1 w2 . . . wr
1 2 . . . r

]
.
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paper of Etsuro Date, Michio Jimbo and Tetuji Miwa [1]. It seems that the paper [1]
become a source of inspiration for Masaki Kashiwara and led to his ground-breaking
theory of the crystal bases.

The three RSK levels are to be related to the double centralizing property in the
following modules

(R) the Hecke algebra H(q) as a (H(q),H(q))-bimodule,
(RS) the tensor algebra T(V ) over C(q) as a (Uqgl(V ),H(q))-bimodule,
(RSK) the coordinate ring CR̂q

[GL(V )] as a (Uqgl(V ),Uqgl(V ))-bimodule.

Loosely speaking each layer of the RSK bijection has its own plactic-type algebra.

3 Plactic Monoid and Robinson–Schensted Bijection

Let us now concentrate on the Robinson–Schensted bijection. The correspondence
w → P(w) becomesmany-to-one if we forget the standardQ(w) tableau. The words
having the sameP tableau are calledP-equivalent. By construction theP-equivalence
classes of wordsw ∈ I∗ aremapped bijectively to the Semistandard Young Tableaux.

The P-equivalence on words of length 3 implies the so called the Knuth relations

xzy ≡ zxy x ≤ y < z
yxz ≡ yzx x < y ≤ z

(6)

The Knuth relations generate equivalence relation ≡ between the words in the free
monoid I∗.

Definition 1 The plactic monoid P(I) on an alphabet I is the quotient of the free
monoid I∗ by the equivalence relation ≡

P(I) = I∗/ ≡ .

Let V be a vector space, such that V = ⊕i∈ICei. The plactic algebra P(V ) is the
algebra of the plactic monoidP(I), it is the factor algebra of the tensor algebra T(V )

by the two-sided ideal (Knuth(V )) generated by the Knuth relations (6)

P(V ) = T(V )/(Knuth(V )).

DonaldKnuth has proven that the plactic classes of the≡-equivalence are the same
as the classes of the P-equivalence. Therefore the classes in P(V ) are in bijection
with the Semistandard Young Tableaux.
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4 Parastatistics Algebra Un(V )

Let n(V ) be the free 2-nilpotent graded Lie algebra n(V ) = V ⊕ ∧2V generated by
the vector space V . In other words the Lie bracket of n is

[x, y] :=
{

x ∧ y x, y ∈ V
0 otherwise

. (7)

We will deal with the UEA Un(V ) which is a functor on n(V )

Un(V ) = U(V ⊕ ∧2V ) = T(V )/([[V, V ], V ]) =: PS(V )

The algebra Un(V ) is referred to as the parastatistics algebra and denoted also as
PS(V ) (see e.g. [6]) because it appears as a Fock-like space for the algebra of the
parastatistics creation and annihilation operators [2].

The following theorem shows that there is a bijection between the parastatistics
algebra Un(V ) and the plactic algebra P(V ).

Theorem 1 In the decomposition of the leftUgl(V )-moduleUn(V ) into irreducibles
every Schur module appears once and exactly once2

Un(V ) ∼=
⊕

λ

Sλ(V ).

The basis of Un(V ) is labelled by Semistandard Young tableaux Tab(I) = ⊕λ

Tab(λ, I).

Proof The Poincaré–Birkhoff–Witt theorem implies U(V ⊕ ∧2V ) ∼= S(V )

⊗ S(∧2V ). The character of the GL(V )-module U(V ⊕ ∧2V ) is the LHS of the
Cauchy identity

∏

i

1

1 − xi

∏

i<j

1

1 − xixj
=

∑

λ

sλ(x)

whereas on the RHS appear the Schur polynomials sλ(x) = chSλ(V ), these are the
characters of the Schur modules Sλ(V ) which implies the statement. �

Although the algebrasP(V ) andUn(V ) have the same amount of elements these
algebras enjoy very different symmetries. The Lie type relations of the parastatistics
algebraUn(V ) span an irreducibleUgl(V )-module [[V, V ], V ] ∼= S(2,1)(V ) ⊂ V⊗3.
Therefore the quotient algebra T(V )/([[V, V ], V ]) is a Ugl(V )-module. In contrast
the plactic algebra P(V ) has no apparent symmetry. We are going to show that the
plactic algebraP(V ) arises as a tropicalization of the parastatistics algebra Un(V ).

2Although some of the Schurmodules Vλ = Sλ(V ) are vanishing, thosewith height ht(λ) > dim V .
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5 Quantum Plactic Algebra

Let us denote by Lie(V ) = ⊕
n≥1 Lie

n(V ) the free Lie algebra generated in V .
Jean-Louis Loday constructed in his work [5] a system of Eulerian idempotents
{en}n≥1 such that en ∈ C[Sn] projects to the degree n primitive elements in T(V ), i.e.,
V⊗nen = Lien(V ). There exists a systemofquantumEulerian idempotents {en(q)}n≥1

projecting to the quantum free Lie algebra Lieq(V ) of quasi-primitive elements of
T(V ) = UqLie(V ). Although the problem of finding the quantum Eulerian idem-
potents er(q) ∈ Hr(q) is a difficult one and it is not solved in general the cubic
idempotent e3(q) is known [6, 7]

e3(q) := 1

[3]
(
T123 − 1

2
(T231 + T213 + T132 + T312) + T321

)

+ q − q

2[3]
−1

(T213 − T312 − T231 + T132) . (8)

An orthogonal ẽ3(q) is obtained from e3(q) by the involution T̃σ → (−1)σTσ ,
q → q−1.

With the knowledge of the quantum Eulerian idempotent e3(q) ∈ H3(q) we con-
struct the two-dimensional left H3(q)-module as a left ideal Lie3q = H3(q)e3(q)

Lie3q
[
12
3

] := q(T213 − T231) + T123 − T132 − T231 + T321 + q−1(T312 − T132) ,

Lie3q
[
13
2

] = q(T132 − T312) + T123 − T213 − T312 + T321 + q−1(T231 − T213).

By quantum Schur–Weyl duality theH3(q)-module Lie3q defines a Schur functor as

Lie3q(V ) := V⊗3 ⊗H3(q) Lie
3
q = V⊗3e3(q).

We are now ready to introduce the quantum plactic algebra Pq(V ) which is
a Uqgl(V )-module. It will interpolate between the plactic algebra P(V ) and the
parastatistics algebra Un(V ).

Definition 2 The quantumplactic algebraPq(V ) is the tensor algebraT(V ) quotient
by the ideal generated by the quantum Lie cubic relations Lie3q(V )

Pq(V ) = T(V )/(Lie3q(V )) (9)

The quantum Lie cubic relations Lie3q(V ) span a left Uqgl(V )-module with basis

Lie3q
[i1,i2
i3

] := [[ei1 , ei3 ], ei2 ]q2 + q[[ei1 , ei2 ], ei3 ] with i1 < i2 < i3

Lie3q
[i1,i1
i2

] := [[ei1 , ei2 ], ei1 ]q with i1 < i2

Lie3q
[i1,i3
i2

] := [ei2 , [ei1 , ei3 ]]q2 + q[ei1 , [ei2 , ei3 ]] with i1 < i2 < i3

Lie3q
[i1,i2
i2

] := [ei2 , [ei1 , ei2 ]]q with i1 < i2
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Here the deformed commutator is defined as [x, y]Q := xy − Qyx.
The Uqgl(V )-module Lie3q(V ) is isomorphic to the Schur module V(2,1)(q) hence

its elements are indexed by Semistandard Young Tableaux of shape .

Pq(V ) was first designed as deformed parastatistics algebra3 PSq(V ) := Uqn(V )

[6].
We have the following commutative diagram between left Uqgl(V )-modules

([[V ∗, V ∗], V ∗]) ∼= ��
��

��

(Lie3(V ))
��

��

(Lie3q(V ))
q=1�� q=0 ��

��

��

(Lie30(V ))
��

��
T(V ∗)

∼= �� T(V )

����

T(V )
q=1�� q=0 ��

����

T(V )

����
C[V, [V, V ]]

� �

��

∼= �� Un(V ) Pq(V )
q=1�� q=0 �� P(V )

(10)

Uqgl(V )-module Lie3q(V ) is a quantum deformation of the space of cubic Lie ele-

ments where the value q = 1 is the “classical limit” Lie3(V ). On the other hand the
Kashiwara crystal limit q = 0 of the module Lie3q(V ) span the Knuth relations

[[V, V ], V ] Lie3q(V )
q=1�� q=0 �� Knuth(V ) ,

so the plactic algebra P(V ) is a tropicalization of the polynomial algebra
C[V, [V, V ]].

Let us stress thatUqgl(V )-modules in the diagram (10) are Schur functors. Drop-
ping the argument V of the left Uqgl(V )-modules in the diagram (10) we recover a
(Schur–Weyl dual) diagram between the left Specht H(q)-modules.

Dropping V in the Schur functor T(V ) = ⊕
r≥0 V

⊗r ⊗Hr(q) Hr(q) we end up
with the left H(q)-module H(q) = ⊕

r≥0 Hr(q). For generic q the H(q)-module
H(q) is isomorphic to the C[S]-module C[S]. It turns out that the Malvenuto-
ReutenauerHopf algebraMR := (C[S], ∗,Δ)[8] canbepromoted to aHopf algebra
q-MR = (H(q), ∗,Δ) with similar definitions of ∗ and Δ(see [7]).

Lemma 1 Standardquantumplactic algebraPq is the factor of the leftH(q)-module
H(q) by the Hopf ideal generated by the left H3(q)-module Lie

3
q

Pq = q-MR/(Lie3q).

The Hopf algebra (Pq, ∗,Δ) is a Hopf factor algebra of q-MR algebra.

3Another way to get Lie3q(V ) is through the parabolic subalgebra gl(V ) �n(V ) ⊂ so1+2 dim V . Its
radical n(V ) defines Uqn(V ) uniquely from the quantum Serre relations of Uqso2n+1.
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Indeed on checks that Lie3q ⊂ H3(q) is primitive ΔLie3q = Lie3q ⊗ ∅ + ∅ ⊗ Lie3q
hence the ideal (Lie3q) = ⊕

r≥0(Lie
3
q)(r) = ∑

i+j=r−3 Hi(q) ∗ Lie3q(3) ∗ Hj(q) is a
coideal.

The crystal limit q = 0 of the standard quantum plactic algebra (Pq, ∗,Δ) turns
out to be the Poirier-Reutenauer Hopf algebra [9]. We conclude that (Pq, ∗,Δ) is a
family of Hopf structures(parametrized by q) on the set of Standard Young Tableaux
with (see [7] for more details).

6 Quantum Pseudo-Plactic Algebra and Quantum Torus

Our motivation for exploring the RSK algorithm as a quantum group bimodule cor-
respondence is to shed a new light of the quantum pseudo-plactic algebra introduced
with relation to noncommutative characters and Schur functions [3].

The coordinate ring CR̂q
[GL(V )] is a (Uqgl(V ),Uqgl(V ))-bimodule

CR̂q
[GL(V )] ∼= T(W )/(R̂W ⊗ W − W ⊗ WR̂)

generated by the bimodule W := V ∗ ⊗ V = ⊕
i,j∈I C(q)xij . The FRT relations (3)

read

xjkx
i
k = qxikx

j
k xkj x

k
i = qxki x

k
j j > i

xjl x
i
k = xikx

j
l + (q − q−1)xilx

j
k xjkx

i
l = xilx

j
k j > i l > k

When q = 1 the restriction of the commutative ring C[GL(V )] to the subring of the
diagonal matrix elements xii yields C[T], the commutative functions on the torus T.
Under deformation when q �= ±1 we have xjjx

i
i = xiix

j
j + (q − q−1)xijx

j
i for j > i thus

the diagonal matrix elements xii ∈ T
∗ do not close a quadratic algebra anymore.

Daniel Krob and Jean-Yves Thibon conjectured in [3] that the commutative ring
C[T] is deformed to a diagonal cubic subalgebra of CR̂q

[GL(V )], the so called
quantum pseudo-plactic algebra PPq(T) (rescaled but equivalent to the one in [3]).

Definition 3 Quantum pseudo-plactic algebra PPq(T
∗) generated in T

∗ = ⊕
i∈I

Cxii
PPq(T

∗) = T(T∗)/(Lq(T
∗))

is the factor of the tensor algebra T(T∗) over C(q) by the ideal spanned by the
subspace (defining the pseudo-Knuth relations)

Lq
i1,i2
i3

:= [[xi1i1 , xi3i3 ], xi2i2 ] with i1 < i2 < i3

Lq
i1,i1
i2

:= [[xi1i1 , xi2i2 ], xi1i1 ]q2 with i1 < i2

Lq
i1,i2
i2

:= [xi2i2 , [xi1i1 , xi2i2 ]]q2 with i1 < i2

. (11)
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Remark PPq(T) has the quantum torus coordinate ring xjjx
i
i = q2xiix

j
j as a factor.

Lemma 2 The isotypic decomposition of the identity idH3(q) = ⊕λ�3Eλ has a finer
splitting E(2,1) = e3(q) + ẽ3(q)where ẽ3(q) is the orthogonal of the q-Eulerian idem-
potent e3(q). The pseudo-Knuth relations Lq(T

∗) = 0 are obtain by restriction to T
∗

Lq(T
∗) = Lq(W )|T∗ Lq(W ) = ẽ3(q)W ⊗ W ⊗ We3(q) e3(q)̃e3(q) = 0

with e3(q), ẽ3(q) ∈ End(V⊗3) evaluated in the Hecke algebra representation πR̂q
.

Sketch of the proof. The vanishing of Lq(W ) is implied from the FRT relations (2).
The upper and lower indices coincide as multisets allowing the restriction to T

∗. �
We can summarize the hierarchy of algebras in the commutative diagram

([T∗, T
∗]) � � ��

� �

��

([W,W ])� �

��

(R̂WW − WWR̂)
q=1��

� �

��

(Lq(T))� ���
� �

��
T(T∗)

����

� � �� T(W )

����

T(W )
q=1��

����

T(T∗)� ���

����
C[T] � � �� C[GL(V )] CR̂q

[GL(V )]q=1�� PPq(T
∗)� ���

(12)

The functions CR̂q
[GL(V )]r ∼= (W⊗r)Hr(q) carry left and right Uqgl(V ))-

representation

(V ∗⊗r)A ⊗Hr(q) (V⊗r)B ∼=
⊕

��r
SA�(V ∗) ⊗Hr(q) S

�
B (V ) A,B ∈ Ir .

CR̂q
[GL(V )]r is the Schur functor image of the (Hr(q),Hr(q))-bimodule Hr(q).

The elements Tα
β := Tα−1 ⊗ Tβ ∈ Hr(q) ⊗ Hr(q) with indices α,β ∈ Sr project to

Hr(q)
α
β

∼= ⊕��rSα
� ⊗Hr(q) S

�
β � T̄α

β := Tα−1 ⊗Hr(q) Tβ = (Tα
β )Hr(q).

The diagonal restriction (H(q)⊗H(q))sym := ⊕
r≥0

(⊕
α∈Sr

CTα
α

)
of the bimodule

H(q)⊗2 is a H(q)-module with a left action

Tρ · Tσ
σ := Tρ−1Tσ−1 ⊗ TσTρ (similarly for T̄σ

σ ∈ Hsym(q)).

The pseudo-Knuth bimodule Lq(W ) is a submodule of the (Uqgl(V ), Uqgl(V ))-
bimodule W⊗3 and it defines a Schur functor through a (Hr(q), Hr(q))-bimodule

Lq := H3(q)e3(q) ⊗ ẽ3(q)H3(q) such that LHr(q)
q = 0.
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Definition 4 The standard quantum pseudo-plactic algebra PPq is the quotient of
theH(q)-module (H(q)⊗H(q))sym by the submodule generated in Lsym

q

PPq = (H(q)⊗H(q))sym/(Lsym
q ) , Lsym

q = T 213
213 − T 231

231 − T 132
132 + T 312

312.

The conjecture of Krob and Thibon about the quantum pseudo-plactic algebra [3] is
a corollary of the statement Hsym(q) ∼= PPq. We will give the details elsewhere.
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Conformal Invariance of the 1D Collisionless
Boltzmann Equation

Stoimen Stoimenov and Malte Henkel

Abstract Dynamical symmetries of the collisionless Boltzmann transport equation,
with an external driving force, are derived in d = 1 spatial dimensions. Both positions
and velocities are considered as independent variables. The Lie algebra of dynam-
ical symmetries is isomorphic to the 2D projective conformal algebra, but we find
new non-standard representations. Several examples with explicit external forces are
presented.

1 Physical Background and Motivation

Consider a system of classical particles, described by an effective single-particle
(Wigner) distribution function f = f (t, r,p), such that

dN = f (t, r,p)dr dp (1)

is the number of particles in a cell in phase space, of volume dr dp, and centred at
position r and p. The classical Boltzmann transport equation (BTE)

∂ f

∂t
+ p

m
· ∂ f

∂r
+ F · ∂ f

∂p
=

(
∂ f

∂t

)

coll

(2)
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describes the effects of particle transport under the influence of an external force
F = F(t, r) [1, 5, 6, 11]. The right-hand-side of the BTE describes the effect of
collisions between particles, for instance in a diluted gas. Obtaining an explicit form
requires knowledge of the statistics the particles obey, for example the Maxwell-
Boltzmann, Fermi-Dirac or Bose-Einstein distributions.

A different situation arises in the case of long-ranged interactions between the par-
ticles, for instance from gravitational interactions between stars in galactical dynam-
ics or from electromagnetic interactions between the charge carriers in a plasma.
Then, the evolution cannot be reduced to a succession of isolated binary encoun-
ters which become overwhelmed by the long-range effects of the acting forces. As
pointed out by Jeans in 1915 for galactical dynamics and by Vlasov in 1938 for
plasmas, in such cases the collision term in (2) should be left out, for an overview see
[9] and references therein. One commonly refers to Eq. (2) with a vanishing right-
hand-side as the collisionless Boltzmann equation (CBE) [9]. In plasma physics, the
forces are determined self-consistently by using for F the Laplace-Lorentz force,
where the electric and magnetic fields are determined from the Maxwell-equations.
Together with the CBE, this leads to the Vlasov-Maxwell system [16]. In the non-
relativistic limit, where the magnetic field also vanishes, the remaining electric field
is found from the Poisson equation. Then the problem becomes equivalent to the
Jeans-Poisson system [10].

The CBE continues as a theme of intensive recent research, see [3, 12, 13] and
references therein.1 The classic Jeans’ theorem states that the stationary distribu-
tion function of the CBE only depends on the integrals of motion. Relationship
with Landau damping and physicists’ derivations of the CBE can be found e.g. in
[2–4, 15]. Here, we shall study a class of dynamical symmetries of the CBE.2

Throughout this work, we shall restrict to d = 1 space dimension.
The symmetries of the CBEwill be found through an analogy with a non-standard

representation of the conformal algebra, in one time and one space dimension. The
Lie algebra is spanned by the generators 〈Xn,Yn〉n∈Z, which obey [7, 8]

[Xn, Xm] = (n − m)Xn+m, [Xn,Ym] = (n − m)Yn+m, (3)

[Yn,Ym] = μ(n − m)Yn+m

where μ−1 is a constant universal velocity (‘speed of sound/light’). Explicitly

Xn = −tn+1∂t − μ−1[(t + μr)n+1 − tn+1]∂r − (n + 1)
γ

μ
[(t + μr)n − tn] −

− (n + 1)xtn

Yn = −(t + μr)n+1∂r − (n + 1)γ(t + μr)n (4)

1In plasma physics, the CBE is often called the Vlasov equation [16], although its application to
galactical dynamics by Jeans occurred more than 20 years earlier [10].
2This paper contains the main results of our original work [14], presented by the first author at the
LT-11 conference.
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where x, γ are constants. Writing Xn = �n + �̄n and Yn = μ�̄n , the generators
〈�n, �̄n〉n∈Z satisfy [�n, �m] = (n − m)�n+m, [�̄n, �̄m] = (n − m)�̄n+m, [�n, �̄m] = 0.
Provided μ �= 0, the Lie algebra (3) is isomorphic to a pair of Virasoro algebras
vect(S1) ⊕ vect(S1) with a vanishing central charge [7, 14]. However, this isomor-
phismdoes not imply that physical systemsdescribed by twodifferent representations
of the conformal algebra (3) were trivially related. For example, it is well-known that
if one uses (i) the generators of the standard representation of conformal invariance
or else (ii) the non-standard representation (4) in order to find co-variant two-point
functions, the resulting scaling forms are different [7, 8].

The representation (4) acts as a dynamical symmetry on the equation of motion

Ŝφ(t, r) = (−μ∂t + ∂r )φ(t, r) = 0. (5)

Indeed, since (with n ∈ Z)

[Ŝ, Xn] = −(n + 1)tn Ŝ + n(n + 1)μ

(
x − γ

μ

)
tn−1, [Ŝ,Yn] = 0 (6)

a solutionφofwith scaling dimension xφ = x = γ/μ ismappedonto another solution
of (5). Hence the space of solutions of the equation (5) is invariant under (4). This is
the analogue of the conformal invariance of the 2D Laplace equation.

Inwhat follows,we shall consider the analogues of themaximal finite-dimensional
sub-algebra 〈X±1,0,Y±1,0〉 ∼= sl(2,R) ⊕ sl(2,R), for μ �= 0. Specifically, the gener-
ators X−1,Y−1 describe time- and space-translations, Y0 is a (conformal) Galilei
transformation, X0 gives the dynamical scaling t �→ λt of r �→ λr (with λ ∈ R)
such that the so-called ‘dynamical exponent’ z = 1 since both time and space are
re-scaled in the same way and finally X+1,Y+1 give ‘special’ conformal trans-
formations. In the context of statistical mechanics of conformally invariant phase
transitions, one characterises co-variant quasi-primary scaling operators through the
invariant parameters (x, γ/μ), where x is the scaling dimension.

Returning to the Boltzmann equation, we consider Eq. (5) in the form

B̂ f = (μ∂t + v∂r ) f (t, r, v) = 0 (7)

with the distribution function f = f (t, r, v) andwherewe consider the ‘velocity’ v as
an additional variable. Equation (7) is a simple collisionless Boltzmann equation, yet
without an external force, and in one space dimension. From (6), its solution space is
conformally invariant. In Sect. 2, we shall generalise the above representation of the
conformal algebra to the situation with v as a further variable. Furthermore, we shall
distinguish the representations relevant when (i) no external force term is included in
the CBE and (ii) when an external force F = F(t, r, v), possibly depending on time,
spatial position and velocity, is included. Can one identify situations of potential
physical interest with a non-trivial conformal symmetry ? We conclude in Sect. 3.
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2 Symmetries of Collisionless Boltzmann Equations

As a preparation for the construction of dynamical symmetries of the 1D CBE, we
point out that some of the symmetries of Eq. (7), with v = 1, can be generalised by
replacing X1,Y0,1 as follows, where k is a constant

X1 = − (
t2 + kr2

)
∂t −

(
2tr + k − μ2

μ
r2

)
∂r − 2xt + 2μxr,

Y0 = −kr∂t −
(
t + k − μ2

μ
r

)
∂r + μx

Y1 = −
(
2ktr + k(k − μ2)

μ
r2

)
∂t (8)

−
(
t2 + 2

k − μ2

μ
tr + k(k − μ2) + μ4

μ2
r2

)
∂r + 2μx(t − μr).

For n, n′,m,m ′ ∈ {0,±1} they satisfy the following commutation relations

[Xn, Xn′ ] = (n − n′)Xn+n′ , [Xn,Ym] = (n − m)Yn+m

[Ym,Ym ′ ] = (m − m ′)
(

kXm+m ′ + k − μ2

μ
Ym+m ′

)
. (9)

This Lie algebra, spanned by the modified generators (together with usual ones
X−1, X0,Y−1), is isomorphic to sl(2,R) ⊕ sl(2,R) [14, Proposition 1], and to (3).
Because of this isomorphism, the Lie algebra (9) will also be called a conformal
algebra.

Explicitly, we shall look for representations of (9), also including the velocity ν
as additional variable and acting as dynamical symmetries of the CBE

B̂ f (t, r, v) = (μ∂t + v∂r + F(t, r, v)∂v) f (t, r, v) = 0 (10)

where the force F(t, r, v) is taken to be an arbitrary function, with its shape to
be determined from the dynamical symmetries. Dynamical symmetries of the CBE
Eq. (10) are obtained along the lines of the construction of local scale-invariance in
time-dependent critical phenomena [7, 8]. In particular, we require invariance under
time-translation and dynamical scaling:
1. Invariance under the time-translations X−1 implies ∂t F = 0, that is F = F(r, v).
2. The generator of scale-transformations (dilatations) reads [14]

X0 = −t∂t − r

z
∂r − 1 − z

z
v∂v − x/z. (11)
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If the dynamical exponent z �= 1, then the generators will contain an explicit
v-dependence. The invariance requirement [B̂, X0] = −B̂ leads to a further reduc-
tion of the force term:

(r∂r + (1 − z)v∂v − (1 − 2z))F(r, v) = 0 =⇒ F(r, v) = r1−2zϕ(r z−1v),
(12)

where ϕ(u) is an arbitrary function, of the scaling variable u := r z−1v. It turns out
to be convenient to make a change of independent variables (t, r, v) �→ (t, r, u).

In order to generate a representation of conformal algebra (9), the generator Y−1

of space-translations must be fixed. We use the ansatz3

Y−1 = −r1−zu∂r − r−zΦ(u)∂u, Φ(u) = (z − 1)u2 + ϕ(u). (13)

Clearly, [B̂,Y−1] = 0, without further conditions on Φ(u). The dilatation generator
X0 = −t∂t − r

z∂r − x
z is independent of u. The CBE becomes

B̂ f (t, r, u) = (
μ∂t + r1−zu∂r + r−zΦ(u)∂u

)
f (t, r, u) = 0. (14)

Having fixed the generators X−1, X0,Y−1, one must now find representations of the
conformal algebra (9). However, the determination of the yet undetermined function
Φ(u) in the CBE Eq. (14) and in the form (13) of Y−1 requires to use the commu-
tators of the entire conformal algebra (9), as well as the symmetry conditions (by
construction λX−1 = λY−1 = 0 and λX0 = −1)

[B̂, X1] = λX1(t, r, v)B̂, [B̂,Y0] = λY0(t, r, v)B̂, [B̂,Y1] = λY1(t, r, v)B̂.

(15)

In fact, writing the yet unknown generators X1,Y0,Y1 as vector fields in t, r, u
with unknown coefficients, application of these criteria allows to specify the t- and
r -dependence of these functions

Y0 = −r za0(u)∂t − (r1−zu + rb0(u))∂r − (r−zΦ(u)t + c0(u))∂u − d0(u)

X1 = −(t2 + r2za12(u))∂t − ((2/z)tr + r z+1b12(u))∂r

−r zc12(u)∂u − (2/z)xt − r zd12(u)

Y1 = − (
2tr za0(u) + r2z A(u)

)
∂t − (

t2r1−zu + 2trb0(u) + r z+1B(u)
)
∂r

− (
t2r−zΦ(u) + 2tc0(u) + r zC(u)

)
∂u + (2/z)μxt − r z D(u), (16)

with the four functions A = A(u), B = B(u), C = C(u), D = D(u)

3The usual form of space translations does not work [14]. Y−1 is found (i) as a symmetry of the
CBE and (ii) it forms a closed Lie algebra with the other basic generators X−1,0. The ansatz (13) is
a particular solution the differential equation following from this. It leads to a Boltzmann operator
B̂ = −μX−1 − Y−1 linear in the generators. We believe this to be a natural auxiliary hypothesis.
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A = 2zb0a12 + c0a
′
12 − za0b12 − a′

0c12, C = zb0c12 + c0c
′
12 − c′

0c12 − a12Φ

B = 2

z
a0 + zb0b12 + c0b

′
12 − ua′

12 − b′
0c12, D = 2

z
xa0 + zb0d12 + c0d

′
12 (17)

Further application of Eq. (9), (15) gives q = (k − μ2), λY0 = −k/μ = −(μ + q)

and

λX1(t, r, u) = −2t − 2r za0(u)/μ, λY1(t, r, u) = −2k

μ
t − 2k

μ2
r za0(u) (18)

for the eigenvalues, along with a system of 24 coupled non-linear differential equa-
tions. They are listed in [14]. From these, the functions a0(u), b0(u), c0(u), d0(u),
a12(u), b12(u), c12(u), d12(u) can be found, but a complete classification of their
solutions does not yet exist. We shall illustrate their content through examples.

2.1 CBEs Without External Force

In the ansatz (13), consider the case Φ(u) = (z − 1)u2, that is ϕ(u) = 0. The result-
ing generators are re-expressed in the original variables (t, r, v). Then

X−1 = −∂t , X0 = −t∂t − r

z
∂r − 1 − z

z
v∂v − x

z
, Y−1 = −v∂r . (19)

The CBE (14) coincides with Eq. (7). Several cases can be distinguished [14].

Case A: k = 0, a0(u) = 0, z arbitrary.

Theorem 1 For an arbitrary dynamical exponent z, the generators (19) and

X A
1 = −t2∂t −

(
2

z
tr + μ

z − 2

z

r2

v

)
∂r − 2(1 − z)

z
(vt − μr)∂v − 2

z
xt + 2

z
μx

r

v

Y A
0 = −

(
tv − μ

z
r

)
∂r − z − 1

z
μv∂v + μ

x

z
(20)

Y A
1 = −

(
t2v − 2

z
μtr − μ2 z − 2

z

r2

v

)
∂r − 2

z
(z − 1)μ(vt − μr)∂v +

+ 2

z
μx

(
t − μ

r

v

)

span a six-dimensional representation of the conformal algebra (9). They are dynam-
ical symmetries of the CBE (7), with λX A

1
= −2t , λY A

0
= λY A

1
= 0, see Eq. (15).
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Case B1: k = 0, a0(u) = A110uz/(1−z), z �= 1.

Theorem 2 Let z �= 1 and A110 be arbitrary constants. The generators (19) and

X B1
1 = −

(
t2 + A110rv

(2z−1)/(1−z) + A2
110

4μ2
v2z/(1−z)

)
∂t

−
(
2

z
tr + μ

z − 2

z

r2

v
+ A110

μ
rvz/(1−z) + A2

110

4μ3
v(z+1)/(1−z)

)
∂r

−2(1 − z)

z
(vt − μr)∂v − 2

z
xt + 2

z
μx

r

v

Y B1
0 = − A110

2
vz/(1−z)∂t −

(
tv − μ

z
r + A110

2μ
v1/(1−z)

)
∂r − z − 1

z
μv∂v + μ

x

z

Y B1
1 = −A110(tv

z/(1−z) − μrv(2z−1)/(1−z))∂t

−
(
t2v − 2

z
μtr − μ2 z − 2

z

r2

v
+ A110

μ
(tv1/(1−z) − μrvz/(1−z))

)
∂r

−2

z
(z − 1)μ(vt − μr)∂v + 2

z
μxt − μ2x

2

z

r

v
(21)

span a representation of the conformal algebra (9). They act as symmetries of the
CBE (7), with λXB1

1
= −(2t + A110

μ
vz/(1−z)), and λY B1

0
= λY B1

1
= 0.

The representation (20) is recovered by setting first A110 = 0. Afterwards, one may
let z → 1. When also ν = 1, one finally recovers (9) with k = 0.

Case B2: k �= 0, a0(u) = A12u−1, z arbitrary. Consistency is achieved if A12 =
k = μ.

Theorem 3 For an arbitrary constant z, the generators (19) and

X B2
1 = − (

t2 + μr2v−2
)
∂t −

(
2

z
tr + z + μ(z − 2)

z

r2

v

)
∂r

−2(1 − z)

z
(vt − μr)∂v − 2

z
xt + 2μx

z

r

v

Y B2
0 = −μrv−1∂t −

(
tv −

(
μ

z
− 1

)
r

)
∂r − z − 1

z
μv∂v + μ

x

z

Y B2
1 = −μ

(
2tr

v
+ (1 − μ)

r2

v2

)
∂t −

(
t2v − 2

z
(z − μ)tr +

+ z(1 − μ) − (z − 2)μ2

z

r2

v

)
∂r

−2

z
(z − 1)μ(vt − μr)∂v + 2

z
μxt − 2μ2x

z

r

v
(22)
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span a representation of the Lie algebra (9)withk = μ = 1 − q. They are symmetries

of (7), with λXB2
1

= −2(t + r
z v

−1), λY B2
0

= −1, λY B2
1

= −2
(
t + 1

zμrv
−1

)
.

Remark One might wonder if the representations (20), (21), (22), acting on func-
tions f = f (t, r, v), and having a dynamical exponent z �= 1, could be extended to
representations of an infinite-dimensional algebra, isomorphic to, say, vect(S1) ⊕
vect(S1). However, the answer turns out to be negative [14].

2.2 CBEs with External Forces

We now look at situations where in the ansatz (13) the function ϕ(u) �= 0. An impor-
tant open problem is the classification of solutions ϕ(u). Here, we merely give some
simple examples. The proofs are obtained through straightforward computation of
the required commutators [14].

Example 1: Φ(u) = 0. In this simple-looking case, we find

a0(u) = k

z

1

u
, b0 = k

zμ
− μ

z
, c0(u) = 0, d0 = −μx

z
, (23)

a12(u) = k

z2
1

u2
, b12(u) = k − μ2

μz2
1

u
, c12(u) = 0, d12(u) = −2μx

z2
1

u

and inserting into (17), we finally arrive at the generators

X−1 = −∂t , X0 = −t∂t − r

z
∂r − 1 − z

z
v∂v − x

z

X1 = −
(
t2 + k

z2
r2

v2

)
∂t −

(
2

z
tr + k − μ2

z2μ

r2

v

)
∂r

−(1 − z)

(
2

z
tv + k − μ2

z2μ
r

)
∂v − 2

z
xt + 2μx

z2
r

v
,

Y−1 = −v∂r − (1 − z)r−1v2∂v, (24)

Y0 = −k

z
rv−1∂t −

(
tv + k − μ2

zμ
r

)
∂r − (1 − z)

(
tr−1v2 + k − μ2

zμ
v

)
∂v

+ μx

z
,

Y1 = −
(
2k

z
trv−1 + k(k − μ2)

z2μ

r2

v2

)
∂t −

(
t2v + 2

k − μ2

zμ
tr

+ k(k − μ2) + μ4

z2μ2

r2

v

)
∂r − (1 − z)

(
t2r−1v2 + 2

k − μ2

zμ
tv

+ k(k − μ2) + μ4

z2μ2
r

)
∂v + 2

z
μxt − 2μ2x

z2
r

v
.
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Theorem 4 For an arbitrary constant z, the generators (24) span a representation
of the Lie algebra (9), and act as dynamical symmetries of the following CBE

B̂ f (t, r, v) = (μ∂t + v∂r + (1 − z)r−1v2∂v) f (t, r, v) = 0 (25)

with λX1 = −2
(
t + k

zμ
r
v

)
, λY0 = −k/μ, λY1 = −2

(
k
μ
t + k

zμ2
r
v

)
.

Example 2: k = 0. Here, Φ(u) left arbitrary. This leads first to a0 = c0 = 0 and
b0 = −μ/z, d0 = −μx/z. From Eq. (17), taking into account q = −μ, we obtain
a12(u) = 0 and

A(u) = 0, B(u) = −μb12(u), C(u) = −μc12(u), D(u) = −μd12. (26)

Theorem 5 Let Φ(u) = (z − 1)u2 + ϕ(u) and z be arbitrary. Form the generators

Y−1 = −v∂r − (1 − z)

(
r−1v2 + r1−2z

1 − z
Φ(u)

)
∂v = −v∂r − r1−2zϕ(u)∂v,

Y0 = −
(
tv − μ

z
r

)
∂r − (1 − z)

(
r1−2z

1 − z
ϕ(u)t − μ

z
v

)
∂v + μx

z
,

Y1 = −
(
t2v − 2

μ

z
tr − μr z+1b12(u)

)
∂r + 2

z
μxt + μr zd12(u) (27)

−(1 − z)

(
t2
r1−2z

1 − z
ϕ(u) − 2

z
μtv − nμr zvb12(u) − μ

r1−2z

1 − z
c12(u)

)
∂v,

X1 = −t2∂t −
(
2

z
tr + r z+1b12(u)

)
∂r

− (1 − z)

(
2

z
tv + r zvb12(u) + r1−2z

1 − z
c12(u)

)
∂v − 2

z
xt − r zd12(u),

X−1 = −∂t , X0 = −t∂t − r

z
∂r − 1 − z

z
v∂v − x

z

where the functions ϕ(u), b12(u) and d12(u) satisfy

[(z − 1)u2 + ϕ(u)]2b′′
12(u) + 3zu[(z − 1)u2 + ϕ(u)]b′

12(u)

+z[(z + 1)u2 − 2uϕ′(u) + 3ϕ(u)]b12(u) + [(2 − z)u − ϕ′(u)]2μ/z = 0 (28)

zud12(u) + [(z − 1)u2 + ϕ(u)]d ′
12(u) + 2μx/z = 0 (29)

andc12(u) = 2zub12(u) + ((z − 1)u2 + ϕ(u))b′
12(u) + 2μ/z. For any triplet of solu-

tions of the system (28), (29), the generators (27) span a representation of the con-
formal algebra (9) and act as dynamical symmetries of the following CBE

B̂ f (t, r, v) = (μ∂t + v∂r + r1−2zϕ(u)∂v) f (t, r, v) = 0 (30)
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where λX1 = −2t and λY0 = λY1 = 0, for an arbitrary dynamical exponent z.

A reasonable-looking “physical requirement” might be that the force term should
only depend on the position r , that is ϕ(u) = ϕ0 should be a constant. Then the
representation (27) can be worked out. To do so, one must solve the system

[(z − 1)u2 + ϕ0]2b′′
12(u) + 3zu[(z − 1)u2 + ϕ0]b′

12(u)

+z[(z + 1)u2 + 3ϕ0]b12(u) + 2μ
2 − z

z
u = 0 (31)

zud12(u) + [(z − 1)u2 + ϕ0]d ′
12(u) + 2μx/z = 0. (32)

For any value of z, the solution of Eq. (32) is

d12(u) = −δ0[(z − 1)u2 + ϕ0] z
2(1−z)

∫

R
du [(z − 1)u2 + ϕ0] z−2

2(1−z) , (33)

where δ0 is a constant. The solution of the equation (31) for z arbitrary can be
expressed in terms of hyper-geometric functions [14]. An elementary solution of the
system (31), (32) exists for z = 2 and reads (b120, b121 are constants)

b12(u) = b120
u

(u2 + ϕ0)2
+ b121

u2 − ϕ0

(u2 + ϕ0)2
, d12(u) = −μx

u

u2 + ϕ0
. (34)

Inserting this into Eq. (27), for z = 2, gives a finite-dimensional representation of the
dynamical conformal symmetry algebra (9) of the collisionless Boltzmann equation

B̂ f (t, r, v) = (μ∂t + v∂r + ϕ0r
−3∂v) f (t, r, v) = 0 (35)

with an external long-ranged force F(r) = ϕ0r−3.

3 Conclusions

The collisionless Boltzmann equation (CBE), either without or with an external
force, admits in d = 1 space dimension dynamical symmetries, whose Lie algebras
are isomorphic to the 2D conformal Lie algebras (3), (9). Several new non-standard
representations of the conformal Lie algebra, with generic values of the dynamical
exponent z, were found: either (20), (21), (22) for the CBE (7) without an external
force, or else (24), (27) for the CBEs (25), (30) with external forces, respectively.
In the latter case, the auxiliary conditions (28), (29) on the force field ϕ(u) lead
for velocity-independent forces, and for z = 2, to the simple CBE (35). Physical
consequences of these new symmetries remain to be studied.
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On Reducibility Criterions for Scalar
Generalized Verma Modules Associated
to Maximal Parabolic Subalgebras

Toshihisa Kubo

Abstract In this short articlewe discuss reducibility criterions for scalar generalized
Verma modules for maximal parabolic subalgebras of simply-laced Lie algebras.

Keywords Generalized Verma modules · Reducible points · Jantzen’s criterion
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Introduction

Generalized Verma modules (also known as parabolic Verma modules) are one of
the central objects in representation theory of Lie algebras. The aim of this short
paper is to introduce a simplification trick to determine the reducibility of so-called
scalar generalized Verma modules, associated to maximal parabolic subalgebras for
simply-laced Lie algebras.

Reducibility of generalized Verma modules is studied in a number of different
settings in the literature such as the unitarity of cohomologically induced represen-
tations [6, 27, 29] and the roots of b-functions [7, 14, 26, 28]. It is also related
to the study of homomorphisms between generalized Verma modules, intertwining
differential operators between principal series representations, and branching laws
[2, 4, 5, 10, 12, 15–22]. Recently reducibility of scalar generalized Verma modules
associated to maximal parabolic subalgebras q = l ⊕ u is determined in [8] for u
abelian and in [9] for u general. For more details on the reducibility of generalized
Verma modules, consult, for instance, [9, Introduction].

A criterion due to Jantzen [13] is a very powerful tool to determine the reducibility
of generalized Verma modules. Nonetheless, it is not easy to apply in general. In
[6] and [9], the authors consider some algorithms and strategies that reduce the
possibilities to apply Jantzen’s criterion directly. In the strategies there is a step that
requires tedious computations to carry out by hand for the Lie algebras of type E .
The main result of this article is to introduce a trick to simplify such computations,
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so that one can determine reducibility for type E Lie algebras by hand easily. This
is done in Proposition 14. We note that in a number of cases the simplification trick
even simplifies the strategy itself. (See Sect. 2.1.)

Nowwe briefly describe the rest of this paper. This paper consists of two sections.
In Sect. 1, we quickly review generalized Verma modules and Jantzen’s criterion. In
this section a strategy to determine the reducibility is also recalled from [9] (Sect. 1.2).
The simplification trick is discussed in Sect. 2. We also demonstrate how to apply
the trick by a simple example in the section (Sect. 2.1).

1 Generalized Verma Modules and Jantzen’s Criterion

The aim of this section is to briefly review generalized Verma modules and Jantzen’s
criterion. To do so we start by introducing the notation.

Let g be a finite dimensional complex simple Lie algebra with rank greater than
one. Fix a Cartan subalgebra h and write Δ ≡ Δ(g, h) for the set of roots of g with
respect to h. Let gα denote the root space for α ∈ Δ. We choose a positive system
Δ+ of Δ and set b = h ⊕ ⊕

α∈Δ+ gα, a Borel subalgebra containing h. We denote
by � the set of simple roots of Δ+.

Let 〈·, ·〉 be the inner product on the weight space h∗ induced by the Killing form
of g. For α ∈ Δ, we write α∨ = 2α/〈α,α〉, the coroot of α, and write sα for the root
reflection with respect to α. Let ρ denote half the sum of the positive roots of g.

For any ad(h)-invariant proper subspace V ⊂ g, we denote by Δ(V ) the set of
roots α with gα ⊂ V . We set Δ+(V ) := Δ+ ∩ Δ(V ) and �(V ) := � ∩ Δ(V ). We
write ρ(V ) for half the sum of the positive roots in Δ+(V ). For any Lie algebra s,
we denote by U(s) the universal enveloping algebra of s.

Fix amaximal parabolic subalgebra q containingb andwrite q = l ⊕ u for theLevi
decomposition with l the Levi factor and u the nilpotent radical. For q = l ⊕ u, let
W (l) denote the subgroup of the Weyl group W of g generated by {sα : α ∈ �(l)}.

It is well-known that there is a one-to-one correspondence between standard max-
imal parabolic subalgebras and simple roots. Let α0 be the simple root that corre-
sponds to q. If λ0 is the fundamental weight for α0, then Δ(l) and Δ(u) may be
given by

Δ(l) = {β ∈ Δ : 〈λ0,β〉 = 0} and Δ(u) = {β ∈ Δ : 〈λ0,β〉 > 0}. (1)

Now we set

P+
l := {ν ∈ h∗ : 〈ν,α∨〉 ∈ 1 + Z≥0 for all α ∈ �(l)}.

For ν ∈ P+
l , let E(ν − ρ) be the finite dimensional simple U(l)-module with highest

weight ν − ρ. Extend E(ν − ρ) to be a U(q)-module by letting u act trivially. Then
define the generalizedVermamodule Mq(ν)with highestweight ν − ρ [24] bymeans
of
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Mq(ν) := U(g) ⊗U(q) E(ν − ρ).

Define

P+
l (1) = {ν ∈ h∗ : 〈ν,α∨〉 = 1 for all α ∈ �(l)}. (2)

It is easy to see that dimC(E(ν − ρ)) = 1 if and only if ν ∈ P+
l (1). In this case the

generalized Verma module Mq(ν) is called a scalar generalized Verma module [1].
Observe that, as g has rank greater than one and q is a maximal parabolic subal-

gebra determined by α0, the set P+
l (1) is given by

P+
l (1) = {tλ0 + ρ(l) : t ∈ C}.

We set
Θt := tλ0 + ρ(l) with t ∈ C.

Then any scalar generalized Verma modules of q may be parametrized by t ∈ C as

Mq[t] ≡ Mq(Θt ) = U(g) ⊗U(q) CΘt−ρ (3)

with infinitesimal character Θt . Moreover, since ρ(u) = ρ − ρ(l), we have ρ(u) ∈
z(l)∗ with z(l) the center of l and z(l)∗ the dual of z(l); thus, ρ(u) = c0λ0 for some
c0 ∈ C. Therefore the scalar generalized Verma module Mq[t] may be expressed as

Mq[t] = U(g) ⊗U(q) C(t−c0)λ0

with infinitesimal character

Θt = (t − c0)λ0 + ρ.

Observe that since the weight 2ρ(u) is integral and 〈ρ(u),α∨
0 〉 ≥ 1, we have c0 ∈

1
2Z>0 = ( 12 + Z≥0) ∪ (1 + Z≥0).

1.1 Jantzen’s Criterion

In [13], Jantzen introduced a very powerful criterion that determines whether or not a
given generalized Verma module is irreducible. Although the criterion works for any
generalized Verma modules, we only state here the specialization of the criterion to
the present situation. For the general statement of Jantzen’s criterion see, for instance,
[13, Satz 3] or [11, Theorem 9.13].

In order to state the Jantzen’s criterion it is important to introduce the following
notation. For λ ∈ h∗, define
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Y (λ) := D−1
∑

w∈W (l)

(−1)�(w)ewλ, (4)

where �(w) denotes the length ofw ∈ W (l), eμ is a function on h∗ which takes values
1 at μ and 0 elsewhere, and D = eρ

∏
α∈Δ+(1 − e−α) is the Weyl denominator.

Proposition 1 below shows some properties of Y (λ).

Proposition 1 ([23, Corollary A.1.5] and [25, Corollary 2.2.10]) We have the fol-
lowing two properties:

(1) If λ ∈ h∗ satisfies 〈λ,α〉 = 0 for some α ∈ Δ(l), then Y (λ) = 0. Conversely, if
λ ∈ h∗ satisfies 〈λ,α∨〉 ∈ Z \ {0} for all α ∈ Δ(l), then Y (λ) �= 0.

(2) For λ ∈ h∗ and w ∈ W (l), we have Y (wλ) = (−1)�(w)Y (λ).

If

St := {β ∈ Δ(u) : 〈Θt ,β
∨〉 ∈ 1 + Z≥0}, (5)

Rt := {
β ∈ St : Y (sβ(Θt )) �= 0

}
, (6)

then Jantzen’s criterion for scalar generalized Verma modules associated to a max-
imal parabolic subalgebra q reads as follows. This specialization of the criterion is
motivated by [25, Theorem 2.2.11].

Theorem 2 (Jantzen’s criterion) ([13, Satz 3]) Let q be a maximal parabolic subal-
gebra. Then the scalar generalized Verma module Mq(Θt ) is irreducible if and only
if Rt = ∅ or ∑

β∈Rt

Y (sβ(Θt )) = 0.

Touse Jantzen’s criterionweneed to determinewhether or not
∑

β∈Rt
Y (sβ(Θt )) is

zero. Then it is useful to knowwhen terms Y (sβ(Θt )) cancel out in
∑

β∈Rt
Y (sβ(Θt )).

Proposition 3 below deals with this issue. For the proof, see, for instance, [23, Propo-
sition A.2.4].

Proposition 3 Suppose that Rt �= ∅. Then the sum
∑

β∈Rt
Y (sβΘt ) is zero if and

only if Rt = {β1,β2, . . . ,βk} ∪ {δ1, δ2, . . . , δk} with odd w1, w2, . . . wk ∈ W (l) so
that sβi Θt = wi sδi Θt for all i .

Corollary 4 ([9, Corollary 1.11]) If there exists β ∈ Rt so that no δ ∈ Rt \ {β}
satisfies 〈Θt , δ〉〈λ0, δ

∨〉 = 〈Θt ,β〉〈λ0,β
∨〉, then Mq[t] is reducible.

Remark 5 In the type E cases the converse of Corollary 4 turns out to hold (but only
after doing all the computations). See [9, Sect. 3].
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1.2 Strategy

Although Jantzen’s criterion is very powerful, it is in general not easy to determine
whether or not

∑
β∈Rt

Y (sβ(Θt )) is zero. The purpose of this section is to recall
from [9] a useful strategy that reduces the number of parameters t ∈ C for Mq[t] ≡
Mq(Θt ) that need to be checked by Jantzen’s criterion directly.

We start by recalling the following two facts.

Lemma 6 ([9, Lemma 1.3]) If t ≤ 0, then Mq[t] is irreducible.
Fact 7 ([9, Sect. 1.3]) There are a finite number of families of the form q + Z≥0, q ∈
Q, containing all reducible points.

Now we give the strategy as follows; the strategy consists of three steps.

Step 1: Determine the families

q + Z≥0 for which 〈Θt ,β
∨〉 ∈ Z, for some β ∈ Δ(u), t ∈ q + Z≥0. (7)

By Lemma 6 and Fact 7, we assume that q ∈ Q ∩ (0, 1]. Lemma 8 below shows
that we only need to check reducibility of Mq[t] for a finite number of values of t .

Lemma 8 ([9, Lemma 3.2]) If t ≥ c0 and t ∈ q + Z≥0 (q as in (7)), then Mq[t] is
reducible.

Step 2: For each t = q + m, m ∈ Z≥0 (as in (7)) with t < c0, one can determine if
Corollary 4 applies.
Step 3: For the remaining values of t , we apply the following algorithm.

(i) Determine whether or not Rt = ∅. If Rt = ∅, then Mq[t] is irreducible.
(ii) If Rt �= ∅, then set Rt,0 := Rt . Take β ∈ Rt,0 and look for δ ∈ Rt,0 \ {β} so that

wsδ(Θt ) = sβ(Θt ) for some w ∈ W (l) of odd length. If there is such δ, then set
Rt,1 := Rt,0 \ {β, δ}. If Rt,1 = ∅, then Mq[t] is irreducible. Otherwise, do the
above process for Rt,1. If this process can be repeated until Rt,k = ∅ for some
k ∈ Z≥0, then Mq[t] is irreducible. Otherwise it is reducible.

2 Simplification Tricks

Applying Proposition 3 (or (ii) in Step 3 in the strategy) requires some tedious com-
putations for the Lie algebras of type E . In this section we discuss some tricks that
simplify such computations. We resume the notation from the previous sections, but
g is further assumed to be a simply-laced Lie algebra, unless otherwise specified.

For β ∈ Δ, let ht(β) be the height of β, namely, if β = ∑
α∈� mαα, then ht(β) =∑

α∈� mα. Since Δ is simply-laced, we have 〈ρ,β∨〉 = ht(β).
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Observe from (1) that Δ(u) may be given as Δ(u) = ⋃
j≥1 Δ( j), where Δ( j) :=

{β ∈ Δ : 〈λ0,β
∨〉 = j}. We define γ j to be the root inΔ( j) so that, for all β ∈ Δ( j),

we have ht(γ j ) ≥ ht(β), the root in Δ( j) of greatest height. Note that such γ j is
unique for each j > 0, as q is maximal.

For each j ≥ 1, we set St ( j) := St ∩ Δ( j). Since Θt = (t − c)λ0 + ρ, it follows
from (5) that

St ( j) = {β ∈ Δ( j) : (t − c) j + ht(β) ∈ Z>0}. (8)

By (8), it is clear that St ( j) �= ∅ if and only if γ j ∈ St ( j).

Proposition 9 Given t0 ∈ C, suppose that St0 = ⋃r
k=1 St0( jk) with j1 < · · · < jr

and St0( jk) �= ∅ for all k. If

(a) Y (sγ jr
(Θt0)) �= 0 and

(b) 〈Θt0 , γ jr 〉 ≥ 〈Θt0 , γ jk 〉 for all k = 1, . . . , r − 1,

then Mq[t0] is reducible.
Proof By Corollary 4, it suffices to check that there does not exists δ∈Rt \ {γ jr } so
that 〈λ0, δ

∨〉〈Θt , δ〉 = 〈λ0, γ
∨
jk
〉〈Θt , γ jr 〉 under the hypothesis (b). Suppose that such

δ ∈ St does exist. Then δ ∈ St ( jk) for some jk . Therefore,

〈λ0, δ
∨〉〈Θt , δ〉 = jk〈Θt , δ〉

≤ jk〈Θt , γ jk 〉 since γ jk has maximal height in Δ( jk)

≤ 〈λ0, γ
∨
jr 〉〈Θt , γ jr 〉 by hypothesis (b).

The inequality is strict unless jk = jr , in which case we would have ht(δ) = ht(γ jr ),
so δ = γ jr as γ jr is a unique root with height ht(γ jr ). This contradicts the choice of δ.

Remark 10 If St = St ( jr ) �= ∅, then there is nothing to check for Condition (b); the
identity 〈λ0, δ

∨〉〈Θt , δ〉 = 〈λ0, γ
∨
jk
〉〈Θt , γ jr 〉 never holds for δ ∈ St ( jr ) \ {γ jr }.

By using the simply-lacedness, one may give a sufficient condition for Condition
(a) of Proposition 9. To show this, we first give the following well-known fact. See,
for instance, [11, Theorem 9.12].

Proposition 11 Suppose that g is a complex simple Lie algebra (not necessarily
simply-laced). Let λ − ρ be dominant integral for Δ+(l). If 〈λ,β∨〉 /∈ Z>0 for all
β ∈ Δ(u), then Mq(λ) is irreducible. The converse also holds if λ is regular.

Lemma 12 [23, Proposition A.4.4] Suppose that g is simply-laced and let α ∈ Δ(l)
and β ∈ St . Then 〈sβ(Θt ),α

∨〉 = 0 if and only if β − α ∈ Δ and ht(α) = 〈Θt ,β
∨〉.

Observe that if t ∈ t0 + Z≥0, then 〈Θt ,β
∨〉 ≥ 〈Θt0 ,β

∨〉. Indeed, we have

〈Θt ,β
∨〉 = (t − c) + ht(β) ≥ (t0 − c) + ht(β) = 〈Θt0 ,β

∨〉.
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Now we set
ht(l) := max{ht(α) : α ∈ Δ+(l)}.

Lemma 13 Suppose that β ∈ St0 . If 〈Θt0 ,β
∨〉 > ht(l), then Y (sβ(Θt )) �= 0 for all

t ∈ t0 + Z≥0.

Proof Let t ∈ t0 + Z>0. Since 〈Θt0 ,β
∨〉 > ht(l), by the observation above, we have

〈Θt ,β
∨〉 > ht(l). In particular, 〈Θt ,β

∨〉 > ht(α) for all α ∈ Δ(l). It then follows
fromLemma12 that 〈sβ(Θt ),α

∨〉 �= 0 for allα ∈ Δ(l). NowProposition 1 concludes
the lemma.

We now state a condition for reducibility for Mq[t] ≡ Mq(Θt ) that applies in the
simply-laced cases and is easy to apply.

Proposition 14 Given t0 ∈ C, suppose that St0 = ⋃r
k=1 St0( jk) with j1 < · · · < jr

and St0( jk) �= ∅ for all k. If

(a) 〈Θt0 , γ
∨
jr
〉 > ht(l) and

(b) 〈Θt0 , γ jr 〉 ≥ 〈Θt0 , γ jk 〉 for all k = 1, . . . , r − 1,

then Mq[t] is reducible for all t ∈ t0 + Z≥0.

Proof Since the condition t ∈ t0 + Z≥0 implies that 〈Θt ,β
∨〉 ≥ 〈Θt0 ,β

∨〉, this is an
immediate consequence of Proposition 9 and Lemma 13.

2.1 Example

We now demonstrate how to apply the simplification tricks in a simple example. Let
g be of type E7 and q = l ⊕ u be the maximal parabolic subalgebra corresponding
to the simple root α3. (We use the Bourbaki convention [3] for the numbering of the
simple roots.) In this case Δ(u) = ⋃3

j=1 Δ( j) and c3 for ρ(u) = c3λ3 is c3 = 11/2.
By inspection we have ht(γ3) = 17, ht(γ2) = 15, ht(γ1) = 10, and ht(l) = 5.

A simple observation shows that if Mq[t] is reducible, then there exists β0 ∈ Δ(u)
and k ∈ 1 + Z≥0 so that

t = k − 〈ρ,β∨
0 〉

〈λ3,β
∨
0 〉 + c3

(see Sect. 1.3 of [9]); in particular, t ∈ 1
6Z>0. It thus suffices to consider t ∈ 1

6Z>0.
One can easily check that St �= ∅ if and only if t ∈ ( 16 + Z≥0) ∪ ( 12 + Z≥0) ∪

( 56 + Z≥0) ∪ (1 + Z≥0) with St as follows:

– t ∈ 1
6 + Z≥0: St = St (3);

– t ∈ 1
2 + Z≥0: St = ⋃3

k=1 St (k);

– t ∈ 5
6 + Z≥0: St = St (3);
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– t ∈ 1 + Z≥0: St = St (2).

For the sake of simplicitywe exhibit the case of t ∈ 1
6 + Z≥0 only; one can proceed

in the other cases similarly. Note that in this case, as St = St (3), there is nothing to
check in the hypothesis (b) in Proposition 14.
Claim: For t ∈ 1

6 + Z≥0, Mq[t] is reducible if and only if t = 7
6 + Z≥0.

Write t = 1
6 + m with m ∈ Z≥0. Observe that if 〈Θt , γ

∨
2 〉 > ht(l), then m ≥ 2.

Thus, by Proposition 14, Mq[t] is reducible for all t ∈ 1
6 + 2 + Z≥0. We then need

to check t = 7
6 and t = 1

6 .
(1) t = 7

6 : We claim that Θ 7
6
is regular. Indeed, for β ∈ Δ(k) ⊂ Δ(u) for k =

1, 2, 3, we have 〈Θ 7
6
,β∨〉 = − 13

3 k + ht(β). Thus, if 〈Θ 7
6
,β∨〉 = 0, then k = 3 and

ht(β) = 13. However, one can easily check that ht(β) ≥ 16 for all β ∈ Δ(3). Thus,
〈Θ 7

6
,β∨〉 �= 0 for all β ∈ Δ(u). Since 〈Θ 7

6
,α∨〉 = ht(α) for all α ∈ Δ(l), this shows

that Θ 7
6
is regular. Now Proposition 11 concludes that Mq[ 76 ] is reducible.

(2) t = 1
6 : We claim that R 1

6
= ∅. First it is easy to check that S 1

6
= {γ3}. Since

γ3 − α1 ∈ Δ and 〈Θ 1
6
, γ∨

3 〉 = ht(α1) = 1, by Lemma 12, we have 〈sγ3(Θ 1
6
),α∨

1 〉 =
0. It follows from Proposition 1 that Y (sγ3(Θ 1

6
)) = 0; in particular, R 1

6
= ∅. Now

Jantzen’s criterion concludes that Mq[ 16 ] is irreducible.
By similar arguments one can show that Mq[t] is reducible if and only if t ∈

( 76 + Z≥0) ∪ ( 32 + Z≥0) ∪ ( 56 + Z≥0) ∪ (1 + Z≥0).
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On Finite W -Algebras for Lie Superalgebras
in Non-Regular Case

Elena Poletaeva

Abstract We study finite W -algebras associated to non-regular nilpotent elements
for the queer Lie superalgebra Q(n). We give an explicit presentation of the finite
W -algebra for Q(3)

1 Introduction

A finite W -algebra is a certain associative algebra attached to a pair (g, e), where
g is a complex semi-simple Lie algebra and e ∈ g is a nilpotent element. It is a
generalization of the universal enveloping algebra U (g).

Finite W -algebras for semi-simple Lie algebras were introduced by A. Premet
[17] (see also [7]). In the case of Lie superalgebras, finite W -algebras have been
extensively studied by mathematicians and physicists in [1, 2, 12–16, 20–22]. E.
Ragoucy and P. Sorba first observed that in the case when g is the general linear Lie
algebra and e consists of n Jordan blocks each of the same size l, the finiteW -algebra
for g is isomorphic to the truncated Yangian of level l associated to gl(n), which is
a certain quotient of the Yangian Yn for gl(n) [19]. J. Brundan and A. Kleshchev
generalized this result to an arbitrary nilpotent e, and obtained a realization of the
finiteW -algebra for the general linear Lie algebra as a quotient of a so-called shifted
Yangian [3] (see also [4]).

For the general linear Lie superalgebra g = gl(m|n), a connection between finite
W -algebras for g and super-Yangianswas firstly observed byC.Briot andE. Ragoucy
[1]. In amore recent article, J. Brown, J. Brundan and S. Goodwin described principal
finiteW -algebras forgl(m|n) associated to regular nilpotent e as truncations of shifted
super-Yangians of gl(1|1) [2]. After that, Y. Peng described the finite W -algebra for
g = gl(m|n) associated to an e in the case when the Jordan type of e satisfies the
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following condition: e = em ⊕ en , where em is principal nilpotent in gl(m|0) and the
sizes of the Jordan blocks of en are all greater or equal to m [12].

In [13] we obtained the precise description of the principal finite W -algebras for
classical Lie superalgebras of Type I and defect one. In [14] we described principal
finiteW -algebras for certain orthosymplectic Lie superalgebras and obtained partial
results for the exceptional Lie superalgebra F(4). In [15] we described principal
finite W -algebras for the family of simple exceptional Lie superalgebras D(2, 1;α)

and for the universal central extension of psl(2|2). In [16] we studied in detail the
queer Lie superalgebra Q(n) in the regular case. In particular, we proved that the
principal finiteW -algebra for Q(n) is isomorphic to a quotient of the super-Yangian
of Q(1).

An interesting problem is to extend the result of J. Brundan and A. Kleshchev to
Q(n) associated to an arbitrary nilpotent element. An attempt should be made in the
case when the Jordan blocks of the nilpotent are of the same size. We formulate a
conjecture about this case in Sect. 5. In Sect. 3.1 we consider the finite W -algebra
associated to a nilpotent with a different type of Jordan blocks. In Sect. 4.1 we
explicitly describe the finite W -algebra for Q(3).

2 Preliminaries

Let g = g0̄ ⊕ g1̄ be a Lie superalgebra with reductive even part g0̄. Let χ ∈ g∗
0̄

⊂ g∗
be an even nilpotent element in the coadjoint representation, i.e., the closure of the
G 0̄-orbit of χ in g∗

0̄
(where G 0̄ is the algebraic reductive group of g0̄) contains zero.

Definition 1 The annihilator of χ in g is

gχ = {x ∈ g | χ([x, g]) = 0}.

Definition 2 A good Z-grading for χ is a Z-grading g = ⊕ j∈Zg j satisfying the
following two conditions:

(1) χ(g j ) = 0 if j �= −2;
(2) gχ belongs to

⊕
j≥0 g j .

Note that χ([·, ·]) defines a non-degenerate skew-symmetric even bilinear form on
g−1. Let l be a maximal isotropic subspace with respect to this form. We consider a
nilpotent subalgebra m = (⊕ j≤−2g j )

⊕
l of g. The restriction of χ to m, χ : m −→

C, defines a one-dimensional representation Cχ =< v > of m. Let Iχ be the left
ideal of U (g) generated by a − χ(a) for all a ∈ m.

Definition 3 The induced g-module

Qχ := U (g) ⊗U (m) Cχ
∼= U (g)/Iχ

is called the generalized Whittaker module.
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Definition 4 The finite W-algebra associated to the nilpotent element χ is

Wχ := EndU (g)(Qχ)op.

As in the Lie algebra case, the superalgebras Wχ are all isomorphic for different
choices of good Z-gradings and maximal isotropic subspaces l (see [22]). If g admits
an even non-degenerate g-invariant supersymmetric bilinear form, then g � g∗ and
χ(x) = (e|x) for somenilpotent e ∈ g0̄ (i.e. ade is a nilpotent endomorphismofg).By
the Jacobson–Morozov theorem e can be included in sl(2) =< e, h, f >. As in the
Lie algebra case, the linear operator adh defines a Dynkin Z-grading g = ⊕

j∈Z g j ,
where

g j = {x ∈ g | adh(x) = j x}.

As follows from the representation theory of sl(2), the Dynkin Z-grading is good
for χ. Let ge := Ker(ade). Clearly, ge = gχ. Note that as in the Lie algebra case,
dim ge = dim g0 + dim g1.

Note that by Frobenius reciprocity

EndU (g)(Qχ) = HomU (m)(Cχ, Qχ).

That defines an identification of Wχ with the subspace

Qm
χ = {u ∈ Qχ | au = χ(a)u for all a ∈ m}.

In what follows we denote by π : U (g) → U (g)/Iχ the natural projection. By above

Wχ = {π(y) ∈ U (g)/Iχ | (a − χ(a))y ∈ Iχ for all a ∈ m},

or, equivalently,

Wχ = {π(y) ∈ U (g)/Iχ | ad(a)y ∈ Iχ for all a ∈ m}. (2.1)

The algebra structure on Wχ is given by

π(y1)π(y2) = π(y1y2)

for yi ∈ U (g) such that ad(a)yi ∈ Iχ for all a ∈ m and i = 1, 2.

Definition 5 A nilpotent χ ∈ g∗
0̄
is called regular nilpotent if G 0̄-orbit of χ has

maximal dimension, i.e. the dimension of gχ

0̄
is minimal. (Equivalently, a nilpotent

e ∈ g0̄ is regular nilpotent, if ge
0̄
attains the minimal dimension, which is equal to

rankg0̄.)
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Theorem 1 (B. Kostant, [6]) For a reductive Lie algebra g and a regular nilpotent
element e ∈ g, the finite W-algebra Wχ is isomorphic to the center of U (g).
This theorem does not hold for Lie superalgebras, since Wχ must have a non-trivial
odd part, and the center of U (g) is even.

Definition 6 Define a Z-grading on T (g) by setting the degree of g ∈ g j to be
j + 2. This induces a filtration on U (g) and therefore on U (g)/Iχ which is called
the Kazhdan filtration. We will denote by GrK the corresponding graded algebras.
Since by (2.1) Wχ ⊂ U (g)/Iχ, we have an induced filtration on Wχ.

Theorem 2 (A. Premet, [17]) Let g be a semi-simple Lie algebra. Then the associ-
ated graded algebra GrKWχ is isomorphic to S(gχ).
To generalize this result to the super case, we assume that l′ is some subspace in g−1

satisfying the following two properties:
(1) g−1 = l ⊕ l′,
(2) l′ contains a maximal isotropic subspace with respect to the form defined by

χ([·, ·]) on g−1.
If dim(g−1)1̄ is even, then l

′ is a maximal isotropic subspace. If dim(g−1)1̄ is odd,
then l⊥ ∩ l′ is one-dimensional and we fix θ ∈ l⊥ ∩ l′ such that χ([θ, θ]) = 2. It is
clear that π(θ) ∈ Wχ and π(θ)2 = 1.

Let p = ⊕
j≥0 g j . By the PBW theorem, U (g)/Iχ � S(p ⊕ l′) as a vector space.

Therefore Gr K (U (g)/Iχ) is isomorphic to S(p ⊕ l′) as a vector space. The good
Z-grading of g induces the grading on S(p ⊕ l′). For any X ∈ U (g)/Iχ let GrK (X)

denote the corresponding element in Gr K (U (g)/Iχ), and P(X) denote the highest
weight component of GrK (X) in this Z-grading.

Theorem 3 ([16], Proposition 2.7) Let y1, . . . , yp be a basis in gχ homogeneous in
the good Z-grading. Assume that there exist Y1, . . . ,Yp ∈ Wχ such that P(Yi ) = yi
for all i = 1, . . . , p. Then
(a) if dim(g−1)1̄ is even, then Y1, . . . ,Yp generate Wχ, and if dim(g−1)1̄ is odd, then
Y1, . . . ,Yp and π(θ) generate Wχ;
(b) if dim(g−1)1̄ is even, then GrKWχ � S(gχ), and if dim(g−1)1̄ is odd, then
GrKWχ � S(gχ) ⊗ C[ξ], where C[ξ] is the exterior algebra generated by one ele-
ment ξ.

As an example, we will give a presentation of the finite W-algebra for gl(3) in non-
regular case. A. Premet described finite W-algebras for semi-simple Lie algebras
and all minimal nilpotent orbits (like considered here) in [18].

Example 1 Let g = gl(3).

e =
⎛

⎝
0 0 1
0 0 0
0 0 0

⎞

⎠ , h =
⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠ , f =
⎛

⎝
0 0 0
0 0 0
1 0 0

⎞

⎠ .
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Note that e is a non-regular nilpotent element, sl(2) =< e, h, f > defines a
Dynkin Z-grading on gl(3), whose degrees on the elementary matrices ei j are

⎛

⎝
0 1 2

−1 0 1
−2 −1 0

⎞

⎠ . (2.2)

Recall that g admits a non-degenerate g-invariant symmetric form (x |y) = tr(xy).
Let χ ∈ g∗ be defined by χ(x) := (e|x). Then χ(e3,1) = 1, and χ is zero on other
basis elements. We have that gχ = ge, where

dim ge = dim g0 + dim g1 = 5,

ge =< e11 + e33, e22, e12, e23, e13 > . (2.3)

Thus χ is non-regular, and the Z-grading given in (2.2) is good for χ. We set

m = g−2 ⊕ l, l =< e2,1 >,

and follow the definition of Wχ. Note that m is spanned by e2,1 and e3,1.

Proposition 4 (a) Wχ is generated by the elements E1,1, E2,2, E1,2, E2,3, E1,3,
where

E1,1 = π(e1,1 + e3,3),
E2,2 = π(e2,2),
E1,2 = π(e1,2 + (e2,2 − e1,1)e3,2 + 2e3,2),
E2,3 = π(e2,3),
E1,3 = π(e1,3 + e2,3e3,2 + (e1,1 − e2,2)(e2,2 − e3,3) + 2(e3,3 − e2,2)).

(b) The nonzero commutation relations between these generators are as follows:

[E1,1, E1,2] = E1,2, [E1,1, E2,3] = −E2,3,

[E2,2, E1,2] = −E1,2, [E2,2, E2,3] = E2,3,

[E1,2, E2,3] = E1,3, [E1,2, E1,3] = −6E1,2 + 2E1,1E1,2 − 4E2,2E1,2,

[E2,3, E1,3] = 4E2,2E2,3 − 2E1,1E2,3.

Proof Note that

P(E1,1) = e1,1 + e3,3, P(E2,2) = e2,2,
P(E1,2) = e1,2, P(E2,3) = e2,3, P(E1,3) = e1,3.

The result follows from Theorem 3 and (2.3). �
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3 The Queer Lie Superalgebra Q(n)

Recall that the queer Lie superalgebra is defined as follows

Q(n) := {
(
A B
B A

)
| A, B are n × n matrices}.

Let otr

(
A B
B A

)
= trB.

Remark 1 Q(n) has one-dimensional center < z >, where z = 12n . Let

SQ(n) = {X ∈ Q(n) | otrX = 0}.

The Lie superalgebra Q̃(n) := SQ(n)/ < z > is simple for n ≥ 3, see [5].

Note that g = Q(n) admits an odd non-degenerate g-invariant supersymmetric
bilinear form

(x |y) := otr(xy) for x, y ∈ g.

Therefore, we identify the coadjoint module g∗ with Π(g), where Π is the change
of parity functor.
Let ei, j and fi, j be standard bases in g0̄ and g1̄ respectively:

ei, j =
(
Ei j 0
0 Ei j

)
, fi, j =

(
0 Ei j

Ei j 0

)
,

where Ei j are elementary n × n matrices.

3.1 The Finite W-Algebra for Q(n)

Let n ≥ 3. Consider sl(2) =< e, h, f >, where

e = e1,n, h = e1,1 − en,n, f = en,1.

Note that e is a non-regular nilpotent element, h defines a Dynkin Z-grading g =
⊕2

i=−2gi , where

g2 =< e1,n | f1,n >, g−2 =< en,1 | fn,1 >,

g−1 =< ei,1, en,i | fi,1, fn,i > for i = 2, . . . , n − 1,
g1 =< e1,i , ei,n | f1,i , fi,n > for i = 2, . . . , n − 1,
g0 =< e1,1, en,n, ei, j | f1,1, fn,n, fi, j > for i, j = 2, . . . , n − 1.
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Let E = f1,n . Since we have an isomorphism g∗ � Π(g), an even non-regular nilpo-
tentχ ∈ g∗ canbe definedbyχ(x) := (x |E) for x ∈ g. Thenχ ∈ g∗

0̄
, andχ(en,1) = 1,

and χ is zero on other basis elements. We have that

gχ = gE = g
χ

0̄
⊕ g

χ

1̄
,

where

g
χ

0̄
=< e1,1 + en,n, ei, j | i = 1, . . . , n − 1, j = 2, . . . , n >, (3.1)

g
χ

1̄
=< f1,1 − fn,n, fi, j | i = 1, . . . , n − 1, j = 2, . . . , n > . (3.2)

Thus the Z-grading is good for χ. We set

m = g−2 ⊕ l, where l =< ei,1 | fi,1 >, i = 2, . . . , n − 1,

and follow the definition of Wχ given in Sect. 2.

Theorem 5 (a) Wχ is generated by even elements Ei, j , where

Ei, j = π(ei, j ) for i = 2, . . . , n − 1, j = 2, . . . , n,

E1,1 = π(e1,1 + en,n),

E1,k = π(e1,k + ∑n−1
i=2,i �=k ei,ken,i + (ek,k − e1,1)en,k + ∑n−1

i=2,i �=k fi,k fn,i +
+( fk,k − f1,1) fn,k) for k = 2, . . . , n − 1 and n ≥ 4,

E1,2 = π(e1,2 + (e2,2 − e1,1)e3,2 + ( f2,2 − f1,1) f3,2) for n = 3,
E1,n = π(e1,n + ∑n−1

i=2 ei,nen,i − ∑n−1
i=3 ei,2e2,i + (e1,1 − e2,2)(e2,2 − en,n)+∑n−1

i=2 fi,n fn,i − ∑n−1
i=3 fi,2 f2,i + ( f1,1 − f2,2)( f2,2 − fn,n)) for n ≥ 4,

E1,3 = π(e1,3 + e2,3e3,2 + f2,3 f3,2 + (e1,1 − e2,2)(e2,2 − e3,3) +
+( f1,1 − f2,2)( f2,2 − f3,3)) for n = 3.

and odd elements Fi, j , where

Fi, j = π( fi, j ) for i = 2, . . . , n − 1, j = 2, . . . , n,

F1,1 = π( f1,1 − fn,n),

F1,k = π( f1,k + ∑n−1
i=2,i �=k fi,ken,i − ∑n−1

i=2,i �=k ei,k fn,i − (e1,1 + ek,k) fn,k +
+ ( fk,k − f1,1)en,k) for k = 2, . . . , n − 1 and n ≥ 4,

F1,2 = π( f1,2 − (e1,1 + e2,2) f3,2 + ( f2,2 − f1,1)e3,2) for n = 3,
F1,n = π( f1,n + ∑n−1

i=2 fi,nen,i − ∑n−1
i=2 ei,n fn,i + ∑n−1

i=3 fi,2e2,i −
− ∑n−1

i=3 ei,2 f2,i + (e1,1 − e2,2)( f2,2 − fn,n) +
+ ( f2,2 − f1,1)(e2,2 + en,n)) for n ≥ 4,

F1,3 = π( f1,3 + f2,3e3,2 − e2,3 f3,2 + (e1,1 − e2,2)( f2,2 − f3,3) +
+ ( f2,2 − f1,1)(e2,2 + e3,3)) for n = 3.

(b) Gr KWχ � S(gχ).
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Proof Note that

P(Ei, j ) = ei, j , P(Fi, j ) = fi, j for i = 1, . . . , n − 1, j = 2, . . . , n,

E1,1 = e1,1 + en,n, F1,1 = f1,1 − fn,n .

The result follows from Theorem 3 and (3.1), (3.2). �

4 The Harish-Chandra Homomorphism

In this section we recall the notion of the Harish-Chandra homomorphism for
Lie superalgebras (see [16], Sect. 3.1). We essentially use the injectivity Theorem
(Theorem 6). In the case of semi-simple Lie algebras the injectivity Theorem
appeared in [8, 17]. It is also well-known to physicists since 1990s.

We can assume that g is a basic Lie superalgebra or Q(n). Let p ⊂ g be a parabolic
subalgebra such that n− ⊂ m ⊂ p−, where n− denotes the nilradical of the opposite
parabolic p−. Let s be the Levi subalgebra of p, n be its nilradical and ms = m ∩ s.
Note that m = n− ⊕ ms. We denote by Qs

χ the induced module U (s) ⊗U (ms) Cχ,
where by χ we understand the restriction of χ on s. Let

W̄ s
χ = EndU (s)(Q

s
χ)op = (Qs

χ)m
s

.

Let Jχ (respectively J s
χ ) be the left ideal in U (p) (respectively in U (s)) gener-

ated by a − χ(a) for all a ∈ ms. Finally, let ϑ̄ : U (p) → U (s) denote the projection
with the kernel nU (p). Note that ϑ̄(Jχ) = J s

χ . Thus, the projection ϑ′ : U (p)/Jχ →
U (s)/J s

χ is well defined.
Note that we have an isomorphism of vector spaces Qχ � U (p)/Jχ, henceWχ can

be identifiedwith a subspace in (U (p)/Jχ)m
s
. On the other hand, W̄ s

χ can be identified
with the subspace (U (s)/J s

χ )m
s
. Consider a map ϑ : Wχ → U (s)/J s

χ obtained by
the restriction of ϑ′ to Wχ. Since adms(n) ⊂ n, ϑ maps adms-invariants to adms-
invariants. In other words, ϑ(Wχ) ⊂ W̄ s

χ . Furthermore, one can easily see that ϑ :
Wχ → W̄ s

χ is a homomorphism of algebras.

Theorem 6 ([16], Theorem 3.1)
The homomorphism ϑ : Wχ → W̄ s

χ is injective.

Corollary 1 In the case when ms = 0, we have that ϑ is a homomorphism
Wχ → U (s).

4.1 The Harish-Chandra Homomorphism for g = Q(3)

In this section we explicitly describe the Harish-Chandra homomorphism in the case
when g = Q(3) and obtain defining relations in Wχ.
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Recall that sl(2) =< e, h, f >, where

e = e1,3, h = e1,1 − e3,3, f = e3,1.

Note that e is a non-regular nilpotent element, h defines a Dynkin Z-grading of g
whose degrees on the elementary matrices are

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 2 0 1 2
−1 0 1 −1 0 1
−2 −1 0 −2 −1 0
0 1 2 0 1 2

−1 0 1 −1 0 1
−2 −1 0 −2 −1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.1)

Note that p = s ⊕ n, p− = s ⊕ n−, where

s =< e1,1, e2,2, e3,3, e2,3, e3,2| f1,1, f2,2, f3,3, f2,3, f3,2 >,

n− =< e3,1, e2,1| f3,1, f2,1 >,

n =< e1,2, e1,3| f1,2, f1,3 >,

m = n−, ms = 0.

Lemma 1 The images of the generators of Wχ under the homomorphism ϑ are the
following elements of U (s):

ϑ(E1,1) = e1,1 + e3,3,
ϑ(E2,2) = e2,2,
ϑ(E1,2) = (e2,2 − e1,1)e3,2 + ( f2,2 − f1,1) f3,2,
ϑ(E2,3) = e2,3,
ϑ(E1,3) = e2,3e3,2 + f2,3 f3,2 + (e1,1 − e2,2)(e2,2 − e3,3) +

+ ( f1,1 − f2,2)( f2,2 − f3,3),
ϑ(F1,1) = f1,1 − f3,3,
ϑ(F2,2) = f2,2,
ϑ(F1,2) = −(e1,1 + e2,2) f3,2 + ( f2,2 − f1,1)e3,2,
ϑ(F2,3) = f2,3,
ϑ(F1,3) = f2,3e3,2 − e2,3 f3,2 + (e1,1 − e2,2)( f2,2 − f3,3) +

+ ( f2,2 − f1,1)(e2,2 + e3,3).

Theorem 7 Wχ is generated by even elements E1,1, E2,2, E1,2, E2,3, E1,3 and odd
elements F1,1, F2,2, F1,2, F2,3, F1,3. The defining relations are as follows between
even generators:
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[E1,1, E2,2] = 0, [E1,1, E1,2] = E1,2, [E1,1, E2,3] = −E2,3,

[E2,2, E1,2] = −E1,2, [E2,2, E2,3] = E2,3, [E1,2, E2,3] = E1,3,

[E1,2, E1,3] = 2E1,1E1,2 − 4E2,2E1,2 + 2F1,1F1,2 − 4E1,2,

[E2,3, E1,3] = 4E2,3E2,2 − 2E2,3E1,1 + 2F2,3F1,1 + 4E2,3;

between odd generators:

[F1,1, F2,2] = [F1,2, F1,2] = [F2,3, F2,3] = 0,
[F1,1, F1,1] = 2E1,1, [F1,1, F1,2] = E1,2, [F1,1, F2,3] = −E2,3,

[F2,2, F2,2] = 2E2,2, [F2,2, F1,2] = E1,2, [F2,2, F2,3] = E2,3,

[F1,2, F2,3] = E1,3 − 2E1,1E2,2;

between even and odd generators:

[E1,1, F1,1] = [E1,1, F2,2] = [E2,2, F1,1] = [E2,2, F2,2] = 0,
[E1,1, F1,2] = F1,2, [E1,1, F2,3] = −F2,3,

[E2,2, F1,2] = −F1,2, [E2,2, F2,3] = F2,3,

[E1,2, F1,1] = −F1,2, [E1,2, F2,2] = F1,2, [E1,2, F1,2] = 0,
[E1,2, F1,3] = 2E1,1F1,2 − 2F1,1E1,2,

[E1,2, F2,3] = F1,3, [E2,3, F1,1] = −F2,3, [E2,3, F2,2] = −F2,3,

[E2,3, F1,2] = −F1,3 − 2E2,2F1,1, [E2,3, F2,3] = 0,
[E2,3, F1,3] = −2F2,3E1,1 + 2F2,3E2,2 + 2F2,3.

Proof Follows from Lemma 1. �

5 Connection with Super-Yangians

Super-Yangian Y (Q(n)) was introduced by M. Nazarov in [9]. Recall that Y (Q(n))

is the associative unital superalgebra over C with the countable set of generators

T (m)
i, j where m = 1, 2, . . . and i, j = ±1,±2, . . . ,±n.

The Z2-grading of the algebra Y (Q(n)) is defined as follows:

p(T (m)
i, j ) = p(i) + p( j), where p(i) = 0 if i > 0, and p(i) = 1 if i < 0.

The defining relations are as follows

([T (m+1)
i, j , T (r−1)

k,l ] − [T (m−1)
i, j , T (r+1)

k,l ]) · (−1)p(i)p(k)+p(i)p(l)+p(k)p(l) =
T (m)
k, j T

(r−1)
i,l + T (m−1)

k, j T (r)
i,l − T (r−1)

k, j T (m)
i,l − T (r)

k, j T
(m−1)
i,l

+(−1)p(k)+p(l)(−T (m)
−k, j T

(r−1)
−i,l + T (m−1)

−k, j T (r)
−i,l + T (r−1)

k,− j T (m)
i,−l − T (r)

k,− j T
(m−1)
i,−l ),
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T (m)
−i,− j = (−1)mT (m)

i, j ,

where m, r = 1, . . . and T (0)
i, j = δi j .

Recall that Y (Q(n)) is a Hopf superalgebra (see [10]) with comultiplication given
by the formula

Δ(T (r)
i, j ) =

r∑

s=0

∑

k

(−1)(p(i)+p(k))(p( j)+p(k))T (s)
i,k ⊗ T (r−s)

k, j .

The evaluation homomorphism ev : Y (Q(n)) → U (Q(n)) is defined as follows

T (1)
i, j �→ −e j,i , T (1)

−i, j �→ − f j,i for i, j > 0, T (0)
i, j �→ δi j , T (r)

i, j �→ 0 for r > 1,

see [10]. Observe that the map

Δl : Y (Q(n)) −→ Y (Q(n))⊗l ,

where
Δl := Δl−1,l ◦ · · · ◦ Δ2,3 ◦ Δ

is a homomorphism of associative algebras.

Conjecture. Let e be an even nilpotent element in Q(n) whose Jordan blocks are all
of the same size l, and let k = n

l . Then the finite W -algebra for Q(n) is isomorphic
to the image of Y (Q(k)) under the homomorphism

ev⊗l ◦ Δl : Y (Q(k)) −→ (U (Q(k)))⊗l .

Remark 2 In [16] we considered the case when e is regular (l = n). We used the
opposite comultiplication

Δop(T (r)
i, j ) =

r∑

s=0

∑

k

T (r−s)
k, j ⊗ T (s)

i,k ,

and instead of the evaluation homomorphism we used the homomorphism
U : Y (Q(1)) → U (Q(1)) defined in [11], which is given by

T (r)
1,1 �→ (−1)r e(r)

1,1, T (r)
−1,1 �→ (−1)r f (r)

1,1 for r > 0, T (0)
i, j �→ δi j .

We proved that the finiteW -algebra for Q(n) is isomorphic to the image of Y (Q(1))
under the homomorphism U⊗n ◦ Δ

op
n , where Δ

op
n := Δ

op
n−1,n ◦ · · · ◦ Δ

op
2,3 ◦ Δop, and

we can now prove that

(U⊗n ◦ Δop
n )(Y (Q(1))) = (ev⊗n ◦ Δn)(Y (Q(1))).
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The Joseph Ideal for sl(m|n)
Sigiswald Barbier and Kevin Coulembier

Abstract Using deformation theory, Braverman and Joseph obtained an alternative
characterisation of the Joseph ideal for simple Lie algebras, which included even
type A. In this note we extend that characterisation to define a remarkable quadratic
ideal for sl(m|n). Whenm − n > 2, we prove that the ideal is primitive and can also
be characterised similarly to the construction of the Joseph ideal by Garfinkle.

1 Preliminaries

We use the notation g = sl(m|n). See [4] for the definition and more information
on sl(m|n) and Lie superalgebras. We take the Borel subalgebra b to be the space
of upper triangular matrices and the Cartan subalgebra h diagonal matrices, both
with zero supertrace. With slight abuse of notation we will write elements of h∗ as
elements of C

m+n , using bases {ε j , i = 1, . . . ,m} of C
m and {δ j , i = 1, . . . , n} of

C
n , with the restriction that the coefficients add up to zero. With this choice and

convention, the system of positive roots is given by Δ+ = Δ+
0 ∪ Δ+

1, where

Δ+
0 = {εi − ε j |1 ≤ i < j ≤ m} ∪ {δi − δ j |1 ≤ i < j ≤ n},

Δ+
1 = {εi − δ j |1 ≤ i ≤ m, 1 ≤ j ≤ n}.

The Borel subalgebra leads to a triangular decomposition of g given by n− ⊕ h ⊕
n+ where b = h ⊕ n+. A highest weight vector vλ of a weight module M satisfies
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n+ · vλ = 0 and h · vλ = λ(h) · vλ. The corresponding weight λ ∈ h∗ will be called a
highest weight. We use the notation L(λ) for the simple module with highest weight
λ ∈ h∗. We also set ρ0 = 1

2

∑
α∈Δ+

0
α and ρ = ρ0 − 1

2

∑
γ∈Δ+

1
γ, so concretely

ρ = 1

2

m∑

i=1

(m − n − 2i + 1)εi + 1

2

n∑

j=1

(n + m − 2 j + 1)δ j . (1)

We choose the form (·, ·) on C
m+n , and on h∗ by restriction, by setting (εi , ε j ) =

δi j , (δ j , δk) = −δ jk and (εi , δ j ) = 0.
From now onwe consider only weights λwhich are integral, that is (λ + ρ,α∨) ∈

Z for all α ∈ Δ0, with α∨ := 2α/(α,α). We denote this subset of h∗ by P0. If
(λ + ρ,α∨) > 0, for all α ∈ Δ+

0, we say that λ ∈ P0 is dominant regular.
Denote byC the quadraticCasimir operator. It is an element of the center ofU (g)

and it acts on a highest weight vector of weight λ by the scalar

C · vλ = (λ + 2ρ,λ)vλ. (2)

We denote by M∨ the dual module of M in category O, see e.g. [8, Chap. 3].
The functor ∨ is exact and contravariant, we have that L(λ)∨ ∼= L(λ) and for finite
dimensional modules (M ⊗ N )∨ ∼= M∨ ⊗ N∨.

WesetV = C
m|n the natural representationofg.Wewill use the notation Ai

j for an
element inV ⊗ V ∗ andwehave the identificationV ⊗ V ∗ ∼= V ∗ ⊗ V given by Ai

j
∼=

(−1)|i || j |A j
i , where |·| is the parity function, i.e., |i | = 0 for i ∈ {1, . . . ,m} and

|i | = 1 for i ∈ {m + 1, . . . ,m + n}. We define the supertrace str as the g-morphism

str : V ⊗ V ∗ → C Ai
j �→

∑

i

(−1)|i |Ai
i .

If m �= n the supertrace gives a decomposition of V ⊗ V ∗ in a traceless and a pure
trace part. TheLie superalgebra g consist exactly of the traceless elements in V ⊗ V ∗.
We will use the identification V ⊗ V ∗ ∼= V ∗ ⊗ V for taking the supertrace of higher
order tensor powers. For example, if A ∈ V ⊗ V ∗ ⊗ V ⊗ V ∗, then the supertrace
over the first and last component is given by

str1,4 : V ⊗ V ∗ ⊗ V ⊗ V ∗ → V ∗ ⊗ V ; Ai
j
k
l �→

∑

i

(−1)|i |+|i |(|k|+| j |)Ai
j
k
i .

With these conventions str always corresponds to a g-module morphism.
We will also use the Killing form

〈·, ·〉 : g × g → C 〈A, B〉 = 2(m − n)
∑

i, j

(−1)|i |Ai
j B

j
i ,
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which satisfies 〈A, B〉 = strg(adg(A)adg(B)). This is an invariant, even, supersym-
metric form. If m − n �= 0 it is non-degenerate. We introduce the corresponding
g-module morphism K = 2(m − n) str1,4 ◦ str2,3:

K : V ⊗ V ∗ ⊗ V ⊗ V ∗ → C; Ai
j
k
l �→ 2(m − n)

∑

i, j

(−1)|i |Ai
j
j
i .

In particular, for A, B in g we have K(A ⊗ B) = 〈A, B〉.

2 Second Tensor Power of the Adjoint Representation
for sl(m|n)

In this section we will always set g = sl(m|n) with m �= n. We will also always
assume m �= 0 �= n. In case m = 1 one needs to replace all ε2 occurring in formulae
by δ1 and for n = 1 one replaces δn−1 by εm . Furthermore V will be the natural
sl(m|n) module and we identify sl(m|n) with the corresponding tensors in V ⊗ V ∗.

Theorem 1 For g = sl(m|n) with |m − n| > 2, the second tensor power of the
adjoint representation g ⊗ g ∼= g � g ⊕ g ∧ g decomposes as

g � g ∼= L2ε1−δn−1−δn ⊕ Lε1+ε2−2δn ⊕ Lε1−δn ⊕ L0,

g ∧ g ∼= L2ε1−2δn ⊕ Lε1+ε2−δn−1−δn ⊕ Lε1−δn .

We define the Cartan product g � g as the direct summand of g ⊗ g isomorphic to
L2ε1−δn−1−δn .

To give an explicit expression for the decomposition of the symmetric part we
will use a projection operator χ : g � g → g � g given by χ := φ ◦ str2,3, where φ
is the g-module morphism φ : V ⊗ V ∗ → V ⊗ V ∗ ⊗ V ⊗ V ∗ defined in Lemma 2.

Theorem 2 According to the decomposition of g � g in Theorem 1, respecting that
order, a tensor A ∈ g � g decomposes as A = B + C + D + E, where

• Bi
j
k
l = 1

2 (A
i
j
k
l − χ(A)i j

k
l) + 1

2 (−1)|i || j |+|i ||k|+| j ||k|(Ak
j
i
l − χ(A)k j

i
l),

i.e., B is the super symmetrisation in the upper indices of A − χ(A);
• C = A − χ(A) − B,

i.e., C is the super antisymmetrisation in the upper indices of A − χ(A);
• E = (2(m − n)2)−1K(A)φ(δ);
• D = χ(A) − E.

By construction str2,3(B) = 0 = str2,3(C) and K(D) = 0.
The explicit formula for φ(δ), where δ = δi j is the Kronecker delta, is given by

(φ(δ))i l
k
j = ((m − n)2 − 1)−1

(
(−1)|k|(m − n)δi lδ

k
j − δi jδ

k
l
)
.
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The remainder of this section is devoted to the proof of these theorems.

Lemma 1 The possible highest weights of the g-module g ⊗ g are

2ε1 − 2δn, 2ε1 − δn−1 − δn, ε1 + ε2 − 2δn, ε1 + ε2 − δn−1 − δn, ε1 − δn, 0.

The space of highest weight vectors for ε1 − δn has at most dimension 2 and for the
other weights at most 1.

Proof A highest weight vector vλ in g ⊗ g is of the form

vλ = Xε1−δn ⊗ A + · · · , where A ∈ g.

Thus the highest weight λ is of the form λ = ε1 − δn + μ with μ ∈ Δ ∪ {0}. Since
it also has to be regular dominant we have the following possibilities for λ :

2ε1 − 2δn, 2ε1 − δn−1 − δn, ε1 + ε2 − 2δn, ε1 + ε2 − δn−1 − δn, ε1 − δn, 0, and

2ε1 − εm − δn, ε1 + ε2 − εm − δn, ε1 − εm, δ1 − δn,

ε1 + δ1 − 2δn, ε1 + δ1 − δn−1 − δn, ε1 − εm + δ1 − δn.
(3)

A corresponding highest weight vector vλ has to satisfy [X, vλ] = 0 for all X ∈
n+. Writing out this condition for all positive simple roots vectors, we deduce that
there are no highest weight vectors corresponding to the weights in (3) and that the
dimension of the space of highest weight vectors for ε1 − δn is at most 2. The fact
that for the other possibilities the dimension is at most 1 follows from the dimension
of the corresponding root space in g, which is always 1. �

We want to construct a g-module morphism φ : V ⊗ V ∗ → V ⊗ V ∗ ⊗ V ⊗ V ∗,
such that its image is in g � g and str2,3 ◦φ = id. Thus this morphism has to satisfy
the following properties for all B ∈ V ⊗ V ∗

1. str1,2 φ(B) = 0
2. φ(B)i j

k
l = (−1)(|i |+| j |)(|k|+|l|)φ(B)k l

i
j

3. str2,3 φ(B) = B.

Lemma 2 Consider the map φ : V ⊗ V ∗ → V ⊗ V ∗ ⊗ V ⊗ V ∗ given by

φ(B)i j
k
l = a

(
(−1)|k|Bi

lδ
k
j + (−1)(|i |+| j |)(|k|+|l|)+|i |Bk

jδ
i
l + −2

m − n
Bi

jδ
k
l

+ −2

m − n
(−1)(|i |+| j |)(|k|+|l|)Bk

lδ
i
j + c1(−1)|k| str(B)δi lδ

k
j +c2 str(B)δi jδ

k
l
)
.

For the constants a = m−n
(m−n)2−4 , c1 = (m−n)2+2

(m−n)(1−(m−n)2)
and c2 = 3

(m−n)2−1 , the map φ
is a g-module morphism satisfying conditions 1, 2, 3. above.
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Proof One can easily see thatφ(B) is supersymmetric for the indices (i, j) and (k, l),
hence it satisfies the second condition. The first condition leads to

c1 + (m − n)c2 − 2(m − n)−1 = 0,

while the third condition gives us the following two equations:

a((m − n) − 4(m − n)−1) = 1 and 1 + (m − n)c1 + c2 = 0.

This system of equations has as solution the constants given in the lemma. One can
also check directly that φ is indeed a g-module morphism. �

Proof of Theorem 2. Define the g-module morphism χ : g � g → g � g by χ =
φ ◦ str2,3. Since str2,3 ◦φ = id, we have χ2 = χ. This implies that the representation
splits up into ker χ = im(1 − χ) and im χ = ker(1 − χ). Hence

g � g = ker χ ⊕ im χ.

We have im χ = im φ ∼= V ⊗ V ∗, since φ is injective. From Sect. 1 we know that
V ⊗ V ∗ ∼= Lε1−δn ⊕ L0, where this decomposition is based on the supertrace.

Let q ∈ Endg(ker χ) denote the super symmetrisation in the upper indices, so
q2 = q and hence ker χ = ker q ⊕ im q.

In the proof of Theorem 1 we will show that g ∧ g has three direct summands.
From Lemma 1 we know that g ⊗ g contains at most seven highest weight vectors,
of which thus three are already contained in g ∧ g. Therefore ker q and im q each
contain exactly one highest weight vector. Since ker q ⊕ im q is self-dual in category
O this implies that they are both simple modules. Therefore g � g = ker q ⊕ im q ⊕
Lε1−δn ⊕ L0 is a decomposition in simple modules. One can verify, by tracking
the highest weights of the respective subspaces, that ker q = Lε1+ε2−2δn and that
im q = L2ε1−δn−1−δn .

By construction, the expressions for projections on simple summands follow. �

Proof of Theorem 1. We have already dealt with the symmetric part in the proof of
Theorem 2. For the antisymmetric part we remark that str1,4 str2,3(A) = 0 for all
A ∈ g ∧ g. Thus str2,3 is a g-module morphism from g ∧ g to g ∼= Lε1−δn . Consider
the g-module morphism ψ : g → g ∧ g given by

B �→ (m − n)−1
(
(−1)|k|Bi

lδ
k
j − (−1)(|i |+| j |)(|k|+|l|)+|i |Bk

jδ
i
l
)
.

For this morphism it holds that str2,3 ◦ψ = id. Denote by q again the symmetrisation
in the upper indices. Then we find in the same way as for the symmetric part

g ∧ g = ker q ⊕ im q ⊕ imψ,

and ker q ∼= Lε1+ε2−δn−1−δn , im q ∼= L2ε1−2δn and imψ ∼= Lε1−δn . �
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3 The Joseph Ideal for sl(m|n)

In this section we define and characterise the Joseph ideal for g = sl(m|n), where
from now on we always assume |m − n| > 2. Similar results for osp(m|2n) have
been obtained in [5].

We define a one-parameter family {Jλ | λ ∈ C} of quadratic two-sided ideals in
the tensor algebra T (g) = ⊕ j≥0 ⊗ j g, where Jλ is generated by

{X ⊗ Y − X � Y − 1

2
[X,Y ] − λ〈X,Y 〉 | X,Y ∈ g}
⊂ g ⊗ g ⊕ g ⊕ C ⊂ T (g). (4)

By construction there is a unique ideal Jλ in the universal enveloping algebra U (g),
which satisfies T (g)/Jλ

∼= U (g)/Jλ. Now we define λc := −1/(8(m − n + 1)).

Theorem 3 (i) For λ �= λc, the ideal Jλ has finite codimension, more precisely
Jλ = U (g) for λ /∈ {0,λc} and Jλ = gU (g) for λ = 0.

(ii) For λ = λc, the ideal Jλ has infinite codimension.

From now on we call the ideal Jλc the Joseph ideal. If m − n > 2, we give another
characterisation of the Joseph ideal, which generalises the characterisation in [7] to
type A (super and classical). The classical case, n = 0, was already obtained through
differentmethods in the proof of Proposition 3.1 in [1]. For thiswe need the canonical
antiautomorphism τ of U (g), defined by τ (X) = − X for X ∈ g.

Theorem 4 Let g = sl(m|n) with m − n > 2. Any two-sided ideal K in U (g) of
infinite codimension, with τ (K) = K, such that the graded ideal gr(K) in�g satisfies

(gr(K) ∩ �2g) ⊕ g � g = �2g,

is equal to the Joseph ideal Jλc .

In the remainder of this section we will prove both theorems.

Proof of Theorem 3 Similarly to the proof of Theorem 2.1 in [6] for gl(m), to which
we refer for more details, we construct a special tensor S in ⊗3g, which we will
reduce inside T (g)/Jλ in two different ways. This will show that for λ different
from λc, the ideal Jλ contains g. Note that the existence of the tensor S in the setting
of [6] was already non-constructively proved in [3].

Consider T ∈ g and define the tensor S as

Sab
c
d
e
f = (−1)|d|δedδc f T

a
b − 1

m − n
δcdδ

e
f T

a
b

− (−1)|b|+(|a|+|b|)(|c|+|d|)δebδa f T
c
d + 1

m − n
δabδ

e
f T

c
d

+ (−1)|b|+(|a|+|b|)|c|+|d||e|δadδebT c
f
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− 1

m − n
(−1)|d|+(|a|+|b|)(|c|+|d|)δadδe f T

c
b

− (−1)(|c|+|d|)|b|+|d|+|b||e|δcbδedT a
f + 1

m − n
(−1)|b|δcbδe f T

a
d .

One can calculate that str1,2 S = str3,4 S = str5,6 S = 0, hence S ∈ ⊗3g. Remark
that we also defined S so that it is antisymmetric in the indices (a, b) and (c, d),
hence S ∈ g ∧ g ⊗ g. Since the Cartan product lies in g � g, the Cartan part with
respect to the first four indices a, b, c, d vanishes. Now we consider (for each a, b),
the tensor in ⊗2g corresponding to the indices c, d, e, f . First we symmetrise, to
find a tensor in �2g. When we apply 1 − χ to that tensor and then symmetrise in the
upper indices, we obtain zero. Theorem 2 thus shows that S also has no part lying in
g ⊗ g � g.

Now, on the one hand, we can reduce S using the fact that the Cartan part vanishes
with respect to the first four indices a, b, c, d. Then we find

S � −1

2
(m − n)(m − n − 2)T mod Jλ.

If, on the other hand, we reduce S using the fact that the Cartan part vanishes with
respect to the last four indices c, d, e, f , we find

S � (m − n)(m − n − 2)(2λ(m − n + 1) − 1

4
)T mod Jλ.

Therefore, if λ �= λc, then T is an element ofJλ. Hence, we have proven that g ⊂ Jλ

for λ �= λc. This also implies for λ �= 0, by Eq. (4), that C ⊂ Jλ. Hence Jλ = T (g)
for λ /∈ {0,λc} and J0 = ⊕k>0 ⊗k g. This proves part (i) of Theorem 3. Part (i i)
will follow from the construction in Sect. 4. �

To prove Theorem 4, we will need two lemmata. First we define I2 as the com-
plement representation of g � g in g ⊗ g and recursively

Ik = Ik−1 ⊗ g + g ⊗ Ik−1 for k > 2. (5)

Denote by λk the highest weight occurring in �kg, then

λk =
{
kε1 − δn−k+1 − δn−k+2 − · · · − δn−1 − δn for k ≤ n,

kε1 − (k − n)εm − δ1 − δ2 − · · · − δn−1 − δn for k ≥ n.

Lemma 3 Let g = sl(m|n) with m − n > 2. Then ⊗kg ∼= L(λk) ⊕ Ik .

Proof Set β2 = g � g and define the submodule βk of �kg by

βk := βk−1 ⊗ g ∩ g ⊗ βk−1, for k > 2.
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We will show by induction that βk = L(λk) and that this is a direct summand in⊗kg.
This holds for k = 2 by definition. Now we assume that it holds for k and start by
proving that all highest weight vectors in βk+1 are in the 1 dimensional subspace of
�kg of the vectors with the highest occurring weight λk+1.

Let vμ be a highest weight vector in βk+1. Then

vμ = X ⊗ vλk + · · · ,

where vλk is a highest weight vector in βk = L(λk) and X ∈ g is a Cartan element
or a root vector. It follows that μ = α + λk for α ∈ Δ or μ = λk .

First assume μ = λk . Equation (2) implies that Cvμ = (λk,λk + 2ρ)vμ, for C
the Casimir operator. Similarly to Lemma 4.5 in [5] it follows that C acts on βk+1

through (λk+1,λk+1 + 2ρ). A highest weight vector vμ in βk+1 hence implies

(λk,λk + 2ρ) = (λk+1,λk+1 + 2ρ).

Using (1) it follows that (λk,λk + 2ρ) = 2k(k + m − n − 1), so the displayed con-
dition is equivalent to 2k = −m + n. As this contradicts m − n > 2, we conclude
that there is no highest weight vector in βk+1 with weight μ = λk .

Now assume μ = λk + α for α ∈ Δ. We will consider the case k ≥ n, the case
k < n being similar. Since μ has to be dominant regular, the possibilities for α are

ε1 − εm, ε1 − εm−1, ε2 − εm, ε1 − δn, ε2 − δn,
ε2 − εm−1, εm − δn, δ1 − δn,−ε1 + ε2,−ε1 + εm, δ1 − ε1, δ1 − εm, δ1 − εm−1.

(6)
Observe that for example ε2 − εm−1 can not occur since applying Xε1−ε2 to the

highest weight vector should be zero, but the result would contain a term with the
factor Xε1−εm−1 which can not be compensated for. By choosing the appropriate simple
root vector, we can eliminate all the possibilities in (6).

For the root ε1 − δn the Casimir operator acts on vμ by

(λk + ε1 − δn,λ
k + ε1 − δn + 2ρ) = 2k(k + m − n) + 2(m − n − 1).

Since this is different from (λk+1,λk+1 + 2ρ) = 2(k + 1)(k + m − n), this excludes
ε1 − δn . Similarly for ε2 − δn , ε1 − εm−1 and ε2 − εm we get

(λk + ε2 − δn,λ
k + ε2 − δn + 2ρ) = 2k(k + m − n − 1) + 2(m − n − 2),

(λk + ε1 − εm−1,λ
k + ε1 − εm−1 + 2ρ) = 2k(k + m − n) + 2(m − 1),

(λk + ε2 − εm,λk + ε2 − εm + 2ρ) = 2k(k + m − n) + 2(m − n − 1).

Because k ≥ n, these expressions are different from (λk+1,λk+1 + 2ρ). Hence there
exists no vμ in βk+1 for these roots.
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We conclude that the only possibility is ε1 − εm for k ≥ n. For k < n we find
similarly that only ε1 − δn−k is possible. Therefore βk+1 contains only one highest
weight vector, up to multiplicative constant, namely vλk+1 . The submodule of βk+1

(which is also a submodule of ⊗k+1g) generated by such a highest weight vector
must therefore be isomorphic to L(λk+1). Since ⊗k+1g is self-dual for ∨, L(λk+1)

must also appear as a quotient of ⊗k+1g. However, as the weight λk+1 appears with
multiplicity one in ⊗k+1g, we find [⊗k+1g : L(λk+1)] = 1 and L(λk+1) must be a
direct summand.

In particular L(λk+1) has a complement inside βk+1. By the above, the latter
complement is a finite dimensional weight module which has no highest weight
vectors, implying that it must be zero, so βk+1

∼= L(λk+1). Hence we find indeed that
for all k ≥ 2 we have βk

∼= L(λk) and that this is a direct summand in ⊗kg.
We have a non-degenerate form on ⊗kg such that β⊥

k = Ik (see Sect. 4 in
[5].) Hence dim⊗kg = dim βk + dim Ik . Since Ik ∩ L(λk) = 0 we conclude ⊗kg =
L(λk) ⊕ Ik , which finishes the proof of the lemma. �

Any two sided ideal L in T (g) is a submodule for the adjoint representation. Set
T≤k(g) = ⊕ j≤k ⊗ j g and define the modules Lk ⊆ ⊗kg by

Lk = (
(L + T≤k−1(g)) ∩ T≤k(g)

)
/T≤k−1(g).

One can easily prove that if there is a strict inclusion L1
� L2, then there must be

some k for which L1
k � L2

k , see e.g. the proof of Theorem 5.4 in [5].

Lemma 4 Let g = sl(m|n) with m − n > 2. Consider a two-sided ideal K in U (g).
If K contains Jλc and has infinite codimension, then K = Jλc .

Proof Let Jλ be as defined in (4) and denote by K the kernel of the composition.
T (g) � U (g) � U (g)/K. We have that (Jλ)k = Ik with Ik as defined in (5). Since
Jλc ⊂ K, also (Jλc)k ⊂ Kk holds. If K would be strictly bigger than Jλc , then for
some k, Kk would be bigger than (Jλc)k = Ik . Lemma 3 would then imply that
Kk = ⊗kg and thus also Kl = ⊗lg for all l ≥ k, since K is a two-sided ideal. This
is a contradiction with the infinite codimension of K. Therefore we conclude that
K = Jλc and thus K = Jλc . �

Proof of Theorem 4 From the assumed property of gr(K) follows that for each X,Y ∈
g, we have

XY + (−1)|X ||Y |Y X − 2X � Y + Z(X,Y ) + c(X,Y ) ∈ K, (7)

where Z(X,Y ) ∈ g and c(X,Y ) ∈ C. Since K is a two-sided ideal, we can interpret
Z and c as g-module morphism from g � g to g and to C respectively. Furthermore
we assumed K to be invariant under the canonical automorphism τ . So applying τ to
(7) and subtracting we get that 2Z(X,Y ) is in K. If Z would be a morphism different
from zero, then it follows from the simplicity of g under the adjoint operation that Z
is surjective. Hence g ⊂ K, a contradiction with the infinite codimension of K. From
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Theorem 1 it also follows that c(X,Y ) = λ〈X,Y 〉 for some constant λ. This implies
that Jλ ⊂ K. Since K has infinite codimension, Theorem 3 and Lemma 4 imply that
λ = λc = − 1

8(m−n+1) and K = Jλc . �

4 AMinimal Realisation and Primitivity of the Joseph Ideal

In [2] the authors construct polynomial realisations for Z-graded Lie algebras. Con-
sider the 3-grading on gl(m|n) by the eigenspaces of adHε1. We consider the corre-
sponding 3-grading g = g− ⊕ g0 ⊕ g+ inherited by the subalgebra g = sl(m|n).

The procedure in [2, Sect. 3] then gives realisations of g as (complex) polynomial
differential operators on a real flat supermanifold with same dimensions as g−, so on
R

m−1|n . We choose coordinates xi with corresponding partial differential operators
∂i , for 2 ≤ i ≤ m + n, both are even for i ≤ m and odd otherwise.

As g0 ∼= gl(m − 1|n), the space of characters g0 → C is in bijection with C. If
we apply the construction in [2, Sect. 3] to the character corresponding to μ ∈ C, we
find a realisation πμ satisfying

πμ(Xε j−ε1) = x j and πμ(Xε1−ε j ) = (μ − E)∂ j for 2 ≤ j ≤ m + n, (8)

with E = ∑m+n
i=2 xi∂i . The other expressions for πμ follow from the above and the

fact that, since πμ is a realisation, we have for all X,Y in g

πμ(X)πμ(Y ) − (−1)|X ||Y |πμ(Y )πμ(X) = πμ([X,Y ]).

Furthermore for A ∈ g � g, let A = B + C + D + E be the decomposition given
in Theorem 2. If we choose μ = n−m

2 , then we can calculate

π n−m
2

(C) = 0 = π n−m
2

(D) and π n−m
2

(E) = λcK(A),

with λc = − 1

8(m − n + 1)
.

Therefore we conclude
(

π n−m
2

(X ⊗ Y ) − π n−m
2

(X � Y ) − 1

2
π n−m

2
([X,Y ]) − λcπ n−m

2
(〈X,Y 〉)

)
= 0. (9)

Now we interpret πμ as a representation of g on the space of polynomials, i.e., on
S(g−). Equation (9) then implies that the annihilator ideal of the representation π n−m

2

contains the Joseph ideal Jλc . Since the representation is infinite dimensional, the
Joseph ideal must have infinite codimension, which proves part (i i) of Theorem 3.
For m − n > 2 it follows from Lemma 4 that the Joseph ideal is even equal to the
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annihilator ideal. Furthermore in this case, it follows clearly from Eq. (8) that the
representation is simple.

In conclusion, we find that for m − n > 2, the Joseph ideal Jλc is primitive.
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“Spread” Restricted Young Diagrams
from a 2D WZNW Dynamical Quantum
Group

Ludmil Hadjiivanov and Paolo Furlan

Abstract The Fock representation of the Q-operator algebra for the diagonal 2D
ŝu(n)k WZNW model where Q = (Qi

j ), Q
i
j = aiα ⊗ āα

j , and aiα, āβ
j are the chiral

WZNW “zero modes”, has a natural basis labeled by su(n) Young diagrams Ym

subject to the “spread” restriction

spr (Ym) := #(columns) + #(rows) ≤ k + n =: h.

1 Introduction

This work contains a brief exposition of new results based on ideas and techniques,
some parts of which have been already made public in [20, 22, 23]. The latter relied,
in turn, on the notion of quantummatrix algebras generated by the chiral zero modes
of the SU (n)k Wess–Zumino–Novikov–Witten (WZNW) model introduced in [21]
(see also [16, 18, 25]). The relation of such algebraic objects with quantumgroups [7,
26] has been anticipated in [1, 12]. For generic values of the deformation parameter
q the Fock representation of the chiral zero modes’ algebra is a model space of
Uq(s�(n)) [4, 16, 20]. In themost interesting applications the deformation parameter
q is a root of unity (in our case we take q = e−i π

h , h = k + n). It has been shown, in
particular, in [19] that the Fock representation of the chiral zero modes’ algebra for
n = 2 carries a representation of the restricted (finite dimensional) quantum group
Uq(s�(2)) of [13, 14] containing, as submodules or quotient modules, all irreducible
representations of the latter.
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Combining the left and right chiral zero modes’ algebras, one obtains a particular
(2D zero modes’) dynamical quantum group [9]. Its role in the description of the
internal (sector) structure of the n = 2 WZNW model has been studied in [8, 17]
where it has been shown that it provides in a natural way a finite extension of the
unitary model. The setting is reminiscent to the axiomatic (cohomological) approach
to gauge theories, the quantumgroup playing the role of generalized gauge symmetry.

The main statement of the present paper is that the Fock representation of the 2D
zero modes’ algebra has a basis that is in a one-to-one correspondence with the finite
set of su(n)Young diagrams [15] restricted by a specific “spread” condition. These fit
into a rectangle of size (n − 1) × (h − 1) which is thus wider than the (n − 1) × k
rectangle containing the unitary ŝu(n)k fusion sectors [5]. (The ring structure of the
latter, i.e., the Verlinde algebra, is conveniently described by a suitable representation
of the phase model hopping operator algebra or, in other terms, of the affine local
plactic algebra [27, 30].) Note that the spread restriction is more stringent than just
the fitting into the (n − 1) × (h − 1) rectangle requirement.

It would be interesting to find out if the affine algebra representations (some of
which non-integrable) corresponding to the finite set of “spread restricted” su(n)

diagrams constitute a sensible extension of the unitaryWZNWmodel. We hope that,
on the long run, the present approach could help to better understand the adequate
“gauge” symmetry (the 2D counterpart of theDoplicher–Roberts [6] compact group)
governing the “addition of non-abelian charges”, i.e., the fusion rules, in RCFT (cf.
[2, 3, 10, 11, 24, 28, 29]).

2 Definitions: SU(n)k WZNW Zero Modes

We will recall here the basic assumptions about the chiral and 2D WZNW “zero
modes” and their Fock representation, justified by the consistent application of the
principles of canonical quantization (see e.g. [20, 23]).

The mutually commuting left and right SU (n)k WZNW chiral zero modes’ alge-
brasMq , M̄q are generated by operators {q pj , aiα} and {q p̄ j , āα

i }, respectively, sat-
isfying identical exchange relations:

q pi q p j = q pj q pi ,

n∏

j=1

q pj = 1 , q pj�aiα = aiα q
pj�+δij−δi� (p j� := p j − p�) ,

(1)

q p̄i q p̄ j = q p̄ j q p̄i ,

n∏

j=1

q p̄ j = 1 , q p̄ j� āα
i = āα

i q
p̄ j�+δi j−δi� ( p̄ j� := p̄ j − p̄�)

all indices run from 1 to n. Bilinear combinations of chiral zero modes intertwine
dynamical and constant R-matrices; the left and right sector quadratic exchange
relations following from
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R̂12(p) a1 a2 = a1 a2 R̂12 , R̂12 ā1 ā2 = ā1 ā2
ˆ̄R12( p̄) ( ˆ̄R12( p̄) = (R̂12( p̄))

t ) ,

(2)
respectively, coincide as well when written in components:

a j
βa

i
α [pi j − 1] = aiαa

j
β [pi j ] − aiβ a

j
α q

εαβ pi j ( for i �= j and α �= β) ,

[a j
α, aiα] = 0 , aiαa

i
β = qεαβ aiβa

i
α , [p] := q p − q−p

q − q−1
; (3)

āβ
j ā

α
i [ p̄i j − 1] = āα

i ā
β
j [ p̄i j ] − āβ

i ā
α
j q

εαβ p̄i j ( for i �= j and α �= β ) ,

[āα
j , ā

α
i ] = 0 , āα

i ā
β
i = qεαβ āβ

i ā
α
i (4)

(the antisymmetric symbol εαβ = ±1 for α ≷ β and vanishes for α = β). They are
supplemented by appropriate n-linear determinant conditions,

det(a) = Dq(p) , det(ā) = Dq( p̄) , (5)

where Dq(p) := ∏
i< j [pi j ] and

det(a) := 1

[n]! εi1...in a
i1
α1

. . . ainαn
εα1...αn ,

det(ā) := 1

[n]! εα1...αn ā
i1
α1

. . . āinαn
εi1...in , (6)

εi1...in = εi1...in and εα1...αn = εα1...αn being the “ordinary” and “quantum” fully (q-)
antisymmetric n-tensors, respectively. Finally, for qh = −1 the chiral zero modes’
algebras Mq , M̄q possess non-trivial two-sided ideals such that the corresponding
factor algebras M(h)

q and M̄(h)
q are characterized by the additional relations

(aiα)h = 0 , q2h p j� = 1 , (āα
i )h = 0 , q2h p̄ j� = 1 . (7)

(Strictly speaking, the two algebras are identified with the corresponding non-
commutative polynomial rings in aiα and āα

i over the fields of rational functions
of q pj and q p̄ j , respectively.) We will be interested in the Fock space representation
F (h) ⊗ F̄ (h) of M(h)

q ⊗ M̄(h)
q , where

F (h) = M(h)
q |0〉 , F̄ (h) = M̄(h)

q |0〉 . (8)

The action of the generating elements on the vacuum vector is subject to

q pj� |0〉 = q�− j |0〉 = q p̄ j� |0〉 , j, � = 1, . . . , n ,

aiα |0〉 = 0 = āα
i |0〉 , i = 2, . . . , n . (9)
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It follows that monomials in aiα, āα
i generate eigenvectors of q pj and q p̄ j , respec-

tively, with eigenvalues of p j�, p̄ j� corresponding to shifted su(n) weights (e.g.
p j j+1 = λ j + 1, the vacuum quantum numbers being given by the components of
the Weyl vector).

Defining Qi
j = aiα ⊗ āα

j ∈ M(h)
q ⊗ M̄(h)

q ,wewill call the corresponding operator
algebra “the Q-algebra” (of the SU (n)k WZNWmodel). Our task will be to describe
the structure of its vacuum representation as a subspace of the “extended” (carrier)
space F (h) ⊗ F̄ (h).

This has been done in a completely satisfactory way for n = 2 (in [20, 23]; see
also [17]) and the emerging picture is easy to describe. It turns out that in this case
the diagonal elements of the matrix Q = (Qi

j ) commute with the off-diagonal ones
and both generate two copies of the (finite dimensional) restricted quantum group
Uq(s�(2)) of [13, 14, 19]. The corresponding Fock space representations are how-
ever quite different: while the one generated by the off-diagonal elements of Q is
one dimensional, the diagonal Q-operators span a subspace Fdiag of dimension
h = k + 2 in the h4-dimensional F (h) ⊗ F̄ (h). Furthermore, there is a natural scalar
product on Fdiag which is positive semidefinite, the subspace of zero-norm vec-
tors F ′′ being one-dimensional, F ′′ = C (Q1

1)
h−1 |0〉. One obtains in effect a finite

dimensional toy generalization of axiomatic gauge theory, the role of the pre-physical
subspace F ′ being played by Fdiag and such that the physical subquotient

F phys = F ′/F ′′ � ⊕h−1
p=1F phys

p , F phys
p := C (Q1

1)
p−1 |0〉 (10)

contains exactly the fusion sectors F phys
p (p = 2I + 1) of the unitary model.

It is this picture that we would like to generalize to n ≥ 3 when q = e−i π
h , h =

k + n.

3 The Q-Algebra for n ≥ 3 and the Space F ′

For the lack of space we will only sketch in this section the derivation of the results
for n ≥ 3 postponing most of the interesting details to a forthcoming publication.
First of all, it is easy to see that (3), (4) and (7) imply

(Qi
j )
h = 0 . (11)

Combining further the quadratic exchange relations for the left and right sector zero
modes (2), we obtain those for the Q-operators in a dynamical quantum group form
[9, 25]:

R̂12(p) Q1 Q2 = Q1 Q2
ˆ̄R12( p̄) . (12)

(As in the case of chiral exchange relations (3), (4),wewill actually postulate relations
obtained after getting rid of the denominators in the entries of the two dynamical
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R-matrices.) A straightforward computation shows that, as a result, any two entries
of the matrix Q belonging to the same row or column commute.

All this has been already proved in [23] where the problem of commutativity of
diagonal and off-diagonal elements has been also addressed. The novelty we would
like to announce here answers this question and also describes the n ≥ 3 counterpart
of the pre-physical space F ′ of Sect. 2, providing a basis in it labeled by (a certain
finite set of) su(n) Young diagrams.

To this end we first introduce again the space Fdiag generated from the vacuum
by diagonal Q-operators. Due to (9), the vacuum is annihilated by all Qi

j except

for i = j = 1. Depicting the action of each diagonal operator Q j
j by adding a box

to the j-th row of a table with n rows, we can make correspond to any vector in
Fdiag generated by a monomial a unique tableau with boxes numbered in the order
of appearance in the product (counted from the right) of the specific operator.

It is not clear from the outset even if Fdiag is finite dimensional. However, one
immediately realizes that any single row table containing more than h − 1 boxes
should vanish, due to (11) implying v

(1)
h := (Q1

1)
h |0〉 = 0. Consider next the vec-

tor v
(2)
h := Q2

2 (Q1
1)

h−1 |0〉. Noting that on Fdiag the eigenvalues of p j� and p̄ j�

coincide and that (12) implies, for any v ∈ Fdiag,

Qi
j v = 0 or Q j

i v = 0 ⇒ [pi j + 1] Qi
i Q

j
j v = [pi j − 1] Q j

j Q
i
i v (13)

(see [23]), we deduce from (1) and (9) that (since [h − 2] = [2] �= 0)

[p21 + 1] Q2
2 (Q1

1)
h−1 |0〉 = [p21 − 1] Q1

1 Q
2
2 (Q1

1)
h−2 |0〉 , i.e.,

−[h − 2] v
(2)
h = −[h] w

(2)
h ≡ 0 ⇒ v

(2)
h = 0 , (14)

where w
(2)
h := Q1

1 Q
2
2 (Q1

1)
h−2 |0〉. Similar observations suggest to introduce the

space F ′ ⊆ Fdiag as the linear span of vectors of the type

vm := (Qi
i )
mi . . . (Q2

2)
m2(Q1

1)
m1 |0〉 , m = (m1,m2, . . . ,mi , 0, . . . , 0) (15)

with
1 ≤ i ≤ n − 1 , mi ≤ mi−1 ≤ · · · ≤ m1 , m1 + i ≤ h . (16)

It turns out that it has remarkable properties.

• F ′ is finite dimensional
• it is annihilated by any off-diagonal Q-operator: Qi

j F ′ = 0 for i �= j
• the basis (15) can be labeled by admissible su(n) Young diagrams Ym ofmaximal
hook length not exceeding h − 1 or, which is the same, of spread

spr (Ym) := i + m1 ≤ h . (17)
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The last assertion needs some clarification.We first verify, by using (13), that reorder-
ing the factors in the Q-monomial (15) reproduces one and the same vector, up to
a non-zero coefficient, as far the “standard su(n) rule” m j ≤ m j−1 is respected at
any step (i.e., also in subdiagrams obtained by removing an arbitrary number of Q-
operators from the left); so under this condition the numeration of boxes is irrelevant.
What we call “maximal hook length” (of a non-trivial Young diagram) is the hook
length of the box in the upper left (NW) corner; we have used the term “spread” for
the sum of the numbers of columns and rows.

To show that F ′ = Fdiag,wehave to prove that any action violating the conditions
(16), or equivalently – in the “diagrammatic language” – that

• adding a box to the n-th row
• adding an extra box to the j-th row when m j = m j−1 or, finally,
• adding an extra box to the first column or row of a diagram saturating the spread
inequality (17), i.e., for which spr (Ym) = h

all lead to a zero vector (or to another vector inF ′). The proof relies essentially on the
careful application of (13) (and, for the first point, also on the determinant conditions
(5)). The only difficulty arises when one violates the spread inequality by adding an
extra box to the first row of the diagram (i.e., m1 → m1 + 1 for i + m1 = h).

In this last case the problem can be reduced to hook shaped diagrams (all boxes in
a diagram saturating (17) become irrelevant except those in the first row and the first
column which form its “backbone”). In effect, for i > 2 we just have to generalize
(14), introducing

v
(i)
h = Qi

i Q
1
1 v , w

(i)
h = Q1

1Q
i
i v , v := Qi−1

i−1 . . . Q2
2 (Q1

1)
h−i |0〉 . (18)

The argument why v
(i)
h = 0 is the same as in (14); we only have to evaluate [pi1 ±

1] v = [1 − h ± 1] v. The problem is to show thatw(i)
h = 0 too. To tackle it, we need

a new technique which is introduced in the next section.
Before going to it we will make the following important remark. It is obvious

that the su(n) Young diagrams of spread restricted by h fit into a rectangle of size
(n − 1) × (h − 1). (The spread condition imposes a stronger restriction, except for
n = 2). In theWZNW setting the zero modes are coupled to elementary chiral vertex
operators (CVO) with similar intertwining properties [20]; having this in mind, we
note that the integrable representations of the affine algebra ŝu(n)k (or the fusion
sectors of the unitary model) are labeled by all su(n) Young diagrams that fit into
the “narrower” rectangle of size (n − 1) × k. Extending the analogy with the n = 2
case, cf. (10), we would expect, in particular, the vectors vm (15) to have zero norm
if they correspond to diagrams outside the “unitary” rectangle. (All such diagrams
have thus also boxes in the additional (n − 1) × (n − 1) square) (Figs. 1, 2, 3, 4, 5,
6, 7, 8).

The following figures illustrate the above ideas and notions.
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Fig. 1 The
(n − 1) × (h − 1) rectangle
for n = 5, k = 7

Fig. 2 Single row diagram
Y of maximal spread
(spr(Y ) = 12)

Fig. 3 Hook-shaped
diagram of maximal spread

Fig. 4 Hook-shaped
diagram of maximal spread

Fig. 5 Hook-shaped
diagram of maximal spread

Fig. 6 A “forbidden”
diagram (the black box is
extra)

Fig. 7 A “forbidden”
hook-shaped diagram (the
“backbone” of Fig. 6)
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Fig. 8 The same
(“forbidden”?) hook-shaped
diagram as in Fig. 7

4 Chiral q-Symmetric and q-Antisymmetric Bilinears

It turns out that the cumbersome bilinear exchange relations (3), (4) assume an
amazingly simple form when written in terms of the corresponding q-antisymmetric
and q-symmetric bilinear combinations

aiαa
j
β = Ai j

αβ + Si jαβ , Ai j
αβ = −q−εαβ Ai j

βα , Si jαβ = qεαβ Si jβα (19)

defined by

[2] Ai j
αβ := aiα′a

j
β′ A

α′β′
αβ =

{
q−εαβaiαa

j
β − aiβa

j
α , α �= β

0 , α = β
(20)

and

[2] Si jαβ := aiα′a
j
β′ S

α′β′
αβ =

{
qεαβaiαa

j
β + aiβa

j
α , α �= β

[2] aiαa j
α (≡ [2] a j

αa
i
α) , α = β

, (21)

respectively, and their bar analogs

[2] Āαβ
i j := Aαβ

α′β′ āα′
i āβ′

j , [2] S̄αβ
i j := Sαβ

α′β′ āα′
i āβ′

j . (22)

A simple calculation [20] shows that relations (3), (4) for i �= j and α �= β are
equivalent to

[pi j + 1] Ai j
αβ = −[pi j − 1] A ji

αβ , Si jαβ = S ji
αβ ,

[ p̄i j + 1] Āαβ
i j = −[ p̄i j − 1] Āαβ

j i , S̄αβ
i j = S̄αβ

j i . (23)

The remaining relations (3), (4) look equally simple in these terms:

Si jαα = S ji
αα , Aii

αβ = 0 , S̄αα
i j = S̄αα

j i , Āαβ
i i = 0 . (24)

Note that
Si jαβ ⊗ Āαβ

�m = 0 = Ai j
αβ ⊗ S̄αβ

�m (25)
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(where summation over α and β is assumed) since e.g.

Si jαβ ⊗ Āαβ
�m = (qεαβ Si jβα) ⊗ (−q−εαβ Āβα

�m) = − Si jβα ⊗ Āβα
�m , (26)

and hence

Qi
� Q

j
m = (Si jαβ + Ai j

αβ) ⊗ (S̄αβ
�m + Āαβ

�m) = Si jαβ ⊗ S̄αβ
�m + Ai j

αβ ⊗ Āαβ
�m . (27)

These relations turn out to be crucial as they shed light on the quantumgroup “internal
structure” of monomials in the Q-operators. (Their importance can be anticipated in
the derivation of (11), see [23], which is actually based on the q-symmetry underlying
the chiral expansion of Qi

j Q
i
j .) To illustrate the idea, we will demonstrate that,

presented as in (18), the vectorw(i)
h only contains the q-antisymmetric part of Q1

1Q
i
i .

Indeed, it follows from [pi1 − 1] v = 0 and (23) that

[pi1 + 1]Ai1
αβ v = −[pi1 − 1]A1i

αβ v = 0 ⇒ v
(i)
h = Si1αβ ⊗ S̄αβ

i1 v . (28)

Now taking into account that v(i)
h = 0 and Si1αβ = S1iαβ, S̄αβ

i1 = S̄αβ
1i we infer

0 = Si1αβ ⊗ S̄αβ
i1 v = S1iαβ ⊗ S̄αβ

1i v ⇒ w
(i)
h = A1i

αβ ⊗ Āαβ
1i v . (29)

Using this property, we have been able to show “by brute force”, in the case n = 3,
that w(2)

h = 0 for small values of the level k. Finding the appropriate combinatorial
arguments in the general case (of arbitrary n, i and h) remains a challenge.
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Vertex Operator Algebras Associated
with Z/kZ-Codes

Tomoyuki Arakawa, Hiromichi Yamada and Hiroshi Yamauchi

Abstract We construct a vertex operator algebra associated with a Z/kZ-code of
length n for an integer k ≥ 2. We realize it inside a lattice vertex operator algebra as
the commutant of a certain subalgebra. The vertex operator algebra is isomorphic to
a known one in the cases k = 2, 3.

1 Introduction

Let Lŝl2(k, 0) be an integrable highest weight module for an affine Kac–Moody Lie
algebra ŝl2 at level k. Then Lŝl2(k, 0) is a simple vertex operator algebra and it
contains a Heisenberg vertex operator algebra generated by a Cartan subalgebra of
sl2. The commutant K (sl2, k) of the Heisenberg vertex operator algebra in Lŝl2(k, 0)
is called the parafermion vertex operator algebra of type sl2. Its central charge is
2(k − 1)/(k + 2). The properties of K (sl2, k) and its irreducible modules have been
studied in [1, 3, 4], etc.

In fact, irreducible modules Mi, j , 0 ≤ i ≤ k, j ∈ Z/kZ with Mi, j ∼= Mk−i,k−i+ j

were constructed in [3]. In [1], it was shown that the k(k + 1)/2 irreducible modules
Mi, j , 0 ≤ j < i ≤ k form a complete set of representatives of equivalence classes of
irreducible modules. There is a Z/kZ-symmetry among M j = Mk, j , j ∈ Z/kZ. In
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this notation M0 is the parafermion vertex operator algebra K (sl2, k). The top level
of M j is one dimensional with weight j (k − j)/k.

AZ/kZ-code D of length nmeans an additive subgroup of (Z/kZ)n . In this paper
we construct a vertex operator algebraMD associatedwith D. Actually,MD is a direct
sum of Mξ , ξ ∈ D, where Mξ = Mi1 ⊗ · · · ⊗ Min , ξ = (i1, . . . , in) is an irreducible
module for a tensor product of n copies of M0. The vertex operator algebra MD

is defined to be the commutant of a certain subalgebra in a lattice vertex operator
algebra VΓD . The lattice ΓD is a positive definite even lattice obtained by using the
code D. We also discuss the case ΓD is an odd lattice and MD is a vertex operator
superalgebra when k is even.

The vertex operator algebra MD is isomorphic to a known one [7, 10] in the cases
k = 2, 3. We generalize the construction for an arbitrary k.

2 Irreducible M0-Modules M( j), 0 ≤ j ≤ k − 1

In this section we shall construct irreducible modules M ( j), 0 ≤ j ≤ k − 1 for M0

inside certain irreducible modules for a lattice vertex operator algebra. Those irre-
duciblemodules forM0 will be used as building blocks ofZ/kZ-code vertex operator
algebras in Sect. 3.

Let L = Zα1 + · · · + Zαk with 〈αi ,α j 〉 = 2δi j and γ = α1 + · · · + αk . Let

N = {α ∈ L | 〈α, γ〉 = 0}.

Then N = ∑k−1
p=1 Z(αp − αp+1). Set R = N ⊕ Zγ, which is a sublattice of L with

the same rank. The dual lattice {α ∈ Q ⊗Z X | 〈α, X〉 ⊂ Z} of an integral lattice
(X, 〈 · , · 〉) is denoted by X◦. Then L◦ = 1

2 L and (Zγ)◦ = Z 1
2k γ.

Lemma 1 (1) R ⊂ L ⊂ L◦ ⊂ R◦ with R◦ = N ◦ ⊕ (Zγ)◦.
(2) L = ∪k−1

i=0 (R + iαk); disjoint.
(3) L + Z 1

2k γ = ∪k−1
i=0 ∪2k−1

j=0 (R + iαk + j
2k γ); disjoint.

Let βp = αp − αp+1, 1 ≤ p ≤ k − 1 and

λ = 1

2k
(β1 + 2β2 + · · · + (k − 1)βk−1) = 1

2k
γ − 1

2
αk .

Then { 12β2, . . . ,
1
2βk−1,λ} is a Z-basis of N ◦ and N ◦/N ∼= (Z2)

k−2 × Z2k .
We define VR◦ = M(1) ⊗ C{R◦} and Y (v, z) ∈ (End VR◦){z} for v ∈ VR◦ as in

[2, 5, 9] so that (VR◦ ,Y ) is a generalized vertex algebra [2, Theorem 9.8].
The lattice R◦ is a nondegenerate rational lattice of rank k and R is an even

sublattice of R◦ with the same rank. We choose
{
1

2
β2, . . . ,

1

2
βk−1,λ,

1

2k
γ

}
(1)
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as aZ-basis of R◦. Let s = 4k, so that s
2 〈α,β〉 ∈ Z forα,β ∈ R◦. Define an alternat-

ing Z-bilinear map c0 : R◦ × R◦ → Z/sZ as in [9, Remark 6.4.12] and a Z-bilinear
map ε0 : R◦ × R◦ → Z/sZ as in [5, Proposition 5.2.3] with respect to the Z-basis
(1). Then

ε0(α,β + pλ) = 0 (2)

for α,β ∈ N , p ∈ Z and

ε0(α, γ/2k) = ε0(γ/2k,α) = 0 (3)

for α ∈ R◦.
Let R̂◦ be a central extension of R◦ by a cyclic group 〈κs〉 of order s with section

eα ∈ R̂◦, α ∈ R◦ and 2-cocycle ε0. The multiplication in R̂◦ is given by

eαeβ = eα+βκε0(α,β)
s

for α,β ∈ R◦.
Set C{R◦} = C[R̂◦]/(κs − ωs)C[R̂◦], where ωs is a primitive s-th root of unity.

For simplicity of notation we denote both eα ∈ R̂◦ and ι(eα) ∈ C{R◦} in the notation
of [2, 5, 9] by eα. Then {eα | α ∈ R◦} is a basis of C{R◦} and the multiplication in
C{R◦} is

eαeβ = ωε0(α,β)
s eα+β

for α,β ∈ R◦. By (3), the following lemma holds.

Lemma 2 eαepγ/2k = epγ/2keα = eα+pγ/2k for α ∈ R◦, p ∈ Z.

For any subset X of R◦, let C{X} = span{eα | α ∈ X} ⊂ C{R◦} as in [2, 5, 9].
We write MC⊗ZX (1) for the Heisenberg vertex operator algebra M(1) generated by
C ⊗Z X when we want to clarify the generators. Let VX = MC⊗ZX (1) ⊗ C{X}.

In this notation, VR◦ = MC⊗ZR(1) ⊗ C{R◦}. Since R◦ is an orthogonal sum of N ◦
and (Zγ)◦, we have C{R◦} = C{N ◦} ⊗ C{(Zγ)◦} as associative algebras by (3) and
MC⊗ZR(1) = MC⊗ZN (1) ⊗ MC⊗ZZγ(1) as vertex operator algebras. Hence

VR◦ = VN ◦ ⊗ V(Zγ)◦ ,

where VN ◦ = MC⊗ZN (1) ⊗ C{N ◦} and V(Zγ)◦ = MC⊗ZZγ(1) ⊗ C{(Zγ)◦} are subal-
gebras of the generalized vertex algebra VR◦ .

By the definition of the vertex operator Y (v, z) ∈ (End VR◦){z} for v ∈ VR◦ , the
component operator v(n) ∈ End VR◦ of Y (v, z) = ∑

n∈Q v(n)z−n−1 has the property
that

v(n)w ∈ VR+α+β

for v ∈ VR+α, w ∈ VR+β , α,β ∈ R◦.
Note that VX for X = R, N , Zγ and L are vertex operator algebras, VL◦ is a

VL -module, and VR◦ is a VR-module. We have VR = VN ⊗ VZγ .
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We consider a linear isomorphism ψp : VR◦ → VR◦ defined by

ψp : u ⊗ eα �→ u ⊗ (eαepγ/2k) = u ⊗ eα+pγ/2k

foru ∈ MC⊗ZR(1),α ∈ R◦, p ∈ Z. Thenψp(VR+μ) = VR+μ+pγ/2k forμ ∈ R◦.More-
over, the following lemma holds.

Lemma 3 (1) ψp : VR◦ → VR◦ is an isomorphism of VN -modules.
(2) γ(0)ψp(v) = ψp(γ(0)v) + pψp(v) and γ(m)ψp(v) = ψp(γ(m)v) if m �= 0

for v ∈ VR◦ , m ∈ Z.

Let

H = γ(−1)1, E = eα1 + · · · + eαk , F = e−α1 + · · · + e−αk

be as in [3]. Let V aff be the subalgebra of the vertex operator algebra VL generated by
H , E and F . Then V aff ∼= Lŝl2(k, 0) and V

aff ⊃ VZγ . We denote M0, j of [3, Lemma
4.2] by M j for simplicity of notation. Thus

V aff ∼=
k−1⊕

j=0

M j ⊗ VZγ− jγ/k (4)

as M0 ⊗ VZγ-modules, where

M j = {v ∈ V aff | γ(m)v = −2 jδm,0v for m ≥ 0}, (5)

and in particular M0 = K (sl2, k). Note that M0 is also the commutant of VZγ in
V aff . Since the coset Zγ − jγ/k is determined by j modulo k, the index j can be
considered as an element of Z/kZ in (4).

The commutant of VZγ in VL is VN and so M0 ⊂ VN . Let T be the commutant of
V aff in VL . The vertex operator algebra T was studied in [6]. Note that T is also the
commutant of M0 in VN and the commutant of T in VN is M0. Moreover, we have

V aff = {v ∈ VL | (ωT )(1)v = 0}, (6)

where

ωT = 1

2(k + 2)

∑

1≤p<q≤k

(
1

2

(
(αp − αq)(−1)

)2
1 − 2

(
eαp−αq + eαq−αp

)
)

is the conformal vector of the vertex operator algebra T .
The vertex operator algebra VL decomposes into a direct sum of irreducible VR-

modules VL = ⊕k−1
i=0 VR+iαk by Lemma 1. Let σ = exp(2π

√−1γ(0)/2k) be a linear
isomorphism induced by the action of γ(0) on VR◦ . Then
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{v ∈ VL | σv = exp(2πi
√−1/k)v} = VR+iαk .

Hence (4) implies that V aff ∩ VR− jαk
∼= M j ⊗ VZγ− jγ/k as M0 ⊗ VZγ-modules.

Thus,
{v ∈ VR− jαk | (ωT )(1)v = 0} ∼= M j ⊗ VZγ− jγ/k (7)

as M0 ⊗ VZγ-modules by (6).
Since ωT ∈ VN and M0 ⊂ VN , the map ψ2 j commutes with (ωT )(1) and it is also

an isomorphism of M0-modules by Lemma 3. Therefore, taking the images of both
sides of (7) under the map ψ2 j we have

{v ∈ VR− jαk+ jγ/k | (ωT )(1)v = 0} ∼= M j ⊗ VZγ . (8)

Recall that λ = γ/2k − αk/2 ∈ N ◦. Thus R − jαk + jγ/k = R + 2 jλ. Let

N j = N + 2 jλ.

Then R + 2 jλ = {(x, y) | x ∈ N j , y ∈ Zγ}. Hence VR+2 jλ = VN j ⊗ VZγ and

VN j = {v ∈ VR+2 jλ | (ωγ)(1)v = 0},

where ωγ = 1
4k γ(0)21 is the conformal vector of VZγ . We set

M ( j) = {v ∈ VN j | (ωT )(1)v = 0}. (9)

In particular, M (0) = M0. The coset N j is determined by j modulo k. Thus the
index j of M ( j) can be considered as an element of Z/kZ. Since (ωT )(1) and (ωγ)(1)
commute, (8) implies that M ( j) ∼= M j as M0-modules. We also have ψ2 j (M j ) =
M ( j).

Next, we shall describe the top level of ψ2 j (M j ). Recall the element

(F−1)
j1 = j !

∑

I⊂{1,2,...,k},|I |= j

e−αI

of the vertex operator algebra VL for 0 ≤ j ≤ k, where αI = ∑
p∈I αp for a subset

I of {1, 2, . . . , k} [3, Sect. 4]. The element (F−1)
j1 is contained in V aff . Moreover,

γ(m)(F−1)
j1 = −2 jδm,0(F−1)

j1 for m ≥ 0. Thus (F−1)
j1 ∈ M j by (5) and

ψ2 j ((F−1)
j1) = j !

∑

I⊂{1,2,...,k},|I |= j

e−αI+ jγ/k ∈ ψ2 j (M
j ). (10)

Note that (10) is valid for 0 ≤ j ≤ k.
LetωL ,ωaff andω be the conformal vectors of the vertex operator algebras VL , V aff

and M0, respectively. Then ωaff = ω + ωγ and ωL = ωT + ωaff . Moreover, (F−1)
j1
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is an eigenvector for the operators (ωL)(1), (ωT )(1) and (ωγ)(1) with eigenvalues
j , 0 and j2/k, respectively. Thus it is also an eigenvector for ω(1) with eigenvalue
j (k − j)/k. Since the top level of the irreducible M0-module M j is one dimensional
and of weight j (k − j)/k by Theorem 4.4 and Proposition 4.5 of [3], this implies
that C(F−1)

j1 is the top level of M j for 0 ≤ j ≤ k − 1. Thus the top level of the
irreducible M0-module ψ2 j (M j ) is Cψ2 j ((F−1)

j1) for 0 ≤ j ≤ k − 1, since ψ2 j is
an isomorphism of M0-modules by Lemma 3.

Note that αI ∈ N + jαk for any subset I of {1, 2, . . . , k} with |I | = j and
N j = N − jαk + jγ/k ⊂ N ◦ but N − jαk �⊂ N ◦ if 1 ≤ j ≤ k − 1. Note also that
ψ2 j ((F−1)

j1) is an eigenvector for the operators (ωL)(1) and (ωγ)(1) with eigenvalues
j (k − j)/k and 0, respectively.

By the above argument, we have the following theorem.

Theorem 1 (1) M ( j) = ψ2 j (M j ) ∼= M j as M0-modules.
(2) The top level of the irreducible M0-module M ( j) is Cψ2 j ((F−1)

j1).
(3) u(m)v ∈ M (i+ j) for u ∈ M (i), v ∈ M ( j), m ∈ Z.

3 Lattice ΓD and VOA or VOSA MD

In this sectionwefix a positive integer n. Define a standard scalar product on (Z/kZ)n

by
(ξ|η) = i1 j1 + · · · + in jn ∈ Z/kZ

for ξ = (i1, . . . , in), η = ( j1, . . . , jn) ∈ (Z/kZ)n . Let

Nξ = {(x1, . . . , xn) | xr ∈ Nir , 1 ≤ r ≤ n} ⊂ (N ◦)⊕n (11)

for ξ = (i1, . . . , in) ∈ (Z/kZ)n , where (N ◦)⊕n is an orthogonal sum of n copies of
the dual lattice N ◦ of N . For α ∈ Nξ and β ∈ Nη , we have

〈α,β〉 ∈ −2

k
(ξ|η) + 2Z. (12)

Let D be an additive subgroup of (Z/kZ)n . We consider two cases.
Case A. (ξ|ξ) = 0 for all ξ ∈ D.
Case B. k is even, (ξ|η) ∈ {0, k/2} for all ξ, η ∈ D, and (ξ|ξ) = k/2 for some

ξ ∈ D.

Remark 1 If k is odd, Case A occurs if and only if D is self-orthogonal. However,
the condition that (ξ|ξ) = 0 for all ξ ∈ D does not imply self-orthogonality of D if
k is even.

Let
ΓD =

⋃

ξ∈D
Nξ ⊂ (N ◦)⊕n, (13)
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which is a sublattice of (N ◦)⊕n . We see from (12) that ΓD is an integral lattice if and
only if (ξ|η) ∈ {0, k/2} for all ξ, η ∈ D. More precisely, the following lemma holds.

Lemma 4 (1) ΓD is a positive definite even lattice if and only if D is in Case A.
(2) ΓD is a positive definite odd lattice if and only if If k is even and D is in

Case B.

If k is even and D is in Case B, we set Γ
p
D = {α ∈ ΓD | 〈α,α〉 ∈ p + 2Z} for

p = 0, 1.
Let VΓD = MC⊗ZΓD (1) ⊗ C{ΓD}. If D is in Case A, then VΓD is a vertex operator

algebra. If k is even and D is in Case B, then VΓD = V
Γ 0
D

⊕ V
Γ 1
D
is a vertex operator

superalgebra.
By the definition (11) of Nξ , we have

VNξ
= VNi1 ⊗ · · · ⊗ VNin ⊂ (VN ◦)⊗n,

which is an irreducible (VN )⊗n-submodule of (VN ◦)⊗n . It follows from (13) that
VΓD = ⊕

ξ∈D VNξ
.

We set
Mξ = {v ∈ VNξ

| (ωT⊗n )(1)v = 0},

where ωT⊗n is the conformal vector of the vertex operator subalgebra T⊗n of (VN )⊗n .
Then

Mξ = M (i1) ⊗ · · · ⊗ M (in)

for ξ = (i1, . . . , in) ∈ (Z/kZ)n by (9), which is an irreducible module for M0 =
(M (0))⊗n with 0 = (0, . . . , 0) the zero codeword.We have u(m)v ∈ Mξ+η for u ∈ Mξ ,
v ∈ Mη, m ∈ Z.

The top level of Mξ is one dimensional with weight
( ∑n

p=1 i p
) − (ξ|ξ)

k , where i p
and (ξ|ξ) are considered to be nonnegative integers.

Let MD be the commutant of T⊗n in VΓD . Then

MD = {v ∈ VΓD | (ωT⊗n )(1)v = 0} =
⊕

ξ∈D
Mξ.

Theorem 2 (1) If D is in Case A, then MD is a simple vertex operator algebra of
CFT-type with central charge 2n(k − 1)/(k + 2).

(2) If k is even and D is in Case B, then MD = M0
D ⊕ M1

D is a simple vertex

operator superalgebra, where the even part M0
D and the odd part M1

D are given by

M0
D =

⊕

ξ∈D,(ξ|ξ)=0

Mξ, M1
D =

⊕

ξ∈D,(ξ|ξ)=k/2

Mξ.
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4 Examples

Thevertexoperator algebraMD is alreadyknown for some k andn. The cases k = 2, 3
were studied in [7, 10]. The cases k = 5, n = 2, D = {(00), (12), (24), (31), (43)}
and k = 9, n = 1, D = {(0), (3), (6)} appeared in [8]. The following example looks
new.

Let k = 6, n = 1 and D = {(0), (3)}. Then

MD = M (0) ⊕ M (3) ∼= LNS(5/4, 0) ⊕ LNS(5/4, 3),

where LNS(5/4, 0) is a simple Neveu–Schwarz algebra of central charge 5/4 and
LNS(5/4, 3) is its irreducible highest weight module with highest weight 3.

Indeed, the top level of M (3) is one dimensional with weight 3/2. Let v be an
element of the top level of M (3) such that v(2)v = (5/6)1. Then v(m)v = 0 form ≥ 3,
v(1)v = 0 and v(0)v = 2ω, where ω is the conformal vector of M (0). Hence

Ln = ω(n+1), Gn−1/2 = v(n) (n ∈ Z)

satisfy the relations for the Neveu–Schwarz algebra of central charge 5/4. Thus the
subalgebra generated by ω and v in the lattice vertex operator superalgebra VΓD is
isomorphic to LNS(5/4, 0). The parafermion vertex operator algebraM0 has aweight
3 primary vector W 3. The vector W 3 is a highest weight vector for LNS(5/4, 0) and
it generates LNS(5/4, 3).
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Vertex Algebras in Higher Dimensions
Are Homotopy Equivalent to Vertex Algebras
in Two Dimensions

Nikolay M. Nikolov

Abstract There is a differential graded operad associated to quadratic configuration
spaces, whose class of algebras naturally contains the class of all vertex algebras. We
have found that under certain shift of the degree in the cohomology these operads
are isomorphic in cohomology for any even spatial dimension.

1 Real Configuration Spaces and Related Operads

Configuration spaces have been studied long ago in mathematics (see [3]). By defi-
nition, the real n-th configuration space over R

D is the set of all configurations of n
points in R

D , which are distinct. It is shortly denoted by FR,n ,

FR,n (≡ F(D)

R,n ) := {(x1, . . . , xn) | x1, . . . , xn ∈ R
D, x j �= xk (1 � j < k � n)} .

(1)
These spaces obey a very rich structure. In particular, there are several operads that
are associated to the sequence of all configuration spaces (over R

D). One of the most
simple operads is the so called little balls/cubes operad (see [8, Sect. 2.2]).

Before explaining the latter operad let us remind that the operads provide a gener-
alization of the notion of a “type of algebra”. They consists of a sequence of spaces
M(n) equippedwith several structuremaps. If we think ofM(n) as a space of “n-ary
operations” (i.e., operations with n inputs and one output) then there are structure
maps that axiomatize the composition,

M(n) × M( j1) × · · · × M( jn) � (μ, μ1, . . . , μn) �−→ μ ◦ (μ1, . . . , μn) ∈ M(�) , (2)

of an n-ary operation μn ∈ M(n) with n other operations μ1 ∈ M( j1), . . . , μn ∈
M( jn), and it gives a result that belongs to the space M(�) of operation with

N.M. Nikolov (B)
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� = j1 + · · · + jn (3)

inputs. In addition, the permutation group Sn is supposed to act onM(n) for every n
axiomatizing the exchange of inputs of an n-ary operation. There are natural condi-
tions of associativity for the operadic compositions and equivariance (compatibility)
for the compositions with respect to the permutation actions. The reader can find
further information in [7].

In the case of the little balls operad, the space M(n) consists of all closed balls
B1, . . . , Bn in R

D , which do not intersect each other and are contained in an open
ball B0,

M(n) = {
(B0; B1, . . . , Bn)

∣
∣ B1, . . . , Bn ⊂ B0 , B j ∩ Bk = ∅ (1 � j < k � n)

}

(4)

The operadic composition

(B0; B1, . . . , Bn) ◦ (
(B1,0; B1,1, . . . , B1, j1), . . . , (Bn,0; Bn,1, . . . , Bn, jn )

)

= (B0, B
′
1,1, . . . , B

′
1, j1 , . . . , B

′
n,1, . . . , B

′
n, jn ) (5)

is then obtained by transforming each configuration (Bk,0, Bk,1, . . . , Bk, jk ) with
translations and dilations in such a way that we can plug Bk,0 into Bk , i.e.,

(Bk,0, Bk,1, . . . , Bk, jk )

translations
& dilations�−→ (B ′

k,0, B
′
k,1, . . . , B

′
k, jk ) , so that B ′

k,0 = Bk (6)

for every k = 1, . . . , n. Note thatM(n) is homotopy equivalent to the configuration
space FR,n and hence, the above opearadic compositions induce maps between the
homology spaces (with rational coefficients),

H•
(M(n), Q

) = H•(FR,n, Q) . (7)

In this way, the sequence of spaces H•(FR,n, Q) becomes an algebraic operad, i.e.,
an operad whose operadic spaces are vector spaces and the operadic compositions
are multilinear maps.

There is a straight forward generalization of the little balls operad. Let

r � R
D × R

D (8)

be a homogeneous, closed, binary relation and denote

Fr ; n := {(x1, . . . , xn) | x1, . . . , xn ∈ R
D, (x j , xk) /∈ r (1 � j < k � n)} (9)

M(r)(n) = {
(B0; B1, . . . , Bn)

∣
∣ B1, . . . , Bn ⊂ B0 ⊂ R

D ,

(B j × Bk) ∩ r = ∅ (1 � j < k � n)
}
, (10)
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with operadic composition given by (2). Then we obtain again an operad and the
sequence

H•
(M(r)(n), Q

) ∼= H•(Fr ; n, Q) (11)

is an algebraic operad.

2 Quadratic Configuration Spaces and Related Operads

As a particular example of the operadM(r)(n) (10) let us consider the complex vector
space C

D (∼=R
2D as a real vector space) equipped with a quadratic homogeneous

relation

r ⊂ C
D × C

D , r := {(x, y) ∈ C
D | (x − y)2 = 0} , (12)

x2 ≡ x · x := (x1)2 + · · · + (xD)2 for x := (x1, . . . , xD) ∈ C
D . (13)

Then, following [9, 10] we call Fr ; n (9) a quadratic configuration space and denote
it by FC,n

FC,n := {
(x1, . . . , xn) ∈ (CD)×n

∣
∣ (x j − xk)

2 �= 0 (1 � j < k � n)
}
. (14)

Note in particular, that
FC,n ∩ (RD)×n = FR,n . (15)

Weobserve also thatFC,n are complex affine varieties and the ring of regular functions
on FC,n coincides with the algebra of rational functions with quadratic singularities,

Õn := O
(
FC,n

) = C
[
x1, . . . , xn

]
[( ∏

1 j < k � n

(x j − xk)
2

)−1]
. (16)

In physics terminology, one can say that the elements of Õn are the rational n-point
functions with light-cone singularities. One can divide the configuration spaces by
the action of the translations and pass to the reduced configuration spaces Fn

/
C

D ,
whose algebra of regular functions On consists of the translation invariant functions
belonging to Õn

On := O
(
FC,n

/
C

D
) = C

[
x1 − xn, . . . , xn−1 − xn

]
[( ∏

1� j < k � n

(x j − xk)
2

)−1]

(17)
As the quotient by the translations do not change topology up to a homotopy equiv-
alence we obtain the same operad structure on the homology spaces.
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Let us remind the result of Grothendieck [4], which identifies the algebraic de
Rham cohomologies of Õn (resp.,On) with the Betti cohomology of the correspond-
ing complex affine variety FC,n (resp., FC,n/C

D). In the case of Õn (as well as, On)
the algebraic de Rham complex has a simple construction,

Ωk
(
OC,n

) := ∧k
OC,n

Ω1
(
OC,n

) := Span
C

{
f dxμ1

j1
∧ · · · ∧ dxμk

jk

∣
∣
∣ (18)

f ∈ ÕC,n , μ1, . . . ,μk = 1, . . . , D , j1, . . . , jk = 1, . . . , n
}

.

Then

Hk
(
ÕC,n

) :=
Ker

(
Ωk

(
ÕC,n

) d→ Ωk+1
(
OC,n

))

Image
(
Ωk−1

(
OC,n

) d→ Ωk
(
OC,n

)) , (19)

with respect to the de Rham differential:

d
(
f dxμ1

j1
∧ · · · ∧ dxμk

jk

)

:=
n∑

j=1

D∑

μ=1

∂ f

∂xμ
j

dxμ
j ∧ dxμ1

j1
∧ · · · ∧ dxμk

jk
, (20)

where f (x1, . . . , xn) ∈ OC,n . Now, the Grothendieck’s theorem implies that

Hk
(
Õn

) ∼= Hk
(
FC,n; C

)
. (21)

In fact, Hk
(
ÕQ,n

) ⊗Q C ∼= (
Hk

(
FC,n; Z

) ⊗Z C
)∗
, where ÕQ,n is the algebra Õn (16)

with coefficients in Q (instead of C), and the natural Z-bilinear paring Hk
(
FQ,n

) ×
Hk

(
FC,n; Z

) → C gives rise to the space (Z-module) of periods related to the
quadratic configuration spaces FC,n , which play a very important role in renor-
malization theory as residues of Feynman amplitudes in massless Quantum Field
Theories (see [11, 13]). Furthermore, there is a differential graded operad associ-
ated to the sequence of algebras On , whose cohomologies coincide with the operad(
H•(FC,n, Q)

)
n�2 and it has an application to both: the theory of vertex algebras and

the renormalization [10, 12].

Remark 1 For the operadic point of viewonvertex algebraswewould like tomention
also the papers [5, 6], where certain partial operads are proposed for this purpose.
However, the operad suggested in [10] is not a partial operad but an “ordinary”
symmetric operad (as defined for example in [7]). The price for this simplification is
perhaps that the latter operad has more algebras than the vertex algebras. Neverthe-
less, there is a simple criterion for separating the class of vertex algebras among all
others (more details will be published in [12]).
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3 Cohomologies of Quadratic Configuration Spaces
up to Three Points and Their Application in the Theory
of Vertex Algebras

Themain new result in the present work is the computation of the cohomology spaces
of FC,n for n = 2, 3. In general, the problem of finding all cohomology spaces of
FC,n for all n = 2, 3, . . . is very difficult.

A standard approach for studying configuration spaces is via the sequence ofmaps

qn+1 : FC,n+1 −→ FC,n : (x1, . . . , xn+1) �−→ (x1, . . . , xn) (22)

that forget about the last point (for n = 2, 3, . . . ). The fiber of qn+1 at the point
(x1, . . . , xn) ∈ FC,n is

Mx1,...,xn := {
z ∈ C

D
∣
∣ (z − x j )

2 �= 0 for all j = 1, . . . , n
} = C

D
∖ n⋃

j=1

Qx j ,

(23)
i.e., it is the complement of union of quadrics of a type

Qx := {
z ∈ C

D
∣
∣ (z − x)2 = 0

}
. (24)

In case C �→ R the fibers are

MR

x1,...,xn = {
z ∈ R

D
∣
∣ z �= x j for all j = 1, . . . , n

}
,

their homeomorphism type does not depend on (x1, . . . , xn), and each of them is
homotopy equivalent to a bouquet of (D − 1)-spheres. In particular the projections
qn are fibrations and one may use iterated Leray–Serre spectral sequences or the
Leray–Hirsch theorem in order to obtain the Betti cohomology of FR,n , see [1–3].

Let us point out that for both cases, C and R, the maps (22), qn+1 : FC,n+1 −→
FC,n and qn+1 : FR,n+1 −→ FR,n (respectively) are fiber bundles for n = 1, 2. This
is due to the fact that in these cases the bases FC,n are homogeneous spaces of
the group of Euclidean motions with dilations on C

D . In the real case, the maps
qn+1 : FR,n+1 −→ FR,n remain fiber bundles for any n (the fibers being homotopy
equivalent to a bouquet of spheres, as we have pointed out). However, over C and
n > 2 the fibers Mx1,...,xn (23) are in general non-isomorphic.

The case n = 2 is relatively simple. We have an isomorphism

FC,2
∼= M0 × C

D : (x1, x2) �→ (x1 − x2, x2) . (25)
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For M0 = C
D\Q0 then we use the projection

M0 −→ C\{0} : x1 − x2 �−→ (x1 − x2)
2 , (26)

which is a bundle with fibers isomorphic to the complex (D − 1)-sphere S
D−1
C

. For
even D > 2 we then derive by the Leray–Hirsch theorem that

Hk(FC,2) = 0 for k �= 0, 1, D − 1, D , (27)

H 1(FC,2) = C

⎡

⎣
D∑

μ=1

zμdzμ

z2

⎤

⎦ , (28)

HD−1(FC,2) = C

⎡

⎣
D∑

μ=1

(−1)μ+1 zμ dz1 ∧ · · · ∧ d̂zμ ∧ · · · ∧ dzD

(z2)
D
2

⎤

⎦ , (29)

HD(FC,2) = C

[
dz1 ∧ · · · ∧ dzD

(z2)
D
2

]
, (30)

where z = x1 − x2. The role of the fact that D is restricted to be even is that only then
are the representatives of the cohomology classes in (29) and (30) rational functions.

Let us introduce

ω(1)
j,k :=

D∑

μ=1

(xμ
j − xμ

k ) d(xμ
j − xμ

k )

(x j − xk)2
,

ω(D−1)
j,k :=

D∑

μ=1

(−1)μ+1 d(xμ
j − xμ

k )

(
x j − x2k

) D
2

d(x1j − x1k ) ∧ · · ·

∧ ̂d(xμ
j − xμ

k ) ∧ · · · ∧ d(xD
j − xD

k ) , (31)

for j, k = 1, . . . , n and j �= k, while for j = k we set for convenience

ω(m)

(k,k) := 0 .

We also have
ω(m)

j,k = ω(m)
k, j .

Then we have found the following basis for the cohomologies of OC,3 (ordered by
the form degree):
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deg. 0 : [1] ,

deg. 1 : [ω(1)
1,2] , [ω(1)

1,3] , [ω(1)
2,3] ,

deg. 2 : [ω(1)
1,2 ω(1)

1,3] , [ω(1)
1,2 ω(1)

2,3] , [ω(1)
1,3 ω(1)

2,3] ,

deg. 3 : [ω(1)
1,2 ω(1)

1,3 ω(1)
2,3] ,

deg. D − 1 : [ω(D−1)
1,2 ] , [ω(D−1)

1,3 ] , [ω(D−1)
2,3 ] ,

deg. D : [ω(1)
1,2 ω(D−1)

1,2 ] , [ω(D−1)
1,2 ω(1)

1,3] , [ω(D−1)
1,2 ω(1)

2,3] ,

[ω(1)
1,2 ω(D−1)

1,3 ] , [ω(1)
1,2 ω(D−1)

2,3 ] , [ω(1)
1,3 ω(D−1)

1,3 ] ,

[ω(1)
2,3 ω(D−1)

2,3 ] , [ω(1)
1,3 ω(D−1)

2,3 ] ,

deg. D + 1 : [ω(1)
1,2 ω(D−1)

1,2 ω(1)
1,3] , [ω(1)

1,2 ω(D−1)
1,2 ω(1)

2,3] ,

[ω(D−1)
1,2 ω(1)

1,3 ω(1)
2,3] , [ω(1)

1,2 ω(1)
1,3 ω(D−1)

1,3 ] ,

[ω(1)
1,2 ω(1)

2,3 ω(D−1)
2,3 ] , [ω(1)

1,2 ω(1)
1,3 ω(D−1)

2,3 ] ,

deg. D + 2 : [ω(1)
1,2] [ω(D−1)

1,2 ] [ω(1)
1,3] [ω(1)

2,3] ,

deg. 2D − 2 : [ω(D−1)
1,2 ω(D−1)

1,3 ] , [ω(D−1)
1,2 ω(D−1)

2,3 ] ,

deg. 2D − 1 : [ω(1)
1,2 ω(D−1)

1,2 ω(D−1)
1,3 ] , [ω(1)

1,2 ω(D−1)
1,2 ω(D−1)

2,3 ] ,

[ω(D−1)
1,2 ω(1)

1,3 ω(D−1)
1,3 ] , [ω(D−1)

1,2 ω(1)
2,3 ω(D−1)

2,3 ] ,

[ω(D−1)
1,2 ω(1)

1,3 ω(D−1)
2,3 ] ,

deg. 2D : [ω(1)
1,2 ω(D−1)

1,2 ω(1)
1,3 ω(D−1)

1,3 ] ,

[ω(1)
1,2 ω(D−1)

1,2 ω(1)
2,3 ω(D−1)

2,3 ] ,

[ω(1)
1,2 ω(D−1)

1,2 ω(1)
1,3 ω(D−1)

2,3 ] .

In particular, with the shift D �→ 2 we obtain an isomorphism in cohomology for al
even spatial dimensions.

For the applicationof the above result to the theoryof vertex algebras it is important
that the vertex algebras can be viewed as algebras over an operad built only by the
first two quadratic configuration spaces FC,n for n = 2, 3 [12]. The key argument
for this is that the axiomatic conditions on vertex algebras are formulated only for
Operator Product Expansions of two fields and hence, they use only two and three
point functions on the spatial variables. This indicates a new kind of “homotopy
equivalence” of the theories on operadic level for any even spatial dimension D.
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Automorphisms of Multiloop Lie Algebras

Anastasia Stavrova

Abstract Multiloop Lie algebras are twisted forms of classical (Chevalley) simple
Lie algebras over a ring of Laurent polynomials in several variables k[x±1

1 , . . . , x±1
n ].

These algebras occur as centreless cores of extended affine Lie algebras (EALA’s)
which are higher nullity generalizations of affine Kac-Moody Lie algebras. Such a
multiloop Lie algebra L, also called a Lie torus, is naturally graded by a finite root
system Δ, and thus possess a significant supply of nilpotent elements. We compute
the difference between the full automorphism group of L and its subgroup generated
by exponents of nilpotent elements. The answer is given in terms of Whitehead
groups, also called non-stable K1-functors, of simple algebraic groups over the field
of iterated Laurent power series k((x1)) . . . ((xn)). As a corollary, we simplify one
step in the proof of conjugacy of Cartan subalgebras in EALA’s due to Chernousov,
Neher, Pianzola and Yahorau, under the assumption rank(Δ) ≥ 2.

1 Multiloop Lie Algebras, Lie Tori, and EALA’s

Let k be an algebraically closed field of characteristic 0. We fix a compatible set of
primitive m-th roots of unity ξm ∈ k, m ≥ 1. Let G be an adjoint simple algebraic
group over k (a Chevalley group), and L = Lie(G) be the corresponding simple Lie
algebra over k. It is well-known that

Autk(L) ∼= Autk(G) ∼= G � N , (1)

where N is the finite group of automorphisms of the Dynkin diagram of the root
system of L and G.

Fix two integers n ≥ 0,m ≥ 1 and let σ = (σ1, . . . , σn) be an n-tuple of pairwise
commuting elements of period m in Autk(L). Such an n-tuple determines a Z

n-
grading on L with
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Li1...in = {x ∈ L | σ j (x) = ξ
i j
m x, 1 ≤ j ≤ n}. (2)

Set R = k[x±1
1 , . . . , x±1

n ], and let R̃ = k[x± 1
m

1 , . . . , x
± 1

m
n ], m ≥ 1, be another copy

of R, considered as an R-algebra via the natural embedding R ⊆ R̃. Then R̃/R is a
Galois ring extension [11, p. 8] with the Galois group

Gal(R̃/R) ∼= (Z/mZ)n. (3)

Definition 1 The multiloop Lie algebra L(L , σ ) is the Z
n-graded k-Lie subalgebra

L(L , σ ) =
⊕

(i1,...,in)∈Zn

Li1...in ⊗ x
i1
m
1 . . . x

in
m
n (4)

of the k-Lie algebra L ⊗k R̃.

Note that, considered as an R-Lie algebra, the algebraL(L , σ ) is an R̃/R-twisted
form of the R-Lie algebra L ⊗k R, i.e.

L(L , σ ) ⊗R R̃ ∼= (L ⊗k R) ⊗R R̃. (5)

Let Δ be a finite root system in the sense of [4] together with the 0-vector, which
we include following the tradition in the theory of extended affine Lie algebras. We
set Δ× = Δ \ {0}, Q = ZΔ, and

Δ×
ind = {α ∈ Δ× | 1

2α /∈ Δ}. (6)

The importance of multiloop Lie algebras stems from the fact that they provide
explicit realizations for a class of infinite-dimensional Lie algebras over k called Lie
tori. This was shown by B. Allison, S. Berman, J. Faulkner and A. Pianzola in [2].

Definition 2 [2, Definition 1.1.6] A Lie Λ-torus of type Δ is a Q × Λ-graded Lie
algebra L = ⊕

(α,λ)∈Q×Λ

Lλ
α over k satisfying

1. Lλ
α = 0 for all α ∈ Q \ Δ and all λ ∈ Λ.

2. L0
α �= 0 for all α ∈ Δ×

ind .
3. Λ is generated by the set of all λ ∈ Λ such that Lλ

α �= 0 for some α ∈ Δ.
4. For all (α, λ) ∈ Δ× × Λ such that Lλ

α �= 0, there exist elements eλ
α ∈ Lλ

α and
f λ
α ∈ L−λ

−α satisfying

Lλ
α = keλ

α, L−λ
−α = k f λ

α , and [[eλ
α, f λ

α ], x] = 〈β, α∨〉x (7)

for all x ∈ Lμ
β , (β, μ) ∈ Δ × Λ.
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5. L is generated as a k-Lie algebra by the subspaces Lλ
α , (α, λ) ∈ Δ× × Λ.

If Λ = Z
n , then n is called the nullity of L.

In what follows we will always assume that Λ = Z
n . By [2, Lemma 1.3.5 and

Proposition 1.4.2], if a centreless Lie torus L with Λ ∼= Z
n is finitely generated over

its centroid (fgc), then the centroid is isomorphic as a k-algebra to

k[Zn] ∼= k[x±1
1 , . . . , x±1

n ] = R. (8)

Note that, according to an announced result of E. Neher [14, Theorem 7(b)], all Lie
tori are fgc, except for just one class of Lie tori of type An called quantum tori; see [2,
Remark 1.4.3].

If a centreless Lie torus L is fgc, the Realization theorem [2, Theorem 3.3.1]
asserts that L as a Lie algebra over its centroid R is Z

n-graded isomorphic to a
multiloop algebra L(L , σ ).

An extended affine Lie algebra is a pair (E, H) consisting of a Lie algebra E over
k and subalgebra H satisfying the following axioms (EA1)–(EA6).

(EA1) E has an invariant nondegenerate symmetric bilinear form (·|·).
(EA2) H is a non-trivial finite-dimensional toral and self-centralizing subalgebra

of E .

Such an H induces a decomposition of E via the adjoint representation:

E = ⊕
α∈H∗ Eα,

Eα = {e ∈ E : [h, e] = α(h)e for all h ∈ H}. (9)

One defines

Ψ = {α ∈ H∗ : Eα �= 0} (set of roots of (E, H)),

Ψ 0 = {α ∈ Ψ : (α | α) = 0} (null roots),

Ψ an = {α ∈ Ψ : (α | α) �= 0} (anisotropic roots). (10)

Next one defines the core of (E, H) as the subalgebra Ec of E generated by all
anisotropic root spaces Eα , α ∈ Ψ an. We can now state the remaining four axioms.

(EA3) For any α ∈ Ψ an and xα ∈ Eα , the operator adxα is locally nilpotent on E .
(EA4) Ψ an is connected in the sense that for any decomposition Ψ an = Ψ1 ∪ Ψ2

with (Ψ1 | Ψ2) = 0 we have Ψ1 = ∅ or Ψ2 = ∅.
(EA5) {e ∈ E : [e, Ec] = 0} ⊂ Ec.

(EA6) The subgroup ZΨ 0 ⊂ H∗ is isomorphic to Z
n for some n ≥ 0.

The relationship between Lie tori and EALA’s is described by the following
theorem.
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Theorem 1 [15, Theorem 6] Let (E, H) be an EALA, and let L = Ec/Z(Ec) be
its centreless core. Then L is a centreless Z

n-Lie torus over k. Conversely, for any
centreless Lie torusL there is a (non-unique)EALA (E, H) such thatL ∼= Ec/Z(Ec).

2 Automorphisms of Multiloop Lie Algebras and EALA’s

Let L be a fgc centreless Lie torus over k with the centroid R ∼= k[x±1
1 , . . . , x±1

n ].
As explained above, the Lie torus L is a R̃/R-twisted form of a split simple Lie
algebra L ⊗k R. Consequently, the group scheme of R-equivariant automorphisms
AutR(L) is a twisted form of the group scheme AutR(L ⊗k R), and G = AutR(L)◦
is an adjoint simple reductive group scheme over R. Moreover,

Lie(AutR(L)◦) ∼= L (11)

as Lie algebras over R, e.g. [10, Proposition 4.10].
One can show that there is a short exact sequence of group homomorphisms

1 → AutR(L) → Autk(L) → Autk(R), (12)

where the first two arrows are the natural ones, and the third arrow sends every
f ∈ Autk(L) to the automorphism of the centroid R mapping χ ∈ R to f χ f −1. In
the sequence (12), one has Autk(R) ∼= (k×)n � GLn(Z), and the group AutR(L) fits
into the short exact sequence

1 → G → AutR(L) → OutR(L) → 1, (13)

where OutR(L) = 1 if L has type Bl , Cl , E7, E8, F4, G2, and is an R̃/R-twisted
form of Z/dZ or (Z/2Z)2 in other cases. The aim of the present text is to study G.

Definition 3 [20] Let H be a simple algebraic group, K an arbitrary field of char-
acteristic 0. The Whitehead group of H is the quotient group

W (K , H) = H(K )/H(K )+, (14)

where H(K )+ = 〈g ∈ H(K ) : g is unipotent〉.
It follows from the main result of [12] that the subgroup H(K )+ of Definition 3

also equals the (normal) subgroup of H(K ) generated by all g ∈ H(K ) such that
there is a morphism of algebraic K -varieties φg : A

1
K → H satisfying φg(0) = e,

φg(1) = g.

Theorem 2 [19, Theorem 1.3] Let k be an algebraically closed field of charac-
teristic 0, Δ be a finite root system of rank ≥ 2, and Λ = Z

n, n ≥ 1. Let L be a
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centreless Lie Λ-torus of type Δ over k that is finitely generated over its centroid
R ∼= k[x±1

1 , . . . , x±1
n ]. Set G = AutR(L)◦, and

Eexp(L) = 〈exp(adx ) : x ∈ Lλ
α, (α, λ) ∈ Δ × Λ, α �= 0〉. (15)

Then the natural inclusion G(R) ≤ G
(
k((x1)) . . . ((xn))

)
induces an isomorphism

of groups
G(R)/Eexp(L) ∼= W

(
k((x1)) . . . ((xn)),G

)
. (16)

Using this theorem, we slightly shorten the proof of [7, Theorem 0.1] under the
assumption that the grading root system of its centreless core has rank ≥ 2.

Theorem 3 Let (E, H) be an extended affine Lie algebra over k such that its cen-
treless core L is a fgc Z

n-Lie torus of type Δ, where rank(Δ) ≥ 2. Assume that E
admits the second structure (E, H ′) of an extended affine Lie algebra. Then there
exists an automorphism f of the Lie algebra E such that f (H) = H ′.

Proof By [7, Corollary 3.2] the core corresponding to the second structure (E, H ′)
on E coincides with L. The two canonical images Hcc and H ′

cc of H and H ′ in L are
Borel–MostowMADs ofL in the sense of [6, §13] by [1, Corollary 5.5]. The assump-
tion rank(Ψ ) − rank(Ψ 0) ≥ 2 implies that rank(Δ) ≥ 2. Let R ∼= k[x±1

1 , . . . , x±1
n ]

be the centroid of L. By [6, Theorem 12.1 and Proposition 13.1] any two Borel–
Mostow MADs of L are conjugate by an element g ∈ AutR(L)◦(R) = G(R).
This follows from the fact that any Borel–Mostow MAD is the unique maximal
ad-diagonalizable k-subalgebra of the Lie algebra Lie(S), where S is a maximal split
R-subtorus of G such that CentG(S) is loop reductive. Let S and S′ be the R-tori
corresponding to Hcc and H ′

cc respectively. The tori S and S
′ by [19, Lemma 2.8] may

be provided with a pair of parabolic subgroups P and P ′ such that gPg−1 = P ′ and
L = CentG(S) (resp. L ′ = CentG(S′)) is a Levi subgroup of P (resp. P ′). Set F =
k((x1)) . . . ((xn)). Then the pairs (LF , PF ) and (L ′

F , PF ′) are conjugate in GF by an
element h ∈ G(F)+ by [3, Proposition 6.11(i)]. Then h−1g ∈ L(F). By [6, Theorem
10.2] (see also [19, Theorem 1.1]) one has L(F) = L(R) · (G(F)+ ∩ L(F)). There-
fore, adjusting h, we can assume that h−1g ∈ L(R), and hence h ∈ G(R) ∩ G(F)+.
Then by Theorem 2 we have h ∈ Eexp(L). Therefore, h is a product of exp(adx )
for some x ∈ L such that x ∈ Lλ

α , (α, λ) ∈ Δ × Λ, α �= 0. By definition of the cen-
treless core any such element x lifts to an element x̃ in Eα for some α ∈ Ψ an,
see [16, Sect 6.3]. Then adx̃ is locally nilpotent, and exp(adx̃ ) is a well-defined auto-
morphism of E . Thus, h lifts to an automorphism f of E . This implies that it is
enough to prove the theorem in case where Hcc = H ′

cc. Then the proof is finished by
[7, Theorem 7.1].
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3 How to Compute W
(
k((x1)) . . . ((xn)),G

)
?

Set F = k((x1)) . . . ((xn)). Note that F is of characteristic 0. As in the previous
section,wedenote byG the R-group schemeAutR(L)◦, where R ∼= k[x±1

1 , . . . , x±1
n ],

andL is a centreless fgcZ
n-Lie torus of typeΔ, and a twisted form of the Lie algebra

L ⊗k R. Note that the root system type of the split simple Lie algebra L is the same
as the “absolute” root system type of G over the algebraic closure F̄ of F .

Let Gsc be the simply connected cover of G, and set C = Cent(Gsc). We have an
exact sequence of pointed sets

1 → C(F) → Gsc(F) → G(F) → H 1(F,C(F̄)) → H 1(F,Gsc(F̄)), (17)

where H 1(F,−) is the Galois, or étale cohomology of F with values in the cor-
responding groups. In this sequence, the maps between groups are group homo-
morphisms [18]. Clearly, Gsc(F)+ is mapped into G(F)+. Furthermore, the group
G(F)+ is perfect (e.g. by the main result of [20]), and therefore has trivial image
in the abelian group H 1(F,C(F̄)). Summing up, one obtains the following exact
sequence of group homomorphisms:

1 → C(F) → W (F,Gsc) → W (F,G) → H 1(F,C(F̄)) → H 1(F,Gsc(F̄)).

(18)
The Kneser–Tits problem asks to compute W (K ,Gsc) for any field K and any

simply connected simple algebraic K -group Gsc. See [9] for a survey of available
results. It turns out that W (F,Gsc) is trivial in many cases, but not always. We cite
some particular cases below.We keep the notation introduced in the beginning of the
present section.

Theorem 4 [5, 9, 21] One has W (F,Gsc) = 1 whenever

• L is of type Al (l ≥ 1), and l + 1 is square-free or rank(Δ) ≥ � l
2�;• L is of type Bl,Cl (l ≥ 2), F4, G2;

• L is of type Dl (l ≥ 4), and rank(Δ) ≥ � l
2� or Δ is of type Bm (m ≥ 2);

• L is of type E6, and rank(Δ) ≥ 2;
• L is of type E7 or E8, and rank(Δ) ≥ 3.

Note that Theorem 4 implies thatW (F,Gsc) = 1 whenever rank(Δ) ≥ � rank(�)

2 �,
where � is the root system of L of arbitrary type.

Theorem 5 [9, Theorem 8.6]One has W (F,Gsc) = 1whenever n ≤ 2, except pos-
sibly in the case where n = 2, L is of type E7, and rank(Δ) = 1.

Another important member of the sequence (18) is the group H 1(F,C(F̄)). This
group is computed in all cases, see [13]. We list below the easiest part of the answer.

• If L is of type E8, F4, G2, then C(F̄) = 1 and H 1(F,C(F̄)) = 1.
• If L is of type Bl , Cl , E7, then H 1(F,C(F̄)) ∼= (Z/2Z)n .
• If L if of type D2l , l ≥ 2, then H 1(F,C(F̄)) ∼= (Z/2Z)2n .
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• If L is of inner type Al , l ≥ 2, then H 1(F,C(F̄)) ∼= (Z/ lZ)n .
• If L is of inner type D2l+1, l ≥ 2, then H 1(F,C(F̄)) ∼= (Z/4Z)n .
• If L is of inner type E6, then H 1(F,C(F̄)) ∼= (Z/3Z)n .

Finally, the group H 1(F,Gsc(F̄)) of (18) is

• trivial if n ≤ 2 (a known case of Serre’s conjecture II, see e.g. [11, Sect 9.2.1]);
• tricky in general; there are some case-by-case computations via “cohomological
invariants”, see [8, 11, 17] and references therein.

Combining the above-mentioned results, we conclude the following.

Theorem 6 Let k be an algebraically closed field of characteristic 0. Set R =
k[x±1

1 , . . . , x±1
n ], and F = k((x1)) . . . ((xn)). Let L be a split simple Lie algebra

over k, and let L be a twisted form of the Lie algebra L ⊗k R which is a centre-
less fgc Z

n-Lie torus of type Δ with the centroid R. Let G be the R-group scheme
AutR(L)◦.

1. If L has type F4, G2, or L has type E8 and rank(Δ) ≥ 3, then W (F,G) = 1.
2. If n = 1, or n = 2 and

(
type of L , rank(Δ)

) �= (E7, 1), then

W (F,G) ∼= H 1(F,C(F̄))

is computed explicitly in all cases [13]. In particular, if L is of type Bl , Cl , E7,
or inner type D2l+1, Al , E6, then W (F,G) ∼= (Z/dZ)n for a suitable d ≥ 2.
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Contraction Admissible Pairs of Complex
Six-Dimensional Nilpotent Lie Algebras

Maryna Nesterenko and Severin Posta

Abstract All possible pairs of complex six-dimensional nilpotent Lie algebras are
considered and necessary contraction conditions are verified. The complete set of
the Lie algebra couples that do not admit contraction is obtained.

1 Introduction

Notion of contraction originates from thework of I. Segal [1] and later in the work [2]
of E. Inonu and E.Wigner it was shown that different physical theories are connected
by the contractions of their underlying symmetry algebras. There exist two parallel
branches of scientists studying contractions in modern science: the first branch is
“algebraical”, they mainly study the varieties of Lie algebras by means of deforma-
tions and orbit closures (degenerations); another one is “physical”, it deals with the
limit processes between different theories and with the applications of contractions
and deformations to physics, e.g. quantization, uncoupling of the coupled systems,
etc.

Both problems of description of all possible contractions of a fixed Lie algebra or
description of all contractions of Lie algebras of a fixed dimension are rather compli-
cated (e.g., up to now the complete classification of contractions is known only for
dimensions not greater then four [3], or for some subsets). Nevertheless, some sets of
Lie algebras are closedwith respect to contractions and can be studied independently.
One of the closed sets is the set of nilpotent Lie algebras of a fixed dimension. In
this paper we will deal with complex six-dimensional nilpotent Lie algebras. Note,
that complex six-dimensional nilpotent Lie algebras have been already considered
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by Seeley [4], but this paper contains a number of misprints and mistakes, in par-
ticular, for the algebras 12346C and 1246 from classification by Seeley the Jacobi
identity is not valid, and there is no contraction from the algebra 246C to the algebra
13 + 13 that is indicated in [4]. So we would like to correct and enhance the result as
far as it forms a base for the proof of the statement that all contractions of nilpotent
Lie algebras of dimensions up to six are equivalent to the generalized Inonu–Wigner
contractions.

The effective method that allows one to study all inequivalent contractions of
some closed family of Lie algebras consists of two main steps: (i) to exclude all the
pairs of Lie algebras that do not admit any contraction; (ii) to construct explicitly the
contraction matrix for the rest of the pairs.

We will focus on the step (i), that forms a necessary prerequisite for the complete
investigation of all possible contractions of six-dimensional Lie algebras.

2 Contractions and Necessary Conditions
in Case of Nilpotent Lie Algebras

At the beginning of this section let us fix the notations and basic definitions. Let V be
an n-dimensional vector space over the field of complex numbers andLn is the set of
all possible Lie brackets on V . We identify μ ∈ Ln with the Lie algebra g = (V, μ).
Ln is an algebraic subset of the variety V ∗ ⊗ V ∗ ⊗ V of bilinear maps from V × V
to V . The group GL(V ) acts on Ln in the following way:

(U · μ)(x, y) = U
(
μ(U−1x,U−1y)

)
for all U ∈ GL(V ), μ ∈ Ln, x, y ∈ V .

Denote the orbit of μ ∈ Ln under the action of GL(V ) by O(μ) and the closure of
it with respect to the Zariski topology on Ln by O(μ).

Definition 1 The Lie algebra g0 = (V, μ0) is called a contraction of the Lie alge-
bra g = (V, μ) if μ0 ∈ O(μ).

For the explicit calculations and application of contractions we fix a basis
{e1, . . . , en} ofV and use the one-to-one correspondence betweenLie bracketμ ∈ Ln

and a structure constant tensor (cki j ). In this case the notion of a contraction matrix
Uε (U : (0, 1] → GL(V )) and a parameterized family of new Lie brackets [x, y]ε is
determined by

[x, y]ε = Uε
−1[Uεx,Uε y] for all ε ∈ (0, 1], x, y ∈ V,

and the contraction is defined as follows:

Definition 2 If the limit lim
ε→+0

[x, y]ε = lim
ε→+0

Uε
−1[Uεx,Uε y] =: [x, y]0 exists for

any x, y ∈ V , then [·, ·]0 is a well-defined Lie bracket and g0 = (V, [·, ·]0) is called
a contraction of the Lie algebra g.
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To prove the non-existence of contraction from a fixed Lie algebra g to a Lie alge-
bra g0 we use the necessary contraction conditions which are algebraic quantities
uniquely calculated and semiinvariant under contractions (the semiinvariance means
an existence of inequalities between the corresponding quantities of the initial and
contracted algebras). The sets of invariant and semiinvariant quantities are rather large
(see [3–6], etc.), but some of them do not work for nilpotent Lie algebras (the rank of
Cartan subalgebra, unimodularity, nilradical dimension, adjoint representation trace,
etc.). Below we present the subset of necessary conditions that is sufficient for deter-
mining the existence of contractions between complex six-dimensional nilpotent Lie
algebras.

Theorem 1 If the Lie algebra g0 is a contraction of the Lie algebra g, then the
following set of conditions holds true:

(1) dimO(g0) < dimO(g), where O(g) is the orbit under action of GL(V ) in the
variety Ln;

(2) nAi(g0) ≥ nAi(g), where nAi(g) is the maximal dimension of Abelian ideals;
(3) dim gl0 ≤ dim gl, l = 1, 2, 3, where g1 = [g, g], g2 = [g1, g], g3 = [g2, g];
(4) dim Z(g0) ≥ dim Z(g), where Z(g) denotes the center of g;
(5) dimCg(g

′) ≤ dimCg(g0
′), whereCg(g

′) is the centralizer of the derived algebra;
(6) if s(g) is a subalgebra of g, then there exists a subalgebra s(g0) of g0 of the same

dimension, such that s(g0) is the contraction of s(g);
(7) let g be represented by the structure s, which lies in a Borel-stable closed subset

S, then g0 must also be represented by a structure in S.

If this set of conditions is satisfied by a pair of complex nilpotent six-dimensional
Lie algebras then this pair certainly admits a contraction.

Proof Proof of the conditions (1)–(4) can be found in [3], necessary condition (7)
is presented in [4]. Condition (6) is a part of more general semi-invariant chain of
structures due to [7].

To prove the necessary condition (5) we consider the notion of sequential con-
traction, which is equivalent to Definition 2 and apply the technique presented on p.
12 of [3].

Proof of the second part of the theorem is given by Tables 1 and 2, to construct the
necessary contraction matrices it is enough to consider generalized Inönü–Wigner
contractions and repeated contractions (i.e., composition of contractions). Descrip-
tion of the generalized Inönü–Wigner contractions can be reduced to the study of the
coinciding diagonal differentiations of the initial and resulting Lie algebras.

Note that we do not consider non-proper contractions that send a Lie algebra to
itself and are equivalent to isomorphism transformations.
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3 Complex Six-Dimensional Nilpotent Lie Algebras
and Their Invariant Quantities

Below we list all inequivalent six-dimensional nilpotent Lie algebras over the com-
plex field according to the Magnin classification [8]. Each Lie algebra is represented
by non-zero commutation relation in a basis {e1, e2, e3, e4, e5, e6}. Note that we
skip Abelian algebra from our consideration as far as any Lie algebra contracts to it.

g6.20 : [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5, [e2, e5] = e6,

[e3, e4] = −e6;
g6.19 : [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6, [e2, e3] = e5,

[e2, e4] = e6;
g6.18 : [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e5] = e6, [e3, e4] = −e6;
g6.17 : [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6, [e2, e3] = e6;
g6.16 : [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6;
g6.15 : [e1, e2] = e3, [e1, e3] = e4, [e1, e5] = e6, [e2, e3] = e5, [e2, e4] = e6;
g6.14 : [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e6;
g6.13 : [e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e6, [e2, e3] = e5, [e3, e4] = −e6;
g6.12 : [e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e6, [e2, e3] = e6, [e2, e4] = e6;
g6.11 : [e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e6, [e2, e3] = e6;
g6.10 : [e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e6, [e3, e5] = e6;
g6.9 : [e1, e2] = e4, [e1, e3] = e5, [e2, e5] = e6, [e3, e4] = e6;
g6.8 : [e1, e2] = e4, [e1, e4] = e5, [e2, e3] = e5, [e2, e4] = e6;
g6.7 : [e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e6, [e2, e3] = −e6;
g6.6 : [e1, e2] = e4, [e2, e3] = e6, [e2, e4] = e5;
g6.5 : [e1, e2] = e4, [e1, e4] = e5, [e2, e3] = e6, [e2, e4] = e6;
g6.4 : [e1, e2] = e4, [e1, e3] = e6, [e2, e4] = e5;
g6.3 : [e1, e2] = e4, [e1, e3] = e5, [e2, e3] = e6;
g6.2 : [e1, e2] = e5, [e1, e5] = e6, [e3, e4] = e6;
g6.1 : [e1, e2] = e5, [e1, e4] = e6, [e2, e3] = e6;
g5.6 ⊕ g1 : [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5;
g5.5 ⊕ g1 : [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5;
g5.4 ⊕ g1 : [e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5;
g5.3 ⊕ g1 : [e1, e2] = e3, [e1, e4] = e5, [e2, e3] = e5;
g5.2 ⊕ g1 : [e1, e2] = e4, [e1, e3] = e5;
g5.1 ⊕ g1 : [e1, e2] = e5, [e3, e4] = e5;
g4 ⊕ 2g1 : [e1, e2] = e3, [e1, e3] = e4;
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g3 ⊕ g3 : [e1, e2] = e3, [e4, e5] = e6;
g3 ⊕ 3g1 : [e1, e2] = e3;
6g1.

Themost powerful necessary condition of Theorem 1 is the first one (orbit dimen-
sion), since it proves the impossibility of contraction for the more then half of the
pairs. Indeed, the orbit dimension gives us the following order on the variety of
complex nilpotent six-dimensional Lie algebras:

28 = dimO(g6.20);
27 = dimO(g6.19) = dimO(g6.18);
26 = dimO(g6.17) = dimO(g6.15) = dimO(g6.13);
25 = dimO(g6.16) = dimO(g6.14) = dimO(g6.12) = dimO(g6.9);
24 = dimO(g6.11) = dimO(g6.10) = dimO(g6.5) = dimO(g5.6 ⊕ g1);
23 = dimO(g6.8) = dimO(g6.4) = dimO(g5.5 ⊕ g1);
22 = dimO(g6.7) = dimO(g6.2);
21 = dimO(g6.6) = dimO(g5.4 ⊕ g1) = dimO(g5.3 ⊕ g1);
20 = dimO(g3 ⊕ g3);
19 = dimO(g6.1) = dimO(g4 ⊕ 2g1);
18 = dimO(g6.3);
17 = dimO(g5.2 ⊕ g1);
15 = dimO(g5.1 ⊕ g1);
12 = dimO(g3 ⊕ 3g1).

Let us consider dimensions of maximal Abelian ideals for the Lie algebras that
still should be investigated after the first necessary condition. We obtain

nAi = 4 for the algebras g6.19, g6.17, g6.15, g6.14, g6.13, g6.12, g6.11, g6.10, g6.9, g6.8,
g6.7, g6.5, g6.4, g6.3, g6.2, g6.1, g5.6 ⊕ g1, g5.4 ⊕ g1, g5.3 ⊕ g1, g5.1 ⊕ g1, g3 ⊕ g3;

nAi = 5 for the algebras g6.16, g6.6, g5.5 ⊕ g1, g5.2 ⊕ g1, g4 ⊕ 2g1, g3 ⊕ 3g1.

Next we consider the first three dimensions of the lower central series for the
desired algebras. We have

dim g1 = 4 for the algebras g6.16 and g6.14;
dim g1 = 3 for the algebras g6.13, g6.6 and g6.3;
dim g1 = 2 for the algebras g6.2, g6.1, g5.3 ⊕ g1 and g3 ⊕ g3.
dim g2 = 2 for the algebras g6.11, g6.8, g6.5, g5.6 ⊕ g1, g5.5 ⊕ g1 and g5.4 ⊕ g1;
dim g2 = 1 for the algebras g6.10, g6.9 and g4 ⊕ 2g1;
dim g3 ⊕ g3

2 = 0;
dim g6.15

3 = 1 and dim g6.16
3 = 2;

dim g6.5
3 = 0 and dim gg5.5⊕g1

3 = 1.
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Other refinement we obtain by utilizing the dimension of the center. We have
dim Z = 1 for the algebras g6.11, g6.10 and g6.2;
dim Z = 2 for the algebras g6.14, g6.8, g6.5, g6.4, g6.1, g5.6 ⊕ g1, g5.3 ⊕ g1, g5.1 ⊕ g1

and g3 ⊕ g3;
dim Z = 3 for the algebras g6.3, g5.4 ⊕ g1 and g5.2 ⊕ g1.

Next we make use of the dimensions of the centralizers of the derived algebras.
We obtain

dimCg(g
′) = 5 for the algebras g6.11, g6.7, g6.4 and g6.2;

dimCg(g
′) = 4 for the algebras g6.8 and g5.4 ⊕ g1.

The subalgebra criterion is applied to the three pairs of algebras (g6.18, g6.15),
(g6.18, g6.13) and (g6.17, g6.9). We prove non-existence of the contraction using the
five-dimensional subalgebra 〈e2, e3, e4, e5, e6〉 of g6.18. This subalgebra is isomor-
phic to g5.1 and contracts to the Abelian one or to the algebra g3 ⊕ 2g1, but none of
these three five-dimensional subalgebras are subalgebras of g6.15 or g6.13. The same
situation takes place for the subalgebra 〈e2, e3, e4, e5, e6〉 of g6.17, which is iso-
morphic to g3 ⊕ 2g1 and contracts to Abelian one, but g6.9 does not have subalgebra
g3 ⊕ 2g1 or 5g1.

The criterion based on Borel-stable structures is applied to the pairs: (g6.17, g6.12),
(g5.6 ⊕ g1, g6.4), (g5.6 ⊕ g1, g3 ⊕ g3), (g6.8, g3 ⊕ g3), (g6.7, g3 ⊕ g3), (g5.3 ⊕ g1, g3
⊕ g3). Note that in the case of the group GLn the Borel subgroups are formed
by lower or upper triangular matrices. Bellow we present all necessary Borel-stable
structures that contradict the existence of contraction inside the considered pairs of
algebras.

For g6.17 we consider the structure [〈e2, e3, e4, e5, e6〉, 〈e4, e5, e6〉] ⊆ 〈0〉, for
g6.12 we obtain [〈e2, e3, e4, e5, e6〉, 〈e4, e5, e6〉] ⊆ 〈e6〉 = 〈0〉.

Absolutely the same structures fit for the cases (g5.3 ⊕ g1, g3 ⊕ g3) and (g5.6 ⊕
g1, g6.4).

For the pairs (g5.6 ⊕ g1, g3 ⊕ g3) and (g6.7, g3 ⊕ g3) the first structure is the same,
but the second one for g3 ⊕ g3 is [〈e2, e3, e4, e5, e6〉, 〈e3, e5, e6〉] ⊆ 〈e6〉 = 〈0〉.

Finally, the pair (g6.8, g3 ⊕ g3) is eliminated by [〈e1, e3, e4, e5, e6〉, 〈e3, e5,
e6〉] ⊆ 〈0〉 for g6.8.

The main result of the paper is summed up in a form of tables placed at the end of
the paper. The numbers in tables code the necessary condition from the Theorem 1
that contradicts the contraction existence; the names of the columns denote the initial
algebra and the names of the rows are the contraction results. The letter “c” means
that a contraction exists and the letter “i” indicates the pair of the identical (same)
Lie algebras.

From the Tables 1 and 2 we can see that the Lie algebra g6.20 is a generic for
the variety of six-dimensional complex Lie algebras in the sense that all the rest of
nilpotent Lie algebras are obtained from it by means of contractions. Therefore the
g6.20-invariant theories consolidate all the theories with the 6D nilpotent invariance.
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About Filiform Lie Algebras of Order 3

R.M. Navarro

Abstract The aim of this work is to review recent advances in generalizing filiform
Lie (super)algebras into the theory of Lie algebras of order F . Recall that the latter
type of algebras constitutes the underlying algebraic structure of fractional super-
symmetry. In this context filiform Lie algebras of order F emerged in [16], and a
further study can be found in [17].

1 Introduction

Filiform Lie algebras were introduced by Vergne [21] verifying an important prop-
erty, i.e. all of them can be obtained by using a deformation of the model filiform Lie
algebra. Moreover, this result has been extended for Lie superalgebras [1, 6, 9, 10].

On the other hand, some generalizations of lie (super)algebras that have been
studied due to their physics applications are color Lie superalgebras [11–13, 18]
and Lie algebras of order F [7, 19, 20]. In particular, Lie algebras of order F were
considered to implement non-trivial extensions of the Poincaré symmetry differ-
ent from the usual supersymmetric extension. Therefore, Lie algebras of order F
can be regarded as the algebraic structure associated to fractional supersymmetry
[4, 5, 14, 15].

Consequently, we center our present work in reviewing recent advances in “fili-
form Lie algebras of order F”. These algebras were introduced in [16] as a gener-
alization of filiform Lie (super)algebras into the theory of Lie algebras of order F .
A further study can be found in [17], in which families of filiform Lie algebras of
order 3 have been obtained by using infinitesimal deformations.
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2 Preliminaries

Now, we recall some basic results of Lie algebras of order F introduced in
[3, 7, 19, 20].

Definition 1 Let F ∈ N
∗. A ZF -graded C-vector space g = g0 ⊕ g1 ⊕ g2 · · · ⊕

gF−1 is called a complex Lie algebra of order F if the following hold:

• g0 is a complex Lie algebra.
• For all i = 1, . . . , F − 1, gi is a representation of g0. If X ∈ g0, Y ∈ gi , then

[X,Y ] denotes the action of X ∈ g0 on Y ∈ gi for all i = 1, . . . , F − 1.
• For all i = 1, . . . , F − 1, there exists an F-Linear, g0-equivariant map, {· · · }:
SF (gi ) −→ g0, where SF (gi ) denotes the F-fold symmetric product of gi .

• For all Xi ∈ g0 and Y j ∈ gk , the following “Jacobi identities” hold:

[[X1, X2], X3] + [[X2, X3], X1] + [[X3, X1], X2] = 0. (1)

[[X1, X2],Y3] + [[X2,Y3], X1] + [[Y3, X1], X2] = 0. (2)

[X, {Y1, . . . ,YF }] = {[X,Y1], . . . ,YF } + · · · + {Y1, . . . , [X,YF ]}. (3)

F+1∑

j=1

[Y j , {Y1, . . . ,Y j−1,Y j+1, . . . ,YF+1}] = 0. (4)

As a Lie algebra of order 1 is exactly a Lie algebra and a Lie algebra of order
2 is a Lie superalgebra, then we can consider that the Lie algebras of order 3 are
generalization of the Lie (super)algebras.

Proposition 1 [3] Let g = g0 ⊕ g1 ⊕ · · · ⊕ gF−1 be a Lie algebra of order F, with
F > 1. For any i = 1, . . . , F − 1, the subspaces g0 ⊕ gi inherits the structure of a
Lie algebra of order F. We call these type of algebras elementary Lie algebras of
order F.

We will consider in our study elementary Lie algebras of order 3, g = g0 ⊕ g1, it
can be found examples of elementary Lie algebras of order 3 in [7].

3 Filiform Lie Algebras of Order 3

Prior to give the definition of “filiform Lie algebras of order 3”, it is necessary to
know the concept “filiform module”.

Definition 2 [16] Let g = g0 ⊕ g1 ⊕ · · · ⊕ gF−1 be a Lie algebra of order F . gi is
called a g0-filiform module if there exists a decreasing subsequence of vector sub-
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spaces in its underlying vectorial space V , V = Vm ⊃ · · · ⊃ V1 ⊃ V0, with dimen-
sions m,m − 1, . . . 0, respectively, m > 0, and such that [g0, Vi+1] = Vi .

Definition 3 [16] Let g = g0 ⊕ g1 ⊕ · · · ⊕ gF−1 be a Lie algebra of order F . Then
g is a filiform Lie algebra of order F if the following conditions hold:

(1) g0 is a filiform Lie algebra.
(2) gi has structure of g0-filiform module, for all i, 1 ≤ i ≤ F − 1

If we consider an homogeneous basis of a Lie algebra of order 3, then it will be
completely determined by its structure constants. These structure constants verify the
polynomial equations that come from the Jacobi identity and these equations endow
to the Lie algebras of order 3 of structure of algebraic variety, called Ln,m,p. The
subset composed of all filiform Lie algebras of order 3 will be denoted by Fn,m,p.

Prior to continuing it is convenient to find a suitable basis or so called adapted
basis. This is an open problem in general, but it has been solved in some cases
[11, 16].

Theorem 1 [16] Let g = g0 ⊕ g1 ⊕ g2 be a Lie algebra of order 3. If g is a
filiform Lie algebra of order 3, then there exists an adapted basis of g, namely
{X0, . . . , Xn,Y1, . . . ,Ym, Z1, . . . , Z p} with {X0, X1, . . . , Xn} a basis of g0,
{Y1, . . . ,Ym} a basis of g1 and {Z1, . . . , Z p} a basis of g2, such that:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[X0, Xi ] = Xi+1, 1 ≤ i ≤ n − 1,

[X0,Y j ] = Y j+1, 1 ≤ j ≤ m − 1,

[X0, Zk] = Zk+1, 1 ≤ k ≤ p − 1,

[Xi , X j ] =
n∑

k=0

Ck
i j Xk, 1 ≤ i < j ≤ n,

[Xi ,Y j ] =
m∑

k=1

Dk
i jYk, 1 ≤ i ≤ n, 1 ≤ j ≤ m,

[Xi , Z j ] =
p∑

k=1

Ek
i j Zk, 1 ≤ i ≤ n, 1 ≤ j ≤ p,

{Yi ,Y j ,Yl} =
n∑

k=0

Fk
i jl Xk, 1 ≤ i ≤ j ≤ l ≤ m,

{Zi , Z j , Zl} =
n∑

k=0

Gk
i jl Xk, 1 ≤ i ≤ j ≤ l ≤ p,

X0 will be called the characteristic vector.

It can be noted, that the simplest filiform Lie algebra of order 3 will be given,
exactly, by the only non-null bracket products that follow
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⎧
⎪⎨

⎪⎩

[X0, Xi ] = Xi+1, 1 ≤ i ≤ n − 1

[X0,Y j ] = Y j+1, 1 ≤ j ≤ m − 1

[X0, Zk] = Zk+1 1 ≤ k ≤ p − 1

We will call to this algebra as the model filiform Lie algebra of order 3 or μ0.
This algebra of order 3 will play the same role as the model filiform algebra, i.e. by
using infinitesimal deformations of it, families of filiform Lie algebras of order 3 are
obtained. Thus, next we are going to introduce the concepts of pre-infinitesimal and
infinitesimal deformations.

Definition 4 [16] Let g = g0 ⊕ g1 be an elementary Lie algebra of order 3 and let
A = (g0 ∧ g0) ⊕ (g0 ∧ g1) ⊕ S3(g1). The linear map ψ : A −→ g is called a pre-
infinitesimal deformation of g if it satisfies

μ ◦ ψ + ψ ◦ μ = 0

with μ representing the law of g.

Definition 5 [7] Let g = g0 ⊕ g1 be an elementary Lie algebra of order 3 and let
A = (g0 ∧ g0) ⊕ (g0 ∧ g1) ⊕ S3(g1). The linear map ψ : A −→ g is called an infin-
itesimal deformation of g if it satisfies μ ◦ ψ + ψ ◦ μ = 0 and ψ ◦ ψ = 0, with μ
representing the law of g.

Remark 1 [16] Ifψ is a pre-infinitesimal deformation of amodel filiform elementary
Lie algebra of order 3 law μ0 with ψ(X0, X) = 0 for all X ∈ μ0, then the law μ0 + ψ
is a filiform Lie algebra of order 3 law iff ψ is an infinitesimal deformation. Thus,
by using infinitesimal deformations of the associated model elementary Lie algebra
it can be obtained families of filiform elementary Lie algebras of order 3.

Let denote by Z(μ0) the vector space composed by all the pre-infinitesimal defor-
mations ψ of the model filiform elementary Lie algebra of order 3, μ0, verifying that
ψ(X0, X) = 0, ∀ X ∈ μ0. Then, we have the following decomposition (see [16]) of
Z(μ0) =

Z(μ0) ∩ Hom(g0 ∧ g0, g0) ⊕ Z(μ0) ∩ Hom(g0 ∧ g1, g1) ⊕ Z(μ0) ∩ Hom
(S3(g1), g0)

:= A ⊕ B ⊕ C ,
with g0 =< X0, X1, . . . , Xn > and g1 =< Y1, . . . ,Ym >.

It can be observed that of the three subspaces of pre-infinitesimal deformations
A, B and C , the most important for our goal is C because any ψ belonging to C will
be an infinitesimal deformation, i.e. ψ ◦ ψ = 0. Then, if ψ ∈ C we always have that
μ0 + ψ is a filiform elementary Lie algebra of order 3.

Remark 2 [16] We note that if ψ is a pre-infinitesimal deformation of the model fil-
iform elementary Lie algebra of order 3, ψ = ψ1 + ψ2 + ψ3 ∈ Z(μ0), then Imψ3 ⊂
〈X1, . . . Xn〉, that is ψ3 : S3(g1) −→ g0/CX0 such that
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[X0,ψ3(Yi ,Y j ,Yk)] − ψ3([X0,Yi ],Y j ,Yk) − ψ3(Yi , [X0,Y j ],Yk) −

− ψ3(Yi ,Y j , [X0,Yk]) = 0

with 1 ≤ i ≤ j ≤ k ≤ m.

3.1 sl(2,CCC)-Module Method

Throughout this section we are going to explain briefly the sl(2,C)-module method
to compute the dimensions of C , for more details see [16].

It is noted sl(2,C) as < X−, H, X+ > with the relations: [X+, X−] = H,

[H, X+] = 2X+, [H, X−] = −2X−. Then if we have a n-dimensional sl(2,C)-
module V =< e1, . . . , en >, there exists in V a unique structure (up to isomorphism)
of an irreducible sl(2,C)-module [2, 8], i.e.

⎧
⎪⎨

⎪⎩

X+ · ei = ei+1, 1 ≤ i ≤ n − 1,

X+ · en = 0,

H · ei = (−n + 2i − 1)ei , 1 ≤ i ≤ n.

en is called the maximal vector of V and its weight, called the highest weight of V ,
is equal to n − 1.

The spaceHom(⊗k
i=1Vi , V0), with Vi sl(2,C)-modules, can be endowed alsowith

structure of sl(2,C)-module:

(ξ · ϕ)(x1, . . . , xk) = ξ · ϕ(x1, . . . , xk) −
i=k∑

i=1

ϕ(x1, . . . , ξ · xi , xi+1, . . . , xn)

with ξ ∈ sl(2,C) and ϕ ∈ Hom(⊗k
i=1Vi , V0). In particular, an element ϕ ∈

Hom(V1 ⊗ V1 ⊗ V1, V0) is invariant if X+ · ϕ = 0, i.e.

X+ · ϕ(x1, x2, x3) − ϕ(X+ · x1, x2, x3) − ϕ(x1, X+ · x2, x3) − ϕ(x1, x2, X+ · x3) = 0, (5)

∀x1, x2, x3 ∈ V1. Thus, ϕ is invariant if and only if ϕ is a maximal vector.
We consider ϕ, on the other hand, as a pre-infinitesimal deformation that belongs

to C , so according to Remark 2 we have: ϕ : S3(g1) −→ g0/CX0 with

[X0,ϕ(Yi ,Y j ,Yk)] − ϕ([X0,Yi ],Y j ,Yk) − ϕ(Yi , [X0,Y j ],Yk) − (6)

− ϕ(Yi ,Y j , [X0,Yk]) = 0

and 1 ≤ i ≤ j ≤ k ≤ m. Then, if we consider the structure of irreducible sl(2,C)-
module in V0 = 〈X1, . . . , Xn〉 = g0/CX0 and in V1 = 〈Y1, . . . ,Ym〉 = g1:
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{
X+ · Xi = Xi+1, 1 ≤ i ≤ n − 1, X+ · Xn = 0,

X+ · Y j = Y j+1, 1 ≤ j ≤ m − 1, X+ · Ym = 0.

We can identify the multiplications X+ · Xi and X+ · Y j with the brackets [X0, Xi ]
and [X0,Y j ] respectively. Thus, (5) and (6) are equivalent.

Proposition 2 [16] Any symmetric multi-linear map ϕ, ϕ : S3V1 −→ V0 will be
an element of C if and only if ϕ is a maximal vector of the sl(2,C)-module
Hom(S3V1, V0), with V0 = 〈X1, . . . , Xn〉 and V1 = 〈Y1, . . . ,Ym〉.
As each irreducible sl(2,C)-module has (up to nonzero scalar multiples) a unique
maximal vector, then the dimension of C is equal to the number of summands of
any decomposition of Hom(S3V1, V0) into the direct sum of irreducible sl(2,C)-
modules. Thanks to the symmetric structure of theweightswehave that the dimension
of C is equal to the dimension of the subspace of Hom (S3V1, V0) spanned by the
vectors of weight 0 or 1. Therefore, in that way are calculated the dimensions of the
following section.

3.2 Dimension and Basis

Throughout this section we are going to list the main results obtained in [16] and
[17].

Theorem 2 [16, 17] Let be C = Z(μ0) ∩ Hom(S3g1, g0), then

If m=3 and n odd , If m=3 and n even ,

dim C =

⎧
⎪⎪⎨

⎪⎪⎩

2 if n = 1
6 if n = 3
8 if n = 5
10 if n = 2k + 1, k ≥ 3

dim C =

⎧
⎪⎪⎨

⎪⎪⎩

4 if n = 2
7 if n = 4
9 if n = 6
10 if n = 2k, k ≥ 4

If m=4 and n even ,

dim C =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

6 if n = 2
12 if n = 4
16 if n = 6
18 if n = 8
20 if n = 2k, k ≥ 5

Theorem 3 [16] If C = Z(μ0) ∩ Hom(S3g1, g0) and m = 3 and n is odd, then we
have the following vector basis of C

• {ϕ1,1,ϕ3,1} if n = 1
• {ϕ1,3,ϕ1,2,ϕ1,1,ϕ3,3,ϕ3,2,ϕ3,1} if n = 3
• {ϕ1,5,ϕ1,4,ϕ1,3,ϕ1,2,ϕ1,1,ϕ3,5,ϕ3,4,ϕ3,3} if n = 5
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• {ϕ1,n,ϕ1,n−1,ϕ1,n−2,ϕ1,n−3,ϕ1,n−4,ϕ3,n,ϕ3,n−1,ϕ3,n−2,ϕ1,3,n−5,ϕ1,3,n−6}
if n ≥ 7

with

ϕ1,s =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1,s(Y1,Y1,Y1) = Xs

ϕ1,s(Y1,Y1,Y2) = 1
3 Xs+1

ϕ1,s(Y1,Y2,Y2) = 1
6 Xs+2

ϕ1,s(Y2,Y2,Y2) = 1
6 Xs+3

ϕ1,s(Y2,Y2,Y3) = 1
18 Xs+4

ϕ1,s(Y1,Y3,Y3) = − 1
18 Xs+4

ϕ1,s(Y2,Y3,Y3) = 1
36 Xs+5

ϕ1,s(Y3,Y3,Y3) = 1
36 Xs+6

ϕ3,s =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ3,s(Y1,Y1,Y3) = Xs

ϕ3,s(Y1,Y2,Y2) = − 1
2 Xs

ϕ3,s(Y1,Y2,Y3) = 1
2 Xs+1

ϕ3,s(Y2,Y2,Y2) = − 3
2 Xs+1

ϕ3,s(Y2,Y2,Y3) = − 1
2 Xs+2

ϕ3,s(Y1,Y3,Y3) = Xs+2

ϕ3,s(Y2,Y3,Y3) = − 1
4 Xs+3

ϕ3,s(Y3,Y3,Y3) = − 1
4 Xs+4

ϕ1,3,s =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϕ1,3,s(Y1,Y1,Y1) = Xs, ϕ1,3,s(Y1,Y1,Y3) = 1
15 Xs+2

ϕ1,3,s(Y1,Y1,Y2) = 1
3 Xs+1, ϕ1,3,s(Y1,Y2,Y2) = 2

15 Xs+2

ϕ1,3,s(Y2,Y2,Y2) = 1
15 Xs+3, ϕ1,3,s(Y1,Y2,Y3) = 1

30 Xs+3

ϕ1,3,s(Y2,Y2,Y3) = 1
45 Xs+4, ϕ1,3,s(Y1,Y3,Y3) = 1

90 Xs+4

ϕ1,3,s(Y2,Y3,Y3) = 1
90 Xs+5, ϕ1,3,s(Y3,Y3,Y3) = 1

90 Xs+6

It can be consulted [17] for the corresponding basis in the cases m = 3 and n even
and m = 4 and n = 2k with k ≥ 5.
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Algebraic Structures Related to Racah
Doubles

Roy Oste and Joris Van der Jeugt

Abstract In Oste and Van der Jeugt, SIGMA, 12 (2016), [13], we classified all pairs
of recurrence relations connecting two sets of Hahn, dual Hahn or Racah polynomials
of the same type but with different parameters. We examine the algebraic relations
underlying the Racah doubles and find that for a special case of Racah doubles with
specific parameters this is given by the so-called Racah algebra.

1 Introduction

In [13], we classified all pairs of recurrence relations connecting two sets of Hahn,
dualHahn orRacah polynomials (classical finite and discrete hypergeometric orthog-
onal polynomials) of the same type but with different (shifted) parameters. This cou-
pling of two sets of polynomials was dubbed ‘doubling’ (yieldingHahn doubles, dual
Hahn doubles and Racah doubles respectively) and it was seen to fit in the context of
obtaining a “new” system of orthogonal polynomials, following the technique due
to Chihara [4, 5], from a set of orthogonal polynomials and its kernel partner related
by a Christoffel-Geronimus transform pair [11, 15]. When applied to polynomials
satisfying a discrete orthogonality relation, the coefficients of the three-term recur-
rence relation of the new system are stored in the tridiagonal Jacobi matrix, which by
construction has zero diagonal. In the following, we will use the term ‘two-diagonal’
to refer to tridiagonal matrices with zero diagonal.

These Jacobi matrices could be interpreted as representation matrices of an alge-
bra. For instance, the simplest case is that of the symmetric Krawtchouk polynomi-
als. Here, the recurrence relation [10, (9.11.3)] for normalized Krawtchouk functions
reads (for n = 0, 1, . . . ,N)
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√
n(N − n + 1)K̃n−1(x) + √

(n + 1)(N − n)K̃n+1(x) = (N − 2x)K̃n(x), (1)

where K̃n(x) stands for the normalized Krawtchouk functions K̃n(x) ∼ Kn(x; 1
2 ,N)

which are scaled Krawtchouk polynomialsKn(x; p,N) [10, 12] with p = 1/2. As the
Krawtchouk polynomials are self-dual, the same relation holds when interchanging
n and x. This bispectrality can then be encoded in an algebraic structure. Writing
down (1) for n = 0, 1, . . . ,N , and putting this in matrix form, the coefficient matrix
of the left hand side of (1) is just the two-diagonal (N + 1) × (N + 1) matrix

M =

⎛

⎜
⎜
⎜
⎝

0 M0

M0 0 M1

M1 0 M2

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎠
, (2)

withMn = √
(n + 1)(N − n). Here we recognise the action of J+ and J− appearing

in the context of unitary representations of the Lie algebra su(2). The simple two-
diagonal structure of M makes it particularly interesting as a model for a finite
quantum oscillator, namely the su(2) oscillator model [1, 2].

Similarly, the bispectrality of the Racah polynomials is encoded in the algebraic
structure known as the Racah algebra [6, 7]. The Racah algebra is a unital associative
algebra overCwith three generatorsK1,K2 andK3 which obey the following relations
in the generic presentation,

[K1,K2] = K3,

[K2,K3] = a2K
2
2 + a1{K1,K2} + c1K1 + dK2 + e1,

[K3,K1] = a1K
2
1 + a2{K1,K2} + c2K2 + dK1 + e2. (3)

For the realization on the space of Racah polynomials, the matrix representation
of the element K2 is the tridiagonal Jacobi matrix of the Racah recurrence relation
and K1 is the diagonal matrix containing the quadratic expression n(n + α + β + 1)
for n = 0, . . . ,N (which corresponds to the right hand side of the Racah difference
equation). In this case the coefficients in (3) are functions of the Racah parameters
α,β, γ, δ, given explicitly in [6]. This algebra also appears in the context of the
Racah problem of su(2) to derive the symmetry group of the 6 j-symbols [7].

We are now interested in the algebraic structures underlying the two-diagonal
Jacobi matrices obtained through the doubling process. From [13], we observe that
the dual Hahn and Racah doubles reduce to symmetric Krawtchouk polynomials
when setting all parameters to trivial values and leaving no parameter unspecified.
For general parameters, however, it is less trivial. In [13], the algebraic structures
behind the matrices of the three cases of dual Hahn doubles were examined explicitly
and were found to be extensions of su(2). Such extensions consist of the addition of
a parity operator P, while the standard su(2) relations are altered to
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P2 = 1, PJ0 = J0P, PJ± = −J±P,
[J0, J±] = ±J±,
[J+, J−] = 2J0 + 2(γ + δ + 1)J0P − (2j + 1)(γ − δ)P + (γ − δ)I, (4)

for the case dual Hahn I. The appearing parameters γ, δ here are the ones occur-
ring also in the dual Hahn doubles, while the factor (2j + 1) can be interpreted
as the addition of a central element. When γ = δ = −1/2, the equations coincide
with the su(2) relations. These parameter values correspond to a reduction to the
symmetric Krawtchouk case where the recurrence relations reduce to (1). The alge-
braic relations for the other dual Hahn cases are similar to (4) and can be found
in [13, Sect. 7]. While the general algebras have two parameters, special cases with
only one parameter are of importance for the construction of finite oscillator models
[8, 9].

The remaining question is of course whether the two-diagonal matrices arising
from the Hahn and Racah doubles can also be interpreted as representation matrices
of an algebra, and whether this is related to (an extension of) a known (Lie) algebra.
In the current work, we shall consider a special case of a Racah double and show
that for this special case the underlying algebraic structure is related to the Racah
algebra. Hereto, in Sect. 2 we will briefly summarize the definition and properties of
the Racah polynomials.

2 Racah Polynomials

Racah polynomials Rn(λ(x);α,β, γ, δ) of degree n (n = 0, 1, . . . ,N) in the variable
λ(x) = x(x + γ + δ + 1) are defined by [10, 12]

Rn(λ(x);α,β, γ, δ) = 4F3

(−n, n + α + β + 1,−x, x + γ + δ + 1

α + 1,β + δ + 1, γ + 1
; 1

)
,

where one of the denominator parameters should be −N . Herein, the function 4F3 is
the generalized hypergeometric series [3].

For the (discrete) orthogonality relation (depending on the choice of which para-
meter relates to −N) we refer to [10, (9.2.2)]. Under certain restrictions for the
parameters, such that the weight function w and the squared norm hn of the orthog-
onality relation are positive, we can define orthonormal Racah functions as follows

R̃n(λ(x);α,β, γ, δ) ≡ √
w(x;α,β, γ, δ)Rn(λ(x);α,β, γ, δ)

/ √
hn(α,β, γ, δ).

We now turn to a result obtained in [13, Appendix] corresponding to the case
Racah I:
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Proposition 1 Let α + 1 = −N, and suppose that γ, δ > −1 and β > N + γ or
β < −N − δ − 1. Consider two (2N + 2) × (2N + 2) matrices U and M, defined
as follows. U has elements (n, x ∈ {0, 1, . . . ,N}):

U2n,N−x = U2n,N+x+1 = (−1)n√
2

R̃n(λ(x);α,β, γ, δ + 1),

U2n+1,N−x = −U2n+1,N+x+1 = − (−1)n√
2

R̃n(λ(x);α,β + 1, γ + 1, δ);

M is the two-diagonal (2N + 2) × (2N + 2)-matrix of the form (2) with

M2k =
√
(N − β − k)(γ + 1 + k)(N + δ + 1 − k)(k + β + 1)

(N − β − 2k)(2k − N + 1 + β)
,

M2k+1 =
√
(γ + N − β − k)(k + 1)(N − k)(k + δ + β + 2)

(N − β − 2k − 2)(2k − N + 1 + β)
. (5)

ThenU is orthogonal, and the columns ofU are the eigenvectors ofM, i.e.MU = UD,
where D is a diagonal matrix containing the eigenvalues of M:

D = diag(−εN , . . . ,−ε1,−ε0, ε0, ε1, . . . , εN ), εk = √
(k + γ + 1)(k + δ + 1).

(6)

In short, the pair of polynomials Rn(λ(x);α,β, γ, δ + 1) and Rn(λ(x);α,β + 1,
γ + 1, δ) form a “Racah double”, and the relation MU = UD governs the corre-
sponding recurrence relations withM taking the role of a Jacobi matrix [13].

In the context of Chihara’s method, the Racah polynomials have already occurred
in relation to the Bannai-Ito polynomials, which were shown to have an explicit
expression in terms of the Wilson polynomials [14]. Examining the hypergeometric
functions expressions given by equations (5.18) and (5.19) from [14], one sees that
they are of type “Racah III” in the terminology of [13], whereas the ones appearing
in Proposition 1 are of type “Racah I”.

3 Algebraic Structure

We start by taking M to be the Jacobi matrix of the first Racah double, i.e. the
(2N + 2) × (2N + 2) matrix of the form (2) with entries given by (5). We now
propose thatM can be interpreted as the representation matrix of an algebra, and set
out to determine the relations governing this algebra. A natural candidate for this
algebraic structure is the Racah algebra (3). As such, we define K2 = M. Inspired by
the realization on the space of the ordinary Racah polynomials, we take the generator
K1 to be a diagonal matrix on the Racah double, containing a general quadratic
expression in the degree n, say K1 = diag[(pn2 + qn + r); n = 0, . . . , 2N + 1].We
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set out to determine the coefficients p, q, r for which the commutation relations are
of the form (3).

A direct computation shows that defining K3 = [K1,K2] we have the following
commutation relation

[K3,K1] = −2p{K1,K2} + (p2 − q2 + 4pr)K2,

which is a quadratic relation of the same form as the Racah algebra relations (3).
This relation actually holds for general matrices K2 of the form (2) and K1 as above,
relying on the symmetric two-diagonal structure of K2.

Next, we examine whether the remaining commutator [K2,K3] can be cast in the
same form as (3). However, in general this does not seem to be the case for K1 of
the above form. By direct computation we find that is possible, but only for specific
values of the Racah parameters γ and δ, namely when both are equal to either −1/2
or −N − 3/2. Only for one of these parameter values, the choice q = 2p(β − N)

yields the following relation

[K2,K3] = −2pK2
2 − K1 + (2N + 1)(β + 1)p + r .

There are two arbitrary constants left, namely p and r. If one chooses the value
p = −1/2, we arrive at the following commutation relations for K1,K2 and K3

[K1,K2] = K3

[K2,K3] = K2
2 − K1 − 1

2
(2N + 1)(β + 1) + r

[K3,K1] = {K1,K2} +
(1
4

− (β − N)2 − 2r
)
K2.

Note that by means of the constant r, corresponding just to an affine transformation
of K1, one can fix the coefficient of K2 in the third relation.

For the (2N + 1) × (2N + 1) matrices of another Racah double, namely Racah
III [13, Appendix] similar results hold, only yielding the Racah algebra for either
γ = δ = −1/2 or γ = β − 1/2 and δ = −β − 1/2. For the special parameter values
γ = δ = −1/2 the Jacobimatrices of those twoRacah doubles can actually be unified
in a single expression, matching the appropriate Racah double for even and for
odd dimensions. For this special case, the spectrum of these matrices also reduces
to equidistant integers or half-integers, as seen from (6), making them interesting
candidates for finite quantum oscillator models. We will pursue the in-depth study
of this oscillator model and the unification of the two Racah doubles in a separate
paper.

We believe that for general parameter values of the Racah doubles the algebraic
structure is also related to the Racah algebra. The matrix representation of K1, how-
ever, will be more complicated and should follow from investigating the bispectrality
of these polynomials. Only for the specific parameter values obtained here, does K1

reduce to the same form as for the ordinary Racah polynomials. We intend to analyse
this in further work.



564 R. Oste and J. Van der Jeugt

References

1. N.M. Atakishiyev, G.S. Pogosyan, L.E. Vicent, K.B. Wolf, J. Phys. A 34 (2001) 9381–9398.
2. N.M. Atakishiyev, G.S. Pogosyan, K.B. Wolf, Phys. Part. Nuclei 36 (2005) 247–265.
3. W.N. Bailey, Generalized hypergeometric series (Cambridge University Press, Cambridge,

1964).
4. T.S. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applications

Vol. 13 (Gordon and Breach Science Publishers, New York-London-Paris, 1978).
5. T.S. Chihara, Boll. Un. Mat. Ital. (3) 19 (1964) 451–459.
6. V.X. Genest, L. Vinet, A. Zhedanov, J. Phys.: Conf. Ser. 512 (2014) 012010.
7. Y. Granovskii, A. Zhedanov, Zh. Eksp. Teor. Fiz 94 (1988) 49–54.
8. E.I. Jafarov, N.I. Stoilova, J. Van der Jeugt, J. Phys. A 44 (2011) 265203.
9. E.I. Jafarov, N.I. Stoilova, J. Van der Jeugt, J. Phys. A 44 (2011) 355205.
10. R. Koekoek, P.A. Lesky, R.F. Swarttouw,Hypergeometric orthogonal polynomials and their q-

analogues (Springer-Verlag, Berlin, 2010).
11. F. Marcellán, J. Petronilho, Linear Algebra Appl. 220 (1997) 169–208.
12. A.F. Nikiforov, S.K. Suslov, V.B. Uvarov, Classical Orthogonal Polynomials of a Discrete

Variable (Springer-Verlag, Berlin, 1991).
13. R. Oste, J. Van der Jeugt, SIGMA 12 (2016) 003.
14. S. Tsujimoto, L. Vinet, A. Zhedanov, Adv. Math. 229 4 (2012) 2123–2158.
15. A. Zhedanov, J. Approx. Theory 94 (1998) 73–106.



A Note on Strongly Graded Lie Algebras

Antonio J. Calderón Martín and Diouf Mame Cheikh

Abstract We show that if a strongly graded Lie algebra with a symmetric support
(L, [·, ·]) is centerless, then L is the direct sum of the family of its minimal graded-
ideals, each one being a graded-simple strongly graded Lie algebra.

1 Introduction and Previous Definitions

We begin by noting that all of the Lie algebras are considered of arbitrary dimension
and over an arbitrary base field K.

A graded Lie algebra is a Lie algebra L that can be expressed as the direct sum
of linear subspaces indexed by the elements of an abelian group (G,+), that is,

L =
⊕

g∈G
Lg

with any Lg a linear subspace of L such that [Lg,Lh] ⊂ Lg+h for any h ∈ G. We call
the support of the grading to the setΣ := {g ∈ G \ {0} : Lg �= 0}.The setΣ is called
symmetric if Σ = −Σ . Finally, we recall that a graded Lie algebra L = ⊕

g∈G
Lg is

called a strongly graded Lie algebra if the condition [Lg,Lh] = Lg+h holds for any
g, h ∈ G such that g + h ∈ Σ , L0 = ∑

g∈Σ

[Lg,L−g], and for any x ∈ L0 and g ∈ Σ

we have that either ad(x)(Lg) = 0 or ad(x)(Lg) = Lg , where ad(x)(y) := [x, y]
denotes de adjoint operator, (see [3, 4]).

As examples of strongly graded Lie algebras we can consider the finite dimen-
sional semisimple Lie algebras, the graded algebras associated to L∗-algebras and
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to semisimple locally finite split Lie algebras with the group-gradings induced by
their split decompositions; and the split Lie algebras considered in [1, Sect. 2] among
other classes of Lie algebras (see [5–7]).

The regularity conditions will be understood in graded sense. That is, a linear
space I of a strongly graded Lie algebra L = ⊕

g∈G
Lg is called a graded-ideal if

[I,L] ⊂ I and I = ⊕

g∈G
(I ∩ Lg) with I ∩ L0 �= 0. A strongly graded Lie algebra L

will be called graded-simple if [L,L] �= 0 and its only graded-ideals are {0} and L.

2 Main Results

In the following, L denotes a strongly graded Lie algebra of maximal length and

L =
⊕

g∈G
Lg = L0 ⊕

⎛

⎝
⊕

g∈Σ

Lg

⎞

⎠

the corresponding grading. We will consider the set −Σ = {−g : g ∈ Σ} ⊂ G.

Definition 1 Let g, h ∈ Σ . We say that g is connected to h if there exists a family
g1, g2, . . . , gn ∈ Σ satisfying the following conditions:

1. g1 = g.
2. {g1 + g2, g1 + g2 + g3, . . . , g1 + · · · + gn−1} ⊂ ±Σ.

3. g1 + g2 + · · · + gn = εβ for some ε ∈ {±1}.
We also say that {g1, . . . , gn} is a connection from g to h.

It is straightforward to verify that the relation connection is an equivalence connec-
tion, see [1] or [2]. So we can consider the quotient set

Σ/ ∼= {[g] : g ∈ Σ}.

Now, for any [g] ∈ Σ/ ∼ we are going to introduce the linear subspace

L[g] := W[g] ⊕ V[g]

where

W[g] :=
∑

h∈[g]
[Lh,L−h] ⊂ L0

and
V[g] :=

⊕

h∈[g]
Lh .
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We recall that the center of L is the set Z(L) = {x ∈ L : [x,L] = 0}.
Proposition 1 For any [g] ∈ Σ/ ∼ we have that any L[g] is a graded-ideal of L. If
furthermore Z(L) = 0 and the support is symmetric then L[g] is graded-simple.

Proof First, let us show that

[L[g],L] =
⎡

⎣W[g] ⊕ V[g],L0 ⊕
⎛

⎝
⊕

h∈[g]
Lh

⎞

⎠ ⊕
⎛

⎝
⊕

k /∈[g]
Lk

⎞

⎠

⎤

⎦ ⊂ L[g]. (1)

By the grading we have

⎡

⎣W[g],
⊕

h∈[g]
Lh

⎤

⎦ + [V[g],L0] ⊂
⎡

⎣L0,
⊕

h∈[g]
Lh

⎤

⎦ ⊂ V[g].

Jacobi identity also shows [W[g],L0] = ∑

h∈[g]
[[Lh,L−h],L0] ⊂ W[g].

Since in case [Lu,Lv] �= 0 for some u, v ∈ Σ with u + v �= 0, the connections
{u, v} and {u, v,−u} imply [u] = [u + v] = [v], we get

⎡

⎣V[g],
⊕

h∈[g]
Lh

⎤

⎦ ⊂ L[g]

and ⎡

⎣V[g],
⊕

k /∈[g]
Lk

⎤

⎦ = 0. (2)

Taking now into account the fact W[g] := ∑

h∈[g]
[Lh,L−h], Jacobi identity together

with Eq. (2) finally give us ⎡

⎣W[g],
⊕

k /∈[g]
Lk

⎤

⎦ = 0 (3)

and so Eq. (1) holds.
Since Eq. (3) shows [W[h], V[g]] = 0 for any [g] �= [h] we get W[g] �= 0. From

here, we can also assert thatL[g] is a strongly graded ideal ofL admitting the grading

L[g] = W[g] ⊕
⎛

⎝
⊕

h∈[g]
Lh

⎞

⎠ . (4)
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Suppose now (L, [·, ·]) is centerless and Σ symmetric, and let us show L[g] is
graded-simple. Consider a graded-ideal I of L[g]. By Eq. (4) we can write

I = (I ∩ W[g]) ⊕
⎛

⎝
⊕

h∈[g]
(I ∩ Lh)

⎞

⎠

with I ∩ W[g] �= 0. For any 0 �= x ∈ I ∩ W[g], the fact (L, [·, ·]) is centerless together
with Eq. (3) give us that there exists h ∈ [g] such that [x,Lh] �= 0. From here we get
[I ∩ W[g],Lh] = Lh and so 0 �= Lh ⊂ I .

Given now any u ∈ [g] \ {±h}, the fact that h and u are connected allows us to
take a connection {g1, g2, . . . , gn} from h to u. Since g1, g2, g1 + g2 ∈ Σ we have

[Lg1 ,Lg2 ] = Lg1+g2 ⊂ I

as consequence of Lg1 = Lh ⊂ I . In a similar way

[Lg1+g2 ,Lg3 ] = Lg1+g2+g3 ⊂ I

and we finally get by following this process that

Lg1+g2+g3+···+gn = Lεu ⊂ I

for some ε ∈ ±1. From here we have W[g] ⊂ I and taking also into account that
Eq. (3) allows us to assert [W[g],Lu] = Lu for any u ∈ [g], we also get that V[g] ⊂ I .
We have showed I = L[g] and so L[g] is graded-simple.

Theorem 1 Any centerless strongly graded Lie algebra L with a symmetric support
is the direct sum of the family of its minimal graded-ideals, each one being a graded-
simple strongly graded Lie algebra.

Proof Sincewecanwrite the disjoint unionΣ = ⋃

[g]∈Σ\∼
[g]wehaveL = ∑

[g]∈Σ\∼
L[g].

Let us nowverify the direct character of the sum: given x ∈ L[g] ∩ ∑

[h] ∈ Σ/ ∼
h � g

L[h], since

by Eqs. (2) and (3) we have [L[g],L[h]] = 0 for [g] �= [h], we obtain

[
x,L[g]

] +
⎡

⎢
⎣x,

∑

[h] ∈ Σ/ ∼
h � g

L[h]

⎤

⎥
⎦ = 0.
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From here [x,L] = 0 and so x = 0, as desired. Consequently we can write

L =
⊕

[g]∈Σ\∼
L[g].

Finally, Proposition 1 completes the proof.
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Part VII
Various Mathematical Results



Toeplitz Operators with Discontinuous
Symbols on the Sphere

Tatyana Barron and David Itkin

Abstract We obtain asymptotics of norms for Toeplitz operators with specific dis-
continuous symbols on S2.

1 Introduction

This note follows the presentation in the talk by the first author at the “Lie theory
and its applications in physics” workshop in Varna, Bulgaria, in June 2015. This is
an expanded and more detailed version of the talk.

(Berezin–)Toeplitz operators are linear operators T (k)
f that act on spaces of holo-

morphic sections ofL⊗k , whereL is a holomorphic hermitian line bundle on aKähler
manifold X and k is a positive integer. The symbol f is a function on X . Most results
in literature on Berezin–Toeplitz quantization are obtained under the assumption that
f isC∞. In a recent paper [2] asymptotics of Toeplitz operators withCm symbols are
obtained. For the case of C∞ symbols explicit constructions of Toeplitz operators on
X = P

1(∼= S2), with the Fubini-Study form, and on the 2-dimensional torus, were
worked out in [3]. See also [5].

After giving the necessary background and definitions in Sect. 2, wemake explicit
calculations for Toeplitz operators with specific discontinuous symbols on S2 in
Sect. 3. The outcome is summarized in Theorem 4. For these specific discontinuous
symbols the semiclassical behaviour of the norm of a Toeplitz operator is akin to that
for C2 symbols.
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2 Preliminaries

Let μ be the normalized Lebesgue measure on S1 = {z ∈ C| |z| = 1}. Functions
en = en(z) = zn , z ∈ S1, n ∈ Z form an orthonormal basis in L2 = L2(S1, dμ). Call
f ∈ L2 analytic if

∫

S1

f ēndμ = 0 for all n < 0. Denote by H 2 the space of all analytic

functions in L2 and by P : L2 → H 2 the orthogonal projector.

Definition 1 (see e.g. [7]) Letϕ be a boundedmeasurable function on S1. A Toeplitz
operator for ϕ is Tϕ = P Mϕ : H 2 → H 2 (or, to write this differently, Tϕg = P(ϕg)

for g in H 2).
This construction has beengeneralized from S1 to disk, spheres, balls,Cn , domains

in C
n and extensively studied over the years, for various function spaces. Common

ingredients are measure and orthogonal projection P : L2 → H 2, and a Toeplitz
operator is Tϕ = P Mϕ : H 2 → H 2.

Boutet de Monvel and Guillemin (see, in particular, [6]) greatly generalized this
concept. Their work, and work by Berezin, applied in the context of quantization of
Kähler manifolds, led to the following definition of a (Berezin–)Toeplitz operator.

Let (X,ω) be a compact connected Kähler manifold of complex dimension n.
Assume that theKähler form ω

2π is integral. Then there is a holomorphic hermitian line
bundle L → X such that the curvature of the hermitian connection is equal to −iω.
For a positive integer k let V (k) = H 0(X,L⊗k) (the space of holomorphic sections
ofL⊗k). It is a finite-dimensional complex vector space, dim V (k) ∼ const kn + l.o.t.
as k → ∞. The inner product on V (k) is obtained from the hermitian metric on L.
Definition 2 ([4]) For a bounded measurable function f on X a (Berezin)–Toeplitz
operator for f is

T (k)
f = Π(k) ◦ M (k)

f ∈ End(V (k))

where
M (k)

f : V (k) → L2(X,L⊗k)

s �→ f s,

and Π(k) : L2(X,L⊗k) → V (k) is the orthogonal projector. The function f is said to

be the symbol of T (k)
f . The operator T f =

∞⊕

k=0
T (k)

f is also referred to as the (Berezin)–

Toeplitz operator for f.

Remark 1 For α,β ∈ C and bounded measurable functions f, g T (k)

α f +βg = αT (k)
f +

βT (k)
g .
Composition of Berezin–Toeplitz operators is a Berezin–Toeplitz operator.

Remark 2 Quantization, mentioned earlier, is a concept from physics, that broadly
means passing from classical mechanics to quantum mechanics. In mathematics
“quantization” can have various meanings, e.g. a map between vector spaces with
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prescribed properties, or a deformation of an algebra. Often by quantization people
mean a way to associate a linear operator on a Hilbert space to a function on the
classical phase space so that a version of Dirac’s conditions holds. In the context
of this paper, that corresponds to Berezin–Toeplitz quantization. X , regarded as
a symplectic manifold, is the classical phase space, V (k) is the Hilbert space of
quantum-mechanical wave functions, the positive integer k is formally interpreted
as 1/�, where � is the Planck constant, the limit k → ∞ is called the semi-classical
limit, the quantum observables are (Berezin–)Toeplitz operators T (k)

f , and Berezin–

Toeplitz quantization is themapC∞(X) → End(V (k)), f �→ T (k)
f . See, for example,

[12] for a survey on Berezin–Toeplitz quantization.

Useful asymptotic properties of Toeplitz operators are summarized in the following
well-known theorem.

Theorem 1 ([4]) For f, f1, . . . , f p ∈ C∞(X), as k → ∞

||T (k)
f1

. . . T (k)
f p

− T (k)
f1... f p

|| = O(
1

k
)

tr(T (k)
f1

. . . T (k)
f p

) = kn(

∫

X
f1 . . . f p

ωn

n! + O(
1

k
))

||ik[T (k)
f1

, T (k)
f2

] − T (k)
{ f1, f2}|| = O(

1

k
)

There is C > 0 s.t.

| f |∞ − C

k
≤ ||T (k)

f || ≤ | f |∞ (1)

Here {., .} denotes the Poisson bracket for ω and |.|∞ is the sup-norm.

Remark 3 Under the assumptions of the theoremwe immediately get, as a corollary:
as k → ∞

||[T (k)
f1

, T (k)
f2

]|| = O(
1

k
).

Remark 4 See [8] for another proof of (1). See [9, 10] for Theorem 1 in a more
general setting.

f ∈ C∞(X) has been a quite standard assumption. In [2] we address the case when
f is Cm (not necessarily C∞) and prove, in particular, the following:

Theorem 2 ([2]) Let f1, . . . , f p ∈ Cm(X). As k → ∞

||T (k)
f1

. . . T (k)
f p

− T (k)
f1... f p

|| =
⎧
⎨

⎩

O(k−1) if m = 2
o(k−1/2) if m = 1
o(1) if m = 0
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1

kn
tr(T (k)

f1
. . . T (k)

f p
) =

∫

X
f1 . . . f p

ωn

n! +
⎧
⎨

⎩

O(k−1) if m = 2
O(k−1/2) if m = 1
o(1) if m = 0

||ik[T (k)
f1

, T (k)
f2

] − T (k)
{ f1, f2}|| =

⎧
⎨

⎩

o(1) if m = 2
o(k−1/2) if m = 3
O(k−1) if m = 4

Theorem 3 ([2]) Suppose f ∈ L∞(X) and there is x0 ∈ X such that f is continuous
at x0 and | f (x0)| = | f |∞. Then

lim
k→∞ ||T (k)

f || = | f |∞.

If f ∈ C1(X) then ∃ C > 0 s.t.

| f |∞ − C√
k

≤ ||T (k)
f || ≤ | f |∞.

If f ∈ C2(X) then ∃ C > 0 s.t.

| f |∞ − C

k
≤ ||T (k)

f || ≤ | f |∞.

3 Analysis on the Sphere

Let X = S2 ∼= P
1, with the Fubini-Study form, and let L be the hyperplane bundle.

It is a standard fact ([11] 4.1.1. or [3] 3.1) that V (k) can be identified with the space
of polynomials in z of degree ≤ k, with the inner product

〈φ,ψ〉 = i

2π

∫

C

φ(z)ψ(z)

(1 + |z|2)k+2
dzdz̄.

The space of holomorphic sections ofL⊗k is usually described as the space of homo-
geneous degree k polynomials in ζ0, ζ1, where ζ0, ζ1 are homogeneous coordinates on
P
1. On the affine chart {[ζ0 : ζ1] ∈ P

1|ζ1 �= 0}, with z = ζ0/ζ1, we get the description
above.

Remark 5 For representation theoristswemake a note of the fact that X is a coadjoint
orbit of SU (2) and V (k) is an irreducible representation of SU (2). An orthonormal

basis in V (k) is ϕ(k)
j =

√
(k+1)!

j !(k− j)! z
j , j = 0, . . . , k (this is easily verified by a calcula-

tion in polar coordinates onR
2). Realize X as {(ξ, η, ζ) ∈ R

3 | ξ2 + η2 + (ζ − 1
2 )

2 =
1
4 }. Let p0 = (0, 0, 1). A standard stereographic projection [1] is σ : X − {p0} →
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C ∼= R
2, (ξ, η, ζ) �→ z = x + iy, where x = ξ

1−ζ
, y = η

1−ζ
and we have:

ξ = x

x2 + y2 + 1
, η = y

x2 + y2 + 1
, ζ = x2 + y2

x2 + y2 + 1
.

Define f, g, h : X → R by

f (ξ, η, ζ) =
{
1 if ζ < 1/2
0 if ζ ≥ 1/2

g(ξ, η, ζ) =
{
1 if ζ < 1/5
0 if ζ ≥ 1/5

h(ξ, η, ζ) =
{
0 if ζ < 1/2
ζ if ζ ≥ 1/2

for (ξ, η, ζ) ∈ X ⊂ R
3. Stereographic projection gives the following functions on

the xy-plane:

f̂ (x, y) =
{
1 if x2 + y2 < 1
0 if x2 + y2 ≥ 1

ĝ(x, y) =
{
1 if x2 + y2 < 1/4
0 if x2 + y2 ≥ 1/4

ĥ(x, y) =
{
0 if x2 + y2 < 1

x2+y2

x2+y2+1 if x2 + y2 ≥ 1

defined by

f
∣
∣
∣

X−{p0}
= f̂ ◦ σ, g

∣
∣
∣

X−{p0}
= ĝ ◦ σ, h

∣
∣
∣

X−{p0}
= ĥ ◦ σ.

Let ρ be a bounded measurable function on X (measurable with respect to the
Lebesgue measure). Write T (k)

ρ as a matrix, in the basis (ϕ(k)
j ). The l j-th entry of this

matrix is

(T (k)
ρ )l j = 〈T (k)

ρ ϕ(k)
j ,ϕ(k)

l 〉 = 〈Π(k)M (k)
ρ ϕ(k)

j ,ϕ(k)
l 〉 = 〈ρϕ(k)

j ,ϕ(k)
l 〉 =

= i

2π

(k + 1)!√
j !l!(k − j)!(k − l)!

∫

C

ρ̂(z, z̄)z j z̄l dzdz̄

(1 + |z|2)k+2
.

Theorem 4 For sufficiently large k
(i) ||T (k)

f || = 1 − 1
2k+1 ,

(ii) ||T (k)
g || = 1 − ( 45 )

k+1,
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(iii) 1 − 2
k ≤ ||T (k)

h || ≤ 1.

Proof Switching to the polar coordinates (r,Θ) on R
2, we see that if ρ(ξ, η, ζ)

depends only on ζ, then the corresponding function ρ̂ onR
2, determined by ρ

∣
∣
∣

X−{p0}
=

ρ̂ ◦ σ, depends only on r , and (assuming that ρ is bounded andmeasurable) (T (k)
ρ )l j =

0 for l �= j .
Since ϕ(k)

j , 0 ≤ j ≤ k, form an orthonormal basis in V (k), the inner product of

two vectors u =
k∑

m=0
umϕ(k)

m and v =
k∑

m=0
vmϕ(k)

m is 〈u, v〉 =
k∑

m=0
um v̄m . If a transfor-

mation A ∈ End(V (k)) is represented by a diagonal matrix

⎛

⎜
⎜
⎝

λ0

λ1

. . .

λk

⎞

⎟
⎟
⎠, then

the operator norm ||A|| = max
0≤ j≤k

|λ j | (proof: assume λi0 = max |λ j | �= 0, then

max||v||=1
||Av|| = max||v||=1

√√
√
√

k∑

j=0

|λ jv j |2 = |λi0 | max||v||=1

√√
√
√

k∑

j=0

| λ j

λi0

v j |2 ≤

≤ |λi0 | max||v||=1

√√
√
√

k∑

j=0

|v j |2 = |λi0 |

therefore ||A|| ≤ |λi0 |, and it is equality because ||Aϕ(k)
i0

|| = |λi0 |).
In the calculations the following identity will be useful: for 0 < a ≤ 1, 0 ≤ j ≤ k

a∫

0

r2 j+1

(1 + r2)k+2
dr = 1

2

[ j !(k − j)!
(k + 1)! − 1

k + 1

j∑

m=0

(k − m)! j !(a2) j−m

k!( j − m)!(1 + a2)k+1−m

]

(it is proved by substitution u = r2 and repeated integration by parts).
Proof of (i):

||T (k)
f || = max

0≤ j≤k
|(T (k)

f ) j j | = max
0≤ j≤k

∣
∣
∣

i

2π

(k + 1)!
j !(k − j)!

∫

C

f̂ (z, z̄)|z|2 j dzdz̄

(1 + |z|2)k+2

∣
∣
∣ =

= max
0≤ j≤k

(k + 1)!
j !(k − j)!2

1∫

0

r2 j+1

(1 + r2)k+2
dr = max

0≤ j≤k

[
1 − k!

j !(k − j)!)
(

1

2k+1
+ j

k2k
+

+ j ( j − 1)

k(k − 1)2k−1
+ · · · + j !(k − j + 1)!

k!2k− j+2
+ j !(k − j)!

k!2k− j+1

)]
= 1 − 1

2k+1
.
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The last equality holds because maximum, for each k, is achieved for j = 0, since
k!

j !(k− j)! ≥ 1.

Proof of (ii):

||T (k)
g || = max

0≤ j≤k
|(T (k)

g ) j j | = max
0≤ j≤k

∣
∣
∣

i

2π

(k + 1)!
j !(k − j)!

∫

C

ĝ(z, z̄)|z|2 j dzdz̄

(1 + |z|2)k+2

∣
∣
∣ =

max
0≤ j≤k

(k + 1)!
j !(k − j)!2

1/2∫

0

r2 j+1

(1 + r2)k+2
dr = max

0≤ j≤k

[

1 − k!
j !(k − j)!

(
( 14 ) j

( 54 )k+1
+ j ( 14 ) j−1

k( 54 )k
+

j ( j − 1)( 14 )
j−2

k(k − 1)( 54 )
k−1

+ · · · + j !(k − j + 1)! 14
k!( 54 )k− j+2

+ j !(k − j)!
k!( 54 )k− j+1

)]

= 1 −
(
4

5

)k+1

.

The last equality holds because maximum, for each k, is achieved for j = 0, since
for j ≥ 1

1 − k!
j !(k − j)!

(
( 14 )

j

( 54 )
k+1

+ j ( 14 )
j−1

k( 54 )
k

+ · · · + j !(k − j + 1)! 14
k!( 54 )k− j+2

+ j !(k − j)!
k!( 54 )k− j+1

)

≤

1 − k!
j !(k − j)!

j !(k − j)!
k!( 54 )k− j+1

= 1 − 1

( 54 )
k− j+1

≤ 1 − 1

( 54 )
k+1

.

Proof of (iii):

||T (k)
h || = max

0≤ j≤k
|(T (k)

h ) j j | = max
0≤ j≤k

∣
∣
∣

i

2π

(k + 1)!
j !(k − j)!

∫

C

ĥ(z, z̄)|z|2 j dzdz̄

(1 + |z|2)k+2

∣
∣
∣ =

max
0≤ j≤k

(k + 1)!
j !(k − j)!2

∞∫

1

r2 j+3

(1 + r2)k+3
dr.

Making a substitution u = r2 and by repeated integration by parts we get:

∞∫

1

r2 j+3

(1 + r2)k+3
dr = 1

2

(
1

(k + 2)2k+2
+ j + 1

(k + 2)(k + 1)

j∑

m=0

(k − m)! j !
k!( j − m)!2k+1−m

)

,

therefore

||T (k)
h || = max

0≤ j≤k

(k + 1)!
j !(k − j)!

(
1

(k + 2)2k+2
+ j + 1

(k + 2)(k + 1)2k+1
+
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+ ( j + 1) j

(k + 2)(k + 1)k2k
+ · · · + ( j + 1)!

(k + 2)(k + 1)k . . . (k − j + 1)2k− j+1

)
≥

≥ k + 1

k + 2

(
1 − 1

2k+2

)
≥ 1 − 2

k
.

The second inequality holds for sufficiently large k, and the first inequality is obtained
by setting j = k and observing that for j = k

(k + 1)!
j !(k − j)!

(
1

(k + 2)2k+2
+ j + 1

(k + 2)(k + 1)2k+1
+ ( j + 1) j

(k + 2)(k + 1)k2k
+ . . .

+ ( j + 1)!
(k + 2)(k + 1)k . . . (k − j + 1)2k− j+1

)
= k + 1

k + 2

(
1

2k+2 + 1

2k+1 + 1

2k
+ · · · + 1

2

)
=

k + 1

2(k + 2)

1 − ( 12 )
k+2

1 − 1
2

= k + 1

k + 2

(
1 − 1

2k+2

)
.

||T (k)
h || ≤ 1, since

||T (k)
h || ≤ max

0≤ j≤k

(k + 1)!
j !(k − j)!2

∞∫

0

r2 j+3

(1 + r2)k+3
dr,

and by substitution u = r2 and repeated integration by parts we find that

∞∫

0

r2 j+3

(1 + r2)k+3
dr = 1

2

( j + 1)!(k − j)!
(k + 2)! ,

hence

||T (k)
h || ≤ max

0≤ j≤k

j + 1

k + 2
= k + 1

k + 2
< 1.
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Multiplication of Distributions
in Mathematical Physics

J. Aragona, P. Catuogno, J.F. Colombeau, S.O. Juriaans and Ch. Olivera

Abstract We expose a mathematical method that permits to treat calculations in
form of multiplications of distributions that arise in various areas of mathematical
physics, starting with an analysis of the famous Schwartz impossibility result (1954),
then a construction of products of distributions, with examples and references of use
in various domains of physics: classical and quantum mechanics, stochastic analysis
and general relativity.

1 Introduction

In 1954 L. Schwartz published a celebrated note “Impossibility of the multiplication
of distributions” [27], which had a strong impact on the subsequent development of
physics (axiomatic field theory). Later in 1983 L. Schwartz presented (to the acad-
emy) a note “A general multiplication of distributions” by one of the authors [8].
We analyze this apparent contradiction in a very simple way and we observe that
the impossibility proof is no more than the loss of a relatively minor property. To
multiply distributions it suffices to construct a differential calculus in which the ide-
alization that transforms the “irregular functions that represent physical quantities”
into mathematical generalized functions is less crude than in distribution theory,
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in other words mathematics closer to physics than distribution theory. This will be
explained throughout the paper. We sketch how this permits to give a mathematical
sense to calculations in physics and to state equations of physics in a more pre-
cise way which can resolve ambiguities usually connected with the appearance of
products of distributions which are not defined within distribution theory.

2 An Analysis of the Schwartz Impossibility Result

To prove his claim L. Schwartz stated a list of properties to be satisfied by any
hypothetical differential algebra A(R) containing at least some distributions (here
we assume D′(R) ⊂ A(R) for simplicity and we abbreviate these spaces by D′ and
A respectively), and he put in evidence a contradiction in this set of properties
[13, 19, 24, 27], starting calculations with the continuous functions x(ln|x | − 1)
and x2(ln|x | − 1) because he stated the properties with continuous functions. As a
consequence his proof does not put (3) in evidence, as it stems here from the extreme
simplicity of (1) and (2). For clarity we start here with the Heaviside function. To
understand the whole situationwe compare the two formulas (1) and (2) belowwhere
H denotes the Heaviside function (H(x) = 0 if x < 0, H(x) = 1 if x > 0, H(0)
undefined). These formulas are

∫

R

(H 2(x) − H(x))φ(x)dx = 0 ∀φ ∈ C∞
c (R), (1)

and ∫

R

(H 2(x) − H(x))H ′(x)(x)dx =
[
H 3

3
− H 2

2

]+∞

−∞
= 1

3
− 1

2
�= 0. (2)

These two formulas are clear if one assumes that the Heaviside function is an ideal-
ization of a smooth function with a jump from the value 0 to the value 1 on a very
small region around x = 0. Formula (1) shows that H 2 = H inD′ ⊂ A and formula
(2) shows that H 2 �= H in A, hence a contradiction which proves the impossibility
of the multiplication of distributions. But there is a subtle mistake hidden in this
reasoning! In (2) H 2 is the square of H in A since (2) does not make sense in D′.
To compare (2) with (1) the H 2 in (1) should be the same as in (2). Therefore, for
comparison, the quantities (H 2 − H) in (1) and (2) are both the same and are an
element of A; nothing tells it is an element of D′. Therefore (1, 2) prove that in A

∫
F(x)φ(x)dx = 0 ∀φ ∈ C∞

c (R) � F = 0. (3)

Indeed choose F = H 2 − H above. The lack of validity of the familiar implication
that fails from (3) does not prove the impossibility of the multiplication of distribu-
tions and does not prohibit the existence of a suitable algebra A.
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In D′ one has H 2 = H from (1); in A one has H 2 �= H from (2). Again this
looks very much like an absurdity!. The explanation is that the square of H is not
the same inD′ andA. Is this an incoherence, i.e. are these two objects, both denoted
H 2, really different? Contrarily to all appearance the answer is no! Look at (H 2 in
A). We want to observe that it is (H 2 inD′), i.e. H ; to this end we observe of course
this object (H 2 in A) in the way the objects of D′ are defined i.e. we consider

∫

R

(H 2 in A)(x)φ(x)dx

and from (1) we observe nothing other than (H in D′). In conclusion (H 2 in A) is
different from (H in A) but when (H 2 in A) is observed according to the definition
of distributions to compare with the classical objects in D′ it appears to be H as
this should be for coherence. The above systematically holds for all operations in
the algebra G(Ω) considered in the next section. Therefore in this algebra there is a
perfect coherence between all new and all classical calculations.

3 A Differential Algebra Containing the Distributions

One can construct a differential algebra G(Ω) containing a copy isomorphic to the
vector space D′(Ω), Ω ⊂ R

n open, in the situation

C∞(Ω) ⊂ C0(Ω) ⊂ D′(Ω) ⊂ G(Ω). (4)

The partial derivatives inG(Ω) induce onD′(Ω) the partial derivatives in the sense
of distributions; the multiplication in G(Ω) induces the classical multiplication of
C∞ functions: C∞(Ω) is a faithful subalgebra of G(Ω). The Schwartz impossibility
result implies that the algebra C0(Ω) is not a subalgebra of G(Ω), but if f, g are
two continuous functions on Ω and if f • g ∈ G(Ω) denotes their (new) product in
G(Ω), then we have the coherence

∫

Ω

( f • g)(x)φ(x)dx =
∫

Ω

f (x)g(x)φ(x)dx ∀φ ∈ C∞
c (Ω) (5)

for a natural integration in G(Ω). The basic idea is that the elements of G(Ω)

are mathematical idealizations (that can represent physical quantities) that remain
closer to physics than distributions: they are equivalence classes of families ( fε)
of C∞ functions for a rather strict equivalence relation such that the property
(limε→0

∫
Ω

fε(x)φ(x)dx = 0 ∀φ ∈ C∞
c (Ω)) does not imply that the family ( fε) is

null in the quotient defining G(Ω), as this is the case in distribution theory.
L. Nachbin and L. Schwartz supported fast publication in book form to speed

divulgation [11, 12], that were soon complemented by [5, 13, 23, 24]. This theory is
presented in form of a differential calculus dealing with infinitesimal quantities and
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infinitely large quantities in [3, 4], as well as in various expository texts [10, 14], …
and has been extended to manifolds in view of its use in general relativity [18–22,
28–31], …

The problem that served as a first application in 1986 was the one of calculating
jump conditions for a system used in industry (design of armor) to model very strong
collisions [9, 13]. The system showed multiplications of distributions of the form
H × δ where δ is the Dirac distribution. We observed the existence of different
possible jump conditions, all of them stable [17].

We recall that in G(Ω) one has two concepts that can play the role of the equality
of functions: of course the equality in G(Ω) which is coherent with all operations
(on particular the multiplication and the derivation) and the concept in left hand side
of the non-implication (3) that we state as “association” since it is not really a weak
equality (since different elements of G(Ω) can be associated) and denote by the
symbol ≈:

F ≈ G ⇔
∫

Ω

(F − G)(x)φ(x)dx = 0 ∀φ ∈ C∞
c (Ω). (6)

The association is coherent with the derivation but not with the multiplication. We
recall from (1, 2) that H 2 �= H and H 2 ≈ H .

A solution was obtained as follows: state with the equality in G(Ω) the laws
of physics which are considered true at a very small scale (may be 10−7 meters)
and state with the association the laws or properties valid only at a far larger scale
(may be 10−4 meters). This is explained in detail in [13] p. 69, with calculations of
shock waves for nonconservative systems and references. The results that followed
from this statement were in perfect agreement with observations and experiments. In
various interesting cases one obtains the remarkable result that the jumps of different
physical variables are represented by the sameHeaviside function inG(R), [13] p. 72.
Same explanations for another problem are given in [2].

4 Calculations of the Hamiltonian Formalism
of Interacting Fields

The canonical Hamiltonian formalism (exposed in detail in [15, 16]) consists in a
formal solution of the interacting field equations

(

−∂2
t +

3∑

i=1

∂2
xi − m2

)

Φ(x, t) = gΦ(x, t)N , Φ(x, τ ) = Φ0(x, τ ) (7)

wherem, g ∈ R andΦ0(x, t) is the free field operator (explicitly known: it is a distri-
bution valued in a space of unbounded operators on aHilbert space). TheHamiltonian
formalism constructs a solution of (7) according to a formula
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Φ(x, t) = exp(−i(t − τ )H0(τ ))Φ0(x, τ )exp(i(t − τ )H0(τ )) (8)

where H0(τ ) is obtained by plugging formally the free field into the formula of the
total Hamiltonian corresponding to (7). Further calculations give the related formula

Φ(x, t) = (Sτ (t))
−1Φ0(x, t)(Sτ (t)) (9)

which gives the interacting field as a function of the free field at the same time. The
formal operator S = S−∞(+∞) is called the scattering operator. Note that it depends
on the real parameter g called coupling constant. If Φ1, Φ2 are two normalized
orthogonal states then the formula | < Φ1, SΦ2 > | represents the probability that
the state Φ2 would become Φ1 after interaction.

What can be done with the context of Sect. 2 as mathematical tool? First one
remarks the basic point that in these formal calculations, see for instance [15, 16],
two basic mathematical difficulties are intimately mixed: multiplications of distrib-
utions, treated as C∞ functions, and unbounded operators, treated as bounded oper-
ators. Indeed the free field Φ0 is a distribution in x , not a function. The context of
Sect. 2 is adapted to multiplication of distributions but brings nothing concerning
unbounded operators, therefore it does not elucidate completely nicely these cal-
culations. Anyway all calculations finally make sense mathematically [16] and one
obtains a scattering operator S = S(g) and transition probabilities | < Φ1, SΦ2 > |.
What are these mathematical objects (which in the context of Sect. 3 make sense
mathematically)?

The exponentials in (8) make sense from a proof that H0(τ ) admits a self-
adjoint extension and one obtains a scattering operator S = S(g) [16]. What is
| < Φ1, S(g)Φ2 > |?: it depends on a parameter ε that tends to 0 and for each value
of ε it is in between 0 and 1. We believe as quasi certain it has no limit (in the usual
sense) when ε → 0 and therefore it oscillates endlessly inside the real interval [0, 1]
when ε → 0. As an obvious example of such an oscillating object consider |cos( g

ε
)|.

Because of the periodicity of the function cosine, to this objects one can associate
a well defined real number, here 2

π
, to be checked at once from numerical calcula-

tions by computing an average for a large number of very small values of ε chosen
at random. Such average values exist for all quasi periodic functions, see [15]. The
presence of complex exponentials and the self-adjointness property of H0(τ ) suggest
that | < Φ1, S(g)Φ2 > | is a quasi periodic function in the variable 1

ε
and therefore

this oscillating function of ε would have a mean value as ε → 0 (the variable ε is
of course not intrinsic but it plays only an auxiliary role and does not influence the
final result, which appears very robust). In short the infinite quantities in the formal
perturbation series are replaced by oscillations to be treated by computer calcula-
tions of an average value. To test this method one should compute the numerical
value so obtained in a case for which one has an experimental result. The computer
calculations look difficult and this has not been done after the premature death of A.
Gsponer in 2009.
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5 Stochastic Analysis

Stochastic differential equations (SDEs) serve to model many important phenomena
in mathematical physics. An important class of SDEs in R

d is of the following form

∂tU (t, x) = LU (t, x) + η(t, x), U (0, x) = F(x) (10)

where L is a differential operator and η(t, x) is a space-time noise. The solutions
of (10) are necessarily in a space of generalized functions because of the non-
differentiability of the process driven by the equation. Therefore the meaning of
the nonlinear part ofL is not obvious. One way to sort out this problem is to consider
the solutions of (10) as generalized stochastic processes, that is, processes whose
paths are generalized functions. More precisely, by analogy with the association (6),
we say that a family of smooth martingales (Uε)ε>0 is a weak solution of the equation
(10) in the sense (6) if both 1 and 2 below hold:

∀φ ∈ C∞
c (]0, T [×R

d , R
d) limε→0 < LUε,φ >=

∫

[0,T ]×Rd

φ(t, x)dη(t, x) (11)

and
Uε(0, x) = F(x) ∀ε > 0. (12)

One notices that

1. S.Albeverio,M.Oberguggenberger andF.Russo, amongothers, proposed already
in the nineties to solve nonlinear SDEs in the framework of G(Ω), [1, 25, 26].

2. One observes that if ηε is a regularisation of the noise η and if Uε is a solution
of (10) driven by the noise ηε, then under very general conditions (Uε)ε > 0 is a
weak solution of the Eq. (10) in the sense (6).

3. Choosing the Burgers operator LU = ∂tU − �xU − ∇x‖U‖2 and η = ∇x∂t

W (t, x), where W (t, x) is a space-time white noise, we obtain the stochastic
Burgers equation. The Cole-Hopf family is a weak solution of the Burgers equa-
tion in the sense (10), see [7].

4. In the case d = 1 the Hopf-Cole family is associated to a distribution, see [6].

6 Conclusion

After an analysis of the Schwartz impossibility result we have presented a context of
multiplication of distributions having all natural requested properties. Then we have
presented selected applications in continuum mechanics, quantum mechanics and in
stochastic PDEs. For general relativity we refer to [19–22, 28–31].
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About Arbitrage and Holonomy

Alexander Ganchev

Abstract I make a brief survey of the realization that arbitrage in finance is
holonomy of a gauge connection (I am neither an economist nor an econophysi-
cist. Nevertheless I would like to advertise in this mathematical physics workshop a
very simple but in my view beautiful and important observation. I will assume the
potential reader is acquainted with elementary notions from gauge theory.).

1 Introduction

Physics deals with simpler systems and their mathematical modeling is easier, more
developed, and spectacularly successful. No wonder that it is the most advanced of
all sciences. The social sciences deal with systems that are much more complex to an
extent that some believe mathematical modeling is unapplicable there. The successes
of physics have induced a constant trend of transfer of ideas, methods, and models
fromphysics to the social sciences.Neoclassical economics is the foundation ofmuch
of present day economic theory. In close analogy with classical physics the mathe-
matical method of neoclassical economics amounts to constraint optimization – the
maximization of utility. Utility sometimes is explained as “happiness” - whatever
that means. The high point of neoclassical economics is the Arrow–Debreu theorem
of the existence of general equilibriumwhen no one can increase their utility without
decreasing the utility of others. The mathematical engine making the Arrow–Debreu
theorem possible is the Brouwer fixed point theorem. Though a beautiful mathe-
matical result the Arrow–Debreu theorem cannot be the end of the story. Indeed
Brower’s theorem is an existence result so there could be many equilibria. What is
worse the general equilibrium theory does not answer key questions about stability
of fixed points and how fast the economy approaches a fixed point. The origin for
these shortcomings is that general equilibrium theory has no dynamics.
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There is a much simpler subdomain of Economics and that is Financial Eco-
nomics. For one thing the mysterious “happiness” or utility in the case of economics
is simply money. Another aspect of finance that renders it similar to physics is the
availability of huge amounts of data. The volumes traded in financial derivatives are
enormous and since everything goes automatically that data is recorded and is gener-
ally available. Thus it should not be surprising that themost successful1 mathematical
model in the social sciences is in Finance, i.e., the Black-Scholes-Merton theory of
option2 pricing. TheBSMmodel is build on twobasic assumptions: the assumption of
no-arbitrage and the assumption that the stochastic process describing the logarithm
of the stock price is a Brownian motion.

The macroscopic manifestation of random walk/Brownian motion is diffusion.
Turning things around the microscopic process underlying diffusion is random walk
or its continuous limit Brownian motion. The equation governing diffusion is known
to physicists for 200 years – this is the heat or Fokker–Planck equation. It should
not come as a surprise that the Black–Scholes equation is the heat equation. On the
other hand the understanding of Brownian motion came a century later in the work
of Louis Bechelier3 [1], but five years earlier than the similar paper of Einstein. In its
simplest form a randomwalk is obtained by adding independent random steps, i.e., if
ξt is the position of the randomwalker at time t then ξt+1 = ξt + Xt+1 where (Xt )t is
(an affine transform of) a Bernoulli process. i.e., the Xt are independent identically
distributed binary random variables. The fact that the steps Xt are independent is
crucial because we can apply the Central Limit Theorem and from a random walk
obtain a Brownian motion. The rational is that the price of a financial asset undergoes
continuously trading and at each trade its price is pushed up or down independently
of the previous trade. The independence assumption makes sense in a market close to
equilibrium. In a market in turmoil herding effects are typical and one cannot assume
independence.

The other key assumption in the BSM model is the principle of no-arbitrage. In
two words arbitrage is riskless profit. For more details and the use of no-arbitrage
in mathematical finance see for example [2]. We will discuss this crucial economic
notion further in the text.Wewill see that arbitrage is naturally associated to nontrivial
holonomy of a gauge theory of prices and no-arbitrage is the same as the flatness of
the gauge connection. No-arbitrage is again a property that one would expect from
a market in equilibrium. In a market close to equilibrium if an arbitrage opportunity
appears traders will flock to the opportunity and the priceswill change in directions to
eliminate the arbitrage. The principle of no-arbitrage implies the “law of one price”
– if two financial securities produce the same outcomes they should have the same
price.

1Creating a multi-trillion dollar industry is a success by most standards.
2A “call option” is a contract giving the owner the right but not the obligation to buy at a future
moment of time an underlying financial security, e.g., a stock, for a fixed price. The fundamental
question of mathematical finance is what is the present day price of an option.
3On March 29, 1900 Bechelier defended his Ph.D. thesis under the supervision of Poincaré. That
date is fair to view as the birthday of mathematical finance.
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Armed with the law of one price one can solve the BSM problem of pricing a
call option C based on an underlying stock S. In a nutshell we can form a portfolio
of the stock and cash that replicates the option. This is not surprising because the
fluctuations of the option are due to the fluctuations of the stock. Then by the law of
one price the option and the replicating portfolio should have the same price.

Despite the success of the BSM model it is only a first approximation. Its two
main assumption random walk of prices and no-arbitrage are also the source of its
vices. These two assumptions are true for equilibrium but how to get away from
equilibrium? For a beautiful discussion and a call for a disequilibrium dynamical
economics from the point of view of a mathematical physicist see the paper of
Smolin [9].

2 Arbitrage

The nontechnical definition of arbitrage is riskless profit. Let us illustrate it with two
examples.

First consider three currencies A, B, and C with exchange rates A/B = 1.2,
B/C = 1.1, and C/A = 0.9. By A/B = 1.2 we mean that 1 unit of A is exchanged
for 1.2 units of B. A standard assumption is that there are no transaction costs4 and
buy-sell spreads, i.e., the exchange rate of A for B is the multiplicative inverse of the
exchange rate of B for A. The product of the three numbers above is 1.188. If such a
situation exists we have a “money pump”, we can borrow5 one unit of A, exchange
it for B, the result exchange for C , the result exchange for A, returning the one unit
of A that we borrowed we are left with 0.188 units of A. We can go around this loop
as long as it exists and starting with nothing we end up with positive wealth. Going
around the loop in the other direction we will acquire a sure loss.

For the second example assume that we have two banks B1 and B2. Assume the
interest rate of Bi is ri for a certain period of time T . Again assume there are no
transaction costs and the interest rate for loans and deposits are equal. One unit
of cash deposited in Bi today will amount to Ri = (1 + ri/n)nT units if interest is
compounded n times during the period of time T and Ri = eri T units of cash if
the interest is compounded continuously. For our example take r1 = 0.1, r2 = 0.2,
and T = 1. If interest is compounded continuously we will have R1 = 1.105 and
R1 = 1.221. To make a sure profit we borrow one unit of cash from the first bank
and deposit it in the second bank. At the end of the time interval we withdraw our
deposit in the second bank and cover our loan from the first bank being left with

4Transaction costs are like friction in physics so it is natural as a first approximation to ignore it.
Moreover in finance transaction costs in machine trading could be very low.
5Another standard assumption is that we can borrow freely without any cost any asset. In financial
jargon we have gone “short” in that asset. Thus the first step in the above transactions can be stated:
“we sell short 1 unit of A and buy 1.2 units of B ...”.
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0.116 units of cash. Going around the loop in the opposite direction we will acquire
a sure loss of the same amount. Again we have a “money pump”.

In real lifewe can see a situation similar to the abovebutwith a crucialmodification
– the bank giving the higher interest rate is as a rule of thumb the riskier, so if we are
lucky we can make money from a loop as the above but it is also probable that we
can loose all our money in the riskier bank. Hence the need for the word “riskless”
in the definition of arbitrage.

3 Gauge Theory of Trade Networks

Consider the simplest possible trade network – two agents A and B, the first has a
tradable asset6 a and the second has asset b. To trade the agents need a means to
compare a and b or an exchange rate: if β unit of b are exchanged for α units of a, set
Uba = β/α. Here Uba is a positive real number. Set UbaUab = 1. We can picture this
by a graph with two nodes and a directed edge from a to b decorated by the exchange
rate Uab. The important observation is that the units in which each asset is measured
are a matter of convention. So we have a “gauge” freedom to rescale at every node
or in a more fancy way a local action of GL+(1,R). The exchange rate Uab is the
connection on our graph allowing for the “parallel transport” or the exchange of
one asset for another. Under local gauge transformations ga, gb ∈ GL+(1,R) the
connection transforms as Uab �→ gaUabg

−1
b . In the case of three assets we will have

a triangular graph with the exchange rates or connections Uab, Ubc, Uca on the edges
and the freedom to rescale at every vertex independently. Transporting around a loop,
in this case the triangle, we obtain the holonomy7 UabUbcUca . When the holonomy
is not equal to one we have arbitrage, or equivalently, no-arbitrage corresponds to a
flat connection.

If we have a complex network of financial securities in different countries the
network will look something like a backbone consisting of nodes corresponding to
the major currencies connected by edges labeled with the foreign exchange rates.
Each currency node is the center of a star made of edges connecting the currency
with the financial securities tradable in this currency with the current prices of the
securities labeling the corresponding edges.8 This network describes “space” at a
certain moment of time.

To evolve our network in time we have to evolve every node. To compare the
value of an asset at time t and t + 1 we need a connection in the time direction. This
is exactly the discounting factor with which a future value is discounted to compare

6To avoid going into financial definitions probably it is better to call it a “tradable thing”, anything
that can be traded, goods, services, financial instruments.
7Because our gauge theory is on a graph it is better to use the word holonomy instead of curvature,
since curvature is infinitesimal holonomy and on a graph this does not make sense.
8The price of any tradable thing is the connection on the edge between this thing and the corre-
sponding currency.
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to present value. When a bank account at interest rate r compounded continuously is
“transported” from t to t + 1 the amount is changed by er . Hence discount factors are
the gauge connections in the time direction. Startingwith our simplest graphwith just
one edge evolving in time for one time period we obtain a quadrilateral with vertices
(a, t), (a, t + 1), (b, t), and (b, t + 1) and “space-like” edges labeled by exchange
rates Uab;t and Uab;t+1 and “time-like” edges labeled by discounting factors Ua;t,t+1

and Ub;t,t+1. The product Uab;tUb;t,t+1Uba;t+1Ua;t+1,t is the holonomy around this
quadrilateral loop. If it is not one we have arbitrage.

Wehavedescribed a tradenetwork as a graph equippedwith a principleGL+(1,R)

bundle (the ability to rescale the unit of measure at every node) and a connection
living on the edges allowing us to “parallel transport”, i.e., to exchange or trade and
evolve in time.

The identification of prices, exchange rates, and discount factors with gauge con-
nections probably has occurred to several people but it is clearly stated probably for
the first time in the works of Ilinski and collaborators, see for example [5, 6]. See also
[15]. The propagation of gauge theory ideas andmethods from physics to finance can
be seen as a manifestation of Mack’s “pushing Einstein’s principles to the extreme”
[7]. It is an amusing turn of fate that the proposal of Weyl [14], marking the birth
of gauge theory, while unapplicable to electrodynamics finds a new incarnation in
finance.

4 Gauge Theory of Welfare Economics

Here I want to take a brief look at the use of gauge connections to define consumer
price indices (CPI). The Malaney–Weinstein theory [8, 13] is probably the first use
of gauge theory in economics. One considers a basket (of goods and services) and
how its value changes with time. Consider the consumption of N different goods and
services. A basket is a vector q in R

N where the i-th component qi is the quantity
of the i-th good or service in the basket. A basket is the counterpart of a portfolio
of financial securities. Prices live in the dual vector space, i.e., they are given by a
price covector p ∈ R

N . The value of the basket is the pairing of the price covector
and the basket vector. In a simpler language the basket can be represented as a
column vector, the prices as a row vector and the pairing as the product pq ∈ R. The
big (political and economic) question is to calculate the cost of living adjustment
(COLA) which is the basis for government support to maintain a minimum standard
of living. The problem is that both baskets and prices change with time. Examples
of CPI are the Laspeyres index (p1q0)/(p0q0) or the Paasche index (p1q1)/(p0q1).
Here the superscript indicates the moment of time. From the viewpoint of gauge
theory one sees immediately that something is wrong with these indices – we are
doing operations on variables at different times. Such variables live in different fibers
and in order to do anything meaningful with them we have to “parallel transport”
them to the same fiber for which we need a connection. The connection of Malaney–
Weinstein has the crucial property to take into account that tastes change. Over long
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periods of time baskets are in practice incomparable – now automobiles with internal
combustion engines are everywhere and horse carriages are only a tourist attraction
but two hundred years ago automobiles were nonexistent. The key observation is
that baskets don’t change abruptly. It took time for cars to take over carriages. At a
given moment of time we have a fixed price covector. Its kernel is a codimension one
subspace in the space of baskets. This is the space of barter baskets. The Malaney–
Weinstein connection A = (qdp)/(qp) is such that the covariant derivative of the
value of a basket is zero for baskets that are modified by changes in the barter
direction.

The Malaney–Weinstein connection has been employed in finance by Farinelli
and Vazquez [12].

5 Nonequilibrium Dynamics

How to introduce dynamics into economics and move away from equilibrium points
is certainly a research program for generations ahead but the view point of gauge
theory could help. We have learned the most important lesson that in a gauge the-
ory the observables are gauge invariant quantities. An example of a gauge invariant
quantity is holonomy. If equilibrium is related to no-arbitrage then we could attempt
to mimic the quantum dynamics of gauge theory in physics, i.e., QED. Very promis-
ing simulations along the proposal for lattice QED of finance of Ilinski have been
performed in [3, 4]. The model of Ilinski is not without critiques [10, 11]. The use
of gauge invariant quantities to describe the dynamics is undisputable. On the other
hand the use of a Boltzmann–Gibbs type of partition function given by a path integral
Z = ∫

DU exp(−βS(U )) with Boltzmann probability density e−βS is rather adhoc
in the financial context.
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On Some Exact Solutions of Heat and Mass
Transfer Equations with Variable Transport
Coefficients

Ilya I. Ryzhkov and Irina V. Stepanova

Abstract Solutions of stationary and non-stationary heat and mass transfer
equations describing thermal diffusion in a binary mixture are investigated. The
dependence of physical properties on temperature and concentration is taken into
account. The resulting differential equations are non–linear and require nontrivial
approaches to their study and construction of exact solutions.

1 Introduction

The equation describing heat conduction or solute diffusion is widely investigated
under the assumption of constant transport coefficients. The existence and unique-
ness theorems for initial and boundary value problems are proved, and exact solutions
are constructed for different types of imposed conditions. Efficient numerical meth-
ods for solving diffusion problems are also developed. In case of variable transport
coefficients, the study of diffusion equation becomes more complex and requires
application of powerful analytical or numerical methods.

In this paper, equations describing thermal diffusion process are investigated.
Thermal diffusion refers to the separation of gas or liquid mixture driven by the
temperature gradient. This process is described by heat and mass transfer equations,
where the thermal conductivity as well as diffusion and thermal diffusion coefficients
are in general functions of temperature and concentration. Investigation of these
equations can be performed with the help of Lie symmetry analysis [9]. A review of
exact solutions for non–linear diffusion–convection equation is given in [4] without
physical interpretation.
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In this work, we construct exact solutions for stationary and non–stationary one–
dimensional thermal diffusion equations. We obtain solutions describing separation
process in aqueous solution of sodium chloride with physical properties depending
on temperature.

2 Problem Statement

Let us consider a binary mixture filling the space between impermeable parallel
plates maintained at different constant temperatures. This simple configuration cor-
responds to an experimental setup, which is used for measuring transport coefficients
in different multicomponent mixtures [5]. In this case, the one-dimensional thermal
diffusion equations have the form

∂T

∂t
= ∂

∂z

(
κ(T,C)

∂T

∂z

)
, (1)

∂C

∂t
= ∂

∂z

(
D(T,C)

∂C

∂z
+ C(1 − C)DT (T,C)

∂T

∂z

)
. (2)

Here t is the time and z is the space coordinate, T is the temperature, C is the
concentration of selected mixture component, κ is the thermal conductivity, and
D and DT are diffusion and thermal diffusion coefficients, respectively. We impose
constant temperatures on the parallel plates and assume that the diffusion flux through
these plates vanishes. In this case, the boundary conditions for Eqs. (1) and (2) are
written as follows

z = 0 : T = T0 − �T

2
≡ T1, z = L : T = T0 + �T

2
≡ T2, (3)

z = 0 and z = L : D(T,C)
∂C

∂z
+ C(1 − C)DT (T,C)

∂T

∂z
= 0, (4)

where�T is the temperature difference between the plates at z = 0 and z = L . Rela-
tions (3) and (4) correspond to typical experimental conditions. At the initial moment
of time t = 0, we impose constant temperature T = T0 and constant concentration
C = C0 for 0 < z < L .

The following sections are devoted to constructing stationary and non–stationary
solutions of the above–described problem.

3 Solution of Steady–State Problem

In the stationary state, the functions T and C depend only on the space coordinate z
and do not depend on time t . Thus, the terms in the left–hand side of Eqs. (1) and (2)
must be dropped, and the initial conditions are out of consideration. However, the
conservation of mass for the selected component requires
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1

L

L∫

0

Cdz = C0. (5)

This relation is obtained by integrating Eq. (2) with respect to z from z = 0 to z = L
and then with respect to t taking into account the initial condition C = C0 at t = 0.

Stationary Eqs. (1) and (2) can be integrated once using boundary conditions (4).
Furthermore, if D(T,C) �= 0, then these equations reduce to the following form after
integration:

κ(T,C)
dT

dz
= κ0, (6)

dC

dz
+ C(1 − C)ST (T,C)

dT

dz
= 0, (7)

where κ0 is the constant and ST = DT /D is the Soret coefficient. Construction of
solution for this problem was studied in our paper [8] in details. Here we present a
brief description of the method. We assume that the variable T is independent and z
is dependent one, i.e. z = z(T ),C = C(T ). Using the technique suggested, e.g. in
[6], we rewrite Eqs. (6) and (7) as

dz

dT
= κ(T,C)

κ0
, (8)

dC

dT
= −S′

T (T,C), (9)

where S′
T = C(1 − C)ST (T,C). Boundary conditions (3) become

z(T1) = 0, z(T2) = L . (10)

The solution of (8) and (10) is given by

z = 1

κ0

T∫

T1

κ
(
τ ,C(τ )

)
dτ , κ0 = 1

L

T2∫

T1

κ
(
T,C(T )

)
dT . (11)

Additional condition (5) transforms into

T2∫

T1

κ(T,C(T ))(C(T ) − C0)dT = 0. (12)

If the coefficients κ(T,C) and ST (C, T ) are known, then we can integrate Eq. (9)
analytically or numerically with condition (12). Then one should use solution (11)
to invert the function z = z(T ), and reconstruct the temperature and concentration



602 I.I. Ryzhkov and I.V. Stepanova

profiles T (z) and C(z). Note that for numerical calculation of C(T ), we should
impose the boundary condition C(T1) = C1, where C1 is found in order to satisfy
condition (12). For arbitrary form of coefficients κ(T,C) and ST (T,C), we can
completely solve this problem by numerical method only. The shooting procedure
can be employed to find the value C1. For more details, see paper [8].

3.1 Example of Exact Solution

Here we give example of an exact solution, which describes thermodiffusion sep-
aration in binary mixture. At first, we should mention that for constant physical
properties, the solution represents a linear dependence of functions T and C on the
space coordinate z. When variable physical properties are taken into account, the
solution becomes non–linear.

Let us consider aqueous solution of sodium chloride as a working binary mix-
ture. The thermal conductivity and Soret coefficient are assumed to be functions of
temperature only. We find the functional dependencies of these coefficients with the
help of measured data from paper [2] by least squares method at mean concentration
C0 = 0.0285. They are as follows

κ(T ) = k0 + k1T, ST (T ) = a0 + a1T + a2T 2

b + T
, (13)

where
k0 = 0.57, k1 = 0.0016,

a0 = −2.181 · 10−2, a1 = 1.03 · 10−3, a2 = 6.53 · 10−5, b = 17.218.

The exact solution for functions T and C under the assumption C(1 − C) ∼ C0(1 −
C0) is presented by the formulas

T = −a0
a1

+
√

T 2
0 + 2�T

(1
2

− z

L

)(
T0 + a0

a1

)
+ �T 2

4
+ a0

a1

(
2T0 + a0

a1

)
(14)

C = C0 + C0(1 − C0)
[a2
2
T 2 + (a1 − ba2)T + (b2a2 − ba1 + a0)

(
1 +

+ ln (2T + 2b) + 1

2�T

(
(2T0 + 2b − �T ) ln (2T0 + 2b − �T ) − (15)

−(2T0 + 2b + �T ) ln (2T0 + 2b+�T )
))+a2

(
bT0 − �T 2

24
− T 2

0

2

)
− a1T0

]
.
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Fig. 1 Temperature (a) and concentration (b) profiles in aqueous solution of sodium chloride

To obtain the profileC = C(z) in explicit form, one should substitute T from (14)
into (15). The profiles of temperature T and concentration C are shown in Fig. 1 for
various temperature differences �T between the plates and mean temperature T0 =
12 ◦C. It is easy to see that temperature distribution is close to linear despite of the fact
that formula (14) demonstrates a nonlinear dependence of T on z. The concentration
profiles show that the separation effect becomes stronger with increasing �T from
10K up to 20 K. The concentration reaches maximum at the point where the Soret
coefficient is equal to zero and then it decreases. It should be emphasized that the
function C is essentially nonlinear when the Soret coefficient is not constant.

4 Solution of Non–stationary Problem

In this section, we consider non–stationary problem for concentration (see Eq. (2))
assuming that the temperature distribution described by Eq. (1) is stationary. It often
occurs in practical situations that the temperature profile is established much more
rapidly than the concentration profile due to large difference in characteristic times. It
is supposed that the coefficient κ =const. Then fromEq. (1) and boundary conditions
(3) it follows that

T = T0 + �T
(1
2

− z

L

)
.

As in Sect. 3.1, we take aqueous solution of sodium chloride as a working binary
mixture. Coefficients D and DT are linear and quadratic functions in z, respectively,
due to linear dependence of temperature on coordinate z. We substitute these func-
tions into Eq. (2) assuming C(1 − C) ∼ C0(1 − C0), where C0 = 0.0285 as before.
After some calculations, we obtain the equation for concentration C in the form
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∂C

∂t
= ∂

∂z

(
p(z)

∂C

∂z

)
+ Φ(z), (16)

where p(z) = m1z + m2, Φ(z) = m3z + m4. Constants mi , i = 1, . . . , 4, can be
found from coefficients in formulas (13). The initial and boundary conditions for
Eq. (16) have the form

C(t = 0) = C0,
∂C

∂z

∣
∣
∣
z=0

= C1,
∂C

∂z

∣
∣
∣
z=L

= C2, (17)

whereC1 = −DT 0�T/(D0L),C2 = −DT 1�T/(D1L) are constants. Here D0, DT 0

are values of coefficients D and DT at z = 0, and D1, DT 1 are values of those
coefficients at z = L .

The solution of problem (16) and (17) can be found with a help of Green func-
tion according to handbook [7]. This solution is constructed by means of series with
respect to Bessel functions. These series have very slow convergence. It is necessary
to take about one thousand terms for obtaining the solution with good accuracy. Here
we describe another way of solving this problem using the Laplace transform [1].
Application of this transform leads to the boundary value problem for ordinary dif-
ferential equation for the Laplace image C̃ of the functionC . Solution of this problem
is obtained in the form

C̃ = (M1 + iM2)I0

(
2
√
p(m1z + m2)

m1

)
− 2M2

π
K0

(
2
√
p(m1z + m2)

m1

)
+

+ m3z + m4 + pC0

p2
+ m1m3

p3
,

M1 = π

2p3/2(K 0
1 I

L
1 − I 01 K

L
1 )

[√
m2(m3/p − C1)(i I

L
1 + 2K L

1 /π) −

− √
m1L + m2(m3/p − C2)(i I

0
1 + 2K 0

1/π)
]
,

M2 = π[√m1L + m2(m3/p − C2)I 01 − √
m2(m3/p − C1)I L1 ]

2p3/2(K 0
1 I

L
1 − I 01 K

L
1 )

.

Here I0, K0, I1 and K1 are the modified Bessel functions of zero and first order.
In the expressions for constants M1 and M2, indices 0 and L mean the value of
corresponding functions at z = 0 and z = L , respectively, i is the imaginary unit,
p is the complex parameter of the Laplace transform. Inversion of the function
C̃ is performed with a help of numerical procedure suggested in [3]. As a result,
solution of non–stationary problem is obtained. Evolution of concentration profiles
with respect to time t is presented in Fig. 2. Maximum of concentration corresponds
to the point where Soret coefficient is equal to zero. There is no separation of mixture
at this point. Thereby, more salty and more dense component is located in central
part of the layer. With increasing time, the unsteady concentration profile tends to
the stationary solution (see red line in Fig. 2).
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Fig. 2 Concentration profile
at different times; t = ∞
corresponds to the stationary
profile

5 Conclusion

We have studied solutions of stationary and non-stationary heat and mass trans-
fer equations describing thermal diffusion in a binary mixture. The dependence of
physical properties on temperature and concentration is taken into account. Exam-
ples of solutions, which describe the separation of sodium chloride aqueous solution
between parallel plates with different temperatures, are constructed and analyzed.
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A Star Product for the Volume Form
Nambu-Poisson Structure on a Kähler
Manifold

Baran Serajelahi

Abstract Every symplectic (1-plectic) manifold (M, ω) of dimension 2n may be
regarded as a (2n − 1)-plectic manifold by wedging together n copies of the sym-
plectic 2-form to get the Liouville volume form. This volume form defines a Nambu-
Poisson structure {., . . . , .}NP of order 2n on C∞(M). When the manifold is Kähler,
the Kähler structure can be used to define a star product (known as the Berezin-
Toeplitz star product) for the Poisson algebra C∞(M). For a Kähler manifold (M, ω)

we define a higher order analogue of the Berezin-Toeplitz star product on theNambu-
Poisson algebra (C∞(M), {., . . . , .}NP).

1 Introduction

In the paper [2], Bordemann, Meinrenken and Schlichenmaier define an operator
quantization thatworks for any compactKählermanifold (M, ω)with integralKähler
form. TheKähler formω is called integral when the cohomology class of the rescaled
Kähler form ω

2π is an integral cohomology class. By an operator quantizationwemean
a mapping from the algebra of smooth functions on M (which is a commutative
algebra under the operation of pointwise multiplication of functions, as well as a
Poisson algebra with the bracket defined by {f , g} := ω(Xf ,Xg), where Xf is the
Hamiltonian vector field of f ∈ C∞(M)) to the algebra of operators on some Hilbert
space H (which is a noncommutative algebra under the operation of composition
of operators as well as a Lie algebra with the commutator of operators as the Lie

bracket) C∞(M)
Q−→ Op(H ), f �→ f̂ . Here and throughout the text C∞(M) denotes

smooth complex valued functions on M. The quantization mapping is required to
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satisfy certain properties1 [3] which include C-linearity and a version of Dirac’s
quantization conditions2:

1 �→ const(�)I,

{f , g} �→ const(�)[f̂ , ĝ].

In [2] the authors solve the problem of quantizing a compact Kähler manifold (M, ω)

with integral Kähler form by constructing a sequence of Hilbert spaces H k (k ∈
{1, 2, . . . }) along with a sequence of mappings C∞(M)

T (k)−−→ End(H k). The authors
go on to prove that their mappings satisfy the axioms of quantization asymptotically,
they establish the following theorem:

Theorem 1.1 ([2] Thm. 4.1, 4.2, [8] Thm. 3.3) For f , g ∈ C∞(M), as k → ∞,

(i) ∣
∣
∣
∣
∣
∣ik

[
T (k)
f ,T (k)

g

]
− T (k)

{f ,g}
∣
∣
∣
∣
∣
∣ = O

(
1

k

)
,

(ii) there is a constant C = C(f ) > 0 such that

|f |∞ − C

k
≤

∣
∣
∣
∣
∣
∣T (k)

f

∣
∣
∣
∣
∣
∣ ≤ |f |∞ .

Theorem 1.1 establishes the second of Dirac’s quantization conditions up to a term
of order 1

k , which is the best one can do in this setting [6]. This construction is known
as Berezin-Toeplitz operator3 quantization.

The term quantization is borrowed bymathematicians from physicists. In the con-
text of classical mechanics C∞(M) is known as the classical algebra of observables.
For mathematicians every f ∈ C∞(M) is called an observable, although from the
physical point of view only real valued functions have any meaning. In this context
quantization leads to a quantum mechanical version of the classical system that is
being quantized. Quantization in the mathematical sense is a much broader concept
than it is from the physical point of view. For mathematicians the term quantization

can refer to any number of mappings C∞(M)
Q−→ Op(H ) satisfying similar but not

identical axioms and that work for manifolds with different levels of structure.
The focus of the present article will be on deformation quantization rather than

on operator quantization. In deformation quantization rather than assigning opera-
tors to functions (which is the method of operator quantization) one starts with the
Poisson algebra (C∞(M), {·, ·}) and deforms it into a noncommutative Lie alge-
bra like (H , [·, ·]). Foundational work on deformations of algebras was done by

1These properties are known as the axioms of quantization, the exact axioms that are chosen depend
somewhat on the mathematical setting. For a discussion of the reasons behind this and of the axioms
that are used in the Kähler setting see [3].
2const(�) denotes a constant that depends on �.
3Because of the role played by the operators on the Hilbert space H .
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Gerstenhaber [5], the Lie algebra case in particular was done by Nijenhuis and
Richardson [7].

Definition 1.2 A deformation of a Lie algebra g with Lie bracket {f , g} is a family
of Lie brackets depending on a parameter t, defined by

{f , g}t := {f , g} +
∞∑

n=1

tnCn(f , g),

where theCn are bilinear, skew symmetric g-valuedmaps,Cn : ∧2g → g. The brack-
ets {f , g}t take values in g[[t]], so we must view the Lie algebra g as a subalgebra of
the algebra of formal power series g[[t]] in order for this definition to make sense.4

Furthermore we require that the deformed bracket {f , g}t satisfies the Jacobi identity
for every t.

The following definition captures the notion of deformation that is appropriate for
quantization. LetA = C∞(M)[[t]], the space of formal power series with coefficients
in C∞(M). A product � on A is called a (formal) star product if it is an associative
C-linear product such that

(i) A/tA ∼= C∞(M), in particular f � g mod t = f g, for f , g ∈ C∞(M) ⊂ C∞
(M)[[t]].

(ii) 1
t (f � g − g � f ) mod t = −i{f , g},

where f , g ∈ C∞(M). We can also write

f � g =
∞∑

j=0

Cj(f , g)t
j, (1)

with Cj(f , g) ∈ C∞(M). The Cj should be C-bilinear. The conditions (i) and (ii) can
be reformulated as

C0(f , g) = f g, (2)

and
C1(f , g) − C1(g, f ) = −i{f , g} (3)

The bilinearity of theCj guarantees that the star productwill be bilinear. The condition
(i) says that the star product is in fact a deformation5 of the associative algebra
(C∞(M), •), where f • g is the usual pointwise multiplication of functions. Every
star product defines a skew symmetric bracket of functions by the formula

4If the bracket {f , g}t converges for all t and for all f , g ∈ C∞(M) we would be in the most ideal
situation, of course this will depend on the details of the definition of the Ci.
5in the sense of [5].
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[f , g]Q := 1

t
(f � g − g � f ). (4)

Condition (ii) is equivalent to the correspondence principle6 (of quantummechanics)
for the quantum bracket defined by (4). That is, (ii) says that [f , g]Q is a deformation
of the Poisson algebra (C∞(M), {, }) [5].

In the article [9], Schlichenmaier applies the Berezin-Toeplitz operator quantiza-
tion (Theorem 1.1) to give a proof of the following theorem.

Theorem 1.3 ([9] Thm 2.2) There exists a unique (formal) star product on C∞(M)

f � g ≡
∞∑

j=0

ν jCj(f , g), (5)

in such a way that for f , g ∈ C∞(M) and for every N ∈ N we have with suitable
constants KN (f , g) such that for all m

||T (m)

f T (m)
g −

∑

0≤j<N

(
1

m

)j

T (m)

Cj(f ,g)
|| ≤ KN (f , g)

(
1

m

)N

(6)

2 A Deformation of the Nambu Bracket

In [1] we extend the Berezin-Toeplitz quantization to the multisymplectic manifold
(M, ωn

n! ) with the Nambu-Poisson structure (C∞(M), {., . . . , .}NP) and we prove an
analog of Theorem 1.1. As has been explained already, Berezin-Toeplitz quantization
leads to a deformation quantization and the Berezin-Toeplitz star product [9]. In this
section we perform this step in the multisymplectic setting [1]. We propose to define
a higher order analogue of the Berezin-Toeplitz star product.

Consider the (2n − 1)-plectic manifold (M,Ω) obtained from the symplectic
manifold (M, ω), whereΩ = 1

n!ω
n. Define a star product (the terminology is justified

by Proposition 2.1) of 2j (j ≤ n) functions in C∞(M) by the formula

� (f1, f2, . . . , f2j−1, f2j) =
∞∑

i=0

tiDi(f1, f2, . . . , f2j−1, f2j) (7)

where

Di(f1, f2, . . . , f2j−1, f2j) := Ci(f1, f2) . . .Ci(f2j−1, f2j) (8)

6This principal says that the classical theory should be recovered in the limit t → 0.
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and the Ci are the coefficients of some star product (such as the Berezin-Toeplitz
star product, theorem 1.3). The following formula defines a Nambu-Poisson bracket
{., ..., .} : ∧2n C∞(M) → C∞(M)

df1 ∧ ... ∧ df2n = {f1, ..., f2n}Ω (9)

In order to prove our main result (Proposition 2.1) we will use a formula for the 2n-
ary bracket defined by (9), in terms of the usual Poisson bracket and a (2n − 2)-ary
bracket. One may define a 2j-ary bracket (j ≤ n) for any Poisson manifold (M, {., .})
of dimension 2n by the formula,

{f1, . . . , f2j} = 1

2jj!
∑

σ∈S2j
ε(σ )

j∏

i=1

{fσ(2i−1), fσ(2i)} (10)

In [10] (Chap.2)we demonstrated that the (2n)-ary bracket defined by (9) agreeswith
the one defined by (10) when j = n, so that (10) may be regarded as a generalization
of theNambu-Poisson bracket (9), [9] contains the same result. It should be noted that
for j < n the bracket defined by the formula (10) is not a Nambu-Poisson bracket
because it does not satisfy the fundamental identity [4]. Those identities are not
needed to establish the relation (11) that we will need for the proof of Proposition
2.1.

{f1, . . . , f2j} = {f1, f2}{f3, . . . , f2j} + (11)

+
2j−1∑

i=3

(−1)i{f1, fi}{f2, . . . , fi−1, fi+1, . . . , f2j} +

+ {f1, f2j}{f2, . . . , f2j−1}

For j = 3 the formula reads

{f1, f2, f3, f4, f5, f6} = {f1, f2}{f3, f4, f5, f6} − {f1, f3}{f2, f4, f5, f6} + (12)

+ {f1, f4}{f2, f3, f5, f6} − {f1, f5}{f2, f3, f4, f6} +
+ {f1, f6}{f2, f3, f4, f5}

Formula (11) can be established by simply substituting the definition (10) for all of
the brackets on both sides of the relation (11).

Proposition 2.1 The 2j-ary product defined by (7) satisfies the following properties:

1. D0(f1, f2, . . . , f2j−1, f2j) = f1f2 . . . f2j−1f2j
2.

∑
σ∈S2j ε(σ )D1(fσ(1), fσ(2), . . . , fσ(2j−1), fσ(2j)) = j!(−i)j{f1, f2, . . . , f2j−1,

f2j}

http://dx.doi.org/10.1007/978-981-10-2636-2_2
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When j = n the product defined by (7) can be viewed as a generalization of the
Berezin-Toeplitz star product (1.3) where the Nambu-Poisson bracket (9) plays the
role of the Poisson bracket.

Proof Proof of Proposition 2.1
The proof is an induction with base case j = 1 provided by (3) and involving

(11) in the induction step. Throughout the proof ε(σ ) stands in for the sign of the
permutation σ .

∑

σ∈S{1,...,2j}
ε(σ )C1(fσ(1), fσ(2)) . . .C1(fσ(2j−1), fσ(2j)) =

= j(C1(f1, f2) − C1(f2, f1))(
∑

γ∈S{1,...,2j}\{1,2}
ε(γ )C1(fγ (3), fγ (4)) . . .

. . . C1(fγ (2j−1), fγ (2j)))

+
2j−1∑

i=3

j(C1(f1, fi) − C1(fi, f1))(
∑

γ∈S{1,...,2j}\{1,i}
ε(γ )C1(fγ (2), fγ (3)) . . .

. . . C1(fγ (i−1), fγ (i+1)) . . .C1(fγ (2j−1), fγ (2j))) +
+ j(C1(f1, f2j) − C1(f2j, f1))(

∑

γ∈S{1,...,2j}\{1,2j}
ε(γ )C1(fγ (3), fγ (4)) . . .

. . . C1(fγ (2j−2), fγ (2j−1))) =

= j!(−i)j({f1, f2}{f3, . . . , f2j} +
2j−1∑

i=3

(−1)i{f1, fi}{f2, . . . , fi−1, fi+1, . . . , f2j} +

+ {f1, f2j}{f2, . . . , f2j−1}) = j!(−i)j{f1, . . . , f2j}.

This proves 2., 1. follows from (8) and (2).

Remark 2.2 The requirement

∑

σ∈S2j
ε(σ )D1(fσ(1), fσ(2), . . . , fσ(2j−1), fσ(2j)) = j!(−i)j{f1, f2, . . . , f2j−1, f2j}

is a generalization of the requirementC1(f , g) − C1(g, f ) = −i{f , g}whichwemake
for binary star products. As we will see by the next definition, this constraint ensures
that our star products (which are deformations, of the associative product of two
or more functions, vis-a-vis condition 1.) lead to infinitesimal deformations of the
2j-ary bracket (9) (we will denote this family of deformations by �[f1, . . . , f2j]t).

�[f1, . . . , f2j]t := 1

t

⎛

⎝
∑

σ∈S2j
ε(σ ) � (fσ(1), . . . , fσ(2j))

⎞

⎠
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=
∑

σ∈S2j
ε(σ )D1(fσ(1), . . . , fσ2j) + t

∑

σ∈S2j
ε(σ )D2(fσ(1) . . . , fσ(2j)) + O(t2)

= j!ij{f1, . . . , f2j} + t
∑

σ∈S2j
ε(σ )D2(fσ(1), . . . , fσ(2j)) + O(t2)

= j!ij{f1, . . . , f2j} + tα(f1, . . . , f2j) + O(t2)

where
α : ∧2jC∞(M) → C∞(M)

Remark 2.3 The star product �(., . . . , .) satisfies some additional properties that are
worth mentioning.

1. �(1, f2, . . . , f2j) = �(f2, 1, . . . , f2j) = · · · = �(f2, f3, . . . , f2j−1, 1) =
= f2f3 . . . f2j−1f2j. This means, in other words, that multiplication by a constant
c in classical mechanics corresponds throughout the deformation to multiplica-
tion by the constant power series c. This is one of the usual axioms of quantiza-
tion. This property is equivalent toDk(1, f2, . . . , f2j) = Dk(f2, 1, . . . , f2j) = · · · =
Dk(f2, f3, . . . , f2j−1, 1) = 0 for k ≥ 1, it follows from the corresponding property
of 3.5 and the definition of the Dk .

2. A star product of 2j functions should be called local if for all f , g ∈ C∞(M), the
support suppDj(f1, . . . , f2j) is contained in suppf1

⋂ · · · ⋂ suppf2j for all j ∈ N0.
This is the obvious generalization of locality of a star product for j = 1. The
locality of our star product depends on the locality of the star product defined by
Schlichenmaier, see [9] and the comments therein.
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