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Preface

This book is based on a course on “Soft Matter,” which I teach for first-year
graduate students in the Chemical Physics Interdisciplinary Program at the Liquid
Crystal Institute of Kent State University. Students come into this program from
several undergraduate majors—including physics, chemistry, materials science,
chemical, or electrical engineering—and from many countries. The purpose of my
course is to teach this diverse group of students about the statistical physics aspects
of liquid crystals and other soft materials. At the same time, other professors teach
the students about other aspects of these materials—including chemistry, optics,
and design of devices. The students can then combine all of these scientific dis-
ciplines in their Ph.D. dissertation research.

In teaching this course, I have found that there are several excellent
undergraduate-level books that describe the experimental phenomena of soft
materials. There are also many excellent graduate-level books on the theoretical
physics of these materials. However, I believe that students need a guide to help
them make the transition between these levels—a basic introduction to theoretical
physics, explaining the concepts of symmetry, broken symmetry, and order
parameters; phases and phase transitions; mean-field theory; and the mathematics of
variational calculus and tensors.

I have written this book to meet that need. In particular, I have tried to make it
useful for two types of students: First, there are students going into theoretical
research. This book will help them to progress toward studying more advanced
topics and reading more advanced books on theoretical physics. Second, there are
students going into other disciplines, such as experimental physics, chemistry, and
engineering. These students may never plan to study more advanced theory, but this
book will prepare them to understand theoretical seminars, read theoretical articles,
and collaborate with theoretical colleagues.

To serve this diverse audience of students, I have taken two steps. First, I have
intentionally written the book in an informal, conversational style. I find that this
style is accessible to students from a wide range of backgrounds—from different
scientific fields as well as different nationalities.
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Second, as a technological innovation, the book is accompanied by a set of
“interactive figures” (available at http://www.springer.com/cda/content/document/
cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-15091
69-p177545420). Some of these figures allow readers to change parameters and see
what happens to a graph, some allow readers to rotate a plot or other graphics in
3D, and some do both. The interactive figures help students to develop their
intuition for the physical meaning of equations. I strongly urge all readers to
download and try them while reading the book. They are in a Wolfram Computable
Document Format (CDF) file, which can be opened with Mathematica or with
Wolfram’s free CDF player (available at https://www.wolfram.com/cdf-player).
The player has versions for Windows, Mac, and Linux (although unfortunately not
for iOS or Android).

I would like to thank all the students in my classes, as well as my research
students, for their feedback as I developed the concepts for this book. I particularly
thank Thanh-Son Nguyen for his careful reading of the first draft.

I gratefully acknowledge National Science Foundation Grants DMR-1106014
and 1409658, which supported my research while I wrote this book. Furthermore, I
thank the Liquid Crystal Institute and Kent State University for inviting me to join
their faculty 10 years ago, and for their consistent support of my research and
teaching.

Kent, OH, USA Jonathan V. Selinger
April 2015
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Chapter 1
Toy Model

Abstract This chapter presents a simple “toy model” to illustrate the concepts of
energy, entropy, and free energy. In this model, multiple microstates are grouped
together into a single macrostate through a process of coarse-graining. The system
tends to go into themacrostate thatminimizes the free energy.At low temperature, this
is the ordered state with the lowest energy. At high temperature, it is the disordered
state with the highest entropy or multiplicity.

To see a world in a grain of sand,
And a heaven in a wild flower,

Hold infinity in the palm of your hand,
And eternity in an hour.

...
William Blake, Auguries of Innocence

Physicists are always looking for the Big Ideas—ideas that are fundamentally simple
in concept but can be applied to understand many phenomena throughout nature. In
my field of statistical mechanics and phase transitions, the Big Idea is the balance
between order and disorder, a balance that is controlled by temperature. In this
chapter, I would like to introduce you to this Big Idea through a toy model, i.e., a
model which is not a serious theory but is just meant as a simple way to illustrate a
basic point. I want to see the world not in a grain of sand, but in a speck of dust.1

Let us begin with the situation shown in Fig. 1.1. Here, a speck of dust can have
two states: it can be either on the floor or on the table. Each of these states has some
energy Efloor or Etable. Based on the Boltzmann distribution,2 these two states have
the probabilities pfloor = (e−Efloor/kB T )/Z and ptable = (e−Etable/kB T )/Z , where kB

1Disclaimer: Of course, this is not a real model of the physics of dust. It is just a toy!.
2I am assuming that you have already seen the Boltzmann distribution in a previous course. If you
have not, you should consult a textbook on thermal physics or statistical thermodynamics, as listed
at the end of the chapter.

© Springer International Publishing Switzerland 2016
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2 1 Toy Model

Floor Table
Energy Efloor Etable

Probability (e−Efloor/kBT )/Z (e−Etable/kBT )/Z

Fig. 1.1 Toy model for one table, with the corresponding energies and probabilities

is Boltzmann’s constant,3 T is the temperature, and Z = e−Efloor/kB T + e−Etable/kB T

is the partition function that makes the probabilities add up to 1.
Which state is more likely? Let us compare the two probabilities: The speck of

dust is more likely to be on the floor if

pfloor > ptable,

e−Efloor/kB T

Z
>

e−Etable/kB T

Z
,

− Efloor

kB T
> − Etable

kB T
,

Efloor < Etable. (1.1)

Hence, the speck is more likely to be on the floor than the table if the floor energy is
lower than the table energy. That is not a big surprise!

Now let us consider a slightly more interesting problem. Suppose there are
N tables, where N is some large number, as shown in Fig. 1.2. The probability
of being on the floor is (e−Efloor/kB T )/Z . The probability of being on a particu-
lar table is (e−Etable/kB T )/Z . The probability of being on any of the N tables is
N (e−Etable/kB T )/Z . Here, the partition function that normalizes the probabilitiesmust
be Z = e−Efloor/kB T + Ne−Etable/kB T .

In this new problem, let us compare the probabilities again. The speck is more
likely to be on the floor than on any of the tables if

3Why do I use the subscript B in Boltzmann’s constant? Well, my PhD advisor wrote it that way,
and now I cannot help myself.
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Floor Any table
Energy Efloor Etable

Probability (e−Efloor/kBT )/Z N(e−Etable/kBT )/Z
Entropy 0 kB logN
Free energy Efloor Etable − kBT logN

Fig. 1.2 Toy model for many tables, with the corresponding energies, probabilities, entropies, and
free energies

pfloor > pany table,

e−Efloor/kB T

Z
>

Ne−Etable/kB T

Z
,

− Efloor

kB T
> − Etable

kB T
+ log N ,

Efloor < Etable − kB T log N . (1.2)

This little calculation shows that we should not just compare the energy Efloor and
Etable. Instead, we should compare some adjusted energy that takes into account
the multiplicity of the states. The adjustment (without the factor of T ) is called the
entropy, and the adjusted energy is called the free energy. For the group of all table
states, the entropy is

Stable = kB log N , (1.3)

and the free energy is

Ftable = Etable − T Stable = Etable − kB T log N . (1.4)

Likewise, because there is only one floor state, the entropy of the floor is

Sfloor = kB log(1) = 0, (1.5)
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and the free energy of the floor

Ffloor = Efloor − T Sfloor = Efloor − kB T log(1) = Efloor. (1.6)

Hence, the speck is more likely to be on the floor than on any of the tables if

Ffloor < Ftable. (1.7)

From this toy model, I think we learn three general lessons. First, we see the
importance of grouping states together. If we care about whether the speck is on
any table, and we do not care which table, then it is appropriate to group all of the
table states together. In this grouping, we are treating a collection of microstates
as a single macrostate. This macrostate has an energy E and a multiplicity N (and
hence an entropy S = kB log N ). This grouping is our first example of the concept
of coarse-graining, which will be fundamental throughout statistical mechanics.

Second,we see the concept of free energy,which combines the energy and entropy
of a macrostate into the quantity F = E − T S. This quantity is essential for under-
standing what macrostate is most likely to occur at a nonzero temperature T .

Third, we see that the relative importance of energy and entropy depends on
temperature. At low temperature, energy is the dominant part of the free energy,
and the system is most likely to go into whatever macrostate has the lowest energy.
That is usually a single, special state, which might be called an ordered state. By
contrast, at high temperature, entropy is the dominant part of the free energy, and the
system is most likely to go into whatever macrostate has the highest entropy. That is
usually a big collection of many microstates. They each have a high energy, so they
are individually unlikely, but there are a lot of them! That collection might be called
a disordered state.

Now, dear students, I imagine that some of you might have an objection. You
might say “What do you mean by defining the free energy of a state? I have already
learned the definition of free energy in a class on thermal physics or statistical ther-
modynamics, and it was different! In that class, we did not talk about the free energy
of a state; we just talked about THE free energy. It was defined in terms of the
partition function Z as”

F = −kB T log Z . (1.8)

“So what’s going on here?!?”
I am glad you asked that question. Let us look at Eq. (1.8) for THE free energy,

and rewrite it as

e−F/kB T = Z = e−Efloor/kB T + e−Etable 1/kB T + · · · + e−Etable N /kB T . (1.9)
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Now we group the N table microstates together into a single macrostate, and rewrite
the equation as

e−F/kB T = Z = e−Efloor/kB T + Ne−Etable/kB T (1.10)

= e−Ffloor/kB T + e−Ftable/kB T . (1.11)

Look at this: When we combine many microstates together in the partition func-
tion, we get the free energy of the combined macrostate. We can keep combining
macrostates together to make super-macrostates, and combining super-macrostates
to make super-duper-macrostates, and each of them has a free energy. When we
eventually finish combining all possible states together, we reach THE free energy
of the system. That is coarse-graining!

At this point, I think we have learned everything we can from this toy model, and
we need to move on to something more physical. Onward!

Further Reading

This book assumes that you are already familiar with the basic principles of thermal
physics or statistical thermodynamics, particularly the Boltzmann distribution. If you
need to learn these principles, some textbooks are

1. R. Baierlein, Thermal Physics (Cambridge, 1999)
2. C. Kittel, R. Kroemer, Thermal Physics (Freeman, 1980)
3. R. Reif, Fundamentals of Statistical and Thermal Physics (Waveland, 2008)
4. D.V. Schroeder, An Introduction to Thermal Physics (Addison-Wesley, 1999)

A more advanced book, with an unusual point of view, is

5. J.P. Sethna, Statistical Mechanics: Entropy, Order Parameters, and Complexity
(Oxford, 2006)

It is available from the the author’swebsite http://sethna.lassp.cornell.edu/statistical_
mechanics_entropy_order_parameters_and_complexity.

http://sethna.lassp.cornell.edu/statistical_mechanics_entropy_order_parameters_and_complexity
http://sethna.lassp.cornell.edu/statistical_mechanics_entropy_order_parameters_and_complexity


Chapter 2
Ising Model for Ferromagnetism

Abstract This chapter presents the Ising model for ferromagnetism, which is a
standard simple model of a phase transition. Using the approximation of mean-field
theory, the free energy is minimized, and hence the magnetization is calculated, as a
function of temperature and applied field. This calculation demonstrates some funda-
mental concepts in statistical mechanics, including spontaneous symmetry breaking,
an order parameter with magnitude and direction, first- and second-order phase tran-
sitions, and a critical point characterized by critical exponents. In the rest of the book,
these concepts will be applied to the theory of soft matter.

In this chapter, I will introduce the Ising model for ferromagnetism. This is probably
the single most commonly studied model in statistical mechanics—one might say
that the Ising model is to statistical mechanics as the fruit fly is to genetics. As you
will see, the Ising model shows the essential concept of how the balance between
energy and entropy leads to a phase transition.

Historical note: This model of ferromagnetism was developed in 1924 by Pro-
fessor Wilhelm Lenz and his graduate student Ernst Ising. As far as I know, it is the
only case in the history of science where the work was named after the student, not
after the professor. I promise you that will NEVER happen again!

2.1 Model

In the Ising model, we consider a lattice of magnetic moments, as shown in Fig. 2.1.
(In this figure, I have drawn a two-dimensional (2D) square lattice, but in general,
we could have any lattice structure in any dimension.) On each lattice site, the local
magnetic moment is represented by a “spin,” drawn as an arrow in the figure. We
assume that the spin has just two possible states, either pointing up or pointing
down. Mathematically, we represent the spin at site i by the variable σi = ±1. In this
notation,+1means that the spin is pointing up, and−1means that it is pointing down.

The energy for the Isingmodel includes two contributions: the interaction between
neighboring spins and the effect of an applied magnetic field on each individual spin.
The interaction between neighboring spins tends to induce parallel alignment of the

© Springer International Publishing Switzerland 2016
J.V. Selinger, Introduction to the Theory of Soft Matter,
Soft and Biological Matter, DOI 10.1007/978-3-319-21054-4_2
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8 2 Ising Model for Ferromagnetism

Fig. 2.1 Example of the
Ising model on a 2D square
lattice. Each arrow is a
“spin,” which represents a
magnetic moment that can
point either up or down

neighbors, so it should be favorable (negative) when the neighbors are both +1 or
both −1, and unfavorable (positive) when the neighbors are +1 next to −1. Hence,
for each pair of neighbors i and j , the interaction energy can be written as −Jσiσ j ,
where J is a positive coefficient giving the interaction strength.1 If the magnetic field
h is pointing up, it favors each spin pointing up; if the field is pointing down, it favors
each spin pointing down.2 Hence, for each site i , the field energy can be written as
−hσi . Putting these pieces together, the total energy for the system becomes

E = −J
∑

〈i, j〉
σiσ j − h

∑

i

σi . (2.1)

Note the indices on these two sums. In the first sum, the angle brackets 〈i, j〉
represent nearest-neighbor pairs (for example, north-south or east-west on the 2D
square lattice); the sum is taken over all nearest-neighbor pairs. By comparison,
the second sum is taken over all individual sites i , which are each affected by the
magnetic field.

Donotworry about the edges of the system;wewill neglect them in our discussion.
That is a reasonable approximation if the system is very large, so that only a tiny
fraction of the sites are on the surface.

Our goal is now to calculate how much magnetic order is in the system. Suppose
there are N spins in the lattice,with N↑ spins pointing up and N↓ spins pointing down,

1The parameter J is sometimes called the “exchange constant,” for reasons based on the quantum
mechanics of magnetism.
2To be precise, h is proportional to the magnetic field H , scaled by the magnetic moment μ per
spin; people often disregard the factor of μ and refer to h as a field.
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so that N = N↑ + N↓. The total magnetic moment of the system is μ(N↑ − N↓),
where μ is the magnetic moment of each spin, and the largest possible magnetic
moment is μN . Hence, it is natural to define the “magnetic order parameter” or
“magnetization” M as the expectation value of the magnetic moment relative to the
largest possible magnetic moment,

M =
〈

N↑ − N↓
N

〉
. (2.2)

Hence,wewant to calculate M as a functionof the interaction strength J , themagnetic
field h, and the temperature T .

Note that M can assume values from −1 to 1. The absolute value of M indicates
the magnitude of magnetic order. If |M | is close to 0, then the system is highly
disordered, with approximately half of the spins pointing up and half pointing down.
By comparison, if |M | is close to 1, the system is highly ordered, with almost all of
the spins pointing in the same direction. The positive or negative signs of M indicate
the direction of magnetic order—if it is positive, then the net order is pointing up; if
it is negative, then the net order is pointing down. In further chapters, we will see that
these are very general features of order parameters; they always show the magnitude
and direction of order.

2.2 Non-interacting Spins

As a first step, just for practice, let us do the calculation for non-interacting spins
with J = 0. In this case, we can solve for M exactly, and it will help us get ready
for the much harder problem of interacting spins with J > 0.

In this section, I will present two ways to solve the problem of non-interacting
spins. The first approach is a standard solution, which you have probably seen in
courses on thermal physics or statistical thermodynamics. The second approach is a
more interesting solution in terms of energy and entropy.

2.2.1 Standard Solution

For the standard solution, we begin with the partition function

Z =
∑

states

e−Estate/kB T . (2.3)

Here, a “state” refers to the full list of the values of the spins σ1, σ2, etc., and the
energy of a state is E = −h

∑
i σi in the non-interacting model. Hence, the partition

function becomes
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Z =
∑

σ1=±1

∑

σ2=±1

· · ·
∑

σN =±1

e(h/kB T )
∑

i σi . (2.4)

Because the energy consists of separate terms for each spin, with no interactions, the
sum factorizes into

Z =
⎡

⎣
∑

σ1=±1

e(h/kB T )σ1

⎤

⎦

⎡

⎣
∑

σ2=±1

e(h/kB T )σ2

⎤

⎦ . . .

⎡

⎣
∑

σN =±1

e(h/kB T )σN

⎤

⎦ . (2.5)

Because each of those factors is identical, the partition function for N spins factorizes
into the product of single-spin partition functions,

Z = Z N
1 , (2.6)

where
Z1 =

∑

σ1=±1

e(h/kB T )σ1 = e+h/kB T + e−h/kB T . (2.7)

For each site, the probabilities of pointing up or down are

p↑ = e+h/kB T

e+h/kB T + e−h/kB T
, (2.8)

p↓ = e−h/kB T

e+h/kB T + e−h/kB T
. (2.9)

Hence, the expectation value of any single spin is

〈σi 〉 = (+1)p↑ + (−1)p↓ = e+h/kB T − e−h/kB T

e+h/kB T + e−h/kB T
= tanh

(
h

kB T

)
. (2.10)

Likewise, because all the spins are identical, the magnetic order parameter is

M = tanh

(
h

kB T

)
. (2.11)

Figure2.2 shows a plot of this result for M as a function of h/kB T . Note that
M is zero at h = 0, i.e., this non-interacting model has no magnetic order without
a field. Moreover, M saturates at its maximum value of +1 when h → +∞, and
at −1 when h → −∞. We might ask: How large of a magnetic field is required to
induce an order parameter of, say, 75% of its maximum value? From Eq. (2.11), we
see that it occurs at h/kB T = tanh−1(0.75) ≈ 1, or in other words, at h ≈ kB T .
Hence, the temperature determines how sharply M saturates as a function of h. Only
a small field is required at low temperature, but a much larger field is required at high
temperature. A related question is: How strongly does M respond to a small applied
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3 2 1 1 2 3
h

1.0

0.5

0.5

1.0
M

3 2 1 1 2 3
h

0.5

0.5

M(a) (b)

Fig. 2.2 Magnetic order parameter of the non-interacting Ising model, as a function of h.
a For kB T = 0.5. b For kB T = 2 (Interactive version at http://www.springer.com/cda/content/
document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-
p177545420.)

field, i.e., what is the derivative of M with respect to h at h = 0? This derivative is
called the susceptibility χ, and it can be calculated as

χ ≡ ∂M

∂h

∣∣∣∣
h=0

= 1

kB T
. (2.12)

Hence, M responds extremely sensitively to small h in the limit of low temperature.

2.2.2 Solution in Terms of Energy and Entropy

Iwould now like to present a different solution to the same problemof non-interacting
spins in terms of energy and entropy. It will, of course, give the same answer!

As we recall from the toy model of dust on a table, a key concept in statistical
mechanics is classifying microstates into macrostates. In the Ising model, each mi-
crostate refers to a particular configuration of up and down spins. Let us now classify
these microstates according to the value of M . For example, if we have a system
of 100 spins, we can have one macrostate with M = 0 (50 up, 50 down), another
macrostate with M = 0.02 (51 up, 49 down), etc. In general, if we have a system of
N spins, with N↑ up and N↓ down, then

N↑ + N↓ = N , (2.13)

N↑ − N↓ = N M.

These equations imply

N↑ = N p↑ = N

(
1 + M

2

)
, (2.14)

N↓ = N p↓ = N

(
1 − M

2

)
.

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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We can now ask: How many microstates correspond to the macrostate with a
certain value of M? In other words, in how many ways can we divide N total spins
into N↑ spins pointing up and N↓ spins pointing down, where N↑ and N↓ are given
by Eq. (2.14)? This is a standard combinatorial problem, which you might have
studied in a class on probability and statistics. The answer is given by the binomial
coefficient

# of microstates =
(

N
N↑

)
= N !

N↑!N↓! (2.15)

Hence, the entropy associated with that value of M is

S(M) = kB[log(N !) − log(N↑!) − log(N↓!)]. (2.16)

For large N , we can approximate N ! by Stirling’s formula

log(N !) ≈ N log N − N , (2.17)

and likewise for log(N↑!) and log(N↓!). Hence, the entropy simplifies to

S(M) = kB[N log N − N↑ log N↑ − N↓ log N↓] (2.18)

= −NkB[p↑ log p↑ + p↓ log p↓]
= −NkB

[(
1 + M

2

)
log

(
1 + M

2

)
+

(
1 − M

2

)
log

(
1 − M

2

)]
.

What about the energy? For the non-interacting system, the energy is just the sum
of the field energy terms for each of the N spins:

E(M) = (N↑)(−h) + (N↓)(+h) = −NhM. (2.19)

Hence, the free energy as a function of M is

F(M) = E(M) − T S(M) (2.20)

= −NhM

+NkB T

[(
1 + M

2

)
log

(
1 + M

2

)
+

(
1 − M

2

)
log

(
1 − M

2

)]
.

Note that the free energy is proportional to the number of spins N , as it should be.
This implies that the free energy is extensive; if we double the number of spins, then
we double the free energy. Hence, we can factor out N to obtain the free energy
per spin:

F(M)

N
= −hM + kB T

[(
1 + M

2

)
log

(
1 + M

2

)
+

(
1 − M

2

)
log

(
1 − M

2

)]
.

(2.21)
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Fig. 2.3 Free energy of the non-interacting Ising model, as a function of M . a For h/kB T = 0.
b For h/kB T = 0.3 (Interactive version at http://www.springer.com/cda/content/document/cda_
downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420.)

What does this free energy look like, as a function of M? Well, the function
involves two parameters, h and kB T . It would be easier to analyze the shape of the
function if it had only one parameter. For that reason, we divide both sides of the
equation by kB T to obtain

F(M)

NkB T
= −

(
h

kB T

)
M +

(
1 + M

2

)
log

(
1 + M

2

)
+

(
1 − M

2

)
log

(
1 − M

2

)
.

(2.22)

Now we can plot it for several values of the single parameter h/kB T . The results
are shown in Fig. 2.3. Note that the minimum depends on the value of h/kB T . If
h/kB T = 0, the minimum is exactly at M = 0. If h/kB T > 0, the minimum shifts
to positive values of M . As h/kB T → ∞, the minimum shifts toward M = 1.
Likewise, if h/kB T < 0, the minimum is at negative values of M , and it approaches
M = −1 as h/kB T → −∞.

To find the minimum algebraically, we just calculate the derivative and set it equal
to zero:

∂

∂M

(
F(M)

NkB T

)
= − h

kB T
+ 1

2
log

(
1 + M

1 − M

)
= 0. (2.23)

The solution is

M = tanh

(
h

kB T

)
, (2.24)

which is exactly the same as Eq. (2.11)! This solution is already plotted in Fig. 2.2,
and we discussed it there. Hence, these solutions are consistent.

What do we learn from this second version of the solution? Well, we see that
order parameter M is controlled by a competition between energy and entropy. The
entropy favors the macrostate with M = 0, because this macrostate has the most
microstates. By contrast, the energy favors the largest possible value of M aligned
with the field h (positive M if h > 0, negative M if h < 0). By minimizing the free
energy, we can find the equilibrium value of M . We will use that concept throughout
this book.

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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2.3 Interacting Spins

Now let us consider the case where the spins are interacting. In other words, we are
back to the Ising energy of Eq. (2.1) with the interaction strength J > 0. We would
like to calculate the magnetic order parameter M as a function of J , h, and T in this
case. Unfortunately, this problem is much harder than the non-interacting spins. It is
not just harder in the sense that I need to look up a tricky integral, or that I have to
get Mathematica to calculate something numerically. It is harder in the sense that it
consists of a huge number of variables that are all coupled together. Instead of the
non-interacting partition function of Eq. (2.4), we now have

Z =
∑

σ1=±1

∑

σ2=±1

· · ·
∑

σN =±1

e(J/kB T )
∑

〈i, j〉 σi σ j +(h/kB T )
∑

i σi . (2.25)

If we try to factorize this partition function into separate terms for each spin, as in
Eq. (2.5), it does not work! The J term couples spin #1 to its neighbors, and those
spins to their neighbors, and so forth, until all the spins are coupled together. For that
reason, we cannot solve N copies of the same single-spin problem; we must solve a
single N -spin problem. For a macroscopic system, N is a very large number, perhaps
6 × 1023. It is almost always impossible to solve a problem like that exactly.

Although we cannot solve the problem exactly, there is a very useful approxima-
tion called mean-field theory, which provides a lot of insight into the behavior. In this
approximation, we neglect the correlations between neighboring spins, and assume
that they are each fluctuating independently with the same statistical distribution. In
the following two sections, I will explain this approximation to you in two different
ways.

2.3.1 Mean-Field Theory in Terms of Energy and Entropy

For a first approach to mean-field theory for the Ising model, let us continue to work
in terms of energy and entropy. By analogy with the non-interacting model, we will
classify the microstates into macrostates according to their order parameter M . We
already worked out the entropy as a function of M in Eq. (2.18), and the field energy
as a function of M in Eq. (2.19), and we will continue to use those results. Hence,
we just need to work out an expression for the interaction energy as a function of M .

For any particular microstate with specific spins σ1, σ2, ... σN , the interaction
energy is given by

Eint = −J
∑

〈i, j〉
σiσ j . (2.26)

Clearly it does not just depend on M ; it depends on all the spins. Can we at least
calculate the expectation value of that energy? The expectation value is given by
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〈Eint〉 = −J
∑

〈i, j〉
〈σiσ j 〉. (2.27)

It involves correlations between neighboring spins σi and σ j , which we do not know.
In mean-field theory, we now make a HUGE approximation. We neglect the

correlations between neighboring spins, and write

〈σiσ j 〉 ≈ 〈σi 〉〈σ j 〉. (2.28)

If you have any experience with statistics, you will not like that line; you will com-
plain to me that it is not true. You are right; it is not true; it is an approximation! We
cannot yet tell whether it is a good approximation or a bad approximation. As you
will see, it actually works surprisingly well, much better than we have any right to
expect.

If you believe the mean-field approximation, then we can write

〈Eint〉 ≈ −J
∑

〈i, j〉
〈σi 〉〈σ j 〉. (2.29)

Because all the spins are identical, they all have the same expectation value: 〈σi 〉 =
〈σ j 〉 = M for all sites i and j . Hence, each term in the sum reduces to M2. How
many terms are in the sum? Well, let us suppose that each site on the lattice has q
nearest neighbors; q is called the coordination number of the lattice. In general, q
depends on the lattice type and dimensionality. For the 2D square lattice shown in
Fig. 2.1, we have q = 4. If there are N sites on the lattice, and each site interacts
with q neighbors, you might expect that there are Nq pairs of nearest neighbors in
the sum. Unfortunately, this argument double-counts the pairs, i. e. it counts σ1 as a
neighbor of σ2, and σ2 as a neighbor of σ1. When we eliminate the double-counting,
the number of nearest-neighbor pairs in the sum is 1

2 Nq. Hence, our mean-field
approximation for the interaction energy is

〈Eint〉 ≈ −1

2
N Jq M2. (2.30)

We now construct the free energy F = 〈E〉 − T S that includes the mean-field
approximation for the interaction energy, along with the field energy and the entropy,

F(M)

NkB T
= −

(
Jq

2kB T

)
M2 −

(
h

kB T

)
M (2.31)

+
(
1 + M

2

)
log

(
1 + M

2

)
+

(
1 − M

2

)
log

(
1 − M

2

)
.

This free energy depends on two parameters, Jq/kB T and h/kB T . To understand
its behavior, we need to consider various cases.
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Fig. 2.4 Free energy of the interacting Ising model, with h/kB T = 0, as a function of M . a
For Jq/kB T = 0.9. b For Jq/kB T = 1. c For Jq/kB T = 1.05. d For Jq/kB T = 1.5
(Interactive version at http://www.springer.com/cda/content/document/cda_downloaddocument/
Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420.)

Let us first consider the case where there is no applied field, h = 0. We begin at
high temperature, so that Jq/kB T is small. In that case, the free energy as a function
of M has the form shown in Fig. 2.4a. It is approximately a parabola pointing upward,
with theminimum at M = 0. Nowwe gradually reduce the temperature, i.e., increase
the value of Jq/kB T . As we reduce the temperature, the shape of the free energy
around M = 0 gradually gets flatter and flatter. (I strongly recommend that you try
the interactive figure to see this trend for yourself.) At a critical value Jq/kB T = 1,
shown in Fig. 2.4b, the minimum becomes so flat that the second derivative goes to
zero. At this point, the curve no longer looks like a parabola; instead, it looks like
a fourth-order function. As we reduce the temperature further, the single minimum
at M = 0 splits up into two minima at small positive and negative values of M ,
as shown in Fig. 2.4c. As the temperature continues to decrease, the minima move
outward and eventually approach±1, as shown in Fig. 2.4d. (The cases with nonzero
field in Fig. 2.5 will be discussed later.)

Notice what is happening here: At high temperature, the system goes to the state
with no magnetic order, M = 0, as favored by entropy. By comparison, at low
temperature, the system goes to a state with some magnetic order. Because there
is no applied field, the system has no preference about whether the magnetic order
should point up or down.Hence, it randomly chooses one of theminima,with positive
or negative M . This low-temperature state with spontaneous (not induced by field)
magnetic order is called a ferromagnetic phase. By contrast, the high-temperature

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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Fig. 2.5 Free energy of the interacting Ising model, with h/kB T = 0.02, as a function of M . a
For Jq/kB T = 0.9. b For Jq/kB T = 1.5 (Interactive version at http://www.springer.com/cda/
content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-
1509169-p177545420.)

state with no spontaneousmagnetic order is called a paramagnetic phase. The change
from paramagnetic to ferromagnetic at a specific temperature is a phase transition.

Notice also a point of symmetry: The high-temperature paramagnetic phase has a
symmetry between up and down, with no preference for either direction. In the low-
temperature ferromagnetic phase, this symmetry is broken and the system randomly
goes one way or the other. This random selection is called spontaneous symmetry
breaking.

I should emphasize that the high-temperature state has more symmetry and it
is disordered. By contrast, the low-temperature state has less symmetry and it is
more ordered. In this sense, order means the opposite of symmetry; it means broken
symmetry. (Students sometimes get confused about this point. They think that order
is good and symmetry is good, so order must be the same thing as symmetry. No, it
is not a question of good and bad!)

We might want to know the phase transition temperature precisely (not just by
playing with the graphs). One feature of the phase transition that we already noticed
is that the second derivative ∂2F/∂M2 = 0 at M = 0. Hence, we calculate the
second derivative:

∂2

∂M2

(
F

NkB T

)
= − Jq

kB T
+ 1

2(1 + M)
+ 1

2(1 − M)
. (2.32)

At M = 0, it becomes

∂2

∂M2

(
F

NkB T

)∣∣∣∣
M=0

= 1 − Jq

kB T
. (2.33)

Hence, the transition occurs at the temperature

TC = Jq

kB
. (2.34)

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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Fig. 2.6 Ising order parameter M as a function of temperature T . a For h/kB T = 0. b
For h/kB T = 0.02 (Interactive version at http://www.springer.com/cda/content/document/cda_
downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420.)

This temperature is called the critical temperature, and hence is given the notation
TC . Note that TC is proportional to the interaction strength J and the coordination
number q. If those quantities increase, then it is easier to get an ordered phase, so
the phase transition occurs at a higher temperature.

Wemight also want to know how the equilibrium value of M varies with tempera-
ture, as the system cools from T = TC down to T = 0. One approach is to minimize
the free energy numerically at each temperature. A plot of the numerical result is
shown in Fig. 2.6a. Alternatively, we can try to find the minimum by setting the first
derivative equal to zero:

∂

∂M

(
F

NkB T

)
= −

(
Jq

kB T

)
M − h

kB T
+ tanh−1 M = 0. (2.35)

We cannot solve this equation analytically in general, but we can make a good
approximation when M is small (which is valid for T slightly below TC ). In this
case, we approximate the inverse hyperbolic tangent by its Taylor series to obtain

∂

∂M

(
F

NkB T

)
≈ −

(
TC

T

)
M − h

kB T
+

(
M + 1

3
M3

)
= 0. (2.36)

(In the first term of this expression, TC is substituted in place of Jq/kB .) For h = 0,
the solution is

M = 0 or M ≈ ±
√
3(TC − T )

T
≈ ±

√
3(TC − T )

TC
. (2.37)

Note that M = 0 is the free energy minimum for T > TC , and the free energy
maximum for T < TC . The nonzero solution is only defined for T < TC , where it is
the free energy minimum.

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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From Eq. (2.37), or just from looking at Fig. 2.6a, we see that M increases as
the square root of the temperature difference when T drops slightly below TC . This
behavior is an example of a scaling relation. In general, people say that

M ∝ (TC − T )β, (2.38)

where the exponent β is called a critical exponent. Here, we see that β = 1
2 in mean-

field theory for the Ising model. This mean-field prediction is not exactly correct:
More precise theories (and experiments!) show that β = 1

8 for a 2D Ising system and
β ≈ 0.31 for a 3D Ising system. The mean-field prediction for the exponent is only
exact for 4D or higher. However, mean-field theory is still teaching us a lot: It shows
that there is a phase transition and that the order parameter has singular behavior just
below the transition, which can be described by a power law.

So far we have only considered the interacting system when there is no applied
field, but we can also consider the case with a field. If we apply a magnetic field
h, it breaks the symmetry between M > 0 and M < 0, so the free energy is no
longer an even function of M . For T > TC , the free energy has the form shown in
Fig. 2.5a. It has only a single minimum, and that minimum is not exactly at M = 0; it
is displaced from zero by the applied field. By contrast, for T < TC , the free energy
has the form shown in Fig. 2.5b. It has two minima, and these minima are not equally
deep. The applied field breaks the symmetry between the minima, and favors the
state with magnetic order aligned with the field. Under an applied field, there is a
smooth crossover from T > TC to T < TC . Figure2.6b shows the equilibrium value
of M as a function of T for a small but nonzero field. Note that there is no singularity
in M , i.e., no phase transition! Rather, M increases rapidly but smoothly around
T ≈ TC . We can understand this smooth behavior by saying that the symmetry
between M > 0 and M < 0 is already pre-broken by the field, so there is no need
for a symmetry-breaking transition.

For an alternative view of the same physical behavior, imagine an experiment that
varies the field at fixed temperature. For T > TC , the behavior is shown in Fig. 2.7a.
At this high temperature, there is no phase transition; rather M scales linearly with
h for small fields, and then saturates for large fields. As T approaches TC , the linear
response to small field becomes sharper and sharper. When T = TC , the linear
response to small field becomes infinitely sharp, i.e., the plot of M(h) has an infinite
slope right at h = 0, as shown in Fig. 2.7b. When T < TC , the response actually has
a discontinuity at h = 0, as in Fig. 2.7c. Think about the free energy curve at this
low temperature, which has two minima. As h passes through 0, the order parameter
jumps from the minimum at M < 0 to the minimum at M > 0. The magnitude of
this discontinuity increases as T decreases further below TC , as in Fig. 2.7d. (You
should compare the interactive Figs. 2.5 and 2.7 to see this behavior for yourself.)

Figure2.8 shows a 3D plot of M as a function of both temperature T and field
h. It provides the same information as in Figs. 2.6 and 2.7, but in a somewhat more
beautiful visualization. This 3D plot looks like a partially torn sheet of paper. The
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Fig. 2.7 Ising order parameter M as a function of field h. a For Jq/kB T = 0.9.bFor Jq/kB T = 1.
c For Jq/kB T = 1.05. d For Jq/kB T = 1.5 (Interactive version at http://www.springer.com/
cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-
45-1509169-p177545420.)

Fig. 2.8 Ising order parameter M as a function of temperature T and field h, in a 3D plot
(Interactive version at http://www.springer.com/cda/content/document/cda_downloaddocument/
Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420.)

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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Fig. 2.9 Phase diagram of the Ising model as a function of temperature T and field h

“torn” part on the left represents the discontinuous response to a field for T < TC .
The “non-torn” part on the right represents the linear response to a field for T > TC .

If we project this 3D plot down into the (T, h) plane, we obtain the phase diagram
shown in Fig. 2.9. This phase diagram shows three types of behavior:

• For T < TC , the system is ferromagnetic. Across the line h = 0, there is a
first-order phase transition between spin-up and spin-down, with a discontinuous
change in the order parameter M . This discontinuity corresponds to the “torn”
part of the 3D plot. We can recognize the first-order transition in the free energy
plots because there are two competing minima, and the system jumps from one
minimum to the other.

• The point T = TC and h = 0, where the first-order transition terminates, is a
very special point called the critical point, where the system has a second-order
phase transition. At the second-order phase transition, there is no discontinuity
in the order parameter, but there is a discontinuity in the derivative of the order
parameter∂M/∂T .We can recognize the second-order transition in the free energy
plots because the single minimum at high temperature becomes flat and breaks up
into twominima at low temperature. At the critical point, the system has interesting
singular behavior, which is characterized by critical exponents—see the discussion
of the exponent β in Eq. (2.38), as well as the problems below.

• For T > TC , the system is paramagnetic. As h varies between positive and negative
values, there is no phase transition! There is just a disordered phase that responds
smoothly to the applied field.

Problem: Calculate the response of the system to a small applied field in the
paramagnetic phase, for T > TC .
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Solution: We return to Eq.2.36 for the Ising order parameter M . If the applied
field is small, then the induced M must also be small. In that case, we can neglect
the M3 term in comparison with the M terms in the equation, and we obtain

−
(

TC

T

)
M − h

kB T
+ M = 0. (2.39)

The solution of this equation is

M = h

kB(T − TC )
. (2.40)

Hence, the susceptibility to an applied field is

χ ≡ ∂M

∂h

∣∣∣∣
h=0

= 1

kB(T − TC )
. (2.41)

This result shows that the susceptibility diverges as T → TC , i.e., the systembecomes
more and more sensitive to an applied field as it approaches the critical point. The
behavior is characterized by the scaling relation

χ ∝ (T − TC )
−γ, (2.42)

where γ is a critical exponent. Thus, we see that γ = 1 in mean-field theory. (Re-
member that Eq. (2.12) was derived for the non-interacting Ising model; here, we
are generalizing it to the Ising model with interactions.)

Problem: Calculate the response of the system to a small applied field at the
critical point, for T = TC .

Solution: Again, we return to Eq.2.36 for M . Right at T = TC , the M terms in
the equation cancel each other, so we cannot neglect the M3 term. In that case, the
equation becomes

− h

kB T
+ 1

3
M3 = 0, (2.43)

and hence

M =
(

3h

kB T

)1/3

. (2.44)

This result shows that the system has an infinite susceptibility at T = TC , i.e., a
nonlinear response to a small applied field, as shown in Fig. 2.7b. This behavior is
characterized by the scaling relation

M ∝ h1/δ, (2.45)

where δ is another critical exponent. Thus, we see that δ = 3 in mean-field theory.
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2.3.2 Mean-Field Theory in Terms of Average Field

At this point, dear students, you have learned a lot about mean-field theory. You
might be wondering, “Why is it called mean-field theory? I don’t see anything about
mean fields in the theory!”

In this brief section, I will show you an alternative derivation of the theory, which
shows the significanceof the name. Someof youmayhave already seen this derivation
in classes on magnetism, solid-state physics, or thermal physics—here I will show
that it is equivalent to our previous derivation.

Let us go back to the energy of the Ising model defined in Eq. (2.1),

E = −J
∑

〈i, j〉
σiσ j − h

∑

i

σi . (2.46)

We will consider a particular spin σi as our “test spin.” How does the energy depend
on σi? Well, let us rewrite the energy as

E = −
⎡

⎣h + J

⎛

⎝
∑

j=neighbor of i

σ j

⎞

⎠

⎤

⎦ σi + (terms that do not depend on σi ).

(2.47)
This expression shows that our test spin σi experiences an effective field consisting
of the actual field h plus an interaction with each of the neighboring spins. Of course,
we do not know these neighboring spins; they may be correlated with the test spin in
a complicated way. As our approximation, we neglect these correlations and replace
each of these spins by its average value. Because the spins are all identical, the average
value of each neighboring spin is 〈σ j 〉 = M . Recall that the coordination number of
the lattice is q, so that there are q neighbors in the sum. Hence, our approximation
for the energy is

E = −hmeanσi + (terms that do not depend on σi ), (2.48)

where
hmean = h + Jq M. (2.49)

In this expression, hmean can be considered the effective field or average field or
“mean” field acting on σi . (Now you see the terminology!)

From our discussion of the non-interacting Ising model, we derived Eq. (2.11) for
the response to a field. Now we assume that σi has the same response to the effective
field,

〈σi 〉 = tanh

(
hmean

kB T

)
. (2.50)
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Of course, our test spin σi is really just the same as all the other spins, so it must
have the same expectation value 〈σ j 〉 = M . Hence, we can combine Eqs. (2.49)
and (2.50) to obtain

M = tanh

(
h + Jq M

kB T

)
. (2.51)

This equation represents the condition for self-consistency: M must satisfy this equa-
tion so that the effective field of the neighboring spins is consistent with the magnetic
order of the test spin.

In the previous section, Eq. (2.35), we minimized the free energy by setting its
first derivative equal to zero:

∂

∂M

(
F

NkB T

)
= −

(
Jq

kB T

)
M − h

kB T
+ tanh−1 M = 0. (2.52)

Note that this equation is exactly equivalent to the self-consistency equation! Hence,
minimizing the free energy means the same thing as solving the self-consistency
equation. All of our results from the previous section carry over unchanged.

In general, I prefer the approach based on free energy because it provides some
extra information, compared with the approach based on self-consistency. At low
temperature, the self-consistency equation has three solutions. By looking at the free
energy plot, as in Figs. 2.4c, d and 2.5b, we can see that these solutions correspond
to three places where ∂F/∂M = 0: first a minimum, then a maximum, and then
another minimum. We can disregard the maximum, and identify which of the local
minima is the lowest, i.e., the absolute minimum of the free energy. If we did not
have the free energy, we would have to fall back onto other physical arguments to
select which solution of the self-consistency equation is correct.

Further Reading

The Ising model is discussed in many textbooks on magnetism, solid-state physics,
and thermal physics, such as the books listed at the end of Chap.1. For a discussion
more advanced than the current chapter, I recommend:

1. P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cam-
bridge, 1995)

If you are interested in the history of the Ising model, you might want to read Ising’s
original article:

2. E. Ising, Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31, 253–258 (1925).
doi:10.1007%2FBF02980577

as well as the historical review article:

3. S.G. Brush, History of the Lenz-Ising Model. Rev. Mod. Phys. 39, 883–893
(1967). doi:10.1103/RevModPhys.39.883

http://dx.doi.org/10.1007/978-3-319-21054-4_1


Chapter 3
Gases and Liquids

Abstract This chapter extends the previous discussion of the Isingmodel to a system
of molecules forming gas or liquid phases. It begins with the ideal gas of non-
interacting molecules and derives the ideal gas law by minimizing the Gibbs free
energy. It then moves on to the statistical mechanics of interactingmolecules—a
much more complex problem that cannot be solved exactly. A useful approximation
is van der Waals theory, which is a type of mean-field theory, analogous to mean-
field theory for the interacting Ising model. Van der Waals theory shows that the
interacting system has distinct gas and liquid phases, and makes predictions for the
phase diagram.

I would now like to move on to a different type of statistical mechanics problem: a
system of molecules forming a gas or liquid phase. This problem is more interesting
than the Isingmodel because it is amolecular system, so it takes us on ourway toward
describing liquid crystals and other complex molecular systems. We will now have
to keep track of the positions and momenta of molecules, not just spins on a lattice.
In spite of this difference, we will still be able to use the concepts of energy, entropy,
and free energy to describe the behavior of the gas or liquid, and we will see that the
phase diagram is actually related to that of the Ising model.

3.1 Ideal Gas at Fixed Volume

As a first step in this problem, let us consider an “ideal gas.” This termmeans that the
gas molecules do not interact with each other; they just move around freely, confined
by their container, as shown in Fig. 3.1. That approximation is generally reasonable
when the gas molecules are very dilute, i.e., the number of molecules per unit volume
is very low.

Following the procedure from the previous chapters, we want to calculate the
statistical properties of the ideal gas by averaging over all the states of the system.
So we have to ask: What is a state? For the Ising model, a state means a configu-
ration of all the spins σ1, σ2, …. When we sum over the states, we sum over both
possibilities for σ1, both possibilities for σ2, etc. For the ideal gas, each molecule
i is characterized by its position ri and its momentum pi . For each molecule, we

© Springer International Publishing Switzerland 2016
J.V. Selinger, Introduction to the Theory of Soft Matter,
Soft and Biological Matter, DOI 10.1007/978-3-319-21054-4_3
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Fig. 3.1 Dilute system of
molecules moving inside a
box of size L × L × L

need to specify three vector components of position and three vector components of
momentum, or six numbers in all. Hence, if there are N molecules in the system, we
need to specify 6N numbers. People often refer to the 6N -dimensional space given
by {r1, p1, r2, p2, . . . rN , pN } as phase space. Each state of the system is thus given
by a point in phase space.

For every state of the system, there is a certain energy. For the moment, let us
suppose that there is no potential energy; there is only kinetic energy. In this case,
the energy of a state is just

E(r1, p1, r2, p2, . . . rN , pN ) = Ekinetic(p1, p2, . . . pN ), (3.1)

where

Ekinetic(p1, p2, . . . pN ) =
N∑

i=1

|pi |2
2m

. (3.2)

Here, m is the mass of each molecule. Note that the kinetic energy depends on the
momenta but not on the positions.

The partition function Z is now the sum of e−E/kB T over all the states of the
system. Because the positions and momenta are continuous variables, we cannot just
sumover a discrete set of possibilities; instead,wemust integrateover these variables.
Hence, we might expect the partition function to be given by the 6N -dimensional
integral:

Z
?=

∫
d3r1d3p1d3r2d3p2 · · · d3rN d3pN e−E(r1,p1,r2,p2,...rN ,pN )/kB T . (3.3)

This expression is almost correct. We just need to fix two small problems:
The first problem is that the units of Z are wrong. The partition function is defined

as the sum over states of e−E/kB T . This exponential is a dimensionless quantity, and
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hence the sum of many exponential terms must also be a dimensionless quantity.
However, in the expression of Eq. (3.3), each integral over position gives units of
(length)3, and each integral over momentum gives units of (momentum)3. In other
words, this expression for the partition function has units of (length ·momentum)3N ,
but it should be dimensionless. Hence, we need to divide by something with units
of (length · momentum), raised to the 3N power. From your quantum mechanics
classes, you may recall that one fundamental physical constant has units of (length ·
momentum): Planck’s constant h. Hence, to fix the units, we ought to divide the
6N -dimensional integral by a factor of h3N .

There is actually an important physical reason why Planck’s constant comes into
the partition function. Earlier I said that each physical region corresponds to a point
in phase space, as if the state has an exact position and an exact momentum for
each molecule. However, from Heisenberg’s Uncertainty Principle, you may recall
that we cannot exactly specify the position and momentum of a particle. Rather,
there is always some uncertainty in the position and momentum, which is given by
�x�px ≈ h. Thus, a state cannot really be a precise point in phase space; rather, it
must be a fuzzy region in phase space. The “effective volume” of the fuzzy region
is h for each dimension (x , y, or z) for each molecule (1 through N ), and hence
h3N . When we sum over states, we must integrate over all phase space and divide by
the “effective volume” h3N of each state in this 6N -dimensional dimensional space.
In this sense, our theory has a hidden quantum mechanics aspect. This quantum
mechanics will not really affect any of our results, but it is needed to get the right
units.

The second problem is that the particles are indistinguishable. For that reason,
it does not matter whether molecule 1 is at a certain position and momentum and
molecule 2 is at another position and momentum, or vice versa; these are the same
physical state. In other words, we can relabel the molecules in any arbitrary way, and
still have the same state. The number of ways to relabel the N particles is N !. Hence,
to account for indistinguishability, we ought to divide the 6N -dimensional integral
by a factor of N !.

With these two corrections, the partition function for the ideal gas becomes

Z = 1

N !h3N

∫
d3r1d3p1d3r2d3p2 · · · d3rN d3pN e−E(r1,p1,r2,p2,...rN ,pN )/kB T

= 1

N !h3N

∫
d3r1d3p1d3r2d3p2 · · · d3rN d3pN exp

[
−

N∑

i=1

|pi |2
2mkB T

]
. (3.4)

Because there are no interactions between different molecules, this partition function
factorizes as

Z = 1

N !
[
1

h3

∫
d3rd3p exp

(
− |p|2
2mkB T

)]N

. (3.5)

Inside the square brackets, the integral over position gives a factor of volume V = L3.
The integral over momentum is a Gaussian integral, which can be done exactly. The



28 3 Gases and Liquids

result is

Z = 1

N !
[

V (2πmkB T )3/2

h3

]N

. (3.6)

Note that this problem is analogous to the non-interacting Ising model, because
the lack of interactions allows the partition function to factorize and hence to be
calculated exactly.

Now that we have the partition function, we can find the free energy

F = − kB T log Z (3.7)

= − NkB T log

[
V (2πmkB T )3/2

h3

]
+ kB T log N !.

Using Stirling’s formula log N ! ≈ N log N − N , it reduces to

F = −NkB T log

[
V (2πmkB T )3/2e

Nh3

]
. (3.8)

Note that the free energy is extensive: if we double the number of molecules and we
double the volume, then we get double the free energy, as we should. (If we double
the number of molecules and we do not change the volume, then we have a different
denser system, and the free energy changes in a more complicated way.)

Now that we have the partition function and the free energy, we can calculate
many other statistical properties. The probability of any state is

Prob(r1, p1, . . . rN , pN ) = 1

Z
exp

[
−

N∑

i=1

|pi |2
2mkB T

]
. (3.9)

The probabilities are correctly normalized, because the sum over all states of the
probabilities is 1:

1 = 1

N !h3N

∫
d3r1d3p1 · · · d3rN d3pN

1

Z
exp

[
−

N∑

i=1

|pi |2
2mkB T

]
, (3.10)

by the definitionof the partition function.Hence, the expectationvalue of anyphysical
quantity X is

〈X〉 = 1

N !h3N

∫
d3r1d3p1 · · · d3rN d3pN (X)

1

Z
exp

[
−

N∑

i=1

|pi |2
2mkB T

]
. (3.11)

For example, the average kinetic energy of molecule 1 is
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〈 |p1|2
2m

〉
= 1

N !h3N

∫
d3r1d3p1 · · · d3rN d3pN

[ |p1|2
2m

]
1

Z
exp

[
−

N∑

i=1

|pi |2
2mkB T

]
.

(3.12)

Because of the factor of Z in the denominator, almost all of the integrals cancel, and
we are left with only

〈 |p1|2
2m

〉
=

∫
d3p1

[ |p1|2
2m

]
exp

[
− |p1|2
2mkB T

]

∫
d3p1 exp

[
− |p1|2
2mkB T

] = 3

2
kB T, (3.13)

calculating the Gaussian integrals exactly.1 Of course, all of the molecules are iden-
tical, so they all have the same average kinetic energy. Hence, the average kinetic
energy for all N molecules is

〈Ekinetic〉 = 3

2
NkB T . (3.14)

As you recall, in this calculation, we are assuming that there is no potential energy.
For that reason, the average total energy is the same as the average kinetic energy:

〈E〉 = 3

2
NkB T . (3.15)

The average energy 〈E〉 is part of the free energy F = 〈E〉 − T S. By comparing
our expressions for the free energy (3.8) and the average energy (3.15), we can obtain
the entropy

S = 〈E〉 − F

T
= NkB log

[
V (2πmkB T )3/2e5/2

Nh3

]
. (3.16)

3.2 Ideal Gas at Fixed Pressure

In the previous section, we considered an ideal gas at fixed volume. Now suppose
that it is free to change its volume—for example, it might be in a container that is
free to expand or contract. What volume will it select?

First of all, let us discuss the states of this system with variable volume. The
volume is now one extra degree of freedom, in addition to the positions andmomenta
of all the molecules. We might say that the phase space is (6N + 1)-dimensional,

1This result is a special case of the equipartition theorem: Any degree of freedom that enters
quadratically in the energy function gets 1

2 kB T of energy in thermal equilibrium. The kinetic
energy of particle 1 contains three such degrees of freedom (p1x , p1y , and p1z).
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including this extra degree of freedom. Eachmicrostate of the system is characterized
by all (6N + 1) degrees of freedom—the positions, momenta, and volume. When
we include the variable volume, the partition function becomes

Zvar vol =
∫

dV

V0

1

N !h3N

∫
d3r1d3p1 · · · d3rN d3pN e−E(r1,p1,r2,p2,...rN ,pN )/kB T

︸ ︷︷ ︸
e−F(V )/kB T

,

(3.17)
where V0 is a constant with units of volume to make Z dimensionless.

Iwill nowclassify themicrostates intomacrostatesbased on the volume.When I do
this classification, each macrostate has a free energy F(V ), which can be calculated
by summing over all the microstates with that volume V . Luckily, we already did
that calculation in the previous section! The result is given in Eq. (3.8):

F(V ) = −NkB T log

[
V (2πmkB T )3/2e

Nh3

]
. (3.18)

We can nowuse this free energy to comparemacrostateswith different volumes. Note
that this calculation is analogous to the Ising model in the previous chapter. There
I classified microstates into macrostates based on the magnetic order parameter M .
Hence, we might say that V in this problem is analogous to M in that problem.

Now let us consider how the free energy F(V ) depends on volume. We can see
that it is proportional to − log(const · V ). Hence, as the volume increases, the free
energy decreases monotonically; there is no minimum. Hence, we might expect that
the ideal gas will expand forever, with V → ∞. This result is disturbing; we were
expecting an equilibrium volume.

The problem is that we forgot about pressure! If we release an ideal gas in outer
space, where there is no pressure, then it will indeed expand to infinity. However, if
we do the experiment on Earth, under conditions of ambient pressure, the situation
is different: Whenever the ideal gas expands, it must push away something else.
Expanding against a pressure p requires an energy cost of +pV . When we include
this energy cost, we transform the free energy into the Gibbs free energy:

G = F + pV . (3.19)

Hence, for the ideal gas, the Gibbs free energy becomes

G(V ) = −NkB T log

[
V (2πmkB T )3/2e

Nh3

]
+ pV . (3.20)

Note that the first term of G(V ) decreases and the second term increases as V
increases.Hence,G(V ) can indeed have aminimum, corresponding to an equilibrium
volume.



3.2 Ideal Gas at Fixed Pressure 31

10 20 30 40
v

2.2

2.0

1.8

1.6

1.4

1.2

1.0

G

Fig. 3.2 Gibbs free energy of an ideal gas, as a function of the volume per mole-
cule v = V/N . Parameters for this plot are p = 0.01 and kB T = 0.3
(Interactive version at http://www.springer.com/cda/content/document/cda_downloaddocument/
Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420.)

Figure3.2 shows a plot of the Gibbs free energy as a function of volume. For this
plot, it is convenient to normalize G(V ) by a factor of NkB T , and plots the result as
a function of the volume per molecule v = V/N . Our function then becomes

G(v)

NkB T
= − log

[(
(2πmkB T )3/2e

h3

)
v

]
+

(
p

kB T

)
v. (3.21)

In the figure, we can see that G(v) has a single minimum. In the interactive version
of the figure, we can shift the pressure and temperature. The equilibrium value of v

moves to smaller volume as pressure increases, and to larger volume as temperature
increases.

To derive an algebraic expression for equilibrium volume, we can just mini-
mize the Gibbs free energy by setting its first derivative with respect to volume
equal to zero:

∂G

∂V
= 0. (3.22)

This minimization gives the relationship between pressure and volume, sometimes
called the equation of state:

pV = NkB T . (3.23)

You should recognize this expression as the ideal gas law!
Incidentally, some students are more familiar with the ideal gas law in the form

pV = n RT, (3.24)

where n is the number of moles and R is the gas constant. These two expressions
are exactly equivalent. To see the equivalence, just multiply and divide Eq. (3.23) by
Avogadro’s number NA = 6 × 1023 to obtain

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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pV = N

6 × 1023︸ ︷︷ ︸
n

(6 × 1023kB)︸ ︷︷ ︸
R

T . (3.25)

Here, the number of moles n is related to the number of molecules N by n =
N/(6 × 1023), and the gas constant R is related to Boltzmann’s constant kB by
R = 6×1023kB , because R involves energypermole rather than energypermolecule.

3.3 Ideal Gas Under Gravity

For one more variation on the ideal gas, let us consider an ideal gas in a gravitational
field. This problem is analogous to the non-interacting Ising model in a magnetic
field, because the gas molecules each interact with the gravitational field but they do
not interact with each other.

Suppose we want to model a gas above a flat surface of size L × L in the xy-plane.
In the vertical direction, the gas molecules can go anywhere from z = 0 to z = ∞.
Because of the gravitational field, the system has both kinetic and potential energies,
so the total energy of a state is

E(r1, p1, r2, p2, . . . rN , pN ) =
N∑

i=1

( |pi |2
2m

+ mgzi

)
, (3.26)

where g is the gravitational constant and zi is the height of molecule i above the
bottom surface. Hence, the partition function is

Z = 1

N !h3N

∫
d3r1d3p1 · · · d3rN d3pN exp

[
−

N∑

i=1

( |pi |2
2mkB T

+ mgzi

kB T

)]
.

(3.27)

Because the molecules do not interact with each other, this partition function factor-
izes as

Z = 1

N !
[
1

h3

∫
d3p exp

(
− |p|2
2mkB T

)∫ L

0
dx

∫ L

0
dy

∫ ∞

0
dz exp

(
− mgz

kB T

)]N

.

(3.28)

As in the previous case, the momentum integral gives a factor of (2πmkB T )3/2, and
the x and y integrals each give a factor of L . The only new calculation is the z integral,
which gives a factor of kB T/mg. As a result, the partition function becomes
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Z = 1

N !
[
(2πmkB T )3/2L2

h3

kB T

mg

]N

. (3.29)

With that partition function, the probability of any state becomes

Prob(r1, p1, . . . rN , pN ) = 1

Z
exp

[
−

N∑

i=1

( |pi |2
2mkB T

+ mgzi

kB T

)]
. (3.30)

From the general probability distribution function, we might want to calculate
the probability that a particular molecule 1 is at height z1, regardless of all the other
degrees of freedom. We can calculate it as

Prob(z1) = 1

N !h3N

∫
dx1dy1d3p1d3r2 · · · d3rN d3pNProb(r1, p1, . . . rN , pN ),

(3.31)
integrating over all variables except z1. It reduces to

Prob(z1) = mg

kB T
exp

(
−mgz1

kB T

)
, (3.32)

which is the Boltzmann distribution for molecular height. Of course, it is the same
for any molecule, so we can just write it as Prob(z). We might also want to calculate
the average height of a molecule,

〈z〉 =
∫ ∞

0
dz(z)Prob(z) = kB T

mg
. (3.33)

This expression shows that increasing temperature causes the average height to be
higher, while increasing the molecular mass or the gravitational field causes the
average height to be lower.

Problem: Apply this theory to the Earth’s atmosphere and compare your answer
with the actual thickness of the atmosphere.

Solution: As a rough estimate, let us assume that the atmosphere is mainly com-
posed of nitrogen N2 molecules, which have a molecular weight of 28 amu =
4.6 × 10−26 kg. Furthermore, let us assume that the atmosphere is at a uniform
temperature of 300 K. In that case, the average height of a molecule above the
Earth’s surface should be

〈z〉 = kB T

mg
= (1.4 × 10−23 J/K)(300 K)

(4.6 × 10−26 kg)(9.8 m/s2)
= 9300 m = 9.3 km. (3.34)

This estimate is similar to the thickness of the troposphere, which is about 11km. (It
is much less than what space scientists call the “thickness of the atmosphere,” but
that is because space scientists are not interested in the average height of a molecule;
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they are interested in the altitude where the atmosphere is so thin that satellites can
stay in orbit without substantial air drag.)

Problem: Calculate the expectation value 〈z2〉. Is 〈z2〉 equal to 〈z〉2?
Solution: Following the same method as in Eq. (3.33), we obtain

〈z2〉 =
∫ ∞

0
dz(z2)Prob(z) = 2

(
kB T

mg

)2

. (3.35)

Note that 〈z2〉 is not equal to 〈z〉2. It is reasonable that these quantities should be
different, because the molecules have a distribution of heights. The difference 〈z2〉−
〈z〉2 shows the variance of the heights. These quantities would only be equal if the
molecules had a single unique height.

3.4 Gas with Interactions: van der Waals Theory

Let us now move on to consider a more interesting and complex problem: a gas
of molecules that interact with each other. We would like to understand how the
interactions change the behavior that was derived in the previous sections.

In general, we might write the potential energy of interacting molecules as the
sum of many pairwise interactions

Epotential(r1, . . . rN ) =
∑

(i, j)

U (|ri − r j |), (3.36)

where the sum is taken over all pairs of molecules (i, j). The interactionU (|ri − r j |)
is a function of the distance between the centers of molecules i and j . The exact
form of the interaction will, of course, depend on what type of molecules we are
studying; it will be different for nitrogen, oxygen, carbon dioxide, etc. Nevertheless,
the interaction usually has the generic shape shown in Fig. 3.3. This interaction
has two important features. First, at short distances, the potential energy becomes

Fig. 3.3 Typical form for
the interaction between two
molecules, as a function of
the distance between their
centers. (The specific
function plotted here is the
Lennard-Jones potential
U (r) = Ar−12 + Br−6,
which is a commonly used
form of the interaction.)
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extremely high. Because it is so high, the molecules effectively have hard cores, so
they cannot overlap. Second, at longer distances, the potential becomes somewhat
attractive. Hence, the molecules have some optimal separation away from each other.

We can try to put the potential energy into the partition function:

Z = 1

N !h3N

∫
d3r1d3p1 · · · d3rN d3pN

exp

⎡

⎣−
N∑

i=1

|pi |2
2mkB T

−
∑

(i, j)

U (|ri − r j |)
kB T

⎤

⎦ . (3.37)

Unfortunately, we now have a serious problem. The momentum integrals still fac-
torize nicely, but the position integrals are all coupled together and do not factorize
into the product of independent integrals. This problem is essentially the same as
the partition function for interacting Ising spins in Chap.2. The position integral for
molecule 1 is coupled to the position integral for molecule 2, which is coupled to
the position integral for molecule 3, and so forth. Because the system has an enor-
mous number of molecules, probably 1023 or more, we have an enormous number
of integrals that are all coupled together. This is a profoundly difficult problem, and
it cannot be solved exactly.

At this point, we need to make an approximation. As in the previous chapter, we
will use mean-field theory. The particular version of mean-field theory applied to
interacting gas molecules is called van der Waals theory. In van der Waals theory,
we assume that each molecule moves in an effective environment composed of the
the other molecules. We neglect the correlations between nearby molecules, and just
think about the average properties of the environment. Figure3.4 shows a schematic
illustration (or “cartoon”) of this concept. Here, one of the molecules is labeled in

Fig. 3.4 Schematic
illustration of mean-field
theory for interacting gas
molecules. One of the
molecules is labeled in red as
a “test” molecule, and it
moves in an effective
environment composed of
blue molecules

http://dx.doi.org/10.1007/978-3-319-21054-4_2
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red as our “test” molecule. It moves in an effective environment composed of the
other molecules, which are blue. We want to calculate the statistical properties of the
red molecule in that environment. Of course, all the blue molecules are identical to
the red molecule, so they have the same statistical properties. Hence, we will need
to find a self-consistent solution for the properties of the red and blue molecules.

To set up van der Waals theory mathematically, we suppose that each molecule
moves in an effective potential Ueff(r), which arises from the average interaction
with the other molecules. In this case, the problem becomes similar to the ideal gas
in a gravitational field, as discussed in the previous section. The partition function
factorizes to give

Z = 1

N !
[
1

h3

∫
d3p exp

(
− |p|2
2mkB T

) ∫
d3r exp

(
−Ueff(r)

kB T

)]N

. (3.38)

As usual, the momentum integral gives a factor of (2πmkB T )3/2, and we are left
with

Z = 1

N !
[
(2πmkB T )3/2

h3

∫
d3r exp

(
−Ueff(r)

kB T

)]N

. (3.39)

Nowwhat canwe say about the position integral? First of all, certain regions of the
volume are forbidden to the test molecule, i.e., Ueff(r) → ∞, because these regions
are already occupied by other molecules. The excluded volume must be proportional
to the number of other molecules, so we write it as bN , where b be a parameter
with units of volume, which represents the excluded volume per molecule.2 Hence,
the integrand e−Ueff(r)/kB T = 0 in the excluded volume; it is only nonzero in the
non-excluded volume (V − bN ).

Second, how big is Ueff(r) in the non-excluded volume? Throughout that region,
the test molecule experiences an effective negative potential arising from the other
molecules. The magnitude of this effective negative potential must be proportional
to the density of other molecules N/V . Hence, we write Ueff(r) = −aN/V , where
a is a parameter with units of energy·volume, which represents the strength of the
negative potential in Fig. 3.3 multiplied by the interaction volume.

We now have a model with two parameters, b and a. In terms of these parameters,
the position integral becomes (V − bN )eaN/V , and hence the partition function
becomes

Z = 1

N !
[
(2πmkB T )3/2

h3 (V − bN )eaN/V kB T
]N

. (3.40)

With this mean-field approximation for the partition function, we can calculate the
free energy as

2Really, it is b(N − 1) for the molecules other than the test molecule, but N � 1, so the −1 is
negligible.
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F = − kB T log Z

= − NkB T log

[
(2πmkB T )3/2e

h3

(
V

N
− b

)]
− aN 2

V
. (3.41)

At fixed pressure p, the corresponding Gibbs free energy is

G = F + pV

= −NkB T log

[
(2πmkB T )3/2e

h3

(
V

N
− b

)]
− aN 2

V
+ pV . (3.42)

As in the ideal gas case,we canminimize theGibbs free energy to find the equilibrium
volume:

∂G

∂V
= 0, (3.43)

which implies (
p + aN 2

V 2

)
(V − bN ) = NkB T . (3.44)

You may recognize Eq. (3.44) as the van der Waals equation of state. Note that it
reduces to the ideal gas law if b → 0 and a → 0.

One way to think about van der Waals theory is as a correction to the ideal gas
theory, which takes intermolecular interactions into account. This perspective might
be useful for chemical engineers, for example, if they need to know the relationship
between pressure, volume, and temperature more precisely than they would get from
the ideal gas law. They might look up the parameters b and a for oxygen or carbon
dioxide, and hence calculate the right relationship between pressure, volume, and
temperature for the gas that they are working with.

3.5 Gas–Liquid Transition at Fixed Pressure

We can learn much more from van der Waals theory than just these detailed cor-
rections for specific materials. Let us plot the Gibbs free energy over a range of
parameters. In these plots, we can scale G by NkB T , and express the result in terms
of the volume per molecule v = V/N , to obtain

G

NkB T
= − log

[
(2πmkB T )3/2e

h3 (v − b)

]
−

(
a

kB T

)
1

v
+

(
p

kB T

)
v. (3.45)

For the plots, we can choose units of volume such that b = 1, and units of energy such
that a = 1. (Of course, whenever we want to apply our results to specific materials,
we will have to go back to physical units!)

Figure3.5 shows a sequence of plots as the temperature is reduced, at a fixed low
pressure. In Fig. 3.5a, at high temperature, the plot looks very similar to the ideal
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Fig. 3.5 Plots of the Gibbs free energy for van der Waals theory, with the parameters a = 1 and
b = 1, at the low pressure p = 0.01. a At temperature kB T = 0.3, with only one minimum
at v ≈ 27 (stable gas phase). b At kB T = 0.24, with the absolute minimum at v ≈ 20 (stable
gas phase) and a local minimum at v ≈ 1.6 (metastable liquid phase). c At kB T = 0.22, with
two equally deep minima at v ≈ 18 and v ≈ 1.6 (gas–liquid transition). d At kB T = 0.2,
with the absolute minimum at v ≈ 1.4 (stable liquid phase) and a local minimum at v ≈ 15
(metastable gas phase) (Interactive version at http://www.springer.com/cda/content/document/cda_
downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420.)

gas case in Fig. 3.2, with just one minimum at a high volume. In Fig. 3.5b, when the
temperature is reduced, the plot becomes more interesting. The absolute minimum
is still at a high volume, but there is now also a local minimum at a much lower
volume. As the temperature is reduced further, the low-volume minimum becomes
deeper. At the temperature shown in Fig. 3.5c, the two minima are equally deep,
and hence the system is right on the boundary between a high-volume state and a
low-volume state. As the temperature continues to decrease, as shown in Fig. 3.5d,
the low-volume minimum becomes even deeper than the high-volume minimum.
(I encourage you to explore this behavior for yourself using the interactive version
of the figure.)

In all of these plots, the deepest (absolute) minimum corresponds to the sta-
ble equilibrium phase of the system. The other (local) minimum corresponds to a
metastable state; the concept of metastability will be discussed further in Chap.7.
Hence, we can see that the system is showing an abrupt transition from a gas state
with a high volume per molecule at high temperature, to some other state with a
low volume per molecule at low temperature. How can we interpret this behavior?
What state is similar to a gas, but has a much lower volume per molecule (i.e., higher
density) and forms at lower temperature? It is a liquid!

At this point, we can scan through pressure p and temperature T , and numerically
find the volume per particle that minimizes the Gibbs free energy at each (p, T ). If

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://dx.doi.org/10.1007/978-3-319-21054-4_7
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Fig. 3.6 Plots of the equilibrium volume per particle for van der Waals theory, with parameters
a = 1 and b = 1. a Isobars at p = 0.01, p = 0.02, p = 0.03, p = 1/27 ≈ 0.037, and p = 0.04
(from left to right). b Isotherms at kB T = 0.24, kB T = 0.26, kB T = 0.28, kB T = 8/27 ≈ 0.296,
and kB T = 0.30 (from left to right)

the Gibbs free energy has two minima at some (p, T ), we will just identify the
deepest minimum. Figure3.6a shows a series of plots as a function of temperature
at constant pressure; these plots are called isobars. The first, blue line shows the
behavior at low pressure (the same pressure shown in the Gibbs free energy plots of
Fig. 3.5). In this case, there is an transition from the liquid phase at low temperature
to the gas phase at high temperature. The volume per molecule of the gas phase is
very sensitive to temperature, while the volume per molecule of the liquid phase is
almost independent of temperature. The second and third lines show the behavior
at higher pressures. We see that the transition temperature increases as the pressure
increases (think of boiling water at lower or higher altitude). We also see that the
volume discontinuity becomes smaller as the pressure increases, i.e., the difference
between liquid and gas becomes smaller. Eventually, at the special pressure shown in
the fourth, green line, the discontinuity between liquid and gas goes to zero. Instead
of a discontinuity, the curve just shows a single point where the slope ∂v/∂T → ∞.
This special point is called the critical point; it is quite analogous to the critical point
for the Ising model, and it will be discussed in more detail in the next section. For
even higher pressure, the fifth line has neither a discontinuity nor a point of infinite
slope; it just shows a smooth change in the volume as a function of temperature. At
this high pressure, the system cannot be identified as either liquid or gas; it is just
called a supercritical fluid, meaning beyond the critical point.

Figure3.6b shows a corresponding series of plots as a function of pressure at
constant temperature; these plots are called isotherms. The first, blue line shows the
behavior at low temperature.As the pressure increases, the systemabruptly condenses
from gas to liquid. The volume per molecule of the gas phase is very sensitive to
pressure, while the volume per molecule of the liquid phase is almost independent
of pressure. The second and third lines show the behavior at higher temperatures:
As the temperature increases, the pressure required to condense the gas into a liquid
increases, and the difference between gas and liquid becomes smaller. At the special
pressure shown in the fourth, green line, the discontinuity between liquid and gas
goes to zero, and we again see the critical point. Now it appears as a point with
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Fig. 3.7 Volume per particle as a function of temperature and pressure, in a 3D plot, for van
der Waals theory with parameters a = 1 and b = 1 (Interactive version at http://www.springer.
com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=
0-0-45-1509169-p177545420.)

slope ∂v/∂T → −∞. For even higher temperature, the fifth line has neither a
discontinuity nor a point of infinite slope, but just a smooth change in volume as a
function of pressure. Again we have the supercritical fluid.

Figure3.7 shows a 3D plot of the volume per particle as a function of both temper-
ature and pressure, which combines the information in both isobars and isotherms. It
is quite analogous to the 3D plot of the Ising order parameter as a function of temper-
ature and magnetic field in Fig. 2.8. Again, it looks like a partially torn sheet of paper.
The “torn” part on the left represents the discontinuous volume change between liq-
uid and gas, for temperature and pressure below the critical point. The “non-torn”
part on the right represents the smooth response to temperature and pressure in the
supercritical fluid regime.

If we project this 3D plot down into the (p, T ) plane, we obtain the phase diagram
shown in Fig. 3.8. It is analogous to the Ising phase diagram in Fig. 2.9. In this
diagram, we see the gas phase at high temperature and low pressure, and the liquid
phase at low temperature and high pressure. The sharp boundary between gas and
liquid is a first-order phase transition. This boundary terminates at the critical point,
where there is a second-order phase transition. This second-order transition does not
have a discontinuity in the volume, but it has singularities in the derivatives ∂v/∂T
and ∂v/∂ p. Beyond the critical point is the supercritical fluid regime, where gas and
liquid cannot be distinguished. One can go from the gas phase to the liquid phase
in two possible ways—either by crossing the transition line or by going around the
critical point.

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://dx.doi.org/10.1007/978-3-319-21054-4_2
http://dx.doi.org/10.1007/978-3-319-21054-4_2
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Fig. 3.8 Phase diagram as a function of pressure and temperature, for van der Waals theory with
parameters a = 1 and b = 1

3.6 Behavior Near Critical Point

We have seen that the critical point is a special point in the van der Waals phase
diagram, where the first-order liquid–gas transition comes to an end and the phases
merge into a single supercritical fluid. In that respect, it is analogous to the critical
point in the Ising phase diagram, where the first-order transition between the spin-up
and spin-down phases comes to an end and they merge into a single paramagnetic
phase. It is worthwhile to examine the behavior near the critical point in more de-
tail. We will be able to make some analytic predictions here, without the need for
numerical calculations.

For this analysis, let us return to plots of the Gibbs free energy as a function of
volume per molecule. In Fig. 3.5 discussed above, we showed plots at low pressure,
far from the critical point. Now, suppose we increase the pressure and temperature,
and continue to track the gas–liquid transition. As pressure and temperature approach
the critical point, as shown in Fig. 3.9a, b, the liquid and gasminima ofG(v) gradually
come together. Exactly at the critical point, shown inFig. 3.9c, the distinction between
gas and liquid completely goes away, and the plot of the Gibbs free energy just has
a single very flat minimum. Beyond the critical point, as in Fig. 3.9d, the curvature
at the minimum becomes greater, and it looks more like a parabola. This series of
plots is similar to the series of free energy plots for the Ising model shown in Fig. 2.4,
except that the Ising plots have a symmetry between positive and negative M while
the van der Waals plots do not have such a symmetry.

To calculate the pressure, temperature, and volume at the critical point, we note
that the plot of G(v) has a quartic minimum at that point. Because of the quartic
minimum, we must have

http://dx.doi.org/10.1007/978-3-319-21054-4_2
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Fig. 3.9 Plots of the Gibbs free energy for van der Waals theory, with the parameters a = 1
and b = 1, near the critical point. a At kB T = 0.24 and p = 0.015. b At kB T = 0.27
and p = 0.025. c At the critical temperature kB TC = 8/27 ≈ 0.296 and critical pres-
sure pC = 1/27 ≈ 0.037. d In the supercritical regime at kB T = 0.35 and p = 0.061
(Interactive version at http://www.springer.com/cda/content/document/cda_downloaddocument/
Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420.)

∂G

∂v
= 0,

∂2G

∂v2
= 0,

∂3G

∂v3
= 0, (3.46)

at the critical point. Hence, we have a set of three simultaneous equations in three
unknowns: the critical pressure pC , the critical temperature TC , and the critical
volume per particle vC . The solution is

pC = a

27b2
, kB TC = 8a

27b
, vC = 3b. (3.47)

These equations are consistent with the numerical calculation of the critical point in
Fig. 3.9c. Note especially the prediction for vC : We know that the minimum volume
per particle at infinite pressure is b, so the critical volume per particle is three times
that value.

Now suppose we are at a pressure and temperature slightly less than the critical
pressure, p = pC + δ p and T = TC + δT , with δ p and δT both negative. In this
case, G(v) has two minima at v slightly above and below vC , as shown in Fig. 3.9b.
Hence, we write v = vC + δv, and expand the G(v) as a power series to fourth order
in δv,

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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G(v)

N
= GC

N
+

(
δ p − kBδT

2b

)
δv + kBδT

8b2
(δv)2

− kBδT

24b3
(δv)3 + 8a + 243bkBδT

15552b5
(δv)4 + · · · . (3.48)

Let us assume that the minima have δv of order |δT |1/2 and |δ p|1/2; we will verify
that assumption self-consistently in a moment. In this case, we can neglect the cubic
term and the second quartic term in comparison with the other terms, and the series
simplifies to

G(v)

N
≈ GC

N
+

(
δ p − kBδT

2b

)
δv + kBδT

8b2
(δv)2 + 8a

15552b5
(δv)4 + · · · . (3.49)

The liquid–gas transition occurs when the two minima with positive and negative δv
have equal Gibbs free energies. This occurs when the coefficient of the linear term
in δv is zero:

δ p = kBδT

2b
. (3.50)

At this transition, the gas and liquid phases have the volumes per particle given by
the minima of G(v), which occur at

δv = ±
∣∣∣∣
243b3kBδT

2a

∣∣∣∣
1/2

, (3.51)

so our assumption about the scaling of δT is self-consistent.
The conclusion of this analysis can be written as a simple power law: The differ-

ence between the gas and liquid volumes scales as

vL − vG ∝ (TC − T )β, (3.52)

where β is a critical exponent. Here, we find β = 1
2 in mean-field theory for the

gas–liquid transition. This result is the same exponent as mean-field theory for the
Ising model! In Chap. 4, we will discuss the reason for this similarity.

Problem: The isothermal compressibility of a material is defined as

κT = − 1

V

(
∂V

∂ p

)

T
, (3.53)

where the derivative is taken at constant temperature. In the supercritical fluid, with
T slightly above TC , how does the isothermal compressibility depend on (T − TC )?

Solution: In the supercritical fluid, close to the critical point, δv is very small.
Hence, we can approximate the Gibbs free energy by the series to second order
in δv:

http://dx.doi.org/10.1007/978-3-319-21054-4_4
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G

N
≈ GC

N
+

(
δ p − kBδT

2b

)
δv + kBδT

8b2
(δv)2. (3.54)

Minimizing this expression over δv gives

0 = ∂

∂(δv)

[
G

N

]
≈ δ p − kBδT

2b
+ kBδT

4b2
δv, (3.55)

and hence

δv = 2b

(
1 − 2bδ p

kBδT

)
. (3.56)

The response to a change in pressure is

∂(δv)

∂ p
= − 4b2

kBδT
. (3.57)

Thus, the isothermal compressibility is

κT = − 1

V

(
∂V

∂ p

)

T
= − 1

vC

∂(δv)

∂ p
= 1

3b

4b2

kBδT
= 4b

3kB(T − TC )
. (3.58)

This dependence on (T − TC ) can be written as the scaling relation

κT ∝ (T − TC )−γ, (3.59)

with the critical exponent γ = 1. This is the same exponent as mean-field theory for
the susceptibility of the Ising model in the paramagnetic phase!

3.7 Gas–Liquid Transition at Fixed Volume

As a final point about the gas–liquid transition, we must consider one more issue:
Experiments are not always done at fixed pressure. Instead, they are sometimes done
at fixed volume.

Suppose we put N molecules into a container with volume V . We imagine that
this container has very strong walls, so it cannot possibly change its volume. We
control the temperature T of the system, perhaps by putting the whole container into
an oven. In this case, we do not control the pressure p; instead, the system makes
its own pressure inside the container. We can now ask two questions: First, what is
the phase inside the container: gas or liquid? Second, what is the pressure inside the
container?
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Let us begin with a specific example of van der Waals theory with parameters
a = 1 and b = 1. Suppose the temperature is kB T = 0.24, which is the same
temperature as the first, blue isotherm in Fig. 3.6b. We can consider three cases:

(a) Suppose we choose N and V such that V/N = 13. From the isotherm at
kB T = 0.24, we see that the gas phase at p = 0.014 has the right volume v = 13.
Hence, we can conclude that the container is filled with gas phase at p = 0.014. In
general, for any V/N > 12, we can find some pressure such that the gas phase at
that pressure has the volume we are looking for. Thus, for any V/N > 12, we can
conclude that the container is filled with gas phase at the corresponding pressure.

(b) Suppose we choose N and V such that V/N = 1.5. From the isotherm at
kB T = 0.24, we see that the liquid phase at p = 0.035 has the right volume v = 1.5.
Hence, we can conclude that the container is filled with liquid phase at p = 0.035.
In general, for any V/N between 1.0 (the minimum possible volume of the system)
and 1.6 (the maximum volume of the liquid phase at kB T = 0.24), we can find some
pressure such that the liquid phase at that pressure has the volume we are looking
for. Thus, for any V/N between 1.0 and 1.6, we can conclude that the container is
filled with liquid phase at the corresponding pressure. (Of course, if we want V/N to
be close to 1.0, we might need to go to an enormous pressure, but we will not worry
about that practical consideration here.)

(c) Suppose we choose N and V such that V/N = 5. From the isotherm at
kB T = 0.24, we see that the liquid phase has a maximum volume of 1.6, and the gas
phase has a minimum volume of 12. Neither phase has a volume per molecule of 5
at any pressure; this volume per molecule is right in the middle of the discontinuity
between liquid and gas. So what happens inside the container with V/N = 5?

To answer this question, let us go back to theGibbs free energy plot at kB T = 0.24,
right at the transition pressure of p = 0.015; this plot is shown in Fig. 3.9a. On this
plot, we see that the selected volume per molecule, V/N = 5, is between the liquid
minimum at v = 1.6 and the gasminimum of v = 12. There exists a state with v = 5,
but this state has a higher Gibbs free energy than v = 1.6 or v = 12. Hence, the
system can reduce its Gibbs free energy by breaking up into one region of v = 1.6
and another region of v = 12. This is exactly what happens in the experiment! Inside
the container, there is not any single uniform phase; instead, there is a coexistence
of some liquid at v = 1.6 and some gas at v = 12.

In general, the behavior for fixed volume per molecule and fixed temperature is
shown in the phase diagram of Fig. 3.10. At high volume, the system is entirely in
the gas phase. This single gas phase exists down to a minimum volume per molecule
at that temperature (which is the same minimum v for the gas phase shown in the
isotherm). At low volume, the system is entirely in the liquid phase. This single liquid
phase exists up to a maximum volume per molecule at that temperature (which is
the same maximum v for the liquid phase shown in the isotherm). In between the
minimum v for the gas and the maximum v for the liquid, the system shows two-
phase coexistence of gas and liquid, sometimes called a biphasic region. In the phase
diagram, the two-phase coexistence region is indicated by horizontal lines, which
remind us that the two coexisting phases have the same temperature but different
v. As the temperature increases toward the critical point, the distinction between
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Fig. 3.10 Phase diagram as a function of volume per molecule and temperature, for van der Waals
theory with parameters a = 1 and b = 1

gas and liquid becomes smaller, and hence the width of the two-phase coexistence
region becomes smaller. At the critical point, the gas and liquid become identical
and the two-phase coexistence vanishes. Above the critical temperature, the system
is entirely the supercritical fluid, which cannot be identified as either liquid or gas.

If the system is in the two-phase coexistence region, so that it consists of some gas
and some liquid, then we might want to know how much gas and how much liquid
is in the container. Suppose the gas phase contains NG molecules in a volume VG ,
while the liquid phase contains NL molecules in a volume VL . We then have four
equations in these four unknowns:

NG + NL = N , VG + VL = V,

VG

NG
= vG(T ),

VL

NL
= vL(T ). (3.60)

The first two equations express the fact that the total number of molecules in each
phase must add up to the total number of molecules in the container, and the total
volume in each phase must add up to the total volume in the container. The last two
equations express the fact that the volume per molecule in each phase must be the
appropriate functions of temperature—the minimum volume per molecule of the gas
phase and the maximum volume per molecule of the liquid phase—as shown on the
phase diagram. In order for the system to be in the two-phase coexistence region, we
must have vL(T ) < (V/N ) < vG(T ).
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The solution of these four simultaneous equations is

NG = V − vL(T )N

vG(T ) − vL(T )
, VG = vG(T )

(
V − vL(T )N

vG(T ) − vL(T )

)
,

NL = vG(T )N − V

vG(T ) − vL(T )
, VL = vL(T )

(
vG(T )N − V

vG(T ) − vL(T )

)
. (3.61)

This solution is called the lever rule, because it is analogous to the balance of torques
on a lever (when a large mass is near the fulcrum, and a small mass is far from the
fulcrum). We should notice three features of the solution:

First, when the system is near the gas side of the coexistence region, then V/N →
vG(T ), and hence NG → N , NL → 0, VG → V , and VL → 0, so the system is
almost all gas. Likewise, when the system is near the liquid side of the coexistence
region, then V/N → vL(T ), and hence NG → 0, NL → N , VG → 0, and
VL → V , so the system is almost all liquid. Between these limits, the composition
goes smoothly between mostly gas and mostly liquid.

Second,wheneverwe say that a system is some percentage gas or some percentage
liquid, we must say whether that is by number or by volume. The percentage gas by
number is

NG

N
= (V/N ) − vL(T )

vG(T ) − vL(T )
, (3.62)

while the percentage gas by volume is

VG

V
=

(
vG(T )

V/N

) (
(V/N ) − vL(T )

vG(T ) − vL(T )

)
, (3.63)

and likewise for the percentage liquid. The percentages by number and by volume
may be quite different. Indeed, it is quite common for most of the molecules in a
system to be in the liquid phase, while most of the volume is in the gas phase, because
vG(T ) is much greater than vL(T ). This situation should be familiar to chemistry
students, who must specify the percentage of chemicals by mole, by volume, or by
weight; those percentages are all different.

Third, suppose we vary the temperature of a system. The number of molecules N
and volume V are fixed; they do not depend on temperature. However, the minimum
gas volume vG(T ) and maximum liquid volume vL(T ) do depend on temperature,
as shown in the phase diagram of Fig. 3.10. Hence, the percentages of the system
that are gas and liquid must vary with temperature.

Figure3.11 shows two examples of what can happen. In the top row, we have a
system with V/N greater than the critical volume per molecule vc. At low tempera-
ture, it has a coexistence between gas and liquid, with percentages given by the lever
rule. As the temperature increases, vG(T ) decreases toward the actual V/N for the
system, and hence the percentage of gas increases. At some temperature, vG(T ) be-
comes equal to V/N , and hence the system becomes entirely gas. It remains entirely
gas for higher temperature. This is exactly the process of boiling a liquid at fixed
volume.
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Fig. 3.11 Examples of the liquid–gas transition at fixed volume, as the temperature is increased.
The top row shows a high volume per molecule (low density), while the bottom row shows the
critical volume per molecule (critical density)

By comparison, in the bottom row, we have a system with V/N equal to vC . At
low temperature, it also has a coexistence between gas and liquid, with percentages
given by the lever rule. As the temperature increases, this V/N remains between
vG(T ) and vL(T ). The percentages of liquid and gas may change somewhat, but
the system does not become entirely gas or liquid; it continues to have some gas
and some liquid. As the temperature approaches TC , the distinction between gas and
liquid becomes smaller, and the interface between them gradually becomes fuzzy and
diffuse. (The fuzzy interfacewill be discussed further inChap.6.)At the critical point,
the interface completely blurs out; gas and liquid can no longer be distinguished. For
all temperatures beyond TC , the system is entirely the supercritical fluid.

Problem: Supposewe have a shipping container of size 12.0m× 2.35m× 2.38m
at room temperature. We pump out all the air, and put 1,000kg of water into the
container. How much water will be in the liquid phase, and how much in the gas
phase?

Solution: The total volume of the container is V = VL + VG = 67 m3, with
VL in the liquid phase and VG in the gas phase. The total mass of water is M =
ML + MG = 1, 000 kg.

The density of liquidwater iswell known to be ML/VL = 1 g/cm3 = 1000 kg/m3.
The maximum density of water vapor is not as well known, but it can be found in
tables of the thermodynamic properties of water, which engineers call steam tables.3

At room temperature of T = 22.5 ◦C, these tables give MG/VG = 0.02 kg/m3.

3For example, see http://www.efunda.com/materials/water/steamtable_sat.cfm.

http://dx.doi.org/10.1007/978-3-319-21054-4_6
http://www.efunda.com/materials/water/steamtable_sat.cfm
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Solving these equations simultaneously givesVL = 0.9987m3,VG = 66.0013m3,
ML = 998.7 kg, and MG = 1.3 kg. Hence, almost all of the volume is in the gas
phase, but almost all of themass is in the liquid phase. This situation is very common,
because the density of liquid water is much greater than the density of water vapor.

In this solution, we have worked in terms of volume and mass, rather than volume
and number of water molecules. We could have converted from mass to number
of molecules, but this conversion is not necessary in a system of pure water. Mass
is equivalent to number of molecules, because each water molecule has a constant
mass.

Further Reading

Van der Waals theory for gases and liquids is discussed in many textbooks on statis-
tical mechanics and physical chemistry. Some examples are:

1. D.L. Goodstein, States of Matter (Prentice-Hall, 1975)
2. T.L. Hill,An Introduction to Statistical Thermodynamics (Addison-Wesley, 1960)
3. S.-K. Ma, Statistical Mechanics (World Scientific, 1985)



Chapter 4
Landau Theory

Abstract As an alternative to the microscopic theories presented previously, this
chapter presents Landau theory, which is a very general approach to understanding
phase transitions. Landau theory ignores themicroscopic structure ofmatter; instead,
it is based on considerations of symmetry and the smoothness of functions. Remark-
ably, it gives predictions for phase transitions that are similar to predictions from
microscopic theories.

So far we have discussed theories for two types of phase transitions: the Ising model
for ferromagnetism and van der Waals theory for the gas-liquid transition. These
theories are quite different—one is based on spins on a lattice, while the other is
based on molecules with positions and momenta. However, we have seen that the
predictions of these theories have a remarkable similarity. They both predict a first-
order transition with a discontinuity in some order parameter, the magnetization for
the Ising model and the volume per molecule for van derWaals theory. In both cases,
the first-order transition terminates in a critical point, where the magnitude of the
discontinuity goes to zero. Just below the critical point, the order parameter scales
as (TC − T )β , with the critical exponent β = 1

2 .
At this point, you might be wondering: Is there any fundamental reason why the

predictions of these theories are so similar? Can there be any unified description for
both of these transitions, and perhaps also for other phase transitions?

Of course, the answer to this question is yes. There is a general approach that
provides information about these two phase transitions, as well as many others. It
does not provide all the information that comes from more specific theories, like the
Ising model and van der Waals theory, but it at least provides information about the
structure of phase diagrams and about critical exponents. This approach is called
Landau theory, after the great Soviet theoretical physicist Lev Landau.

Personally, I like to think of Landau theory as “how to get something for nothing.”
Everyone in the world wants to get something for nothing—whenever I see a free
sample in the supermarket, I want to pick it up. Landau theory is the physics version
of that impulse. Here, we do not assume anything about the structure of the world;
we totally ignore the fact that a magnet is made of microscopic spins, or a fluid is
made of atoms and molecules. Instead, we just think about the symmetry of order
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parameters, and see what we can infer from that. You might not expect that we can
infer anything from such a simple starting point. It is truly amazing to me that this
approach works so well.

4.1 Ising Ferromagnetism

Let us begin with the example of an Ising magnet, i.e., a magnet that can only have
magnetic order along one axis (call it ẑ). For themoment, let us consider the casewith
no applied field. We want to develop a theory for the transition from the disordered
paramagnetic state to the ordered ferromagnetic state. Suppose we do not know
anything about the microscopic structure of the magnet; we only know that it has an
order parameter M , which is zero in the paramagnetic state and becomes nonzero
in the ferromagnetic state. Hence, we must make a model for the free energy as a
function of M . Nowwemake a crucial assumption:We assume that the free energy is
a smooth1 function of M around M = 0. Why is that assumption reasonable? Well,
the basic concept of the theory is that we begin with assumptions about smoothness,
and we end by making predictions about phase transitions that are not smooth; they
are discontinuous or singular changes. The input into the theory must be smooth, and
then it is remarkable that the output of the theory is not smooth. If the input were not
a smooth function, then the input could be anything, and hence the output could be
anything. It is only this assumption of smooth input that puts a physical constraint
on the output.

Because we assume that F is a smooth function of M , we can expand F as a
power series about M = 0,

F = F0 + F ′(0)M + 1

2! F ′′(0)M2 + 1

3! F ′′′(0)M3 + 1

4! F ′′′′(0)M4 + · · · . (4.1)

We assume that higher-order terms are negligible for small M , sufficiently close to
the paramagnetic–ferromagnetic transition. Now we consider the symmetry of the
system. We know that the system has a symmetry under reflection in the xy-plane,
which changes ẑ → −ẑ. For this reason, the free energymust be unchangedunder this
reflection, so that F(M) = F(−M). In otherwords, F must be an even function of M .
For this reason, the odd terms in the power series must vanish, F ′(0) = F ′′′(0) = 0.
The remaining terms are

F = F0 + 1

2! F ′′(0)M2 + 1

4! F ′′′′(0)M4. (4.2)

At this point, just for future convenience, we make two small changes in notation.
First, because the free energy is extensive, it should be proportional to the volume.

1If you know complex analysis, the assumption is that F is an analytic function of M . If you do
not know complex analysis, you can just use the word smooth.
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Hence, we will write the series for the free energy density, i.e., the free energy per
volume. Second, we relabel the series coefficients in the more compact form:

f = F

V
= f0 + 1

2
aM2 + 1

4
bM4. (4.3)

Now we must consider how the free energy depends on temperature. In principle,
all of the coefficients f0, a, and b must be functions of temperature, so we can write
the power series as

f = f0(T ) + 1

2
a(T )M2 + 1

4
b(T )M4. (4.4)

Of course, we do not know how they depend on temperature. We will only assume
that the dependence on temperature is smooth, for the same reason discussed above.
Hence, all of them can be expanded as power series about any arbitrary tempera-
ture T0,

a(T ) = a0 + a′(T − T0) + · · · , b(T ) = b0 + b′(T − T0) + · · · . (4.5)

The same is also true for f0(T ), but it will not really matter. In a moment, we will see
that the interesting behavior happens near the temperaturewhere a(T ) passes through
0. Hence, we will choose the arbitrary temperature T0 such that a(T0) = a0 = 0. For
temperatures T near T0, we can then assume

a(T ) = a′(T − T0). (4.6)

Likewise, for temperatures T near T0, we can neglect the linear term in b(T ) and
approximate it by the constant term

b(T ) = b0. (4.7)

Hence, our series for the free energy density becomes

f = f0 + 1

2
a′(T − T0)M2 + 1

4
b0M4. (4.8)

Figure4.1 shows plots of this free energy for temperatures T > T0, T = T0,
and T < T0. We can see that it has the same general form as the free energy in
Fig. 2.4, which we determined from microscopic mean-field theory. As the temper-
ature decreases from T > T0 to T < T0, the minimum at M = 0 gradually flattens
out and then splits into two minima at positive and negative M . This splitting of the
minimum is precisely the spontaneous symmetry-breaking transition from the para-
magnetic phase to the ferromagnetic phase at the Ising critical point. Hence, we can
identify the parameter T0 in the series expansion with the Ising critical temperature
TC , and we will use that symbol.

http://dx.doi.org/10.1007/978-3-319-21054-4_2
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Fig. 4.1 Plots of the free energy of Eq. (4.8) fromLandau theory for an Ising ferromagnet. a T > T0.
b T = T0. c T < T0 (Interactive version at http://www.springer.com/cda/content/document/cda_
downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420.)

To find the minimum of this free energy, we set the first derivative equal to zero:

∂ f

∂ M
= a′(T − TC )M + b0M3 = 0. (4.9)

For T ≥ TC , the only real solution is M = 0, corresponding to the disordered,
paramagnetic phase. For T < TC , there are three real solutions:

M = 0, M = ±
(

a′(TC − T )

b0

)1/2

. (4.10)

Of these three solutions, M = 0 is the local maximum shown in Fig. 4.1c, while the
other two solutions are the positive and negative minima. The behavior as a function
of temperature is shown in Fig. 4.2. We can see that it follows the scaling relation

M ∝ (TC − T )β, (4.11)

where the critical exponent is β = 1
2 . Hence, Landau theory even gives the same

critical exponent as we found in Eq. (2.38), based on microscopic mean-field theory
for the Ising model. It is remarkable that Landau theory can provide this much
information based on nothing but symmetry arguments!

This Landau theory can be generalized by adding the effects of a magnetic field
h. Any applied field breaks the symmetry between M and −M , and hence the free

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://dx.doi.org/10.1007/978-3-319-21054-4_2
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Fig. 4.2 Prediction of
Landau theory for the
magnetic order parameter as
a function of temperature
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energy series can have odd as well as even terms in M . Let us suppose that h is small,
so that it is just a perturbation on the symmetric system. For small h and small M , the
lowest-order coupling between h and M is just a term of −hM, with some arbitrary
coefficient μ. There could certainly be additional couplings like −h3M and −hM3,
but they are much smaller because they involve higher powers of h and M . Hence,
we can write the leading terms in the free energy series as

f = f0 − μhM + 1

2
a′(T − TC )M2 + 1

4
b0M4. (4.12)

This expression allows us to predict the effects of a small symmetry-breaking field
on the order parameter, again based on nothing but symmetry arguments.

Problem: Using Landau theory for T > TC , show that the susceptibility defined
by Eq. (2.42) diverges as the system approaches the critical point, with the scaling
relation χ ∝ (T −TC )−γ , where γ = 1. This is the same critical exponent as derived
from the microscopic mean-field theory of Chap. 2.

Solution: For T > TC , if the applied field is small, the induced order parameter
must also be small. Hence, we can neglect the 1

4b0M4 term in comparison with the
1
2a′(T − TC )M2 term in the free energy, and approximate the free energy by

f = f0 − μhM + 1

2
a′(T − TC )M2. (4.13)

To minimize this free energy over M , we set ∂ f/∂ M = 0, and hence obtain

M = μh

a′(T − TC )
. (4.14)

The susceptibility is therefore

χ = ∂ M

∂h
= μ

a′(T − TC )
, (4.15)

which follows the scaling relation with critical exponent γ = 1.

http://dx.doi.org/10.1007/978-3-319-21054-4_2
http://dx.doi.org/10.1007/978-3-319-21054-4_2


56 4 Landau Theory

Problem: Using Landau theory for T = TC , show that the response to a small
applied field follows the scaling relation M ∝ h1/δ , where δ = 3. Again, this is the
same critical exponent as in microscopic mean-field theory.

Solution: At T = TC , the free energy reduces to

f = f0 − μhM + 1

4
b0M4. (4.16)

We minimize this expression by setting ∂ f/∂ M = 0, and obtain

M =
(

μh

b0

)1/3

, (4.17)

which follows the scaling relation with exponent δ = 3.

Landau theory can also be generalized to consider a nonuniform order parameter
M(r), which depends on position. In this case, the free energy density f (M(r)) also
depends on position. Because of this dependence, the total free energy is not just
the volume times the free energy density. Instead, it must be the integral of the free
energy density over position:

F =
∫

d3r f (M(r)). (4.18)

For a nonuniform system, the free energy density includes the series of Eq. (4.12),
and it may also include an extra free energy cost associated with the variation of
M(r). What is this extra free energy cost? Well, we have to assume that M(r) is
a slowly varying function of position, which only changes over long length scales.
For this reason, the first derivatives are small, and the higher derivatives are even
smaller. Hence, the main contribution to the extra free energy cost must come from
the gradient ∇M . How can the extra free energy cost depend on ∇M? Well, ∇M is
a vector but f is a scalar. We need to construct a scalar that depends on the vector
in a smooth way. Once again, we make a power series, now a series in ∇M . The
lowest-order, largest term in this power series must be proportional to |∇M |2, with
some arbitrary coefficient 1

2 K . Hence, we write the gradient free energy as

fgradient = 1

2
K |∇M |2. (4.19)

When we combine the gradient free energy with our previous series, we obtain the
free energy density

f = f0 − μhM + 1

2
a′(T − TC )M2 + 1

4
b0M4 + 1

2
K |∇M |2, (4.20)
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and hence the total free energy

F =
∫

d3r

[
f0 − μhM + 1

2
a′(T − TC )M2 + 1

4
b0M4 + 1

2
K |∇M |2

]
. (4.21)

This expression for the free energy, including the gradient term, will be useful when
we consider interfaces in Chap.6.

Before going on, I must acknowledge that Landau theory has some limitations
compared with the mean-field theory presented in Chap. 2. (I promised that Landau
theorygives you something for nothing, but it cannot giveyou everything for nothing!)
We should note two points:

First, the parameters a′ and b0 in Landau theory are arbitrary coefficients; we do
not have any physical interpretation ofwhat theymean. By contrast, the parameters in
our microscopic mean-field theory have specific physical meaning: J is the strength
of the interaction between neighboring spins, and q is the coordination number of the
lattice. In some cases, the generality of Landau theory is a real advantage, because the
theory can apply to many different specific problems. In other cases, the generality
is a disadvantage, because we do not know how the predictions are related to the
microscopic structure of a physical system.

Second, Landau theory does not know that M can only be between +1 and −1.
Indeed, Fig. 4.2 shows that the Landau prediction for M goes past ±1 as the tem-
perature decreases. Of course, we know that values of M beyond ±1 are unphysical.
The reason for this problem is that Landau theory is based on an expansion of the
free energy for small M . It just does not apply when the magnitude of M grows
large. Mathematically, the Landau free energy is based on a power series in M of
Eq. (4.8), which does not do anything special when M reaches ±1. By comparison,
the microscopic mean-field free energy of Eq. (2.31) has singularities at M = ±1,
and is undefined beyond those limits. For this reason, microscopic mean-field theory
correctly predicts that M must saturate at ±1, as shown in Fig. 2.6.

This second point leads to an important conclusion: If you’re using Landau theory,
and your calculation predicts an order parameter that’s unphysically large, then
you’re outside the regime where Landau theory is valid, so you shouldn’t be using
it. Even so, Landau theory is extremely useful in the regime where it is valid: when
the order parameter is small.

4.2 Gas-Liquid Transition

In the previous section, we constructed Landau theory for the Ising ferromagnet.
Now let us construct Landau theory for the gas-liquid transition, and see how similar
it is.

In Landau theory for gases and liquids, we assume that the free energy is a smooth
function of the volume per molecule v. We will therefore expand it as a power series.
However, we must now ask: A power series about what point? Should we expand it

http://dx.doi.org/10.1007/978-3-319-21054-4_6
http://dx.doi.org/10.1007/978-3-319-21054-4_2
http://dx.doi.org/10.1007/978-3-319-21054-4_2
http://dx.doi.org/10.1007/978-3-319-21054-4_2
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as a power series about v = 0? No, this would not work. The state with v = 0 is a
truly pathological state with zero volume per molecule; it is essentially a black hole.
We cannot expect to get any reasonable predictions by expanding about this state.

Alternatively, should we change variables to the density ρ = 1/v, and expand in
a power series about ρ = 0? The concept of expanding about ρ = 0 is not crazy.
The state with ρ = 0 is the ideal gas, which we understand well. However, the state
with ρ = 0 is not close to the gas-liquid transition, so an expansion about that state
is not a very effective way to learn about this transition.

A more effective approach would be to expand about the critical point itself.
We will assume that a critical point exists at some temperature TC , pressure pC ,
and volume per molecule vC . In other words, we assume that we can tune three
parameters T , p, and v to find a point where three equations are satisfied:

∂ F

∂v
= 0,

∂2F

∂v2
= 0,

∂3F

∂v3
= 0. (4.22)

We can then write the free energy density as a power series in δv = v − vC ,

f = F

V
= f0 + a(p, T )δv + 1

2
b(p, T )(δv)2 + 1

3
c(p, T )(δv)3 + 1

4
d(p, T )(δv)4,

(4.23)
where a, b, c, and d are arbitrary coefficients. All of these coefficients may vary with
pressure and temperature in some smooth way. At p = pC and T = TC , we must
have a = b = c = 0, while d > 0. Nearby, at p = pC + δp and T = TC + δT , we
can write their lowest-order dependence on pressure and temperature as

a(p, T ) = apδp + aT δT,

b(p, T ) = bpδp + bT δT,

c(p, T ) = cpδp + cT δT,

d(p, T ) = d0 + dpδp + dT δT ≈ d0. (4.24)

Now we can investigate what value of v minimizes the free energy. At the critical
point, the free energy is a quartic function of δv, and the only minimum is δv = 0.
Slightly away from the critical point, the free energy mainly depends on volume
through the linear term aδv. If the coefficient a < 0, the favored state has δv > 0;
if a > 0, the favored state has δv < 0. Hence, we will consider the borderline given
by a = 0, or

δp = −aT

aP
δT, (4.25)

as shown in the pressure–temperature phase diagram of Fig. 4.3.
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Fig. 4.3 Schematic phase diagram for the gas-liquid transition, derived from Landau theory

Along the a = 0 borderline, the free energy mainly depends on v through the
quadratic term 1

2b(δv)2. Depending on the sign of b, two types of behavior are
possible:

1. If b < 0, the leading contributions to the free energy along the a = 0 borderline
are given by

f = F

V
= f0 − 1

2
|b|(δv)2 + 1

4
d(δv)4. (4.26)

This form of the free energy is analogous to the Ising model at T < TC , as
discussed in the previous section. It has two minima at

δv = ±
∣∣∣∣
b

d

∣∣∣∣
1/2

= ±
∣∣∣∣
bpδp + bT δT

d0

∣∣∣∣
1/2

= ±
∣∣∣∣
(bT − bpaT /aP )δT

d0

∣∣∣∣
1/2

.

(4.27)
Hence, there is a discontinuity between a gas phase with v > vC and a liquid
phase with v < vC . The magnitude of the discontinuity scales as |T − TC |β , with
the critical exponent β = 1

2 .
2. If b > 0, the leading contributions to the free energy along the a = 0 borderline

are

f = F

V
= f0 + 1

2
|b|(δv)2 + 1

4
d(δv)4. (4.28)

This form of the free energy is analogous to the Ising model at T > TC . It has a
single minimum, which corresponds to the supercritical fluid state. With a little
more work off of the a = 0 borderline, we can extract the critical exponent γ = 1,
which characterizes the response to a change in pressure.
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The conclusion of this argument is that we can reproduce some important features
of van derWaals theory—including the structure of the phase diagram and the mean-
field critical exponents—without actually using any of the microscopic assumptions
of van der Waals theory. All we need is the general assumption that the free energy
is a smooth function of δv, with coefficients that are smooth functions of δp and δT ,
near the critical point.

Of course, Landau theory does not give us all the information of van der Waals
theory. In particular, it does not give the van der Waals equation of state that works
over the entire phase diagram, and it does not give the microscopic interpretation
of the van der Waals parameters a and b. For this type of information, we need a
molecular theory. Even so, it is remarkable to see how much we can learn from the
simple assumption of Landau theory.

Note that the cubic term 1
3c(δv)3 does not play an important role in this argument,

because it is small near the critical point. This term and higher-order terms would be
important farther from the critical point—but we cannot rely on Landau theory far
from the critical point, because the power series expansion is only justified for small
δv, δp, and δT .

If the system is nonuniform, we can generalize Landau theory for the gas-liquid
system just as we generalized Landau theory for the Ising model. The free energy
density now acquires an extra term that represents the free energy cost of nonuniform
δv(r). To the lowest order, this cost can be written as

fgradient = 1

2
K |∇(δv)|2. (4.29)

Hence, the full free energy density is

f = f0 + aδv + 1

2
b(δv)2 + 1

3
c(δv)3 + 1

4
d(δv)4 + 1

2
K |∇(δv)|2, (4.30)

and the integrated free energy is

F =
∫

d3r

[
f0 + aδv + 1

2
b(δv)2 + 1

3
c(δv)3 + 1

4
d(δv)4 + 1

2
K |∇(δv)|2

]
.

(4.31)

This expression will be useful for the study of interfaces in Chap.6.

4.3 General Order Parameters

In the previous two sections, we have developed Landau theories for two types of
phase transitions: Ising and gas-liquid transitions. We have seen that these Landau
theories are very similar. They both involve representing the free energy as a power
series in the order parameter (M for Ising, δv for gas-liquid transition), and assuming

http://dx.doi.org/10.1007/978-3-319-21054-4_6
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that the coefficients in the series expansion are smooth functions of the thermody-
namic variables (T and h for Ising, T and p for gas-liquid transition). To be sure,
these two theories are not exactly the same because of a symmetry difference: The
Ising model has an exact symmetry between M > 0 and M < 0, while the gas-
liquid system does not have an exact symmetry between δv > 0 and δv < 0. For
this reason, the gas-liquid system has odd as well as even terms in the power series
for the free energy. Despite this difference, the systems are similar enough that they
have phase diagrams with the same structure—a first-order transition terminating in
a critical point—and the same critical exponents.

At this point, youmight be wondering: Is that all there is? Are all phase transitions
just like these two? Does every phase transition has the same type of Landau theory,
and hence the same phase diagram and critical exponents?

The answer to these questions is no. To see the differences among phase transi-
tions, we must consider the symmetries of the order parameters.

The Ising and gas-liquid transitions are so similar because their order parameters
are both real scalars. They each have amagnitude and a sign, but no other directional-
ity. Other systemsmay have order parameters with different mathematical structures:

• The order parameter may be a vector. One common example is a general
ferromagnet—not just an Ising model, but a system where the magnetization can
point in any direction in 3D space. In this case, the magnetic order parameter is a
3D vector.

• The order parameter may be a complex number. Common examples are supercon-
ductors and superfluids, where the order parameter ψ = |ψ |eiφ has a magnitude
and a phase. A related situation occurs for the layering order parameter of a smec-
tic liquid crystal. In all these cases, the complex order parameter is equivalent to a
two-component vector, because it can be broken up into real and imaginary parts.

• The order parameter may be a tensor. One common example is a nematic liquid
crystal, which will be discussed later in Chap.10.

• The systemmay have several interacting order parameters. For example, a smectic
liquid crystal has an orientational order parameter and a layering order parameter,
which interact with each other. In such cases, the phase diagram may be affected
by the interaction of all the order parameters.

No matter what is the mathematical structure of the order parameter(s), the free
energy always has the samemathematical structure: It is always a real scalar. Hence,
whenever we construct a free energy as a power series, we must determine how to
build a real scalar out of powers of the order parameter(s). From the perspective of
Landau theory, we can say that the richness of phase diagrams arises from the many
ways to combine interesting order parameters into a free energy.

http://dx.doi.org/10.1007/978-3-319-21054-4_10
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4.4 Beyond Mean Field: Universality Classes

Landau theory is a form of mean-field theory, which expresses the free energy in
terms of a small number of variables and then minimizes the free energy. It does not
consider correlated fluctuations of many degrees of freedom at nearby positions. It
gives the same critical exponents as the other forms of mean-field theory that we
have studied.

I should briefly mention that there are other theories that go beyond the mean-
field approximation; they do consider correlated fluctuations of many degrees of
freedom at nearby positions. One very powerful approach to this challenge is the
renormalization group, pioneered by Michael Fisher, Leo Kadanoff, and Kenneth
Wilson, and recognized by the Nobel Prize to Wilson in 1982. This approach begins
with a free energy density as in Landau theory, but it does not just minimize the free
energy. Rather, it treats the partition function in a more subtle way, and it predicts
critical exponents that are more precise than mean-field theory. This approach is
beyond the scope of this book, and I cannot describe it further here. I only want to
make sure you are aware that it exists!

Beyond mean-field theory, one of the main conclusions of statistical mechanics
is that phase transitions can be classified into universality classes. Each universality
class is characterized by a certain set of critical exponents. The universality class
of a phase transition is determined by two quantities: the number of components
in the order parameter (conventionally called n) and the dimensionality of space
(called d). Hence, both the 3D Ising model and the 3D gas-liquid transition are in
the universality class n = 1, d = 3. By comparison, if the magnetization can point
in any direction in 3D space, the ferromagnet has n = 3, d = 3.

For the rest of this book, I will return to mean-field theory and will apply it
to a range of problems in materials science. Although it does not give the precise
critical exponents for phase transitions, it will prove to be remarkably useful in many
situations!

Further Reading

Landau’s view of statistical physics is presented in the following textbook:

1. L.D. Landau, E.M. Lifshitz, Statistical Physics, 3rd edn. Part 1 (Course of The-
oretical Physics, vol 5). Translated by J.B. Sykes, M.J. Kearsley (Elsevier, 1980)

For a detailed discussion of critical phenomena, in mean-field theory and beyond,
you should see:

2. S.-K. Ma, Modern Theory of Critical Phenomena (Westview, 2000)



Chapter 5
First Mathematical Interlude: Variational
Calculus

Abstract Many problems in statistical mechanics require minimizing a free energy
not just over one variable, or even several variables, but over a function. Variational
calculus is themathematicalmethod for performing suchminimizations. This chapter
presents the mathematical technique of variational calculus, with examples in clas-
sical mechanics. In future chapters, this technique will be applied to the theory of
soft materials.

In the preceding chapters, we have seen several examples where we need tominimize
a free energy. In all of those examples, the free energy is a function of just one variable,
the order parameter, which might be the magnetization M or the volume V . In these
cases, we know how to do the minimization: We calculate the first derivative of the
free energy with respect to the order parameter, set the first derivative equal to zero,
and solve for the order parameter.

One simple generalization of those examples might be a problem where the free
energy depends on several variables, perhaps several different order parameters. In
this generalized problem, we would again know how to do the minimization: We
would calculate the first partial derivative of the free energy with respect to each
of the variables, set all of these partial derivatives equal to zero, and solve this
system of equations for all of the variables. I will assume that you have already seen
minimization problems like that in classes on multivariable calculus.

In statistical mechanics, we often need to deal with minimization problems that
are yet more complicated: The order parameter itself may be a function of position,
such as a local magnetization M(r). In this case, the total free energy is the integral
of a local free energy density, which depends on the local order parameter and its
derivatives. In other words, the total free energy is a function of a function. We must
then ask: What order parameter function gives the minimum free energy? Thus, the
mathematical task is to minimize the free energy over all possible order parameter
functions. This is a problem within the field of mathematics known as variational
calculus, or calculus of variations.

In my experience, most students have not learned variational calculus at this point
in their studies. For this reason, I will explain the basic mathematical concept here,
so that we can use it in future chapters.

© Springer International Publishing Switzerland 2016
J.V. Selinger, Introduction to the Theory of Soft Matter,
Soft and Biological Matter, DOI 10.1007/978-3-319-21054-4_5
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Fig. 5.1 Bobsled race on the side of a valley, as an example of a variational calculus problem
(Interactive version at http://www.springer.com/cda/content/document/cda_downloaddocument/
Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420.)

5.1 Example: Bobsled Race

As an example of a variational calculus problem, let us consider an Olympic bobsled
race on the side of a valley, as shown in Fig. 5.1. The race begins at the green point
(−x0, y0) and ends at the red point (x0, y0). As a racer, you need to choose your
path y(x). Clearly, the shortest distance is a straight line along the side of the valley,
as shown by the blue line. However, what path is the shortest time? It might be
advantageous for you to go down to the bottom of the valley in order to pick up
speed, then proceed quickly along the bottom, and only go back up near the end of
the race, as shown by the black line.

The first step in this problem is to derive an expression for the total travel time in
terms of the path y(x). The second step will be to minimize this expression over all
possible paths.

To derive an expression for the total travel time, we need the bobsled speed at any
point. Let us suppose that the valley has a parabolic shape

z = 1

2
ky2. (5.1)

To determine the speed v, we use the conservation of energy

1

2
mv2 + mgz = E0, (5.2)

where m is the mass, g is the gravitational acceleration, E0 is the initial energy
(kinetic plus potential), and we assume there is no drag on the bobsled. Hence, the
speed at any point is

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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v =
(
2E0

m
− gky2

)1/2

. (5.3)

Let us assume that the current potential energy is much less than the initial total
energy, 1

2gky2 � E0, so that the velocity can be approximated as

v =
(
2E0

m

)1/2 (
1 − mgky2

4E0

)
. (5.4)

The total travel time T is now the integral of the time required for each element
of the path, from beginning to end. We can write it as

T =
∫ end

begin
dt =

∫ end

begin

ds

v
. (5.5)

Here, ds is the element of arclength, which can be written as

ds =
(

dx2 + dy2 + dz2
)1/2

(5.6)

=dx

(
1 +

(
dy

dx

)2

+
(

dz

dx

)2
)1/2

.

Let us now assume that the horizontal slope is small, dy/dx � 1, and the vertical
slope is even smaller, dz/dx � dy/dx . In this case, the element of arclength can be
approximated as

ds = dx

(
1 + 1

2

(
dy

dx

)2
)

. (5.7)

The total travel time then becomes

T =
∫ x0

−x0
dx

(
1 + 1

2

(
dy

dx

)2
) (

2E0

m

)−1/2 (
1 − mgky2

4E0

)−1

=
(

m

2E0

)1/2 ∫ x0

−x0
dx

(
1 + mgk

4E0
y2 + 1

2

(
dy

dx

)2
)

. (5.8)

Equation (5.8) for the total travel time is now our expression to minimize. This
expression involves an integral over the whole path of the time required for each
element of the path. It depends on the path y(x) in two ways. First, the y2 term
favors keeping the path close to y = 0, on the bottom of the valley, where the speed
is greatest. Second, the (dy/dx)2 term favors keeping the path as straight as possible,
in order to minimize the distance. These two terms compete with each other, and
their competition determines the optimal path.
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5.2 Minimization

How can we minimize an expression like Eq. (5.8) over paths y(x)? Let us reason
by analogy with functions of one variable, or functions of several variables.

First, suppose we have a function of one variable f (x). The basic idea is that we
make a small change in x → x +�x , and then observe how f changes to f (x)+� f .
These changes are related by

f (x + �x) = f (x) + � f = f (x) + d f

dx
�x + higher-order terms. (5.9)

Canceling f (x) from both sides of that equation gives

� f = d f

dx
�x + higher-order terms. (5.10)

Hence, the first derivative d f/dx expresses how much of a change in f results from
a small change in x . If we are at the minimum (or maximum) of the function, then
a small change in x should give no change in f , at linear order in �x . It should
only give a higher-order change in f that is quadratic in �x . Thus, a condition for a
minimum is

d f

dx
= 0. (5.11)

This is a single equation that must be solved for the single variable x .
Now suppose we have a function of several variables f (x1, x2, . . . xN ). In this

case, we can make small changes in all of the xi → xi +�xi , and then observe how
f changes to f (x1, x2, . . . xN ) + � f . These changes are related by

f (x1 + �x1, x2 + �x2, . . . xN + �xN ) = f (x1, x2, . . . xN ) + � f

= f (x1, x2, . . . xN ) +
N∑

i=1

∂ f

∂xi
�xi + higher-order terms. (5.12)

Canceling f (x1, x2, . . . xN ) from both sides of the equation gives

� f =
N∑

i=1

∂ f

∂xi
�xi + higher-order terms. (5.13)

Hence, the first partial derivative ∂ f/∂xi expresses how much of a change in f
results from small changes in xi . If we are at the minimum (or maximum or saddle
point) of the function, then any set of small changes in the xi should give no change



5.2 Minimization 67

in f , at linear order in �xi . It should only give a higher-order change in f that is
quadratic in the �xi . Thus, a condition for a minimum is

∂ f

∂xi
= 0 (5.14)

for all i . This is a system of N equations that must be solved for the N variables xi .
Finally, let us return to the variational calculus problem of the previous section.

We have an expression for T [y(x)] that depends on the function y(x). We can make
a small change in this function y(x) → y(x) + �y(x) and then observe how T
changes to T [y(x)] + �T . These changes are related by

T [y(x) + �y(x)] = T [y(x)] + �T (5.15)

= T [y(x)] +
∫

dx
δT

δy(x)
�y(x) + higher-order terms. (5.16)

Canceling T [y(x)] from both sides of the equation gives

�T =
∫

dx
δT

δy(x)
�y(x) + higher-order terms. (5.17)

Here, the quantity δT/δy(x) is the functional derivative, which expresses howmuch
of a change in T results from a small change in the function y(x) at each point x .
If we are at the minimum (or maximum or saddle point) of T , then small changes
in y(x) should give no change in T , at linear order in �y(x). It should only give
a higher-order change in T that is quadratic in the �y(x). Thus, a condition for a
minimum is

δT

δy(x)
= 0 (5.18)

for all x .
How do we calculate the functional derivative? Let us return to the expression of

Eq. (5.8), and explicitly change y(x) → y(x) + �y(x). This calculation gives

T [y(x) + �y(x)] = (5.19)
(

m

2E0

)1/2 ∫ x0

−x0
dx

(
1 + mgk

4E0
(y + �y)2 + 1

2

(
d(y + �y)

dx

)2
)

.

Now we expand this expression, and organize the terms based on the powers of �y,
to obtain
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T [y(x) + �y(x)] = (5.20)
(

m

2E0

)1/2 ∫ x0

−x0
dx

(
1 + mgk

4E0
y2 + 1

2

(
dy

dx

)2
)

.

+
(

m

2E0

)1/2 ∫ x0

−x0
dx

(
mgk

2E0
y�y + dy

dx

d�y

dx

)
.

+
(

m

2E0

)1/2 ∫ x0

−x0
dx

(
mgk

4E0
(�y)2 + 1

2

(
d�y

dx

)2
)

.

On the right-hand side of this equation, the first line is just the original T [y(x)]. The
third line is higher-order terms, which are quadratic in �y. Hence, the change �T
is just

�T =
(

m

2E0

)1/2 ∫ x0

−x0
dx

(
mgk

2E0
y�y + dy

dx

d�y

dx

)
+ higher-order terms. (5.21)

Let us compare Eqs. (5.17) and (5.21). We are looking for an expression in the
form of Eq. (5.17), an integral of something times �y(x), which would allow us to
read off the functional derivative δT/δy(x). Equation (5.21) is almost in the form
that we want. The first term is the integral of something times �y(x), which is
perfect. Unfortunately, the second term has a factor of d�y/dx , rather than �y(x)

itself. However, we can put it into the right form through integration by parts. As you
recall, integration by parts involves using the identity

∫
udv = uv −

∫
vdu. (5.22)

We can apply this identity to the second term in Eq. (5.21), using

u = dy

dx
, du = d2y

dx2
dx, v = �y, dv = d�y

dx
dx . (5.23)

We then obtain

∫ x0

−x0

dy

dx

d�y

dx
dx =

[
dy

dx
�y

]x0

−x0

−
∫ x0

−x0
�y

d2y

dx2
dx . (5.24)

Recall that we have two boundary conditions: The race begins at a fixed point
(−x0, y0) and ends at the fixed point (x0, y0). Equivalently, the function y(x) must
satisfy y(−x0) = y(x0) = y0. The function y(x) cannot have any variation at these
two endpoints, but only in the interior. For this reason, the small change �y(x) must
satisfy �y(−x0) = �y(x0) = 0. Hence, on the right-hand side of Eq. (5.24), the
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first term must be zero, and we have only the second term. Putting this relation back
into Eq. (5.21) then gives

�T =
(

m

2E0

)1/2 ∫ x0

−x0
dx

(
mgk

2E0
y − d2y

dx2

)
�y(x) + higher-order terms. (5.25)

Equation (5.25) is now in exactly the same form as Eq. (5.17). Hence, we can read
off the functional derivative δT/δy(x) as the coefficient of �y(x) in the integral:

δT

δy(x)
=

(
m

2E0

)1/2 (
mgk

2E0
y − d2y

dx2

)
. (5.26)

We can now use this functional derivative to solve the minimization problem. The
condition for a minimum is

δT

δy(x)
=

(
m

2E0

)1/2 (
mgk

2E0
y − d2y

dx2

)
= 0, (5.27)

which implies that

d2y

dx2
= mgk

2E0
y. (5.28)

In general, in any variational calculus problem, the equation that the functional
derivative equals zero is called the Euler–Lagrange equation for the problem. Note
that the Euler–Lagrange equation is a differential equation for the function y(x);
we must solve this differential equation to find the minimum. In this problem, the
solution of the differential equation is straightforward:

y(x) = C1ex/ξ + C2e−x/ξ, (5.29)

where

ξ =
(
2E0

mgk

)1/2

, (5.30)

and C1 and C2 are constants of integration. These constants can be determined by
the boundary conditions, which give

C1 = C2 = y0
ex0/ξ + e−x0/ξ

, (5.31)

and hence

y(x) = y0
ex/ξ + e−x/ξ

ex0/ξ + e−x0/ξ
= y0 cosh(x/ξ)

cosh(x0/ξ)
. (5.32)
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This solution is plotted as the black line in Fig. 5.1.
The length scale ξ from Eq. (5.30) is an important feature of the solution. If ξ

is small, the bobsled goes rapidly to a low elevation, near y = 0, in order to pick
up speed. This behavior is favored by large values of m, g, and k, which cause
gravitational effects to be important. By contrast, if ξ is large, the bobsled avoids
changing its elevation rapidly, in order to minimize the length of the path. This
behavior is favored by small values of m, g, and k, so that gravitational effects are
not important compared with the large initial energy E0. (The interactive version of
Fig. 5.1 allows you to vary ξ and see the change in the path.)

By the way, some students are familiar with the Euler–Lagrange equation in the
form

∂T
∂y

− d

dx

(
∂T
∂y′

)
= 0, (5.33)

where y′ = dy/dx and T is the integrand of Eq. (5.8). You can verify explicitly that
this equation is equivalent to the Euler–Lagrange equation derived here. In general,
Eq. (5.33) works as long as the integral to be minimized depends only on the function
y(x) and its first derivative (which is usually true). It needs to be generalized if
the integral to be minimized depends on higher derivatives (which happens on rare
occasions). Personally, I find this equation to be somewhat unintuitive, so I prefer to
derive the functional derivative and explicitly set it equal to zero.

Problem: Repeat the bobsled problemon the side of a hillwhere z = by, instead of
a parabolic valley. Find the path y(x) that minimizes the travel time in this geometry.

Solution: On this hillside, the conservation of energy gives the bobsled speed

v =
(
2E0

m
− 2gby

)1/2

≈
(
2E0

m

)1/2 (
1 − mgby

2E0

)
. (5.34)

Hence, the total travel time is the integral

T =
(

m

2E0

)1/2 ∫ x0

−x0
dx

(
1 + mgb

2E0
y + 1

2

(
dy

dx

)2
)

. (5.35)

By setting the functional derivative δT/δy(x) = 0, we obtain the Euler–Lagrange
equation:

d2y

dx2
= mgb

2E0
. (5.36)

The solution of this differential equation, subject to the boundary conditions that
y = y0 at x = ±x0, is

y(x) = y0 + mgb

4E0

(
x2 − x20

)
. (5.37)



5.2 Minimization 71

Therefore, the optimal path on the hillside is a parabola, in contrast with Fig. 5.1,
where the optimal path in the valley is a hyperbolic cosine. This difference is phys-
ically reasonable: In a valley, the optimal path is approximately straight along the
valley floor. On a hillside, there is no floor, so the optimal path is always curved with
the same second derivative.

5.3 Example: Guitar String

For a second example, consider the physics of a guitar string that is stretched between
two posts at x = 0 and L , as shown in Fig. 5.2. The string is under some tension
T (not to be confused with the travel time in the previous section!). Because of the
tension, it has an elastic energy proportional to its arclength

U = T · arclength = T
∫ end

begin
ds = T

∫ end

begin

(
dx2 + dy2

)1/2
(5.38)

= T
∫ L

0
dx

(
1 +

(
dy

dx

)2
)1/2

. (5.39)

In the limit of small deviations from a straight horizontal string, dy/dx � 1, the
energy can be approximated by

U = T
∫ L

0
dx

(
1 + 1

2

(
dy

dx

)2
)

= T L + 1

2
T

∫ L

0
dx

(
dy

dx

)2

. (5.40)

To minimize the elastic energy, we must calculate the functional derivative of U
with respect to y(x), and set it equal to zero. Following the procedure of the previous
section, the functional derivative is

δU

δy(x)
= −T

d2y

dx2
. (5.41)

Fig. 5.2 Guitar string stretched between two posts at x = 0 and L
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Hence, the Euler–Lagrange equation for this problem is just

d2y

dx2
= 0. (5.42)

This equation implies that the lowest-energy shape of the string is a straight line from
the first post to the second post. This result is not a big surprise!

We can now see a more interesting feature of the problem: The functional deriv-
ative is not only useful for deriving the lowest-energy shape of the string; it is also
useful for deriving the equation of motion. As you recall, the standard equation of
motion for a particle is Newton’s second law:

ma = F. (5.43)

If the force F is derived from a potential energy U , then this equation becomes

m
d2y

dt2
= −∂U

∂y
(5.44)

for the coordinate y. For a guitar string described by the continuous function y(x, t),
the analogous equation is

ρ
∂2y

∂t2
= − δU

δy(x, t)
, (5.45)

where ρ is the mass density per unit length of the string. Using our result of Eq. (5.41)
for the functional derivative, the equation of motion becomes

ρ
∂2y

∂t2
= T

∂2y

∂x2
. (5.46)

From your previous physics courses, you may recognize this equation as the wave
equation! Hence, the functional derivative is providing us with a generalization of
the concept of force, which allows us to derive the dynamics of waves on the string.

Further Reading

Variational calculus is one of manymathematical methods presented in the following
textbooks:

1. G.B. Arfken, H.J. Weber, F.E. Harris, Mathematical Methods for Physicists: A
Comprehensive Guide, 7th edn. (Elsevier, 2013)

2. M. Stone, P. Goldbart, Mathematics for Physics: A Guided Tour for Graduate
Students (Cambridge, 2009)

A pre-publication version of the second book is available from the author’s website
http://www.physics.gatech.edu/~pgoldbart6/PG_MS_MfP.htm.

http://www.physics.gatech.edu/~pgoldbart6/PG_MS_MfP.htm


Chapter 6
Field Theory for Nonuniform Systems

Abstract Field theory is a powerful approach for understandingnonuniformsystems
in statistical mechanics, as well as other areas of physics. This chapter introduces the
concept of a order parameter field, and then uses that concept to determine how an
order parameter varies near an aligning wall, or at the interface between two ordered
phases. The latter calculation leads to the concept of surface tension as the excess
free energy associated with an interface.

In this chapter, I will introduce the concept of field theory, as applied to statisti-
cal mechanics. I will then use this concept to predict the behavior of nonuniform
systems—either magnets or liquids and gases—near a critical point. In the end, this
calculation will lead to the concept of surface tension.

6.1 What is a Field?

In any theoretical physics problem, we have to consider: What type of objects are
we modeling? What are the fundamental degrees of freedom in our theory?

In some cases, the fundamental objects are particles, like molecules or bobsleds.
Particles are individual objects, which each have a small number of degrees of free-
dom. Typically, they have six degrees of freedom: three components of position and
three components of momentum. In some cases, they might have additional internal
degrees of freedom, such as spin, but it is still a modest number. For particles, we
want to predict how their coordinates r(t) and p(t) evolve as functions of time. If
there are only a few particles (like one bobsled), we might make these predictions
exactly. If there are many particles (like 1023 molecules), we might only be able to
make predictions on a statistical basis.

In other cases, the fundamental objects are fields. A field just means a function of
position, or of position and time. Most students first encounter fields in the context of
electric and magnetic fields, E(r, t) and B(r, t). The important point to notice about
fields is that they have infinitely many degrees of freedom. For example, the electric
field E(r, t) has three degrees of freedom at every point in space. For this reason,
we cannot just ask how some particular degree of freedom evolves in time. Rather,

© Springer International Publishing Switzerland 2016
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we must ask how the field E(r, t) evolves as a function of both position and time.
For the example of electricity and magnetism, this evolution is given by Maxwell’s
equations.

Apart fromelectricity andmagnetism, the concept of a field also occurs inmechan-
ics. The height of a guitar string y(x, t) is a simple one-dimensional example, as dis-
cussed in the last chapter. The height of a drum z(x, y, t) is a related two-dimensional
example. The concept of a field also occurs frequently in fluid dynamics: People study
the pressure field p(r, t), the density field ρ(r, t), and the velocity field v(r, t).

In statistical physics, we consider an order parameter field. An order parameter
does not have to be uniform; rather, it can vary as a function of position (or position
and time). In this case, the order parameter field describes the statistical ordering in
a small local region. For example, in the Ising model, the magnetic order parameter
field M(r) describes the average order of Ising spins near the position r . In a liquid-
gas problem, the local density ρ(r) describes the average density of molecules near
the position r .

You should notice that the concept of an order parameter field is an example of
coarse-graining, as discussed at the end of Chap. 1. At some microscopic level, an
Ising magnet really is made of individual spins, and a liquid or gas really is made of
molecules. These spins or molecules are particles. When we make a coarse-grained
theory, we average over the spins or molecules and describe the material in a less
detailed way. We then speak as if the order parameter field were the fundamental
object in the theory, and neglect the microscopic spins or molecules.

Figure6.1 shows an example of coarse-graining the Ising model. In part (a), we
see an Ising model on a 2D square lattice of 200 × 120 spins. Each dark-colored
square represents a down spin, and each light-colored square represents an up spin.
Clearly, this system is nonuniform: On the left side, the spins are mostly pointing
down, and on the right side, the spins are mostly pointing up. Hence, the magnetic
order parameter M must be a function of x . In other words, the system has an order
parameter field M(x). The field is plotted in part (b), which shows that it increases
linearly from the left to the right side.

Now you might ask: What is the right length scale for the averaging? In the Ising
model, should M(r) be averaged over a local group of 10 spins, or 100 spins, or some
other number? In a molecular system, should the local density be averaged over a
volume of (1nm)3, or (10nm)3, or (100nm)3? In general, there are two rules:

1. The averaging length scale should be much bigger than the size of a spin, or
molecule, or other particle. If this constraint is satisfied, then it makes sense to
describe the system as a field, rather than as individual particles.

2. The averaging length scale should be much smaller than the length scale over
which the physical properties vary. (For example, in Fig. 6.1, the averaging length
scale should be much smaller than the length scale over which the magnetic order
parameter varies.) If this constraint is satisfied, then it makes sense to consider
all the particles in the averaging volume as if they are part of the same statistical
ensemble.

http://dx.doi.org/10.1007/978-3-319-21054-4_1
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(a)

(b)
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x

0.5
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Fig. 6.1 Example of a nonuniform Ising model. In part a, each dark-colored square represents a
down spin, and each light-colored square represents an up spin. In part b, the coarse-grained order
parameter M(x) is plotted as a function of x

Is it possible to find some averaging length scale that satisfies both of these con-
straints? In most experimental systems, yes! Molecules generally have a length scale
of about 1nm, and physical properties typically vary over a length scale of 1µm (the
wavelength of light, the size of a biological cell, the size of a liquid-crystal cell).
There is a lot of room between 1nm and 1µm. As long as we stay within this range,
it generally does not matter what length scale we use for averaging. For this reason,
it is possible to describe physical systems using field theory, and it is usually not nec-
essary to discuss the averaging length scale explicitly. You should just remember:
Field theory works because molecules are very, very small!

By the way, the field theory that we are discussing here does not involve quantum
mechanics, sowemight call it classical field theory.By comparison, theoretical high-
energy physics is based on a quantum-mechanical version of this approach, which is
called quantum field theory. There are many interesting analogies between classical
and quantum field theory, but that topic is beyond the scope of this book.
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6.2 Nonuniform System in a Disordered Phase

For a first example, consider an Ising magnet with a wall. To be specific, suppose
we have a wall at x = 0, and then Ising spins from x = 0 to ∞. This type of system
is called semi-infinite, because it is infinite for positive x but cut off by the wall for
negative x . The region of the sample far from the wall is called the bulk, and it should
have the same properties that we calculated back in Chap.2. However, the region
of the sample near the wall is somewhat different just because of the presence of
the wall, so it may have some different properties. In particular, the magnetic order
parameter field M(x) may be different near the wall than in the bulk.

Suppose we are in the disordered phase, with T > TC , and there is no magnetic
field. In this case, the bulk will certainly have M = 0. Now suppose that the wall
tends to align the spins with perfect order pointing up, so that M = 1 at x = 0. (Why
would the wall do that? Well, perhaps it has a very strong local magnetic field right
at x = 0, although there is no magnetic field in the bulk.)

In this problem, wemust ask:What is the order parameter field M(x) as a function
of distance away from the wall? How far does the magnetic order penetrate into the
sample?

To address this problem, let us use Landau theory for the Ising model, as in
Chap.4. From Eq. (4.21), with field h = 0, the total free energy is an integral over
position

F =
∫

d3r

[
f0 + 1

2
a′(T − TC )M(r)2 + 1

4
b0M(r)4 + 1

2
K |∇M |2

]
. (6.1)

We do not expect M to depend on y or z, but only on x , the distance away from the
wall. Hence, we can replace the y and z integrals by factors of L y and Lz , the system
size in those two directions, to obtain

F = Lx L y

∫ ∞

0
dx

[
f0 + 1

2
a′(T − TC )M(x)2 + 1

4
b0M(x)4 + 1

2
K

(
d M

dx

)2
]

.

(6.2)
Because T > TC , we expect M(x) to be very small almost everywhere. Hence, the
quartic term is very small in comparison with the quadratic term, so we can neglect
the quartic term to obtain

F = Lx L y

∫ ∞

0
dx

[
f0 + 1

2
a′(T − TC )M(x)2 + 1

2
K

(
d M

dx

)2
]

. (6.3)

The question is now: What order parameter field M(x) minimizes the free energy
of Eq. (6.3)? This is a variational calculus problem, and we can solve it using the
methods of Chap.5. First, we must take the functional derivative of F with respect
to M(x). We can see that the free energy integral of Eq. (6.3) has the same types

http://dx.doi.org/10.1007/978-3-319-21054-4_2
http://dx.doi.org/10.1007/978-3-319-21054-4_4
http://dx.doi.org/10.1007/978-3-319-21054-4_4
http://dx.doi.org/10.1007/978-3-319-21054-4_5
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of terms as the travel time integral of Eq. (5.8) for the bobsled problem, so we can
calculate the functional derivative in exactly the same way. The result is

δF

δM(x)
= Lx L y

[
a′(T − TC )M(x) − K

d2M

dx2

]
. (6.4)

Hence, the Euler–Lagrange equation for this problem is

δF

δM(x)
= 0, (6.5)

which implies that

K
d2M

dx2
= a′(T − TC )M(x). (6.6)

The solution of this differential equation is

M(x) = C1ex/ξ + C2e−x/ξ , (6.7)

where

ξ =
[

K

a′(T − TC )

]1/2
, (6.8)

and C1 and C2 are constants of integration. These constants can be determined by
the boundary conditions. The requirement that M → 0 as x → ∞ gives C1 = 0,
and the requirement that M = 1 at x = 0 gives C2 = 1. Hence, our solution is

M(x) = e−x/ξ . (6.9)

Figure6.2 shows a plot of the solution for M(x). As required, it begins at M = 1 at
the wall, and then gradually drops off to M = 0 in the bulk. This plot can be regarded
as a correlation function, which shows how well the spins at x are correlated with
the fixed spins at the wall. The length scale ξ is the correlation length, which shows
what distance is required for the correlation function to decay to 1/e of its value at
the wall.

The correlation length is controlled by the competition between two terms in the
free energy of Eq. (6.3). The M2 term favors the bulk state M = 0 and gives a free
energy penalty for any deviations from M = 0. Hence, it favors small ξ , so that M
can rapidly approach the favored value of 0. By contrast, the (d M/dx)2 term favors
uniform M and gives a free energy penalty for any gradients in M . Hence, it favors
large ξ , so that gradients in M are small. The competition between these two terms
gives Eq. (6.8) for the correlation length.

http://dx.doi.org/10.1007/978-3-319-21054-4_5
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Fig. 6.2 Ising model in the disordered phase near an aligning wall. The order parameter profile
M(x) is shown as a function of x (Interactive version at http://www.springer.com/cda/content/
document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-
p177545420.)

We can see that the correlation length depends on temperature in an interesting
way. At high temperature, the correlation length is very small, so that the magnetic
order drops away rapidly as a function of distance from the wall. As T decreases, the
correlation length increases, so that the magnetic order persists over a longer length
scale. As T approaches TC , the correlation length diverges, following the scaling
relation

ξ ∝ |T − TC |−ν, (6.10)

where ν is another critical exponent. Equation (6.8) shows that the mean-field pre-
diction for this critical exponent is ν = 1

2 .
Because the liquid-gas system is described by the same type of Landau theory as

the Ising magnet, we can expect the same type of nonuniform order parameter field
to occur in the liquid-gas system also. For an analogous problem, suppose we have a
supercritical fluid for T > TC , and this fluid has a wall that favors high density (i.e., it
favors the liquid phase). Based on the theory in this section, we expect to see a density
profile similar to Fig. 6.2. Near the wall, the density is elevated. As we move away
from the wall, the density drops down to its value in the bulk supercritical fluid. The
excess density decays exponentially, with a correlation length ξ . This correlation
length is small at high temperature, and it increases as the temperature decreases
toward TC , following the scaling relation of Eq. (6.10).

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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6.3 Interface Between Ordered Phases

As a second example, consider an Ising magnet at T < TC , with no magnetic
field. Because the temperature is below TC , the system must have some spontaneous
magnetic order M = ±M0, which may be either pointing down or pointing up.
Suppose it is pointing down on one side of the system and pointing up on the other
side. To be specific, suppose we have an infinite system with M → −M0 as x →
−∞, and M → +M0 as x → +∞. Somewhere between these limits, the system
must form an interface that separates the spin-down side from the spin-up side. What
can we say about the width and the energy of this interface?

To answer this question, we must determine what order parameter field M(x)

minimizes the free energy. For this reason, we return to the free energy integral of
Eq. (6.2):

F = Lx L y

∫ ∞

−∞
dx

[
f0 + 1

2
a′(T − TC )M(x)2 + 1

4
b0M(x)4 + 1

2
K

(
d M

dx

)2
]

.

(6.11)
Now, because T < TC , the coefficient of the quadratic term is negative. Hence,
we cannot neglect the quartic term in the free energy; we need the quartic term for
thermodynamic stability, so that the free energy will not go to −∞ as M becomes
large. We must minimize the free energy integral with the quadratic term, the quartic
term, and the gradient term.

As a first step, consider the ordered domains away from the interface. Here, the
gradient term is negligible and M = ±M0. In this case, the free energy density is

f = f0 + 1

2
a′(T − TC )M2

0 + 1

4
b0M4

0 . (6.12)

Minimizing this expression over M0 gives

M0 =
[

a′(TC − T )

b0

]1/2
. (6.13)

Hence, M0 is not an independent parameter in the problem; it is controlled by the
coefficients in the free energy.

Next, we can do the full minimization over the order parameter field M(x). The
functional derivative of the full free energy (including the quartic term) is

δF

δM(x)
= Lx L y

[
a′(T − TC )M(x) + b0M(x)3 − K

d2M

dx2

]
. (6.14)
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Hence, the Euler–Lagrange equation for this problem is

K
d2M

dx2
= a′(T − TC )M(x) + b0M(x)3. (6.15)

We need to solve this equation for M(x), with the boundary conditions that M →
−M0 as x → −∞, and M → +M0 as x → +∞. This differential equation is
much more challenging to solve than Eq. (6.6) because it is not linear in M(x).
Nevertheless, it has an exact solution. By direct substitution, you can verify that the
differential equation and boundary conditions are exactly satisfied by

M(x) = M0 tanh

(
x − x0

ξ

)
, (6.16)

where

ξ =
[

2K

a′(TC − T )

]1/2
(6.17)

and x0 is any constant position.
Figure6.3 shows an example of the solution for M(x). In this solution, x0 is the

center of the interface. On one side of the interface, M goes to −M0, and on the
other side, it goes to +M0. The parameter ξ is a correlation length, which shows
the thickness of the interface, i.e., the characteristic length scale associated with
the change from −M0 to +M0. From Eq. (6.17), we see that ξ has an interesting
dependence on temperature. At very low temperature T � TC , the correlation length

50 100
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0.4

0.2

Fig. 6.3 Ising model in the ordered phase, showing the profile M(x) through an interface
between spin-down and spin-up sides (Interactive version at http://www.springer.com/cda/content/
document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-
p177545420.)

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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is small, and hence the interface is very sharp. As T increases, ξ becomes larger, and
hence the interface becomes broader. As T approaches TC from below, ξ diverges
following the scaling relation of Eq. (6.10), with the same critical exponent ν = 1

2
that we calculated in the previous section, for T approaching TC from above.

In addition to calculating the order parameter M(x), we can also calculate the
excess free energy associated with the interface. Within a single ordered domain of
M = ±M0, we have the minimum free energy density

fmin = f0 + 1

2
a′(T − TC )M2

0 + 1

4
b0M4

0 = f0 − a′2(TC − T )2

4b0
. (6.18)

Within the interface, where M(x) �= ±M0, we have the excess free energy density

� f (x) = f (x) − fmin

=1

2
a′(T − TC )M(x)2 + 1

4
b0M(x)4 + 1

2
K

(
d M

dx

)2

+ a′2(TC − T )2

4b0

=a′2(TC − T )2

2b0
sech4

(
x − x0

ξ

)
. (6.19)

Hence, the total excess free energy associated with the interface, compared with a
single domain of M = ±M0, is the integral

�F =Lx L y

∫ ∞

−∞
dx� f (x) = Lx L y

a′2(TC − T )2

2b0

∫ ∞

−∞
dx sech4

(
x − x0

ξ

)

=Lx L y
a′2(TC − T )2

2b0

4ξ

3
= Lx L y

23/2K 1/2a′3/2(TC − T )3/2

3b0
. (6.20)

This equation shows that the excess free energy of the interface is some coefficient
times the interfacial area Lx L y . This coefficient is exactly what wemean by a surface
tension, a free energy per unit area associated with the interface. Hence, we see that
the surface tension of the interface between spin-down and spin-up sides is

σ = 23/2K 1/2a′3/2(TC − T )3/2

3b0
. (6.21)

This surface tension goes to zero as T → TC , because the distinction between
spin-down and spin-up phases vanishes at TC .

As a matter of terminology, this type of variation in M(r) is called a soliton.
A soliton is a remarkable type of distortion, which has a characteristic width, a
characteristic change in the order parameter, and a characteristic free energy per unit
area. It cannot smooth out or break up into smaller distortions in M(r). Physically,
it occurs because the system has two stable states (spin-down and spin-up), and the
soliton takes it fromone stable state to the other.Mathematically, it occurs because the
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Euler–Lagrange equation of Eq. (6.15) is a nonlinear equation. Solitons are generally
a phenomenon of nonlinear waves, which do not satisfy the superposition principle
of linear waves.

Like the problem in the previous section, this problem also has an analog in the
liquid-gas system. In this case, the analogous system is at T < TC , so that the
free energy has two distinct minima at different densities, or different volumes per
molecule, corresponding to the liquid and gas phases. The system can then have
a nonuniform state with liquid on one side and gas on the other. This state can
be described by a density field ρ(x), or a volume per molecule field v(x), with
v(x) → vL as x → −∞ and v(x) → vG as x → +∞. Our goal is then to find the
function v(x) that minimizes the free energy integral.

Because the liquid-gas system has the same Landau theory as the Ising magnet,
the problem of finding v(x) is analogous to finding the Ising order parameter M(x).
The solution must have the same form as M(x) shown in Fig. 6.3. Here, v(x) has an
interface, with vL on one side and vG on the other. The interface has a width ξ and
a surface tension σ . At low temperature, when the liquid and gas phases are very
different, the interface is very sharp (ξ is small), and the surface tension is high. As
T approaches TC , the interface width increases and the surface tension decreases.
At the critical point, where the liquid and gas become identical, the interface width
goes to infinity and the surface tension goes to zero. This analysis justifies Fig. 3.11,
at the end of Chap.3, which shows that the liquid-gas interface becomes fuzzy as the
system approaches the critical point.

Further Reading

Most physics students learn about field theory in the context of beaded strings in
classical mechanics, or electric and magnetic fields in electrodynamics. Engineering
students often learn about stress and strain fields in solids, or pressure, density, and
velocity fields in fluids. The concept of order parameter fields in statistical mechanics
is not as well known as those other examples. For a careful discussion of this concept,
I recommend the pair of advanced textbooks:

1. M. Kardar, Statistical Physics of Particles (Cambridge, 2007)
2. M. Kardar, Statistical Physics of Fields (Cambridge, 2007)

http://dx.doi.org/10.1007/978-3-319-21054-4_3


Chapter 7
Dynamics of Phase Transitions

Abstract This chapter considers how a system can evolve in time from one phase
to another and presents the theory of nucleation and growth. This theory uses the
concept of surface tension, developed in the last chapter, and provides the basis for
understanding glasses in the next chapter.

In our study of phase transitions so far, we have assumed that a system is always
in the equilibrium state, at the minimum of the free energy. This is generally true
if we wait long enough—but what happens if we do not wait long enough? In this
chapter, we will consider the dynamic process of phase transitions. We will see that
the dynamic process of nucleation and growth involves surface tension, as discussed
in the last chapter.

7.1 Nucleation and Growth

For a first example, consider an Ising magnet at low temperature T < TC , under a
negative applied field h < 0. Because of the negative field, the equilibrium magnetic
order parameter is also negative M < 0. At some time, we suddenly change the
field from negative to positive, as shown in the phase diagram of Fig. 7.1. The new
equilibrium state then has M > 0. The question is: How does the system evolve from
M < 0 to M > 0?

To understand this evolution, look at the free energy plot after the field change,
as shown in Fig. 7.2. This plot has two minima, which are at M = ±0.85. Before the
field change, the state with M = −0.85 was the absolute minimum, so the system
was in that state. After the field change, the state with M = −0.85 is no longer the
absolute minimum, but the system is still temporarily in that state. We say that the
state with M = −0.85 is metastable, meaning that it is a local minimum but not the
absolute minimum. By comparison, the state with M = 0.85 is stable, meaning that
it is the absolute minimum.

If we begin with the system at M = −0.85, any small changes in the magnetic
order will increase the free energy. As a result, if any small changes occur at
random, they will tend to go away, and the system will return to the metastable state.

© Springer International Publishing Switzerland 2016
J.V. Selinger, Introduction to the Theory of Soft Matter,
Soft and Biological Matter, DOI 10.1007/978-3-319-21054-4_7

83



84 7 Dynamics of Phase Transitions

Fig. 7.1 Phase diagram of the Ising model, showing a dynamic change in the field from h < 0 to
h > 0

Fig. 7.2 Plot of the free energy density of the Ising model as a function of M , for T < TC and
h > 0, showing the metastable state at M = −0.85 and the stable state at M = 0.85

The only way for the system to get out of its metastable state is if some large changes
occur at random. One example of a large change is shown in Fig. 7.3. Here, most of
the system is in the old state with the spins mostly pointing down. However, within
the circle, the system has formed a cluster of spins that are mostly pointing up. This
cluster is called a nucleus or droplet or bubble of the new state with M = 0.85, and
the process of forming such a cluster is called nucleation.

In the language of order parameter fields, as in the last chapter, we would say that
the nucleus is a place where M(r) ≈ M0, which is the value in the new stable phase.
By contrast, the bulk of the magnet has M(r) ≈ −M0, which is the value in the
old metastable phase. The boundary between these regions is an interface, similar to
the interface discussed in Sect. 6.3. (It is not exactly the same because the states on
the two sides of the interface do not have exactly the same free energy density, and

http://dx.doi.org/10.1007/978-3-319-21054-4_6
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Fig. 7.3 Nucleus of the spin-up phase (with M = 0.85) forming within the spin-down phase
(M = −0.85)

because the interface is not flat.) As in Sect. 6.3, the interface has some width ξ; it is
not perfectly sharp. It also has some surface tension σ, an energy per unit area.

Once a nucleus of the new phase forms, the question is whether it will grow or
shrink. To answer this question, consider a 3D spherical nucleus of radius r . Wemust
calculate the free energy of this nucleus, compared with the bulk metastable state, as
a function of r . This free energy has two contributions. First, there is a difference in
free energy density between the stable spin-up state and the metastable spin-down
state, which is shown as � f in Fig. 7.2. For the whole nucleus with radius r , the
difference in free energy density is multiplied by the volume of the nucleus to give

�Fvolume = −4

3
πr3� f. (7.1)

Here, the minus sign shows that this contribution to the free energy is negative,
because the stable state has a lower free energy density than the metastable state,
taking � f as a positive parameter. Second, we must also include the surface free
energy, which is the surface tension σ times the surface area of the nucleus:

�Fsurface = 4πr2σ. (7.2)

This contribution is positive, because the surface tension costs energy compared with
the uniform metastable state. Putting these two pieces together, we obtain the total
free energy of the nucleus:

�Fnucleus = −4

3
πr3� f + 4πr2σ. (7.3)

This expression for the free energy of a nucleus is plotted in Fig. 7.4. For small r ,
it is dominated by the positive surface term, and for large r , it is dominated by the
negative volume term. As a result, it has a maximum at the critical radius

http://dx.doi.org/10.1007/978-3-319-21054-4_6
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Fig. 7.4 Free energy of a 3D spherical nucleus, comparedwith the uniformmetastable background,
as a function of radius

rC = 2σ

� f
, (7.4)

and the free energy at the critical radius is

�Fnucleus(rC ) = 16πσ3

3� f 2
. (7.5)

From this plot, we can see how the nucleus will evolve. If r < rC , minimization of
the free energy will cause the nucleus to shrink until it disappears. By contrast, if
r > rC , minimization of the free energy will cause the nucleus to grow until it takes
over the entire system.

Problem: What is the critical radius rC in a two-dimensional system?
Solution: For a 2D circular nucleus, there is a difference in the free energy density

over the area of the nucleus, as well as a surface free energy associated with the
circumference of the nucleus. Hence, the total free energy of the nucleus is �F =
−πr2� f +2πrσ. This expression has a maximum at the critical radius rC = σ/� f .

Problem: Is there a critical radius for a one-dimensional system?
Solution: A 1D nucleus is just a line segment of length 2r with two ends. There

is a difference in the free energy density over the length of the nucleus, as well as
surface free energy associated with the two ends. Hence, the total free energy is
�F = −2r� f + 2σ. The important point to notice about this expression is that
it does not have a maximum. Rather, it is always decreasing as a function of r .
Physically, this result shows that a 1D nucleus of the stable phase can always reduce
its free energy by growing; it can never reduce its free energy by shrinking. Hence,
there is no critical radius in 1D.



7.1 Nucleation and Growth 87

In this scenario, the dynamic process of a first-order phase transition involves two
steps. First, we have to wait for the formation of one nucleus, or several nuclei, larger
than the critical radius. Second, we have to wait for the nucleus or nuclei to grow,
so that the entire system will be filled with the new stable phase rather than the old
metastable phase. This two-step process is called nucleation and growth.

The important point to remember about nucleation and growth is that it requires
time. Hence, the behavior that you will observe in an experiment depends on the time
scale of your experiment compared with the time scale required for nucleation and
growth. If your experiment is done very slowly, then there will be enough time for the
system to reach the stable state, through nucleation and growth, at every stage of the
experiment. As a result, you will observe the stable equilibrium values of the order
parameters. By comparison, if your experiment is done more quickly, then there will
not be enough time for the system to reach the stable state, and you may observe the
metastable values of the order parameters.

(Youmight ask: Howmuch time is required? That is a difficult question, and there
is no general answer. The answer varies tremendously depending on the specific
system and on the temperature. As the temperature decreases, nucleation and growth
requires much more time. We will discuss a specific case of that phenomenon in the
next chapter.)

For our example of an Ising magnet, we are passing through the first-order phase
transition by varying the applied magnetic field h. Hence, the experiment measures
the magnetic order parameter M as a function of h at fixed temperature. If the field is
changed sufficiently slowly, then the experiment will observe the equilibrium value
of M , as calculated in Chap.2. One example is shown in Fig. 7.5a. However, if the
field is changed rapidly, then the magnet will not have enough time for nucleation
and growth, and hence it will be stuck in the metastable state past the equilibrium
phase transition. An example of this behavior is shown in Fig. 7.5b. As the field is
increased from negative to positive values, M remains in the negative, metastable
state for some time, until h reaches a substantial positive value. Conversely, as h is
decreased from positive to negative values, M remains in the positive, metastable
state until h reaches a substantial negative value. Hence, the plot shows a loop in M
as a function of h. This phenomenon is called hysteresis, and the size of the hysteresis

(a) (b)

Fig. 7.5 Magnetic order parameter M as a function of applied field h in the Ising model for
T = 0.8TC . a Equilibrium order parameter with no hysteresis. b Hysteresis in the order parameter

http://dx.doi.org/10.1007/978-3-319-21054-4_2
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loop indicates how much the system is out of equilibrium as it crosses the first-order
transition.

As you might expect, the dynamic process of nucleation and growth has an ana-
log in the liquid-gas system. The liquid-gas system has a first-order transition for
temperatures and pressures below the critical point. We can cross this first-order
transition by varying either temperature or pressure. Suppose we begin in the gas
phase, and suddenly decrease the temperature or increase the pressure, so that the
liquid phase has a lower free energy than the gas. After this change, the system can
form a nucleus of the stable liquid phase surrounded by the metastable gas phase.
Physically, the nucleus is just a tiny droplet of liquid. Equivalently, in the language
of order parameter fields, we can say that the droplet is a region where the density
field is near the stable liquid value, surrounded by a background where the density
has the much lower gas value. If the radius of the droplet is greater than the critical
radius, then the droplet tends to grow. Eventually, one or more droplets will grow
until they take over the entire system.

The same process happens in reverse if we begin in the liquid phase, and suddenly
increase the temperature or decrease the pressure, so that the gas phase has a lower
free energy than the liquid. After the change, the system can form a nucleus of the
stable gas phase surrounded by the metastable liquid. Physically, the nucleus is a
tiny bubble of gas. If the radius of the bubble is greater than the critical radius, then
the bubble tends to grow. Eventually, one or more bubbles will grow to fill the entire
system.

7.2 Heterogeneous Nucleation

In the dynamic process described in the previous section, the system is homogeneous
(or uniform), and hence a nucleus forms at random anywhere in the system. For this
reason, the process may be called homogeneous nucleation. There is an important
variation on this process, in which the system is not homogeneous; this variation is
called heterogeneous nucleation.

In heterogeneous nucleation, the basic concept is that the system has some special
positions that are favorable for formation of the new stable phase. In many cases,
these special positions are impurities, such as dust particles. When a fluid is cooled
from the gas phase to the liquid phase, the molecules may preferentially stick to the
dust, and hence the a small liquid droplet will form around the particle. If the droplet
is larger than the critical radius, then more molecules will stick to it, and hence it
will grow. In this way, the dust particle can make it easier to form a critical nucleus,
without the need to get over the high free energy barrier for homogeneous nucleation.

Heterogeneous nucleation is actually more common than homogeneous nucle-
ation, presumably because most samples have many impurities like dust particles.
Moreover, there can be other types of heterogeneity. The surface of a sample can
serve as a favorable location for nucleation, especially if it is rough.
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People sometimes intentionally put heterogeneities into a system in order to speed
up first-order phase transitions. One common example is cloud seeding: If there is a
drought on land, but there is water vapor in the clouds, people drop particles out of
airplanes into the clouds. These particles serve as nucleation sites for the formation
of droplets of liquid water. When the droplets grow large enough, they fall from the
clouds as rain. Another example is the use of boiling chips: People may put small
chips of a rough material into a liquid that is being heated. The surface of these
chips serves as nucleation sites for the formation of bubbles of the gas phase. In this
way, the chips make sure that the boiling transition will occur at the equilibrium
transition temperature. They prevent the formation of a metastable liquid above
the equilibrium transition temperature, which might suddenly form a large bubble,
creating a hazardous condition.

Incidentally, the science of nucleation and growth is an important theme in the
famous American novel Cat’s Cradle, by Kurt Vonnegut, from 1963. The author’s
older brother Bernard Vonnegut was a chemist at General Electric, who discovered
that silver iodide is especially effective for cloud seeding. Kurt used this concept for
the rather disturbing fictional story of “ice-nine” nucleation in the novel.

Further Reading

The study of nucleation and growth is an essential part of materials science, and it is
discussed in many textbooks. Some examples are:

1. K.F. Kelton, A.L. Greer, Nucleation in Condensed Matter: Applications in Mate-
rials and Biology (Pergamon, 2010)

2. D. Kashchiev, Nucleation: Basic Theory with Applications (Butterworth-
Heinemann, 2000)

3. V.I. Kalikmanov, Nucleation Theory (Springer, 2013)



Chapter 8
Solids: Crystals and Glasses

Abstract This chapter discusses the physics of solids, as distinct from gases and
liquids. It begins with an introduction to crystals, emphasizing the positional and ori-
entational order of the crystalline phase. As a special case, it considers the efficient
packing of spherical particles in close-packed crystals, leading to the crystallization
of hard spheres. It then goes on to discuss elasticity and viscosity, identifying the
mechanical properties that distinguish all solids from liquids. Based on thesemechan-
ical properties, it shows how glasses can form as non-equilibrium, non-crystalline
solids.

So far in this book, we have discussed all phenomena in terms of two physical
examples: the Ising magnet and the liquid-gas system. It is the time to move on to
another physical example: solids!

8.1 What is a Solid?

We all have some intuitive feeling about what is a solid. If we had to explain this
impression to a child, we might put it in one of the two different ways:

1. If the child is very young, we might say: A solid is a material that you can hold
in your hand; it does not flow out between your fingers. Later in this chapter, we
will see that a scientific way to express this concept is: A solid is a material that
has a nonzero shear modulus.

2. If the child is somewhat older, we might say: A crystalline solid has a shape
with sharp facets. Or even: A crystalline solid is a material that diffracts X-rays,
leading to sharp Bragg spots.

These two statements are quite different from each other, and they refer to different
classes of materials. Statement #1 is very broad, and we can take it as a general
definition of what we mean by solids. Statement #2 is much more specific, and it
describes a particular subset of solids, known as crystals. Not all solids are crystals.

© Springer International Publishing Switzerland 2016
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Solids 
nonzero shear modulus 

Crystals 
facets, Bragg scattering 

equilibrium phase 

Glasses (non-crystalline or amorphous solids) 
no Bragg scattering or facets 

not equilibrium phase 

Fig. 8.1 Schematic diagram of what is meant by solids

The materials that satisfy statement #1 but not statement #2 are known as non-
crystalline solids, or amorphous solids, or glasses. Figure8.1 shows a schematic
diagram of this distinction.

In this chapter, we will first consider crystals, because they are an equilibrium
phase like gases and liquids. We will then discuss the concepts of elasticity and
viscosity, which are needed in order to make the distinction between solids and
liquids based on the response to a shear. In the end, we will use these concepts to
describe glasses.

8.2 Crystals

Acrystal is a phase inwhich atoms are arranged in a periodic lattice. The lattice points
form a regular array in 2D or 3D, as shown in Figs. 8.2 and 8.3. The atoms do not
need to be exactly located on the lattice points. Indeed, at any nonzero temperature,
the atoms are constantly vibrating, so they are never exactly on the lattice points.
However, the atoms are vibrating about the lattice points, so each atom remains
close to its lattice point. This means that there is a great regularity in the positions of
the atoms. The repeating length scale (known as the lattice constant) of the crystal

(a) (b)

Fig. 8.2 Examples of common 2D crystal structures. a Square. b Hexagonal (or triangular)
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Fig. 8.3 Examples of common 3D crystal structures. a Simple cubic (sc). b Body-centered cubic
(bcc). c Face-centered cubic (fcc) (Interactive version at http://www.springer.com/cda/content/
document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-
p177545420.)

keeps repeating over great distances. Supposewe have a crystal with a lattice constant
of 1 nm, and one of the crystal axes is in the east–west direction. If we begin at some
test atom and move to the east, we find another atom at 1nm, another at 2nm, …,
another at 100nm, another at 101nm, ….

Crystallography is a very well-developed area of mathematics and physics, and it
is well described in books on solid-state physics. I will not attempt to summarize all
the principles of crystallography here, but I will emphasize two of the main conclu-
sions. First, all of the possible crystal structures in 2D and 3D have been classified.
The structures shown in Figs. 8.2 and 8.3 are a few of the most common struc-
tures, but there are many more. Second, the periodic repeating lattice is what gives
the remarkable features of crystals mentioned in the introduction—facets and sharp
Bragg peaks in the X-ray diffraction. These features are macroscopic manifestations
of the periodic crystal structure.

What can we say about crystals from the perspective of order, disorder, and sta-
tistical mechanics? To begin, let us compare crystals with liquids (and equivalently
gases) in terms of symmetry. We can consider both positions and orientations within
the material:

Positions

Crystals are highly symmetric, in the sense that all lattice sites are equivalent to
each other.1 We are equally likely to find an atom near any of the lattice sites.
Mathematically, we can say that crystals are symmetric under translations by any
lattice vector, which shifts lattice sites onto other lattice sites.

By comparison, in liquids,all positions are equivalent to eachother.Weare equally
likely to find an atom at any position, not just near certain special positions. Hence,
liquids are symmetric under translations by any vector at all. Although crystals are
highly symmetric, liquids are even more symmetric!

1Here, we neglect the effects of surfaces and assume that the crystal goes on to infinity in all
directions.

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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Orientations

Crystals have several special orientations called crystalline axes, which are the direc-
tions along which we can find rows of atoms. Some of these crystalline axes are
equivalent to each other. For example, in a simple cubic lattice, the x , y, and z direc-
tions are all equivalent to each other. Hence, the simple cubic lattice is symmetric
under certain rotations by 90◦, which take x into y, y into z, or z into x .

By comparison, in liquids, all orientations are equivalent to each other. We are
equally likely to find atoms along any direction in the liquid, not just along certain
special directions. Mathematically, we can say that liquids are symmetric under
any rotation. Again, although crystals are highly symmetric, liquids are even more
symmetric.

This symmetry comparison is sometimes counter-intuitive for students, who are
accustomed to thinking of crystals as very symmetric objects. Indeed, sometimes
students ask:What happens if we look at a snapshot of a liquid, showing the positions
of the atoms at some particular time. In this snapshot, the atoms are at random
positions, andwedonot see any symmetry at all. The response is:Weare talking about
a statistical symmetry, averaged overmany configurations of the liquid, averaged over
time. On this statistical basis, all positions within the liquid are equivalent to each
other, and all directions are equivalent to each other.

We can see this symmetry comparison, for example, in the optical properties of
crystals comparedwith liquid and gases. If we shine light through a quartz crystal, the
optical properties are the same for light shining along certain special axes; the optical
properties are different for light along other axes. By comparison, if we shine light
through air, the optical properties are the same for light in any direction whatsoever.
In this sense, air is more symmetric than a quartz crystal.

Next, let us compare crystals with liquids (and equivalently gases) in terms of
order. Recall the discussion of order and symmetry in the Ising model from Sect. 2.3.
At this point, we saw that magnetic order is the opposite of symmetry; order means
that themagnet has selected a special direction, up or down, for the netmagnetization.
The samepoint is true for the crystal. Because the crystal has less positional symmetry
than the liquid, we must say that the crystal has more positional order. Of all the
equivalent positions in the liquid, the crystal has selected certain special points for
the crystalline lattice. (For terminology, we would say that the liquid is uniform,
while the crystal is nonuniform and periodic.) Likewise, because the crystal has less
orientational symmetry than the liquid, the crystal has more orientational order. Of
all the equivalent directions in the liquid, the crystal has selected certain special
directions for the crystalline axes. (For terminology, the liquid is isotropic, while the
crystal is anisotropic.) Hence, the transition from liquid to crystal involves breaking
symmetry and acquiring order—both positional order and orientational order.

Because the system acquires orderwhen it freezes from liquid to crystal, wewould
like to describe the order by an order parameter. To construct an order parameter,
consider the density as a function of position. Figure8.4 shows a sample plot of the
density ρ(r) for a 2D square lattice. We can see that the density is peaked at the
lattice sites, and it drops to minima between the lattice sites, so that the density plot

http://dx.doi.org/10.1007/978-3-319-21054-4_2


8.2 Crystals 95

Fig. 8.4 Density in a 2D square lattice as a function of position (Interactive version at http://www.
springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?
SGWID=0-0-45-1509169-p177545420.)

has the shape of an egg carton. Because it is a periodic function, it can be written as
a Fourier series

ρcrystal(r) = ρ0 +
∑

q

ρqeiq·r . (8.1)

In this sum, the wavevectors are special wavevectors associated with the particular
lattice.2 In the particular example of Fig. 8.4, they are the wavevectors (2π/a)x̂ and
(2π/a) ŷ, where a is the square lattice spacing. By comparison, in the liquid phase,
the density is uniform and can be written as

ρliquid(r) = ρ0. (8.2)

Hence, the distinction between crystal and liquid can be described by the set of
Fourier coefficients ρq . These coefficients are zero in the liquid phase, and at least
some of them become nonzero in the crystal phase. In general, these coefficients are
complex numbers. The magnitude of the complex numbers represents the amplitude
of the density wave; it shows whether there is a small or large difference between
the densities at the maxima and the minima. The phase of the complex numbers
represents the positions of the density maxima; the spontaneous symmetry breaking
in the choice ofwhere to put themaxima corresponds to a randomchoice of the phases
of ρq . Thus, these density order parameters describe both themagnitude and direction
of the positional symmetry breaking. In this respect, they are a generalization of the
Ising order parameter M .

2In the general formalism of solid-state physics, the wavevectors in this sum are the reciprocal
lattice vectors of the particular lattice; I will not discuss that concept further in this book.

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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Fig. 8.5 Generic phase diagram for the crystal, liquid, and gas phases, in terms of pressure and
temperature

If a crystal has positional order defined by the coefficients ρq , then thewavevectors
q already contain information about the orientations of the crystalline axes. For this
reason, there is no need for a separate orientational order parameter to describe the
crystal. (An orientational order parameter will come later, in Chap. 10.)

At this point, I would like to present a simple theory of the freezing transition
from liquid to crystal, analogous to the van der Waals theory for the gas-liquid
transition. Unfortunately, no such simple theory exists. The freezing transition is
more complicated, and it varies from material to material. In particular, it depends
on the type of interaction between atoms—different types of crystals arise from
directional covalent bonds compared with ionic bonds or other isotropic interactions
between atoms. Even so, we can at least consider the generic phase diagram for
crystals along with liquids and gases.

Figure8.5 shows the generic phase diagram in terms of pressure and tempera-
ture. The crystal phase normally occurs at a lower temperature than the liquid phase
because the crystal has more order. At high temperature, entropy favors the more
disordered liquid phase; at low temperature, energy favors the more ordered crystal
phase. Likewise, the crystal normally occurs at a higher pressure than the liquid
because the crystal has a higher density (lower volume per particle) in most mate-
rials.3 At low temperatures and pressures, the gas, liquid, and crystal phases come
together at the triple point. The triple point must not be confused with the critical
point where the distinction between liquid and gas vanishes; it is a completely dif-
ferent type of point. Below the triple point, there is no liquid phase; rather, there is
a direct transition between crystal and gas.

3Water is a notable exception to this general rule, because crystalline ice actually has a lower density
than liquid water.

http://dx.doi.org/10.1007/978-3-319-21054-4_10
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Fig. 8.6 Generic phase diagram for the crystal, liquid, and gas phases, in terms of volume per
particle and temperature

At high temperatures and pressures, the transition between crystal and liquid goes
on forever; it does not terminate in a critical point. This absence of a critical point is
an important consequence of symmetry: The distinction between crystal and liquid
is a fundamental symmetry difference—the liquid has translational and rotational
symmetries that the crystal lacks. This symmetry is either present or absent. For this
reason, there must always be a phase transition between crystal and liquid, where
the symmetry is broken; this phase transition cannot terminate in a critical point.
By contrast, liquid and gas are the same type of phase, with the same symmetry;
the distinction between them is a quantitative difference in the density. Because this
difference is only quantitative, it can vanish at the critical point.4

Figure8.6 shows the generic phase diagram in terms of volume per particle and
temperature. In this version of the phase diagram, we can see that there are regions of
two-phase coexistence between gas and liquid, liquid and crystal, and gas and crystal.
The coexistence region between gas and liquid terminates at the critical point, but
the coexistence region between liquid and crystal goes on forever. Furthermore, in
this version of the phase diagram, the triple point becomes a line of three-phase
coexistence, at a specific triple-point temperature, with three different volumes per
particle for gas, liquid, and crystal.

4For more advanced readers: The only way to create a critical point in the crystal-liquid transition
would be to apply a symmetry-breaking field that directly induces positional order. For example,
suppose we apply a laser interference pattern, with the same spatial periodicity as the crystal. Under
this symmetry-breaking field, the liquid phase would have a slight degree of positional order, and
the crystal phase would have enhanced positional order. If the field strength is sufficiently great, the
difference in positional order could vanish at a critical point. This is a fairly exotic situation, which
does not occur in the ordinary study of phase transitions.
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8.3 Close-Packed Crystals, Crystallization of Hard Spheres

One specific type of crystal structure deserves special attention. In many systems,
the crystal structure that minimizes the free energy is whatever crystal structure fills
space most efficiently. By filling space efficiently, we just mean putting the most
particles into the smallest possible volume, with the least wasted space between the
particles. The most efficient packing is called a close-packed crystal. Such crystals
typically occur if the interaction between particles is isotropic, so that the particles
are effectively spheres in 3D, or disks in 2D.

To characterize how efficiently a crystal structure fills 3D space, people define
the packing fraction or volume fraction φ as the fraction of volume that is actually
taken up by spherical particles, compared with the total volume in the lattice:

φ = Vparticles

Vtotal
. (8.3)

For a 2D crystal, the corresponding area fraction is the ratio of areas instead of
volumes.

We can calculate some examples of packing fractions for inefficient crystal struc-
tures compared with close-packed crystals in 2D and 3D:

In 2D, one simple lattice is the square lattice. To calculate the packing fraction
for the square lattice, we shrink the lattice constant until neighboring disks are just
touching each other, without overlapping, as shown in Fig. 8.7a. In this case, the
lattice constant a equals the particle diameter. The repeating unit cell of this lattice
is the black square in the figure. Because the entire crystal consists of copies of the
unit cell, it is sufficient to calculate the numerator and denominator of Eq. (8.3) for
a single unit cell. For the numerator, there is one particle per unit cell (four quarter-
particles), and the particle area is π(a/2)2. For the denominator, the total area of the
unit cell is a2. Hence, the packing fraction for the square lattice is φ = π/4 ≈ 0.785.

(a) (b)

a a

Fig. 8.7 Calculation of the packing fraction for 2D lattices. a Square. b Hexagonal (or triangular)
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The packing fraction is a pure number between 0 and 1, which does not depend on
the lattice constant a, but only on the lattice type. This number implies that 78.5%
of the area is used for particles, and 21.5% of the area is wasted for the empty space
between the particles.

By comparison, the most efficient packing in 2D is the hexagonal lattice. This is
the crystal structure that you would obtain, for example, if you pack identical coins
together on a table. To calculate the packing fraction for the hexagonal lattice, we
again shrink the lattice constant until neighboring particles are just touching, so that
the lattice constant a equals the particle diameter. The unit cell of this lattice is the
parallelogram shown in Fig. 8.7b. For the numerator of Eq. (8.3), there is one particle
per unit cell, and the particle area is π(a/2)2. For the denominator, the area of the
parallelogram is a2

√
3/2. Hence, the packing fraction for the 2D hexagonal lattice is

φ = π/(2
√
3) ≈ 0.907. Thus, the hexagonal lattice is a substantially more efficient

packing than the square lattice, with less wasted space. Indeed, this difference is
clearly visible as less empty space in Fig. 8.7b than in 8.7a.

In 3D, we can first consider the simple cubic (sc) lattice. When we shrink the
lattice constant until neighboring spheres are just touching, we obtain the structure
shown in Fig. 8.8a, with the lattice constant a equal to the sphere diameter. The unit
cell is the black cube, and it contains one sphere (eight eighth-spheres). The volume
used by the sphere is (4π/3)(a/2)3, and the total volume of the unit cell is a3. Hence,
the packing fraction of the simple cubic lattice is φ = π/6 ≈ 0.524.

By comparison, the face-centered cubic (fcc) lattice is a close-packed crystal
structure in 3D. Figure8.8b shows this structure, when the lattice constant is shrunk
until neighboring spheres are just touching. In this case, the cubic lattice constant
a is not equal to the sphere diameter d . Rather, by considering the diagonal across
a face, we can see that a = d

√
2. The cubic unit cell contains four spheres (eight

eighth-spheres at the corners and six half-spheres on the faces), and each sphere has

Fig. 8.8 Calculation of the packing fraction for 3D lattices. a Simple cubic (sc). b Face-
centered cubic (fcc) (Interactive version at http://www.springer.com/cda/content/document/cda_
downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420.)

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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Fig. 8.9 Alternative view of
the fcc lattice, showing the
hexagonal layers (Interactive
version at http://www.
springer.com/cda/content/
document/cda_
downloaddocument/
Selinger+Interactive+Figures.
zip?SGWID=0-0-45-
1509169-p177545420.)

a volume of (4π/3)(d/2)3. The total volume of the unit cell is a3. Hence, the packing
fraction of the fcc lattice is φ = π/(3

√
2) ≈ 0.740, much higher than the simple

cubic.
To understand why the fcc lattice is so efficient, consider the alternative visual-

ization in Fig. 8.9. This visualization shows exactly the same spheres as Fig. 8.8b,
but the cube has been tilted so that the body diagonal is vertical, and the spheres
have been colored by layer. Here, we can see that each layer of the fcc lattice is a 2D
hexagonal lattice of spheres, which is the most efficient packing in 2D. Each layer of
spheres is placed over the depressions in the layer below. This is exactly the way that
you would stack oranges in a supermarket! You should rotate the interactive version
of the figure in 3D in order to see this arrangement more clearly.

There are three possible ways to place the hexagonal layers, which are conven-
tionally called A, B, and C. In the fcc lattice, the layers follow the repeating pattern
ABCABC…, so the the fourth layer is directly above the first layer. The hexago-
nal layers might be arranged in different patterns, leading to different lattices. In
particular, the hexagonal close-packed (hcp) lattice has the layers in the pattern
ABABAB…. Any such pattern of hexagonal layers has the same packing fraction
φ = π/(3

√
2) ≈ 0.740. This has been proven to be the most efficient packing of

spheres in 3D.
We noted earlier that close-packed lattices, such as fcc, generally occur when the

interaction between particles is isotropic. One interesting special case of isotropic
particles is hard spheres. Hard spheres are particles that have no interaction other
than excluded-volume repulsion, which prevents them from overlapping. In other
words, the interaction potential between particles i and j is

Vi j =
{
0 if no overlap,

∞ if overlap.
(8.4)
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Fig. 8.10 Phase diagram for hard spheres in 3D, as a function of the single variable φ

The hard-sphere system is peculiar because it does not have any interaction energy—
the potential energy is zero for any allowed configuration of the spheres (with no
overlap), and hence the expectation value of the potential energy is also zero. As a
result, the hard-sphere system is entirely controlled by entropy. Onemight expect that
a system with only entropy and no energy could never crystallize, because entropy
would always favor disorder. Surprisingly, it actually does crystallize!

For hard spheres, the phase diagram depends on only one variable, the volume of
the container per sphere in comparison with the volume of each sphere, or equiv-
alently the packing fraction φ. Figure8.10 shows the phase diagram as a function
of this single variable. For 0 < φ < 0.494, the system is in the liquid phase. For
0.494 < φ < 0.545, it shows two-phase coexistence between liquid and fcc crystal,
with the fractions of each phase given by the lever rule. For 0.545 < φ < 0.740,
it is the fcc crystal phase. It is impossible to have φ > 0.740, because this is the
close-packed packing fraction for spheres in 3D.

We might well ask why the hard-sphere system crystallizes, considering that it is
controlled entirely by entropy. The answer is that there is a balance between different
types of entropy. Clearly, the liquid has long-range entropy, because it has the highest
possible symmetry, and does not have any special positions or orientations. However,
when the density of spheres becomes high, the liquid has a problem: the spheres
are jammed together in a disordered way, and they do not have room for small
displacements around their positions. If the system crystallizes into the very efficient
fcc lattice, then spheres are not jammed against their neighbors, and they have room
for small displacements around their lattice sites. These small displacements are
a type of short-range entropy, and they favor the crystal phase. The competition
between long-range and short-range entropy leads to crystallization as a function of
density. In Chap. 10, we will see that a similar type of transition can occur with the
orientations of hard rods.

8.4 Elasticity and Viscosity

So far in this chapter, we have discussed crystals, which are one important type of
solids. In order to discuss solids in general, we must consider their elastic response
to forces, and see how this elastic response differs from liquids.

The simplest type of mechanical response, which is certainly familiar to physics
students, is Hooke’s law for springs. Consider the spring illustrated in Fig. 8.11a. We
apply a force F on one end, and a compensating force on the other end so that the
spring will not fly away. (If the spring is mounted on a wall, then we apply a force F

http://dx.doi.org/10.1007/978-3-319-21054-4_10
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Fig. 8.11 a Stretching of a spring by a force F .bStretching of an elastic rodwith initial length L and
cross-sectional area A (Interactive version at http://www.springer.com/cda/content/document/cda_
downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420.)

on one end, and the wall applies a compensating force on the other end.) In response
to this force, the spring extends from its natural length L by a distance �x . Hooke’s
law states that the force is related to the extension by

F = k�x, (8.5)

with some spring constant k. The same relationship is true for any solid rod, as shown
in Fig. 8.11b. If we apply a force to both ends, then the rod extends followingHooke’s
law, with some spring constant.

The important point to emphasize about Hooke’s law is that the spring constant
depends on the size and shape of the rod, as well as on the type of material that the
rod is made of. If we double the cross-sectional area A of the rod, we get twice the
force for the same �x (just as if we put two springs in parallel). Hence, we see that
the spring constant k is proportional to A. Likewise, if we double the natural length
L of the rod, we get twice the extension �x for the same force (just as if we put two
springs in series). Hence, we see that k is inversely proportional to L .

It is often useful to separate the effects of the rod dimensions A and L from the
effects of the material. For this reason, we can write the spring constant as

k = E A

L
, (8.6)

where the coefficient E is called the Young’s modulus. TheYoung’smodulus does not
depend on the the size and shape of the rod; rather, it is a characteristic of thematerial,
which describe how easy or difficult it is to stretch the material. It is measured in
Pascals (Pa), and it ranges from 0.01 to 0.1 GPa for rubber, to 70 GPa for aluminum,
to 1000 GPa for diamond.

In terms of Young’s modulus, we can rewrite Hooke’s law as

F = E A

L
�x . (8.7)

We can then rearrange terms to obtain

F

A
= E

�x

L
. (8.8)

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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This form of Hooke’s law suggests that it is useful to normalize the force F by the
cross-sectional area A, and normalize the extension �x by the natural length L .
Indeed, these are very standard concepts in elasticity. The normalized force is called
the stress σ,

σ = F

A
, (8.9)

and the normalized extension is called the strain e,

e = �x

L
. (8.10)

We can see that σ has units of Pascals, while e is dimensionless. In terms of these
variables, Hooke’s law takes the form

σ = Ee. (8.11)

This equation emphasizes the properties of the material, while putting the size and
shape of the rod into the definitions of stress and strain.

A linear extension is not the onlyway to deformamaterial. Another important type
of deformation is a shear, as illustrated in Fig. 8.12. In a shear, we apply a horizontal
force to the top of the material, and an opposite horizontal force to the bottom. As
a result, the material deforms by a distance �x , from an initially rectangular shape
into a parallelepiped. For this problem, the shear strain is defined as e = �x/L , and
the shear stress is defined as σ = F/A. Be careful to notice which directions have
the length L and area A: L is the length of the material from bottom to top, across
which the force and extension are varying. A is the area of the top and bottom, over
which the force is applied, perpendicular to L .

For a solid, the shear stress is linearly proportional to the shear strain:

σ = Ge, (8.12)

where G is the shear modulus of the material. (It is sometimes denoted by the letter
μ.) It is a different material parameter than Young’s modulus, because it describes
the response of a material to a different type of deformation. It is also measured
in Pascals, and it is normally smaller than Young’s modulus. Typical values are
0.001 GPa for rubber, 30 GPa for aluminum, and 500 GPa for diamond.

Fig. 8.12 Shear deformation
of a material (Interactive
version at http://www.
springer.com/cda/content/
document/cda_
downloaddocument/
Selinger+Interactive+Figures.
zip?SGWID=0-0-45-
1509169-p177545420.)
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Nowwe can see the crucial difference between solids and liquids:When we apply
a shear stress to a solid, the top surface shifts by �x and then it stops. By contrast,
when we apply a shear stress to a liquid, the top surface just keeps flowing without
limit. A liquid does not have any steady-state shear strain; instead, it has a steady-state
shear strain rate. The shear strain rate is the velocity of the top surface, normalized
by the length L , or equivalently it is the derivative of the strain with respect to time:

ė ≡ de

dt
= d(x/L)

dt
= 1

L

dx

dt
= v

L
. (8.13)

In this expression, ė (pronounced “e-dot”) is a traditional notation for the derivative
of e with respect to time. The shear strain rate is linearly proportional to the shear
stress:

σ = ηė, (8.14)

where η is the viscosity of the liquid. The SI unit for viscosity is Pascal seconds
(Pa s), and it is also commonly reported in the non-SI unit Poise, where 1 Poise is
0.1Pa s. As examples, water has a viscosity of 0.001Pa s at room temperature, while
the viscosity of honey is about 2Pa s.

To distinguish between solids and liquids, we can say: A solid has a nonzero shear
modulus, but a liquid has no shear modulus (or equivalently, the shear modulus of a
liquid is zero). This is exactly the distinction that people have in mind when they say:
You can hold a solid in your hand, but a liquid flows out between your fingers. As
an example, Fig. 8.13 shows a schematic illustration of someone holding a material
on top of his fingers. We can see that it looks like two copies of the shear experiment

Fig. 8.13 Schematic illustration of someone holding a material on top of his fingers to determine
whether it is a solid or a liquid (Interactive version at http://www.springer.com/cda/content/
document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-
p177545420.)

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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of Fig. 8.12, turned on its side. Gravity provides a force pulling down on the center
of the material, and the fingers provide a normal force pushing up on the two sides,
leading to a shear stress σ. If the material is a solid, it will deform until it reaches a
shear strain of e = σ/G, and then it will stop. By contrast, if the material is a liquid,
it will flow downward between the fingers with a shear rate of ė = σ/η, and it will
not stop until all the material has flowed out onto the floor.

This is also the distinction that people have in mind when they say: A liquid
conforms to the shape of its container, but a solid keeps its own shape. If we put
a sample into a container, the walls exert many shear stresses on the sample. If the
sample is a solid, it will only deform by some small shear strains, and hence it will
(approximately) keep its own shape. By contrast, if the sample is a liquid, it will
flow until it reaches the shape of its container, at which point the shear stresses will
vanish.

I should mention that the theory in this section describes idealized solids and
liquids. The ideal solid is called a Hookean solid (after Robert Hooke), and the ideal
liquid is called a Newtonian liquid (after Isaac Newton).5 Real materials can be more
complex than these idealizations in at least two ways:

First, the idealizations describe the steady-state shear of a solid or the steady-state
flow of a liquid. Materials can have interesting time-dependent properties before
they reach the steady state. For example, a material might respond elastically (like
a solid) on short time scales, but flow viscously (like a liquid) on long time scales.
If a material displays both elastic and viscous behaviors on different time scales,
it is called viscoelastic. In the theory of viscoelasticity, the shear modulus G and
viscosity η can be combined into a single frequency-dependent complex modulus
G(ω). (For readers who have studied AC electric circuits, this complex modulus
is quite analogous to the frequency-dependent complex impedance Z(ω), which
combines the resistance, capacitance, and inductance.)

Second, the idealizations assume that the shear stress is linearly proportional to
the shear strain (for a solid) or shear strain rate (for a liquid). This linear relationship
is a good approximation for small stresses and strains. However, when stresses and
strains become large, their relationship canbenonlinear. For this reason, a tremendous
amount of effort goes into measuring the stress–strain curves for real materials.

I should alsomention that the theory of elasticity is a very interesting and complex
subject. In general, the stress and strain can both be represented by tensors, which
show all the possible orientations for force gradients and displacement gradients
within a material. The mathematical formalism of elasticity is similar to electrody-
namics, except that elasticity uses tensors while electrodynamics uses vectors. That
subject is beyond the scope of this book, but you should be aware that it exists.

5As a historical note, Robert Hooke (1635–1703) and Isaac Newton (1642–1726) were both great
scientists, but they were bitter enemies. According to legend, after Hooke died, Newton had all
portraits of him destroyed, so we do not know what Hooke looked like.
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8.5 Microscopic Interpretation of Viscosity

In the previous section, we presented a description of elasticity and viscosity, but
not an explanation for these behaviors. In this section, we will present a simple
microscopic model for viscous flow. It will give a prediction for how the viscosity
depends on temperature.

In this model, the basic concept is that each atom is trapped in a cage of its
neighbors. As an example, Fig. 8.14 shows a cluster of atoms within a fluid. The test
atom at the center, shown in blue, is surrounded by neighboring atoms, shown in
yellow. All of these atoms are constantly moving back and forth. As long as the blue
atom is trapped inside the cage of yellow atoms, it vibrates within the cage, and the
cage tends to push it back to the center. However, if the blue atom ever escapes from
the cage, it forms a new cluster with the atoms at its new position, and it no longer
has any tendency to return to its original position.

Now suppose we apply a shear stress σ to the material. As long as the atoms
are trapped within their cages, the shear stress just deforms each of the cages. This
deformation induces a displacement of the atoms—a specific finite displacement—
and then it stops, because of the energy cost of pushing the atoms away from their
equilibrium positions. As a result, the material has a solid-like elastic response to the
shear stress, with a shear strain of e = σ/G0, where G0 is the instantaneous shear
modulus on this short time scale. If we remove the shear stress, each atom tends to
return to its original position, at the center of its own cage, and hence the shear strain
goes back to 0.

By contrast, if we wait long enough for the atoms to escape from their cages, the
behavior is quite different. Suppose τ is the relaxation time, i.e., the typical time
required for an atom to escape from its cage. If we apply the shear stress for a time
τ , each atom moves out of its cage to a new position, and it forms a new cage.
After another time τ , each atom moves to yet another position. Hence, the material

Fig. 8.14 Escape of a test
atom (shown in blue) from a
cage of its neighbors (shown
in yellow), as part of a
microscopic model for
viscosity (Interactive version
at http://www.springer.com/
cda/content/document/cda_
downloaddocument/
Selinger+Interactive+Figures.
zip?SGWID=0-0-45-
1509169-p177545420.)

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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continues flowing for as long as the stress is applied, leading to a liquid-like viscous
response. If we remove the shear stress, there is no tendency for the atoms to return
to their original positions, and hence the strain does not go back to 0.

As a rough estimate, we can say that the material experiences a shear strain of
e = σ/G0 in each time τ . As a result, the average shear strain rate is ė = σ/(G0τ ).
Hence, the effective viscosity η is determined by the instantaneous shear modulus
G0 and the relaxation time τ :

η = G0τ . (8.15)

This argument provides a way for us to think about different materials in terms of
the relaxation time. In a perfect crystal, any rearrangement of the atoms requires
large-scale motion of all the atoms in the lattice, and hence τ → ∞. The perfect
crystal can never flow. In a crystal with defects, τ is large but finite. In a liquid, τ
is small, and hence the liquid can flow in a very short time, compared with the time
scale of an experiment.

Now let us consider how τ depends on temperature. Because τ is the typical time
for an atom to escape from its cage, τ−1 is the typical escape rate, i.e., escapes per
unit time. To understand this escape rate, we can compare it with prisoners trying to
escape from jail. The escape rate τ−1 (prisoners escaping per unit time) is equal to
the attempt frequency ν (how often prisoners try to escape) times the probability of
success:

τ−1 = ν psuccess. (8.16)

The same is true for atoms escaping from their cages. Here, ν is a vibration frequency
that indicates how often an atom approaches the cage walls, and psuccess is given by
a Boltzmann factor for escape over a barrier,

psuccess = e−Fbarrier/kB T . (8.17)

Combining these equations, our estimate for the relaxation time is

τ = ν−1eFbarrier/kB T , (8.18)

and our estimate for the viscosity is

η = G0

ν
eFbarrier/kB T . (8.19)

Equation (8.19) gives a prediction for how the viscosity depends on temperature:
through an exponential factor. To be sure, the three parameters G0, ν, and Fbarrier
may also depend on temperature, but this dependence is generally weak compared
with the exponential factor, which is extremely sensitive to temperature. This expo-
nential dependence on temperature is called Arrhenius behavior, and it is character-
istic of physical processes that depend on thermal fluctuations to get over a barrier.
Figure8.15a shows a plot of the predicted viscosity as a function of temperature.
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(a) (b)

Fig. 8.15 Prediction for viscosity as a function of temperature. a Plotted on a linear scale.
b Conventional Arrhenius plot of log(η) as a function of 1/T

When the temperature is high, the viscosity is low. As the temperature decreases, the
viscosity increases. This increase becomes especially sharp when kB T goes below
Fbarrier.

By the way, people who analyze data for viscosity as a function of temperature
(or for any other thermally activated process) typically take the logarithm of both
sides of Eq. (8.19) to obtain

log(η) = log

(
G0

ν

)
+

(
Fbarrier

kB

) (
1

T

)
. (8.20)

Inspired by this equation, theymake anArrhenius plot of log(η) as a function of 1/T ,
as shown in Fig. 8.15b. Equation (8.20) predicts that this plot will be a straight line
with slope of Fbarrier/kB and intercept of log(G0/ν), when extrapolated to T −1 → 0
or T → ∞. By fitting the experimental data, they can directly read off these two
parameters.

8.6 Glass Transition

Howwell does the theory in the previous section compare with experiment? Suppose
we cool a liquid from high to low temperature.We can consider two cases, depending
on the cooling rate:

Case 1: Slow cooling

At high temperature, the viscosity follows the Arrhenius law of Eq. (8.19). Once
the temperature reaches the phase transition from liquid to crystal, at a temperature
Tcryst, the behavior changes. Nuclei of the crystal phase begin to form in the liquid.
These nuclei grow, and eventually all of the liquid is transformed into the crystal
phase. Once the system is in the crystal phase, it cannot flow viscously in response
to a shear stress. Instead, it displays an elastic response to a shear stress, with a shear
modulus.
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This sequence of steps is the normal equilibrium behavior as the temperature
decreases. In this sequence, there is plenty of time for nucleation and growth because
the system is being cooled slowly.

Case 2: Fast cooling

At high temperature, the viscosity follows the Arrhenius law of Eq. (8.19), as
in the previous case. Eventually, the temperature crosses below Tcryst, but now we
are cooling so quickly that there is not enough time for nucleation and growth of
the crystal phase. As a result, the system remains in the metastable liquid phase.
This metastable phase is called a supercooled liquid, because it is cooled below the
equilibrium crystallization point.

We can still measure the viscosity of the supercooled liquid as a function of
temperature. For some range of temperature, it approximately follows the Arrhenius
law of Eq. (8.19). However, when the temperature becomes low enough, the viscosity
increases even more rapidly than predicted by this equation. Instead, it follows the
Vogel-Fulcher law:

η = η0 exp

(
B

T − T0

)
, (8.21)

where T0 is some temperature below Tcryst, and η0 and B are constants. (To be spe-
cific: At high temperature, the Arrhenius and Vogel-Fulcher predictions are basically
identical.We can only tell the difference betweenArrhenius andVogel-Fulcher when
the temperature becomes close to T0, and then the viscosity follows Vogel-Fulcher.)

As the temperature continues to decrease, the viscosity increases tremendously.
At some point, the viscosity becomes so high that the system can no longer flow on
any experimental time scales. We might need to wait for years, or millions of years,
to observe any flow. This change is called the glass transition, and it occurs at the
temperature TG . Note that T0 < TG < Tcryst: The glass transition is below the equi-
librium crystallization transition, but it is above the point T0 where the extrapolated
viscosity goes to infinity.

The exact definition of the glass transition temperature TG is a matter of conven-
tion. One common convention is that TG is the temperature at which the viscosity
grows to 1012 Pa s. This convention may seem arbitrary, but we should notice that
the viscosity increases extremely rapidly as T approaches T0. For this reason, if
our criterion were a viscosity of 1013 or 1014 Pa s, we would report only a slightly
different glass transition temperature.

Students sometimes ask where a glass should go on a phase diagram like Fig.8.5
or 8.6. The answer is:Nowhere!Aglass is not an equilibriumphase at any temperature
or pressure. At low temperature, the equilibrium phase is a crystal. As far as we
know, a glass is never the minimum of the free energy. Rather, a glass is a kinetic
phenomenon, which occurs when a disordered material is stuck out of equilibrium.
Even so, glasses are common solid materials, which occur both in nature and in
technology. No discussion of solids can be complete without mentioning them.
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You may notice that the Vogel-Fulcher law of Eq. (8.21) looks very similar to the
scaling relations for physical properties near second-order phase transitions. Based
on this similarity, some researchers have speculated that theremight be a hidden phase
transition to an ideal glass—not to be confused with an ideal gas! The transition to
the ideal glass would occur at the temperature T0, if only the system could remain in
equilibrium at T0, but actually it falls out of equilibrium.

Currently, the study of the glass transition is considered as part of a broader subject
called jamming,which is the general study of systems that form rigid non-equilibrium
structures. This field includes the study of granularmaterials like sand,which become
jammed under shear stress, and even the study of traffic jams among cars. Since the
late 1990s, this area has become an important part of materials research.

Further Reading

The structure and properties of crystals are discussed in books on solid-state physics.
The most widely used introductory textbook is:

1. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, 2005)

A clear and concise discussion of elasticity, viscosity, and the glass transition is in:

2. R.A.L. Jones, Soft Condensed Matter (Oxford, 2002)

A further, more extensive discussion of the physics of glasses is in:

3. R. Zallen, The Physics of Amorphous Solids (Wiley, 1983)



Chapter 9
Second Mathematical Interlude: Tensors

Abstract Working with tensors is essential for describing any physical phenomena
that depend on direction. This chapter begins by explaining the motivation to use
tensors, so that physics will be independent of any arbitrary choice of coordinate
system. It then shows how to work with tensors and relates tensor calculations to
more familiar vector and matrix calculations. It concludes with suggestions about
how to visualize tensors.

In the previous chapter, we saw that crystals have two types of order, positional
and orientational. We discussed how to describe positional order, but we have not
yet discussed how to describe orientational order. In order to describe orientational
order, or any other properties of materials that depend on direction, we need a branch
of mathematics called tensors.

In my experience, most science and engineering students are quite familiar with
vectors and matrices,1 but are not so familiar with tensors. In this chapter, I will
present an introduction to tensors, so that we can use them later.

9.1 What is a Tensor?

To introduce the concept of tensors, let us consider how to write equations that are
physically meaningful.

An important principle of physics must be: Nature doesn’t care about me. The
laws of nature cannot depend on any arbitrary choices that I might make.

One arbitrary choice is units. The laws of nature cannot depend on whether we are
working in SI units, British Imperial units, or any other system. A student might say
“The volume ofmy lunchbox is equal to the area ofmy laptop screen.” This statement
is totally meaningless! It might be numerically true if all lengths are measured in

1If you have not already studied vectors and matrices, you should learn about them before you read
this chapter. One useful introduction to vectors, matrices, and other concepts of linear algebra is in
the videos of the Khan Academy (http://www.khanacademy.org).
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Fig. 9.1 Example of an American astronaut and a Russian cosmonaut observing the same rock on
the International Space Station, each with his own Cartesian coordinate system

feet, but not if lengths are measured in any other units. This is the reason why science
and engineering students need to learn to work with units correctly.

Another arbitrary choice is coordinate system. We can set up many different
Cartesian coordinate systems, which are all rotated versions of each other. As an
example, Fig. 9.1 shows an American astronaut and a Russian cosmonaut observing
the same rock on the International Space Station. Each of them has his own Cartesian
coordinate system. For this reason, they will report different numerical values for the
x , y, and z components of the rock’s position or velocity.

What can they agree on? In other words, what physically meaningful statements
can they make, which do not depend on their individual coordinate systems?

First, they can agree on the magnitudes of vectors. Suppose they each calculate
the magnitude of the velocity vector (squared),

|v|2 = v · v = v2x + v2y + v2z . (9.1)

You might worry that they could get different answers, because this expression
depends on the vector components vx , vy , and vz , which are different for the Amer-
ican and the Russian. However, thanks to the Pythagorean theorem, this sum of the
squares of vector components turns out to be the same for both observers. Hence,
the magnitude of the velocity vector is a scalar, a number which is invariant under
rotation of the coordinate system. The same is true for the magnitude of any other
vector. (By the way, note that they would not agree about the sum of fourth powers,
v4x + v4y + v4z . The Pythagorean theorem only works for the sum of squares, not for
any other power!)

Second, they can agree on dot products. Suppose they each measure the force
vector F and the velocity vector v, and calculate the power

Power = F · v = Fxvx + Fyvy + Fzvz . (9.2)

Again, youmightworry that they could get different answers, because this expression
depends on the vector components of the force and velocity, which are different in
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the two coordinate systems. However, the dot product also turns out to be invariant
under rotation of coordinates. You already knew this, because you recall that the dot
product can be interpreted as F · v = |F||v| cos θ, where θ is the angle between
the vectors. Because the two observers have the same values of |F| and |v|, and the
same angle θ, they get the same dot product. Hence, the coordinate dependence of
the vector components cancels out, and the dot product is a scalar. (In the previous
case, |v|2 is just the dot product of v with itself. Hence, this is a just a special case
of a dot product.)

Third, they can agree on vector equations. Suppose they each measure the force
vector F and the acceleration vector a, as well as the rock’s mass m. They would
each find that

F = ma, (9.3)

or equivalently

Fx = max ,

Fy = may, (9.4)

Fz = maz .

This result is remarkable, because they would each measure different components
for the force and acceleration vectors. It works because the force and acceleration
vectors are not just any arbitrary lists of three numbers. Rather, the force vector F
is a single 3D object, and the acceleration vector a is another 3D object. The vector
Eq. (9.3) expresses a relationship between these 3Dobjects. Hence,wewould say that
this vector equation is an invariant equation, which does not change under rotation
of coordinates.

Now let us consider a more interesting example. Suppose they want to investigate
the dielectric properties of the rock. They apply an electric field E, and measure the
resulting electrostatic polarization P . Because the rock has a complicated anisotropic
crystal structure, the induced polarization is not necessarily parallel to the applied
field. Instead, these vectors are related by

P = α · E (9.5)

or equivalently

⎛

⎝
Px

Py

Pz

⎞

⎠ =
⎛

⎝
αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

⎞

⎠

⎛

⎝
Ex

Ey

Ez

⎞

⎠ =
⎛

⎝
αxx Ex + αxy Ey + αxz Ez

αyx Ex + αyy Ey + αyz Ez

αzx Ex + αzy Ey + αzz Ez

⎞

⎠ , (9.6)

where the αi j coefficients represent the polarizability of the rock. This is also an
invariant equation! The American and the Russian measure different values for all
of the E components, all of the P components, and all of the α components, but the
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same equation still works for both of them. It works because E, P , and α are not
just arbitrary lists of numbers. Rather, each of them is a single 3D object.

You already know that E and P are vectors. The crucial point is: α is another
type of 3D object, called a tensor. A tensor is a mathematical object that expresses
the relationship between vectors. In this case, α is the polarizability tensor, and it
expresses the relationship between E and P , showing how the rock responds to
electric fields with all possible orientations.

A vector is a 3D object with a magnitude and a direction. It can be represented by
its components in a Cartesian coordinate system, but it is not just a list of numbers.
Similarly, a tensor is a more complex 3D object with magnitudes and directions. It
also can be represented by its components in aCartesian coordinate system.However,
we always want to remember that it is a 3D object, not just a list of numbers.

Youmight ask: How canwe tell the difference between the components of a tensor
and any other list of numbers? The answer is: Look at what happens when we rotate
the coordinate system. The components of a tensor must transform in a specific way,
which I will explain below. This is the reason why books about tensors emphasize
transformation rules so much!

Before going on, I should briefly mention two points to avoid misunderstanding.
First, I consistently describe tensors in 3D, because this is the most common dimen-
sionality in physics. However, there is nothing special about 3D. The mathematical
principles in this chapter can be applied to tensors in 2D, or 4D, or any other dimen-
sion. Second, I consistently describe tensor components in Cartesian coordinates. It
is possible to describe tensor components in curvilinear coordinate systems (such as
spherical or cylindrical coordinates), but that is a more advanced topic, beyond the
scope of this book.

9.2 Working with Tensors

To understand all the possible ways of expressing tensors, let us begin with 3D
vectors, such as the electric field E or polarization P . Vectors are a special case
of tensors, called tensors of rank 1. For a vector, we have several possible types of
notation:

1. We can write an abstract vector as v. People sometimes decorate the symbol as �v
or v, but I will not do that in this book.

2. We can expand the vector in terms of basis vectors in a Cartesian coordinate
system

v = vx x̂ + vy ŷ + vz ẑ. (9.7)

Here, x̂, ŷ, and ẑ are unit vectors in the x , y, and z directions. The “hat” over the
vectors indicates that they each have unit magnitude.

3. We can make a list of the components in a column or row,
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v =
⎛

⎝
vx

vy

vz

⎞

⎠ or v = (vx , vy, vz). (9.8)

4. We can write a equation for the i th component of the vector. For example, the
abstract vector equation v = 2u can be written as

vi = 2ui . (9.9)

This notation means that the equation is true for i = x , y, and z, so the equation
is really three simultaneous equations. We might say that i is a “free” index that
can represent any direction. In casual language, people look at this equation and
say that “vi is a vector,” but it would be more precise to say that vi is a vector
component.

We can see an important rule for working with vector components: If an index
appears once in some term, it must appear once in every term on both sides of
the equation. This index is free, so the equation must be true for all values of
that index: x , y, or z. This rule is necessary so that the component equation can
be a component-by-component version of a vector equation, which works in all
Cartesian coordinate systems.

Next, let us consider a tensor of rank 2, which expresses the relationship between
two vectors. An example is the polarizability tensor α, which expresses the relation-
ship between E and P . It can be expressed using the same type of notation:

1. We can write an abstract tensor as T . People sometimes decorate the symbol as
↔
T or T , but I will not do that in this book.

2. We can expand the vector in terms of basis tensors in a Cartesian coordinate
system:

T = Txx x̂ x̂ + Txy x̂ ŷ + Txz x̂ ẑ + Tyx ŷx̂ + Tyy ŷ ŷ + Tyz ŷ ẑ

+ Tzx ẑ x̂ + Tzy ẑ ŷ + Tzz ẑ ẑ. (9.10)

(People do not really use that notation in practice, because it is just too awkward,
but they could use it.)

3. We can make a list of the components in a matrix:

T =
⎛

⎝
Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

⎞

⎠ . (9.11)

4. We can write a equation for the i j component of the tensor. For example, the
abstract tensor equation T = 2S can be written as

Ti j = 2Si j . (9.12)
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This notation means that the equation is true for i = x , y, and z and j = x , y, and
z; so the equation is really nine simultaneous equations. We might say that i and
j are free indices that can represent any directions. In casual language, people
look at this equation and say that “Ti j is a tensor,” but it would be more precise
to say that Ti j is a tensor component.

Again, we have the same rule for free indices: If an index appears once in some
term, it must appear once in every term on both sides of the equation, and the
equation must be true for all values of that index: x , y, or z. This rule is necessary
so that the component equation can be a component-by-component version of a
tensor equation, which works in all Cartesian coordinate systems.

We can also define tensors of rank higher than two, which express the relationship
between multiple vectors. Such tensors can be written in the abstract tensor notation
as C, or they can be written out in components such as Ci jkl . The rank of a tensor is
equal to the number of indices, so the example of Ci jkl is a tensor of rank 4. When
we are working in 3D, each index of the tensor can represent x , y, or z, and hence
the tensor Ci jkl has 34 = 81 components. In general, for a tensor of rank r in d
dimensions, there are dr components.

In the previous section,we saw two exampleswherewe combine vectors or tensors
by summing over an index. One example is a dot product of two vectors, also known
as an inner product:

u · v = uxvx + uyvy + uzvz =
3∑

i=1

uivi . (9.13)

The other example is matrix multiplication of a matrix (or tensor of rank 2) times a
vector:

M · v =
⎛

⎝
Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz

⎞

⎠

⎛

⎝
vx

vy

vz

⎞

⎠ =
⎛

⎝
Mxxvx + Mxyvy + Mxzvz

Myxvx + Myyvy + Myzvz

Mzxvx + Mzyvy + Mzzvz

⎞

⎠ , (9.14)

or equivalently

(M · v)i =
3∑

j=1

Mi jv j . (9.15)

These two examples involve summing over a tensor index that appears exactly twice
in a term. This procedure is called contraction, or contracting over an index. It
is a very important part of working with tensors, because it cancels the direction
dependence associated with this index.

In tensor equations, contraction occurs so often that there is a compact shorthand
for it, called the Einstein summation convention: Whenever a tensor index occurs
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exactly twice in a term, we automatically sum over that index = x , y, and z. We do
not even bother to write down the summation sign; we just remember to sum over it.

With the Einstein summation convention, the dot product can be written as

u · v = uivi , (9.16)

where the repeated index i is automatically summed over x , y, and z. Intuitively, we
might say that contracting over the index i cancels the coordinate dependence in ui

and vi . Hence, the dot product makes a scalar out of two vectors.
Similarly, with this convention, the product of a matrix and a vector can be written

as

(M · v)i = Mi jv j . (9.17)

This contraction cancels the coordinate dependence associated with j , and hence
makes a single vector out of a matrix and a vector. Likewise, the product of two
matrices is

(M · N)ik = Mi j N jk . (9.18)

Here, contracting over the index j cancels the coordinate dependence associatedwith
this index and makes a single matrix (tensor of rank 2).

To summarize the results of this section, we have three rules for working with
tensor components:

1. If an index appears once in some term, the index is free. This index must appear
once in every term on both sides of the equation.

2. If an index appears twice in some term, we automatically contract (sum over) the
index. This index does not need to appear in other terms.

3. If an index appears more than twice in some term, we made a mistake. It must
only appear once or twice!

These rules make it easy to write expressions that are invariant (do not depend on
choice of coordinate system) and difficult to write expressions that are not invariant
(depend on choice of coordinate system).

9.3 Standard Vector and Matrix Expressions

Besides dot products and matrix multiplication, you probably know several other
vector and matrix expressions. It is possible to write all of them in tensor component
notation. Here are several examples:
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Identity matrix

In 3D, the identity matrix is

I =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ . (9.19)

The i j component of this matrix is commonly written as

Ii j = δi j , (9.20)

where δi j is the Kronecker delta defined as

δi j =
{
1 if i = j,

0 if i �= j.
(9.21)

The matrix equation

I · v = v (9.22)

is then equivalent to

δi jv j = vi . (9.23)

Cross product of vectors

The cross product of two vectors is defined as

u × v =
⎛

⎝
uyvz − uzvy

uzvx − uxvz

uxvy − uyvx

⎞

⎠ . (9.24)

It combines the twovectors tomake a third vector. This combination is antisymmetric,
meaning that u × v = −v × u.

To write the cross product in tensor component notation, we must first define the
Levi-Civita symbol

εi jk =

⎧
⎪⎨

⎪⎩

1 if i jk = xyz, yzx, or zxy (an even permutation of the indices),

−1 if i jk = xzy, yxz, or zyx (an odd permutation of the indices),

0 otherwise.
(9.25)

The Levi-Civita symbol is completely antisymmetric, meaning that it changes sign
if we exchange any two indices (for example εi jk = −ε j ik), but it keeps the same
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sign if we make an even number of exchanges (for example εi jk = εki j ). In terms of
the Levi-Civita symbol, the cross product is given by

(u × v)i = εi jku jvk . (9.26)

On the right side of this equation, the repeated indices j and k are automatically
summed over x , y, and z. The index i is free, and it appears on both sides of the
equation.

One useful identity involving the Levi-Civita symbol is

εi jkεimn = δ jmδkn − δ jnδkm . (9.27)

This identity means that the contraction εi jkεimn is+1 if j matches k and m matches
n, −1 if j matches n and k matches m, and 0 otherwise. Using this identity, we can,
for example, simplify a × (b × c):

[a × (b × c)]i = εi jka j (b × c)k = εi jka j εkmnbmcn

= εi jkεkmna j bmcn = εki j εkmna j bmcn

= (δimδ jn − δinδ jm)a j bmcn = δimδ jna j bmcn − δinδ jma j bmcn

= a j bi c j − a j b j ci = bi a j c j − ci a j b j

= bi (a · c) − ci (a · b) = [b(a · c) − c(a · b)]i . (9.28)

This equation is the component-by-component version of the familiar vector identity

a × (b × c) = b(a · c) − c(a · b). (9.29)

Tensor product (outer product, dyad) of vectors

Apart from the dot product (which makes a scalar) and the cross product (which
makes a vector), two vectors can also be combined to make a tensor of rank 2. This
combination is called a tensor product or outer product and is written as u ⊗ v. The
same combination is also sometimes called a dyad and is written as uv, with no
symbol between the vectors. It is defined as the matrix of all possible products of
Cartesian components:

u ⊗ v = uv =
⎛

⎝
uxvx uxvy uxvz

uyvx uyvy uyvz

uzvx uzvy uzvz

⎞

⎠ . (9.30)

In tensor component notation, this combination can be written very easily as

(u ⊗ v)i j = (uv)i j = uiv j . (9.31)
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In this expression, both indices i and j are free, and nothing is contracted.

Gradient, divergence, and curl

All of our notation for vectors applies equally well to derivatives of vector fields.
The gradient operator is

∇ =
⎛

⎝
∂/∂x
∂/∂y
∂/∂z

⎞

⎠ =
⎛

⎝
∂x

∂y

∂z

⎞

⎠ . (9.32)

The symbols on the right are just a compact notation for writing derivatives with
respect to x , y, and z. Hence, the gradient of a scalar field f (r) is

∇ f =
⎛

⎝
∂ f/∂x
∂ f/∂y
∂ f/∂z

⎞

⎠ =
⎛

⎝
∂x f
∂y f
∂z f

⎞

⎠ . (9.33)

In tensor component notation, it is written as

(∇ f )i = ∂i f. (9.34)

Likewise, the divergence of a vector field v(r) is

∇ · v = ∂ivi , (9.35)

and the curl is

(∇ × v)i = εi jk∂ jvk . (9.36)

I should briefly mention one other notation that you might occasionally see in the
literature: People sometimes put a subscript after a comma to indicate a derivative.
Some examples are

vi, j = ∂ jvi ,

f,i j = ∂i∂ j f. (9.37)

Trace of a matrix

The trace of a matrix, or tensor of rank 2, is the sum of the elements along the
diagonal:

Tr M = Mxx + Myy + Mzz . (9.38)
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In tensor component notation, it can be written as

Tr M = Mii . (9.39)

In this expression, contracting over the index i cancels the coordinate dependence
associated with that index—just as in any other contraction, such as a dot product or
matrix multiplication. Hence, the trace makes a scalar, an invariant number, out of a
tensor of rank 2.

In a similar way, we can take the trace of a product of two matrices

Tr(M · N) = Mi j N ji , (9.40)

or the trace of a power of a matrix

Tr M2 = Mi j M ji , (9.41)

Tr M3 = Mi j M jk Mki . (9.42)

Notice that the trace of the identity matrix is

Tr I = δi i = δxx + δyy + δzz = 3, (9.43)

because we are in 3D space.

Determinant of a matrix

The determinant of a matrix is a surprisingly awkward concept to express in tensor
component notation. It can be done by constructing the appropriate combination of
traces of powers of the matrix. In 3D, this construction is

det M = 1

6
(Tr M)3 − 1

2
(Tr M2)(Tr M) + 1

3
Tr M3

= 1

6
Mii M j j Mkk − 1

2
Mi j M ji Mkk + 1

3
Mi j M jk Mki . (9.44)

Like the trace, the determinant is a scalar, which is independent of the choice of
coordinate system.

9.4 Transformation Under Rotation

Because vectors and tensors are 3D objects, their components must transform in
specific ways when we rotate the coordinate system. In this section, we will derive
the rules for transformation under rotation. With these transformation rules, we can
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show that the contracting over an index really does cancel the coordinate dependence
associated with that index.

Let us begin with a vector (tensor of rank 1). A vector v can be expressed in terms
of its components in the coordinate system (x, y, z) as

v = vx x̂ + vy ŷ + vz ẑ. (9.45)

It can also be expressed in terms of its components in a rotated coordinate system
(x ′, y′, z′) as

v = v′
x x̂′ + v′

y ŷ′ + v′
z ẑ′. (9.46)

Of course, these two expressions represent the same vector. Hence, we can set them
equal to each other:

v′
x x̂′ + v′

y ŷ′ + v′
z ẑ′ = vx x̂ + vy ŷ + vz ẑ. (9.47)

Suppose we want to calculate the primed components in terms of the unprimed
components. We can take the dot product of each side of the equation with x̂′. In this
dot product, we note that x̂′ · x̂′ = 1 and x̂′ · ŷ′ = x̂′ · ŷ′ = 0, because the primed
coordinate system is still a Cartesian coordinate system. Hence, we obtain

v′
x = (x̂′ · x̂)vx + (x̂′ · ŷ)vy + (x̂′ · ẑ)vz . (9.48)

Next we take the dot products of Eq. (9.47) with ŷ′ and ẑ′ to calculate v′
y and v

′
z . We

can put all three equations together into a single matrix equation:

⎛

⎝
v′

x
v′

y
v′

z

⎞

⎠ =
⎛

⎝
x̂′ · x̂ x̂′ · ŷ x̂′ · ẑ
ŷ′ · x̂ ŷ′ · ŷ ŷ′ · ẑ
ẑ′ · x̂ ẑ′ · ŷ ẑ′ · ẑ

⎞

⎠

⎛

⎝
vx

vy

vz

⎞

⎠ . (9.49)

Using the Einstein summation convention, this equation can be written compactly as

v′
i = Ri jv j , (9.50)

where R is the rotation matrix

R =
⎛

⎝
x̂′ · x̂ x̂′ · ŷ x̂′ · ẑ
ŷ′ · x̂ ŷ′ · ŷ ŷ′ · ẑ
ẑ′ · x̂ ẑ′ · ŷ ẑ′ · ẑ

⎞

⎠ . (9.51)

One common example is a rotation by an angle θ about the z-axis. In this case, the
rotation matrix is just
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R =
⎛

⎝
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞

⎠ . (9.52)

There are similar simplifications for a rotation about the x- or y-axis. However, for
an arbitrary rotation axis, the general form of R is the matrix of dot products.

Working from Eq. (9.47), we can also take dot products with x̂, ŷ, and ẑ to find
the unprimed components in terms of the primed components. The result is

⎛

⎝
vx

vy

vz

⎞

⎠ =
⎛

⎝
x̂ · x̂′ x̂ · ŷ′ x̂ · ẑ′
ŷ · x̂′ ŷ · ŷ′ ŷ · ẑ′
ẑ · x̂′ ẑ · ŷ′ ẑ · ẑ′

⎞

⎠

⎛

⎝
v′

x
v′

y
v′

z

⎞

⎠ . (9.53)

We can see that the rotationmatrix for this inverse transformation is RT , the transpose
of the original rotation matrix. In terms of tensor components, we have

vi = RT
i jv

′
j = R jiv

′
j = v′

j R ji , (9.54)

using the definition of the transpose RT
i j = R ji . By combining Eqs. (9.50) and (9.54),

we see that

vi = RT
i j R jkvk (9.55)

for any vector v. This is only possible if

RT
i j R jk = R ji R jk = δik, (9.56)

or equivalently

RT R = I, RT = R−1. (9.57)

In otherwords, the transpose of the rotationmatrix is its inverse. The term for amatrix
that satisfies this relationship is an orthogonal matrix. You can verify explicitly that
the special form of Eq. (9.52) is orthogonal.

Now suppose we want to calculate the dot product of two vectors. In the unprimed
coordinate system, the dot product is

u · v = uivi = uxvx + uyvy + uzvz . (9.58)

In the primed coordinate system, it is

u · v = u′
iv

′
i = u′

xv
′
x + u′

yv
′
y + u′

zv
′
z

= Ri j u j Rikvk = Ri j Riku jvk = δ jku jvk

= u jv j = uxvx + uyvy + uzvz . (9.59)
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This calculation shows explicitly that the dot product is the same in the primed and
unprimed coordinate systems, i.e., the dot product is a scalar, invariant under rotations
of coordinates. It confirms that contracting over an index cancels the coordinate
dependence associated with this index.

For a tensor of rank 2, the transformation rule is slightly more complicated,
because we must transform both indices. We can write the rule in matrix form as

⎛

⎝
T ′

xx T ′
xy T ′

xz
T ′

yx T ′
yy T ′

yz
T ′

zx T ′
zy T ′

zz

⎞

⎠ = R ·
⎛

⎝
Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

⎞

⎠ · RT , (9.60)

or equivalently in component form as

T ′
i j = Rim Tmn RT

nj = Rim R jnTmn . (9.61)

This rule shows that thematrix of unprimed componentsmust be sandwichedbetween
R and RT , to obtain the matrix of primed components. As a consistency check,
suppose we have a tensor of rank 2 multiplying a vector, u = T · v, so that

ui = Ti jv j . (9.62)

In the primed coordinate system, the product becomes

u′
i = T ′

i jv
′
j = Rim Tmn RT

nj R jkvk = Rim Tmnδnkvk = Rim Tmnvn = Rimum . (9.63)

Hence, the components of u transform in the correctway for a vector, and our notation
is consistent.

For a tensor of higher rank, we just have to apply a rotation matrix for each index.
With the fourth-rank tensor Ci jkl , for example, we have

C ′
i jkl = Ria R jb Rkc RldCabcd . (9.64)

With this rule, we can see that all tensor expressions transform appropriately, so that
tensor equations are invariant under rotation of coordinates.

9.5 Transformation Under Inversion

So far we have only discussed how tensor components transform under rotation
of coordinates. We should also consider how they transform under inversion. This
transformation is especially important for cross products, as well as other tensor
expressions that include the Levi-Civita symbol. It can be explained in two different
ways, which will turn out to be equivalent:
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9.5.1 Right-Hand Rule Versus Left-Hand Rule

At the beginning of this chapter, I argued that the laws of physics cannot depend on
any arbitrary choices that I make. One arbitrary choice is units, and a second arbitrary
choice is coordinate system. A third arbitrary choice is the right-hand rule.Whenever
we construct a cross product, we use the right-hand rule. What is so special about
the right hand? Why not use the left-hand rule instead?

Earlier in this chapter, we saw that the cross product can be defined in terms
of the Levi-Civita symbol εi jk . The same arbitrary choice that goes into the cross
product also goes into εi jk . We picked a definition where εxyz = εyzx = εzxy = 1
and εxzy = εyxz = εzyx = −1. We could have made the opposite choice.

We can categorize tensor expressions based on whether they depend on this arbi-
trary choice of right-hand rule versus left-hand rule:

• If an expression does not involve εi jk , then it does not depend on this arbitrary
choice. Likewise, if an expression involves an even power of εi jk , then it does not
depend on this arbitrary choice. In this case, it is called a proper scalar, a proper
vector (also known as a polar vector), or a proper tensor.

• By contrast, if an expression involves εi jk to the first power, or to any odd power,
then it depends on this arbitrary choice. In this case, it is called a pseudoscalar,
pseudovector (also known as an axial vector), or a pseudotensor.

Here are some physical examples:

• The position vector r and linear momentum p are proper vectors. The angular
momentum L = r × p is a pseudovector, because it has one power of εi jk in the
cross product.

• The force F is a proper vector. The torque τ = r × F is a pseudovector.
• The electric and magnetic fields induced by a moving point charge are given by

E = q

4πε0

r̂
r2

,

B = μ0qv

4π
× r̂

r2
. (9.65)

The electric field is a proper vector, and the magnetic field is a pseudovector.
• If a point charge moves in electric and magnetic fields, it experiences a Lorentz
force

F = q(E + v × B). (9.66)

Both terms in this Lorentz force are proper vectors. (The second term is a proper
vector because it is the proper vector v crossed with the pseudovector B, and hence
it has two powers of εi jk .)
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9.5.2 Inversion of Coordinates

As an alternative way to think about vectors and pseudovectors, we will stick with
the right-hand rule and invert the coordinate system. Inverting the coordinate system
means changing x → −x , y → −y, and z → −z. Under this transformation, all
proper scalars remain unchanged. For a proper vector, all components change sign,
so that vi → −vi . For a proper tensor of rank 2, all components remain unchanged.
This is reasonable, because a proper second-rank tensor expresses the relationship
between two proper vectors, and the sign changes for those vector components will
cancel. In general, under a coordinate inversion, all components of even-rank tensors
remain unchanged, and all components of odd-rank tensors change sign.

What about a cross product, such as w = u × v? The components of a cross
product are defined by wx = uyvz − uzvy , and so forth. If the u components and
the v components all change sign, these sign changes will cancel, and hence the w
components will remain unchanged. Hence, under the inversion, the behavior of w
is the opposite of the behavior of a proper vector. This is an alternative way to see
that w is a pseudovector.

The same argument can be made for the Levi-Civita symbol itself. The cross
product components are defined in terms of the Levi-Civita components as wi =
εi jku jvk . If the w components remain unchanged under inversion, and the u and v

components both change sign, then the εi jk components must remain the same under
inversion. Although the components of a proper third-rank tensor change sign under
inversion, the components of the Levi-Civita symbol have the opposite behavior; they
remain unchanged. This is a way to see that the Levi-Civita symbol is pseudotensor.

All of the examples of proper vectors and pseudovectors from the previous subsec-
tion still apply here. Inverting the coordinate system is just another way to describe
the samemathematical behavior as switching from the right-hand rule to the left-hand
rule.

9.5.3 Reflection of Coordinates

You might ask: What if we do not change the sign for all three coordinates x , y, and
z, but only some of them?

First suppose we change the sign for two of the coordinates. For example, suppose
we change x → −x and y → −y, but keep z → +z. This change is just a rotation
through an angle of 180◦ about the z-axis. Indeed, if we take the rotation matrix of
Eq. (9.52) and substitute θ = 180◦, we obtain

R =
⎛

⎝
−1 0 0
0 −1 0
0 0 1

⎞

⎠ , (9.67)

which represents changing the signs of x and y, but not z.
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Now suppose we change the sign of just one coordinate. For example, suppose
we keep x → +x and y → +y, but change z → −z. This change is a reflection in
the xy plane. The important point is that this reflection is related to the inversion and
the θ = 180◦ rotation. We can write

inversion = (rotation of 180◦ about z) · (reflection in xy plane), (9.68)

or equivalently,

(reflection in xy plane) = (rotation of 180◦ about z) · inversion. (9.69)

Hence, the distinction between proper expressions and pseudo-expressions applies
to reflections as well as inversions.

9.6 Magnitudes, Directions, and Visualization

When we work with vectors, we have a choice: We can represent them by Cartesian
components, or we can represent them by their magnitudes and directions. These two
descriptions are equivalent to each other, and they have the same number of degrees
of freedom. In 3D, a vector clearly has three Cartesian components. Similarly, it
has one magnitude, and its direction is described by two angles (which might be θ
and φ in spherical coordinates, or the latitude and longitude on a globe). In general,
the description in terms of Cartesian components is more convenient for calcula-
tions, but the description in terms of magnitude and direction is more convenient for
visualization—it is easy to image a vector as an arrow with some length, pointing in
some direction.

You might ask: What about tensors? Do they have magnitudes and directions?
If so, can we use these magnitudes and directions to visualize tensors? The answer
is yes—tensors have magnitudes and directions, but we have to do a little work to
extract them! In this section, I will show how to extract themagnitudes and directions
for tensors of rank 2, and Iwill present amethod for visualizing them. (Generalization
to higher-rank tensors is a further challenge.)

Suppose we have a tensor T , with components Ti j in a Cartesian coordinate
system. This tensor has nine independent degrees of freedom. The first step is to
break it into symmetric and antisymmetric parts. Any arbitrary second-rank tensor
can be written as

Ti j = Si j + Ai j , (9.70)

where

Si j = Ti j + Tji

2
, Ai j = Ti j − Tji

2
. (9.71)
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Here, S is a symmetric tensor, meaning that Si j = S ji , and it has six degrees of
freedom. Likewise, A is an antisymmetric tensor, meaning that Ai j = −A ji , and
it has three degrees of freedom. We can now try to analyze the symmetric and
antisymmetric parts separately.

Antisymmetric part

Because of the antisymmetry, A can be related to a pseudovector P by

Pk = εi jk Ai j , Ai j = 1

2
εi jk Pk . (9.72)

Here, P is a pseudovector because it has one factor of εi jk , while A is a proper
second-rank tensor. As a pseudovector, P has three degrees of freedom, the same
as the antisymmetric tensor A, so we have correctly accounted for the degrees of
freedom. Physically, we would say that A represents a circulation about P , with a
handedness given by the right-hand rule. For example, A might represent a flow of
material,while P represents the angularmomentum.Alternatively, Amight represent
an electric current loop, while P represents the magnetic field.

Because P is a pseudovector, we know that it has one magnitude |P |, as well as
a direction given by two angles. We can say that the magnitude and direction of A
are represented by the magnitude and direction of P . Furthermore, we know how to
visualize P as an arrow in 3D. We can say that A is represented by the same arrow
in 3D, with the understanding that A is really a circulation around that arrow.

Symmetric part

Because Si j is a real symmetric matrix, we can diagonalize it to find the eigenvalues
(α, β, γ) and corresponding eigenvectors (â, b̂, ĉ). The eigenvectors are three unit
vectors, perpendicular to each other, which represent the principal axes of S. To
describe the orientations of these eigenvectors, we need three angles (two angles for
â, one angle for b̂ because it is perpendicular to â, and no angles for ĉ because it is
perpendicular to â and b̂). The eigenvalues are scalars that represent the magnitude
of the tensor associated with each eigenvector. Indeed, we can write the symmetric
tensor as

S = αââ + β b̂b̂ + γ ĉĉ, (9.73)

or equivalently

Si j = αai a j + βbi b j + γci c j . (9.74)

Hence, we can say that S has three magnitudes, and an orientation given by three
angles. This adds up to six, which is the correct number of degrees of freedom for S.
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Combining the symmetric and antisymmetric parts, the whole tensor T has four
magnitudes, and an orientation given by five angles, for a total of nine degrees of
freedom.

To visualize S, an ideal solution would be: Draw an ellipsoid in 3D with the
principal axes given by â, b̂, and ĉ, and with radii along these axes given by α, β, γ.
This almost works! There is just one problem: The eigenvalues of a real symmetric
matrix are guaranteed to be real, but they are not guaranteed to be positive. There is
a risk that some of the eigenvalues might be negative. In this case, we would face the
problem of how to draw an ellipsoid with a negative radius.

One possible solution to this problem is to add a positive offset ω to the
eigenvalues. The radii of the ellipsoid along its principal axes can then be (α + ω),
(β +ω), and (γ +ω). The question then is how to choose ω. If ω is too small, one of
the radii might be negative. If ω is too large, the ellipsoid will just look like a sphere.

My own personal proposal is to choose the offset ω so that the product of radii is

(α + ω)(β + ω)(γ + ω) = 1. (9.75)

The advantage of this choice is that the volume of the ellipsoid is fixed. At fixed
volume, the ellipsoid can be more or less eccentric, with extension along different
axes. The disadvantage of this choice is that it throws away information about the
average eigenvalue, i.e., the isotropic part of the tensor. Indeed, if we add an extra
isotropic part Si j → Si j + cδi j , then the offset changes by ω → ω − c, and hence
the ellipsoid remains exactly the same. Hence, with this offset, the visualization does
not really represent all six degrees of freedom in S, but only five degrees of freedom
for the anisotropic part of S. The isotropic part (the average eigenvalue) must be
reported separately.

Figure9.2 shows an example of a tensor visualized through this proposed method.
In this visualization, there are three separate sections: The isotropic part of the tensor
is represented by a sphere of unit radius, with an inscribed number specifying the
average eigenvalue.2 The anisotropic symmetric part of the tensor is represented by
an ellipsoid, with the appropriate principal axes and radii (with offset). The antisym-
metric part of the tensor is represented by the corresponding pseudovector, with the
understanding that it really means circulation around that arrow.

The interactive version of this figure allows you to enter your own tensor and see
the visualization. I strongly encourage you to try it!

Further Reading

Tensors are discussed in the same two textbooks listed at the end of Chap.5. A more
introductory treatment of tensors is in:

1. G.B. Arfken, H.J. Weber, F.E. Harris, Mathematical Methods for Physicists: A
Comprehensive Guide, 7th edn. (Elsevier, 2013)

2One might want the radius of the sphere to be the average eigenvalue, but the average eigenvalue
might be negative.

http://dx.doi.org/10.1007/978-3-319-21054-4_5
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Fig. 9.2 Proposed method for visualizing a tensor (with a total of nine degrees of free-
dom). The visualization has three parts: isotropic (one degree of freedom), anisotropic
symmetric (five degrees of freedom), and antisymmetric (three degrees of freedom)
(Interactive version at http://www.springer.com/cda/content/document/cda_downloaddocument/
Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420.)

A more advanced treatment is in:

2. M. Stone, P. Goldbart, Mathematics for Physics: A Guided Tour for Graduate
Students (Cambridge, 2009)

In particular, the latter book emphasizes the distinction between covariant and con-
travariant indices, which is essential in curvilinear coordinates but not in Cartesian
coordinates. A pre-publication version of that book is available from the author’s
website http://www.physics.gatech.edu/~pgoldbart6/PG_MS_MfP.htm.

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.physics.gatech.edu/~pgoldbart6/PG_MS_MfP.htm


Chapter 10
Liquid Crystals

Abstract Liquid crystals are phases with more order than liquids but less order than
crystals. This chapter presents a detailed discussion of the most common liquid-
crystal phase, the nematic phase, and then more briefly discusses the cholesteric and
other liquid-crystal phases. It begins by considering the orientational order of the
nematic phase and constructing the nematic order parameter, which is a tensor. It
goes on to discuss the physical mechanisms that control the magnitude and direction
of nematic order. For themagnitude, it presents the Landau-de Gennes,Maier-Saupe,
and Onsager theories of the isotropic-nematic transition. For the direction, it presents
the Frank free energy, and uses this free energy for calculations of surface anchoring
and nematic defects.

One fascinating part of the theory of soft matter is the study of liquid crystals—a
subject that brings together all of the physical and mathematical concepts developed
in previous chapters. This chapter provides an introduction to the theory of liquid
crystals. It mainly discusses the nematic phase, which is the most common liquid-
crystal phase, and then briefly considers cholesteric and other liquid-crystal phases
at the end.

10.1 Order and Symmetry

In Chap.8, we saw that there are two important differences between liquids and
crystals from the perspective of order and symmetry:

(1) In liquids, all positions are equivalent; an atom is equally likely to be in any
position.Bycontrast, crystals have certain special positions—the lattice sites—where
there is an enhanced probability of finding an atom. Liquids are uniform but crystals
are nonuniform. This distinction can be seen macroscopically as sharp peaks in the
X-ray diffraction from crystals, but not from liquids. For that reason, we say that
crystals have less symmetry than liquids; the perfect positional symmetry of a liquid
is broken in a crystal. Equivalently, we say that crystals have positional order—the
choice of the special positions is a type of order that occurs in crystals but not in
liquids.

© Springer International Publishing Switzerland 2016
J.V. Selinger, Introduction to the Theory of Soft Matter,
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Fig. 10.1 aMolecular structure of 4-cyano-4′-pentylbiphenyl (5CB). Fromhttp://en.wikipedia.org/
wiki/4-Cyano-4%27-pentylbiphenyl. b Coarse-grained representation of the molecular orientation
as an arrow

(2) In liquids, all directions are equivalent;we are equally likely tofind atoms along
any direction. By contrast, crystals have certain special directions—the crystalline
axes—where there is an enhanced probability of finding rows of atoms. Liquids are
isotropic but crystals are anisotropic. This distinction can be seen macroscopically
in, for example, the optical properties of crystals, which depend on the orientation.
For that reason, we say that crystals have less symmetry than liquids; the perfect
orientational symmetry of a liquid is broken in a crystal. Equivalently, we say that
crystals have orientational order—the choice of the special directions is another type
of order that occurs in crystals but not in liquids.

You might ask: Do these two types of order always go together? Is it ever possible
to have one type of order, but not the other?

The answer to this question is: It is possible to have orientational order without
positional order. There is a class of phases, called liquid crystals or liquid-crystal
phases or mesophases, which are intermediate between liquids and crystals in the
sense that they have partial order. Some of these phases have orientational order but
no positional order. Other phases have orientational order as well as positional order
in one or two directions, but not in all three dimensions. The field of liquid crystals
has become an important part of modern science and technology, and it is the topic
of this chapter.1

How is it possible to have a phase with orientational order but not positional
order? The basic concept is that the phase is composed of molecules that are not
spheres. Rather, the molecules are long and narrow, with some rigidity. In that case,
the positions of the molecular centers of mass can be random, but the molecules can
still tend to align with their neighbors. They can then form a phase with long-range
order in the orientation of molecular alignment.

As an example, Fig. 10.1a shows a molecule of 4-cyano-4′-pentylbiphenyl, com-
monly called 5CB, which is one of the most widely used compounds that form a
liquid-crystal phase. It has a central core with two benzene rings, which is fairly
rigid, connected to a more flexible hydrocarbon chain. On a coarse-grained basis,
we can neglect the detailed molecular structure and represent the entire molecule by

1By comparison, it is not possible to have positional order without at least some orientational order.
Positional order necessarily requires some crystalline axes, which select certain directions in space.
However, in the field of molecular crystals, there can be transitions among phases with different
types of orientational order. This is a more specialized topic than liquid crystals, and I will not
discuss it further in this book.

http://en.wikipedia.org/wiki/4-Cyano-4%27-pentylbiphenyl
http://en.wikipedia.org/wiki/4-Cyano-4%27-pentylbiphenyl
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an arrow, as shown in Fig. 10.1b. We can then ask: When we have a sample of many
such molecules, what is the statistical distribution of molecular (arrow) orientations?

Figure10.2a shows a schematic illustration of the distribution of orientations in
an ordinary liquid. We can see that the arrows are equally likely to point in any
direction in 3D space. Hence, this ordinary liquid is called the isotropic phase of
these molecules.

In a liquid-crystal phase, you might guess that the distribution would have the
form shown in Fig. 10.2b. However, this guess is generally not correct! Fig. 10.2b
shows a phase in which the molecules are aligned in some direction, which is +ẑ in
this example. Clearly, there are fluctuations in the orientation, but + ẑ is the average.
If such a phase existed, it would be called a polar phase. It would have the same type
of order as a ferromagnet (similar to the Ising model discussed in Chap. 2, but with
magnetic order that can align at any direction in 3D, not just up or down). However,
this is not the liquid-crystal phase that normally forms in experiments!

Fig. 10.2 Schematic illustrations of the distributions of molecular orientations. a Isotropic phase.
b Polar phase. c Nematic phase

http://dx.doi.org/10.1007/978-3-319-21054-4_2
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Instead, the most common liquid-crystal phase is the nematic phase, shown
schematically in Fig. 10.2c. In the nematic phase, the molecules are aligned along
some axis, which is ±ẑ in this example. They are equally likely to point up or down
along the axis. Again, there are fluctuations in the orientation, but the ±ẑ axis is the
average.

Among these three phases, the isotropic phase has themost symmetry (least order),
because all directions are equivalent. The nematic phase has less symmetry (more
order), because it has selected a special axis, ±ẑ in this example. The polar phase
has the least symmetry (the most order), because it has selected a special direction
along that axis, +ẑ in this example.

The next task will be to define a mathematical approach to distinguish among the
isotropic, nematic, and polar phases. We will do that by defining order parameters in
the next section.

10.2 Nematic Order Parameter

When we discussed crystals in Chap.8, we defined crystalline order parameters,
which represent the magnitude and direction of the positional symmetry breaking. At
that point, we did not need an orientational order parameter, because the crystalline
wavevectors already contain information about the orientations of the crystalline
axes. However, when we discuss liquid crystals, we need to describe orientational
order without positional order. Hence, we now need to construct a orientational order
parameter for the nematic liquid-crystal phase.

To construct an orientational order parameter, we must calculate an average over
the orientations of all the molecules in an ensemble, as shown in Fig. 10.2a, b, or c.
Hence, we represent the orientation of each molecule as a unit vector �̂. This unit
vector has components �α, with α = x , y, or z.

As a first try, we might construct an orientational order parameter by averaging
all the unit vectors in the ensemble, which gives

M = 〈�̂〉, (10.1)

or equivalently in terms of components

Mα = 〈�α〉. (10.2)

This order parameter is quite analogous to the Ising order parameter ofChap.2, except
that it is a vector that can point in any direction in 3D space, not just up or down. In
the isotropic phase of Fig. 10.2a, M averages to zero. In the polar phase of Fig. 10.2b,
M has some nonzero average. What about the nematic phase of Fig. 10.2c? Because
the molecules are equally likely to point up or down along the main axis, M averages
to zero in the nematic phase, just as in the isotropic phase. For this reason, the order
parameter M can describe the orientational ordering in the polar phase, but it cannot

http://dx.doi.org/10.1007/978-3-319-21054-4_8
http://dx.doi.org/10.1007/978-3-319-21054-4_2
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describe the orientational ordering in the nematic phase. The nematic phase clearly
has some orientational order, but that order is not expressed in M. Hence, we will
call M the polar order parameter, and we will have to keep looking for a nematic
order parameter.

The problem with using M to describe the nematic phase is that it is odd in the
molecular orientation vectors, so that the contributions from molecules pointing up
or down cancel each other. Clearly, we need a quantity that is even in the molecular
orientation vectors. How about the average dot product 〈�̂ · �̂〉? No, that will not work
because it is always 1, no matter what phase the system is in. How about the average
cross product 〈�̂× �̂〉? No, that will not work either because it is always 0. How about
the average tensor product (or dyad)? This seems more promising. Let us tentatively
define the tensor order parameter

T = 〈�̂ ⊗ �̂〉 = 〈�̂�̂〉, (10.3)

or equivalently in terms of components

Tαβ = 〈�α�β〉. (10.4)

Can this tensor distinguish between the isotropic and nematic phases?
To answer this question, we first evaluate the tensor in the isotropic phase. The

diagonal components are Txx = 〈�2x 〉, Tyy = 〈�2y〉, and Tzz = 〈�2z 〉. These three
components must be equal to each other because the phase is isotropic. Furthermore,
these three components must add up to 1 because �̂ is a unit vector. Hence, each
diagonal component must be 1

3 . The off-diagonal components are Txy = Tyx =
〈�x�y〉, Txz = Tzx = 〈�x�z〉, and Tyz = Tzy = 〈�y�z〉. Because the phase is isotropic,
the three components �x , �y , and �z are equally likely to be positive or negative, and
they fluctuate independently of each other. Hence, the off-diagonal components all
average to 0. Putting these results together, the tensor becomes

Tαβ =
⎛

⎝
1
3 0 0
0 1

3 0
0 0 1

3

⎞

⎠ = 1

3
δαβ (10.5)

in the isotropic phase.
Next, let us evaluate the tensor in a state with perfect nematic order along the

z-axis. In this state, all of the molecules have the orientation �̂ = ±ẑ. As a result, the
component Tzz = 1 and all other components are zero. Hence, the tensor becomes

Tαβ =
⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ . (10.6)

The results of Eqs. (10.5) and (10.6) show that the tensor Tαβ can distinguish
between the isotropic and nematic phases. However, they inspire us to make two
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small modifications in the order parameter. First, Eq. (10.5) shows that the isotropic
average of Tαβ is nonzero. It is more convenient to have an order parameter that is
zero in the disordered phase. We can achieve that by subtracting off the isotropic
average, to obtain T ′

αβ = Tαβ − 1
3δαβ . Hence, T ′

αβ = 0 in the isotropic phase, and

T ′
αβ =

⎛

⎝
− 1

3 0 0
0 − 1

3 0
0 0 2

3

⎞

⎠ (10.7)

in the state with perfect nematic order along the z-axis. Second, Eq. (10.7) looks
peculiar; it appears as if the perfect nematic state has only 2

3 order. Just to make it
look better, we will multiply this tensor by a factor of 3

2 . Hence, our final definition
of the tensor order parameter for the nematic phase is Qαβ = 3

2T ′
αβ , or

Qαβ =
〈
3

2
�α�β − 1

2
δαβ

〉
. (10.8)

We see that Qαβ = 0 in the isotropic phase, and

Qαβ =
⎛

⎝
− 1

2 0 0
0 − 1

2 0
0 0 1

⎞

⎠ (10.9)

in the state with perfect nematic order along the z-axis.
With this definition, we can see that the Qαβ tensor has two important mathe-

matical properties. First, it is symmetric, meaning that Qαβ = Qβα. Second, it is
traceless, meaning that Tr( Q) = Qαα = 0.

Now let us consider a state with only partial nematic order along the z-
axis, as shown in the schematic illustration of Fig. 10.2c. Here, each molecule
has its own unit vector �̂, which we can write in spherical coordinates as �̂ =
(sin θ cosφ, sin θ sin φ, cos θ). The angle θ is the angle away from the z-axis, and it
may be clustered around 0 and π. The angle φ is the azimuthal angle in the xy-plane,
and it must be uniformly distributed between 0 and 2π. Hence, the azimuthal aver-
ages are 〈cosφ〉 = 〈sin φ〉 = 〈cos 2φ〉 = 〈sin 2φ〉 = 0 and 〈cos2 φ〉 = 〈sin2 φ〉 = 1

2 ,
independent of θ. Hence, the nematic order tensor has the component

Qzz =
〈
3

2
cos2 θ − 1

2

〉
= 〈P2(cos θ)〉, (10.10)

where P2(u) = 3
2u2 − 1

2 is the second Legendre polynomial, one of the special
functions of mathematical physics, which you may have studied in classes on elec-
trostatics or quantum mechanics. The average 〈P2(cos θ)〉 is called the scalar order
parameter S of the nematic phase,
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S = 〈P2(cos θ)〉 =
〈
3

2
cos2 θ − 1

2

〉
. (10.11)

We will discuss the physical significance of S below. The other components of the
nematic order tensor are

Qxx =
〈
3

2
sin2 θ cos2 φ − 1

2

〉
=

〈
3

4
sin2 θ − 1

2

〉
= − S

2
,

Qyy =
〈
3

2
sin2 θ sin2 φ − 1

2

〉
=

〈
3

4
sin2 θ − 1

2

〉
= − S

2
,

Qxz = Qzx =
〈
3

2
cos θ sin θ cosφ

〉
= 0,

Qyz = Qzy =
〈
3

2
cos θ sin θ sin φ

〉
= 0,

Qxy = Qyx =
〈
3

2
sin2 θ cosφ sin φ

〉
=

〈
3

4
sin2 θ sin 2φ

〉
= 0. (10.12)

Putting these components together, the tensor representing partial nematic order
along the z-axis is

Qαβ =
⎛

⎝
− S

2 0 0
0 − S

2 0
0 0 S

⎞

⎠ . (10.13)

What if the nematic order is along the x-axis instead of the z-axis? In this case,
the matrix component S must be in the xx position instead of the zz position, giving

Qαβ =
⎛

⎝
S 0 0
0 − S

2 0
0 0 − S

2

⎞

⎠ . (10.14)

In this case, S is the average 〈P2(cos θ)〉, where θ is the angle away from the x-axis.
Similarly, if the nematic order is along the y-axis, then the order tensor must be

Qαβ =
⎛

⎝
− S

2 0 0
0 S 0
0 0 − S

2

⎞

⎠ , (10.15)

where S = 〈P2(cos θ)〉 and θ is the angle away from the y-axis.
What if the nematic order is along some arbitrary axis n̂, which is not x̂, ŷ, or ẑ?

To answer this question, let us return to Eq. (10.13) for partial order along ẑ. In this
case, the order tensor can be rewritten as
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Qαβ =S

⎡

⎣3

2

⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ − 1

2

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

⎤

⎦

=S

[
3

2
zαzβ − 1

2
δαβ

]
, (10.16)

where zα = (0, 0, 1) are the components of ẑ. Hence, if the nematic order is along
an arbitrary axis n̂, the order tensor becomes

Qαβ = S

[
3

2
nαnβ − 1

2
δαβ

]
, (10.17)

where S = 〈P2(cos θ)〉 and θ is the angle away from n̂.
Equation (10.17) is very important because it leads us to a physical interpretation

of the tensor order parameter:

• The first factor of S, called the scalar order parameter, describes the magnitude
of nematic order. It shows how well the molecules are aligned with each other. If
S = 0, there is no alignment, and the system is in an isotropic phase. If S = 1,
there is complete alignment, and the system is in a perfect nematic state. In general,
for typical nematic liquid crystals, S is between 0 and 1, and the system has some
partial nematic order.2 This quantity is analogous to themagnitude |M | in the Ising
model, which shows how well the Ising spins are aligned with each other.

• The second factor of [ 32nαnβ − 1
2δαβ] describes the direction of nematic order.

The direction is encoded in this tensor in a complicated way, but it is in there! The
vector n̂, with components nα, is called the nematic director. It is a unit vector that
represents themain axis of nematic order. It is analogous to the positive or negative
sign of the Ising order parameter, which represents whether the net magnetic order
is in the up or down direction.

You should notice that n̂ is always a unit vector, no matter whether the nematic
order is strong or weak. The magnitude of nematic order is not described by n̂ but
by S. You should also notice that the order tensor Qαβ is even in n̂. As a result,
+n̂ and −n̂ represent the same physical state; they are completely equivalent to
each other.

You might occasionally hear people say that “n̂ is the average orientation of the
molecules.” This is a very loose statement; people only say it because it is easy.
You should not take it literally! When people say that, they really mean what I am
saying here: n̂ is a unit vector representing the main axis of nematic order. (They
really mean this statement even if they do not know that they mean it.)

2In principle, we should consider one more possibility: Because S is defined as 〈P2(cos θ)〉 =
〈 32 cos2 θ − 1

2 〉, it can theoretically be in the range − 1
2 ≤ S ≤ 1. If S = 0, the system is in an

isotropic state. If 0 < S ≤ 1, the system is in a typical nematic state, with the molecular orientations
attracted toward the axis n̂. If − 1

2 ≤ S < 0, the system is in a peculiar negative nematic state, with
the molecular orientations repelled away from the axis n̂. This negative nematic state is a theoretical
possibility, but it does not normally occur in experiments.
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Apart from themathematical significance, Eq. (10.17) provides a niceway to think
about liquid-crystal science:

• Part of liquid-crystal science involves controlling the magnitude of order. This
magnitude is mainly controlled by temperature in a pure liquid crystal, or by
concentration in a colloidal suspension. In this chapter, it will be the subject of
Sects. 10.3–10.5. In general, I would estimate that it is about 10% of liquid-crystal
science.

• The rest of liquid-crystal science involves controlling the direction of order. This
direction is controlled by electric and magnetic fields, surface anchoring, shear
flow, and everything else that one might do to a liquid crystal in the laboratory. In
this chapter, it will be the subject of Sects. 10.6–10.9. In general, I would estimate
that it is about 90% of liquid-crystal science.

If we know the tensor components Qαβ , how can we determine S and n̂? This
question brings us back to Sect. 9.6 about magnitudes and directions of tensors. Like
any symmetric tensor, Qαβ has magnitudes given by its eigenvalues, and directions
given by its eigenvectors. Hence, we should diagonalize Qαβ to find the eigenvalues
and eigenvectors. The three eigenvalues are S, −S/2, and −S/2. (Because Qαβ is
traceless, these three eigenvalues add up to zero.) The eigenvalue S is associated
with the eigenvector n̂. The eigenvalue −S/2 is associated with any eigenvector
perpendicular to n̂. (Because there are two degenerate eigenvalues of −S/2, there is
a freedom to rotate the eigenvectors in the plane perpendicular to n̂.)

Problem: Show explicitly that Q · n̂ = Sn̂. This equation proves that n̂ is an
eigenvector of Q associated with eigenvalue S.

Solution: Equation (10.17) gives

( Q · n̂)α = Qαβnβ = S

[
3

2
nαnβ − 1

2
δαβ

]
nβ = S

[
3

2
nαnβnβ − 1

2
δαβnβ

]

= S

[
3

2
nα − 1

2
nα

]
= Snα. (10.18)

Problem: Assuming that ĉ is perpendicular to n̂, show explicitly that Q · ĉ =
−(S/2)ĉ. This equation proves that ĉ is an eigenvector of Qαβ associated with
eigenvalue −S/2.

Solution: Again using Eq. (10.17),

( Q · ĉ)α = Qαβcβ = S

[
3

2
nαnβ − 1

2
δαβ

]
cβ = S

[
3

2
nαnβcβ − 1

2
δαβcβ

]

= S

[
0 − 1

2
cα

]
= −

(
S

2

)
cα. (10.19)

http://dx.doi.org/10.1007/978-3-319-21054-4_9
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As a final point in this section, let us count the degrees of freedom associated with
the tensor order parameter. In 3D, an arbitrary second-rank tensor has nine degrees
of freedom. Because Qαβ is symmetric, three degrees of freedom are eliminated.
Because Qαβ is traceless, one more is eliminated. Hence, the nematic order tensor
has five degrees of freedom.

Of these five degrees of freedom, one is associated with the scalar order parameter
S. Twomore are associatedwith the director n̂—for example, they could be the angles
θ and φ for this unit vector. Hence, we understand three degrees of freedom.

What are the other two degrees of freedom?Well, the tensor Qαβ is more general
than the nematic phase that we have discussed. We have discussed the usual type of
nematic phase, which is uniaxial, meaning that it has only one special axis n̂. All
of the directions perpendicular to n̂ are equivalent to each other, i.e., there is perfect
rotational symmetry about n̂. By comparison, an alternative theoretical possibility
would be a biaxial nematic phase, inwhich the rotational symmetry about n̂ is broken.
In this case, the phase would have three special axes, all perpendicular to each other.
Each of these axes would be associated with a distinct eigenvalue of Qαβ . Because
the tensor is still traceless, these eigenvalues would have to add up to zero, and hence
they could be written as S, −(S + P)/2, and −(S − P)/2. Here, P can be regarded
as a biaxial order parameter. The biaxial nematic phase would have one degree of
freedom associated with P , and one more degree of freedom associated with the
orientation of biaxial order in the plane perpendicular to n̂. This accounts for the
extra two degrees of freedom. Although the biaxial nematic phase is a theoretical
possibility, there is still some controversy about whether it occurs in experiments;
this is an active area of research.

10.3 Landau-de Gennes Theory

As noted above, one important part of liquid-crystal science is to understand what
determines the magnitude S of nematic order. In particular, we want to understand
whether S is zero (in the isotropic phase) or nonzero (in the nematic phase). In other
words, we want to develop a model of the isotropic-nematic transition.

You will recognize that this problem is quite analogous to the Ising model, where
determined the magnitude |M | of magnetic order, and we developed a model for
the transition from |M | = 0 to |M | �= 0. Hence, we can use the Ising model as an
example to help us understand the isotropic-nematic transition.

When we discussed the Ising model, we used two types of theoretical approaches.
In Chap.2, we began with a microscopic model of interacting spins, and used mean-
field theory to calculate the statistical ordering of the spins. By comparison, in
Chap.4, we used the purely macroscopic approach of Landau theory to construct
the free energy in terms of the Ising order parameter, and minimized this free energy.
Each of these approaches has its own advantages and disadvantages. Themicroscopic
theory makes very specific predictions, but it applies only to one particular model.

http://dx.doi.org/10.1007/978-3-319-21054-4_2
http://dx.doi.org/10.1007/978-3-319-21054-4_4
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The macroscopic theory makes some predictions for a broad class of problems, but
it does not make very specific predictions for any of them.

Both of these theoretical approaches can be applied to the isotropic-nematic tran-
sition. There are two well-known microscopic theories, Maier-Saupe theory and
Onsager theory,whichwewill discuss in the following sections.However,wewill be-
gin with the macroscopic approach of Landau theory. When applied to the isotropic-
nematic transition, this theoretical approach is often called Landau-deGennes theory,
after the great French physicist Pierre-Gilles de Gennes, who developed so much of
modern liquid-crystal science.

As you recall from Chap.4, the basic concept of Landau theory is to construct the
free energy as a function of the order parameter, in the most general possible way
that is permitted by symmetry. The free energy is always a scalar, meaning that it is
invariant under rotation. For the isotropic-nematic transition, the order parameter is
the second-rank tensor Qαβ . Hence, we must find ways to construct a scalar out of a
second-rank tensor. In this construction, we make two important assumptions. First,
we assume the free energy is a smooth (analytic) function of the order parameter;
we want to see how a smooth input to the theory leads to a phase transition, i.e., a
non-smooth output from the theory. Because the free energy is a smooth function, it
can be represented as a power series in the order parameter. Second, we assume that
the order parameter is small, so that the power series only needs a small number of
terms.

What terms can go into our power series for the free energy? At zeroth order in
Qαβ , there can be a constant term, which we can just call F0. At first order, the only
way to make a scalar out of a second-rank tensor is to take the trace Qαα. However,
we defined the order parameter in the previous section so that it is traceless, Qαα = 0.
Hence, there can be no first-order term in the power series. (An exception is if there
is some symmetry-breaking field in the problem, as discussed below.) At second
order, we can make a scalar out of two powers of the tensor as Qαβ Qαβ , implicitly
summed over α and β. At third order, we can make a scalar out of three powers of
the tensor as Qαβ Qβγ Qγα. At fourth order, we can make a scalar out of four powers
of the tensor as (Qαβ Qαβ)2 or as Qαβ Qβγ Qγδ Qδα. Putting these terms together,
we can write the free energy density (per unit volume) as the power series

f = F

V
= f0 + 1

2
AQαβ Qαβ + 1

3
B Qαβ Qβγ Qγα + 1

3
C1(Qαβ Qαβ)2

+ 1

3
C2Qαβ Qβγ Qγδ Qδα + · · · , (10.20)

where all the coefficients are arbitrary.
Now let us re-express the free energy in terms of the magnitude S and director n̂

of nematic order. Using Eq. (10.17), we obtain

http://dx.doi.org/10.1007/978-3-319-21054-4_4
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Qαβ Qαβ = S

[
3

2
nαnβ − 1

2
δαβ

]
S

[
3

2
nαnβ − 1

2
δαβ

]

= S2
[
9

4
nαnβnαnβ − 2

3

4
nαnβδαβ + 1

4
δαβδαβ

]
(10.21)

= S2
[
9

4
nαnαnβnβ − 3

2
nαnα + 1

4
δαα

]
= S2

[
9

4
− 3

2
+ 3

4

]
= 3

2
S2.

Similarly,

Qαβ Qβγ Qγα = 3

4
S3,

(Qαβ Qαβ)2 = 9

4
S4, (10.22)

Qαβ Qβγ Qγδ Qδα = 9

8
S4.

Hence, the power series becomes

f = f0 + 1

2
aS2 + 1

3
bS3 + 1

4
cS4 + · · · , (10.23)

where a = 3
2 A, b = 3

4 B, and c = 9
4C1 + 9

8C2.
How does the free energy depend on the director n̂? It does not! Because there is

no symmetry-breaking field applied to the system, the nematic order is equally likely
to form in any direction. The system will randomly select an orientation for nematic
order. This is an example of spontaneous symmetry breaking.

The Landau-de Gennes free energy is expressed in terms of the unknown co-
efficients a, b, and c. We suppose that these coefficients are all smooth functions
of temperature, and consider what happens to the shape of the free energy plot as
these coefficients change. This behavior depends on whether b and c are positive or
negative. If we are going to truncate the series at fourth order in S, we must have
c > 0. (If c were negative, then the free energy would go to −∞ as S became large,
and hence the system would be unstable.) We do not know in advance whether b is
positive or negative. For now, let us assume that b < 0, which will turn out to be the
normal physical case. (We will discuss b > 0 briefly below.)

Figure10.3 shows a series of plots of the free energy as the parameter a decreases,
presumably because of decreasing temperature, for fixed negative b and positive c.
At high temperature, for large positive a, the free energy has the form in Fig. 10.3a.
Here, the free energy has only one minimum, which is at S = 0, corresponding to
the isotropic phase. As the temperature decreases and a decreases, the free energy
changes to the form shown in Fig. 10.3b. Now it has two minima: the stable isotropic
minimum at S = 0 and a metastable nematic minimum at S > 0. As a continues
to decrease, the nematic minimum becomes deeper. At a certain value of a, shown
in Fig. 10.3c, the isotropic and nematic minima become equally deep. At this point,
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(a) (b)

(d)(c)

Fig. 10.3 Plots of the Landau-de Gennes free energy density f as a function of the nematic
order parameter S. The parameters b and c are held fixed, with b < 0 and c > 0, and the pa-
rameter a is varied. a Far above the isotropic-nematic transition. b Slightly above the isotropic-
nematic transition. cAt the the isotropic-nematic transition.dBelow the isotropic-nematic transition
(Interactive version at http://www.springer.com/cda/content/document/cda_downloaddocument/
Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420.)

we see a first-order transition from the isotropic phase to the nematic phase. Below
that transition, the free energy takes the form shown in Fig. 10.3d. It has a stable
minimum in the nematic phase (S > 0), and a metastable minimum in the isotropic
phase (S = 0).

To find the nematic order parameter that minimizes the free energy, we solve the
equation

∂ f

∂S
= 0. (10.24)

The solutions are

S = 0 or S = −b ± √
b2 − 4ac

2c
. (10.25)

There are either one or three real solutions, depending on whether the quantity
inside the square root is negative or positive. Figure10.3a shows a case with one real
solution at S = 0. Figure10.3b–d shows cases with three real solutions: the isotropic
minimum at S = 0, the maximum between the isotropic and nematic states (solution
with the negative square root), and the nematic minimum (solution with the positive
square root).

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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To determine which minimum is lowest, we evaluate the free energy at each
minimum and compare them. This calculation shows that the first-order isotropic-
nematic transition occurs at

aI N = 2b2

9c
, (10.26)

and the order parameter on the nematic side of the transition is

S = −2b

3c
. (10.27)

This calculation shows the value of a at the transition. Of course, it would be
much more useful to know the temperature at the transition. In Landau theory, as
discussed in Chap. 4, people normally assume that a varies linearly with temperature,
and express it as

a = a′(T − T0). (10.28)

Hence, Eq. (10.26) for the isotropic-nematic transition becomes

TI N = T0 + 2b2

9a′c
. (10.29)

You should notice that the first-order transition occurs at a temperature where a has
a certain positive value, unlike the second-order transitions discussed in Chap.4,
which occur at a temperature where a = 0.

Figure10.4 shows a plot of the prediction for the order parameter as a function
of temperature. For T > TI N , the system is in the isotropic phase with S = 0.
At T = TI N , the order parameter jumps discontinuously from 0 to −2b/3c. As T
continues to decrease belowTI N , the order parameter continues to increase, following
Eq. (10.25) (solution with the positive square root). This is the general trend observed
in experiments on the isotropic-nematic transition.

Fig. 10.4 Prediction of
Landau-de Gennes theory for
the nematic order parameter
S as a function of
temperature T , showing the
first-order isotropic-nematic
transition

T0
2 b2

9 a' c

T

2 b
3 c

S

http://dx.doi.org/10.1007/978-3-319-21054-4_4
http://dx.doi.org/10.1007/978-3-319-21054-4_4
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So far, the calculation has assumed that the coefficient b is negative. By compari-
son, if b is positive, then the behavior will be very similar but the nematic minimum
will occur for S < 0. This is the negative nematic state mentioned briefly in the
previous section. It is a theoretical possibility but it generally does not occur in
experiments, and hence we will not consider it further.

To summarize the theory so far, we have learned two important points. First,
the isotropic-nematic transition is a first-order transition, with a discontinuity in the
nematic order parameter. Second, the order parameter has the general temperature
dependence shown in Fig. 10.4. Those are significant accomplishments for a theory
based only on general assumptions about symmetry and smooth functions! However,
the theory has some limitations. One limitation is that the predictions are expressed
in terms of the arbitrary parameters a, b, and c, and we do not actually know these
parameters. Another limitation is that this prediction for S does not reach amaximum
at 1; rather, it continues increasing without limit as the temperature decreases. This
part of the prediction is unphysical; the physical order parameter cannot be any larger
than 1.As discussed inChap.4, this problemarises becauseLandau-deGennes theory
is a power series about the disordered phase, and hence is not aware of the maximum
possible degree of order. In order to go beyond these limitations, we will need to go
to a more microscopic theory, as discussed in the following two sections.

Before going on, let us consider one more point that we can learn from Landau-de
Gennes theory. Suppose that we apply a symmetry-breaking field to the material. To
be specific, let us consider an magnetic field H , although it might also be an electric
field. In this case, the magnetic field will couple to the nematic order tensor Qαβ ,
leading to additional terms in the free energy density. The most important new term
is the first-order term

Ecoupling = −�χmax

3μ0
Hα Hβ Qαβ . (10.30)

Here, the coefficient �χmax is the maximum diamagnetic anisotropy of the fully
aligned (S = 1) liquid crystal. (We will discuss the diamagnetic anisotropy further
in Sect. 10.7.) This term is a scalar, which is constructed from a combination of the
magnetic field and the order tensor, summed over α and β. If we express Qαβ in
terms of S and n̂, this term reduces to

Ecoupling = −�χmax

3μ0
S

[
3

2
(H · n̂)2 − 1

2
|H|2

]
. (10.31)

Unlike the other free energy terms discussed in this section, this term depends on n̂
as well as S. Let us assume that �χmax and S are both positive, so this term favors
alignment of n̂ with H . (This is the case of positive diamagnetic anisotropy; the
opposite case is also possible.) If n̂ is aligned with H , the coupling term reduces to

Ecoupling = −�χmax

3μ0
|H|2S. (10.32)

http://dx.doi.org/10.1007/978-3-319-21054-4_4
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Hence, the full free energy density becomes

f = f0 − �χmax

3μ0
|H|2S + 1

2
aS2 + 1

3
bS3 + 1

4
cS4 + · · · . (10.33)

Minimizing the free energy over S gives

∂ f

∂S
= −�χmax

3μ0
|H|2 + aS + bS2 + cS3 = 0. (10.34)

In general, this equation is difficult to solve. However, it simplifies greatly in the
limit of low field and high temperature (large positive a). In this case, we expect the
order parameter S to be very small. In this case, we can neglect the b and c terms in
the free energy series, and consider only the �χmax and a terms. The minimum then
occurs at

S = �χmax|H|2
3μ0a

= �χmax|H|2
3μ0a′(T − T0)

. (10.35)

This equation shows us that a magnetic field induces a small amount of nematic
order for T > TI N . This induced order is called the Cotton–Mouton effect. The in-
duced order is proportional to |H|2, not proportional to H ; this quadratic dependence
is a consequence of nematic order being a second-rank tensor. The induced order
also depends on temperature; it is small at high T , and it increases as T approaches
TI N . Similar order is also induced by an electric field, in which case it is called the
Kerr effect.

You will notice that field-induced order in the isotropic phase of liquid crystals
is analogous to field-induced order in the paramagnetic phase of the Ising model.
Based on this analogy, people sometimes refer to the isotropic phase under a field as
a paranematic phase. This term is useful because the phase is not exactly isotropic;
the field is breaking the rotational symmetry.

What happens if the field becomes larger and the temperature becomes lower, so
that we cannot use the approximation of Eq. (10.35)? In this case, we can minimize
the free energy of Eq. (10.33) numerically. Figure10.5 shows a plot of the numerical
solution for S as a function of T , for several values of the magnetic field (increasing
from left to right). For zero field, we see the first-order transition from isotropic to
nematic. When a small field is applied, it induces a small amount of order in the
isotropic phase (which is now paranematic), and it slightly increases the order in the
nematic phase. The system now has a first-order transition from the slightly ordered
paranematic phase to the highly ordered nematic phase. The transition temperature
is slightly higher than TI N , and the discontinuity in the order parameter is slightly
smaller than the original isotropic-nematic discontinuity. As the field increases, the
transition temperature becomes even higher, and the discontinuity at the transition
becomes even smaller.When the applied field becomes big enough, the discontinuity
at the transition goes to zero. Instead of a discontinuity, there is just a point of infinite
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Fig. 10.5 Prediction of
Landau-de Gennes theory for
the nematic order parameter
S as a function of
temperature T , for several
values of the magnetic field
(increasing from left to
right), showing the
field-induced order and
critical point

slope on the plot. This is a critical point! Beyond this critical point, the distinction
between paranematic and nematic vanishes, and there is only a single supercritical
state.

We can see that the nematic-paranematic critical point is analogous to the liquid-
gas critical point studied in Chap. 3. These critical points occur for the same funda-
mental reason: The distinction between the liquid and gas phases, or between the
nematic and paranematic phases, is not a symmetry difference. Rather, it is just a
quantitative distinction in the magnitude of an order parameter (density for liquid
and gas, S for nematic and paranematic). When there is a first-order transition with
a quantitative discontinuity in some order parameter, this quantitative discontinuity
can become larger or smaller, depending on applied fields that couple to the order
parameter. In particular, the discontinuity can be driven to zero, leading to a critical
point.

It is remarkable that Landau-de Gennes theory can provide this information about
field-induced order and the field-induced critical point, based only on macroscopic
considerations. However, we still might want to determine how the isotropic-nematic
transition is related to microscopic interactions. For this, we will need to move on to
a different type of theory, in the following two sections.

10.4 Maier-Saupe Theory

Maier-Saupe theory is a microscopic model that begins with an assumption about
interactions betweenmolecules, and then uses themean-field approximation to calcu-
late the energy, entropy, and free energy. Byminimizing the free energy, it determines
the isotropic-nematic transition temperature, as well as the order parameter in the ne-
matic phase. In this respect, it is analogous to mean-field theory for the Ising model,
which we discussed in Chap.2.

Before beginning this calculation, wemust deal with one annoying bit of notation.
Everyone uses the letter S to represent the entropy, and everyone also uses the letter

http://dx.doi.org/10.1007/978-3-319-21054-4_3
http://dx.doi.org/10.1007/978-3-319-21054-4_2
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S to represent the nematic order parameter. In this section, we will need to discuss
both of these quantities, and I do not want you to get confused between them! For
this reason, I will use Sentropy to represent the entropy, and just S to represent the
nematic order parameter.

Now let us begin with an assumption about the interactions between molecules.
Suppose that a system contains N molecules, and each molecule interacts with q
neighboring molecules. Hence, the system contains 1

2 Nq interacting pairs of mole-
cules. For each pair, the interaction potential depends on the relative orientation of
the two molecules in the pair. Suppose one molecule in the pair has the orientation
�̂, and the other has the orientation m̂. In this case, the relative orientation angle γ is
given by cos γ = �̂ · m̂. Maier-Saupe theory assumes that the interaction potential is

Vint = −J P2(cos γ) = −J

[
3

2
cos2 γ − 1

2

]
= −J

[
3

2

(
�̂ · m̂

)2 − 1

2

]
, (10.36)

where J is some positive constant. You should notice that this potential is minimum
when either �̂ = m̂ or �̂ = −m̂; it is maximum when �̂ and m̂ are perpendicular to
each other. Hence, it favors nematic alignment of molecules along the same axis.

There are twoways to justify this assumption about the interaction potential. First,
one can do a quantum-mechanical calculation of the interaction between a fluctuating
electric dipole on one molecule and the induced dipole on the other molecule. This
calculation gives an orientation-dependent interaction potential of the Maier-Saupe
form. (It is an anisotropic version of the van der Waals interaction, which you may
have seen in classes on colloid science.) Alternatively, one can say that there is some
arbitrary orientation-dependent interaction between the molecules, and expand it as
a series of spherical harmonics. The Maier-Saupe form is the leading term in this
series. In either case, let us assume that this interaction is correct and proceed with
the calculation.

It is impossible to work out the exact statistical mechanics of many molecules
interacting through the Maier-Saupe potential. However, we can use mean-field the-
ory to obtain an approximation to the free energy, as we did for the Ising model. In
mean-field theory, we need to determine the energy and the entropy. The expectation
value of the energy is the number of interacting pairs times the expectation value of
the pair interaction

〈E〉 = −1

2
Nq J 〈P2(cos γ)〉 = −1

2
Nq J

[
3

2

〈(
�̂ · m̂

)2〉 − 1

2

]
. (10.37)

To simplify this expression, we write the vectors in tensor component notation

〈E〉 = −1

2
Nq J

[
3

2

〈
�αmα�βmβ

〉 − 1

2

]
= −1

2
Nq J

[
3

2

〈
�α�βmαmβ

〉 − 1

2

]
.

(10.38)
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We now make the mean-field approximation: We assume that the molecules are
fluctuating independently and neglect correlations between their orientations. Hence,
we assume that 〈

�α�βmαmβ

〉 ≈ 〈
�α�β

〉 〈
mαmβ

〉
. (10.39)

This approximation is certainly not exactly true, but it will allow us to proceed. In
this equation, the expectation value of the tensor product is related to the tensor order
parameter of the nematic phase

Qαβ = 3

2

〈
�α�β

〉 − 1

2
δαβ = 3

2

〈
mαmβ

〉 − 1

2
δαβ, (10.40)

and hence 〈
�α�β

〉 = 〈
mαmβ

〉 = 2

3
Qαβ + 1

3
δαβ . (10.41)

Thus, the expectation value of the energy becomes

〈E〉 = −1

2
Nq J

[
3

2

(
2

3
Qαβ + 1

3
δαβ

)(
2

3
Qαβ + 1

3
δαβ

)
− 1

2

]

= −1

2
Nq J

[
3

2

(
4

9
Qαβ Qαβ + 1

3

)
− 1

2

]
= −1

3
Nq J Qαβ Qαβ

= −1

2
Nq J S2. (10.42)

This energy favors the maximum possible value of nematic order.
Next we consider the entropy, working by analogy with the Ising model. In the

Ising model, the distribution of spin directions is just given by two probabilities, p↑
and p↓, which are normalized so that p↑ + p↓ = 1. In terms of these probabilities,
the entropic contribution to the free energy was found to be

− T Sentropy = NkB T
(

p↑ log p↑ + p↓ log p↓
)
. (10.43)

For a liquid crystal, the analogous concept is the distribution function for molecular
orientations, which can be written as ρ(�̂) or ρ(θ,φ), where θ and φ represent the
molecular orientation in spherical coordinates. This distribution function must be
normalized so that it integrates to 1:

∫ π

0
sin θdθ

∫ 2π

0
dφρ(θ,φ) = 1. (10.44)

Note thatwe are using the appropriatemeasure of integration in spherical coordinates.
In terms of this orientational distribution function, the entropic contribution to the
free energy becomes
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− T Sentropy = NkB T
∫ π

0
sin θdθ

∫ 2π

0
dφρ(θ,φ) log ρ(θ,φ). (10.45)

When we combine the energy and entropy, we obtain the free energy for Maier-
Saupe theory

F = 〈E〉 − T Sentropy (10.46)

= −1

2
Nq J S2 + NkB T

∫ π

0
sin θdθ

∫ 2π

0
dφρ(θ,φ) log ρ(θ,φ).

In this expression, the nematic order parameter in the first term is determined by the
orientational distribution function as

S = 〈P2(cos θ)〉 =
∫ π

0
sin θdθ

∫ 2π

0
dφP2(cos θ)ρ(θ,φ). (10.47)

The question is now:What orientational distribution function gives theminimum free
energy? One approach to answer that question relies on some physical reasoning,
as follows. (If you do not believe that physical reasoning, you can read the more
mathematical argument at the end of this section.)

For a physical approach, consider a single molecule surrounded by its neighbors.
This test molecule experiences an effective potential, which arises from its interac-
tions with all of the neighbors. If the neighbors have some alignment along the z-axis,
then the effective potential will tend to align the test molecule along the z-axis also.
By comparison, if the neighbors have an isotropic distribution of orientations, then
the effective potential will not align the test molecule in any particular direction. In
general, we expect that the effective potential must have the form

Veff(θ) = −UkB T P2(cos θ), (10.48)

where UkB T is the characteristic strength of the potential, or U is the potential
strength divided by kB T . We do not know U yet, but we will calculate it soon!

With this effective potential, the orientational distribution function becomes the
Boltzmann distribution

ρ(θ,φ) = 1

D(U )
e−Veff(θ)/kB T = 1

D(U )
eU P2(cos θ), (10.49)

where the denominator is fixed by the normalization condition,

D(U ) =
∫ π

0
sin θdθ

∫ 2π

0
dφeU P2(cos θ) = 2π

∫ π

0
sin θdθeU P2(cos θ). (10.50)

We can now express the nematic order parameter S in terms of U ,
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Fig. 10.6 Nematic order
parameter S as a function of
the variable U in the
effective potential
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S(U ) =
∫ π
0 sin θdθP2(cos θ)eU P2(cos θ)

∫ π
0 sin θdθeU P2(cos θ)

. (10.51)

Unfortunately, there is no simple analytic expression for this ratio of integrals. How-
ever, we can certainly do the integrals numerically and plot the result for S as a
function of U , as shown in Fig. 10.6. This plot basically shows that U is an alterna-
tive version of the nematic order parameter, which carries the same information in
a different form. For weak nematic order, S and U are linearly proportional to each
other. For strong nematic order, S saturates at 1, while U goes to ∞.

As a next step, we can express the Maier-Saupe free energy as a function of U .
From Eq. (10.46), we obtain

F(U ) = − 1

2
Nq J [S(U )]2

+ NkB T
∫ π

0
sin θdθ

∫ 2π

0
dφρ(θ,φ)

[
U P2(cos θ) − log D(U )

]

= − 1

2
Nq J [S(U )]2 + NkB T

[
U S(U ) − log D(U )

]
. (10.52)

Normalizing by NkB T gives

F(U )

NkB T
= − Jq

2kB T
[S(U )]2 + U S(U ) − log D(U ). (10.53)

Hence, our strategy should be to plot the free energy of Eq. (10.53) as a function of
U , and search for the minimum.

If we differentiate the free energy with respect to U, we obtain

∂

∂U

(
F(U )

NkB T

)
= − Jq

kB T
S(U )

∂S

∂U
+ U

∂S

∂U
+ S(U ) − 1

D(U )

∂D

∂U

= ∂S

∂U

[
U − Jq

kB T
S(U )

]
. (10.54)



152 10 Liquid Crystals

Hence, our condition for a minimum is

U = Jq

kB T
S(U ). (10.55)

This equation can be regarded as a self-consistency equation for U : The nematic
order parameter S of a test molecule is determined by the effective potential strength
U and, at the free energy minimum, the effective potential strengthU is proportional
to the nematic order parameter S of the neighboring molecules. One self-consistent
solution is the isotropic state (U = 0 and S = 0), and there may also be a self-
consistent nematic state. The equation can be solved numerically to find all the
self-consistent states. However, it is more instructive to just plot the free energy and
look for the minima.

Figure10.7 shows a series of plots of the free energy as the scaled temperature
kB T/Jq decreases. At high temperature, in Fig. 10.7a, the free energy has only one
minimum, which is atU = 0, and hence S = 0, corresponding to the isotropic phase.
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Fig. 10.7 Plots of the Maier-Saupe free energy F/NkB T as a function of the effective po-
tential strength U . a Far above the isotropic-nematic transition kB T/Jq = 0.23. b Slightly
above the isotropic-nematic transition kB T/Jq = 0.221. c At the the isotropic-nematic
transition kB T/Jq = 0.2202. d Below the isotropic-nematic transition kB T/Jq = 0.219
(Interactive version at http://www.springer.com/cda/content/document/cda_downloaddocument/
Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420.)

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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As the temperature decreases, in Fig. 10.7b, the free energy has twominima: the stable
isotropic minimum and an unstable nematic minimum. At a certain temperature, in
Fig. 10.7c, the isotropic and nematic minima become equally deep, and the system
has a first-order transition from the isotropic phase to the nematic phase. At a lower
temperature, in Fig. 10.7d, the nematic minimum is stable and the isotropicminimum
is only metastable.

You will notice that theMaier-Saupe free energy of Fig. 10.7 has the same general
form as the Landau-de Gennes free energy of Fig. 10.3. This similarity shows that
the macroscopic arguments of Landau-de Gennes theory are actually consistent with
microscopic mean-field theory. One advantage of the Maier-Saupe microscopic the-
ory is that it gives specific numerical predictions for the first-order isotropic-nematic
transition. It shows that the transition occurs at kB T/Jq = 0.2202, and hence the
transition temperature is

TI N = 0.2202
Jq

kB
. (10.56)

Thus, the theory predicts that the isotropic-nematic transition temperature is propor-
tional to the interaction strength J , and to the number of interacting neighbors q.
Just on the nematic side of the transition, the theory predicts that U = 1.95. From
Eq. (10.51) and Fig. 10.6, this value of U corresponds to a nematic order parameter
of S = 0.429.

Figure10.8 shows plots of the Maier-Saupe predictions for the effective poten-
tial U and the nematic order parameter S over a broad range of scaled temperature
kB T/Jq. Both of these plots show the first-order isotropic nematic transition at
kB T/Jq = 0.2202, similar to the Landau-de Gennes prediction of Fig. 10.4. How-
ever, there is one important difference: As noted in the previous section, the Landau-
de Gennes prediction for S does not reach a maximum at 1, but rather increases
without limit as the temperature decreases. This unphysical behavior occurs because
the Landau-de Gennes theory is a power series about S = 0, and hence is not aware
that the maximum possible order parameter is S = 1. By contrast, Maier-Saupe
theory is not a power-series expansion, and it is aware that the maximum possible
order parameter is S = 1. Hence, the Maier-Saupe prediction for S goes to 1 when
the temperature goes to 0, as it should.
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Fig. 10.8 Predictions ofMaier-Saupe theory for a the effective potentialU , and b the nematic order
parameter S, as functions of scaled temperature kB T/Jq, showing the first-order isotropic-nematic
transition
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Alternative Mathematical Approach

Let us go back to Eq.10.46, which gives the Maier-Saupe free energy in terms of
the orientational distribution function ρ(θ,φ). In the preceding argument, we made
a physically motivated assumption (or ansatz) for ρ(θ,φ) in terms of the single
parameter U , and then minimized the free energy over U . You might not believe this
assumption for ρ(θ,φ). You might ask: Is it really necessary to make any assumption
for ρ(θ,φ)?

The answer is: No, we do not need to make any assumption for ρ(θ,φ). As a
more general alternative, we can just ask: Of all possible orientational distribution
functions, what function ρ(θ,φ) gives the minimum free energy? This is a varia-
tional calculus problem, as discussed in Chap. 5! We can solve it by calculating the
functional derivative of the free energy with respect to ρ(θ,φ).

One slight complication in this problem is that we have a constraint: ρ(θ,φ) must
be normalized, as given by Eq. (10.44). We can implement this constraint using the
standard mathematical method of Lagrange multipliers. In this method, the mini-
mization equation is

δF

δρ(θ,φ)
= λ

δ(constraint)

δρ(θ,φ)
= λ

δ

δρ(θ,φ)

[(∫ π

0
sin θdθ

∫ 2π

0
dφρ(θ,φ)

)
− 1

]
,

(10.57)

where λ is the Lagrange multiplier. With the free energy of Eq. (10.46), the mini-
mization equation becomes

− Nq J S P2(cos θ) + NkB T
[
1 + log ρ(θ,φ)

] = λ. (10.58)

The solution is

ρ(θ,φ) = exp

[
−1 + λ

NkB T

]
exp

[
Jq

kB T
S P2(cos θ)

]
. (10.59)

We can now use the normalization constraint to determine the Lagrange multiplier
λ, and we obtain

ρ(θ,φ) =
exp

[
Jq

kB T
S P2(cos θ)

]

2π
∫ π

0
sin θdθ exp

[
Jq

kB T
S P2(cos θ)

] . (10.60)

Here, S must satisfy the self-consistency equation

S = 〈P2(cos θ)〉 =

∫ π

0
sin θdθP2(cos θ) exp

[
Jq

kB T
S P2(cos θ)

]

∫ π

0
sin θdθ exp

[
Jq

kB T
S P2(cos θ)

] . (10.61)

http://dx.doi.org/10.1007/978-3-319-21054-4_5
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You should notice that the result (10.60) has exactly the same form as our previ-
ous assumption (10.49) for the orientational distribution function! Furthermore, the
self-consistency equation (10.61) is equivalent to our previous minimization con-
dition (10.55). Hence, our physically motivated approach for minimizing the free
energy really is justified by variational calculus.

10.5 Onsager Theory

At this point, let us briefly consider another microscopic model for the isotropic-
nematic transition, Onsager theory, which makes different assumptions about the
fundamental interactions between particles.

Onsager theory assumes that the liquid crystal is composed of hard rods. These
rods have no interaction other than excluded-volume repulsion, which prevents them
from overlapping. The interaction potential between rods i and j is

Vi j =
{
0 if no overlap,

∞ if overlap.
(10.62)

Hence, these particles are anisotropic versions of the hard spheres discussed in
Sect. 8.3. This is generally not a good approximation for molecules that form liquid-
crystal phases, like 5CB.However, it is a good approximation for colloidal particles in
solution. One example of rod-like colloidal particles is viruses; other examples could
be synthetic particles fabricated by experimenters. For such particles, the question
is: When you put many hard rods in solution, what phase will they form—isotropic
or nematic?

To address this question, we first need to determine howmuch volume is excluded
by the interaction between rods. Suppose each rod has length L and diameter D, with
L  D. Let us consider two rods with a relative orientation θ, as shown in Fig. 10.9.
Here, the first rod excludes a certain amount of volume to the second rod—there are
certain places where the second rod cannot go, because it would overlap with the
first rod. The center-of-mass of the second rod can go anywhere in the system except
the forbidden zone, which is shown by the pink box in the figure. The forbidden zone
is a parallelepiped with height L , width L| sin θ|, and depth 2D (plus some small
corrections of order D/L , which are unimportant in the limit of long narrow rods).
As a result, the excluded volume is

Vexcluded = 2DL2| sin θ|. (10.63)

The important point in this equation is that the excluded volume depends on the
relative orientation between the rods. It is smallest when the rods are parallel (or
antiparallel) and largest when the rods are perpendicular.

The next step is to determine the free energy of a system with many rods. Because
there is no interaction energy other than excluded volume, the expectation value

http://dx.doi.org/10.1007/978-3-319-21054-4_8
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Fig. 10.9 Two hard rods interacting through the excluded-volume interaction, in the On-
sager theory of the isotropic-nematic transition. The pink parallelepiped shows the volume
that is forbidden to the second rod because of the first rod, at fixed relative orientation θ
(Interactive version at http://www.springer.com/cda/content/document/cda_downloaddocument/
Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420.)

of the energy is 〈E〉 = 0, and the free energy is just F = −T Sentropy. As you
recall from van der Waals theory in Chap.3, excluded volume reduces the number of
allowed configurations of the system, and hence reduces the entropy and increases
the free energy. As a result, the excluded-volume contribution to the free energy
favors alignment of the particles in a nematic phase.

This favored alignment might seem surprising, because we normally expect that
entropy will favor disorder rather than order. The best way to understand this result is
to think about orientational entropy versus positional entropy. Orientational entropy
favors an isotropic phase, with the greatest possible disorder in the rod orientations.
By contrast, positional entropy favors a nematic phase, so that the rodswill be aligned,
will have the minimum excluded volume, and will have the greatest possible number
of available positions. This competition between orientational and positional entropy
is similar to the competition between long-range and short-range entropy in hard-
sphere crystallization in Sect. 8.3.

Onsager did a calculation to compare the free energies of the isotropic and ne-
matic phases, with the excluded-volume interaction of Eq. (10.63). In this calcula-
tion, the phase transition does not depend on temperature because the interaction
is purely entropic; there is no competition between energy and entropy. Rather, the
transition depends on the concentration c of rods per unit volume, compared with
the parameter DL2 in the interaction. The isotropic phase occurs for concentration
c < 4.25/(DL2), and the nematic phase occurs for c > 5.71/(DL2). The calcula-
tion also shows that the order parameter just on the nematic side of the transition is
S = 0.84, which is substantially larger than the order parameter predicted by Maier-

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://dx.doi.org/10.1007/978-3-319-21054-4_3
http://dx.doi.org/10.1007/978-3-319-21054-4_8
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Fig. 10.10 Phase diagram for hard rods as a function of one variable, the volume fraction φ

Saupe theory. In other words, there is a bigger first-order discontinuity in Onsager
theory than in Maier-Saupe theory.

You should notice that the phase transition depends on the product DL2, unlike
the volume of a rod, which depends on D2L . Based on this contrast, it is interesting
to re-express the result in terms of the volume fraction

φ = volume in rods

total volume
=

(
number of rods

total volume

)
(volume of 1 rod) = (c)

(
πD2L

4

)
.

(10.64)

In terms of volume fraction, the isotropic phase occurs for φ < 3.3D/L , and the
nematic phase occurs for φ > 4.5D/L . Hence, the volume fraction required for a
nematic phase is inversely proportional to the aspect ratio L/D of the rods. If the
rods are long and thin, it is easy to form a nematic phase, which will occur at a low
volume fraction. If the rods are short and fat, it is difficult to form a nematic phase.

Figure10.10 shows the phase diagram in terms of the single variable φ, with the
isotropic phase for φ < 3.3D/L and the nematic phase for φ > 4.5D/L . If the
system is prepared with a volume fraction of rods between these two values, then it
will exhibit two-phase coexistence between isotropic and nematic phases, analogous
to the liquid-gas coexistence at fixed volume in Chap. 3. The fraction of each phase
will be given by the level rule.

As a matter of terminology, if the isotropic-nematic transition is controlled by
concentration, the system is called a lyotropic liquid crystal. By contrast, if the
isotropic-nematic transition is controlled by temperature, the system is called a ther-
motropic liquid crystal. Hence, Onsager theory for hard rods in solution is an example
of a lyotropic liquid crystal, and Maier-Saupe theory for interacting molecules is an
example of a thermotropic liquid crystal.

10.6 Elasticity of Nematic Order

In Sects. 10.3–10.5, we saw that molecular interactions determine the magnitude
S of nematic order, but they do not determine the orientation n̂ of nematic order.
Indeed, molecular interactions do not care about the direction of nematic order. The
free energy depends on S, but it does not depend on the orientation of the director
in 3D space. The liquid crystal can form a nematic phase with n̂ pointing in any

http://dx.doi.org/10.1007/978-3-319-21054-4_3
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orientation, and the system randomly chooses an orientation. This is the essential
concept of spontaneous symmetry breaking!

Although molecular interactions do not care about the direction of nematic order,
they do care about spatial variations in the direction. If n̂ is gradually changing as a
function of position, then the molecules are not as well aligned as if n̂ were uniform.
As a result, the free energy will be higher. This extra free energy associated with
variations in n̂ is called the elastic free energy, or the Frank free energy.

To understand the elastic free energy, we must use the concept of fields, as in
Chap.6. For liquid crystals, we can consider Qαβ(r) as a tensor field, which gives
the nematic order for molecules near the position r . How near?Well, that is the same
argument as in Chap.6. We must do a coarse-grained average of a local group of
molecules, with a length scale much bigger than the size of a molecule and much
smaller than the scale on which physical properties vary. This definition of a field is
possible because molecules are very small compared with typical experiments.

Once we have Qαβ(r) as a field, we can define the scalar order parameter field
S(r) and the director field n̂(r), so that

Qαβ(r) = S(r)
[
3

2
nα(r)nβ(r) − 1

2
δαβ

]
. (10.65)

In most systems, S(r) is strongly determined by the molecular interactions at a par-
ticular temperature (in a thermotropic liquid crystal) or concentration (in a lyotropic
liquid crystal). It would cost a huge free energy to change S(r) to anything other than
the value determined by Sects. 10.3–10.5. Hence, S(r) usually does not depend on
position very much. For an excellent approximation, we can regard it as a constant
independent of position, and write

Qαβ(r) = S

[
3

2
nα(r)nβ(r) − 1

2
δαβ

]
. (10.66)

By contrast, n̂(r) is not determined by molecular interactions—it can easily vary as
a function of position, and hence we must keep it as a field.

Next we must ask: How do spatial variations of Qαβ(r) or n̂(r) affect the free
energy? To answer this question, let us return to the Landau-de Gennes free energy
density of Eq. (10.20). When Qαβ(r) is a function of position, we must add further
terms to the free energy involving gradients of Qαβ(r). These terms must satisfy all
the appropriate symmetries, so that the free energy is still a scalar. The simplest such
term is 1

2 L(∂γ Qαβ)(∂γ Qαβ), where L is an arbitrary elastic coefficient. This term
shows that variations of any component Qαβ in any direction rγ cost free energy. It
is not the only elastic term permitted by symmetry, but let us also consider just that
term for now. The Landau-de Gennes free energy density then becomes

f = f0 + 1

2
AQαβ Qαβ + 1

3
B Qαβ Qβγ Qγα + 1

3
C1(Qαβ Qαβ)2

+ 1

3
C2Qαβ Qβγ Qγδ Qδα + 1

2
L(∂γ Qαβ)(∂γ Qαβ), (10.67)

http://dx.doi.org/10.1007/978-3-319-21054-4_6
http://dx.doi.org/10.1007/978-3-319-21054-4_6
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and the full free energy is the integral of the free energy density over the whole
system

F =
∫

d3r

[
f0 + 1

2
AQαβ Qαβ + 1

3
B Qαβ Qβγ Qγα + 1

3
C1(Qαβ Qαβ)2

+ 1

3
C2Qαβ Qβγ Qγδ Qδα + 1

2
L(∂γ Qαβ)(∂γ Qαβ)

]
. (10.68)

Now let us express the elastic free energy in terms of the director field n̂(r). By
substituting the expression (10.66) into the free energy (10.68), we obtain

F =
∫

d3r

[
funiform + 9

8
L S2 (nα∂γnβ + nβ∂γnα

) (
nα∂γnβ + nβ∂γnα

)]
.

(10.69)

Here, the first term funiform is the Landau-de Gennes free energy density of the
uniform liquid crystal. The important point is that it does not depend on n̂(r), and
hence it is a constant, which we can neglect. The second term can be simplified when
we use the constraint that n̂(r) is a unit vector:

nαnα = 1, (10.70)

and hence

nα∂γnα = 1

2
∂γ(nαnα) = 1

2
∂γ(1) = 0. (10.71)

Thus, the elastic free energy becomes

F =
∫

d3r

[
1

2
K

(
∂γnα

) (
∂γnα

)]
, (10.72)

where K = 9
2 L S2.

Equation (10.72) is the simplest version of the Frank free energy. It shows that
variations of any director component nα in any direction rγ cost free energy. The
coefficient K is the simplest version of a Frank elastic constant. Here, we have
found that K is proportional to the tensor elastic constant L times S2. Hence, as
the temperature decreases and the nematic phase becomes more ordered, we would
expect K to increase proportional to S2.

Although Eq. (10.72) is a reasonable first approximation, it is not good enough
for modeling liquid crystals in detail, nor for designing liquid-crystal devices. The
problem with this expression is that it implies that all variations in the director field
cost the same amount of free energy, regardless of the direction of the variation with
respect to the director itself. Nematic liquid crystals are more anisotropic than that:
There are different free energy costs for variations in different directions, and we
need different Frank constants to model them.
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To develop an improved version of the elastic free energy for nematic liquid
crystals, there are two possible approaches. First, we can go back to the Landau-de
Gennes expression for the free energy density in terms of Qαβ and construct more
derivative terms. For example, we can make terms like (∂αQαγ)(∂β Qβγ), which
contracts the indices in different ways, and Qγδ(∂γ Qαβ)(∂δ Qαβ), which goes to
higher order in the tensor order parameter. We can then express all these terms
using the director field. Alternatively, we can stop thinking about the order tensor
at all, and just work directly with the director field. From n̂(r) and its derivatives,
we can identify the modes of distortion that have different free energy costs. This
second approach has two advantages: It is generally easier, and it does not require
any assumption that the scalar order parameter S is small. For those reasons, we will
follow the second approach here.

To classify the modes of distortion in a nematic liquid crystal, we must ask two
questions:What is the orientation of the local average n̂(r)with respect to the gradient
direction—parallel or perpendicular to the gradient direction? Which component of
n̂(r) is varying—parallel or perpendicular to the gradient direction? Based on the
answers to those questions, we can identify the three distortion modes shown in
Fig. 10.11:

1. Splay: If the local average n̂(r) is perpendicular to the gradient direction, and the
varying component of n̂(r) is parallel to the gradient direction, then the distortion
is called splay. Splay is characterized by the vector n̂(∇ · n̂). This splay vector is

Fig. 10.11 Visualization of
the three nematic modes of
distortion: a Splay. b Twist. c
Bend (Interactive version at
http://www.springer.com/
cda/content/document/cda_
downloaddocument/
Selinger+Interactive+Figures.
zip?SGWID=0-0-45-
1509169-p177545420.)

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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first-order in the gradient operator, so it shows gradual variations in the director
orientation. It is even in n̂, as required by symmetry because n̂ and −n̂ represent
the same physical state. The free energy density associated with splay is given by
fsplay = 1

2 K1|n̂(∇ · n̂)|2 = 1
2 K1(∇ · n̂)2, which is a scalar. Here, K1 is the Frank

elastic constant for splay.
2. Twist: If the local average n̂(r) is perpendicular to the gradient direction, and

the varying component of n̂(r) is also perpendicular to the gradient direction,
then the distortion is called twist. Twist is characterized by n̂ · (∇ × n̂), which is
a pseudoscalar. It is reasonable that twist should be a pseudoscalar because this
distortion has handedness; it changes sign under inversion. Like the splay vector,
the twist pseudoscalar is first-order in the gradient operator and is even in n̂. The
free energy density associated with twist is given by ftwist = 1

2 K2[n̂ · (∇ × n̂)]2,
which is a proper scalar; it does not change sign under inversion. Here, K2 is the
Frank elastic constant for twist.

3. Bend: If the local average n̂(r) is parallel to the gradient direction, then the vary-
ing component of n̂(r) must be perpendicular to the gradient direction because
n̂(r) is a unit vector. In this case, the distortion is called bend, and it is charac-
terized by the vector n̂ × (∇ × n̂). Again, the bend vector is first-order in the
gradient operator and is even in n̂. The free energy density associated with bend
is given by the scalar fbend = 1

2 K3|n̂ × (∇ × n̂)|2, where K3 is the Frank elastic
constant for bend.

Putting these three modes together, the Frank free energy for elastic distortions in a
nematic liquid crystal becomes

F =
∫

d3r

[
1

2
K1(∇ · n̂)2 + 1

2
K2[n̂ · (∇ × n̂)]2 + 1

2
K3|n̂ × (∇ × n̂)|2

]
. (10.73)

This is the form that is normally used in liquid-crystal research and development.
From Eq. (10.73), we can see that the Frank constants all have dimensions of

energy/length, so they are generally reported in Newtons. In most nematic liquid
crystals, they are all around 10−11 N. This order of magnitude can be understood
through the following argument: Based on dimensional analysis, we would expect
the Frank constants to be roughly a typical energy divided by a typical length. For a
nematic liquid crystal, the typical energy is given by the intermolecular interaction
energy, which is (by Maier-Saupe theory) comparable to kB TI N , where TI N is the
isotropic-nematic transition temperature. We have kB = 1.38×10−23 J/K and might
estimate TI N ≈ 300 K, which gives an interaction energy around 4 × 10−21 J. The
typical length is the distance between molecules, which is around 10−9 m. From the
ratio, we estimate that the Frank constants should be around 4 × 10−12 N, which is
roughly consistent with typical experimental numbers.

In general, the three Frank constants are not equal to each other, but they are not
very different. You might ask: What if they were equal to each other, with K1 =
K2 = K3 ≡ K ? Would the general Frank free energy of Eq. (10.73) reduce to our
first approximation of Eq. (10.72)?
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The answer is: Almost, but not exactly! Our expressions are actually related by

1

2
K

(
∂γnα

) (
∂γnα

) =1

2
K1(∇ · n̂)2 + 1

2
K2[n̂ · (∇ × n̂)]2 + 1

2
K3|n̂ × (∇ × n̂)|2

+ 1

2
K24∇ · [(n̂ · ∇)n̂ − n̂(∇ · n̂], (10.74)

in the limit where K1 = K2 = K3 = K24 ≡ K . The final term, proportional to
K24, is one extra mode of distortion called saddle-splay. In the saddle-splay mode,
the planes perpendicular to n̂(r) are shaped like saddles, with negative Gaussian
curvature, leading to a director field that is not easy to draw in a single figure. From
Eq. (10.74), we can see that the saddle-splay term is the divergence of a vector field.
By the divergence theorem of vector calculus, the volume integral of the saddle-
splay term can be reduced to a surface integral over the boundary. For this reason, the
saddle-splay term is often called a surface elastic term. In many typical liquid-crystal
systems, the director field on the surface is fixed by some anchoring conditions. In
these cases, the saddle-splay term is a constant, independent of the director field in
the interior of the cell, so we can neglect it. Hence, it is not commonly used in studies
of liquid-crystal devices. However, there are certain unusual situations in which the
director field on the boundaries can vary, or in which the liquid crystal can change
its boundaries; in these situations, the saddle-splay term must be considered.

10.7 Frederiks Transition

In the previous section, we saw that molecular interactions do not care about the
direction of nematic order, but only about spatial variations in the direction. However,
it is possible to apply symmetry-breaking fields, which do care about the direction of
nematic order. Two examples of symmetry-breaking fields are electric and magnetic
fields, which tend to favor alignment of nematic order either parallel or perpendicular
to the fields (depending on the particular liquid-crystal material). Another example is
surface anchoring; at the surface of a liquid-crystal cell, interactions of themolecules
with the surface can favor alignment in some direction with respect to the surface.

Now we can consider one of the most common problems in liquid-crystal science
and technology: Suppose we have a system with different symmetry-breaking fields
that compete with each other. How does the liquid crystal respond to these competing
influences? In other words, what director field n̂(r) minimizes the free energy?

Let us investigate a classic example of this problem, the Frederiks transition. (It is
sometimes written as the Freedericks or Freédericksz transition, based on an archaic
method for writing Russian names inGerman.) In this problem,we suppose that there
are two competing symmetry-breaking fields—surface anchoring and a magnetic (or
electric) field—and we look for the director field that arises from this competition.

First, suppose we have a semi-infinite liquid crystal, as shown in Fig. 10.12. On
the surface at x = 0, there is very strong anchoring, which requires the director to
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align in the z-direction. Everywhere in the bulk of the liquid crystal, for x > 0,
there is a magnetic field, which favors alignment of the director in the y-direction.
To minimize the free energy, the director field must adopt a configuration where it
is aligned with the z-direction near the surface, and then gradually twists into the
y-direction into the bulk. The question is then: How far does the surface alignment
extend into the bulk?

To model this problem, we represent the director field as

n̂(x) = (0, sin θ(x), cos θ(x)). (10.75)

The surface anchoring provides the boundary condition that θ(0) = 0. There are now
two contributions to the free energy. The first contribution is the Frank free energy
of Eq. (10.73). When we insert our form(10.75), it simplifies to

FFrank = A
∫

dx

[
1

2
K2

(
dθ

dx

)2
]

, (10.76)

where A is the cross-sectional area in the yz-plane; note that this distortion involves
only twist. The second contribution is the interaction of the magnetic field of the
liquid crystal, which can be written as

Fmagnetic = A
∫

dx

[
−1

2

�χ

μ0
(H · n̂(x))2

]
= A

∫
dx

[
−1

2

�χ

μ0
H2 sin2 θ(x)

]
,

(10.77)
where H is the magnetic field and �χ is the diamagnetic anisotropy of the liquid
crystal. (It is related to the maximum diamagnetic anisotropy discussed in Sect. 10.3
by�χ = �χmaxS.) Let us assume that we have a liquid crystal with�χ > 0, so that
the field favors alignment in the y-direction, with θ = ±π/2. The total free energy
is then

Fig. 10.12 Semi-infinite
liquid crystal, with strong
surface anchoring that
requires θ = 0 at x = 0, and
a magnetic field that favors
θ = ±π/2 in the bulk
(Interactive version at http://
www.springer.com/cda/
content/document/cda_
downloaddocument/
Selinger+Interactive+Figures.
zip?SGWID=0-0-45-
1509169-p177545420.)
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F = 1

2
A
∫

dx

[
K2

(
dθ

dx

)2

− �χ

μ0
H2 sin2 θ(x)

]
. (10.78)

We want to determine what function θ(x) minimizes the free energy. Of course,
this is a variational calculus problem. To solve it, we calculate the functional
derivative of the free energy with respect to θ(x), and set this functional derivative
equal to zero, to obtain the Euler-Lagrange equation

δF

δθ(x)
= −A

[
K2

d2θ

dx2
+ �χ

μ0
H2 sin θ(x) cos θ(x)

]
= 0. (10.79)

This equation is often written as

d2θ

dx2
= − 1

ξ2
sin θ(x) cos θ(x), (10.80)

where

ξ = 1

H

√
K2μ0

�χ
(10.81)

is called the magnetic coherence length. Through some mathematical manipulation,
we can show that the solution of this differential equation (with the boundary condi-
tions that θ = 0 at x = 0, and θ = constant at x → ∞) is

θ(x) = ± sin−1
(
tanh

x

ξ

)
. (10.82)

This solution is plotted in Fig. 10.13. From this plot, we can see that the magnetic
coherence length ξ gives the length scale over which the surface alignment extends
into the bulk. If the field is low, then ξ is large, and the surface alignment extends far
into the bulk. If the field is high, then ξ is small, so the alignment is mainly dominated

Fig. 10.13 Solution for
liquid-crystal alignment in a
semi-infinite geometry, with
strong surface anchoring that
requires θ = 0 at x = 0, and
a magnetic field that favors
θ = ±π/2 in the bulk
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Fig. 10.14 Finite
liquid-crystal cell, with
strong surface anchoring that
requires θ = 0 at x = 0 and
x = d, and a magnetic field
that favors θ = ±π/2 in the
interior (Interactive version
at http://www.springer.com/
cda/content/document/cda_
downloaddocument/
Selinger+Interactive+Figures.
zip?SGWID=0-0-45-
1509169-p177545420.)

by the field, with only a small surface region. The ± sign indicates that the system
can randomly twist to the right or to the left.

For an alternative version of this problem, suppose we have a finite liquid-crystal
cell, as shown in Fig. 10.14, with aligning surfaces at both x = 0 and x = d that
anchor the director along the z-direction. In the interior, the magnetic field again
favors alignment along the y-direction. We would now like to calculate the profile
θ(x) for 0 < x < d. This finite problem has the same Euler-Lagrange equation as
the semi-infinite problem, but the boundary conditions are different: We must now
find a solution of the differential equation that satisfies θ(0) = θ(d) = 0. In general,
this problem cannot be solved exactly, but it can certainly be solved numerically.

Figure10.15 shows a series of numerical solutions for different values of d/ξ, the
ratio of the cell thickness to the magnetic coherence length. When d/ξ is small (i.e.,
when the magnetic field is small), the solution is exactly θ(x) = 0. In this case, the
elastic free energy cost of director twist is so great, compared with the small gain in
magnetic free energy, that the system does not twist at all. When d/ξ becomes large
enough (i.e., when themagnetic field becomes large enough), past a certain threshold,
the system begins to twist. In this case, we can see that θ(x) becomes slightly nonzero
in the interior, so that the director can partially align with the magnetic field. When

Fig. 10.15 Numerical
solution for liquid-crystal
alignment in a finite cell, for
several values of d/ξ, the
ratio of the cell thickness to
the magnetic coherence
length. From smallest to
largest absolute value, the
solutions are for d/ξ = 3.2,
3.3, 3.4, 3.6, 4, 5, 7, 10, and
20
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Fig. 10.16 Numerical
solution for θmid = θ(d/2),
the orientation at the middle
of the cell, as function of the
ratio d/ξ or equivalently
πH/HC
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d/ξ becomes very large (i.e.when themagnetic field becomes very large), the director
almost goes to θ(x) = ±π/2 in the interior, as favored by the magnetic field. It only
deviates from the field direction in small surface regions of size ξ. There are both
positive and negative solutions, because the system can randomly twist to the right
or to the left in the interior.

One way to characterize the solution is by the angle θmid = θ(d/2) at the middle
of the cell. Figure10.16 shows the numerical solution for θmid as a function of
d/ξ. This plot looks just like the plot of the Ising order parameter as a function of
temperature in Fig. 2.6a! At a critical threshold of d/ξ, the liquid crystal has a second-
order transition, called the Frederiks transition. Below the critical threshold, we have
θ(x) = 0 throughout the cell, and hence θmid = 0. Above the critical threshold,
the director field begins to twist, and θmid characterizes the magnitude of the twist
distortion. Hence, θmid acts as an order parameter for the Frederiks transition.

Like the Ising transition, the Frederiks transition is a symmetry-breaking transi-
tion, because θmid randomly becomes positive or negative, meaning that the director
field randomly twists to the right or to the left. Unlike the Ising transition, the Fred-
eriks transition does not involve a competitition between energy and entropy. Rather,
it is driven by the competition between elastic free energy and magnetic free energy.

To understand the behavior near the threshold, consider the functional form for
θ(x) shown in Fig. 10.15. Near the threshold, θ(x) can be well approximated by

θ(x) = θmid sin
πx

d
. (10.83)

The deviation from surface alignment is small, so that θmid � 1. We put that ap-
proximate form into the free energy of Eq. (10.78), and integrate over x = 0 to d, to
obtain

F = π2K2

4d
θ2mid − d�χH2

4μ0
[1 − J0(2θmid)], (10.84)

where J0 is a Bessel function. We then expand the free energy as a power series in
θmid to obtain

http://dx.doi.org/10.1007/978-3-319-21054-4_2
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F =
(

π2K2

4d
− d�χH2

4μ0

)
θ2mid + d�χH2

16μ0
θ4mid + · · ·

= K2

4d

(
π2 − d2

ξ2

)
θ2mid + d K2

16ξ2
θ4mid + · · · . (10.85)

This mathematical form for the free energy is just like the free energy of the Ising
model. By analogy with the Ising model, the Frederiks transition occurs when the
coefficient of the quadratic term passes through zero, which occurs at

d

ξ
= π, (10.86)

or equivalently at the critical field

HC = π

d

√
K2μ0

�χ
. (10.87)

For H < HC , we find θmid = 0. For H slightly greater than HC , θmid increases as

θmid = ±
√

2

(
1 − π2ξ2

d2

)
∝ ±(H − HC )1/2. (10.88)

This relation is equivalent to the scaling of the Ising order parameter below the critical
temperature with the exponent β = 1

2 .
For one more variation on the Frederiks problem, we can intentionally break the

symmetry between the two possible directions of twist. To do this, we rotate the
surface alignment direction with respect to the magnetic field direction, so that they
are not exactly perpendicular, as shown in Fig. 10.17. Suppose that the magnetic field
is still in the y-direction, but the surface alignment is (0, sin θpre, cos θpre). Here, θpre

Fig. 10.17 Finite
liquid-crystal cell with
strong surface anchoring at a
pre-tilt angle θpre, which is
not perpendicular to the
magnetic field direction
(Interactive version at http://
www.springer.com/cda/
content/document/cda_
downloaddocument/
Selinger+Interactive+Figures.
zip?SGWID=0-0-45-
1509169-p177545420.)
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Fig. 10.18 Numerical
solution for the orientation
θmid in the middle of the cell,
for θpre = 0.1 radians
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is a pre-tilt angle, which biases the director field toward twist in one direction, rather
than the opposite direction.

Figure10.18 shows a numerical solution for the orientation θmid in the middle
of the cell, for the example θpre = 0.1 radians. This plot is quite different from
the previous case with no pre-tilt in Fig. 10.16. With a pre-tilt, there is no critical
threshold! Rather, we see a smooth evolution of θmid as a function of magnetic field
(or d/ξ). For small field, θmid is slightly shifted from θpre. As the field increases,
θmid gradually increases and eventually approaches π/2. Furthermore, there is only
one solution θmid that minimizes the free energy; we do not have two minima. This
behavior occurs because we do not need a transition to spontaneously break the
symmetry between positive and negative θmid; the symmetry is already broken by
the pre-tilt! In this respect, the pre-tilt is analogous to the symmetry-breaking field
h on the Ising model, which induces order even if T > TC , as shown in Fig. 2.6b.

In the literature, there are many other variations on the Frederiks problem. The
applied field can be either magnetic or electric. Furthermore, the relative orientations
of surface anchoring and field alignment can be chosen so that the director distortion
is splay, twist, or bend. As a result, the relevant Frank constant can be K1, K2, or
K3. Measuring the Frederiks threshold is often a useful technique for determining
the Frank constants in the laboratory.

10.8 Defects in Nematic Phase

In the previous section, we considered the Frederiks transition as one example of a
director distortion. In that example, the director distortion varies continuously as a
function of the applied magnetic field: If we have a large field, we get a large director
distortion; if we reduce the field to zero, the director field becomes uniform. In this
section, we will consider a different type of director distortion that cannot just come
and go continuously. These distortions are called topological defects.

Topological defects are large localized distortions that cannot relax away. They
are an important part of liquid-crystal science (and materials science in general)

http://dx.doi.org/10.1007/978-3-319-21054-4_2
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for several reasons. First, the types of defects that can form in a phase depend on
the symmetry of that phase. Hence, observing defects can help experimenters to
recognize a phase. Second, defects determinemany properties ofmaterials, including
transport properties and mechanical properties. Third, defects need to be eliminated
from liquid crystals for many types of applications; understanding defects can help
us to eliminate them. Finally, certain applications actually use defects, especially for
bistability.

In this section, I will only describe the simplest version of defects in 2D liquid
crystals. The subject of defects in 3D liquid crystals involves many subtle issues of
topology,which I cannot cover here. If you are interested in that subject, I recommend
the textbook Soft Matter Physics, by Maurice Kleman and Oleg D. Lavrentovich, as
listed at the end of this chapter.

Let us begin with a 2D polar phase. We suppose that the magnitude of polar order
is fixed, and only the direction can vary. At any point, the direction of polar order is
given by a unit vector p̂(r) = (cosφ(r), sin φ(r)), which can be represented by an
arrow. Suppose this unit vector field has the configuration shown in Fig. 10.19a. This
configuration is a type of topological defect, called a vortex or a disclination. We can
see that this defect is a large distortion, located in the middle of the red circle, which
cannot relax away. If we try to eliminate the defect by rotating some of the arrows in
any local region, we will only move the defect to another position. The only way to
eliminate it completely would be by moving it all the way to the edge of the material.

To characterize the defect mathematically, we use a construction called a Burgers
circuit. Suppose we move around the red circle in the counter-clockwise direction:
from east to north, west, south, and back to east. As we move around that circle, we
keep track of the changes in φ: it increases from 0 to π/2, π, 3π/2, and ends at 2π.
We can write this change in φ as an integral

∮
dφ = 2π. If we calculate this integral

about any loop that encloses the defect, we get the same result. The loop might be a
large circle, a small circle, an ellipse, or any other shape—if the loop encloses this
defect, the changes in φ add up to 2π. By comparison, if we calculate this integral
about any loop that does not enclose a defect, the changes in φ add up to 0; φ might
increase or decrease, but it will go back to its starting value. Hence, we will take
the integral about the Burgers circuit as our definition of the topological charge q
enclosed inside the loop, ∮

dφ = 2πqenclosed. (10.89)

In particular, the example of Fig. 10.19a has a topological charge of 1. This definition
of topological charge should remind you of Gauss’s law in electrostatics. As in
Gauss’s law, we can integrate around the outer surface of a shape to find the total
charge enclosed by the shape.

Next, let us consider the configuration in Fig. 10.19b. Students always guess that
this configuration has a topological charge of −1. No, this guess is wrong! The
analogy with electrostatics does not work that way. To determine the topological
charge, let us return to the integral about the Burgers circuit. As we go around the red
circle, φ increases from −π to −π/2, 0, π/2, and ends at π. Hence, the net increase
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10.19 Defects in a 2D polar phase. a–d Topological charge +1. e Topological charge −1.
f Topological charges +1 and −1, combining to make 0. g Topological charge +2. h Topo-
logical charge −2 (Interactive version at http://www.springer.com/cda/content/document/cda_
downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420.)
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in φ is 2π, so
∮

dφ = 2π, just as in the previous example. Hence, this is also a defect
with topological charge of +1.

We can make a similar argument for the configurations in Fig. 10.19c, d. In each
of those cases, we can add up the changes in φ about the Burgers circuit to obtain∮

dφ = 2π. They are also defects with topological charge of +1.
How can we make a defect of topological charge of −1? We need to make φ

decrease as we go around the Burgers circuit. In other words, the polar order must
rotate clockwise while we go around the circuit counter-clockwise. One of these
defects is shown in Fig. 10.19e.

Now suppose we have a +1 defect near a −1 defect, as shown in Fig. 10.19f. If
we draw a Burgers circuit about the +1 defect only (red circle on the right), we find
that

∮
dφ = 2π. If we draw a Burgers circuit about the −1 defect only (red circle on

the left), we find that
∮

dφ = −2π. If we draw a Burgers circuit about both of the
defects (large red ellipse), we find that

∮
dφ = 0. Hence, the defect charges add up

just as they should, based on the analogy with Gauss’s law. The positive and negative
charges cancel each other, when we look at a large Burgers circuit that encloses both
defects. (In the interactive version of the figure, you canmove the defects together and
apart. If the defects come together, you can see that they annihilate like an electron
and a positron, leaving a defect-free configuration.)

The polar phase can also have higher defect charges. Figure10.19g shows a defect
of topological charge +2, and Fig. 10.19h shows a defect of topological charge −2.

In a polar phase, the defect charge must always be an integer, because the polar
vector field p̂(r) is a single-valued function. When we go around a Burgers circuit,
p̂(r) must return to the same vector as at the beginning of the circuit. This is only
possible if the change in φ(r) is a multiple of 2π, and hence qenclosed is an integer.

At this point, let us change from the 2D polar phase to the 2D nematic phase. By
analogy with the polar phase, we suppose that the magnitude of nematic order S is
fixed, and only the direction can vary. At any point, the direction of nematic order is
given by the director n̂(r) = (cosφ(r), sin φ(r)). As you recall, the nematic phase
has one important difference from the polar phase: the vectors n̂ and −n̂ represent
exactly the same physical state. Hence, we should not illustrate the direction of
nematic order by an arrow; instead, we should illustrate it by a double-headed arrow
(or by a line segment with no arrowheads).

The nematic phase can have all of the samedefects as the polar phase. For example,
it can have a defect with topological charge +1, which might have the radial form
shown in Fig. 10.20a or the tangential form shown in Fig. 10.20b. It can also have all
of the other integer-charged defects discussed in the context of the polar phase.

In addition to the integer-charged defects, the nematic phase can also have
half-integer-charged defects. For example, consider the configuration shown in
Fig. 10.20c. As we move around the red Burgers circuit from east to north, west,
south, and back to east, the angle φ increases from 0 to π/4, π/2, 3π/4, and ends at
π. Hence, the net increase inφ is π, so

∮
dφ = π. By the definition of Eq. (10.89), this

defect has a topological charge of + 1
2 . Other half-integer charges are also possible.

A − 1
2 defect is shown in Fig. 10.20d, a + 3

2 defect in Fig. 10.20e, and a − 3
2 defect in

Fig. 10.20f.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10.20 Defects in a 2D nematic phase. a, b Topological charge +1. c Topological charge
+ 1

2 . d Topological charge − 1
2 . e Topological charge + 3

2 . f Topological charge − 3
2 . g Topo-

logical charges + 1
2 and − 1

2 , combining to make 0. h Topological charges + 1
2 and + 1

2 , com-
bining to make +1 (Interactive version at http://www.springer.com/cda/content/document/cda_
downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420.)
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Fig. 10.21 Unsuccessful
attempt to construct a defect
of topological charge + 1

2 in
a polar phase. The defect is
not just a point but a line
with a discontinuity in the
polar order parameter

The half-integer-charge defects add up appropriately, just as the integer-charge
defects do. Figure10.20g shows a + 1

2 defect near a − 1
2 defect. If we draw a Burgers

circuit that encloses just one of these defects, we find the charge of + 1
2 for the right

circle and− 1
2 for the left circle. If we draw a Burgers circuit that encloses both of the

defects (large ellipse), we find a total topological charge of 0. Similarly, Fig. 10.20h
shows two + 1

2 defects near each other. Each small circle encloses a charge of + 1
2 ,

while the large ellipse encloses a total charge of +1.
We can see that half-integer charges are possible in the nematic phase but not in

the polar phase. If we try to construct of defect of charge + 1
2 in a polar phase, as

shown in Fig. 10.21, we find that the defect is not just a point. Rather, the defect
becomes a line, or wall, with a discontinuity in the polar order parameter. This will
normally not occur in a polar phase. By contrast, there is no problem with a line
defect in a nematic phase, specifically because n̂ and−n̂ represent the same physical
state, so that the director field is drawn by a double-headed arrow.

Now that we have seen the topology of defects, let us consider the free energy of
defects. All of the defect configurations involve substantial distortions in the director
field over a long range, and hence they must cost a substantial amount of Frank free
energy. To determine the free energy cost, let us use the simplest version of the Frank
free energy with only a single Frank constant, from Eq.10.72. The 2D version of this
free energy is

F =
∫

d2r

[
1

2
K

(
∂γnα

) (
∂γnα

)]
. (10.90)

If we put our assumption n̂(r) = (cosφ(r), sin φ(r)) into this expression, it simpli-
fies to

F =
∫

d2r

[
1

2
K |∇φ|2

]
. (10.91)

In a defect configuration, φ(r) is not the absolute minimum of the free energy; the
absolute minimum is uniform. However, φ(r) is a local minimum of the free energy,
because there is no small rearrangement of the director field that can reduce the free
energy. Hence, it must satisfy
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δF

δφ(r)
= −K∇2φ = 0. (10.92)

This is a linear partial differential equation to characterize the director field around
one or more defects. We can solve it in any coordinate system. For a single defect
at the origin, it is most convenient to use polar coordinates (r, θ). For a defect of
topological charge q, a solution is

φ(r, θ) = φ0 + qθ. (10.93)

This is the mathematical form that is illustrated all the pictures of single defects in
Figs. 10.19, 10.20 and 10.21. In this function, when the polar coordinate θ goes from
0 to 2π, the director orientation φ goes from 0 to 2πq, so there is a defect of charge
q at the origin.

To evaluate the free energy of the defect, we calculate the gradient∇φ = (q/r)θ̂.
We substitute that gradient back into the free energy, and set up the integral in polar
coordinates, to obtain

F =
∫ ∞

0
rdr

∫ 2π

0
dθ

[
1

2
K

q2

r2

]
= πK q2

∫ ∞

0

dr

r
=

[
πK q2 log r

]∞
0

. (10.94)

Unfortunately, there are two problems when we try to evaluate this function at the
integration limits 0 and ∞: the function log r diverges at 0 and it diverges at ∞! We
need to consider each of these problems separately.

The divergence as r → 0 is called an ultraviolet divergence. It occurs because
we are trying to use our Frank elastic theory at short distances, in a regime where
the theory does not apply. One problem with the theory at short distances is that it
assumes that themagnitude S of nematic order is constant. This assumption is usually
reasonable, because changing n̂(r) only costs a little free energy, while changing S
costs much more free energy. However, close to the defect, gradients in n̂(r) become
very large, and hence the Frank free energy for these gradients becomes huge. Hence,
in a small core around the defect, the liquid crystal can melt into the isotropic phase,
with S → 0, so that it does not need to pay the high free energy cost for director
variations. We might model this defect core melting by going back to a theory in
terms of the nematic order tensor Qαβ(r). More commonly, people just assume that
there is some core radius a, of order the intermolecular spacing of nanometers, and
use the Frank elastic theory only for lengths greater than this core radius. Inside the
core, they just assume there is an energy Ecore.

The divergence as r → ∞ is called an infrared divergence. It is a real physical
divergence, because it occurs in the long length scale where Frank elastic theory
really does apply. However, it is less serious than you might fear. Physically, we
need to cut off the integral at a length scale corresponding to the size Rmax of the
sample. As a result, the free energy of the defect becomes



10.8 Defects in Nematic Phase 175

F = Ecore + πK q2
∫ Rmax

a

dr

r
= Ecore + πK q2 log

(
Rmax

a

)
. (10.95)

The logarithm diverges in the limit of infinite system size, but it diverges very slowly!
For example, supposewehave a system size Rmax = 1cmand a core radiusa = 1nm.
The logarithm would just be a very modest factor of log 107 ≈ 16. If Rmax = 1m,
the logarithm would be log 109 ≈ 21. If Rmax = 1km, it would be log 1012 ≈ 28,
which is still reasonable. Hence, we do not really need to worry about this factor.

The most interesting part of the defect free energy is the factor of q2. It shows that
defects with high topological charge have a much greater free energy than defects
with low charge. Hence, there is an energetic preference for high-charge defects to
break up into defects with the minimum possible charge (which is 1 for a polar phase
or 1

2 for a nematic phase). For example, if a defect of charge 1 breaks into two defects
of charge 1

2 , the energy decreases from (1)2 to 2 × ( 12 )
2. Hence, in experiments, we

should expect to see the lowest-charge defects but not higher-charge defects.
We can use a similar method to calculate the interaction between two defects.

Suppose we have a defect of charge q1 at (x0, 0), and another defect of charge q2
at (−x0, 0). Because the Euler-Lagrange equation (10.92) is linear, the solution for
φ(x) is the superposition of the solutions for each individual defect. In Cartesian
coordinates, it can be written as

φ(x, y) = φ1(x, y) + φ2(x, y) (10.96)

= φ1 + q1 tan
−1

(
y

x − x0

)
+ φ2 + q2 tan

−1
(

y

x + x0

)
.

Hence, the extra free energy associated with the interacting pair (compared with the
free energies of isolated defects 1 and 2) is

Fint = Fpair − F1 − F2

= 1

2
K

∫ Xmax

−Xmax

dx
∫ ∞

∞
dy

[
|∇φ|2 − |∇φ1|2 − |∇φ2|2

]

= 1

2
K

∫ Xmax

−Xmax

dx
∫ ∞

∞
dy

2q1q2(x2 − x20 + y2)

(x2 − 2xx0 + x20 + y2)(x2 + 2xx0 + x20 + y2)

= 2πK q1q2 log

(
Xmax

x0

)
. (10.97)

From this result, we see that the interaction free energy is proportional to the product
of charges q1q2, just as in Coulomb’s law for electrostatics. The interaction free
energy scales as the logarithm of the separation between defects, and hence the force
scales as 1/separation, which is analogous to Coulomb’s law in two dimensions. The
force is repulsive for defects of the same sign, and attractive for defects of opposite
signs.
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10.9 Chirality and Cholesteric Liquid Crystals

So far we have assumed that the liquid-crystal molecules can be represented as rods
or arrows. In many cases, this is a reasonable approximation. However, there is one
type of molecular asymmetry that has a profound effect on the large-shape structure
of a liquid-crystal phase. This asymmetry is called chirality.

The concept of chirality refers to an object that is different from its mirror image;
it cannot be superimposed on its mirror image through any rotations. Of geometrical
shapes, a sphere or a cylinder is not chiral, because it is equivalent to its mirror image.
However, a hand is chiral, because a right hand is different from its mirror image,
which is a left hand. Hence, we can say that a chiral object has handedness.

Of course, there are many ways to form chiral objects. In chemistry, the most
common way to form chiral molecules is through chemical bonds on carbon atoms.
As you may recall from chemistry classes, a carbon atom normally bonds to four
atoms or chemical groups, which are arranged in a tetrahedron around the central
carbon. If at least two of these four chemical groups are equivalent to each other,
then the molecule is equivalent to its mirror image, and it is called achiral. However,
if all four of these chemical groups are different from each other, then the molecule
becomes different from its mirror image, and is called chiral.

An example is the chemical structure of alanine, shown in Fig. 10.22. Here, the
central carbon is bonded to H, CH3, NH2, and COOH. Because these chemical
groups are all different from each other, the molecule is not equivalent to its mirror
image; there is no way to rotate the molecule so that it can be superimposed on its
mirror image. The molecule can occur in two distinct mirror-image forms, called
stereoisomers. There are several chemical conventions for how to label these forms;
in one convention they are called (R)- and (S)-alanine (after the Latin words for right
and left).

Synthesizing chiral molecules is an important part of organic chemistry, mainly
because of biomedical applications. Because the human body is composed of chiral
molecules (including proteins, lipids, and DNA), different stereoisomers of drugs
interact with the body in different ways. One well-known example is thalidomide:
one form of the drug is useful for preventing nausea in pregnant women, while
the mirror image is infamous for causing birth defects. Hence, the pharmaceutical
industry puts great effort into developing chirally pure drugs.

Fig. 10.22 Structure of
alanine, a typical chiral
molecule, showing the
difference between the two
mirror images. From http://
www.nobelprize.org/nobel_
prizes/chemistry/laureates/
2001/popular.html

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2001/popular.html
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2001/popular.html
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2001/popular.html
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2001/popular.html
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Fig. 10.23 Chemical structure of the liquid crystal cholesteryl benzoate, with stars indicating the
chiral carbons. Adapted from http://en.wikipedia.org/wiki/Cholesteryl_benzoate

Like drugs, some types of liquid-crystal molecules can also exist in distinct chiral
forms, which can be formed through biological processes or chemical synthesis. As
an example, Fig. 10.23 shows the chemical structure of cholesteryl benzoate, which
was the first material in which a liquid-crystal phase was discovered (by the Austrian
botanist Friedrich Reinitzer). This molecule includes eight chiral carbons, which are
indicated by stars in the figure. Because each chiral carbon can have take the (R) or
(S) form, the molecule can in principle have 28 = 256 distinct stereoisomers, only
one of which occurs naturally. In this respect, cholesteryl benzoate is quite different
from 5CB, shown in Fig. 10.1a. The liquid crystal 5CB does not have any chiral
carbons; it has a symmetric structure that is equivalent to its mirror image.

Now the question is: If we form a liquid-crystal phase of asymmetric molecules
like cholesteryl benzoate, how does the molecular chirality affect the structure of the
phase? We can think about this question either microscopically or macroscopically.

On a microscopic level, we can visualize the packing of chiral molecules by the
packing of hard screws, as shown in Fig. 10.24. Screws are chiral objects, which are
different from their mirror images. When screws pack in the most efficient possible
way, so that their threads fit together, they are not parallel to their neighbors. Rather,

Fig. 10.24 Schematic representation of the packing of chiral molecules by the packing of hard
screws. In the most efficient packing, molecules are not parallel to their neighbors, but rather are at
a slight twist anglewith respect to their neighbors. Based on J.P. Straley,Phys. Rev. A 14, 1835 (1976)
(Interactive version at http://www.springer.com/cda/content/document/cda_downloaddocument/
Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420.)

http://en.wikipedia.org/wiki/Cholesteryl_benzoate
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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they are at a slight twist angle with respect to their neighbors. Of course, most
chiral molecules do not look very much like screws, and we cannot take this packing
model too seriously. However, it illustrates a point of symmetry: Chiral molecules
pack together with a certain favored twist, and the mirror-image molecules pack
together with the opposite favored twist.

On a macroscopic level, we can see the same point by thinking about order and
symmetry. A chiral material is less symmetric than an achiral material, because the
achiral material has a reflection symmetry but the chiral material does not. Likewise,
a chiral material has more order than an achiral material, because the chiral material
has a particular handedness. As a result, the free energy for a chiral liquid crystal
can have an extra term, which is not permitted in the free energy for an achiral liquid
crystal.

In an achiral liquid crystal, the Frank free energy of Eq. (10.73) has terms that are
quadratic in splay, twist, and bend. In a chiral liquid crystal, the Frank free energy can
also have an extra term that is linear in twist. This extra term is −K2q[n̂ · (∇ × n̂)];
the coefficient is written as K2q for a reason that will become clear soon. This term
breaks the symmetry between right-handed twist [n̂ · (∇ × n̂) > 0] and left-handed
twist [n̂ · (∇ × n̂) < 0]. If K2q > 0, then right-handed twist is favored and left-
handed twist is disfavored; the opposite is true if K2q < 0. Mathematically, we can
say that the twist n̂ · (∇ × n̂) is a pseudoscalar, and the coefficient K2q is also a
pseudoscalar; their product is a proper scalar, which is permitted in the free energy.
The pseudoscalar coefficient K2q is only permitted in a chiral liquid crystal; it must
be zero in an achiral liquid crystal because of the reflection symmetry.

With the extra term, the Frank free energy of a chiral liquid crystal becomes

F =
∫

d3r

[
1

2
K1(∇ · n̂)2 + 1

2
K2[n̂ · (∇ × n̂)]2 + 1

2
K3|n̂ × (∇ × n̂)|2

− K2q[n̂ · (∇ × n̂)]
]
. (10.98)

By completing the square, we can transform it into

F =
∫

d3r

[
1

2
K1(∇ · n̂)2 + 1

2
K2[n̂ · (∇ × n̂)−q]2 + 1

2
K3|n̂ × (∇ × n̂)|2 + const

]
.

(10.99)
Now you see why the coefficient of the linear term was written as K2q: to make it
easier to complete the square. From Eq. (10.99), we can see that the minimum free
energy for a chiral liquid crystal has zero splay, nonzero twist, and zero bend:

∇ · n̂ = 0, (10.100a)

n̂ · (∇ × n̂) = q, (10.100b)

n̂ × (∇ × n̂) = 0. (10.100c)
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Fig. 10.25 Director
configuration in a chiral
nematic or cholesteric phase
(Interactive version at http://
www.springer.com/cda/
content/document/cda_
downloaddocument/
Selinger+Interactive+Figures.
zip?SGWID=0-0-45-
1509169-p177545420.)

Is it possible for the liquid crystal to find any director configuration that satisfies
the three equations (10.100)? Yes! The solution is the helical structure shown in
Fig. 10.25. Mathematically, the director field can be written as

n̂(r) = (cos qz, sin qz, 0). (10.101)

This structure is called the chiral nematic or cholesteric phase. In the cholesteric
phase, the local structure is similar to the nematic phase: the molecules are partially
aligned along the local axis n̂(r). However, on a larger scale, the axis n̂(r) varies as
a function of position in this helical configuration.

Along the helical axis, the cholesteric phase is periodic, and the periodicity is
called the pitch. In terms of the parameter q, the pitch is π/q. (It is π/q, not 2π/q,
because n̂ and −n̂ describe the same physical state.) In typical cholesteric liquid
crystals, the pitch is on the order of microns, similar to the wavelength of visible
light or the size of a biological cell. It is three orders of magnitude bigger than the
spacing between molecules, which is on the order of nanometers. Hence, the average
angle between neighboring moleculees is of order π/1000 radians, which is much
smaller than we might guess from the packing of screws in Fig. 10.24. The favored
twist from molecule to molecule is a very small effect, but it adds up in a system of
many chiral molecules.

The cholesteric pitch generally depends on temperature. Because of this depen-
dence, one application of cholesteric liquid crystals is for a thermometer, which
changes its pitch (and hence its color) as a function of temperature.

http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
http://www.springer.com/cda/content/document/cda_downloaddocument/Selinger+Interactive+Figures.zip?SGWID=0-0-45-1509169-p177545420
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10.10 Other Liquid-Crystal Phases

In addition to the nematic and cholesteric phases, there is a wide variety of other
liquid-crystal phases, with different types of order that are intermediate between
isotropic liquids and fully ordered crystals. Here, I can just mention a few of the
highlights.

One class of liquid-crystal phases is called blue phases.Like the cholesteric phase,
blue phases occur in systems of chiral liquid crystals, and themolecular chirality leads
to a spontaneous twist of the director field. However, while the cholesteric phase has
a simple twist of the director in one direction, blue phases have a more complex
3D modulation of the director field. This modulation can be regarded as a lattice of
double-twist tubes, separated by a network of defect lines.

Another class of liquid-crystal phases is called smectic phases. In smectic phases,
the molecules have nematic orientational order and they are arranged in layers, i.e.,
there is a 1D density wave. Hence, a smectic phase is a crystal in one direction and
a fluid in the other two directions.

Because smectic phases have both nematic order and smectic layer order, we
need to specify the relationship between these two types of order. If the nematic
order is aligned perpendicular to the smectic layers (so that the molecules stand
upright with respect to the layers), then the liquid crystal is called a smectic-A phase.
If the nematic order is aligned at an oblique angle to the smectic layers (so that the
molecules are tilted with respect to the layers), then the liquid crystal is called a
smectic-C phase. Comparing these two phases, the smectic-A phase is symmetric
under arbitrary rotations about the layer normal, while the smectic-C phase is not
symmetric under such rotations. Hence, the smectic-C phase has less symmetry and
more order than the smectic-A phase.

Apart from molecular tilt, smectic liquid crystals can have other types of order
within the layers. For example, they can have hexatic order in the orientations of the
vectors between neighboring molecules within the layers. (These vectors are called
bonds, although they are not chemical bonds, and hence the order is called bond-
orientational order.) If the liquid crystal has both hexatic order and tilt order, then
it can have different phases with different relative orientations of these two types of
order. Combining these various types of order, there can be a wide range of smectic
phases.

If a smectic-C phase ismade of chiral molecules, the combination of smectic order
and tilt order and chirality leads to a ferroelectric liquid crystal, with a spontaneous
electrostatic polarization. This electrostatic polarization is a vector in the smectic
layer plane, perpendicular to the director. Hence, this phase really does have polar
order, in contrast with the tensor order in a nematic. In a bulk ferroelectric liquid
crystal, the tilt direction and the polarization tend to rotate from layer to layer in a
helix, analogous to a cholesteric phase. Near a surface, the helix can be suppressed
by surface interactions, leading to a surface-stabilized ferroelectric liquid crystal.

In some cases, a smectic liquid crystal of chiral molecules can form a twist-
grain-boundary (TGB) phase, shown in Fig. 10.26. This structure consists of a series
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Fig. 10.26 Structure of the
twist-grain-boundary (TGB)
phase (Interactive version at
http://www.springer.com/
cda/content/document/cda_
downloaddocument/
Selinger+Interactive+Figures.
zip?SGWID=0-0-45-
1509169-p177545420.)

of smectic slabs, separated by grain boundaries. Across each grain boundary, the
orientation of the smectic slabs rotates around a helical axis, with a twist induced
by the molecular chirality. If one looks closely at the grain boundaries, one can
see that each grain boundary is composed of a series of line defects in the smectic
order, which are called screw dislocations. Although this theoretical construction is
quite complex, the TGB phase has been seen experimentally in X-ray diffraction and
freeze-fracture electron microscopy.

In research on all of these liquid-crystal phases, there are several common themes.
First is the concept of order as broken symmetry. All of these phases have different
types of order, meaning that they have broken different types of symmetry, compared
with a uniform, isotropic state. Each type of broken symmetry is characterized by an
order parameter, which indicates the magnitude (how much the symmetry is broken)
and direction (in which way the symmetry is broken). Each phase can be described
by an order parameter, or by the relationships among multiple order parameters.

A second general theme is that minimization of the free energy determines the
equilibrium state of the material. In most cases, this minimization involves a com-
petition between energy (which favors an ordered phase) and entropy (which favors
a disordered phases). In certain systems, however, the transition between order and
disorder is driven by competition between two kinds of energy or two kinds of en-
tropy.

Finally, another general theme is the concept that ordered phases have topological
defects. In general, each type of order is associated with its own type of defect. These
defects help us to recognize a phase, and often are very important for the properties
of the phase.

In any area of research on soft materials, these concepts will take you far!

Further Reading
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Pseudoscalar, 125, 161, 178
Pseudotensor, 125, 126
Pseudovector, 125, 126, 128, 129
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R
Relaxation time, 106, 107
Renormalization group, 62
Rotation matrix, 122, 123, 126

S
Saddle-splay, 162
Scaling relation, 19, 44, 56, 81
Second-order, 21, 40, 110, 144
Shear modulus, 91, 104, 107
Simple cubic, 94, 100
Smectic, 61, 180, 181
Soliton, 81, 82
Splay, 160, 161, 168, 178
Spontaneous symmetry breaking, 7, 17, 95,

142, 158
Steam tables, 48
Stereoisomer, 176, 177
Stirling’s formula, 12, 28
Strain, 82, 103–107
Stress, 82, 103–108, 110
Supercooled liquid, 109
Supercritical fluid, 39–41, 43, 46, 48, 59, 78
Surface tension, 73, 81–83, 85
Susceptibility, 11, 22, 44, 55
Symmetry, symmetric, 7, 17, 19, 41, 51, 53–

55, 61, 94, 95, 97, 131, 132, 140, 145,
158, 167, 178, 181

T
Thermotropic, 157, 158
Topological charge, 169, 171, 173, 175
Triple point, 96
Twist, 160, 161, 163, 165, 166, 168, 177–181
Twist-grain-boundary phase, 180, 181

U
Ultraviolet divergence, 174
Uncertainty principle, 27
Uniaxial, 140
Universality classes, 62

V
Van der Waals theory, 34–37, 39–41, 45, 46,

49, 51, 60, 96, 156
Viscoelastic, viscoelasticity, 105
Viscosity, 91, 101, 104–110
Vogel-Fulcher law, 109, 110
Volume fraction, 98, 157

W
Wave equation, 72

Y
Young’s modulus, 102, 103
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