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Preface

The 4th GeoShanghai International Conference was held on May 27-30, 2018, in
Shanghai, China. GeoShanghai is a series of international conferences on
geotechnical engineering held in Shanghai every four years. The conference was
inaugurated in 2006 and was successfully held in 2010 and 2014, with more than
1200 participants in total. The conference offers a platform of sharing recent
developments of the state-of-the-art and state-of-the-practice in geotechnical and
geoenvironmental engineering. It has been organized by Tongji University in
cooperation with the ASCE Geo-Institute, Transportation Research Board, and
other cooperating organizations.

The proceedings of the 4th GeoShanghai International Conference include eight
volumes of over 560 papers; all were peer-reviewed by at least two reviewers. The
proceedings include Volumes 1: Fundamentals of Soil Behavior edited by
Dr. Annan Zhou, Dr. Junliang Tao, Dr. Xiaogiang Gu, and Dr. Liangbo Hu;
Volume 2: Multi-physics Processes in Soil Mechanics and Advances in
Geotechnical Testing edited by Dr. Liangbo Hu, Dr. Xiaogiang Gu, Dr. Junliang
Tao, and Dr. Annan Zhou; Volume 3: Rock Mechanics and Rock Engineering
edited by Dr. Lianyang Zhang, Dr. Bruno Goncalves da Silva, and Dr. Cheng Zhao;
Volume 4: Transportation Geotechnics and Pavement Engineering edited by
Dr. Xianming Shi, Dr. Zhen Liu, and Dr. Jenny Liu; Volume 5: Tunneling and
Underground Construction edited by Dr. Dongmei Zhang and Dr. Xin Huang;
Volume 6: Advances in Soil Dynamics and Foundation Engineering edited by
Dr. Tong Qiu, Dr. Binod Tiwari, and Dr. Zhen Zhang; Volume 7: Geoenvironment
and Geohazards edited by Dr. Arvin Farid and Dr. Hongxin Chen; and Volume 8:
Ground Improvement and Geosynthetics edited by Dr. Lin Li, Dr. Bora Cetin, and
Dr. Xiaoming Yang. The proceedings also include six keynote papers presented at
the conference, including “Tensile Strains in Geomembrane Landfill Liners” by
Prof. Kerry Rowe, “Constitutive Modeling of the Cyclic Loading Response of Low
Plasticity Fine-Grained Soils” by Prof. Ross Boulanger, “Induced Seismicity and
Permeability Evolution in Gas Shales, CO, Storage and Deep Geothermal Energy”
by Prof. Derek Elsworth, “Effects of Tunneling on Underground Infrastructures”
by Prof. Maosong Huang, “Geotechnical Data Visualization and Modeling of Civil



vi Preface

Infrastructure Projects” by Prof. Anand Puppala, and “Probabilistic Assessment and
Mapping of Liquefaction Hazard: from Site-specific Analysis to Regional
Mapping” by Prof. Hsein Juang. The Technical Committee Chairs, Prof. Wenqi
Ding and Prof. Xiong Zhang, the Conference General Secretary, Dr. Xiaogiang Gu,
the 20 editors of the 8 volumes and 422 reviewers, and all the authors contributed to
the value and quality of the publications.

The Conference Organizing Committee thanks the members of the host orga-
nizations, Tongji University, Chinese Institution of Soil Mechanics and
Geotechnical Engineering, and Shanghai Society of Civil Engineering, for their
hard work and the members of International Advisory Committee, Conference
Steering Committee, Technical Committee, Organizing Committee, and Local
Organizing Committee for their strong support. We hope the proceedings will be
valuable references to the geotechnical engineering community.

Shijin Feng
Conference Chair
Ming Xiao
Conference Co-chair
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Prediction Method of Unsaturated Slope
Stability Under Rainfall and Fluctuation
of Reservoir Water Level

X. Xiong', Z. M. Shi**®9 Y. L. Xiong*, X. L. Ma®, and F. Zhang'
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Abstract. As a sudden catastrophic geological disaster, landslides always cause
a lot of casualties and property damage. Landslides in reservoir areas are not
caused by a single factor, such as rainfall or fluctuation of reservoir water level,
but the result of the combined actions. In order to accurately describe landslide
mechanism and eventually be able to forecast a landslide accurately, it is nec-
essary to select suitable constitutive model and rational parameters for numerical
calculation of slope stability. In this paper, an unsaturated soil constitutive model
was selected to describe the soil mechanical properties, in which the parameters
of the model for the unsaturated soil S1 were obtained by element tests. With
these parameters, numerical analyses were conducted to calculate the boundary
value problem of slope model tests, in which the stability of model slope with the
same soil S1 was tested under rainfall and fluctuation of reservoir water level. By
comparing the test and calculation results, it was found that the numerical method
proposed in this paper has satisfactory accuracy, being able to describe the
mechanism of landslide and make a rational prediction of slope failure.

Keywords: Slope stability - Unsaturated soil - Rainfall
Fluctuation of reservoir water level

1 Introduction

In recent years, due to rapid development of economy, infrastructure in mountainous
area of China develops very quickly, which involves the construction of large water
power stations. Number of landslides in the reservoir areas happened frequently.
Landslides often occur during the period of fluctuation of reservoir water level, and this
period is often accompanied by large-scale rainfall. Therefore, landslides in reservoir
areas are caused by the combined actions. In addition, the natural condition of the
slopes is mostly unsaturated. In order to accurately describe landslide mechanism,
which is important in geological catastrophes mitigation, it is necessary to select

© Springer Nature Singapore Pte Ltd. 2018
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suitable constitutive model and rational parameters of soils to estimate the slope sta-
bility under rainfall and fluctuation of reservoir water level.

Many researches on the slope stability under rainfall and fluctuation of reservoir
water level can be found in literature. Field monitoring data have been used to analyze
the deformation of slopes due to rainfall and fluctuation, indicating that these two input
factors have different influence on the slope stability (Wang et al. 2016; Sun et al. 2016;
Huang et al. 2016). Numerical method has also been utilized, e.g., probabilistic models
(Zhou et al. 2016) and limited equilibrium (Zhang et al. 2014; Liang et al. 2015; Huang
et al. 2016). However, in these calculations, the mechanical properties, such as the
stress-strain relation of unsaturated soil, was not described by rational constitutive
model. Moreover, the determination of the parameters involved in constitutive model
was lack of explicit description. As the results, these numerical calculations cannot be
used to predict landslides, but only fit the landslides behavior to some extent that have
already happened.

In this paper, an unsaturated soil constitutive model, proposed by Zhang and
Ikariya (2011), was selected to describe the soil mechanical properties, and the
parameters were determined from element tests. Based on the model and using these
parameters, soil-water-air full coupling analyses with a finite element-finite deforma-
tion (FE-FD) scheme were conducted to calculate the boundary value problem
(BVP) of slope failure model tests. By comparing the results of the model test and the
calculation, the method was verified if it could predict the landslide due to rainfall and
fluctuation of reservoir water level.

2 Constitutive Model and Parameters

To properly describe the changes of slope soil saturation under rainfall and fluctuation
of reservoir water level, which lead to the reduction of soil strength and landslides,
unsaturated soil constitutive model was considered in the numerical calculation.

Basing on experimental results, Zhang and Ikariya (2011) proposed an unsaturated
soil constitutive model, using skeleton stress and degree of saturation as independent
variables. In the model, it is assumed that normally consolidated line in unsaturation
state (V.C.L.S.) is parallel to the normally consolidated line in saturated state (N.C.L.)
but in a higher position than N.C.L. Skeleton stress is a kind of Bishop effective stress,
defined as,

O’g = Jl’.j — U0 + Sr(ug — uy)d; = 0+ S50 (1)
where a;]’. is skeleton stress tensor, agj is total stress tensor, ag is net stress tensor, S, is
degree of saturation, u, is air pressure, u,, is water pressure and s is suction. The
constitutive model is able to describe not only the behavior of unsaturated soil but also
saturated soil because the skeleton stress can smoothly shift to effective stress from
unsaturated condition to saturated condition. The constitutive model includes nine
material parameters.

In the unsaturated soil constitutive model, a moisture characteristics curve
(MCC) considering moisture hysteresis of unsaturated soil is also proposed. Depending
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on the state of the moisture, the moisture characteristics are given in three different
tangential and arc-tangential functions as primary drying curve, secondary drying curve
and wetting curve, which include eight parameters.

There have been some studies on the application of the unsaturated soil constitutive
model (Xiong et al. 2014). Thus, it is thought to be proper to select the constitutive
model in the stability analysis of unsaturated slope under rainfall and fluctuation of
reservoir water level.

In this paper, to assure the accuracy of the calculation of BVP, all the parameters of
the unsaturated soil constitutive model are determined based on element tests. A geo-
material, named as S1 whose grading curve is shown in Fig. 1, was used as the model
ground of slope failure model tests. The values of the parameters involved in the

moisture characteristics curve, obtained from the water retention test of S1, are listed in
Table 1.
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Fig. 1. Gradation curve of S1. Fig. 2. Water retention test and
numerical simulation results of unsat-
urated S1.

Table 1. Parameters of MCC of S1.

Saturated degrees of saturation S 0.62
Residual degrees of saturation S, 0.17
Parameter corresponding to drying air entry value (kPa) S; |2.30
Parameter corresponding to wetting air entry value (kPa) S,, | 0.10

Initial stiffness of scanning curve (kPa) kfp 500
Parameter of shape function ¢; 1.20
Parameter of shape function ¢, 1.70
Parameter of shape function c; 24

Figure 2 shows the simulation result that fits the experimental result well. Triaxial
tests of S1 have been done under consolidated-undrained conditions with the void ratio
e = 0.70 (Zuo 2013). In the triaxial tests, confining stresses were 50, 100 and 200 kPa,
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and the shear rate is 0.4 mm/min. Based on the simulation of the triaxial tests, the
material parameters of S1 were calibrated and their values are listed in Table 2.
Compared results of test and simulation shown in Fig. 3 revealed that the magnitude
and trend of shear stress and pore water pressure are basically the same, implying that
the constitutive model can properly describe the mechanical properties of S1.

Table 2. Material parameters of S1.

Compression index 4 0.123
Swelling index 0.024
Critical state parameter R 3.55
Void ratio N (p’ = 10 kPa on N.C.L.) 0.57
Poisson’s ratio v 0.25
Parameter of overconsolidation a 0.85
Parameter of suction b 0.00
Parameter of overconsolidation f§ 1.00
Void ratio N, (p’ = 10 kPa on N.C.L.S.) | 0.77
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Fig. 3. Comparison between CU triaxial tests and numerical simulation of S1.
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3 Brief Introduction of Model Test

Taking the Three Gorges Reservoir area as an example, slope failure model test under
rainfall and fluctuation of reservoir water was designed, used S1 as the model ground
material. As shown in Fig. 4, the slope model was made of a homogeneous ground.
When preparing the slope model, layered compaction method was used to control the
void ratio (¢ = 0.70). The boundary conditions are given as: (a) the top and left surfaces
are permeable, while the front, back, bottom and right surfaces are impermeable; (b) the
artificial rainfall could cover the entire top surface; (c) the initial reservoir water level of
left surface is 35 cm. The measuring points are arranged as shown in Fig. 4.

The characteristics of the reservoir water level operation and seasonal rainfall in the
area are summarized and simplified for the test as shown in Fig. 5. The test result
shows that under the rise of the reservoir water level and repeated rainfall, the shallow
landslide occurred at 451 min, just after the third rainfall.

2
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Fig. 4. Measuring points of slope model. Fig. 5. Model testing process.

4 Simulation of Model Test

4.1 Numerical Model and Initial Conditions

The slope failure model test was simulate with finite element method (FEM) with the
program named as SOFT (Xiong et al. 2014), using a finite element-finite difference
scheme (FE-FD) for soil-water-air three-phase coupling problems. In the analysis, FEM
is used for spatial discretization of solid, liquid and gas phases, while finite difference
method (FDM) is used for discretization of time domain (Fig. 6), a typical hybrid
scheme of FD-FE. The values of the parameters were the same as Tables 1 and 2.
Figure 7 shows the finite element mesh used in the simulation. The size of the FEM
mesh, composed of 1778 nodes and 1680 4-node isoparametric elements, is the same as
that of the model test under plane strain conditions. Hydraulic and air ventilation
boundary conditions, as shown in Fig. 8(a), are set the same as the model test. For the
displacement boundary condition, as shown in Fig. 8(b), surface E-F is fixed in both
directions; surface A-F and D-E are fixed at the vertical displacement in the x direction;
the other surfaces are free in the x and y directions.

In the numerical simulation of BVP, the settings of the initial conditions are very
important, which would greatly affect the accuracy of the calculation. Based on the
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moisture characteristics curve, the initial degree of saturation of S1 is S,y = 0.177, and
the initial pore pressure is pyp = —6 kPa (sg = 6 kPa). Since the model slope was pre-
pared by layered compaction method, the S1 was overconsolidated at the initial con-
dition. For simplicity, an extra mean effective stress of 5 kPa was added to the whole
area to consider the compaction effect. Figure 9 shows the initial vertical effective
stress field in the calculation.

“m
24
19
14
10 .
5 el
Fig. 6. FEM mesh for model test. Fig. 7. Initial effective stress field (Unit:
kPa).
"7800mm—"
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rﬂillUOmm—J E ) Fixed all displacement
2600mnr | F E

Fig. 8. Boundary condition of numerical modeling.

In FE-FD analysis related to soil-water-air full coupling problems, time interval of
each stage could influence the calculation accuracy. After comparing different time
intervals, time interval was set to be 0.2 s/step in all stages. At initial stage, the
reservoir water level of 35 cm was given, and the reservoir water level and rainfall
conditions at other stages are set in the way as shown in Fig. 5.

4.2 Numerical Simulation and Discussion

As shown in Fig. 9, the degree of saturation at the bottom of slope increased obviously
with the rise of the reservoir water level. While the degree of saturation changed little at
the top of the slope. The rainfall increased the degree of saturation at the upper part of
slope and after three rainfall stages, the slope was almost full saturated.

Figure 10 shows the comparison between the test and the simulation results. The
excess pore water pressure (EPWP) at PP7 occurred earlier than those at PP1 and PP4,
which are in good agreement with the test results. In addition, the numerical simulation
results can clearly reflect the influence of the boundary conditions on the slope.
The EPWP of the measuring points increased obviously under the short heavy rainfall,
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and the earth pressures decreased at the same time. At the end of short heavy rainfall, the
vertical displacement increment was distinct, indicating the occurrence of a landslide.
Though the test and simulation results are not completely coincident with each other in
its value, some physical quantities, such as EPWP, earth pressure and displacement, are
qualitatively in the same changing trends. Therefore, it is reasonable to say that the
numerical calculation used in this paper can describe the slope stability rationally.

Excessive Pore Water Pressure [kPa]

Excessive Pore Water Pressure [kPa]
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D (T=136 min)

G (T=386 min)

A—————————
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Fig. 9. Simulation results of degree of saturation distributions at different stages.
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Figure 10 also shows that the rising of reservoir water level, long weak rainfall and
short heavy rainfall have different influence on the slope stability. The increment of
reservoir water level (73-98 min) led to the slow increase of EPWP and displacement,
while combined with the long weak rainfall (98136 min), EPWP and displacement
increased dramatically. Slope stability was more influenced by the short heavy rainfall
than long weak rainfall, since short heavy rainfall caused sudden decrease of earth
pressure and increase of vertical displacement in the upper part of the slope, resulting in
a shallow landslide. During the whole process, an important reason of slope stability
reduction is the increase of the reservoir water level and long weak rainfall, even these
do not completely destroy the slope. It is the short heavy rainfall that triggered the final
shallow landslide.

5 Conclusion

In this paper, a slope failure model test was simulated by soil-water-air full coupling
FE-FD analysis. By comparing the results of the model test and the calculation, it is
known that though the test and simulation results are not completely coincident with
each other, some physical quantities, such as excessive pore water pressure, earth
pressure and displacement, are similar in their changing trends. Therefore, the calcu-
lation method used in this paper has satisfactory accuracy to describe the landslide
mechanism and make a rational prediction of slope failure.
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Abstract. The generation of complex slope geometries by discrete element
method (DEM) for modelling landslides is difficult, among other issues, due to
the lack of an efficient technique to manipulate and pack a large number of
particles within a predefined slope domain. The existing numerical techniques
generally use some regular and simple slope geometries, which can lead to some
unreliable results. The current study proposes a flexible and simple technique to
generate complex slope samples in DEM by feeding the slope domain with rigid
and frictionless spherical particles. The slope profile and failure surface are
imported from available site investigation data, which can be used to construct
the slide boundary in DEM. Based on the geometry of the slide boundary, a
virtual hopper is placed atop of the profile, feeding granular particles continu-
ously into the slide bounding space, until it is fully filled. The layered structure
of the slope can be attained in this model by generating each sub-layer sepa-
rately. The slope mass generated by the proposed technique in this study has
been used to simulate the failure and subsequent valley damming of Tangjiashan
landslide, from which some mechanisms of slope motion and deformation, as
controlled by the complex layering geometries, are clearly illustrated. The model
is very flexible and requires only minor corrections to fully describe the slope or
other complex geometries with realistic stress-strain state in DEM models.

Keywords: Discrete element method + Landslides + Complex slope geometry
Sample generation - Layered structure

1 Introduction
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Landslides can be associated with an almost instantaneous collapse and spreading,
posing a significant hazard to human lives and lifeline facilities worldwide. In addition,
slope failures occurring near river valleys with steep bank slopes could potentially
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create landslide dams blocking the river channel. These landslide dams may frequently
fail catastrophically, leading to serious downstream inundation and flooding, often with
very large social and economic consequences [1]. For instance, rockslides and land-
slides induced by the 2008 Wenchuan earthquake destroyed many villages and killed
more than 20,000 people. These phenomena are under intensive research due to their
significant destructive power as well as the still unexplained mechanisms of long
travelling distances [2].

For many years, myriads of efforts have been devoted to study the failure of slope
mass and the subsequent runout. However, less attention has been paid in analyzing the
size and geometry of landslides resulting from given geological and topographical
settings which are essentially the characteristics preserved in geologic records [3]. For
numerical investigations via the Discrete Element Method (DEM) [4], it is always
difficult to generate realistic initial slope geometries due to a lack of highly efficient
techniques to manipulate and pack a large number of particles within a predefined
complex slope domain. Alternatively, many researchers focus only on the failure and
runout of simplified regular granular blocks, attempting to extract some useful infor-
mation from their numerical analyses. To study the propagation of landslides, the slope
mass was commonly generated by gravitational deposition of granular particles within
a prismatic box until the desired solid fraction is reached, while the slope sliding
surface was represented by rigid planes. Then, the slope mass was released to fall down
the slope under gravity [5]. In these studies, the slope size and geometry were sig-
nificantly simplified, which are sometimes problematic or even misleading.
Bonilla-Sierra et al. [6] attempted to generate a complex slope with predefined
topography and discontinuity using photogrammetric data and open source DEM
platform YADE. In their modeling, the slope mass was generated via cloning a brick of
bonded particles to fill the entire model volume. Even though each small granular
element can be densely packed, the whole slope mass cannot represent the same stress
and strain states as real slope, because the profile of the whole granular packing would
change when gravity is applied on each particle during the simulations. Thus, both the
slope geometry and its consolidation state should be considered during the generation
of slope models.

Since the slope motion and deformation are closely related to the initial slope
geometry, it is important to generate realistic slope models in the DEM simulations. In
this regard, the current research has focused on proposing an efficient numerical
technique for generating complex slope geometries using DEM, aiming to provide new
insights into the detailed DEM modeling process.

2 Generation of the Tangjiashan Slide by the DEM

The 2008 Ms 8.0 Wenchuan earthquake triggered lots of catastrophic landslides, dis-
tributed along the Longmenshan seismic fault zone within a 300 km long and 10 km
wide region in Sichuan Province, China [7] (see Fig. 1(a)). In this region, intense
weathering leads to the formation of large unstable weak rock masses and thick
deposits covering the mountain slopes. As a result, slopes in this area are very sus-
ceptible to mass movement. Among these slides, the Tangjiashan landslide is one of the
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Fig. 1. (a) Location of the seismic zone and Tangjiashan landslide dam (after Chen ez al. [9]),
(b) Aerial view of Tangjiashan landslide dam

largest, with a total displaced mass of approximately 2.04 x 10’ m® [8]. This landslide
occurred immediately after the earthquake and it moved atop of the fragmented bed-
rock scouring the bank of Jianjiang River for 2400 m and subsequently forming a large
landslide dam [7] (see Fig. 1(b)).

According to the site investigation by Xu et al. [8], the Tangjiashan landslide dam
was approximately 800 m long, 611 m wide and 82 to 124 m high. The landslide dam,
as described by Xu et al. (2009), in a first approximation, consists of three layers with a
slight increase in grain size with depth. As a back analysis, the initial slope geometry is
assumed to be composed of three layers, as shown in Fig. 2.
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Fig. 2. Profile of the layered slope mass, with layers I: weakly weathered rocks; II: boulders and
blocks; III: fragmented rocks with soil. The slope profile is modified after Xu ez al. [8]
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The current study intends to generate the complex slope geometries of the
Tangjiashan landslide by the DEM. Zhao et al. [10] has described a simple ‘hopper
discharge technique’, by which the spherical particles were allowed to fill up the slope
domain. From the Tangjiashan landslide case study, we aim to illustrate how to use a
simple but useful numerical technique to generate complex slope models for numerical
analyses. As the failed slope mass suffers mainly the translating and partially rotating
movements along the failure plane, it can be reasonably assumed that the slope mass
probably suffered a contained disintegration, more concentrated at the front and toe of
the slide mass. To consider the layered deposition characteristics of the Tangjiashan
landslide, the initial slope mass is assumed to be composed of three layers which align
approximately parallel to the slope failure surface (see Fig. 2). The profile and relative
size of each layer is estimated by the profile of final deposit identified in Xu et al. [8].
The contact stiffness of particles located within each layer are set differently, with low
stiffness for fragmented rocks and soils, moderate stiffness for the large boulders and
blocks and high stiffness for the non-completely disintegrated rock strata.

According to the geometrical data extracted from Fig. 2, the slope profile can be
generated as an enclosed space. The slope geometry consists of the upper slope profiles
(e.g. profiles of layer I, I and III) and the lower slope sliding surface, as represented by
smooth and rigid walls in DEM. The performed simulation of Tangjiashan rockslide
has a plane strain boundary condition in which the out of plane direction of the model
is set as a periodic boundary. In the DEM model, the size of the periodic dimension is
set as 22 m, which is at least ten times larger than the size of the effective particle size.
In this framework, a number of frictionless particles will be used to fill up this unit
periodic cell which can be regarded as one fraction of the real Tangjiashan slope. Any
particle with its centroid moving out of the periodic cell through one side of the
boundary will be mapped back into the cell domain at a corresponding location on the
opposite side of the cell. Particles with only one part of the volume lying outside the
cell can interact with particles near the boundary and one image particle will be
introduced into the opposite side at a corresponding location, so that it can interact with
other particles near the opposite boundary [10].

The ‘hopper discharge technique’ has been employed in Zhao et al. [10] to generate
complex slope models containing uniformly distributed granular particles. The gen-
eration procedures can be summarized briefly as follows: (1) Create a hole on the upper
part of the slope profile, and then, place a large hopper just onto the hole. (2) Con-
tinuously generate particles with predefined properties within the hopper. These par-
ticles can flow into the slope space through the hopper, and pile up gradually within the
slope domain. (3) The generation process stops once the slope domain is filled up with
particles. Part of the granular packing in the upper region will be trimmed to get the
aimed pre-failure slope geometry.

This ‘hopper discharge technique’ has two obvious limitations. Firstly, it fails to
consider the layered structure of real slopes, and only uniform solid properties can be
assigned to the granular sample. As a result, it cannot reproduce correct soil/rock
properties of the slope mass. Secondly, the slope mass generated by gravitational
deposition would lead to high initial stress concentration near the slope surface region,
because of the interaction between the boundary rigid walls and particles. In the current
DEM model, this boundary confining stress can be as large as 14 MPa (as measured
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from the model). However, this boundary stress should not exist in the model, since it
is a free surface boundary for a real slope mass. The boundary confining stress would
cause the boundary particles to jump out of the slope domain for a sudden removal of
the boundary wall. Consequently, the confining wall should be released properly before
landslide simulations, so that the slope mass can become as geostatic. Thus, special
numerical manipulation should be taken in DEM modeling to avoid the boundary stress
concentration problem. The current study will focus on the two above mentioned
problem and provide solutions in the following sections.

In the current study, the Tangjiashan slope is assumed to be composed of three
major layers, and these layers are generated successively from the bottom to the top
region. As shown in Fig. 3(a), a hopper hole was created at the upper part of the layer I
profile, which was then connected to a virtual hopper. A particle generator (coded as a
C++ module in the DEM program) was placed near the top of the hopper, generating
layers of polydispersed frictionless spherical particles with predefined granular prop-
erties (in this section, the inter-particle friction is zero, while other properties are set the
same as those listed in Table 1). The particle diameters are set randomly within the
predefined range, and the generated particles can drop into the slope domain under
gravitational forces. In the generation stage, all the solid particles are set frictionless
and the width of the hopper hole is at least 10 times larger than the mean particle
diameter, such that particle jamming can be avoided during the simulation. In addition,
the use of random particle size and zero friction can effectively avoid potential particle
size segregation (as discussed by Ketterhagen et al. [11]).

\Panicle generator

Hopper,

(b)t=0s

(d)t=40s

®t=100s

Fig. 3. (a) Configuration of layer I, (b)—-(g) generation of the slope sample by ‘hopper
discharge’, and (h) the final trimmed slope sample.

The detailed generation process of the layer I is illustrated by the successive
snapshots shown in Fig. 3(b)—(g) (also see the animation in the supplementary mate-
rial). It can be observed that the granular particles were generated and assigned with
initial vertical velocities (5 m/s) within the virtual hopper layer by layer. These par-
ticles can drop into the bounding space of layer I through the hopper hole and gradually
deposit starting at the slope toe region (t = 40 s). The granular mass slowly piles up
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Table 1. Input parameters of the DEM model

Parameters Value | Parameters Value
Number of grains, N 100,389 | Particle-wall” contact stiffness (N/m) | 10°
Particle diameter, D (m) [0.8, 2] | Inter-particle friction angle, 0 (°) 30

Particle density, pg (kg/m3) 2650 Basal friction angle, 0, (°) 3

Young’s modulus, E (GPa) |1 Viscous damping coefficient, 0.01
Poisson ratio, v 0.25 Gravity, g, (m/s2) 9.81

Bond modulus, E;, (GPa) 1 DEM time step, 4t, (s) 5.0 x 107°
Cohesion of bonds, ¢ (MPa) | [1, 4]

“Note a “Wall” is a rigid boundary of the slope profile in DEM.

and fills up the space of slope layer 1. The final granular deposit can be obtained at
t = 60 s, when the whole space of layer I and part of the hopper volume are filled up
with particles. The additional particles fallen into the hopper can be removed, so that
the correct slope geometry can be achieved, as shown in Fig. 3(h). After generating the
layer I, layer II and III can be constructed similarly atop of layer I, by releasing its
boundary and trimming the extra particles for the packed granular assembly. Then, the
final Tangjiashan slope mass can be obtained. For each layer, the total number of
particles is 16,890, 35,384 and 54,384, respectively.

As discussed before, high initial stresses may concentrate at the upper boundary of
the slope mass generated by the above mentioned ‘hopper discharge technique’. Thus,
it is necessary to release the initial boundary stress before the landslide simulation.
During the simulation, the horizontal freedom of the particle motion is fixed, such that
all particles can only move upwards/downwards and backwards/forwards when the
upper boundary of the slope mass is removed. After removing the upper boundary, the
slope mass will expand due to the releasing of boundary stresses, as shown in Fig. 4(b).
As a result, the final static deposit is slightly thicker than the aimed slope mass, and the
displacement of the boundary particles can be as large as 22.5 m. After releasing the
boundary stress, particles above the real slope profile can be trimmed to the real slope

removal of upper
boundary

trim the slope mass
and obtain the layers
_ >

(a) (b)

©

Fig. 4. Expansion of slope mass after the removal of upper boundary (a) layered slope mass
from “hopper discharge”, (b) stable sample after releasing the boundary stress, and (c) sample
with the accurate slope profile and layered structure. The dashed line in (b) represents the
geometry of the upper boundary of the slope.
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geometry at the end of the simulation. It should be noted that the layered structure of
the final slope is only slightly different from the one depicted in Fig. 2. This is due to
the combined effects of granular mass compression and boundary stress release. Thus,
the layered structure should be re-constructed according to the original slope geometry
(see Fig. 4(c)), such that the final slope after stress releasing can match the structure of
the real slope.

3 Tangjiashan Slope Failure Modeling

Using the previously generated slope, a simple simulation of the Tangjiashan landslide
can be performed, as shown in Fig. 5 (also see the animation in the supplementary
material). The input parameters for the slope failure simulations are listed in Table 1,
where the inter-particle friction and slope basal friction are set to the aimed values. In
the current study, the granular assembly is bonded together to represent the initial
integrate slope mass. The values of bonding stiffness for each pair of particles are
proportional to their initial centroid distance, while the bonding strength of layer I, II
and III are set as 10° Pa, 2 x 10° Pa and 4 x 10° Pa, respectively. Thus, the strength
of each slope layer can be clearly differentiated. However, the authors are also aware
that different values of input parameters can be used in the modeling for a preliminary
study. Since the current study only focus on elucidating the detailed sample generation
technique and validation, the parametric analyses are ignored. According to Fig. 5, the
slope mass moves as a whole along the sliding surface once the landslide is triggered.
During the sliding process, the solid materials with a layered structure are translated
and partially rotated along the failure surface, as suggested in snapshots at successive
time steps. Some cracks occur at the surface of the slope (see Fig. 5(b) and (c)) due to
large tensile stresses induced by slope disintegration. The bottom layer is wrapped at
the top by the middle layer, especially in the frontal part, moving a short distance. The
sliding front region consists of fine and medium sized grains. The granular deposit

(a)t=0s (b)t=10s (c)t=20s

(d)t=30s (&)t=40s (Ht=100s

Fig. 5. DEM modeling of the Tangjiashan landslide showing the preserved stratigraphic
sequence with the exception of the frontal part of the landslide.
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profile changes little after 40 s of sliding, and this sliding duration time can match
approximately that reported by eye witness of Tangjiashan landslide (50 s). The final
deposit has a relatively steeper inclination angle (11°), compared to the real deposition
(10° in Xu et al. [8]). The initial stratigraphy is maintained in the final deposit apart for
the frontal part where the reversal is partially observed for the occurrence of a sort of
conveyor belt movement of the particles from the upper layer towards the front. This
motion and the recycling below the front can also be partially controlled by the local
geometry at the valley bottom.

4 Conclusions

This paper presents an efficient numerical technique for generating complex slope
geometries via the 3D DEM modeling. The slope profile is represented by smooth and
rigid walls, while the layered structure of slope mass is reproduced via the ‘hopper
discharge technique’ with boundary stress release and particle trimming for each layer
of packed spherical particles. This technique has the advantage of generating realistic
complex slope structure without the inverse influence of boundary stress concentration.
Since only the slope profile and granular properties are needed in the simulation, this
technique is very flexible and efficient to generate slope masses with complex
geometries and geological structures. By employing the slope sample generated in this
research, the failure and motion of Tangjiashan landslides has been analyzed. Further
research on landslide modeling can employ the correct slope failure triggering mech-
anism, e.g. ground vibration data according to the recorded earthquake wave
information.
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Abstract. This study investigates the interaction between dry debris flows and a
rigid barrier through numerical flume tests based on a discrete element method.
The initial deposition material is modelled as an assembly of spherical particles,
and the rigid barrier is modelled as a layer of fixed particles. The numerical model
is used to investigate the effect of the flume inclination on the debris-barrier
interactions. Based on the numerical results, three interaction mechanisms are
identified, namely frontal impact, run up and pile up. The impact force is also
detected. In addition, the energy transformation is investigated by analyzing the
evolution of the kinetic energy, gravitational potential energy and the energy
dissipated by the flume, barrier and inter-particle interactions.

Keywords: Debris flow - Rigid barrier + Discrete element method
Impact force + Energy transformation

1 Introduction

Debris flow is a form of rapid mass movement in which a combination of loose soil, rock,
organic matter, air, and water are mobilized to flow downslope [1]. Due to their high
mobility and large entrainment solid volume, they can always pose significant hazards to
human lives, structures and infrastructures, and lifeline facilities worldwide, threatening
populated areas located far away from the slope source. Thus, protective structures, such
as rigid barriers, are widely constructed to mitigate such destructive flows.

The design of a rigid barrier requires the knowledge of the maximum impact force of
the debris flow. In the literature, the debris-barrier interaction has been addressed by
analytical models [2], numerical simulations [3, 4], and laboratory flume tests [5, 6]. Up
to now, several semi-empirical methods have been developed to determine the impact
force, such as hydrostatic approach, shock wave approach and hydrodynamic approach
[7]. These approaches have been widely used in engineering practices. Nevertheless,
these available formulas aiming at estimating impact loading stresses have been shown
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to result in high discrepancies [8], and none of them have been acknowledged as a
universal formula, notably because these models were obtained in specific impact and
boundary conditions that cannot be generalized, and they are usually based on strong
assumptions. In addition, these methods do not consider the effect of debris-barrier
interaction on the flow velocity and flow thickness. Tiberghien et al. [9] found that the
deposited materials behind the barrier due to debris-barrier interaction play an important
role in the dynamic load transfer process. Thus, it is worthwhile to highlight the
importance of debris-barrier interaction. However, the debris-barrier interaction is still a
complicated problem for an effective design of a rigid barrier.

The dynamic interactions between debris flow and rigid barrier are highly complex
because it depends on the kinematics of debris flow (in particular solid mass and
velocity), mechanical characteristics of soil and geometrical characteristics of rigid wall
[5, 10, 11]. The current approaches have limitations in predicting the debris-barrier
interactions in the sense that they cannot allow for all the mechanisms occurring in the
debris during impact. These mechanisms lead to large deformation, displacement, as
well as energy transfer and dissipation, which modify the debris-barrier interaction.
These mechanisms and their results may be conveniently addressed using numerical
simulations [12]. The energy evolutions can be tracked through numerical simulations,
such as Discrete Element Method (DEM), while it is nearly impossible to obtain such
information from measurements during experiments. The DEM has been widely used
for numerical modeling of avalanches or debris flows [13, 14], and it is an appropriate
tool to model debris flows because of the granular nature of these phenomena.

In the present study, a numerical flume model is established using a
three-dimensional discrete element method. This model is validated and employed to
investigate the debris-barrier interactions. The basic objective is to reveal the detailed
mechanism of debris-barrier interaction. The remainder of this paper is organized as
follows: in Sect. 2, the details of the numerical flume model are illustrated. Section 3
presents a parametric study conducted to investigate the influence of flume inclination
on the debris-barrier interaction. Finally, some conclusions on the capability of the
DEM to model debris-barrier interactions are provided.

2 Numerical Model Configuration

Experimental flume tests carried out by Jiang and Towhata [5] have been used to define
the geometry and the initial conditions of the numerical model in this study. During the
experimental campaign, a cubic granular deposition was released from the top of a
flume. The granular mass slid in the flume confined by two side walls. At the end of
slide, the granular mass impacted on a rigid barrier which was installed at the bottom
end of the flume and perpendicular to the flume base. A sketch of the flume is shown in
Fig. 1. The flume is 2.93 m in length, 0.3 m in width, and 0.35 m in height. The
granular deposition is an assembly of limestone particles with a length of L = 44 cm,
height of H = 15 cm, and width of 0.3 m. The travel distance of the deposition is L,,
which is calculated as the sum of L; and half of L.

The numerical flume model established via an open source DEM code
ESyS-Particle [15] is illustrated in Fig. 2. In the DEM model, the flume base and the
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Fig. 2. Numerical model configurations

rigid barrier are respectively represented by a layer of fixed spherical particles with a
radius of 0.2 cm, which are used to replicate the friction of the flume base and rigid
barrier. The friction of the two side walls are ignored, and the two side walls are
represented by two rigid frictionless walls. The trigger gate is also represented by a
rigid frictionless wall, which is movable. In all the simulations, the granular flow is
initiated by the instantaneous removal of this wall.

The initial deposition is modelled as an aggregate of spherical particles obtained by
gravitational deposition. The value of gravitational acceleration adopted in the simu-
lation is 9.81 m/s®. The initial granular deposition consists of 6, 993 randomly dis-
tributed particles, and the ratio of largest to smallest radius equal to 2.5. Due to the
constraint of computational time, the particle size distribution (PSD) of the deposition
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Fig. 3. Particle size distribution of the debris particles, the PSD adopted in the simulations is
plotted as the red curve.

used by Jiang and Towhata [5] cannot be reproduced. Therefore, a narrow PSD is
adopted in the simulations with sizes ranging from 10 mm to 25 mm (see Fig. 3).

During the granular flow, the particles can contact with other deposited particles,
the flume base and the rigid barrier. The same contact model of Cohesiveness Frictional
Model (CFM) is used in the three kinds of potential contacts. The corresponding
contact model parameters are listed in Table 1. The three friction angles are chosen
referring to the work of Jiang and Towhata [5]. All local Young’s modulus is chosen to
be 10® Pa, the mass density of the particles is 2500 kg/m?>, and the Poisson’s ratio of the
particles is 0.25, which are commonly used in modeling granular medium [4]. The time
step size is set as 107 s in the simulations. The damping of the particles is employed to
dissipate a small amount of energy due to elastic wave propagation or particle asperities
being sheared off.

Table 1. Contact model parameters used in the simulations

Input parameter ‘ Value

Deposition-deposition contact:

Local Young’s modulus, E (Pa) 10%
Friction angle, ¢ (°) 53
Damping coefficient, 8 0.05
Deposition-flume base contact:
Local Young’s modulus, E (Pa) 108
Friction angle, ¢ (°) 25
Damping coefficient, § 0.0

Deposition-barrier contact:
Local Young’s modulus, E (Pa) 10%
Friction angle, ¢ (°) 21

Damping coefficient, f§ 0.5
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3 Results

The model developed in the previous section is used to numerically investigate the
effect of the flume inclination on the debris-barrier interactions. The flume inclined
angle is varied from 30° to 45° to simulate different topographic conditions. The rigid
barrier is kept perpendicular to the flume base.

3.1 Mechanisms of Granular Flow Impact

Figure 4 shows a side view of the dry granular flow impacting on a rigid barrier
(o = 45°). The flow direction is from the upper left to the lower right. The attention is
focused on the interaction between the granular flow and the barrier. A small static
(deposition) zone was retained behind the barrier after the first stage of frontal impact
(see Fig. 4(al) and (bl)). The subsequent flow then ran over the deposited particles to
hit the barrier at a higher elevation, and the zone of stationary granular material
extended to the upstream direction (see Fig. 4(b2—b4)), hereafter called run-up stage.
Gradually, the approaching granular flow cannot run over the deposition zone (see
Fig. 4(b5)). Meanwhile, the run-up height of the granular flow on the barrier increased
to a maximum value (see Fig. 4a4 and a$5), hereafter called pile-up stage. After that, the
approaching materials only impacted and piled up on the existing deposits. The
development of the deposition zone, the frontal impact, run-up and pile-up mechanisms
have also been observed in laboratory studies [6, 8, 10, 16] and in numerical simu-
lations [4]. The formation of deposition zone after frontal impact is acknowledged as
the main reason of the energy dissipation in the subsequent granular flow stages [6, 8].
The energy transformation during the deposition process will be discussed in Sect. 3.3.

t=1.0s t=11s t=12s t=13s

Fig. 4. Observed interaction kinematics for test o = 45°: (al-a5) is the flow profile from
t=09stot=1.3s and (bl-b5) is the corresponding velocity fields.

3.2 Impact Force

Figure 5 shows the measured time history of impact force for different flume incli-
nations. The approximate time at which the run-up stage transforms into pile-up stage
is indicated by colored five-pointed stars (hereafter called “transformation time”). As
expected, the steeper the flume inclination is, the higher the flow velocity will be, such
that the duration time of the pile-up stage decreases with increasing flume inclination. It
is clear that the impact forces have peak values during the impact process, which
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indicates that the impact has a significant influence on the rigid barrier. In addition, the
peak impact force increases rapidly with increasing value of o. As shown in Fig. 5, the
time interval between the critical time of peak impact force and the transformation time
decreases with the increase of flume inclination angle. Particularly, the peak impact
force is reached before the transformation time for « equal to 45°. This result indicates
that, for gentle slopes (e.g., « < 45°), the critical time occurs in the pile-up stage, while
for steep slopes (e.g., o = 45°), the critical time occurs in the run-up stage.
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Fig. 5. Measured time histories of impact force at different flume inclinations. The time at which
run-up stage transformed into pile-up stage is indicated by colored five-pointed stars.

3.3 Energy Dissipation

The total system energy (Et) includes gravitational potential energy (E,), kinetic
energy (Ey), strain energy (Es) and energy loss due to friction (Eg) and local contact
damping (Ep). All of these forms of energy can be tracked during simulations to see
how the energy is transformed and how the energy transformation is related to the
impact mechanism of granular flow. The energy dissipated by the flume base (Ef),
rigid barrier (EE) and inter-particle interaction (Eg) are separately recorded. Figure 6
shows the system energy transformation and energy loss for different flume inclina-
tions. Zero time corresponds to the time when the initial deposition is released. The
strain energy (Es) is not plotted since its value is extremely small (close to nil). As
shown in Fig. 6, the granular flow motion involves a cascade of energy that begins with
incipient slope movement and ends with deposition. As the granular flow moves
downslope, the gravitational potential energy decreases gradually, a portion of the
reduced energy transforms into the kinetic energy of the granular material, and the
remainder is dissipated by the flume friction, grain contact friction and inelastic col-
lisions. After the granular flow arrives at the barrier, a small part of the system energy is
dissipated due to friction and damping of the barrier. With the increase of flume
inclination, the granular material run-up height increases and more grains can interact
with the barrier (see Fig. 4), hence the energy dissipated by barrier increases from 1.1%
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to 2.5%. Meanwhile, the energy dissipated by grain interaction increases from 36.0% to
46.2%. The numerical results indicate that the vast majority of the energy is not
dissipated by the barrier. Instead, the debris-barrier interaction facilitates the dissipation
of energy in the flow mass, because the debris deposited behind the barrier plays as a
cushion layer which absorbs the kinetic energy of the subsequent approaching granular
flows. This finding is in agreement with the research outcomes of Ng et al. [6] and Koo
et al. [8].
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Fig. 6. Energy transformation and energy loss during simulations of various flume inclinations.
Vertical dashed lines indicate the arrival time of granular flow at barriers. All of the energy is
normalized by the initial gravitational potential energy (Eo).

4 Conclusions

A numerical flume model of the impact of a dry granular flow on a rigid barrier is
developed using the open-source code ESyS-Particle. The model is used to investigate
the influence of the flume inclination on the debris-barrier interaction. The obtained
results clarified the characteristics of flow-barrier interaction.

To mimic various natural slope topographies, simulations for a range of slope
angles are performed with the barrier perpendicular to the slope. The side profile of the
granular materials impacting on the barrier, the impact force, and energy transformation
are recorded and analyzed. Three key interaction mechanisms, namely frontal impact
stage, run-up stage and pile-up stage are observed in various testing conditions.
The results indicate that the duration of run-up stage is transient which shows
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negligible dependence on the slope inclination, whereas the duration of pile-up stage
decreases with an increase of the slope inclination. For a gentle slope, the peak impact
force occurs in the pile-up stage, nevertheless for a steep slope, that occurs in the
run-up stage. As expected, the maximum impact force increases as the slope inclination
increases. In addition, the analysis of energy transformation shows that the kinetic
energy of a granular flow is mainly dissipated by the inter-particle interactions but not
by the barrier.
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Abstract. Methane hydrate (MH) is an ice-like clathrate compound of methane
molecules trapped in cages of water molecules under high-pressure and
low-temperature. In shallow marine region, MHs tend to dissociate due to
seafloor temperature rise and massive submarine slope failure could be triggered
or primed as a result of excess pore pressure buildup. This study develops a
simple thermo-hydro-chemically (THC) coupled model to quantify the excess
pore pressure buildup due to hydrate dissociation, and incorporates this model
into the limit equilibrium method in order to analyze the stability of an idealized
infinite slope embedding a hydrate layer. The results show that the presence of
the overburden layer above the hydrate-bearing layer plays two opposite roles
on the stability of the slope. It serves as a barrier that hampers excess pore
pressure dissipation and therefore endangers the slope stability. Meanwhile it
has beneficial effects by providing overburden pressure that mobilizes additional
shear resistance in the slope. For the circumstances under consideration, the
potential failure surface of the slope is constrained within a narrow band at to the
top of the hydrate layer.

Keywords: Submarine landslide - Methane hydrate dissociation
Thermo-hydro-chemically coupled model - Excess pore pressure

1 Introduction

Methane hydrate (MH) is an ice-like crystalline compound widely spreading in the
sediments on marine continental margins where low temperature and high pressure are
present. Natural or anthropologic perturbations could cause massive hydrate dissoci-
ation that releases a large amount of methane gas, thereby triggering or priming sea-
floor instability due to pore pressure buildup in addition to reduction in shear strength
of the sediments. The connection of oceanic hydrates dissociation and submarine

landslides has been a scientific concern that attracts increasing attentions.
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An accurate quantification of expected excess pore pressure levels is necessary to
properly predict the occurrence and position of the failure surface of submarine
landslides triggered or primed by hydrate dissociation. Different models have been
proposed for this purpose [1-3]. For instance, Xu and Germanovich [1] related the
volume expansion during hydrate dissociation to density difference and compressibility
of the system, and theoretically formulated the excess pore pressure for confined or
interconnected pore space. Nixon and Grozic [2] quantified the excess pore pressure
assuming undrained conditions for a given amount of dissociating hydrate, and pro-
posed a conservative approach for assessing seafloor instability by neglecting pressure
diffusion during progressive hydrate dissociation. Kwon and Cho [3] established a
sequentially coupled model that decouples hydrate dissociation (with pressure buildup)
from consolidation (with pressure diffusion) in each time step. Since oceanic hydrate
reservoirs are usually seated in marine sediments with more or less interconnected pore
space, as addressed by Xu and Germanovich [1], the magnitude of excess pore pressure
primarily depends on dissociation rate and pressure diffusion rate (controlled by the
sediment permeability) at similar or miscellaneous time scales. Meanwhile, the excess
pore pressure impacts the pressure-dependent dissociation process and in turn affects
pore connectivity. It is still challenging and however desired to quantify excess pore
pressure associated with hydrate dissociation under different submarine settings where
multi-physics coupling process can be considered.

This paper develops a simple thermo-hydro-chemically (THC) coupled model to
quantify evolving excess pore pressure during hydrate dissociation by considering
thermodynamic chemical action, heat transfer, pressure diffusion, and their interplay at
different time scales. The model is incorporated into limit equilibrium analysis in order
to assess the stability of an idealized submarine slope with a hydrate layer under rising
temperature.

2 A Theoretical Model

Figure 1 illustrates a simplified infinite submarine slope with a MH-bearing layer. The
stability of the slope can be quantified within the framework of the limit equilibrium
method using a safety factor computed from:

c Ue

Fo— n (1 tan ¢
* " 9'H sin f cos f§ vH

tan 8

) (1)

where H is the depth of the potential slip surface below the seafloor; ¢ and ¢ are the
cohesion and the friction angle of the soil at the potential slip surface, respectively; ' is
the submerged unit weight of the soil; f§ is the slope angle; and u, is the excess pore
pressure:

Ue = P — Pstatic (2)
where Py, is the hydrostatic pressure; and P is the total pore pressure weighted by the
pore water pressure P,, and pore gas pressure P, [4]:
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where §,, and S, are water and gas saturations, respectively.

This slope could become unstable (i.e. F; < 1) because of hydrate dissociation. For
simplicity, we assume that the cohesion is correlated with hydrate saturation through a
linear relationship once MHs dissociate and focus on the effect of excess pore pressure
on stability of the slope. To quantify the excess pore water pressure, we develop a THC
coupled model to be elaborated on below.

In general, a mass of MH-bearing sediment can be viewed as a porous system
composed of a soil skeleton and three components (i.e. water, methane and hydrate) in
pores of the skeleton. For simplification, we assume: (1) temperature is the same cross
all phases at the same locality; that is, thermal equilibrium between phases is assumed;
(2) each phase contains only one single component, that is, water, methane and hydrate
are present as liquid, gas, and solid phase, respectively; (3) hydrates are immobile in
pores and only dissociate in the same locality; (4) pore water and hydrate are
incompressible; (5) soil skeleton does not deform.

Fig. 1. Schematic illustration of an infinite submarine slope with a MH bearing layer

Under one-dimensional conditions as illustrated in Fig. 1, the mass and energy
conservation equations of the slope are written as:

g omd

9 « _
@((rbsipot)* aZ + ot ) O(:W,g,h (4)

a0 Ooh 0 004
1 — ¢)pcs Sa e L0)+ =2 (5
(1= d)pses+ a;W;h(qﬁ Pata)| 5, =~ azngg (@uca0)+ % ()
where ¢ is the porosity; S,, p,. g, and ¢, are the saturation, density, mass flux and
specific heat capacity of the component « (i.e., w: water; g: methane gas; h: hydrate),
respectively; 0 and h are temperature and heat flux, respectively; the subscript
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s represents soil; 8m‘; /Ot is the mass rate of component o per unit soil volume; and
004 /0t is the dissociation heat rate.
By introducing Darcy’s law, Eq. (4) is re-written as

0 0| kkyp, (OP,
5 @8.p,)= - |-t (O

~ % o 8Z—pag005ﬁ>}+am“ x=w,gh (6)

ot’

where k,,, and p, are the relative permeability and viscosity of component o respec-
tively. Note that k,;, is zero since hydrate is immobile and the relative permeability k,,,
and k,, depend on water and gas saturations (see Table 1).

By introducing Fourier’s law, Eq. (5) is re-written as

0 0
[(1 — ¢)pycs + Z (¢S“paca)‘| % = _(% <—)u® g_z>

) E/j/jhp oP 00! 7
_9 _ Kkrapy (OPy 90,
0z y;g { y ( 9z PEE® ﬁ) 6“9] "o

where Ag is the composite thermal conductivity of the system, of which the calculating
model is given in Table 1.
The mass rate in Eq. (4) is computed as:

om? om¢ om
o = Mz = My k= Mig (8)

where M,,, M, and M), are the molar masses of water, methane and hydrate, respec-
tively; 5 represents the hydrate number; y (mol/s/m”) is the reaction rate given by
Kim-Bishnoi model [5]:

AE,
£ = ko exp(— T AP~ Py) ©)

where kg is the intrinsic dissociation constant; AE, is the activation energy of hydrate

dissociation; R is the universal gas constant; A is the hydrate action area; P, is pressure of

gas phase; P, is the equilibrium pressure at temperature 0, given by Moridis’s model [6].
The dissociation heat rate in Eq. (5) is computed as:

00; _

% yAH (10)

where AH is the latent heat, given by the Kamath equation [7]:

AH=A+3
A =56552, B=—16.8137; 273.15<0<298.15 (11)
A =127329, B=—48.2748; 248.151<0<273.15
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In summary, Eqgs. (4) and (5) form the governing equations of the system that
involve four primary variables: gas pressure P,, temperature 0, water saturation S,, and
gas saturation S,. These equations are closed by the following auxiliary equations:

Sw+Sg+Sh:1 (12)
Py =P, +P, (13)

where P, is the capillary pressure to be determined by the van Genuchten function of
S,, and S, [8], as shown in Table I.

No analytical solution is available for Egs. (6) and (7). Instead, a numerical solu-
tion was coded in MATLAB by linearizing the governing equations with the implicit
finite-difference method. The central and forward difference approximation was used
for the spatial and time derivatives, respectively. Then the linearized difference equa-
tion set was solved with the Newton-Raphson iteration method. The proposed model
and the numerical implementation have been validated via experimental data [9] and
have not been included in this paper due to length limit.

3 A Case Study of an Overburden-Free Slope T

The proposed model is applied to a case study addressed by Reagan and Moridis [10]
that represents a scenario of gentle submarine slopes with a shallow hydrate-bearing
layer (hydrate layer for short here). Below a water depth of 570 m, the hydrate layer
extends vertically from the seafloor to a depth of 16 m, and the initial hydrate satu-
ration is 3%. Initially, the temperature is 6 °C at the seafloor and linearly increases with
depth at a geothermal gradient of 28 °C/km. It is assumed that a temperature rise occurs
at the seafloor at a rate of 0.03 °C/year due to climate change. This triggers thermal
dissociation in the hydrate layer.

To verify our model and code, we adopted the boundary and initial conditions, and
parameters as the same as those in [10]. Note that salt and methane dissolution in water
are ignored in our simulation. Table 1 lists the major parameters.

In this setting-up, the dissociation front propagates from the top to the bottom of the
hydrate layer. Figures 2a and b compare our results with those given by Reagan and
Moridis. Our simulation agrees with the published data except that the dissociation lags
for about 60 years. This lag is due to the fact that the effect of salinity on the phase
equilibrium, considered by Reagan and Moridis, is ignored in our simulation. Under a
pressure of 5.7 MPa, the equilibrium temperature for MH in pure water is 1.7 °C
higher than that in sea water with a salinity of 0.035 (considered by Reagan and
Moridis). Given a temperature rising rate of 0.03 °C/year, hydrate dissociate 60 years
later in our simulation than that provided by Reagan and Moridis. Nevertheless, the
consistent profiles of hydrate and gas saturation as illustrated in Figs. 2a and b verified
our numerical code.

Figure 2c plots the excess pore pressure against time obtained from our simulation.
The magnitude of the induced excess pore pressure is in the order of several kilo-
pascals, and is insufficient to cause slope instability (assuming a gentle slope with an
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inclination angle of several degrees) because of low hydrate saturation and absence of a
relatively impermeable overburden above the hydrate layer. The next section will show
more vulnerable cases with an overburden.

Table 1. Parameters of the hydrate layer

Parameters Value

Absolute permeability k (m?) 1 x107"

Porosity ¢ (%) 30

Initial hydrate saturation S,o (%) 3

Initial gas saturation Sgo (%) 0

Composite thermal conductivity model [11] | Ag = (V/Si + v/Sw) (Aw — Asa) + Asa
Dry thermal conductivity Z,; (W/m/K) 1.0

Wet thermal conductivity A, (W/m/K) 33

Capillary pressure model [8] P, =P, {(S*)—l/i_l]i

* Sr - Sir’w Sw
S =TS, TS s,

Sirw 0.19
P, (Pa) 2000
13 0.45
Relative permeability model [12] k,, = (Sf_s,',':y =g
n 4
Sirg 0.02
Sire 0.20

4 Effect of Overburden Layer

Here we consider the effect of an overburden layer with a thickness ranging from 0 to
80 m. The permeability of the overburden and underburden layers is 1 x 1077 m?.
The thickness of the hydrate layer is 20 m with a hydrate saturation of 30%. The water
depth from the sea level to the top of the hydrate layer is constant at 570 m. The
temperature at the bottom of hydrate layer is constant at 8 °C. The slope angle is
assumed to be 3°, and the cohesion and the internal frictional angle of all the sediments
are 200 kPa and 30° respectively. The other parameters remain the same as the
overburden-free case in the preceding section.

Figure 3 illustrates the profile of S, u,, and F against the time elapsed from the
first onset of hydrate dissociation under different overburden thicknesses. As shown in
Fig. 3a, as the dissociation front propagates from the top to the bottom of the hydrate
layer, u, continuously builds up and F; decreases. Meanwhile, we assume the cohesion
decreases linearly from 200 kPa to zero with the MHs dissociation. As a result, a peak
develops on the profile of F; near the dissociation front (see Fig. 3). The failure onset
time refers to the time when F| first reaches one at a specific depth, where the failure
surface is recognized.
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Fig. 2. Profiles of hydrate saturation, gas saturation, and temperature in comparison with results

by Reagan and Moridis [10] at different times (a—b), and profile of the excess pore pressure
evolution (c).

Figure 4 shows the failure onset time and failure surface position against different
overburden thicknesses %,. The presence of the overburden plays two different roles.
On one hand, the overburden serves as a barrier that hampers dissipation of the excess
pore pressure accumulating in the hydrate layer during dissociation [1]. This tends to
endanger the slope. Even though hydrate dissociation is faster at 5 m thick overburden
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Fig. 3. Profiles of hydrate saturation, excess pore pressure, safety factor at different time periods
under a overburden thickness of (a) 5 m; (b) 20 m; and (c) 60 m. The elapsed time starts from the
onset of hydrate dissociation at the top of the hydrate layer.
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Fig. 4. Failure onset time and failure surface depth against different overburden thicknesses.

(Fig. 3a) than that at 20 m (Fig. 3b), the pressure buildup is more remarkable for the
same amount of dissociated hydrate under the thicker overburden, because the pressure
dissipates more slowly. On the other hand, the overburden layer provides overburden
pressure that mobilizes additional shear resistance at the potential failure surface [13].
This is beneficial to stabilize the slope. The second mechanism seems dominant in the
circumstance under consideration. Figure 4 also provides the position of the failure
surface against different overburden thickness. In general, the failure surface is con-
strained within a narrow band at the top of the hydrate layer. This weak zone could
move upwards in the overburden layer if this layer is less cohesive.

5 Conclusions

This paper presents a simple THC coupled model for quantifying the excess pore
pressure caused by MH dissociation, and incorporates this model to the stability
analysis of an idealized submarine slope with a MH-bearing layer. Through an
overburden-free case study, the proposed model is demonstrated to be able to capture
the multi-physics coupled processes involved in MH dissociation in porous sediments.
The stability analysis of the gentle slope with a relatively impervious overburden layer
shows that the presence of the overburden plays two opposite roles in impacting the
stability of the slope. It serves as a barrier that hampers excess pore pressure dissipation
and therefore endangers the slope. Meanwhile it has beneficial effects by providing
overburden pressure that mobilizes additional shear resistance in the slope. For the
circumstances under consideration, the potential failure surface of the slope is con-
strained within a narrow band at the top of the hydrate layer. This could be affected by
the strength properties of the overburden layer, which will be further investigated in our
ongoing work.
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Abstract. The seabed of the South China Sea (SCS) is a vast reserve of oceanic
gas hydrates, a potential future energy attracting global interest. Gas production
from oceanic hydrates poses a significant concern of impending disasters of
massive seabed instability. Data inventory of hydrate reservoirs becomes
essential to optimize hydrate production strategies and to minimize potential
risks. To facilitate the data mining for future risk assessment of gas production
in SCS, this study compiles a GIS-driven database for managing and analyzing
information of gas hydrate reservoirs in SCS. The information, collected by
different agents with various techniques at various scales and accuracies, is
overlaid and geo-referenced. The possible bounds of hydrate reservoir are
roughly deduced at the regional scale from the data of water depth and the phase
equilibrium equation of hydrate. The presented GIS-driven database is adaptable
for data accumulating over time. This study is a preliminary and significant step
towards a regional risk analysis of hydrate production in SCS.

Keywords: Methane hydrate reservoir - Information management
Spatial database * GIS * South China Sea

1 Introduction

Methane hydrate (MH) is ice-like crystalline compound extensively found in the
sediments of continental margins and permafrost regions at low temperature and high
pressure. Referred to as “combustible ice”, MHs are viewed as potential sources of
future energy with a global reserve about twice as much as that of conventional fossil
fuels combined [1, 2]. However, utilization of oceanic MHs remains debatable due to
high risk, since extracting MHs from marine sediments may prime seafloor instability
and trigger severe geohazards such as massive submarine landslides among others.
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Assessment of geohazards associated with MH production is of importance for the
decision-makers. To serve this goal, information of MH reservoirs (e.g., geometric
boundaries, geotechnical and geochemical characteristics of the sediments, bathymetric
map etc.) is indispensable.

The South China Sea (SCS) is recognized as the most important reserve of oceanic
MHs in China with favorable settings for MHs formation. Intensive efforts have been
made for characterizing the hydrate reservoirs. The collected data are of great potential
to engine regional-scale risk assessments associated with MH production. However,
these data are partially accessible via research reports and articles. Extreme efforts are
required to dig out useful information in order to accommodate a specific scientific
research. To ease the procedure for data mining, this study initiates an integrated
database in a geographic information system (GIS) for systematically compiling and
managing data of MH reservoirs in SCS. This work aims to enable future regional-scale
applications such as hydrate production optimization, and relevant hazards assessment
and control.

2 The Study Area

SCS is estimated to be home to over 6.8 billion tons of oil equivalent MH, equaling half
of the China’s onshore oil and gas reserve and able to sustain 200 years’ energy con-
sumption of China [3]. As part of Western Pacific Ocean, SCS covers an area of
3.5 x 10° km?, where three tectonic plates intersect: the Eurasian plate, the Pacific plate
and the India Ocean plate. The water depth is 1212 m in average with a maximum depth
of 5377 m. Even seabed accompanied with widespread seamounts appears ladder-like
form from edge to center [4]. The geological structures (including submarine slumps,
diapiric structures, accretionary wedges, tectonic slope-break zones and polygonal
faults) are well-developed and widespread in SCS, providing good gas-bearing fluid
migration sub-systems. Bottom simulating reflectors manifest extensive existence of
MHs in SCS. As listed in Table 1, five expeditions have been accomplished since 1999
for characterizing MH reservoirs in SCS [5—-13]. These data are particularly useful for
regional-scale risk assessments associated with MH production.

3 Data Management Strategy

The desired database is geohazard-oriented, geo-referenced, extensible, and supports
visualization and spatial analysis. Although a database can serve multiple purposes, we
aim at a data house that particularly supports geohazard assessment associated with
MH dissociation (due to natural and/or anthropologic perturbation) at the regional
scale. To serve this purpose, we stress on the datasets including (but not limited to)
geometrical boundaries and characteristics of MH reservoirs, thermal conditions,
bathymetry data, and stratigraphy. All datasets should be consistently overlain in a
unified coordinate system. The data structure should be adequately flexible in order to
accommodate growing data. The data can be visualized in spatial context so that data
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inconsistency can be visually identified. In addition, the database should provide
necessary functions of spatial analysis to facilitate further applications.

Taking account of these considerations, we employ ArcGIS [14] to store, manage,
visualize and analyze the collected datasets. Figure 1 illustrates the workflow. First, the
useful raw data are identified and collected based on literature survey and online
resources search. Second, the selected data are compiled into GIS. Hardcopy data need to
be digitized, and data without attached geographic information have to be geo-referenced
to a predefined coordinate system. Spatial analyses are often necessary to derive relevant
information from raw data, for instance, obtaining the seafloor terrain model from the
bathymetric data originally archived in a raster file. These can be facilitated with the tools
offered by ArcGIS. The processed and geo-referenced data in proper formats enter the
GIS database, being ready for various applications such as modeling hydrate reservoirs,
MH-related geohazards as