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Preface

The aim of this book is to present the issue of modeling and simulation of chemical
engineering processes in a simple, didactic, and friendly way. In order to reach this
goal, it was decided to write a book with few pages, simple language, and many
illustrations. Sometimes, the rigor of the mathematical nomenclature has been a
little simplified or relaxed, to not lose focus on the modeling and simulation. The
idea was not to scare readers but to motivate them, making them feel confident and
sure they are able to learn how to model and simulate even complex chemical
engineering problems. The book is split into two parts: the first one (Chaps. 2, 3,
and 4) deals with modeling, and the second (Chaps. 5, 6, and 7) deals with
simulation.

To simplify the understanding of how to develop mathematical models, a
“recipe” is proposed, which shows how to build a mathematical model step by
step. This procedure is applied throughout the entire book, from simpler to more
complex problems, progressively increasing the degree of complexity. For each
concept of chemical engineering added to the system being modeled (kinetics,
reactors, transport phenomena, etc.), a very simple explanation is given about its
physical meaning to make the book understandable to students at the start of a
chemical engineering course, to students of correlated areas, and even to engineers
who have been away from academia for a long time.

The second part of this book is dedicated to simulation, in which mathematical
models obtained from the modeling are numerically solved. There are many
numerical methods available in the literature for solving the same equations. The
focus of this book is not to present all of the existing methods, which can be found
in excellent books about numerical methods. In this book, a few effective alterna-
tives are chosen and applied in several practical examples. For each case, the
numerical resolution is presented in detail, up to obtaining the final results. The
idea is to avoid the reader getting lost in many alternatives of numerical methods,
and to focus on how exactly to implement the simulation to obtain the desired
results.
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viii Preface

When using numerical methods, the simulation step can involve computational
packages and programming languages. There are several computational tools for
simulation, and it is not possible to say that one is better than another; however,
since in most cases a chemical engineering student will work in chemical industries,
this book adopts the Excel tool, which is widely used and has a very friendly
interface and almost no cost. To develop computational codes, the programming
language Visual Basic for Applications (VBA), available in Excel itself, will
be used.

It is expected that, with this book, chemical engineering students will feel
motivated to solve different practical problems related to chemical industries,

knowing they can do so in an easy and fast way, with no need for expensive
software.

Campinas, Brazil Liliane Maria Ferrareso Lona



Organization of the Book

Chapter 1 of the book gives a short introduction and shows the importance of the
modeling and simulation issues for a chemical engineer. Important concepts needed
to understand the book will also be presented.

Chapter 2 presents a “recipe” (a step-by-step procedure) to be followed to build
models for chemical engineering systems, using a very simple problem. The same
recipe is used throughout the entire book, to solve more and more complex
problems.

Chapter 3 deals with lumped-parameter problems (in steady-state or transient
regimes), in which the modeling generates a system of algebraic or ordinary
differential equations. The chapter starts by applying the recipe seen in Chap. 2
to simple lumped-parameter problems, but as new concepts of chemical engineer-
ing are presented throughout the chapter, the complexity of the problems starts
increasing, although the recipe is always followed.

Chapter 4 deals with distributed-parameter systems in steady-state and transient
regimes, in which variables such as concentration and temperature change with the
position. This kind of problem generates ordinary or partial differential equations.
In this chapter, the complexity of examples increases little by little as they are
presented, but all of them use the same recipe presented in Chap. 2. In this way,
readers can easily understand how to build complex models.

Chapters 5, 6, and 7 are dedicated to numerically solving algebraic equations,
ordinary differential equations, and partial differential equations, respectively.
There are many different numerical methods available, but in these three chapters
a few alternatives will be used because the main purpose of this book is to obtain a
fast, robust, and simple way to simulate chemical engineering problems, not to
study in detail the different numerical methods available in the literature. All
simulations will be done using Excel spreadsheets or codes in VBA.

Chapter 5 uses the Newton—Raphson method to solve nonlinear algebraic equa-
tions and presents the concepts of inversion and multiplication of a matrix, avail-
able in Excel, to solve linear algebraic equations. Chapter 5 also presents an
alternative based on the Solver tool available in Excel for both linear and nonlinear
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X Organization of the Book

algebraic equations. Chapter 6 uses Runge—Kutta methods to solve ordinary differ-
ential equations, and Chap. 7 adopts the finite difference method to solve partial
differential equations.

I hope this book will be understandable to many people and can motivate all who
wish to learn the art of modeling and simulating chemical engineering processes.
Good reading!
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Chapter 1
Introduction

In chemical engineering, modeling and simulation are important tools for engineers
and scientists to better understand the behavior of chemical plants. Modeling and
simulation are very useful to design, to scale up and optimize pieces of equipment
and chemical plants, for process control, for troubleshooting, for operational fault
detection, for training of operators and engineers, for costing and operational
planning, etc. A very important characteristic of modeling and simulation is its
advantageous cost—benefit ratio because with a virtual chemical plant, obtained
from the modeling and simulation, it is possible to predict different scenarios of
operations and to test many layouts at almost no cost and in a safe way.

A model can be developed using deterministic or phenomenological modeling
when mathematical equations, based on conservation laws (mass, energy, and
momentum balances), are used to represent what physically happens in a system.
When conservation laws cannot be applied and an uncertainty principle is intro-
duced, stochastic or probabilistic models can be used, like population balance or
empirical models. This book will address only deterministic or phenomenological
models.

A model can be classified as a lumped-parameter or distributed-parameter
model. In a lumped-parameter model, spatial variations in a physical quantity of
interest are ignored and the system is considered homogeneous throughout the
entire volume. An example of a system that can be modeled using a lumped-
parameter model is a perfectly stirred tank, in which variables, such as temperature,
concentration, density, etc, are uniform at all points inside the tank, due to the
mixing. On the other hand, a distributed-parameter model assumes variations in a
physical quantity of interest from one point to another inside the volume. One
example of a system that could be modeled using a distributed-parameter model is a
tubular reactor, in which the concentration of the reactant decreases along the
reactor length. In fact, every real system is distributed; however, if the variations
inside the system are very small, they can be ignored and lumped-parameter models
can be used. For example, if the agitation in the tank mentioned above was not
perfect, small dead zones inside the tank could be generated. However, even so, we
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2 1 Introduction

could use a lumped-parameter model if we consider—as a simplifying hypothesis—
perfect agitation, with the small dead zones ignored. Realistic simplifying hypoth-
eses can always be assumed when we are developing models, in order to make them
easier to solve.

Another classification used for models is steady-state versus transient regimes.
A system is in a steady state when it does not change over time, which means it is
static or stationary. On the other hand, a system is in a transient regime when it
changes with respect to time. A transient regime is also called a non-steady-state,
unsteady-state, or dynamic regime.

A system modeled by lumped-parameter models is homogeneous and does
not present variation throughout the volume, so it is easy to imagine that the final
mathematical equation that represents this system (the mathematical model) does
not show a derivative with respect to any spatial coordinate. In addition, if this
system is in a transient regime (changing over time), the mathematical model must
present a derivative with respect to time, while a system in a steady state (static)
must not. In this ways, it is easy to conclude that a lumped-parameter model in a
steady state is represented by algebraic equations (AEs), while a lumped-parameter
model in a transient regime is represented by ordinary differential equations
(ODEs).

A distributed-parameter model assumes variation inside the volume, so its
mathematical equation (generated from the modeling) will present at least one
derivative with respect to spatial coordinates. If the system is in a steady state
and there is variation in only one spatial coordinate, the mathematical model will be
represented by ODEs, but if this system is in a transient regime, it will be
represented by partial differential equations (PDEs), with derivatives with respect
to time and one spatial coordinate. Finally, if the distributed-parameter model
assumes variation in more than one spatial coordinate, it will be represented by
PDEs for both steady-state and transient regimes. Fig. 1.1 summarizes all situations
analyzed.

Obtaining mathematical equations that represent a system is the modeling step.
After that, the mathematical equations must be solved. This second part is the
simulation of the system. The simulation can be done using analytical and numer-
ical methods. This book will focus on numerical solutions.

Lumped-parameter Distributed-parameter
models models

| SteadyState | [ Transient Regime | | SteadyState | [ Transient Regime ]

Fig. 1.1 Types of mathematical equations generated from lumped- and distributed-parameter
models in steady-state and transient regimes
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If the model and simulation are used to predict the behavior of a system that
already exists, we say we are doing an analysis of the system. On the other hand, if
the modeling and simulation are used to define the layout of a system that does not
yet exist, we say we are doing synthesis.

In this book, Chaps 2, 3, and 4 will focus on how a deterministic mathematical
model is developed. Chapter 2 will present a simple recipe that can be used to
obtain mathematical models from simple to very complex systems. Chapter 3 will
be devoted to lumped-parameter models, and Chap. 4 to distributed-parameter
models. Chapters 5, 6, and 7 will address how the mathematical equations gener-
ated from the modeling can be solved. Chapters 5, 6, and 7 will focus on numerical
solutions for AEs, ODEs, and PDEs, respectively. Despite the huge number of
numerical methods available in the literature, this book will focus on just a few
numerical methods and will use Excel to solve them. The main idea of this book is
to provide a simple and fast tool to obtain numerical solutions for even complex
mathematical equations in a targeted and simple way using Excel, which is a very
friendly and available tool.



Chapter 2
The Recipe to Build a Mathematical Model

Most chemical engineering students feel a shiver down the spine when they see a set
of complex mathematical equations generated from the modeling of a chemical
engineering system. This is because they usually do not understand how to achieve
this mathematical model, or they do not know how to solve the equations system
without spending a lot of time and effort.

Trying to understand how to generate a set of mathematical equations to
represent a physical system (to model) and how to solve these equations
(to simulate) is not a simple task. A model, most of the time, takes into account
all phenomena studied during a chemical engineering course (mass, energy and
momentum transfer, chemical reactions, etc.). In the same way, there is a multitude
of numerical methods that can be used to solve the same set of equations generated
from the modeling, and many different computational languages can be adopted to
implement the numerical methods. As a consequence of this comprehensiveness
and the combinatorial explosion of possibilities, most books that deal with this
subject are very comprehensive, requiring a lot of time and effort to go through the
subject.

This book tries to deal with this modeling and simulation issue in a simple, fast,
and friendly way, using what you already know or what you can intuitively or easily
understand to build a model step by step and, after that, solve it using Excel, a very
friendly and widely used tool.

This chapter starts by showing that even if you are a lower undergraduate
student, you already known how to do mental calculations to model and simulate
simple problems. To prove that, let us imagine a cylindrical tank initially containing
10 m® of water. Let us also imagine that the input and output valves in this tank
operate at the same volumetric flow rate (2 m3/h), as shown in Fig. 2.1. Assume that
the density of water remains constant all the time.

The first question is: 2 h later, what is the volume of water inside the tank? If you
say 10 m>, you are correct. The flow rate that enters the tank is equal to the flow rate
that exits (2 m>/s), so the volume of water in the tank remains constant (10 m>).
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6 2 The Recipe to Build a Mathematical Model

2 m3/h
Initial volume of water = 10 m3

2 m3/h

Fig. 2.1 Tank of water with an initial volume equal to 10 m®

Now, if the input volumetric flow rate changes to 3 m*/h and the flow rate at the
exit remains at 2 m3/h, what is the volume of water in the tank after 2 h? If you
correctly say 12 m?, it is because you mentally develop a model to represent this tank
and after that you simulate it. When the inflow rate becomes 3 m*/h, by inspection
one can conclude easily that the volume of water will increase 1 m? in each hour.

Unfortunately, you only know how to do mental modeling and simulation if the
problem is very simple. In order to understand how to model and simulate complex
systems, let us try to understand what was mentally done in this simple example and
transform that into a step-by-step procedure that is robust enough to successfully
work also for very complex systems.

2.1 The Recipe

In order to build a mathematical model, three fundamental concepts are used:

1. Conservation Law: The conservation law says that what enters the system (E),
minus what leaves the system (L), plus what is generated in the system (G),
minus what is consumed (C) in the system, is equal to the accumulation in the
system (A); or:

E-L+G-C=A

The accumulation is the variation that occurs in a period of time. This
accumulation can be positive or negative, i.e., if what enters plus what is
generated in the system is greater than what leaves plus what is consumed in
this system, there is a positive accumulation. Otherwise, there is a negative
accumulation.

When developing mass and energy balances in the problems presented in this
book, we will assume that terms of generation and/or consumption can exist if
there are chemical reactions. For example, there is energy generation if there is
an exothermic chemical reaction, which will result in an increase in temperature.



2.1 The Recipe 7

h=u

W =11

Ty T, T

Fig. 2.2 Variation of the dependent variable y with the independent variable x

2. Control volume: The control volume is the volume in which the model is
developed and the conservation law is applied. All variables (concentration,
temperature, density, etc.) have to be uniform inside the control volume. In the
example of the tank presented previously, all variables do not change with the
position inside the tank (a lumped-parameter problem), so the control volume is
the entire tank.

3. Infinitesimal variation of the dependent variable with the independent variable:
Imagine that a dependent variable y varies with x (an independent variable)
according to the function shown in Fig. 2.2. Also imagine that in an initial
condition x, the initial value of y is y,. To estimate the value of the dependent
variable y after an infinitesimal increment in x (Ax), one can draw a tangent line
to the curve starting from the point (xq, yo), as shown in Fig. 2.2.

The tangent line reaches v, at x=x; (x; =xo+ Ax). If the increment Ax is
sufficiently small, it follows that y; = v, and it is possible to obtain the value of
y1 using the concept tangent of a:

— d
tana:yl Yo _ 4y
X| — Xo dxXO,y0
So:
dy
=yy+ Ax—
Y1 =Xo dr

X0,Yo
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Generalizing and simplifying the way to show the index of the derivative:

dy;
Yis1 =Yt AX (2.1)

Equation (2.1) could be also obtained using the first term of a Taylor series
expansion (Eq. 2.2):

dy; 1 &%,
Yigr =Y+ = Ax 4

1 d%, 1 d*y,
A ol (A Yiax) +— a0t + - (22)

3 A 41 di*

For all systems presented in this book, the same recipe will be used to obtain the
mathematical model, following the three steps:

Definition of Control volume

%

Application of conservation law

Application of the concept of Infinitesimal variation of the dependent variable with the
independent variable (if there is changing with time and/or space)

2.2 The Recipe Applied to a Simple System

Keeping in mind the three fundamental concepts presented in Sect. 2.1, let us apply
the step-by-step procedure (the recipe) to model the tank presented previously. This
procedure, used to model this simple system, will be the same used throughout the
entire book, in order to solve more and more complex problems.

As stated in Sect. 2.1, the entire tank must be considered as the control volume
because we are dealing with a lumped-parameter problem. The dashed line in
Fig. 2.3 shows the control volume considered in this case.

Fig. 2.3 Tank of water 3 m3/h
with the control volume
used in the modeling .

Initial water volume= 10 m3
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The application of the conservation law to the control volume yields the expres-
sion presented by Eq. (2.3) (observe that there is neither generation nor consump-
tion of water):

E-L=A (2.3)

The E and L terms can be easily obtained, since the flow rates that enter and
leave the tank are known (3 m>/h and 2 m*/h, respectively); however, how can the
accumulation term be obtained?

In order to obtain the accumulation term, we can use the concept of the
infinitesimal variation of the dependent variable with the independent variable. So
if we say that at a time 7 the mass of water in the tank is M (kg), after an infinitesimal
period of time (Af) the mass of water in the tank will be M + ‘%’At (kg) (see
analogy with Eq. (2.1)). The table below summarizes this information.

t t+ At Dimension

M
M ™ ke
dr

The amount of water accumulated in the tank in a period of time A¢ is the mass of
water at the time ¢ + At minus the mass of water at the time ¢, so the accumulation
term (A) is given by:

aMm
A=M+—At—M
dt
or:
aMm
A=—Ar (kg)

dt

Since the mass is the density times the volume (M = pV) and the density remains
constant, the accumulation term can also be written as:

dv
A=p Al (kg)

A very important tool to check if a model is correct is to do a dimensional
analysis on all terms of the conservation law equation.

If we calculate how much water accumulates in the tank in a period of time Af,
we have to consider how much water enters and leaves the tank in this same interval
of time (Af). So, in a period of time At, the amount of water that enters and leaves
the tank is:

E = 3(m*/h) p(kg/m?) At(h) — E = 3p Ar(kg)
L =2(m?/h) p(kg/m®) Ar(h) — L =2p Ar(kg)
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so applying the conservation law for the period of time A¢ yields:

av
3pAr(ke) - 20Aike) = o Adkg) (2.4
Enters (E) Leaves (L) ——

Accumulation (A)

Observe that the density (p) is present in the three terms of the mass balance, so
Eq. (2.4) can be simplified. In this way, we can conclude that when the density
remains constant, we can directly do the volume balance (instead of mass balance).
In this case, the accumulation term, as well as the terms E and L, could be obtained
as shown below:

t t+ At Accumulation Dimension
av av m?
\%4 - -
V+ o At i At
E =3(m’/h)Ar(h) — E =3Ar(m?)
L =2(m’/h)Ar(h) — L =2Ar(m?)

so the balance becomes:

3At(m?) —2A¢(m?) = (fi—‘:At(m3) (2.5)
Enters (E) Leaves (L)

Accumulation (A)

Observe that Egs. (2.4) and (2.5) are the same, and after simplifying terms this
yields:

dv
i 1 (2.6)

Equation (2.6) represents the model for this simple system and agrees with the
mental calculation you did previously. Having completed the modeling stage, we
need to do the simulation, which is nothing more than solving, by analytical or
numerical methods, the equations generated from the modeling. In our case, as the
system is greatly simplified, a single and very simple ordinary differential equation
(ODE) is generated from the modeling, and it will be solved by direct integration.

To solve this ODE, one initial condition is necessary. In our case, we know that
in the beginning of the operation, the volume of water in the tank is 10 m>. So the
initial condition is:

At t=0, V=10m’
Solving Eq. (2.6) using the initial conditions yields:

V=10+1 (2.7)
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Equation (2.7) shows how the volume of liquid in the tank varies with time,
making it possible to predict, for example, the time it takes for the liquid to overflow
the tank (also observe that the equation says that after 2 h, the volume of water is
12 m?, as predicted previously).

The procedure adopted for this simple example will be used from now on for
more and more complex examples.

Proposed Problem

2.1) Develop a model for the tank presented in Fig. 2.3, but consider that the flow
rate of water that leaves the tank (Q,,,, m>/h) depends on the level of the water (k)
inside the tank, in the way Q,,=1+0.1h (m>/h). This can be a real situation
because as the column of water increases, the pressure on the exit point also
increases, and consequently the exit flow rate becomes greater. Assuming that the
initial volume of water inside the tank is equal to 10 m? and the cross-sectional area
of this tank is equal to 1 m?, the initial level of water (/) is 10 m, so in the beginning,
the flow rate that leaves the tank (Q,,,) is equal to 2 m>/h. In the beginning, the input
flow rate is equal to 2 m3/h, so the volume of water remains constant, in a steady-
state regime. If for some reason the inflow rate varies from 2 to 3 m*/h, develop a
mathematical model to represent how the level of water inside the tank varies with
time. Define the initial condition needed to solve the equation generated from the
modeling.



Chapter 3
Lumped-Parameter Models

This chapter uses the recipe presented in Chap. 2 to develop models for different
systems related to chemical engineering. The examples presented in this chapter
deal with lumped-parameter problems, in which spacial variations in a physical
quantity of interest are ignored. As shown in Fig. 1.1, lumped-parameter problems
in a steady state are represented by algebraic equations, and, in a transient regime,
by ordinary differential equations. In this chapter, we will only develop mathemat-
ical models using the recipe presented in Chap. 2. Numerical solution (using Excel)
of algebraic and ordinary differential equations will be seen in Chaps. 5 and 6,
respectively.

As mentioned in Chap. 1, one example of a lumped-parameter problem is a
perfectly stirred tank, in which we assume that the agitation is so perfect that the
system can be considered homogeneous (no internal profiles of concentration,
temperature, etc).

Section 3.1 will present three introductory examples of lumped-parameter
modeling involving mass, energy, and volume balances. Sections 3.2 and 3.3 will
revisit some concepts about heat transfer and chemical reactions, needed to model
problems with a somewhat greater complexity level, and will show five practical
examples of how to model systems involving these concepts.

3.1 Some Introductory Examples

This section will be presented in the form of three introductory examples, which
will explore mass, energy, and volume balances.

Example 3.1 Mass Balance in a Perfectly Stirred Tank

Let us consider a perfectly stirred tank initially containing 10 m> of pure water.
Assume that the tank contains inlet and outlet valves, both operating at the same
flow rate (2 m3/h), so the volume of water inside the tank does not change over time

© Springer International Publishing AG 2018 13
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Fig. 3.1 Perfectly stirred 2 m3/h
tank being fed with a NaOH 0.02 kg/m?
solution

(assuming an incompressible fluid, i.e., constant density). In the beginning, the inlet
stream contains just water. At some point, a solution of NaOH at a concentration of
0.02 kg/m3 is fed instead, at the same flow rate (2 m3/h). What is the concentration
of NaOH in the liquid leaving the tank?

Solution:

By inspection, one can imagine that the concentration of NaOH in the tank is
initially zero (pure water) and when the solution of NaOH starts being fed,
the concentration of NaOH in the tank starts increasing, but it does not exceed
0.02 kg/m”>.

One can also imagine that, if the agitation is perfect, the concentration of NaOH
at all points inside the tank is the same, including the point very close to the outlet
valve, so we can conclude that the concentration of NaOH inside the tank is equal to
the concentration of NaOH that leaves the tank. As we do not know the value of this
concentration (and remember, it will change over time), we will assume its value is
equal to x (kg/m?).

As this is a lumped-parameter problem, the entire tank must be considered as the
control volume. A scheme that represents our problem, from the point at which a
solution of NaOH starts being fed, can be seen in Fig. 3.1.

Let us start doing the mass balance of NaOH inside the tank (the control
volume). As there is no generation or consumption of NaOH (no chemical reac-
tion), the conservation law applied to this case yields E — L = A.

The accumulation term can be obtained by the concept of the infinitesimal
variation of the dependent variable with the independent variable, considering
the amount of NaOH at time ¢ and at time 7+ Az. The amount of NaOH in the
tank is the concentration (x) of NaOH in the tank (kg/m’) multiplied by the volume
(V) of the tank (m?).

t t+ At Dimension
d(Vx) kg
dt

Vx Vx + At

The amount of NaOH that accumulates in a period At is the amount of NaOH at
time 7+ At minus the amount of NaOH at time ¢.
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_d(Vx)
A=""ZAr (kg)

All terms of the conservation law (the amounts of NaOH that enter, leave, and
accumulate) must be considered in the same period of time, in this case, At (h).

The amount of NaOH (kg) that enters the tank in Az (h) can be obtained
by multiplying the volumetric inflow rate (2 m’/h), the inflow concentration
0.02 kg/m3), and the period of time Af (h):

E=2 <m§> 0.02 (%) At(h)

E =004 At (kg)

In the same way, one can obtain the amount of NaOH that leaves the tank in the

same period of time Af (h):
L—a(™) (ke At(h)
N h m?3

L=2xAt (kg)

The mass balance can be obtained by substituting the terms E, L, and A in the
conservation law:

d(Vx)
dt

0.04A¢ — 2xAr = At (3.1)

Observe that all terms have the same dimension (kg). Simplifying the Af term
yields:

d(Vx)

=0.04 -2
dt o

In our case, the volume of the tank remains constant and is equal to 10 m3, so the
final equation to represent the concentration of NaOH in the tank (and leaving the
tank) is:

dx 0.04 —2x
d 10
This ordinary differential equation (ODE) is the mathematical model that rep-
resents the stirred tank. The simulation of this system is obtained by solving this
ODE analytically or numerically. In order to solve this ODE, an initial condition is
needed. In our problem the initial condition available is: at r = 0 h, x = 0 kg/m’
(pure water).
After solving the ODE, one can obtain a profile of the concentration of NaOH
inside the tank over time, as shown in Fig. 3.2. As mentioned before, the NaOH
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Fig. 3.2 Concentration profile of NaOH leaving the tank over time

concentration indeed starts at zero and tends toward the value 0.02 kg/m>, which is
the concentration of the stream fed into the tank. When the concentration of NaOH
inside the tank does not vary anymore with time, we say the system reaches a steady
state. So, in our case, the system is in a transient state (when the concentration of
NaOH changes with time) and then reaches a steady state (when the concentration
of NaOH remains constant over time).

We can also obtain the NaOH concentration inside the tank in a steady state
directly (with no need to draw a graph) by setting a value of the accumulation term
in the conservation law equal to zero (E — L = 0). This is possible because in a
steady state the concentration of NaOH stays the same over time. In this way, the
mass balance becomes (compare this with Eq. 3.1):

0.04 —2x=0

This equation is easily solved and yields x = 0.02 kg/m’ (as expected;
see Fig. 3.2).

It is important to observe that some systems do not reach a steady state. Note that
in the example presented in Chap. 2, the volume of the liquid inside the tank will
increase indefinitely with time, until the tank overflows.

In the next example, there will be a small increase in complexity because the two
examples previously presented will be combined (changes in volume and in
concentration), and the system will be represented by two ODEs.

Example 3.2 Mass and Volume Balance in a Perfectly Stirred Tank

Assume now a situation in which there are variations with time of both volume and
NaOH concentration. In this case, the models developed in Chap. 2 and in Example
3.1 have to be combined. The system can be represented by Fig. 3.3. At the
beginning, a perfectly stirred tank contains 10 m?® of pure water. Shortly thereafter,
the tank starts to be fed at a rate of 3 m>/h with a NaOH solution at a concentration
of 0.02 kg/m>. Simultaneously, an outlet valve is opened, allowing the fluid to leave
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3m3/h Initial water volume = 10 m3
0.02 kg/m3 Initial NaOH concentration = 0 kg/m3

Fig. 3.3 Perfectly stirred tank with variations in NaOH concentration and volume
the tank at a rate of 2 m*/h. How do the volume and the concentration of NaOH vary
with time inside the tank?

Solution:
Chapter 2 develops the volume balance for this tank and obtains:

dv
—=1
dt
Developing the mass balance of NaOH for the tank, as per Example 3.1, we
obtain:

d(Vx)
dt

=0.06 — 2x
If the volume changes with time, this yields:

d(Vx) dx dV

aar Yar

So the equation system that represents this tank is:

v_,

dt

dx 0.06 —3x
-V

and the initial conditions are: At =0, V = 10 m® and x = 0 kg/m’.
Both equations have to be solved simultaneously to generate profiles of the
volume and NaOH concentration inside the tank over time.

Example 3.3 Energy Balance in an Insulated Stirred Tank

Now let us take a step further by considering a simple energy balance. Variations in
temperature in chemical plants can occur basically due to generation or consump-
tion of energy as a consequence of exothermic or endothermic chemical reactions,
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Fig. 3.4 Insulated stirred 2 m3/h
tank fed with water at 50 °C 50 °C Att=0, T=20 oc

and due to heat transfer phenomena, such as radiation, conduction, and natural or
forced convection. In this simple example, the variation in temperature will occur
only because the system is fed with a fluid at high temperature.

Imagine an insulated, perfectly stirred tank containing 10 m> of water at 20 °C.
At some point the inlet and outlet valves are opened, both operating at a flow rate of
2 m3/h. Assume that the density of the water remains constant, even if the temper-
ature varies, so the volume inside the tank remains constant and equal to 10 m>. If
the temperature of the water fed into the system is 50 °C, how does the water
temperature inside the tank change over time? How long does it take to reach a
steady state? What is the temperature at the steady state?

Solution:

By inspection, one can imagine that initially the temperature of the water inside
the tank is 20 °C and increases until it reaches 50 °C (observe that this tank is
insulated and does not lose heat to the environment). Figure 3.4 shows the proposed
system.

As the water in the tank is perfectly mixed, the entire tank has to be considered as
the control volume. There is no generation or consumption of energy inside the
tank, so the conservation law applied to this system yields:

E-L=A

Initially we will analyze the accumulation of energy inside the tank in a period of
time Az. As we are dealing with the energy balance, the amount of accumulated
energy must be given in units of energy, such as joules (J), BTU, cal, etc. Analyzing
our problem, we will try to infer how to represent this energy using both dimen-
sional analysis and the physical meaning of the variables.

The amount of heat accumulated in the system depends on (i) the amount of
material, given by its mass (the greater the mass, the greater the amount of
accumulated heat); (ii) the temperature (i.e., the higher the temperature is, the
more energy the material holds); and (iii) the characteristics of the material (i.e.,
its ability to accumulate heat, given by its specific heat). Thus, the amount of energy
in the system at a given time can be represented (using international units) by:
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M = mass (kg)
Mc,T(J) ¢, = specific heat (J/kg C)
T = temperature( C)

The mass (M) can be represented by the product of the volume and density
(M = pV). Hence, the amount of accumulated heat in a period of time At is given by
the amount of heat at time 7+ Af minus the amount of heat at the previous time ¢, as
can be seen below:

t t+ At Dimension
VpCpT V/)C,,T + %Al J
d(Vpc,T
A = 2WpeT) o Jar )

When developing a model, simplifying assumptions can be considered in order
to make the simulation easier. In our example, one can assume that the density and
the specific heat of the water do not vary over time, even if the temperature changes.
Doing so, the accumulation term becomes:

dar
Accumulation = A = Vpc, = At ()

The next step is to analyze the input and output terms of the conservation law.
We need to obtain the amounts of energy (in joules—the same units used in the
accumulation term) that enter and leave the system over a period of time At. The
higher the temperature of the stream fed, the greater the amount of heat that enters
the system. Likewise, the higher the mass flow rate entering the tank, the greater the
amount of heat fed into the tank. Another parameter that affects the heat flow is the
characteristic of the fluid, which may be given by its specific heat. So the amount of
energy that enters the tank in a period of time Af can be given by:

E=2(2)o(E2)e, () 500

mass flow rate
E = 100pc,Ar (J)

Analogously, one can obtain the amount of energy that leaves the system. We do
not know the temperature of the water that leaves the system (which equals the
temperature inside the tank, because it is perfectly mixed), so we call this generic
temperature 7. Note that we have also considered this temperature T in the accu-
mulation term.
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L=2 ()0 88)e, (o) 70 2

m3

mass flow rate
L =2pc,TAt (J)

It is well known that p and ¢, depend on the temperature; however, in our
example we will assume that the p and ¢, of the water fed into the tank are equal to
the p and ¢, of the water that leaves the tank.

The application of the conservation law generates the following energy balance
(in joules):

dTr
Vpc, EAt = 100pc, At — 2pc, TAt (3.2)

Simplifying and rearranging it yields:

dT 100 -2T
dr 1%

In our case the volume of water inside the tank stays constant and is equal to
10 m3, so the ODE becomes:

dar
i 10-02T

This ODE can be solved analytically or numerically using the initial condition
(at t =0, T = 20 °C) to generate the temperature profile shown in Fig. 3.5, which
represents the water temperature inside the tank over time.

In Fig. 3.5, one can observe that after around 25 h, the system reaches a steady
state because the temperature does not change with time anymore.

If we want to know the temperature of the liquid inside the tank in a steady state
without plotting the curve, the conservation law for a steady state has to be used
(E — L = 0). The energy balance is developed without considering the accumula-
tion term (no variation of temperature with time) to yield (compare this with
Eq. 3.2):

100pc, — 2pc,T =0 or
100-2T =0

So the temperature of the liquid inside the tank after reaching a steady state is
50 °C, as predicted by inspection and observed in Fig. 3.5.

If the volume, the concentration, and the temperature change simultaneously,
three ODEs have to be solved simultaneously in order to predict the system’s
behavior. Imagine the problem presented in Example 3.2, but consider that initially
the temperature of the water in the tank is 20 °C and the temperature of the fluid fed
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Fig. 3.5 Temperature profile of water inside the tank over time

into the tank is 50 °C. The volume and concentration equations are the same as
those obtained in Example 3.2, and the energy balance has to be solved considering
that the volume is not constant and changes over time. Assuming that the density
and the specific heat do not change significantly with the concentration of NaOH
and temperature, one can obtain the following set of equations to represent the
system:

dv
-1
dt
dx 0.06 —3x
a VvV
dar 150 — 3T
a VvV
with the initial conditions: Atz =0, V = 10 m3, x=0 kg/m3, and T = 20 °C.
The concentration and temperature equations do not depend on each other, but
both depend on the volume balance.
After understanding these introductory examples, you are ready to revisit some

concepts needed to model more complex problems. Sections 3.2 and 3.3 will deal
with convective heat transfer and chemical reactions, respectively.

3.2 Some Concepts About Convective Heat Exchange

All examples presented up to this point have considered an adiabatic system, i.e.,
insulated tanks with no heat exchange with the environment. In real chemical
plants, heat exchange between the system and the environment is very common.
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A Tw Tp
T = temperature of the fluid 1
Tw = temperature of the wall close to the fluid 1 T Te
Tp = temperature of the wall close to the fluid 2
) Fluid 1 Fluid 2
Tc = temperature of the fluid 2
L

Fig. 3.6 Flow of energy (shown by the arrows) from the fluid at 7°C to the fluid at Tc °C

In order to promote the addition or removal of energy, jacketed vessels are often
used. These vessels are tanks designed to control the temperature of their contents.
When there is heat exchange with the environment or with a jacket, this flow of
energy has to be considered in the energy balance.

In order to better understand the heat transfer between two fluids at different
temperatures, observe Fig. 3.6, which shows a wall with a certain thickness
L separating two fluids with temperatures T and Tc °C. Assume that T is greater
than Tc, so there will be a flow of energy from the left side to the right side, as
depicted by the arrows.

The flow of energy by conduction, which will be further detailed in Chap. 4,
deals with the transfer of energy from molecule to molecule in materials in which
molecules have little or nearly no mobility. This is the case with solid materials.
Observing Fig. 3.6 one can conclude that the energy flows through the wall by
conduction, and that there is a profile of temperature along the thickness of the wall
(Tw > Tp, being Tw and Tp temperatures at both surfaces of the wall). Both fluids
have molecules with more mobility, so the flow of energy in these two media occurs
mostly by convection.

Heat flow by conduction or convection is directly proportional to the driving
force and inversely proportional to the resistance. In Fig. 3.6, the driving force for
the flow of energy through fluid 1 is T — Tw. Likewise, the driving forces for the
energy flow through the wall and through fluid 2 are Tw —Tp and Tp —Tc,
respectively. Fluids 1 and 2 and the wall will offer resistance to the flow of energy.

Along the wall, the flow of energy will depend on the properties of the wall, like
thermal conductivity. Materials with higher thermal conductivity offer low resis-
tance to heat flow by conduction (it is well known that insulating materials such as
Styrofoam present low thermal conductivity). Moreover, the longer the distance
that the heat has to go through by conduction, the greater the resistance to the flow
of energy. In this way, the resistance to the flow of energy by conduction can be
represented in this example by L/k (this expression is valid for Cartesian coordi-
nates), in which L is the thickness of the wall and £ is the thermal conductivity of
the wall.
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The flow of energy by convection through fluids 1 and 2 will depend not only on
the properties of the fluids (such as viscosity, specific heat, and density) but also on
the operating conditions (for example, the higher the fluid velocity, the better the
heat exchange). Analogous to k for the conduction, the parameter that indicates if
the fluid is effective for energy transportation by convection is the heat transfer
coefficient (h), which is a function of the properties of the fluids and operating
conditions. The higher the value of 4 is, the more effective the heat flow by
convection is. In this way, the resistance for the convective flow is 1/h. There are
many different correlations to obtain the heat transfer coefficient (4); however, in
this book the values of i will always be informed.

Having in mind the concepts presented above, one can obtain the three energy
flows shown in Fig. 3.6 (« means proportional).

—Tw Tw —T, Tp —Tc
1 Flowyan a Tp; Flowpyia2 o pf

hfuid1 k hfuid2

FlOWﬂuid 1

The total resistance to the heat flow is given by:

R— 1 L 1
hiwiar &k hpwia
in which (using international units):
hauia1 = heat transfer coefficient for fluid 1 (s mJ2 °C)
hauiaz = heat transfer coefficient for fluid 2 (S sz °C)

k = thermal conductivity (ﬁ)

L = thickness of the wall (m)

Usually the resistance to conduction is irrelevant if compared with the resistance
to convection in chemical plants, because pieces of equipment in an industry are
usually built with material with high thermal conductivity (usually metals) and have
thin walls, so the total resistance becomes:

—_—

1 1
+

R = =
Ngiobal  Mfwid1  Miwid2

hgiobal 18 called the global heat transfer coefficient, and it is also represented by
U or h.

So the flow of energy from fluid 1 to fluid 2 is proportional to the total driving
force (T — Tc) and inversely proportional to the total resistance (R).

T—-Tc
Flowigta 0 -1
U
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The factor of proportionality is the area (A) through which there is heat
exchange, and this area is perpendicular to the direction of the heat flow. Therefore,
the convective heat flow (called Q below) is given by:

Q=UA (T —Tc)=UA AT

in which (using international units):

Q = convective heat flow (J/s)

U = global heat transfer coefficient (J/s m’ °C)
A = area of convective heat transfer (mz)

AT = difference in temperature (°C)

It is important to observe that, as the heat flow is continuous, we can say:
Heat flow in fluid 1 = Heat flow in the wall = Heat flow in fluid 2 = Heat flow

Now we are ready to again solve Example 3.3, but this time considering a
noninsulated system with loss of heat to the environment.

It is important to point out that the concepts presented in Sect. 3.2 are the
minimum necessary to develop mathematical models of systems that present heat
exchange by convection. The reader can find specific and detailed literature on this
subject elsewhere (Kern 1950; Incropera et al. 2006; Bird et al. 2007; Welty et al.
2007).

Example 3.4 Energy Balance in a Noninsulated Stirred Tank with Convective
Heat Transfer

The next example will give another step forward in complexity by considering a
noninsulated tank. Let us consider Example 3.3, but this time assuming that the tank
exchanges heat with the environment, which is at a temperature of 15 °C (Fig. 3.7).

One wants to know how the water temperature inside the tank changes over time
and what the temperature is in a steady state.

Assume that the global heat transfer coefficient (U) between the liquid inside the
tank and the environment is equal to 30 (J/s m’ °C). Consider constant values for the
density (p=1000 kg/m’) and specific heat (¢, =4184 J/kg °C) of the fluid inside
the tank, even with changes in temperature. Assume that the heat exchange area (A)

Fig. 3.7 Stirred tank 2 m3/h
exchanging heat with the 500C Att=0, T=20°C
environment (noninsulated Tonvironment = 150C
tank)
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with the environment is equal to 40 m* and the volume of liquid inside the tank (V)
is equal to V=10m".

Solution:

In this problem, we need to again solve Example 3.3, but this time considering
also the convective heat transfer with the environment, which is at 15 °C.

The application of the conservation law to our problem keeps yielding
E — L = A, but this time, besides the terms considered in Example 3.3, we have
to consider the term related to the heat exchange with the environment.

The accumulation term is calculated in the same way as was done before, and
yields:

ar
A= VpcpEAt @

The amount of energy that enters the tank is the same as that developed in
Example 3.3:

E=2(2)0(E2)e, (1) 00

m3
E = 100pc,At (J)

The amount of energy that leaves the tank due to the fluid leaving the tank,
obtained in Example 3.3, has to be considered in this example too:

=2 ()0 88 (o) 70 v

L =2pc,TAt (J)

However, the flow of energy that leaves the tank by convection in a period of
time At has to be considered also, and it is given by:

L=U (ﬁ) A (m2) (T - 15) (°C) At(h)

L=UA (T -15)Ar (J)

So the application of the conservation law to this case yields:

ar
Vo, 1Al = 10006, A1 = 2pc,TAl — UA(T — 15)Ar ) (3.3)
Enters (E) Leaves (L)

Accumulates (A)
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Fig. 3.8 Profiles of temperature over time: (a) for a stirred tank exchanging heat with the
environment; (b) for the insulated tank presented in Example 3.3

Rearranging:

g:l 100—2T—U—A(T— 15)
dat 'V PCp
The initial condition to solve this ODE remains the same: at r = 0, T = 20 °C.
After solving this ODE, the temperature profile over time can be seen in
Fig. 3.8a. Observe that the system reaches a steady state at around 40 °C, which
is a lower temperature than the one in Example 3.3, where there was no heat
exchange with the environment. Figure 3.8b again shows Fig. 3.5, to simplify the
comparison.
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Now a simple convention to help the development of a model will be introduced.
Imagine that the environment temperature is 25 °C, instead of 15 °C. In this case,
since the initial temperature of the water is 20 °C, maybe in the beginning the heat
flows from the environment to the tank. However, after some time, as the tank is fed
with a fluid at 50 °C, the heat flows from the tank to the environment. Should we
consider this heat flow by convection entering (E; plus sign) or leaving (L; minus
sign) the tank? In order to deal with situations like that, a simple convention can be
used: always add (plus sign) the convective terms in the energy balance, but always
consider the difference in temperature as the environment (surrounding) tempera-
ture minus the system temperature, in this order, as represented below:

UA (Teny —T)

in which T, is the temperature of the environment or the jacket (or surrounding)
and T is the temperature of the control volume. So if 7., > T, the convection term is
positive and heat is added to the system. If T,,,, < T, the convection term is negative
and heat is removed from the system. If at some point T, =T, there is no heat
exchange between the tank and the environment.

Using this convention, Eq. (3.3) can be rewritten as:

—
Enters (E) Leaves (L) Heat by Convection

dT
VpcpEAt = 100pc, At —2pc,TAt + UA(15 — T)Ar  (J) (3.4)
—_——— ——
Accumulates (A)

If we want to model this system to obtain the temperature of the tank when a
steady state is reached, the energy balance has to be calculated without considering
the accumulation term, and the following equation is obtained (compare this with
Eq. 3.4):

100pc, — 2pc, T + UA(15-T) =0 (J/h)

Considering the numerical values for the parameters and solving this algebraic
equation, we can obtain that the temperature in a steady state is 38.08 °C, as
previously observed in Fig. 3.8a.

Now let us explore the behavior of this tank a little further by studying another
possible situation, suggested in Example 3.5.

Example 3.5 Energy Balance Considering Convective Heat Transfer and No
Inlet or Outlet Flow Rates

This example revisits Example 3.4 and assumes that when the water temperature
inside the tank reaches 38.08 °C (the temperature in a steady state), the input and
output valves are closed. If this is the case, how does the water temperature decrease
over time? Assume again that the tank is perfectly mixed and exchanges heat with
the environment, which is at 15 °C.

Solution:
The energy balance presented in Eq. (3.4) is simplified, removing the terms of
inflow and outflow of the water, to yield:
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Fig. 3.9 Profile of water temperature over time

dT
Vo, oAt = UA(IS = T)At (1) (3.5)
——————

Heat by Convection
Accumulates (A)

Equation (3.5) can be rewritten as:

dar  UA
dr Vpc,

(15-T) (3.6)

Solving Eq. (3.6), considering the initial condition (at t = 0, T = 38.08 °C), we
can find that it takes around 50 h until the water reaches the environment temper-
ature (15 °C), as shown Fig. 3.9. In order to solve Eq. (3.6), the same numerical
values used in Example 3.4 are adopted (U=30J/s m?°C, ¢, =4184]/kg°C,
p=1000kg/m’>, A=40 m?, V=10m>).

3.3 Some Concepts About Chemical Kinetics and Reactors

All systems studied so far have not considered chemical reaction. When there is a
chemical reaction, the temperature of the system can change, because the reactions
can be exothermic or endothermic. Besides, chemical reactions cause changes in
the concentrations of reactants and products, although the total mass of the system
remains constant.

It is not the objective of this book to explore the kinetics and reactions issue in
detail. Herein a very few concepts, in a very simplified way, will be presented, just
to allow us to develop mathematical models for systems with chemical reactions.
The reader can find very interesting books in the literature dealing with chemical
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reactions and kinetics, such as Froment and Bischoff (1990), Fogler (1999),
Davis and Davis (2003), and Hill and Root (2014), just to mention a few.

3.3.1 Some Concepts About Kinetics of Chemical Reactions

Imagine an irreversible chemical reaction where a reagent A is transformed into a
product B, as shown below:

AL B (3.7)
in which £ is the kinetic rate constant.

In the above reaction, one mol of reactant A produces one mol of product B
(a stoichiometric reaction). The speed at which the reaction occurs is given by the
rate of chemical reaction (r) and represents the number of moles consumed per
volume per time. The rate of irreversible reactions is given by the kinetic rate
constant (k) multiplied by the concentrations of the reagents, considering the
stoichiometry of the reaction.

In a first-order reaction, in which there is only one kind of reactant and the
stoichiometric coefficient of the reactant is 1 (as occurs in Eq. 3.7), the constant rate
(k) has the dimension of time . Using international units, the reaction rate can be
expressed by:

C, = reactant concentration (mol/m?)

- ~ k = rate constant (1/s)
Reactionrate =r =k C'! =k Cy . 3
r = reaction rate (mol/m” s)

v4 = partial order of reaction (dimensionless)

In this book we will consider the partial orders of reaction equal to the stoichio-
metric coefficients of the reactant (in our case, v4 = 1), but sometimes they depend
on the reaction mechanism and can be determined experimentally.

Other examples of irreversible first-order reactions are shown below:

AL 2B = r=kCy (3.8)
ALBrC = r=kC,

Observe in Eq. (3.8) that reactant A is consumed at a rate k Cu (mol/m> s) to
produce Batarate 2k Cy (mol/m3 s), because one mol of A generates 2 mols of B,
according to the stoichiometry of Eq. (3.8).

The unit of the rate constant (k) depends on the order of the reaction. For
example, if the irreversible reaction is of second order (two mols of different
or equal reactants are needed to produce the product), the rate constant has the
units m>/mol s (see Eq. 3.10).
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A+B L C (3.10)

C4 = concentration of reactant A (mol/m?)

Cp = concentration of reactant B (mol/m?)

Reactionrate = r = kC7*Cy? = kCoCp | | k = rate constant (m?/mol s)

r = reaction rate (mol/m?’s)

vs = 1 and vp = 1 (dimensionless)

Other examples of irreversible second-order reactions are shown below:

244 B = r=kC

A+BECEDIE = r=kCuCy

The rate constant k usually follows the Arrhenius law, varying exponentially
with temperature:

k = rate constant

ko = pre—exponential factor

E
k = koexp (— R_;> E4 = activation energy

R = gas constant

T = absolute temperature (K)

Note that the reaction rate (r) depends not only on the concentration of the
reactants but also on the temperature. Thus, when a non isothermal chemical reactor
is modeled, the mass and energy balances must be solved simultaneously.

The chemical reaction can also be reversible or can present a mechanism
composed of many steps. More complex kinds of kinetics are not explored in this
book but can be found in any book regarding kinetics and reactors.

3.3.2 Some Concepts About Chemical Reactors

There are a lot of types of chemical reactors, but this book will cover only the most
common types and their operation modes.

Imagine a cylindrical stirred tank reactor. Ideally, it can be considered that the
agitation of this reactor is perfect (a lumped-parameter system), which gives us the
first class of reactors: stirred tank reactors (STRs). Basically, these stirred tank
reactors can operate in three different ways:
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— Batch: when all reactants are added to the reactor at once before the beginning of
the reaction, and there is no addition of reactants or withdrawal of products as the
reaction occurs (see Scheme A).

— Continuous: when the reactants and products are continuously fed and with-
drawn. This is the system known as a continuous stirred tank reactor (CSTR)
(see Scheme B).

— Semi-batch or fed-batch: when there is no removal of products during
the reaction, but the reagents can be added as the reaction proceeds (see
Scheme C).

Batch Continuous (CSTR) Semi-batch or fed-batch

Scheme A Scheme B Scheme C

There is another type of reactor widely used in industries: the tubular reactor. As
the name says, this reactor has the shape of a tube and its dimensions (length and
diameter) depend on the type of process or product. A simplified scheme for a
tubular reactor can be seen in Fig. 3.10, which shows reactants entering through one
side of the reactor and products (and no consumed reagents) leaving through the
opposite side. The reaction proceeds as the reaction mixture moves forward inside
the reactor.

Once again, it is important to point out that the information about chemical
reactors presented in this book is only the minimum necessary to enable the
development of mathematical models for systems that present chemical reactions.
The reader can find very interesting books on chemical reactors and kinetics in the
specific literature (Levenspiel 1999; Froment and Bischoff 1990; Missen et al.
1999; Davis and Davis 2003, etc.).

The last three examples in this chapter will present problems of lumped param-
eters in which chemical reactions occur.

reactants products

B — _—
non consumed
reactants

Fig. 3.10 Scheme of a tubular reactor
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Fig. 3.11 Batch stirred
tank reactor

t=0: C,=C,o(mol/m3)
Cy=Cc=0
T=T,(°C)

Example 3.6 Mass and Energy Balance in an Adiabatic Batch Reactor
Imagine a batch stirred tank reactor, as shown in Fig. 3.11. Let us consider that the
reactor is perfectly mixed and that there is no heat exchange with the environment
(an adiabatic system). This reactor is used to produce component B, according to an
irreversible chemical reaction:

AL oic

in which A is the reactant, B is the desired product, and C is an undesirable subproduct,
which must be removed using a separation system to be installed after the reactor.

The chemical reaction is exothermic and follows the Arrhenius law. In the
beginning, there are no products in the reactor, and the initial temperature and
concentration of reactant A are Ty (°C) and Cyg (mol/m3), respectively. Let us
assume that the volume of the reactional mixture is equal to V (m®). For simplicity,
let us consider that the densities of compounds A, B, and C are practically the same
and constant with temperature, so it is possible to assume that the volume of liquid
inside the reactor remains the same.

Develop a mathematical model to represent this reactor in order to obtain the
profiles of C4,Cg, Cc, and T over time.

Solution:

Since the reactor is perfectly mixed, its content is homogeneous and the control
volume is the entire tank (a lumped-parameter problem).

Let us start by calculating the mass balance. The mass balance for reactant A and
products B and C can be obtained by applying the conservation law equation
(E-L+G-C=A).

As we are modeling a batch reactor, in which there is no entry or exit of A, B, and C
(observe Fig. 3.11), the terms E (entry) and L (exit) in the three mass balances are equal
to zero. In addition, for the mass balance of reactant A, we must consider the consump-
tion term, but a generation term does not exist (an irreversible reaction). On the other
hand, for products B and C an opposite situation occurs (there is no consumption term,
but a generation term exists). So the mass balance for A, B, and C becomes:

Mass Balance for reactant A: Accumulation of A = —Consumption of A
Mass Balance for product B: Accumulation of B = Generation of B
Mass Balance for product C: Accumulation of C = Generation of C
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Let us start calculating the accumulation terms in a period A#(s), as follows:

For reactant A:

t t+ At Accumulation of A in A¢ (mol)
VCa VCa + @At 14 d(;’*)m

For product B:
t t+ At Accumulation of B in Az (mol)
VCy VCp + d(‘;tc’*)m vd(gf)m

For product C:
t t+ At Accumulation of C in At (mol)
VCe VCe + d(‘;—fdm 14 d(iC)At

Now we need to obtain the consumption and generation terms.
The chemical reaction is of first order so the rate constant has the dimension of
time '. Using international units, the reaction rate is given by:

C4 = concentration of reactant A (mol/m?)
~ k = rate constant (s~ !)

va = stoichiometry coefficient = 1 (dimensionless)

r = reaction rate (mol/m? s)

Since for each mol consumed of reactant A, two mols of product B and one mol
of product C are generated, the rate at which reactant A is consumed (r,) is equal to
the rate at which product C is generated (r¢), but the rate at which B is produced (1)
is twice the rate of consumption of reactant A. So:

I‘AZ}’C:kCA
FBZZI‘AZZICCA

Observe that the reaction rate is given in the units mol/m?s, and the accumulation
terms is given in the units mol, so before using these two terms in the mass balance,
we must convert them to the same units.

Observe that we calculated the amounts of A, B, and C accumulated in the entire
volume of the reactor in a period of time Ar. The reaction rate gives us the amounts
of A, B, and C consumed or produced per m® of reactor per second. So, to be
consistent, we have to multiply the reaction rate by the volume of the reactor and by
the period of time Ar:
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Amount of A consumed in the reactor in a time Az:  kC,VAt¢ (mol)
Amount of B produced in the reactor in a time At:  2kCoVAr (mol)
Amount of C produced in the reactor in a time A¢:  kC4,VA¢ (mol)

So the material balances for reactant A and products B and C become:

Balance of A (mol): Accumulation of A = —Consumption of A:
a(C
14 (d;‘) At = —kCAV At

Balance of B (mol): Accumulation of B = Generation of B:

d(Cs)

\%4
dt

At = 2kCAV At

Balance of C (mol): Accumulation of C = Generation of C:

d(Cc)

1% At = kC4V At
dt 4
Simplifying terms, this yields:

d

Balance of A (mol): % = —kCy
dcC

Balance of B (mol): TtB =2kCy
dcC

Balance of C (mol): th =k Cy

Observe that the balances of products B and C depend on the concentration of
reactant A, so they must be solved simultaneously with the balance of A.

This system of ODEs has to be solved analytically or numerically in order to
obtain profiles of the concentrations of A, B, and C over time. To do that, the
following initial conditions have to be used:

At t=0,C4 = Cy,(mol/m*),Cs = Cc =0

Note, however, that all mass balance equations show the term & (the rate
constant), which follows the Arrhenius law and therefore varies exponentially
with temperature. Thus, in order to properly obtain the mass balance, the energy
balance must be solved simultaneously (this is not necessary only for isothermal
systems).

For the energy balance, the conservation law equation (E — L + G — C = A) also
has to be applied considering the entire reactor as the control volume. As we are
modeling a batch reactor, there is no heat being added or withdrawn by input and
output streams (see Fig. 3.11), so this kind of heat cannot be considered in the terms
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E (entry) and L (exit) in the conservation law equation. Besides, as the system is
adiabatic, the reactor does not exchange heat with the environment, so heat exchange
by convection does not exist. In this way, the energy balance will consider the
amount of energy accumulated in the system and the heat generated or consumed by
the chemical reaction. If the reaction is exothermic, heat will be added to the system,
but if the reaction is endothermic, heat will be removed from the system.

As was done for the material balance, let us start by calculating the energy
accumulation in the reactor over a period of time At (s) (observe that the accumu-
lation term is the same as that obtained in Examples 3.3, 3.4, and 3.5):

Accumulation of energy:

Accumulation of energy
t(s) 1+ At (s) in Ar (J)
d(Vpe, T d(Vpc,T
Vpe, T VpeoT + %Az %Az

V = volume of the liquid inside the reactor (m%)

p = density of the liquid inside the reactor (kg/m>)

¢, = specific heat of the fluid inside the reactor (J/kg °C)
T = temperature of the liquid inside the reactor (°C)

Observe that the accumulated heat is given in joules (see units of V, p, ¢, and T).
The ¢, value of the fluid depends on the temperature and on the composition of the
liquid inside the tank, but, for simplicity, let us assume that ¢, does not vary
significantly with temperature, and that c¢,4 = ¢, = ¢, S0 We can assume that ¢,
of the liquid is constant throughout the reaction. As mentioned earlier, it is assumed
that V and p remain constant, so the energy accumulation term becomes:

ar
Vpc, > At (J)

Now let us calculate the term related to the heat liberated or absorbed due to the
chemical reaction.

As said earlier, the rate at which the reaction occurs is given by the reaction rate r.
The reaction rate in our case is kC,4, and its unit is mol/m> s.

The heat liberated or absorbed in a chemical reaction depends on the enthalpy of
the reaction, also known as the energy change of the reaction, (AH)g, which is the
difference between the total enthalpy of the products and the total enthalpy of the
reactants. Usually, the enthalpy of the reaction is given in units of energy per mol
(for example, J/mol) and means the energy liberated or absorbed by each mol
reacted. In this way, the enthalpy of the reaction (J/mol) has to be multiplied by
the reaction rate (mol/m3 s) in order to obtain the total heat generated or absorbed in
a chemical reaction (J/m3 s), as shown below.

Reaction rate: r=kC4 (mol/m3 S)
Enthalpy of the reaction: (AH)z (J/mol)
Heat liberated or absorbed in a chemical reaction: kC4(AH )g (J/m3 S)
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For the batch reactor that is being modeled, the amount of heat liberated or
absorbed by the chemical reaction over a period of time A (s) in the control volume
(the entire reactor) is:

Heat liberated or absorbed: k C,(AH)rV At (J)

Before combining the accumulation and heat of reaction terms in the conserva-
tion equation, let us create a sign convention. It is well known that (AH)g is
negative for exothermic reactions and positive for endothermic reactions. In this
way, we will consider a minus sign in front of (AH ) and we will always add the
liberated or absorbed heat term in the conservation equation. In this way, the energy
balance becomes:

dT
Vpey—- At = VACa(~AH) At (3.11)

In our case the chemical reaction is exothermic ((AH )i < 0). As we have already
considered the minus sign in (AH )g, the term of the heat of the reaction will become
positive (heat being added to the system). If the reaction were endothermic
((AH)g > 0), the term of the heat of the reaction would be negative (heat being
removed from the system), because of the minus sign considered in the convention.
Using this convention, we do not need to worry about defining whether the heat is
being generated or consumed, and the model becomes generic.

So, from now on, the conservation law for the energy balance will be written as:

E-L+G/C=A

The term G/C represents the amount of energy generated or absorbed, and it will
always be added to the conservation law.

Simplifying and rearranging the terms of Eq. (3.11), the energy balance
becomes:

dT  kCa(—AHp)

dr PCp

In order to solve this equation, the initial condition to be used is: at =0,
T=T,(°C).
The ODEs system that represents this reactor is:
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d
Balance of A (mol): % = —kCy
d
Balance of B (mol): % = 2kCy
dC
Balance of C (mol): d—tc = kCy
dT  kCa(—AHg)

Balance of Energy (J): i e,
Initial conditions: at t = 0: C4 = Cy,, Cg =Cc =0, T =Ty

Observe that the energy balance depends on the concentration of the reactant A,
and, as said earlier, k depends on the temperature, so the mass and energy balances
must be solved simultaneously.

If we assume numerical values for all parameters in the model (let us suppose
E, = 48,500 J/mol, R = 8.314 J/mol K, ky = 8.20 x 10’ min', AHg =
—72,800 J/mol, ¢, = 1750 J/kg K, p = 880 kg/m?) and for the initial conditions
(To =300K, Cy, = 100 mol/m3, and Cg, = C¢, = 0), the system of four equations
can be solved and profiles of the concentration and temperature over time can be
obtained (see Fig. 3.12).

Observe that after 15 min, all of reactant A is consumed (C4, = 0), so the
concentrations of B and C and the temperature do not change anymore, because
there is no chemical reaction. Note also that the concentration of B is twice the
concentration of C, as expected due to the stoichiometry of the reaction.

The next example deals with a CSTR equipped with a cooling jacket to control
the temperature of the reactor.

Example 3.7 Mass and Energy Balance in a CSTR with a Cooling Jacket
Operating in a Steady-State Regime

Imagine a CSTR operating in a steady state in which the exothermic reaction
A+B 5 Ctakes place. The reactor has a cooling jacket to control its temperature
(see Fig. 3.13). A solution with reactants A and B is fed into the reactor with a flow
rate Q (m3/min) and temperature T;, (K) (at Tj,, reactants A and B are not able to
react). The concentrations of reactants A and B in this feed solution are C4, and Cp,,
(mol/m?>), respectively. The fluid leaves the reactor at the same flow rate (Q) and
contains product C as well as the A and B that may be not totally consumed.
Assume that the density and specific heat for all compounds are almost the same
and do not vary as the reaction occurs (p4 = pp=pc =p and C,4 = Cpp = Cpc = Cp).
The volume of the liquid inside the reactor is V (m®) and does not change over time.
The cooling fluid is fed into the jacket at a flow rate Q; (m*/min) and at a
temperature Tj;, (K). Assume that the density and specific heat of the cooling
fluid (p; and c,;) do not vary during the entire process. The global heat transfer
coefficient between the cooling fluid and the reaction mixture is U (J/min m’ K).
The area from where the heat exchange occurs is A (m?). Find the system of
equations that represents this reactor in a steady state, i.e., find the mass balance
for A, B, and C, and the energy balance for the reactor and for the jacket.
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Fig. 3.12 Batch reactor behavior: (a) profiles of concentrations of A, B, and C over time;
(b) profile of temperature over time

Q (m*/min)
Tin (K)

CA,, (mol/m3)
CB,, (mol/m3)

Q (m¥/mi)
Tjin (K)

T, = Temperature of the fluid fed in the reactor (K)
_____ > Tji, = Temperature of the fluid fed in the jacket (K)
Cain = Feed concentration of compound A (mol/m?3)
Q (m3/min) Cgin = Feed concentration of compound B (mol/m?3)
T(K) Q = Flow rate of the reaction mixture (m3/min)

C, (mol/m?3) | Q= Flow rate of cooling fluid (m3/min)
Cg (mol/m3)
Cc (mol/m3)

Fig. 3.13 Continuous stirred tank reactor (CSTR) with a cooling jacket
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Solution:

Let us start with the mass balance for A, B, and C. As the CSTR operates in a
steady state, there is no variation in the concentration over time, and the accumu-
lation terms for the three compounds are zero. So the conservation law equation
applied to the control volume (the entire reactor) yields:

Mass Balance for A: E-L-C=0
Mass Balance for B: E-L-C=0
Mass Balance for C: E-L+G=0

The amounts of A, B, and C that enter (E) and leave (L) the reactor can be
obtained by multiplying the volumetric flow rate (m*/min) by the concentrations
of A, B, or C (mol/m°) to yield the number of moles of each compound that enter or
leave the reactor per minute (mol/min).

Compound Enters (mol/min) Leaves (mol/min)
A OCuain 0C,
B 0Cgin 0Cp
C OCcin 0Cc

Remember that compound C is not fed into the reactor, so C¢;, = 0; however, we
will keep Cc¢y, in the mass balances in order to obtain a generic model.

The generation and consumption terms are obtained from the reaction rate. As
there are two reactants, the reaction rate is given by kC,Cp (mol/m® min). Observe
that this chemical reaction is of second order, so the unit for the rate constant (k) is
m’/mol min. The reaction rate must be multiplied by the control volume (the
volume of the entire reactor) to obtain the generation and consumption terms in
mol/min (the same units used for the terms E and L). The following table shows the
reaction terms.

Compound Consumption (mol/min) Generation (mol/min)
A kCyCpV 0

B kCyCgpV 0

C 0 kCsCpV

So the mass balance for A, B, and C becomes:

Mass balance for A (mol/min): O(Cpin — Ca) —kCaCgV =0 (3.12)
Mass balance for B (mol/min): O(Cpin — Cp) —kCaCgV =0 (3.13)
Mass balance for C (mol/min): Q(Ccin — C¢) +kCaCgV =0 (3.14)

Let us now calculate the energy balance for the fluid inside the reactor and for
the fluid in the jacket. As the system is in a steady state, the accumulation term does
not exist for both fluids. There is no chemical reaction inside the cooling jacket, so
the conservation law applied to both fluids yields:
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Energy balance for the fluid inside the reactor: E—L+G/C =0
Energy balance for the cooling fluid: E-L=0

As mentioned earlier, the generated or absorbed heat term (G/C) due to the
chemical reaction is given by the reaction rate (mol/min) times (—AH )z (J/mol):

G/C = kCsCsV(—AH),(J /min)

In our case the reaction is exothermic (AHk < 0). The minus sign in front of AHy
in the G/C term will guarantee that this amount of energy will be added to the
system.

This reactor loses heat to the cooling jacket. Remembering that we adopt the
convention that the convective heat term is added to the energy balance and that the
gradient of temperature is represented by the surrounding temperature minus the
temperature of the system being modeled, we obtain the following convective heat
terms for the reactor and the jacket:

Reactor: Heat lost by convection to the cooling jacket: U A (Tj —T) (J/min).
Jacket: Heat that the cooling jacket receives by convection: U A (T — Tj) (J/min).

Finally, we need to consider the amount of energy that enters and leaves the
system due to the flow of the fluids.

Fluid Enters (J/min) Leaves (J/min)
Inside the reactor 0pcy,Tin Opc, T
COOllﬂg fluid Ql Pj Cpj ij Ql Pj Cpj T]

The energy balances for the reaction mixture and for the cooling fluid are shown
in Egs. (3.15) and (3.16). The mass balances Egs. (3.12), (3.13), and (3.14) are also
rewritten below:

Mass balance for A (mol/min): O(Cpin — Ca) —kCaCgV =0 (3.12)
Mass balance for B (mol/min): Q(Cgin — Cp) —kCaCpV =0  (3.13)
Mass balance for C(mol/min): Q(Ccin — Cc) + kCaCgV =0 (3.14)

Energy balance for the reactor (J/min): Qpc,(Tin — T) + UA(Tj —T)

- kCACRV(—AH), = 0 (3.15)

Energy for the cooling fluid (J/min): ijjcpj(ij —T))+UA(T-Tj)=0
(3.16)

The model for this reactor is represented by a system of five nonlinear algebraic
equations that must be solved simultaneously. Considering the numerical values
shown in Tables 3.1 and 3.2 for all parameters in the model and feed conditions, the
concentrations and temperatures in a steady state can be obtained, as shown in
Table 3.3. Observe in Table 3.3 that there are still reactants A and B in the reactor
exit and that they are in the same amounts, due to the reaction stoichiometry.
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Table 3.1 Parameters of the reaction mixture needed to simulate the continuous stirred tank
reactor (CSTR)

» ¢, A |V k E, R AHp U
kg/m®> |JkegK |m®> |m® |[m*molmin |J/mol |J/molK |J/mol J/min m* K
880 1750 |5 |40 |82 x 10° 48,500 |8.314 —72,800 | 680

Table 3.2 Parameters of cooling jacket and feed conditions

Cpj i Q 0 Cain Csin Ccin T; Tjin
Jkg K kg/m3 m>/min m>/min mol/m> mol/m> mol/m> K K
4180 1000 3 0.01 200 200 0 300 280

Table 3.3 Concentrations and temperatures in a steady state

C, (mol/m®) Cp (mol/m®) C¢ (mol/m?) T (K) Tj (K)
49.5 49.5 150.5 307 282

If, for some reason, any parameter (such as inlet concentrations and tempera-
tures, flow rates, etc.) undergoes variation, the concentrations and temperature of
steady state presented in Table 3.3 will start changing with time until a new steady
state is reached. The last example in this chapter (below) will address that.

Example 3.8 Mass and Energy Balance in a CSTR with a Cooling Jacket
Operating in a Transient State

Let us imagine that, for some reason, the flow rates that enter and leave the reactor
(Q), shown in Example 3.7, change simultaneously from 3 m*/min to 4 m*/min. The
system will leave the steady state shown in Table 3.3; however, as the inlet and
outlet valves operate at the same flow rate, the volume of the tank will remain the
same and constant over time.

Assume that all parameters in the model, shown in Table 3.1, as well as the
parameters for the cooling jacket, shown in Table 3.2, do not change. Assume also
that the volume occupied by the cooling fluid inside the jacket is V; (assume that
V;=0.032 m?). What would the profiles of the concentrations and temperatures be
over time until a new steady state is reached?

Solution:

In order to model this system in a transient regime, the mass and energy balances
need to be recalculated, but this time considering the accumulation terms that can
be obtained as per Example 3.6 (see Table 3.4).

The accumulation terms in Table 3.4 need to be added to the mass and energy
balances (Egs. 3.12, 3.13, 3.14, 3.15, and 3.16). Observe that Table 3.4 represents
the amount accumulated in Az (min), so Egs. (3.12), (3.13), (3.14), (3.15), and
(3.16) need to be multiplied by Az (min) to make the units compatible. Doing that
and simplifying terms, the equations system that represents this reactor in a
transient regime is obtained (Eqgs. 3.17, 3.18, 3.19, 3.20, and 3.21)
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Table 3.4 Accumulation

Accumulation
terms to be added to the mass Balance term in Af (min) | Unit
and energy balagces to . Reactant A dCs mol
represent a transient regime VWAt
d
Reactant B V dCg At mol
dt
dc,
Product C vace, mol
dt
Energy of the fluid dT J
inside the reactor Ve d_At
Energy of the cooling fluid dTj J
& ¢ VipiCoj g, At

dC

Mass balance for reactant A (mol): VT;‘ =Q (Cain—Ca) —kCs CsV  (3.17)
dCp

Mass balance for reactant B (mol): VW =Q (Cpin —Cg) —kCs CgV  (3.18)
e _

Mass balance for product C (mol): V p O (Ccin—Cc) +kCy CgV (3.19)

daT
Energy Balance for the reactor (J): Vpc, o =Qpcy(Tin — T)+UA(Tj —T)

(3.20)
+ kCACBV(—AH)R
. . dTj ; .
Energy balance for the cooling fluid (J): Vjpjcpjﬁ = 0ipjcpi(Tjin — Tj) (3.21)

+ UA(T — Tj)

In order to solve this equation system, the initial conditions are needed. As
the system was in a steady state before the perturbation, the initial conditions
are the ones presented in Table 3.3. Solving this equation system and
considering that V; = 0.032 m’, the profiles of the concentration and temperature
over time until a new steady state is reached can be obtained (see Figs. 3.14
and 3.15).

Observe that Figs. 3.14 and 3.15 start from the steady state shown in Table 3.3,
suffer variations over time due to the increase in the inflow and outflow rates, and
finally reach another steady state.

With the concepts presented in this chapter, many lumped-parameter problems
in chemical engineering can be modeled. Tools to numerically solve the models
presented in this chapter will be presented in Chaps. 5 and 6, but, before studying
that, Chap. 4 will show how to develop models for distributed systems, using the
same recipe presented in Chap. 2.
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Fig. 3.14 Concentrations of A, B, and C over time for the continuous stirred tank reactor (CSTR)

operating in a transient regime
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Fig. 3.15 Temperatures of the reactor and the jacket over time for the continuous stirred tank
reactor (CSTR) operating in a transient regime

Proposed Problems

3.1) Imagine a perfectly stirred tank, shown in the Figure below, which contains
5 m?> of a solution of HCI at a concentration of 0.01 kg/m>. Two inlet valves are
opened, both at a flow rate of 1 m> /h, but one feeds a solution of HCI at 0.02 kg/m3
and the other at 0.03 kg/m>. At the same time, one outlet valve is opened and the
solution of HCI leaves the tank at a flow rate equal to 2 m>/h. Develop a model to
obtain an ODE that represents the variation in the concentration of HCI in the tank
over time. Define the initial condition needed to solve this equation.
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1m3/h ; 1m3/h
0.02 keg/m _ 0.03kg/m?

Initial concentration = 0.01 kg/m?3

3.2) Without solving the ODE obtained in Proposed Problem 3.1, find the concen-
tration of HCI inside the tank when a steady state is reached.

3.3) A perfectly stirred tank, shown as follows, initially with V' m° of water at To K,
is fed with 2Q m°>/s of water at T;, K (To # T;y). The tank has two outlet valves, each
of them operating at a flow rate of Q m?/s. Assume that the water is incompressible
and that there is no heat exchange with the environment (an adiabatic system).

(a) Develop a model to obtain an ODE to represent the variation in the water
temperature over time.

(b) Without solving the ODE obtained in item (@) (above), find the temperature of
the tank in a steady state.

(c) Assume that one of the outlet valves is closed. Write a model that represents this
system.

2Q m3/s
Tin (K) Initial temperature = T, (K)
Att=0,T=T,(K)

3.4) Imagine a perfectly stirred tank, shown as follows, in which there are simul-
taneous variations in concentration, temperature, and volume with time. Determine
the ODE system that represents this tank, considering two situations: an adiabatic
system; and heat exchange with the environment, which is at T,,, (K). The global
heat transfer coefficient is U (J/s m’ °C) and the heat exchange area is A (mz).
Create hypotheses to develop the model if needed.
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Qo =2m3/s Initial volume = 10 m3 of water
To=330K Initial concentration = 0 kg/m3
0.02 kg/m3 Initial temperature = 280K

3.5) Imagine a hermetic cube of 0.001 m> (0.1 m x 0.1 m x 0.1 m) with ammonia at
10 °C inside it. Suddenly this cube is placed in an environment at a constant
temperature of 30 °C, so the temperature of the ammonia inside the tube starts
increasing. Consider that the global heat transfer coefficient is U (J/h m* °C) and
that the density and specific heat of the ammonia remain constant over time.
Assume also that the temperature of the ammonia inside the cube is homogeneous
(it does not depend on the position). Find the ODE that represents the variation in
the temperature of the ammonia inside the cube over time. Define the initial
condition used to solve this ODE.

3.6) Repeat problem 3.5 (above), but, instead of a cube, consider a sphere with a
radius equal to R (m). Analyzing the model equations obtained from problems 3.5
and 3.6, find out the radius of the sphere to obtain the same temperature profile over
time as that obtained in the cube.

3.7) Three tanks in series are used to preheat a multicomponent oil solution before it
is fed into a distillation column for separation. This system is an adaptation of the
system presented in Cutlip et al. (1998).

steam steam
TO =20°C T1 T2 T3
B B B
100kg/min W1 |= W2 — W3
20kg/min

Each tank is initially filled with 1000 kg of oil at 20 °C. Saturated steam at a
temperature of 250 °C condenses within a coil immersed in each tank. The oil is fed
into the first tank at the rate W = 100 kg min~' and overflows into the second and
the third tanks at the same flow rate (W =W, =W, = W3). The tanks are well mixed
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so the temperature inside the tanks is uniform. The specific heat (c,) of the oil is
2.0 kJ/kg °C. For each tank, the rate at which heat is transferred to the oil from the
stream coil is given by:

Q = UA(Tstream - T)

where UA = 10 kJ min~' °C™" is the product between the heat transfer coefficient
and the area of the coil for each tank; T is the temperature of the oil in the tank (°C);
and Q is the rate of heat transfer in kJ min~'. The mass in each tank is constant,
because the volume and the oil density do not vary. Assume there is no heat
exchange with the environment.

(a) Find the ODEs system that represents the variation in the temperature over time
for each tank. Define all initial conditions to solve the ODE system.
(b) Find the temperature in the three tanks in a steady state.

3.8) This problem is studied in Fogler (1999) and considers an isothermal CSTR
from its startup to a steady state. Reactants A and B produce C and D according to
the irreversible reaction: A + B *, C + D, in which the rate constant k is equal to
0.855 1/mol s. The reactor was initially fed with a solution containing product D at a
concentration of 0.8 mol L™! (Cpp = 0.8 mol Lfl). A solution with reactants A and
B was added to the reactor at a flow rate of 5 L min~' and at concentrations of A and
B equal to 0.7 and 0.4 mol L ™", respectively (C4,=0.7and Cp, = 0.4 mol LY. The
outlet volumetric flow rate is also 5 L min~ ", and the volume of liquid inside the
reactor remains equal to 40 L over the entire reaction.

Find the ODE system that represents the concentrations of A, B, C, and D in the
CSTR from startup to a steady state. Define all initial conditions to solve the
equations. Create hypotheses for your model if needed.

F=5L/min

Ca =0.7 mol L?
Cg; = 0.4 mol L?
Cy=0mol L?
Cp; =0 mol L1
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Chapter 4
Distributed-Parameter Models

In contrast to the previous chapter, which studied lumped-parameter problems, this
chapter deals with examples in which variables such as concentration and temper-
ature vary with position—a characteristic of distributed-parameter problems. As
shown in Fig. 1.1, distributed-parameter problems can generate ordinary differen-
tial equations (ODEs) or partial differential equations (PDEs). In this chapter, we
will see how mathematical models for distributed-parameter problems are devel-
oped, but the numerical solution of ODEs and PDEs will be presented only in
Chaps. 6 and 7, respectively.

In this chapter, Sect. 4.1 gives some simple introductory examples needed to
understand how to model distributed-parameter problems. Section 4.2 presents
some concepts about transport by diffusion and models more complex systems.
Finally, Sect. 4.3 presents some examples with variation in more than one spatial
dimension.

4.1 Some Introductory Examples

Example 4.1 Assume that a fluid at 20 °C is fed into a cylindrical tube of length (L)
60 m and radius (R) 0.2 m at a rate (Q) of 4 m’/h. Assume also that this tube
exchanges heat with a jacket, whose temperature is 300 °C. Determine the axial
profile of the temperature inside the tube. Consider that the system is in a steady state
and there is no radial or angular variation of temperature inside the tube. Consider also
that the thermal diffusion is not important in any direction (axial, radial, or angular).

Solution: According to the recipe presented in Chap 2, the first thing to do in
order to model this tube is to define the control volume. In contrast to the examples

The original version of this chapter was revised. An erratum to this chapter can be found at
https://doi.org/10.1007/978-3-319-66047-9_8
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Fig. 4.1 Fluid flowing in a jacketed tube in a steady-state regime

presented in Chap. 3, the temperature of the fluid is not the same along the tube, so
the entire tube cannot be considered as the control volume. In this way, we will
consider a very small slice of the tube, of length Ax, and we will assume that in this
small slice the fluid temperature is the same (see Fig. 4.1).

The conservation law will be applied to this small slice (control volume) in order
to obtain the energy balance. This energy balance will be valid for any slice taken at
any position inside the tube, so we can say that the energy balance obtained for the
slice of tube shown in Fig. 4.1 will be valid for the entire tube.

In our problem, there is neither generation nor consumption of energy and the
system is in a steady state, so the conservation law equation becomes:

E-L=0 (4.1)

Let us now define the energy that enters and leaves the control volume. Figure 4.1
shows that the fluid enters the control volume at position x and the amount of energy
entering the control volume at x is given by:

0[P (3E) e (ngOC) Te0)

SO:

‘ Heat that enters in x: Opc, T (J/h) ‘ (4.2)

Be Careful Observe that we do not know the temperature of the fluid entering at
position x, therefore we write a generic temperature 7. Observe that 20 °C is the
temperature of the fluid at position 0, and not at position x.

Figure 4.1 shows that the fluid leaves the control volume at x + Ax. In order to
obtain the amount of energy that leaves the control volume, we use the concept of
infinitesimal variation of the dependent variable with the independent variable, as
shown below:
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x (enters) x4+ Ax (leaves) Dimension
Opc,T Opc,T + %A}c J/h
SO:
d(Qpc,T)

Heat that leaves in x 4+ Ax: Opc, T + Ax (J/h) (4.3)

dx

There is also heat exchange by convection with the jacket and, as defined in
Chap. 3, this flow of energy can be expressed by:
Convection heat transfer rate = U A (T,, — T), in which:

U = global coefficient of heat transfer (J/h m’ °C)

A =2 7 R Ax = heat exchange area in the control volume (mz)
T = temperature inside the control volume (°C)

T,, = temperature of the jacket (°C)

SO:

Flow of Energy by Convection: U2zRAx (T, —T) (J/h) ‘ (4.4)

Observe that the heat exchange area by convection is the superficial area of the
ring exchanging heat with the jacket. It is given by the perimeter of the ring (2nR)
times its length (Ax).

Using the expressions (4.2), (4.3), and (4.4) in the equation of conservation law
(4.1) yields:

d T
Opc,T — (Qpc,,T + %Ax) + U2zRAx (Tw—T) =0
or:
T
- d(Qg;C") +U2aR (Tw—T) =0 (4.5)
X

If we assume that p and ¢, do not vary with temperature (and consequently with
length), Eq. (4.5) becomes (remember T, = 300 °C):

dT  2zRU
dx  Qpc,

with the boundary condition that at x = 0, T = 20 °C.

In order to analyze the temperature profile obtained for this system, let us assume
the following numerical values: density (p) = 900 kg/m>, the specific heat of
the fluid (c,) = 3000 J/kg°C, and the global coefficient of heat transfer
(U) = 60,000 J/h m*°C. The profile of the temperature along the length can be
seen in Fig. 4.2.

(300-T)
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Fig. 4.2 Profile of temperature inside the jacketed tube

Analyzing the temperature profile, it can be observed that the temperature of the
fluid is 20 °C when it is fed into the tube, and it starts increasing along the length
due to the heat exchange with the jacket, which is at 300 °C. Observe that at the end
of the tube (60 m), the temperature of the fluid reaches 116 °C. If the tube were long
enough, the temperature of the fluid would tend toward 300 °C, but it is impossible
to reach temperatures higher than 300 °C inside the tube.

Despite the fluid temperature changes along the length, the system is in a steady
state because this axial profile of the temperature does not change over time.

Example 4.2 Let us imagine now that, for some reason, the temperature of the
jacket in Example 4.1 changes instantaneously and abruptly from 300 °C to 200 °C.
The system, which was in a steady state, suffers a modification, and the profile of
the temperature inside the tube will change with time (the temperature will
decrease) until the system reaches a new steady state. What would be the profile
of the temperature of the fluid inside the tube along the length and over time until
the new steady state is reached? Solve this problem, assuming neither radial nor
angular temperature profiles, and no heat diffusion in any direction inside the tube.

Solution: If the temperature of the jacket changes abruptly from 300 °C to 200 °C,
the profile of the temperature shown in Fig. 4.2 will be modified. The temperature
profile will still start at 20 °C because the fluid is fed into the tube at this
temperature, but the fluid temperature will increase less because the jacket is
100 °C colder. One can imagine that the axial profile of the temperature inside
the tube will start as shown in Fig. 4.2 (at time = 0), but it will change over time
until a new steady state is reached.

The modeling of this system will generate a PDE because the temperature will
change along the tube and over time.

The same slice of the tube shown in Fig. 4.1 will be considered as the control
volume. As there is temperature variation with time, the accumulation term must be
considered, and the conservation law equation becomes:
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E-L=A

The expressions to represent the amount of energy that enters at x and leaves at
X+ Ax, as well as the convection term, are calculated as per Example 4.1 and are
rewritten below:

Heat that enters in x (J/s): Opc,T (4.6)
d T
Heat that leaves in x + Ax (J/s): QpcpT + (Q+%) Ax (4.7)
X
Flow of Energy by Convection (J/s):  U2aRAx(T,, — T) (4.8)

Besides these three terms, we need to calculate the amount of energy accumu-
lated in the control volume. We will do that as was done in the previous chapter, i.e.,
by calculating the amount of energy accumulated in a very short period of time At,
which is the energy at time 7+ At minus the energy at time ¢ (see below).

t t+ At Dimension

d N
(Vpe,T) At J
dt

Vpc, T Vpc,T +

Once again, we assume that p and ¢, do not change with temperature and
consequently with time, so the accumulation term becomes:

ar
Accumulation term = Vpc, T At )

Observe that the control volume is a small cylinder with an area of the base equal
to nR? and height equal to Ax, so the volume, in the accumulation term, is the
control volume (V= nRzAx).

Since the accumulation term represents the amount of energy that is accumu-
lated in a period of time Az, we must also consider the energy that enters and leaves
the control volume in this same period of time, so we must multiply expressions
(4.6), (4.7), and (4.8) by At. The energy balance in the period Az becomes:

d T dT
Opc,TAt — (QpcpT + % Ax> At + U2zRAx(Tw — T)At = Vpe, N At
X

or:
dT dT
—0pc, - AxAl+ U2aRAX(Tw — T) At = nR*Ax pepg At

Observe that Ar and Ax appear in all terms of the energy balance and can be
simplified. In fact, this simplification must always happen when developing a
model. If at this point we were not able to cancel all A’s from our balance, it is
because we made some sort of mistake, and our model has to be double checked.
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Fig. 4.3 Profiles of fluid temperature along the length over time

Also observe that there are two independent variables (x and ), so the symbol
d must be changed to 0. So the energy balance becomes:

oT 2U 0 oT

o _ Tw—T) — =1
ot Rpc,,( w=T) zR? Ox

(4.9)

This PDE needs one boundary condition (related to the length) and one initial
condition (related to time). The initial condition can be obtained remembering that,
at the beginning (at # = 0 h), the profile of the temperature inside the tube is the one
shown in Fig. 4.2, because the system operated like that before the change in the
jacket temperature. The boundary condition is obtained remembering that the
temperature of the fluid fed into the tube is 20 °C, so at x=0, T= 20 °C.

After solving Eq. (4.9) using these two initial/boundary conditions, the temper-
ature profiles along the length and over time, as shown in Fig. 4.3, can be obtained.

One can observe that the axial profile of the temperature varies over time, with
greater variations in the beginning (see the difference in the profiles from 0 to 0.8 h)
and minor variations as time goes on (see the small difference in the curves from
time 1.6 h to 2.4 h) until a new steady state is reached, when the axial profile of the
temperature does not change anymore with time. In our case, after 2.4 h the
temperature profile along the length remains the same, so we can say that the new
steady state was reached after 2.4 h.

Example 4.3 This problem is adapted from the book Process Heat Transfer, by
Q. D. Kern (1950), and develops a model to design bitubular heat transfer. Let us
consider now two concentric tubes, as shown in Fig. 4.4, with benzene flowing
through the internal tube and toluene flowing through the annulus. The two fluids
flow in parallel, and the system is in a steady state. The benzene and toluene are fed
at rates of 9820 lb/h (W) and 6330 Ib/h (W), respectively. These concentric
tubes are used to increase the temperature of benzene from 60 °F to 100 °F and
reduce the temperature of toluene from 170 °F to 110 °F. Assume that the toluene
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Fig. 4.4 Double-pipe heat exchanger operating with parallel flow

does not exchange heat with the environment, just with the benzene, so that the heat
exchange occurs through the wall of the internal tube, which has a diameter of
1.25 in (ignore the thickness of the tube). What is the required length of the tubes to
make the necessary thermal exchange? Let us assume that the ¢, values of benzene
(Cpben) and toluene (¢po1) are 0.425 Btu/(1b °F) and 0.440 Btu/(1b °F), respectively,
and that these values do not change significantly with temperature.

Solution: The solution to this problem is similar to the solution to problem 4.1, but
in this case, it is necessary to make the energy balance for both fluids. We will first
present a solution similar to what we have done so far, but in the sequence, some
assumptions will be made, in order to bring the solution of this problem closer to
what is done in the design of heat exchange equipment.

Heat exchangers are very common in chemical industries, and they are very
useful to exchange heat between different streams in a plant. This equipment can
assume many different geometries, and the one considered in this example is the
simplest (a bitubular heat exchanger with parallel flow).

To model this system, we must define a control volume. As this is a distributed-
parameter problem (the temperature changes along the length), an increment Ax is
considered and the energy balance for both fluids is calculated considering this
small volume. The amount of heat that enters and leaves the control volume is
presented as follows:

X X+ Ax Dimension
Benzene d(WpenCPpen Btu,

WbencphenThen WbencpbenTben + %WAX /h
Toluene Ad(Wio1cpio T Btu

WiotCPiol T ol WiorCpioi T ol + W Ax /h

The amount of heat exchanged by convection is written in the same way as was
done before, keeping in mind the sign convention presented in Example 3.4.

Heat exchanged by convection (Btu/h)
Benzene UA (Tiot — Toen)
Toluene UA (Tyen — Tio)
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in which:

U = global coefficient of heat transfer (assume that U = 0.8 Btu/(h in” °F))
A =2 7 R Ax = superficial area for the heat exchange in the control volume (in”)

The conservation law for benzene and toluene yields E — L = 0, and the energy
balance for both fluids can be written as:

Benzene:
WhenCPpenTben — (WbenCpbenTben + MAQ + U272RAX(Tio1 — Toen) =0
Toluene:
WioiCPior Lol — (Wmlcpmlel + WM) + U272RAX(Tpez — Tio1) = 0

After simplifying terms, and remembering that the internal tube has diameter
(D=2R) equal to 1.25 in, we obtain:

dT .
Benzene: WienCPpey — = U1.257(Tior — Toen), at x=0,Then = 60'F

dx
dTy, .
Toluene:  WioiCpy, d—” =UL1.257(Tven — Tro1), at x=0,T,q =170 F
x
Considering numerical values for all parameters (Wpye,=98201b/h,
Wi =6330 1b/h, cppen=0.425 Btu/(Ib°F), cp,=0.440 Btu/(Ib°F), and
U=0.8 Btu/(h in2°F)), this system of two ODEs can be solved numerically to

generate temperature profiles for benzene and toluene along the length of the tubes,
as shown in Fig. 4.5.
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Fig. 4.5 Profiles of temperature inside the bitubular heat exchanger
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One can observe that the benzene and toluene reach the desired temperatures
(Tpyen = 100 °F and Ty, = 110 °F) when the length of the tubes is around 1290
inches (or 110 feet).

A second approach presented in the sequence is more frequently used in the
design of heat exchangers because many simplifying hypotheses are proposed to
reach the numerical solution easier and faster. Typically, the design of this equip-
ment means finding the size (area) of a heat exchanger able to make the desired
changes in the temperature in hot and cold fluids. Assuming there is no heat loss to
the environment, the amount of heat received by the cold fluid is equal to that lost
by the hot fluid, and this amount is equal to the energy exchanged by convec-
tion between the two fluids. The amount of energy exchanged by convection varies
along the length of the tube because the difference in temperature between the hot
and cold fluids (the driving force) varies along the length (see Fig. 4.5).

In the design of heat transfer equipment, the logarithmic mean temperature
difference (LMTD) is considered to simplify numerical solution. The LMTD is
an average of the difference in temperature between hot and cold fluids along the
entire equipment length (the average driving force along the entire equipment
length) and is given by:

AT, — ATy AT, — AT

LMTD = =
In (ﬂ) In AT, — In AT
ATp

in which AT, is the difference in temperature between the two streams at the heat
transfer end where the hot fluid is fed in (in this case, 170 — 60 = 110 °F) and ATp
is the difference in temperature between the two streams at the other end (in this
case, 110 — 100 = 10 °F). In our case, the LMTD is 41.7 °F.

The total amount of heat received by the cold fluid and lost by the hot fluid is
Whoen CPoen (100 — 60) = Wi cpior (170 — 110) = 1.67 x 10°, and this amount is
equal to the heat exchanged by convection between the two fluids
(Ux AxLMTD), so U x A x LMTD = 1.67 x 10°. In this way, A = 1.67 x 10°/
(U x LMTD). Considering numerical values for U (0.8 Btu / h in” °F) and LMTD
(41.7 °F), we obtain A = 5006 in>.

The heat exchange area of the tube (A =5006 in%) can be written as nDL, in
which D is the diameter of the tube (1.25 in) and L is its length. In this way, the
length of the tube can be found as L=A/nD, or L = 1275 in.

Observe that the value obtained using this simplified calculation (L = 1275 in) is
only 1.2% lower than the one obtained when the system of two ODEs are solved
together (L = 1290 in). For this reason, a project for heat exchanger equipment is
usually done as per the second approach; however, the recipe presented in this book
could also be used to design heat exchangers.

After these three simple introductory examples on distributed-parameter prob-
lems, Sect. 4.2 will revisit some concepts on mass, energy, and momentum transfer
by diffusion, which are needed to model more complex systems. The idea is just to
show a few pieces of information needed to model systems in which transfers by
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diffusion are relevant. The reader can find more details on this subject in specific
literature dealing with transfer phenomena (Bird et al. 2007; Welty et al. 2007;
Bergman et al. 2011, just to mention a few).

4.2 Concepts About Transfer by Diffusion

All flow rates (mass, heat, and momentum) are directly proportional to a driving
force and inversely proportional to the resistance:

Flow Rate a DerlI.Ig Force
Resistance
We used this concept in Chap. 3 (Sect. 3.2) for heat flow, but it is also valid for
mass and momentum. This section will revisit some concepts about diffusive
transport and will point out some analogies among transfers of heat, mass, and
momentum.

4.2.1 Diffusive Transport of Heat

Imagine a solid cube of 1 m? initially at 50 °C (Fig. 4.6a). Two opposite sides of the
cube are fixed to surfaces that are at 70 °C and 30 °C (assume that both temperatures
do not vary over time) and all other faces are insulated, so there is energy flow only
in the x direction.

One can imagine that as the energy starts flowing from the hotter face to the
colder face, the internal profile of the temperature inside the cube starts changing
until the system reaches a steady state. Figure 4.6b shows an example of how the
axial profiles of the temperature inside the cube could change over time. Since there
is no heat exchange with the environment, in a steady state the temperature profile
inside the cube is given by a straight line.

The energy flow inside the cube is due only to heat diffusion (heat conduction
from molecule to molecule). Fourier observed that the flow of energy by diffusion
can be expressed by:

(5. —(5) S

in which (using international units):

q = energy flow (J/s)
A = cross-sectional area from where the energy flows (m?)
(q/A)x = energy flux in the x direction (J/s m?)
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Fig. 4.6 Diffusive transport of heat. (a) Solid cube, initially at 50 °C, with four insulated faces and
two opposite faces at 70 °C and 30 °C. (b) Profiles of temperature along the length of the cube over
time

k = thermal conductivity (J/s m °C)
dT/dx = temperature gradient (°C/m)

Observe that the energy flux (g/A), of the Fourier equation is directly propor-
tional to the driving force (dT) and inversely proportional to the resistance (dx/k), as
shown in Sect. 3.2.

The negative sign of Eq. (4.10) is due to the orientation of ¢, dx, and dT. Observe
in Fig. 4.6b that dx is positive and dT is negative, making d7T/dx negative. Since the
energy flux (g/A), is positive (it grows in the same orientation as x), the minus sign
is necessary to make Eq. (4.10) coherent.

4.2.2 Diffusive Transport of Mass

Imagine a cubic box of 1 m?, open at the top with only air inside it. At some point,
ethylene gas at a constant concentration C = 1 mol/m’ starts blowing above the
box, as shown in Fig. 4.7a. Imagine that, by some mechanism that is chemically
possible, the concentration of ethylene at the bottom of the box is always zero.

At the beginning, the concentration of ethylene inside the box is zero, but, as the
ethylene starts blowing, there will be a diffusive mass flow of ethylene from the
region with a higher concentration to the region with a lower concentration of
ethylene, so in this case, the driving force is the difference in concentration. (In fact,
the driving force for the mass transfer is the chemical potential, which includes
pressure and thermal energies as well as the energy due to the molecular interaction.
Since, in this system, the pressure and temperature are the same for all of the
system, the chemical potential is the difference in concentration.)
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Fig. 4.7 Diffusive transport of mass. (a) Cubic box initially containing air, with ethylene
concentrations at the bottom and at the top equal to 0 and 1 mol/m>, respectively. (b) Profiles of
ethylene concentration along the cube height over time

The diffusive mass flow will generate axial profiles of ethylene concentration
inside the box, which will vary over time until a steady state is reached (see Fig. 4.7b).
In this example, we assume there is no profile of the concentration along y and z.

In 1855, Fick experimentally obtained Eq. (4.11) to represent the molar flow of
some compound (say, A) by diffusion.

().~ (%)

in which (using international units):

J4 = molar flow of component A (mol/s)

A = cross-sectional area from where the molecules of component A flow (mz)
(J4/A), = molar flux of component A in the mass flow direction (mol/m2 s)

D = diffusion coefficient or diffusivity of component A (m?*/s)

dC4/dx = concentration gradient for component A (mol/m> m)

In this case it is also observed that the molar flux of component A (J4/A), in
Fick’s law is directly proportional to the driving force (dC,) and inversely propor-
tional to the resistance (dx/D).

Analogous to Eq. (4.10), the negative sign in Fick’s law is necessary to make
Eq. (4.11) coherent with the orientation of J4, dx, and dCa.

4.2.3 Diffusive Transport of Momentum

Fluids can be classified as Newtonian and non-Newtonian, but definitions and
examples of the different types of fluids are not within the scope of this book and
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Fig. 4.8 Diffusive transport of momentum. (a) Thin layer of a Newtonian fluid between two long
plates. (b) Profiles of velocity along the layer height over time

can be found in literature related to the mechanics of fluids and transport phenom-
ena (Bird et al. 2007; Welty et al. 2007; Fox et al. 2012; etc).

From a didactic point of view, the example presented in this section considers a
Newtonian fluid. In our example, imagine a thin layer of a fluid between two long
plates, as shown in Fig. 4.8a. The thickness of the fluid layer is d(m). Initially (r = 0)
the system is at rest, and after that, the upper plate starts moving in the positive
direction of x at velocity u equal to u, (m/s). Consider that the lower plate stays still
(u=0).

At the beginning (¢ = 0) the fluid velocity is zero. When the movement starts, the
molecules of the fluid in contact with the plates assume the same velocity as the
plates and, due to the frictional forces, a velocity profile is formed, as shown in
Fig. 4.8b. As time goes on, more and more fluid is drawn toward the moving plate.

Newton observed that in laminar flow, when a steady state is reached, there is a
linear velocity profile inside the fluid layer (Newton’s law of viscosity), as can be
observed in Fig. 4.8b.

If the force applied to the upper plate is “F” and the area of the upper plate is
“A”, the ratio “F/A” is known as shear stress, and it is equal in magnitude to the
momentum flux. Physically, the momentum flux is the transfer of momentum
through the fluid from a region with higher velocity to another region with lower
velocity, and can be represented by 7,,, in which y is the direction of the transfer of
momentum and x is the direction of the movement velocity.

In Newton’s law of viscosity, the momentum flux (z,,) is directly proportional to
a driving force (du) and inversely proportional to the resistance dy/u, as can be seen
in Eq. (4.12):

F du
Z = TyX = —ﬂ (d—y) (4.12)

in which (using international units):
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F = force applied to the upper plate (N)

A = area of the upper plate (m?)

7y, = shear stress (momentum flux) in which y represents the normal component
of the plane of action of the shear stress and x is parallel to the velocity of the
plate (N/m?)

u = viscosity of the fluid (N s/m?)

du/dy = gradient of velocity (1/s)

For the same reason mentioned before, the minus sign in Eq. (4.12) is needed.

4.2.4 Analogies Among All Diffusive Transports

Observe that the same behavior is observed for the diffusive transfers of heat, mass,
and momentum. Table 4.1 summarizes the analogies among the three kinds of
diffusive transport presented before.

Table 4.1 Analogies among kinds of diffusive transport

Heat Mass Momentum
Law Fourier Fick Newton
Equation q dar Ja dCy F du
h) = —k| — - =_-D|—— — =1 =—ul—
x dx A, dx A dy
Driving force dT dCy du
Resistance dx/k dx/D dylu

4.2.5 Examples Considering the Diffusive Effects
on the Modeling

The examples presented in this section take into account problems in which the
diffusive effects are important and cannot be neglected. From a didactic point
of view, in this section, variations in only one direction will be considered.
Examples 4.4 and 4.7 are analogous to the schemes presented in Sects. 4.2.1 and
4.2.2, so it will be possible to visualize the mathematical models that generate
Figs. 4.6b and 4.7b.

Example 4.4 Imagine a cylindrical metal bar with a length (L) of 1 m and a radius
(R) equal to 0.03 m, initially at 50 °C (Fig. 4.9). At some point, the two ends of the
bar are fixed to walls that are at 70 °C and 30 °C (assume that the temperature of the
walls does not vary with time). Imagine that this bar is insulated, so there is no heat
transfer by convection between the bar and the environment. This system is very
similar to the one shown in Fig. 4.6a. In this example, we want to know how long it
takes to reach a steady state and what the internal profiles of the temperature will be
until then.
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Fig. 4.9 Heat conduction
in an insulated cylindrical
bar Ax T=300°C

T=70°C

Solution: As this is a distributed-parameter problem (there is an axial profile of the
temperature), a slice of the cylinder must be considered as the control volume, as
depicted in Fig. 4.9, whose volume is TR*Aux.

The conservation law applied to this control volume yields: E - L = A.

Observe that there is neither generation nor consumption of energy in this case,
and there is no heat transfer by convection with the environment. The accumulation
term must be considered because the axial profile of the temperature will change
with time until a steady state is reached.

The flow of energy (g) inside the cylinder occurs by conduction (from molecule
to molecule of the metal) due to the difference in temperature (driving force) and
can be represented by the Fourier law (Eq. 4.10), rewritten below:

dr
= —kA— 4.13
q T (4.13)
The amount of energy that enters (at x) and leaves (at x + Ax) the control volume
by conduction is shown as follows:

x (enters) x + Ax (leaves)
E flow b duction (J, dT dT d dT
nergy flow by conduction (J/s) e T T A
dx dx = dx dx

in which (using international units):

k = thermal conductivity (J/s m °C)
mR? = cross-sectional area from where the energy flows (m?)
dT/dx = temperature gradient (°C/m)

The accumulation of energy (in joules) inside the control volume in a period
At (s) can be obtained by the difference in energy at the times 7+ Az and ¢.

t t+ At

Energy (J) d(pVe,T)

At
dt

pVe,T pVe, T+

in which (using international units):
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p = density of the metal bar (kg/m>)

V = volume of the control volume = tR*Ax (m?>)
¢, = specific heat of the metal bar (J/kg °C)

T = temperature of the metal bar (°C)

Considering that p, c,, and V of the metal do not change over time, the
accumulation of energy in a period Az can be written as:

dr
Accumulation of Energy At(J) = pcpﬂRzAxE At

Since the amount of energy entering and leaving the control volume is given in
J/s and the accumulation of energy is in J, the energy flow must be multiplied by A¢
to make the units compatible. Doing that, the energy balance can be written as
follows:

dT dr d dT dTr
—kaR? — At — | —kaR* — + —( —kaR*— | Ax| At = pc,nR*Ax— At (4.14
™ [ 8 m+m( ™)t peprReAx T AL (4.14)
Simplifying terms and considering that the thermal conductivity of the metal
remains constant, the following PDE is obtained:

2
oar_ kot (4.15)
ot pc, 0x?

To solve this PDE, three conditions are needed: two related to space and one
related to time. Remember that at the beginning (at t = 0), the entire bar is at 50 °C,
and after that, the two ends of the bar are kept at 70 °C and 30 °C (left and right). So
the three conditions are:

At t=0h, T=50C, for 0<L<I1m
At x=0m, T=70C, for ¢t>0h
At x=1m, T=30C, for ¢>0h

Considering numerical values (k = 398.2 J/s m°C, ¢, = 386.3 J/kg°C, and
p = 8933 kg/m’), the PDE can be solved numerically and can generate axial profiles
of the temperature over time, as shown in Fig. 4.6b. For a metal with the properties
considered in this example, after 10 min, the internal profile of the temperature
inside the bar almost does not change anymore over time.

If one would like to know only the axial profile of the temperature in a steady
state, the energy balance presented in Eq. (4.15) could be simplified because the
accumulation term would not be used, so the final energy balance would be:

—5=0 (4.16)
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Fig. 4.10 Insulated cylinder bar exchanging heat with the environment at only one of its ends

with the boundary conditions:

Atx=0m,T=70°C
Atx=1m,T=30°C

Equation (4.16) can be easily integrated to generate 7= — 40x + 70, which is
the linear profile of the temperature in a steady state, shown in Fig. 4.6b.

Example 4.5 Now imagine that the cylindrical metal bar of the in Example 4.4 is
initially at 50 °C, but, this time, only one end of the bar is fixed to a wall at 70 °C
(a constant temperature) and the other exchanges heat with the environment, which
is at 25 °C (see Fig. 4.10). Consider that the rest of the cylindrical metal bar is
insulated (no heat exchange with the environment). Do the modeling of this system
again to obtain how the internal profile of the temperature changes over time.

Solution: Since the lateral of the control volume remains insulated, the conservation
law applied to this control volume will generate the same energy balance
represented by Eq. (4.15), rewritten below.

2
oar_ kot (4.15)
ot pc, 0x?

The conditions at # = 0 and x = 0 also stay the same, but the boundary condition
at x = 1 m is different this time. At this end, the heat flowing by conduction from
inside the bar to the end (at x = 1) is equal to the heat that leaves the bar (at x = 1)
by convection (exchanging heat with the environment), or:

dT !
At x=1m: —kA = hA (T~ Tew) (4.17)
X

In which (using international units):

k = thermal conductivity (J/s m °C)

A = nR? = cross-sectional area from where the energy flows by conduction (m?)
dT/dx = temperature gradient (°C/m)

h = global coefficient of heat transfer by convection (J/s m? °C)
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Fig. 4.11 Scheme of
energy flow at the end of the

bar (at x = 1 m) —kAdT hA'(T = Tenv)

v
A

A" = nR? = area of heat exchange by convection (m?)
T.,v = environmental temperature (°C)
T = temperature of the bar (in this case, at x = 1 m) (°C)

Figure 4.11 shows a scheme of the flow of energy at x = 1 m.

It is important to note that the heat represented by both terms in Eq. (4.17) has
the same magnitude and flows toward the same orientation, so both must have the
same sign (positive or negative). The conduction term is positive because, in this
example, dT is negative, dx is positive, and the Fourier expression gives a minus
sign. In this way, the convective term must also be positive, therefore we used
(T — Tepy) to represent the driving force (T > T.py). (Observe that the simple con-
vention presented in Example 3.4, for the convective heat transfer in order to build
the model, is not used for the boundary condition).

Observe in Eq. 4.17 that the cross-sectional area from where the energy flows by
conduction at x = 1 m (A) is equal to the area from where the bar exchanges heat
with the environment by convection (A/), so both terms can be simplified.

So the three conditions needed to solve Eq. (4.15) are:

At t=0h, T=50C, for0<L<1m

At x=0m, T=70C, fort>0h

At x=1m, i—Z: —%(T—Tenv), fort>0h
Solving Eq. (4.15) with this new set of initial/boundary conditions and assuming
that 47 = 300 J/min m” °C, the axial profiles of the temperature over time shown in
Fig. 4.12 can be obtained.
One can observe that Fig. 4.12 shows temperature profiles very different from
the ones presented in Fig. 4.6b, because one of the ends of the bar exchanges heat
with the environment.

Example 4.6 Now, imagine that the same bar presented in Example 4.5 is not
insulated anymore. How would the axial profiles of the temperature change inside
the bar until a steady state is reached?

Solution: For a noninsulated bar, the conservation law applied to the control volume
must consider the heat transfer by convection between the bar and the environment:

Convective term: 7 27RAX (Tepy — T) (4.18)
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Fig. 4.12 Axial profiles of temperature over time when one end of the bar changes heat with the
environment

in which (using international units):

h = global coefficient of heat transfer by convection (J/s m* °C)

2nR Ax = superficial area from where there is heat exchange by convection between
the control volume and the environment (m?)

T.ny = environmental temperature (°C)

T = temperature in the control volume (°C)

Adding the expression (4.18) to the energy balance (4.14) used in Examples 4.4
and 4.5 (for an insulated bar), we obtain Eq. (4.19). Observe that the energy balance
represented by Eq. (4.14) considers the amount of heat that enters, leaves, and
accumulates in a period At; therefore the expression (4.18) is also multiplied by At:

dT dr d dT
oA | ppdd o af o dl
knR Tx At [ kzR e + dx( kmR dx) Ax] At

J (4.19)
+ 2haRAX(Teny — T)At = pc,,erzAxEAt
After simplifying terms, Eq. (4.19) becomes:
oT T  2h
pCPE— kﬁ"‘?(Tenv _T) (420)

If Eq. (4.20) is written in terms of the diameter of the metal bar (D), and not in
terms of the radius (R), we can obtain, after rearranging terms:
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Fig. 4.13 Axial profiles of temperature over time when the bar changes heat with the environment

oT _ ( k ) O°T 4 (Tu —T) (4.21)

J— R —+—
ot pcy) 0x2  Dpc,

The conditions needed to solve Eq. (4.21) are the same as those used in
Example 4.5:

Att=0h,T=50C, for0<L<1m

Atx=0m, T=70C, fort>0h

dr h
Atx=1m, yrie k(T Teny), fort>0h

After solving Eq. (4.21), the axial profiles of the temperature in the bar over time
are obtained, and are shown in Fig. 4.13.

In comparison with Fig. 4.12, we can observe that the temperature of the bar is
lower, and the decay is faster, as expected. The velocity of the decay and the
temperature will depend on the numerical values of the parameters in the model,
such as h, ¢, and p.

Example 4.7 Imagine a cylinder vase 1 cm in radius (R) and 5 cm high (L), open at
the top with only air inside it. This cylinder is placed in an atmosphere containing a
certain gas A in a concentration (C,) equal to 1 mol/m’ (see Fig. 4.14). As the
concentration of A outside the cylinder vase is higher (in the beginning, C, inside
the cylinder is zero because it contains just air), element A will flow from the region
with a higher concentration of A (the top of the cylinder) to the region with a lower
concentration (inside the cylinder). Let us consider that, by some mechanism that is
chemically possible, the concentration of A at the bottom of the cylinder vase is
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Fig. 4.14 Cylinder vase Ca =1 mol/m?3
initially containing air:

diffusion of A from the top
to the bottom e >

AX

Ch=0 <

always zero. What would be the axial profile of the concentration of A inside the
cylinder vase over time?

Solution: The first thing to do to solve this problem is to define the control volume,
which, in this case, is a small cylinder with radius R and length Ax, as depicted in
Fig. 4.14. Since we want to know the axial profile of the concentration of A inside
the cylinder vase over time, the accumulation term must be considered. There is
neither generation nor consumption of A along the cylinder, so the conservation law
applied to the control volume yields E — L = A.

The flow of A from x to x + Ax occurs by diffusion, due to the difference in the
concentration of A. The mass flow by diffusion, according to Fick’s law is (see

Eq. 4.11):
dCy
(Ja), = —DA <W>

So, the amount of A at x and at x + Ax in the control volume is shown as follows:

X X+ Ax

Mass flow by diffusion (mol/s) DaR? <@> DaR? (@) N i(—DﬂRz (@) > Ar

dx dx dx dx

in which (using international units):

D = diffusivity of component A in the air (m%/s)
nR* = area from where the diffusive transport of A takes place (m?)
dC 4/dx = concentration gradient for component A (mol/m3 m)

The accumulation of A (in mol) inside the control volume (V) in a period
At (s) can be obtained by the difference between the amounts of A at times 7+ At
and ¢.
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t t+ At

Amount of A (mol)

VCya VCh + At

d(VCy)
dr

in which V = tR?*Ax = control volume (m3).
The accumulation of A at time At can be written as:

dcC dcC
Accumulation of A (mol) = Vd—[AAt = ﬂRzAxd—tA At

The flow of A is given in mol/s and the accumulation term is in mol, so the flow
of A is multiplied by At to yield the mass balance shown in Eq. (4.22):

—DnR? %At — | -DzR? 9Ca + 2 —DnR? 9 Ax|Ar= JrRzAx%At
Ox ox  Ox ox ot
(4.22)

Simplifying terms and assuming that the diffusion coefficient is steady, one can
obtain:

0Cy . 0°Ca
ot P e

The initial and boundary conditions needed to solve this PDE are:

(4.23)

Att=0s, C4 = 0 mol/m’, for 0 < x < 0.05 m
Atx=0m, Cy =0 mol/m> fort>0s
Atx=0.05m,Cy = 1 mol/m>, fort>0s

Equation (4.23) can be solved to generate the axial profiles of the concentration
of A over time with the same shapes of the ones shown in Fig. 4.7b. The higher the
diffusion coefficient, the faster a steady state is reached.

If the axial profile of the concentration of A inside the cylinder vase is needed
only in a steady state, the mass balance would yield:

d*C, 0
dx?

(4.24)

with the boundary conditions:

Atx=0m,C, =0 mol/m>
Atx = 0.05m, C4 = 1 mol/m>

Equation (4.24) can be integrated twice to generate a straight line, as foreseen by
Fig. 4.7b. Example 4.7 can be solved starting the x-axis both at the bottom or at the
top of the cylinder vase.

Until now, all examples presented in Chap. 4 have considered variations in an
axial direction. Example 4.8 will assume changes of temperature in a radial
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Fig. 4.15 Two concentric T
cylinders with radial heat
conduction along the
aluminum annulus

direction. The same procedure presented so far for developing models can be used.
However, it is interesting to pay attention to the control volume and to the area
considered for the flow of energy by conduction.

Example 4.8 Consider a solid cylinder of copper of length L and radius R;.
Assume that the temperature of this cylinder remains constant and equal to 7.
The copper cylinder is coated with an annulus made of aluminum, initially at
temperature T,. The total radius of the concentric cylinders (copper plus aluminum)
is R,, as depicted in Fig. 4.15. The environmental temperature is constant and equal
to Tepy. Assume that Ty > T > Te,,. Although the aluminum annulus exchanges
heat with the environment, the two ends of the two concentric cylinders are
insulated. Develop a mathematical model able to predict the radial profiles of the
temperature in the aluminum annulus over time from the beginning (when T = T)
until a steady state is reached.

Solution: Initially the annulus is at temperature 7, but its temperature starts
changing radially, becoming higher near the copper cylinder and lower close to
the environment. There is no reason for axial changes in temperature, because there
is no driving force in this direction (the ends are insulated).

The first thing to do in order to model this system is to define a control volume.
In our case, we can consider a control volume with a small thickness Ar and length
L, as depicted in Fig. 4.15.

The conservation law applied to this control volume yields E — L = A.

As the temperature of the copper cylinder is higher, heat in the aluminum
annulus will flow from inside to outside. The energy that enters (at ) and leaves
(at r+ Ar) the control volume is due to the conduction of heat (molecule to
molecule). These two terms plus the accumulation of energy in the control volume
can be written as follows:
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r (enters) r+ Ar (leaves)
Heat flow rate by conduction (J/s) kaﬂj kaﬂ N i(,kAdl) Ar
dr dr dr dr
t t+ At
Amount of energy in the control volume (J) pVe,T pVe,T + d (p‘;:pT) At

in which (using international units):

k = thermal conductivity of the aluminum (J/s m °C)

p = density of the aluminum (kg/m?)

¢, = specific heat of the aluminum (J/kg °C)

dT/dr = temperature gradient in a radial direction (°C/m)

T = temperature (°C)

A = cross-sectional area from where the heat flows by conduction (m2)
V = control volume (m3)

At this point it is very important to understand how the cross-sectional area (A)
and the control volume (V) are calculated.

The area that the energy “sees” when flowing radially by conduction is 2zr L,
which is the superficial area of the aluminum annulus: the perimeter of the ring
(2mr) times its length (L).

The volume of the control volume is 2zrAr L and is calculated considering its
area of the base (2z7Ar) times its length (L). You can visualize the area of the base,
imagining the thin ring of the control volume being cut and stretched, making it
similar to a rectangle with sides 2zr and Ar, yielding an area equal to 2zrAr.
Alternativelly, you can calculate the area of the base of the ring as z(r + Ar)* — 712,
what would yield 2zrAr + z(Ar)?. Since Ar is very small, the square of Ar is much
smaller than Ar, so 7(Ar)* can be neglected, and you would obtain the same result
for the area of the base (2nrAr).

Now we can write the energy balance, multiplying the heat flow by A¢, to make
the units compatible:

dT dT d dT d(p2rrArLe,T)
—k2arL— At — | —k2arL— + —( —k2arL— | Ar | At = ———— "L 2 A
k2nr o t { k2mr dr+dr( k2nr dr) I:l t 7 t
———
Enters Leaves Accumulates
(4.25)

Simplifying terms, the energy balance can be rewritten as:

0 [ oT oT
kE <}"E> = ’[)CPE (426)
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or:

OT 10T _pe T
or2 r or k 0t

Observe that the terms 2, =,L,k,c,, and p are taken outside the derivative
because they are constant and do not depend on either the time or the radius
(we assume that k, ¢,,, and p do not vary with temperature). However, the expression
for the cross-sectional area (2rrL) presents the independent variable 7 (radius) that
must be held inside the partial derivative with respect to r (see Eq. 4.26).

The Eq. (4.27) needs two boundary conditions (related to the radius) and one
initial condition (at t = 0). The conditions at = 0 and r = R, are easily obtained, as
follows:

(4.27)

Att:O, T:TlforR1§r§R2
At r=R, (for t > 0), T=T, (at this point, the annulus of aluminum is in contact
with the cylinder of copper, which is kept at T)

The heat flows by conduction inside the aluminum annulus until it reaches the
end at r =R,. At this point (r = R,), the aluminum annulus exchanges heat with the
environment, which is at T,,,. In this way, we can say that at »r =R, the heat that
gets to R, by conduction is equal to the heat that leaves the annulus (r=R,) by
convection (exchanging heat with the environment), or:

dT
—kA = = BA'(T ~ Tew) (4.28)
-

The area is the same for both terms of Eq. (4.28) (A = A’ = 2nR,L) and can be
simplified. So the three conditions needed to solve Eq. (4.27) are:

At t=0, T=T,, for Ri<r<R,

At r=Ry, T=Ty fort>0

At r =R, %: —%(T—Tenv), for t >0

Observe that the convection term does not appear in the energy balance
Egs. (4.26) and (4.27), only in the boundary conditions. This is because the control
volume being considered (see Fig. 4.15) does not interface with the environment.
This only occurs at r=R,. Therefore, the convection term appears only in the
boundary condition. A different situation occurred in Examples 4.1, 4.2, and 4.6, in
which the control volume interfaced with the environment, so the convection term
appeared in the energy balance equation.

The next example will present a more comprehensive situation, in which chem-
ical reactions also occur.

Example 4.9 Consider a tubular reactor, shown in Fig. 4.16, in which an
irreversible and exothermic reaction A > B takes place. This reactor, with
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T°C Q (m3/h)
Q (m3/h) ~ Z . Car(mol/m?)
Cain (mol/m3) R Cg: (Mol/m3)
_— —_—

N
N

Ax

L (m)

Fig. 4.16 Tubular reactor producing component B

radius R and length L, has a jacket at a constant temperature 7; °C, needed to
control the reactor temperature. The reactant A is fed into the reactor at a flow
rate Q m>/h, concentration Cja,,, and temperature Ty, °C. The concentrations of A
and B and the temperature of the fluid that leaves the reactor are Ca;» Cp,, and T},
respectively. A chemical engineer needs to build another tubular reactor to
produce B in a different plant. To save money, the engineer wants to know if a
shorter reactor could be used to produce the same amount of B. There is a
suspicion that most of A is consumed well before the end of the reactor. Develop
a mathematical model to simulate this reactor in order to check the viability of
building a shorter tube. Assume that the system operates in a steady state and
there are no radial or angular profiles of the concentration and temperature inside
the reactor.

Solution: The first thing to do in order to model this system is to define the control
volume. In this problem, it is assumed there are no radial and angular profiles of the
concentration and temperature, so all variations occur only along the length. In this
way, the control volume will be a small slice of the reactor, with length equal to Ax,
as represented by Fig. 4.16.

If there were variations in concentration and temperature also along the
radius, the control volume would be different. We will revisit this problem in
Example 4.11, when we will consider variations in more than one dimension.

The next thing to do to model this reactor is to apply the conservation law to the
control volume, to obtain the mass and energy balances for the reactor. The jacket
temperature remains invariable, so there is no need to develop an energy balance for
the jacket. The conservation law applied to the control volume, keeping in mind that
the reactor operates in a steady state, yields:
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Mass Balance for the reactant A = E-L-C=0
Mass Balance for the product B = E-L+G=0
Energy Balance for the reactor = E-L+G/C=0

The amount of A that enters the control volume (at x) depends on the flow rate
O (m*/h) and on the concentration C, (mol/m?), so the amount of A that goes into
the control volume due to the fluid movement is QC, (mol/h). This is the most
important contribution to A entering the control volume. However, for systems in
which the flow rate is very low and/or for viscous fluids, the diffusion contribution
may be important, so in this problem, we will also consider the axial mass and heat
diffusion. Table 4.2 shows the E (entering) and L (leaving) terms for the mass and
energy balance, in which:

k = thermal conductivity of the fluid inside the reactor (kJ/h m °C)

p = density of the fluid inside the reactor (kg/m>)

¢, = specific heat of the fluid inside the reactor (kJ/kg °C)

D = diffusivity of reactant A or product B in the fluid inside the reactor (m?/h)
nR* = area from where the diffusive transport of mass and energy takes place (m?)
0 = volumetric flow rate inside the reactor (m>/h)

We will assume that the diffusion coefficient D is the same for reactant A and
product B, and that its value remains invariable. We will also consider that the fluid
that travels through the reactor remains invariable values for density (p), specific
heat (c,,), and thermal conductivity (k).

Besides the terms shown in Table 4.2, the heat exchanged by convection
between the reaction mixture and the jacket must be added to the energy balance.

Heat transfer by convection : UQ2zRAx)(T; —T) (kJ/h)

Observe that the exchange area considered in the transfer by convection (2rRAx)
is different from the cross-sectional area (TCRZ) used in Table 4.2. Do not confuse the

Table 4.2 Amounts of A, B, and energy entering and leaving the control volume

X (enters) X + Ax (leaves)
Flow of A due to fluid movement (mol/h) ocC, 0C, + d(QCy) Ax
dx
Flow of A due to diffusion (mol/h) ,dCy dC, d dCy
—DrR°—= | -DaR>—= + —( —DrR*—= | A
dx o + dx )™
Flow of B due to fluid movement (mol/h) 0Cs 0Cs + d(QCpg) Ax
dx
Flow of B due to diffusion (mol/h) DszdCB D deCB i d D deCB A
—— | =DaR*—— + —( —DnR*—— | Ax
dx dx  dx dx
Flow of energy due to fluid movement (J/h) d(Qpc,T)
cpT T 4+ —=L P A
Opc OpeyT +—=_—Ax
Flow of energy due to conduction (J/h) kn:deT p deT n d % deT A
- — —knR*— + —( —knR*— ) Ax
dx dx d dx
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areas. Also observe that there is no mass transfer through the jacket, so no term
needs to be added to the mass balances related to that.

The last terms missing in the mass and energy balances are the consumption and
generation terms, written as follows:

Rate of reaction (kmol/h) = K'CsV
Heat of reaction (kI/h) = k'C4V(—AHR)
in which:

k = constant of reaction (1/h)
V =nR>Ax = control volume (m3)
AHpy = heat of reaction (kJ/kmol)

Considering all terms in Table 4.2, plus the terms related to heat convection and
reaction, and afterwards simplifying terms, the mass and energy balances can be
written as follows:

dc d*C

—Q—A+D R’ dxA—kﬂR2 Ca=0 (4.29)
dc d*C

—Q—B + D nR? dx Ci=0 (4.30)

ar ,d’T )
7Qpcpa+kﬂ'R ﬁJr U2zR(T; —T) + k7R Ca(—AHg) =0 (4.31)
Observe that the Arrhenius constant k depends on T and that the energy
balance depends on C,, so the mass and energy equations must be solved
simultaneously.
To solve this system with three ODEs, two boundary conditions (for each
equation) are needed. In our problem, we know the concentrations and temperature
atx =0:

Atx=0:Cy =Cy, ;Cp ZCBm =0, T=T;,

in >

We need another condition to solve the equation system. We can use one of the
following conditions:

Atx=1L: CAZCAI;CBZCBf;T_TfOI'
Atx—00: C4=0; Cg = Ca,; T=T;and dCs /dx = dCg/dx = dT /dx = 0

in

Observe that if the reactor is very long, all of the reactant will be consumed and
the reaction mixture will exchange heat with the jacket until its temperature reaches
T;. Also observe that the gradient of the concentration reduces along the length as
the reactant is consumed, and reaches zero when there is no reactant available. The
same behavior is observed for the gradient of the temperature when the reactant
finishes and the reactor temperature reaches 7.
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If the diffusion terms were not considered in the mass and energy balance, the
model equations for this reactor would become (compare this with Egs. 4.29, 4.30
and 4.31):

dCy
—Qd—xA —k'7R*C, =0 (4.32)
dCs
—Q—de +k'7R*Cy =0 (4.33)
dT !
—0pcy -+ U2zR(T; — T) + k aR*Ca(—AHg) = 0 (4.34)

That is solved using the boundary conditions:

Atx=0:Cyp =Cy. ; Cp :CB;,. =0, T=T;,

The concentration and temperature profiles obtained from solution of
Egs. (4.29), (4.30) and (4.31) (considering diffusional effects) or Egs. (4.32),
(4.33) and (4.34) (not considering diffusional effects) can be very similar. This
occurs because the contributions due to the flow rate (QC4, OCg and Qpc,T)
are much more important than the diffusion contributions (—DerZdC%,
—DaR*Ce and — kaR*AL). The diffusion effects should be considered when an
accurate model is needed to simulate systems where the flow rate is low and/or
the fluid viscosity is high.

The Sect. 4.3 will consider problems where variations occur in more than one
spatial dimension. In this next section, it is important to pay attention to how the
control volume is defined.

4.3 Examples Considering Variations in More than One
Dimension

In this section, more comprehensive examples will be presented, with variations in
more than one dimension. Let us start with an example considering the axial and
radial heat transfer by conduction in a cylindrical bar. This example is a combina-
tion of the concepts presented previously in Examples 4.6 and 4.8.

Example 4.10 Imagine a cylindrical bar made of a material with low thermal
conductivity. This bar, with length (L) of 1 m and radius (R) equal to 0.3 m, is
initially at 50 °C (Fig. 4.17). At some point, one of the two ends of the bar is fixed to
a wall that is at 70 °C (assume that the temperature of the wall does not change with
time). Assume that the bar exchanges heat with the environment, which is at 25 °C.
One wants to know the radial and axial profiles of the temperature after a steady
state is reached. Assume there is no angular profile of the temperature inside the bar.

Solution: One can imagine that the cylinder is at 50 °C initially, but its temperature
close to the wall starts increasing when it is fixed to the wall, generating an axial
profile of the temperature. At the same time, the cylinder starts exchanging heat
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Fig. 4.17 Cylindrical bar
with heat transfer in axial

and radial directions
T=70°C

DX

T =25°C

Table 4.3 Energy entering and leaving the control volume in an axial direction

x (enters) x4+ Ax (leaves)

Axial flow of energy by conduction (J/h)

dr dT d dT
—k2rrAr— | — rAr— 4+ —|( — —
T ’dx k2mrAr dx+dx< k2mr Ar dx) Ax

with the environment, generating also a radial profile of the temperature (with a
higher temperature in the center). Since the radius is big and the thermal conduc-
tivity of the material is low, the radial profile of the temperature can be significant
and must be considered.

To model this system, first we need to define a control volume small enough to
guarantee the same temperature inside it. Since the temperature changes along x and
r, we need to consider a small ring with length Ax and thickness Ar as the control
volume, as shown in Fig. 4.17. The control volume for this problem can be
visualized as an intersection of the control volumes drawn in Figs. 4.10 and 4.15.

Since one wants to know the temperature profiles after a steady state is reached,
and since there is no chemical reaction, the conservation law applied to the control
volume shown in Fig. 4.17 yields:

E-L=0

The heat enters the control volume at x and r, and leaves it at x + Ax and r + Ar.
The heat flow inside the control volume is only by conduction. The convection
occurs only at ¥ = R = 0.3 m (for all x) and at x = L = 1 m (for all r), which are
regions outside the control volume.

Now, using the concept of the infinitesimal variation of the dependent variable
with an independent variable, Tables 4.3 and 4.4 can be created.

Observe that the cross-sectional area from where the energy goes in a radial
direction is 2rAx, which is similar to the area found in Example 4.8, except for the
length, which was L and now is Ax. The cross-sectional area from where the energy
passes axially is 2nrAr, which is the area of the base of the control volume, also
calculated in Example 4.8.
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Table 4.4 Energy entering and leaving the control volume in a radial direction

r (enters) r+ Ar (leaves)

Radial flow of energy by conduction (J/h)

ar dr d dr
—k2mrAx— | — Axr— 4 —( — -Ax— | Ar
T Ax ar k2mr Ax ar + dr( k2mr Ax: dr)A'

Considering the thermal conductivity constant along the cylindrical bar, we can
use the terms in Tables 4.3 and 4.4 to obtain the energy balance. After simplifying
terms, the energy balance becomes:

O°T 0 ( oT

This PDE can be solved using four boundary conditions (at x =0, r =0, x =L,
and r = R). It is known that the temperature at x = 0 is equal to the temperature of
the wall (70 °C). At x = L, the heat that comes from conduction goes out by
convection. The same thing occurs at » = R. One can imagine there is a symmetrical
radial profile of the temperature inside the cylinder, with a maximum temperature in
the center. This symmetry condition gives us the fourth condition needed to solve
the PDE: at r = 0, d7/dr = 0. So we can write the following boundary conditions:

Atx=0: T=70C (4.36)
dT dT h
Atx =L: —k2m‘Ara = h2m‘Ar(T — Tenv) or E = — z (T — Tenv) (437)
dT
Atr=0. —=0 4.38
: dr ( )
dT dT h
Atr=R: —k27rrAxd— = 2arAx(T — Tepy) or =% (T —Teny) (4.39)
r r

Observe that despite the exchange of heat by convection between the cylinder
and the environment, this convection term does not appear in the energy balance,
only in the boundary conditions. This is because the control volume does not
interface with the environment.

If one wants to know the axial and radial profiles of the temperature in the
transient regime, the accumulation term shown in Table 4.5 must be added to the
conservation law.

Keeping in mind that the control volume is 2nrArAx, the PDE that represents
this system in the transient regime will be:

% oo e rar\ar (440)

Besides boundary conditions (4.36)—(4.39), the initial condition needed to solve
Eq. (4.40) is:

Att =0, T = 50 °C for the entire bar

pe, T O°T 10 < 5T)
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Table 4.5 Calculus of the accumulation term for the cylindrical bar

t t+ At
Amount of energy in the control volume (J) Vo, T Vpe,T + d (VZ:,,T) Ar
ToC Q (m3/h)

yak 3
Q (m3/h) ~ ~ Cas (mol/m3)
Cain (Mol/m?) Cg (mol/m3)
Tin’C R (m) TiC

D —— _—

N

L (m)

Fig. 4.18 Tubular reactor with changes in axial and radial directions

Example 4.11 This next example will revisit Example 4.9, but now we will
assume that the reactor exhibits also radial profiles of ,the concentration and
temperature. The tubular reactor, where the reaction A k, B takes place, has a
jacket that is at a constant temperature of T; °C. All operating conditions and
properties are the same of the as those in Example 4.9. One wants to know the
axial and radial profiles of the temperature and concentration inside this reactor.

Solution: The main difference between the solution presented in Example 4.9 and
the one presented herein is the definition of the control volume. Since we are
considering that both axial and radial variations are important, we need to consider
a small ring with length Ax and thickness Ar to represent the control volume, as
shown in Fig. 4.18 (compare this with Fig. 4.16).

The conservation law applied to this example generates the same expressions
presented previously (rewritten below). Remember that we are considering a steady
state (the accumulation term is equal to zero).

Mass Balance for the reactant A = E—-L-C=0
Mass Balance for the product B = E—-L+4+G=0
Energy Balance for the reactor = E-L+G/C=0

The amounts of material and energy that enter and leave the control volume can
be obtained using the concept of infinitesimal variation of the dependent variable
with the independent variable.

As was done in Example 4.9, we will also consider the diffusion of mass and
energy. The amounts of reactant A, product B, and energy that enter and leave the
control volume in the direction x can be seen in Table 4.6.

Observe that Table 4.6 is very similar to Table 4.2; however, the terms are
adapted in order to consider the new control volume.
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Table 4.6 A, B, and energy entering and leaving the control volume in an axial direction

x (enters) x4+ Ax (leaves)
R o), o5 e d ()
EE)(:J]V /;l))f A due to diffusion Do Ardd% _ox rArddL N ;i (—DanArdd% ) Ax
:112:; E)ri (1)31 /(:Se to fluid move- 0 (22;?1) s 0 (%) Cpt % | 0 (ZZQ;') CB: Ax
Ef(:}lv /l;))f B due to diffusion Do Ardd% *DZTU‘AI‘% n % (fDanAr%> Ax
E}s\\i&; r(zlfe irtle(;i}ll) due to fluid 0 (ZZzﬁz) vt |0 (2:;31) peT + % { 0 (23§/) pc,,T} Ax
gllligo?lf g/lﬁ)rgy due to con- —kZRI‘AF% —k27trAr% + %( k2m rArj—T) Ax

Table 4.7 A, B, and energy entering and leaving the control volume in a radial direction

r (enters) r+ Ar (leaves)
iffusi d
Flow of A due to diffusion (mol/h) | DonrAx & —D21trAx@ n i —DZEI'AX@ Ar
dr dr dr dr
Flow of B due to diffusion (mol/h) | DonrAx dCg DomrAs dCg e d —Dox Ax@ Ar
dr dr  dr dr
i dr
Flow of energy by conduction (J/h) | om L o Axd—T n da( Onr Axd— Ar
dr dr dr dr

The cross-sectional area for the diffusion terms in the x direction change from zR>
to 2zrAr. The flow rate Q is related to the total cross-sectional area (7rR2). However,
the amount of fluid crossing in an axial direction the new cross-sectional area
(2zrAr) is much smaller and is proportional to this new area. In this way, the flow

rate crossing the new control volume axially is Q (2’” A’).

The amounts of reactant A, product B, and energy that enter and leave the
control volume in a radial direction can be seen in Table 4.7. The fluid is fed
only in an axial direction, so the contribution due to the fluid movement in a radial
direction is zero. The differences in the concentration and temperature along the
radius are due to diffusion of mass and heat conduction. Observe that in Table 4.7,
the cross-sectional area for the radial diffusion is 2zrAx (the same used in
Table 4.4). Also observe that the heat transfer by convection is not considered in
the conservation law and will appear only in the boundary conditions, because the
control volume does not interface with the jacket.

The generation and consumption terms are represented in the same way as was
done in Example 4.9; however, the volume is calculated differently.
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Rate of reaction (mol/h) = k'CyV
Heat of reaction (J/h) = k' C, V(—AHg)

in which V = 2nrArAx = control volume (m?>).

All terms in Tables 4.6 and 4.7 plus the reaction terms are combined to generate
the system of equations that represent this reactor, as follows:

Balance for reactant A:

Q 0Cy  0°Ca DO [ 0Cq L
TR ox W*?ﬁ(’?)‘mo (4.41)
Balance for product B:
Q 0Cp  0°Cy DO [ OCp\ , ..
_ T—R2 78)( Diax2 + 7781’ (I 7@7‘ > +kCy =0 (442)

Balance of energy:

Qpe, 8T | O°T k3
zR? Ox k O0x2 + ror

(raa’T) KCa(—AHR) =0 (4.43)

Observe that the terms Ax and Ar can be simplified. It is assumed that O, D, p, ¢,
and k are constant and can be removed from the derivative. Note that Q/TCRZ, present
in Eqgs. (4.41), (4.42) and (4.43), is the fluid velocity.

To solve this equation system, we need four boundary conditions: two in the
x- and two in the r-axes. The two conditions in x (at x = 0 and x = L) are the same as
those presented in Example 4.9. As occurred in Examples 4.8 and 4.10, the
boundary condition at » = 0 is obtained due to the radial symmetry. The other
condition is given in = R. For the energy balance, we can assume that the heat that
reaches r =R by conduction leaves the tube by convection, exchanging heat with
the jacket. This provides us with a boundary condition at » = R, as per Examples 4.8
and 4.10. For the mass balances, the boundary condition at » = R is based on the fact
that the tube wall is nonpermeable for mass transport, so the radial gradients of the
concentration at r =R are equal to zero. So the set of conditions used to solve the
system of PDEs is:

Atx=0,for 0 <r <R: Co=0Cy4,;Cp=Cp, =0;T =T}, (4.44)
dCy dCp dT
= < < . —_—_—— = — = .
Atr=0,for 0<x<L o = dr 0 (4.45)
Atx=L,for 0<r <R: Ca=Cy;Cp=Cp, =0;T =Ty (4.46)
dcC dcC dT h

dr dr dr k
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Table 4.8 Calculus of accumulation terms for the tubular reactor

t t+At
d
Amount of A (mol) 2mrArAxC, 2arArACy + 2 (2mrArAxCy)Ar
Amount of B (mol) ZHI'AI'AXCB ZTU‘AI”AXCB + j (27[’ AI”A)CCB)
Amount of energy L i d
in the control volume (J) 2rrArAxpe,T 2nrArAxpe,T + 7 —(2nrArAxpe,T) At

Since there are radial profiles of the concentration and temperature along all of
the reactor length, these radial profiles also exist at the exit of the reactor. The
concentration and temperature values considered in the boundary condition x =L
could be an average of the values over the radius.

If a mathematical model to predict this reactor in the transient regime is also
needed, the accumulation terms must be considered in the conservation law, as
calculated in Table 4.8.

The model to represent the reactor in the transient regime can be represented by
Egs. (4.48), (4.49) and (4.50) (compare this with the model in a steady-state regime
Eqgs. (4.41), (4.42) and (4.43):

Balance for reactant A:

0Cx 0 0Cy °Cy, DO 0Cy ,

o Pk T (a—> —kC o (448)
Balance for product B:

aCB o Q aCB 82CB D 8 5

ot ok ox TP e +,ar( ar >+"CA (4.49)
Balance of energy:

oT  Qpc, OT  O°T k0 ( OT
pcpa—— ﬂR2 8x+k8x2+rar( a )+kCA( AHR) (450)

The boundary conditions in r and x are the same as those presented previously
(Egs. (4.44), (4.45), (4.46) and (4.47)), and the initial condition needed to solve the
transient model is:

Atr=0: Cy=Cas; Cy=Cp: T=Tp (4.51)

The initial conditions at t = 0 (Cy,, Cp,, and Ty) can be a constant or can vary
with x and/or » (functions of x and/or r).

Finding boundary conditions to solve differential equations generated from the
modeling can be very tricky. Besides, depending on the boundary conditions
used, numerical solution of the models can become less or more complicated.



84 4 Distributed-Parameter Models

Some works in the literature, such as Boyadjiev (2010), show examples applying
boundary conditions in different ways.

Chapters 3 and 4 provide enough information to develop models for pieces of
equipment used in chemical plants at different levels of complexity. Depending on
the complexity of the system being modeled, different kinds of equations are
generated. It is possible to obtain algebraic equations, ODEs (of first and second
degrees), and PDEs (varying with 2, 3, or 4 independent variables). The second part
of this book will focus on numerical solution of the equations that can be generated
from the modeling. Chapters 5, 6, and 7 will solve systems represented by algebraic
equations, ODEs, and PDEs, respectively, adopting Excel as a computational tool.

Proposed Problems

4.1) Imagine a very thin disc of thickness § initially at 50 °C. This disc has a small
orifice in the middle, in which a pin at a temperature of 100 °C is engaged. This disk
exchanges heat with the environment, which is at 25 °C. Assume that both the
environmental and pin temperatures do not change over time. Also assume there is
no temperature profile along the thickness  of the disc.

(a) Make a sketch of how the disc temperature would vary along the radius and
over time until a steady state is reached. Draw curves on the same graph.

(b) Do the modeling of this system and find the PDE to represent how the
temperature changes along the radius and over time.

(c) Define all initial/boundary conditions necessary to solve this PDE.

4.2) Consider the heat conduction on an extended surface represented by the fin
shown in the Figure below, with dimensions L x L x 10 L. The fin, which was
initially at 25 °C, is fixed to a wall at 150 °C. The fin exchange heat with the
environment, which is at 25 °C. Assume that the wall and environmental temper-
atures do not change over time.

(a) Find the PDE that represents the fin temperature along x, y, and z, and over time.
(b) Find the initial/boundary necessary to solve the PDE.

T, =25°C
T=1500C

0L
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4.3) Imagine a solid cone, as depicted below. The lower and upper bases of the cone
are 2 cm and 12 cm, respectively, and its height is 5 cm. This cone was initially at
35 °C, and the environmental temperature (T,,,) is 25 °C. The lower base of the
cone is submitted to a temperature 7, equal to 180 °C. The lateral of the cone is
insulated, and the cone exchanges heat with the environment only through the upper
base. Assume there are no radial and angular profiles of the temperature in the cone
and that T}, and T, do not change with time.

(a) Define the ODE that represents the variation of temperature along the height of
the solid cone in a steady state. (Hint: represent the radius of the cone as a
function of the height to obtain the ODE).

(b) Define the initial/boundary conditions needed to solve the ODE.

12cm

5cm
T = 25°C

T, =180°C

2cm

4.4) Imagine two tubular reactors with radius R; (m) and R, (m), set in a consec-
utive way, in which the exothermic reaction A — B takes place. This system
exchanges heat with the environment, which is at T, (°C). The radius of the first
reactor is three times the radius of the second (R;= 3R,). The lengths of the first and
second reactors are L; and L, (m), respectively. Reactant A is fed into the reaction
system at concentration Cy,, (mol/m?>), temperature T;, (°C), and flow rate Q (m*/h),
as depicted by the figure below. There is a sample collection between the two
reactors, so it is possible to know the concentration and temperature of the reaction
mixture at this point.

Samples collection

Q, Tins Cain I R, ] Q,T,C,Cy
_—

) L
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Assume that the reactors operate in a steady state. Consider that all properties of
the fluid (density, specific heat, thermal conductivity, mass diffusivity) are the same
for both reactors and do not vary along the length. The global coefficient of the heat
transfer by convection for this reaction system is # (J/h m? °C).

(a) Draw the control volume and develop the energy and mass balance for reac-
tant A in the first reactor. In this case, consider mass and energy diffusion only
in an axial direction. Define all boundary conditions to solve the model
equations.

(b) Draw the control volume and develop the energy and mass balance for reac-
tant A in the second reactor. In this case, consider the mass and energy diffusion
only in a radial direction. Define all boundary conditions to solve the model
equations.

4.5) Imagine a solid sphere with radius Ry, hung by a very thin string in the center of
a closed cylindrical recipient full of a fluid initially at 50 °C, as depicted in the
figure below. The air that surrounds the cylinder is at 25 °C, and its temperature
remains invariable over time. The solid sphere was at 100 °C before being
immersed in the cylinder. It can be assumed that all properties of the fluid and of
the sphere do not change over time. Assume that the temperature of the fluid is
homogeneous along the entire cylinder.

e
S

Toy =25°C
Rs

Rc

(a) Consider that the sphere is made of a very conductive material and that its
radius R is very small; in a way, the temperature profiles inside the sphere are
neglectable. Develop an energy balance for the sphere and for the fluid, and
obtain the two differential equations that represent this system over time.
Define the initial conditions.

(b) Now consider that the sphere is made of a material with very low thermal
conductivity, and its radius R, is big enough to make the radial temperature
profiles inside it significant. Develop the energy balances for this new situation,
and define all initial/boundary conditions. Is the energy balance for the fluid
different in this case?
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For cases (a) and (b), make assumptions for the models and define parameters if
necessary. Remember that the area and volume of a sphere are 47R” and (4/3)nR°,
respectively.

4.6) Imagine a tubular reactor in which an irreversible reaction A — B takes place.
Reactant A is fed into the reactor at a flow rate Q (m>/h) and in a concentration (C A
equal to 1 mol/L. The reactor has a jacket with a thermal fluid at T; °C flowing in
concurrently and exchanging heat with the reactional mixture and with the envi-
ronment (at a constant temperature T,,, = 25 °C). Assume there are no radial and
angular profiles inside the reactor and jacket and that they operate in a steady state.
Also assume that the diffusional effects in an axial direction are important. Find the
differential equations system that represents the variation in the concentration of
reactant A, the temperature of the reaction mixture, and the temperature of the
jacket along the length. Find the boundary conditions needed to solve the equations
system. Define the parameters and the hypotheses for your model when needed.
4.7) Imagine that a solid cylinder with a radius and length of 2 m and 10 m,
respectively, initially at 30 °C, is fixed between two surfaces at constant tempera-
tures (100 °C on the right and 20 °C on the left).

(a) Assuming there is no heat exchange with the environment (an insulated cylin-
der), do a sketch of the axial profiles of the temperature in the cylinder until a
steady state is reached.

(b) Assuming that the thermal conductivity of the material is equal to 1 J/h m °C,
what are the temperature and the energy flux at the positions x = 2 m, 5 m, and
9 m in a steady state?
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Chapter 5
Solving an Algebraic Equations System

In this chapter, we will see a practical way to solve an algebraic equations system
obtained from lumped-parameters models in a steady state. There are many differ-
ent numerical methods to solve linear and nonlinear algebraic equations, but in this
chapter just a few alternatives will be used, because the main objective of this book
is to obtain a fast, robust, and simple way to simulate chemical engineering
problems, not to study in detail the different numerical methods available in the
literature. In order to make the problem solution even easier, all simulations will be
done using Excel.

Sections 5.1 and 5.2 deal with problems involving linear and nonlinear algebraic
equations systems, respectively. Only one numerical method for each section will
be presented. Section 5.3 will present a third numerical approach, which can be
used for both linear and nonlinear equations.

5.1 Problems Involving Linear Algebraic Equations

This chapter will provide only the essential information about matrixes needed for
solution of algebraic equations. More information about this issue can be found in
the specific literature (Isaacson and Keller 1966; Chapra and Canale 2005; Burden
et al. 2014, etc).

The first information needed to understand this chapter is that a linear algebraic
equations system can be represented as follows:

The original version of this chapter was revised. An erratum to this chapter can be found at
https://doi.org/10.1007/978-3-319-66047-9_8

© Springer International Publishing AG 2018 89
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anxi +apxy + -+ ayx, = b

ax Xy + apx; + -+ ayx, = b,

ap1 X1 + apxs + -+ appXy = hn

In which a;; and b; are known numerical coefficients, and x; are variables we
want to calculate.
Or, in a matrix form:

[A[{X} = {B} (5.1)

in which:

app - dy X1 b
A= : =~ i |, {X}=¢ i pand{B} =
am1 o Amn Xn bn

The next two concepts to remember are the definitions of the identity matrix and
the inverse of a matrix.

The identity matrix [I] is the matrix that plays, in the matrix algebra, the same
role of the number "1" in the number system. It has the number 1 in the main
diagonal and zeros elsewhere.

1 O 0
0 1
I =
0 O 1
Given a matrix A, we can write:
[A]l1] = [1][A] = [A] (52)

Al Al = [A] Al =11 (5:3)

Keeping these two concepts in mind, the two sides of Eq. (5.1) can be multiplied
by [A]™" to yield:

[A] 1Al {X} = [A] ' {B} (5:4)
Applying Egs. (5.2) and (5.3) on the left side of Eq. (5.4) we obtain:

X} =14]"'{B} (5.5)

So in order to solve a linear algebraic equations system and find the vector {X},
the matrix [A] (matrix of coefficients) must be inverted, and this inverted matrix
must be multiplied by the vector B.



5.1 Problems Involving Linear Algebraic Equations 91

lQoz

Qo1 Q12 Q23 Q33
E— R — R —
Q31

Fig. 5.1 Three interconnected tanks

Table 5.1 Volumetric flow rates for the three interconnected tanks

Qo Onz 03, 012=001+03; 023=00+01» 033=053— 03 Units

5 1 2 7 8 6 m®/min

Table 5.2 Mass balance for Tank Units (mol/min)

the three tanks
1 001Co1 — 012C1 +03,C3=0
2 012C1 — 023C2+ 002C2 =0
3 023C> — 033C3— 03,C3=0

In order to better understand how Eq. (5.5) can be used to solve linear algebraic
equations, Example 5.1 presents a practical situation.

Example 5.1 Let us imagine three perfectly stirred tanks, interconnected as per
Fig. 5.1. This system is also presented in Chapra and Canale (2005).

At the beginning, there is the same volume of pure water in all tanks, and
pure water is fed into tanks 1 and 2 at rates Qg and Qg; (m3/min), respectively.
This system has a recycle, and part of the effluent of tank 3 returns to tank 1, at a
rate Q3; (m’/min). During the entire process, the volume of liquid in the three
tanks remains constant. The amounts of liquid that leave tanks 1 and 2 to enter
tanks 2 and 3, respectively, are O, and QO3 (m3/min), and the amount of water
that leaves tank 3 is Q33 (m3/min). Table 5.1 shows numerical values for all flow
rates.

At a certain point, the streams Qg and Q, start feeding tanks 1 and 2 with a
NaOH solution with concentrations of 10 mol/m® (Co;) and 1 mol/m> (Cyp),
respectively, instead of pure water, although all flow rates remain the same.
What are the NaOH concentrations in all of the tanks when a steady state is
reached?

Solution:

The application of conservation law for the three tanks in steady state will
yield E — L = 0. The NaOH concentrations in tanks 1, 2, and 3 will be defined
as Cy, C,, and Cs, respectively. In this way, the mass balance for the three
tanks can be written generating the linear algebraic equations system shown in
Table 5.2.
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Assuming the numerical values for all flow rates (Table 5.1) and for C; and Cyy,
the equations in Table 5.2 become:
—7Cy +2C3=-50
7C; — 8C, = —1
8C, —8C3=0

The matrix form for this system of linear algebraic equations can be written as
follows:

[A] {C} = {B}, in which:

-7 0 2 Ci —50
A= 7 -8 0]|,{C}=<C, pand{B}=¢ -1
0 & -8 Cs 0

Keeping in mind the Eq. (5.5), the concentrations in the three tanks can be
obtained by solving the expression below:

{cy=1"{B} (5.6)

At this point, it is necessary to know how to handle inversion and multiplication
of a matrix, and we will do that using Excel. In this book, we will use Excel 2016;
however, there is not much difference among versions, and you can get some tips by
using the F/ command (Help) in your Excel spreadsheet if you are using a different
version of Excel.

In order to invert a matrix, it has to be written in the cells of the Excel
spreadsheet, as shown on the left side of Fig. 5.2. After that, select the space in
which you want to enter the inverted matrix (see the right side of Fig. 5.2), type in
the function space at the top of your spreadsheet =MINVERSE( then select the
matrix you want to invert (the one on the left side) and observe in the function space
that the notation C4:E6 (the original matrix you want to invert) will appear.

A B C ay E F G H J
1
2
3
4 17 0 2 E(CA:E6
5 Al | 7 -8 [A]-1=
6 I o 8 8
7
8

Fig. 5.2 Inverting a matrix using Excel
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Insert Page Layout Farmulas Data Review View Developer

H4 - fr | {=MINVERSE[CA:ES)}
A B C D E F G H I J

1

2

3

4 -7 0 2 -0.19048 -0.04762 -0.04762
5 [A]= 7 -8 1] [A]-1= | -0.16667 -0.16667 -0.04167
6 8 -8 -0.16667 -0.16667 -0.16667
7

8

Fig. 5.3 Matrix A inverted, using Excel 2016

Insert Page Layout Formulas Data Review

SUM - ® o K =mmult]
A B  MMULTrray o2 | E F G H I )
1 4
2 4
3 4
4 -7 0 2 -0.19048 -0.04762 -0.04762
5 | [A]= 7T -8 0 [A]-1= -0.16667 -0.16667 -0.04167
6 | 8 -8 -0.16667 -0.16667 -0.16667
7
8
9
10 -50 =mmult(
1 {B}= -1 {C}=
12 0

a3

Fig. 5.4 Multiplying a matrix in Excel

Finally, close the parentheses, keep the Ctrl and Shift keys pressed, and press
Enter. The inverted matrix will appear, as shown in Fig. 5.3.

In order to obtain {C} (the concentrations in the three tanks), [A]_1 (the inverted
matrix of A) has to be multiplied by vector {B}, as per Eq. (5.6). To do that in Excel,
follow these steps:

(1) Write vector {B}, as per the left side of Fig. 5.4.

(2) Select the cells where vector {C} has to be written (see the right side of
Fig. 5.4).

(3) In the function space (at the top of the spreadsheet in Fig. 5.4), type =MMULT(
then select the matrix [A]"!, followed by a semicolon, select the vector {B},
and close the parentheses, as per Fig. 5.5.

(4) Keep the Ctrl and Shift keys pressed, and press Enter. The vector C will appear,
as shown in Fig. 5.5.
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File Home Insert Page Layout Formulas Data Review View Develaper Q@ Tell me what you want to do

H10 b fu {=MMULT{H4:J6;C10:C12)}

| A B C D E F G H I )
1

2

3

4 7 0 2 -0.19048 -0.04762 -0.04762
5 (A= 7 8 0 [A]-1= -0.16667 -0.16667 -0.04167
6 0 8 8 -0.16667 -0.16667 -0.16667
7

8

9

10 -50 9.571

11 {B}= 1 (C}= 8.500

12 0 8.500

12

Fig. 5.5 Concentrations in the three tanks obtained by Excel

T0 =20°C

100kg/min

20kg/min

Fig. 5.6 Series of tanks for oil heating

Easily, we can obtain the concentrations in tanks 1, 2, and 3 in a steady state
(Cy =9.571 and C, = C3 = 8.500).

After learning how to solve linear algebraic equations using Excel, let us solve
one more example, but this time considering the energy balance.

Example 5.2 Figure 5.6 shows three tanks in series used to preheat a
multicomponent oil solution before it is fed into a distillation column for separation.
This system was presented in Chap. 3 (Proposed Problem 3.7), but here we will
consider the system in a steady state.

Saturated steam at a temperature of 250 °C condenses within a coil immersed in
each tank. The oil is fed into the first tank at the rate of 100 kg min~" and there is a
recycle of 20 kg min~' from tank 3 to tank 1. The flow rates into the second and the
third tanks are 120 kg min~", since we assume that the volumes of the three tanks do
not change over time. We also assume that the tanks are well mixed, so the
temperature inside each tank is uniform, and that the specific heat, ¢, of the oil
for the three tanks is 2.0 kJ kg~ ' °C ™.
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Table 5.3 Energy balance for the three tanks

Tank | Enters (kJ/min) Leaves (kJ/min) Exchanges heat by convection (kJ/min)
1 100 ¢, To+20 ¢, T | 120 ¢, Ty UA (Tseam—T1)
2 120 ¢, T, 120 ¢, T, UA (Tgyeam—T5)
3 120 ¢, T 100 ¢, T54+20 ¢, T3 | UA (Tgeam—T3)

Home  Inset  Pageloyout  Formulas  Data  Review  View  Developer  Q Tell me what you want to do

HI ¥ £ | [=MMULT[H8J6;C9:C11)}
| A B C D E F G H ! J
1
2
3
4 -250 0 40 -0.00469 -0.00072 -0.00075
5 [A]= 240 -250 0 [A]-1 -0.00450 -0.00469 -0.00072
6 0 240 -250 -0.00432 -0.00450 -0.00469
7
8
9 -6500 34.18
10 [B]= -2500 {T}= 42.81
1 -2500 51.10

L

Fig. 5.7 Solution for the series of three tanks for oil heating using Excel

For each tank, there is heat exchange between oil and steam, and the product
of the heat transfer coefficient (U) and the area (A) of the coil is 10 kJ min~' °C ™!
(UA =10 kJ min~ ' °C™").

The conservation law applied to each tank yields E — L = 0. Table 5.3 shows all
terms needed to build the energy balance for the three tanks.

The linear algebraic equations that represent the energy balance for the series of
three tanks can be seen below.

¢y(120T — 120T5) + UA(Tgeam — T2) = 0

¢,(100T + 20T5 — 120T}) + UA(Tgieam — T1) = 0
Cp(120T2 — 100T3 - 20T3) + UA(Tsteam — T3) =0

Considering numerical values and rearranging terms, the final linear algebraic
equations are:

—250T + 4073 = —6500
2407, — 2507, = —2500
2407, — 25073 = —2500
Figure 5.7 shows the solution for this linear problem of energy balance using

Excel. It can be observed that in a steady state, the temperatures in tanks 1, 2, and
3 are 34.18, 42.81, and 51.10 °C, respectively.
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Observe that the energy balance for this system does not depend on the tanks’
temperature at the beginning (at time equal to zero). That means that after a steady
state is reached, the temperatures inside the tanks will always be the ones shown in
Fig. 5.7, no matter what the initial conditions are. Moreover, it can be observed that
the volume of the tanks is also not present in the energy balance. We can imagine
that the smaller the volumes, the faster a steady state is reached, but the tempera-
tures in a steady state will always be the ones in Fig. 5.7.

5.2 Problems Involving Nonlinear Algebraic Equations

There are many numerical methods to solve nonlinear algebraic equations, but in
this book only the Newton—Raphson (NR) method will be considered. Other
numerical methods can be found in the literature (Dahlquist and Bjorck 1974;
Hornbeck 1975; Conte and de Boor 1980; Faires and Burden 2013, just to mention
a few).

Imagine a function f(x) that varies with x (independent variable) according to
Fig. 5.8. We can see that this function has two roots (the points where the curve
cross the x-axis). The Newton—Raphson method assumes an initial guess for the
root (in our case, x,, as shown in Fig. 5.8) and finds successively better approxi-
mations of the root (x;, x,, etc).

Starting with the initial guess x,, the function is approximated by its tangent line,
which intercepts the x-axis at x;. The value x; is a better approximation of the root
than the initial guess xo. We can repeat this procedure one more time to obtain x;,
even closer to the root. The NR method is an iterative method, and after a few
iterations, the root can be found.

Imagine an angle a generated from a tangent line drawn from the initial guess xj.
Numerically, the NR method can be easily represented applying the concept of the
derivative and tangent.

Fig. 5.8 Visualization of 3
the Newton—Raphson fx)
(NR) method to find the root
of the function f{x)
a >
X2 X1 Xo X
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f(x)

root

/

Fig. 5.9 Situations in which the Newton—Raphson (NR) method can fail. Left: f (x;) is very close
to zero. Right: The method oscillates around a local minimum

flx) =0

/ f l(xO)

tan o f(xo) so x1=xp 7x0)

The NR method requires a good initial guess and finds just one root, usually one

closer to the initial guess. Figure 5.9 shows some situations in which the NR method

can fail. Observe that if in any iteration, f'(x;) is close to zero, the method does not

converge (observe Fig. 5.9 and the denominator in Eq. 5.7). The method can also
oscillate around a local minimum (see the right side of Fig. 5.9).

Section 5.2.1 will demonstrate how to apply the NR method to solve nonlinear

algebraic equations systems.

(5.7)

5.2.1 Demonstration of the NR Method to Solve a Nonlinear
Algebraic Equations System

Consider the continuous stirred tank reactor (CSTR) presented in Example 3.7. The
system operates in a steady state regime and the reaction A + B £, C takes place. In
order to make the demonstration of the NR method more didactic, let us consider an
isothermal CSTR, so the energy balance is not necessary. Assume that the CSTR
operates at a constant temperature of 307 K. Moreover, let us consider mass
balances only for reactants A and B, which are rewritten as follows:

Mass balance for A (mol/s): Q(Ca
Mass balance for B (mol/s): Q(Cg

— Cy) — kC4CsV =0 (3.12)
— Cp) — kCsC5V =0 (3.13)

in

in
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Considering the numerical values for Cy,, CBm, and Q (Table 3.2), and for

V (Table 3.1), and assuming that k is equal to 0.06 m*/mol min, the mass balances
become:

Mass balance for A (mol/s) : C4 4+ 0.06 C4Cp = 200 (5.8)
Mass balance for B (mol/s) : Cp + 0.06 C4Cg = 200 (5.9)

We will start demonstrating the NR method by calling Egs. (5.8) and (5.9) as
functions u(C,4, Cp) and v(Cy, Cp), respectively.

u(Cy,Cp) = Cs +0.06 C4C — 200 = 0 (5.10)
V(Ca,C) = Cp + 0.06 C4Cp — 200 = 0 (5.11)

Expanding functions u and v in the Taylor series, we obtain:

0 0

i1 =t + (Ca,, —Ca,) (8—;‘;) o+ (Cs.,, — Cg,) (a—gB) . (5.12)
0 0

Viyl = Vi + (CA,'+| - CA:) (a—c‘;> ) + <C31+| - CBi) <a—c‘v)3> (513)

Remember that the estimates of the roots C4 and Cp correspond, according to the
NR method, to the values of C4 and Cp that make u; , ; and v; . | equal to zero.
In this way, considering u; . 1 =v;, ; = 0 and rearranging Eqs. (5.12) and (5.13), we
obtain:

au, au; aul aul
8C CA’”+8C CB,H = ul+CA 8C +CB 5C (514)
aV, aV; a avl
= —V; 5.15
3C, i T3, o = Vit Caget Caige, (5:13)
Equations (5.14) and (5.15) can be written in a matrix form, as follows:
8ui 8ui au,‘ 614,«
aCA aCB {CAi+l } {ul} aCA aCB {CA, }
= — +
5v,~ 5\/,- CB/+1 Vi 5v,~ 5v,~ CBi
0C, 0Cp 0Cy 0Cp
or:
Z]{C}iy = —{F}; + [Z{C} (5.16)

in which:
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au,- au,-
0Cy 0Cg
= [Z]; = Jacobian Matrix in
av[ av[
0Cy 0Cg

Ui
Vi

} = {C}, = Initial guess in i

} = {F}, = Function at {

Ca,

i

} = {C},,;; = NR Prediction in i +- 1
CBi+l

Observe that, if initial guesses for the concentrations of A and B ({C},) are
given, the matrix [Z]; and the vector {F'}; can be calculated. In this way, the
concentrations of A and B for the next iteration ({C};, ) can be obtained by
Eq. (5.16).

If the matrix [Z]; and the vector {C}; are multiplied and the result is added to
—{F};, the right side of Eq. (5.16) can be written in a simpler way and Eq. (5.16)
can be expressed by:

[Z]i{c}i+l = {B}i (5.17)

in which:

{B}i = _{F}i + [ZL'{C}i

Equation (5.17) represents a linear algebraic equations system and can be solved
by multiplying both sides of Eq. (5.17) by the inverse matrix of [Z];, as presented in
Sect. 5.1, to yield:

{C}i+l = [Z];I{B}i (5-18>
The Newton—Raphson method transforms nonlinear to linear algebraic equa-
tions, and the solution for the linearized system can be calculated as presented in
Sect. 5.1. Herein we have shown how the linearization is done; however, next time,
to solve nonlinear algebraic equations, Eq. (5.16) can be used directly.
The Jacobian matrix [Z]; in Eq. (5.16) can be found by deriving Eqgs. (5.10) and
(5.11) with respect to C4 and Cp, to yield:

ou
14006 5.1
aCs + Cp ( 9)
U _ 006C, (5.20)

oCs
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0

)
=~ 0.06C 5.21
0C, i (5:21)

O _ 1 40.06C (5.22)

aCB = . A .

In order to solve Example 3.7 using the NR method, initial guesses are needed.
In Table 3.2 it can be observed that A and B are fed into the reactor at a
concentration of 200 mol/m>. As they are reactants, they will be consumed, and
the exit concentrations in a steady state must be lower than 200 mol/m3. However,
let us assume, as initial guesses (condition i = 0), an exit concentration of A and B
equal to 200 mol/m>. With this initial guess, all values with index i in Eq. (5.16) are
known. [Z], can be calculated by Egs. (5.19), (5.20), (5.21), and (5.22), {F}¢ is
obtained using Eqs. (5.10) and (5.11), and {C} is our own initial guess. The only
term unknown in Eq. (5.16) is {C}, , |, which in our case is {C'}, and represents the
concentration of A and B for the next iteration. In this way, Eq. (5.16) can be written

as follows:
13 12| [ Cy, 2400 13 12| ( 200
= - +
12 13| | Cs, 2400 12 13| | 200
After rearranging the right side of the equation, we obtain the linear algebraic
equations system below, which can be solved using the numerical procedure

presented in Sect. 5.1.
13 12| [ Cq, 2600
12 13|\ Cs | | 2600

After the first calculation, the concentrations of C4 and Cg will be C4, = Cp, =
104 mol/m3. After five iterations, the method converges and provides the concen-
trations of the reactants in a steady state. Table 5.4 shows the results for all
iterations until convergence.

Sometimes it is not easy to analytically derive equations of the model to obtain
the Jacobian matrix. When this is the case, numerical differentiation can be used, as
presented in Sect. 5.2.2.

Table 5.4 Results from the Newton—Raphson (NR) method applied to Example 3.7

Number of iterations

0 1 2 3 4 5 6

C4 (mol/m?) 200 104 62.98 51.18 51.01 50.00 50.00
Cp (mol/m) 200 104 62.98 51.18 51.01 50.00 50.00
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5.2.2 Numerical Differentiation

The numerical differentiation can be easily understood using the concept of a
derivative. Consider a function f(x) varying with x. The derivative of f{x) with
respect to x can be represented by:

df (x)
d

[+ Ax) — f(x)
Ax

= f'(x) = limg,—g (5.23)

Let us understand how to calculate the numerical derivative using a simple
example: find the derivative of f(x) = x* at x =2. The analytical derivative of this
function can be easily obtained: f/(x) =2x, and at x=2, f'(2)=4. In order to
calculate the numerical derivative of this function, let us assume different values
for Ax and apply Eq. (5.23).

(240.1)* — (2)?

For Ax = 0.1: '(2) = — 41
or Ax () 01
2+40.01)% — (2)?
For Ax = 0.01: f’(2):( +001)" —(2) = 4.01
0.01
. 2 4+0.001)* — (2)
For Ax = 0.001: f'(2) = = 4.001
or Ax =0.001: f'(2) 0001 00

We can observe that the smaller Ax is, the more precise the numerical
derivative is.

The numerical derivative presented herein is the forward difference formula. It is
also possible to obtain backward and centered difference formulas. Chapter 7 will
present these two other possibilities, which can also be used to obtain the Jacobian
matrix.

In the example of the CSTR presented previously, the Jacobian Z could be
obtained numerically. Considering Ax = 0.001, and the functions in Egs. (5.10)
and (5.11), the Jacobian for the first iteration (initial guess = C4, = Cz =200 mol/m?)
would be:

du _ [(200+0.001)+0.06(200+0.001)(200) —200] — [200+0.06 x 200 x 200—200]

0Cs 0.001 13
(5.24)
Ou__ [200+0.06(200)(200+0.001) —200] —[200+-0.06 x 200x 200—-200] _ =
0Cy 0.001
(5.25)
Ov_ [200+0.06(2004-0.001)(200) —200] - [200 + 0.06 x 200 x 200 — 200] _ =
0C,4 0.001
(5.26)
aiv _ [(200+0.001)+0.06(200)(200-+0.001) —200] - [200+0.06 x 200 x 200-200] _ ;
Cs 0.001

(5.27)
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We can observe that the numerical derivative can be used successfully to obtain
the Jacobian matrix, and this can be very helpful when an analytical derivative is
difficult to obtain. Section 5.2.3 will apply Excel to solve nonlinear algebraic
equations using the NR method.

5.2.3 Using Excel to Solve a Nonlinear Algebraic Equation
Using the NR Method

In this section, we will use Excel to solve the nonlinear algebraic equations
presented previously by Eqs. (5.10) and (5.11). Figure 5.10 presents a suggestion
for a spreadsheet in Excel, in which cells in gray represent calculations done. In
Fig. 5.10 the Jacobian matrix was calculated analytically.

The initial guesses and the value for the kinetic constant (k = 0.06) are written in
line 8. Line 12 calculates Eqgs. (5.10) and (5.11) using the first initial guess
(C4=Cp=200). Lines 13 and 14 calculate the four partial derivatives to obtain
the Jacobian matrix, also considering the initial guesses. To fill each of these six
spaces in gray, click the mouse in the cell you want to calculate, then click the
mouse in the Insert Function area and add an equals sign followed by the equations
you want calculated (Fig. 5.10 shows an example for the cell that calculates
v(Cy, Cp)). After that, press Enter.

In lines 17 and 18, [Z];, [F],; and [C]; are rewritten in a vector form, using the six
values obtained previously and the initial guesses. To do that, click the mouse in the

Home Insert Page Layout Formulas Data Review View Developer Q Tell me what you want to do

12 i fe =HE+KE"ES"H3-200

A B c D E E G H J K L
1
2 Solving i g ic equati using NR method
3
4
5 Algebraic Equati uCyCe) =Cu+ k€ G =200=0
L] V(CaCa) = Co +k Ca Gy - 200 20
7
8 initial g | Ca= 20000 | | Ca= 200.00 | k= 0.08
9
10
1
12| W(CaCp) = Ca+ k Cy Cy = 200 = JulC,,Cy) = 2400.00 v(CaCa) = Ca+ k€ Cy- 200 = [V[CuCy) = 2400.00]
13 dufdCy= 1+ kCy = |du/dC, = 13.00] dv/dCy = kCq = |dv/dC, = 12.00]
14 dufdCs = kCy = |dusdc, = 12.00} dv/dCq = 1+ kCy = |dv/dcy = 13.00}
15
16
17 Zi= 13.00 12.00 Fi= 2400.00 Ci= 200.00
18 12.00 13.00 2400.00 200.00

Fig. 5.10 Solving nonlinear algebraic equations using the Newton—Raphson (NR) method and
Excel: calculating [Z], and {F},
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Fig. 5.11 Solving nonlinear algebraic equations using the Newton—Raphson (NR) method and
Excel: calculating {B}q and {C},

cell where you want to type, click again in the Insert Function area, type an equals
sign, click in the corresponding cell, and press Enter.

Figure 5.11 shows how vector {B} is obtained (see also Eq. 5.17). The space in
which vector {B} will be written must be selected using the mouse, then click the
mouse in the Insert Function area, type an equals sign, type a minus sign, select all
of the vector [F]; using the mouse, and add the multiplication of matrix [Z]; and [C];
(see details in Fig. 5.11).

The inverse of matrix [Z]; (represented by [Z], l) and the vector {C}; . | (the next
guess) are obtained as was done in Sect. 5.1 (for linear algebraic equations
problems). In this first iteration, the concentrations of A and B change from
200 to 104 mol/m’.

Now we use the value 104 as our next guess, as shown in Fig. 5.12. In order to do
that, we have to type the number /04 in the cells for the initial guesses (ES and HS),
and all the calculations for this new guess will be done automatically because we
write a genetic algorithm (see Fig. 5.12 with new values for the second guess). This
next iteration brings the concentrations for A and B even closer to the real ones (in a
steady state, C4=Cp= 50 mol/m3). In three more iterations, the roots for the
nonlinear algebraic system are obtained. At the bottom of Fig. 5.12, a table has been
built with the concentrations of A and B until the convergence is obtained.
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24

Fig. 5.12 Solving nonlinear algebraic equations using the Newton—Raphson (NR) method and
Excel: changing initial guesses for the next iteration

Observe in Figs. 5.10, 5.11, and 5.12 that the Jacobian matrix (matrix [Z];) is
calculated analytically. If numerical differentiation is needed, in the four cells
(F13, F14, L13 and L14) related to 0u/0C,, O0u/0Cg, O0v/0C,4, and Ou/0Cg,
Egs. (5.24), (5.25), (5.26), and (5.27) should be used instead of Egs. (5.19), (5.20),
(5.21), and (5.22).

5.3 Solving Linear and Nonlinear Algebraic Equations
Using the Solver Tool

Try to again solve the problem of Sect. 5.2 imagining that the matrix [Z]; in
Fig. 5.11 is:

e
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You will see that it is impossible to invert the matrix [Z];, because its determinant
is null. For a linear or nonlinear equations system, this situation can occur and the
two methods presented in Sects. 5.1 and 5.2 cannot be used. The third approach
presented in this section allows us to solve linear and nonlinear algebraic equations
systems using the Solver tool in Excel.

The Solver command appears in Excel’s Data tab. If it is not present in your
computer, you have to activate it by following these steps:

(1) Click on the File tab, click on Options, and then click on the Add-ins category.

(2) In the Manage box, click on Excel Add-ins, and then click on Go (the Add-ins
dialog box appears).

(3) In the Add-ins available box, select Solver, and click on OK.

The Solver tool finds an optimal value for one cell in a worksheet by changing
the values of some cells that you specify. To understand better, let us imagine the
nonlinear algebraic system solved in Sect. 5.2 and rewritten below:

u(Cy,Cp) = C4 +0.06 C4Cp —200=0 (5.10)
V(CA,CB) =Cp+0.06 C4,Cp —200=0 (511)

The roots (C, and Cp) for this system of equation will make u(C,,Cp) =
v(Cy, Cp) =0. Solver can optimize just one cell, so we will optimize the cell that
represents the summation of u(C4, Cp) and v(Cy4, Cp), by making it equal to zero.
In fact, we usually use the sum of the SOUARE of the functions. This is because, in
some situations, functions can assume positive or negative values, and their sum-
mation can be zero even if individually their values are far from zero. So, we will
use u” +v* and not u + v for the cell to be optimized.

In our case, the changing cells will be the cells related to C4 and Cp. Figure 5.13
shows the Solver tool being applied. The optimized and changing cells are in gray.
The initial guesses for C, and Cp are the same as those considered previously
(C4 = Cp =200 mol/m>).

Observe in the function space (at the top of the spreadsheet in Fig. 5.13) how u?
was calculated. The cells E7 and ES8 are used to represent C4 and Cjp, respectively.
Cell C12 represents the cell to be optimized. When clicking on Data and then
Solver, the screen at the right side of Fig. 5.13 appears. In the Set Objective option,
click on the cell C/2. Then choose the Value Of option and type O [i.e., a zero] in the
space straight ahead. By doing it this way, we force the functions u(C,4,Cp) and
v(C4, Cp) to go to zero, and it is possible because Solver will change cells E7 and ES
until it finds values for C4 and Cp (the roots) that make u(C,4, Cp) and v(Cy4, Cp)
equal to zero. In this way, in the By Changing Variable Cells option, click on the
cells E7 and ES. After that, click on Solver and the results shown in Fig. 5.14 will
appear. Finally, you can click on OK. Observe that the optimized cell (C12) is very
close to zero, and C4, =Cp = 50.0 mol/m>, as expected (see Fig. 5.14).

Observe in Fig. 5.13 that there are three options for the optimization method. We
use the generalized reduction gradient (GRG) nonlinear method because our system
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Fig. 5.13 Use of the Solver tool to solve nonlinear algebraic Eqgs. (5.10) and (5.11)
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Fig. 5.14 Solution of nonlinear algebraic Egs. (5.10) and (5.11) obtained by the Solver tool

is nonlinear and smooth. It is not within the scope of this book to deal with
optimization methods. The reader can find books specific to the optimization
issue in the literature (Foulds 1981; Nocedal and Wright 1999; Fletcher 2000;
Rao 2009; Edgar and Himmelblau 2001, etc.).

Our example could be solved in a different way, by using the Subject to the
Constraints box (see this box in Fig. 5.13). We could optimize one of the functions
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Fig. 5.15 Alternative way to solve Egs. (5.10) and (5.11) using the Solver tool

(say, u(C4,Cp)) and restrict the other cell (v(Cy4, Cp)) to zero, using the Subject to
the Constraints box. Figure 5.15 shows this other possibility.

Usually the approach using the Solver tool in Excel is much simpler than the NR
method; however, sometimes it does not work well, especially when the equation
system is very nonlinear. This is the case with the Arrhenius expression to represent
the kinetic constants (k = koexp (— %)). In a nonisothermal reactor, a not very good
initial guess for temperature can make your problem reach wrong values for the
roots (local minima). This will be observed in Proposed Problem 5.4.

The three alternatives presented in this chapter to solve algebraic equations
systems allow us to deal with a great number of problems. The next two chapters
are dedicated to ordinary and partial differential equations (ODEs and PDEzs),
respectively, so more complex problems will be able to be solved.

Proposed Problems

5.1) Imagine a tank in which three streams coming from different parts of a
chemical plant are mixed. The mass fractions of compounds A, B, and C in each
stream, as well as their mass flow rates, are shown in the figure below. Find the mass
flow rate for each stream (F;, F», and F3) that should be used to obtain an exit
stream with the composition shown in the figure (30% of A, 40% of B, and 30% of
C). Write the mass balance for each compound (A, B, and C) and solve the linear
algebraic equations system using the procedures shown in Sects. 5.1 and 5.3.
Compare the results. Assume that the system is in a steady state.
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F2 (kg/min)

33% of A

33% of B

34% of C
F1 (kg/min) F3 (kg/min)
50% of A 70% of B
50%of B 30% of C

100 kg/min
30% of A

40% of B
30% of C

5.2) This problem is adapted from Chapra and Canale (2005), studying a system of
four insulated CSTRs in which an irreversible first-order reaction (A — B) takes
place. A solution of reactant A in a concentration of 1 mol L™ feeds the first reactor
at a flow rate of 10 L/h. There are recycles from reactor 3 to reactor 2 and from
reactor 4 to reactor 3, with flow rates of 5 L/h and 3 L/h, respectively.

l Q32=51/h

Q,=10L/h Q12 Q23 34 Q44
R — —_— e —_—
Cpin = 1 mol/L
Q31 Q43=3L/h

The reactors have different volumes and operate at different temperatures. The
table below shows the volume and the kinetic constant for each reactor.

Reactor V(L) k (1/h)
1 25 0.075
2 75 0.15

3 100 0.4

4 25 0.1

Use the methods seen in Sects. 5.1 and 5.3 to find the concentration of reactant A
in each reactor in a steady state. Compare the results obtained from the two different
methods. After solving your problem, make some changes in your system (one at a
time) and observe the results (suggestion: increase the values for k or reduce the
concentration of A fed into reactor 1).
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5.3) Consider Proposed Problem 3.8 in which the irreversible reaction A + B Xc
+D takes place in an isothermal CSTR, but this time assume that the reactor
operates in a steady state. The rate constant & is equal to 0.855 1/mol s. A solution
with reactants A and B was added to the reactor at a flow rate (F) of 5L min~! and
at concentrations of A and B equal to 0.7 and 0.4 mol L™", respectively (C A =
0.7 mol L™ " and Cp, = 0.4 mol LY. There are no products C and D being fed into
the reactor (Cc, = Cp, = 0). The outlet volumetric flow rate is also 5 L min~ !, and
the volume of liquid inside the reactor remains equal to 40 L over the entire
reaction. The model that represents this system can be seen below:

F(Ca, — C4) — 0.855C4C5V =0
F(Cs, — Cg) — 0.855C4C5V =0
F(C¢, — Cc) + 0.855C4C5V =0
F(Cp, — Cp) + 0.855C4C5V = 0

Solve the equations system that represents this CSTR and find the concentrations
of A, B, C, and D in a steady state. Solve this problem considering the methods
shown in Sects. 5.2 and 5.3, and compare the results.

5.4) Consider Example 3.7 for a CSTR with a cooling jacket operating in a steady
state in which the exothermic reaction A +B-C takes place. The mass and
energy balances that represent this reactor are rewritten as follows:

Mass balance for A (mol/min): Q(Cain — Ca) — kCaCgV =0 (3.12)
Mass balance for B (mol/min): Q(Cgin — Cg) — kC4CpV =0 (3.13)
Mass balance for C (mol/min): Q(Ccin — Cc) + kCaCgV =0 (3.14)

Energy balance for the reactor (J/min): Qpc,(Tin — T) + UA(Tj —T)

+ kCsCpV(—AH), =0 (3.15)

Energy for the cooling fluid (J/min): Q;p;c,(Tji, — Tj) + UA(T = Tj) =0 (3.16)

Using the numerical values in Tables 3.1 and 3.2, solve the nonlinear algebraic
equations system using the NR approach (Sect. 5.2) and obtain the concentrations
of A, B, and C, and the temperatures of the reactor and the cooling jacket in a steady
state. Try to solve this problem using the Solver tool (Sect. 5.3) and observe that this
approach is not robust (due to a highly nonlinear characteristic of this system).

5.5) Imagine a liquid—liquid extractor of five stages, as depicted by the figure below.
A liquid solution containing some component to be recovered (solute) is fed into the
left side of the extractor. This solution contains a mass fraction of the solute equal to
Yi, and flows at F; (kg/h). A solute-free liquid (solvent) is fed into the right side of
the extractor (at countercurrent flow) at a mass flow rate equal to F, (kg/h). This
solvent is immiscible with the liquid fed into the left side and will recover the solute
due to the relative solubility of the solute in these two immiscible liquids. Assume
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that the extractor operates in a steady state and that there is a liquid-liquid
equilibrium at each stage i given by:

K =X,/Y;

in which:

K = distribution coefficient
X; = mass fraction of the solute in the solvent
Y; = mass fraction of the solute in the liquid to be recovered

i = number of the stage

Assume the following numerical values:

Fy (kg/h) F; (kg/h) Y; Xin K
500 1000 0.3 0.0 4
F, (ke/h)

Xy X, X3 Xy X5 Xin
-] ] ] ] ] -
1 2 3 4 5
e —> —_— —_— —_— _—
Yin Y1 Yz Y3 Y4 YS
F, (kg/h)

(a) Calculate the mass balance for each stage and find the following system of
algebraic equations to represent the extractor:

i=1 Yu—AY +BY,=0
i=2 Y —AY,+BY;=0
i=3 Y,—AY3+BY,=0
i=4 Yi—AY,+BYs=0
i=5  Y;—AYs+BX;, =0

in which:
F>
A= |—=—K 1
(Fl >+
F
B=-Kk
Fq

(b) Solve the algebraic equations system obtained in item (a) using the approaches
presented in Sects. 5.1 and 5.3, and find the mass fraction of the solute in both
streams leaving the extractor. Do you think that the separation was effective?
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Chapter 6
Solving an Ordinary Differential Equations
System

In ordinary differential equations (ODEs), dependent variables (such as tempera-
ture, concentration, etc.) vary with only one independent variable (a spatial variable
or time). In this way, all lumped-parameter problems in a transient regime, as well
as all distributed-parameter problems in a steady state varying with just one of the
three spatial variables, are described by ODEs.

Numerical methods for integration of ODEs can be classified as explicit and
implicit. In explicit methods, the state of a system in a condition (i 4 1) is calculated
based only on the previous condition (i) (a sequential solution). In implicit methods,
the solution in i + 1 depends on the state of both i and i + 1 (a simultaneous
solution), being more difficult to implement. Implicit methods are very useful for
stiff systems (in which a dependent variable varies abruptly with an independent
variable) because they are numerically more stable. Most systems in chemical
plants are not stiff if operated in planned conditions; therefore, only explicit
methods are presented this book. The reader can see details about implicit numer-
ical methods elsewhere (Davis 1984; Rao 2002, etc.).

6.1 Motivation

Imagine the derivative shown in Eq. (6.1) with the correspondent boundary
condition:

ay

Boundary condition: at x = 0, y(0) =0

The original version of this chapter was revised. An erratum to this chapter can be found at
https://doi.org/10.1007/978-3-319-66047-9_8
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In this case, if one wants to know, for example, the value of y when x is equal to
10, Eq. (6.1) can be analytically integrated to generate:

y(x) =sin (x) +x (6.2)

which gives us, at x = 10, y(10) = 9.456.

In this case, Eq. (6.1) is very easy to integrate; however, when systems with
many complex ODEs must be solved simultaneously, numerical solution can be an
interesting alternative. Before presenting the numerical methods, let us take a look
at the expression that represents the expansion of the Taylor series (Eq. 6.3):

dy
yH—l Yi ( / )i

1, (d* 1 5 (d 1 (d"y

in which:

y = function that depends on x

x = independent variable

h=x; | —x; = Ax = infinitesimal variation in the independent variable

n = number of terms in the Taylor series

Rn = error after n terms

The solution to Eq. (6.1) could also be obtained using expansion of the Taylor
series. The more terms that are considered, the more precise the solution is. Let us
solve Eq. (6.1) considering n (number of terms in the Taylor series) as equal to 1, 2,
3, and 4, and compare the results. We can assume & =x; , | —x; = Ax = 1. Since the
condition at y(0) is known, we can calculate y(1), y(2), and so on until we discover
the value of y(10). The disadvantage in using expansion of the Taylor series is the
calculation of higher-order derivatives when using more than one term (n > 1),
which, in some cases, can be a hard task. In this example, the higher-order
derivatives for Eq. (6.1) are easily obtained, as follows:

%: cos (x) + 1 (6.1)
2

% = —sin (x) (6.4)
3

% = —cos (x) (6.5)
4

% = sin (x) (6.6)

So the truncated Taylor series for n = 1, 2, 3, and 4, neglecting Rn, can be
represented by Egs. 6.7, 6.8, 6.9 and 6.10 respectively:

Yie1 = Vi +hlcos (x;) + 1] (6.7)
Yigr = Y;i +h[cos (x;) + 1] + %hz[— sin (x;)] (6.8)
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v =viHHeos () + 1] + i -sin(e)] + i [-cos(x)]  (69)
Yig1 =i + h[cos (x;) + 1]

+ %hz [— sin (x;)] + %Iﬁ [—cos (x;)] + %h‘l[sin (x:)] (6.10)

Starting from the condition at x = 0 (y(0) = 0) and considering 7 = Ax = 1, it is
possible to calculate y(1). From the y(1), we calculate y(2) and so on until we reach
y(10). Figure 6.1 compares the analytical solution of Eq. (6.1) with the results
obtained from the Taylor series using a different number of terms.

We can indeed verify from Fig. 6.1 that the increase in the number of terms
generates more accurate results; however, it is interesting to point out that if a lower
increment & were considered, the curves obtained from the Taylor series would be
closer to the analytical solution.

If, on one hand, more precise results are obtained for bigger n values, on the
other hand the more terms in the series result in more difficult calculation, because
additional derivatives of higher order are needed. In this way, sometimes the Taylor
series does not represent a real advantage compared with the analytical solution
which demands calculation of just one integral to generate the exact solution.

Most researchers consider Taylor series methods too expensive for most practi-
cal problems. In this way, there is another class of numerical methods that imitate
the Taylor series methods, without the necessity for calculating higher-order deriv-
atives. These are called Runge—Kutta methods and will be presented in Sect. 2.

12 4

—— Analytical solution
e —
10 — - 1term Taylor series P
---- 2terms Taylor series _;./'""
P
g4 e 4 terms Taylor series %
> 6
./.
44 =TT %
. - "’
7=
P’P
2 —
O T T T T 1
0 2 4 6 8 10
X

Fig. 6.1 Comparison between an analytical solution and solutions obtained by an expanded
Taylor series truncated after 1, 2, and 4 terms
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6.2 Runge-Kutta Numerical Methods

The general formula for the Runge—Kutta (RK) family of methods is:

v
Vi = Vit Yk 6.11)
j=1
In which:
j-1
K]' = hf(xl- + Cl'h, Vi + z aﬂKl) (612)
=1
c=0

In the RK formulas, the term f represents the derivative of the dependent
variable:

flxi,y) = (Zg)i (6.13)

and:

y; = dependent variable in condition i

y; + 1= dependent variable in condition i 4 1

j and [ = counters in the summation

, a, and ¢ = parameters of RK methods

h = increment

v = order of RK methods

The order of the Runge—Kutta method will depend on the number of terms
considered in the summation of Eq. (6.11), as follows:

v = 1: First order Runge—Kutta method (RK1), also called the Euler method

v = 2: Second order Runge—Kutta method (RK2)

v = 3: Third order Runge—Kutta method (RK3)

v = 4: Forth order Runge—Kutta method (RK4)

Or generalizing: If v = j, a j/” order Runge—Kutta method is generated.

6.2.1 First Order Runge—Kutta Method, or Euler Method

To find out the formula for the first order Runge—Kutta (Euler method), v = 1 is
considered in Eq. (6.11). If we assume that w; = 1, the following formula for the
Euler method is obtained:
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Yier =Y + Ky (6.14)
Ky = hf (xi, y) : (6.15)

or substituting Eq. (6.15) in Eq. (6.14):

Vi1 = Vi + hf (xi,;) (6.16)
Equation (6.16) is exactly the expansion of the Taylor series presented in
Eq. (6.3) considering n = 1. The Euler method can be easily visualized in

Fig. 2.2 in Chap. 2, redrawn below (see Fig. 6.2).

If a condition (xo, y) is given and if Ax is sufficiently small (y; = v,), the value of
the function y at x; =xp+ Ax can be obtained considering the definitions of the
tangent and derivative.

ana =222 () (6.17)
X| — Xo dx/,
dy
So: = Ax|— 6.18
o Yi=JYo+ (dx)o (6.18)
d
or generalizing : y,.; =y, + Ax (d_i) (6.19)

6.2.2 Second Order Runge-Kutta Method

To obtain the formula for the second order Runge—Kutta method (RK2), v = 2 is
adopted in Eq. (6.11) to yield:

Yig1 = Vi + 01Ky + 02K (6.20)
Ky = hf (xi,y;) (6.21)
Ky = hf (x; + c2h, y; + a1 Ky) (6.22)

The terms @i, @,, ¢, and a,; in Eqs. (6.20) and (6.22) must be found. If we
assume that c,h and a,1K; in Eq. (6.22) are sufficiently small, f(x; + c2h, y; + a>1 K1)
can be represented by an expansion of the Taylor series (we will adopt n = 1), and
Eq. (6.22) can be written as:

Ko = h|f(xi,y;) + c2hf (i, 3;) + aleLf;(thi)} (6.23)

in which:
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Yy -----

) Ty z

Fig. 6.2 Visualization of the Euler (first-order Runge—Kutta (RK1)) method

fxiy) = (%),- (6.13)
fiolxi,y) = (%)i (6.24)
() = (g—Qi (6.25)

Substituting Eqgs. (6.21) and (6.23) in (6.20) and rearranging, we obtain:

Yir1 =i+ (01 + 02)hf (x:,3;) +anh’ [CZf,lv(xf’yi) +a2]f;(xi’yi)f(xi’yi)] (6.26)

On the other hand, if we represent y; , | using expansion of the Taylor series with
n = 2, we get (compare this with Eq. 6.3):

dy 1, d*y
oy =y;+h|l—) +=hr"|{—) +R 6.27
Jirl Ji (dx), 2! <dx2 i 2 ( )

Taking into account Eq. (6.13) and considering the R, error as being very small,
Eq. (6.27) can be written as:
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1
Vi1 = Yi + b (xi,y;) +5h2f'(x,-,y,-) (6.28)

O R ARG O

Substituting Eq. (6.29) in Eq. (6.28) yields:

Yigr = Yi (i y;) +5; hz[(g’;) + (g’;) ( )] (6.30)

Using Eqgs. (6.13), (6.24), and (6.25), Eq. (6.30) can also be written as:

By definition:

i = 3 W) 33 4 ) )| (6.31)

Observe the similarity between Eqgs. (6.26) and (6.31). The terms w, ®», ¢, , and
a1 in RK2 can be found by comparing Eq. (6.26) (generated from the application of
RK?2) with Eq. (6.31) (obtained from the application of the Taylor series truncated
in the second term, n= 2). We conclude that:

w1+ w; =1 (6.32)
Wy C) = 1/2 (633)
wy dy; = 1/2 (634)

Since there are four unknown variables (w;, @,, ¢», and a,;) and only three
equations (Egs. 6.32, 6.33, 6.34), one of the variables is fixed to allow calculation of
the others. Two examples are shown:

Case 1 Fix ¢c; =0.5s0 w, = 1, w; = 0, and a,; = 0.5, and Egs. (6.20), (6.21),
(6.22), which represent RK2, can be expressed as follows:

Yie1 =¥i + K (6.35)
Ky = hf (x;,y:) |:> (6.15)
K, = hf(x; + 0.5h,y; + 0.5K;) (6.38)

Case 2 Fix ¢c; = 1.0 s0 w; = 0.5, ; = 0.5, and a,; = 1.0, and the equations for
RK2 will be:
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Yir1 =¥ + 0.5(K; + K3) (6.37)
K, = hf (xy0) —> (6.15)
Ky = hf(x; + hy; + K1) (6.38)

For cases 1 and 2 of RK2, only first-order derivatives are needed. This is an
advantage compared with the Taylor series truncated in the second term, which
demands also the second-order derivative. In cases 1 and 2, K represents the first-
order derivative applied in the condition (x;, y;), as occurred in the Euler method. In
cases 1 and 2, K, represents the first-order derivatives in the condition (x; + 0.5h,
y;+0.5K;) and (x; + 1, y; + K), respectively, so K, can only be obtained after K is
calculated.

In a similar manner, Runge—Kutta methods of higher order can be developed.
Observe that the RK methods are based on the Taylor series, so the higher the
Runge—Kutta order is, the more accurate the method is, because more terms in the
Taylor series are considered. From the practical point of view, the most commonly
used type of Runge—Kutta method is the fourth order Runge—Kutta (RK4),
presented in Sect. 6.2.3 (RK methods of other orders can be seen in in may
books, such as Davis 1984; Varma and Morbidelli 1997; Rao 2002; and Chapra
and Canale 2005).

6.2.3 Runge—Kutta Method of the Fourth Order

The expression for the fourth-order Runge—Kutta method (RK4) can be obtained as
was done for the case of RK2, and can be seen as follows:

h
Yirr=Yi + E(Kl + 2K, + 2K5 + K,) (6.39)
Ky = f(xu90) (6.40)
Ky = f(x; + 0.5k, y; + 0.5hK;) I:> (6.41)
K3 = f(x; + 0.5h, y; + 0.5hK;) (6.42)
Ky =f(x +h vy + hK3) (6.43)

RK4 demands the calculation of four first derivatives (K, K,, K3, and K,) at four
different points for independent and dependent variables (x, y). Figure 6.3 compares
the results obtained from the solution of Eq. (6.1) using RK methods of different
orders with the analytical solution.
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Fig. 6.3 Comparison of an analytical solution and solutions obtained by Runge—Kutta methods of
the first, second, and fourth order, considering 7 = 1

As mentioned earlier, the higher the order of RK method is, the more precise the
results are. This is more evident for nonsmooth functions. Observe in Fig. 6.3 that
the RK1 method is closer to the analytical solution in the regions in which y varies
in a more linear way with x (from O to 1 and from 6 to 7). If the function is not very
nonlinear, the Euler method can be used successfully if a low value of & (step) is
adopted.

The choice of the ideal step (%) is of crucial importance to obtain reliable results,
but how do we pick the best step if we do not know the analytical solution to
compare? The idea is to use different steps and compare the results. Fig. 6.4 solves
Eq. (6.1) using the Euler method for different values of 4. Observe that the curves
are practically coincident for # = 0.05 and 4 = 0.1, so there is no advantage in using
steps lower than 0.05.

Observe that to obtain almost the same accuracy in the results, RK4 used a step
more than ten times bigger than the one used in the Euler method (compare Figs. 6.3
and 6.4).

Section 6.3 and 6.4 will show how to solve both a single ODE or a system of
ODEs using an Excel spreadsheet and Visual Basic for Applications (VBA),
respectively. The procedure adopted in Sect. 6.3 can be tedious and laborious;
however, it can be very useful in order to clearly understand how the calculus is
done in RK methods, especially for systems of equations being simultaneously
solved.
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Fig. 6.4 Comparison between different values of steps for the solution of Eq. (6.1) using the Euler
method

6.3 Solving ODEs Using an Excel Spreadsheet

Section 6.3.1 will use an Excel spreadsheet to solve just one ODE, and Sect. 6.3.2
will solve a system with more than one interdependent ODE.

6.3.1 Solving a Single ODE Using Runge—Kutta Methods

In order to understand how to solve an ODE using a spreadsheet in Excel, let us start
with the very simple example presented in Example 4.1. The equation below
represents the axial increase in temperature, in a steady state, of a liquid flowing
in a cylindrical tube of 60 m, exchanging heat with a jacket.

ar _ U2zR
dx  Qpc,

This equation can be rewritten as:

(300 — T), with the boundary condition: at x =0, T = 20°C

dT
FOaT) === M(300 — T), atxg = 0,T = 20°C (6.44)

in which:
M = U2zR/(Qpc,) = constant
R =radius = 0.2 m
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U = global coefficient of heat transfer = 60,000 J/h m? °C
0 = volumetric flow rate = 4 m>/h

p = density = 900 kg/m>

¢, = specific heat of the fluid = 3000 J/kg °C

From a didactic point of view, let us start solving this ODE using the Euler
method.

6.3.1.1 Euler Method

A suggestion for a spreadsheet using Euler method to solve Eq. (6.44) can be seen in
Fig. 6.5, where in the first lines the ODE and the boundary condition are printed just
as a comment. Lines 10 to 12 show the parameter of the model, needed to calculate
the constant M. To calculate M, select a cell (in our case, the cell C/4), go to the
function space (at the top of your spreadsheet), type an equals sign followed by the
expression that represents the constant M, and press Enter (in gray is written, as a
comment, the expression you have to type). Then click on a cell in which to insert
the step (in our case, the cell C15 was used and & = 1 was chosen). After that, write
down the condition at x, (see cells C/8 and D18 for x and T, respectively).

Home Insest Page Layout Formulas Data Review View Developer \.-' Tell me what you want to do

c19 - j =C18+5C515
A B C D E F G H [ J K L
1
z aT
3 fGT)=—= M(300-T) atx=0,T=20C
n ol ODE and boundary
5 condition
6 M= 2wRU
7 " Qpep
8
9
10 p= 900  kg/m® R= 0.2 m Parameters of
1 cp= 3000  J/kg’C a= 4 m’/h the model
12 U= 60000 J/hm°g

14 M= 0.006981] —— (2*PI{)*G10*C12)/(G11*C10*C11) pemmm——— -
15 step=h= 1 Pis g
’ Ay
’
17 T D18+$C$15*$C$14*(300-D18) b »

x Py " .
18 C18+5C515 0 20.00 fi TS /’
19] S 21.95 |—T

2 " —Fill Handle Fill Handle

Fig. 6.5 Suggestion for an Excel spreadsheet to calculate a single ordinary differential equation
(ODE) using the Euler method
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According to the Euler method, the independent and dependent variables at
X1 can be calculated based on the condition at x, using Egs. 6.45 to 6.48 (compare
with Egs. 6.14, 6.15, 6.16).

X1=xo+h (6.45)
T, =Ty +K, (6.46)
K] = /’lf()((), T()) (647)
or:
Ty =To+ hf (x0,To) (6.48)

To calculate xj, select cell C/9, type in the function space an equals signal
followed by the corresponding equations (Eq. 6.45), and press Enter. In the same
way, to calculate T, select cell D19, type in the function space an equal signals
followed by the corresponding equations (Eq. 6.48), and press Enter. In Fig. 6.5,
these two expressions are also written in gray as a comment.

After that, select together the two cells (C/9 and D19) containing the calculus
you have just done for x; and Ty, and hover the cursor over the small box at the
bottom right corner of the selected cells. This small box is called the Fill Handle
(Fig. 6.5 shows a zoom of a cell inside the dashed line where the Fill Handle is
indicated). When the mouse cursor is directly above the Fill Handle, the cursor will
change to a symbol of a small black cross. Drag the Fill Handle down to obtain
values of x and T for the next steps.

When dragging the Fill Handle down, automatically x, and T (in cells C20 and
D20) are calculated using the values of x; and T (cells C/9 and DI19), x5 and T3
(in cells C21 and D21) are calculated using the values of x, and T, (cells C20 and
D20), and so on. The constants M and & are used in the Eqgs. (6.45) and (6.48),
written in cells C/9 and D/9. To avoid using the following cells for constants
M and h when dragging the Fill Handle down, we use $C$/4 and $C$15 instead of
C14 and C15 in the mathematical expressions of cells C/9 and D19 (see Fig. 6.5).
The dollar sign (§) can also be easily added by pressing the F4 key just after
clicking on the cell.

Figure 6.6a shows another way to produce the Excel spreadshee, in which k; is
calculated separately (Eq. 6.45, 6.46, and 6.47 are used). Figure 6.6a also depicts
other values for x and T after the dragging.

6.3.1.2 Fourth order Runge Kutta method

Solving ODE by the RK4 method using an Excel spreadsheet is more laborious, but
it will be shown herein in order to make the numerical method more understand-
able. Figure 6.6b shows a suggestion for an Excel spreadsheet to solve Eq. (6.44)
using RK4. Comparing this with Fig. 6.6a, we observe that another three first
derivatives are needed (K,, K3, and Ky).



6.3 Solving ODEs Using an Excel Spreadsheet 125
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Fig. 6.6 Suggestion for an Excel spreadsheet to solve Eq. (6.44) using (a) the Euler method (/ef?)
and (b) the fourth-order Runge—Kutta (RK4) method (right)

Knowing the condition at (x¢, ), the condition at the first step (x;, 77) can be
calculated according to the RK4 method as follows:

h
T, =T0+g (K1 + 2K, +2K3 + K4)

(6.49)
Ky = f(x0,To) (6.50)
K> :f(xo +0.5h, Ty + OShKl) (651)
K; :f()CO +0.51, T + 0.51K>) ( )
K4 :f(xo—l—h,T0+hK3) ( )
xp=x0o+h (6.45)

The first-order derivatives K, K», K3, and K4 are calculated in cells EI8, F18,
G18 and HI8, respectively. Figure 6.6b shows a detail for the expression used to
calculate K, and Ky. In cell C19, x; is calculated as was done previously; in cell
D19, T, is calculated using Eq. (6.49) (see detail in the function space in Fig. 6.6b).
Then select (individually or in groups) the cells E/8, FI18,G18,HIS,C19,and D19,
and drag the Fill Handle down to obtain all values shown in Fig. 6.6b.

The temperature profiles obtained by the integration of Eq. (6.44) reveal an
almost linear dependence between temperature and length for this specific system
(Fig. 6.7), so, in this case, the difference between the Euler and RK4 methods is not
very expressive, even for high values of integration steps (4).
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6.3.2 Solving a System of Interdependent ODEs Using
Runge—Kutta Methods

In order to better understand how to apply RK methods to solve a system of ODEs,
let us revisit Example 4.3, which modeled bitubular heat transfer operating in a
concurrent way. The equations that represent this system are rewritten below:

drT; .
Benzene : Wbencpben% =U1257(Tio| — Then), at x =0, Tpen = 60'F
X
dr o
Toluene : W0l CPyol d—wl =U1257 (Tven — Tra1), at x=0,Ty =170 F
by

This system can be also written as follows:

dTb .
Benzene : f(x,Tb,Tt) = o= Mb(Tt —Tb), at x=0,Thb=60F (6.54)
X

dTt .
Toluene : g(x,Th,Tt) = i MiTbh —Tr), at x=0,Tr=170F (6.55)

in which:
Mb = 1.2572U /(WpenCPpen) = cOnstant
Mt = 1.25zU /(Wyicp,,) = constant
Ween = mass flow of benzene = 9820 1b/h
W01 = mass flow of toluene = 6330 Ib/h
CPpren = specific heat of benzene = 0.425 Btu/(1b °F)
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Cprol = specific heat of toluene = 0.440 Btu/(Ib °F)

U = global coefficient of heat transfer = 0.8 Btu/(h in” °F)

Ty, = Tpen = benzene temperature flowing in the tube (°F)

Tt =T,, = toluene temperature flowing in the annulus (°F)

x = independent variable = heat transfer length (in)

Let us simultaneously solve Eq. (6.54 and 6.55) using first the Euler method.

6.3.2.1 Euler method

Knowing the condition at x = 0 (xq, Thy and Tt,), the condition at the first step (x;,
Th, and Tt;) can be calculated as follows:

xp=xo+h (6.45)
Thy = Tho + hK, (6.56)
Tty = Tty + hL, (6.57)
K, :f(XO,Tbo,Tto) (658)
Ly = g(X(), Tbho, Tlo) (659)

Observe that there is a first derivative for the dependent variable Th (which we
call K;) and another for Tt (here named L;). Note that K; and L, are interdependent
(see Egs. 6.54 and 6.55) and must be simultaneously solved. Fig. 6.8 shows a
suggestion for an Excel spreadsheet to solve this system with two ODEs (Egs. 6.54
and 6.55) using Euler method.

The constants Mb and Mt, in cells C15 and C16, are calculated based on the
parameters written in lines 11 to 13. Figure 6.8 highlights the first calculations made
for K, L, Th, and Tt. After the first calculations are done, the Fill Handle must be
dragged down to obtain how Tbh and Tt vary with position, which, if plotted,
generates the curves shown in Fig. 4.5.

6.3.2.2 RK4 method

If the RK4 method is used, the condition at the first step (x;, 7b and Tt,) is obtained
based on xy, Thy and Tt, (the boundary condition), using Egs. (6.60 and 6.61):

h

Th, = Thy Jrg (Kl + 2K, 4+ 2K;3 +K4) (6.60)
h

TH =Tty + 3 (Ly 4+ 2Ly 4+ 2L3 + Ly) (6.61)

in which the first derivatives for the functions Th and Tt at x = x;, are:

K :f<xO,Tb0,Tl()) (658)
K> :f(xo 4+ 0.5h,Thy + 0.5hK, Tty + OShLl) (662)
K3 :f(xo 4+ 0.5h,Thy + 0.5hK,, Tty + OShLz) (663)
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Fig. 6.8 Suggestion for an Excel spreadsheet to solve a system with two ordinary differential
equations (ODEs) using the Euler method

:f()(() + h,Tho + hK3, Tty + hL3) (664)
= g(x Tbo,TI()) (659)
L, :g(Xo+05h Tbo+05hK1,TtQ+05hL1) (665)
Ls = g(xo + 0.5k, Thy + 0.5hK», Tt + 0.5hL,) (6.66)
Ly = g(xo + h,Thy + hK3, Tty + hL3) (667)

Figure 6.9 presents a suggestion for how to solve simultaneously Eqgs. 6.54 and
6.55 using the RK4 method in an Excel spreadsheet. The first calculations for Th
and Tt, as well as for some first derivatives, are highlighted.
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Fig. 6.9 Suggestion for an Excel spreadsheet to solve Eqs. (6.54 and 6.55) using the fourth-order
Runge—Kutta (RK4) method

An Excel spreadsheet can be very useful to solve systems with very few
equations by the Euler method, or to solve just one equation by RK4. For bigger
systems, an Excel spreadsheet is impracticable, but it has been presented herein
mainly for didactic reasons. The next section will show the procedure usually
adopted to solve ODE systems.

6.4 Solving ODEs Using Visual Basic

The most effective way to solve a system of ODEs is to develop a computer code,
which can be written in many different computer languages (Fortran, C, C++,
Pascal, Visual Basic, Java Matlab, etc.). The focus of this book is to use Excel,
therefore VBA (Visual Basic for Applications) will be the language presented in
this section.

The idea of this book is not to show the VBA language in detail, because this can
be seen in many specific books (Billo 2007; Walkenbach 2013a, b) and on internet
sites. Herein will be presented examples of a few computer programs to solve ODEs
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using Euler and RK4 methods. These codes will be generic enough to allow
students to use them as a starting point to develop their own programs for different
systems of ODEs.

6.4.1 Enabling Visual Basic in Excel

The first thing to do to develop a computer code in Excel is to check if your
computer is enabled to use VBA. To do that, check if your Excel has a Developer
tab, as shown in Fig. 6.10. If not, click on the File tab, shown by the arrow in
Fig. 6.10, which will open the window shown in Fig. 6.11. By clicking on Options
(see the arrow in Fig. 6.11), the window depicted in Fig. 6.12 will appear. Choose
the Customize Ribbon button and, in the list of main tabs, select the Developer
check box. Click on OK to close the Options dialog box.

At this point your Excel is enabled to use the Visual Basic program. Now you
can choose the Developer tab, and then click on the Visual Basic icon (see the
dashed arrow in Fig. 6.10) to open a space in which you can write your program.
The space shown in Fig. 6.13 is originally gray, but it becomes white (and available
to type the code) after clicking on the View Code icon, indicated in Fig. 6.13 by the
solid arrow. After typing your code into this space, you can run the program by
clicking on the green triangle indicated by a dashed arrow in Fig. 6.13. If needed,
the reader can see detail on how to debug a program in the Help option in Excel.
However, if the code is correct, the click on the green triangle will be enough to
provide the simulation results.

6.4.2 Developing an Algorithm to Solve One ODE Using
the Euler Method

Like all programming languages, VBA provides many different possibilities of
commands that can be used to develop a code. We will use just a few herein. Reader

Home Insert Page Layout Formulas Data
w [ 8% ord Macro {:F - i [E5] Properties + —
n [ @ | = "
s Use Relative References | 1] View Code +_ Expa
Visual Macros Add- Excel COM Insert Source
A Basic . Macro Security ins  Add-ins Add-ins - d| Run Dialog
/ A B C D E F G b [ )

Fig. 6.10 Detail of the Developer tab and the Visual Basic icon in the Excel spreadsheet
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can learn more about the different commands in VBA in the specific literature
(Billo 2007; Walkenbach 2013a, b, etc.).

To understand how to develop a program code, let us start with a very simple
problem, which can be represented by just one ODE, and let us adopt the Euler
method as the numerical method to solve this ODE. Proposed Problem 3.1 studies
the concentration of HCl inside a tank over time, for which modeling generates the
following ODE:

dChci
dt

=0.01 — 0.4 Cpey (6.68)

with the initial condition: at t = 0, Cyc; = 0.01 kg/m3.

A suggestion of a simple code to solve Eq. (6.68) using the Euler method is
depicted in Fig. 6.14a. This code is written in the space that is used to write VBA
code in Excel, shown in Fig. 6.13. The name of the program is Euler and the word
Sub is used to start the code. When the expression Sub Euler () is written and the
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Fig. 6.13 Detail of the space in which to write Visual Basic (VBA) code in Excel

Enter key is pressed, automatically the expression End Sub will appear (see the last
line of the code) and the words Sub and End Sub will turn blue. The code must be
written between these two commands.

In the first three lines of the code, the initial condition (at ti =0, CHCI=0.01)
and the final time (¢#f, at which we want to stop the simulation) are attributed. We
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Fig. 6.14 a, b Suggestion for a code to solve Eq. (6.68) using a the Do While command and b the
For ... Next command. ¢ Results obtained using Visual Basic (VBA) code

choose to integrate Eq. (6.68) up to 15 hours, and we assume a step size (k) equal to
0.1 (see line 4 of the code).

VBA writes the results in the Excel spreadsheet, so to define the cells that will
receive the results, we use the command Cells (k,j) = in which k indicates the line
and j indicates the column of the spreadsheet. If we want to write a word, we must
use quotation marks, as indicated in lines 6 and 7 of the code in Fig. 6.14a, which
generates cells A/ and B/ in Fig. 6.14c.

The Euler method demands a loop, and in Fig. 6.14a this was done by the
command Do While, which must be closed by the command Loop (see both in
blue). Between these two commands the Euler method calculation is done, step by
step, until it reaches #f equal to 15 hours. The calculation needed for the Euler
method is highlighted in Fig. 6.14a (compare this with Egs. (6.14) and (6.15)).
Observe that we use the command Cells (k,j) inside the loop, so the values of # and
CHCl for each loop will be written in the Excel spreadsheet (see the table generated
in Fig. 6.14c). There is a counter (i) used to print the results, which started from
2 (see line 8 of the code), because line 1 of the spreadsheet is dedicated to the title of
the table of results.

Another option for a VBA code to solve Eq. (6.68) using the Euler method is
presented in Fig. 6.14b. Observe that the code is basically the same, but the command
to build the loop is For ... Next. The variable nSteps is the number of integration
steps. The calculus inside the loop is done 150 times ((¢f — #i)/h or (15-0)/0.1), but it
uses nSteps + 2 in the For ... Next command, because the counter i starts from 2.

These two codes could be written in a more general way if we create a function.
Figure 6.15a shows an alternative for the code in Fig. 6.14a.



134 6 Solving an Ordinary Differential Equations System

Sub Euler() Sub Euler()
ti =10 xi =0
tf = 15 xf = 15
CHC1l = 0.01 y=0.01
h=0.1 dx = 0.1
t =i x = xi
Cells(l, 1) = "¢" Cells(l, 1) = "x"
Cells(l, 2) = "CHC1" Cells(l, 2) = "¥"
i=2 |:’> i=2
Do While t <= t¢f Do While x <= xf
Cells(i, 1) = ¢ Cells(i, 1) = x
Lells(i, 2) = CHCL _ _ _ _ _ JLelisfi, 2) =y . . .
(Call RungeKuttal(t, CHC, h) | [Call RungeKuttal(x, y, dx) !
- B I i | i=3 +1
Loop Loop
End Sub End Sub y
[ 4
Function Derivative (CHCl, kl) Function Derivative (x, y, dydx)
kl = 0.01 - 0.4 * CHC1 dydx = 0.01 - 0.4 * y
End Function End Function
Function RungeKuttal(t, CHCl, h) Function RungeKuttal (x, vy, dx)
Call Derivactive (CHCl, kl) Call Derivative(x, y, dydx)
CHCl = CHCl + h * k1 k1 = dydx ®
t=t+h y=y +dx *~ kl
End Function X =x + dx
End Function
a b

Fig. 6.15 Use of the command Function when solving an ordinary differential equation (ODE) by
the Euler method

Observe that the main program in Fig. 6.15a is very similar to the one shown in
Fig. 6.14a, except that the calculus demanded by the Euler method is done in the
function RungeKuttal (compare the highlighted commands in Figs. 6.14a and
6.15a).

The function RungeKuttal needs the step (k) and the previous values of ¢ and
CHCl to provide the next values of t and CHC!, which are sent to the main program.
Since CHCI, t, and h are common between the main program and the function
RungeKuttal , these three variables are passed and received as an argument (see the
variable names, separated by commas, between the parentheses where RungeKuttal
is called and in the function RungeKuttal).

The function RungeKuttal could calculate k1 inside it; however, we decide to
call another function to calculate the derivative (see the function Derivative), which
needs the CHCI value to return k1, so these two variables are also arguments (see
CHCI, k1) in the function Derivative and where this function is called).

Figure 6.15b repeats the code presented in Fig. 6.15a but uses more generic
nomenclature. From now on, the independent and dependent variables will be
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called x and y, respectively. Also, k1 and / will be replaced by dydx and dx,
respectively. Besides, the independent variable x will be passed as an argument in
the function Derivative (see the arrows in Fig. 6.15b), because differently from
Eq. (6.68), ODEs can also depend on an independent variable.

The code in Fig. 6.15b could be used to solve all systems represented by one
ODE, just by changing the ODE in the function Derivative and the initial conditions
in the main program.

Do not forget to save your program often. This is done by clicking on File as
shown by the arrow in Fig. 6.14c. However, more importantly, do not forget to save
your workbook as a macro-enabled workbook in VBA. Choose the option Excel
Macro-Enabled Workbook (* xIsm) when saving.

6.4.3 Developing an Algorithm to Solve One ODE Using
the Runge—Kutta Fourth-Order Method

To solve Eq. (6.68) by the fourth-order Runge—Kutta (RK4) method, we can use the
generic code shown in Fig. 6.15b but we exchange the function Rungekuttal for the
function RungeKutta4, presented in Fig. 6.16. The RK4 method calculates the
derivative four times (K;,K,,K5, and K,), at different values of x and
y (independent and independent variables) as presented in Egs. (6.40), (6.41),
(6.42), (6.43). Because of this, the function RungeKutta4 calls the function Deriv-
ative four times.

In Fig. 6.16, k1 is calculated as was done in Figure 6.15b; however, k2 must be
calculated at (x; + 0.5h, y; + 0.5hK,) (see Eq. 6.41), so, just after the calculus of k1,
we define the points x,y in which k2 must be calculated. These two values x and
y are transitory (just to calculate k2 ), so they are called xtran and ytran, respec-
tively. To calculate k2 , the function RungeKutta4 passes as an argument xtran and
ytran when calling the function Derivative (see the command Call Derivative
(xtran, ytran, dydx) in Fig. 6.16); however, the function Derivative can be written
exactly as presented in Figure 6.15b, using Function Derivative (x,y, dydx).

After obtaining k2, we need to find out xtran and ytran to calculate k3. We can
see by Eq. (6.42) that xtran will be the same as was used to obtain &2, so it is not
updated, but ytran will be y;+0.5hk, (see Eq. 6.42). The same procedure is
followed until we obtain k4. After that, dependent and independent variables are
updated (see the last lines of the code in Fig. 6.16 and Eq. (6.39) to obtain y; ; ).
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Function RungeKutta4(x, y, dx)
Call Derivative (x, Yy, dydx)
kl = dydx

' Define x and y to calculate K2
ytran = y + k1 * 0.5 * dx
xtran = x + 0.5 * dx

*Calculate K2
Call Derivative (xtran, ytran, dydx)
k2 = dydx
‘Define x and y to calculate K3
ytran = y + k2 * 0.5 * dx
‘*Calculate K3

Call Derivative(xtran, ytran, dydx)
k3 = dydx

Xtran = x + dx

'‘Calculate K4

Call Derivative(xtran, ytran, dydx)

k4 = dydx
'Update dependent variable
Yy=v+ (1/6) * (k1 +2 *Kk2+2*k3 + ki) * dx
Update independent variable

X =x + dx

End Function

Fig. 6.16 Example of a function for the fourth-order Runge—Kutta (RK4) method

6.4.4 Developing an Algorithm to Solve a System of ODEs

Using the Euler and Fourth-Order Runge—Kutta
Methods

In this section, let us see how to develop a code in VBA to solve a system of ODEs.
We will use Example 3.8, which models a continuous stirred tank reactor (CSTR)
with a cooling jacket operating in a transient regime. Equations (3.17, 3.18, 3.19,
3.20 and 3.21), representing the mass and energy balance of the reactor and the
energy balance for the jacket, are rewritten as follows:

Mass balance for reactant A (mol):

dc E (6.69)
d—tA - % (Cain — Cy) — {ko exp <—R—A)] CaCy
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Mass balance for reactant B (mol):
dCB Q EA
=B X (Cpin — Cy) — |k —A ) cuc
ar v Con = Cb) [OGXP( RT ) |=A%"
Mass balance for product C (mol):

dCC o Q EA
TR (Ccin —Cc) + {ko exp( RT>:|CACB

Energy balance for the reactor (J):

dT UA ko exp(—£4)|CaCp(—AH
—ZQ(TI‘H—T)-F (T.i_T)‘F[O p( RT)} AC( R)
dt 'V Vpc, PCp
Energy for the cooling fluid (J):
arj 0,
— =T, —Tj) + T-Tj
i v ( ) o ( )
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(6.70)

(6.71)

(6.72)

(6.73)

The parameters of the model and the initial conditions are the ones presented in
Tables 3.1, 3.2 and 3.3, but assuming that the transient regime started because the
flow rate (Q), which was 3 m*/min (see Table 3.2), has now changed to 4 m>/min. It
was also said in Example 3.8 that the volume for the jacket (V) is 0.032 m’.

To solve this system of ODEs (Egs. 6.69, 6.70, 6.71, 6.72, 6.73), the codes in
Fig. 6.15b (for Euler) or Fig. 6.16 (for RK4) have to be changed to include the
system with five ODEs. Here we introduce the concept of an array, because there
are five dependent variables (y) in our equations system. Using an array, we can
keep the same name for the dependent variable (y) and use a number (index) to call
them apart. The individual values are called the elements of the array. In our case

we can consider:

y(1) =Ca
y(2) =Cs
y(3)=Cc
y4)="T

y(5)=T1j

In the same way, we will also assume the variable dydx as an array. So, for our

case it yields:

dydx(1) = dCy /dt
dydx(2) = dCg/dt
dydx(3) = dCc/dt
dydx(4) = dT /dt

dydx(5) = dTj/dt

An example of how the function Derivative could be written to represent
Egs. (6.69), (6.70), (6.71), (6.72), (6.73) is presented in Fig. 6.17. The code of

this function can be applied for both Euler and RK4 methods.
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dydx(l) = (Q / V) i - y(1})) - ko * Exp(-Ea / (R * y(4)}) * y(1) * y(2)
dydx(2) = (@ / V) i = y¥(2)) - ko = Exp(-Ea / (R * y(4))) * y(l) = y(2)
dydx(3) = (Q / V) [ {3)) + ko * Exp(-Ea / (R * y(4))) * y(1) * y(2)
dydx(4) = (Q / V) (T yi(4)) + (U * A/ (zho = V = Cp)) = (yi(S) - y(4)) _
+ (1 / (rtho * Cp)) * ko * Exp(-Ea / (R * y(4))) * y(1) = y(2) * (-DelcaHr)
dydx(5) = (@3 ) * (T3in - yi{S)) + (O = A / (rhoj * V3 = Cp3)) * (y(4) - yi5))
End Function

Fig. 6.17 Function Derivative representing the system of ordinary differential equations (ODEs)
(Egs. 6.69, 6.70, 6.71, 6.72, 6.73)

In the first lines of the code in Fig. 6.17 appear the parameters from Tables 3.1
and 3.2. These parameters could also be read from the spreadsheet by using the
notation Q = Cells(1,1), for example, if one wants to read the variable Q in the cell
Al of the spreadsheet. Equation (6.72) is very long, so it has been broken into two
lines, using the underscore symbol (_).

The main programs to solve Egs. (6.69), (6.70), (6.71), (6.72), (6.73) for the
Euler and RK4 methods are shown in Fig. 6.18a and 6.18b, respectively. Observe
that they are the same, only the name of the function called is different
(RungeKuttal or RungeKutta4). Compare them with the main program in
Fig. 6.15b. The first difference is that the dimension (Dim) of the array for y and
dydx (in our case, the size is 5) must be declared. You can choose to store any
number, or array of numbers, as single or double precision, but in our case, we
choose double precision. Also observe that we need a loop to print all dependent
variables y (from 1 to 5).

A suggestion of how the functions RungeKuttal and RungeKutta4 (called in the
codes of Figs. 6.18a and 6.18b) could be written is shown in Figs. 6.19 and 6.20.

For the Euler method (RungeKuttal), compare Figs. 6.19 and 6.15b. When
solving the system of ODEs, the derivative k1 has dimension 5 (Egs. 6.69, 6.70,
6.71, 6.72, 6.73), so k1 is declared at the beginning of the function RungeKuttal
code as double precision array (see Fig. 6.19). Also observe in Fig. 6.19 the loop
needed to calculate k1 and y, in order to take into account the five ODEs.

For the RK4 method, compare Figs. 6.20 (a system of ODEs) and 6.16 (just one
ODE). The first difference between them is that variables k1, k2, k3, k4 and ytran are
arrays with dimensions equal to five, to account for all ODEs (Egs. 6.69, 6.70, 6.71,
6.72, 6.73), and must be declared at the beginning of the code (see Fig. 6.20). For



|(General) |(General)

Sub Euler() Sub RK4()
Dim dydx(5) As Double Dim dydx(5) As Double
Dim y(5) As Double Dim y(5) As Double
xi=0 xi =0
%L = 25 xf = 25
y(1) = 49.5 y(1) = 49.5
y(2) = 49.5 y(2) = 49.5
y(3) = 150.5 y(3) = 150.5
yi4) = 307 y(4) = 307
¥i(5) = 282 y(5) = 282
dx = 0.125 dx = 0.125
x = xi x = xi
Cells(l, 1) = "x" Cells(l, 1) = "x"
Cells(1, 2) = "YA" Cells(1, 2) = "¥Y1"
Cells(l, 3) = "ya" Cellsa(l, 3) = "ya»
Cells (1, 4) = "¥3» Cells(l, 4) = "Ya"
Cells (1, 5) = "¥4" Cells (1, 5) = "¥4"
Cells(l, 6) = "¥Ys" Cells(l, &) = "Ys»
i=2 i=2
ny =35 ny =5
Do While x <= xf Do While x <= xf
Cells(i, 1) = x Cells(i, 1) = x
For k= 1 To ny For k = 1 To ny
Cella(i, k + 1) = y(k) Cells(i, k + 1) = y(k)
Hext Next
Call RungeHKuctctal(x, y, dydx, ny, dx) Call RungeRutta4d(x, y, dydx, ny, dx)
1= 4 +1 imi+1
Loop Loop
End Sub End Sub
a b

Fig. 6.18 Examples of the main program used to solve a system of ordinary differential equations
(ODEs) using a the Euler method and b the fourth-order Runge—Kutta (RK4) method

Function RungeKuttal(x, y, dydx, ny, dx)
Dim k1 (5) As Double

'Calculate K1 for all ODEs and update dependent varables
Call Derivative (x, y, dydx)
For i = 1 To ny
k1(i) = dydx(i)
y(i) = y(i) + ki1(i) * dx
Next

'Update the indenpendent variable
x=x + dx

End Function

Fig. 6.19 Example of a function for the Euler method to solve a system of ordinary differential
equations (ODEs)
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Function RungeKuttad(x, y, dydx, ny, dxﬂ

Dim k1(5) As Double
Dim k2 (5) As Double
Dim k3(S5) As Double
Dim k4(S5S) As Double
Dim ytran(S) As Double

'Calculate K1 for all ODEs
Call Derivative(x, vy, dydx)
For i = 1 To ny
kl(i) = dydx(i)
Next
'Define x and y to calculate K2
For i = 1 To ny
ytran(i) = y(i) + ki{(i) * 0.5 * dx
Next
xtran = x + 0.5 * dx

'Calculate K2 for all ODEs
Call Derivative (xtran, ytran, dydx)
For i = 1 To ny
k2 (i) = dydx(i)
Next
'Define x and y to calculate K3
For i = 1 To ny
ytran(i) = y(i) + k2(i) * 0.5 * dx
Next

'Calculate K3 for all ODEs
Call Derivative (xtran, ytran, dydx)
For i = 1 To ny

k3(i) = dydx(i)
Next
'Define x and y to calculate K4
For i = 1 To ny

ytran(i) = y(i) + k3(i) * dx
Next
xtran = x + dx

'Calculate K4 for all ODEs
Call Derivative (xtran, ytran, dydx)
For i = 1 To ny
k4 (i) = dydx(i)
Next

'Uptade dependent wvariables
For i = 1 To ny

y(i) = y(i) + (1 / 6) * (kl(i) + 2 * k2(i) + 2 * k3(i) + k4(i)) * dx
Next

'Update the independent variable
X = x + dx

End Function

Fig. 6.20 Example of a function for a fourth-order Runge—Kutta method to solve a system of
ordinary differential equations (ODEs)
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the same reason, loops are needed to calculate k1,%2,k3,k4,y and ytran for all
ODE:s (observe in Fig. 6.20 the loops going from 1 to ny).

In Figs. 6.19 and 6.20, the numbers of ODEs (ny) and dydx are also passed as
arguments, because ny and the dimension of dydx are defined in the main program.

No matter which system of ODEs you need to solve, the Functions presented in
Fig. 6.19 and 6.20 can be used as they are for Euler and RK4 methods. The only
thing to change is to adjust the dimension for k1, k2, k3, k4 and ytran if your system
has a number of equations different from 5.

All codes presented in this chapter are just suggestions of how a program could
be developed to solve a system of ODEs by Runge—Kutta methods using Visual
Basic. Readers can find their own style of programing.

Proposed Problems

6.1) Imagine the three interconnected tanks studied in Example 5.1. Assume that
the volume of liquid in the three tanks is the same and remains constant and equal to
%4 (m3). The volumetric flow rates for all tanks are the ones presented in Table 5.1.
At the beginning the three tanks contain pure water, but at a certain point, the
streams Qg; and Qg, start feeding tanks 1 and 2 with a NaOH solution with
concentrations of 10 mol/m> (Coy) and 1 mol/m> (Coa), respectively, instead of
pure water, at the same flow rates. The system of ODEs that represents the variation
in the concentration of NaOH over time in the three tanks is presented below:

dc, 1
d_t‘:‘_/(so—7cl+2cg) att=0,C; =0
dc, 1

_dtzzv(7cl+1fscz) att=0,C, =0
dc; 1

d_::V(8C2_8C3) att=0,C3=0

a. Solve the ODE system using the Euler method and an Excel spreadsheet, as per
Sect. 6.3. Assume initially that V = 5m’ and an increment (step) equal to
0.2 min. Plot curves of the concentration of NaOH for each tank over time and
compare them with the concentrations in a steady state obtained in Example 5.1.
Find the ideal step for this operating condition and numerical method.

b. Change the volume of the three tanks from 5 m® to 1 m? and check what occurs
with the three curves. Keep the volume for the three tanks equal to 1 m> but use
an increment (step) for the Euler method equal to 0.1 min and observe the
curves. What can you conclude?

c. Change the volume of the three tanks to 8 m> and then to 2 m> and observe the
time needed to achieve a steady state. Are the concentrations in the steady state
the same? Why?

d. Alter the initial concentrations for all tanks to 2 mol/m>. Are the concentrations
in the steady state the same? Why?
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e. Develop a code in Visual Basic and solve the system of three ODEs using the
Euler method. Assume that V = 5 m? for the three tanks with an increment (step)
equal to 0.2 min.

f. Develop a code in Visual Basic and solve the system of three ODEs using the
RK4 method. Also assume that V = 5 m® for the three tanks with an increment
(step) equal to 0.2 min. Compare the results with the one obtained in item (e).

g. Use the code developed in item (f) and run your program considering V = 1 m?
and a step equal to 0.2 min (as was done in item (b)). Compare the results with
the ones you obtained using the Euler method (in item (b)). What can you
conclude?

6.2) Consider the four insulated CSTRs presented in Proposed Problem 5.2. Find
the system of four ODEs that represent this reaction system. Assume that initially
all reactors have concentration of reactant A equal to 1 mol/l.

a. Develop a code in Visual Basic using the Euler method, find the profiles of the
concentration of A over time, and compare the results with the one obtained in
Proposed Problem 5.2 for a steady state.

b. Repeat item (a), but this time use the RK4 method

c. Double the concentration of A at the initial condition (¢ = 0) for the four reactors
and observe the concentration of A in a steady state. Make comments.

d. Imagine that after reaching a steady state, the concentration of A fed into the first
reactor (Cy,,) is doubled. Find the new steady state. Make comments.

e. Repeat item (a) or (b) but this time double all kinetic constants and check what
happens.

6.3) Tubular chemical reactors are widely used in the chemical industry. To
develop mathematical models to describe them, it is common to assume their
operations with no radial gradients of temperature, velocity, or concentration. In
this case, we have plug-flow reactors (PFRs). Consider the following irreversible
reaction in the plug-flow reactor:

A+B—C

The rate equation is elementary and the reaction is carried out isothermally at
300 K in a PFR in a steady state. The feed stream has a volumetric flow rate of
0 =10 L/min and has both reactants, A and B, with concentrations of C4,o=1 M
and Cpog=2 M, respectively (A and B do not react before entering the PFR).
At 300 K, the rate constant (k) is 0.07 L/mol min.

a. Write ODEs to represent the concentration of A, B, and C along the reactor
length.

b. Solve the ODE system using VBA and RK4. Plot the concentration profiles
for A, B, and C along the reactor length. Determine at what length the conversion
reaches 90% (Hint: conversion is always calculated using the limiting reactant as
the reference). Choose two different values for the radius of the PFR. Plot the
curves and compare the results.
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6.4) Consider a CSTR in a steady state in which the irreversible and isothermal
reaction A % B takes place, with a rate constant (k) equal to 10 min~'. The reactor is
fed with a solution of reactant A in a flow rate (Q) of 5 m>/min and a concentration
of A (Cy,) of 1400 mol/m>. The same flow rate leaves the reactor and the density of
the solution does not change, so the reaction volume is constant over the reaction.

a. Develop mathematical models to represent the mass balance of A in four
different situations: (i) assuming just one CSTR with a reaction volume
equal to 10 m?; (ii) assuming that the reaction system is composed of two
CSTRs of 5 m* each in series; (iii) assuming five CSTRs of 2 m? each in series;
(iv) assuming ten CSTRs of 1 m? each in series.

b. Solve the algebraic equations obtained in item (a) using a numerical method
presented in Chap. 5 and compare the final concentration of reactant A leaving
the reaction system for the four cases. What can you conclude?

c. Imagine there is available a PFR with a cross-sectional area and length equal to
1 m? and 10 m, respectively, making the reaction volume also equal to 10 m’.
Assume a steady state and the same flow rate (Q = 5 m’/min) and reactant
concentration (C4, = 1400 mol/m’) feeding the system. Develop a mathematical
model to represent the concentration of A along the PFR.

d. Solve the mathematical model generated in item (c) using a numerical method
presented in this chapter and obtain the profile of the reactant concentration
along the PFR length.

e. Compare the results obtained in items (b) and (d) by plotting, in the same graph,
the concentration of A versus the reactor volume. What can you conclude?

6.5) This system is adapted from Incropera et al. (2006). A very long cylindrical
metal bar with diameter D, length L, and thermal conductivity k& has one end
maintained at T,, by constant contact with a hot wall. The surface of this cylinder
is exposed to ambient air at a constant temperature of 7., with a convection heat
transfer coefficient of 4. The system was left for a long time until it became
completely stable.

a. Write ODE:s that describes the temperature profile and define the two boundary
conditions. Consider that there is no radial temperature profile inside the bar.
Make assumptions if needed to simplify the mathematical solution of this
problem.

b. Solve the mathematical model using VBA and RK4.

Determine and plot the temperature profiles along the bar length when it is
manufactured from pure copper, aluminum, and stainless steel.
Consider the following numerical values:

D =5mm
T, =100°C
T =25C

h = 100W/(m’K)
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Copper: &k = 398W/(m K)
Aluminum: &k = 180W/(m K)
Stainless steel: k£ = 14W/(m K)

c. Determine for each metallic material the minimum length that the bar must have
for the bar temperature profile to reach a minimum plateau. Using the minimum
lengths for each one of the metals, determine the heat loss for each material.

Hint: In order to numerically integrate second-order ODEs more easily, the
following substitution can be very handy:

ar

E:y:f(x)
o
dxz_dx_g

Instead of directly solving one single second-order differential equation, it is
possible to break it into two first-order differential equations to be solved
independently. Observe that, in this problem, one of the boundary conditions
must suffer this change in variable too.

6.6) Imagine the two concentric cylinders modeled in Example 4.8 and assume that
the system has reached a steady state, so it can be represented by:

rd2T+dT70
arr  dr
At r=Ry, T=Ty
dT h
At ’:R, —=——(T-T \%
r=FRe Gr==7 T = Ten)

Assume the following numerical values: Ry = 0.5 cm, R, =3 cm, Ty = 100 °C,
Teny =25 °C, k = 180W/(mK), and & = 100 W/(m°K). Use the same hint suggested
in Proposed Problem 6.5 and solve this problem using VBA and RK4. Plot the
radial profile of the temperature.
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Chapter 7
Solving a Partial Differential Equations System

The idea for solving a system of partial differential equations (PDEs) using
numerical methods is to transform it into a system of equations that are easier to
solve, such as algebraic equations or ordinary differential equations (ODEs), for
which numerical solutions were presented in Chaps. 5 and 6 of this book.

There are many numerical methods to solve PDEs, such as finite difference,
finite volume, orthogonal collocation, etc., but this book will focus on the finite
difference method. Other numerical methods can be found elsewhere in the liter-
ature (Davis 1984; Chapra and Canale 2005, etc.).

7.1 Motivation

Consider the insulated cylindrical metal bar of 1 m studied in Example 4.4. Initially
this bar is at 50 °C, but it is fixed between two walls at temperatures of 70 °C and
30 °C, as depicted in Fig. 4.9. The modeling of this system generates the following
PDE and initial/boundary conditions (see details in Chap. 4):

oT _ k 2T (4.15)
ot pc, 0x2 '
Att=0h,T=50°C,for0<L<1m

Atx=0m,T=70°C, fort>0h

Atx=1m, T=30°C, fort>0h

The finite difference method will represent the partial derivative of temperature
with respect to length (87T /9x%) or both derivatives (0°T/0x2 and 0T/dt) by

The original version of this chapter was revised. An erratum to this chapter can be found at
https://doi.org/10.1007/978-3-319-66047-9_8
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Engineering Processes, https://doi.org/10.1007/978-3-319-66047-9_7
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expressions that are easier to solve. Section 7.2 presents the finite difference
method, and Sects. 7.3 and 7.4 show how this numerical method can be used to
solve Eq. (4.15) and other PDEs.

7.2 Finite Difference Method

Imagine a generic dependent variable u# (which could be temperature, concentra-
tion, etc.) changing with two generic independent variables x and y (such as time,
length, radius, etc.). The indices related to x and y will be called i and j, respectively.
Knowing the value of u in a certain condition of x and y (u; ;), it is possible to
represent u after an infinitesimal increment of x (Ax) or y (Ay) using expansion of
the Taylor series. In order to do that, let us imagine the grid denoted by Fig. 7.1. The
idea of the finite difference method is to approximate the values of the continuous
function u by a set of discrete points in the (x, y) plane, which we call discretization.

Given u; ;, it is possible to obtain u; ; ; ;and u; _ ; ; using expansion of the Taylor
series (see also Eq. 6.3), as shown below:

Ou 1, ,(0% 1 (0"
u,—+1,j:ul-,j+Ax<a>i’i+iAx( i’j—i—---—l—HAx e ll—I—Rn (7.1)

2 ‘
Ox J

. o au 1 2 azu 1 n a’lu
G R e ) R N GO I

5]

(7.2)

Remember that in the finite difference method we want to find simpler expres-
sions for the second and/or first partial derivatives. So if Eqs. (7.1) and (7.2) are
truncated after the first term, it is possible to obtain expressions for the first
derivative, as shown below:

Fig. 7.1 Grid to visualize
the finite difference method L .
i-1,j+1 ij+1 i+1,j+1
Ay
i-1,] i i+1,
y i-1,j-1 ij-1 i+1,j-1
j
Ax

v
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Ou Ujt1,j — Ui j
From Equation (7.1): (—) =L bR (7.3)
ox/),; Ax
From Equation (7.2) <au) o — Mzl g (7.4)
2): =] =—L——I4R, .
ox/,; Ax

Equations (7.3) and (7.4) are called forward difference and backward difference,
respectively, and both are one-sided difference expressions. The first term after
truncation of the Taylor series contains the major error, and for both expressions,
this error is proportional to (Ax)2 (see Eqgs. 7.1 and 7.2).

A more accurate way to represent the first derivative can be obtained by
subtracting Eq. (7.2) from Eq. (7.1), both truncated after the second term, which
yields Eq. (7.5), which is called a centered difference formula.

Ou Ujg1,j — Ui-1,j
Equation (7.1) minus (7.2): (—) =L 4R (7.5)
ox/,; 2(Ax)

Observe that the first term not considered in Eq. (7.5) is proportional to (Ax)*,
because the terms with (Ax)2 are naturally cancelled. Since Ax is very small, (Ax)3
< (Ax)?, which guarantees a smaller error for the centered difference formula.

The second partial derivative could be obtained by adding Eqgs. (7.1) and (7.2)
truncated after the third term:

2
i—1,j = 2Ujj+ Uiy,
Adding Egs. (7.1) and (7.2): <5 u> Mty T M) Ui

= | = +R 7.6
o] (Ax)? (79
ij

In the same way, given u; ;, it is possible to obtain u; ;,; and u; ;_, using

expansion of the Taylor series, generating Egs. (7.7) and (7.8):

Ou 1 0%u 1, (0"
Ui 1 = Ui+ Ay(ay)i —I—EAyz (a—yZ) e +aAy <ay”>A,- +Rn (7.7)
i, i,j N

0 1 02 1 L (0"
Ujj—1 = Ui + (—Ay) <a—z>ij+ E —Ay)Z <ay;{>ij+- . .—Q—E (—Ay) <a—y1:>ij+Rn

(7.8)

If Egs. (7.7) and (7.8) are truncated after the first term, it is possible to obtain the
one-sided difference expressions for the first derivative of u with respect to y:

Oy Ay

0 R
From Eq. (7.8): (a—:) = ”’T;’f' 4R, (7.10)
2y

o il — Ui
From Eq. (7.7): < ”) =ttt Z W g, (7.9)
i
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A centered difference formula is also obtained by subtracting Eq. (7.8) from
Eq. (7.7), both truncated after the second term:

Ou Ujj1 — Ui j—1
Eq. (7.7) minus Eq. (7.8): (-) =T LT LR, (7.11)
0y):; 2(Ay)

The second partial derivative of u with respect to y can be obtained by adding
Egs. (7.7) and (7.8) truncated after the third term:

) = +R; (7.12)

Adding Eqs. (7.7) and (7.8): ( (Ay)?

2
0 M) Mo = 2uj + U
i,j

Now that we have obtained expressions for the first and second derivatives, let us
apply them in practical examples, as depicted in Sects. 7.3 and 7.4.

7.3 Introductory Example of Finite Difference Method
Application

In this section, we will apply the expressions obtained in Sect. 7.2 for the first and
second derivatives to solve Eq. (4.15) in Sect. 7.1.

One way to numerically solve Eq. (4.15) (rewritten below) is to discretize all
partial derivatives:

or  k O°T
—=— (4.15)
ot pc, Ox
Equation (7.13) can be used to represent the second-order derivative of T with
respect to x, (compare with Eq. 7.6).

o’T Tio1,j—2T;j+ T

=-— = : : =+ R 7.13

<ax2> (Ax)2 B ( )
ij

where 7 and j represent x and ¢, respectively.

In theory, Egs. (7.9), (7.10) and (7.11) show three options to represent the first
derivative with respect to the other independent variable (). We will use Eq. (7.9)
and explain why later on.

or Tijr1 —Ti
- =2 "SR 7.14
<8t>i’j A (7.14)
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Substituting Eqs. (7.13) and (7.14) in Eq. (4.15) and neglecting the truncation
errors we obtain:

Tijor =Tij _ k (Tica;—2Tij+Tiv1 (7.15)
At PCp (Ax)2
Equation 7.15 can be rearranged to yield:
T[’jJrl =Fo (Tifl,j — 2Ti,j —+ TiJrl’j) + T,"j (716)
in which:

kAt
Fo=—— (7.17)

pcp (AX)

The numerical values for %, ¢, and p are the ones presented in Example 4.4:
k =3982 J/s m °C (or k = 23,892 J/min m °C), ¢, = 386.3 J/kg °C, and
p = 8933 kg/m”.

The lower the values of Ax and At are, the closer the numerical solution will be
to the analytical results, which we call convergence. Stability means no propagation
of errors as the numerical calculations are done. For this problem, the method is
stable and convergent if Fo in Eq. (7.17) is lower than 0.5 (Carnahan et al. 1969). In
this problem, we will assume that Ax = 0.2 m and Af = 0.05 min, which guarantees
a safe, stable, and convergent solution.

Based on Eq. (7.16), it is possible to build a table in Excel (see Fig. 7.2), in which
the temperature of the bar at # = 0 min (50 °C) and atx =0 (70 °C) and x = 1 m (30 °C)
can be written. If the temperature at 7; ;. ; is the temperature at x = 0.2 m and
t = 0.05 min (see point highlighted in Fig. 7.2), T; _y j, T;;, and T;, , ; are the
temperatures at time (j) equal to zero and length (i) equal to 0, 0.2, and 0.4, respec-
tively. Since T; _y j, T; j, and T} ; ; are known, it is possible to obtain T ;  ; from
Eq. (7.16), as depicted by the function at the top of the spreadsheet. Temperatures for
other values of length and time can be obtained by dragging the Fill Handle down and
right.

Observe that, in this case, 0T/0t could not be represented in the more accurate
way (Eq. 7.11—the centered difference formula), because to obtain T} ; ; ; the value
at T; ;_; (the time before 0 min) would be needed (see Eq. 7.11).

Using the results shown in Fig. 7.2, it is possible to obtain the axial profiles of
temperature over time. If you plot the results, you will see that the profiles of
temperature are similar to the ones shown in Fig. 4.6b.

7.4 Application of the Finite Difference Method

This section presents the application of finite difference in four different situations.
Section 7.4.1 shows an example in which a system of algebraic equations is
generated after discretization in all independent variables. In fact, PDEs can be
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Page Layout Formulas Data Review View Developer Q Tell me what you

E15 - fe | =8C$8(D14-2*E14+F14)+E14
| A B | ¢ | o E F 6 | H | J K
1 1
2 | P ters
k o
3 | k 23892 J/minm"C i et
4| cp 3863 J/kg°c T
5 p 8933  kg/m’® ( { ;.' ] ()
1
6 Ax 0.2 m Tt
7] at 0.0 min
8 | Fo 0.0087 |
9 Lja=Fox(Ty; =2+ T4 )+ T
10] (C3/(ca*cs))*(cT/c6m2) -
11 i
1 C14+8CS7
s =
13| t{min) 0.0 0.2 0.4 0.6 0.8 1.0
14 0.00 50.000 50.000  50.000 50.000 50.000  50.000
15] 0.05 70.000 | 50.000 | 50.000 50.000 50.000  30.000
16 | j| 010 70.000 50173  50.000 50.000 49.827  30.000
17 0.15 70.000 50343  50.001  49.999  49.657  30.000
18 | 0.20 70.000 50510  50.004  49.996 49.4%0  30.000
19 0.25 70.000 50.675  50.009  49.991  49.325  30.000
20 0.30 70.000 50.836  50.014  49.986 49.164  30.000
21 0.35 70.000  50.995  50.021  49.979  49.005  30.000
22 0.40 70.000 51151  50.029  49.971 48.849  30.000
23 0.45 70.000  51.304  50.038  49.962 48.696  30.000
24 0.50 70.000  51.455  50.049  49.951  48.545  30.000

Fig. 7.2 Solving a partial differential equation (PDE) (4.15) using the finite difference method
and Excel

solved considering discretization in all independent variables (as in the previous
example and Sect. 7.4.1) or keeping the derivative in one independent variable,
which generates a system of ordinary differential equations. Section 7.4.2 will
revisit the previous example (shown in Sect. 7.3) but will perform the discretization
only in the space coordinate, which generates an ODE system varying over time.
Section 7.4.3 will apply the finite difference method to a system of PDEs (not to just
one equation). Finally, Sect. 7.4.4 will study PDEs with flux boundary conditions.

7.4.1 PDEs Transformed into an Algebraic Equations
System

In the example presented in Sect. 7.3, the discretization in all independent variables
resulted in a single algebraic Eq. (7.16), whose solution for different values of
i (length) and j (time), in a sequential way, can give us axial profiles of temperature
over time. Sometimes, discretization in all independent variables generates a
system of many algebraic equations that must be solved simultaneously. The next
example will address this situation.
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Modeling of the heat conduction along a square metal plate with negligible
thickness generates the following PDE:

o’T  0°T
W+a_y2:0 (7.18)

In this case, we assume a steady state and no heat exchange with the environ-
ment. The temperatures at the plate ends are fixed, as shown in Fig. 7.3a. This
system is also studied in Chapra and Canale (2005).

Discretizing both derivatives of Eq. (7.18) and assuming truncation errors
negligible yields (see Eqgs. 7.6 and 7.12):

Tioy,;—2T;;j+Tit, + Tijor =2Tij+Tijn

0 7.19
(Ax)? (Ay)? 719
Assuming Ax 2= Ay and rearranging we obtain:

In this example, we will divide the plate into 16 equal parts, as shown in the grid
in Fig. 7.3b.

Figure 7.3b depicts that, besides the points at the edges (known temperatures),
there are nine points inside the grid at which the temperatures are unknown. To
obtain the temperatures at these nine points, we apply Eq. (7.20) assuming i and
Jj varying from 1 to 3 (see Fig. 7.3b) to obtain the linear algebraic equations system
shown in Table 7.1.

X
; N
0,0 1,0 2,0 3,0 4,0
100°C . : : !
J ! ! !
o1l 11 210 31 aa
y ! ! !
75°C 50°C 02[ 1 12, 2,2, 32 42
03| 130 23 33 43
0°C ! ! !
04 1,4 2,4 34 44

Fig. 7.3 (a) Square metal plate showing the temperatures at the ends. (b) Grid with nine unknown
internal temperature points
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Table 7.1 Linear algebraic
equations system representing
the temperatures inside the
plate

7 Solving a Partial Differential Equations System

i |j |(@,j) |Equation

1|1 | (L) |To +To+T12+T10—4T;,,=0
2 1 | Q1) |T34+4T11+T22+T20—4T5,=0
301 [(31) [Ty 1+T214T52+T50—4T5,,=0
1 |2 [(1,2) |Th,+T9 24T 3+T,,1—4T,,=0
2 12 |(22) |Tz32+4T 1 2+T3+T5 1 —4T,,=0
3 12 |(32) |Tyo+Tro+T53+T5 1 —4T3,=0
1 |3 [(1,3) |To3+To3+T1,4+T12—4T,3=0
2 |3 [23) |T53+T134T24+T22—4T>53=0
3 13 | B3) |Tu3+T23+T54+T32—4T353=0

The equations in Table 7.1 can be solved using the procedure presented in
Sect. 5.1 of this book. The temperatures in the equations in Table 7.1 that presents
i or j equal to O or 4 are known (see Fig. 7.3) because they belong to the edges.
Substituting these known values in the equations in Table 7.1 and rearranging, we
obtain the system of algebraic equations presented by Eqgs. (7.21), (7.22), (7.23),
(7.24), (7.25), (7.26), (7.27), (7.28) and (7.29).

4T1,1 — T1,2 — T2,1 =175

Ty, +4Ts, —Tss — T3, = 100
Ty, +4Ts; — T3, = 150

T +4T 1, —T13—Trr =175
Ti2+ Ty —4T22+Tr3+T52=0
—T2o—T31+4T32 —T33 =150

—T1,+4T 3 —Tr3="175

Ti3+ Ty —4T,3+T33=0

—Ty3—T32,+4T33 =50

Equations (7.21), (7.22), (7.23), (7.24), (7.25), (7.26), (7.27), (7.28) and (7.29)
can be represented in a matrix form, as follows:

(4 -1 0 -1
-1 0 o0 4
0 0 0 -1
“1 4 -1 0
0 1 0 1
0 0 0 O
0 -1 4 0
1 0 0 0

0 0 0 0

SO = O O O O

07 (T 175
0|72 100
0||7s 150
0 || 72 75
0 [{Torp={0

—1| | T2s 50
0 || 7s: 75
1| | 732 0
4 | T35 50
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or:
[A{T} = {B} (7.30)

in which:

[A] = matrix of coefficients of Eqs. (7.21), (7.22), (7.23), (7.24), (7.25), (7.26),
(7.27), (7.28) and (7.29)

{T} = vector of unknown temperatures at the nine points inside the grid

{B} = vector of numbers related to the right side of Eqgs. (7.21), (7.22), (7.23),
(7.24), (7.25), (7.26), (7.27), (7.28) and (7.29)

As was done in Chap. 5, we can multiply both sides of Eq. (7.30) by the inverse
of matrix A:

[A]"'A] {T} = [A] '{B} (7.31)
Since [A] [A]"! = [A]7! [A] = []], we obtain:
{1} = [A]'{B} (7.32)

As was done in Chap. 5, we can build matrix A in an Excel spreadsheet, invert
this matrix, and multiply the result by vector B, as depicted in Fig. 7.4.

Home Insert Page Layout Formulas Data Review View Developer Q Tell mew

M15 i fe || (=MMULT(B15:23;M3:M11)}
. A B (x D E F G H I J K L M N

1

2 TL1)  TL)  TLI) T21) T22)  T23) T3 T2 T3E3)

3 4 -1 (] -1 1] 1] 1] ] (] 175
4 -1 ] ] 4 -1 0 -1 ] (] 100
5 (1] ] (] -1 o o 4 -1 (] 150
6 [Al= -1 4 -1 L] -1 0 0 0 0 {8l= 75
7 0 1 0 1 -4 1 0 1 0 0

8 0 0 0 L] -1 0 -1 4 -1 50
9 0 -1 4 L] 0 -1 0 0 0 75
10 1 0 ] o 1 -4 0 ] 1 o
1 ] ] (] o 1] -1 ] -1 4 50
12

13

14

15 0.3058  0.1000 0.0317 0.0982 -0.0625 0.0268 0.0246 -0.0250 0.0129 79.46
16 0.1133  0.0667 0.0278 0.3304 -0.1250 0.0446 0.0826 -0.0583 0.0257 65.25
17 0.0558 0.0333 00150 0.0982 -0.0625 0.0268 0.2746 -0.0917 0.029 46.13
18|[A]-1= 01094 03333 0.09%0 00625 -0.1250 0.0625 0.0156 -0.0417 0.0260 {T}= 77.60
19 0.0938 01333 0.0646 01250 -0.3750 0.1250 0.0313 -0.1167 0.0604 60.42
20 01094 0.0667 0.0323 0.0625 -0.1250 0.0625 0.0156 -0.3083 0.0927 4.27
21 0.0379 01000 0.2996 0.0268 -0.0625 0.0982 0.0067 -0.0250 0.0308 70.54
22 0.0424 0.0667 0.0993 0.0446 -0.1250 0.3304 0.0112 -0.0583 0.0972 54.54
23 0.0379 0.0333 00329 0.0268 -0.0625 0.0%82 0.0067 -0.0917 0.2975 37.20

Fig. 7.4 Suggestion for an Excel spreadsheet to solve Eq. (7.30) and obtain the temperature along
the plate
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Fig. 7.5 Inside
temperatures of the square 79.46 77.60 70.54
plate

65.25 60.42 54.54

46.13 44.27 37.20

Figure 7.5 shows the nine temperatures inside the square plate. Observe that the
points closer to the ends with higher temperatures also present higher temperatures,
as expected (compare this with Fig. 7.3a).

If one wants to obtain a more precise result, more discretization points have
to be considered; however, a system with more equations must be solved
simultaneously.

7.4.2 PDEs Transformed into an ODE System

The problem proposed in Sect. 7.1 (Eq. 4.15, rewritten below) and solved in Sect.
7.3 could also be solved with discretization in just one independent variable.

2
or_ ko (4.15)
ot pc, 0x?

In this section, we will discretize only in the axial coordinate. We will assume
Ax = 0.2, as done in Sect. 7.3, so Eq. (4.15) will be transformed in a system with
four ODEs, representing the variation of temperature over time at x = 0.2, 0.4, 0.6,
and 0.8 (temperatures at x = 0.0 and x= 1.0 are already known and are equal
to 70 °C and 30 °C, respectively).

Figure 7.6 shows the cylindrical metal bar with the four points where the profile
of temperature over time will be calculated.

Using Eq. (7.6) and assuming truncation error negligible, Eq. (4.15) can be
written as:

dri k. (T,l 27, + T,H) 733)
dr ~ pe, ()

We do not use the index j in Eq. (7.33) as was previously done in Sect. 7.3
(see Eq. 7.13), because j is related to time, which will be taken into account when a
numerical method to solve ODEs is used. For the different values of i, the ODE
system can be written as:
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oﬂ) 0.2 0.4 0.6 0.8
T=70°C T=30°C

Fig. 7.6 Cylindrical bar showing the points where profiles of the temperature over time will be
calculated

r =

dT k (70 —2T T
Atx = 0.2: 02~ % (7.34)
i e, (02)
dT, k (Top —2T T
At x = 04 04 _ Kk (Lo2 0A42+ 0.6 (7.35)
dt PCp (0.2)
dT k (Tos —2T T
Atx =06 06 _ 0.4 0462+ 038 (7.36)
dr pcp (0.2)
dT, k (Toe — 2T 30
Atx = 0.8: 08 _ % % (7.37)
. pcp (0.2)

The ODE system can be solved using the numerical methods of Runge—Kutta. In
this section, we will use the first-order Runge—Kutta (RK1) or Euler method (see
Eq. 6.16). We can either develop a code in Visual Basic for Applications (VBA) or
solve the ODE system using a spreadsheet in Excel, as was done in Sect. 6.3. We
choose this second option. A suggestion for how the spreadsheet could be built is
presented in Fig. 7.7. The function space in the spreadsheet shows the application of
the Euler method (Eq. 6.16) to obtain the temperature at x = 0.2 m and ¢ = 0.05 min.
After typing this equation and pressing Enter, we can drag the Fill Handle right and
down to complete the other values in the table. Observe that the same results are
obtained in Figs. 7.2 and 7.7, as expected.

7.4.3 Solving a System of PDEs

The previous examples showed how to solve one single PDE. The methodology
presented so far can also be applied to solve a system of PDEs, as can be seen in the

next example adapted from Hill and Root (2014). The reaction A LB, in a liquid
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Page Layout Formulas Data Review View Developer ne wh int to do

E15 - fe =E1445CS7((SCS3/(SCS5"SCS4)) *(D14-2"E14+F14)/5C5672)
A B ( D E F G H | J K L
1
2 Parameters dTy L k (?0 2Tp + Ty, ,,)
3 K 23892 J/minm®C s dt  pep (0.2)*
4 p 3863  J/kg'c dloy _ k (Toz—2Tp, + Tos)
5 P 8933 kg/m’ ml‘ dt  pep (0.2)2
g ” 0 m dToe _ Kk (Tos— 2Tpe + Tos)
7 At 0.05 min —_—=—
. dt pcp (0.2)?
9 dTns k (TM-.ZTQB+30)
1‘: . dt  pep (0.2)2
1
= ol
13 t{min) 0.0 0.2 0.4 0.6 08 1.0
14 0.00 50.000 50.000  50.000 50.000 50.000  50.000
| 005 | 70000 [50.000 | s0.000 so.000 s0000 30.000
16 il o010 70.000  50.173  50.000  50.000 49.827  30.000
17 0.15 70.000 50.343 50.001 49,939  49.657  30.000
18| 0.20 70.000  50.510  50.004  49.996 49.450  30.000
19 0.25 70.000  50.675  50.009  49.991 49.325  30.000
20 0.30 70.000  50.836  50.014  49.986 49.164  30.000
21 0.35 70.000 50995  50.021  49.979  49.005  30.000
22 0.40 70.000 51151  50.029  49.971 48.849  30.000
23| 0.45 70.000 51304  50.038  49.962 48.696  30.000
24 0.50 70.000 51.455 50.049 49.951 48.545  30.000
25| 0.55 70.000  51.604  50.060  49.940 48.396  30.000
26 0.60 70.000 51.749 50.072 43,928 48.251  30.000
27 0.65 70.000 51.893  50.086  49.914 48.107  30.000
28 0.70 70.000 52034 50100 49.900 47.966  30.000
29 0.75 70.000 52173  50.115  49.885 47.827  30.000
30 0.80 70.000 52309  50.131  49.869 47.691  30.000

Fig. 7.7 Suggestion for a spreadsheet to solve a system of four ordinary differential equations
(ODEs) using the Euler method after discretizing only in an axial coordinate

phase, occurs in a plug-flow reactor (PFR) at a constant pressure equal to 202.6 kPa.
The tubular reactor is fed with a solution of reactant A in a concentration (Cy,) of
18.75 kmol/m?, a flow rate (Q) of 32 m*/h, and a temperature (7,) of 200 °C. The
average enthalpy of the reaction (AHg) is —15,000 kJ/kmol. The reaction rate
constant can be represented by the expression below for the considered interval
of the temperature:

k =110+ 0.8 (T — 200) (7.38)

in which:

T = reactor temperature (°C)
k = reaction rate constant (h~")

The reactor operates in an adiabatic way (no heat exchange with the environ-
ment) and in a transient regime. Assume that, in the beginning (time equal to zero),
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the concentration of A and the temperature along the reactor are equal to 0 kmol/m*
and 200 °C, respectively. Consider, for the reactional mixture, pc, = 787.5 kJ/m*K
constant during the reaction. Assume the reactor has length (L) and diameter (D)
of 3 m and 24.25 cm, respectively. We want to know the axial profiles of the
temperature and the concentration of A over time.

Doing the modeling of this system according to Chap. 4, we obtain the balance
of reactant A and the temperature inside the reactor as presented by Eqs. 7.39
and 7.40. No diffusion in axial and radial directions is considered.

0Cy Q0 0Cy

Balance for A: 7 = — Z ? - kCA (739)
oT 0 0T (—AHR)kC,

Energy balance: A, + T (7.40)

in which:
A = reactor cross-sectional area :(nDz)/4

The initial/boundary conditions needed to solve this equation system are:

t=0:C4 =0, for0<:z<L (7.41)

t=0:T =200°C, for0 <z<L (7.42)
z=0:Cy = Cy, = 18.75 kmol/m?, for 0 < ¢ < oo (7.43)
z=0:T =Ty =200°C, for0 < t < oo (7.44)

To solve Egs. (7.39) and (7.40), we will consider the axial discretization in
order to obtain a system of ODEs varying over time. If we assume Az = 0.6, we
can obtain an ODE system able to predict how C4 and T vary over time at z equal
t0 0.6 m, 1.2 m, 1.8 m, 2.4 m and 3.0 m. In theory, 0T/0z and 0C4/0z can be
discretized using forward, backward, or centered difference (Eqs. 7.3, 7.4, or
7.5, respectively). We will use backward difference (Eq. 7.4), as denoted by
Egs. (7.45) and (7.46) below. The index j, related to time, of Eq. (7.4) is not
written, because time will be taken into account in the numerical method to
solve the ODE system. Eqgs. (7.45) and (7.46) also consider truncation error
negligible.

0Cs\  Ca —Ca,,
(az)i_ I~ (7.45)

or\  Ti—Ti
(a—) = TAr (7:46)



158 7 Solving a Partial Differential Equations System

Substituting (7.45) and (7.46) in Egs. (7.39) and (7.40) yields:

d(Ca)os _  Q (Ca)os — (Ca)y

__£ _ 4
5 3 e ko.6(Ca)os (7.47)
d(CA)Lz _ 0 (CA)l.z - (CA)().e
- k(G (7.48)
d(CA)l 8 __ Q (CA)I.S — (CA)142
Wia_ Qs =@z _y, ey, (7.49
d(CA)24 _ 0 (CA)2.4 _ (CA)I.S
i A A k24(Ca)yy (7.50)
d(Ca)sy ~ Q (Ca)so—(Ca)yy
= A a - koG (7.51)
dT, Toe —T —AHg)koe(C
06 _ O Tos —To n ( R)k0.6(Ca)ge (7.52)
dt A Az PCp
dT Ti,—T —AHRp)k1»2(C
12 _ QT 06 | ( rR)k12(Ca) (7.53)
dt A Az PCp
dT Tis—T —AHRg)k; 5(C
18 0T 12 ( R)k13(Ca) g (7.54)
dt A Az PCp
dT Toa—T —AHR)ky 4(C,
24 _ O Trs 18 ( ®)k2.4(Ca)yy (7.55)
dt A Az PCp
dT T30 —T —AHR) ks o(C,
30 QT50—Taa n ( R)k3.0(Ca)s (7.56)
dt A Az PCp

The concentration and temperature at z = 0 (Cy, in Eq. 7.47 and T, in Eq. 7.52)
are known: Cy, = 18.75 kmol/m?® and To = 200, as can be seen in the boundary
conditions (Egs. 7.43 and 7.44), so there are ten unknown values and ten ODEs to
be simultaneously solved. Observe that if forward or centered difference (Egs. 7.3
or 7.5) were used to represent 07 /0z and 0C4/0z, C4 and T at z = 3.6 would be
needed in Egs. (7.51) and (7.56), which is longer than the total length of the reactor
(L = 3.0 m), so backward difference (Eq. 7.4) was used in this example.

The system of Eqgs. (7.47), (7.48), (7.49), (7.50), (7.51), (7.52), (7.53), (7.54),
(7.55) and (7.56) can be solved using the Runge—Kutta methods shown in Chap. 6.
For this problem, we develop a code in VBA that uses the fourth-order Runge—
Kutta (RK4) method to solve the ODE system (see Appendix 7.1). The initial
condition at t = 0 is given by Eqgs. (7.41) and (742) (att =0,Cy =0and T =
200 °C for 0<z<3.0m).

The program generates profiles of the concentration of reactant A and the
temperature varying along the reactor length and over time, which can be visualized
in Figs. 7.8 and 7.9.
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Fig. 7.8 Axial profiles of the concentration of A and temperature for different values of time until

a steady state is reached

Observe that the code in VBA presented in Appendix 7.1 to generate Figs. 7.8
and 7.9 is almost the same as that used in Chap. 6, because it was developed in a

generic way.
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Fig. 7.9 Profiles of the concentration of A and temperature over time at different positions inside
the reactor

7.4.4 PDEs with Flux Boundary Conditions

In chemical engineering, boundary conditions involving the flux of a given com-
ponent occur very frequently. Imagine the insulated cylindrical metal bar
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considered in Sects. 7.1, 7.3, and 7.4.2 by Eq. (4.15), but, this time, assume that one
of the ends exchanges heat with the environment, as depicted in Fig. 4.10 in
Example 4.5. The problem to be solved is rewritten below:

oT k O°T
I 4.15
ot pc, 0x? (4.13)
Att=0h, T=50°C, for0<L<1m
Atx=0m,T=70°C,fort>0h
dr h
Atx = Im, p —E(T— Teny), fort>0h (7.57)

in which:

k = thermal conductivity (J/s m °C)
h = coefficient of heat transfer by convection (J/s m? °C)
T.ny = environment temperature = 25 °C

Equation (4.15) can be solved numerically using both approaches presented in
Sects. 7.3 and 7.4.2. For both cases, the only change is the way the temperature at
x = 1.0 m is calculated. The boundary condition at x = 1 m is an ODE and,
therefore, must also be discretized. In theory, this ODE can be discretized
using forward, backward or centered difference (Eqs. 7.9, 7.10, or 7.11, respec-
tively). As mentioned earlier, centered difference is more accurate; therefore,
we will try to adopt it in this example. Discretization of Eq. (7.57) (at the position
x = 1 m) yields:

T2 —Tos, h
) 20 (T =T .
TAx k( 1.0j = Tenv) (7.58)

or

T1<2»j = TOB»] - % (Tl.O,j - Tenv) (759)

Observe that the temperature at x = 1.2 m (7T;,) is needed to obtain the

temperature at x = 1.0 m (7,) at the boundary. Since T, does not exist, we will

consider an imaginary point at 1.2 m, and perform the calculus considering it. If the

approach presented in Sect. 7.3 is adopted, Eq. (7.16) (rewritten below) can be used
for all discretization points, including x = 1 m.

T,"j+1 =Fo (Tifl,j — 2T,‘,j + T,'+1’j) + T,"j (716)

k At
in which: Fo = — —
PCp (A)C)
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Atx = 1.0 m, Eq. 7.16 becomes:

Ti0j+1 = Fo(Togj—2T10,j +T12,) + Tio, (7.60)

Observe that Eq. (7.60) presents the temperature at the imaginary point T , ;.
Substituting (7.59) in (7.60) and rearranging, yields:

h h
Tl.O,j+1 = Tl_(),j +2Fo <T0'8,j — Tl,(),j(l —+ Ax%> —+ szTem,) (761)

To solve Eq. (4.15) with the boundary condition 7.57, the spreadsheet in Fig. 7.2
can be used again, but the cell /75 must contain Eq. (7.61) instead of the value 30.

Alternatively, the approach presented in Sect. 7.4.2 can be used; however, in
addition to Egs. (7.34), (7.35), (7.36) and (7.37), an ODE at x = 1 m (Eq. 7.62) is
needed to represent the variation in temperature at this point over time:

Atx =1.0:

(7.62)

i~ pe, (0.2)2

dlo  k (To.s — 2T o+ T1.2>

As was done before, the discretized boundary condition at x = 1 (Eq. 7.57)
generates the Eq. (7.63) for the temperature at the imaginary point x = 1.2
(differently from Eq. (7.59), herein the index j is not used because ODEs will be
solved numerically over time latter on):

2Axh

Ty2=Tos — (T1.0 — Tenv) (7.63)

Substituting Eq. (7.63) in (7.62) and rearranging, an ODE for x = 1 m is obtained
(Eq. 7.64), which must be solved simultaneously with Egs. (7.34), (7.35), (7.36)
and (7.37):

dT 1o 2k h h
=—— (Tos =T 1+ Ax— Ax—Tepny 7.64
dt pC[,(O.Z)Z( o "°< * k) A e") (7.64)

The spreadsheet presented in Fig. 7.7 can be used again, but substituting the cell
115 with Eq. (7.64). The parameters p, ¢,,, and k are the ones shown in Fig. 7.7, and
the heat coefficient (%) considered in this case is 300 J/min m? °C.

As mentioned earlier, centered difference was adopted in this example to
discretize the boundary condition, because of its higher accuracy. To better visual-
ize how centered difference is more precise, let us suppose that backward difference
was used instead of centered difference. If this is the case, the discretization of the
boundary condition (7.57) would yield:
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72 A

71 A

Temperature (°C)
3

69
68 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Length (m)
----- steady state - analytical solution ----- steady state - centered diff.
----- steady state - backward diff. ----- steady state - forward diff.

Fig. 7.10 Comparison between analytical and finite difference solutions in a steady state,
applying centered, backward, and forward difference to discretize the boundary condition
Eq. (7.57)

Ax h

Tio=Tog — & (T10 — Tenv) (7.65)

Equation (7.65) can be rearranged to explicitly express T o:

%Tenv + T0.8

Tl.(): Ax h
1

(7.66)

If the approaches presented in Sects. 7.3 or 7.4.2 were used, the cell /15 in the
spreadsheets in Figs. 7.2 or 7.7 should be replaced by the expression of Eq. (7.66).
Analogously, forward difference could also be adopted.

Figure 7.10 compares forward, centered and backward difference applied to the
boundary condition (7.57) when the system reaches a steady state. An analytical
solution is also presented to better compare the results.

For this example, when a steady state is reached, the three ways of differencing
present the same axial profiles, and they are equal to the analytical solution. On the
other hand, before reaching the steady state, the type of differencing affects the
results, as can be exemplified in Fig. 7.11 for time = 100 min. Even using smaller
increment of x (Ax = 0.1), the accuracy obtained in backward difference (see
Fig. 7.11) or in forward difference (not shown) is lower than the accuracy obtained
in centered difference for Ax = 0.2. Observe that the curve representing the
analytical solution for time = 100 min in Fig. 7.11 (see the equation for analytical
solution in Appendix 7.2) matches the numerical solution using centered difference
and Ax = 0.2 to represent the first derivative of the boundary condition (Eq. 7.57).
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Fig. 7.11 Comparison between analytical and finite difference solutions before reaching a steady
state (time = 100 min), applying centered, backward, and forward difference to discretize the
boundary condition (Eq. 7.57). The analytical solution at the steady state (shown in Fig. 7.10) is
also presented

The numerical procedures presented in this chapter can be used for different
problems in chemical engineering involving PDEs, even if more independent vari-
ables are considered.

Proposed Problems

7.1) Imagine heat conduction in a cube with sides measuring 0.6 m. The cube is
made of a metal with thermal conductivity k equal to 398 W/(m K). The initial
temperature of the cube is 20 °C, but this temperature starts changing over time
because all faces of the cube are kept at constant temperatures as depicted below:

Face Superior Inferior Right Left Front Back
T(°C) 200 30 50 150 100 80

a) Find a PDE that represents the temperature variation along the three coordi-
nates (x, y, and z) and over time.

b) Consider Ax = Ay = Az = (0.2 m and draw the cube (it is like a Rubik’s cube).
Discretize in x, y, and z and find eight ODEs representing the internal temper-
ature variation over time.

¢) Solve the system of ODEs using the RK4 method and plot the curves.

7.2) Imagine a beaker of radius (R) 1 cm and 5 cm high (L), open at the top
with only air inside it, as per Example 4.7. A certain gas A at a concentration
C4 = 1 kmol/m® starts flowing around the beaker. There is diffusion of A inside the
beaker, but at the bottom, C,4 always remains equal to zero. Assume that the mass
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diffusivity of A in the air is D4 = 0.018 m?/h. The equation that represents this
system is presented by Eq. (4.23) rewritten below:

9 _p P
or A ox2

The initial and boundary conditions are:

At7=0h, C, = 0 kmol/m?, for 0 < x < 0.05 m
Atx=0m, C4 = 0 kmol/m>, for# > 0 h
Atx=0.05m, C4 = 1 kmol/m>, fort > 0 h

(4.23)

Use the finite difference method to obtain the axial profile of the concentration of
A inside the beaker over time.

7.3) Consider Example 4.8 about two concentric cylinders. A copper cylinder of
length 1 m and radius 0.1 m at a constant temperature of 80 °C is coated with an
annulus made of aluminum, initially at 50 °C. The total radius of the concentric
cylinders (copper plus aluminum) is 0.3 m. The environment temperature is con-
stant and equal to 25 °C. Although the aluminum exchanges heat with the environ-
ment, the two ends of the two concentric cylinders are insulated. The model for this
system is represented by Eq. (4.27), rewritten below:

OT 10T _pe T
or2 " r or k Ot

The initial and boundary conditions are:

t=0,T=50°C, for0.1<r<0.3
t>0,r=0.1,T=80 °C
t>0,r=03,49=_h(T_25)

(4.27)

Use the finite difference method to find profiles of the temperature along the
radius and over time until a steady state is reached. Consider £ = 180 W/mK, & =
100 W/m? K, ¢, = 0.91 KJ/kg K and p = 2.7 g/em”.

Appendix 7.1

Figures A.7.1, A.7.2, and A.7.3 show the VBA code developed to solve the ODE
system generated in Sect. 7.4.3 (Eqgs. 7.47, 7.48, 7.49, 7.50, 7.51, 7.52, 7.53, 7.54,
7.55 and 7.56). Observe that the code is almost identical to the one presented in
Chap. 6 (Figs. 6.18b, 6.17, and 6.20). The function Derivative is changed to account
for the new system of ODEs. The function RungeKutta4 is identical, except for the
dimensions of variables k1, k2, k3, k4, and ytran, which have changed from 5 to
10, to account for the 10 ODEs. The main program RK4 is modified only in the
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Sub RK4 ()

Dim dydx(10) As Double <::::::3 1 i
Dim y(10) As Double dlmen5|on
xi=0 ' (hour)

xf = 0.028 ' (hour ~ 100 sec)

v(l) =0 ' (kmol/m3)

vi(2) =0 ' (kmol/m3)

v(3) =0 ' (kmol/m3)

v(4) =0 * (kmol/m3) Initial conditions
v(S) =0 ' (kmol/m3)

v(6) = 200 '(C)

v(7) = 200 '(C)

v(8) = 200 '(C)

v(9) = 200 ' (C)

y(10) = 200 ' (C)

dx = 0.00028 ' (hour ~ 1 sec) <:| step

X = xi

Cells(1l, 1) = "t"
Cells(1, 2) = "Y1"
Cells (1, 3) = "Y2"
Cells (1, 4) = "Y3"
Cells (1, 5) = "Y4"
Cells(1l, 6) = "¥s"
Cells(1, 7) = "Y&"

Cells (1, 8)

IIY'? n d‘ .
Cells (1, 9) nygn Imension

Cells(1, 10) = "Y9"
Cells(1, 11) = "yi0"|

non

i=2
ny = 10
Do While x <= xf
Cells(i, 1) = x
For k = 1 To ny
Cells(i, k + 1) = y(k)

Next

Call RungeKutta4(x, vy, dydx, ny, dx)

Loop

End Sub

Fig. A.7.1 The main program in Visual Basic for Applications (VBA) code to solve an ordinary
differential equation (ODE) system (Eqs. 7.47, 7.48, 7.49, 7.50, 7.51, 7.52, 7.53, 7.54, 7.55
and 7.56) using the fourth-order Runge—Kutta (RK4) method
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Function RungeKutta4(x, vy, dydx, ny, dx)

Dim k1(10) As Double

Dim k2 (10) As Double ) )
Dim k3 (10) As Double dimension
Dim k4 (10) As Double

Dim ytran(10) As Double

'Calculate K1 for all ODEs
Call Derivative (x, y, dydx)
For i = 1 To ny
kl(i) = dydx(i)
Next
'Define x and y to calculate K2
For i = 1 To ny
ytran(i) = y(i) + ki(i) * 0.5 * dx
Next
xtran = x + 0.5 * dx

'Calculate K2 for all ODEs
Call Derivative (xtran, ytran, dydx)
For i = 1 To ny
k2 (1) = dydx (i)
Next
'Define x and y to calculate K3
For i = 1 To ny
ytran(i) = y(i) + ki(i) * 0.5 * dx
Next

'Calculate K3 for all ODEs
Call Derivative (xtran, ytran, dydx)
For i = 1 To ny
k3 (i) = dydx(i)
Next
'Define x and y to calculate K4
For i = 1 To ny
ytran(i) = y(i) + ki(i) ~ 0.5 * dx
Next
Xtran = x + dx

'Calculate K4 for all ODEs
Call Derivative (xtran, ytran, dydx)
For i = 1 To ny
k4 (i) = dydx(i)
Next

'Uptade dependent variables
For i = 1 To ny

yi(i) = y(i) + (1 / 6) * (ki(i) + 2 = k2(i) + 2 * k3(1i) + k4(i)) * dx
Next

'Update the independent variable
X =x + dx
End Function

Fig. A.7.2 Function of the fourth-order Runge—Kutta (RK4) method called in the main program
(Fig. A.7.1)
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Functieon

Q=32

A= (3.1416 = (0.2425) ~ 2) / 4

Ca0 = 1

7 Solving a Partial Differential Equations System

rivative (x, y, dydx)

8.75

T0 = 200

DeltaX
DHR = -

= 0.6
15000

choCp = T87.5

dydx (1)
dydx (2)
dydx (3)
dydx (4)
dydx (5)
dydx (&)
dydx (7}
dydx (8)
dydx (9)

dydx (10) = ((-Q / &) =

L0000
e
oy

-2 / &
=-Q / &
(=2 / &)
(- / A

L B B B ]

End Function

*(kJ/m3 K)

* (y(1) - Ca0) / DeltaX) - (110 + 0.8 ~ (y(6) - 200)) * w(l)

* (¥(2) - y(1)) / DeleaX) - (110 + 0.8 = (y(7) - 200)) * yw{(2)
* (y(3) - ¥(2)) / DeltaX) - (110 + = (y(8) - 200)) = y(3)
* (y(4) = ¥(3)) / DelzaX) - (110 + * (y(9) - 200)) = y(4)
lad = {y{i0) - 200)) = ¥(5)

8
"
8
(¥(5) - ¥(4)) / DeltaX) - (110 + 0.8
* (y(6) - 200)) * y(3) * ((-DHR) / (zxhoCp))
8
8
g
0

]
]
]
* (y(€) - T0) / DelvaX) + (110 + 0.8
0.8 = (y(7) - 200)) = y(2} * ({-DHR) / (rhoCp))
0.8 = (y(8) - 200)) = y(3) * ((-DHR) / (rhoCp))
]
+

= (y{7) - y(6}) / DeltaX) + (110 +
* (y(8) - ¥(7)) / DelzaX) + (110 +
= (y¥(2) - yv(8)) / DelzaX) + (110 +
(¥(10) - y(9)) / DeltaX) + (110

= (y(®) - 200)) = y(4) = ((-DHR) / (zheCp))
-8 = (¥(10) - 200)) = y(5) = ((-DHR) / (zhoCp))

Fig. A.7.3 The function Derivative with ten ordinary differential equations (ODEs) (Egs. 7.47,
7.48,7.49, 7.50, 7.51, 7.52, 7.53, 7.54, 7.55 and 7.56) called in the function RungeKutta4

dimension of the variables and values for the initial conditions and integration step,
as highlighted in Fig. A.7.1.

Appendix 7.2

Figure 7.11 shows a curve for the analytical solution of Eq. (4.15), rewritten below:

oT k 0°T

c_r v (4.15)

ot pc, 0x?
Att=0h, T(x,0) =50°C, for 0 <L< 1m
Atx = 0m, T(0,7) = 70 °C, for > 0 h

dT h
Atx =1 — = — (T —Tepy), fort >0h 7.57
X m, I k( ), fort > ( )

The analytical solution of Eq. (4.15) can be obtained using the Fourier method,

to yield:

T = T(O, l) + (}’lhﬂ) (Tenv - T(O’ t)x)

£

=1 (1 +%( cosﬂn)z)

2 (@mnm)

7 (T(%,0) — Teny) cosf )

Bn

X exp (—picp B t) sin (f,x)
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in which f,, are the solutions of:

k
tanﬂ,,+zﬂn =0 Forn=1,2,3,...
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