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Preface

The aim of this book is to present the issue of modeling and simulation of chemical

engineering processes in a simple, didactic, and friendly way. In order to reach this

goal, it was decided to write a book with few pages, simple language, and many

illustrations. Sometimes, the rigor of the mathematical nomenclature has been a

little simplified or relaxed, to not lose focus on the modeling and simulation. The

idea was not to scare readers but to motivate them, making them feel confident and

sure they are able to learn how to model and simulate even complex chemical

engineering problems. The book is split into two parts: the first one (Chaps. 2, 3,

and 4) deals with modeling, and the second (Chaps. 5, 6, and 7) deals with

simulation.

To simplify the understanding of how to develop mathematical models, a

“recipe” is proposed, which shows how to build a mathematical model step by

step. This procedure is applied throughout the entire book, from simpler to more

complex problems, progressively increasing the degree of complexity. For each

concept of chemical engineering added to the system being modeled (kinetics,

reactors, transport phenomena, etc.), a very simple explanation is given about its

physical meaning to make the book understandable to students at the start of a

chemical engineering course, to students of correlated areas, and even to engineers

who have been away from academia for a long time.

The second part of this book is dedicated to simulation, in which mathematical

models obtained from the modeling are numerically solved. There are many

numerical methods available in the literature for solving the same equations. The

focus of this book is not to present all of the existing methods, which can be found

in excellent books about numerical methods. In this book, a few effective alterna-

tives are chosen and applied in several practical examples. For each case, the

numerical resolution is presented in detail, up to obtaining the final results. The

idea is to avoid the reader getting lost in many alternatives of numerical methods,

and to focus on how exactly to implement the simulation to obtain the desired

results.
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When using numerical methods, the simulation step can involve computational

packages and programming languages. There are several computational tools for

simulation, and it is not possible to say that one is better than another; however,

since in most cases a chemical engineering student will work in chemical industries,

this book adopts the Excel tool, which is widely used and has a very friendly

interface and almost no cost. To develop computational codes, the programming

language Visual Basic for Applications (VBA), available in Excel itself, will

be used.

It is expected that, with this book, chemical engineering students will feel

motivated to solve different practical problems related to chemical industries,

knowing they can do so in an easy and fast way, with no need for expensive

software.

Campinas, Brazil Liliane Maria Ferrareso Lona
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Organization of the Book

Chapter 1 of the book gives a short introduction and shows the importance of the

modeling and simulation issues for a chemical engineer. Important concepts needed

to understand the book will also be presented.

Chapter 2 presents a “recipe” (a step-by-step procedure) to be followed to build

models for chemical engineering systems, using a very simple problem. The same

recipe is used throughout the entire book, to solve more and more complex

problems.

Chapter 3 deals with lumped-parameter problems (in steady-state or transient

regimes), in which the modeling generates a system of algebraic or ordinary

differential equations. The chapter starts by applying the recipe seen in Chap. 2

to simple lumped-parameter problems, but as new concepts of chemical engineer-

ing are presented throughout the chapter, the complexity of the problems starts

increasing, although the recipe is always followed.

Chapter 4 deals with distributed-parameter systems in steady-state and transient

regimes, in which variables such as concentration and temperature change with the

position. This kind of problem generates ordinary or partial differential equations.

In this chapter, the complexity of examples increases little by little as they are

presented, but all of them use the same recipe presented in Chap. 2. In this way,

readers can easily understand how to build complex models.

Chapters 5, 6, and 7 are dedicated to numerically solving algebraic equations,

ordinary differential equations, and partial differential equations, respectively.

There are many different numerical methods available, but in these three chapters

a few alternatives will be used because the main purpose of this book is to obtain a

fast, robust, and simple way to simulate chemical engineering problems, not to

study in detail the different numerical methods available in the literature. All

simulations will be done using Excel spreadsheets or codes in VBA.

Chapter 5 uses the Newton–Raphson method to solve nonlinear algebraic equa-

tions and presents the concepts of inversion and multiplication of a matrix, avail-

able in Excel, to solve linear algebraic equations. Chapter 5 also presents an

alternative based on the Solver tool available in Excel for both linear and nonlinear
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algebraic equations. Chapter 6 uses Runge–Kutta methods to solve ordinary differ-

ential equations, and Chap. 7 adopts the finite difference method to solve partial

differential equations.

I hope this book will be understandable to many people and can motivate all who

wish to learn the art of modeling and simulating chemical engineering processes.

Good reading!

x Organization of the Book
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Chapter 1

Introduction

In chemical engineering, modeling and simulation are important tools for engineers

and scientists to better understand the behavior of chemical plants. Modeling and

simulation are very useful to design, to scale up and optimize pieces of equipment

and chemical plants, for process control, for troubleshooting, for operational fault

detection, for training of operators and engineers, for costing and operational

planning, etc. A very important characteristic of modeling and simulation is its

advantageous cost–benefit ratio because with a virtual chemical plant, obtained

from the modeling and simulation, it is possible to predict different scenarios of

operations and to test many layouts at almost no cost and in a safe way.

A model can be developed using deterministic or phenomenological modeling

when mathematical equations, based on conservation laws (mass, energy, and

momentum balances), are used to represent what physically happens in a system.

When conservation laws cannot be applied and an uncertainty principle is intro-

duced, stochastic or probabilistic models can be used, like population balance or

empirical models. This book will address only deterministic or phenomenological

models.

A model can be classified as a lumped-parameter or distributed-parameter
model. In a lumped-parameter model, spatial variations in a physical quantity of

interest are ignored and the system is considered homogeneous throughout the

entire volume. An example of a system that can be modeled using a lumped-

parameter model is a perfectly stirred tank, in which variables, such as temperature,

concentration, density, etc, are uniform at all points inside the tank, due to the

mixing. On the other hand, a distributed-parameter model assumes variations in a

physical quantity of interest from one point to another inside the volume. One

example of a system that could be modeled using a distributed-parameter model is a

tubular reactor, in which the concentration of the reactant decreases along the

reactor length. In fact, every real system is distributed; however, if the variations

inside the system are very small, they can be ignored and lumped-parameter models

can be used. For example, if the agitation in the tank mentioned above was not

perfect, small dead zones inside the tank could be generated. However, even so, we

© Springer International Publishing AG 2018
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could use a lumped-parameter model if we consider—as a simplifying hypothesis—
perfect agitation, with the small dead zones ignored. Realistic simplifying hypoth-

eses can always be assumed when we are developing models, in order to make them

easier to solve.

Another classification used for models is steady-state versus transient regimes.

A system is in a steady state when it does not change over time, which means it is

static or stationary. On the other hand, a system is in a transient regime when it

changes with respect to time. A transient regime is also called a non-steady-state,
unsteady-state, or dynamic regime.

A system modeled by lumped-parameter models is homogeneous and does

not present variation throughout the volume, so it is easy to imagine that the final

mathematical equation that represents this system (the mathematical model) does

not show a derivative with respect to any spatial coordinate. In addition, if this

system is in a transient regime (changing over time), the mathematical model must

present a derivative with respect to time, while a system in a steady state (static)

must not. In this way, it is easy to conclude that a lumped-parameter model in a

steady state is represented by algebraic equations (AEs), while a lumped-parameter

model in a transient regime is represented by ordinary differential equations
(ODEs).

A distributed-parameter model assumes variation inside the volume, so its

mathematical equation (generated from the modeling) will present at least one

derivative with respect to spatial coordinates. If the system is in a steady state

and there is variation in only one spatial coordinate, the mathematical model will be

represented by ODEs, but if this system is in a transient regime, it will be

represented by partial differential equations (PDEs), with derivatives with respect

to time and one spatial coordinate. Finally, if the distributed-parameter model

assumes variation in more than one spatial coordinate, it will be represented by

PDEs for both steady-state and transient regimes. Fig. 1.1 summarizes all situations

analyzed.

Obtaining mathematical equations that represent a system is the modeling step.

After that, the mathematical equations must be solved. This second part is the

simulation of the system. The simulation can be done using analytical and numer-

ical methods. This book will focus on numerical solutions.

Lumped-parameter
models

Steady State Transient Regime

AE ODE

Distributed-parameter
models

Steady State Transient Regime

ODE or PDE PDE

Fig. 1.1 Types of mathematical equations generated from lumped- and distributed-parameter

models in steady-state and transient regimes

2 1 Introduction



If the model and simulation are used to predict the behavior of a system that

already exists, we say we are doing an analysis of the system. On the other hand, if

the modeling and simulation are used to define the layout of a system that does not

yet exist, we say we are doing synthesis.
In this book, Chaps 2, 3, and 4 will focus on how a deterministic mathematical

model is developed. Chapter 2 will present a simple recipe that can be used to

obtain mathematical models from simple to very complex systems. Chapter 3 will

be devoted to lumped-parameter models, and Chap. 4 to distributed-parameter

models. Chapters 5, 6, and 7 will address how the mathematical equations gener-

ated from the modeling can be solved. Chapters 5, 6, and 7 will focus on numerical

solutions for AEs, ODEs, and PDEs, respectively. Despite the huge number of

numerical methods available in the literature, this book will focus on just a few

numerical methods and will use Excel to solve them. The main idea of this book is

to provide a simple and fast tool to obtain numerical solutions for even complex

mathematical equations in a targeted and simple way using Excel, which is a very

friendly and available tool.

1 Introduction 3



Chapter 2

The Recipe to Build a Mathematical Model

Most chemical engineering students feel a shiver down the spine when they see a set

of complex mathematical equations generated from the modeling of a chemical

engineering system. This is because they usually do not understand how to achieve

this mathematical model, or they do not know how to solve the equations system

without spending a lot of time and effort.

Trying to understand how to generate a set of mathematical equations to

represent a physical system (to model) and how to solve these equations

(to simulate) is not a simple task. A model, most of the time, takes into account

all phenomena studied during a chemical engineering course (mass, energy and

momentum transfer, chemical reactions, etc.). In the same way, there is a multitude

of numerical methods that can be used to solve the same set of equations generated

from the modeling, and many different computational languages can be adopted to

implement the numerical methods. As a consequence of this comprehensiveness

and the combinatorial explosion of possibilities, most books that deal with this

subject are very comprehensive, requiring a lot of time and effort to go through the

subject.

This book tries to deal with this modeling and simulation issue in a simple, fast,

and friendly way, using what you already know or what you can intuitively or easily

understand to build a model step by step and, after that, solve it using Excel, a very

friendly and widely used tool.

This chapter starts by showing that even if you are a lower undergraduate

student, you already known how to do mental calculations to model and simulate

simple problems. To prove that, let us imagine a cylindrical tank initially containing

10 m3 of water. Let us also imagine that the input and output valves in this tank

operate at the same volumetric flow rate (2 m3/h), as shown in Fig. 2.1. Assume that

the density of water remains constant all the time.

The first question is: 2 h later, what is the volume of water inside the tank? If you

say 10 m3, you are correct. The flow rate that enters the tank is equal to the flow rate

that exits (2 m3/s), so the volume of water in the tank remains constant (10 m3).

© Springer International Publishing AG 2018
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Now, if the input volumetric flow rate changes to 3 m3/h and the flow rate at the

exit remains at 2 m3/h, what is the volume of water in the tank after 2 h? If you

correctly say 12m3, it is because youmentally develop amodel to represent this tank

and after that you simulate it. When the inflow rate becomes 3 m3/h, by inspection

one can conclude easily that the volume of water will increase 1 m3 in each hour.

Unfortunately, you only know how to do mental modeling and simulation if the

problem is very simple. In order to understand how to model and simulate complex

systems, let us try to understand what was mentally done in this simple example and

transform that into a step-by-step procedure that is robust enough to successfully

work also for very complex systems.

2.1 The Recipe

In order to build a mathematical model, three fundamental concepts are used:

1. Conservation Law: The conservation law says that what enters the system (E),

minus what leaves the system (L), plus what is generated in the system (G),

minus what is consumed (C) in the system, is equal to the accumulation in the

system (A); or:

E� Lþ G� C ¼ A

The accumulation is the variation that occurs in a period of time. This

accumulation can be positive or negative, i.e., if what enters plus what is

generated in the system is greater than what leaves plus what is consumed in

this system, there is a positive accumulation. Otherwise, there is a negative

accumulation.

When developing mass and energy balances in the problems presented in this

book, we will assume that terms of generation and/or consumption can exist if

there are chemical reactions. For example, there is energy generation if there is

an exothermic chemical reaction, which will result in an increase in temperature.

2 m3/h

2 m3/h

Initial volume of water = 10 m3

Fig. 2.1 Tank of water with an initial volume equal to 10 m3
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2. Control volume: The control volume is the volume in which the model is

developed and the conservation law is applied. All variables (concentration,

temperature, density, etc.) have to be uniform inside the control volume. In the

example of the tank presented previously, all variables do not change with the

position inside the tank (a lumped-parameter problem), so the control volume is

the entire tank.

3. Infinitesimal variation of the dependent variable with the independent variable:
Imagine that a dependent variable y varies with x (an independent variable)

according to the function shown in Fig. 2.2. Also imagine that in an initial

condition x0 the initial value of y is y0. To estimate the value of the dependent

variable y after an infinitesimal increment in x (Δx), one can draw a tangent line

to the curve starting from the point (x0, y0), as shown in Fig. 2.2.

The tangent line reaches v1 at x¼ x1 (x1¼ x0þΔx). If the increment Δx is

sufficiently small, it follows that y1ffi v1, and it is possible to obtain the value of

y1 using the concept tangent of α:

tan α ¼ y1 � y0
x1 � x0

¼ dy

dx

����
x0,y0

so:

y1 ¼ y0 þ Δx
dy

dx

����
x0,y0

Fig. 2.2 Variation of the dependent variable y with the independent variable x

2.1 The Recipe 7



Generalizing and simplifying the way to show the index of the derivative:

yiþ1 ¼ yi þ
dyi
dx

Δx ð2:1Þ

Equation (2.1) could be also obtained using the first term of a Taylor series

expansion (Eq. 2.2):

yiþ1 ffi yi þ
dyi
dx

Δxþ 1

2!

d2yi
dx2

Δxð Þ2 þ 1

3!

d3yi
dx3

Δxð Þ3 þ 1

4!

d4yi
dx4

Δxð Þ4 þ � � � ð2:2Þ

For all systems presented in this book, the same recipe will be used to obtain the

mathematical model, following the three steps:

Definition of Control volume

Application of conservation law

Application of the concept of Infinitesimal variation of the dependent variable with the
independent variable (if there is changing with time and/or space)

2.2 The Recipe Applied to a Simple System

Keeping in mind the three fundamental concepts presented in Sect. 2.1, let us apply

the step-by-step procedure (the recipe) to model the tank presented previously. This

procedure, used to model this simple system, will be the same used throughout the

entire book, in order to solve more and more complex problems.

As stated in Sect. 2.1, the entire tank must be considered as the control volume
because we are dealing with a lumped-parameter problem. The dashed line in

Fig. 2.3 shows the control volume considered in this case.

3 m3/h

2 m3/h

Initial water volume= 10 m3
Fig. 2.3 Tank of water

with the control volume

used in the modeling
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The application of the conservation law to the control volume yields the expres-
sion presented by Eq. (2.3) (observe that there is neither generation nor consump-

tion of water):

E� L ¼ A ð2:3Þ
The E and L terms can be easily obtained, since the flow rates that enter and

leave the tank are known (3 m3/h and 2 m3/h, respectively); however, how can the

accumulation term be obtained?

In order to obtain the accumulation term, we can use the concept of the

infinitesimal variation of the dependent variable with the independent variable. So
if we say that at a time t the mass of water in the tank isM (kg), after an infinitesimal

period of time (Δt) the mass of water in the tank will be M þ dM
dt Δt (kg) (see

analogy with Eq. (2.1)). The table below summarizes this information.

t tþΔt Dimension

M M þ dM

dt
Δt kg

The amount of water accumulated in the tank in a period of timeΔt is the mass of

water at the time tþΔt minus the mass of water at the time t, so the accumulation

term (A) is given by:

A ¼ M þ dM

dt
Δt�M

or:

A ¼ dM

dt
Δt ðkgÞ

Since the mass is the density times the volume (M¼ ρV) and the density remains

constant, the accumulation term can also be written as:

A ¼ ρ
dV

dt
Δt ðkgÞ

A very important tool to check if a model is correct is to do a dimensional

analysis on all terms of the conservation law equation.

If we calculate how much water accumulates in the tank in a period of time Δt,
we have to consider how much water enters and leaves the tank in this same interval

of time (Δt). So, in a period of time Δt, the amount of water that enters and leaves

the tank is:

E ¼ 3ðm3=hÞ ρðkg=m3Þ ΔtðhÞ ! E ¼ 3ρ ΔtðkgÞ
L ¼ 2ðm3=hÞ ρðkg=m3Þ ΔtðhÞ ! L ¼ 2ρ ΔtðkgÞ

2.2 The Recipe Applied to a Simple System 9



so applying the conservation law for the period of time Δt yields:

3ρΔt kgð Þ|fflfflfflfflffl{zfflfflfflfflffl}
Enters Eð Þ

� 2ρΔt kgð Þ|fflfflfflfflffl{zfflfflfflfflffl}
Leaves Lð Þ

¼ ρ
dV

dt
Δt kgð Þ

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Accumulation Að Þ

ð2:4Þ

Observe that the density (ρ) is present in the three terms of the mass balance, so

Eq. (2.4) can be simplified. In this way, we can conclude that when the density

remains constant, we can directly do the volume balance (instead of mass balance).

In this case, the accumulation term, as well as the terms E and L, could be obtained

as shown below:

t tþΔt Accumulation Dimension

V V þ dV

dt
Δt

dV

dt
Δt m3

E ¼ 3ðm3=hÞΔtðhÞ ! E ¼ 3Δtðm3Þ
L ¼ 2ðm3=hÞΔtðhÞ ! L ¼ 2Δtðm3Þ

so the balance becomes:

3Δt m3
� �

|fflfflfflfflffl{zfflfflfflfflffl}
Enters Eð Þ

� 2Δt m3
� �

|fflfflfflfflffl{zfflfflfflfflffl}
Leaves Lð Þ

¼ dV

dt
Δt m3

� �

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Accumulation Að Þ

ð2:5Þ

Observe that Eqs. (2.4) and (2.5) are the same, and after simplifying terms this

yields:

dV

dt
¼ 1 ð2:6Þ

Equation (2.6) represents the model for this simple system and agrees with the

mental calculation you did previously. Having completed the modeling stage, we

need to do the simulation, which is nothing more than solving, by analytical or

numerical methods, the equations generated from the modeling. In our case, as the

system is greatly simplified, a single and very simple ordinary differential equation

(ODE) is generated from the modeling, and it will be solved by direct integration.

To solve this ODE, one initial condition is necessary. In our case, we know that

in the beginning of the operation, the volume of water in the tank is 10 m3. So the

initial condition is:

At t ¼ 0, V ¼ 10 m3

Solving Eq. (2.6) using the initial conditions yields:

V ¼ 10þ t ð2:7Þ
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Equation (2.7) shows how the volume of liquid in the tank varies with time,

making it possible to predict, for example, the time it takes for the liquid to overflow

the tank (also observe that the equation says that after 2 h, the volume of water is

12 m3, as predicted previously).

The procedure adopted for this simple example will be used from now on for

more and more complex examples.

Proposed Problem
2.1) Develop a model for the tank presented in Fig. 2.3, but consider that the flow

rate of water that leaves the tank (Qout, m
3/h) depends on the level of the water (h)

inside the tank, in the way Qout¼ 1þ 0.1h (m3/h). This can be a real situation

because as the column of water increases, the pressure on the exit point also

increases, and consequently the exit flow rate becomes greater. Assuming that the

initial volume of water inside the tank is equal to 10 m3 and the cross-sectional area

of this tank is equal to 1 m2, the initial level of water (h) is 10 m, so in the beginning,

the flow rate that leaves the tank (Qout) is equal to 2 m
3/h. In the beginning, the input

flow rate is equal to 2 m3/h, so the volume of water remains constant, in a steady-

state regime. If for some reason the inflow rate varies from 2 to 3 m3/h, develop a

mathematical model to represent how the level of water inside the tank varies with

time. Define the initial condition needed to solve the equation generated from the

modeling.

2.2 The Recipe Applied to a Simple System 11



Chapter 3

Lumped-Parameter Models

This chapter uses the recipe presented in Chap. 2 to develop models for different

systems related to chemical engineering. The examples presented in this chapter

deal with lumped-parameter problems, in which spacial variations in a physical

quantity of interest are ignored. As shown in Fig. 1.1, lumped-parameter problems

in a steady state are represented by algebraic equations, and, in a transient regime,

by ordinary differential equations. In this chapter, we will only develop mathemat-

ical models using the recipe presented in Chap. 2. Numerical solution (using Excel)

of algebraic and ordinary differential equations will be seen in Chaps. 5 and 6,

respectively.

As mentioned in Chap. 1, one example of a lumped-parameter problem is a

perfectly stirred tank, in which we assume that the agitation is so perfect that the

system can be considered homogeneous (no internal profiles of concentration,

temperature, etc).

Section 3.1 will present three introductory examples of lumped-parameter

modeling involving mass, energy, and volume balances. Sections 3.2 and 3.3 will

revisit some concepts about heat transfer and chemical reactions, needed to model

problems with a somewhat greater complexity level, and will show five practical

examples of how to model systems involving these concepts.

3.1 Some Introductory Examples

This section will be presented in the form of three introductory examples, which

will explore mass, energy, and volume balances.

Example 3.1 Mass Balance in a Perfectly Stirred Tank

Let us consider a perfectly stirred tank initially containing 10 m3 of pure water.

Assume that the tank contains inlet and outlet valves, both operating at the same

flow rate (2 m3/h), so the volume of water inside the tank does not change over time
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(assuming an incompressible fluid, i.e., constant density). In the beginning, the inlet

stream contains just water. At some point, a solution of NaOH at a concentration of

0.02 kg/m3 is fed instead, at the same flow rate (2 m3/h). What is the concentration

of NaOH in the liquid leaving the tank?

Solution:
By inspection, one can imagine that the concentration of NaOH in the tank is

initially zero (pure water) and when the solution of NaOH starts being fed,

the concentration of NaOH in the tank starts increasing, but it does not exceed

0.02 kg/m3.

One can also imagine that, if the agitation is perfect, the concentration of NaOH

at all points inside the tank is the same, including the point very close to the outlet

valve, so we can conclude that the concentration of NaOH inside the tank is equal to

the concentration of NaOH that leaves the tank. As we do not know the value of this

concentration (and remember, it will change over time), we will assume its value is

equal to x (kg/m3).

As this is a lumped-parameter problem, the entire tank must be considered as the

control volume. A scheme that represents our problem, from the point at which a

solution of NaOH starts being fed, can be seen in Fig. 3.1.

Let us start doing the mass balance of NaOH inside the tank (the control

volume). As there is no generation or consumption of NaOH (no chemical reac-

tion), the conservation law applied to this case yields E � L ¼ A.

The accumulation term can be obtained by the concept of the infinitesimal
variation of the dependent variable with the independent variable, considering
the amount of NaOH at time t and at time t+Δt. The amount of NaOH in the

tank is the concentration (x) of NaOH in the tank (kg/m3) multiplied by the volume

(V) of the tank (m3).

t t + Δt Dimension

Vx Vxþ dðVxÞ
dt

Δt
kg

The amount of NaOH that accumulates in a period Δt is the amount of NaOH at

time t+Δt minus the amount of NaOH at time t.

2 m3/h
0.02 kg/m3

2 m3/h
x kg/m3

x kg/m3

Fig. 3.1 Perfectly stirred

tank being fed with a NaOH

solution
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A ¼ d Vxð Þ
dt

Δt kgð Þ

All terms of the conservation law (the amounts of NaOH that enter, leave, and

accumulate) must be considered in the same period of time, in this case, Δt (h).
The amount of NaOH (kg) that enters the tank in Δt (h) can be obtained

by multiplying the volumetric inflow rate (2 m3/h), the inflow concentration

(0.02 kg/m3), and the period of time Δt (h):

E ¼ 2
m3

h

� �
0:02

kg

m3

� �
Δt hð Þ

E ¼ 0:04 Δt kgð Þ
In the same way, one can obtain the amount of NaOH that leaves the tank in the

same period of time Δt (h):

L ¼ 2
m3

h

� �
x

kg

m3

� �
Δt hð Þ

L ¼ 2 x Δt kgð Þ
The mass balance can be obtained by substituting the terms E, L, and A in the

conservation law:

0:04Δt� 2xΔt ¼ d Vxð Þ
dt

Δt ð3:1Þ

Observe that all terms have the same dimension (kg). Simplifying the Δt term
yields:

d Vxð Þ
dt

¼ 0:04� 2x

In our case, the volume of the tank remains constant and is equal to 10 m3, so the

final equation to represent the concentration of NaOH in the tank (and leaving the

tank) is:

dx

dt
¼ 0:04� 2x

10

This ordinary differential equation (ODE) is the mathematical model that rep-

resents the stirred tank. The simulation of this system is obtained by solving this

ODE analytically or numerically. In order to solve this ODE, an initial condition is

needed. In our problem the initial condition available is: at t ¼ 0 h, x ¼ 0 kg/m3

(pure water).

After solving the ODE, one can obtain a profile of the concentration of NaOH

inside the tank over time, as shown in Fig. 3.2. As mentioned before, the NaOH
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concentration indeed starts at zero and tends toward the value 0.02 kg/m3, which is

the concentration of the stream fed into the tank. When the concentration of NaOH

inside the tank does not vary anymore with time, we say the system reaches a steady
state. So, in our case, the system is in a transient state (when the concentration of

NaOH changes with time) and then reaches a steady state (when the concentration

of NaOH remains constant over time).

We can also obtain the NaOH concentration inside the tank in a steady state

directly (with no need to draw a graph) by setting a value of the accumulation term

in the conservation law equal to zero (E � L ¼ 0). This is possible because in a

steady state the concentration of NaOH stays the same over time. In this way, the

mass balance becomes (compare this with Eq. 3.1):

0:04� 2x ¼ 0

This equation is easily solved and yields x ¼ 0.02 kg/m3 (as expected;

see Fig. 3.2).

It is important to observe that some systems do not reach a steady state. Note that

in the example presented in Chap. 2, the volume of the liquid inside the tank will

increase indefinitely with time, until the tank overflows.

In the next example, there will be a small increase in complexity because the two

examples previously presented will be combined (changes in volume and in

concentration), and the system will be represented by two ODEs.

Example 3.2 Mass and Volume Balance in a Perfectly Stirred Tank

Assume now a situation in which there are variations with time of both volume and

NaOH concentration. In this case, the models developed in Chap. 2 and in Example

3.1 have to be combined. The system can be represented by Fig. 3.3. At the

beginning, a perfectly stirred tank contains 10 m3 of pure water. Shortly thereafter,

the tank starts to be fed at a rate of 3 m3/h with a NaOH solution at a concentration

of 0.02 kg/m3. Simultaneously, an outlet valve is opened, allowing the fluid to leave
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Fig. 3.2 Concentration profile of NaOH leaving the tank over time
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the tank at a rate of 2 m3/h. How do the volume and the concentration of NaOH vary

with time inside the tank?

Solution:
Chapter 2 develops the volume balance for this tank and obtains:

dV

dt
¼ 1

Developing the mass balance of NaOH for the tank, as per Example 3.1, we

obtain:

d Vxð Þ
dt

¼ 0:06� 2x

If the volume changes with time, this yields:

d Vxð Þ
dt

¼ V
dx

dt
þ x

dV

dt

So the equation system that represents this tank is:

dV

dt
¼ 1

dx

dt
¼ 0:06� 3x

V

and the initial conditions are: At t ¼ 0, V ¼ 10 m3 and x ¼ 0 kg/m3.

Both equations have to be solved simultaneously to generate profiles of the

volume and NaOH concentration inside the tank over time.

Example 3.3 Energy Balance in an Insulated Stirred Tank

Now let us take a step further by considering a simple energy balance. Variations in

temperature in chemical plants can occur basically due to generation or consump-

tion of energy as a consequence of exothermic or endothermic chemical reactions,

3 m3/h
0.02 kg/m3

2 m3/h
x kg/m3

x kg/m3

Initial water volume = 10 m3

Initial NaOH concentration = 0 kg/m3

Fig. 3.3 Perfectly stirred tank with variations in NaOH concentration and volume
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and due to heat transfer phenomena, such as radiation, conduction, and natural or

forced convection. In this simple example, the variation in temperature will occur

only because the system is fed with a fluid at high temperature.

Imagine an insulated, perfectly stirred tank containing 10 m3 of water at 20 �C.
At some point the inlet and outlet valves are opened, both operating at a flow rate of

2 m3/h. Assume that the density of the water remains constant, even if the temper-

ature varies, so the volume inside the tank remains constant and equal to 10 m3. If

the temperature of the water fed into the system is 50 �C, how does the water

temperature inside the tank change over time? How long does it take to reach a

steady state? What is the temperature at the steady state?

Solution:
By inspection, one can imagine that initially the temperature of the water inside

the tank is 20 �C and increases until it reaches 50 �C (observe that this tank is

insulated and does not lose heat to the environment). Figure 3.4 shows the proposed

system.

As the water in the tank is perfectly mixed, the entire tank has to be considered as

the control volume. There is no generation or consumption of energy inside the

tank, so the conservation law applied to this system yields:

E�L ¼ A

Initially we will analyze the accumulation of energy inside the tank in a period of

time Δt. As we are dealing with the energy balance, the amount of accumulated

energy must be given in units of energy, such as joules (J), BTU, cal, etc. Analyzing

our problem, we will try to infer how to represent this energy using both dimen-

sional analysis and the physical meaning of the variables.

The amount of heat accumulated in the system depends on (i) the amount of

material, given by its mass (the greater the mass, the greater the amount of

accumulated heat); (ii) the temperature (i.e., the higher the temperature is, the

more energy the material holds); and (iii) the characteristics of the material (i.e.,

its ability to accumulate heat, given by its specific heat). Thus, the amount of energy

in the system at a given time can be represented (using international units) by:

2 m3/h
50 0C

2 m3/h
T 0C

T 0C

At t = 0,  T = 20 0C 
Fig. 3.4 Insulated stirred

tank fed with water at 50 �C
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M ¼ mass ðkgÞ
McpTðJÞ cp ¼ specific heat ðJ=kg∘

CÞ
T ¼ temperatureð∘CÞ

The mass (M ) can be represented by the product of the volume and density

(M¼ ρV). Hence, the amount of accumulated heat in a period of time Δt is given by
the amount of heat at time t+Δt minus the amount of heat at the previous time t, as
can be seen below:

t t+Δt Dimension

VρcpT VρcpT þ dðVρcpTÞ
dt

Δt J

A ¼ dðVρcpTÞ
dt

Δt ðJÞ

When developing a model, simplifying assumptions can be considered in order

to make the simulation easier. In our example, one can assume that the density and

the specific heat of the water do not vary over time, even if the temperature changes.

Doing so, the accumulation term becomes:

Accumulation ¼ A ¼ Vρcp
dT

dt
Δt ðJÞ

The next step is to analyze the input and output terms of the conservation law.

We need to obtain the amounts of energy (in joules—the same units used in the

accumulation term) that enter and leave the system over a period of time Δt. The
higher the temperature of the stream fed, the greater the amount of heat that enters

the system. Likewise, the higher the mass flow rate entering the tank, the greater the

amount of heat fed into the tank. Another parameter that affects the heat flow is the

characteristic of the fluid, which may be given by its specific heat. So the amount of

energy that enters the tank in a period of time Δt can be given by:

E = 2

mass flow rate

r cp 50 (°C) Δt(h)m3

m3h( ) kg( ) kg °C
J( )

E ¼ 100ρcpΔt ðJÞ
Analogously, one can obtain the amount of energy that leaves the system. We do

not know the temperature of the water that leaves the system (which equals the

temperature inside the tank, because it is perfectly mixed), so we call this generic

temperature T. Note that we have also considered this temperature T in the accu-

mulation term.
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L = 2

mass flow rate

r cp T(°C) Δt(h)m3

m3h( ) kg( ) kg °C
J( )

L ¼ 2ρcpTΔt ðJÞ
It is well known that ρ and cp depend on the temperature; however, in our

example we will assume that the ρ and cp of the water fed into the tank are equal to
the ρ and cp of the water that leaves the tank.

The application of the conservation law generates the following energy balance

(in joules):

Vρcp
dT

dt
Δt ¼ 100ρcpΔt� 2ρcpTΔt ð3:2Þ

Simplifying and rearranging it yields:

dT

dt
¼ 100� 2 T

V

In our case the volume of water inside the tank stays constant and is equal to

10 m3, so the ODE becomes:

dT

dt
¼ 10� 0:2 T

This ODE can be solved analytically or numerically using the initial condition

(at t ¼ 0, T ¼ 20 �C) to generate the temperature profile shown in Fig. 3.5, which

represents the water temperature inside the tank over time.

In Fig. 3.5, one can observe that after around 25 h, the system reaches a steady

state because the temperature does not change with time anymore.

If we want to know the temperature of the liquid inside the tank in a steady state

without plotting the curve, the conservation law for a steady state has to be used

(E � L ¼ 0). The energy balance is developed without considering the accumula-

tion term (no variation of temperature with time) to yield (compare this with

Eq. 3.2):

100ρcp � 2ρcpT ¼ 0 or

100� 2 T ¼ 0

So the temperature of the liquid inside the tank after reaching a steady state is

50 �C, as predicted by inspection and observed in Fig. 3.5.

If the volume, the concentration, and the temperature change simultaneously,

three ODEs have to be solved simultaneously in order to predict the system’s
behavior. Imagine the problem presented in Example 3.2, but consider that initially

the temperature of the water in the tank is 20 �C and the temperature of the fluid fed
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into the tank is 50 �C. The volume and concentration equations are the same as

those obtained in Example 3.2, and the energy balance has to be solved considering

that the volume is not constant and changes over time. Assuming that the density

and the specific heat do not change significantly with the concentration of NaOH

and temperature, one can obtain the following set of equations to represent the

system:

dV

dt
¼ 1

dx

dt
¼ 0:06� 3x

V

dT

dt
¼ 150� 3T

V

with the initial conditions: At t ¼ 0, V ¼ 10 m3, x ¼ 0 kg/m3, and T ¼ 20 �C.
The concentration and temperature equations do not depend on each other, but

both depend on the volume balance.

After understanding these introductory examples, you are ready to revisit some

concepts needed to model more complex problems. Sections 3.2 and 3.3 will deal

with convective heat transfer and chemical reactions, respectively.

3.2 Some Concepts About Convective Heat Exchange

All examples presented up to this point have considered an adiabatic system, i.e.,

insulated tanks with no heat exchange with the environment. In real chemical

plants, heat exchange between the system and the environment is very common.
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Fig. 3.5 Temperature profile of water inside the tank over time
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In order to promote the addition or removal of energy, jacketed vessels are often

used. These vessels are tanks designed to control the temperature of their contents.

When there is heat exchange with the environment or with a jacket, this flow of

energy has to be considered in the energy balance.

In order to better understand the heat transfer between two fluids at different

temperatures, observe Fig. 3.6, which shows a wall with a certain thickness

L separating two fluids with temperatures T and Tc �C. Assume that T is greater

than Tc, so there will be a flow of energy from the left side to the right side, as

depicted by the arrows.

The flow of energy by conduction, which will be further detailed in Chap. 4,

deals with the transfer of energy from molecule to molecule in materials in which

molecules have little or nearly no mobility. This is the case with solid materials.

Observing Fig. 3.6 one can conclude that the energy flows through the wall by

conduction, and that there is a profile of temperature along the thickness of the wall

(Tw> Tp, being Tw and Tp temperatures at both surfaces of the wall). Both fluids

have molecules with more mobility, so the flow of energy in these two media occurs

mostly by convection.

Heat flow by conduction or convection is directly proportional to the driving
force and inversely proportional to the resistance. In Fig. 3.6, the driving force for

the flow of energy through fluid 1 is T� Tw. Likewise, the driving forces for the

energy flow through the wall and through fluid 2 are Tw� Tp and Tp� Tc,
respectively. Fluids 1 and 2 and the wall will offer resistance to the flow of energy.

Along the wall, the flow of energy will depend on the properties of the wall, like

thermal conductivity. Materials with higher thermal conductivity offer low resis-

tance to heat flow by conduction (it is well known that insulating materials such as

Styrofoam present low thermal conductivity). Moreover, the longer the distance

that the heat has to go through by conduction, the greater the resistance to the flow

of energy. In this way, the resistance to the flow of energy by conduction can be

represented in this example by L/k (this expression is valid for Cartesian coordi-

nates), in which L is the thickness of the wall and k is the thermal conductivity of

the wall.

L

Tc T 

Tw Tp
T = temperature of the fluid 1

Tw = temperature of the wall close to the fluid 1

Tp = temperature of the wall close to the fluid 2

Tc = temperature of the fluid 2
Fluid 1 Fluid 2

Fig. 3.6 Flow of energy (shown by the arrows) from the fluid at T �C to the fluid at Tc �C
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The flow of energy by convection through fluids 1 and 2 will depend not only on

the properties of the fluids (such as viscosity, specific heat, and density) but also on

the operating conditions (for example, the higher the fluid velocity, the better the

heat exchange). Analogous to k for the conduction, the parameter that indicates if

the fluid is effective for energy transportation by convection is the heat transfer
coefficient (h), which is a function of the properties of the fluids and operating

conditions. The higher the value of h is, the more effective the heat flow by

convection is. In this way, the resistance for the convective flow is 1/h. There are

many different correlations to obtain the heat transfer coefficient (h); however, in
this book the values of h will always be informed.

Having in mind the concepts presented above, one can obtain the three energy

flows shown in Fig. 3.6 (α means proportional).

Flowfluid 1 α
T � Tw

1
hfluid1

; Flowwall α
Tw� Tp

L
k

; Flowfluid 2 α
Tp� Tc

1
hfluid2

The total resistance to the heat flow is given by:

R ¼ 1

hfluid1
þ L

k
þ 1

hfluid2

in which (using international units):

hfluid1 ¼ heat transfer coefficient for fluid 1
s m2 °C

J( )
hfluid2 ¼ heat transfer coefficient for fluid 2 s m2 °C

J( )
k ¼ thermal conductivity s m °C

J( )
L ¼ thickness of the wall (m)

Usually the resistance to conduction is irrelevant if compared with the resistance

to convection in chemical plants, because pieces of equipment in an industry are

usually built with material with high thermal conductivity (usually metals) and have

thin walls, so the total resistance becomes:

R ¼ 1

hglobal
¼ 1

hfluid1
þ 1

hfluid2

hglobal is called the global heat transfer coefficient, and it is also represented by

U or h.
So the flow of energy from fluid 1 to fluid 2 is proportional to the total driving

force (T� Tc) and inversely proportional to the total resistance (R).

Flowtotal α
T � Tc

1
U
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The factor of proportionality is the area (A) through which there is heat

exchange, and this area is perpendicular to the direction of the heat flow. Therefore,

the convective heat flow (called Q below) is given by:

Q ¼ UA T � Tcð Þ ¼ UA ΔT

in which (using international units):

Q ¼ convective heat flow (J/s)

U ¼ global heat transfer coefficient (J/s m2 �C)
A ¼ area of convective heat transfer (m2)

ΔT ¼ difference in temperature (�C)

It is important to observe that, as the heat flow is continuous, we can say:

Heat flow in fluid 1 ¼ Heat flow in the wall ¼ Heat flow in fluid 2 ¼ Heat flow

Now we are ready to again solve Example 3.3, but this time considering a

noninsulated system with loss of heat to the environment.

It is important to point out that the concepts presented in Sect. 3.2 are the

minimum necessary to develop mathematical models of systems that present heat

exchange by convection. The reader can find specific and detailed literature on this

subject elsewhere (Kern 1950; Incropera et al. 2006; Bird et al. 2007; Welty et al.

2007).

Example 3.4 Energy Balance in a Noninsulated Stirred Tank with Convective

Heat Transfer

The next example will give another step forward in complexity by considering a

noninsulated tank. Let us consider Example 3.3, but this time assuming that the tank

exchanges heat with the environment, which is at a temperature of 15 �C (Fig. 3.7).

One wants to know how the water temperature inside the tank changes over time

and what the temperature is in a steady state.

Assume that the global heat transfer coefficient (U ) between the liquid inside the

tank and the environment is equal to 30 (J/s m2 �C). Consider constant values for the
density (ρ¼ 1000 kg/m3) and specific heat (cp¼ 4184 J/kg �C) of the fluid inside

the tank, even with changes in temperature. Assume that the heat exchange area (A)

2 m3/h
50 0C

2 m3/h
T 0C

T 0C

At t = 0,  T = 20 0C
Tenvironment = 150C

Fig. 3.7 Stirred tank

exchanging heat with the

environment (noninsulated

tank)
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with the environment is equal to 40 m2 and the volume of liquid inside the tank (V)
is equal to V¼ 10m3.

Solution:
In this problem, we need to again solve Example 3.3, but this time considering

also the convective heat transfer with the environment, which is at 15 �C.
The application of the conservation law to our problem keeps yielding

E � L ¼ A, but this time, besides the terms considered in Example 3.3, we have

to consider the term related to the heat exchange with the environment.

The accumulation term is calculated in the same way as was done before, and

yields:

A ¼ Vρcp
dT

dt
Δt ðJÞ

The amount of energy that enters the tank is the same as that developed in

Example 3.3:

E = 2 r cp 50 (°C) Δt(h)m3

m3h( ) kg( ) kg °C
J( )

E ¼ 100ρ cpΔt ðJÞ
The amount of energy that leaves the tank due to the fluid leaving the tank,

obtained in Example 3.3, has to be considered in this example too:

L = 2 r cp T(°C) Δt(h)m3

m3h( ) kg( ) kg °C
J( )

L ¼ 2ρcpTΔt ðJÞ
However, the flow of energy that leaves the tank by convection in a period of

time Δt has to be considered also, and it is given by:

L = U A (m2) (T − 15) (°C) Δt(h)J
h m2 °C( )

L ¼ U A T � 15ð ÞΔt Jð Þ
So the application of the conservation law to this case yields:

Vρcp
dT

dt
Δt|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Accumulates ðAÞ

¼ 100ρcpΔt|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Enters ðEÞ

� 2ρcpTΔt� UAðT � 15ÞΔt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Leaves ðLÞ

ðJÞ ð3:3Þ
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Rearranging:

dT

dt
¼ 1

V
100� 2T � UA

ρcp
ðT � 15Þ

� �

The initial condition to solve this ODE remains the same: at t ¼ 0, T ¼ 20 �C.
After solving this ODE, the temperature profile over time can be seen in

Fig. 3.8a. Observe that the system reaches a steady state at around 40 �C, which
is a lower temperature than the one in Example 3.3, where there was no heat

exchange with the environment. Figure 3.8b again shows Fig. 3.5, to simplify the

comparison.
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Fig. 3.8 Profiles of temperature over time: (a) for a stirred tank exchanging heat with the

environment; (b) for the insulated tank presented in Example 3.3
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Now a simple convention to help the development of a model will be introduced.

Imagine that the environment temperature is 25 �C, instead of 15 �C. In this case,

since the initial temperature of the water is 20 �C, maybe in the beginning the heat

flows from the environment to the tank. However, after some time, as the tank is fed

with a fluid at 50 �C, the heat flows from the tank to the environment. Should we

consider this heat flow by convection entering (E; plus sign) or leaving (L; minus

sign) the tank? In order to deal with situations like that, a simple convention can be

used: always add (plus sign) the convective terms in the energy balance, but always

consider the difference in temperature as the environment (surrounding) tempera-

ture minus the system temperature, in this order, as represented below:

U A Tenv � Tð Þ
in which Tenv is the temperature of the environment or the jacket (or surrounding)

and T is the temperature of the control volume. So if Tenv> T, the convection term is

positive and heat is added to the system. If Tenv< T, the convection term is negative

and heat is removed from the system. If at some point Tenv¼ T, there is no heat

exchange between the tank and the environment.

Using this convention, Eq. (3.3) can be rewritten as:

Vρcp
dT

dt
Δt|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Accumulates ðAÞ

¼ 100ρcpΔt|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Enters ðEÞ

� 2ρcpTΔt|fflfflfflfflffl{zfflfflfflfflffl}
Leaves ðLÞ

þ UAð15� TÞΔt|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Heat by Convection

ðJÞ ð3:4Þ

If we want to model this system to obtain the temperature of the tank when a

steady state is reached, the energy balance has to be calculated without considering

the accumulation term, and the following equation is obtained (compare this with

Eq. 3.4):

100ρcp � 2ρcpT þ UAð15� TÞ ¼ 0 ðJ=hÞ
Considering the numerical values for the parameters and solving this algebraic

equation, we can obtain that the temperature in a steady state is 38.08 �C, as
previously observed in Fig. 3.8a.

Now let us explore the behavior of this tank a little further by studying another

possible situation, suggested in Example 3.5.

Example 3.5 Energy Balance Considering Convective Heat Transfer and No

Inlet or Outlet Flow Rates

This example revisits Example 3.4 and assumes that when the water temperature

inside the tank reaches 38.08 �C (the temperature in a steady state), the input and

output valves are closed. If this is the case, how does the water temperature decrease

over time? Assume again that the tank is perfectly mixed and exchanges heat with

the environment, which is at 15 �C.

Solution:
The energy balance presented in Eq. (3.4) is simplified, removing the terms of

inflow and outflow of the water, to yield:
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Vρcp
dT

dt
Δt|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Accumulates ðAÞ

¼ UAð15� TÞΔt|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Heat by Convection

ðJÞ ð3:5Þ

Equation (3.5) can be rewritten as:

dT

dt
¼ UA

Vρcp
ð15�TÞ ð3:6Þ

Solving Eq. (3.6), considering the initial condition (at t ¼ 0, T ¼ 38.08 �C), we
can find that it takes around 50 h until the water reaches the environment temper-

ature (15 �C), as shown Fig. 3.9. In order to solve Eq. (3.6), the same numerical

values used in Example 3.4 are adopted (U¼ 30 J/sm2 �C, cp¼ 4184 J/kg �C,
ρ¼ 1000 kg/m3, A¼ 40 m2, V¼ 10m3).

3.3 Some Concepts About Chemical Kinetics and Reactors

All systems studied so far have not considered chemical reaction. When there is a

chemical reaction, the temperature of the system can change, because the reactions

can be exothermic or endothermic. Besides, chemical reactions cause changes in

the concentrations of reactants and products, although the total mass of the system

remains constant.

It is not the objective of this book to explore the kinetics and reactions issue in

detail. Herein a very few concepts, in a very simplified way, will be presented, just

to allow us to develop mathematical models for systems with chemical reactions.

The reader can find very interesting books in the literature dealing with chemical
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Fig. 3.9 Profile of water temperature over time
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reactions and kinetics, such as Froment and Bischoff (1990), Fogler (1999),

Davis and Davis (2003), and Hill and Root (2014), just to mention a few.

3.3.1 Some Concepts About Kinetics of Chemical Reactions

Imagine an irreversible chemical reaction where a reagent A is transformed into a

product B, as shown below:

A!k B ð3:7Þ
in which k is the kinetic rate constant.

In the above reaction, one mol of reactant A produces one mol of product B

(a stoichiometric reaction). The speed at which the reaction occurs is given by the

rate of chemical reaction (r) and represents the number of moles consumed per

volume per time. The rate of irreversible reactions is given by the kinetic rate

constant (k) multiplied by the concentrations of the reagents, considering the

stoichiometry of the reaction.

In a first-order reaction, in which there is only one kind of reactant and the

stoichiometric coefficient of the reactant is 1 (as occurs in Eq. 3.7), the constant rate

(k) has the dimension of time�1. Using international units, the reaction rate can be

expressed by:

Reaction rate ¼ r ¼ k CνA
A ¼ k CA

CA ¼ reactant concentration mol=m3ð Þ
k ¼ rate constant 1=sð Þ
r ¼ reaction rate mol=m3 sð Þ
νA ¼ partial order of reaction dimensionlessð Þ

In this book we will consider the partial orders of reaction equal to the stoichio-

metric coefficients of the reactant (in our case, νA ¼ 1), but sometimes they depend

on the reaction mechanism and can be determined experimentally.

Other examples of irreversible first-order reactions are shown below:

A!k 2B ) r ¼ k CA ð3:8Þ
A!k Bþ C ) r ¼ k CA ð3:9Þ

Observe in Eq. (3.8) that reactant A is consumed at a rate k CA (mol/m3 s) to

produce B at a rate 2 k CA (mol/m3 s), because one mol of A generates 2 mols of B,

according to the stoichiometry of Eq. (3.8).

The unit of the rate constant (k) depends on the order of the reaction. For

example, if the irreversible reaction is of second order (two mols of different

or equal reactants are needed to produce the product), the rate constant has the

units m3/mol s (see Eq. 3.10).
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Aþ B !k C ð3:10Þ

Reaction rate ¼ r ¼ kCνA
A CνB

B ¼ kCACB

CA ¼ concentration of reactant A ðmol=m3Þ
CB ¼ concentration of reactant B ðmol=m3Þ
k ¼ rate constant ðm3=mol sÞ
r ¼ reaction rate ðmol=m3sÞ
νA ¼ 1 and νB ¼ 1 ðdimensionlessÞ

Other examples of irreversible second-order reactions are shown below:

2A!k B ) r ¼ k C2
A

Aþ B!k Cþ Dþ E ) r ¼ k CACB

The rate constant k usually follows the Arrhenius law, varying exponentially

with temperature:

k ¼ k0 exp � EA

RT

� �
k ¼ rate constant

k0 ¼ pre�exponential factor

EA ¼ activation energy

R ¼ gas constant

T ¼ absolute temperature ðKÞ

Note that the reaction rate (r) depends not only on the concentration of the

reactants but also on the temperature. Thus, when a non isothermal chemical reactor

is modeled, the mass and energy balances must be solved simultaneously.

The chemical reaction can also be reversible or can present a mechanism

composed of many steps. More complex kinds of kinetics are not explored in this

book but can be found in any book regarding kinetics and reactors.

3.3.2 Some Concepts About Chemical Reactors

There are a lot of types of chemical reactors, but this book will cover only the most

common types and their operation modes.

Imagine a cylindrical stirred tank reactor. Ideally, it can be considered that the

agitation of this reactor is perfect (a lumped-parameter system), which gives us the

first class of reactors: stirred tank reactors (STRs). Basically, these stirred tank

reactors can operate in three different ways:
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– Batch: when all reactants are added to the reactor at once before the beginning of
the reaction, and there is no addition of reactants or withdrawal of products as the

reaction occurs (see Scheme A).

– Continuous: when the reactants and products are continuously fed and with-

drawn. This is the system known as a continuous stirred tank reactor (CSTR)

(see Scheme B).

– Semi-batch or fed-batch: when there is no removal of products during

the reaction, but the reagents can be added as the reaction proceeds (see

Scheme C).

Batch Continuous (CSTR) Semi-batch or fed-batch

Scheme A Scheme B Scheme C

There is another type of reactor widely used in industries: the tubular reactor. As

the name says, this reactor has the shape of a tube and its dimensions (length and

diameter) depend on the type of process or product. A simplified scheme for a

tubular reactor can be seen in Fig. 3.10, which shows reactants entering through one

side of the reactor and products (and no consumed reagents) leaving through the

opposite side. The reaction proceeds as the reaction mixture moves forward inside

the reactor.

Once again, it is important to point out that the information about chemical

reactors presented in this book is only the minimum necessary to enable the

development of mathematical models for systems that present chemical reactions.

The reader can find very interesting books on chemical reactors and kinetics in the

specific literature (Levenspiel 1999; Froment and Bischoff 1990; Missen et al.

1999; Davis and Davis 2003, etc.).

The last three examples in this chapter will present problems of lumped param-

eters in which chemical reactions occur.

Fig. 3.10 Scheme of a tubular reactor
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Example 3.6 Mass and Energy Balance in an Adiabatic Batch Reactor

Imagine a batch stirred tank reactor, as shown in Fig. 3.11. Let us consider that the

reactor is perfectly mixed and that there is no heat exchange with the environment

(an adiabatic system). This reactor is used to produce component B, according to an

irreversible chemical reaction:

A !k 2Bþ C

in whichA is the reactant,B is the desired product, andC is an undesirable subproduct,

which must be removed using a separation system to be installed after the reactor.

The chemical reaction is exothermic and follows the Arrhenius law. In the

beginning, there are no products in the reactor, and the initial temperature and

concentration of reactant A are T0 (�C) and CA0 (mol/m3), respectively. Let us

assume that the volume of the reactional mixture is equal to V (m3). For simplicity,

let us consider that the densities of compounds A, B, and C are practically the same

and constant with temperature, so it is possible to assume that the volume of liquid

inside the reactor remains the same.

Develop a mathematical model to represent this reactor in order to obtain the

profiles of CA,CB,CC, and T over time.

Solution:
Since the reactor is perfectly mixed, its content is homogeneous and the control

volume is the entire tank (a lumped-parameter problem).

Let us start by calculating the mass balance. The mass balance for reactant A and

products B and C can be obtained by applying the conservation law equation

(E � L + G � C ¼ A).

As we are modeling a batch reactor, in which there is no entry or exit of A, B, and C

(observe Fig. 3.11), the terms E (entry) and L (exit) in the threemass balances are equal

to zero. In addition, for the mass balance of reactant A, wemust consider the consump-

tion term, but a generation term does not exist (an irreversible reaction). On the other

hand, for products B and C an opposite situation occurs (there is no consumption term,

but a generation term exists). So the mass balance for A, B, and C becomes:

Mass Balance for reactant A: Accumulation of A ¼ �Consumption of A

Mass Balance for product B: Accumulation of B ¼ Generation of B

Mass Balance for product C: Accumulation of C ¼ Generation of C

t = 0:   CA = CA0 (mol/m3)
CB = CC = 0
T = T0 (0C)

Fig. 3.11 Batch stirred

tank reactor
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Let us start calculating the accumulation terms in a period Δt(s), as follows:

For reactant A:

t t+Δt Accumulation of A in Δt (mol)

VCA VCA þ dðVCAÞ
dt

Δt V
dðCAÞ
dt

Δt

For product B:

t t+Δt Accumulation of B in Δt (mol)

VCB VCB þ dðVCBÞ
dt

Δt V
dðCBÞ
dt

Δt

For product C:

t t+Δt Accumulation of C in Δt (mol)

VCC VCC þ dðVCCÞ
dt

Δt V
dðCCÞ
dt

Δt

Now we need to obtain the consumption and generation terms.

The chemical reaction is of first order so the rate constant has the dimension of

time�1. Using international units, the reaction rate is given by:

r ¼ k CνA
A

CA ¼ concentration of reactantA mol=m3ð Þ
k ¼ rate constant s�1ð Þ
vA ¼ stoichiometry coefficient ¼ 1 dimensionlessð Þ
r ¼ reaction rate mol=m3 sð Þ

Since for each mol consumed of reactant A, two mols of product B and one mol

of product C are generated, the rate at which reactant A is consumed (rA) is equal to
the rate at which product C is generated (rC), but the rate at which B is produced (rB)
is twice the rate of consumption of reactant A. So:

rA ¼ rC ¼ k CA

rB ¼ 2 rA ¼ 2 k CA

Observe that the reaction rate is given in the units mol/m3s, and the accumulation

terms is given in the units mol, so before using these two terms in the mass balance,

we must convert them to the same units.

Observe that we calculated the amounts of A, B, and C accumulated in the entire

volume of the reactor in a period of time Δt. The reaction rate gives us the amounts

of A, B, and C consumed or produced per m3 of reactor per second. So, to be

consistent, we have to multiply the reaction rate by the volume of the reactor and by

the period of time Δt:
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Amount of A consumed in the reactor in a time Δt : kCAVΔt ðmolÞ
Amount of B produced in the reactor in a time Δt : 2kCAVΔt ðmolÞ
Amount of C produced in the reactor in a time Δt : kCAVΔt ðmolÞ

So the material balances for reactant A and products B and C become:

Balance of A (mol): Accumulation of A ¼ �Consumption of A:

V
dðCAÞ
dt

Δt ¼ �kCAVΔt

Balance of B (mol): Accumulation of B ¼ Generation of B:

V
dðCBÞ
dt

Δt ¼ 2kCAVΔt

Balance of C (mol): Accumulation of C ¼ Generation of C:

V
dðCCÞ
dt

Δt ¼ kCAVΔt

Simplifying terms, this yields:

Balance of A molð Þ: dCA

dt
¼ �k CA

Balance of B molð Þ: dCB

dt
¼ 2 k CA

Balance of C molð Þ: dCC

dt
¼ k CA

Observe that the balances of products B and C depend on the concentration of

reactant A, so they must be solved simultaneously with the balance of A.

This system of ODEs has to be solved analytically or numerically in order to

obtain profiles of the concentrations of A, B, and C over time. To do that, the

following initial conditions have to be used:

At t ¼ 0,CA ¼ CA0
mol=m3
� �

,CB ¼ CC ¼ 0

Note, however, that all mass balance equations show the term k (the rate

constant), which follows the Arrhenius law and therefore varies exponentially

with temperature. Thus, in order to properly obtain the mass balance, the energy

balance must be solved simultaneously (this is not necessary only for isothermal

systems).

For the energy balance, the conservation law equation (E� L + G� C¼A) also

has to be applied considering the entire reactor as the control volume. As we are

modeling a batch reactor, there is no heat being added or withdrawn by input and

output streams (see Fig. 3.11), so this kind of heat cannot be considered in the terms
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E (entry) and L (exit) in the conservation law equation. Besides, as the system is

adiabatic, the reactor does not exchange heat with the environment, so heat exchange

by convection does not exist. In this way, the energy balance will consider the

amount of energy accumulated in the system and the heat generated or consumed by

the chemical reaction. If the reaction is exothermic, heat will be added to the system,

but if the reaction is endothermic, heat will be removed from the system.

As was done for the material balance, let us start by calculating the energy

accumulation in the reactor over a period of time Δt (s) (observe that the accumu-

lation term is the same as that obtained in Examples 3.3, 3.4, and 3.5):

Accumulation of energy:

t (s) t+Δt (s)
Accumulation of energy

in Δt (J)

Vρcp T VρcpT þ dðVρcpTÞ
dt

Δt
dðVρcpTÞ

dt
Δt

V ¼ volume of the liquid inside the reactor (m3)

ρ ¼ density of the liquid inside the reactor (kg/m3)

cp ¼ specific heat of the fluid inside the reactor (J/kg �C)
T ¼ temperature of the liquid inside the reactor (�C)

Observe that the accumulated heat is given in joules (see units of V, ρ, cp, and T).
The cp value of the fluid depends on the temperature and on the composition of the

liquid inside the tank, but, for simplicity, let us assume that cp does not vary

significantly with temperature, and that cpAffi cpBffi cpC, so we can assume that cp
of the liquid is constant throughout the reaction. As mentioned earlier, it is assumed

that V and ρ remain constant, so the energy accumulation term becomes:

Vρcp
dT

dt
Δt ðJÞ

Now let us calculate the term related to the heat liberated or absorbed due to the

chemical reaction.

As said earlier, the rate at which the reaction occurs is given by the reaction rate r.
The reaction rate in our case is kCA, and its unit is mol/m3 s.

The heat liberated or absorbed in a chemical reaction depends on the enthalpy of
the reaction, also known as the energy change of the reaction, (ΔH )R, which is the

difference between the total enthalpy of the products and the total enthalpy of the

reactants. Usually, the enthalpy of the reaction is given in units of energy per mol

(for example, J/mol) and means the energy liberated or absorbed by each mol

reacted. In this way, the enthalpy of the reaction (J/mol) has to be multiplied by

the reaction rate (mol/m3 s) in order to obtain the total heat generated or absorbed in

a chemical reaction (J/m3 s), as shown below.

Reaction rate: r¼ kCA (mol/m3 s)

Enthalpy of the reaction: (ΔH )R (J/mol)

Heat liberated or absorbed in a chemical reaction: kCA(ΔH )R (J/m3 s)
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For the batch reactor that is being modeled, the amount of heat liberated or

absorbed by the chemical reaction over a period of time Δt (s) in the control volume

(the entire reactor) is:

Heat liberated or absorbed: k CA(ΔH )RV Δt (J)

Before combining the accumulation and heat of reaction terms in the conserva-

tion equation, let us create a sign convention. It is well known that (ΔH )R is

negative for exothermic reactions and positive for endothermic reactions. In this

way, we will consider a minus sign in front of (ΔH )R and we will always add the

liberated or absorbed heat term in the conservation equation. In this way, the energy

balance becomes:

Vρcp
dT

dt
Δt ¼ VkCAð�ΔHÞRΔt ð3:11Þ

In our case the chemical reaction is exothermic ((ΔH )R< 0). As we have already

considered the minus sign in (ΔH )R, the term of the heat of the reaction will become

positive (heat being added to the system). If the reaction were endothermic

((ΔH )R> 0), the term of the heat of the reaction would be negative (heat being

removed from the system), because of the minus sign considered in the convention.

Using this convention, we do not need to worry about defining whether the heat is

being generated or consumed, and the model becomes generic.

So, from now on, the conservation law for the energy balance will be written as:

E� Lþ G=C ¼ A

The term G/C represents the amount of energy generated or absorbed, and it will
always be added to the conservation law.

Simplifying and rearranging the terms of Eq. (3.11), the energy balance

becomes:

dT

dt
¼ kCAð�ΔHRÞ

ρcp

In order to solve this equation, the initial condition to be used is: at t¼ 0,

T¼ T0 (
�C).

The ODEs system that represents this reactor is:
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Balance of A ðmolÞ: dCA

dt
¼ �kCA

Balance of B ðmolÞ: dCB

dt
¼ 2kCA

Balance of C ðmolÞ: dCC

dt
¼ kCA

Balance of Energy ðJÞ: dT

dt
¼ kCAð�ΔHRÞ

ρcp
Initial conditions: at t ¼ 0: CA ¼ CA0

, CB ¼ CC ¼ 0, T ¼ T0

Observe that the energy balance depends on the concentration of the reactant A,

and, as said earlier, k depends on the temperature, so the mass and energy balances

must be solved simultaneously.

If we assume numerical values for all parameters in the model (let us suppose

EA ¼ 48,500 J/mol, R ¼ 8.314 J/mol K, k0 ¼ 8.20 � 107 min�1, ΔHR ¼
�72,800 J/mol, cp ¼ 1750 J/kg K, ρ ¼ 880 kg/m3) and for the initial conditions

(T0 ¼ 300 K, CA0
¼ 100 mol/m3, and CB0

¼ CC0
¼ 0), the system of four equations

can be solved and profiles of the concentration and temperature over time can be

obtained (see Fig. 3.12).

Observe that after 15 min, all of reactant A is consumed (CA ¼ 0), so the

concentrations of B and C and the temperature do not change anymore, because

there is no chemical reaction. Note also that the concentration of B is twice the

concentration of C, as expected due to the stoichiometry of the reaction.

The next example deals with a CSTR equipped with a cooling jacket to control

the temperature of the reactor.

Example 3.7 Mass and Energy Balance in a CSTR with a Cooling Jacket

Operating in a Steady-State Regime

Imagine a CSTR operating in a steady state in which the exothermic reaction

Aþ B !k C takes place. The reactor has a cooling jacket to control its temperature

(see Fig. 3.13). A solution with reactants A and B is fed into the reactor with a flow

rate Q (m3/min) and temperature Tin (K) (at Tin, reactants A and B are not able to

react). The concentrations of reactants A and B in this feed solution areCAin
andCBin

(mol/m3), respectively. The fluid leaves the reactor at the same flow rate (Q) and
contains product C as well as the A and B that may be not totally consumed.

Assume that the density and specific heat for all compounds are almost the same

and do not vary as the reaction occurs (ρA¼ ρB¼ ρC¼ ρ and cpA¼ cpB¼ cpC¼ cp).
The volume of the liquid inside the reactor is V (m3) and does not change over time.

The cooling fluid is fed into the jacket at a flow rate QJ (m3/min) and at a

temperature Tjin (K). Assume that the density and specific heat of the cooling

fluid (ρj and cpj) do not vary during the entire process. The global heat transfer

coefficient between the cooling fluid and the reaction mixture is U (J/min m2 K).

The area from where the heat exchange occurs is A (m2). Find the system of

equations that represents this reactor in a steady state, i.e., find the mass balance

for A, B, and C, and the energy balance for the reactor and for the jacket.

3.3 Some Concepts About Chemical Kinetics and Reactors 37



Q (m3/min)
Tin (K)

CAin (mol/m3)
CBin (mol/m3)

Q (m3/min)
T (K)

CA (mol/m3)
CB (mol/m3)
CC (mol/m3)

QJ (m
3/min)

Tjin (K)

QJ (m
3/min)

Tj (K)
Tin = Temperature of the fluid fed in the reactor (K) 

Tjin = Temperature of the fluid fed in the jacket (K) 

CAin = Feed concentration of compound A (mol/m3)

CBin = Feed concentration of compound B (mol/m3)

Q = Flow rate of the reaction mixture (m3/min)

QJ = Flow rate of cooling fluid (m3/min)

Fig. 3.13 Continuous stirred tank reactor (CSTR) with a cooling jacket
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Fig. 3.12 Batch reactor behavior: (a) profiles of concentrations of A, B, and C over time;

(b) profile of temperature over time
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Solution:
Let us start with the mass balance for A, B, and C. As the CSTR operates in a

steady state, there is no variation in the concentration over time, and the accumu-

lation terms for the three compounds are zero. So the conservation law equation

applied to the control volume (the entire reactor) yields:

Mass Balance for A: E� L� C ¼ 0

Mass Balance for B: E� L� C ¼ 0

Mass Balance for C: E� Lþ G ¼ 0

The amounts of A, B, and C that enter (E) and leave (L) the reactor can be

obtained by multiplying the volumetric flow rate (m3/min) by the concentrations

of A, B, or C (mol/m3) to yield the number of moles of each compound that enter or

leave the reactor per minute (mol/min).

Compound Enters (mol/min) Leaves (mol/min)

A QCAin QCA

B QCBin QCB

C QCCin QCC

Remember that compound C is not fed into the reactor, so CCin¼ 0; however, we

will keep CCin in the mass balances in order to obtain a generic model.

The generation and consumption terms are obtained from the reaction rate. As

there are two reactants, the reaction rate is given by kCACB (mol/m3 min). Observe

that this chemical reaction is of second order, so the unit for the rate constant (k) is
m3/mol min. The reaction rate must be multiplied by the control volume (the

volume of the entire reactor) to obtain the generation and consumption terms in

mol/min (the same units used for the terms E and L). The following table shows the

reaction terms.

Compound Consumption (mol/min) Generation (mol/min)

A k CA CB V 0

B k CA CB V 0

C 0 k CA CB V

So the mass balance for A, B, and C becomes:

Mass balance for A ðmol=minÞ: QðCAin � CAÞ � kCACBV ¼ 0 ð3:12Þ
Mass balance for B ðmol=minÞ: QðCBin � CBÞ � kCACBV ¼ 0 ð3:13Þ
Mass balance for C ðmol=minÞ: QðCCin � CCÞ þ kCACBV ¼ 0 ð3:14Þ

Let us now calculate the energy balance for the fluid inside the reactor and for

the fluid in the jacket. As the system is in a steady state, the accumulation term does

not exist for both fluids. There is no chemical reaction inside the cooling jacket, so

the conservation law applied to both fluids yields:
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Energy balance for the fluid inside the reactor: E� Lþ G=C ¼ 0

Energy balance for the cooling fluid: E� L ¼ 0

As mentioned earlier, the generated or absorbed heat term (G/C) due to the

chemical reaction is given by the reaction rate (mol/min) times (�ΔH )R (J/mol):

G=C ¼ kCACBVð�ΔHÞRðJ=minÞ
In our case the reaction is exothermic (ΔHR< 0). The minus sign in front ofΔHR

in the G/C term will guarantee that this amount of energy will be added to the

system.

This reactor loses heat to the cooling jacket. Remembering that we adopt the

convention that the convective heat term is added to the energy balance and that the

gradient of temperature is represented by the surrounding temperature minus the

temperature of the system being modeled, we obtain the following convective heat

terms for the reactor and the jacket:

Reactor: Heat lost by convection to the cooling jacket: U A (Tj� T ) (J/min).

Jacket: Heat that the cooling jacket receives by convection: U A (T� Tj) (J/min).

Finally, we need to consider the amount of energy that enters and leaves the

system due to the flow of the fluids.

Fluid Enters (J/min) Leaves (J/min)

Inside the reactor Q ρ cp Tin Q ρ cp T

Cooling fluid Qj ρj cpj Tjin Qj ρj cpj Tj

The energy balances for the reaction mixture and for the cooling fluid are shown

in Eqs. (3.15) and (3.16). The mass balances Eqs. (3.12), (3.13), and (3.14) are also

rewritten below:

Mass balance for A ðmol=minÞ: QðCAin � CAÞ � kCACBV ¼ 0 ð3:12Þ
Mass balance for B ðmol=minÞ: QðCBin � CBÞ � kCACBV ¼ 0 ð3:13Þ
Mass balance for Cðmol=minÞ: QðCCin � CCÞ þ kCACBV ¼ 0 ð3:14Þ
Energy balance for the reactor J=minð Þ: QρcpðTin � TÞ þ UAðTj� TÞ

þ kCACBVð�ΔHÞR ¼ 0
ð3:15Þ

Energy for the cooling fluid J=minð Þ: QjρjcpjðTjin � TjÞ þ UAðT � TjÞ ¼ 0

ð3:16Þ
The model for this reactor is represented by a system of five nonlinear algebraic

equations that must be solved simultaneously. Considering the numerical values

shown in Tables 3.1 and 3.2 for all parameters in the model and feed conditions, the

concentrations and temperatures in a steady state can be obtained, as shown in

Table 3.3. Observe in Table 3.3 that there are still reactants A and B in the reactor

exit and that they are in the same amounts, due to the reaction stoichiometry.
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If, for some reason, any parameter (such as inlet concentrations and tempera-

tures, flow rates, etc.) undergoes variation, the concentrations and temperature of

steady state presented in Table 3.3 will start changing with time until a new steady

state is reached. The last example in this chapter (below) will address that.

Example 3.8 Mass and Energy Balance in a CSTR with a Cooling Jacket

Operating in a Transient State

Let us imagine that, for some reason, the flow rates that enter and leave the reactor

(Q), shown in Example 3.7, change simultaneously from 3 m3/min to 4 m3/min. The

system will leave the steady state shown in Table 3.3; however, as the inlet and

outlet valves operate at the same flow rate, the volume of the tank will remain the

same and constant over time.

Assume that all parameters in the model, shown in Table 3.1, as well as the

parameters for the cooling jacket, shown in Table 3.2, do not change. Assume also

that the volume occupied by the cooling fluid inside the jacket is Vj (assume that

Vj ¼ 0.032 m3). What would the profiles of the concentrations and temperatures be

over time until a new steady state is reached?

Solution:
In order to model this system in a transient regime, the mass and energy balances

need to be recalculated, but this time considering the accumulation terms that can

be obtained as per Example 3.6 (see Table 3.4).

The accumulation terms in Table 3.4 need to be added to the mass and energy

balances (Eqs. 3.12, 3.13, 3.14, 3.15, and 3.16). Observe that Table 3.4 represents

the amount accumulated in Δt (min), so Eqs. (3.12), (3.13), (3.14), (3.15), and

(3.16) need to be multiplied by Δt (min) to make the units compatible. Doing that

and simplifying terms, the equations system that represents this reactor in a

transient regime is obtained (Eqs. 3.17, 3.18, 3.19, 3.20, and 3.21)

Table 3.2 Parameters of cooling jacket and feed conditions

cpj ρj Q Qj CAin CBin CCin Tin Tjin
J/kg K kg/m3 m3/min m3/min mol/m3 mol/m3 mol/m3 K K

4180 1000 3 0.01 200 200 0 300 280

Table 3.3 Concentrations and temperatures in a steady state

CA (mol/m3) CB (mol/m3) CC (mol/m3) T (K) Tj (K)

49.5 49.5 150.5 307 282

Table 3.1 Parameters of the reaction mixture needed to simulate the continuous stirred tank

reactor (CSTR)

ρ cp A V k0 EA R ΔHR U

kg/m3 J/kg K m2 m3 m3/mol min J/mol J/mol K J/mol J/min m2 K

880 1750 5 40 8.2 � 105 48,500 8.314 �72,800 680
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Mass balance for reactant A molð Þ: V
dCA

dt
¼ Q CAin � CAð Þ � k CA CBV ð3:17Þ

Mass balance for reactant B molð Þ: V
dCB

dt
¼ Q CBin � CBð Þ � k CA CBV ð3:18Þ

Mass balance for product C molð Þ: V
dCC

dt
¼ Q CCin � CCð Þ þ k CA CBV ð3:19Þ

Energy Balance for the reactor ðJÞ: Vρcp dT
dt

¼QρcpðTin � TÞþUAðTj� TÞ
þ kCACBVð�ΔHÞR

ð3:20Þ

Energy balance for the cooling fluid ðJÞ: Vjρjcpj
dTj

dt
¼ QjρjcpjðTjin � TjÞ

þ UAðT � TjÞ
ð3:21Þ

In order to solve this equation system, the initial conditions are needed. As

the system was in a steady state before the perturbation, the initial conditions

are the ones presented in Table 3.3. Solving this equation system and

considering that Vj ¼ 0.032 m3, the profiles of the concentration and temperature

over time until a new steady state is reached can be obtained (see Figs. 3.14

and 3.15).

Observe that Figs. 3.14 and 3.15 start from the steady state shown in Table 3.3,

suffer variations over time due to the increase in the inflow and outflow rates, and

finally reach another steady state.

With the concepts presented in this chapter, many lumped-parameter problems

in chemical engineering can be modeled. Tools to numerically solve the models

presented in this chapter will be presented in Chaps. 5 and 6, but, before studying

that, Chap. 4 will show how to develop models for distributed systems, using the

same recipe presented in Chap. 2.

Table 3.4 Accumulation

terms to be added to the mass

and energy balances to

represent a transient regime

Balance

Accumulation

term in Δt (min) Unit

Reactant A
V
dCA

dt
Δt mol

Reactant B
V
dCB

dt
Δt mol

Product C
V
dCC

dt
Δt mol

Energy of the fluid

inside the reactor
Vρcp

dT

dt
Δt J

Energy of the cooling fluid
Vjρjcpj

dTj

dt
Δt J
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Fig. 3.14 Concentrations of A, B, and C over time for the continuous stirred tank reactor (CSTR)

operating in a transient regime

3.3 Some Concepts About Chemical Kinetics and Reactors 43



Proposed Problems

3.1) Imagine a perfectly stirred tank, shown in the Figure below, which contains

5 m3 of a solution of HCl at a concentration of 0.01 kg/m3. Two inlet valves are

opened, both at a flow rate of 1 m3/h, but one feeds a solution of HCl at 0.02 kg/m3

and the other at 0.03 kg/m3. At the same time, one outlet valve is opened and the

solution of HCl leaves the tank at a flow rate equal to 2 m3/h. Develop a model to

obtain an ODE that represents the variation in the concentration of HCl in the tank

over time. Define the initial condition needed to solve this equation.
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Fig. 3.15 Temperatures of the reactor and the jacket over time for the continuous stirred tank

reactor (CSTR) operating in a transient regime
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1 m3/h
0.02 kg/m3

2 m3/h
x kg/m3

x kg/m3

1 m3/h
0.03 kg/m3

Initial concentration = 0.01 kg/m3

3.2) Without solving the ODE obtained in Proposed Problem 3.1, find the concen-

tration of HCl inside the tank when a steady state is reached.

3.3) A perfectly stirred tank, shown as follows, initially with Vm3 of water at T0 K,
is fed with 2Qm3/s of water at Tin K (T0 6¼ Tin). The tank has two outlet valves, each
of them operating at a flow rate of Q m3/s. Assume that the water is incompressible

and that there is no heat exchange with the environment (an adiabatic system).

(a) Develop a model to obtain an ODE to represent the variation in the water

temperature over time.

(b) Without solving the ODE obtained in item (a) (above), find the temperature of

the tank in a steady state.

(c) Assume that one of the outlet valves is closed. Write a model that represents this

system.

2Q m3/s
Tin (K)

Q m3/s
T (K)

T (K)Q m3/s
T (K)

Initial temperature = T0 (K)
At t = 0, T = T0 (K)

3.4) Imagine a perfectly stirred tank, shown as follows, in which there are simul-

taneous variations in concentration, temperature, and volume with time. Determine

the ODE system that represents this tank, considering two situations: an adiabatic

system; and heat exchange with the environment, which is at Tenv (K). The global
heat transfer coefficient is U (J/s m2 �C) and the heat exchange area is A (m2).

Create hypotheses to develop the model if needed.
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Qo = 2 m3/s
To = 330 K 
0.02 kg/m3

Q = 1 m3/s
T (K)
x (kg/m3)

x (kg/m3)
T (K)

Initial volume = 10 m3 of water
Initial concentration = 0 kg/m3

Initial temperature  = 280K

3.5) Imagine a hermetic cube of 0.001 m3 (0.1 m� 0.1 m� 0.1 m) with ammonia at

10 �C inside it. Suddenly this cube is placed in an environment at a constant

temperature of 30 �C, so the temperature of the ammonia inside the tube starts

increasing. Consider that the global heat transfer coefficient is U (J/h m2 �C) and
that the density and specific heat of the ammonia remain constant over time.

Assume also that the temperature of the ammonia inside the cube is homogeneous

(it does not depend on the position). Find the ODE that represents the variation in

the temperature of the ammonia inside the cube over time. Define the initial

condition used to solve this ODE.

3.6) Repeat problem 3.5 (above), but, instead of a cube, consider a sphere with a

radius equal to R (m). Analyzing the model equations obtained from problems 3.5

and 3.6, find out the radius of the sphere to obtain the same temperature profile over

time as that obtained in the cube.

3.7) Three tanks in series are used to preheat a multicomponent oil solution before it

is fed into a distillation column for separation. This system is an adaptation of the

system presented in Cutlip et al. (1998).

T0 = 200C T1 T2 T3

20kg/min

100kg/min

steam steam steam

W1 W2 W3

Each tank is initially filled with 1000 kg of oil at 20 �C. Saturated steam at a

temperature of 250 �C condenses within a coil immersed in each tank. The oil is fed

into the first tank at the rate W ¼ 100 kg min�1 and overflows into the second and

the third tanks at the same flow rate (W¼W1¼W2¼W3). The tanks are well mixed
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so the temperature inside the tanks is uniform. The specific heat (cp) of the oil is

2.0 kJ/kg �C. For each tank, the rate at which heat is transferred to the oil from the

stream coil is given by:

Q ¼ UA Tstream � Tð Þ
where UA ¼ 10 kJ min�1 �C�1 is the product between the heat transfer coefficient

and the area of the coil for each tank; T is the temperature of the oil in the tank (�C);
and Q is the rate of heat transfer in kJ min�1. The mass in each tank is constant,

because the volume and the oil density do not vary. Assume there is no heat

exchange with the environment.

(a) Find the ODEs system that represents the variation in the temperature over time

for each tank. Define all initial conditions to solve the ODE system.

(b) Find the temperature in the three tanks in a steady state.

3.8) This problem is studied in Fogler (1999) and considers an isothermal CSTR

from its startup to a steady state. Reactants A and B produce C and D according to

the irreversible reaction: Aþ B!k Cþ D, in which the rate constant k is equal to

0.855 l/mol s. The reactor was initially fed with a solution containing product D at a

concentration of 0.8 mol L�1 (CD0 ¼ 0.8 mol L�1). A solution with reactants A and

B was added to the reactor at a flow rate of 5 L min�1 and at concentrations of A and

B equal to 0.7 and 0.4 mol L�1, respectively (CA1
¼ 0.7 andCB1

¼ 0.4 mol L�1). The

outlet volumetric flow rate is also 5 L min�1, and the volume of liquid inside the

reactor remains equal to 40 L over the entire reaction.

Find the ODE system that represents the concentrations of A, B, C, and D in the

CSTR from startup to a steady state. Define all initial conditions to solve the

equations. Create hypotheses for your model if needed.

F = 5 L/min
CA1 = 0.7 mol L-1

CB1 = 0.4 mol L-1

CC1 = 0 mol L-1

CD1 = 0 mol L-1

F = 5 L/min
CA = ?   CB = ?
CC = ? CD = ?
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Chapter 4

Distributed-Parameter Models

In contrast to the previous chapter, which studied lumped-parameter problems, this

chapter deals with examples in which variables such as concentration and temper-

ature vary with position—a characteristic of distributed-parameter problems. As

shown in Fig. 1.1, distributed-parameter problems can generate ordinary differen-

tial equations (ODEs) or partial differential equations (PDEs). In this chapter, we

will see how mathematical models for distributed-parameter problems are devel-

oped, but the numerical solution of ODEs and PDEs will be presented only in

Chaps. 6 and 7, respectively.

In this chapter, Sect. 4.1 gives some simple introductory examples needed to

understand how to model distributed-parameter problems. Section 4.2 presents

some concepts about transport by diffusion and models more complex systems.

Finally, Sect. 4.3 presents some examples with variation in more than one spatial

dimension.

4.1 Some Introductory Examples

Example 4.1 Assume that a fluid at 20 �C is fed into a cylindrical tube of length (L)
60 m and radius (R) 0.2 m at a rate (Q) of 4 m3/h. Assume also that this tube

exchanges heat with a jacket, whose temperature is 300 �C. Determine the axial

profile of the temperature inside the tube. Consider that the system is in a steady state

and there is no radial or angular variation of temperature inside the tube. Consider also

that the thermal diffusion is not important in any direction (axial, radial, or angular).

Solution: According to the recipe presented in Chap 2, the first thing to do in

order to model this tube is to define the control volume. In contrast to the examples

The original version of this chapter was revised. An erratum to this chapter can be found at

https://doi.org/10.1007/978-3-319-66047-9_8
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presented in Chap. 3, the temperature of the fluid is not the same along the tube, so

the entire tube cannot be considered as the control volume. In this way, we will

consider a very small slice of the tube, of length Δx, and we will assume that in this

small slice the fluid temperature is the same (see Fig. 4.1).

The conservation law will be applied to this small slice (control volume) in order

to obtain the energy balance. This energy balance will be valid for any slice taken at

any position inside the tube, so we can say that the energy balance obtained for the

slice of tube shown in Fig. 4.1 will be valid for the entire tube.

In our problem, there is neither generation nor consumption of energy and the

system is in a steady state, so the conservation law equation becomes:

E� L ¼ 0 ð4:1Þ
Let us now define the energy that enters and leaves the control volume. Figure 4.1

shows that the fluid enters the control volume at position x and the amount of energy

entering the control volume at x is given by:

Q r cp T(°C)m3

m3h( ) kg( ) kg °C
J( )

so:

Heat that enters in x: Q ρ cp T ðJ=hÞ ð4:2Þ

Be Careful Observe that we do not know the temperature of the fluid entering at

position x, therefore we write a generic temperature T. Observe that 20 �C is the

temperature of the fluid at position 0, and not at position x.
Figure 4.1 shows that the fluid leaves the control volume at xþΔx. In order to

obtain the amount of energy that leaves the control volume, we use the concept of

infinitesimal variation of the dependent variable with the independent variable, as
shown below:

Jacket
Tw = 3000C

TQ (m3/h)
T0 = 200C

Fig. 4.1 Fluid flowing in a jacketed tube in a steady-state regime
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x (enters) xþΔx (leaves) Dimension

QρcpT QρcpT þ dðQρcpTÞ
dx

Δx J/h

so:

Heat that leaves in xþ Δx: QρcpT þ dðQρcpTÞ
dx

Δx ðJ=hÞ ð4:3Þ

There is also heat exchange by convection with the jacket and, as defined in

Chap. 3, this flow of energy can be expressed by:

Convection heat transfer rate ¼ U A (Tw� T), in which:

U ¼ global coefficient of heat transfer (J/h m2 �C)
A ¼ 2 π R Δx ¼ heat exchange area in the control volume (m2)

T ¼ temperature inside the control volume (�C)
Tw ¼ temperature of the jacket (�C)

so:

Flow of Energy by Convection: U2πRΔx ðTw � TÞ ðJ=hÞ ð4:4Þ

Observe that the heat exchange area by convection is the superficial area of the

ring exchanging heat with the jacket. It is given by the perimeter of the ring (2πR)
times its length (Δx).

Using the expressions (4.2), (4.3), and (4.4) in the equation of conservation law

(4.1) yields:

QρcpT � QρcpT þ dðQρcpTÞ
dx

Δx
� �

þ U2πRΔx ðTw� TÞ ¼ 0

or:

� dðQρcpTÞ
dx

þ U2πR ðTw� TÞ ¼ 0 ð4:5Þ

If we assume that ρ and cp do not vary with temperature (and consequently with

length), Eq. (4.5) becomes (remember Tw ¼ 300 �C):

dT

dx
¼ 2πRU

Qρcp
ð300-TÞ

with the boundary condition that at x ¼ 0, T ¼ 20 �C.
In order to analyze the temperature profile obtained for this system, let us assume

the following numerical values: density (ρ) ¼ 900 kg/m3, the specific heat of

the fluid (cp) ¼ 3000 J/kg �C, and the global coefficient of heat transfer

(U ) ¼ 60,000 J/h m2 �C. The profile of the temperature along the length can be

seen in Fig. 4.2.
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Analyzing the temperature profile, it can be observed that the temperature of the

fluid is 20 �C when it is fed into the tube, and it starts increasing along the length

due to the heat exchange with the jacket, which is at 300 �C. Observe that at the end
of the tube (60 m), the temperature of the fluid reaches 116 �C. If the tube were long
enough, the temperature of the fluid would tend toward 300 �C, but it is impossible

to reach temperatures higher than 300 �C inside the tube.

Despite the fluid temperature changes along the length, the system is in a steady

state because this axial profile of the temperature does not change over time.

Example 4.2 Let us imagine now that, for some reason, the temperature of the

jacket in Example 4.1 changes instantaneously and abruptly from 300 �C to 200 �C.
The system, which was in a steady state, suffers a modification, and the profile of

the temperature inside the tube will change with time (the temperature will

decrease) until the system reaches a new steady state. What would be the profile

of the temperature of the fluid inside the tube along the length and over time until

the new steady state is reached? Solve this problem, assuming neither radial nor

angular temperature profiles, and no heat diffusion in any direction inside the tube.

Solution: If the temperature of the jacket changes abruptly from 300 �C to 200 �C,
the profile of the temperature shown in Fig. 4.2 will be modified. The temperature

profile will still start at 20 �C because the fluid is fed into the tube at this

temperature, but the fluid temperature will increase less because the jacket is

100 �C colder. One can imagine that the axial profile of the temperature inside

the tube will start as shown in Fig. 4.2 (at time ¼ 0), but it will change over time

until a new steady state is reached.

The modeling of this system will generate a PDE because the temperature will

change along the tube and over time.

The same slice of the tube shown in Fig. 4.1 will be considered as the control

volume. As there is temperature variation with time, the accumulation term must be

considered, and the conservation law equation becomes:
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Fig. 4.2 Profile of temperature inside the jacketed tube
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E� L ¼ A

The expressions to represent the amount of energy that enters at x and leaves at

xþΔx, as well as the convection term, are calculated as per Example 4.1 and are

rewritten below:

Heat that enters in x ðJ=sÞ: QρcpT ð4:6Þ

Heat that leaves in xþ Δx ðJ=sÞ: QρcpT þ dðQρcpTÞ
dx

Δx ð4:7Þ

Flow of Energy by Convection ðJ=sÞ: U2πRΔxðTw � TÞ ð4:8Þ
Besides these three terms, we need to calculate the amount of energy accumu-

lated in the control volume. We will do that as was done in the previous chapter, i.e.,

by calculating the amount of energy accumulated in a very short period of time Δt,
which is the energy at time tþΔt minus the energy at time t (see below).

t tþΔt Dimension

VρcpT VρcpT þ dðVρcpTÞ
dt

Δt
J

Once again, we assume that ρ and cp do not change with temperature and

consequently with time, so the accumulation term becomes:

Accumulation term ¼ Vρcp
dT

dt
Δt ðJÞ

Observe that the control volume is a small cylinder with an area of the base equal

to πR2 and height equal to Δx, so the volume, in the accumulation term, is the

control volume (V¼ πR2Δx).
Since the accumulation term represents the amount of energy that is accumu-

lated in a period of time Δt, we must also consider the energy that enters and leaves

the control volume in this same period of time, so we must multiply expressions

(4.6), (4.7), and (4.8) by Δt. The energy balance in the period Δt becomes:

QρcpTΔt� QρcpT þ dðQρcpTÞ
dx

Δx
� �

Δtþ U2πRΔxðTw� TÞΔt ¼ Vρcp
dT

dt
Δt

or:

�Qρcp
dT

dx
ΔxΔtþ U2πRΔxðTw� TÞΔt ¼ πR2Δx ρcp

dT

dt
Δt

Observe that Δt and Δx appear in all terms of the energy balance and can be

simplified. In fact, this simplification must always happen when developing a

model. If at this point we were not able to cancel all Δ’s from our balance, it is

because we made some sort of mistake, and our model has to be double checked.
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Also observe that there are two independent variables (x and t), so the symbol

d must be changed to ∂. So the energy balance becomes:

∂T
∂t

¼ 2U

Rρcp
ðTw� TÞ � Q

πR2

∂T
∂x

ð4:9Þ

This PDE needs one boundary condition (related to the length) and one initial

condition (related to time). The initial condition can be obtained remembering that,

at the beginning (at t ¼ 0 h), the profile of the temperature inside the tube is the one

shown in Fig. 4.2, because the system operated like that before the change in the

jacket temperature. The boundary condition is obtained remembering that the

temperature of the fluid fed into the tube is 20 �C, so at x¼ 0, T¼ 20 �C.
After solving Eq. (4.9) using these two initial/boundary conditions, the temper-

ature profiles along the length and over time, as shown in Fig. 4.3, can be obtained.

One can observe that the axial profile of the temperature varies over time, with

greater variations in the beginning (see the difference in the profiles from 0 to 0.8 h)

and minor variations as time goes on (see the small difference in the curves from

time 1.6 h to 2.4 h) until a new steady state is reached, when the axial profile of the

temperature does not change anymore with time. In our case, after 2.4 h the

temperature profile along the length remains the same, so we can say that the new

steady state was reached after 2.4 h.

Example 4.3 This problem is adapted from the book Process Heat Transfer, by
Q. D. Kern (1950), and develops a model to design bitubular heat transfer. Let us

consider now two concentric tubes, as shown in Fig. 4.4, with benzene flowing

through the internal tube and toluene flowing through the annulus. The two fluids

flow in parallel, and the system is in a steady state. The benzene and toluene are fed

at rates of 9820 lb/h (Wben) and 6330 lb/h (Wtol), respectively. These concentric

tubes are used to increase the temperature of benzene from 60 �F to 100 �F and

reduce the temperature of toluene from 170 �F to 110 �F. Assume that the toluene
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Fig. 4.3 Profiles of fluid temperature along the length over time
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does not exchange heat with the environment, just with the benzene, so that the heat

exchange occurs through the wall of the internal tube, which has a diameter of

1.25 in (ignore the thickness of the tube). What is the required length of the tubes to

make the necessary thermal exchange? Let us assume that the cp values of benzene
(cpben) and toluene (cptol) are 0.425 Btu/(lb �F) and 0.440 Btu/(lb �F), respectively,
and that these values do not change significantly with temperature.

Solution: The solution to this problem is similar to the solution to problem 4.1, but

in this case, it is necessary to make the energy balance for both fluids. We will first

present a solution similar to what we have done so far, but in the sequence, some

assumptions will be made, in order to bring the solution of this problem closer to

what is done in the design of heat exchange equipment.

Heat exchangers are very common in chemical industries, and they are very

useful to exchange heat between different streams in a plant. This equipment can

assume many different geometries, and the one considered in this example is the

simplest (a bitubular heat exchanger with parallel flow).

To model this system, we must define a control volume. As this is a distributed-

parameter problem (the temperature changes along the length), an increment Δx is
considered and the energy balance for both fluids is calculated considering this

small volume. The amount of heat that enters and leaves the control volume is

presented as follows:

x xþΔx Dimension

Benzene
WbencpbenTben WbencpbenTben þ dðWbencpbenTbenÞ

dx
Δx

Btu/h

Toluene
WtolcptolTtol WtolcptolTtol þ dðWtolcptolTtolÞ

dx
Δx

Btu/h

The amount of heat exchanged by convection is written in the same way as was

done before, keeping in mind the sign convention presented in Example 3.4.

Heat exchanged by convection (Btu/h)

Benzene U A (Ttol� Tben)

Toluene U A (Tben� Ttol)

Toluene
T = 170 0F

Toluene
T = 110 0F

Benzene
T = 100 0F

Benzene
T = 60 0F

Fig. 4.4 Double-pipe heat exchanger operating with parallel flow
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in which:

U ¼ global coefficient of heat transfer (assume that U ¼ 0.8 Btu/(h in2 �F))
A ¼ 2 π R Δx ¼ superficial area for the heat exchange in the control volume (in2)

The conservation law for benzene and toluene yields E � L ¼ 0, and the energy

balance for both fluids can be written as:

Benzene:

WbencpbenTben � WbencpbenTben þ dðWbencpbenTbenÞ
dx

Δx
� �

þ U2πRΔxðTtol � TbenÞ ¼ 0

Toluene:

WtolcptolTtol � WtolcptolTtol þ dðWtolcptolTtolÞ
dx

Δx
� �

þ U2πRΔxðTbez � TtolÞ ¼ 0

After simplifying terms, and remembering that the internal tube has diameter

(D¼2R) equal to 1.25 in, we obtain:

Benzene: Wbencpben
dTben

dx
¼ U1:25πðTtol � TbenÞ, at x ¼ 0, Tben ¼ 60

∘
F

Toluene: Wtolcptol
dTtol

dx
¼ U1:25πðTben � TtolÞ, at x ¼ 0, Ttol ¼ 170

∘
F

Considering numerical values for all parameters (Wben¼ 9820 lb/h,

Wtol¼ 6330 lb/h, cpben¼ 0.425 Btu/(lb �F), cptol¼ 0.440 Btu/(lb �F), and

U¼ 0.8 Btu/(h in2 �F)), this system of two ODEs can be solved numerically to

generate temperature profiles for benzene and toluene along the length of the tubes,

as shown in Fig. 4.5.
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One can observe that the benzene and toluene reach the desired temperatures

(Tben ¼ 100 �F and Ttol ¼ 110 �F) when the length of the tubes is around 1290

inches (or 110 feet).

A second approach presented in the sequence is more frequently used in the

design of heat exchangers because many simplifying hypotheses are proposed to

reach the numerical solution easier and faster. Typically, the design of this equip-

ment means finding the size (area) of a heat exchanger able to make the desired

changes in the temperature in hot and cold fluids. Assuming there is no heat loss to

the environment, the amount of heat received by the cold fluid is equal to that lost

by the hot fluid, and this amount is equal to the energy exchanged by convec-

tion between the two fluids. The amount of energy exchanged by convection varies

along the length of the tube because the difference in temperature between the hot

and cold fluids (the driving force) varies along the length (see Fig. 4.5).

In the design of heat transfer equipment, the logarithmic mean temperature

difference (LMTD) is considered to simplify numerical solution. The LMTD is

an average of the difference in temperature between hot and cold fluids along the

entire equipment length (the average driving force along the entire equipment

length) and is given by:

LMTD ¼ ΔTA � ΔTB

ln ΔTA

ΔTB

� � ¼ ΔTA � ΔTB

lnΔTA � lnΔTB

in which ΔTA is the difference in temperature between the two streams at the heat

transfer end where the hot fluid is fed in (in this case, 170 � 60 ¼ 110 �F) and ΔTB
is the difference in temperature between the two streams at the other end (in this

case, 110 � 100 ¼ 10 �F). In our case, the LMTD is 41.7 �F.
The total amount of heat received by the cold fluid and lost by the hot fluid is

Wben cpben (100� 60)¼Wtol cptol (170� 110) ¼ 1.67 � 105, and this amount is

equal to the heat exchanged by convection between the two fluids

(U�A�LMTD), so U x A x LMTD ¼ 1.67 x 105. In this way, A ¼ 1.67 x 105/

(U � LMTD). Considering numerical values for U (0.8 Btu / h in2 �F) and LMTD
(41.7 �F), we obtain A ¼ 5006 in2.

The heat exchange area of the tube (A¼ 5006 in2) can be written as πDL, in
which D is the diameter of the tube (1.25 in) and L is its length. In this way, the

length of the tube can be found as L¼A/πD, or L ¼ 1275 in.

Observe that the value obtained using this simplified calculation (L¼ 1275 in) is

only 1.2% lower than the one obtained when the system of two ODEs are solved

together (L ¼ 1290 in). For this reason, a project for heat exchanger equipment is

usually done as per the second approach; however, the recipe presented in this book

could also be used to design heat exchangers.

After these three simple introductory examples on distributed-parameter prob-

lems, Sect. 4.2 will revisit some concepts on mass, energy, and momentum transfer

by diffusion, which are needed to model more complex systems. The idea is just to

show a few pieces of information needed to model systems in which transfers by
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diffusion are relevant. The reader can find more details on this subject in specific

literature dealing with transfer phenomena (Bird et al. 2007; Welty et al. 2007;

Bergman et al. 2011, just to mention a few).

4.2 Concepts About Transfer by Diffusion

All flow rates (mass, heat, and momentum) are directly proportional to a driving

force and inversely proportional to the resistance:

FlowRate α
Driving Force

Resistance

We used this concept in Chap. 3 (Sect. 3.2) for heat flow, but it is also valid for

mass and momentum. This section will revisit some concepts about diffusive

transport and will point out some analogies among transfers of heat, mass, and

momentum.

4.2.1 Diffusive Transport of Heat

Imagine a solid cube of 1 m3 initially at 50 �C (Fig. 4.6a). Two opposite sides of the

cube are fixed to surfaces that are at 70 �C and 30 �C (assume that both temperatures

do not vary over time) and all other faces are insulated, so there is energy flow only

in the x direction.
One can imagine that as the energy starts flowing from the hotter face to the

colder face, the internal profile of the temperature inside the cube starts changing

until the system reaches a steady state. Figure 4.6b shows an example of how the

axial profiles of the temperature inside the cube could change over time. Since there

is no heat exchange with the environment, in a steady state the temperature profile

inside the cube is given by a straight line.

The energy flow inside the cube is due only to heat diffusion (heat conduction

from molecule to molecule). Fourier observed that the flow of energy by diffusion

can be expressed by:

q

A

� �
x
¼ �k

dT

dx

� �
ð4:10Þ

in which (using international units):

q ¼ energy flow (J/s)

A ¼ cross-sectional area from where the energy flows (m2)

(q/A)x ¼ energy flux in the x direction (J/s m2)
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k ¼ thermal conductivity (J/s m �C)
dT/dx ¼ temperature gradient (�C/m)

Observe that the energy flux (q/A)x of the Fourier equation is directly propor-

tional to the driving force (dT) and inversely proportional to the resistance (dx/k), as
shown in Sect. 3.2.

The negative sign of Eq. (4.10) is due to the orientation of q, dx, and dT. Observe
in Fig. 4.6b that dx is positive and dT is negative, making dT/dx negative. Since the
energy flux (q/A)x is positive (it grows in the same orientation as x), the minus sign

is necessary to make Eq. (4.10) coherent.

4.2.2 Diffusive Transport of Mass

Imagine a cubic box of 1 m3, open at the top with only air inside it. At some point,

ethylene gas at a constant concentration C ¼ 1 mol/m3 starts blowing above the

box, as shown in Fig. 4.7a. Imagine that, by some mechanism that is chemically

possible, the concentration of ethylene at the bottom of the box is always zero.

At the beginning, the concentration of ethylene inside the box is zero, but, as the

ethylene starts blowing, there will be a diffusive mass flow of ethylene from the

region with a higher concentration to the region with a lower concentration of

ethylene, so in this case, the driving force is the difference in concentration. (In fact,
the driving force for the mass transfer is the chemical potential, which includes

pressure and thermal energies as well as the energy due to the molecular interaction.

Since, in this system, the pressure and temperature are the same for all of the

system, the chemical potential is the difference in concentration.)

Energy flow

T = 700C T = 300C

xz

y

a b

Fig. 4.6 Diffusive transport of heat. (a) Solid cube, initially at 50 �C, with four insulated faces and
two opposite faces at 70 �C and 30 �C. (b) Profiles of temperature along the length of the cube over

time
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The diffusive mass flow will generate axial profiles of ethylene concentration

inside the box, whichwill vary over time until a steady state is reached (see Fig. 4.7b).

In this example, we assume there is no profile of the concentration along y and z.
In 1855, Fick experimentally obtained Eq. (4.11) to represent the molar flow of

some compound (say, A) by diffusion.

JA
A

� �
x

¼ �D
dCA

dx

� �
ð4:11Þ

in which (using international units):

JA ¼ molar flow of component A (mol/s)

A ¼ cross-sectional area from where the molecules of component A flow (m2)

(JA/A)x ¼ molar flux of component A in the mass flow direction (mol/m2 s)

D ¼ diffusion coefficient or diffusivity of component A (m2/s)

dCA/dx ¼ concentration gradient for component A (mol/m3 m)

In this case it is also observed that the molar flux of component A (JA/A)x in
Fick’s law is directly proportional to the driving force (dCA) and inversely propor-

tional to the resistance (dx/D).
Analogous to Eq. (4.10), the negative sign in Fick’s law is necessary to make

Eq. (4.11) coherent with the orientation of JA, dx, and dCA.

4.2.3 Diffusive Transport of Momentum

Fluids can be classified as Newtonian and non-Newtonian, but definitions and

examples of the different types of fluids are not within the scope of this book and

Ethylene flow

C = 0 mol/m3

yz

x

C = 1 mol/m3

a b

Fig. 4.7 Diffusive transport of mass. (a) Cubic box initially containing air, with ethylene

concentrations at the bottom and at the top equal to 0 and 1 mol/m3, respectively. (b) Profiles of
ethylene concentration along the cube height over time
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can be found in literature related to the mechanics of fluids and transport phenom-

ena (Bird et al. 2007; Welty et al. 2007; Fox et al. 2012; etc).

From a didactic point of view, the example presented in this section considers a

Newtonian fluid. In our example, imagine a thin layer of a fluid between two long

plates, as shown in Fig. 4.8a. The thickness of the fluid layer is d(m). Initially (t¼ 0)

the system is at rest, and after that, the upper plate starts moving in the positive

direction of x at velocity u equal to ux (m/s). Consider that the lower plate stays still

(u ¼ 0).

At the beginning (t¼ 0) the fluid velocity is zero. When the movement starts, the

molecules of the fluid in contact with the plates assume the same velocity as the

plates and, due to the frictional forces, a velocity profile is formed, as shown in

Fig. 4.8b. As time goes on, more and more fluid is drawn toward the moving plate.

Newton observed that in laminar flow, when a steady state is reached, there is a

linear velocity profile inside the fluid layer (Newton’s law of viscosity), as can be

observed in Fig. 4.8b.

If the force applied to the upper plate is “F” and the area of the upper plate is

“A”, the ratio “F/A” is known as shear stress, and it is equal in magnitude to the

momentum flux. Physically, the momentum flux is the transfer of momentum

through the fluid from a region with higher velocity to another region with lower

velocity, and can be represented by τyx, in which y is the direction of the transfer of
momentum and x is the direction of the movement velocity.

In Newton’s law of viscosity, the momentum flux (τyx) is directly proportional to
a driving force (du) and inversely proportional to the resistance dy/μ, as can be seen
in Eq. (4.12):

F

A
¼ τyx ¼ �μ

du

dy

� �
ð4:12Þ

in which (using international units):

Fluid between 
two plates

u = ux

u = 0

y

x

d

u 
 (m

/s
)

Layer height (m) 

t→∞

u = ux

u 
= 

0

y = 0 y = d

y 

yxta

b

Fig. 4.8 Diffusive transport of momentum. (a) Thin layer of a Newtonian fluid between two long
plates. (b) Profiles of velocity along the layer height over time
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F ¼ force applied to the upper plate (N)

A ¼ area of the upper plate (m2)

τyx ¼ shear stress (momentum flux) in which y represents the normal component

of the plane of action of the shear stress and x is parallel to the velocity of the

plate (N/m2)

μ ¼ viscosity of the fluid (N s/m2)

du/dy ¼ gradient of velocity (1/s)

For the same reason mentioned before, the minus sign in Eq. (4.12) is needed.

4.2.4 Analogies Among All Diffusive Transports

Observe that the same behavior is observed for the diffusive transfers of heat, mass,

and momentum. Table 4.1 summarizes the analogies among the three kinds of

diffusive transport presented before.

4.2.5 Examples Considering the Diffusive Effects
on the Modeling

The examples presented in this section take into account problems in which the

diffusive effects are important and cannot be neglected. From a didactic point

of view, in this section, variations in only one direction will be considered.

Examples 4.4 and 4.7 are analogous to the schemes presented in Sects. 4.2.1 and

4.2.2, so it will be possible to visualize the mathematical models that generate

Figs. 4.6b and 4.7b.

Example 4.4 Imagine a cylindrical metal bar with a length (L ) of 1 m and a radius

(R) equal to 0.03 m, initially at 50 �C (Fig. 4.9). At some point, the two ends of the

bar are fixed to walls that are at 70 �C and 30 �C (assume that the temperature of the

walls does not vary with time). Imagine that this bar is insulated, so there is no heat

transfer by convection between the bar and the environment. This system is very

similar to the one shown in Fig. 4.6a. In this example, we want to know how long it

takes to reach a steady state and what the internal profiles of the temperature will be

until then.

Table 4.1 Analogies among kinds of diffusive transport

Heat Mass Momentum

Law Fourier Fick Newton

Equation q

A

� �
x
¼ �k

dT

dx

� �
JA
A

� �
x

¼ �D
dCA

dx

� �
F

A
¼ τyx ¼ �μ

du

dy

� �
Driving force dT dCA du

Resistance dx/k dx/D dy/μ
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Solution: As this is a distributed-parameter problem (there is an axial profile of the

temperature), a slice of the cylinder must be considered as the control volume, as

depicted in Fig. 4.9, whose volume is πR2Δx.
The conservation law applied to this control volume yields: E – L ¼ A.

Observe that there is neither generation nor consumption of energy in this case,

and there is no heat transfer by convection with the environment. The accumulation

term must be considered because the axial profile of the temperature will change

with time until a steady state is reached.

The flow of energy (q) inside the cylinder occurs by conduction (from molecule

to molecule of the metal) due to the difference in temperature (driving force) and

can be represented by the Fourier law (Eq. 4.10), rewritten below:

q ¼ �k A
dT

dx
ð4:13Þ

The amount of energy that enters (at x) and leaves (at xþΔx) the control volume

by conduction is shown as follows:

x (enters) x þ Δx (leaves)
Energy flow by conduction (J/s) �kπR2dT

dx
�kπR2dT

dx
þ d

dx
�kπR2dT

dx

� �
Δx

in which (using international units):

k ¼ thermal conductivity (J/s m �C)
πR2 ¼ cross-sectional area from where the energy flows (m2)

dT/dx ¼ temperature gradient (�C/m)

The accumulation of energy (in joules) inside the control volume in a period

Δt (s) can be obtained by the difference in energy at the times tþΔt and t.

t tþΔt
Energy (J)

ρVcpT ρVcpT þ dðρVcpTÞ
dt

Δt

in which (using international units):

Δx

T = 70 0C

T = 30 0C

Fig. 4.9 Heat conduction

in an insulated cylindrical

bar
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ρ ¼ density of the metal bar (kg/m3)

V ¼ volume of the control volume ¼ πR2Δx (m3)

cp ¼ specific heat of the metal bar (J/kg �C)
T ¼ temperature of the metal bar (�C)

Considering that ρ, cp, and V of the metal do not change over time, the

accumulation of energy in a period Δt can be written as:

Accumulation of Energy ΔtðJÞ ¼ ρcpπR
2Δx

dT

dt
Δt

Since the amount of energy entering and leaving the control volume is given in

J/s and the accumulation of energy is in J, the energy flow must be multiplied by Δt
to make the units compatible. Doing that, the energy balance can be written as

follows:

�kπR2 dT

dx
Δt� �kπR2 dT

dx
þ d

dx
�kπR2 dT

dx

� �
Δx

� �
Δt ¼ ρcpπR

2Δx
dT

dt
Δt ð4:14Þ

Simplifying terms and considering that the thermal conductivity of the metal

remains constant, the following PDE is obtained:

∂T
∂t

¼ k

ρcp

∂2
T

∂x2
ð4:15Þ

To solve this PDE, three conditions are needed: two related to space and one

related to time. Remember that at the beginning (at t¼ 0), the entire bar is at 50 �C,
and after that, the two ends of the bar are kept at 70 �C and 30 �C (left and right). So

the three conditions are:

At t ¼ 0 h, T ¼ 50
�
C, for 0 � L � 1m

At x ¼ 0m, T ¼ 70
�
C, for t > 0h

At x ¼ 1m, T ¼ 30
�
C, for t > 0h

Considering numerical values (k ¼ 398.2 J/s m �C, cp ¼ 386.3 J/kg �C, and
ρ¼ 8933 kg/m3), the PDE can be solved numerically and can generate axial profiles

of the temperature over time, as shown in Fig. 4.6b. For a metal with the properties

considered in this example, after 10 min, the internal profile of the temperature

inside the bar almost does not change anymore over time.

If one would like to know only the axial profile of the temperature in a steady

state, the energy balance presented in Eq. (4.15) could be simplified because the

accumulation term would not be used, so the final energy balance would be:

d2T

dx2
¼ 0 ð4:16Þ
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with the boundary conditions:

At x ¼ 0 m, T ¼ 70 �C
At x ¼ 1 m, T ¼ 30 �C

Equation (4.16) can be easily integrated to generate T¼ � 40xþ 70, which is

the linear profile of the temperature in a steady state, shown in Fig. 4.6b.

Example 4.5 Now imagine that the cylindrical metal bar of the in Example 4.4 is

initially at 50 �C, but, this time, only one end of the bar is fixed to a wall at 70 �C
(a constant temperature) and the other exchanges heat with the environment, which

is at 25 �C (see Fig. 4.10). Consider that the rest of the cylindrical metal bar is

insulated (no heat exchange with the environment). Do the modeling of this system

again to obtain how the internal profile of the temperature changes over time.

Solution: Since the lateral of the control volume remains insulated, the conservation

law applied to this control volume will generate the same energy balance

represented by Eq. (4.15), rewritten below.

∂T
∂t

¼ k

ρcp

∂2
T

∂x2
ð4:15Þ

The conditions at t ¼ 0 and x ¼ 0 also stay the same, but the boundary condition

at x ¼ 1 m is different this time. At this end, the heat flowing by conduction from

inside the bar to the end (at x ¼ 1) is equal to the heat that leaves the bar (at x ¼ 1)

by convection (exchanging heat with the environment), or:

At x ¼ 1m: � k A
dT

dx
¼ h A

0
T � Tenvð Þ ð4:17Þ

In which (using international units):

k ¼ thermal conductivity (J/s m �C)
A ¼ πR2 ¼ cross-sectional area from where the energy flows by conduction (m2)

dT/dx ¼ temperature gradient (�C/m)

h ¼ global coefficient of heat transfer by convection (J/s m2 �C)

Tenv = 25°C

Δx

T = 70 0C

Fig. 4.10 Insulated cylinder bar exchanging heat with the environment at only one of its ends
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A´ ¼ πR2 ¼ area of heat exchange by convection (m2)

Tenv ¼ environmental temperature (�C)
T ¼ temperature of the bar (in this case, at x ¼ 1 m) (�C)

Figure 4.11 shows a scheme of the flow of energy at x ¼ 1 m.

It is important to note that the heat represented by both terms in Eq. (4.17) has

the same magnitude and flows toward the same orientation, so both must have the

same sign (positive or negative). The conduction term is positive because, in this

example, dT is negative, dx is positive, and the Fourier expression gives a minus

sign. In this way, the convective term must also be positive, therefore we used

(T� Tenv) to represent the driving force (T> Tenv). (Observe that the simple con-
vention presented in Example 3.4, for the convective heat transfer in order to build

the model, is not used for the boundary condition).

Observe in Eq. 4.17 that the cross-sectional area from where the energy flows by

conduction at x ¼ 1 m (A) is equal to the area from where the bar exchanges heat

with the environment by convection (A
0
), so both terms can be simplified.

So the three conditions needed to solve Eq. (4.15) are:

At t ¼ 0 h, T ¼ 50
∘
C, for 0 � L � 1 m

At x ¼ 0 m, T ¼ 70
∘
C, for t > 0 h

At x ¼ 1 m,
dT

dx
¼ � h

k
ðT � TenvÞ, for t > 0 h

Solving Eq. (4.15) with this new set of initial/boundary conditions and assuming

that h ¼ 300 J/min m2 �C, the axial profiles of the temperature over time shown in

Fig. 4.12 can be obtained.

One can observe that Fig. 4.12 shows temperature profiles very different from

the ones presented in Fig. 4.6b, because one of the ends of the bar exchanges heat

with the environment.

Example 4.6 Now, imagine that the same bar presented in Example 4.5 is not

insulated anymore. How would the axial profiles of the temperature change inside

the bar until a steady state is reached?

Solution: For a noninsulated bar, the conservation law applied to the control volume

must consider the heat transfer by convection between the bar and the environment:

Convective term: h 2πRΔx Tenv � Tð Þ ð4:18Þ

x = 1 m

–k A dT hA�(T – Tenv)

Fig. 4.11 Scheme of

energy flow at the end of the

bar (at x ¼ 1 m)
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in which (using international units):

h ¼ global coefficient of heat transfer by convection (J/s m2 �C)
2πRΔx¼ superficial area from where there is heat exchange by convection between

the control volume and the environment (m2)

Tenv ¼ environmental temperature (�C)
T ¼ temperature in the control volume (�C)

Adding the expression (4.18) to the energy balance (4.14) used in Examples 4.4

and 4.5 (for an insulated bar), we obtain Eq. (4.19). Observe that the energy balance

represented by Eq. (4.14) considers the amount of heat that enters, leaves, and

accumulates in a period Δt; therefore the expression (4.18) is also multiplied by Δt:

�kπR2 dT

dx
Δt� �kπR2 dT

dx
þ d

dx
�kπR2 dT

dx

� �
Δx

� �
Δt

þ 2hπRΔxðTenv � TÞΔt ¼ ρcpπR
2Δx

dT

dt
Δt

ð4:19Þ

After simplifying terms, Eq. (4.19) becomes:

ρ cp
∂T
∂t

¼ k
∂2

T

∂x2
þ 2h

R
ðTenv � TÞ ð4:20Þ

If Eq. (4.20) is written in terms of the diameter of the metal bar (D), and not in

terms of the radius (R), we can obtain, after rearranging terms:

45

55

65

75

0 0.2 0.4 0.6 0.8 1

Te
m

pe
ra

tu
re

 (
0 C

)

x (m)

t = 0 min t = 2 min t = 10 min

t = 30 min t = 50 min t = 60 min

Fig. 4.12 Axial profiles of temperature over time when one end of the bar changes heat with the

environment
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∂T
∂t

¼ k

ρcp

� �
∂2

T

∂x2
þ 4h

Dρcp
ðTenv � TÞ ð4:21Þ

The conditions needed to solve Eq. (4.21) are the same as those used in

Example 4.5:

At t ¼ 0 h, T ¼ 50
∘
C, for 0 � L � 1 m

At x ¼ 0 m, T ¼ 70
∘
C, for t > 0 h

At x ¼ 1 m,
dT

dx
¼ � h

k
ðT � TenvÞ, for t > 0 h

After solving Eq. (4.21), the axial profiles of the temperature in the bar over time

are obtained, and are shown in Fig. 4.13.

In comparison with Fig. 4.12, we can observe that the temperature of the bar is

lower, and the decay is faster, as expected. The velocity of the decay and the

temperature will depend on the numerical values of the parameters in the model,

such as h, cp and ρ.

Example 4.7 Imagine a cylinder vase 1 cm in radius (R) and 5 cm high (L ), open at
the top with only air inside it. This cylinder is placed in an atmosphere containing a

certain gas A in a concentration (CA) equal to 1 mol/m3 (see Fig. 4.14). As the

concentration of A outside the cylinder vase is higher (in the beginning, CA inside

the cylinder is zero because it contains just air), element A will flow from the region

with a higher concentration of A (the top of the cylinder) to the region with a lower

concentration (inside the cylinder). Let us consider that, by some mechanism that is

chemically possible, the concentration of A at the bottom of the cylinder vase is
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Fig. 4.13 Axial profiles of temperature over time when the bar changes heat with the environment
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always zero. What would be the axial profile of the concentration of A inside the

cylinder vase over time?

Solution: The first thing to do to solve this problem is to define the control volume,

which, in this case, is a small cylinder with radius R and length Δx, as depicted in

Fig. 4.14. Since we want to know the axial profile of the concentration of A inside

the cylinder vase over time, the accumulation term must be considered. There is

neither generation nor consumption of A along the cylinder, so the conservation law

applied to the control volume yields E � L ¼ A.

The flow of A from x to xþΔx occurs by diffusion, due to the difference in the

concentration of A. The mass flow by diffusion, according to Fick’s law is (see

Eq. 4.11):

ðJAÞx ¼ �DA
dCA

dx

� �

So, the amount of A at x and at xþΔx in the control volume is shown as follows:

x xþΔx
Mass flow by diffusion (mol/s) �DπR2 dCA

dx

� �
�DπR2 dCA

dx

� �
þ d

dx
�DπR2 dCA

dx

� �� �
Δx

in which (using international units):

D ¼ diffusivity of component A in the air (m2/s)

πR2 ¼ area from where the diffusive transport of A takes place (m2)

dCA/dx ¼ concentration gradient for component A (mol/m3 m)

The accumulation of A (in mol) inside the control volume (V) in a period

Δt (s) can be obtained by the difference between the amounts of A at times tþΔt
and t.

CA = 1 mol/m3 

Δx

CA = 0

Fig. 4.14 Cylinder vase

initially containing air:

diffusion of A from the top

to the bottom
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t tþΔt
Amount of A (mol)

VCA VCA þ dðVCAÞ
dt

Δt

in which V ¼ πR2Δx ¼ control volume (m3).

The accumulation of A at time Δt can be written as:

Accumulation of A ðmolÞ ¼ V
dCA

dt
Δt ¼ πR2Δx

dCA

dt
Δt

The flow of A is given in mol/s and the accumulation term is in mol, so the flow

of A is multiplied by Δt to yield the mass balance shown in Eq. (4.22):

�DπR2 ∂CA

∂x
Δt� �DπR2 ∂CA

∂x
þ ∂
∂x

�DπR2 ∂CA

∂x

� �
Δx

#
Δt ¼ πR2Δx

∂CA

∂t
Δt

"

ð4:22Þ
Simplifying terms and assuming that the diffusion coefficient is steady, one can

obtain:

∂CA

∂t
¼ D

∂2
CA

∂x2
ð4:23Þ

The initial and boundary conditions needed to solve this PDE are:

At t ¼ 0 s, CA ¼ 0 mol/m3, for 0 � x � 0.05 m

At x ¼ 0 m, CA ¼ 0 mol/m3, for t > 0 s

At x ¼ 0.05 m, CA ¼ 1 mol/m3, for t > 0 s

Equation (4.23) can be solved to generate the axial profiles of the concentration

of A over time with the same shapes of the ones shown in Fig. 4.7b. The higher the

diffusion coefficient, the faster a steady state is reached.

If the axial profile of the concentration of A inside the cylinder vase is needed

only in a steady state, the mass balance would yield:

d2CA

dx2
¼ 0 ð4:24Þ

with the boundary conditions:

At x ¼ 0 m, CA ¼ 0 mol/m3

At x ¼ 0.05 m, CA ¼ 1 mol/m3

Equation (4.24) can be integrated twice to generate a straight line, as foreseen by

Fig. 4.7b. Example 4.7 can be solved starting the x-axis both at the bottom or at the

top of the cylinder vase.

Until now, all examples presented in Chap. 4 have considered variations in an

axial direction. Example 4.8 will assume changes of temperature in a radial
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direction. The same procedure presented so far for developing models can be used.

However, it is interesting to pay attention to the control volume and to the area

considered for the flow of energy by conduction.

Example 4.8 Consider a solid cylinder of copper of length L and radius R1.

Assume that the temperature of this cylinder remains constant and equal to T0.
The copper cylinder is coated with an annulus made of aluminum, initially at

temperature T1. The total radius of the concentric cylinders (copper plus aluminum)

is R2, as depicted in Fig. 4.15. The environmental temperature is constant and equal

to Tenv. Assume that T0 > T1 > Tenv. Although the aluminum annulus exchanges

heat with the environment, the two ends of the two concentric cylinders are

insulated. Develop a mathematical model able to predict the radial profiles of the

temperature in the aluminum annulus over time from the beginning (when T ¼ T1)
until a steady state is reached.

Solution: Initially the annulus is at temperature T1, but its temperature starts

changing radially, becoming higher near the copper cylinder and lower close to

the environment. There is no reason for axial changes in temperature, because there

is no driving force in this direction (the ends are insulated).

The first thing to do in order to model this system is to define a control volume.

In our case, we can consider a control volume with a small thickness Δr and length
L, as depicted in Fig. 4.15.

The conservation law applied to this control volume yields E � L ¼ A.

As the temperature of the copper cylinder is higher, heat in the aluminum

annulus will flow from inside to outside. The energy that enters (at r) and leaves

(at rþΔr) the control volume is due to the conduction of heat (molecule to

molecule). These two terms plus the accumulation of energy in the control volume

can be written as follows:

To
R1

R2

L

Tenv

Δr

r
r+Δr

Fig. 4.15 Two concentric

cylinders with radial heat

conduction along the

aluminum annulus
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r (enters) rþΔr (leaves)
Heat flow rate by conduction (J/s) �kA

dT

dr
�kA

dT

dr
þ d

dr
�kA

dT

dr

� �
Δr

t tþΔt
Amount of energy in the control volume (J)

ρVcpT ρVcpT þ dðρVcpTÞ
dt

Δt

in which (using international units):

k ¼ thermal conductivity of the aluminum (J/s m �C)
ρ ¼ density of the aluminum (kg/m3)

cp ¼ specific heat of the aluminum (J/kg �C)
dT/dr ¼ temperature gradient in a radial direction (�C/m)

T ¼ temperature (�C)
A ¼ cross-sectional area from where the heat flows by conduction (m2)

V ¼ control volume (m3)

At this point it is very important to understand how the cross-sectional area (A)
and the control volume (V) are calculated.

The area that the energy “sees” when flowing radially by conduction is 2πr L,
which is the superficial area of the aluminum annulus: the perimeter of the ring

(2πr) times its length (L ).
The volume of the control volume is 2πrΔr L and is calculated considering its

area of the base (2πrΔr) times its length (L ). You can visualize the area of the base,
imagining the thin ring of the control volume being cut and stretched, making it

similar to a rectangle with sides 2πr and Δr, yielding an area equal to 2πrΔr.
Alternativelly, you can calculate the area of the base of the ring as π(rþΔr)2� πr2,
what would yield 2πrΔr+ π(Δr)2. Since Δr is very small, the square of Δr is much

smaller than Δr, so π(Δr)2 can be neglected, and you would obtain the same result

for the area of the base (2πrΔr).
Now we can write the energy balance, multiplying the heat flow by Δt, to make

the units compatible:

�k2πrL
dT

dr
Δt|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Enters

� �k2πrL
dT

dr
þ d

dr
�k2πrL

dT

dr

� �
Δr

� �
Δt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Leaves

¼ dðρ2πrΔrLcpTÞ
dt

Δt|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Accumulates

ð4:25Þ
Simplifying terms, the energy balance can be rewritten as:

k
∂
∂r

r
∂T
∂r

� �
¼ rρcp

∂T
∂t

ð4:26Þ
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or:

∂2
T

∂r2
þ 1

r

∂T
∂r

¼ ρcp
k

∂T
∂t

ð4:27Þ

Observe that the terms 2, π, L, k, cp, and ρ are taken outside the derivative

because they are constant and do not depend on either the time or the radius

(we assume that k, cp, and ρ do not vary with temperature). However, the expression

for the cross-sectional area (2πrL) presents the independent variable r (radius) that
must be held inside the partial derivative with respect to r (see Eq. 4.26).

The Eq. (4.27) needs two boundary conditions (related to the radius) and one

initial condition (at t¼ 0). The conditions at t¼ 0 and r¼R1 are easily obtained, as

follows:

At t¼ 0, T¼ T1 for R1� r�R2

At r¼R1 (for t> 0), T¼ T0 (at this point, the annulus of aluminum is in contact

with the cylinder of copper, which is kept at T0)

The heat flows by conduction inside the aluminum annulus until it reaches the

end at r¼R2. At this point (r¼R2), the aluminum annulus exchanges heat with the

environment, which is at Tenv. In this way, we can say that at r¼R2, the heat that

gets to R2 by conduction is equal to the heat that leaves the annulus (r¼R2) by

convection (exchanging heat with the environment), or:

�kA
dT

dr
¼ hA0ðT � TenvÞ ð4:28Þ

The area is the same for both terms of Eq. (4.28) (A ¼ A0 ¼ 2πR2L ) and can be

simplified. So the three conditions needed to solve Eq. (4.27) are:

At t ¼ 0, T ¼ T1, for R1 � r � R2

At r ¼ R1, T ¼ T0, for t > 0

At r ¼ R2,
dT

dr
¼ � h

k
ðT � TenvÞ, for t > 0

Observe that the convection term does not appear in the energy balance

Eqs. (4.26) and (4.27), only in the boundary conditions. This is because the control

volume being considered (see Fig. 4.15) does not interface with the environment.

This only occurs at r¼R2. Therefore, the convection term appears only in the

boundary condition. A different situation occurred in Examples 4.1, 4.2, and 4.6, in

which the control volume interfaced with the environment, so the convection term

appeared in the energy balance equation.

The next example will present a more comprehensive situation, in which chem-

ical reactions also occur.

Example 4.9 Consider a tubular reactor, shown in Fig. 4.16, in which an

irreversible and exothermic reaction A !k
0

B takes place. This reactor, with

4.2 Concepts About Transfer by Diffusion 73



radius R and length L, has a jacket at a constant temperature Tj
�C, needed to

control the reactor temperature. The reactant A is fed into the reactor at a flow

rate Q m3/h, concentration CAin
, and temperature Tin

�C. The concentrations of A
and B and the temperature of the fluid that leaves the reactor are CAf

, CBf
, and Tf,

respectively. A chemical engineer needs to build another tubular reactor to

produce B in a different plant. To save money, the engineer wants to know if a

shorter reactor could be used to produce the same amount of B. There is a

suspicion that most of A is consumed well before the end of the reactor. Develop

a mathematical model to simulate this reactor in order to check the viability of

building a shorter tube. Assume that the system operates in a steady state and

there are no radial or angular profiles of the concentration and temperature inside

the reactor.

Solution: The first thing to do in order to model this system is to define the control

volume. In this problem, it is assumed there are no radial and angular profiles of the

concentration and temperature, so all variations occur only along the length. In this

way, the control volume will be a small slice of the reactor, with length equal to Δx,
as represented by Fig. 4.16.

If there were variations in concentration and temperature also along the

radius, the control volume would be different. We will revisit this problem in

Example 4.11, when we will consider variations in more than one dimension.

The next thing to do to model this reactor is to apply the conservation law to the

control volume, to obtain the mass and energy balances for the reactor. The jacket

temperature remains invariable, so there is no need to develop an energy balance for

the jacket. The conservation law applied to the control volume, keeping in mind that

the reactor operates in a steady state, yields:

Q (m3/h) 
CAin (mol/m3)
Tin

0C 

L (m)

R (m)

Tj
0C

Δx

Q (m3/h) 
CAf (mol/m3)
CBf (mol/m3)
Tf

0C 

Fig. 4.16 Tubular reactor producing component B
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Mass Balance for the reactant A ) E� L� C ¼ 0

Mass Balance for the product B ) E� Lþ G ¼ 0

Energy Balance for the reactor ) E� Lþ G=C ¼ 0

The amount of A that enters the control volume (at x) depends on the flow rate

Q (m3/h) and on the concentration CA (mol/m3), so the amount of A that goes into

the control volume due to the fluid movement is QCA (mol/h). This is the most

important contribution to A entering the control volume. However, for systems in

which the flow rate is very low and/or for viscous fluids, the diffusion contribution

may be important, so in this problem, we will also consider the axial mass and heat

diffusion. Table 4.2 shows the E (entering) and L (leaving) terms for the mass and

energy balance, in which:

k ¼ thermal conductivity of the fluid inside the reactor (kJ/h m �C)
ρ ¼ density of the fluid inside the reactor (kg/m3)

cp ¼ specific heat of the fluid inside the reactor (kJ/kg �C)
D ¼ diffusivity of reactant A or product B in the fluid inside the reactor (m2/h)

πR2 ¼ area from where the diffusive transport of mass and energy takes place (m2)

Q ¼ volumetric flow rate inside the reactor (m3/h)

We will assume that the diffusion coefficient D is the same for reactant A and

product B, and that its value remains invariable. We will also consider that the fluid

that travels through the reactor remains invariable values for density (ρ), specific
heat (cp), and thermal conductivity (k).

Besides the terms shown in Table 4.2, the heat exchanged by convection

between the reaction mixture and the jacket must be added to the energy balance.

Heat transfer by convection : Uð2πRΔxÞðTj � TÞ ðkJ=hÞ
Observe that the exchange area considered in the transfer by convection (2πRΔx)

is different from the cross-sectional area (πR2) used in Table 4.2. Do not confuse the

Table 4.2 Amounts of A, B, and energy entering and leaving the control volume

x (enters) xþΔx (leaves)
Flow of A due to fluid movement (mol/h)

QCA QCA þ dðQCAÞ
dx

Δx

Flow of A due to diffusion (mol/h) �DπR2dCA

dx
�DπR2dCA

dx
þ d

dx
�DπR2dCA

dx

� �
Δx

Flow of B due to fluid movement (mol/h)
QCB QCB þ dðQCBÞ

dx
Δx

Flow of B due to diffusion (mol/h) �DπR2dCB

dx
�DπR2dCB

dx
þ d

dx
�DπR2dCB

dx

� �
Δx

Flow of energy due to fluid movement (J/h)
QρcpT QρcpT þ dðQρcpTÞ

dx
Δx

Flow of energy due to conduction (J/h) �kπR2dT

dx
�kπR2dT

dx
þ d

dx
�kπR2dT

dx

� �
Δx
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areas. Also observe that there is no mass transfer through the jacket, so no term

needs to be added to the mass balances related to that.

The last terms missing in the mass and energy balances are the consumption and

generation terms, written as follows:

Rate of reaction ðkmol=hÞ ) k0CAV

Heat of reaction ðkJ=hÞ ) k0CAVð�ΔHRÞ
in which:

k
0 ¼ constant of reaction (1/h)

V¼ πR2Δx ¼ control volume (m3)

ΔHR ¼ heat of reaction (kJ/kmol)

Considering all terms in Table 4.2, plus the terms related to heat convection and

reaction, and afterwards simplifying terms, the mass and energy balances can be

written as follows:

�Q
dCA

dx
þ D πR2 d

2CA

dx2
� k

0
πR2CA ¼ 0 ð4:29Þ

�Q
dCB

dx
þ D πR2 d

2CB

dx2
þ k

0
πR2CA ¼ 0 ð4:30Þ

�Qρcp
dT

dx
þ kπR2 d

2T

dx2
þ U2πRðTj � TÞ þ k

0
πR2CAð�ΔHRÞ ¼ 0 ð4:31Þ

Observe that the Arrhenius constant k
0
depends on T and that the energy

balance depends on CA, so the mass and energy equations must be solved

simultaneously.

To solve this system with three ODEs, two boundary conditions (for each

equation) are needed. In our problem, we know the concentrations and temperature

at x ¼ 0:

At x ¼ 0: CA ¼ CAin
; CB ¼ CBin

¼ 0; T¼ Tin

We need another condition to solve the equation system. We can use one of the

following conditions:

At x ¼ L: CA ¼ CAf
; CB ¼ CBf

; T¼ Tf or

At x!1: CA¼ 0; CB ¼ CAin
; T¼ Tj and dCA=dx ¼ dCB=dx ¼ dT=dx ¼ 0

Observe that if the reactor is very long, all of the reactant will be consumed and

the reaction mixture will exchange heat with the jacket until its temperature reaches

Tj. Also observe that the gradient of the concentration reduces along the length as

the reactant is consumed, and reaches zero when there is no reactant available. The

same behavior is observed for the gradient of the temperature when the reactant

finishes and the reactor temperature reaches Tj.
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If the diffusion terms were not considered in the mass and energy balance, the

model equations for this reactor would become (compare this with Eqs. 4.29, 4.30

and 4.31):

�Q
dCA

dx
� k

0
πR2CA ¼ 0 ð4:32Þ

�Q
dCB

dx
þ k

0
πR2CA ¼ 0 ð4:33Þ

�Qρcp
dT

dx
þ U2πRðTj � TÞ þ k

0
πR2CAð�ΔHRÞ ¼ 0 ð4:34Þ

That is solved using the boundary conditions:

At x ¼ 0: CA ¼ CAin
; CB ¼ CBin

¼ 0; T¼ Tin

The concentration and temperature profiles obtained from solution of

Eqs. (4.29), (4.30) and (4.31) (considering diffusional effects) or Eqs. (4.32),

(4.33) and (4.34) (not considering diffusional effects) can be very similar. This

occurs because the contributions due to the flow rate (QCA, QCB and QρcpT )
are much more important than the diffusion contributions �DπR2dCA

dx ,
	

�DπR2dCB

dx and� kπR2dT
dxÞ. The diffusion effects should be considered when an

accurate model is needed to simulate systems where the flow rate is low and/or

the fluid viscosity is high.

The Sect. 4.3 will consider problems where variations occur in more than one

spatial dimension. In this next section, it is important to pay attention to how the

control volume is defined.

4.3 Examples Considering Variations in More than One
Dimension

In this section, more comprehensive examples will be presented, with variations in

more than one dimension. Let us start with an example considering the axial and

radial heat transfer by conduction in a cylindrical bar. This example is a combina-

tion of the concepts presented previously in Examples 4.6 and 4.8.

Example 4.10 Imagine a cylindrical bar made of a material with low thermal

conductivity. This bar, with length (L) of 1 m and radius (R) equal to 0.3 m, is

initially at 50 �C (Fig. 4.17). At some point, one of the two ends of the bar is fixed to

a wall that is at 70 �C (assume that the temperature of the wall does not change with

time). Assume that the bar exchanges heat with the environment, which is at 25 �C.
One wants to know the radial and axial profiles of the temperature after a steady

state is reached. Assume there is no angular profile of the temperature inside the bar.

Solution: One can imagine that the cylinder is at 50 �C initially, but its temperature

close to the wall starts increasing when it is fixed to the wall, generating an axial

profile of the temperature. At the same time, the cylinder starts exchanging heat
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with the environment, generating also a radial profile of the temperature (with a

higher temperature in the center). Since the radius is big and the thermal conduc-

tivity of the material is low, the radial profile of the temperature can be significant

and must be considered.

To model this system, first we need to define a control volume small enough to

guarantee the same temperature inside it. Since the temperature changes along x and
r, we need to consider a small ring with length Δx and thickness Δr as the control
volume, as shown in Fig. 4.17. The control volume for this problem can be

visualized as an intersection of the control volumes drawn in Figs. 4.10 and 4.15.

Since one wants to know the temperature profiles after a steady state is reached,

and since there is no chemical reaction, the conservation law applied to the control

volume shown in Fig. 4.17 yields:

E� L ¼ 0

The heat enters the control volume at x and r, and leaves it at xþΔx and rþΔr.
The heat flow inside the control volume is only by conduction. The convection

occurs only at r ¼ R ¼ 0.3 m (for all x) and at x ¼ L ¼ 1 m (for all r), which are

regions outside the control volume.

Now, using the concept of the infinitesimal variation of the dependent variable

with an independent variable, Tables 4.3 and 4.4 can be created.

Observe that the cross-sectional area from where the energy goes in a radial

direction is 2πrΔx, which is similar to the area found in Example 4.8, except for the

length, which was L and now is Δx. The cross-sectional area from where the energy

passes axially is 2πrΔr, which is the area of the base of the control volume, also

calculated in Example 4.8.

Table 4.3 Energy entering and leaving the control volume in an axial direction

x (enters) xþΔx (leaves)
Axial flow of energy by conduction (J/h) �k2πrΔr

dT

dx
�k2πrΔr

dT

dx
þ d

dx
�k2πrΔr

dT

dx

� �
Δx

Δx
T = 70 0C 

Tenv = 25 0C

Δr

Fig. 4.17 Cylindrical bar

with heat transfer in axial

and radial directions
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Considering the thermal conductivity constant along the cylindrical bar, we can

use the terms in Tables 4.3 and 4.4 to obtain the energy balance. After simplifying

terms, the energy balance becomes:

r
∂2

T

∂x2
þ ∂
∂r

r
∂T
∂r

� �
¼ 0 ð4:35Þ

This PDE can be solved using four boundary conditions (at x ¼ 0, r ¼ 0, x ¼ L,
and r ¼ R). It is known that the temperature at x ¼ 0 is equal to the temperature of

the wall (70 �C). At x ¼ L, the heat that comes from conduction goes out by

convection. The same thing occurs at r¼ R. One can imagine there is a symmetrical

radial profile of the temperature inside the cylinder, with a maximum temperature in

the center. This symmetry condition gives us the fourth condition needed to solve

the PDE: at r ¼ 0, dT/dr ¼ 0. So we can write the following boundary conditions:

At x ¼ 0: T ¼ 70
∘
C ð4:36Þ

At x ¼ L: �k2πrΔr
dT

dx
¼ h2πrΔrðT � TenvÞ or

dT

dx
¼ � h

k
ðT � TenvÞ ð4:37Þ

At r ¼ 0:
dT

dr
¼ 0 ð4:38Þ

At r ¼ R: �k2πrΔx
dT

dr
¼ h2πrΔxðT � TenvÞ or

dT

dr
¼ � h

k
ðT � TenvÞ ð4:39Þ

Observe that despite the exchange of heat by convection between the cylinder

and the environment, this convection term does not appear in the energy balance,

only in the boundary conditions. This is because the control volume does not

interface with the environment.

If one wants to know the axial and radial profiles of the temperature in the

transient regime, the accumulation term shown in Table 4.5 must be added to the

conservation law.

Keeping in mind that the control volume is 2πrΔrΔx, the PDE that represents

this system in the transient regime will be:

ρcp
k

∂T
∂t

¼ ∂2
T

∂x2
þ 1

r

∂
∂r

r
∂T
∂r

� �
ð4:40Þ

Besides boundary conditions (4.36)–(4.39), the initial condition needed to solve

Eq. (4.40) is:

At t ¼ 0, T ¼ 50 �C for the entire bar

Table 4.4 Energy entering and leaving the control volume in a radial direction

r (enters) rþΔr (leaves)
Radial flow of energy by conduction (J/h) �k2πrΔx

dT

dr
�k2πrΔx

dT

dr
þ d

dr
�k2πrΔx

dT

dr

� �
Δr
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Example 4.11 This next example will revisit Example 4.9, but now we will

assume that the reactor exhibits also radial profiles of the concentration and

temperature. The tubular reactor, where the reaction A !k
0

B takes place, has a

jacket that is at a constant temperature of Tj
�C. All operating conditions and

properties are the same of the as those in Example 4.9. One wants to know the

axial and radial profiles of the temperature and concentration inside this reactor.

Solution: The main difference between the solution presented in Example 4.9 and

the one presented herein is the definition of the control volume. Since we are

considering that both axial and radial variations are important, we need to consider

a small ring with length Δx and thickness Δr to represent the control volume, as

shown in Fig. 4.18 (compare this with Fig. 4.16).

The conservation law applied to this example generates the same expressions

presented previously (rewritten below). Remember that we are considering a steady

state (the accumulation term is equal to zero).

Mass Balance for the reactant A ) E� L� C ¼ 0

Mass Balance for the product B ) E� Lþ G ¼ 0

Energy Balance for the reactor ) E� Lþ G=C ¼ 0

The amounts of material and energy that enter and leave the control volume can

be obtained using the concept of infinitesimal variation of the dependent variable

with the independent variable.

As was done in Example 4.9, we will also consider the diffusion of mass and

energy. The amounts of reactant A, product B, and energy that enter and leave the

control volume in the direction x can be seen in Table 4.6.

Observe that Table 4.6 is very similar to Table 4.2; however, the terms are

adapted in order to consider the new control volume.

Q (m3/h) 
CAin (mol/m3)
Tin

0C 

Q (m3/h) 
CAf (mol/m3)
CBf (mol/m3)
Tf

0C 

L (m)

R (m)

Tj
0C

Δx

Δr

Fig. 4.18 Tubular reactor with changes in axial and radial directions

Table 4.5 Calculus of the accumulation term for the cylindrical bar

t tþΔt
Amount of energy in the control volume (J)

VρcpT VρcpT þ dðVρcpTÞ
dt

Δt
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The cross-sectional area for the diffusion terms in the x direction change from πR2

to 2πrΔr. The flow rateQ is related to the total cross-sectional area (πR2). However,

the amount of fluid crossing in an axial direction the new cross-sectional area

(2πrΔr) is much smaller and is proportional to this new area. In this way, the flow

rate crossing the new control volume axially is Q 2πrΔr
πR2

� �
.

The amounts of reactant A, product B, and energy that enter and leave the

control volume in a radial direction can be seen in Table 4.7. The fluid is fed

only in an axial direction, so the contribution due to the fluid movement in a radial

direction is zero. The differences in the concentration and temperature along the

radius are due to diffusion of mass and heat conduction. Observe that in Table 4.7,

the cross-sectional area for the radial diffusion is 2πrΔx (the same used in

Table 4.4). Also observe that the heat transfer by convection is not considered in

the conservation law and will appear only in the boundary conditions, because the

control volume does not interface with the jacket.

The generation and consumption terms are represented in the same way as was

done in Example 4.9; however, the volume is calculated differently.

Table 4.6 A, B, and energy entering and leaving the control volume in an axial direction

x (enters) xþΔx (leaves)
Flow of A due to fluid

movement (mol/h)
Q

2πrΔr
πR2

� �
CA Q

2πrΔr
πR2

� �
CA þ d

dx
Q

2πrΔr
πR2

� �
CA

� �
Δx

Flow of A due to diffusion

(mol/h)
�D2πrΔr

dCA

dx
�D2πrΔr

dCA

dx
þ d

dx
�D2πrΔr

dCA

dx

� �
Δx

Flow of B due to fluid move-

ment (mol/h)
Q

2πrΔr
πR2

� �
CB Q

2πrΔr
πR2

� �
CB þ d

dx
Q

2πrΔr
πR2

� �
CB

� �
Δx

Flow of B due to diffusion

(mol/h)
�D2πrΔr

dCB

dx
�D2πrΔr

dCB

dx
þ d

dx
�D2πrΔr

dCB

dx

� �
Δx

Flow of energy due to fluid

movement (J/h)
Q

2πrΔr
πR2

� �
ρcpT Q

2πrΔr
πR2

� �
ρcpT þ d

dx
Q

2πrΔr
πR2

� �
ρcpT

� �
Δx

Flow of energy due to con-

duction (J/h)
�k2πrΔr

dT

dx
�k2πrΔr

dT

dx
þ d

dx
�k2πrΔr

dT

dx

� �
Δx

Table 4.7 A, B, and energy entering and leaving the control volume in a radial direction

r (enters) rþΔr (leaves)
Flow of A due to diffusion (mol/h) �D2πrΔx

dCA

dr
�D2πrΔx

dCA

dr
þ d

dr
�D2πrΔx

dCA

dr

� �
Δr

Flow of B due to diffusion (mol/h) �D2πrΔx
dCB

dr
�D2πrΔx

dCB

dr
þ d

dr
�D2πrΔx

dCB

dr

� �
Δr

Flow of energy by conduction (J/h) �k2πrΔx
dT

dr
�k2πrΔx

dT

dr
þ d

dr
�k2πrΔx

dT

dr

� �
Δr
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Rate of reaction mol=hð Þ ) k
0
CA V

Heat of reaction J=hð Þ ) k
0
CA V �ΔHRð Þ

in which V¼ 2πrΔrΔx ¼ control volume (m3).

All terms in Tables 4.6 and 4.7 plus the reaction terms are combined to generate

the system of equations that represent this reactor, as follows:

Balance for reactant A:

� Q

πR2

∂CA

∂x
þ D

∂2
CA

∂x2
þ D

r

∂
∂r

r
∂CA

∂r

� �
� k

0
CA ¼ 0 ð4:41Þ

Balance for product B:

� Q

πR2

∂CB

∂x
þ D

∂2
CB

∂x2
þ D

r

∂
∂r

r
∂CB

∂r

� �
þ k

0
CA ¼ 0 ð4:42Þ

Balance of energy:

� Qρcp
πR2

∂T
∂x

þ k
∂2

T

∂x2
þ k

r

∂
∂r

r
∂T
∂r

� �
þ k

0
CAð�ΔHRÞ ¼ 0 ð4:43Þ

Observe that the termsΔx andΔr can be simplified. It is assumed thatQ,D, ρ, cp,
and k are constant and can be removed from the derivative. Note thatQ/πR2, present

in Eqs. (4.41), (4.42) and (4.43), is the fluid velocity.

To solve this equation system, we need four boundary conditions: two in the

x‐ and two in the r‐axes. The two conditions in x (at x¼ 0 and x¼ L ) are the same as

those presented in Example 4.9. As occurred in Examples 4.8 and 4.10, the

boundary condition at r ¼ 0 is obtained due to the radial symmetry. The other

condition is given in r¼R. For the energy balance, we can assume that the heat that

reaches r¼R by conduction leaves the tube by convection, exchanging heat with

the jacket. This provides us with a boundary condition at r¼R, as per Examples 4.8

and 4.10. For the mass balances, the boundary condition at r¼R is based on the fact

that the tube wall is nonpermeable for mass transport, so the radial gradients of the

concentration at r¼R are equal to zero. So the set of conditions used to solve the

system of PDEs is:

At x ¼ 0, for 0 � r � R: CA ¼ CAin
;CB ¼ CBin

¼ 0; T ¼ Tin ð4:44Þ

At r ¼ 0, for 0 � x � L:
dCA

dr
¼ dCB

dr
¼ dT

dr
¼ 0 ð4:45Þ

At x ¼ L, for 0 � r � R: CA ¼ CAf
;CB ¼ CBf

¼ 0; T ¼ Tf ð4:46Þ

At r ¼ R, for 0 � x � L:
dCA

dr
¼ 0;

dCB

dr
¼ 0;

dT

dr
¼ � h

k
ðT � TjÞ ð4:47Þ
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Since there are radial profiles of the concentration and temperature along all of

the reactor length, these radial profiles also exist at the exit of the reactor. The

concentration and temperature values considered in the boundary condition x¼ L
could be an average of the values over the radius.

If a mathematical model to predict this reactor in the transient regime is also

needed, the accumulation terms must be considered in the conservation law, as

calculated in Table 4.8.

The model to represent the reactor in the transient regime can be represented by

Eqs. (4.48), (4.49) and (4.50) (compare this with the model in a steady-state regime

Eqs. (4.41), (4.42) and (4.43):

Balance for reactant A:

∂CA

∂t
¼ � Q

πR2

∂CA

∂x
þ D

∂2
CA

∂x2
þ D

r

∂
∂r

r
∂CA

∂r

� �
� k

0
CA ð4:48Þ

Balance for product B:

∂CB

∂t
¼ � Q

πR2

∂CB

∂x
þ D

∂2
CB

∂x2
þ D

r

∂
∂r

r
∂CB

∂r

� �
þ k

0
CA ð4:49Þ

Balance of energy:

ρcp
∂T
∂t

¼ � Qρcp
πR2

∂T
∂x

þ k
∂2

T

∂x2
þ k

r

∂
∂r

r
∂T
∂r

� �
þ k

0
CAð�ΔHRÞ ð4:50Þ

The boundary conditions in r and x are the same as those presented previously

(Eqs. (4.44), (4.45), (4.46) and (4.47)), and the initial condition needed to solve the

transient model is:

At t ¼ 0: CA ¼ CA0
; CB ¼ CB0

; T ¼ T0 ð4:51Þ
The initial conditions at t ¼ 0 (CA0

, CB0
, and T0) can be a constant or can vary

with x and/or r (functions of x and/or r).
Finding boundary conditions to solve differential equations generated from the

modeling can be very tricky. Besides, depending on the boundary conditions

used, numerical solution of the models can become less or more complicated.

Table 4.8 Calculus of accumulation terms for the tubular reactor

t tþΔ t

Amount of A (mol)
2πrΔrΔxCA 2πrΔrΔxCA þ d

dt
ð2πrΔrΔxCAÞΔt

Amount of B (mol)
2πrΔrΔxCB 2πrΔrΔxCB þ d

dt
ð2πrΔrΔxCBÞΔt

Amount of energy

in the control volume (J)
2πrΔrΔxρcpT 2πrΔrΔxρcpT þ d

dt
ð2πrΔrΔxρcpTÞΔt
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Some works in the literature, such as Boyadjiev (2010), show examples applying

boundary conditions in different ways.

Chapters 3 and 4 provide enough information to develop models for pieces of

equipment used in chemical plants at different levels of complexity. Depending on

the complexity of the system being modeled, different kinds of equations are

generated. It is possible to obtain algebraic equations, ODEs (of first and second

degrees), and PDEs (varying with 2, 3, or 4 independent variables). The second part

of this book will focus on numerical solution of the equations that can be generated

from the modeling. Chapters 5, 6, and 7 will solve systems represented by algebraic

equations, ODEs, and PDEs, respectively, adopting Excel as a computational tool.

Proposed Problems

4.1) Imagine a very thin disc of thickness δ initially at 50 �C. This disc has a small

orifice in the middle, in which a pin at a temperature of 100 �C is engaged. This disk

exchanges heat with the environment, which is at 25 �C. Assume that both the

environmental and pin temperatures do not change over time. Also assume there is

no temperature profile along the thickness δ of the disc.

(a) Make a sketch of how the disc temperature would vary along the radius and

over time until a steady state is reached. Draw curves on the same graph.

(b) Do the modeling of this system and find the PDE to represent how the

temperature changes along the radius and over time.

(c) Define all initial/boundary conditions necessary to solve this PDE.

4.2) Consider the heat conduction on an extended surface represented by the fin

shown in the Figure below, with dimensions L � L � 10 L. The fin, which was

initially at 25 �C, is fixed to a wall at 150 �C. The fin exchange heat with the

environment, which is at 25 �C. Assume that the wall and environmental temper-

atures do not change over time.

(a) Find the PDE that represents the fin temperature along x, y, and z, and over time.

(b) Find the initial/boundary necessary to solve the PDE.

T = 150 0C 

Tenv = 25 0C

10 L
L

L

z

y

x
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4.3) Imagine a solid cone, as depicted below. The lower and upper bases of the cone

are 2 cm and 12 cm, respectively, and its height is 5 cm. This cone was initially at

35 �C, and the environmental temperature (Tenv) is 25
�C. The lower base of the

cone is submitted to a temperature Tb equal to 180 �C. The lateral of the cone is

insulated, and the cone exchanges heat with the environment only through the upper

base. Assume there are no radial and angular profiles of the temperature in the cone

and that Tb and Tenv do not change with time.

(a) Define the ODE that represents the variation of temperature along the height of

the solid cone in a steady state. (Hint: represent the radius of the cone as a

function of the height to obtain the ODE).

(b) Define the initial/boundary conditions needed to solve the ODE.

Tenv = 25 0C

12 cm

2 cm

5 cm

Tb =180 0C

4.4) Imagine two tubular reactors with radius R1 (m) and R2 (m), set in a consec-

utive way, in which the exothermic reaction A ! B takes place. This system

exchanges heat with the environment, which is at Tenv (
�C). The radius of the first

reactor is three times the radius of the second (R1¼ 3R2). The lengths of the first and

second reactors are L1 and L2 (m), respectively. Reactant A is fed into the reaction

system at concentrationCAin
(mol/m3), temperature Tin (

�C), and flow rate Q (m3/h),

as depicted by the figure below. There is a sample collection between the two

reactors, so it is possible to know the concentration and temperature of the reaction

mixture at this point.

Q, Tin, CAin

Tenv

Q, T, CA CB
R1

R2

L1

L2

Samples collection 
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Assume that the reactors operate in a steady state. Consider that all properties of

the fluid (density, specific heat, thermal conductivity, mass diffusivity) are the same

for both reactors and do not vary along the length. The global coefficient of the heat

transfer by convection for this reaction system is h (J/h m2 �C).

(a) Draw the control volume and develop the energy and mass balance for reac-

tant A in the first reactor. In this case, consider mass and energy diffusion only

in an axial direction. Define all boundary conditions to solve the model

equations.

(b) Draw the control volume and develop the energy and mass balance for reac-

tant A in the second reactor. In this case, consider the mass and energy diffusion

only in a radial direction. Define all boundary conditions to solve the model

equations.

4.5) Imagine a solid sphere with radius Rs, hung by a very thin string in the center of

a closed cylindrical recipient full of a fluid initially at 50 �C, as depicted in the

figure below. The air that surrounds the cylinder is at 25 �C, and its temperature

remains invariable over time. The solid sphere was at 100 �C before being

immersed in the cylinder. It can be assumed that all properties of the fluid and of

the sphere do not change over time. Assume that the temperature of the fluid is

homogeneous along the entire cylinder.

Tenv = 25 0C
Rs

Rc

(a) Consider that the sphere is made of a very conductive material and that its

radius Rs is very small; in a way, the temperature profiles inside the sphere are

neglectable. Develop an energy balance for the sphere and for the fluid, and

obtain the two differential equations that represent this system over time.

Define the initial conditions.

(b) Now consider that the sphere is made of a material with very low thermal

conductivity, and its radius Rs is big enough to make the radial temperature

profiles inside it significant. Develop the energy balances for this new situation,

and define all initial/boundary conditions. Is the energy balance for the fluid

different in this case?
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For cases (a) and (b), make assumptions for the models and define parameters if

necessary. Remember that the area and volume of a sphere are 4πR2 and (4/3)πR3,

respectively.

4.6) Imagine a tubular reactor in which an irreversible reaction A! B takes place.

Reactant A is fed into the reactor at a flow rateQ (m3/h) and in a concentration (CAin
)

equal to 1 mol/L. The reactor has a jacket with a thermal fluid at Tj
�C flowing in

concurrently and exchanging heat with the reactional mixture and with the envi-

ronment (at a constant temperature Tenv ¼ 25 �C). Assume there are no radial and

angular profiles inside the reactor and jacket and that they operate in a steady state.

Also assume that the diffusional effects in an axial direction are important. Find the

differential equations system that represents the variation in the concentration of

reactant A, the temperature of the reaction mixture, and the temperature of the

jacket along the length. Find the boundary conditions needed to solve the equations

system. Define the parameters and the hypotheses for your model when needed.

4.7) Imagine that a solid cylinder with a radius and length of 2 m and 10 m,

respectively, initially at 30 �C, is fixed between two surfaces at constant tempera-

tures (100 �C on the right and 20 �C on the left).

(a) Assuming there is no heat exchange with the environment (an insulated cylin-

der), do a sketch of the axial profiles of the temperature in the cylinder until a

steady state is reached.

(b) Assuming that the thermal conductivity of the material is equal to 1 J/h m �C,
what are the temperature and the energy flux at the positions x ¼ 2 m, 5 m, and

9 m in a steady state?
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Chapter 5

Solving an Algebraic Equations System

In this chapter, we will see a practical way to solve an algebraic equations system

obtained from lumped-parameters models in a steady state. There are many differ-

ent numerical methods to solve linear and nonlinear algebraic equations, but in this

chapter just a few alternatives will be used, because the main objective of this book

is to obtain a fast, robust, and simple way to simulate chemical engineering

problems, not to study in detail the different numerical methods available in the

literature. In order to make the problem solution even easier, all simulations will be

done using Excel.

Sections 5.1 and 5.2 deal with problems involving linear and nonlinear algebraic

equations systems, respectively. Only one numerical method for each section will

be presented. Section 5.3 will present a third numerical approach, which can be

used for both linear and nonlinear equations.

5.1 Problems Involving Linear Algebraic Equations

This chapter will provide only the essential information about matrixes needed for

solution of algebraic equations. More information about this issue can be found in

the specific literature (Isaacson and Keller 1966; Chapra and Canale 2005; Burden

et al. 2014; etc).

The first information needed to understand this chapter is that a linear algebraic

equations system can be represented as follows:

The original version of this chapter was revised. An erratum to this chapter can be found at

https://doi.org/10.1007/978-3-319-66047-9_8

© Springer International Publishing AG 2018

L.M.F. Lona, A Step by Step Approach to the Modeling of Chemical
Engineering Processes, https://doi.org/10.1007/978-3-319-66047-9_5
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a11x1 þ a12x2 þ � � � þ a1nxn ¼ b1

a21x1 þ a22x2 þ � � � þ a2nxn ¼ b2

. . . . . . . . . . . .

an1x1 þ an2x2 þ � � � þ annxn ¼ bn

In which aij and bi are known numerical coefficients, and xj are variables we

want to calculate.

Or, in a matrix form:

½A�fXg ¼ fBg ð5:1Þ
in which:

½A� ¼
a11 � � � a1n

⋮ ⋱ ⋮

am1 � � � amn

2
664

3
775, Xf g ¼

x1

⋮

xn

8>><
>>:

9>>=
>>; and Bf g ¼

b1

⋮

bn

8>><
>>:

9>>=
>>;

The next two concepts to remember are the definitions of the identity matrix and
the inverse of a matrix.

The identity matrix [I] is the matrix that plays, in the matrix algebra, the same

role of the number "1" in the number system. It has the number 1 in the main

diagonal and zeros elsewhere.

I ¼

1 0 � � � 0

0 1 � � � 0

⋮ ⋮ ⋱ ⋮

0 0 � � � 1

2
666664

3
777775

Given a matrix A, we can write:

A½ � I½ � ¼ I½ � A½ � ¼ A½ � ð5:2Þ
The inverse of a matrix A is represented by [A]�1 such that:

A½ � A½ ��1 ¼ A½ ��1 A½ � ¼ I½ � ð5:3Þ
Keeping these two concepts in mind, the two sides of Eq. (5.1) can be multiplied

by [A]�1 to yield:

A½ ��1 A½ � Xf g ¼ A½ ��1 Bf g ð5:4Þ
Applying Eqs. (5.2) and (5.3) on the left side of Eq. (5.4) we obtain:

Xf g ¼ A½ ��1 Bf g ð5:5Þ
So in order to solve a linear algebraic equations system and find the vector {X},

the matrix [A] (matrix of coefficients) must be inverted, and this inverted matrix

must be multiplied by the vector B.
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In order to better understand how Eq. (5.5) can be used to solve linear algebraic

equations, Example 5.1 presents a practical situation.

Example 5.1 Let us imagine three perfectly stirred tanks, interconnected as per

Fig. 5.1. This system is also presented in Chapra and Canale (2005).

At the beginning, there is the same volume of pure water in all tanks, and

pure water is fed into tanks 1 and 2 at rates Q01 and Q02 (m
3/min), respectively.

This system has a recycle, and part of the effluent of tank 3 returns to tank 1, at a

rate Q31 (m3/min). During the entire process, the volume of liquid in the three

tanks remains constant. The amounts of liquid that leave tanks 1 and 2 to enter

tanks 2 and 3, respectively, are Q12 and Q23 (m3/min), and the amount of water

that leaves tank 3 is Q33 (m
3/min). Table 5.1 shows numerical values for all flow

rates.

At a certain point, the streams Q01 and Q02 start feeding tanks 1 and 2 with a

NaOH solution with concentrations of 10 mol/m3 (C01) and 1 mol/m3 (C02),

respectively, instead of pure water, although all flow rates remain the same.

What are the NaOH concentrations in all of the tanks when a steady state is

reached?

Solution:
The application of conservation law for the three tanks in steady state will

yield E � L ¼ 0. The NaOH concentrations in tanks 1, 2, and 3 will be defined

as C1, C2, and C3, respectively. In this way, the mass balance for the three

tanks can be written generating the linear algebraic equations system shown in

Table 5.2.

Q01 Q12 Q23 Q33

Q31

Q02

Fig. 5.1 Three interconnected tanks

Table 5.1 Volumetric flow rates for the three interconnected tanks

Q01 Q02 Q31 Q12¼Q01 +Q31 Q23¼Q02 +Q12 Q33¼Q23�Q31 Units

5 1 2 7 8 6 m3/min

Table 5.2 Mass balance for

the three tanks
Tank Units (mol/min)

1 Q01C01�Q12C1 +Q31C3¼ 0

2 Q12C1�Q23C2 +Q02C02¼ 0

3 Q23C2�Q33C3�Q31C3¼ 0
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Assuming the numerical values for all flow rates (Table 5.1) and for C01 and C02,

the equations in Table 5.2 become:

�7C1 þ 2C3 ¼ �50

7C1 � 8C2 ¼ �1

8C2 � 8C3 ¼ 0

The matrix form for this system of linear algebraic equations can be written as

follows:

[A] {C}¼ {B}, in which:

A½ � ¼
�7 0 2

7 �8 0

0 8 �8

2
64

3
75, Cf g ¼

C1

C2

C3

8><
>:

9>=
>; and Bf g ¼

�50

�1

0

8><
>:

9>=
>;

Keeping in mind the Eq. (5.5), the concentrations in the three tanks can be

obtained by solving the expression below:

Cf g ¼ A½ ��1 Bf g ð5:6Þ
At this point, it is necessary to know how to handle inversion and multiplication

of a matrix, and we will do that using Excel. In this book, we will use Excel 2016;

however, there is not much difference among versions, and you can get some tips by

using the F1 command (Help) in your Excel spreadsheet if you are using a different
version of Excel.

In order to invert a matrix, it has to be written in the cells of the Excel

spreadsheet, as shown on the left side of Fig. 5.2. After that, select the space in

which you want to enter the inverted matrix (see the right side of Fig. 5.2), type in

the function space at the top of your spreadsheet ¼MINVERSE( then select the

matrix you want to invert (the one on the left side) and observe in the function space

that the notation C4:E6 (the original matrix you want to invert) will appear.

Fig. 5.2 Inverting a matrix using Excel
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Finally, close the parentheses, keep the Ctrl and Shift keys pressed, and press

Enter. The inverted matrix will appear, as shown in Fig. 5.3.

In order to obtain {C} (the concentrations in the three tanks), [A]�1 (the inverted

matrix of A) has to be multiplied by vector {B}, as per Eq. (5.6). To do that in Excel,
follow these steps:

(1) Write vector {B}, as per the left side of Fig. 5.4.
(2) Select the cells where vector {C} has to be written (see the right side of

Fig. 5.4).

(3) In the function space (at the top of the spreadsheet in Fig. 5.4), type¼MMULT(
then select the matrix [A]�1, followed by a semicolon, select the vector {B},
and close the parentheses, as per Fig. 5.5.

(4) Keep the Ctrl and Shift keys pressed, and press Enter. The vector C will appear,

as shown in Fig. 5.5.

Fig. 5.3 Matrix A inverted, using Excel 2016

Fig. 5.4 Multiplying a matrix in Excel
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Easily, we can obtain the concentrations in tanks 1, 2, and 3 in a steady state

(C1 ¼ 9.571 and C2 ¼ C3 ¼ 8.500).

After learning how to solve linear algebraic equations using Excel, let us solve

one more example, but this time considering the energy balance.

Example 5.2 Figure 5.6 shows three tanks in series used to preheat a

multicomponent oil solution before it is fed into a distillation column for separation.

This system was presented in Chap. 3 (Proposed Problem 3.7), but here we will

consider the system in a steady state.

Saturated steam at a temperature of 250 �C condenses within a coil immersed in

each tank. The oil is fed into the first tank at the rate of 100 kg min�1 and there is a

recycle of 20 kg min�1 from tank 3 to tank 1. The flow rates into the second and the

third tanks are 120 kg min�1, since we assume that the volumes of the three tanks do

not change over time. We also assume that the tanks are well mixed, so the

temperature inside each tank is uniform, and that the specific heat, cp, of the oil

for the three tanks is 2.0 kJ kg�1 �C�1.

Fig. 5.5 Concentrations in the three tanks obtained by Excel

T0 = 200C T1 T2 T3

20kg/min

100kg/min

steam steam steam

Fig. 5.6 Series of tanks for oil heating
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For each tank, there is heat exchange between oil and steam, and the product

of the heat transfer coefficient (U ) and the area (A) of the coil is 10 kJ min�1 �C�1

(UA ¼ 10 kJ min�1 �C�1).

The conservation law applied to each tank yields E � L¼ 0. Table 5.3 shows all

terms needed to build the energy balance for the three tanks.

The linear algebraic equations that represent the energy balance for the series of

three tanks can be seen below.

cpð100T0 þ 20T3 � 120T1Þ þ UAðTsteam � T1Þ ¼ 0

cpð120T1 � 120T2Þ þ UAðTsteam � T2Þ ¼ 0

cpð120T2 � 100T3 � 20T3Þ þ UAðTsteam � T3Þ ¼ 0

Considering numerical values and rearranging terms, the final linear algebraic

equations are:

�250T1 þ 40T3 ¼ �6500

240T1 � 250T2 ¼ �2500

240T2 � 250T3 ¼ �2500

Figure 5.7 shows the solution for this linear problem of energy balance using

Excel. It can be observed that in a steady state, the temperatures in tanks 1, 2, and

3 are 34.18, 42.81, and 51.10 �C, respectively.

Table 5.3 Energy balance for the three tanks

Tank Enters (kJ/min) Leaves (kJ/min) Exchanges heat by convection (kJ/min)

1 100 cp T0þ 20 cp T3 120 cp T1 UA (Tsteam – T1)

2 120 cp T1 120 cp T2 UA (Tsteam – T2)

3 120 cp T2 100 cp T3þ 20 cp T3 UA (Tsteam – T3)

Fig. 5.7 Solution for the series of three tanks for oil heating using Excel
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Observe that the energy balance for this system does not depend on the tanks’
temperature at the beginning (at time equal to zero). That means that after a steady

state is reached, the temperatures inside the tanks will always be the ones shown in

Fig. 5.7, no matter what the initial conditions are. Moreover, it can be observed that

the volume of the tanks is also not present in the energy balance. We can imagine

that the smaller the volumes, the faster a steady state is reached, but the tempera-

tures in a steady state will always be the ones in Fig. 5.7.

5.2 Problems Involving Nonlinear Algebraic Equations

There are many numerical methods to solve nonlinear algebraic equations, but in

this book only the Newton–Raphson (NR) method will be considered. Other

numerical methods can be found in the literature (Dahlquist and Bj€orck 1974;

Hornbeck 1975; Conte and de Boor 1980; Faires and Burden 2013, just to mention

a few).

Imagine a function f(x) that varies with x (independent variable) according to

Fig. 5.8. We can see that this function has two roots (the points where the curve

cross the x-axis). The Newton–Raphson method assumes an initial guess for the

root (in our case, x0, as shown in Fig. 5.8) and finds successively better approxi-

mations of the root (x1, x2, etc).
Starting with the initial guess x0, the function is approximated by its tangent line,

which intercepts the x-axis at x1. The value x1 is a better approximation of the root

than the initial guess x0. We can repeat this procedure one more time to obtain x2,
even closer to the root. The NR method is an iterative method, and after a few

iterations, the root can be found.

Imagine an angle α generated from a tangent line drawn from the initial guess x0.
Numerically, the NR method can be easily represented applying the concept of the

derivative and tangent.

xx1 x0x2

f(x)

α

Fig. 5.8 Visualization of

the Newton–Raphson

(NR) method to find the root

of the function f(x)
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tan α ¼ f x0ð Þ � 0

x0 � x1
¼ f 0 x0ð Þ so x1 ¼ x0 � f x0ð Þ

f 0 x0ð Þ ð5:7Þ

The NR method requires a good initial guess and finds just one root, usually one

closer to the initial guess. Figure 5.9 shows some situations in which the NRmethod

can fail. Observe that if in any iteration, f 0(xi) is close to zero, the method does not

converge (observe Fig. 5.9 and the denominator in Eq. 5.7). The method can also

oscillate around a local minimum (see the right side of Fig. 5.9).

Section 5.2.1 will demonstrate how to apply the NR method to solve nonlinear

algebraic equations systems.

5.2.1 Demonstration of the NR Method to Solve a Nonlinear
Algebraic Equations System

Consider the continuous stirred tank reactor (CSTR) presented in Example 3.7. The

system operates in a steady state regime and the reaction Aþ B!k C takes place. In

order to make the demonstration of the NR method more didactic, let us consider an

isothermal CSTR, so the energy balance is not necessary. Assume that the CSTR

operates at a constant temperature of 307 K. Moreover, let us consider mass

balances only for reactants A and B, which are rewritten as follows:

Mass balance for A mol=sð Þ: Q CAin
� CAð Þ � kCACBV ¼ 0 ð3:12Þ

Mass balance for B mol=sð Þ: Q CBin
� CBð Þ � kCACBV ¼ 0 ð3:13Þ

f(x)

xx0x1 x2

root

f´(xi) = 0

xi

Fig. 5.9 Situations in which the Newton–Raphson (NR) method can fail. Left: f
0
(xi) is very close

to zero. Right: The method oscillates around a local minimum
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Considering the numerical values for CAin
, CBin

, and Q (Table 3.2), and for

V (Table 3.1), and assuming that k is equal to 0.06 m3/mol min, the mass balances

become:

Mass balance for A mol=sð Þ :CA þ 0:06 CACB ¼ 200 ð5:8Þ
Mass balance for B mol=sð Þ :CB þ 0:06 CACB ¼ 200 ð5:9Þ

We will start demonstrating the NR method by calling Eqs. (5.8) and (5.9) as

functions u(CA,CB) and v(CA,CB), respectively.

u CA;CBð Þ ¼ CA þ 0:06 CACB � 200 ¼ 0 ð5:10Þ
v CA;CBð Þ ¼ CB þ 0:06 CACB � 200 ¼ 0 ð5:11Þ

Expanding functions u and v in the Taylor series, we obtain:

uiþ1 ¼ ui þ CAiþ1
� CAi

� � ∂u
∂CA

� �
i

þ CBiþ1
� CBi

� � ∂u
∂CB

� �
i

ð5:12Þ

viþ1 ¼ vi þ CAiþ1
� CAi

� � ∂v
∂CA

� �
i

þ CBiþ1
� CBi

� � ∂v
∂CB

� �
i

ð5:13Þ

Remember that the estimates of the roots CA and CB correspond, according to the

NR method, to the values of CA and CB that make uiþ 1 and viþ 1 equal to zero.

In this way, considering uiþ 1¼ viþ 1¼ 0 and rearranging Eqs. (5.12) and (5.13), we

obtain:

∂ui
∂CA

CAiþ1
þ ∂ui
∂CB

CBiþ1
¼ �ui þ CAi

∂ui
∂CA

þ CBi

∂ui
∂CB

ð5:14Þ

∂vi
∂CA

CAiþ1
þ ∂vi
∂CB

CBiþ1
¼ �vi þ CAi

∂vi
∂CA

þ CBi

∂vi
∂CB

ð5:15Þ

Equations (5.14) and (5.15) can be written in a matrix form, as follows:

∂ui
∂CA

∂ui
∂CB

∂vi
∂CA

∂vi
∂CB

2
6664

3
7775 CAiþ1

CBiþ1

� �
¼ � ui

vi

� �
þ

∂ui
∂CA

∂ui
∂CB

∂vi
∂CA

∂vi
∂CB

2
6664

3
7775 CAi

CBi

� �

or:

Z½ �i Cf giþ1 ¼ � Ff gi þ Z½ �i Cf gi ð5:16Þ
in which:
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∂ui
∂CA

∂ui
∂CB

∂vi
∂CA

∂vi
∂CB

2
66664

3
77775¼ Z½ �i ¼ Jacobian Matrix in i

ui

vi

( )
¼ Ff gi ¼ Function at i

CAi

CBi

( )
¼ Cf gi ¼ Initial guess in i

CAiþ1

CBiþ1

( )
¼ Cf giþ1 ¼ NR Prediction in iþ 1

Observe that, if initial guesses for the concentrations of A and B ({C}i) are
given, the matrix [Z]i and the vector {F}i can be calculated. In this way, the

concentrations of A and B for the next iteration ({C}iþ 1) can be obtained by

Eq. (5.16).

If the matrix [Z]i and the vector {C}i are multiplied and the result is added to

�{F}i, the right side of Eq. (5.16) can be written in a simpler way and Eq. (5.16)

can be expressed by:

Z½ �i Cf giþ1 ¼ Bf gi ð5:17Þ
in which:

Bf gi ¼ � Ff gi þ Z½ �i Cf gi
Equation (5.17) represents a linear algebraic equations system and can be solved

by multiplying both sides of Eq. (5.17) by the inverse matrix of [Z]i, as presented in
Sect. 5.1, to yield:

Cf giþ1 ¼ Z½ ��1
i Bf gi ð5:18Þ

The Newton–Raphson method transforms nonlinear to linear algebraic equa-

tions, and the solution for the linearized system can be calculated as presented in

Sect. 5.1. Herein we have shown how the linearization is done; however, next time,

to solve nonlinear algebraic equations, Eq. (5.16) can be used directly.

The Jacobian matrix [Z]i in Eq. (5.16) can be found by deriving Eqs. (5.10) and

(5.11) with respect to CA and CB, to yield:

∂u
∂CA

¼ 1þ 0:06CB ð5:19Þ
∂u
∂CB

¼ 0:06CA ð5:20Þ
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∂v
∂CA

¼ 0:06CB ð5:21Þ

∂v
∂CB

¼ 1þ 0:06CA ð5:22Þ

In order to solve Example 3.7 using the NR method, initial guesses are needed.

In Table 3.2 it can be observed that A and B are fed into the reactor at a

concentration of 200 mol/m3. As they are reactants, they will be consumed, and

the exit concentrations in a steady state must be lower than 200 mol/m3. However,

let us assume, as initial guesses (condition i ¼ 0), an exit concentration of A and B

equal to 200 mol/m3. With this initial guess, all values with index i in Eq. (5.16) are
known. [Z]0 can be calculated by Eqs. (5.19), (5.20), (5.21), and (5.22), {F}0 is

obtained using Eqs. (5.10) and (5.11), and {C}0 is our own initial guess. The only

term unknown in Eq. (5.16) is {C}iþ 1, which in our case is {C}1, and represents the
concentration of A and B for the next iteration. In this way, Eq. (5.16) can be written

as follows:

13 12

12 13

" #
CA1

CB1

( )
¼ �

2400

2400

( )
þ

13 12

12 13

" #
200

200

( )

After rearranging the right side of the equation, we obtain the linear algebraic

equations system below, which can be solved using the numerical procedure

presented in Sect. 5.1.

13 12

12 13

" #
CA1

CB1

( )
¼

2600

2600

( )

After the first calculation, the concentrations of CA and CB will be CA1
¼ CB1

¼
104 mol/m3. After five iterations, the method converges and provides the concen-

trations of the reactants in a steady state. Table 5.4 shows the results for all

iterations until convergence.

Sometimes it is not easy to analytically derive equations of the model to obtain

the Jacobian matrix. When this is the case, numerical differentiation can be used, as

presented in Sect. 5.2.2.

Table 5.4 Results from the Newton–Raphson (NR) method applied to Example 3.7

Number of iterations

0 1 2 3 4 5 6

CA (mol/m3) 200 104 62.98 51.18 51.01 50.00 50.00

CB (mol/m3) 200 104 62.98 51.18 51.01 50.00 50.00
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5.2.2 Numerical Differentiation

The numerical differentiation can be easily understood using the concept of a

derivative. Consider a function f(x) varying with x. The derivative of f(x) with

respect to x can be represented by:

df xð Þ
dx

¼ f 0 xð Þ ¼ limΔx!0

f xþ Δxð Þ � f xð Þ
Δx

ð5:23Þ

Let us understand how to calculate the numerical derivative using a simple

example: find the derivative of f(x) ¼ x2 at x ¼2. The analytical derivative of this

function can be easily obtained: f 0(x)¼ 2x, and at x¼ 2, f 0(2)¼ 4. In order to

calculate the numerical derivative of this function, let us assume different values

for Δx and apply Eq. (5.23).

For Δx ¼ 0:1: f 0 2ð Þ ¼ 2þ 0:1ð Þ2 � 2ð Þ2
0:1

¼ 4:1

For Δx ¼ 0:01: f 0 2ð Þ ¼ 2þ 0:01ð Þ2 � 2ð Þ2
0:01

¼ 4:01

For Δx ¼ 0:001: f 0 2ð Þ ¼ 2þ 0:001ð Þ2 � 2ð Þ2
0:001

¼ 4:001

We can observe that the smaller Δx is, the more precise the numerical

derivative is.

The numerical derivative presented herein is the forward difference formula. It is

also possible to obtain backward and centered difference formulas. Chapter 7 will

present these two other possibilities, which can also be used to obtain the Jacobian

matrix.

In the example of the CSTR presented previously, the Jacobian Z could be

obtained numerically. Considering Δx ¼ 0.001, and the functions in Eqs. (5.10)

and (5.11), the Jacobian for the first iteration (initial guess¼CA¼CB¼ 200mol/m3)

would be:

∂u
∂CA

¼ 200þ0:001ð Þþ0:06 200þ0:001ð Þ 200ð Þ�200½ �� 200þ0:06�200�200�200½ �
0:001

¼ 13

ð5:24Þ
∂u
∂CB

¼ 200þ0:06 200ð Þ 200þ0:001ð Þ�200½ �� 200þ0:06� 200�200�200½ �
0:001

¼ 12

ð5:25Þ
∂v
∂CA

¼ 200þ0:06 200þ0:001ð Þ 200ð Þ�200½ �� 200þ 0:06�200�200� 200½ �
0:001

¼ 12

ð5:26Þ
∂v
∂CB

¼ 200þ0:001ð Þþ0:06 200ð Þ 200þ0:001ð Þ�200½ �� 200þ0:06�200�200�200½ �
0:001

¼13

ð5:27Þ
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We can observe that the numerical derivative can be used successfully to obtain

the Jacobian matrix, and this can be very helpful when an analytical derivative is

difficult to obtain. Section 5.2.3 will apply Excel to solve nonlinear algebraic

equations using the NR method.

5.2.3 Using Excel to Solve a Nonlinear Algebraic Equation
Using the NR Method

In this section, we will use Excel to solve the nonlinear algebraic equations

presented previously by Eqs. (5.10) and (5.11). Figure 5.10 presents a suggestion

for a spreadsheet in Excel, in which cells in gray represent calculations done. In

Fig. 5.10 the Jacobian matrix was calculated analytically.

The initial guesses and the value for the kinetic constant (k¼ 0.06) are written in

line 8. Line 12 calculates Eqs. (5.10) and (5.11) using the first initial guess

(CA¼CB¼ 200). Lines 13 and 14 calculate the four partial derivatives to obtain

the Jacobian matrix, also considering the initial guesses. To fill each of these six

spaces in gray, click the mouse in the cell you want to calculate, then click the

mouse in the Insert Function area and add an equals sign followed by the equations
you want calculated (Fig. 5.10 shows an example for the cell that calculates

v(CA, CB)). After that, press Enter.
In lines 17 and 18, [Z]i, [F]i and [C]i are rewritten in a vector form, using the six

values obtained previously and the initial guesses. To do that, click the mouse in the

Fig. 5.10 Solving nonlinear algebraic equations using the Newton–Raphson (NR) method and

Excel: calculating [Z]0 and {F}0
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cell where you want to type, click again in the Insert Function area, type an equals

sign, click in the corresponding cell, and press Enter.
Figure 5.11 shows how vector {B} is obtained (see also Eq. 5.17). The space in

which vector {B} will be written must be selected using the mouse, then click the

mouse in the Insert Function area, type an equals sign, type a minus sign, select all

of the vector [F]i using the mouse, and add the multiplication of matrix [Z]i and [C]i
(see details in Fig. 5.11).

The inverse of matrix ½Z�i ðrepresented by ½Z��1
i Þ and the vector {C}iþ 1 (the next

guess) are obtained as was done in Sect. 5.1 (for linear algebraic equations

problems). In this first iteration, the concentrations of A and B change from

200 to 104 mol/m3.

Now we use the value 104 as our next guess, as shown in Fig. 5.12. In order to do

that, we have to type the number 104 in the cells for the initial guesses (E8 and H8),
and all the calculations for this new guess will be done automatically because we

write a genetic algorithm (see Fig. 5.12 with new values for the second guess). This

next iteration brings the concentrations for A and B even closer to the real ones (in a

steady state, CA¼CB¼ 50 mol/m3). In three more iterations, the roots for the

nonlinear algebraic system are obtained. At the bottom of Fig. 5.12, a table has been

built with the concentrations of A and B until the convergence is obtained.

Fig. 5.11 Solving nonlinear algebraic equations using the Newton–Raphson (NR) method and

Excel: calculating {B}0 and {C}1
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Observe in Figs. 5.10, 5.11, and 5.12 that the Jacobian matrix (matrix [Z]i) is
calculated analytically. If numerical differentiation is needed, in the four cells

(F13, F14, L13 and L14) related to ∂u/∂CA, ∂u/∂CB, ∂v/∂CA, and ∂u/∂CB,

Eqs. (5.24), (5.25), (5.26), and (5.27) should be used instead of Eqs. (5.19), (5.20),

(5.21), and (5.22).

5.3 Solving Linear and Nonlinear Algebraic Equations
Using the Solver Tool

Try to again solve the problem of Sect. 5.2 imagining that the matrix [Z]i in
Fig. 5.11 is:

13 13

12 12

� 	
¼ Z½ �i

Fig. 5.12 Solving nonlinear algebraic equations using the Newton–Raphson (NR) method and

Excel: changing initial guesses for the next iteration
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You will see that it is impossible to invert the matrix [Z]i, because its determinant

is null. For a linear or nonlinear equations system, this situation can occur and the

two methods presented in Sects. 5.1 and 5.2 cannot be used. The third approach

presented in this section allows us to solve linear and nonlinear algebraic equations

systems using the Solver tool in Excel.

The Solver command appears in Excel’s Data tab. If it is not present in your

computer, you have to activate it by following these steps:

(1) Click on the File tab, click on Options, and then click on the Add-ins category.
(2) In the Manage box, click on Excel Add-ins, and then click on Go (the Add-ins

dialog box appears).

(3) In the Add-ins available box, select Solver, and click on OK.

The Solver tool finds an optimal value for one cell in a worksheet by changing

the values of some cells that you specify. To understand better, let us imagine the

nonlinear algebraic system solved in Sect. 5.2 and rewritten below:

u CA;CBð Þ ¼ CA þ 0:06 CACB � 200 ¼ 0 ð5:10Þ
v CA;CBð Þ ¼ CB þ 0:06 CACB � 200 ¼ 0 ð5:11Þ

The roots (CA and CB) for this system of equation will make u(CA,CB)¼
v(CA, CB)¼ 0. Solver can optimize just one cell, so we will optimize the cell that

represents the summation of u(CA,CB) and v(CA,CB), by making it equal to zero.

In fact, we usually use the sum of the SQUARE of the functions. This is because, in

some situations, functions can assume positive or negative values, and their sum-

mation can be zero even if individually their values are far from zero. So, we will

use u2 + v2 and not u+ v for the cell to be optimized.

In our case, the changing cells will be the cells related to CA and CB. Figure 5.13

shows the Solver tool being applied. The optimized and changing cells are in gray.

The initial guesses for CA and CB are the same as those considered previously

(CA¼CB¼ 200 mol/m3).

Observe in the function space (at the top of the spreadsheet in Fig. 5.13) how u2

was calculated. The cells E7 and E8 are used to represent CA and CB, respectively.

Cell C12 represents the cell to be optimized. When clicking on Data and then

Solver, the screen at the right side of Fig. 5.13 appears. In the Set Objective option,
click on the cell C12. Then choose the Value Of option and type 0 [i.e., a zero] in the
space straight ahead. By doing it this way, we force the functions u(CA,CB) and

v(CA,CB) to go to zero, and it is possible because Solverwill change cells E7 and E8
until it finds values for CA and CB (the roots) that make u(CA,CB) and v(CA,CB)

equal to zero. In this way, in the By Changing Variable Cells option, click on the

cells E7 and E8. After that, click on Solver and the results shown in Fig. 5.14 will

appear. Finally, you can click on OK. Observe that the optimized cell (C12) is very
close to zero, and CA¼CB ¼ 50.0 mol/m3, as expected (see Fig. 5.14).

Observe in Fig. 5.13 that there are three options for the optimization method. We

use the generalized reduction gradient (GRG) nonlinear method because our system
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is nonlinear and smooth. It is not within the scope of this book to deal with

optimization methods. The reader can find books specific to the optimization

issue in the literature (Foulds 1981; Nocedal and Wright 1999; Fletcher 2000;

Rao 2009; Edgar and Himmelblau 2001, etc.).

Our example could be solved in a different way, by using the Subject to the
Constraints box (see this box in Fig. 5.13). We could optimize one of the functions

Fig. 5.14 Solution of nonlinear algebraic Eqs. (5.10) and (5.11) obtained by the Solver tool

Fig. 5.13 Use of the Solver tool to solve nonlinear algebraic Eqs. (5.10) and (5.11)
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(say, u(CA,CB)) and restrict the other cell (v(CA,CB)) to zero, using the Subject to
the Constraints box. Figure 5.15 shows this other possibility.

Usually the approach using the Solver tool in Excel is much simpler than the NR

method; however, sometimes it does not work well, especially when the equation

system is very nonlinear. This is the case with the Arrhenius expression to represent

the kinetic constants (k ¼ k0exp � EA

RT

� �
). In a nonisothermal reactor, a not very good

initial guess for temperature can make your problem reach wrong values for the

roots (local minima). This will be observed in Proposed Problem 5.4.

The three alternatives presented in this chapter to solve algebraic equations

systems allow us to deal with a great number of problems. The next two chapters

are dedicated to ordinary and partial differential equations (ODEs and PDEs),

respectively, so more complex problems will be able to be solved.

Proposed Problems
5.1) Imagine a tank in which three streams coming from different parts of a

chemical plant are mixed. The mass fractions of compounds A, B, and C in each

stream, as well as their mass flow rates, are shown in the figure below. Find the mass

flow rate for each stream (F1, F2, and F3) that should be used to obtain an exit

stream with the composition shown in the figure (30% of A, 40% of B, and 30% of

C). Write the mass balance for each compound (A, B, and C) and solve the linear

algebraic equations system using the procedures shown in Sects. 5.1 and 5.3.

Compare the results. Assume that the system is in a steady state.

Fig. 5.15 Alternative way to solve Eqs. (5.10) and (5.11) using the Solver tool
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F1 (kg/min)
50% of A
50% of B

100 kg/min
30% of A
40% of B
30% of C

F2 (kg/min)
33% of A
33% of B
34% of C

F3 (kg/min)
70% of B
30% of C

5.2) This problem is adapted from Chapra and Canale (2005), studying a system of

four insulated CSTRs in which an irreversible first-order reaction (A ! B) takes

place. A solution of reactant A in a concentration of 1 mol L�1 feeds the first reactor

at a flow rate of 10 L/h. There are recycles from reactor 3 to reactor 2 and from

reactor 4 to reactor 3, with flow rates of 5 L/h and 3 L/h, respectively.

Qin = 10 L/h Q12 Q23 Q34

Q31 

Q32 = 5 L/h 

Q43 = 3 L/h 

Q44

CAin = 1 mol/L

The reactors have different volumes and operate at different temperatures. The

table below shows the volume and the kinetic constant for each reactor.

Reactor V (L) k (1/h)

1 25 0.075

2 75 0.15

3 100 0.4

4 25 0.1

Use the methods seen in Sects. 5.1 and 5.3 to find the concentration of reactant A

in each reactor in a steady state. Compare the results obtained from the two different

methods. After solving your problem, make some changes in your system (one at a

time) and observe the results (suggestion: increase the values for k or reduce the

concentration of A fed into reactor 1).
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5.3) Consider Proposed Problem 3.8 in which the irreversible reaction Aþ B!k C

þD takes place in an isothermal CSTR, but this time assume that the reactor

operates in a steady state. The rate constant k is equal to 0.855 l/mol s. A solution

with reactants A and B was added to the reactor at a flow rate (F) of 5 L min�1 and

at concentrations of A and B equal to 0.7 and 0.4 mol L�1, respectively (CA1
¼

0.7 mol L�1 and CB1
¼ 0.4 mol L�1). There are no products C and D being fed into

the reactor (CC1
¼ CD1

¼ 0). The outlet volumetric flow rate is also 5 L min�1, and

the volume of liquid inside the reactor remains equal to 40 L over the entire

reaction. The model that represents this system can be seen below:

F CA1
� CAð Þ � 0:855CACBV ¼ 0

F CB1
� CBð Þ � 0:855CACBV ¼ 0

F CC1
� CCð Þ þ 0:855CACBV ¼ 0

F CD1
� CDð Þ þ 0:855CACBV ¼ 0

Solve the equations system that represents this CSTR and find the concentrations

of A, B, C, and D in a steady state. Solve this problem considering the methods

shown in Sects. 5.2 and 5.3, and compare the results.

5.4) Consider Example 3.7 for a CSTR with a cooling jacket operating in a steady

state in which the exothermic reaction Aþ B!k C takes place. The mass and

energy balances that represent this reactor are rewritten as follows:

Mass balance for A ðmol=minÞ: QðCAin � CAÞ � kCACBV ¼ 0 ð3:12Þ
Mass balance for B ðmol=minÞ: QðCBin � CBÞ � kCACBV ¼ 0 ð3:13Þ
Mass balance for C ðmol=minÞ: QðCCin � CCÞ þ kCACBV ¼ 0 ð3:14Þ
Energy balance for the reactor ðJ=minÞ: QρcpðTin � TÞ þ UAðTj� TÞ

þ kCACBVð�ΔHÞR ¼ 0
ð3:15Þ

Energy for the cooling fluid ðJ=minÞ: QjρjcpjðTjin � TjÞ þ UAðT � TjÞ ¼ 0 ð3:16Þ

Using the numerical values in Tables 3.1 and 3.2, solve the nonlinear algebraic

equations system using the NR approach (Sect. 5.2) and obtain the concentrations

of A, B, and C, and the temperatures of the reactor and the cooling jacket in a steady

state. Try to solve this problem using the Solver tool (Sect. 5.3) and observe that this
approach is not robust (due to a highly nonlinear characteristic of this system).

5.5) Imagine a liquid–liquid extractor of five stages, as depicted by the figure below.

A liquid solution containing some component to be recovered (solute) is fed into the

left side of the extractor. This solution contains a mass fraction of the solute equal to

Yin and flows at F1 (kg/h). A solute-free liquid (solvent) is fed into the right side of

the extractor (at countercurrent flow) at a mass flow rate equal to F2 (kg/h). This

solvent is immiscible with the liquid fed into the left side and will recover the solute

due to the relative solubility of the solute in these two immiscible liquids. Assume
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that the extractor operates in a steady state and that there is a liquid–liquid

equilibrium at each stage i given by:

K ¼ Xi=Yi

in which:

K ¼ distribution coefficient

Xi ¼ mass fraction of the solute in the solvent

Yi ¼ mass fraction of the solute in the liquid to be recovered

i ¼ number of the stage

Assume the following numerical values:

F1 (kg/h) F2 (kg/h) Yin Xin K

500 1000 0.3 0.0 4

1

Yin

X1

2

Y1

X2

3

Y2

X3

4

Y3

X4

5

Y4

X5 Xin

Y5

F2 (kg/h)

F1 (kg/h)

(a) Calculate the mass balance for each stage and find the following system of

algebraic equations to represent the extractor:

i ¼ 1: Yin � A Y1 þ B Y2 ¼ 0

i ¼ 2: Y1 � A Y2 þ B Y3 ¼ 0

i ¼ 3: Y2 � A Y3 þ B Y4 ¼ 0

i ¼ 4: Y3 � A Y4 þ B Y5 ¼ 0

i ¼ 5: Y4 � AY5 þ BXin ¼ 0

in which:

A¼ F2

F1

K

� �
þ 1

B¼ F2

F1

K

(b) Solve the algebraic equations system obtained in item (a) using the approaches

presented in Sects. 5.1 and 5.3, and find the mass fraction of the solute in both

streams leaving the extractor. Do you think that the separation was effective?
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Chapter 6

Solving an Ordinary Differential Equations
System

In ordinary differential equations (ODEs), dependent variables (such as tempera-

ture, concentration, etc.) vary with only one independent variable (a spatial variable

or time). In this way, all lumped-parameter problems in a transient regime, as well

as all distributed-parameter problems in a steady state varying with just one of the

three spatial variables, are described by ODEs.

Numerical methods for integration of ODEs can be classified as explicit and

implicit. In explicit methods, the state of a system in a condition (iþ 1) is calculated

based only on the previous condition (i) (a sequential solution). In implicit methods,

the solution in i þ 1 depends on the state of both i and i þ 1 (a simultaneous

solution), being more difficult to implement. Implicit methods are very useful for

stiff systems (in which a dependent variable varies abruptly with an independent

variable) because they are numerically more stable. Most systems in chemical

plants are not stiff if operated in planned conditions; therefore, only explicit

methods are presented this book. The reader can see details about implicit numer-

ical methods elsewhere (Davis 1984; Rao 2002, etc.).

6.1 Motivation

Imagine the derivative shown in Eq. (6.1) with the correspondent boundary

condition:

dy

dx
¼ cos xð Þ þ 1 ð6:1Þ

Boundary condition: at x ¼ 0, y(0) ¼ 0

The original version of this chapter was revised. An erratum to this chapter can be found at

https://doi.org/10.1007/978-3-319-66047-9_8

© Springer International Publishing AG 2018

L.M.F. Lona, A Step by Step Approach to the Modeling of Chemical
Engineering Processes, https://doi.org/10.1007/978-3-319-66047-9_6

113



In this case, if one wants to know, for example, the value of y when x is equal to
10, Eq. (6.1) can be analytically integrated to generate:

yðxÞ ¼ sin ðxÞ þ x ð6:2Þ
which gives us, at x ¼ 10, y(10) ¼ 9.456.

In this case, Eq. (6.1) is very easy to integrate; however, when systems with

many complex ODEs must be solved simultaneously, numerical solution can be an

interesting alternative. Before presenting the numerical methods, let us take a look

at the expression that represents the expansion of the Taylor series (Eq. 6.3):

yiþ1 ¼ yi þ h
dy

dx

� �
i

þ 1

2!
h2

d2y

dx2

� �
i

þ 1

3!
h3

d3y

dx3

� �
i

þ . . .þ 1

n!
hn

dny

dxn

� �
i

þ Rn ð6:3Þ

in which:

y ¼ function that depends on x
x ¼ independent variable

h¼ xiþ 1� xi¼Δx ¼ infinitesimal variation in the independent variable

n ¼ number of terms in the Taylor series

Rn ¼ error after n terms

The solution to Eq. (6.1) could also be obtained using expansion of the Taylor

series. The more terms that are considered, the more precise the solution is. Let us

solve Eq. (6.1) considering n (number of terms in the Taylor series) as equal to 1, 2,

3, and 4, and compare the results. We can assume h¼ xiþ 1� xi¼Δx¼ 1. Since the

condition at y(0) is known, we can calculate y(1), y(2), and so on until we discover

the value of y(10). The disadvantage in using expansion of the Taylor series is the

calculation of higher-order derivatives when using more than one term (n > 1),

which, in some cases, can be a hard task. In this example, the higher-order

derivatives for Eq. (6.1) are easily obtained, as follows:

dy

dx
¼ cos xð Þ þ 1 ð6:1Þ

d2y

dx2
¼ � sin xð Þ ð6:4Þ

d3y

dx3
¼ � cos xð Þ ð6:5Þ

d4y

dx4
¼ sin xð Þ ð6:6Þ

So the truncated Taylor series for n ¼ 1, 2, 3, and 4, neglecting Rn, can be

represented by Eqs. 6.7, 6.8, 6.9 and 6.10 respectively:

yiþ1 ¼ yi þ h cos xið Þ þ 1½ � ð6:7Þ
yiþ1 ¼ yi þ h cos xið Þ þ 1½ � þ 1

2!
h2 � sin xið Þ½ � ð6:8Þ
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yiþ1 ¼ yi þ h cos xið Þ þ 1½ � þ 1

2!
h2 � sin xið Þ½ � þ 1

3!
h3 � cos xið Þ½ � ð6:9Þ

yiþ1 ¼ yi þ h cos xið Þ þ 1½ �

þ 1

2!
h2 � sin xið Þ½ � þ 1

3!
h3 � cos xið Þ½ � þ 1

4!
h4 sin xið Þ½ � ð6:10Þ

Starting from the condition at x ¼ 0 (y(0) ¼ 0) and considering h ¼ Δx ¼ 1, it is

possible to calculate y(1). From the y(1), we calculate y(2) and so on until we reach
y(10). Figure 6.1 compares the analytical solution of Eq. (6.1) with the results

obtained from the Taylor series using a different number of terms.

We can indeed verify from Fig. 6.1 that the increase in the number of terms

generates more accurate results; however, it is interesting to point out that if a lower

increment h were considered, the curves obtained from the Taylor series would be

closer to the analytical solution.

If, on one hand, more precise results are obtained for bigger n values, on the

other hand the more terms in the series result in more difficult calculation, because

additional derivatives of higher order are needed. In this way, sometimes the Taylor

series does not represent a real advantage compared with the analytical solution

which demands calculation of just one integral to generate the exact solution.

Most researchers consider Taylor series methods too expensive for most practi-

cal problems. In this way, there is another class of numerical methods that imitate

the Taylor series methods, without the necessity for calculating higher-order deriv-

atives. These are called Runge–Kutta methods and will be presented in Sect. 2.

0

2

4

6

8

10

12

0 2 4 6 8 10

y

x

Analytical solution
1 term Taylor series
2 terms Taylor series
4 terms Taylor series

Fig. 6.1 Comparison between an analytical solution and solutions obtained by an expanded

Taylor series truncated after 1, 2, and 4 terms
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6.2 Runge–Kutta Numerical Methods

The general formula for the Runge–Kutta (RK) family of methods is:

(6.11)

(6.12)

In the RK formulas, the term f represents the derivative of the dependent

variable:

f xi; yið Þ ¼ dy

dx

� �
i

ð6:13Þ

and:

yi ¼ dependent variable in condition i
yiþ 1¼ dependent variable in condition iþ 1

j and l ¼ counters in the summation

ω, a, and c ¼ parameters of RK methods

h ¼ increment

ν ¼ order of RK methods

The order of the Runge–Kutta method will depend on the number of terms

considered in the summation of Eq. (6.11), as follows:

ν ¼ 1: First order Runge–Kutta method (RK1), also called the Euler method
ν ¼ 2: Second order Runge–Kutta method (RK2)

ν ¼ 3: Third order Runge–Kutta method (RK3)

ν ¼ 4: Forth order Runge–Kutta method (RK4)

Or generalizing: If ν ¼ j, a jth order Runge–Kutta method is generated.

6.2.1 First Order Runge–Kutta Method, or Euler Method

To find out the formula for the first order Runge–Kutta (Euler method), ν ¼ 1 is

considered in Eq. (6.11). If we assume that ω1 ¼ 1, the following formula for the

Euler method is obtained:

116 6 Solving an Ordinary Differential Equations System



(6.14)

(6.15)

or substituting Eq. (6.15) in Eq. (6.14):

yiþ1 ¼ yi þ hf xi; yið Þ ð6:16Þ
Equation (6.16) is exactly the expansion of the Taylor series presented in

Eq. (6.3) considering n ¼ 1. The Euler method can be easily visualized in

Fig. 2.2 in Chap. 2, redrawn below (see Fig. 6.2).

If a condition (x0, y0) is given and ifΔx is sufficiently small (y1ffi v1), the value of
the function y at x1¼ x0þΔx can be obtained considering the definitions of the

tangent and derivative.

tan α ¼ y1 � y0
x1 � x0

¼ dy

dx

� �
0

ð6:17Þ

So : y1 ¼ y0 þ Δx
dy

dx

� �
0

ð6:18Þ

or generalizing : yiþ1 ¼ yi þ Δx
dy

dx

� �
i

ð6:19Þ

6.2.2 Second Order Runge–Kutta Method

To obtain the formula for the second order Runge–Kutta method (RK2), ν ¼ 2 is

adopted in Eq. (6.11) to yield:

yiþ1 ¼ yi þ ω1K1 þ ω2K2 ð6:20Þ
K1 ¼ hf xi; yið Þ ð6:21Þ

K2 ¼ hf ðxi þ c2h, yi þ a21K1Þ ð6:22Þ
The terms ω1, ω2, c2, and a21 in Eqs. (6.20) and (6.22) must be found. If we

assume that c2h and a21K1 in Eq. (6.22) are sufficiently small, f(xi+ c2h, yi + a21K1)

can be represented by an expansion of the Taylor series (we will adopt n ¼ 1), and

Eq. (6.22) can be written as:

K2 ¼ h f xi; yið Þ þ c2hf
0
x xi; yið Þ þ a21K1f

0
y xi; yið Þ

h i
ð6:23Þ

in which:
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f xi; yið Þ ¼ dy

dx

� �
i

ð6:13Þ

f 0x xi; yið Þ ¼ ∂f
∂x

� �
i

ð6:24Þ

f 0y xi; yið Þ ¼ ∂f
∂y

� �
i

ð6:25Þ

Substituting Eqs. (6.21) and (6.23) in (6.20) and rearranging, we obtain:

yiþ1 ¼ yiþðω1þω2Þhf ðxi,yiÞþω2h
2
h
c2f

0
xðxi,yiÞþa21f

0
yðxi,yiÞf ðxi,yiÞ

i
ð6:26Þ

On the other hand, if we represent yiþ 1 using expansion of the Taylor series with

n ¼ 2, we get (compare this with Eq. 6.3):

yiþ1 ¼ yi þ h
dy

dx

� �
i

þ 1

2!
h2

d2y

dx2

� �
i

þ R2 ð6:27Þ

Taking into account Eq. (6.13) and considering the R2 error as being very small,

Eq. (6.27) can be written as:

Fig. 6.2 Visualization of the Euler (first-order Runge–Kutta (RK1)) method
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yiþ1 ¼ yi þ hf xi; yið Þ þ 1

2!
h2f 0 xi; yið Þ ð6:28Þ

By definition:

f 0 xi; yið Þ ¼ df

dx

� �
i

¼ ∂f
∂x

� �
i

þ ∂f
∂y

� �
i

dy

dx

� �
i

ð6:29Þ

Substituting Eq. (6.29) in Eq. (6.28) yields:

yiþ1 ¼ yi þ hf ðxi, yiÞ þ
1

2!
h2

"
∂f
∂x

� �
i

þ ∂f
∂y

� �
i

dy

dx

� �
i

#
ð6:30Þ

Using Eqs. (6.13), (6.24), and (6.25), Eq. (6.30) can also be written as:

yiþ1 ¼ yi þ hf xi; yið Þ þ 1

2
h2 f

0
x xi; yið Þ þ f

0
y xi; yið Þf xi; yið Þ

h i
ð6:31Þ

Observe the similarity between Eqs. (6.26) and (6.31). The terms ω1, ω2, c2 , and
a21 in RK2 can be found by comparing Eq. (6.26) (generated from the application of

RK2) with Eq. (6.31) (obtained from the application of the Taylor series truncated

in the second term, n¼ 2). We conclude that:

ω1 þ ω2 ¼ 1 ð6:32Þ
ω2 c2 ¼ 1=2 ð6:33Þ
ω2 a21 ¼ 1=2 ð6:34Þ

Since there are four unknown variables (ω1, ω2, c2, and a21) and only three

equations (Eqs. 6.32, 6.33, 6.34), one of the variables is fixed to allow calculation of

the others. Two examples are shown:

(6.15)

Case 1 Fix c2 ¼ 0.5 so ω2 ¼ 1, ω1 ¼ 0, and a21 ¼ 0.5, and Eqs. (6.20), (6.21),

(6.22), which represent RK2, can be expressed as follows:

(6.35)

Case 2 Fix c2 ¼ 1.0 so ω2 ¼ 0.5, ω1 ¼ 0.5, and a21 ¼ 1.0, and the equations for

RK2 will be:

(6.38)
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(6.41)

For cases 1 and 2 of RK2, only first-order derivatives are needed. This is an

advantage compared with the Taylor series truncated in the second term, which

demands also the second-order derivative. In cases 1 and 2, K1 represents the first-

order derivative applied in the condition (xi, yi), as occurred in the Euler method. In

cases 1 and 2, K2 represents the first-order derivatives in the condition (xiþ 0.5h,
yiþ 0.5K1) and (xi+ h, yi+K1), respectively, so K2 can only be obtained after K1 is

calculated.

(6.37)

In a similar manner, Runge–Kutta methods of higher order can be developed.

Observe that the RK methods are based on the Taylor series, so the higher the
Runge–Kutta order is, the more accurate the method is, because more terms in the
Taylor series are considered. From the practical point of view, the most commonly

used type of Runge–Kutta method is the fourth order Runge–Kutta (RK4),

presented in Sect. 6.2.3 (RK methods of other orders can be seen in in may

books, such as Davis 1984; Varma and Morbidelli 1997; Rao 2002; and Chapra

and Canale 2005).

(6.15)

6.2.3 Runge–Kutta Method of the Fourth Order

The expression for the fourth-order Runge–Kutta method (RK4) can be obtained as

was done for the case of RK2, and can be seen as follows:

(6.38)

(6.42)

(6.40)

(6.43)

RK4 demands the calculation of four first derivatives (K1,K2,K3, and K4) at four

different points for independent and dependent variables (x, y). Figure 6.3 compares

the results obtained from the solution of Eq. (6.1) using RK methods of different

orders with the analytical solution.

(6.39)
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As mentioned earlier, the higher the order of RK method is, the more precise the

results are. This is more evident for nonsmooth functions. Observe in Fig. 6.3 that

the RK1 method is closer to the analytical solution in the regions in which y varies
in a more linear way with x (from 0 to 1 and from 6 to 7). If the function is not very

nonlinear, the Euler method can be used successfully if a low value of h (step) is

adopted.

The choice of the ideal step (h) is of crucial importance to obtain reliable results,

but how do we pick the best step if we do not know the analytical solution to

compare? The idea is to use different steps and compare the results. Fig. 6.4 solves

Eq. (6.1) using the Euler method for different values of h. Observe that the curves
are practically coincident for h¼ 0.05 and h¼ 0.1, so there is no advantage in using

steps lower than 0.05.

Observe that to obtain almost the same accuracy in the results, RK4 used a step

more than ten times bigger than the one used in the Euler method (compare Figs. 6.3

and 6.4).

Section 6.3 and 6.4 will show how to solve both a single ODE or a system of

ODEs using an Excel spreadsheet and Visual Basic for Applications (VBA),

respectively. The procedure adopted in Sect. 6.3 can be tedious and laborious;

however, it can be very useful in order to clearly understand how the calculus is

done in RK methods, especially for systems of equations being simultaneously

solved.
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Fig. 6.3 Comparison of an analytical solution and solutions obtained by Runge–Kutta methods of

the first, second, and fourth order, considering h ¼ 1
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6.3 Solving ODEs Using an Excel Spreadsheet

Section 6.3.1 will use an Excel spreadsheet to solve just one ODE, and Sect. 6.3.2

will solve a system with more than one interdependent ODE.

6.3.1 Solving a Single ODE Using Runge–Kutta Methods

In order to understand how to solve an ODE using a spreadsheet in Excel, let us start

with the very simple example presented in Example 4.1. The equation below

represents the axial increase in temperature, in a steady state, of a liquid flowing

in a cylindrical tube of 60 m, exchanging heat with a jacket.

dT

dx
¼ U2πR

Qρcp
ð300� TÞ, with the boundary condition: at x ¼ 0, T ¼ 20�C

This equation can be rewritten as:

f ðx,TÞ ¼ dT

dx
¼ Mð300� TÞ, at x0 ¼ 0, T0 ¼ 20�C ð6:44Þ

in which:

M ¼ U2πR=ðQρcpÞ ¼ constant

R ¼ radius ¼ 0.2 m
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Fig. 6.4 Comparison between different values of steps for the solution of Eq. (6.1) using the Euler

method
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U ¼ global coefficient of heat transfer ¼ 60,000 J/h m2 �C
Q ¼ volumetric flow rate ¼ 4 m3/h

ρ ¼ density ¼ 900 kg/m3

cp ¼ specific heat of the fluid ¼ 3000 J/kg �C

From a didactic point of view, let us start solving this ODE using the Euler

method.

6.3.1.1 Euler Method

A suggestion for a spreadsheet using Euler method to solve Eq. (6.44) can be seen in

Fig. 6.5, where in the first lines the ODE and the boundary condition are printed just

as a comment. Lines 10 to 12 show the parameter of the model, needed to calculate

the constant M. To calculate M, select a cell (in our case, the cell C14), go to the

function space (at the top of your spreadsheet), type an equals sign followed by the

expression that represents the constant M, and press Enter (in gray is written, as a

comment, the expression you have to type). Then click on a cell in which to insert

the step (in our case, the cell C15 was used and h¼ 1 was chosen). After that, write

down the condition at x0 (see cells C18 and D18 for x0 and T0, respectively).

Fig. 6.5 Suggestion for an Excel spreadsheet to calculate a single ordinary differential equation

(ODE) using the Euler method
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According to the Euler method, the independent and dependent variables at

x1 can be calculated based on the condition at x0 using Eqs. 6.45 to 6.48 (compare

with Eqs. 6.14, 6.15, 6.16).

x1 ¼ x0 þ h ð6:45Þ
T1 ¼ T0 þ K1 ð6:46Þ
K1 ¼ hf x0;T0ð Þ ð6:47Þ

or:

T1 ¼ T0 þ hf x0; T0ð Þ ð6:48Þ
To calculate x1, select cell C19, type in the function space an equals signal

followed by the corresponding equations (Eq. 6.45), and press Enter. In the same

way, to calculate T1, select cell D19, type in the function space an equal signals

followed by the corresponding equations (Eq. 6.48), and press Enter. In Fig. 6.5,

these two expressions are also written in gray as a comment.

After that, select together the two cells (C19 and D19) containing the calculus

you have just done for x1 and T1, and hover the cursor over the small box at the

bottom right corner of the selected cells. This small box is called the Fill Handle
(Fig. 6.5 shows a zoom of a cell inside the dashed line where the Fill Handle is

indicated). When the mouse cursor is directly above the Fill Handle, the cursor will
change to a symbol of a small black cross. Drag the Fill Handle down to obtain

values of x and T for the next steps.

When dragging the Fill Handle down, automatically x2 and T2 (in cells C20 and

D20) are calculated using the values of x1 and T1 (cells C19 and D19), x3 and T3
(in cells C21 and D21) are calculated using the values of x2 and T2 (cells C20 and

D20), and so on. The constants M and h are used in the Eqs. (6.45) and (6.48),

written in cells C19 and D19. To avoid using the following cells for constants

M and h when dragging the Fill Handle down, we use $C$14 and $C$15 instead of
C14 and C15 in the mathematical expressions of cells C19 and D19 (see Fig. 6.5).

The dollar sign ($) can also be easily added by pressing the F4 key just after

clicking on the cell.

Figure 6.6a shows another way to produce the Excel spreadshee, in which k1 is
calculated separately (Eq. 6.45, 6.46, and 6.47 are used). Figure 6.6a also depicts

other values for x and T after the dragging.

6.3.1.2 Fourth order Runge Kutta method

Solving ODE by the RK4 method using an Excel spreadsheet is more laborious, but

it will be shown herein in order to make the numerical method more understand-

able. Figure 6.6b shows a suggestion for an Excel spreadsheet to solve Eq. (6.44)

using RK4. Comparing this with Fig. 6.6a, we observe that another three first

derivatives are needed (K2, K3, and K4).
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Knowing the condition at (x0, T0), the condition at the first step (x1, T1) can be

calculated according to the RK4 method as follows:

T1 ¼ T0 þ h

6
K1 þ 2K2 þ 2K3 þ K4ð Þ ð6:49Þ

K1 ¼ f ðx0,T0Þ ð6:50Þ
K2 ¼ f ðx0 þ 0:5h,T0 þ 0:5hK1Þ ð6:51Þ
K3 ¼ f ðx0 þ 0:5h,T0 þ 0:5hK2Þ ð6:52Þ
K4 ¼ f ðx0 þ h, T0 þ hK3Þ ð6:53Þ
x1 ¼ x0 þ h ð6:45Þ

The first-order derivatives K1, K2, K3, and K4 are calculated in cells E18, F18,
G18 and H18, respectively. Figure 6.6b shows a detail for the expression used to

calculate K2 and K4. In cell C19, x1 is calculated as was done previously; in cell

D19, T1 is calculated using Eq. (6.49) (see detail in the function space in Fig. 6.6b).
Then select (individually or in groups) the cells E18, F18,G18,H18, C19, andD19,
and drag the Fill Handle down to obtain all values shown in Fig. 6.6b.

The temperature profiles obtained by the integration of Eq. (6.44) reveal an

almost linear dependence between temperature and length for this specific system

(Fig. 6.7), so, in this case, the difference between the Euler and RK4 methods is not

very expressive, even for high values of integration steps (h).

Fig. 6.6 Suggestion for an Excel spreadsheet to solve Eq. (6.44) using (a) the Euler method (left)
and (b) the fourth-order Runge–Kutta (RK4) method (right)
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6.3.2 Solving a System of Interdependent ODEs Using
Runge–Kutta Methods

In order to better understand how to apply RK methods to solve a system of ODEs,

let us revisit Example 4.3, which modeled bitubular heat transfer operating in a

concurrent way. The equations that represent this system are rewritten below:

Benzene : Wbencpben
dTben

dx
¼ U 1:25 π Ttol � Tbenð Þ, at x ¼ 0, Tben ¼ 60

�
F

Toluene : Wtol cptol
dTtol

dx
¼ U 1:25 π Tben � Ttolð Þ, at x ¼ 0, Ttol ¼ 170

�
F

This system can be also written as follows:

Benzene : f ðx, Tb,TtÞ ¼ dTb

dx
¼ MbðTt� TbÞ, at x ¼ 0, Tb ¼ 60

∘
F ð6:54Þ

Toluene : gðx,Tb, TtÞ ¼ dTt

dx
¼ MtðTb� TtÞ, at x ¼ 0, Tt ¼ 170

∘
F ð6:55Þ

in which:

Mb ¼ 1:25πU=ðWbencpbenÞ ¼ constant

Mt ¼ 1:25πU=ðWtolcptolÞ ¼ constant

Wben ¼ mass flow of benzene ¼ 9820 lb/h

Wtol ¼ mass flow of toluene ¼ 6330 lb/h

cpben ¼ specific heat of benzene ¼ 0.425 Btu/(lb �F)
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cptol ¼ specific heat of toluene ¼ 0.440 Btu/(lb �F)
U ¼ global coefficient of heat transfer ¼ 0.8 Btu/(h in2 �F)
Tb¼ Tben ¼ benzene temperature flowing in the tube (�F)
Tt¼ Ttol ¼ toluene temperature flowing in the annulus (�F)
x ¼ independent variable ¼ heat transfer length (in)

Let us simultaneously solve Eq. (6.54 and 6.55) using first the Euler method.

6.3.2.1 Euler method

Knowing the condition at x ¼ 0 (x0,Tb0 and Tt0), the condition at the first step (x1,
Tb1 and Tt1) can be calculated as follows:

x1 ¼ x0 þ h ð6:45Þ
Tb1 ¼ Tb0 þ hK1 ð6:56Þ
Tt1 ¼ Tt0 þ hL1 ð6:57Þ
K1 ¼ f ðx0,Tb0,Tt0Þ ð6:58Þ
L1 ¼ gðx0,Tb0, Tt0Þ ð6:59Þ

Observe that there is a first derivative for the dependent variable Tb (which we

call K1) and another for Tt (here named L1). Note that K1 and L1 are interdependent
(see Eqs. 6.54 and 6.55) and must be simultaneously solved. Fig. 6.8 shows a

suggestion for an Excel spreadsheet to solve this system with two ODEs (Eqs. 6.54

and 6.55) using Euler method.

The constants Mb and Mt, in cells C15 and C16, are calculated based on the

parameters written in lines 11 to 13. Figure 6.8 highlights the first calculations made

for K1, L1, Tb, and Tt. After the first calculations are done, the Fill Handle must be

dragged down to obtain how Tb and Tt vary with position, which, if plotted,

generates the curves shown in Fig. 4.5.

6.3.2.2 RK4 method

If the RK4 method is used, the condition at the first step (x1, Tb1 and Tt1) is obtained
based on x0, Tb0 and Tt0 (the boundary condition), using Eqs. (6.60 and 6.61):

Tb1 ¼ Tb0 þ h

6
K1 þ 2K2 þ 2K3 þ K4ð Þ ð6:60Þ

Tt1 ¼ Tt0 þ h

6
L1 þ 2L2 þ 2L3 þ L4ð Þ ð6:61Þ

in which the first derivatives for the functions Tb and Tt at x¼ x0 are:

K1 ¼ f ðx0,Tb0, Tt0Þ ð6:58Þ
K2 ¼ f ðx0 þ 0:5h,Tb0 þ 0:5hK1,Tt0 þ 0:5hL1Þ ð6:62Þ
K3 ¼ f ðx0 þ 0:5h,Tb0 þ 0:5hK2,Tt0 þ 0:5hL2Þ ð6:63Þ
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K4 ¼ f ðx0 þ h,Tb0 þ hK3,Tt0 þ hL3Þ ð6:64Þ
L1 ¼ gðx0, Tb0, Tt0Þ ð6:59Þ
L2 ¼ gðx0 þ 0:5h, Tb0 þ 0:5hK1,Tt0 þ 0:5hL1Þ ð6:65Þ
L3 ¼ gðx0 þ 0:5h, Tb0 þ 0:5hK2,Tt0 þ 0:5hL2Þ ð6:66Þ
L4 ¼ gðx0 þ h,Tb0 þ hK3,Tt0 þ hL3Þ ð6:67Þ

Figure 6.9 presents a suggestion for how to solve simultaneously Eqs. 6.54 and

6.55 using the RK4 method in an Excel spreadsheet. The first calculations for Tb
and Tt, as well as for some first derivatives, are highlighted.

Fig. 6.8 Suggestion for an Excel spreadsheet to solve a system with two ordinary differential

equations (ODEs) using the Euler method
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An Excel spreadsheet can be very useful to solve systems with very few

equations by the Euler method, or to solve just one equation by RK4. For bigger

systems, an Excel spreadsheet is impracticable, but it has been presented herein

mainly for didactic reasons. The next section will show the procedure usually

adopted to solve ODE systems.

6.4 Solving ODEs Using Visual Basic

The most effective way to solve a system of ODEs is to develop a computer code,

which can be written in many different computer languages (Fortran, C, Cþþ,

Pascal, Visual Basic, Java Matlab, etc.). The focus of this book is to use Excel,

therefore VBA (Visual Basic for Applications) will be the language presented in

this section.

The idea of this book is not to show the VBA language in detail, because this can

be seen in many specific books (Billo 2007; Walkenbach 2013a, b) and on internet

sites. Herein will be presented examples of a few computer programs to solve ODEs

Fig. 6.9 Suggestion for an Excel spreadsheet to solve Eqs. (6.54 and 6.55) using the fourth-order

Runge–Kutta (RK4) method

6.4 Solving ODEs Using Visual Basic 129



using Euler and RK4 methods. These codes will be generic enough to allow

students to use them as a starting point to develop their own programs for different

systems of ODEs.

6.4.1 Enabling Visual Basic in Excel

The first thing to do to develop a computer code in Excel is to check if your

computer is enabled to use VBA. To do that, check if your Excel has a Developer
tab, as shown in Fig. 6.10. If not, click on the File tab, shown by the arrow in

Fig. 6.10, which will open the window shown in Fig. 6.11. By clicking on Options
(see the arrow in Fig. 6.11), the window depicted in Fig. 6.12 will appear. Choose

the Customize Ribbon button and, in the list of main tabs, select the Developer
check box. Click on OK to close the Options dialog box.

At this point your Excel is enabled to use the Visual Basic program. Now you

can choose the Developer tab, and then click on the Visual Basic icon (see the

dashed arrow in Fig. 6.10) to open a space in which you can write your program.

The space shown in Fig. 6.13 is originally gray, but it becomes white (and available

to type the code) after clicking on the View Code icon, indicated in Fig. 6.13 by the
solid arrow. After typing your code into this space, you can run the program by

clicking on the green triangle indicated by a dashed arrow in Fig. 6.13. If needed,

the reader can see detail on how to debug a program in the Help option in Excel.

However, if the code is correct, the click on the green triangle will be enough to

provide the simulation results.

6.4.2 Developing an Algorithm to Solve One ODE Using
the Euler Method

Like all programming languages, VBA provides many different possibilities of

commands that can be used to develop a code. We will use just a few herein. Reader

Fig. 6.10 Detail of the Developer tab and the Visual Basic icon in the Excel spreadsheet
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can learn more about the different commands in VBA in the specific literature

(Billo 2007; Walkenbach 2013a, b, etc.).

To understand how to develop a program code, let us start with a very simple

problem, which can be represented by just one ODE, and let us adopt the Euler

method as the numerical method to solve this ODE. Proposed Problem 3.1 studies

the concentration of HCl inside a tank over time, for which modeling generates the

following ODE:

dCHCl

dt
¼ 0:01� 0:4 CHCl ð6:68Þ

with the initial condition: at t ¼ 0, CHCl ¼ 0.01 kg/m3.

A suggestion of a simple code to solve Eq. (6.68) using the Euler method is

depicted in Fig. 6.14a. This code is written in the space that is used to write VBA

code in Excel, shown in Fig. 6.13. The name of the program is Euler and the word

Sub is used to start the code. When the expression Sub Euler () is written and the

Fig. 6.11 Detail of how to

open the Excel Options
window
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Enter key is pressed, automatically the expression End Sub will appear (see the last
line of the code) and the words Sub and End Sub will turn blue. The code must be

written between these two commands.

In the first three lines of the code, the initial condition (at ti¼ 0, CHCl¼ 0.01)

and the final time (tf, at which we want to stop the simulation) are attributed. We

Fig. 6.12 Detail of the Customize Ribbon option, to activate the Develop tab in Excel

Fig. 6.13 Detail of the space in which to write Visual Basic (VBA) code in Excel
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choose to integrate Eq. (6.68) up to 15 hours, and we assume a step size (h) equal to
0.1 (see line 4 of the code).

VBA writes the results in the Excel spreadsheet, so to define the cells that will

receive the results, we use the command Cells (k,j) ¼ in which k indicates the line
and j indicates the column of the spreadsheet. If we want to write a word, we must

use quotation marks, as indicated in lines 6 and 7 of the code in Fig. 6.14a, which

generates cells A1 and B1 in Fig. 6.14c.

The Euler method demands a loop, and in Fig. 6.14a this was done by the

command Do While, which must be closed by the command Loop (see both in

blue). Between these two commands the Euler method calculation is done, step by

step, until it reaches tf equal to 15 hours. The calculation needed for the Euler

method is highlighted in Fig. 6.14a (compare this with Eqs. (6.14) and (6.15)).

Observe that we use the command Cells (k,j) inside the loop, so the values of t and
CHCl for each loop will be written in the Excel spreadsheet (see the table generated
in Fig. 6.14c). There is a counter (i) used to print the results, which started from

2 (see line 8 of the code), because line 1 of the spreadsheet is dedicated to the title of

the table of results.

Another option for a VBA code to solve Eq. (6.68) using the Euler method is

presented in Fig. 6.14b. Observe that the code is basically the same, but the command

to build the loop is For . . . Next. The variable nSteps is the number of integration

steps. The calculus inside the loop is done 150 times ((tf� ti)/h or (15-0)/0.1), but it

uses nStepsþ 2 in the For . . . Next command, because the counter i starts from 2.

These two codes could be written in a more general way if we create a function.
Figure 6.15a shows an alternative for the code in Fig. 6.14a.

Fig. 6.14 a, b Suggestion for a code to solve Eq. (6.68) using a the Do While command and b the

For . . . Next command. c Results obtained using Visual Basic (VBA) code
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Observe that the main program in Fig. 6.15a is very similar to the one shown in

Fig. 6.14a, except that the calculus demanded by the Euler method is done in the

function RungeKutta1 (compare the highlighted commands in Figs. 6.14a and

6.15a).

The function RungeKutta1 needs the step (h) and the previous values of t and
CHCl to provide the next values of t and CHCl, which are sent to the main program.

Since CHCl, t, and h are common between the main program and the function

RungeKutta1, these three variables are passed and received as an argument (see the
variable names, separated by commas, between the parentheses where RungeKutta1
is called and in the function RungeKutta1).

The function RungeKutta1 could calculate k1 inside it; however, we decide to

call another function to calculate the derivative (see the functionDerivative), which
needs the CHCl value to return k1, so these two variables are also arguments (see

CHCl, k1) in the function Derivative and where this function is called).

Figure 6.15b repeats the code presented in Fig. 6.15a but uses more generic

nomenclature. From now on, the independent and dependent variables will be

Fig. 6.15 Use of the command Function when solving an ordinary differential equation (ODE) by
the Euler method
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called x and y, respectively. Also, k1 and h will be replaced by dydx and dx,
respectively. Besides, the independent variable x will be passed as an argument in

the function Derivative (see the arrows in Fig. 6.15b), because differently from

Eq. (6.68), ODEs can also depend on an independent variable.

The code in Fig. 6.15b could be used to solve all systems represented by one

ODE, just by changing the ODE in the functionDerivative and the initial conditions
in the main program.

Do not forget to save your program often. This is done by clicking on File as

shown by the arrow in Fig. 6.14c. However, more importantly, do not forget to save

your workbook as a macro-enabled workbook in VBA. Choose the option Excel
Macro-Enabled Workbook (*.xlsm) when saving.

6.4.3 Developing an Algorithm to Solve One ODE Using
the Runge–Kutta Fourth-Order Method

To solve Eq. (6.68) by the fourth-order Runge–Kutta (RK4) method, we can use the

generic code shown in Fig. 6.15b but we exchange the function Rungekutta1 for the
function RungeKutta4, presented in Fig. 6.16. The RK4 method calculates the

derivative four times (K1,K2,K3, and K4), at different values of x and

y (independent and independent variables) as presented in Eqs. (6.40), (6.41),

(6.42), (6.43). Because of this, the function RungeKutta4 calls the function Deriv-
ative four times.

In Fig. 6.16, k1 is calculated as was done in Figure 6.15b; however, k2 must be

calculated at (xiþ 0.5h, yiþ 0.5hK1) (see Eq. 6.41), so, just after the calculus of k1,
we define the points x, y in which k2 must be calculated. These two values x and

y are transitory (just to calculate k2 ), so they are called xtran and ytran, respec-
tively. To calculate k2 , the function RungeKutta4 passes as an argument xtran and

ytran when calling the function Derivative (see the command Call Derivative
(xtran, ytran, dydx) in Fig. 6.16); however, the function Derivative can be written

exactly as presented in Figure 6.15b, using Function Derivative (x, y, dydx).
After obtaining k2, we need to find out xtran and ytran to calculate k3. We can

see by Eq. (6.42) that xtran will be the same as was used to obtain k2, so it is not

updated, but ytran will be yiþ 0.5hk2 (see Eq. 6.42). The same procedure is

followed until we obtain k4. After that, dependent and independent variables are

updated (see the last lines of the code in Fig. 6.16 and Eq. (6.39) to obtain yiþ 1).
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6.4.4 Developing an Algorithm to Solve a System of ODEs
Using the Euler and Fourth-Order Runge–Kutta
Methods

In this section, let us see how to develop a code in VBA to solve a system of ODEs.

We will use Example 3.8, which models a continuous stirred tank reactor (CSTR)

with a cooling jacket operating in a transient regime. Equations (3.17, 3.18, 3.19,

3.20 and 3.21), representing the mass and energy balance of the reactor and the

energy balance for the jacket, are rewritten as follows:

Mass balance for reactant A ðmolÞ:
dCA

dt
¼ Q

V
ðCAin � CAÞ � k0 exp �EA

RT

��
CACB

�� ð6:69Þ

Fig. 6.16 Example of a function for the fourth-order Runge–Kutta (RK4) method
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Mass balance for reactant B ðmolÞ:
dCB

dt
¼ Q

V
ðCBin � CBÞ � k0 exp � EA

RT

��
CACB

�� ð6:70Þ

Mass balance for product C ðmolÞ:
dCC

dt
¼ Q

V
ðCCin � CCÞ þ k0 exp � EA

RT

��
CACB

�� ð6:71Þ

Energy balance for the reactor ðJÞ:
dT

dt
¼ Q

V
ðTin � TÞ þ UA

Vρcp
ðTj � TÞ þ k0 exp � EA

RT

� �� 	
CACBð�ΔHRÞ

ρcp

ð6:72Þ

Energy for the cooling fluid ðJÞ:
dTj

dt
¼ Qj

Vj
ðTjin � TjÞ þ UA

Vjρjcpj
ðT � TjÞ ð6:73Þ

The parameters of the model and the initial conditions are the ones presented in

Tables 3.1, 3.2 and 3.3, but assuming that the transient regime started because the

flow rate (Q), which was 3 m3/min (see Table 3.2), has now changed to 4 m3/min. It

was also said in Example 3.8 that the volume for the jacket (Vj) is 0.032 m3.

To solve this system of ODEs (Eqs. 6.69, 6.70, 6.71, 6.72, 6.73), the codes in

Fig. 6.15b (for Euler) or Fig. 6.16 (for RK4) have to be changed to include the

system with five ODEs. Here we introduce the concept of an array, because there
are five dependent variables (y) in our equations system. Using an array, we can

keep the same name for the dependent variable (y) and use a number (index) to call

them apart. The individual values are called the elements of the array. In our case

we can consider:

y 1ð Þ ¼ CA

y 2ð Þ ¼ CB

y 3ð Þ ¼ CC

y 4ð Þ ¼ T

y 5ð Þ ¼ Tj

In the same way, we will also assume the variable dydx as an array. So, for our

case it yields:

dydx 1ð Þ ¼ dCA=dt
dydx 2ð Þ ¼ dCB=dt

dydx 3ð Þ ¼ dCC=dt

dydx 4ð Þ ¼ dT=dt
dydx 5ð Þ ¼ dTj=dt

An example of how the function Derivative could be written to represent

Eqs. (6.69), (6.70), (6.71), (6.72), (6.73) is presented in Fig. 6.17. The code of

this function can be applied for both Euler and RK4 methods.
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In the first lines of the code in Fig. 6.17 appear the parameters from Tables 3.1

and 3.2. These parameters could also be read from the spreadsheet by using the

notation Q ¼ Cells(1,1), for example, if one wants to read the variable Q in the cell

A1 of the spreadsheet. Equation (6.72) is very long, so it has been broken into two

lines, using the underscore symbol (_).

The main programs to solve Eqs. (6.69), (6.70), (6.71), (6.72), (6.73) for the

Euler and RK4 methods are shown in Fig. 6.18a and 6.18b, respectively. Observe

that they are the same, only the name of the function called is different

(RungeKutta1 or RungeKutta4). Compare them with the main program in

Fig. 6.15b. The first difference is that the dimension (Dim) of the array for y and

dydx (in our case, the size is 5) must be declared. You can choose to store any

number, or array of numbers, as single or double precision, but in our case, we

choose double precision. Also observe that we need a loop to print all dependent

variables y (from 1 to 5).

A suggestion of how the functions RungeKutta1 and RungeKutta4 (called in the

codes of Figs. 6.18a and 6.18b) could be written is shown in Figs. 6.19 and 6.20.

For the Euler method (RungeKutta1), compare Figs. 6.19 and 6.15b. When

solving the system of ODEs, the derivative k1 has dimension 5 (Eqs. 6.69, 6.70,

6.71, 6.72, 6.73), so k1 is declared at the beginning of the function RungeKutta1
code as double precision array (see Fig. 6.19). Also observe in Fig. 6.19 the loop

needed to calculate k1 and y, in order to take into account the five ODEs.

For the RK4 method, compare Figs. 6.20 (a system of ODEs) and 6.16 (just one

ODE). The first difference between them is that variables k1, k2, k3, k4 and ytran are
arrays with dimensions equal to five, to account for all ODEs (Eqs. 6.69, 6.70, 6.71,

6.72, 6.73), and must be declared at the beginning of the code (see Fig. 6.20). For

Fig. 6.17 Function Derivative representing the system of ordinary differential equations (ODEs)

(Eqs. 6.69, 6.70, 6.71, 6.72, 6.73)
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Fig. 6.18 Examples of the main program used to solve a system of ordinary differential equations

(ODEs) using a the Euler method and b the fourth-order Runge–Kutta (RK4) method

Fig. 6.19 Example of a function for the Euler method to solve a system of ordinary differential

equations (ODEs)



Fig. 6.20 Example of a function for a fourth-order Runge–Kutta method to solve a system of

ordinary differential equations (ODEs)
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the same reason, loops are needed to calculate k1, k2, k3, k4, y and ytran for all

ODEs (observe in Fig. 6.20 the loops going from 1 to ny).
In Figs. 6.19 and 6.20, the numbers of ODEs (ny) and dydx are also passed as

arguments, because ny and the dimension of dydx are defined in the main program.

No matter which system of ODEs you need to solve, the Functions presented in

Fig. 6.19 and 6.20 can be used as they are for Euler and RK4 methods. The only

thing to change is to adjust the dimension for k1, k2, k3, k4 and ytran if your system
has a number of equations different from 5.

All codes presented in this chapter are just suggestions of how a program could

be developed to solve a system of ODEs by Runge–Kutta methods using Visual

Basic. Readers can find their own style of programing.

Proposed Problems

6.1) Imagine the three interconnected tanks studied in Example 5.1. Assume that

the volume of liquid in the three tanks is the same and remains constant and equal to

V (m3). The volumetric flow rates for all tanks are the ones presented in Table 5.1.

At the beginning the three tanks contain pure water, but at a certain point, the

streams Q01 and Q02 start feeding tanks 1 and 2 with a NaOH solution with

concentrations of 10 mol/m3 (C01) and 1 mol/m3 (C02), respectively, instead of

pure water, at the same flow rates. The system of ODEs that represents the variation

in the concentration of NaOH over time in the three tanks is presented below:

dC1

dt
¼ 1

V
ð50� 7C1 þ 2C3Þ at t ¼ 0,C1 ¼ 0

dC2

dt
¼ 1

V
ð7C1 þ 1� 8C2Þ at t ¼ 0,C2 ¼ 0

dC3

dt
¼ 1

V
ð8C2 � 8C3Þ at t ¼ 0,C3 ¼ 0

a. Solve the ODE system using the Euler method and an Excel spreadsheet, as per

Sect. 6.3. Assume initially that V ¼ 5m3 and an increment (step) equal to

0.2 min. Plot curves of the concentration of NaOH for each tank over time and

compare them with the concentrations in a steady state obtained in Example 5.1.

Find the ideal step for this operating condition and numerical method.

b. Change the volume of the three tanks from 5 m3 to 1 m3 and check what occurs

with the three curves. Keep the volume for the three tanks equal to 1 m3 but use

an increment (step) for the Euler method equal to 0.1 min and observe the

curves. What can you conclude?

c. Change the volume of the three tanks to 8 m3 and then to 2 m3 and observe the

time needed to achieve a steady state. Are the concentrations in the steady state

the same? Why?

d. Alter the initial concentrations for all tanks to 2 mol/m3. Are the concentrations

in the steady state the same? Why?
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e. Develop a code in Visual Basic and solve the system of three ODEs using the

Euler method. Assume that V¼ 5 m3 for the three tanks with an increment (step)

equal to 0.2 min.

f. Develop a code in Visual Basic and solve the system of three ODEs using the

RK4 method. Also assume that V ¼ 5 m3 for the three tanks with an increment

(step) equal to 0.2 min. Compare the results with the one obtained in item (e).

g. Use the code developed in item (f) and run your program considering V ¼ 1 m3

and a step equal to 0.2 min (as was done in item (b)). Compare the results with

the ones you obtained using the Euler method (in item (b)). What can you

conclude?

6.2) Consider the four insulated CSTRs presented in Proposed Problem 5.2. Find

the system of four ODEs that represent this reaction system. Assume that initially

all reactors have concentration of reactant A equal to 1 mol/l.

a. Develop a code in Visual Basic using the Euler method, find the profiles of the

concentration of A over time, and compare the results with the one obtained in

Proposed Problem 5.2 for a steady state.

b. Repeat item (a), but this time use the RK4 method

c. Double the concentration of A at the initial condition (t¼ 0) for the four reactors

and observe the concentration of A in a steady state. Make comments.

d. Imagine that after reaching a steady state, the concentration of A fed into the first

reactor (CAin
) is doubled. Find the new steady state. Make comments.

e. Repeat item (a) or (b) but this time double all kinetic constants and check what

happens.

6.3) Tubular chemical reactors are widely used in the chemical industry. To

develop mathematical models to describe them, it is common to assume their

operations with no radial gradients of temperature, velocity, or concentration. In

this case, we have plug-flow reactors (PFRs). Consider the following irreversible

reaction in the plug-flow reactor:

Aþ B ! C

The rate equation is elementary and the reaction is carried out isothermally at

300 K in a PFR in a steady state. The feed stream has a volumetric flow rate of

Q¼ 10 L/min and has both reactants, A and B, with concentrations of CA0¼ 1 M
and CB0¼ 2 M, respectively (A and B do not react before entering the PFR).

At 300 K, the rate constant (k) is 0.07 L/mol min.

a. Write ODEs to represent the concentration of A, B, and C along the reactor

length.

b. Solve the ODE system using VBA and RK4. Plot the concentration profiles

for A, B, and C along the reactor length. Determine at what length the conversion

reaches 90% (Hint: conversion is always calculated using the limiting reactant as

the reference). Choose two different values for the radius of the PFR. Plot the

curves and compare the results.
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6.4) Consider a CSTR in a steady state in which the irreversible and isothermal

reactionA!k B takes place, with a rate constant (k) equal to 10 min�1. The reactor is

fed with a solution of reactant A in a flow rate (Q) of 5 m3/min and a concentration

of A (CAin
) of 1400 mol/m3. The same flow rate leaves the reactor and the density of

the solution does not change, so the reaction volume is constant over the reaction.

a. Develop mathematical models to represent the mass balance of A in four

different situations: (i) assuming just one CSTR with a reaction volume

equal to 10 m3; (ii) assuming that the reaction system is composed of two

CSTRs of 5 m3 each in series; (iii) assuming five CSTRs of 2 m3 each in series;

(iv) assuming ten CSTRs of 1 m3 each in series.

b. Solve the algebraic equations obtained in item (a) using a numerical method

presented in Chap. 5 and compare the final concentration of reactant A leaving

the reaction system for the four cases. What can you conclude?

c. Imagine there is available a PFR with a cross-sectional area and length equal to

1 m2 and 10 m, respectively, making the reaction volume also equal to 10 m3.

Assume a steady state and the same flow rate (Q ¼ 5 m3/min) and reactant

concentration (CAin
¼ 1400 mol/m3) feeding the system. Develop a mathematical

model to represent the concentration of A along the PFR.

d. Solve the mathematical model generated in item (c) using a numerical method

presented in this chapter and obtain the profile of the reactant concentration

along the PFR length.

e. Compare the results obtained in items (b) and (d) by plotting, in the same graph,

the concentration of A versus the reactor volume. What can you conclude?

6.5) This system is adapted from Incropera et al. (2006). A very long cylindrical

metal bar with diameter D, length L, and thermal conductivity k has one end

maintained at Tw by constant contact with a hot wall. The surface of this cylinder

is exposed to ambient air at a constant temperature of T1 with a convection heat

transfer coefficient of h. The system was left for a long time until it became

completely stable.

a. Write ODEs that describes the temperature profile and define the two boundary

conditions. Consider that there is no radial temperature profile inside the bar.

Make assumptions if needed to simplify the mathematical solution of this

problem.

b. Solve the mathematical model using VBA and RK4.

Determine and plot the temperature profiles along the bar length when it is

manufactured from pure copper, aluminum, and stainless steel.

Consider the following numerical values:

D ¼ 5 mm

Tw ¼ 100
�
C

T1 ¼ 25
�
C

h ¼ 100W=ðm2KÞ
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Copper: k ¼ 398W=ðm KÞ
Aluminum: k ¼ 180W=ðm KÞ
Stainless steel: k ¼ 14W=ðm KÞ

c. Determine for each metallic material the minimum length that the bar must have

for the bar temperature profile to reach a minimum plateau. Using the minimum

lengths for each one of the metals, determine the heat loss for each material.

Hint: In order to numerically integrate second-order ODEs more easily, the

following substitution can be very handy:

dT

dx
¼ y ¼ f xð Þ

d2T

dx2
¼ dy

dx
¼ g xð Þ

Instead of directly solving one single second-order differential equation, it is

possible to break it into two first-order differential equations to be solved

independently. Observe that, in this problem, one of the boundary conditions

must suffer this change in variable too.

6.6) Imagine the two concentric cylinders modeled in Example 4.8 and assume that

the system has reached a steady state, so it can be represented by:

r
d2T

dr2
þ dT

dr
¼ 0

At r ¼ R1, T ¼ T0

At r ¼ R2,
dT

dr
¼ � h

k
ðT � TenvÞ

Assume the following numerical values: R1 ¼ 0.5 cm, R2 ¼ 3 cm, T0 ¼ 100 �C,
Tenv¼ 25 �C, k ¼ 180W=ðmKÞ, and h¼ 100W/(m2K). Use the same hint suggested

in Proposed Problem 6.5 and solve this problem using VBA and RK4. Plot the

radial profile of the temperature.
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Chapter 7

Solving a Partial Differential Equations System

The idea for solving a system of partial differential equations (PDEs) using

numerical methods is to transform it into a system of equations that are easier to

solve, such as algebraic equations or ordinary differential equations (ODEs), for

which numerical solutions were presented in Chaps. 5 and 6 of this book.

There are many numerical methods to solve PDEs, such as finite difference,

finite volume, orthogonal collocation, etc., but this book will focus on the finite

difference method. Other numerical methods can be found elsewhere in the liter-

ature (Davis 1984; Chapra and Canale 2005, etc.).

7.1 Motivation

Consider the insulated cylindrical metal bar of 1 m studied in Example 4.4. Initially

this bar is at 50 �C, but it is fixed between two walls at temperatures of 70 �C and

30 �C, as depicted in Fig. 4.9. The modeling of this system generates the following

PDE and initial/boundary conditions (see details in Chap. 4):

∂T
∂t

¼ k

ρcp

∂2
T

∂x2
ð4:15Þ

At t ¼ 0 h, T ¼ 50 �C, for 0 � L � 1 m

At x ¼ 0 m, T ¼ 70 �C, for t > 0 h

At x ¼ 1 m, T ¼ 30 �C, for t > 0 h

The finite difference method will represent the partial derivative of temperature

with respect to length ð∂2
T=∂x2Þ or both derivatives ð∂2

T=∂x2 and ∂T=∂tÞ by

The original version of this chapter was revised. An erratum to this chapter can be found at

https://doi.org/10.1007/978-3-319-66047-9_8
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expressions that are easier to solve. Section 7.2 presents the finite difference

method, and Sects. 7.3 and 7.4 show how this numerical method can be used to

solve Eq. (4.15) and other PDEs.

7.2 Finite Difference Method

Imagine a generic dependent variable u (which could be temperature, concentra-

tion, etc.) changing with two generic independent variables x and y (such as time,

length, radius, etc.). The indices related to x and ywill be called i and j, respectively.
Knowing the value of u in a certain condition of x and y (ui, j), it is possible to

represent u after an infinitesimal increment of x (Δx) or y (Δy) using expansion of

the Taylor series. In order to do that, let us imagine the grid denoted by Fig. 7.1. The

idea of the finite difference method is to approximate the values of the continuous

function u by a set of discrete points in the (x, y) plane, which we call discretization.
Given ui, j, it is possible to obtain uiþ 1, j and ui� 1, j using expansion of the Taylor

series (see also Eq. 6.3), as shown below:

uiþ1, j ¼ ui, j þ Δx
∂u
∂x

� �
i, j

þ 1

2!
Δx2 ∂2

u

∂x2

� �
i, j

þ � � � þ 1

n!
Δxn

∂n
u

∂xn

� �
i, j

þ Rn ð7:1Þ

ui�1, j ¼ ui, jþ �Δxð Þ ∂u
∂x

� �
i, j

þ 1

2!
�Δxð Þ2 ∂2

u

∂x2

� �
i, j

þ � � � þ 1

n!
�Δxð Þn ∂n

u

∂xn

� �
i, j

þ Rn

ð7:2Þ
Remember that in the finite difference method we want to find simpler expres-

sions for the second and/or first partial derivatives. So if Eqs. (7.1) and (7.2) are

truncated after the first term, it is possible to obtain expressions for the first

derivative, as shown below:

i,j i+1,ji-1,j

i,j+1

i,j-1i-1,j-1

i-1,j+1 i+1,j+1

i+1,j-1y

x

j

i

Δx

Δy

Fig. 7.1 Grid to visualize

the finite difference method
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From Equation 7:1ð Þ: ∂u
∂x

� �
i, j

¼ uiþ1, j � ui, j
Δx

þ R1 ð7:3Þ

From Equation 7:2ð Þ: ∂u
∂x

� �
i, j

¼ ui, j � ui�1, j

Δx
þ R1 ð7:4Þ

Equations (7.3) and (7.4) are called forward difference and backward difference,
respectively, and both are one-sided difference expressions. The first term after

truncation of the Taylor series contains the major error, and for both expressions,

this error is proportional to (Δx)2 (see Eqs. 7.1 and 7.2).

A more accurate way to represent the first derivative can be obtained by

subtracting Eq. (7.2) from Eq. (7.1), both truncated after the second term, which

yields Eq. (7.5), which is called a centered difference formula.

Equation 7:1ð Þ minus 7:2ð Þ: ∂u
∂x

� �
i, j

¼ uiþ1, j � ui�1, j

2ðΔxÞ þ R2 ð7:5Þ

Observe that the first term not considered in Eq. (7.5) is proportional to (Δx)3,
because the terms with (Δx)2 are naturally cancelled. Since Δx is very small, (Δx)3

< (Δx)2, which guarantees a smaller error for the centered difference formula.

The second partial derivative could be obtained by adding Eqs. (7.1) and (7.2)

truncated after the third term:

Adding Eqs: 7:1ð Þ and 7:2ð Þ: ∂2
u

∂x2

 !
i, j

¼ ui�1, j � 2ui, j þ uiþ1, j

ðΔxÞ2 þ R3 ð7:6Þ

In the same way, given ui, j, it is possible to obtain ui, jþ 1 and ui, j� 1 using

expansion of the Taylor series, generating Eqs. (7.7) and (7.8):

ui, jþ1 ¼ ui, j þ Δy
∂u
∂y

� �
i, j

þ 1

2!
Δy2 ∂2

u

∂y2

� �
i, j

þ � � � þ 1

n!
Δyn

∂n
u

∂yn

� �
i, j

þ Rn ð7:7Þ

ui, j�1 ¼ ui, j þ �Δyð Þ ∂u
∂y

� �
i, j

þ 1

2!
�Δyð Þ2 ∂2

u

∂y2

� �
i, j

þ� � �þ 1

n!
�Δyð Þn ∂n

u

∂yn

� �
i, j

þRn

ð7:8Þ
If Eqs. (7.7) and (7.8) are truncated after the first term, it is possible to obtain the

one-sided difference expressions for the first derivative of u with respect to y:

From Eq: 7:7ð Þ: ∂u
∂y

� �
i, j

¼ ui, jþ1 � ui, j
Δy

þ R1 ð7:9Þ

From Eq: 7:8ð Þ: ∂u
∂y

� �
i, j

¼ ui, j � ui, j�1

Δy
þ R1 ð7:10Þ
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A centered difference formula is also obtained by subtracting Eq. (7.8) from

Eq. (7.7), both truncated after the second term:

Eq: 7:7ð Þ minus Eq: 7:8ð Þ: ∂u
∂y

� �
i, j

¼ ui, jþ1 � ui, j�1

2ðΔyÞ þ R2 ð7:11Þ

The second partial derivative of u with respect to y can be obtained by adding

Eqs. (7.7) and (7.8) truncated after the third term:

Adding Eqs: 7:7ð Þ and 7:8ð Þ: ∂2
u

∂y2

 !
i, j

¼ ui, j�1 � 2ui, j þ ui, jþ1

ðΔyÞ2 þ R3 ð7:12Þ

Now that we have obtained expressions for the first and second derivatives, let us

apply them in practical examples, as depicted in Sects. 7.3 and 7.4.

7.3 Introductory Example of Finite Difference Method
Application

In this section, we will apply the expressions obtained in Sect. 7.2 for the first and

second derivatives to solve Eq. (4.15) in Sect. 7.1.

One way to numerically solve Eq. (4.15) (rewritten below) is to discretize all

partial derivatives:

∂T
∂t

¼ k

ρcp

∂2
T

∂x2
ð4:15Þ

Equation (7.13) can be used to represent the second-order derivative of T with

respect to x, (compare with Eq. 7.6).

∂2
T

∂x2

 !
i, j

¼ Ti�1, j � 2Ti, j þ Tiþ1, j

ðΔxÞ2 þ R3 ð7:13Þ

where i and j represent x and t, respectively.
In theory, Eqs. (7.9), (7.10) and (7.11) show three options to represent the first

derivative with respect to the other independent variable (t). We will use Eq. (7.9)

and explain why later on.

∂T
∂t

� �
i, j

¼ Ti, jþ1 � Ti, j

Δt
þ R1 ð7:14Þ
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Substituting Eqs. (7.13) and (7.14) in Eq. (4.15) and neglecting the truncation

errors we obtain:

Ti, jþ1 � Ti, j

Δt
¼ k

ρcp

Ti�1, j � 2Ti, j þ Tiþ1, j

ðΔxÞ2
 !

ð7:15Þ

Equation 7.15 can be rearranged to yield:

Ti, jþ1 ¼ Fo Ti�1, j � 2Ti, j þ Tiþ1, j

� �þ Ti, j ð7:16Þ
in which:

Fo ¼ k

ρcp

Δt
ðΔxÞ2 ð7:17Þ

The numerical values for k, cp, and ρ are the ones presented in Example 4.4:

k ¼ 398.2 J/s m �C (or k ¼ 23,892 J/min m �C), cp ¼ 386.3 J/kg �C, and
ρ ¼ 8933 kg/m3.

The lower the values of Δx and Δt are, the closer the numerical solution will be

to the analytical results, which we call convergence. Stabilitymeans no propagation

of errors as the numerical calculations are done. For this problem, the method is

stable and convergent if Fo in Eq. (7.17) is lower than 0.5 (Carnahan et al. 1969). In
this problem, we will assume that Δx¼ 0.2 m and Δt¼ 0.05 min, which guarantees

a safe, stable, and convergent solution.

Based on Eq. (7.16), it is possible to build a table in Excel (see Fig. 7.2), in which

the temperature of the bar at t¼ 0min (50 �C) and at x¼ 0 (70 �C) and x¼ 1m (30 �C)
can be written. If the temperature at Ti, jþ 1 is the temperature at x ¼ 0.2 m and

t ¼ 0.05 min (see point highlighted in Fig. 7.2), Ti� 1, j, Ti, j, and Tiþ 1, j are the

temperatures at time ( j) equal to zero and length (i) equal to 0, 0.2, and 0.4, respec-

tively. Since Ti� 1, j, Ti, j, and Tiþ 1, j are known, it is possible to obtain Ti, jþ 1 from

Eq. (7.16), as depicted by the function at the top of the spreadsheet. Temperatures for

other values of length and time can be obtained by dragging the Fill Handle down and
right.

Observe that, in this case, ∂T/∂t could not be represented in the more accurate

way (Eq. 7.11—the centered difference formula), because to obtain Ti, jþ 1 the value

at Ti, j� 1 (the time before 0 min) would be needed (see Eq. 7.11).

Using the results shown in Fig. 7.2, it is possible to obtain the axial profiles of

temperature over time. If you plot the results, you will see that the profiles of

temperature are similar to the ones shown in Fig. 4.6b.

7.4 Application of the Finite Difference Method

This section presents the application of finite difference in four different situations.

Section 7.4.1 shows an example in which a system of algebraic equations is

generated after discretization in all independent variables. In fact, PDEs can be
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solved considering discretization in all independent variables (as in the previous

example and Sect. 7.4.1) or keeping the derivative in one independent variable,

which generates a system of ordinary differential equations. Section 7.4.2 will

revisit the previous example (shown in Sect. 7.3) but will perform the discretization

only in the space coordinate, which generates an ODE system varying over time.

Section 7.4.3 will apply the finite difference method to a system of PDEs (not to just

one equation). Finally, Sect. 7.4.4 will study PDEs with flux boundary conditions.

7.4.1 PDEs Transformed into an Algebraic Equations
System

In the example presented in Sect. 7.3, the discretization in all independent variables

resulted in a single algebraic Eq. (7.16), whose solution for different values of

i (length) and j (time), in a sequential way, can give us axial profiles of temperature

over time. Sometimes, discretization in all independent variables generates a

system of many algebraic equations that must be solved simultaneously. The next

example will address this situation.

Fig. 7.2 Solving a partial differential equation (PDE) (4.15) using the finite difference method

and Excel
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Modeling of the heat conduction along a square metal plate with negligible

thickness generates the following PDE:

∂2
T

∂x2
þ ∂2

T

∂y2
¼ 0 ð7:18Þ

In this case, we assume a steady state and no heat exchange with the environ-

ment. The temperatures at the plate ends are fixed, as shown in Fig. 7.3a. This

system is also studied in Chapra and Canale (2005).

Discretizing both derivatives of Eq. (7.18) and assuming truncation errors

negligible yields (see Eqs. 7.6 and 7.12):

Ti�1, j � 2Ti, j þ Tiþ1, j

Δxð Þ2 þ Ti, j�1 � 2Ti, j þ Ti, jþ1

Δyð Þ2 ¼ 0 ð7:19Þ

Assuming ΔxffiΔy and rearranging we obtain:

Tiþ1, j þ Ti�1, j þ Ti, jþ1 þ Ti, j�1 � 4Ti, j ¼ 0 ð7:20Þ
In this example, we will divide the plate into 16 equal parts, as shown in the grid

in Fig. 7.3b.

Figure 7.3b depicts that, besides the points at the edges (known temperatures),

there are nine points inside the grid at which the temperatures are unknown. To

obtain the temperatures at these nine points, we apply Eq. (7.20) assuming i and
j varying from 1 to 3 (see Fig. 7.3b) to obtain the linear algebraic equations system

shown in Table 7.1.

1000C

00C

750C 500C

x
i

j

y

0,0 1,0 2,0 3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2

0,3

0,4

1,2

1,3

1,4

2,2

2,3

2,4 3,4 4,4

3,2 4,2

3,3 4,3

Fig. 7.3 (a) Square metal plate showing the temperatures at the ends. (b) Grid with nine unknown
internal temperature points
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The equations in Table 7.1 can be solved using the procedure presented in

Sect. 5.1 of this book. The temperatures in the equations in Table 7.1 that presents

i or j equal to 0 or 4 are known (see Fig. 7.3) because they belong to the edges.

Substituting these known values in the equations in Table 7.1 and rearranging, we

obtain the system of algebraic equations presented by Eqs. (7.21), (7.22), (7.23),

(7.24), (7.25), (7.26), (7.27), (7.28) and (7.29).

4T1,1 � T1,2 � T2,1 ¼ 175 ð7:21Þ
�T1,1 þ 4T2,1 � T2,2 � T3,1 ¼ 100 ð7:22Þ
�T2,1 þ 4T3,1 � T3,2 ¼ 150 ð7:23Þ
�T1,1 þ 4T1,2 � T1,3 � T2,2 ¼ 75 ð7:24Þ
T1,2 þ T2,1 � 4T2,2 þ T2,3 þ T3,2 ¼ 0 ð7:25Þ
�T2,2 � T3,1 þ 4T3,2 � T3,3 ¼ 50 ð7:26Þ
�T1,2 þ 4T1,3 � T2,3 ¼ 75 ð7:27Þ
T1,3 þ T2,2 � 4T2,3 þ T3,3 ¼ 0 ð7:28Þ
�T2,3 � T3,2 þ 4T3,3 ¼ 50 ð7:29Þ

Equations (7.21), (7.22), (7.23), (7.24), (7.25), (7.26), (7.27), (7.28) and (7.29)

can be represented in a matrix form, as follows:

4 �1 0 �1 0 0 0 0 0

�1 0 0 4 �1 0 �1 0 0

0 0 0 �1 0 0 4 �1 0

�1 4 �1 0 �1 0 0 0 0

0 1 0 1 �4 1 0 1 0

0 0 0 0 �1 0 �1 4 �1

0 �1 4 0 0 �1 0 0 0

1 0 0 0 1 �4 0 0 1

0 0 0 0 0 �1 0 �1 4

2
66666666666666664

3
77777777777777775

T1,1

T1,2

T1,3

T2,1

T2,2

T2,3

T3,1

T3,2

T3,3

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

¼

175

100

150

75

0

50

75

0

50

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

Table 7.1 Linear algebraic

equations system representing

the temperatures inside the

plate

i j (i, j) Equation

1 1 (1,1) T2, 1 + T0, 1 + T1, 2 + T1, 0� 4T1, 1¼ 0

2 1 (2,1) T3, 1 + T1, 1 + T2, 2 + T2, 0� 4T2, 1¼ 0

3 1 (3,1) T4, 1 + T2, 1 + T3, 2 + T3, 0� 4T3, 1¼ 0

1 2 (1,2) T2, 2 + T0, 2 + T1, 3 + T1, 1� 4T1, 2¼ 0

2 2 (2,2) T3, 2 + T1, 2 + T2, 3 + T2, 1� 4T2, 2¼ 0

3 2 (3,2) T4, 2 + T2, 2 + T3, 3 + T3, 1� 4T3, 2¼ 0

1 3 (1,3) T2, 3 + T0, 3 + T1, 4 + T1, 2� 4T1, 3¼ 0

2 3 (2,3) T3, 3 + T1, 3 + T2, 4 + T2, 2� 4T2, 3¼ 0

3 3 (3,3) T4, 3 + T2, 3 + T3, 4 + T3, 2� 4T3, 3¼ 0
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or:

½A�fTg ¼ fBg ð7:30Þ
in which:

[A] ¼ matrix of coefficients of Eqs. (7.21), (7.22), (7.23), (7.24), (7.25), (7.26),

(7.27), (7.28) and (7.29)

{T} ¼ vector of unknown temperatures at the nine points inside the grid

{B} ¼ vector of numbers related to the right side of Eqs. (7.21), (7.22), (7.23),

(7.24), (7.25), (7.26), (7.27), (7.28) and (7.29)

As was done in Chap. 5, we can multiply both sides of Eq. (7.30) by the inverse

of matrix A:

A½ ��1 A½ � Tf g ¼ A½ ��1 Bf g ð7:31Þ
Since [A] [A]�1 ¼ [A]�1 [A] ¼ [I], we obtain:

Tf g ¼ A½ ��1 Bf g ð7:32Þ
As was done in Chap. 5, we can build matrix A in an Excel spreadsheet, invert

this matrix, and multiply the result by vector B, as depicted in Fig. 7.4.

Fig. 7.4 Suggestion for an Excel spreadsheet to solve Eq. (7.30) and obtain the temperature along

the plate
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Figure 7.5 shows the nine temperatures inside the square plate. Observe that the

points closer to the ends with higher temperatures also present higher temperatures,

as expected (compare this with Fig. 7.3a).

If one wants to obtain a more precise result, more discretization points have

to be considered; however, a system with more equations must be solved

simultaneously.

7.4.2 PDEs Transformed into an ODE System

The problem proposed in Sect. 7.1 (Eq. 4.15, rewritten below) and solved in Sect.

7.3 could also be solved with discretization in just one independent variable.

∂T
∂t

¼ k

ρcp

∂2
T

∂x2
ð4:15Þ

In this section, we will discretize only in the axial coordinate. We will assume

Δx ¼ 0.2, as done in Sect. 7.3, so Eq. (4.15) will be transformed in a system with

four ODEs, representing the variation of temperature over time at x ¼ 0.2, 0.4, 0.6,

and 0.8 (temperatures at x ¼ 0.0 and x¼ 1.0 are already known and are equal

to 70 �C and 30 �C, respectively).
Figure 7.6 shows the cylindrical metal bar with the four points where the profile

of temperature over time will be calculated.

Using Eq. (7.6) and assuming truncation error negligible, Eq. (4.15) can be

written as:

dTi

dt
¼ k

ρcp

Ti�1 � 2Ti þ Tiþ1

ðΔxÞ2
 !

ð7:33Þ

We do not use the index j in Eq. (7.33) as was previously done in Sect. 7.3

(see Eq. 7.13), because j is related to time, which will be taken into account when a

numerical method to solve ODEs is used. For the different values of i, the ODE

system can be written as:

79.46 77.60 70.54

65.25 60.42 54.54

46.13 44.27 37.20

Fig. 7.5 Inside

temperatures of the square

plate
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At x ¼ 0:2:
dT0:2

dt
¼ k

ρcp

70� 2T0:2 þ T0:4

0:2ð Þ2
 !

ð7:34Þ

At x ¼ 0:4:
dT0:4

dt
¼ k

ρcp

T0:2 � 2T0:4 þ T0:6

0:2ð Þ2
 !

ð7:35Þ

At x ¼ 0:6:
dT0:6

dt
¼ k

ρcp

T0:4 � 2T0:6 þ T0:8

0:2ð Þ2
 !

ð7:36Þ

At x ¼ 0:8:
dT0:8

dt
¼ k

ρcp

T0:6 � 2T0:8 þ 30

0:2ð Þ2
 !

ð7:37Þ

The ODE system can be solved using the numerical methods of Runge–Kutta. In

this section, we will use the first-order Runge–Kutta (RK1) or Euler method (see

Eq. 6.16). We can either develop a code in Visual Basic for Applications (VBA) or

solve the ODE system using a spreadsheet in Excel, as was done in Sect. 6.3. We

choose this second option. A suggestion for how the spreadsheet could be built is

presented in Fig. 7.7. The function space in the spreadsheet shows the application of

the Euler method (Eq. 6.16) to obtain the temperature at x¼ 0.2 m and t¼ 0.05 min.

After typing this equation and pressing Enter, we can drag the Fill Handle right and
down to complete the other values in the table. Observe that the same results are

obtained in Figs. 7.2 and 7.7, as expected.

7.4.3 Solving a System of PDEs

The previous examples showed how to solve one single PDE. The methodology

presented so far can also be applied to solve a system of PDEs, as can be seen in the

next example adapted from Hill and Root (2014). The reaction A!k B, in a liquid

T = 700C T = 300C

0.2 0.4 0.6 0.8 1.00.0

Fig. 7.6 Cylindrical bar showing the points where profiles of the temperature over time will be

calculated
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phase, occurs in a plug-flow reactor (PFR) at a constant pressure equal to 202.6 kPa.

The tubular reactor is fed with a solution of reactant A in a concentration (CA0
) of

18.75 kmol/m3, a flow rate (Q) of 32 m3/h, and a temperature (T0) of 200
�C. The

average enthalpy of the reaction (ΔHR) is �15,000 kJ/kmol. The reaction rate

constant can be represented by the expression below for the considered interval

of the temperature:

k ¼ 110þ 0:8 T � 200ð Þ ð7:38Þ
in which:

T ¼ reactor temperature (�C)
k ¼ reaction rate constant (h�1)

The reactor operates in an adiabatic way (no heat exchange with the environ-

ment) and in a transient regime. Assume that, in the beginning (time equal to zero),

Fig. 7.7 Suggestion for a spreadsheet to solve a system of four ordinary differential equations

(ODEs) using the Euler method after discretizing only in an axial coordinate
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the concentration of A and the temperature along the reactor are equal to 0 kmol/m3

and 200 �C, respectively. Consider, for the reactional mixture,ρcp ¼ 787:5 kJ=m3K

constant during the reaction. Assume the reactor has length (L ) and diameter (D)
of 3 m and 24.25 cm, respectively. We want to know the axial profiles of the

temperature and the concentration of A over time.

Doing the modeling of this system according to Chap. 4, we obtain the balance

of reactant A and the temperature inside the reactor as presented by Eqs. 7.39

and 7.40. No diffusion in axial and radial directions is considered.

Balance for A:
∂CA

∂t
¼ � Q

A

∂CA

∂z
� kCA ð7:39Þ

Energy balance:
∂T
∂t

¼ � Q

A

∂T
∂z

þ ð�ΔHRÞkCA

ρcp
ð7:40Þ

in which:

A ¼ reactor cross-sectional area ¼(πD2)/4

The initial/boundary conditions needed to solve this equation system are:

t ¼ 0: CA ¼ 0, for 0 � z � L ð7:41Þ
t ¼ 0: T ¼ 200�C, for 0 � z � L ð7:42Þ

z ¼ 0: CA ¼ CA0
¼ 18:75 kmol=m3, for 0 < t < 1 ð7:43Þ

z ¼ 0: T ¼ T0 ¼ 200�C, for 0 < t < 1 ð7:44Þ
To solve Eqs. (7.39) and (7.40), we will consider the axial discretization in

order to obtain a system of ODEs varying over time. If we assume Δz ¼ 0.6, we

can obtain an ODE system able to predict how CA and T vary over time at z equal
to 0.6 m, 1.2 m, 1.8 m, 2.4 m and 3.0 m. In theory, ∂T=∂z and ∂CA=∂z can be

discretized using forward, backward, or centered difference (Eqs. 7.3, 7.4, or

7.5, respectively). We will use backward difference (Eq. 7.4), as denoted by

Eqs. (7.45) and (7.46) below. The index j, related to time, of Eq. (7.4) is not

written, because time will be taken into account in the numerical method to

solve the ODE system. Eqs. (7.45) and (7.46) also consider truncation error

negligible.

∂CA

∂z

� �
i

¼ CAi
� CAi�1

Δz
ð7:45Þ

∂T
∂z

� �
i

¼ Ti � Ti�1

Δz
ð7:46Þ
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Substituting (7.45) and (7.46) in Eqs. (7.39) and (7.40) yields:

d CAð Þ0:6
dt

¼ � Q

A

CAð Þ0:6 � CAð Þ0
Δz

� k0:6 CAð Þ0:6 ð7:47Þ

d CAð Þ1:2
dt

¼ � Q

A

CAð Þ1:2 � CAð Þ0:6
Δz

� k1:2 CAð Þ1:2 ð7:48Þ

d CAð Þ1:8
dt

¼ � Q

A

CAð Þ1:8 � CAð Þ1:2
Δz

� k1:8 CAð Þ1:8 ð7:49Þ

d CAð Þ2:4
dt

¼ � Q

A

CAð Þ2:4 � CAð Þ1:8
Δz

� k2:4 CAð Þ2:4 ð7:50Þ

d CAð Þ3:0
dt

¼ � Q

A

CAð Þ3:0 � CAð Þ2:4
Δz

� k3:0 CAð Þ3:0 ð7:51Þ

dT0:6

dt
¼ � Q

A

T0:6 � T0

Δz
þ ð�ΔHRÞk0:6ðCAÞ0:6

ρcp
ð7:52Þ

dT1:2

dt
¼ � Q

A

T1:2 � T0:6

Δz
þ ð�ΔHRÞk1:2ðCAÞ1:2

ρcp
ð7:53Þ

dT1:8

dt
¼ � Q

A

T1:8 � T1:2

Δz
þ ð�ΔHRÞk1:8ðCAÞ1:8

ρcp
ð7:54Þ

dT2:4

dt
¼ � Q

A

T2:4 � T1:8

Δz
þ ð�ΔHRÞk2:4ðCAÞ2:4

ρcp
ð7:55Þ

dT3:0

dt
¼ � Q

A

T3:0 � T2:4

Δz
þ ð�ΔHRÞk3:0ðCAÞ3:0

ρcp
ð7:56Þ

The concentration and temperature at z ¼ 0 (CA0
in Eq. 7.47 and T0 in Eq. 7.52)

are known: CA0
¼ 18.75 kmol/m3 and T0 ¼ 200, as can be seen in the boundary

conditions (Eqs. 7.43 and 7.44), so there are ten unknown values and ten ODEs to

be simultaneously solved. Observe that if forward or centered difference (Eqs. 7.3
or 7.5) were used to represent ∂T=∂z and ∂CA=∂z, CA and T at z ¼ 3.6 would be

needed in Eqs. (7.51) and (7.56), which is longer than the total length of the reactor

(L ¼ 3.0 m), so backward difference (Eq. 7.4) was used in this example.

The system of Eqs. (7.47), (7.48), (7.49), (7.50), (7.51), (7.52), (7.53), (7.54),

(7.55) and (7.56) can be solved using the Runge–Kutta methods shown in Chap. 6.

For this problem, we develop a code in VBA that uses the fourth-order Runge–

Kutta (RK4) method to solve the ODE system (see Appendix 7.1). The initial

condition at t ¼ 0 is given by Eqs. (7.41) and (7.42) (at t ¼ 0, CA ¼ 0 and T ¼
200 �C for 0� z� 3.0m).

The program generates profiles of the concentration of reactant A and the

temperature varying along the reactor length and over time, which can be visualized

in Figs. 7.8 and 7.9.
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Observe that the code in VBA presented in Appendix 7.1 to generate Figs. 7.8

and 7.9 is almost the same as that used in Chap. 6, because it was developed in a

generic way.
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Fig. 7.8 Axial profiles of the concentration of A and temperature for different values of time until

a steady state is reached
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7.4.4 PDEs with Flux Boundary Conditions

In chemical engineering, boundary conditions involving the flux of a given com-

ponent occur very frequently. Imagine the insulated cylindrical metal bar
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Fig. 7.9 Profiles of the concentration of A and temperature over time at different positions inside

the reactor
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considered in Sects. 7.1, 7.3, and 7.4.2 by Eq. (4.15), but, this time, assume that one

of the ends exchanges heat with the environment, as depicted in Fig. 4.10 in

Example 4.5. The problem to be solved is rewritten below:

∂T
∂t

¼ k

ρcp

∂2
T

∂x2
ð4:15Þ

At t ¼ 0 h, T ¼ 50 �C, for 0 � L � 1 m

At x ¼ 0 m, T ¼ 70 �C, for t > 0 h

At x ¼ 1m,
dT

dx
¼ � h

k
ðT � TenvÞ, for t > 0 h ð7:57Þ

in which:

k ¼ thermal conductivity (J/s m �C)
h ¼ coefficient of heat transfer by convection (J/s m2 �C)
Tenv ¼ environment temperature ¼ 25 �C

Equation (4.15) can be solved numerically using both approaches presented in

Sects. 7.3 and 7.4.2. For both cases, the only change is the way the temperature at

x ¼ 1.0 m is calculated. The boundary condition at x ¼ 1 m is an ODE and,

therefore, must also be discretized. In theory, this ODE can be discretized

using forward, backward or centered difference (Eqs. 7.9, 7.10, or 7.11, respec-

tively). As mentioned earlier, centered difference is more accurate; therefore,

we will try to adopt it in this example. Discretization of Eq. (7.57) (at the position

x ¼ 1 m) yields:

T1:2, j � T0:8, j

2Δx
¼ � h

k
ðT1:0, j � TenvÞ ð7:58Þ

or

T1:2, j ¼ T0:8, j � 2Δx h
k

ðT1:0, j � TenvÞ ð7:59Þ

Observe that the temperature at x ¼ 1.2 m (T1.2) is needed to obtain the

temperature at x ¼ 1.0 m (T1) at the boundary. Since T1.2 does not exist, we will

consider an imaginary point at 1.2 m, and perform the calculus considering it. If the

approach presented in Sect. 7.3 is adopted, Eq. (7.16) (rewritten below) can be used

for all discretization points, including x ¼ 1 m.

Ti, jþ1 ¼ Fo Ti�1, j � 2Ti, j þ Tiþ1, j

� �þ Ti, j ð7:16Þ
in which: Fo ¼ k

ρcp

Δt
ðΔxÞ2
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At x ¼ 1.0 m, Eq. 7.16 becomes:

T1:0, jþ1 ¼ FoðT0:8, j � 2T1:0, j þ T1:2, jÞ þ T1:0, j ð7:60Þ
Observe that Eq. (7.60) presents the temperature at the imaginary point T1.2, j.
Substituting (7.59) in (7.60) and rearranging, yields:

T1:0, jþ1 ¼ T1:0, j þ 2Fo T0:8, j � T1:0, j 1þ Δx
h

k

� �
þ Δx

h

k
Tenv

� �
ð7:61Þ

To solve Eq. (4.15) with the boundary condition 7.57, the spreadsheet in Fig. 7.2

can be used again, but the cell I15 must contain Eq. (7.61) instead of the value 30.
Alternatively, the approach presented in Sect. 7.4.2 can be used; however, in

addition to Eqs. (7.34), (7.35), (7.36) and (7.37), an ODE at x ¼ 1 m (Eq. 7.62) is

needed to represent the variation in temperature at this point over time:

At x ¼ 1:0:
dT1:0

dt
¼ k

ρcp

T0:8 � 2T1:0 þ T1:2

ð0:2Þ2
 !

ð7:62Þ

As was done before, the discretized boundary condition at x ¼ 1 (Eq. 7.57)

generates the Eq. (7.63) for the temperature at the imaginary point x ¼ 1.2

(differently from Eq. (7.59), herein the index j is not used because ODEs will be

solved numerically over time latter on):

T1:2 ¼ T0:8 � 2Δxh
k

ðT1:0 � TenvÞ ð7:63Þ

Substituting Eq. (7.63) in (7.62) and rearranging, an ODE for x¼ 1 m is obtained

(Eq. 7.64), which must be solved simultaneously with Eqs. (7.34), (7.35), (7.36)

and (7.37):

dT1:0

dt
¼ 2k

ρcpð0:2Þ2
T0:8 � T1:0 1þ Δx

h

k

� �
þ Δx

h

k
Tenv

� �
ð7:64Þ

The spreadsheet presented in Fig. 7.7 can be used again, but substituting the cell

I15 with Eq. (7.64). The parameters ρ, cp, and k are the ones shown in Fig. 7.7, and

the heat coefficient (h) considered in this case is 300 J/min m2 �C.
As mentioned earlier, centered difference was adopted in this example to

discretize the boundary condition, because of its higher accuracy. To better visual-

ize how centered difference is more precise, let us suppose that backward difference
was used instead of centered difference. If this is the case, the discretization of the

boundary condition (7.57) would yield:
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T1:0 ¼ T0:8 � Δx h
k

T1:0 � Tenvð Þ ð7:65Þ

Equation (7.65) can be rearranged to explicitly express T1.0:

T1:0 ¼
Δx h
k Tenv þ T0:8

Δx h
k þ 1

ð7:66Þ

If the approaches presented in Sects. 7.3 or 7.4.2 were used, the cell I15 in the

spreadsheets in Figs. 7.2 or 7.7 should be replaced by the expression of Eq. (7.66).

Analogously, forward difference could also be adopted.

Figure 7.10 compares forward, centered and backward difference applied to the

boundary condition (7.57) when the system reaches a steady state. An analytical

solution is also presented to better compare the results.

For this example, when a steady state is reached, the three ways of differencing

present the same axial profiles, and they are equal to the analytical solution. On the

other hand, before reaching the steady state, the type of differencing affects the

results, as can be exemplified in Fig. 7.11 for time ¼ 100 min. Even using smaller

increment of x (Δx ¼ 0.1), the accuracy obtained in backward difference (see

Fig. 7.11) or in forward difference (not shown) is lower than the accuracy obtained

in centered difference for Δx ¼ 0.2. Observe that the curve representing the

analytical solution for time ¼ 100 min in Fig. 7.11 (see the equation for analytical

solution in Appendix 7.2) matches the numerical solution using centered difference
and Δx ¼ 0.2 to represent the first derivative of the boundary condition (Eq. 7.57).
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Fig. 7.10 Comparison between analytical and finite difference solutions in a steady state,

applying centered, backward, and forward difference to discretize the boundary condition

Eq. (7.57)
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The numerical procedures presented in this chapter can be used for different

problems in chemical engineering involving PDEs, even if more independent vari-

ables are considered.

Proposed Problems

7.1) Imagine heat conduction in a cube with sides measuring 0.6 m. The cube is

made of a metal with thermal conductivity k equal to 398 W/(m K). The initial

temperature of the cube is 20 �C, but this temperature starts changing over time

because all faces of the cube are kept at constant temperatures as depicted below:

Face Superior Inferior Right Left Front Back

T (�C) 200 30 50 150 100 80

a) Find a PDE that represents the temperature variation along the three coordi-

nates (x, y, and z) and over time.

b) Consider Δx ¼ Δy ¼ Δz ¼ 0.2 m and draw the cube (it is like a Rubik’s cube).
Discretize in x, y, and z and find eight ODEs representing the internal temper-

ature variation over time.

c) Solve the system of ODEs using the RK4 method and plot the curves.

7.2) Imagine a beaker of radius (R) 1 cm and 5 cm high (L ), open at the top

with only air inside it, as per Example 4.7. A certain gas A at a concentration

CA ¼ 1 kmol/m3 starts flowing around the beaker. There is diffusion of A inside the

beaker, but at the bottom, CA always remains equal to zero. Assume that the mass
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Fig. 7.11 Comparison between analytical and finite difference solutions before reaching a steady

state (time ¼ 100 min), applying centered, backward, and forward difference to discretize the

boundary condition (Eq. 7.57). The analytical solution at the steady state (shown in Fig. 7.10) is

also presented
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diffusivity of A in the air is DA ¼ 0.018 m2/h. The equation that represents this

system is presented by Eq. (4.23) rewritten below:

∂CA

∂t
¼ DA

∂2
CA

∂x2
ð4:23Þ

The initial and boundary conditions are:

At t ¼ 0 h, CA ¼ 0 kmol/m3, for 0 � x � 0.05 m

At x ¼ 0 m, CA ¼ 0 kmol/m3, for t > 0 h

At x ¼ 0.05 m, CA ¼ 1 kmol/m3, for t > 0 h

Use the finite difference method to obtain the axial profile of the concentration of

A inside the beaker over time.

7.3) Consider Example 4.8 about two concentric cylinders. A copper cylinder of

length 1 m and radius 0.1 m at a constant temperature of 80 �C is coated with an

annulus made of aluminum, initially at 50 �C. The total radius of the concentric

cylinders (copper plus aluminum) is 0.3 m. The environment temperature is con-

stant and equal to 25 �C. Although the aluminum exchanges heat with the environ-

ment, the two ends of the two concentric cylinders are insulated. The model for this

system is represented by Eq. (4.27), rewritten below:

∂2
T

∂r2
þ 1

r

∂T
∂r

¼ ρcp
k

∂T
∂t

ð4:27Þ

The initial and boundary conditions are:

t ¼ 0, T ¼ 50 �C, for 0.1� r� 0.3

t > 0, r ¼ 0.1, T¼ 80 �C
t > 0, r ¼ 0.3, dTdr ¼ � h

k ðT � 25Þ
Use the finite difference method to find profiles of the temperature along the

radius and over time until a steady state is reached. Consider k ¼ 180 W/mK, h ¼
100 W/m2 K, cp ¼ 0.91 KJ/kg K and ρ ¼ 2.7 g/cm3.

Appendix 7.1

Figures A.7.1, A.7.2, and A.7.3 show the VBA code developed to solve the ODE

system generated in Sect. 7.4.3 (Eqs. 7.47, 7.48, 7.49, 7.50, 7.51, 7.52, 7.53, 7.54,

7.55 and 7.56). Observe that the code is almost identical to the one presented in

Chap. 6 (Figs. 6.18b, 6.17, and 6.20). The functionDerivative is changed to account
for the new system of ODEs. The function RungeKutta4 is identical, except for the
dimensions of variables k1, k2, k3, k4, and ytran, which have changed from 5 to

10, to account for the 10 ODEs. The main program RK4 is modified only in the
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Fig. A.7.1 The main program in Visual Basic for Applications (VBA) code to solve an ordinary

differential equation (ODE) system (Eqs. 7.47, 7.48, 7.49, 7.50, 7.51, 7.52, 7.53, 7.54, 7.55

and 7.56) using the fourth-order Runge–Kutta (RK4) method
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Fig. A.7.2 Function of the fourth-order Runge–Kutta (RK4) method called in the main program

(Fig. A.7.1)
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dimension of the variables and values for the initial conditions and integration step,

as highlighted in Fig. A.7.1.

Appendix 7.2

Figure 7.11 shows a curve for the analytical solution of Eq. (4.15), rewritten below:

∂T
∂t

¼ k

ρcp

∂2
T

∂x2
ð4:15Þ

At t ¼ 0 h, T(x, 0) ¼ 50 �C, for 0 �L� 1 m

At x ¼ 0 m, T(0, t) ¼ 70 �C, for t> 0 h

At x ¼ 1 m,
dT

dx
¼ � h

k
ðT � TenvÞ, for t > 0 h ð7:57Þ

The analytical solution of Eq. (4.15) can be obtained using the Fourier method,

to yield:

T ¼ T 0; tð Þ þ h

hþ k

� �
Tenv � T 0; tð Þxð Þ

þ
X1
n¼1

2

1þ k

h
cos βnð Þ2

� � T x; 0ð Þ � T 0; tð Þ
βn

�
� T x; 0ð Þ � Tenvð Þ cos βn

βn

�

� exp � k

ρ cp
β2n t

� �
sin βnxð Þ

Fig. A.7.3 The function Derivative with ten ordinary differential equations (ODEs) (Eqs. 7.47,

7.48, 7.49, 7.50, 7.51, 7.52, 7.53, 7.54, 7.55 and 7.56) called in the function RungeKutta4
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in which βn are the solutions of:

tan βn þ
k

h
βn ¼ 0 For n ¼ 1, 2, 3, . . .
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