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Preface

During the last years of the nineteenth century, the development of new techniques
and the refinement of measuring apparatuses provided an abundance of new data
whose interpretation implied deep changes in the formulation of physical laws and
in the development of new phenomenology.

Several experimental results lead to the birth of the new physics. A brief list
of the most important experiments must contain those performed by H. Hertz about
the photoelectric effect, the measurement of the distribution in frequency of the
radiation emitted by an ideal oven (the so-called black body radiation), the mea-
surement of specific heats at low temperatures, which showed violations of the
Dulong–Petit law and contradicted the general applicability of the equipartition
of energy. Furthermore, we have to mention the discovery of the electron by
J.J. Thomson in 1897, A. Michelson and E. Morley’s experiments in 1887, showing
that the speed of light is independent of the reference frame, and the detection of
line spectra in atomic radiation.

From a theoretical point of view, one of the main themes pushing for new
physics was the failure in identifying the ether, i.e., the medium propagating
electromagnetic waves, and the consequent Einstein–Lorentz interpretation of the
Galilean relativity principle, which states the equivalence among all reference
frames having a linear uniform motion with respect to fixed stars.

In the light of the electromagnetic interpretation of radiation, of the discovery
of the electron and of Rutherford’s studies about atomic structure, the anomaly in
black body radiation and the particular line structure of atomic spectra lead to the
formulation of quantum theory, to the birth of atomic physics and, strictly related to
that, to the quantum formulation of the statistical theory of matter.

Modern Physics, which is the subject of these notes, is well distinct from
Classical Physics, developed during the XIX century, and from Contemporary
Physics, which was started during the Thirties (of XX century) and deals with the
nature of Fundamental Interactions and with the physics of matter under extreme
conditions. The aim of this introduction to Modern Physics is that of presenting a
quantitative, even if necessarily also concise and schematic, account of the main
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features of Special Relativity, of Quantum Physics and of its application to the
Statistical Theory of Matter. In usual textbooks these three subjects are presented
together only at an introductory and descriptive level, while analytic presentations
can be found in distinct volumes, also in view of examining quite complex technical
aspects. This state of things can be problematic from the educational point of view.

Indeed, while the need for presenting the three topics together clearly follows
from their strict interrelations (think for instance of the role played by special
relativity in the hypothesis of de Broglie’s waves or of that of statistical physics in
the hypothesis of energy quantization), it is also clear that this unitary presentation
must necessarily be supplied with enough analytic tools so as to allow a full
understanding of the contents and of the consequences of the new theories.

On the other hand, since the present text is aimed to be introductory, the obvious
constraints on its length and on its prerequisites must be properly taken into
account: it is not possible to write an introductory encyclopedia. That imposes a
selection of the topics which are most qualified from the point of view of the
physical content/mathematical formalism ratio.

In the context of special relativity, after recalling the classical analysis of the
ether hypothesis, we introduce Lorentz’s transformations and their action on
Minkowski space-time, discussing the main consequences of the new interpretation
of space and time. Then we introduce the idea of covariant formulation of the laws
of nature, considering in particular the new formulation of energy-momentum
conservation. Finally, we discuss the covariant formulation of electrodynamics and
its consequences on field transformation laws and Doppler effect.

Regarding Schrödinger quantum mechanics, after presenting with some care the
origin of the wave equation and the nature of the wave function together with its
main implications, like Heisenberg’s Uncertainty Principle, we have emphasized
its qualitative consequences on energy levels. The main analysis begins with
one-dimensional problems, where we have examined the origin of discrete energy
levels and of band spectra as well as the tunnel effect. Extensions to more than one
dimension have been limited to very simple examples in which the Schrödinger
equation is easily separable, like the case of central forces. Among the simplest
separable cases we discuss the three-dimensional harmonic oscillator and the cubic
well with completely reflecting walls, which are however among the most useful
systems for their applications to statistical physics. In a further section we have
discussed a general solution to the three-dimensional motion in a central potential
based on the harmonic homogeneous polynomials in the Cartesian particle coor-
dinates. This method, which simplifies the standard approach based on the analysis
of the Schrödinger equation in spherical coordinates, is shown to be perfectly
equivalent to the standard one. It is applied in particular to the study of bound states
in spherical wells, of the hydrogen atom spectrum, of that of the isotropic harmonic
oscillator and, finally, of elastic scattering.

Going to the last subject, which we have discussed, as usual, on the basis of
Gibbs construction of the statistical ensemble and of the related distribution, we
have chosen to consider those cases which are more meaningful from the point of
view of quantum effects, like degenerate gases, focusing in particular on
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distribution laws and on the equation of state. In order to put into evidence the strict
connection between the statistical results and thermodynamics, we have extended
Gibbs construction to the classical gases, considering also the real gas case. We
have then presented the statistical meaning of entropy and of the thermodynamic
potentials, concluding the chapter with the discussion of the phase transition in the
van der Waals real gas model.

In order to accomplish the aim of writing a text which is introductory and
analytic at the same time, the inclusion of significant collections of problems
associated with each chapter has been essential. We have possibly tried to avoid
mixing problems with text complements; however, moving some relevant appli-
cations to the exercise section has the obvious advantage of streamlining the general
presentation. Therefore in a few cases we have chosen to insert relatively long
exercises, taking the risk of dissuading the average student from trying to give an
answer before looking at the suggested solution scheme. On the other hand, we
have tried to limit the number of those (however necessary) exercises involving a
mere analysis of the order of magnitudes of the physical effects under consideration.
The resulting picture, regarding problems, should consist of a sufficiently wide
series of applications of the theory, being simple but technically nontrivial at the
same time: we hope that the reader will feel that this result has been achieved.

Going to the chapter organization, the one about Special Relativity is divided
into five sections, dealing respectively with Lorentz transformations, with the
covariant form of Maxwell’s equations, and with relativistic kinematics. The
chapter on Wave Mechanics is made up of nine sections, going from an analysis
of the photoelectric effect to the Schrödinger equation and from the potential barrier
to the analysis of band spectra and to the Schrödinger equation in central potentials.
Finally, the chapter on the Statistical Theory of Matter is divided into seven
sections, going from Gibbs distribution, to the equation of state, to perfect quantum
gases and to the classical real ones. The statistical results are interpreted in ther-
modynamical terms, introducing the thermodynamic potentials and giving a simple
example of a phase transition.

Genova Carlo Maria Becchi
Pisa Massimo D’Elia
July 2015
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Suggestion for Introductory Reading

• K. Krane: Modern Physics, 2nd edn (John Wiley, New York 1996)

Physical Constants

• Speed of light in vacuum: c ¼ 2:998 � 108 m=s
• Planck’s constant: h ¼ 6:626 � 10�34 J s ¼ 4:136 � 10�15 eV s
• �h � h=2π ¼ 1:055 � 10�34 J s ¼ 6:582 � 10�16 eV s
• Boltzmann’s constant: k ¼ 1:381 � 10�23 J=�K ¼ 8:617 � 10�5 eV=�K
• Electron charge: e ¼ 1:602 � 10�19 C
• Electron mass: me ¼ 9:109 � 10�31 Kg ¼ 0:5110 MeV=c2

• Proton mass: mp ¼ 1:673 � 10�27 Kg ¼ 0:9383 GeV=c2

• Electric permittivity of free space: ε0 ¼ 8:854 � 10�12 F=m
• Magnetic permeability of free space: μ0 ¼ 4π � 10�7 N=A2

viii Preface



Contents

1 Introduction to Special Relativity . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 From Ether Theory to the Postulates of Relativity . . . . . . . . . . . 3
1.2 Lorentz Transformations and Their Main Consequences . . . . . . . 7

1.2.1 Transformation Laws for Velocities . . . . . . . . . . . . . . . . 11
1.2.2 Invariant Quantities and Space-Time Geometry . . . . . . . . 11
1.2.3 Faster Than Light? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.4 New Phenomena: Time Dilation

and Length Contraction . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.5 On the Concept of Proper Time . . . . . . . . . . . . . . . . . . . 18

1.3 Covariant Formulation of Relativity . . . . . . . . . . . . . . . . . . . . . 19
1.3.1 Covariant Formulation of the Laws of Nature . . . . . . . . . 23

1.4 Relativistic Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.1 Four-Velocity and Four-Momentum . . . . . . . . . . . . . . . . 25
1.4.2 The Lagrangian of a Free Relativistic Particle . . . . . . . . . 27
1.4.3 Energy-Momentum Conservation

in Relativistic Processes . . . . . . . . . . . . . . . . . . . . . . . . 32
1.5 Covariant Formulation of Electromagnetism . . . . . . . . . . . . . . . 35

1.5.1 Relativistic Doppler Effect . . . . . . . . . . . . . . . . . . . . . . 40
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2 Introduction to Quantum Physics . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.1 The Photoelectric Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.2 Bohr’s Quantum Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.3 de Broglie’s Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.4 Schrödinger’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.4.1 The Uncertainty Principle . . . . . . . . . . . . . . . . . . . . . . . 85
2.4.2 The Speed of Waves . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.4.3 The Collective Interpretation of de Broglie’s Waves . . . . . 90

ix

http://dx.doi.org/10.1007/978-3-319-20630-1_1
http://dx.doi.org/10.1007/978-3-319-20630-1_1
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec1
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec1
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec2
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec2
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec3
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec3
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec4
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec4
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec5
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec5
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec6
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec6
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec6
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec7
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec7
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec8
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec8
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec9
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec9
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec10
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec10
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec11
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec11
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec12
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec12
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec13
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec13
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec13
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec14
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec14
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec15
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec15
http://dx.doi.org/10.1007/978-3-319-20630-1_1#Sec16
http://dx.doi.org/10.1007/978-3-319-20630-1_2
http://dx.doi.org/10.1007/978-3-319-20630-1_2
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec1
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec1
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec2
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec2
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec3
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec3
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec4
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec4
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec5
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec5
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec6
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec6
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec7
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec7


2.5 The Potential Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.5.1 Mathematical Interlude: Differential Equations

with Discontinuous Coefficients. . . . . . . . . . . . . . . . . . . 93
2.5.2 The Square Barrier. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2.6 Quantum Wells and Energy Levels. . . . . . . . . . . . . . . . . . . . . . 103
2.7 The Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
2.8 Periodic Potentials and Band Spectra . . . . . . . . . . . . . . . . . . . . 115
2.9 The Schrödinger Equation in a Central Potential . . . . . . . . . . . . 120

2.9.1 A Piecewise Constant Potential
and the Free Particle Case. . . . . . . . . . . . . . . . . . . . . . . 128

2.9.2 The Coulomb Potential . . . . . . . . . . . . . . . . . . . . . . . . . 131
2.9.3 The Isotropic Harmonic Oscillator . . . . . . . . . . . . . . . . . 134
2.9.4 The Scattering Solutions . . . . . . . . . . . . . . . . . . . . . . . . 137

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3 Introduction to the Statistical Theory of Matter. . . . . . . . . . . . . . . 167
3.1 Thermal Equilibrium by Gibbs’ Method . . . . . . . . . . . . . . . . . . 171

3.1.1 Einstein’s Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
3.1.2 The Particle in a Box with Reflecting Walls . . . . . . . . . . 176

3.2 The Pressure and the Equation of State . . . . . . . . . . . . . . . . . . . 177
3.3 A Three Level System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
3.4 The Grand Canonical Ensemble and the Perfect Quantum Gas. . . 183

3.4.1 The Perfect Fermionic Gas . . . . . . . . . . . . . . . . . . . . . . 185
3.4.2 The Perfect Bosonic Gas. . . . . . . . . . . . . . . . . . . . . . . . 194
3.4.3 The Photonic Gas and the Black Body Radiation . . . . . . . 197

3.5 Gases in the Classical Limit . . . . . . . . . . . . . . . . . . . . . . . . . . 199
3.6 Entropy and Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . 204
3.7 The Thermodynamic Potentials . . . . . . . . . . . . . . . . . . . . . . . . 207

3.7.1 Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

x Contents

http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec8
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec8
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec9
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec9
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec9
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec10
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec10
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec11
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec11
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec12
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec12
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec13
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec13
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec14
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec14
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec15
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec15
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec15
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec16
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec16
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec17
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec17
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec18
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec18
http://dx.doi.org/10.1007/978-3-319-20630-1_2#Sec19
http://dx.doi.org/10.1007/978-3-319-20630-1_3
http://dx.doi.org/10.1007/978-3-319-20630-1_3
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec1
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec1
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec2
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec2
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec3
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec3
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec4
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec4
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec5
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec5
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec6
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec6
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec7
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec7
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec8
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec8
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec9
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec9
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec10
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec10
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec11
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec11
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec12
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec12
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec13
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec13
http://dx.doi.org/10.1007/978-3-319-20630-1_3#Sec14


Chapter 1
Introduction to Special Relativity

The relativity principle, first formulated by Galileo,1 states that the laws of Nature
are the same in all inertial frames. Those are identified with the class of reference
frames in which any body not subject to external forces stays at rest or moves at
constant speed. As we will discuss later, that implies that all inertial frames move at
constant velocity with respect to each other. The actual realization and verification of
the principle requires to state the transformation laws according to which an observer
in one inertial frame reports the results of experiments performed in another frame:
while this does not coincide with the principle itself, it is the unavoidable step to
implement it in our mathematical description of the laws of Nature.

For a long time, the correct transformation laws were believed to be those named
after Galileo himself. Suppose that two inertial frames, O and O′, are such that they
coordinate axes are parallel to each other and O′ moves at constant velocity V ,
directed along the x direction, with respect to O. Then it is always possible to set
clocks in both frames such that

x′ = x − V t; y′ = y; z′ = z; t′ = t. (1.1)

Equation (1.1) contains various additional assumptions, beyond the relativity prin-
ciple itself, the most relevant being the possibility of setting an absolute time flow
which is equal for all observers. Galilean transformations predict that accelerations
of moving bodies be the same in different inertial frames: that provides a consistent
framework for Classical Mechanics.

Such a frameworkunderwent a serious crisis in the19th century, after J.C.Maxwell
had completed the formulation of the laws of electromagnetism, usually known as
Maxwell equations. There are various ways to realize that such equations are not
compatible with Galileo’s transformation laws.

1Remember, for instance, of the famous discussion about experiments in a moving ship, which is
reported in his Dialogue.
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2 1 Introduction to Special Relativity

Let us start by considering the force exchanged between two charged particles at
rest with respect to each other. From the point of view of an observer at rest with the
particles, the force is given by Coulomb law, which is repulsive if the charges have
equal sign. An observer in a moving reference frame, instead, must also consider
the magnetic field produced by each particle, which acts on moving electric charges
according to the Lorentz force law. If the velocity of the particles is orthogonal to
their relative distance, it can be easily checked that the Lorentz force is opposite
to the Coulomb one and reduces the electrostatic force by a factor (1 − v2/c2),
where c ≡ 1/

√
μ0ε0 and ε0 and μ0 are respectively the electric permittivity and the

magnetic permeability in vacuum. The difference leads to different accelerations in
the two reference frames, in contrast with Eq. (1.1).

The core in the discrepancy between Galilean transformations andMaxwell equa-
tions can be associatedwith the fact that the latter contain a new fundamental constant
which has the dimensions of a velocity, c � 3×108 m/s. Indeed, it is well known that
Maxwell equations describe the propagation of electromagnetic waves with speed c,
according to the d’Alambert equation:

1

c2
∂2

∂t2
u(x, t) − ∇2u(x, t) ≡ �u(x, t) = 0 (1.2)

where u(x, t) stands for any component of the electromagnetic fields. According to
Galilean transformations velocities get added when going from one inertial reference
frame to the other: the vector corresponding to the velocity of a luminous signal in
one inertial reference frame O must be added to the velocity of O with respect to a
new inertial frame O′ to obtain the velocity of the luminous signal as measured in
O′. Hence, for a generic value of the relative velocity, the speed of the signal in O′
will be different, implying that, if Maxwell equations are valid in O, they are not
valid in a generic inertial reference frame O′. Moreover, one can check directly2 that,
apart from the change in the speed of propagation, the form of Eq. (1.2) itself is not
invariant under the transformations in (1.1).

Various possibilities were opened at that time to solve the inconsistency. The first
one, claiming that Maxwell equations were wrong, was soon discarded, based on the
overwhelming and accurate experimental evidence in favour of them. The second
one, claiming that the relativity principle was wrong and that an absolute reference
frame existed where Maxwell equations were true, seemed the most natural for a
while.

Indeed, at the beginning of 19th century, Young’s experiments on interference
had proven that the wave theory of light was correct. Since then, people had been
questioning about which medium could permit the propagation of light from distant

2From (1.1) one obtains

∂/∂x = ∂/∂x′ ; ∂/∂y = ∂/∂y′ ; ∂/∂z = ∂/∂z′

∂/∂t = ∂/∂t′ − vx ∂/∂x′ − vy ∂/∂y′ − vz ∂/∂z′ = ∂/∂t′ − v · ∇′

from which the new wave equation in the reference frame O′ is obtained by combining derivatives.
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stars to us. All wave phenomena known at that time had a corresponding oscillating
substance, so that wave propagation in true vacuum was inconceivable. The most
natural solution seemed that based on the assumption that electromagnetic waves
correspond to deformations of an extremely rigid and rarefied medium, which was
named ether. Therefore, such an absolute reference system,whereMaxwell equations
were true, was already provided: it was the one at rest with ether.

Since ether had no other apparent property apart from propagating light, it just
remained, in order to validate its existence, to prove that one could find out one’s
own velocity with respect to ether by means of appropriate experiments. Due to the
large value of c and to the fact that most effects related to the motion with respect
to ether are quadratic in v/c, that was not completely trivial. Looking at the change
in the force between two electric charges was certainly not a good idea, since in this
case violations from Coulomb force are not easily detectable: for instance, in the
case of two electrons accelerated through a potential gap equal to 104 V, one would
need a precision of the order of v2/c2 � 4 × 10−4 in order to reveal the effect, and
force measurements can hardly reach such levels of accuracy.

It was much more convenient to try measuring the motion of Earth with respect
to the ether, by studying effects related to variations in the speed of light. Taking into
account that Earth rotates along its orbit with a velocity vT such that vT /c ∼ 10−4,
an experiment able to reveal the possible change of velocity of the Earth with respect
to the ether in two different periods of the year would require a precision of at least
one part over ten thousand.Wewill show howA.Michelson and E.Morley were able
to reach that precision by using interference: however they (and other experiments
later) did not found any evidence of motion with respect to ether.

There was a third possibility, actually, which was waiting for A. Einstein, who
first proposed it. He assumed that both the relativity principle andMaxwell equations
were true, but that the transformation laws in (1.1) were wrong. H. Lorentz had
already found, before Einstein, a new class of linear transformations which preserved
Maxwell equations, without however gaining further physical insight. Einstein had
both the genius and the courage to take the relativity principle as a founding principle
for the laws of Nature, bringing againg beauty and simplicity in our description of
them, with a number of new associated phenomena that has revolutionized our world
since then.

1.1 From Ether Theory to the Postulates of Relativity

The properties of ether as the medium underlying light propagation have been a
theoretical and experimental puzzle till the theory of Special Relativity has blown
ether away. One of the main conceptual problems was related to the propagation of
light in materials. At the beginning of the 19th century, it was already well known
that the speed of light depends on the material and is always lower than in vacuum.
This variation was attributed to an increase in the density of ether, caused by the
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presence of the material itself, with the density being proportional to n2, where n is
the refraction index of the medium.

If matter is able to influence the density of ether, it is natural to ask whether a
moving piece of material will drag ether, hence causing a shift in the speed of light.
The first successful experiment trying to answer this question was carried out in 1851
by Fizeau, who managed to measure the speed of light propagating in moving fluids.
The experiment was based on interference of light and is described schematically
in Problem 1.5. The outcome of Fizeau’s experiment seemed to be in agreement
with the hypothesis of partial drag proposed by Fresnel, according to which only the
excess part of ether, caused by the presence of the medium, is dragged by it. Indeed,
Fizeau measured a non-zero velocity shift for water (n � 1.3333) and no drag effect
at all for air (n � 1.0003). The analysis reported in Problem 1.5 will show how such
a result is actually in agreement with the relativistic law for the addition of velocities,
rather than with Fresnel’s hypothesis.

The fact that air has no dragging effect on ether justifies an experiment carried
out on Earth (hence in the presence of air) and trying to measure the relative motion
of Earth with respect to ether: that was the missing piece to prove the existence of
the absolute reference frame. The experimental analysis was done by Michelson and
Morley (starting in 1887), who made use of a two-arm interferometer similar to what
reported in Fig. 1.1. The light source L generates a beam which is split into two parts
by a half-silvered mirror S. The two beams travel up to the end of the arms 1 and
2 of the interferometer, where they are reflected back to S: there they recombine
and interfere along the tract connecting to the observer in O. The observer detects
the phase shift, which can be easily shown to be proportional to the difference ΔT
between the times needed by the two beams to go along their paths. Indeed, the total
phase Φ gained by each beam can be constructed by considering that a phase 2π is
taken for each travelled wavelength, so that

Fig. 1.1 A sketch of
Michelson-Morley
interferometer
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Φ = 2π
∑

i

Li

λi
= 2π

∑

i

ν
Li

vi
= 2πν

∑

i

ti = 2πνT (1.3)

where the sum is performed over the various pieces of the path, of length Li, for
which the phase velocity is constant and equal to vi, and we have used the relation
vi = νλi linking vi to the wavelength λi, where ν is the light frequency, which is
obviously the same along the whole path of both beams. The quantities ti are the
travelling times along the various pieces, whose sum gives the total time T . If the
two arms have the same length l and light moves with the same velocity c along the
two directions, then ΔT = 0 and constructive interference is observed in O.

If however the interferometer is moving with respect to ether with a velocity v,
which we assume for simplicity to be parallel to the second arm, then the path of
the first beam will be seen from the reference frame of the ether as reported in the
figure below and the time T needed to make the path will be given by Pythagoras’
theorem:

c2 T2 = v2 T2 + 4 l2 (1.4)

from which we infer

T = 2 l/c√
1 − v2/c2

. (1.5)

If we instead consider the second beam, we have a time t1 needed to make half-path
and a time t2 to go back, which are given respectively by

t1 = l

c − v
, t2 = l

c + v
(1.6)

so that the total time needed by the second beam is

T ′ = t1 + t2 = 2 l/c

1 − v2/c2
= T√

1 − v2/c2
. (1.7)
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We canfinallywrite the phase differenceΔΦ, which for small values of v, v/c � 1, is

ΔΦ = 2πν(T − T ′) � 2πν
T v2

2 c2
� 2πν

l v2

c3
= 2π

l

λ

v2

c2
. (1.8)

This result shows that the experimental apparatus is in principle able to reveal the
motion of the laboratory with respect to ether. Indeed, assuming that one is able
to reveal phase differences as small as 2π/20, we obtain, setting λ � 0.5 × 10−6

m (a tipical wavelength for visible light) and l � 2 m, that the experiment should
be able to reveal values of v/c as small as 10−4, which roughly corresponds to the
orbital speed of Earth. Hence, if we compare the outcome of two such experiments
separated by an interval of 6months, we should be able to reveal the motion of
Earth with respect to ether. The experiment, repeated by Michelson and Morley in
several different times of the year, each time rotating the apparatus along different
directions, always gave negative results, i.e. phase differences compatible with zero.
At that time it was not obvious at all that the correct interpretation of Michelson-
Morley experiment was that ether does not exist. Indeed, many physicists tried to
find various possible patches to the ether theory, in order to make it compatible with
the experimental evidence. The most notable is probably that due to H. Lorentz and
G. FitzGerald, who proposed that objects moving with respect to ether undergo a
contraction in the direction of motion (Lorentz-FitzGerald contraction), due to some
modification in the electromagnetic interactions inside materials. In particular, one
would need a contraction factor

√
1 − v2/c2 in order to cancel the difference in

the travel times along the two orthogonal paths, as it is clear from Eq. (1.7). It is
interesting to notice that such a contraction factor actually appears in the theory of
Relativity (we will discuss it later in this Chapter) and is indeed usually named after
Lorentz and FitzGerald, even if the physical interpretation of its origin is completely
different.

All the different variations on the ether theory and the very need for an absolute
reference system became useless once the Theory of Relativity, formulated by Albert
Einstein in 1905, blew ether away. Einsteinwas guided towards the formulation of the
theory more by symmetry principles (e.g., by the structure of Maxwell equations and
by their symmetry under exchange of motion between the sources and the observer)
than by experiments on ether. The theory is based on the two following postulates:

1. the laws of Physics are the same in all inertial reference frames;
2. the velocity of light in vacuum is the same in all inertial reference frames.

Actually, the second postulate could be included in the first, once one considers the
speed of light to be among the fundamental laws of Physics. Based on such postu-
lates, in the next Section we will derive the most general transformation connecting
coordinates in two different inertial frames.
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1.2 Lorentz Transformations and Their Main Consequences

We are looking for the most general coordinate transformation between inertial sys-
tems which is compatible with the Relativity principle. There are many constraints
that we can impose on the transformation, and which are satisfied by Galilean trans-
formations as well, before we introduce the invariance of the speed of light. Let us
call, from now on, O and O′ the two inertial systems under consideration. We sup-
pose that in each of them an orthonormal set of coordinate axes has been defined,
xyz for O and x′y′z′ for O′, and that a set of synchronized clocks at rest with respect
to each other has been prepared, separately for each system, so that both O and O′
can assign to something happening somewhen and somewhere, i.e. to what we call
an event, a unique set of space-time coordinates, (t, x, y, z) for O and (t′, x′, y′, z′)
for O′. We want to find the relation between (t′, x′, y′, z′) and (t, x, y, z). The general
requirements are the following: any motion at constant velocity in one system must
be so also in the other system; in addition, we require homogeneity and isotropy of
space to hold in both systems.3

Amotion at constant velocity inO is a succession of events linked by the following
linear relations:

x = x0 + wx t; y = y0 + wy t; z = z0 + wz t (1.9)

where w is the velocity. It is easy to realize that, if we want that such relations get
transformed into a similar set of relations (i.e. into a uniform linear motion) for any
choice of the constant parameters, the transformation, which is of course assumed
to be continuous and invertible, must involve only linear or constant terms in the
coordinates. If we set coordinates in both systems such that the event x = y = z =
t = 0 coincides with the event x′ = y′ = z′ = t′ = 0 (this is always possible by a
translation of the origins) then we are dealing with a linear transformation between
two vector spaces of dimension four, which is specified by a 4 × 4 matrix Λ:

t′ = Λtt t + Λtx x + Λty y + Λtz z

x′ = Λxt t + Λxx x + Λxy y + Λxz z

y′ = Λyt t + Λyx x + Λyy y + Λyz z

z′ = Λzt t + Λzx x + Λzy y + Λzz z. (1.10)

It is easy to prove that, given any point at rest in O, it will have a velocity with respect
to O′ which is uniquely obtained in terms of the coefficients of Λ, hence it is the
same for all points. Therefore one can define the velocity of O with respect to O′,
vO′O, as well as that of O′ with respect to O, vOO′ .

3It is easy to realize that the lack of either isotropy of homogeneity would violate the relativity
principle. Phenomenological observations, hence physical laws, would change by just rotating or
translating the experimental apparatus.
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From now on, in order to get rapidly to the main results, we consider a particular
case in which the coordinate axes in O and O′ are parallel to each other and vOO′ is
directed along the x axis, i.e. we set vOO′ = (v, 0, 0). We call this transformation
a pure boost (i.e. with no rotation) along the x axis. We are thus looking for a
particular subset of transformations characterized by a single continuous parameter
v; the generalization of this case will be discussed later on.

As a first constraint linked to this particular choice, we must neglect all terms
mixing different spatial coordinates, otherwise the coordinate axes would not be
parallel to each other:

Λxy = Λxz = Λyx = Λyz = Λzx = Λzy = 0.

Next we obtain a set of constraints based on the isotropy of space. Λ cannot depend
on the particular orientation of the y, z axes, hence any combined rotation around
the x and x′ axes for both systems (i.e. leaving the y, y′, z, z′ still parallel to each
other) must leave Λ unchanged. If we consider, in particular, a rotation by π, which
changes the signs of y, y′, z, and z′ and leaves x, x′, t and t′ unchanged, we deduce
that no terms can exist mixing the two different sets of coordinates, i.e.

Λty = Λtz = Λyt = Λzt = 0.

We have already reduced the free parameters of Λ from 16 to 6:

t′ = Λtt(v) t + Λtx(v) x

x′ = Λxt(v) t + Λxx(v) x

y′ = Λyy(v) y

z′ = Λzz(v) z (1.11)

where we have explicitly indicated the dependence of the coefficients on v, the
relative speed of O′ with respect to O. Isotropy can be used again by considering
the inversion of both the x and the x′ axis: if at the same time we invert the sign
of v, Λ must remain unchanged. From that we deduce that Λtt(v), Λxx(v), Λyy(v)

and Λzz(v) are even functions of v, while Λtx(v) and Λxt(v) are odd. A general
requirement that we do is that Λ be a continuous function of v and that it tends to the
identity transformation for v → 0, so thatΛtt(0) = Λxx(0) = Λyy(0) = Λzz(0) = 1
and Λtx(0) = Λxt(0) = 0.

Let us consider now the relative velocities of O and O′ and their relation to the
coefficients. The origin of frame O′, represented by x′ = y′ = z′ = 0, moves in O
according to y = z = 0; x = vt, so that

Λxt(v) = −vΛxx(v). (1.12)

In a similar way, we can consider the motion of the origin of O, x = y = z = 0, as
seen from O′, where it moves with velocity vO′O. What do we know about vO′O?
Using the same argument of invariance under combined rotations around the x, x′
axes one sees that vO′O cannot point to any direction but x′ itself, hence we can write
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vO′O = (w, 0, 0) and the world line of the origin of O in O′ is given by y′ = z′ = 0
and x′ = wt′, so that

Λxt(v) = wΛtt(v). (1.13)

We would be tempted to state immediately that w = −v, however such a conclusion
is not so obvious and would be wrong in a non-isotropic Universe. So, let us follow
the precise chain of deductions leading to it. First of all, w must be a well defined
and universal function of v, w = f (v), which according to the relativity principle
must be independent of the particular starting reference frame O. We can state the
following further properties of f (v):

1. if O′ applies f to w, the result must be v, i.e. f (f (v)) = v, f coincides with its
inverse;

2. fromEqs. (1.12) and (1.13) and from the even/odd properties of the transformation
coefficients, we deduce f (−v) = −f (v). This can be linked directly to space
isotropy, since the even/odd properties of the coefficients are a consequence of
that;

3. finally, if we ask that for v → 0 the transformation goes to identity, then f (0) = 0.

It is easy to prove that the only two continuous functions satisfying the properties
above are f (v) = ±v. On the other hand, if we set w = f (v) = v we obtain, from
(1.12) and (1.13), that Λtt(v) = −Λxx(v), which is not compatible with Λ going to
the identity for v → 0. Hence the only possibility is the (seemingly trivial) w = −v,
so that

Λtt(v) = Λxx(v). (1.14)

Let us now consider the inverse transformationΛ−1 which brings back from O′ to O:
it must be of the same form as Λ itself in Eq. (1.11) and is obtained by substitution
of v → w = −v, i.e. (Λ(v))−1 = Λ(−v). If we impose this condition, together
with the known even/odd properties of the coefficients, we obtain

t = Λtt(−v) t′ + Λtx(−v) x′ = Λtt(v) t′ − Λtx(v) x′

x = Λxt(−v) t′ + Λxx(−v) x′ = −Λxt(v) t′ + Λxx(v) x′

y = Λyy(−v) y′ = Λyy(v) y′

z = Λzz(−v) z′ = Λzz(v) z′ (1.15)

which compared to (1.11), (1.12) and (1.14) leads to Λyy(v) = Λzz(v) = 1 and, if
we set γ(v) ≡ Λxx(v), to

Λtx = 1 − γ2

γv
.

We are thus left with one only unknown function γ(v) defining the most general pure
boost transformation between inertial systems:
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⎛

⎜⎜⎝

t′
x′
y′
z′

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

γ − γ2−1
γv 0 0

−γv γ 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

t
x
y
z

⎞

⎟⎟⎠ (1.16)

where we have expressed space-time event coordinates as column vectors and the
notation stands for the standard row-by-column product. Notice that up to now the
invariance of the speed of light has not been used anywhere, therefore Galilean
transformations must be of the same form as in (1.16), which is indeed the case by
setting γ = 1.

We can impose the invariance of c by considering a particular light beam trajectory
in O, e.g., x = ct and y = z = 0, and by requiring that (1.16) transforms it into a
trajectory with the same speed, i.e. x′ = ct′ and y′ = z′ = 0. After some elementary
algebra we obtain 1/γ2 = 1 − v2/c2 which, requiring also limv→0 γ(v) = 1, has
the unique solution

γ = 1√
1 − v2/c2

. (1.17)

We can rewrite the transformation in a simpler form by adopting ct in place of t,
which permits us to deal with a homogeneous set of coordinates, and by defining
β ≡ v/c:

⎛

⎜⎜⎝

ct′
x′
y′
z′

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

ct
x
y
z

⎞

⎟⎟⎠ . (1.18)

Equation (1.18) represents the Lorentz transformation for a pure boost along the
x axis, which goes back to (1.1) when c → ∞. We can thus look at Galilean
transformations as the correct realization of the Relativity principle as long as we
do not know about the existence of a universal, invariant velocity of Nature (i.e. if
c = ∞); it is electromagnetism which has made us aware of such a velocity for the
first time.

We notice that the transformation (1.18) becomes ill-defined or complex for
|β| ≥ 1, thus suggesting that relative velocities cannot exceed c. However evi-
dence is not compelling and the question about c as a limiting velocity of Nature
requires a more careful discussion.
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1.2.1 Transformation Laws for Velocities

One of the main consequences of Lorentz transformations is a different addition law
for velocities, which is expected from the invariance of the speed of light. Let us
consider a particle which, as seen from reference frame O, is in (x, y, z) at time t and
in (x + Δx, y + Δy, z + Δz) at time t + Δt, thus moving with an average velocity
(Vx = Δx/Δt, Vy = Δy/Δt, Vz = Δz/Δt). Since the coordinate transformation is
linear, it applies to coordinate differences as well, therefore in reference frame O′
we have, using (1.18), Δy′ = Δy, Δz′ = Δz and

Δx′ = γ(Δx − vΔt) , Δt′ = γ
(
Δt − v

c2
Δx

)
, (1.19)

from which we obtain

V ′
x ≡ Δx′

Δt′
= Δx − vΔt

Δt − v
c2

Δx
= Vx − v

1 − vVx
c2

, V ′
y/z = 1

γ

Vy/z

1 − vVx
c2

(1.20)

instead of V ′
x = Vx − v and V ′

y/z = Vy/z, as predicted by Galilean laws. It requires
only some simple algebra to prove that, according to (1.20), if |V | = c then also
|V ′| = c, as it should, in agreement with the invariance of the speed of light (see
Problem 1.7 for more details).

1.2.2 Invariant Quantities and Space-Time Geometry

The parameters γ and γβ appearing in (1.18) are easily verified to satisfy the relation
γ2 − (γβ)2 = 1. That means that it is always possible to rewrite them in terms of
hyperbolic functions of a new parameter χ, with χ ∈ [−∞,∞], as follows

γ = coshχ ; γβ = sinhχ. (1.21)

The parameter χ is usually called rapidity and can be used in place of β = tanhχ to
specify the motion of O′ with respect to O. Expressed in terms of χ, Eq. (1.18) takes
the form

⎛

⎜⎜⎝

ct′
x′
y′
z′

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

coshχ − sinhχ 0 0
− sinhχ coshχ 0 0

0 0 1 0
0 0 0 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

ct
x
y
z

⎞

⎟⎟⎠ (1.22)

which closely resembles a rotation in the x–t plane, with trigonometric functions
replaced by hyperbolic ones. The analogy is even closer when we consider the
combination of two Lorentz boosts along the same axis. If Λ(β1) is the transfor-
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mation connecting O to O′ and Λ(β2) that connecting O′ to O′′, it can be easily
verified that the transformation connecting O to O′′ is Λ(β) = Λ(β1)Λ(β2) with
β = (β1 + β2)/(β1β2), which in terms of rapidity means χ = tanh−1β = χ1 + χ2.
Therefore, as for usual rotations, two boosts along the same axis combine in such a
way that rapidities are added linearly, as for usual angles.

However, while rotations keep invariant the square modulus of a vector, it is easy
to verify, using (1.22), that

(ct′)2 − x′2 − y′2 − z′2 = (ct)2 − x2 − y2 − z2. (1.23)

Moreover, since any two space-time events (ct1, x1, y1, z1) and (ct2, x2, y2, z2) trans-
form according to the same linear transformation, one also has

c2t′1t′2 − x′
1x′

2 − y′
1y′

2 − z′
1z′

2 = c2t1t2 − x1x2 − y1y2 − z1z2. (1.24)

To better understand the meaning of these invariant quantities, let us introduce a new
class of objects, called four-vectors: they are four-component column vectors and are
characterized by their linear transformation properties when going from one inertial
frame to the other, which for a Lorentz boost is given by (1.22). Space-time events,
constructed by adding ct to the standard spatial coordinates (x, y, x), are four-vectors
by definition. We can define, in the vector space of four-vectors, a scalar product,
which is assigned in terms of a symmetric matrix g. Let x and y be two four-vectors,
then

x · y ≡ xT gy ≡ (
x0 x1 x2 x3

)

⎛

⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

y0
y1
y2
y3

⎞

⎟⎟⎠ (1.25)

where by xT wemean the rowvector obtained from x by standardmatrix transposition.
The 4×4 symmetricmatrix g is known as themetric tensor, it defines a scalar product
which differs from the canonical product in R

4: indeed, it has 1 positive eigenvalue
and three negative ones (this is often summarized saying that g has a signature (1, 3))
and coincides with the standard scalar product only on the spatial coordinates (apart
from a global minus sign). What we have learned is that the scalar product defined
by g is left invariant by the Lorentz boosts, Eq. (1.22). As a consequence, also
the quantity xT gx = x20 − x21 − x22 − x23, which is known as the invariant squared
length of x, is conserved by Lorentz boosts. We have now to address two important
questions: (i) is the invariance true only for the particular Lorentz boost in (1.22),
or does it hold for the most general transformation linking different inertial frames?
(ii) where does the invariance come from?

In order to answer the first question, we have to understand what is the form of
the most general transformation. We have considered the particular case in which
the axes of O and O′ are parallel to each other, and the relative velocity is directed
along the x axes. The generalization is straightforward: the relative velocity can be
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directed along any direction, the axes of the two systems can be rotated arbitrarily
with respect to each other. Such a generalization can be implemented by performing
an arbitrary spatial rotation before doing the boost, and an arbitrary spatial rotation
after that; the corresponding transformation matrix is given by the row-by-column
multiplication of the three matrices:

Λ =

⎛

⎜⎜⎝

1 0 0 0
0
0 R′
0

⎞

⎟⎟⎠

⎛

⎜⎜⎝

γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

1 0 0 0
0
0 R
0

⎞

⎟⎟⎠ (1.26)

where R and R′ stand for two orthogonal 3 × 3 matrices representing spatial rota-
tions.4 Since bothR andR′ leave the standard scalar product on spatial coordinates
invariant, it is clear that their introduction does not alter the invariance of the scalar
product defined in (1.25), which is then conserved for each of the three steps making
up the total transformation in (1.26). Hence we can state that the invariance of this
product is a general property of Lorentz transformations.

Let us now question about the origin of the invariance. The requirement about the
invariance of c imposes that, whenever c2t2 − x2 − y2 − z2 = 0, i.e. whenever the
event (ct, x, y, z) is on the world line of a light beam emitted from the origin at time
zero, then also c2t′2 − x′2 − y′2 − z′2 = 0, and viceversa, i.e.

c2t2 − x2 − y2 − z2 = 0 ⇐⇒ c2t′2 − x′2 − y′2 − z′2 = 0. (1.27)

We have found, instead, that the two quantities are equal, whatever value they take;
we are going to see why. The quantity c2t′2 − x′2 − y′2 − z′2, because of the linear
relation between the coordinates of O and O′, is also a quadratic form in the original
coordinates; what we know about this quadratic form is that it must vanish on the 4-
dimensional cone defined by the first equation in (1.27): that constrains the quadratic
form so strongly5 that the only possibility is that it is proportional to c2t2−x2−y2−z2.
Therefore, we can write

c2t′2 − x′2 − y′2 − z′2 = λ(v)(c2t2 − x2 − y2 − z2), (1.28)

where the proportionality coefficient λ is in principle a function of the velocity v
of O′ with respect to O, which is strongly constrained by isotropy. Indeed, when

4Based on Eq. (1.26), we can make a statement about the total number of independent parameters
characterizing a general Lorentz transformation. Each rotationmatrix brings 3 parameters, hencewe
have 6 new parameters on the whole, however one of them is redundant, since a rotationR around
the x axis can be cancelled by an opposite rotationR′ around the same axis. Therefore, considering
the single parameter v characterizing the boost, we have a total of 6 independent parameters.
5If the form vanishes in (ct, x, y, z), it must vanish also in (−ct, x, y, z), that forbids the presence of
the mixed terms xt, yt and zt. Moreover, for each fixed t, the form must vanish on a spatial spherical
surface, that forbids the presence of the mixed terms xy, xz and yz. Finally, the opening angle of the
cone fixes the ratio of the diagonal terms.
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we consider the inverse transformation, taking into account that it corresponds to
a Lorentz transformation with velocity −v, we obtain λ(−v) = 1/λ(v) . On the
other hand isotropy imposes that λ can depend only on v = |v|. Hence we have
λ(v) = 1/λ(v) which implies λ = ±1, with the negative solution to be discarded
because of the required continuity as v → 0. Therefore we obtain Eq. (1.23), which
we nowunderstand to be a consequence of the invariance of c combinedwith linearity
and isotropy.

The vector space of events, provided with the scalar product in (1.25), constitutes
what is usually called Minkowski spacetime, after H. Minkowski who first studied its
geometric structure. The condition of invariance of the scalar product can be taken
as the very definition of Lorentz transformations, in the same way as spatial rotations
can be associated with orthogonal matrices. Let x and y be any two four-vectors, and
let x′ and y′ be the corresponding four-vectors in O′, then we have

x′T g y′ = (Λx)T g (Λy) = xT ΛT g Λy = xT g y (1.29)

where we have used the property (Λx)T = xT ΛT for the transpose of a matrix-by-
vector product. Equation (1.29) holds for any pair x and y if and only if Λ satisfies

ΛT g Λ = g. (1.30)

Equation (1.30) defines a group of matrices6 which is known as the Lorentz group
and coincides, apart from a few elements representing discrete transformations, with
the set of general transformations represented in (1.26).

Indeed, taking the determinant of both members in (1.30), one sees that all ele-
ments of the group satisfy detΛ = ±1, while those represented in (1.26), if R and
R′ are pure rotations, have detΛ = 1: this is also expected, since a matrix of the
form (1.26) can be obtained by continuously deforming the identity transformation,
hence they must have unitary determinant. On the other hand, when we add two
further discrete transformations, which are not represented by Eq. (1.26) and which
have detΛ = −1, we are able to reproduce the whole Lorentz group, they are

T =

⎛

⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ ; P =

⎛

⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟⎠ (1.31)

which are known respectively, and for obvious reasons, as time reversal and parity
transformation.

A property common to all Lorentz transformations is that they leave the four-
dimensional integration measure invariant. Indeed, since the integration measure

6If Λ1 and Λ2 satisfy Eq. (1.30), this is true also for Λ1Λ2. The identity matrix clearly satisfies
the relation. Moreover from the condition (1.30) we deduce that (detΛ)2 = 1, so that Λ is surely
invertible.
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transforms under a change of variables according to the Jacobian determinant of the
transformation, we have d3x′ dt′ = | detΛ| d3x dt = d3x dt.

In a vector space providedwith ametric it is possible to assign the squared distance
between every pair of points. However, theMinkowski metric is not positive definite,
so that various non-trivial possibilities exist for the associated distance, which we
are going to classify. Let us consider two different events in space-time, (ct1, x1) and
(ct2, x2): their difference (cΔt,Δx) is also a four-vector, whose invariant squared
length defines the distance between the two events and can take positive, negative,
or null values:

1. If Δx2 ≡ c2Δt2 − |Δx|2 > 0 we say that the two events are at time-like distance.
In this case the two events can be thought as lying on the world line of an object
moving slower than light, |Δx|/|Δt| < c. The distance will stay positive for
all inertial reference frames; moreover, if cΔt = c(t2 − t1) > 0 in one frame,
meaning that event 2 happens after event 1, the same time ordering will hold for
all other inertial frames. This is clear from the fact that otherwise, by continuity,
one could also find a frame where t2 = t1, but there one would have Δx2 ≤ 0,
thus violating length invariance. It is therefore possible to establish an absolute
time ordering for such pairs of events.

2. If Δx2 = 0 we say that the two events are at light-like distance. In this case the
two events can be thought as lying on the world line of an object moving exactly
at the speed of light. Also in this case time ordering is well defined, since Δt can
vanish in some frame only if Δx vanishes as well, meaning that the events are
actually the same event.

3. If Δx2 < 0 we say that the two events are at space-like distance. In this case the
two events can be thought as lying on the world line of an object moving faster
than light, |Δx|/|Δt| > c, and an absolute time ordering is not possible. To prove
that, suppose we have Δx0 = c(t2 − t1) > 0 in O, then we need to find at least
one frame O′ where Δx′

0 < 0. We can consider for simplicity a pure boost along
Δx, then we have

Δx′
0 = γ (Δx0 − β|Δx|) (1.32)

so that Δx′
0 ≤ 0 if β ≥ Δx0/|Δx|, which is possible since Δx0/|Δx| < 1.

Simultaneous events (Δx0 = 0) represent a particular case of space-like distance.
However we learn that simultaneity is not an absolute concept any more: two
events which are simultaneous in one frame, can be time-ordered in either ways
in other frames.

Another way to look at previous classification is that, given a particular reference
event x̄ = (ct̄, x̄), we can divide all other events in space-time in the following classes:
(i) thosewhich are at light-like distance from x̄, thus lying on a conical surface (which
is called the light-cone and has the vertex in x̄), which is further divided into two
halves, the past light-cone and the future light-cone; (ii) those which are at time-like
distance and have a well defined time ordering with respect to x̄, lying either within
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the past or within the future cone; (iii) those which are at space-like distance and
are said to be contemporary to x̄, since an inertial frame always exist where the two
events are simultaneous.

1.2.3 Faster Than Light?

The discussion about the geometric structure of space-time leads us to some further
considerations. First of all, we can now clarify why we abhor signals propagating
faster than light. Time-ordering is at the basis of our way to classify natural phe-
nomena and deduce the laws of Nature from experimental observations: we need to
establish causality relations between different events (e.g., event A causes event B)
and for that we need an absolute time-ordering, A cannot be the cause of B if it hap-
pens after B in some reference frame. This is usually called the causality principle.
If we had signals able to propagate a cause-effect relation and travelling faster than
light, they could connect events at space-like distance, thus destroying the causality
principle. That means that things moving faster than light are allowed, in principle,
but they cannot bring any informationwith them, i.e. anything capable of establishing
a cause-effect relation between events.

Think for instance of a very large circular room, of radiusR, with a laser apparatus
in the center of it which projects a beam on the internal circular wall. If the laser starts
rotating, with angular velocity ω, the light spot corresponding to the beam projection
on the wall will move with velocity ωR. Nothing prevents ωR from being larger than
c, however this is not a problem at all: the light spot carries information from the
laser apparatus, but it cannot carry any information from one point of the wall to the
other, it is just a projection. There are actually such sorts of fastly rotating beams in
our Universe, they are called pulsars.

However it is clear that, should it happen that any future experiment demonstrates
the existence of signals carrying information (e.g., particles) and travelling faster
than light, then one should seriously reconsider the causality principle itself.

The second consideration is that we see the end of the concept of time as an
absolute quantity. While this is already clear from the form of Lorentz transforma-
tions, we learn that even time ordering may be a relative concept. We are going to
discuss more about time in the next subsection.

1.2.4 New Phenomena: Time Dilation and Length Contraction

Lorentz transformations lead to some new phenomena. Let us consider a clock which
is placed at rest in the origin of frame O′, which is related to frame O by a pure boost
along the x axis, as in (1.18). The ends of any time intervalΔT ′ measured by that clock



1.2 Lorentz Transformations and Their Main Consequences 17

will be associated with two different events7 (x′
1 = 0, t′1) and (x′

2 = 0, t′2): they may
correspond to two different beats of the clock, with t′2 − t′1 = ΔT ′. The above events
have different coordinates in frame O, which by (1.18) are (x1 = γ vt′1, t1 = γ t′1)
and (x2 = γ vt′2, t2 = γ t′2): therefore they are separated by a different time interval
ΔT = γΔT ′, which is in general dilated (γ > 1)with respect to the original one. This
result, which can be summarized by saying that a moving clock seems to slow down,
is usually known as time dilation, and is experimentally confirmed by observing
subatomic particles which spontaneously disintegrate with very well known mean
life times: the mean life of moving particles increases with respect to that of particles
at rest with the same law predicted for moving clocks (see also Problem 1.17). Notice
that, reasoning along the same lines, we conclude that also a clock at rest in the origin
ofO seems to slowdown according to an observer inO′. There is no paradox in having
two different clocks each slowing down with respect to the other: as long as both
reference frames are inertial, the two clocks come close to each other and can be
directly compared (synchronized) only once. The same is not true if at least one of
the two clocks is accelerated: this case will be discussed in the next subsection.

Notice that time dilation is also in agreement with what observed regarding the
travel time of beam 1 in Michelson’s interferometer, which is 2l/c when observed
at rest and 2l/(c

√
1 − v2/c2) when in motion. Instead, in order that the travel time

of beam 2 be the same, we need the length l of the arm parallel to the direction
of motion to be reduced by a factor

√
1 − v2/c2 , i.e. that an arm moving parallel

to its length appears contracted. This is the famous contraction first supposed by
Lorentz and FitzGerald, which we now show to be a general consequence of Lorentz
transformations. Indeed, let us consider a segment of length L′, at rest in reference
frame O′, where it is identified by the trajectories x′

1(t
′
1) = 0 and x′

2(t
′
2) = L′ of its

two endpoints. For an observer in O the two trajectories appear as

x1 = γvt′1, t1 = γt′1; x2 = γ
(
L′ + vt′2

)
, t2 = γ

(
t′2 + vL′

c2

)
. (1.33)

The length of the moving segment is measured in O as the distance between its two
endpoints, located at the same time t2 = t1, i.e. L = x2 − x1 for t′2 = t′1 − vL′/c2, so
that

L = γ
(
L′ + v(t′2 − t′1)

) = L′
√

1 − v2

c2
, (1.34)

thus confirming that, in general, any body appears contracted along the direction of
its velocity (length contraction).

7We do not consider here the y, z coordinates, which do not play any role.
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1.2.5 On the Concept of Proper Time

If a clock moves along a closed trajectory, it will come back to the original point after
a while, so that possible effects related to time dilation can be proved experimentally
by comparing it twice to a reference clock at rest. However in this case the moving
clock is accelerated and it is not possible to find an inertial frame at rest with it, so
that the issue must be treated more carefully.

Let x(t) be theworld line followed by the clock, as expressed in a particular inertial
frameO (the function x(t) of course depends on the chosen frame). The clock velocity
v(t) = dx(t)/dt in general depends on t, however it is always possible, for each t,
to find an inertial frame OI(t) which moves at speed v(t) with respect to O and is
therefore at rest with respect to the clock. OI(t) is the inertial frame istantaneously
at rest with the clock, which changes from time to time.

Let us consider the space-time interval between two very close points on the
trajectory: (cdt, dx) = (cdt, x(t + dt) − x(t)). Such an interval is a four-vector, its
particular form depends on the inertial frame, however its invariant squared length

ds2 = c2dt2 − |dx|2

is frame independent. In particular, in frame OI(t), which is istantaneously at rest
with the clock (dx′ = 0) the interval has the simple form (dτ , 0), where dτ is
the infinitesimal time elapsed for the clock along its trajectory, which is therefore
proportional to the invariant interval

dτ2 = ds2/c2

and is known as the infinitesimal proper time. All inertial frames will agree in saying
that dτ is the time elapsed for an observer istantaneously at rest with the clock, hence
dτ is an invariant quantity by construction.

Proper time can be expressed in terms of the time dt elapsed in the original frame
O as follows:

dτ =
√

c2dt2 − |dx|2/c = dt
√
1 − |dx/dt|2/c2 = dt/γ(t) (1.35)

where γ(t) ≡ 1/
√
1 − v2(t)/c2. Equation (1.35) can be integrated over a finite piece

of trajectory, to obtain a finite proper time interval:

ΔτAB =
∫ B

A
dt

√
1 − v2(t)/c2 (1.36)

where A and B stands for two generic points on the world line. Notice that we always
have ΔτAB ≤ ∫ B

A dt = ΔtAB, so that a moving clock will be always slower than one
at rest. Therefore, the famous twin, leaving for a long space trip and coming back
after making a closed trajectory, will be effectively younger, at the end of the trip,
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than the twin staying at rest at home. In this case, of course, the travelling twin cannot
follow the same line of reasoning and expect that it is instead the twin at home to be
younger: only observers in inertial frames are allowed to make use of Eq. (1.36) in
order to determine the proper time elapsed for a moving object.

It is interesting to consider the following question. Suppose we have to make a
trip, leaving point xA at time tA and reaching point xB at time tB, having complete
freedom on the choice of the path, apart from the two endpoints which are fixed in
space and time and are clearly supposed to be at a time-like distance. Is there an
optimal choice in order to arrive in B as younger or as older as possible? We are
looking for trajectories which minimize or maximize the proper time for going from
A to B, i.e. for extrema of the following functional of the world line x(t):

τAB =
∫ tB

tA
dt

(
1 − |v|2(t)

c2

)1/2

. (1.37)

It is quite easy to prove that the maximum possible value is attained for a rectilinear
uniform motion from A to B. Indeed, since τAB is a Lorentz invariant quantity, we
can compute it in any inertial frame, in particular in the frame O′ whose origin passes
through both A and B. In such a frame we have xA

′ = xB
′ = 0 and

τAB =
∫ t′B

t′A
dt′

(
1 − |v ′|2(t′)

c2

)1/2

. (1.38)

The trajectory x ′(t′) = 0 (v ′(t′) = 0) ∀ t′ satisfies the given boundary conditions and
maximizes the integrand at all times, so that it represents an absolute maximum for
the proper time. As for the mininum value, the faster we move the younger we keep,
and if wemanage to go as fast as light wewould need zero proper time: unfortunately,
as we are going to see later on, that would also require an infinite amount of energy.

Various experiments have been performed in order to verify Eq. (1.36) for the
computation of the proper time, starting with the famous experiment by Hafele and
Keating in 1971. They put synchronized atomic clocks (with a precision of the order
of 10−9 s) on a series of intercontinental flights, making different closed trips around
the world, and compared the times of the clocks after the trip among themselves and
with a similar clock at rest on Earth.

1.3 Covariant Formulation of Relativity

The analysis about the geometric structure of space-time needs some further math-
ematical developments which, even if not strictly necessary for an elementary treat-
ment of Special Relativity, are well worth doing in order to reach a new perspective
on the way we formulate the laws of Nature.
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Let us start with some general considerations on vector spaces and linear transfor-
mations. Given a generic N-dimensional vector space on the real field, each element
x is given a unique representation in terms of coordinates xi once we fix a basis ei,
i = 1, 2, . . . N

x =
N∑

i=1

xiei = xiei;

here and from now on we assume the convention that, unless otherwise stated, an
index appearing twice in the same monomial implies a sum over it (this is the so-
called Einstein notation, which saves a lot of summation symbols).

Each vector is assigned once for all, however its coordinate representation depends
on the choice of the basis. Any change of basis implies a linear transformation of
coordinates, which can be generically represented by an invertible N × N matrix L
and is implemented, adopting an index representation of the row-by-column multi-
plication, as

x′
i = Lijxj. (1.39)

Going back to our language, space-time events are vectors and a change of basis
means switching to a new reference frame.

The change of basis can be easily inferred from the transformation law of coor-
dinates, Eq. (1.39). Indeed, since xiei must stay unchanged, the only possibility is

ei = (L−1)T
ij ej. (1.40)

It is easy to understand where the “transpose of inverse” in (1.40) comes from, by
discussing a simple one-dimensional example. Suppose we are measuring the length
of a given object (the vector), if we double the unit of measure (the basis vector), the
numerical value of the measure (the coordinate) will be halved.

Suppose now we are given a generic scalar function over the vector space, i.e. a
function f (x) = f (x1, x2, . . . , xN ) whose value on a given vector is independent of
the frame choice. The N-tuple of its first derivatives

∇if ≡ ∂

∂xi
f ,

which is usually called the gradient, has instead a dependence on the coordinate
choice, which we would like to specify. In order to do that, we can apply the standard
chain rule for a change of variables, obtaining:

∇′
i f = ∂

∂x′
i
f = ∂f

∂xj

∂xj

∂x′
i

= ∂f

∂xj
(L−1)ji = (L−1)T

ij ∇jf (1.41)
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showing that the components of the gradient transform as the basis vectors do. That
might sound strange at first, since we are used to think of the gradient as a vector-like
object. We might have expected its components to transform as vector coordinates,
however this is true only for orthogonal transformations, like rotations, for which
(L−1)T and L coincide, since LT L = Id by definition.

Therefore, when dealing with non-orthogonal transformations, we need to dis-
tinguish two different kinds of vector-like entities. Objects transforming like vector
coordinates are called contravariant vectors, while objects transforming like gradi-
ent components are called covariant, since they transform as the basis vectors do.
When working in the index notation, it is necessary to adopt a proper convention to
distinguish them: from now on, an upper index will stand for a contravariant vector,
and a lower index for a covariant one; moreover, greek letters will be used for indices
referring to space-time quantities. Therefore, space-time events will be represented
as contravariant vectors xμ (xμ = ct for μ = 0 and xμ = xi for μ = 1, 2, 3) and the
gradient as ∂μf ≡ ∂f /∂xμ.

One can also define entities carryingmore that one index, which are called tensors.
For instance, the matrix of second derivatives,

∂μ∂ν f = ∂

∂xμ

∂

∂xν
f

is a (symmetric) tensor with two covariant indices, which transforms by a row-by-
column multiplication of two (L−1)T matrices, one for each of the two indices.
The product of coordinate differentials, dxμdxν , is a (symmetric) tensor with two
contravariant indices. The set of quantities dxμ∂ν f instead reprents a tensor with one
covariant and one contravariant index. In this last case we can define an operation,
called trace or contraction, by setting μ = ν and summing over the common index,
this is easily verified to be invariant, since one index trasforms with L and the other
with (L−1)T ; for the particular given example such an invariant coincides with the
total differential

df = dxμ∂μf = dxμ ∂f

∂xμ
.

For tensors with more than two indices, the contraction, instead of leading to an
invariant quantity, will just reduce the number of indices by two.

A new aspect comes into play when we consider the particular class of linear
transformations which leave a given scalar product invariant. This is the case of
Lorentz transformations Λ, which satisfy (1.30), i.e. ΛT gΛ = g, where g is the
metric tensor. That can be conveniently rewritten as

(ΛT )−1 = gΛg−1; Λ = g−1(Λt)−1g, (1.42)

from which it follows that if v is a contravariant vector, v → Λv, then gv is covari-
ant, indeed gv → gΛv = gΛg−1gv = (Λt)−1(gv) . Similarly, if w is covariant,
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then g−1w is contravariant. Therefore the metric tensor can be used to transform
contravariant into covariant vectors and viceversa.8

A convenient way to consider that is to represent g itself as a tensor with two
covariant indices, gμν , and its inverse g−1 as a tensor with two contravariant indices,
gμν , so that the correspondence between different kinds of vectors becomes a simple
operation of lowering/raising indices by contraction with the metric tensor:

xμ = gμνxν; ∂μf = gμν∂ν f . (1.43)

In the case of Minkowski metric, g has a particularly simple form, g =
diag(1,−1,−1,−1) and coincides with its inverse, so that such a lowering/raising
corresponds to just a sign inversion for spatial coordinates, e.g., (ct, x) → (ct,−x).
However the formalism applies to general metric tensors as well, with the caveat that
the contravariant form gμν actually corresponds to g−1, so that we can write

δμ
ν = gμρgρν (1.44)

where δμ
ν (Kronecher delta) is an appropriate representation of the identity matrix

in tensor notation.
Given such a correspondence, the scalar product itself can be represented in terms

of a contraction between a covariant and a contravariant vector:

x · y = gμνxμyν = xμyμ, (1.45)

while the transformation matrices, Λ and (Λ−1)T , can be seen as tensors with one
covariant and one contravariant index:

(Λx)μ = Λμ
νxν; ((Λ−1)T ∂f )μ = Λμ

ν∂ν f

where (ΛT )−1 = gΛg−1, hence Λμ
ν ≡ gμρg

νσΛρ
σ . Finally, the transformation

properties of multi-index tensors can be deduced accordingly for each upper-lower
index, for instance:

dxρ∂μf → Λρ
σΛμ

νdxσ∂ν f . (1.46)

8The unambiguous correspondence between covariant and contravariant vectors, which is estab-
lished by a non-degenerate scalar product, can be well understood in terms of dual space. This is the
space of all linear scalar functions defined on the vector space, which can be proven to be a linear
space having the same dimension of the starting one and whose elementsw∗ can be expressed, by a
canonical correspondence, by covariant vector coordinates w∗

i , fw∗ (v) = w∗
j vj . The scalar product,

〈v1,v2〉, associates a scalar linear function of v1, hence an element of the dual space, to each vector
v2.
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1.3.1 Covariant Formulation of the Laws of Nature

Most physical laws are expressed as particular relations betweenmathematical quan-
tities. The Relativity Principle states that such laws must be the same in all inertial
frames: the formalism we have developed gives us a simple and elegant way to
implement directly such a requirement in the allowed structure that physical laws
can take.

Let us start by discussing standard rotational invariance. Equations relating scalar
quantities are obviously invariant under rotations. However also Newton’s second
law, F = ma , respects it, even if it relates vectors, which are not invariant quantities.
The point is that both members of the equation change in the same way, i.e. they are
covariant under rotations, so that if the equation holds in one particular frame, it will
hold in all other rotated frames.

The same is true when we consider transformations between inertial frames:
a physical law must be a relation between quantities which have the same trans-
formation properties under Lorentz transformations. The transformation properties
of a tensor are established by the number of its upper and lower indices, see for
instance (1.46), hence equations which are covariant under Lorentz transformations
must relate tensors which have the same index structure. If f is a scalar function,
equations like f = xμ or ∂μf = f xμ would be obviously wrong, while an equation
like ∂μf = xν∂ν∂μf , which is covariant, could be correct, at least from the point of
view of frame independence.

We are going to see two implementations of this principle in the following, first to
understand what is the correct generalization of the law of momentum conservation,
then to rewriteMaxwell equations in a new elegant formwhich is manifestly Lorentz
covariant.

1.4 Relativistic Kinematics

The conservation of the total energy and of the total momentum of an isolated system
are among the fundamental laws of Classical Mechanics. They can be associated
with the symmetries of the system under temporal and spatial translations and can
be expressed by stating that their total time derivative must vanish, or equivalently
by stating that their values before and after some internal process of the system, like
the scattering of particles, are the same:

Etot
in = Etot

fin ; Ptot
in = Ptot

fin . (1.47)

Such equations must hold in all inertial frames. From the point of view of rotations,
the statement is trivial: the first equation relates scalar quantities, the second relates
vectors, hence both equations are covariant under rotations. The situations is a bit
trickier when we consider Galilean transformations.
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Let us take a system which is initially composed of N free particles, of mass mi

and velocities vi. Due to some unspecified interaction, the system evolves towards
a final state composed of N ′ free particles of masses μj and velocities wj. Then,
Eq. (1.47) can be rewritten, in non-relativistic mechanics, as

∑

i

1

2
mi|vi|2 =

∑

j

1

2
μj|wj|2;

∑

i

mivi =
∑

j

μjwj. (1.48)

Let us now check the invariance properties of such equations under Galilean transfor-
mations,vi → vi

′ = vi−V andwi → wi
′ = wi−V .We consider just momentum

conservation, the reader can easily check that the same conclusions applies to energy
conservation. The second equation in (1.48), when rewritten in terms of the new
velocities, reads

∑

i

mivi
′ + V

∑

i

mi =
∑

j

μjwj
′ + V

∑

j

μj (1.49)

which coincides momentum conservation in the new frame if and only if

∑

i

mi =
∑

j

μj (1.50)

meaning that the total mass of the system must stay unchanged. We conclude that
momentum conservation is not a covariant law of Newtonian mechanics, unless it
is accompanied by an additional law: mass conservation. A fancier way to state the
same concept is to say that, in Newtownian mechanics, mass is condemned to stay
mass forever.

What about Lorentz transformations? A few explicit examples show that the clas-
sical definitions of kinetic energy and momentum, like those assumed in (1.48), do
not work. Let us consider, for instance, the scattering of two particles of equal mass
m moving in the x − y plane, with initial velocities (v, v) and (0,−v), and final
velocities (v,−v) and (0, v): standard momentum conservation holds. However it
fails, if we adopt the relativistic transformation laws for velocities, Eq. (1.20), when
we go to a new reference frame O′ which moves with velocity (v, 0) with respect
to the first. The main reason is that velocities now transform non-linearly: different
linear combinations of velocities will transform in different ways, and even mass
conservation will not suffice any more.

We are thus left with the problem of finding a new expression for energy and
momentum in Special Relativity, in order to make their conservation a Lorentz
invariant statement. What we learned in last section will be our lighthouse: the new
conservation laws must be equations relating quantities with well defined transfor-
mation properties. Since classical momentum is a vector under rotations, and since
rotations are a subgroup of Lorentz transformations, it is most natural to look for an
equation involving four-vectors: that will suffice to get an answer. Then, based on the
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well known relation between symmetries and conservation laws, we will convince
ourselves that we got the right answer.

1.4.1 Four-Velocity and Four-Momentum

We are looking for a generalization of momentum as the spatial component of a
four-vector: the search must necessarily start with the case of a single free particle,
since the total momentum of a larger system will be the sum of the single particle
ones and, as such, it will share the same linear transformation properties as the free
particle momentum.

Let us consider a particle moving at constant speed v, how many independent
four-vectors can be associated with it? Each single infinitesimal piece of trajectory,
corresponding to a time interval dt, is characterized by the four-position xμ and by
the four-displacement dxμ. In absence of external fields, no more independent four-
vectors exist. The position xμ is not invariant under translations and changes with
time: it has nothing to do with momentum. The displacement dxμ = (cdt, dx) is
directly related to velocity, v = dx/dt, which however does not transform as the
spatial part of a four-vector. Nevertheless, we can build a four-vector by dividing
dxμ by dτ , i.e. the differential of the particle proper time, which is a scalar quantity:
that defines the four-velocity

uμ ≡ dxμ

dτ
; dτ = dt/γ(v); γ(v) = (1 − |v|2/c2)−1/2. (1.51)

We can compute its components and its invariant square modulus explicitly:

u0 = γc; u = γv; uμuμ = (u0)2 − |u|2 = c2 (1.52)

hence uμ is a time-like four-vector of fixed squared length. The four-velocity uμ

is the only constant four-vector which can be associated with the motion of a free
particle: we can build a new four-vector, which has the dimensions of momentum,
by multiplying it by the particle mass:

pμ = m uμ. (1.53)

Of course pμ, which is called four-momentum, is a four-vector only if m is a Lorentz
invariant quantity: we can take this condition as the very definition of m, by stating
that the inertial mass of a particle is determined by measuring its acceleration in a
system in which the particle is subject to a known force and is initially at rest. Later
we will discuss again about the relation of mass to four-momentum.

The spatial part of pμ is given by

p = m γ(v)v (1.54)
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which in the non-relativistic limit tends, at the leading order in v/c, to the standard
classical momentum mv. The meaning of its temporal component is slightly less
trivial, its non-relativistic expansion in powers of v/c

p0 = mγ(v)c = mc√
1 − v2/c2

� 1

c

(
mc2 + 1

2
mv2 + O

(
v4

c4

))
(1.55)

suggests that it might be related to the energy of the particle. We can then proceed
further along these lines andmake the hypothesis that, for a systemofN free particles,
the quantity

Pμ
tot =

N∑

a=1

pμ
a (1.56)

be associated with the total spatial momentum and with the total energy (temporal
component) of the system, so that the conservation laws for energy and momentum
would be written in one single, covariant equation:

Pμ
tot, in = Pμ

tot, fin. (1.57)

However, even if the choice made for the four-momentum of a free particle, equa-
tion (1.53), had no possible alternatives, we need a more rigorous treatment of the
question, in order to be sure that the temporal and spatial components of Pμ

tot are
indeed associated with energy and momentum. Classical mechanics teaches us that
energy and momentum are the conserved quantities associated with the invariance
under temporal and spatial translations; Noether theorem teaches us how to derive
such conserved quantities once the Lagrangian function of the system is known:
therefore, in order to finalize our discussion, we need to derive the Lagrangian for a
free relativistic particle.

Before doing that, let us stress that, for a general non-uniform motion, more four-
vectors can be associated with a given world line. For instance, the derivative of the
four-velocity with respect to the proper time defines the so-called four-acceleration:

aμ ≡ duμ

dτ
, (1.58)

which is easily proved to be a space-like vector. Indeed, if we derive the equation
uμuμ = c2 with respect to τ , we obtain

0 = d

dτ
(uμuμ) = 2uμ

duμ

dτ
= 2uμaμ

meaning that aμ and uμ are orthogonal vectors inMinkowski space. Since uμ is time-
like, we can always find a reference frame where its spatial components vanish. In
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such a frame, which is the one instantaneously at rest with the particle, orthogonality
implies a0 = 0: aμ is a purely spatial vector and coincides with usual acceleration,
the fact that aμ is space-like then trivially follows, the condition aμaμ < 0 being
frame independent.

1.4.2 The Lagrangian of a Free Relativistic Particle

Classical Mechanics is governed by the minimum action principle. A Lagrangian
L(t, qi, q̇i) is usually associated with a mechanical system: it has the dimensions of
an energy and is a function of time, of the coordinates qi and of their time derivatives
q̇i. Given a time evolution law for the coordinates qi(t) in the time interval t1 ≤ t ≤ t2,
we define the action:

A =
∫ t2

t1
dt L(t, qi(t), q̇i(t)) (1.59)

which is then a functional of qi(t). The minimum action principle states that the
equations of motion are equivalent to finding a trajectory for which the action is
minimum (or at least stationary) in the given time interval, with the constraint of
having the initial and final coordinates of the system, qi(t1) and qi(t2), fixed. That
makes it clear thatL is defined but for the addition of any function like dF(t, qi)/dt =∑

i q̇i ∂F(t, qi)/∂qi +∂F(t, qi)/∂t, i.e. a total time derivative, since that modifies the
action by a quantity which depends only on the initial and final coordinates, leaving
the solution unchanged. For a non-relativistic particle in one dimension, a possible
choice is Ln.r. = (1/2)mẋ2 + const, and it is obvious that, among all possible time
evolutions, the uniform linear motion is the one which minimizes the action.

1

x

x

t t2

1

2

For a system of particles with positions ri, i = 1, . . . n , and velocities vi, a
deformation of the time evolution law: ri → ri + δri (δri(t1) = δri(t2) = 0)
corresponds to a variation of the action:

δA =
∫ t2

t1
dt

n∑

i=1

[
∂L
∂ri

· δri(t) + ∂L
∂vi

· δvi(t)

]
=

∫ t2

t1
dt

n∑

i=1

[
∂L
∂ri

− d

dt

∂L
∂vi

]
· δri(t)
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so that the requirement thatA be stationary for arbitrary variations δri(t) is equivalent
to the system of Lagrangian equations

∂L
∂ri

− d

dt

∂L
∂vi

= 0 . (1.60)

Let us now discuss how the principle of relativity is implemented in such a for-
mulation of mechanics. The obvious requirement is that, if a particular world line
minimizes the action in one inertial frame, it does so in all other inertial frames. A
simple, even if not strictly necessary, way to achieve that is to choose a Lagrangian
which makes the action associated with a particular world line invariant under frame
trasformations. This is the standard choice made in Newtonian mechanics to ensure
invariance under spatial rotations: both the action and the Lagrangian are scalar quan-
tities; instead, regarding Galilean transformations, one is simply satisfied with the
fact that the Lagrangian changes just by a total time derivative, leaving the equations
of motion unchanged.

When we consider Special Relativity and Lorentz transformations, the most nat-
ural approach, in analogy with that for spatial rotations, is to require that the action
be an invariant quantity, i.e. the action must depend on the trajectory qi(t) in such
a way that it does not change when changing the reference frame. If we are con-
sidering the case of a single, point-like particle, we are left with the question of
finding the most general Lorentz invariant quantity we can associate with its world
line x(t). We already know that, in the absence of any external field (free particle),
each infinitesimal piece of the trajectory is characterized by its location xμ and by the
infinitesimal displacement dxμ: discarding the first four-vector, since it is not invari-
ant under translations, one is left with ds2 = dxμdxμ = c2dτ2, i.e. the infinitesimal
proper time, as the only invariant quantity.9

Adding the considerations above to the requirement that the action be an additive
function of the path, i.e. that the action corresponding to the union of two paths with
a common endpoint be the sum of the actions corresponding to the single paths, we
see that the only possible choice for the action of a free relativistic particle is

A = k
∫ t2

t1
dτ = k

∫ t2

t1
dt

√

1 − v2(t)

c2
, (1.61)

which fixes the Lagrangian Lfree = k
√
1 − (v2/c2) apart from an overall constant k.

We already know that, among all world lines with fixed endpoints, the total proper
time is maximized by the one corresponding to a constant velocity, hence the action
in (1.61) leads to the correct equations of motion for the free particle. In order to

9The situation changes in the presence of external forces acting on the particle, which in general
can be represented in terms of four-vector or tensor fields. This is the case of electromagnetic
interactions, for which one can associate the value of the four-potential Aμ (to be defined later in
this Chapter) to each point of the trajectory and construct a new invariant quantity, Aμ dxμ (see in
particular Eq. (1.103)).
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fix the constant k, we can compare to the non-relativistic case: for velocities much
smaller than c, we can use a Taylor expansion

Lfree = k

(
1 − 1

2

v2

c2
− 1

8

v4

c4
+ · · ·

)
(1.62)

which, when compared to Ln.r. = mv2/2, gives k = −mc2.
Let us now consider a scattering process involving n particles. The Lagrangian of

the system at the beginning and at the end of the process, i.e. far away from when
the interactions among the particles are not negligible, must be equal to the sum of
the Lagrangians of the single particles, i.e.

L(t)||t|→∞ →
n∑

i=1

Lfree,i = −
n∑

i=1

mic
2

√

1 − v2i
c2

, (1.63)

where L(t) is in general the complete Lagrangian describing also the interaction
process and Lfree,i is the Lagrangian for the i-th free particle.

If no external forces are acting on the particles, L is invariant under translations,
i.e. it does not change if the positions of all particles are translated by the same vector
a: ri → ri + a. This invariance requirement can be written as:

∂L
∂a

=
n∑

i=1

∂L
∂ri

= 0. (1.64)

Combining this with the Lagrangian equations (1.60), we obtain the conservation
law:

d

dt

n∑

i=1

∂L
∂vi

= 0, (1.65)

which is a particular case ofNoether’s theorem,which associates a conservedquantity
to every symmetry of the system which can be parametrized in terms of a continuous
parameter. Equation (1.65) means that the sum of the vector quantities ∂L/∂vi does
not change with time, hence in particular:

n∑

i=1

∂Lfree,i

∂vi
|t→−∞ =

n∑

i=1

∂Lfree,i

∂vi
|t→∞. (1.66)

In the case of relativistic particles, taking into account the following identity:

∂

∂v

√

1 − v2

c2
= − v

c2
√
1 − v2/c2

(1.67)
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and setting vi|t→−∞ = vi,I and vi|t→∞ = vi,F , Eq. (1.65) reads

n∑

i=1

mivi,I√
1 − v2i,I/c2

=
n∑

i=1

mivi,F√
1 − v2i,F/c2

. (1.68)

Invariance under translations is always related to the conservation of the totalmomen-
tum of the system, hence we infer that mv/

√
1 − v2/c2 , i.e. the spatial part of what

we have defined as the four-momentum pμ, is indeed the correct generalization of
momentum for a relativistic particle.

Similarly, if the Lagrangian does not depend explicitly on time, it is possible,
using again (1.60), to derive

d

dt
L =

∑

i

(
v̇i · ∂L

∂vi
+ vi · ∂L

∂ri

)

=
∑

i

(
v̇i · ∂L

∂vi
+ vi · d

dt

∂L
∂vi

)
= d

dt

∑

i

vi · ∂L
∂vi

(1.69)

which is equivalent to the conservation law

d

dt

[
∑

i

vi · ∂L
∂vi

− L
]

≡ d

dt
H = 0 . (1.70)

The conserved quantity H, associated with the invariance under time translations, is
known as the Hamiltonian function of the system and is usually identified with its
total energy. In the case of free relativistic particles, H reads

∑

i

⎛

⎝vi · mivi√
1 − v2i /c2

+ mic
2

√

1 − v2i
c2

⎞

⎠ =
∑

i

mic2√
1 − v2i /c2

(1.71)

so that our identification of the temporal component of four-momentum, p0 =
mγ(v)c2, with the energy of a relativistic particle stands now on a more solid basis.
The quantity mc2 is the energy possessed by the particle while it is at rest, so that
mc2(γ(v) − 1) is the relativistic generalization of the kinetic energy.

Till now we have considered the case in which the final particles coincide with
the initial ones. However, particles can in general change their nature during the
scattering process, melting together or splitting, losing or gaining mass, so that the
final set of particles is different from the initial one. It is possible, for instance,
that the collision of two particles leads to the production of new particles, or that
a single particle spontaneously decays into two or more different particles. We are
not interested at all, in the present context, in the specific dynamic laws regulating
the interaction process; however we can say that, in absence of external forces, the
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invariance of the Lagrangian under spatial and time translations is valid anyway,
together with the associated conservation laws. If we refer in particular to the initial
and final states, in which the system can be described as composed by non-interacting
free particles, such conservation laws can be written as

nI∑

i=1

m(I)
i c2

√
1 − v2i,I/c2

=
nF∑

j=1

m(F)
j c2

√
1 − v2j,F/c2

, (1.72)

nI∑

i=1

m(I)
i vi,I√

1 − v2i,I/c2
=

nF∑

j=1

m(F)
j vj,F

√
1 − v2j,F/c2

(1.73)

and represent the four components of the simple, covariant equation reported
in (1.57), i.e. Pμ

tot, I = Pμ
tot, F . As a consequence, they will hold in every inertial

frame by construction, with no need to put further constraints on the mass of the
particles which are present before and after the process, as it happens instead in
Newtonian mechanics, where the sum of the particle masses must be conserved.
This is a fundamental aspect of relativistic mechanics, which opens the way to a
completely new phenomenology, in which mass can be converted into kinetic energy
and viceversa. Everybody knows the relevance that this has acquired in the recent
past.

Equations (1.54) and (1.55) define the momentum p and the energy E of a free
particle as a function of its mass m and of its velocity v. It is very useful to invert
such relations, taking four-momentum itself as the fundamental quantity. Velocity
and mass can be easily obtained as a function of (E/c, p):

v = pc2

E
; m2c2 = E2

c2
− p2 = pμpμ, (1.74)

where p ≡ |p|, showing also that mass10 is related to the invariant squared length of
the time-like four-vector pμ, which fixes the relation between energy andmomentum,
also knownasdispersion relation:E = √

m2c4 + p2c2. That also permits to smoothly
define the limit of zero-mass particles, like photons, which are those for which
E = |p|c and |v| = c, i.e. having a light-like four-momentum11 Formassive particles,
one can consider a non-relativistic approximation, in which p � mc, v ∼ p/m and
E � mc2 +p2/(2m), and a ultra-relativistic approximation, in which p � mc, v ∼ c
and E ∼ pc, like for massless particles.

10In some texts alternative definitions of mass can be found, which make a distinction between rest
mass m and relativistic mass γ m. We retain that a single definition of mass, related to the invariant
squared length of the particle four-momentum, is more useful in order to make the treatment simpler
and to avoid confusion.
11One can also consider a new class of particles having space-like four-momentum, i.e. |p| > E/c.
Those particles would have a negative squared mass and velocities always greater than c and are
called tachyons. Their existence, of course, would put serious questions to the principle of causality.
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1.4.3 Energy-Momentum Conservation in Relativistic
Processes

We are going to analyze some examples which exemplify the new phenomena which
become possible, at least from a kinematic point of view, because of the new rel-
ativistic definition of energy and momentum. More examples are discussed in the
various problems reported at the end of this Chapter. Before doing that, let us define
some quantities related to the total four-momentum of a system of particles, which
will be useful in the following.

Pμ
tot = ∑

a pμ
a , being the sumof four-vectors, transforms as a four-vector aswell.12

That means that we can associate a Lorentz invariant quantity to its Minkowski
squared length, Pμ

totPμtot , which is called the invariant mass of the system

M2
inv c2 ≡ E2

tot/c2 − |Ptot |2, (1.75)

since, as for the single particle case, it provides the relation linking energy and
momentum. It is often convenient to consider the so-called center-of-mass (CM)
frame, which, in analogy with the non-relativistic case, is defined as the reference
frame where the total spatial momentum vanishes. If we are sitting in a frame where
Ptot �= 0, it is easy to find the boost needed to move to the CM frame, i.e. the CM
velocity vcm; indeed, a simple application of Lorentz transformations to Pμ

tot shows
that

vcm = Ptot

Etot
c2, (1.76)

from which it also follows that

vcm =
∑

a pac2∑
a Ea

=
∑

a Eava∑
a Ea

= d

dt

(∑
a Eara∑

a Ea

)
. (1.77)

Hence, despite its name, which is borrowed from non-relativistic mechanics, the CM
position is more like an energy-weighted average of the particle positions. Notice
that, according to (1.75) and (1.76), the CM frame is well defined only if Pμ

tot is a
time-like vector, i.e. if the invariant mass of the system is different from zero. We
can shed new light on the meaning of Minv by noticing that, in the CM frame, it is
proportional to the total energy

E(CM)
tot = Minvc2. (1.78)

Last relation between the invariant mass of a system and its total energy, measured
in its rest frame, is probably the clearest expression of Einstein’s famous relation
between energy and mass.

12Pμ
tot is time-like, since it is the sum of time and light-like four-vectors with positive time compo-

nents.
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Minv is the most useful definition of the mass of a system as a whole, since it
is the quantity connecting Etot , Ptot and vcm like in the single particle case. Equa-
tion (1.78) gives the possibility to define the connection between Minv and the stan-
dard non-relativistic definition of the total mass as the sum of themasses of the single
components. Indeed, we can write

Minvc2 = E(CM)
tot =

∑

a

√
m2

ac4 + |p(CM)
a |2c2 ≥

∑

a

mac2 (1.79)

meaning that the invariant mass coincides with sum of themasses only if the particles
are at rest in the CM frame; any kinetic energy possessed by the particles in such a
frame goes into a contribution to the mass of the system as a whole.

Our considerations on conservation and transformation properties of energy and
momentum permit to fix in a quite simple way the kinematic constraints related to
interaction processes: let us illustrate this point with a first example. In relativistic
diffusion processes it is possible to produce new particles starting from particles
which are commonly found inNature. The collision of twohydrogen nuclei (protons),
which have a mass m � 1.67×10−27 kg, can generate the particle π, which has a
mass μ � 2.4×10−28 kg. Technically, some protons are accelerated in the reference
frame of the laboratory, till one obtains a beam of momentum P, which is then
directed against hydrogen at rest. That leads to proton–proton collisions from which,
apart from the already existing protons, also the π particles emerge (it is possible to
describe schematically the reaction as p + p → p + p + π).

A natural question regards the minimum momentum or energy of the beam par-
ticles needed to produce the reaction: in order to get an answer, it is convenient to
consider this problem as seen from the center of mass frame, in which the two parti-
cles have opposite momenta, which we suppose to be parallel, or anti-parallel, to the

x axis: P1 = −P2, and equal energies E1 =
√

P2
1c2 + m2c4 = E2. In this reference

frame the total momentum vanishes and the total energy is E = 2E1. Conservation
of momentum and energy constrains the sum of the three final particle momenta to
vanish, and the sum of their energy to be equal to E. The required energy is min-
imal if all final particles are produced at rest, the kinematic constraint on the total
momentum being automatically satisfied in this case (this is the advantage of doing
computations in the CM frame). We can then conclude that the minimum value of E
in the center of mass is Emin = (2m+μ)c2. However that is not exactly the answer to
our question: we have to find the value of the energy of the beam protons correspond-
ing to a total energy in the center of mass equal to Emin. That can be done by noticing
that, in the center of mass, both colliding protons have energy Emin/2, so that we can
compute the relative velocity βc between the CM frame and the laboratory as that
corresponding to a Lorentz transformation leading from a proton at rest to a proton
with energy Emin/2, i.e. solving the equation

1√
1 − β2

= Emin

2mc2
= 2m + μ

2m
.
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While, as said above, the total momentum of the system vanishes in the center of
mass frame and the total energy equals Emin, in the laboratory the total momentum
is obtained by a Lorentz transformation as

PL = β√
1 − β2

Emin

c
=

√
1

1 − β2 − 1
Emin

c
= (2m + μ)c

√
(2m + μ)2

4m2 − 1

= 2m + μ

2m
c
√
4mμ + μ2.

This is also the answer to our question, since in the laboratory all momentum is
carried by the proton of the beam.

An alternative way to obtain the same result, without making explicit use of
Lorentz transformations, is by noticing that, if EL is the total energy in the laboratory,
P2

L − E2
L/c2 is an invariant quantity, which is therefore equal to the same quantity

computed in the CM frame, i.e.

E2
L

c2
− P2

L = (2m + μ)2c2.

WritingEL as the sumof the energyof theproton in thebeam,which is
√

P2
Lc2 + m2c4,

and of that of the proton at rest, which is mc2, we have the following equation for
PL:

1

c2

[√
P2

Lc2 + m2c4 + mc2
]2

− P2
L = 2m2c2 + 2m

√
P2

Lc2 + m2c4 = (2m + μ)2c2

which finally leads to the same result obtained above.
In the example above, part of the kinetic energy of the initial particles is converted

into rest energy for the new particle emerging after the collision: this is the usual
strategy adopted by high energy experiments since many years, in order to explore
the existence of new particles and understand the nature of fundamental interactions.
An experiment like the one we have just discussed, in which one of the colliding
particles is at rest, is usually called a fixed target experiment and is the easiest to be
performed: it was indeed by this kind of experiment that pions were first produced
in a laboratory. Last equation shows that in this case, for very high values of the
incident beam energy, PL � mc, the energy in the CM frame, which is the one really
available for new particle production, grows asymptotically like the square root of
PLc. A much more convenient setup is obtained by the collision of two equal energy
beams proceeding in opposite directions: in this case the laboratory coincides with
the CM frame. An easy computation shows that, in this case, E(CM)

tot grows like PLc,
thus permitting to proceed much faster across the energy frontier: this is the reason
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why this strategy has been adopted by most recent experiments, starting from AdA
(Frascati) in 1960 and ending with the Large Hadron Collider (LHC) at CERN.

Let us now discuss a different example, in which mass in converted into kinetic
energy of the final products, a process which is at the basis of energy production
via nuclear reactions. Consider a particle of mass M, which then decays into two
equal particles of mass m; to simplify computations, let us suppose the particle of
mass M is initially at rest, so that Etot = Mc2 and Ptot = 0. The final state depends
on 6 parameters, namely the 6 components of the momenta q1 e q2 of the two final
particles: 4 degrees of freedom are fixed by four-momentum conservation, while
two of them are free, i.e. they cannot be fixed by simple kinematic considerations
and depend on the specific dynamics of the interaction.13 Momentum and energy
conservation implies

q1 + q2 = 0 → q ≡ q1 = −q2 (1.80)

Mc = 2
√

q2c2 + m2c4 → E1 = E2 = Mc2

2
; q2 = M2c2

4
− m2c2.

Last equation implies M > 2m, meaning that the sum of the final masses cannot
exceed M, however it can be lower: the mass defect is then converted into kinetic
energy of the final particles.

Let us close this Section by some considerations regarding the very definition of
energy. On the basis of what we have deduced about the transformation properties of
energy andmomentum, it is important to notice that we can identify them as the com-
ponents of a four-vector only if the energy of a particle is defined asmc2/

√
1 − v2/c2,

thus fixing the arbitrary constant usually appearing in the definition of energy. The
energy balance of various experiments, in which an identical initial state can give
rise to different numbers and species of final particles, proves that this is indeed the
correct choice. In order to understand why an additional arbitrary constant to the rel-
ativistic definition of energy in not allowed, one should look at elementary particles
in the context of Quantum Field Theory, where they are viewed as excitations over a
vacuum, ground state of the theory. An arbitrary constant can then be associated only
with the vacuum energy itself, while what we call “particle energies” are actually
energy differences with respect to the vacuum state: contrary to energy itself, such
differences are not allowed to be redefined by arbitrary additive constants.

1.5 Covariant Formulation of Electromagnetism

It is time to goback to the starting point of our discussion.Wehave seen that the imple-
mentation of the relativity principle bymeans of Galilean transformations revealed to
have serious flaws after the theory of electromagnetism had been formulated in terms

13In the CM frame, the two unknown parameters are the two angles specifying the direction in
which the final particles are emitted.
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of Maxwell equations. Now we are going to see how such equations can be rewritten
in a form which makes them explicitly covariant under Lorentz transformations. Let
us start by briefly recalling the theory of electromagnetic fields in vacuum space; we
will first adopt the standard vector notation, making use of S.I. units.

Maxwell equations establish a set of relations between the electric and magnetic
fields, E(x, t) and B(x, t), and the electromagnetic sources, which can be written in
terms of an electric charge density ρ(x, t) and an electric current density J(x, t). We
can consider for simplicity ρ as a continuous distribution, such that ρ(x, t)d3x gives
the total electric charge contained in a given volume d3x around x at a given time t,
while the current density can be conveniently rewritten as J(x, t) = ρ(x, t)v(x, t),
where v(x, t) is a vector field representing the velocity at which charges located
in x at time t are moving. One can formulate the theory either in terms of integral
equations or in terms of partial differential equations, we adopt the second strategy.
Maxwell equations then read:

∇ · E = ρ

ε0
(1.81)

∇ ∧ E = −∂B
∂t

(1.82)

∇ · B = 0 (1.83)

∇ ∧ B = μ0

(
J + ε0

∂E
∂t

)
. (1.84)

One additional equation is needed to express charge conservation, i.e. the fact that
electric charges can move from one point to the other but cannot disappear; that is
expressed in differential form in terms of a continuity equation:

∂ρ

∂t
+ ∇ · J = 0 (1.85)

which when integrated tells us that the total charge disappearing from a given volume
is equal to the flux of current going out of that volume (hence, the charge goes
somewhere else and is not destroyed).

The set ofMaxwell equations, given suitable boundary conditions, can be partially
integrated by introducing auxiliary fields. Indeed, from (1.83) one sees that it is
always possible to find a vector field A(x, t) such that

B = ∇ ∧ A, (1.86)

then from (1.82) it follows that one can find an additional scalar field φ(x, t) such
that

E = −∇φ − ∂A
∂t

. (1.87)
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There is some freedom in the choice of the auxiliary fields, indeed it is easy to verify
that, given any scalar function Λ(x, t), the new auxiliary fields

φ′ = φ + ∂Λ

∂t
; A′ = A − ∇Λ (1.88)

lead to the same electromagnetic fields. This is known as gauge invariance and the
transformation in (1.88) is known as gauge transformation. Gauge freedom can be
constrained by imposing particular conditions on the auxiliary field, corresponding
to particular gauge choices, in the following we will consider what is usually known
as Lorenz (or Landau) gauge

∇ · A + 1

c2
∂φ

∂t
= 0. (1.89)

While Eqs. (1.82) and (1.83) are automatically satisfied by the introduction of the
auxiliary fields, (1.81) and (1.84) can be re-expressed as differential equations for A
and φ. Making use of the identity ∇∧(∇ ∧ A) = ∇(∇ · A) − ∇2A, of the condition
(1.89) and of the relation ε0μ0 ≡ 1/c2, it is easy to verify that, in the Lorenz gauge,
such equations read:

1

c2
∂2φ

∂t2
− ∇2φ = �φ = ρ

ε0
(1.90)

1

c2
∂2A
∂t2

− ∇2A = �A = μ0J. (1.91)

In absence of external sources, J = 0 and ρ = 0, such equations describe the
propagation of electromagnetic waves.

We can now proceed and try to reformulate the theory above in terms of covariant
equations. In order to do that, we need to know the transformation properties under
Lorentz transformations of the various quantities illustrated above, i.e. we need to
understand if they can be rewritten in terms of well defined tensorial structures.
Since we do not know how to start, we need some suggestion from Nature, which
comes in this form: the electric charge is a Lorentz invariant quantity. There is plenty
of experimental evidence for that, consider for instance the various systems which
are made up of charged particles and whose total charge results independent of the
internal motion of their components.

From the invariance properties of the electric charge we can derive the transfor-
mation properties for ρ and J. The velocity field v defined above describes a set of
trajectories, which can be parametrized in terms of either standard time t or proper
time τ (computed along the given trajectory). Thenwe can define a four-velocity field
uμ(x, t) associated with v(x, t), whose components are (u0, u) = γ(v)(c,v). Since
ρ d3x, i.e. the total charge contained in the infinitesimal volume d3x, is Lorentz invari-
ant, also the quantity ρ uμd3x is a four-vector. Then, since γ(v) = dt/dτ , we have
that (ρc, ρv)d3xdt is a four-vector as well. However, we already know that a general
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property of Lorentz transformations is that they leave the integration measure d3x dt
invariant (since | detΛ| = 1), so that also the four quantities (ρc, ρv) = (ρc, J)must
be the components of a four-vector field, which is usually called the four-current den-
sity Jμ. That means exactly that

Jμ′
(x′, t′) = Λμ

ν Jν(x, t), (1.92)

the four-current Jμ′, measured by observer O′ in the event of coordinates x′ and t′,
is the Lorentz transformed of the four-current Jμ, measured by O in the event of
coordinates x and t, where xμ′ = Λ

μ
ν xν . Notice that now the continuity condition,

Eq. (1.85), takes a covariant form since

∂ρ

∂t
+ ∇ · J = ∂

∂xμ
Jμ = 0

Let us now consider (1.90) and (1.91): they are four equations that we require to
be covariant. It is immediate the realize that the d’Alembertian differential operator
is nothing but the contraction of the tensor of second derivatives, i.e.

� ≡ 1

c2
∂2φ

∂t2
− ∇2 = ∂μ ∂μ = ∂

∂xμ

∂

∂xμ
.

Then it is clear, if we multiply (1.90) by 1/c, that (1.90) and (1.91) form the 4
components of a covariant equation only if the auxiliaryfields form the components of
a four-vector field. Indeed, defining the four-potential Aμ, corresponding to (φ/c, A),
the four equations can be rewritten in the form

∂ν ∂νAμ = �Aμ = μ0 Jμ . (1.93)

The Lorenz gauge condition takes the covariant form14 ∂μAμ = 0. To summarize,
we have deduced the transformation properties of the four-current on the basis of the
experimental observation that electric charge is Lorentz invariant. Then, to ensure
the covariance of Maxwell equations for the auxiliary fields, we have deduced the
transformation properties of the latter quantities, thus introducing the four-potential
Aμ. At the same time, we have noticed that the differential operator � is Lorentz
invariant, thus ensuring the covariance of the electromagnetic wave equations.

We are now in a position to determine the transformation properties of the electro-
magnetic field themselves. Indeed, if we define the two-index antisymmetric tensor

Fμν ≡ ∂μAν − ∂νAμ (1.94)

14Actually, it is not strictly necessary for the gauge condition to be covariant, and other gauge
choices can be taken which are not so, like Coulomb gauge, in which ∇ · A = 0. Covariance is
therefore a virtue of Lorenz gauge, which permits to maintain the covariance of Maxwell equations
for φ and A. On the contrary, the covariant form of the equations for electric and magnetic fields,
which is shown next, is guaranteed for any gauge choice, since such fields are gauge independent.
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it is easy to verify, from Eqs. (1.86) and (1.87), that it corresponds to the 4×4 matrix

⎛

⎜⎜⎝

0 −Ex/c −Ey/c −Ez/c
Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

⎞

⎟⎟⎠ (1.95)

while Fμν is obtained by changing sign to the components with one spatial and one
temporal index. Fμν has well defined transformation properties

Fμν ′(x′, t′) = Λμ
ρ Λν

σ Fρσ(x, t) (1.96)

so that, if we consider a boost along the x axis, like that represented by (1.18), we
obtain the following transformation properties for E and B:

E′
x = Ex; E′

y = γ(Ey − βcBz); E′
z = γ(Ez + βcBy)

B′
x = Bx; B′

y = γ(By + βEz/c); B′
z = γ(Bz − βEy/c). (1.97)

It is now possible to rewrite also Maxwell equations (1.81)–(1.84) in a covariant
form. Indeed, one can check that (1.81) and (1.84), i.e. the ones involving four-
current components, can be rewritten in the form

∂ν Fνμ = μ0Jμ (1.98)

while the homogeneous equations (1.82) and (1.83) can be re-expressed by introduc-
ing the so-called dual electromagnetic tensor F̃μν = εμνρσFρσ , where εμνρσ is the
completely antisymmetric invariant tensor,15 whose components are

⎛

⎜⎜⎝

0 −Bx −By −Bz

Bx 0 Ez/c −Ey/c
By −Ez/c 0 Ex/c
Bz Ey/c −Ex/c 0

⎞

⎟⎟⎠ (1.99)

15Such a tensor is defined so that εμνρσ = 0 if any couple of indices coincide and εμνρσ = ±1 if
μνρσ are any even/odd permutation of 0123. It is actually a pseudotensor, meaning that, for any
Lorentz transformation Λ, it transforms like

ε′μνρσ = (detΛ)Λμ
α Λν

β Λρ
γ Λσ

δ εαβγδ

Then, making use of the Leibniz formula for the determinant and of the fact that (det A)2 = 1, one
proves that

ε′μνρσ = det A det Aεμνρσ = εμνρσ

i.e. that it is an invariant tensor, which takes the same form in every frame.
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then Eqs. (1.82) and (1.83) become

∂ν F̃νμ = 0. (1.100)

If a pointlike particle moves in the presence of an electromagnetic field, given the
massm and the charge q of the particle,Newton’s law asserts that, in the instantaneous
rest system of the particle, its acceleration is given by

ma = qE(rp, t). (1.101)

From (1.58) and (1.95) we see that (1.101) can be written in the explicitly covariant
form

maμ = qFμνuν . (1.102)

Multiplying both sides by γ(v)−1 and considering the space components of (1.102)
we get the well known Lorentz force equation

m
dp
dt

= q(E + v ∧ B). (1.103)

It is not difficult to verify that this equation of motion for a charged particle in an
external electromagnetic field corresponds to the Lagrangian

L(r,v, t) = −γ(v)−1(mc2 + q uμ(v)Aμ(r, t)). (1.104)

1.5.1 Relativistic Doppler Effect

In absence of sources, Eq. (1.93) describes the propagation of electromagnetic waves
in vacuum space. Among the various possible solutions, one has monochromatic
plane waves of frequency ν and wavelength λ = c/ν, like the following

Aμ(x, t) = Aμ
0 sin(k · x − ωt), (1.105)

where Aμ
0 are constants, ω = 2πν and k is the wave vector: in order for (1.105) to

solve Eq. (1.93), they have to satisfy the dispersion relation ω = |k|c = 2πc/λ.
We ask now how a particular plane wave solution for an inertial frame O is

described by a new inertial frame O′. Linearity implies that it is described by a plane
wave too, but with a new wave vector k′ and a new frequency ν ′. The transformation
laws for these quantities are easily found by noticing that the difference of the two
phases at corresponding points in the two frames must be a space-time independent
constant if the fields transforms locally. That is true only if the phase k · x − ωt is
invariant under Lorentz transformations, i.e., defining k0 = ω/c, if
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k′
0ct′ − k′ · x′ = k0ct − k · x; (1.106)

this has been implicitly assumed in writing Eq. (1.105): if by Aμ
0 we mean a constant

four-vector, then the oscillating function must be Lorentz invariant in order to ensure
covariance.

It is easy to verify that Eq. (1.106) is true for every point (x, ct) in space-time
if and only if16 the four quantities (k0, k) transform like a new four-vector kμ, so
that (1.105) can be rewritten as Aμ(x, t) = Aμ

0 sin(kνxν). From k′μ = Λμ
νkν we

deduce the transformation properties of the temporal component ω. If O and O′ are
connected by a boost along the n̂ axis then

ω′ = γ(ω − β · k c) = γω(1 − β · n̂) = γω(1 − β cos θ) (1.107)

where n̂ ≡ k/|k|, θ is the angle between n̂ and k and the dispersion relation ω = |k|c
has been used.

Whenβ is parallel or antiparallel to kwe have the longitudinal relativistic Doppler
effect:

ω′ = γω(1 ∓ β) =
√
1 ∓ β

1 ± β
ω. (1.108)

The frequency is therefore reduced (increased) if themotion ofO′ is parallel (antipar-
allel) to that of the signal. The result is similar to the classical Doppler effect obtained
for waves propagating in a medium, but with important differences. In particular it is
impossible to distinguish the motion of the source from the motion of the observer:
that is evident from (1.108), since ν and ν ′ can be exchanged by simply reversing
v → −v. This is consistent with the fact that no propagating medium (ether) exists
for electromagnetic waves in vacuum.

Another relevant difference is that the frequency changes even if, in frame O,
the motion of O′ is orthogonal to that of the propagating signal (transverse Doppler
effect): in that case Eq. (1.107) implies

ν ′ = γ(v)ν = ν√
1 − v2/c2

, (1.109)

which has no analogy in non-relativistic wave propagation and can be reinterpreted
as a pure time dilation effect.

16Let us put k ≡ (k0, k) and x ≡ (ct, x), then from (1.106) we have

k′T gx′ = k′T gΛx = kT gx ∀ x → k′T gΛ = kT g → k′ = g−1(ΛT )−1gk = Λk

where Λ is the Lorentz transformation bringing from O to O′ and we made use of Eq. (1.42).
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Problems

1.1 A spaceship of length L0 = 150m is moving with respect to a space station with
a speed v = 2× 108 m/s. What is the length L of the spaceship as measured by the
space station?

Answer: L = L0
√
1 − v2/c2 � 112 m .

1.2 How many years does it take for an atomic clock (with a precision of one part
over 1015), which is placed at rest on Earth, to lose one second with respect to an
identical clock placed on the Sun?
Answer: We can take the Sun as an inertial frame, in which Earth moves on an
approximately circular orbit at constant speed v � 3×104 m/s � 10−4 c. We must
find a proper time interval on Earth, Δτ , such that it is one second less with respect
to Sun time. Adopting Eq. (1.36) with v constant and setting δt = 1 s, we have
(γ(v) − 1)Δτ = δt, hence

Δτ = δt

1/
√
1 − v2/c2 − 1

� 2 δt
c2

v2
� 6.34 years.

Our computation is actually incomplete, since it neglects gravitational field effects:
their analysis would require a treatment in the framework of general relativity.

1.3 Two spaceships, moving along the same course with the same velocity v =
0.98 c, pass space station Alpha, which is placed on their course, at the same hour
of two successive days. On each of the two spaceships a radar permits to know the
distance from the other spaceship: what value does it measure?
Answer: In the reference frame of space station Alpha, the two spaceships stay at
the two ends of a segment of length L = vT , where T = 1 day. That distance is
reduced by a factor

√
1 − v2/c2 with respect to the distance L0 among the spaceships

as measured in their rest frame. We have therefore

L0 = 1√
1 − v2/c2

vT � 1.28×1014 m.



Problems 43

1.4 Spaceship A is moving with respect to space station S with a velocity
2.7×108 m/s. Both A and S are placed in the origin of their respective reference
frames, which are oriented so that the relative velocity of A is directed along the
positive direction of both x axes; A and S meet at time tA = tS = 0. Space station S
detects an event, corresponding to the emission of luminous pulse, in xS = 3×1013 m
at time tS = 0. An analogous but distinct event is detected by spaceship A, with coor-
dinates xA = 1.3×1014 m , tA = 2.3×103 s. Is it possible that the two events have
been produced by the same moving body?

Answer: The two events may have been produced by the same moving body only if
theyhave a time-like distance, otherwise the unknownbodywouldgo faster than light.
After obtaining the coordinates of the two events in the same reference frame, one
obtains, e.g. in the spaceship frame,Δx � 6.09×1013 m and cΔt � 6.27×1013 m >

Δx: the two events may indeed have been produced by the same body, moving at an
average speed Δx/Δt � 0.97 c.

1.5 Fizeau’s Experiment

In the experiment described in the figure, a light beam of frequency ν = 1015 Hz,
produced by the source S, is split into two distinct beamswhich go along two different
paths belonging to a rectangle of sides L1 = 10m and L2 = 5m. They recombine,
producing interference in the observation point O, as illustrated in the figure. The
rectangular path is contained in a tube T filled with a liquid having refraction index
n = 2, so that the speed of light in that liquid is vc � 1.5×108 m/s. If the liquid is
moving counter-clockwise around the tube with a velocity 0.3m/s, the speed of the
light beams along the two different paths changes, together with their wavelength,
which is constrained by the equation vc = λν (the frequency ν instead does not
change and is equal to that of the original beam). For that reason the two beams
recombine in O with a phase difference Δφ, which is different from zero (the phase
accumulated by each beam is given by 2π times the number ofwavelengths contained
in the total path). What is the value ofΔφ? Compare the result with what would have
been obtained using Galilean transformation laws.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
..
..
..
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

..

..

..

..

�� �

� �

S

O

T

Answer: Calling L = L1 + L2 = 15 m the total path length inside the tube for each
beam, and using Einstein laws for adding velocities, one finds

Δφ = 4πνLv
n2 − 1

c2 − n2v2
� 4πνLv(n2 − 1)/c2 � 1.89 rad .
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Instead, Galilean laws would lead to

Δφ = 4πνLv
n2

c2 − n2v2
,

a result which does not make sense, since it is different from zero also when the tube
is empty: in that case, indeed, Galilean laws would imply that the tube is still filled
with a “rotating ether”.

The experiment described above is very similar to the one performed by Fizeau.
The only significant difference is that Fizeau made the two light beams going exactly
along the same path, even if in two opposite directions, in order to eliminate any
possible systematic effect related to different conditions (e.g., in temperature) in the
various pieces of the tube. Fizeau observed a non-zero effect for water, and a null
effect for air, for which n � 1: this is in agreement with the relativistic prediction,
but was misinterpreted at the time of Fizeau and associated with the partial drag
hypothesis by Fresnel.

1.6 Relativistic Aberration of Light

In the reference frame of the Sun, Earthmoveswith a velocity ofmodulus v = 10−4 c
which forms, at a given time, an angle θ = 60◦ with respect to the position of a given
star. Compute the variation of this angle when it is measured by a telescope placed
on Earth.

Answer: By applying the relativistic transformation laws for velocities to the photons
coming from the star, one easily obtains that

tan θ′ =
√
1 − β2 sin θ

cos θ + β
or equivalently cos θ′ = cos θ + β

1 + β cos θ

to be compared with the classical expression tan θ′ = sin θ/(cos θ + β). In the
relativistic case all angles, apart from θ = π, get transformed into θ′ = 0 as β → 1.

In the present case β = v/c = 10−4 and it is sensible to expand in Taylor series
obtaining, up to second order:

θ′ = θ − β sin θ + β2 sin θ cos θ + O(β3)

to be compared with result obtained by Galilean transformation laws:

θ′ = θ − β sin θ + 2β2 sin θ cos θ + O(β3) .

It is interesting to notice that relativistic effects show up only at the second order in
β. In the given case δθ = −17.86216′′ to be compared with δθ = −17.86127′′ for
the classical computation. Relativistic effects are tiny in this case and not appreciable
by a usual optical telescope; an astronomical interferometer, which is able to reach
resolutions of the order of few micro-arcseconds at radio wavelengths, should be
used instead.
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1.7 A particle is moving with a speed of modulus v and components (vx, vy, vz).
What is the modulus v′ of the velocity for an observer moving at a speed w along
the x axis? Comment the result as v and/or w approach c.

Answer: Applying the relativistic laws for the addition of velocities we find

v′2 = v′2
x + v′2

y + v′2
z = (vx − w)2 + (1 − w2/c2)(v2z + v2y )

(1 − vxw/c2)2

and after some simple algebra

v′2 = c2
(
1 − (1 − v2/c2)(1 − w2/c2)

(1 − vxw/c2)2

)
.

It is interesting to notice that as v and/or w approach c, also v′ approaches c (from
below): that verifies that a body moving with v = c moves with the same velocity in
every reference frame (invariance of the speed of light).

1.8 During a Star Wars episode, space station Alpha detects an enemy spaceship
approaching it from a distance d = 108 km at a speed v = 0.9 c; at the same
time the station launches a missile of speed v′ = 0.95 c to destroy it. As soon as
the enemy spaceship detects the electromagnetic pulses emitted by the missile, it
launches against space station Alpha the same kind of missile, therefore moving at
a speed 0.95 c in the rest frame of the spaceship. How much time do the inhabitants
of space station Alpha have, after having launched their missile, to leave the station
before it is destroyed by the second missile?

Answer: Let us make computations in the reference frame of the space station.
Setting to zero the launching time of the first missile, the enemy spaceship detects it
and launches the second missile at time t1 = d/(v + c) and when it is at a distance
x1 = cd/(v + c) from the space station. The second missile approaches Alpha with
a velocity V = (v + v′)/(1+ vv′/c2) � 0.9973 c, therefore it hits the space station
at time t2 = t1 + x1/V � 352 s.

1.9 Two particles move at the same speed v along two orthogonal axes of the labo-
ratory, x and y. Assuming that the rest frames of the two particles are connected to
the laboratory frame by a pure boost, i.e. that their axes are parallel to those of the
laboratory, compute the components and the modulus of the relative velocities of the
two particles, i.e. the velocity of each particle in the rest frame of the other. Are the
two relative velocities opposite to each other? Are their moduli equal? Do you have
any explanation?

Answer: In the laboratory we have v1 = (v, 0) and v2 = (0, v). Let us call O′
and O′′ the rest frames of particles 1 and 2, respectively, and v′

2 (v′′
1) the speed of

particle 2 (1) in the rest frame of particle 1 (2). Then, setting as usual β = v/c and
γ = 1/

√
1 − v2/c2, a simple application of the transformation law for velocities

shows that v′
2 = (−v, v/γ) and v′′

1 = (vγ,−v). While the modulus is the same,
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|v′
2| = |v′′

1| = c
√

β2(2 − β2), one has that, contrary to naïve expectations, v′
2 �=

−v′′
1. The reason is easy to understand: while the axes of the two particle frames are

both parallel to the laboratory frame, they are not parallel to each other: in order to
go from reference frame O′ to reference frame O′′ we need the combination of two
boosts along two different axes, x and y. As the reader can verify by composing the
corresponding matrices, that is not a pure boost, but involves a rotation around the
z axis, therefore the discrepancy is only due to a mutual rotation of the frame axes,
i.e. the actual velocities are in fact opposite to each other. Such a rotation is a purely
relativistic effect which leads to new phenomena, like Thomas precession.

1.10 Two particles proceed with four-velocities uμ and wμ in the laboratory frame.
What is the relative speed vr of the two particles?

Answer: The relative speed is defined as the velocity of one particle measured in the
rest frame of the other, hence it is clear that it must be a Lorentz invariant quantity
(it is, in some sense, a private fact of the two particles). Therefore we must look for
an invariant quantity to be built in terms of uμ and wμ: the only non-trivial invariant
combination of these two quantities is uμwμ, since we have uμuμ = wμwμ = c2.
Since we are looking for an invariant quantity, we can work in any frame we prefer,
for instance in the reference frame of particle 1, where, setting βr = vr/c and
γr = 1/

√
1 − β2

r , we have

u = (c, 0); w = (γrc, γrvr); uμwμ = c2γr .

We deduce

vr = cβr = c

√
1 − 1

γ2
r

= c

√

1 − c2

uμwμ
.

Last expression is explicitly Lorentz invariant and can be used to compute the relative
velocity in any frame.

1.11 We are on the course of a spaceship moving with a constant speed v while
emitting electromagnetic pulses which, in the rest frame of the spaceship, are equally
spaced in time. We receive a pulse every second while the spaceship is approaching
us, and a pulse every two seconds while the spaceship is leaving us. What is the
speed of the spaceship?

Answer: Let us call Δτ the time spacing of pulse emissions in the rest frame of
the spaceship. By time dilation, such spacing becomes Δt = γΔτ in our frame.
While the spacehip is approaching us, pulses travelling towards us are at a distance
ofΔt(c−v) from each other: indeed, each pulse and the spaceship travel respectively
cΔt and vΔt, in the same direction, before the next pulse is emitted; on the contrary,
when the spaceship is leaving, pulses towards us travel in the direction opposite to the
spaceship and their mutual distance is Δt(c +v). Therefore the arrival time intervals
are respectively
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Δt(c ∓ v)/c = γ(1 ∓ β)Δτ =
√
1 ∓ β

1 ± β
Δτ ,

in agreement with the longitudinal Doppler effect. Combining the two effects, we
deduce that

1 + v/c

1 − v/c
= 2

hence v = 1/3 c.

1.12 A spacecraft is moving towards a plane mirror at rest with a constant velocity
v = 5× 107 m/s, which is orthogonal to the mirror. The spacecraft casts a laser
pulse of frequency ν = 1015 Hz, which is reflected by the mirror and comes back
with a new frequency ν ′. What is the value of ν ′?

Answer: The pulse proceeds parallel to the spacecraft velocity both before and after
reflection. Since reflection leaves the frequency unchanged only in the rest frame of
the mirror, two different longitudinal Doppler effects have to be taken into account,
that of the original pulse with respect to the mirror and that the reflected pulse with
respect to the spacecraft, therefore ν ′ = ν (1 + v/c)/(1 − v/c) = 1.4× 1015 Hz .

1.13 Consider a problem similar to the one above, with the difference that now the
spacecraft is moving parallel to the mirror surface. What is the value of ν ′ in this
case?

Answer: In this case, if we require that the pulse hits the mirror surface and catches
the spacecraft on its way back, we obtain, assuming standard reflection laws, that
the pulse makes an angle with respect to the spacecraft velocity, which in the mirror
frame is ±θ respectively before and after reflection, with cos θ = v/c (the value of
θ is actually irrelevant in the following).

Let us put ω = 2π ν, ω′ = 2π ν ′, and let us call ω̃ the angular frequency of
the pulse as observed in the mirror frame. We can apply equation (1.107) twice to
transform frequencies, however, since the angle θ is already known in the mirror
frame, the easiest way is to apply the transformation starting in both cases from the
mirror frame. We then obtain:

ω = γ(v)ω̃(1 − β cos θ)

ω′ = γ(v)ω̃(1 − β cos θ)

which immediately gives ω′ = ω, i.e. the frequency the spacecraft gets back is
unmodified in this case.

1.14 Spacecraft A passes very close to an astrophysical object S, which emits elec-
tromagnetic radiation of frequency ν = 1014 Hz in all directions, ν being measured
in S rest frame. In our inertial rest frame, both A and S move at constant velocity
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v along two orthogonal axes in the xy plane, their world lines being respectively
xA(t) = (vt, 0) and xS(t) = (0, vt + d), with v = c/5 and d = 103 km.

What is, according to spacecraft A, the minimum distance reached from object S?
What is the frequency spacecraft A receives when it sees S at such closest distance?

Answer: Let us take S world line, expressed in our reference frame, xS(t) = (0, vt +
d), and transform it to reference frame A by a standard Lorentz transformation along
the x axis

t′ = γt; x′
S = −γvt; y′

S = vt + d

where γ = 1/
√
1 − v2/c2. We could re-express everything in terms of t′, to find

the world line of S in A, however this is not strictly necessary, since we just need to
compute the point of the world line for which

x′2
S + y′2

S = γ2v2t2 + (vt + d)2 = v2t2(1 + γ2) + 2vdt + d2

is minimum. To that aim it is completely irrelevant whether the world line is para-
metrized in terms of t or t′. The condition for the minimum gives:

2tv2(1 + γ2) + 2vd = 0 → tmin = − d

v(1 + γ2)

from which we find

d2
min = d2

1 + γ2 − 2
d2

1 + γ2 + d2 = d2

2 − v2/c2
= 25d2

49

hence dmin = 5d/7 � 714 km. It is interesting to compare with the minimum
distance as observed from our reference frame, which is d/

√
2 � 707 km.

In A frame, the photon leaving S when it is at minimum distance and reaching A
travels orthogonal to the direction of S, hence we have to apply the trasverse Doppler
effect law. However we have to be careful about the exact transformation we need
to do: the photon is transverse in frame A, hence we have to transform from frame A
to frame S, i.e. we can write

ν = γ′ν ′

where γ′ ≡ 1/
√
1 − v′2

S and v′
S is S velocity as seen by A. Applying the relativistic

law for the transformation of velocities we obtain v′
S = (−v, v/γ) hence

v′
S =

√
v2 + (1 − v2/c2)v2 =

√
1

25

(
2 − 1

25

)
c = 7

25
c; γ′ = 25/24

and

ν ′ = ν/γ′ = 24ν

25
� 0.96 × 1014 Hz .
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1.15 A particle moves in one dimension with an acceleration which is constant and
equal to a in the reference frame instantaneously at rest with it. Determine its world
line x(t) in the reference frame where it is placed at rest in x = 0 at time t = 0.

Answer: One can make use either of the inertial frame time t or of the particle proper
time τ to parametrize the world line, which are related by dτ = √

1 − v2(t)/c2 dt
and will be assumed to be synchronized so that t = 0 when τ = 0. There are various
way to solve this problem, let us discuss two of them. First, to derive the equation
of motion, let us notice that, in the frame instantaneously at rest with the particle,
the velocity goes from 0 to adτ in the interval dτ , so that, by relativistic addition of
velocities, v changes into (v + adτ )/(1 + vadτ/c2) in the same interval, meaning
that dv/dτ = a(1 − v2/c2). We can now make use of the spatial component of the
four-velocity, u = dx/dτ , which is related to v by the following relations:

u = v√
1 − v2/c2

, v = u√
1 + u2/c2

,

√

1 + u2

c2

√

1 − v2

c2
= 1 .

Using previous equations, it is easy to derive

du

dt
= du

dv

dv

dτ

dτ

dt
= a

which can immediately be integrated, setting u(0) = 0, as u(t) = at. Using the
relation between u and v we have

v(t) = at√
1 + a2t2/c2

.

That gives the velocity, as observed in the laboratory, for a uniformly accelerated
motion: for t � c/a one recovers the non-relativistic result, while for t � c/a the
velocity reaches asymptotically that of light. The dependence of v on t can be finally
integrated, using the initial condition x(0) = 0, giving

x(t) = c2

a

⎛

⎝
√

1 + a2t2

c2
− 1

⎞

⎠ .

This is usually known as hyperbolicmotion, since theworld line defines an hyperbola
in the xt plane:

(ax

c2
+ 1

)2 − a2t2

c2
= 1 .

Asimplerway to solve the sameproblemmakes use of the rapidityχ, which is defined
byβ = tanhχ.We have seen that, contrary to velocity, rapidity is an additive quantity
for collinear boosts. By virtue of that, the infinitesimal change of rapidity in the rest
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frame, dχ = adτ/c, goes unchanged to the laboratory frame, i.e. we can write, in
the laboratory:

dχ

dτ
= a/c → χ(τ ) = aτ/c

leading immediately to β(τ ) = tanh(aτ/c) and γ(τ ) = cosh(aτ/c). Then dt = γdτ
can be immediately integrated to obtain t = (c/a) sinh(aτ/c) and finally

β = tanh(aτ/c) = sinh(aτ/c)

cosh(aτ/c)
= at/c√

1 + a2t2/c2
.

1.16 Two identical spacecrafts of massM and initially at rest at a relative distance L,
start moving at the same time t = 0 under the influence of a constant force F acting
along their relative distance, i.e. such that dp/dt = F where p is the relativistic spatial
momentum. The two spacecrafts are initially connected by a thin and inextensible
cable. Determine the world lines of both spacecrafts and saywhether the cable breaks
or not.

Answer: Regarding the motion of each spacecraft, this problem is identical to the
previous one, even if this is not obvious at a first sight. The equation dp/dt = F
can be immediately integrated yielding p = Ft (p = 0 at t = 0), hence E =√

F2c2t2 + M2c4, from which we obtain

v(t) = pc2

E
= Fc2t√

F2c2t2 + M2c4
= at√

1 + (a/c)2t2

where a ≡ F/M, i.e. exactly the same solution of Problem 1.15. Another way to
look at the correspondence between the two problems is to consider how the quantity
dp/dt transforms, in the case of one-dimensional motions, for longitudinal boosts.
Going to a new inertial frame O′, moving with velocity V with respect to the original
one and setting γ̃ = 1/

√
1 − V 2/c2, we have

dt′ = γ̃

(
dt − V

c2
dx

)
= γ̃dt

(
1 − V v

c2

)

dp′ = γ̃

(
dp − V

c2
dE

)
= γ̃dp

(
1 − V v

c2

)

where in the last equation we have used the relation

dE = d(

√
p2c2 + M2c4) = pc2

E
dp = vdp.

It is now evident that dp′/dt′ = dp/dt, i.e. such a quantity is invariant under any
longitudinal boost: that includes the boost bringing to the frame istantaneously at
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rest with the spacecraft, hence a constant dp/dt implies a constant acceleration in
the aircraft rest frame, which is exactly Problem 1.15.

Let us now address the cable issue. From Problem 1.15 we obtain the world lines
of the two spacecrafts

x1(t) = c2

a

⎛

⎝
√

1 + a2t2

c2
− 1

⎞

⎠ ; x2(t) = L + c2

a

⎛

⎝
√

1 + a2t2

c2
− 1

⎞

⎠

where integration constants have been set such that x1(0) = 0 and x1(0) = L. In
the original frame, the two spacecrafts keep at distance L at every time: one would
deduce that the cable does not break, however, since the cable is moving as well,
we must compute its length in the aircraft rest frame. Let us consider, in particular,
an inertial frame O′ which is istantaneously at rest with aircraft 1, and let us fix its
origin so that x′

1 = t′1 = 0 corresponds to the event in which aircraft 1 reaches speed
v in the original frame O; for convenience, from now on we translate the origin of
O so that also in this frame x1 = t1 = 0, while x2 = L and t2 = 0 corresponds
to the event for which also spacecraft 2 reaches the same speed v. After a Lorentz
transformation, we obtain that, according to O′, spacecraft 2 is at rest in x′

2 = γL
at t′2 = −βγL. In order to understand where spacecraft 2 is at time t′ = 0, thus
obtaining the relative distance as seen from aircraft 1, we need to integrate again the
equation of the hyperbolic motion, which tells us that, in a time interval βγL and
starting from rest, aircraft 2 will travel a distance

c

a

√
c2 + a2(γβL)2 − c2

a

so that the total distance will be

γL + c

a

(√
c2 + (aγβL)2 − 1

)

which is surely greater than L, hence the cable will break.

1.17 A muon, which is a particle (usually indicated by the Greek letter μ) of mass
m = 1.89× 10−28 kg and carrying the same electric charge as the electron, has
a mean life time τ = 2.2× 10−6 s when it is at rest. The particle is accelerated
instantaneously through a potential gap ΔV = 108 V. What is the expected life time
t of the particle in the laboratory after the acceleration?What is the expected distance
D traveled by the particle before decaying?

Answer:

t = τ
(mc2 + eΔV )

mc2
� 4.28× 10−6 s

D =
√

(eΔV )2 + 2emc2ΔV

mc2
cτ = 1.1× 103 m.
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Notice that the average traveled distance D is larger than what expected in absence
of time dilation, which is limited to cτ due to the finiteness of the speed of light. The
increase in the traveled distance for relativistic unstable particles is one of the best
experimental proofs of time dilation, think e.g. of the muons created when cosmic
rays collidewith the upper regions of the atmosphere: a large fraction of them reaches
Earth’s surface and that is possible only since their life times appear dilated in Earth’s
frame.

1.18 The energy of a particle is equal to 2.5× 10−12 J, its momentum is
7.9× 10−21 N s. What are its mass m and velocity v?

Answer: m = √
E2 − c2p2/c2 � 8.9× 10−30 kg, v = pc2/E � 2.84× 108 m/s.

1.19 A particle of mass M = 10−27 kg decays, while at rest, into a particle of mass
m = 4× 10−28 kg plus a photon. What is the energy E of the photon?

Answer: The two outgoing particles must have opposite momenta with an equal
modulus p to conserve total momentum. Energy conservation is then written as
Mc2 = √

m2c4 + p2c2 + pc, so that

E = pc = M2 − m2

2M
c2 = 0.42 Mc2 � 3.78× 10−11 J � 2.36× 108 eV,

while the energy of the massive particle is c2(M2 + m2)/(2M).

1.20 Consider a system composed of two photons of momenta k1 and k2. Determine
its invariant mass Minv and the velocity vcm of its center of mass frame.

Answer: Since E1 = k1 c ed E2 = k2 c, where k1 = |k1| and k2 = |k2|, we have

M2
invc2 = (k1 + k2)

2 − |k1 + k2|2 = 2k1k2(1 − cos θ)

where θ is the angle formed by the directions of the two photons. Moreover

vCM = k1 + k2
k1 + k2

c; vCM = c

√

1 − (1 − cos θ)
2k1k2

(k1 + k2)2
.

Therefore only in the case of collinear photons (θ = 0) we have a vanishing invariant
mass and vcm = c.

1.21 A spaceship of initial mass M = 104 kg is boosted by a photonic engine: a
light beam is emitted opposite to the direction of motion, with a power W = 1013 W,
as measured in the spaceship rest frame. What is the derivative of the spaceship rest
mass with respect to its proper time? What is the spaceship acceleration a in the
frame instantaneously at rest with it?
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Answer: The engine power must be subtracted from the spaceship energy, which
is Mc2 in its rest frame, hence dM/dt = −W/c2 � 1.1× 10−4 kg/s. Since the
particles emitted by the engine are photons, they carry a momentum equal to 1/c
times their energy, hence

a(τ ) = W

c(M − Wτ/c2)
.

1.22 Consider again Problem 1.21. If the spaceship moves along the positive x
direction and leaves the space station at τ = 0, compute its velocity with respect
to the station reference frame (which is assumed to be inertial) as a function of the
spaceship proper time.

Answer: According to the solution of previous Problem 1.21, the spaceship accel-
eration a in the frame instantaneously at rest with it is

a(τ ) = W

c(M − τW/c2)
= αc

1 − ατ
; α = W

Mc2
� 1.1× 10−8 s−1.

Recalling from the solution of Problem 1.15 that

v = u√
1 + u2

c2

,
du

dτ
= a(τ )

√

1 + u2

c2
,

where u is the x-component of the four-velocity we can easily integrate last equation

du√
1 + u2

c2

= αc dτ

1 − ατ

obtaining
u

c
= sinh (− ln(1 − ατ )) .

Expressing v/c as a function of u/c we finally get

v

c
= tanh (− ln(1 − ατ )) = 1 − (1 − ατ )2

1 + (1 − ατ )2
.

Amuch simpler way to obtain the same result is the following. Since all photons are
emitted by the engine in the same direction (they are collinear), from Problem 1.20
we know that, independently of their energies, they can be considered as a single
photon, i.e. a system of zero invariant mass. Therefore, from the point of view of
the spaceship, what happens after a proper time τ can be described by the result
of Problem 1.19: a spaceship of initial mass M and which is initially at rest decays
into a photon plus a residual spaceship of residual mass M(1 − ατ ); the fact that
photons are emitted continuously over a finite time interval is irrelevant, since, from
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the kinematic point of view, we are only interested in the initial and final states. Then,
from the solution to Problem 1.19 and setting m = M(1 − ατ ), we easily obtain:

v(τ )

c
= p(τ )c

E(τ )
= M2 − M2(1 − ατ )2

M2 + M2(1 − ατ )2
= 1 − (1 − ατ )2

1 + (1 − ατ )2

which coincideswith previous result. The solution is defined, of course, only forατ <

1 since after that the spaceship mass vanishes. Notice that, for ατ = 1, the spaceship
does not disappear, since that would not be consistent with kinematic constraints (the
total invariant mass must stay M forever): it becomes a photon of momentum Mc/2.
However, from τ = 1/α on, the enginemust stop, since a photon cannot emit another
photon in the opposite direction (that would violate four-momentum conservation,
leading in particular to a different invariant mass).

One can also obtain time t in the station frame as a function of proper time τ :

t =
∫ τ

0
dτ ′γ(τ ′) =

∫ τ

0
dτ ′ 1 + (1 − ατ )2

2(1 − ατ )
= 1

2α

[
1 − (1 − ατ )2

2
− ln(1 − ατ )

]

which diverges as ατ → 1.

1.23 A spaceprobe of mass M = 10 kg is boosted by a laser beam of frequency
ν = 1015 Hz and power W = 1012 W, which is directed from Earth against an
ideal reflecting mirror (i.e. reflecting all incoming photons) placed in the back of
the probe. Assuming that the probe is initially at rest with respect to Earth, and that
the laser beam is always parallel to the spaceprobe velocity and orthogonal to the
mirror, determine the evolution of the spaceprobe position in the Earth frame and
compute the total time Δt for which the laser must be kept switched on, in order for
the spaceprobe to reach a velocity v = 0.5 c.

Answer: In the reference frame of the spaceship, every photon gets reflected from
the mirror with a negligible change in frequency (Δλ′/λ′ ∼ hν ′/(Mc2) < 10−37,
see Problem 1.33), hence it transfers a momentum 2hν ′/c to the spaceprobe, where
ν ′ is the photon frequency in the spaceprobe frame. The acceleration of the probe in
its proper frame is therefore

a′ = 2hν ′

Mc

dN ′
γ

dt′
= 2W ′

Mc

where W ′ is the power of the beam measured in the proper frame, which is given
by the photon energy, hν ′, times the rate at which photons arrive, i.e. the number
of photons hitting the mirror per unit time, dN ′

γ/dt′. The above result is twice as
large as that obtained if the light beam is emitted directly by the spaceprobe, as in
Problem 1.21, since in this case each reflected photon transfers twice its momentum.

Bothν ′ and the rate of arrivingphotons are frequencies, hence theyget transformed
by Doppler effect and we can write
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W ′ = hν ′ dN ′
γ

dt′
=

√
1 − β

1 + β
hν

√
1 − β

1 + β

dNγ

dt
= 1 − β

1 + β
W

which gives us the transformation law for the beam power. From the acceleration in
the proper frame, a′ = 2W (1−β)/[(1+β)Mc], one obtains the derivative of β with
respect to the proper time τ (see Problem 1.15)

dβ

dτ
= dv

cdτ
= a′

c

(
1 − v2

c2

)
= α(1 − β)2

where we have set α = 2W/(Mc2). Last equation, after integration with the initial
condition β(0) = 0, leads to ατ = β/(1 − β), i.e.

β(τ ) = ατ

1 + ατ
.

Regarding the position of the probe, we have

dx = cβdt = cβ
dτ√
1 − β2

= ατ√
1 + 2ατ

dτ

which gives, after integration and using x(0) = 0

x = c

3α

(
(ατ − 1)

√
2ατ + 1 + 1

)
.

Setting β = 0.5 we obtain τ = α−1 = Mc2/(2W ) = 9× 105 s. The corresponding
time in the Earth frame can be obtained by integrating the relation

dt = dτ√
1 − β2

= 1 + ατ√
1 + 2ατ

dτ

yielding

t = 1

3α

(
(ατ + 2)

√
2ατ + 1 − 2

)
.

In order to compute the total time Δt that the laser must be kept switched on, we
have to consider that a photon reaching the spaceprobe at time t has left Earth at a
time t − x(t)/c, where x is the probe position, hence the emission time is

tem = t − x/c = 1

α

(√
2ατ + 1 − 1

)
.

Setting ατ = 1, we obtain Δt = (
√
3 − 1)/α � 6.59× 105 s.
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It is interesting to notice that, analogously to Problem 1.22, also in this case
the solution can be obtained in a much simpler way by mapping the problem onto
a photon-particle diffusion one. Indeed, all the photons emitted by the laser are
collinear to each other and can be considered as one single incident photon; the same
applies to reflected photons, which can be treated as one single reflected photon. Then
the problem reduces to a one-dimensional problem in which a photon of momentum
k = W tem/c hits a particle of mass M which is initially at rest: we have to tune
k so that after the collision the particle has a velocity v = c/2, i.e. a momentum
p = Mv/

√
1 − v2/c2 = Mc/

√
3. If we call −k′ the momentum of the reflected

photon, conservation of four-momentum implies

k = p − k′; kc + Mc2 = k′c +
√

p2c2 + M2c4

which combined together lead, after some algebra, to

k = Mc

2

(
p

Mc
− 1 +

√
1 +

( p

Mc

)2
)

= Mc

2

(√
3 − 1

)

hence to tem = Mc2(
√
3−1)/(2W )which coincides with the result found previously.

1.24 An electron–proton collision can give rise to a fusion process in which all
available energy is transferred to a neutron. As a matter of fact, there is a neutrino
emitted whose energy and momentum in the present situation can be neglected. The
proton rest energy is 0.938× 109 eV, while those of the neutron and of the electron
are respectively 0.940× 109 eV and 5× 105 eV. What is the velocity of the electron
which, knocking into a proton at rest, may give rise to the process described above?

Answer: Notice that we are not looking for a minimum electron energy: since,
neglecting the final neutrino, the final state is a single particle state, its invariant
mass is fixed and equal to the neutron mass. That must be equal to the invariant mass
of the initial system of two particles, leaving no degrees of freedom on the possible
values of the electron energy: only for one particular value ve of the electron velocity
the reaction can take place.

A rough estimate of ve can be obtained by considering that the electron energy
must be equal to the rest energy difference (mn −mp) c2 = (0.940−0.938)× 109 eV
plus the kinetic energy of the final neutron. Therefore the electron is surely relativis-
tic and (mn − mp)c is a reasonable estimate of its momentum: it coincides with
the neutron momentum which is instead non-relativistic ((mn − mp)c � mnc).
The kinetic energy of the neutron is thus roughly (mn − mp)

2c2/(2mn), hence
negligible with respect to (0.940 − 0.938)× 109 eV. The total electron energy is
therefore, within a good approximation, Ee � 2× 106 eV, and its velocity is
ve = c

√
1 − m2

e/E2
e � 2.9× 108 m/s. The exact result is obtained by writing

Ee = (m2
n−m2

p−m2
e)c

2/(2mp), which differs by less than 0.1% from the approximate
result.
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1.25 A system made up of an electron and a positron, which is an exact copy of the
electron but with opposite charge (i.e. its antiparticle), annihilates, while both parti-
cles are at rest, into two photons. The mass of the electron is me � 0.9× 10−30 kg:
what is the wavelength of each outgoing photon? Explain why the same system
cannot decay into a single photon.

Answer: The two photons carry momenta of modulus mc which are opposite to each
other in order to conserve total momentum: their common wavelength is therefore,
as we shall see in next Chapter, λ = h/(mec) � 2.4× 10−12 m. A single photon
should carry zero momentum since the initial system is at rest, but then energy could
not be conserved; more in general the initial invariant mass of the system, which is
2me, cannot fit the invariant mass of a single photon, which is always zero.

1.26 A piece of copper of mass M = 1 g, is heated from 0 ◦C up to 100 ◦C. What is
the mass variation ΔM if the copper specific heat is CCu = 0.4 J/g◦C?

Answer: The piece of copper is actually a system of interacting particles whose mass
is defined as the invariant mass of the system. That is proportional to the total energy
if the system is globally at rest, see Eq. (1.75). Therefore ΔM = CCu ΔT/c2 �
4.45× 10−16 kg .

1.27 Consider a system made up of two point-like particles of equal mass m =
10−20 kg, bound together by a rigid massless rod of length L = 2× 10−4 m. The
center of mass of the system lies in the origin of the inertial frame O, in the same
frame the rod rotates in the x–y plane with an angular velocity ω = 3× 1010 s−1. A
second inertial reference frame O′ moves with respect to O with velocity v = 4c/5
parallel to the x axis. Compute the sum of the kinetic energies of the particles at the
same time in the frame O′, disregarding corrections of order ω3.

Answer: There are two independent ways of computing the sum of the kinetic
energies of the particles. The first way, which is the simplest one, is based on
the assumption that the kinetic energy of the system coincides with the sum of
the kinetic energies of the particles, hence one can compute the total energy of
the system in the reference O, which, in the chosen approximation, is: Et =
m (2c2 + ω2L2/4). In O′ the total energy is computed by a Lorentz transfor-
mation E′

t = Et/
√
1 − v2/c2 = (5/3)m (2c2 + ω2L2/4), hence the sum of the

kinetic energies is E′
t − 2mc2 = 4/3mc2 + 5mω2L2/12. Numerically one has

12× 10−4(1+ 1.25× 10−4) J. Alternatively, we can compute the velocities of both
particles in a situation corresponding to equal time in O′. The simplest such situ-
ation is when the rod is parallel to the y axis and the particles move with velocity
v± = ±ωL/2 parallel to the x axis. Using Einstein formula one finds in O′ the
velocities v′± = c(4/5 ± ωL/(2c))/(1 ± 2ωL/(5c)) and hence the kinetic energies

E′± = mc2(1/
√
1 − (v′±/c)2−1) = mc2

(
(5 ± 2ωL/c)/(3

√
1 − (ωL/(2c))2) − 1

)
.

It is apparent that the sum E′+ + E′− gives the known result up to corrections of order
(ωL/c)4.
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1.28 A spinning top, which can be described as a rigid disk of mass M = 10−1 kg,
radius R = 5× 10−2 m and uniform density, starts rotating with angular velocity
Ω = 103 rad/s. What is the energy variation of the spinning top due to rotation, as
seen from a reference frame moving with a relative speed v = 0.9 c with respect to
it?

Answer: The speed of the particles composing the spinning top is surely non-
relativistic in their frame, since it is limited by ΩR = 50m/s � 1.67× 10−7 c.
In that frame the total energy is therefore, apart from corrections of order (ΩR/c)2,
Etot = Mc2 + IΩ2/2, where I is the moment of inertia, I = MR2/2. Lorentz trans-
formations yield in the moving frame

E′
tot = 1√

1 − v2/c2
Etot = 1√

1 − v2/c2

(
Mc2 + 1

2
IΩ2

)
,

to be compared with the energy observed in absence of rotation, Mc2/
√
1 − v2/c2.

Therefore, the energy variation due to rotation in the moving frame is ΔE′ =
IΩ2/(2

√
1 − v2/c2) � 143 J.

1.29 A photon of energy E knocks into an electron at rest producing a final state
composed of an electron–positron pair plus the initial electron: all three final particles
have the same momentum. What is the value of E and the common momentum p of
the final particles?

Answer: E = 4mc2 � 3.3× 10−13 J, p = E/3c = 4/3mc � 3.6× 10−22 N/m.

1.30 A particle of mass M = 1GeV/c2 and energy E = 10GeV decays into two
particles of equal mass m = 490MeV. What is the maximum angle that each of the
two outgoing particles may form, in the laboratory, with the trajectory of the initial
particle?

Answer: Let x̂ be the direction of motion of the initial particle, and x–y the decay
plane: this is defined as the plane containing both the initial particle momentum and
the two final momenta, which are indeed constrained to lie in the same plane by
total momentum conservation. Let us consider one of the two outgoing particles: in
the center of mass frame it has energy ε = Mc2/2 = 0.5GeV and a momentum
px = p cos θ, py = p sin θ, with θ being the decay angle in the center of mass frame
and

p = c

√
M2

4
− m2 � 0.1 GeV

c
.

The momentum components in the laboratory are obtained by Lorentz transforma-
tions with parameters γ = (

√
1 − v2/c2)−1 = E/(Mc2) = 10 and β = v/c =√

1 − 1/γ2 � 0.995,
p′

y = py = p sin θ
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p′
x = γ(p cos θ + βε).

It can be easily verified that, while in the center ofmass frame the possiblemomentum
components lie on a circle of radius p centered in the origin, in the laboratory p′

x and p′
y

lie on an ellipse of axes γp and p, centered in (γβε, 0). If θ′ is the angle formed in the
laboratory with respect to the initial particle trajectory and defining α ≡ βε/p � 5,
we can write

tan θ′ = p′
y

p′
x

= 1

γ

sin θ

cos θ + α
.

If α > 1 the denominator is always positive, tan θ′ is limited and |θ′| < π/2, i.e. the
particle is always forward emitted, in the laboratory, with a maximum possible angle
which can be computed by solving d tan θ′/dθ = 0; that can also be appreciated
pictorially by noticing that, if α > 1, the ellipse containing the possible momentum
components does not contain the origin. Finally one finds

θ′
max = tan−1

(
1

γ

1√
α2 − 1

)
� 0.02 rad.

1.31 A particle of mass M = 10−27 kg, which is moving in the laboratory with a
speed v = 0.99 c, decays into two particles of equal mass m = 3× 10−28 kg. What
is the possible range of energies (in GeV) which can be detected in the laboratory
for each of the outgoing particles? Supposing that in the center of mass frame the
final particles are emitted isotropically, i.e. with equal probability in all directions,
what is the probability, in the laboratory, of detecting a particle of energy in the range
[E, E + dE]?
Answer: In the CM frame the outgoing particles have equal energy and modulus
of the momentum completely fixed by the kinematic constraints: ε = Mc2/2 and
p = c

√
M2/4 − m2. The only free variable is the decaying angle θ, measured with

respect to the initial particle trajectory, which however results in a variable energy E
in the laboratory frame. Indeed by Lorentz transformationsE = γ(ε+vp cos θ), with
γ = (1− v2/c2)−1/2, hence ignorance about θ in the CM frame results in ignorance
about E in the laboratory. The maximum/mininum values of E are obtained as cos θ
becomes maximum/minimum, hence

Emax/min = γ

(
Mc2

2
± vp

)
⇒ Emax � 3.56 GeV , Emin � 0.41 GeV.

Since the infinitesimal solid angle in spherical coordinates is sin θ dθ dφ, where φ
is the azimuthal angle, an isotropic distribution in the CM frame means that the
probability for one of the two final particles to be emitted with an angle in the range
[θ, θ + dθ] is Pθ(θ)dθ = sin θ dθ/2. The energy in the laboratory is a function of θ,
hence, calling PEdE the probability for the energy to be in the range [E, E + dE],
we have PEdE = Pθ(θ)dθ = sin θ dθ/2. Since, by differentiating E(θ), we get
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dE = γvp sin θ dθ, we finally obtain

PEdE = dE

2γvp

i.e. a flat distribution between the minimum and maximum possible values.

1.32 A particle of rest energy Mc2 = 109 eV, which is moving in the laboratory
with momentum p = 5× 10−18 N s, decays into two particles of equal mass m =
2× 10−28 kg. In the center of mass frame the decay direction is orthogonal to the
trajectory of the initial particle. What is the angle between the trajectories of the
outgoing particles in the laboratory?

Answer: Let x̂ be the direction of the initial particle and ŷ the decay direction in the
center of mass frame, ŷ ⊥ x̂. For the process described in the text, x̂ is a symmetry
axis, hence the outgoing particles will form the same angle θ also in the laboratory.
For one of the two particles we can write px = p/2 by momentum conservation in
the laboratory, and py = c

√
M2/4 − m2 by energy conservation. Finally, the angle

between the two particles is 2θ = 2 atan(py/px) � 0.207 rad.

1.33 Compton Effect

A photon of wavelength λ knocks into an electron at rest. After the elastic collision,
the photon moves in a direction forming an angle θ with respect to its original
trajectory. What is the change Δλ ≡ λ′ − λ of its wavelength as a function of θ?

Answer: Let q and q′ be respectively the initial and final momentum of the photon,
and p the final momentum of the electron. As we shall discuss in next chapter, the
photon momentum is related to its wavelength by the relation q ≡ |q| = h/λ, where
h is Planck’s constant. Total momentum conservation implies that q, q′ and p must
lie in the same plane, which we choose to be the x–y plane, with the x-axis parallel
to the photon initial trajectory. Momentum and energy conservation lead to:

px = q − q′ cos θ,

py = q′ sin θ,

qc + mec2 − q′c =
√

mec4 + p2xc2 + p2yc2.

Substituting the first two equations into the third and squaring both sides of the last
we easily arrive, after some trivial simplifications, to me(q − q′) = qq′(1 − cos θ),
which can be given in terms of wavelengths as follows

Δλ ≡ λ′ − λ = h

mec
(1 − cos θ); Δλ

λ
= hν

mec2
(1 − cos θ).

The difference is always positive, since part of the photon energy, depending on the
diffusion angle θ, is always transferred to the electron. This phenomenon, known as
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Compton effect, is not predicted by the classical theory of electromagnetic waves and
is an experimental proof of the corpuscular nature of radiation. Notice that, while the
angular distribution of outgoing photons can only be predicted on the basis of the
quantum relativistic theory, i.e. Quantum Electrodynamics, the dependence of Δλ
on θ that we have found is only based on relativistic kinematics and can be used to get
an experimental determination of h. The coefficient h/(mec) is known as Compton
wavelength, which for the electron is of the order of 10−12 m, so that the effect is
not detectable (Δλ/λ � 0) for visible light.

1.34 A particle of mass M decays, while at rest, into three particles of equal mass
m. What is the maximum and minimum possible energy for each of the outgoing
particles?

Answer: LetE1, E2, E3 and p1, p2, p3 be respectively the energies and themomenta
of the three outgoing particles. We have to find, for instance, the maximum and
minimum value ofE1 which are compatible with the constraints p1+p2+p3 = 0 and
E1 + E2 + E3 = M c2. The minimum value is realized when the particle is produced
at rest, E1min = m c2, implying that the other two particles move with equal and
opposite momenta. Finding the maximum value requires some more algebra.
From E2

1 = m2 c4 + p21 c2 and momentum conservation we obtain

E2
1 = m2 c4 + |p2 + p3|2 c2 = m2 c4 + (E2 + E3)

2 − μ2 c4

where μ is the invariant mass of particles 2 and 3, μ2 c4 = (E2+E3)
2−|p2+p3|2 c2.

Applying energy conservation, E2 + E3 = (M c2 − E1), last equation leads to

E1 = 1

2M c2

(
m2 c4 + M2 c4 − μ2 c4

)
.

We have written E1 as a function of μ2: E1max corresponds to the minimum possible
value for the invariant mass of the two remaining particles. On the other hand it can
be easily checked (see Eq. (1.79)) that, for a system made up of two or more massive
particles, the minimum possible value of the invariant mass is equal to the sum of
the masses and is attained when the particles are at rest in their center of mass frame,
meaning that the particles move with equal velocities in any other reference frame.
Therefore μmin = 2m and E1max = (M2 − 3m2) c2/(2M): this value is obtained in
particular for p2 = p3.

1.35 A particle of mass M decays, while at rest, into N particles of masses mi,
i = 1, N (N ≥ 3). What is the maximum and minimum possible energy for each of
the outgoing particles?

Answer: The problem is very similar to the previous one, wework it out for particle 1
but the solution can be trivially generalized. The minimum energy is always E1min =
m1 c2, since the particle can be produced at rest with the remaining particles taking
care of momentum conservation. This is true even if m1 = 0, like for a photon: in
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this case the minimum energy is just a lower bound, since a photon with exactly zero
energy means no photon at all.

As for the maximum energy, let us call pi the momenta of the various emitted
particles, q the total momentum of all particles except particle 1 and ε their energy
(q ≡ ∑

i>1 pi, ε = ∑
i>1 Ei). Then p1 = −q and we can write

E2
1 = m2

1 c4 + |q|2 c2 = m2
1 c4 + ε2 − μ2 c4

where μ is the invariant mass of particles 2, 3, . . . N . Applying energy conservation,
ε = (M c2 − E1), we have again

E1 = 1

2M c2

(
m2
1 c4 + M2 c4 − μ2 c4

)

which is maximum when μ attains its minimum, which by Eq. (1.79) is μmin =∑
i>1 mi. Finally we can write

E1max =
M2 + m2

1 −
(∑N

i=2 mi

)2

2M
c2 .

1.36 A particle at rest, whose mass is M = 750 MeV/c2, decays into a photon
and a second, lighter, particle of mass m = 135 MeV/c2. Subsequently the lighter
particle decays into two further photons. Considering all the possible decay angles of
the second particle, compute the maximum and the minimum values of the possible
energies of the three final photons.

One can ask the same question in the case of a direct decay of the first particle
into three photons whose energies are constrained only by energy-momentum con-
servation. What are the maximum and minimum energies of the final photons in the
direct decay?

Answer: This problem is analogous to Problem 1.34. We first consider the direct
decay. If Ei with i = 1, 2 are the energies of two, arbitrarily chosen, final photons,
pi = Ei/c are their momenta. If θ is the angle between these momenta, on account of
momentum conservation, we can compute the momentum of the third photon as the
length of the third side of a trianglewhose other sides have lengths p1 and p2 and form

an angle π − θ. Therefore energy conservation gives:
√

E2
1 + E2

2 + 2E1E2 cos θ +
E1 + E2 = Mc2 from which we get: M2c4 − 2Mc2(E1 + E2) = −2E1E2(1− cos θ).
Since 0 ≤ 1 − cos θ ≤ 2 one has the inequalities:

Mc2/2 ≤ (E1 + E2) and (Mc2 − 2E1)(Mc2 − 2E2) ≥ 0 .

If we interpret E1 and E2 as cartesian coordinates of a point in a plane, we find that
the point must lie in a triangle with vertices in the points of coordinates (0, Mc2/2),
(Mc2/2, 0) and (Mc2/2, Mc2/2). This shows that each of the three photon energies
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can range between 0 and Mc2/2. In Particle Physics the distribution of points asso-
ciated with a sample of decay events (in this case the distribution of points inside the
triangle described above) is called Dalitz plot.

Now consider the indirect decay and assume that photons 1 and 2 are the decay
products of the second particle with mass m. In this case there is a constraint for the
third photon with energy E3 = Mc2 − E1 − E2. Indeed its momentum p3 = E3/c
must be equal, and opposite, to that of the light particle whose energy is E1 + E2.
Thus we have (E1 + E2)

2 − (Mc2 − E1 − E2)
2 = m2c4 which implies E1 + E2 =

(M2+m2)c2/(2M), which can be read as the equation of a line intersecting the above
mentioned triangle. It is apparent that the boundaries of the intersection segment give
the maximum and minimum possible values for E1 and E2, which are respectively
m2c2/(2M) = 12.15 MeV and Mc2/2 = 375 MeV. The energy of the third photon
is instead fixed and equal to E3 = (M2 − m2)c2/(2M): we have E3 < Mc2/2 and,
for the given values of M and m, also E3 > m2c2/(2M).

Another significant difference for the indirect decay is that two of the emitted
photons will always form a system with an invariant mass equal to m. Therefore, if
one observes several examples of such decays andmeasures in each case all kinematic
parameters of the emitted photons, thus reconstructing the invariant mass for each
couple of photons andmaking an histogram for its probability distribution, onewould
obtain a smooth distribution for the direct decay, and instead a smooth distribution
plus a sharp peak located at m for the indirect decay, thus “discovering” the presence
of the intermediate particle m, even if it is not directly revealed by the detector. This
is a common strategy for the discovery of new particles, the last renowned example
being the Higgs boson.

1.37 A proton beam is directed against a laser beam coming from the opposite
direction and having wavelength 0.5× 10−6 m. Determine what is the minimum
value needed for the kinetic energy of the protons in order to produce the reaction
(proton + photon → proton + π), where the π particle has mass m � 0.14 M, the
proton mass being M � 0.938 GeV/c2.

Answer: Let p and k be the momenta of the proton and of the photon respectively,
k = h/λ � 2.48 eV/c. The reaction can take place only if the invariant mass of the
initial system is larger or equal to (M + m): that is most easily seen in the center
of mass frame, where the minimal energy condition corresponds to the two final
particles being at rest. In particular, if E is the energy of the proton, we can write

(E + kc)2 − (p − k)2c2 ≥ (M + m)2c4, hence E + pc ≥ mc2

kc
(M + m/2)c2.

Taking into account thatmc2 � 0.13GeV and kc � 2.48 eVwe deduce thatE+pc ∼
5× 107 Mc2, so that the proton is ultra-relativistic and E � pc. The minimal kinetic
energy of the proton is therefore pminc � (mc/k)(M + m/2)c2/2 � 2.6× 107 GeV.

1.38 Aparticle of massM decays into two particles of massesm1 andm2. A detector
reveals the energies and momenta of the outgoing particles to be E1 = 2.5GeV,
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E2 = 8GeV, p1x = 1GeV/c, p1y = 2.25GeV/c, p2x = 7.42GeV/c and p2y =
2.82GeV/c. Determine the masses of all involved particles, as well as the velocity
v of the initial particle.

Answer: M � 3.69GeV/c2, m1 � 0.43GeV/c2, m2 � 1GeV/c2, vx = 0.802 c,
vy = 0.483 c.

1.39 Aparticle ofmassμ = 0.14GeV/c2 andmomentumdirected along the positive
z axis, knocks into a particle at rest ofmassM. Thefinal state after the collision ismade
up of two particles of mass m1 = 0.5GeV/c2 and m2 = 1.1GeV/c2 respectively.
The momenta of the two outgoing particles form an equal angle θ = 0.01 rad with
the z axis and have equal magnitude p = 104 GeV/c. What is the value of M?

Answer: Momentum conservation gives the momentum of the initial particle, k =
2p cos θ. The initial energy is therefore Ein = √

μ2c4 + k2c2 + M c2 and must be

equal to the final energy Efin =
√

m2
1c4 + p2c2 +

√
m2
2c4 + p2c2, hence

Mc2 =
√

m2
1c4 + p2c2 +

√
m2
2c4 + p2c2 −

√
μ2c4 + 4p2 cos θ2c2.

The very high value of p makes it sensible to apply the ultra-relativistic approxima-
tion,

Mc2 � pc

(
1 + m2

1c2

2p2

)
+ pc

(
1 + m2

2c2

2p2

)
− 2pc cos θ

(
1 + μ2c2

8p2 cos θ2

)

� pc
(
θ2 + (2m2

1 + 2m2
2 − μ2)c2/(4p2)

)
� pc θ2 = 1 GeV.

1.40 A flux of particles, each carrying an electric charge q = 1.6× 10−19 C, is
moving along the x axis with a constant velocity v = 0.9 c. If the total carried
current is I = 10−9 A, what is the linear density of particles, as measured in the
reference frame at rest with them?

Answer: Ifd0 is the distance amongparticles in their rest frame, the distancemeasured
in the laboratory appears contracted and equal to d = √

1 − v2/c2 d0. The electric
current is given by I = d−1vq, hence the particle density in the rest frame is

d−1
0 =

√
1 − v2/c2

I

vq
� 10.1 particles/m .

An alternative approach is to apply the transformation properties of the four-current,
whose components are (ρc, I) in the laboratory and (ρ0c, 0) in the rest frame of the
particles, then from Eq. (1.92):

ρ0c = γ
(
ρc − v

c
I
)

which coincides with the result above considering that I = ρv and ρ0 = q/d0.
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1.41 Transformation Laws for Electromagnetic Fields

Our inertial reference frame moves with respect to a conducting rectilinear wire with
velocity v = 0.9 c parallel to the wire. In its reference frame the wire appears neutral
and one has an electric current I = 1 A through the wire in the direction of our
velocity. We adopt a simplified scheme in which the current is carried by electrons
with a linear density ρwire = 6× 1016 m−1, movingwith an average uniform velocity
V = 102 m/s in the opposite direction with respect to our velocity. The wire is made
neutral by protons at rest, having the same linear density as the electrons. Coming
back to our reference frame, do we detect any electric field? If the answer to our
question is positive, what is the absolute value of the electric field at a distance
r = 1 cm from the wire?

Answer: The answer could be obtained straightforwardly by applying the transfor-
mation laws of electromagnetic fields that we have derived (see Eq. (1.97)). However,
let us proceed in a different way, starting from the sources observed in the differ-
ent inertial frames: the reader is invited to verify that results coincide with those
obtainable from Eq. (1.97).

If the electrons in the wire are uniformly distributed the distance between two
neighboring electrons is d = ρ−1

wire = 1.66× 10−17 m in the wire frame. Due to the

length contraction the same distance is d/
√
1 − (V/c)2 in the electron frame, that

is, in a frame moving with respect to the wire with the average electron velocity.
Using Einstein formula we compute our velocity with respect to the electron frame
v′ = (v + V )/(1 + vV/c2) and the electron density in our frame: ρmoving,e =√
1 − (V/c)2/(d

√
1 − (v′/c)2) = (1 + vV/c2)/(d

√
1 − (v/c)2) while the proton

density is ρmoving,p = 1/(d
√
1 − (v/c)2) ≡ γ/d. Thus the resulting charge density

is ρmoving,tot = −evV/(c2d
√
1 − (v/c)2) = −Iβγ/c where we have set β = v/c.

Since Maxwell equations are the same in every inertial frame, we conclude that in
our frame we have an electric field with absolute value Emoving = βγI/(2πε0rc) =
βγcBwire = 1.23× 104 V/m and directed towards the wire. Bwire is the absolute
value of the magnetic induction at the same distance from the wire in the wire frame;
the electric field measured in our frame is orthogonal with respect to the original
magnetic field (in particular it is directed like v ∧ Bwire). It is also easy to verify
that the electric current in our frame is γI , so that we measure a magnetic field of
absolute value Bmoving = γBwire and parallel to the original magnetic field.

The complete set of field transformation rules, Eq. (1.97), could be obtained
through the analysis of similar gedanken experiments. To that purpose, the reader
is invited to compute the electric and magnetic fields felt by an observer moving:
(a) parallel to a wire having a uniform charge density and zero electric current; (b)
parallel to an infinite plane carrying zero charge density and a uniform current den-
sity orthogonal to the observer velocity; (c) orthogonal to an infinite plane carrying
uniform charge density and zero electric current.

1.42 A relativistic particle with mass m and charge q moves in a time independent
magnetic field B. In cylindrical coordinates z, ρ, φ the magnetic field components
are Bφ = Bρ = 0 and Bz = f (ρ), those of the vector potential are Az = Aρ = 0 and
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Aφ = ρa(ρ) with a(ρ) a positive increasing function of ρ. The Lagrangian equations
of the particle (see (1.104)) are easily reduced to three prime integrals. Compute
them.

Answer: The Lagrangian is L = −mc2
√
1 − v2/c2 + qρ2aφ̇, we denote the time

derivative by a dot and v2 = (ż)2 + (ρ̇)2 + ρ2(φ̇)2. We have three prime inte-
grals because the Lagrangian is independent of z, φ and t. The corresponding
prime integrals are: the energy mc2/

√
1 − v2/c2 ≡ E, the z-momentum com-

ponent Pz = mż/
√
1 − v2/c2 and the z-angular momentum component Lz =

mρ2φ̇/
√
1 − v2/c2 + qρ2a(ρ). Therefore we have

ż = Pzc2/E , φ̇ = (Lz/ρ
2 − qa(ρ))c2/E

ρ̇ = ±c
√
1 − c2(m2c2 + P2

z + (Lz/ρ2 − qa(ρ))2)/E2.

These equations must be integrated starting from suitable initial coordinates. A typ-
ical ultra-relativistic case corresponds to (Pzc/E)2 = 1 − 2ε2 and m2c4/E2 = ε2,
this implies ε2 ≥ c2(Lz/ρ

2 − qa(ρ))2)/E2. This sets bounds on the range of ρ which
cannot vanish if Lz does not, while is bound by the increasing behavior of a(ρ). The
values of ρ for which one has equality correspond to spiral orbits of the particle.



Chapter 2
Introduction to Quantum Physics

The gestation of Quantum Physics has been very long and its phenomenological
foundations were various. Historically, the original idea came from the analysis of
the black body spectrum. This is not surprising since the black body, in fact an
oven in thermal equilibrium with the electromagnetic radiation, is a simple and
fundamental system once the law of electrodynamics are established. As a matter
of fact many properties of the spectrum can be deduced starting from the general
laws of electrodynamics and thermodynamics; the crisis came from the violation
of the equipartition of energy. That suggested to Planck the idea of quantum, from
which everything originated. Of course a long sequence of different discoveries, first
of all the photoelectric effect, the line spectra for atomic emission/absorption, the
Compton effect and so on, gave a compelling evidence for the new theory.

Due to the particular limits of the present notes, an exhaustive analysis of the
whole phenomenology is impossible. Even a clear discussion of the black body
problem needs an exceeding amount of space. Therefore we have chosen a particular
line, putting major emphasis on the photoelectric effect and on the inadequacy of
a classical approach based on Thomson’s model of the atom, followed by Bohr’s
analysis of the quantized structure of Rutherford’s atom and by the construction of
Schrödinger’s theory. This does not mean that we have completely overlooked the
remaining phenomenology; we have just presented it in the light of the established
quantum theory. Thus, for example, Chap. 3 deals with the analysis of the black body
spectrum in the light of quantum theory.

2.1 The Photoelectric Effect

The photoelectric effect was discovered by H. Hertz in 1887. As sketched in Fig. 2.1,
two electrodes are placed in a vacuum cell; one of them (C) is hit by monochromatic
light of variable frequency, while the second (A) is set to a negative potential with
respect to the first, as determined by a generator G and measured by a voltmeter V.
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Fig. 2.1 A sketch of Hertz’s
photoelectric effect
apparatus

By measuring the electric current going through the amperometer I, one observes
that, if the light frequency is higher than a given threshold νV , determined by the
potential difference V between the two electrodes, the amperometer reveals a flux
of current i going from A to C which is proportional to the flux of luminous energy
hitting C. The threshold νV is a linear function of the potential difference V

νV = a + bV . (2.1)

The reaction time of the apparatus to light is substantially determined by the (RC)
time constant of the circuit and can be reduced down to values of the order of 10−8 s.
The theoretical interpretation of this phenomenon remained an open issue for about
14 years, because of the following reasons.

The direction of the current and the possibility to stop it by increasing the potential
difference clearly show that the electric flux is made up of electrons pulled out from
the atoms of electrode C by the luminous radiation.

A reasonable model for this process, which was inspired by Thomson’s atomic
model, assumed that electrons, which are particles of mass m = 9 × 10−31 kg and
electric charge −e � −1.6 × 10−19 C, were elastically bound to atoms of size
RA ∼ 3 × 10−10 m and subject to a viscous force of constant η. The value of η is
determined as a function of the atomic relaxation time, τ = 2m/η, that is the time
needed by the atom to release its energy through radiation or collisions, which is
of the order of 10−8 s. Let us confine ourselves to considering the problem in one
dimension and write the equation of motion for an electron

mẍ = −kx − ηẋ − eE , (2.2)

where E is an applied electric field and k is determined on the basis of atomic
frequencies. In particular we suppose the presence of many atoms with different
frequencies continuously distributed around
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√
k

m
= ω0 = 2πν0 ∼ 1015 s−1 . (2.3)

If we assume an oscillating electric field E = E0 cos(ωt) with ω ∼ 1015 s−1,
corresponding to visible light, then a general solution to (2.2) is given by

x = x0 cos(ωt + φ) + A1e−α1t + A2e−α2t , (2.4)

where the second and third term satisfy the homogeneous equation associated with
(2.2), so that α1/2 are the solutions of the following equation

mα2 − ηα + k = 0 ,

α = η ±√
η2 − 4km

2m
= 1

τ
±
√

1

τ2
− ω2

0 � 1

τ
± i ω0 , (2.5)

where last approximation is due to the assumption τ � ω−1
0 .

Regarding the particular solution x0 cos(ωt + φ), we obtain by substitution:

− mω2x0 cos(ωt + φ) = −kx0 cos(ωt + φ) + ηωx0 sin(ωt + φ) − eE0 cos(ωt)
(2.6)

hence

(k − mω2)x0 (cos(ωt) cosφ − sin(ωt) sin φ)

= ηωx0 (sin(ωt) cosφ + cos(ωt) sin φ) − eE0 cos(ωt)

from which, by taking alternatively ωt = 0,π/2, we obtain the following system

(
m
(
ω2
0 − ω2

)
cosφ − ηω sin φ

)
x0 = −eE0 ,

m
(
ω2
0 − ω2

)
x0 sin φ + ηω x0 cosφ = 0 (2.7)

which can be solved for φ

tan φ = 2ω

τ
(
ω2 − ω2

0

) ,

cosφ = ω2 − ω2
0√(

ω2
0 − ω2

)2 + 4ω2

τ2

, sin φ = (2ω/τ )√(
ω2
0 − ω2

)2 + 4ω2

τ2

(2.8)
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and finally for x0, for which we obtain the well known resonant form

x0 = eE0/m√(
ω2
0 − ω2

)2 + 4ω2

τ2

. (2.9)

To complete our computation, we must determine A1 and A2. On the other hand,
taking into account (2.5) and the fact that x is real, we can rewrite the general solution
in the following equivalent form:

x = x0 cos(ωt + φ) + Ae−t/τ cos(ω0t + φ0) . (2.10)

If we assume that the electron is initially at rest, we can determine A and φ0 by taking
x = ẋ = 0 for t = 0, i.e.

x0 cosφ + A cosφ0 = 0 , (2.11)

x0 ω sin φ = −A

(
cosφ0

τ
+ ω0 sin φ0

)
, (2.12)

hence in particular

tan φ0 = ω

ω0
tan φ − 1

ω0τ
. (2.13)

These equations give us enough information to discuss the photoelectric effect with-
out explicitly substituting A in (2.10).

Indeed in our simplified model the effect, i.e. the liberation of the electron from
the atomic bond, happens as the amplitude of the electron displacement x is greater
than the atomic radius. In Eq. (2.10) x is the sum of two parts, the first corresponding
to stationary oscillations, the second to a transient decaying with time constant τ . In
principle, the maximum amplitude could take place during the transient or later: to
decide which is the case wemust compare the value of A with that of x0. It is apparent
from (2.11) that the magnitude of A is of the same order as x0 unless cosφ0 is much
less than cosφ. On the other hand, Eq. (2.13) tells us that, if tan φ0 is large, then
tan φ is large as well, since (ω0τ )−1 ∼ 10−7 and ω/ω0 ∼ 1. Therefore, the order of
magnitude of the maximum displacement is given by x0, and can be sensitive to the
electric field frequency. That happens in the resonant regime, where ω differs from
ω0 by less than 2

√
ω/τ .

Let us consider separately the generic case from the resonant one. In the first
case the displacement is of the order of eE0/(ω

2m), since the square root of the
denominator in (2.9) has the same order of magnitude as ω2. In order to induce the
photoelectric effect it is therefore necessary that

eE0

ω2m
∼ RA ,



2.1 The Photoelectric Effect 71

from which we can compute the power density needed for the luminous beam which
hits electrode C:

P = cε0E2
0 ∼ cε0

(
RAω2m

e

)2

,

where c is the speed of light and ε0 is the vacuum dielectric constant. P comes out
to be of the order of 1015 W/m2, a power density which is difficult to realize in
practice and which would anyway be enough to vaporize any kind of electrode. We
must conclude that our model cannot explain the photoelectric effect if ω is far from
resonance. Let us consider therefore the resonant case and set ω = ω0. On the basis
of (2.9), (2.11) and (2.13), that implies:

φ = φ0 = π

2
, A = −x0 ,

hence

x = −eE0τ

2mω0

(
1 − e−t/τ ) sin(ω0t) . (2.14)

In order for the photoelectric effect to take place, the oscillation amplitude must be
greater than the atomic radius:

eE0τ

2mω0

(
1 − e−t/τ ) ≥ RA .

That sets the threshold field to 2mω0RA/(eτ ) and the power density of the beam to

P = cε0

(
4ω0m RA

τe

)2

∼ 100 W/m2 ,

while the time required to reach the escape amplitude is of the order of τ .
In conclusion, our model predicts a threshold for the power of the beam, but

not for its frequency, which however must be tuned to the resonance frequency:
the photoelectric effect would cease both below and above the typical resonance
frequencies of the atoms in the electrode.Moreover the expectation is that the electron
does not gain any further appreciable energy from the electric field once it escapes
the atomic bond: hence the emission from the electrode could be strong, but made
up of electrons of energy equal to that gained during the last atomic oscillation.
Equation (2.14) shows that, during the transient (t � τ ), the oscillation amplitude
grows roughly by eE0/(mω2

0) in one period, so that the energy of the escaped electron
would be of the order of magnitude of k RAeE0/(mω2

0) = eE0RA, corresponding
also to the energy acquired by the electron from the electric field E0 when crossing
the atom. It is easily computed that for a power density of the order of 10−100W/m2,
the electric field E0 is roughly 100V/m, so that the final kinetic energy of the electron
would be 10−8 eV ∼ 10−27 J: this value is much smaller than the typical thermal
energy at room temperature (3kT/2 ∼ 10−1 eV).
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The prediction of the model is therefore in clear contradiction with the experi-
mental results described above. In particular, the very small energy of the emitted
electrons implies that the electric current I should vanish even for small negative
potential differences.

Einstein proposed a description of the effect based on the hypothesis that the
energy be transferred from the luminous radiation to the electron in a single elemen-
tary (i.e. no further separable) process, instead than through a gradual excitation.
Moreover, he proposed that the transferred energy be equal to hν = hω/(2π) ≡ �ω,
a quantity called quantum by Einstein himself. The constant h had been introduced
by Planck several years before to describe the radiation emitted by an oven and its
value is 6.63 × 10−34 J s.

If the quantum of energy is enough for electron liberation, i.e. according to our
model if it is larger than Et ≡ k R2

A/2 = ω2
0 R2

Am/2 ∼ 10−19 J ∼ 1 eV, and the
frequency exceeds 1.6× 1014 Hz (corresponding toω in ourmodel), then the electron
is emitted keeping the energy exceeding the threshold in the form of kinetic energy.
The number of emitted electrons, hence the intensity of the process, is proportional
to the flux of luminous energy, i.e. to the number of quanta hitting the electrode.

Since E = hν is the energy gained by the electron, which spends a part Et to
get free from the atom, the final electron kinetic energy is T = hν − Et , so that
the electric current can be interrupted by placing the second electrode at a negative
potential

V = hν − Et

e
,

thus reproducing (2.1).
The most important point in Einstein’s proposal, which was already noticed by

Planck, is that a physical system of typical frequency ν can exchange only quanta
of energy equal to hν. The order of magnitude in the atomic case is ω ∼ 1015 s−1,
hence �ω ≡ (h/2π) ω ∼ 1 eV.

2.2 Bohr’s Quantum Theory

After the introduction of the concept of a quantum of energy, quantum theory was
developed by N. Bohr in 1913 and then perfected by A. Sommerfeld in 1916:
they gave a precise proposal for multi-periodic systems, i.e. systems which can be
described in terms of periodic components.

The main purpose of their studies was that of explaining, in the framework of
Rutherford’s atomic model, the light spectra emitted by gases (in particular mono-
atomic ones) excited by electric discharges. The most simple and renowned case is
that of the mono-atomic hydrogen gas (which can be prepared with some difficulties
since hydrogen tends to form diatomic molecules). It has a discrete spectrum, i.e. the
emitted frequencies can assume only some discrete values, in particular:
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νn,m = R

(
1

n2 − 1

m2

)
(2.15)

for all possible positive integer pairs with m > n: this formula was first proposed by
J. Balmer in 1885 for the case n = 2, m ≥ 3, and then generalized by J. Rydberg in
1888 for all possible pairs (n, m). The emission is particularly strong for m = n +1.

Rutherford had shown that the positive charge in an atom is localized in a practi-
cally point-like nucleus, which also contains most of the atomic mass. In particular
the hydrogen atom can be described as a two-body system: a heavy and positively
charged particle, which nowadays is called proton, bound by Coulomb forces to a
light and negatively charged particle, the electron.

We will confine our discussion to the case of circular orbits of radius r , covered
with uniform angular velocity ω, and will consider the proton as if it were infinitely
heavy (its mass is about 2 × 103 times that of the electron). In this case we have

mω2r = e2

4πε0r2
,

where m is the electron mass. Hence the orbital frequencies, which in classical
physics correspond to those of the emitted radiation, are continuously distributed as
a function of the radius

ν = ω

2π
= e√

16π3ε0mr3
; (2.16)

this is in clear contradiction with (2.15). Based on Einstein’s theory of the photoelec-
tric effect, Bohr proposed to interpret (2.15) by assuming that only certain orbits be
allowed in the atom, which are called levels, and that the frequency νn,m correspond
to the transition from the m-th level to n-th one. In that case

hνn,m = Em − En , (2.17)

where the atomic energies (which are negative since the atom is a bound system)
would be given by

En = −h R

n2 . (2.18)

Since, according to classical physics for the circular orbit case, the atomic energy is
given by

Ecirc = − e2

8πε0r
,

Bohr’s hypothesis is equivalent to the assumption that the admitted orbital radii be

rn = e2n2

8πε0h R
. (2.19)
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It is clear that Bohr’s hypothesis seems simply aimed at reproducing the observed
experimental data; it does not permit any particular further development, unless
further conditions are introduced. The most natural, which is called correspondence
principle, is that the classical law, given in (2.16), be reproduced by (2.15) for large
values of r , hence of n, and at least for the strongest emissions, i.e. those with
m = n + 1, for which we can write

νn,n+1 = R
2n + 1

n2(n + 1)2
→ 2R

n3 , (2.20)

these frequencies should be identified in the above mentioned limit with what result-
ing from the combination of (2.16) and (2.19):

ν = e√
16π3ε0mr3n

= ε0
√
32(h R)3

e2
√

mn3
. (2.21)

By comparing last two equations we get the value of the coefficient R in (2.15),
which is called Rydberg constant:

R = me4

8ε20h3

and is in excellent agreement with experimental determinations. We have then the
following quantized atomic energies

En = − me4

8ε20h2n2
, n = 1, 2, . . .

while the quantized orbital radii are

rn = ε0h2n2

πme2
. (2.22)

In order to give a numerical estimate of our results, it is convenient to introduce the
ratio e2/(2ε0hc) ≡ α � 1/137, which is dimensionless and is known as the fine
structure constant. The energy of the state with n = 1, which is called the ground
state, is

E1 = −h R = −mc2

2
α2 ;

noticing that mc2 ∼ 0.51MeV, we have E1 � −13.6 eV. The corresponding atomic
radius (Bohr radius) is r1 � 0.53 × 10−10 m.

Notwithstanding the excellent agreement with experimental data, the starting
hypothesis, to be identified with (2.18), looks still quite conditioned by the par-
ticular form of Balmer law given in (2.15). For that reason Bohr tried to identify a
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physical observable to be quantized according to a simpler and more fundamental
law. He proceeded according to the idea that such observable should have the same
dimensions of the Planck constant, i.e. those of an action, or equivalently of an angu-
lar momentum. In the particular case of quantized circular orbits this last quantity
reads:

L = pr = mωr2 = e√
4πε0

√
mrn = h

2π
n ≡ n� , n = 1, 2, . . . . (2.23)

2.3 de Broglie’s Interpretation

In this picture of partial results, even if quite convincing from the point of view of
the phenomenological comparison, the real progress towards understanding quantum
physics came as L. de Broglie suggested the existence of a universal wave-like
behavior of material particles and of energy quanta associated to force fields. As we
have seen in the case of electromagnetic waves, when discussing the Doppler effect,
a phase can always be associated with a wave-like process, which is variable both in
space and in time (e.g. given by 2π (x/λ − νt) in the case of waves moving parallel
to the x axis). The assumption that quanta can be interpreted as real particles and that
Einstein’s law E = hν be universally valid, would correspond to identifying thewave
phase with 2π (x/λ − Et/h). If we further assume the phase to be relativistically
invariant, then it must be expressed in the form (p x − E t) /�, where E and p are
identifiedwith relativistic energy andmomentum, i.e. in the case ofmaterial particles:

E = mc2
√(

1 − v2

c2

) , p = mv
√(

1 − v2

c2

) .

In order to simplify the discussion as much as possible, we will consider here and in
most of the following a one-dimensional motion (parallel to the x axis). In conclu-
sion, by comparing last two expressions given for the phase, we obtain de Broglie’s
equation:

p = h

λ
,

which is complementary to Einstein’s law, E = hν.
These formulae give an idea of the scale at which quantum effects are visible.

For an electron having kinetic energy Ek = 102 eV � 1.6 × 10−17 J, quantum
effects show up at distances of the order of λ = h/p = h/

√
2m Ek ∼ 10−10 m,

corresponding to atomic or slightly subatomic distances; that confirms the importance
of quantum effects for electrons in condensedmatter and in particular in solids, where
typical energies are of the order of a few electron-volts. For a gas of light atoms
in equilibrium at temperature T , the kinetic energy predicted by the equipartition
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theorem is 3 kT /2, where k is Boltzmann’s constant. At a temperature T = 300 ◦K
(room temperature) the kinetic energy is roughly 2.5 × 10−2 eV, corresponding to
wavelengths of about 10−10 m for atommasses of the order of 10−26 kg. However at
those distances the picture of a non-interacting (perfect) gas does not apply because of
strong repulsive forces coming into play: in order to gain a factor ten over distances,
it is necessary to reduce the temperature by a factor 100, going down to a few
Kelvin degrees, at which quantum effects are manifest. For a macroscopic body
of mass 1 kg and kinetic energy 1 J, quantum effects would show up at distances
roughly equal to 3 × 10−34 m, hence completely negligible with respect to the
thermal oscillation amplitudes of atoms, which are proportional to the square root
of the absolute temperature, and are in particular of the order of a few nanometers at
T = 103 ◦K, where the solid melts.

On the other hand, Einstein’s formula gives us information about the scale of
times involved in quantum processes, which is of the order of h/ΔE , where ΔE
corresponds to the amount of exchanged energy. For ΔE ∼ 1 eV, times are roughly
4×10−15 s,while for thermal interactions at room temperature time intervals increase
by a factor 40.

In conclusion, in the light of de Broglie’s formula, quantum effects are not visible
for macroscopic bodies and at macroscopic energies. For atoms in matter they show
up after condensation, or anyway at very low temperatures, while electrons in solids
or in atoms are fully in the quantum regime.

In Rutherford’s atomic model illustrated in the previous Section, the circular
motion of the electron around the protonmust be associated, according to de Broglie,
with a wave closed around a circular orbit. That resembles wave-like phenomena
analogous to the oscillations of a ring-shaped elastic string or to air pressure waves
in a toroidal reed pipe. That implies well tuned wavelengths, as in the case of musical
instruments (which are not ring-shaped for obvious practical reasons). The need for
tuned wavelength can be easily understood in the case of the toroidal reed pipe: a
complete round of the ring must bring the phase back to its initial value, so that the
total length of the pipe must be an integer multiple of the wavelength.

Taking into account previous equations regarding circular atomic orbits, we have
the following electron wavelength:

λ = h

p
= h

e

√
4πε0r

m
,
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so that the tuning condition reads

2πr = nλ = nh

e

√
4πε0r

m

giving

r = n2h2ε0

πe2m
,

which confirms (2.22) and gives support to the picture proposed by Bohr and Som-
merfeld. De Broglie’s hypothesis, which was formulated in 1924, was confirmed
in 1926 by Davisson and Gerner by measuring the intensity of an electron beam
reflected by a nickel crystal. The apparatus used in the experiment is sketched in
Fig. 2.2. The angular distribution of the electrons, reflected in conditions of normal
incidence, shows a strongly anisotropic behavior with a marked dependence on the
beam accelerating potential. In particular, an accelerating potential equal to 48 V
leads to a quite pronounced peak at a reflection angle φ = 55.3◦. An analogous
X-ray diffraction experiment permits to interpret the nickel crystal as an atomic lat-
tice of spacing 0.215 × 10−9 m. The comparison between the angular distributions
obtained for X-rays and for electrons shows relevant analogies, suggesting a diffrac-
tive interpretation also in the case of electrons. Bragg’s law, giving the n-thmaximum
in the diffraction figure, is d sin φn = nλ.

Fig. 2.2 A schematic description of Davisson-Gerner apparatus and a polar coordinate representa-
tion of the results obtained at 48V electron energy, as they appear inDavisson’sNoble Price Lecture,
from Nobel Lectures, Physics 1922–1941 (Elsevier Publishing Company, Amsterdam 1965)
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For the peak corresponding to the principal maximum at 55.3◦ we have

d sin φ = λ � 0.175 × 10−9 m .

On the other hand the electrons in the beam have a kinetic energy

Ek � 7.68 × 10−18 J ,

hence a momentum p � 3.7 × 10−24 N s, in excellent agreement with de Broglie’s
formula p = h/λ. In the following years analogous experiments were repeated using
different kinds of material particles, in particular neutrons.

Once established the wave-like behavior of propagating material particles, it must
be clarified what is the physical quantity the phenomenon refers to, i.e. what is
the physical meaning of the oscillating quantity (or quantities) usually called wave
function, for which a linear propagating equation will be supposed, in analogy with
mechanical or electromagnetic waves. It is known that, in the case of electromagnetic
waves, the quantities measuring the amplitude are electric and magnetic fields. Our
question regards exactly the analogous of those fields in the case of de Broglie’s
waves. The experiment by Davisson and Gerner gives an answer to this question.
Indeed, as illustrated in Fig. 2.2, the detector reveals the presence of one or more
electrons at a given angle; if we imagine to repeat the experiment several times, with
a single electron in the beam at each time, and if we measure the frequency at which
electrons are detected at the various angles, we get the probability of having the
electron in a given site covered by the detector.

In the case of an optical measure, what is observed is the interference effect in
the energy deposited on a plate; that is proportional to the square of the electric field
on the plate. Notice that the linearity in the wave equation and the quadratic relation
between the measured quantity and the wave amplitude are essential conditions for
the existence of interference and diffractive phenomena. We must conclude that also
in the case of material particles some positive quadratic form of the de Broglie wave
function gives the probability of having the electron in a given point.

We have quite generically mentioned a quadratic form, since at the moment it is
still not clear if the wave function has one or more components, i.e. if it corresponds
to one or more real functions. By a positive quadratic form we mean a homogeneous
second order polynomial in the wave function components, which is positive for real
and non-vanishing values of its arguments. In the case of a single component, we
can say without loss of generality that the probability density is the wave function
squared,while in the case of two ormore components it is always possible, by suitable
linear transformations, to reduce the quadratic form to a sum of squares.

We are now going to show that the hypothesis of a single component must be
discarded. Let us indicate by ρ(r, t)d3r the probability of the particle being in a
region of size d3r around r at time t , and by ψ(r, t) the wave function, which for
the moment is considered as a real valued function, defined so that

ρ(r, t) = ψ2(r, t) . (2.24)
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If Ω indicates the whole region accessible to the particle, the probability density
must satisfy the natural constraint:

∫

Ω

d3rρ (r, t) = 1 , (2.25)

which implies the condition:

∫

Ω

d3r ρ̇(r, t) ≡
∫

Ω

d3r
∂ρ(r, t)

∂t
= 0 . (2.26)

This expresses the fact that, if the particle cannot escapeΩ , the probability of finding
it in that region must always be one. This condition can be given in mathematical
terms analogous to those used to express electric charge conservation: the charge
contained in a given volume, i.e. the integral of the charge density, may change
only if the charge flows through the boundary surface. The charge flux through the
boundaries is expressed in terms of the current density flow and can be rewritten
as the integral of the divergence of the current density itself by using Gauss–Green
theorem ∫

Ω

ρ̇ = −Φ∂Ω(J ) = −
∫

Ω

∇ · J .

Finally, by reducing the equation from an integral form to a differential one, we can
set the temporal derivative of the charge density equal to minus the divergence of
the current density. Based on this analogy, let us introduce the probability current
density J and write

ρ̇(r, t) = −∂ Jx (r, t)

∂x
− ∂ Jy(r, t)

∂y
− ∂ Jz(r, t)

∂z
≡ −∇ · J(r, t) . (2.27)

The conservation equation must be automatically satisfied as a consequence of the
propagation equation of de Broglie’s waves, which we write in the form:

ψ̇ = L
(
ψ,∇ψ,∇2ψ, . . .

)
, (2.28)

where L indicates a generic linear function of ψ and its derivatives like:

L
(
ψ,∇ψ,∇2ψ, . . .

)
= αψ + β∇2ψ . (2.29)

Notice that if L were not linear the interference mechanism upon which quantization
is founded would soon or later fail. Furthermore we assume invariance under the
reflection of the coordinates, at least in the free case, so that terms proportional to
first derivatives are excluded.
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From Eq. (2.24) we have ρ̇ = 2ψψ̇, which can be rewritten, using (2.28), as:

ρ̇ = 2ψL
(
ψ,∇ψ,∇2ψ, . . .

)
. (2.30)

The right-hand side of last equation must be identified with −∇ · J(r, t). Moreover
J must necessarily be a bilinear function of ψ and its derivatives, exactly like ρ̇.
Therefore, since J is a vector-like quantity, it must be expressible as

J = c ψ∇ψ + d ∇ψ∇2ψ + · · ·

from which it appears that ∇ · J(r, t) must necessarily contain bilinear terms in
which both functions are derived, like ∇ψ · ∇ψ. However, such terms are clearly
missing in (2.30).

We come to the conclusion that the description of de Broglie’s waves requires at
least two wave functions ψ1 and ψ2, defined so that ρ = ψ2

1 + ψ2
2. In an analogous

way we can introduce the complex valued function:

ψ = ψ1 + iψ2 , (2.31)

defined so that
ρ = |ψ|2 ; (2.32)

this choice implies:
ρ̇ = ψ∗ψ̇ + ψψ̇∗ .

If we assume, for instance, the wave equation corresponding to (2.29):

ψ̇ = αψ + β∇2ψ , (2.33)

we obtain:
ρ̇ = ψ∗ (αψ + β∇2ψ

)
+ ψ

(
α∗ψ∗ + β∗∇2ψ∗) .

If we also assume that the probability current density be

J = i k
(
ψ∗∇ψ − ψ∇ψ∗) , (2.34)

with k real so as to make J real as well, we easily derive

∇ · J = i k
(
ψ∗∇2ψ − ψ∇2ψ∗) .

It can be easily verified that the continuity equation (2.27) is satisfied if

α + α∗ = 0 , β = −i k . (2.35)
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It is of great physical interest to consider the case in which the wave function has
more than two real components. In particular, the wave function of electrons has four
components or, equivalently, two complex components. In general, the multiplicity
of the complex components is linked to the existence of an intrinsic angular momen-
tum, which is called spin. The various complex components are associated with the
different possible spin orientations. In the case of particles with non-vanishing mass,
the number of components is 2S + 1, where S is the spin of the particle. In the case
of the electron, S = 1/2 .

For several particles, as for the electron, spin is associatedwith amagneticmoment
which is inherent to the particle: it behaves as a microscopic magnet with various
possible orientations, corresponding to those of the spin, which can be selected by
placing the particle in a non-uniform magnetic field and measuring the force acting
on the particle.

2.4 Schrödinger’s Equation

The simplest case to which our considerations can be applied is that of a non-
relativistic free particle of mass m. To simplify notations and computations, we will
confine ourselves to a one-dimensional motion, parallel, for instance, to the x axis; if
the particle is not free, forces will be parallel to the same axis as well. The obtained
results will be extensible to three dimensions by exploiting the vector formalism.
In practice, we will systematically replace ∇ by its component ∇x = ∂/∂x ≡ ∂x

and the Laplacian operator ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 by ∂2/∂x2 ≡ ∂2
x ;

the probability current density J will be replaced by Jx (J ) as well. The inverse
replacement will suffice to get back to three dimensions.

The energy of a non-relativistic free particle is

E = c
√

m2c2 + p2 � mc2 + p2

2m
+ O

(
p4

m3c2

)
,

where we have explicitly declared our intention to neglect terms of the order of
p4/(m3c2). Assuming de Broglie’s interpretation, we write the wave function:

ψP (x, t) ∼ e2πi(x/λ−νt) = ei(px−Et)/� (2.36)

(we are considering a motion in the positive x direction). Our choice implies the
following wave equation

ψ̇P = − i E

�
ψP = − i

�

(
mc2 + 1

2m
p2
)

ψP . (2.37)
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We have also

∂xψP = i

�
p ψP , (2.38)

from which we deduce

i�ψ̇P = mc2ψP − �
2

2m
∂2

xψP . (2.39)

Our construction can be simplified by multiplying the initial wave function by the
phase factor eimc2t/�, i.e. defining

ψ ≡ eimc2t/�ψP ∼ exp

(
i

�

(
px − p2

2m
t

))
. (2.40)

Since the dependence on x is unchanged, ψ still satisfies (2.38) and has the same
probabilistic interpretation as ψP . Indeed both ρ and J are unchanged. The wave
equation instead changes:

i�ψ̇ = − �
2

2m
∂2

x ψ ≡ T ψ . (2.41)

This is the Schrödinger equation for a free (non-relativistic) particle, in which the
right-hand side has a natural interpretation in terms of the particle energy, which in
the free case is only of kinetic type.

In the case of particles under the influence of a force field corresponding to a
potential energy V (x), the equation can be generalized by adding V (x) to the kinetic
energy:

i�ψ̇ = − �
2

2m
∂2

x ψ + V (x)ψ . (2.42)

This is the one-dimensional Schrödinger equation that we shall apply to various cases
of physical interest.

Equations (2.34) and (2.35) show that the probability density current does not
depend on V and is given by:

J = − i�

2m

(
ψ∗∂xψ − ψ∂xψ

∗) . (2.43)

Going back to the free case and considering the plane wave function given in
(2.36), it is interesting to notice that the corresponding probability density, ρ = |ψ|2,
is a constant function. This result is paradoxical since, by reducing (2.25) to one
dimension, we obtain

∫ ∞

−∞
dx ρ(x, t) =

∫ ∞

−∞
dx |ψ(x, t)|2 = 1 , (2.44)
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which cannot be satisfied in the examined case since the integral of a constant function
is divergent. We must conclude that our interpretation excludes the possibility that a
particle has a well defined momentum.

We are left with the hope that this difficulty may be overcome by admitting
some (small) uncertainty on the knowledge of momentum. This possibility can be
easily analyzed thanks to the linearity of the Schrödinger equation. Indeed Eq. (2.41)
admits other different solutions besides the simple plane wave, in particular the wave
packet solution, which is constructed as a linear superposition of many plane waves
according to the following integral:

ψ(x, t) = 1√
2π�

∫ ∞

−∞
dp ψ̃(p) exp

(
i

�

(
px − p2

2m
t

))
. (2.45)

Considering the expression for ψ(x, 0) it is easy to deduce the expression1:

ψ̃(p) = 1√
2π�

∫ ∞

−∞
dx ψ(x, 0) exp

(
− i

�
px

)
. (2.46)

The squared modulus of the superposition coefficients, |ψ̃(p)|2, can be naturally
interpreted as the probability density in terms of momentum, exactly in the same
way as ρ(x) is interpreted as a probability density in terms of position.

Let us choose in particular a Gaussian distribution:

ψ̃(p) = 1√√
2πΔ

e−(p−p0)2/(4Δ2) , (2.47)

corresponding to

ψΔ(x, t) = 1√√
(2π)3Δ�

∫ ∞

−∞
dp e−(p−p0)2/(4Δ2) ei

(
px−p2t/2m

)
/� (2.48)

where the coefficients in (2.45) and (2.47) are determined in such a way that

∫ ∞

−∞
dx |ψΔ(x, t)|2 = 1 . (2.49)

1Using the following formulae it is easy to verify (2.45) and (2.46) in the case of Gaussian wave
packets. By linearity this proves the validity of the same equations in the case of fast decreasing,
infinitely differentiable (C∞) functions.A further extensionof the validity is shown in the framework
of distribution theory. In our analysis the restriction to fast decreasing C∞ functions is understood.
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The integral in (2.48) can be computed by recalling that, if α is a complex number
with positive real part (Re (α) > 0), then

∫ ∞

−∞
dp e−αp2 =

√
π

α

and that the Riemann integral measure dp is left invariant by translations in the
complex plane,

∫ ∞

−∞
dp e−αp2 ≡

∫ ∞

−∞
d(p + γ) e−α(p+γ)2

=
∫ ∞

−∞
dp e−α(p+γ)2 = e−αγ2

∫ ∞

−∞
dp e−αp2e−2αγ p ,

for every complex number γ. Therefore we have

∫ ∞

−∞
dp e−αp2eβ p =

√
π

α
eβ2/4α . (2.50)

Developing (2.48) with the help of (2.50) we can write

ψΔ(x, t) = 1√√
(2π)3Δ�

e− p20
4Δ2

∫ ∞

−∞
dp e

−
[

1
4Δ2 + i t

2m�

]
p2

e

[
p0
2Δ2 + i x

�

]
p

=
√

1√
2π( �

2Δ + iΔt
m )

exp

⎛

⎜⎝

[
p0
2Δ2 + i x

�

]2

1
Δ2 + 2i t

m�

− p20
4Δ2

⎞

⎟⎠ . (2.51)

We are interested in particular in the x dependence of the probability density ρ(x):
that is solely related to the real part of the exponent of the rightmost term in (2.51),
which can be expanded as follows:

p20
4Δ4 + i p0x

Δ2�
− x2

�2

1
Δ2 + 2i t

m�

− p20
4Δ2 = − p20

4Δ2

4t2Δ4

m2�2 + 2i tΔ2

m�

1 + 4t2Δ4

m2�2

−
(

Δ2x2

�2
− i p0x

�

)
1 − 2i tΔ2

m�

1 + 4t2Δ4

m2�2

the real part being

− Δ2
(
x − p0t

m

)2

�2
(
1 + 4t2Δ4

m2�2

) ≡ − Δ2 (x − v0t)2

�2
(
1 + 4t2Δ4

m2�2

) .
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Since p0 is clearly the average momentum of the particle, we have introduced the
corresponding average velocity v0 = p0/m. Recalling the definition of ρ as well as
its normalization constraint, we finally find

ρ(x, t) = Δ

�

√√√√
2

π
(
1 + 4t2Δ4

m2�2

) exp

(
−2Δ2

�2

(x − v0t)2

1 + 4t2Δ4

m2�2

)
, (2.52)

while the probability distribution in terms of momentum reads

ρ̃(p) = 1√
2πΔ

e−(p−p0)2/(2Δ2) . (2.53)

Given aGaussian distributionρ(x) = 1/(
√
2πσ)e−(x−x0)2/(2σ2), it is awell known

fact, which anyway can be easily derived from previous formulae, that the mean
value x̄ is x0 while the mean quadratic deviation (x − x̄)2 is equal to σ2. Hence,
in the examined case, we have an average position x̄ = v0t with a mean quadratic
deviation equal to �

2/(4Δ2) + t2Δ2/m2, while the average momentum is p0 with a
mean quadratic deviationΔ2. The mean values represent the kinematic variables of a
free particle, while the mean quadratic deviations are roughly inversely proportional
to each other: if we improve the definition of one observable, the other becomes
automatically less defined.

The distributions given in (2.52) and (2.53), even if derived in the context of a
particular example, permit us to reach important general conclusions which, for the
sake of clarity, are listed in the following as distinct points.

2.4.1 The Uncertainty Principle

While the mean quadratic deviation relative to the momentum distribution

(p − p̄)2 = Δ2

has been fixed a priori, by choosing ψ̃(p), and is independent of time, thus confirming
that momentum is a constant of motion for a free particle, that relative to the position

(x − x̄)2 =
(
1 + 4t2Δ4

m2�2

)
�
2

4Δ2

does not contain further free parameters and does depend on time. Indeed, Δx grows
significantly for 2tΔ2/(m�) > 1, hence for times greater than ts = m�/(2Δ2).
Notice that ts is nothing but the time needed for a particle of momentum Δ to cover
a distance �/(2Δ), therefore this spreading has a natural interpretation also from a
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classical point of view: a set of independent particles having momenta distributed
according to a width Δp, spreads with velocity Δp/m = vs ; if the particles are
statistically distributed in a region of size initially equal to Δx , the same size will
grow significantly after times of the order of Δx/vs .

What is new in our results is, first of all, that they refer to a single particle,
meaning that uncertainties in position and momentum are not avoidable; secondly,
these uncertainties are strictly interrelated. Without considering the spreading in
time, it is evident that the uncertainty in one variable can be diminished only as the
other uncertainty grows. Indeed, Δ can be eliminated from our equations by writing
the inequality:

ΔxΔp ≡
√

(x − x̄)2 (p − p̄)2 ≥ �

2
, (2.54)

which is known as theHeinsenberg uncertainty principle. The case of a real Gaussian
packet corresponds to the minimal possible value ΔxΔp = �/2.

We have discussed Heisenberg’s uncertainty principle using Gaussian wave pack-
ets and understanding that the results have general validity. It is not difficult to prove
this generality. Indeed, let us consider a generic wave packet ψ(x) satisfying the nor-
malization condition (2.49), and let us denote by x̄ the average value of the particle
position

x̄ =
∫ ∞

−∞
dx x |ψ(x)|2 . (2.55)

The mean quadratic deviation in position can be easily computed by:

Δ2
x =

∫ ∞

−∞
dx (x − x̄)2|ψ(x)|2 =

∫ ∞

−∞
dx x2|ψ(x + x̄)|2 . (2.56)

Completely analogous formulae in terms of ψ̃ hold true for p̄ and Δp. However,
using (2.45) and (2.46), it is possible to compute p̄ and Δp directly from ψ. Indeed
one has:

p̄ =
∫ ∞

−∞
dp ψ̃∗(p) p ψ̃(p) = 1√

2π�

∫ ∞

−∞
dp ψ̃∗(p)

∫ ∞

−∞
dx ψ(x)i�

d

dx
e− i px

�

= 1√
2π�

∫ ∞

−∞
dx
∫ ∞

−∞
dp ψ̃∗(p)e− i px

� (−i�)
d

dx
ψ(x)

=
∫ ∞

−∞
dx ψ∗(x)(−i�)

d

dx
ψ(x) . (2.57)

This shows that the same results are obtained replacing at the same time ψ̃ by ψ and
the multiplication of ψ̃ by p by the action of (−i�) d

dx on ψ. Both the multiplication
by the variable, be it x or p, and the action of the derivative on the wave packets,
in much the same way as the Laplacian, are operations which transform linearly
wave packets of a certain class (e.g. with a certain number of continuous derivatives)
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into wave packets of another class. They are called linear operators since they act
linearly on the space ofwave functions.2 Linear operators can be combined into linear
combinations and ordered products. A product of operators represents the combined
action on the wave function of the factors of the operator product, beginning from
the first operator on the right and ending with the last one on the left. The resulting
action depends on the order of the factors, for this reason one says that linear operators
form a non-commutative algebra. In general the above mentioned properties allow
defining functions of operators. We shall use operators in Sects. 2.7 and 2.9.

Based on this comment, we can write a formula for the mean quadratic deviation
in momentum. For this it is convenient to introduce the modified wave packet:

ψ̂(x) ≡ e− i p̄x
� ψ(x + x̄) . (2.58)

Notice that

(
˜̂
ψ)(p) = 1√

2π�

∫ ∞

−∞
dx ψ(x + x̄)e− i(p+ p̄)x

� = ψ̃(p + p̄)e− i(p+ p̄)x̄
� . (2.59)

Therefore, using (2.46) and (2.56) we have:

Δ2
x =

∫ ∞

−∞
dx |x ψ̂(x)|2, Δ2

p = �
2
∫ ∞

−∞
dx | d

dx
ψ̂(x)|2 , (2.60)

indeed, the first equation is identical to Eq. (2.56), while the second one is the same
equation written in terms of the variable p.

Now we can consider the product Δ2
xΔ

2
p. Before that, let us introduce a general

inequality called Cauchy-Schwarz inequality. Consider two wave packets ψ1 and ψ2
not satisfying the normalization constraint (2.49), one has the inequality:

∫ ∞

−∞
dx1|ψ1(x1)|2

∫ ∞

−∞
dx2|ψ2(x2)|2 ≥

∣∣∣∣
∫ ∞

−∞
dx ψ∗

1(x)ψ2(x)

∣∣∣∣
2

, (2.61)

which is analogous to the triangular inequality: the square scalar product of two
vectors cannot exceed the product of the square lengths of the same vectors. The
product of the integrals on the left-hand side of the inequality corresponds to that of
the square lengths of the vectors. The integral on the right-hand side corresponds to
the scalar product. This analogy justifies the general validity of the inequality.

Let us now replace into Eq. (2.61)ψ1(x) by x ψ(x) andψ2(x) by �
d

dx ψ(x). Taking
into account Eq. (2.60), we have

2In general, given a normalized wave function, e.g. ψ(x), and an operator O acting on it,∫
dxψ∗(x)Oψ(x) ≡ 〈O〉 is the average value of the physical quantity associated with O in the

state described by the wave function ψ(x).
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Δ2
xΔ

2
p ≥ �

2
∣∣∣∣
∫ ∞

−∞
dx xψ∗(x)

d

dx
ψ(x)

∣∣∣∣
2

≥ �
2

4

∣∣∣∣
∫ ∞

−∞
dx(xψ∗(x)

d

dx
ψ(x) + xψ(x)

d

dx
ψ∗(x))

∣∣∣∣
2

= �
2

4

∣∣∣∣
∫ ∞

−∞
dx ψ∗(x)(x

d

dx
− d

dx
x)ψ(x))

∣∣∣∣
2

= �
2

4
. (2.62)

It appears clearly that the uncertainty relation (2.54) holds true for any wave packet,
and that it is due to the lack of commutativity of the operators corresponding to
multiplication by x and to x-derivative. In more physical terms, the origin of the
uncertainty relation is due to the lack of commutativity of the operators associated
with position (x) and momentum (−i� d

dx ).
This result obviously generalizes to any pair of quantities (observables) whose

correspondingoperators donot commute.We shall use this generalization inSect. 2.9,
considering pairs of components of the angular momentum.

From a phenomenological point of view this principle originates from the uni-
versality of diffractive phenomena. Indeed, diffractive effects are those which pre-
vent the possibility of a simultaneous measurement of position and momentum with
arbitrarily good precision for both quantities. Let us consider for instance the case
in which the measurement is performed through optical instruments; in order to
improve the resolution it is necessary to make use of radiation of shorter wavelength,
thus increasing the momenta of photons, which hitting the object under observation
change its momentum in an unpredictable way. If instead position is determined
through mechanical instruments, like slits, then the uncertainty in momentum is
caused by diffractive phenomena.

It is important to evaluate the order of magnitude of quantum uncertainty in
cases of practical interest. Let us consider for instance a beam of electrons emitted
by a cathode at a temperature T = 1000 ◦K and accelerated through a potential
difference equal to 104 V. The order of magnitude of the kinetic energy uncertainty
ΔE is kT , where k = 1.381 × 10−23 J/◦K is the Boltzmann constant (alternatively
one can use k = 8.617 × 10−5 eV/◦K). Therefore ΔE = 1.38 × 10−20 J while
E = 1.6×10−15 J, corresponding to a quite precise determination of the beamenergy
(ΔE/E ∼ 10−5). We can easily compute the momentum uncertainty by using error
propagation (Δp/p = 1

2ΔE/E) and computing p = √
2me E = 5.6 × 10−23 N s;

we thus obtainΔp = 2.8×10−28 N s, hence,making use of (2.54),Δx ≥ 2×10−7 m.
It is clear that the uncertainty principle does not place significant constraints in the
case of particle beams.

Amacroscopic body ofmass M = 1 kg placed at room temperature (T � 300 ◦K)
has an average thermal momentum, caused by collisions with air molecules, which
is equal to Δp ∼ √

2M 3kT/2 � 9 × 10−11 N s, so that the minimal quantum
uncertainty on its position is Δx ∼ 10−24 m, hence not appreciable.
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The uncertainty principle is instead quite relevant at the atomic level, where it
is the stabilizing mechanism which prevents the electron from collapsing onto the
nucleus. We can think of the electron orbital radius as a rough estimate of its position
uncertainty (Δx ∼ r ) and evaluate the kinetic energy deriving from the momentum
uncertainty; we have Ek ∼ Δ2

p/(2m) ∼ �
2/(2mr2). Taking into account the binding

Coulomb energy, the total energy is

E(r) ∼ �
2

2mr2
− e2

4πε0r
.

We infer that the system is stable, since the total energy E(r) has an absolute mini-
mum. The stable radius rm corresponding to this minimum can be computed through
the equation

e2

4πε0r2m
− �

2

mr3m
= 0 ,

hence

rm ∼ 4πε0�
2

me2
,

which nicely reproduces the value of the atomic radius for the ground level in Bohr’s
model, see (2.22).

2.4.2 The Speed of Waves

It is known that electromagnetic waves move without distortion at a speed c =
1/

√
ε0μ0 and that, for a harmonic wave, c is given by the wavelength multiplied by

the frequency.
In the case of de Broglie’s waves introduced in (2.40), we have ν = p2/(2mh) and

λ = h/p; therefore the velocity of harmonic waves is given by vF ≡ λν = p/(2m).
If we consider instead thewave packet given in (2.51) and its corresponding probabil-
ity density given in (2.52), we clearly see that it moves with a velocity vG ≡ p0/m,
which is equal to the classical velocity of a particle with momentum p0. We have
used different symbols to distinguish the velocity of plane waves vF , which is called
phase velocity, from vG , which is the speed of the packet and is called group velocity.
Previous equations lead to the result that, contrary to what happens for electromag-
netic waves propagating in vacuum, the two velocities are different for de Broglie’s
waves, and in particular the group velocity does not coincide with the average value
of the phase velocities of the different plane waves making up the packet. More-
over, the phase velocity depends on the wavelength (vF = h/(2mλ)). The relation
between frequency and wavelength is given by ν = c/λ for electromagnetic waves,
while for de Broglie’s waves it is ν = h/(2mλ2).
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There is a very large number of examples of wave-like propagation in physics:
electromagneticwaves, elasticwaves, gravitywaves in liquids and several other ones.
In each case the frequency presents a characteristic dependence on the wavelength,
ν(λ). Considering as above the propagation of gaussian wave packets, it is always
possible to define the phase velocity, vF = λ ν(λ), and the group velocity, which in
general is defined by the relation:

vG = −λ2 dν(λ)

dλ
. (2.63)

Last equation can be verified by considering that, for a generic dependence of the
wave phase on the wave number exp(ikx − iω(k)t) and for a generic wave packet
described by superposition coefficients strongly peaked around a given value k = k0,
the resulting wave function

ψ(x) ∝
∫ ∞

−∞
dk f (k − k0) ei(kx−ω(k)t)

will be peaked around an x0 such that the phase factor is stationary, hence almost
constant, for k ∼ k0, leading to x0 ∼ ω′(k0)t .

In the case of de Broglie’s waves, Eq. (2.63) reproduces the result found previ-
ously. Media where the frequency is inversely proportional to the wavelength, as for
electromagnetic waves in vacuum, are called non-dispersive media, and in that case
the two velocities coincide.

It may be interesting to notice that, if we adopt the relativistic form for the plane
wave, we have ν(λ) = √

m2c4/h2 + c2/λ2, hence

vF = λ

√
m2c4

h2 + c2

λ2 = E

p
> c ,

vG = c2

λ

(
m2c4

h2 + c2

λ2

)−1/2

= pc2

E
< c .

In particular vG , which describes the motion of wave packets, satisfies the constraint
of being less than c and coincides with the relativistic expression for the speed of a
particle in terms of momentum and energy given in Chap.1.

2.4.3 The Collective Interpretation of de Broglie’s Waves

The description of single particles as wave packets is at the basis of a rigorous
formulation of Schrödinger’s theory. There is however an alternative interpretation

http://dx.doi.org/10.1007/978-3-319-20630-1_1
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of the wave function, which is of much simpler use and can be particularly useful to
describe average properties, like a particle flow in the free case.

Let us consider the plane wave in (2.40): ψ = exp
(
i
(

p x − p2t/(2m)
)
/�
)
and

compute the corresponding current density J :

J = − i�

2m

(
ψ∗∂xψ − ψ∂xψ

∗) = − i�

2m

(
ψ∗ i p

�
ψ − ψ

−i p

�
ψ∗
)

= p

m
, (2.64)

while ρ = ψ∗ψ = 1. On the other handwe notice that given a distribution of classical
particleswith densityρ andmovingwith velocity v, the corresponding current density
is J = ρv.

That suggests to go beyond the problemof normalizing the probability distribution
in (2.44), relating instead the wave function in (2.40) not to a single particle, as
we have done till now, but to a stationary flux of independent particles, which are
uniformly distributed with unitary density and move with the same velocity v.

It should be clear that in this way we are a priori giving up the idea of particle
localization, however we obtain in a much simpler way information about the group
velocity and the flux. We will thus be able, in the following Section, to easily and
clearly interpret the effects of a potential barrier on a particle flux.

2.5 The Potential Barrier

The most interesting physical situation is that in which particles are not free, but
subject to forces corresponding to a potential energy V (x). In these conditions the
Schrödinger equation in the form given in (2.42) has to be used. Since the equation
is linear, the study can be limited, without loss of generality, to solutions which are
periodic in time, like:

ψ(x, t) = e−i Et/�ψE (x) . (2.65)

Indeed the general time dependent solution can always be decomposed in periodic
components through a Fourier expansion, so that its knowledge is equivalent to that
of ψE (x) plus the expansion coefficients.

Furthermore, according to the collective interpretation of de Broglie waves pre-
sented in the last section, thewave function in (2.65) describes either a stationary flow
or a stationary state of particles. In particular we shall begin studying a stationary
flow hitting a potential barrier.

The function ψE (x) is a solution of the equation obtained by replacing (2.65) into
(2.42), i.e.

i � ∂te
−i Et/�ψE (x) = Ee−i Et/�ψE (x) = e−i Et/�

[
− �

2

2m
∂2

xψE + V (x)ψE

]
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Fig. 2.3 A typical example
of a potential barrier,
referring in particular to that
due to Coulomb repulsion
that will be used when
discussing Gamow’s theory
of nuclear α-emission

hence

EψE (x) = − �
2

2m
∂2

x ψE (x) + V (x)ψE (x) , (2.66)

which is known as the time-independent or stationary Schrödinger equation.
We shall consider at first the case of a potential barrier, in which V (x) vanishes

for x < 0 and x > L , and is positive in the segment [0, L], as shown in Fig. 2.3.
A flux of classical particles hitting the barrier from the left will experience slowing
forces as x > 0. If the starting kinetic energy, corresponding in this case to the total
energy E in (2.66), is greater than the barrier height V0, the particles will reach the
point where V has a maximum, being accelerated from there forward till they pass
point x = L , where the motion gets free again. Therefore the flux is completely
transmitted, the effect of the barrier being simply a slowing down in the segment
[0, L]. If instead the kinetic energy is less than V0, the particles will stop before they
reach the point where V has a maximum, reversing their motion afterwards: the flux
is completely reflected in this case. QuantumMechanics gives a completely different
result.

In order to analyze the differences from a qualitative point of view, it is convenient
to choose a barrier which makes the solution of (2.66) easier: that is the case of a
potential which is piecewise constant, like the square given below. The choice is
motivated by the fact that, if V is constant, then (2.66) can be rewritten as follows:

∂2
xψE (x) + 2m

�2
(E − V )ψE (x) = 0 , (2.67)
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and has the general solution:

ψE (x) = a+ exp

(
i

√
2m(E − V )

�
x

)
+ a− exp

(
−i

√
2m(E − V )

�
x

)
, (2.68)

if E > V , while

ψE (x) = a+ exp

(√
2m(V − E)

�
x

)
+ a− exp

(
−

√
2m(V − E)

�
x

)
, (2.69)

in the opposite case. The problem is then to establish how the solution found in a
definite region can be connected to those found in the nearby regions. In order to
solve this kind of problem we must be able to manage differential equations in the
presence of discontinuities in their coefficients, and that requires a briefmathematical
interlude.

2.5.1 Mathematical Interlude: Differential Equations
with Discontinuous Coefficients

Differential equations with discontinuous coefficients can be treated by smoothing
the discontinuities, then solving the equations in terms of functions which are deriv-
able several times, and finally reproducing the correct solutions in the presence of
discontinuities through a limit process. In order to do so, let us introduce the function
ϕε(x), which is defined as

ϕε(x) = 0 if |x | > ε ,

ϕε(x) = ε2 + x2

2
(
ε2 − x2

)2
1

cosh2
(
x/(ε2 − x2)

) if |x | < ε .

This function, as well as all of its derivatives, is continuous and it can be easily shown
that ∫ ∞

−∞
ϕε(x)dx = 1 .

Based on this property we conclude that if f (x) is locally integrable, i.e. if it admits
at most isolated singularities where the function may diverge with a degree less than
one, like for instance 1/|x |1−δ when δ > 0, then the integral

∫ ∞

−∞
ϕε(x − y) f (y)dy ≡ fε(x)
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defines a function which can be derived in x an infinite number of times; the deriva-
tives of fε tend to those of f in the limit ε → 0 and in all points where the latter are
defined. We have in particular, by part integration,

dn

dxn
fε(x) =

∫ ∞

−∞
ϕε(x − y)

dn

dyn
f (y)dy ; (2.70)

fε is called regularized function. If for instance we consider the case in which f is
the step function in the origin, i.e. f (x) = 0 for x < 0 and f (x) = 1 for x > 0, we
have for fε(x), ∂x fε(x) = f ′

ε (x) and ∂2
x fε(x) = f ′′

ε (x) the behaviors showed in the
figures given below. Notice in particular that since

fε(x) =
∫ ∞

0
ϕε(x − y)dy =

∫ x

−∞
ϕε(z)dz

we have ∂x fε(x) = ϕε(x). By looking at the three figures it is clear that fε(x)

continuously interpolates between the two values, zero and one, which the function
assumes respectively to the left of −ε and to the right of ε, staying less than 1 for
every value of x . It is important to notice that instead the second figure, showing
∂x fε(x), i.e. ϕε(x), has a maximum of height proportional to 1/ε2, hence diverging
as ε → 0.

The third figure, showing the second derivative ∂2
x fε(x), has an oscillation of

amplitude proportional to 1/ε4 around the discontinuity point. Since, for small ε, the
regularized function depends, close to the discontinuity, on the nearby values of the
original function, it is clear that the qualitative behaviors showed in the figures are
valid, close to discontinuities of the first kind (i.e. where the function itself has a
discontinuous gap), for every starting function f .
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Let us now consider (2.67) close to a discontinuity point of the first kind (step
function) for V , and supposewe regularize both terms on the left hand side.Assuming
that the wave function does not present discontinuities worse than first kind, the
second term in the equation may present only steps so that, once regularized, it
is limited independently of ε. However the first term may present oscillations of
amplitude ∼1/ε4 if ψE has a first kind discontinuity, or a peak of height ∼±1/ε2

if ψE is continuous but its first derivative has such discontinuity: in each case the
modulus of the first regularized termwould diverge faster than the second in the limit
ε → 0. That shows that in the presence of a first kind discontinuity in V , both the
wave function ψE and its derivative must be continuous.

In order to simply deal with barriers of length L much smaller than the typical
wavelengths of the problem, it is useful to introduce infinitely thin barriers: that
can be done by choosing a potential energy which, once regularized, is equal to
Vε(x) = V ϕε(x), i.e.

V (x) = V lim
ε→0

ϕε(x) ≡ Vδ(x) . (2.71)

Equation (2.71) defines the so-called Dirac’s delta function as a limit of ϕε.
When studying Schrödinger equation regularized as done above, it is possible to

show, by integrating the differential equation between −ε and ε, that in the presence
of a potential barrier proportional to the Dirac delta function the wave function stays
continuous, but its derivative has a first kind discontinuity of amplitude

lim
ε→0

(ψ′
E (ε) − ψ′

E (−ε)) = 2m

�2
VψE (0) . (2.72)

Notice that a potential barrier proportional to the Dirac delta function can be repre-
sented equally well by a square barrier of height V/L and width L , in the limit as
L → 0 with

∫∞
−∞ dxV (x) = V kept constant.
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2.5.2 The Square Barrier

Let us consider the stationary Schrödinger equation (2.66) with a potential corre-
sponding to the square barrier described above, that is V (x) = V for 0 < x < L
and vanishing elsewhere. As in the classical case we can distinguish two different
regimes:

(a) the case E > V , in which classically the flux would be entirely transmitted;
(b) the opposite case, E < V , inwhich classically the fluxwould be entirely reflected.

Let us start with case (a) and distinguish three different regions:
(1) the region x < 0, in which the general solution is

ψE (x) = a+ei
√
2m E x/� + a−e−i

√
2m E x/� ; (2.73)

thiswave function corresponds to twoopposite fluxes, the firstmoving rightwards and
equal to |a+|2√2E/m, the other opposite to the first and equal to −|a−|2√2E/m.
Since we want to study a quantum process analogous to that described classically,
we arbitrarily choose a+ = 1, thus fixing the incident flux to

√
2E/m, hence

ψE (x) = ei
√
2m E x/� + a e−i

√
2m E x/� ; (2.74)

a takes into account the possible reflected flux, |a|2√2E/m. The physically inter-
esting quantity is the fraction of the incident flux which is reflected, which is called
the reflection coefficient of the barrier and, with our normalization for the incident
flux, is R = |a|2;
(2) the region 0 < x < L , where the general solution is

ψE (x) = b ei
√
2m(E−V ) x/� + c e−i

√
2m(E−V ) x/� ; (2.75)

(3) the region x > L , where the general solution is given again by (2.73). However,
since we want to study reflection and transmission through the barrier, we exclude
the possibility of a backward flux, i.e. coming from x = ∞, thus assuming that the
only particles present in this region are those going rightwards after crossing the
barrier. Therefore in this region we write

ψE (x) = d ei
√
2m E x/� . (2.76)

The potential has two discontinuities in x = 0 and x = L , therefore we have the
following conditions for the continuity of the wave function and its derivative:
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1 + a = b + c ,

1 − a =
√

E − V

E
(b − c) ,

b ei
√
2m(E−V )L/� + c e−i

√
2m(E−V )L/� = d ei

√
2m E L/� , (2.77)√

E − V

E

[
b ei

√
2m(E−V )L/� − c e−i

√
2m(E−V )L/�

]
= d ei

√
2m E L/� .

We have thus a linear system of 4 equations with 4 unknown variables which, for a
generic choice of parameters, should univocally identify the solution. However our
main interest is the determination of |a|2. Dividing side by side the first two as well
as the last two equations, we obtain after simple algebra:

1 − a

1 + a
=
√

E − V

E

b
c − 1
b
c + 1

,

b
c − e−2i

√
2m(E−V )L/�

b
c + e−2i

√
2m(E−V )L/�

=
√

E

E − V
. (2.78)

Solving the second equation for b/c and the first for a we obtain:

b

c
= e−2i

√
2m(E−V )L/�

√
E−V

E + 1
√

E−V
E − 1

,

a =
1 +

√
E−V

E + b
c

(
1 −

√
E−V

E

)

1 −
√

E−V
E + b

c

(
1 +

√
E−V

E

) (2.79)

and finally, by substitution:

a =
(
1 − E−V

E

) (
ei

√
2m(E−V )L/� − e−i

√
2m(E−V )L/�

)

(
1 −

√
E−V

E

)2

ei
√
2m(E−V )L/� −

(
1 +

√
E−V

E

)2

e−i
√
2m(E−V )L/�

,

so that

a = V

E

sin
(√

(2m(E−V )
�

L
)

2E−V
E sin

(√
(2m(E−V )

�
L
)

+ 2i
√

E−V
E cos

(√
(2m(E−V )

�
L
) , (2.80)
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which clearly shows that 0 ≤ |a| < 1 and that, for V > 0, a vanishes only when√
(2m(E − V )L/� = nπ.
This is a clear interference effect, showing that reflection by the barrier is a wave-

like phenomenon. For those knowing the physics of coaxial cables there should be a
clear analogy between our result and the reflection happening at the junction of two
cables having mismatching impedances: television set technicians well known that
as a possible origin of failure.

The quantum behavior in case (b), i.e. when E < V , is more interesting and
important for its application to microscopic physics. In this case the wave functions
in regions 1 and 3 do not change, while for 0 < x < L the general solution is:

ψE (x) = b e
√
2m(V −E) x/� + c e−√

2m(V −E) x/� , (2.81)

so that the continuity conditions become:

1 + a = b + c ,

1 − a = −i

√
V − E

E
(b − c) ,

b e
√
2m(V −E)L/� + c e−√

2m(V −E)L/� = d ei
√
2m E L/� , (2.82)

−i

√
V − E

E

[
b e

√
2m(V −E)L/� − c e−√

2m(V −E)L/�
]

= d ei
√
2m E L/� .

Dividing again side by side we have:

b
c − e−2

√
2m(V −E)L/�

b
c + e−2

√
2m(V −E)L/�

= i

√
E

V − E
,

1 − a

1 + a
= i

√
V − E

E

1 − b
c

1 + b
c

, (2.83)

which can be solved as follows:

a = −
1 − b

c + i
√

E
V −E

(
1 + b

c

)

1 − b
c − i

√
E

V −E

(
1 + b

c

) ,

b

c
= e−2

√
2m(V −E)L/�

1 + i
√

E
V −E

1 − i
√

E
V −E

. (2.84)

We can get the expression for a, hence the reflection coefficient R ≡ |a|2, by replac-
ing b/c in the first equation. The novelty is that R is not equal to one since, as it is
clear from (2.84), b/c is a complex number. Therefore a fraction 1 − R ≡ T of the
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incident flux is transmitted through the barrier, in spite of the fact that, classically,
the particles do not have enough energy to reach the top of it. That is known as tunnel
effect and plays a very important role in several branches of modern physics, from
radioactivity to electronics.

Instead of giving a complete solution for a, hence for the transmission coefficient
T , and in order to avoid too complex and unreadable formulae, we will confine the
discussion to two extreme cases, which however have a great phenomenological
interest. We consider in particular:

(a) the case in which e−2
√
2m(V −E)L/� � 1, with a generic value for E

V −E , i.e.
L � �/

√
2m(V − E), which is known as the thick barrier case;

(b) the case inwhich the barrier is thin, corresponding in particular to the limit L → 0
with V L ≡ V kept constant.

The thick barrier

In this case |b/c| is small, so that it could be neglected in a first approximation,
however it is clear from (2.84) that if b/c = 0 then |a| = 1, so that there is actually no
tunnel effect. For this reasonwemust compute the Taylor expansion in the expression
of a as a function of b/c up to the first order:

a = −
1 + i

√
E

V −E

1 − i
√

E
V −E

1 − b
c
1−i

√
E/(V −E)

1+i
√

E/(V −E)

1 − b
c
1+i

√
E/(V −E)

1−i
√

E/(V −E)

∼ −
1 + i

√
E

V −E

1 − i
√

E
V −E

⎡

⎣1 − b

c

⎛

⎝
1 − i

√
E

V −E

1 + i
√

E
V −E

−
1 + i

√
E

V −E

1 − i
√

E
V −E

⎞

⎠

⎤

⎦

= −
1 + i

√
E

V −E

1 − i
√

E
V −E

[
1 + 4i

b

c

√
E(V − E)

V

]
(2.85)

= −
1 + i

√
E

V −E

1 − i
√

E
V −E

⎡

⎣1 + 4i

√
E(V − E)

V
e−2

√
2m(V −E)L/�

1 + i
√

E
V −E

1 − i
√

E
V −E

⎤

⎦ .

In the last line we have replaced b/c by the corresponding expression in (2.84).
Neglecting terms of the order of e−4

√
2m(V −E)L/� or smaller we obtain

|a|2 = R = 1 − 16
E(V − E)

V 2 e−2
√
2m(V −E)L/� . (2.86)

Therefore the transmission coefficient, which measures the probability for a particle
hitting the barrier to cross it, is given by:

T ≡ 1 − R = 16
E(V − E)

V 2 e−2
√
2m(V −E)L/� . (2.87)
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Notice that the result seems to vanish for V = E , but this is not true since in this
case the terms neglected in our approximation come into play.

This formula was first applied in nuclear physics, and more precisely to study α
emission, a phenomenon in which a heavy nucleus breaks up into a lighter nucleus
plus a particle carrying twice the charge of the proton and roughly four times its
mass, which is known as α particle. The decay can be simply described in terms of
particles of mass ∼0.66 × 10−26 kg and energy E � 4–8 MeV� 10−12 J, hitting
barriers of width roughly equal to 3 × 10−14 m; the difference V –E is of the order
of 10 MeV � 1.6 × 10−12 J.

In these conditions we have 2
√
2m(V − E)L /� � 83 and therefore T ∼

e−2
√
2m(V −E)L/� ∼ 10−36. Given the order of magnitude of the energy E and of the

mass of the particle, we infer that it moves with a velocity of the order of 107 m/s:
since the radius R0 of heavy nuclei is roughly 10−14 m, the frequency of collisions
against the barrier is νu ∼ 1021 Hz. That indicates that, on average, the time needed
for the α particle to escape the nucleus is of the order of 1/(νu T ), i.e. about 1015 s,
equal to 108 years. However, if the width of the barrier is only 4 times smaller, the
decay time goes down to about 100 years. That shows a great sensitivity of the result
to the parameters and justifies the fact that we have neglected the pre-factor in front
of the exponential in (2.87). On the other hand that also shows that, for a serious
comparison with the actual mean lives of nuclei, an accurate analysis of parameters
is needed, but it is also necessary to take into account the fact that we are not dealing
with a true square barrier, since the repulsion between the nucleus and the α particle
is determined by Coulomb forces, i.e. V (x) = 2Ze2/(4πε0x) for x greater than a
given threshold, see Fig. 2.3.

As a consequence, the order of magnitude of the transmission coefficient given
in (2.87), i.e.

T � e−2
√
2m(V −E)L/� (2.88)

must be replaced by3

T � exp

(
−2
∫ R1

R0

dx

√
2m(V (x) − E)

�

)
≡ e−G , (2.89)

where R0 is the already mentioned nuclear radius and R1 = 2Ze2/(4πEε0) is the
solution of the equation V (R1) = E . We have then

3One can think of a thick, but not square, barrier as a series of thick square barriers of different
heights.
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G = 2

√
2m

�

∫ R1

R0

dx

√
2Ze2

4πε0x
− E = 2

√
2m E

�

∫ R1

R0

dx

√
R1

x
− 1

= 2

√
2m E R1

�

∫ 1

R0
R1

dy

√
1

y
− 1 = 2

√
2m

E

Ze2

πε0�

∫ 1

√
R0
R1

dz
√
1 − z2

=
√
2m

E

Ze2

πε0�

⎡

⎣acos

√
R0

R1
−
√

R0

R1
−
(

R0

R1

)2
⎤

⎦ . (2.90)

In the approximation R0/R1 � 1 we have

G � 2πZe2

ε0hv
, (2.91)

where v is the velocity of the alpha particle. Hence, if we assume like above that the
collision frequency be νu ∼ 1021 Hz, the mean life is

τ = 10−21 exp

(
2πZe2

ε0hv

)
. (2.92)

If we instead make use of the last expression in (2.90), with R0 = 1.1×10−14 m, we
infer for ln τ the behavior shown in Fig. 2.4, where the crosses indicate experimental
values for themean lives of various isotopes: 232Th, 238U, 230Th, 241Am, 230U, 210Rn,
220Rn, 222Ac, 215Po, 218Th. Taking into account that the figure covers 23 orders of
magnitude, the agreement is surely remarkable. Indeed Gamow’s first presentation
of these results in 1928 made a great impression.

Fig. 2.4 The mean lives of a sample of α-emitting isotopes plotted against the corresponding
α-energies. The solid line shows the values predicted by Gamow’s theory
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The thin barrier

In the case of a thin barrierwecanneglect E with respect toV , so that
√

E/(V − E) �√
E/V and e−√

2m(V −E)L/� � 1 − √
2mV L/�. We also remind that

√
2mV L/� is

infinitesimal, since L → 0 with V L ≡ V fixed, so that ei
√
2m E L/� can be put equal

to 1. Therefore Eq. (2.83) becomes

1 + a = b + c ,

1 − a = −i

√
V

E
(b − c) ,

b + c +
√
2mV

�
L(b − c) = d ,

b − c +
√
2mV

�
L(b + c) = i

√
E

V
d , (2.93)

and substituting b ± c we obtain:

d = 1 + a + i

√
E

V

√
2mV

�
L(1 − a) � 1 + a ,

i

√
E

V
(1 − a) +

√
2mV

�
L(1 + a) = i

√
E

V
d , (2.94)

in its simplest form. Taking further into account our approximation, the system can
be rewritten as

1 + a = d ,

1 − a =
(
i

√
2m

E

V L

�
+ 1

)
d ≡

(
1 + i

√
2m

E

V
�

)
d . (2.95)

Finally we find, by eliminating a, that

d = 1

1 + i
√

m
2E

V
�

, (2.96)

hence

T = 1

1 + m
2E

V2

�2

(2.97)

and

R = 1

1 + 2E
m

�2

V2

. (2.98)
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Notice that the system (2.95) confirmswhat predicted about the continuity conditions
for the wave function in the presence of a potential energy equal to Vδ(x), i.e. that
the wave function is continuous (1 + a = d) while its derivative has a discontinuity
(i

√
2m E(1 − a − d)/�) equal to 2mV/�

2 times the value of the wave function (d
in our case).

2.6 Quantum Wells and Energy Levels

Having explored the tunnel effect in some details, let us now discuss the solutions of
the Schrödinger equation in the case of binding potentials. For bound states, i.e. for
solutions with wave functions localized in the neighborhood of a potential well, we
expect computations to lead to energy quantization, i.e. to the presence of discrete
energy levels. Let us start our discussion from the case of a square well

V (x) = −V for |x | <
L

2
, V (x) = 0 for |x | >

L

2
. (2.99)

Notice that the origin of the coordinate has been chosen in order to emphasize the
symmetry of the system, corresponding in this case to the invariance of Schrödinger
equation under axis reflection x → −x . In general, the symmetry of the potential
allows us to find new solutions of the equation starting from known solutions, or
to simplify the search for solutions by a priori fixing some of their features. In this
case it can be noticed that if ψE (x) is a solution, ψE (−x) is a solution too, so
that, by linearity of the differential equation, any linear combination (with complex
coefficients) of the two wave functions is a good solution corresponding to the same
value of the energy E , in particular the combinations ψE (x) ± ψE (−x), which are
even/odd under reflection of the x axis. Naturally one of the two solutions may well
vanish, but it is clear that all possible solutions can be described in terms of (i.e.
they can be written as linear combinations of) functions which are either even or odd
under x-reflection.

To better clarify the point, let us notice that, since the Schrödinger equation is
linear, the set of all possible solutions having the same energy constitutes what is
usually called a linear space, which is completely fixed once we know one particular
basis for it. What we have learned is that in the present case even/odd functions are
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a good basis, so that the search for solutions can be solely limited to them. This is
probably the simplest example of the application of a symmetry principle asserting
that, if the Schrödinger equation is invariant under a coordinate transformation, it is
always possible to choose its solutions so that the transformation does not change
them but for a constant phase factor, which in the present case is ±1.

We will consider in the following only bound solutions which, assuming that the
potential energy vanishes for |x | → ∞, correspond to a negative total energy E and
are therefore the analogous of bound states in classical mechanics. Solutions with
positive energy, instead, present reflection and transmission phenomena, as in the case
of barriers. We notice that, in the case of bound states, the collective interpretation
of the wave function does not apply, since these are states involving a single particle:
that is in strict relation with the fact that bound state solutions vanish rapidly enough
as |x | → ∞, so that the probability distribution in (2.44) can be properly normalized.

Let us start by considering even solutions: it is clear that we can limit our study
to the positive x axis, with the additional constraint of a vanishing first derivative in
the origin, as due for an even function (whose derivative is odd). We can divide the
positive x axis into two regions where the potential is constant:

(a) that corresponding to x < L/2, where the general solution is:

ψE (x) = a+ei
√
2m(E+V ) x/� + a−e−i

√
2m(E+V ) x/� ,

which is even for a+ = a−, so that

ψE (x) = a cos

(√
2m(E + V )

�
x

)
; (2.100)

(b) that corresponding to x > L/2, where the general solution is:

ψE (x) = b+e
√
2m|E | x/� + b−e−√

2m|E | x/� .

The condition that |ψ|2 be an integrable function constrains b+ = 0, otherwise the
probability density would unphysically diverge for |x | → ∞; therefore we can write

ψE (x) = b e−√
2m|E | x/� . (2.101)

Notice that we have implicitly excluded the possibility E < −V , the reason being
that in this case (2.100) would be replaced by

ψE (x) = a cosh

(√
2m|E + V |

�
x

)

which for x > 0has a positive logarithmic derivative (∂xψE (x)/ψE (x))which cannot
continuously match the negative logarithmic derivative of the solution in the second
region given in (2.101). Therefore quantum theory is in agreement with classical
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mechanics about the impossibility of having states with total energy less than the
minimum of the potential energy.

The solutions to the Schrödinger equation on the whole axis can be found by
solving the system:

a cos

√
2m(E + V )L

2�
= b e−√

2m|E |L/(2�) , (2.102)
√
2m(E + V )

�
a sin

√
2m(E + V )L

2�
=

√
2m|E |

�
b e−√

2m|E |L/(2�)

dividing previous equations side by side we obtain the continuity condition for the
logarithmic derivative:

tan

√
2m(E + V )L

2�
=
√ |E |

E + V
. (2.103)

In order to discuss last equation let us introduce the variable

x ≡
√
2m(E + V )L

2�
(2.104)

and the parameter
y ≡ √

2mV L/2� , (2.105)

and let us plot together the behavior of the two functions tan x and
√

(y2 − x2)/x2 =√|E |/(E + V ). In the figure we show the case y2 = 20. From a qualitative point of
view the figure shows that energy levels, corresponding to the intersection points of
the two functions, are quantized, thus confirming also for the case of potential wells
the discrete energy spectrum predicted by Bohr’s theory. In particular the plot shows
two intersections, the first for x = x1 < π/2, the second for π < x = x2 < 3π/2.

Notice that quantization of energy derives from the physical requirement of having
a bound state solution which does not diverge but instead vanishes outside the well:
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for this reason the external solution is parametrized in terms of only one parameter.
The reduced number of available parameters allows for non-trivial solutions of the
homogeneous linear system (2.103) only if the energy quantization condition (2.103)
is satisfied.

The number of possible solutions increases as y grows and since y > 0 it is
anyway greater than zero. Therefore the square potential well in one dimension has
always at least one bound state corresponding to an even wave function. It can be
proved that the same is true for every symmetric well in one dimension (i.e. such
that V (−x) = V (x) ≤ 0). On the contrary, an extension of this analysis (see in
particular the discussion about the spherical well in Sect. 2.9) shows that in the
three-dimensional case the existence of at least one bound state is not guaranteed
any more.

Let us now consider the case of odd solutions: we must choose a wave function
which vanishes in the origin, so that the cosine must be replaced by a sine in (2.100).
Going along the same lines leading to (2.103) we arrive to the equation

cot

√
2m(E + V )L

2�
= −

√ |E |
E + V

. (2.106)

Using the same variables x and y as above, we have the corresponding figure
given below, which shows that intersections are present only if y > π/2, i.e. if
V > π2

�
2/(2mL2) (which by the way is also the condition for the existence of

at least one bound state in three dimensions). Notice that the energy levels found in
the odd case are different from those found in the even case. In particular any possi-
ble negative energy level can be put in correspondence with only one wave function
(identified by neglecting a possible irrelevant constant phase factor): this implies that,
in the present case, dealing with solutions having a definite transformation property
under the symmetry of the problem (i.e. even or odd) is not a matter of choice, as
it is in the general case, but a necessity, since those are the only possible solutions.
Indeed a different kind of solution could only be constructed in the presence of two
solutions, one even and the other odd, corresponding to the same energy level.

The number of independent solutions corresponding to a given energy level is
usually called the degeneracy of the level. We have therefore demonstrated that, for
the potential square well in one dimension, the discrete energy levels have always
degeneracy equal to one or, stated otherwise, that they are non-degenerate. This is in
fact a general property of bound states in one dimension, which can be demonstrated
for any kind of potential well.
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It is interesting to apply our analysis to the case of an infinitely deep well. Obvi-
ously, if we want to avoid dealing with divergent negative energies as we deepen
the well, it is convenient to shift the zero of the energy so that the potential energy
vanishes inside the well and is V outside. That is equivalent to replacing in previ-
ous formulae E + V by E and |E | by V − E ; moreover, bound states will now
correspond to energies E < V . Taking the limit V → ∞ in the quantization condi-
tions given in (2.103) and (2.106), we obtain respectively tan

√
2m E L/(2�) = +∞

and − cot
√
2m E L/(2�) = +∞, so that

√
2m E L/(2�) = (2n − 1)π/2 and√

2m E L/(2�) = nπ with n = 1, 2, . . . Finally, combining odd and even states,
we have √

2m E

�
L = nπ : n = 1, 2, . . .

and the following energy levels

En = n2π2
�
2

2mL2 . (2.107)

The corresponding wave functions vanish outside the well while in the region
|x | < L/2 the even functions are

√
2/L cos (2n − 1)πx/L and the odd ones are√

2/L sin 2nπx/L , with the coefficients fixed in order to satisfy (2.44). It is also
possible to describe all wave functions by a unique formula:

ψEn (x) =
√

2

L
sin

nπ(x + L
2 )

L
for |x | <

L

2
,

ψEn (x) = 0 for |x | >
L

2
. (2.108)

While all wave functions are continuous in |x | = L/2, their derivatives are not,
as in the case of the potential barrier proportional to the Dirac delta function. The
generic solution ψEn has the behavior showed in the figure, where the analogy with
the electric component of an electromagnetic wave reflected between two mirrors
clearly appears. Therefore the infinitely deep well can be identified as the region
between two reflecting walls.

If the wave amplitude vanishes over the mirrors, the distance between them must
necessarily be an integer multiple of half the wavelength; this is the typical tuning
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condition for a musical instrument and implies wavelength and energy quantization.
The exact result agrees with that of Problem 2.4.

Going back to the analogywith electromagneticwaves, the present situation corre-
sponds to a one-dimensional resonant cavity. In the cavity the field can only oscillate
according to the permitted wavelengths, which are λn = 2L/n for n = 1, 2, . . .
corresponding to the frequencies νn = c/λn = nc/(2L), which are all multiple of
the fundamental frequency of the cavity.

Our results regarding the infinitely deep well can be easily generalized to three
dimensions. To that purpose, let us introduce a cubic box of side L with reflecting
walls. The condition that the wave function vanishes over the walls is equivalent,
inside the box and choosing solutions for which the dependence on x , y and z is
factorized, to:

ψnx ,ny ,nz =
√

8

L3 sin
nxπ(x + L

2 )

L
sin

nyπ(y + L
2 )

L
sin

nzπ(z + L
2 )

L
, (2.109)

where we have assumed the origin of the coordinates to be placed in the center of
the box. The corresponding energy coincides with the kinetic energy inside the box
and can be obtained by writing the Schrödinger equation in three dimensions:

− �
2

2m

(
∂2

x + ∂2
y + ∂2

z

)
ψnx ,ny ,nz = Enx ,ny ,nz ψnx ,ny ,nz , (2.110)

leading to

Enx ,ny ,nz = π2
�
2

2mL2

[
n2

x + n2
y + n2

z

]
. (2.111)

This result will be useful for studying the properties of a gas of non-interacting
particles (perfect gas) contained in a box with reflecting walls. Following the same
analogy as above one can study in a similar way the oscillations of an electromagnetic
field in a three-dimensional cavity, with proper frequencies given by νnx ,ny ,nz =
(c/2L)

√
n2

x + n2
y + n2

z .

2.7 The Harmonic Oscillator

The one-dimensional harmonic oscillator can be identified with the mechanical sys-
tem formed by a particle of mass m bound to a fixed point (taken as the origin of
the coordinate) by an ideal spring of elastic constant k and vanishing length at rest.
This is equivalent to a potential energy V (x) = kx2/2. In classical mechanics the
corresponding equation of motion is

mẍ + kx = 0 ,
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whose general solution is
x(t) = X cos(ωt + φ) ,

where ω = √
k/m = 2πν and ν is the proper frequency of the oscillator.

At the quantum levelwemust solve the following stationarySchrödinger equation:

− �
2

2m
∂2

x ψE (x) + mω2

2
x2ψE (x) = EψE (x) . (2.112)

In order to solve this equation we can use the identity

⎛

⎝
√

mω2

2
x − �√

2m
∂x

⎞

⎠

⎛

⎝
√

mω2

2
x + �√

2m
∂x

⎞

⎠ f (x)

= mω2

2
x2 f (x) + �ω

2
x∂x f (x) − �ω

2
∂x (x f (x)) − �

2

2m
∂2

x f (x)

= − �
2

2m
∂2

x f (x) + mω2

2
x2 f (x) − �ω

2
f (x)

=
(

− �
2

2m
∂2

x + mω2

2
x2 − �ω

2

)
f (x) , (2.113)

which is true for any function f which is derivable at least two times.
It is important to notice the operator notation used in last equation, where we have

introduced some specific symbols, (
√

mω2/2 x ± (�/
√
2m) ∂x ) or (−(�2/2m) ∂2

x +
(mω2/2) x2 − �ω/2), to indicate operations in which derivation and multiplication
by some variable are combined together. As already mentioned, these are usually
called operators, meaning that they give a correspondence law between functions
belonging to some given class (for instance those which can be derived n times) and
other functions belonging, in general, to a different class.

In this way, leaving aside the specific function f , Eq. (2.113) can be rewritten as
an operator relation

⎛

⎝
√

mω2

2
x − �√

2m
∂x

⎞

⎠

⎛

⎝
√

mω2

2
x + �√

2m
∂x

⎞

⎠=
(

− �
2

2m
∂2

x + mω2

2
x2 − �ω

2

)

(2.114)
and equations of similar nature can be introduced, like for instance:

⎛

⎝
√

mω2

2
x + �√

2m
∂x

⎞

⎠

⎛

⎝
√

mω2

2
x − �√

2m
∂x

⎞

⎠

−
⎛

⎝
√

mω2

2
x − �√

2m
∂x

⎞

⎠

⎛

⎝
√

mω2

2
x + �√

2m
∂x

⎞

⎠ = �ω . (2.115)
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In order to shorten formulae, it is useful to introduce the two symbols:

X± ≡
⎛

⎝
√

mω2

2
x ± �√

2m
∂x

⎞

⎠ =
√

�ω

2

(
αx ± 1

α

∂

∂x

)
(2.116)

in which the constant α ≡ √
mω/� has been defined, corresponding to the inverse of

the typical length scale of the system. That allows us to rewrite (2.115) in the simpler
form:

X+ X− − X− X+ = �ω . (2.117)

If, extending the operator formalism, we define

H ≡ − �
2

2m
∂2

x + mω2

2
x2 , (2.118)

we can rewrite (2.114) as:

X− X+ = H − �ω

2
, (2.119)

then obtaining from (2.117):

X+ X− = H + �ω

2
. (2.120)

The Schrödinger equation can be finally written as:

HψE (x) = EψE (x) . (2.121)

The operator formalism permits to get quite rapidly a series of results.
(a) The wave function which is solution of the equation

X+ψ0(x) =
√

mω2

2
xψ0(x) + �√

2m
∂xψ0(x) = 0 , (2.122)

is also a solution of (2.121) with E = �ω/2. In order to compute it we can rewrite
(2.122) as:

∂xψ0(x)

ψ0(x)
= −α2x ,

hence, integrating both members:

lnψ0(x) = c − α2

2
x2 ,
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from which it follows that
ψ0(x) = ec e−α2x2/2 ,

where the constant c can be fixed by the normalization condition given in (2.44),
leading finally to

ψ0(x) =
(mω

π�

) 1
4
e−mωx2/(2�) . (2.123)

We would like to remind the need for restricting the analysis to the so-called square
integrable functions,which can be normalized according to (2.44). This is understood
in the following.

(b) What we have found is the lowest energy solution, usually called the ground
state of the system, as can be proved by observing that, for every normalized solution
ψE (x), the following relations hold:

∫ ∞

−∞
dx ψE (x)∗

⎛

⎝
√

mω2

2
x − �√

2m
∂x

⎞

⎠

⎛

⎝
√

mω2

2
x + �√

2m
∂x

⎞

⎠ψE (x)

=
∫ ∞

−∞
dx |X+ψE (x)|2 =

∫ ∞

−∞
dx ψE (x)∗

(
E − �ω

2

)
ψE (x)

= E − �ω

2
≥ 0 , (2.124)

where the derivative in X− has been integrated by parts, exploiting the vanishing of
the wave function at x = ±∞. Last inequality follows from the fact that the integral
of the squared modulus of any function cannot be negative. Moreover it must be
noticed that if the integral vanishes, i.e. if E = �ω/2, then necessarily X+ψE = 0,
so that ψE is proportional to ψ0. That proves that the ground state is unique.

(c) If ψE satisfies (2.112) then X±ψE satisfies the same equation with E replaced
by E ∓ �ω, i.e. we have

H X±ψE = (E ∓ �ω)X±ψE . (2.125)

Notice that X+ψE vanishes if and only if ψE = ψ0 while X−ψE never vanishes: one
can prove this by verifying that if X−ψE = 0 then ψE behaves as ψ0 but with the
sign + in the exponent, hence it is not square integrable. In order to prove Eq. (2.125),
from (2.119) and (2.120) we infer, for instance:

X+ X− X+ψE = X+
(

H − �ω

2

)
ψE (x) =

(
H + �ω

2

)
X+ψE (x)

= X+
(

E − �ω

2

)
ψE (x) =

(
E − �ω

2

)
X+ψE (x) (2.126)

from which (2.125) follows in the + case.
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Last computations show again that operators combine in a fashion which resem-
bles usual multiplication, however their product is strictly dependent on the order
in which they appear. We say that the product is non-commutative; that is also evi-
dent from (2.117), which expresses what is usually known as the commutator of two
operators.

Exchanging X− and X+ in previous equations we have:

X− X+ X−ψE = X−
(

H + �ω

2

)
ψE (x) =

(
H − �ω

2

)
X−ψE (x)

= X−
(

E + �ω

2

)
ψE (x) =

(
E + �ω

2

)
X−ψE (x) (2.127)

which completes the proof of (2.125).
(d) Finally, combining points (a–c), we can show that the only possible energy

levels are:

En =
(

n + 1

2

)
�ω . (2.128)

In order to prove that, let us suppose instead that (2.112) admits the level E =
(m + 1/2) �ω + δ, where 0 < δ < �ω, and then repeatedly apply X+ to ψE up to
m + 1 times. If Xk+ψE = 0 with k ≤ m + 1 and Xk−1+ ψE �= 0, then we would have
X+(Xk−1+ ψE ) = 0 which, as we have already seen, is equivalent to Xk−1+ ψE ∼ ψ0,
hence to H Xk−1+ ψE = �ω/2ψE . However Eq. (2.125) implies H Xk−1+ ψE = (E −
(k − 1)�ω)ψE , hence E = (k − 1/2)�ω, which is in contrast with the starting
hypothesis (δ �= 0). On the other hand Xk+ψE �= 0 even for k = m + 1 would imply
the presence of a solution with energy less that �ω/2, in contrast with (2.124). We
have instead no contradiction if δ = 0 and k = m + 1.

We have therefore shown that the spectrum of the harmonic oscillator consists of
the energy levels En = (n + 1/2) �ω. We also know from (2.125) that ∼Xn−ψ0 is
a possible solution with E = En : we will now show that this is actually the only
possible solution.

(e) Any wave function corresponding to the n-th energy level is necessarily pro-
portional to Xn−ψ0:

ψEn ∼ Xn−ψ0 . (2.129)

We already know that this is true for n = 0 (ground state). Now let us suppose the
same to be true for n = k and we shall prove it for n = k + 1, thus concluding
our argument by induction. Let ψEk+1 be a solution corresponding to Ek+1, then, by
(2.125) and by the uniqueness of ψEk , we have

X+ψEk+1 = aψEk (2.130)
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for some constant a �= 0, with ψEk ∝ Xk−ψ0. By applying X− to both sides of last
equation we obtain

X− X+ψEk+1 =
(

H − �ω

2

)
ψEk+1 = (k + 1) �ω ψEk+1

= X−aψEk ∝ X− Xk−ψ0 = Xk+1− ψ0 , (2.131)

which proves that also ψEk+1 is proportional to Xk+1− ψ0.
In order to find the correct normalization factor, let us first find it for ψEk+1 ,

assuming that ψEk is already correctly normalized. We notice that

∫ ∞

−∞
dx |X−ψEk |2 =

∫ ∞

−∞
dx ψ∗

Ek
X+ X−ψEk =

∫ ∞

−∞
dx ψ∗

Ek

(
H + �ω

2

)
ψEk

= �ω(k + 1)
∫ ∞

−∞
dx |ψEk |2 = �ω(k + 1) , (2.132)

where in the first equality one of the X− operators has been integrated by parts
and in the second equality Eq. (2.120) has been used. We conclude that ψEk+1 =
(�ω(k + 1))−1/2X−ψEk , hence, setting for simplicity ψn ≡ ψEn :

ψn =
√

1

n!
(

X−√
�ω

)n

ψ0 ≡
√

1

n! (A†)nψ0 (2.133)

where one defines A† ≡ X−/
√

�ω.
That concludes our analysis of the one-dimensional harmonic oscillator, which,

based on an algebraic approach, has led us to finding both the possible energy levels,
given in (2.128), and the corresponding wave functions, described by (2.123) and
(2.129). In particular, confirming a general property of bound states in one dimension,
we have found that the energy levels are non-degenerate. The operators X+ and X−
permit us to transform a given solution into a different one, in particular by rising
(X−) or lowering (X+) the energy level by one quantum �ω.

Also in this case, as for the square well, solutions have definite transformation
properties under axis reflection, x → −x , which follow from the symmetry of the
potential, V (−x) = V (x). In particular they are divided into even and odd functions
according to the value of n,ψn(−x) = (−1)nψn(x), as can be proved by noticing that
ψ0 is an even function and that the operator X− transforms an even (odd) function
into an odd (even) one.

Moreover we notice that, according to (2.129), (2.123) and to the expression for
X− given in (2.116), all wave functions are real. This is also a general property
of bound states in one dimension, which can be easily proved and has a simple
interpretation. Indeed, suppose ψE be the solution of the stationary Schrödinger
equation (2.66) corresponding to a discrete energy level E ; since obviously both E
and the potential energy V (x) are real, it follows, by taking the complex conjugate
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of both sides of (2.66), that also ψ∗
E is a good solution corresponding to the same

energy. However the non-degeneracy of bound states in one dimension implies that
ψE must be unique. The only possibility is ψ∗

E ∝ ψE , hence ψ∗
E = eiφψE , so that,

leaving aside an irrelevant overall phase factor, ψE is a real function.
On the other hand, recalling the definition of the probability current density J

given in (2.43), it can be easily proved that the wave function is real if and only
if the current density vanishes everywhere. Since we are considering a stationary
problem, the probability density is constant in time by definition and the conservation
equation (2.27) implies, in one dimension, that the current density J is a constant
in space (the same is not true in more than one dimension, where that translates in
J being a vector field with vanishing divergence, see Problem 2.47). On the other
hand, for a bound state J must surely vanish as |x | → ∞, hence it must vanish
everywhere, implying a real wave function: in a one-dimensional bound state there
is no current flow at all.

Our results admit various generalizations of great physical interest. First of all,
let us consider their extension to the isotropic three-dimensional harmonic oscillator
corresponding to the following Schrödinger equation:

− �
2

2m

(
∂2

x + ∂2
y + ∂2

z

)
ψE + mω2

2

(
x2 + y2 + z2

)
ψE = E ψE , (2.134)

where ψE = ψE (x, y, z) is the three-dimensional wave function. This is the typical
example of a separable Schrödinger equation: if we look for a particular class of
solutions, written as the product of three functions depending separately on x , y
and z, then Eq. (2.134) becomes equivalent4 to three independent equations for three
one-dimensional oscillators along x , y and z.

Therefore we conclude that the quantized energy levels are in this case:

Enx ,ny ,nz = �ω

(
nx + ny + nz + 3

2

)
, (2.135)

and that the corresponding wave functions are

ψnx ,ny ,nz (x, y, z) = ψnx (x)ψny (y)ψnz (z) . (2.136)

Notice that, according to (2.135) and (2.136), in three dimensions several degenerate
solutions can be found having the same energy, corresponding to all possible integers
nx , ny, nz such that nx +ny +nz = n where n is a non-negative integer. The number
of such solutions is (n + 1)(n + 2)/2.

Since we have looked for particular solutions, having the dependence on x , y
and z factorized, it is natural to ask if in this way we have exhausted the possible
solutions of equation (2.134). In some sense this is not true: since the Schrödinger

4This is clear if we divide both sides of Eq. (2.134) by ψE : the resulting equation requires that the
sum of three functions depending separately on x , y and z be a constant, implying that each function
must be constant separately.
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equation is linear, we can make linear combinations (with complex coefficients) of
the (n + 1)(n + 2)/2 degenerate solutions described above, obtaining new solutions
having the same energy En = (n+3/2)�ω but not writable, in general, as the product
of three functions of x , y and z. However we have exhausted all the possible solutions
in some other sense: indeed it is possible to demonstrate that no further solution can
be found beyond all the possible linear combinations of the particular solutions in
equation (2.136). In other words, all the possible solutions of equation (2.134), which
are found for E = (n +3/2) �ω, form a linear space of dimension (n +1)(n +2)/2,
having the particular solutions in equation (2.136) as an orthonormal basis. We have
thus found a possible complete set of solutions of equation (2.134): we shall find a
different complete set (i.e. a different basis) for the same problem in Sect. 2.9 (see
also Problem 2.47).

A further generalization is that regarding small oscillations around equilibrium
for a system with N degrees of freedom, whose energy can be separated into the sum
of the contributions from N one-dimensional oscillators having, in general, different
proper frequencies (νi , i = 1, . . . , N ). In this case the quantization formula reads

E(n1,...,nN ) =
N∑

i=1

�ωi

(
ni + 1

2

)
, (2.137)

and the corresponding wave function can be written as the product of the wave
functions associated with every single oscillator.

Let us now take a short detour by recalling the analysis of the electromagnetic field
resonating in one dimension. It can be shown that, from a dynamical point of view,
the electromagnetic field can be described as an ensemble of harmonic oscillators,
i.e. mechanical systems with definite frequencies. Applying the result of this Section
we confirm Einstein’s assumption that the electromagnetic field can only exchange
quanta of energy equal to �ω = hν. That justifies the concept of a photon as a
particle carrying an energy equal to hν. At the quantum level, the possible states of
an electromagnetic field oscillating in a cavity can thus be seen as those of a system
of photons, corresponding in number to the total quanta of energy present in the
cavity, which bounce elastically between the walls.

2.8 Periodic Potentials and Band Spectra

In previous Sections we have encountered and discussed situations in which the
energy spectrum is continuous, as for particles free to move far to infinity with or
without potential barriers, and other cases presenting a discrete spectrum, like that
of bound particles. We will now show that other different interesting situations exist,
in particular those characterized by a band spectrum. That is the case for a particle
in a periodic potential, like an electron in the atomic lattice of a solid.
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An example, which can be treated in a relatively simple way, is that in which
the potential energy can be written as the sum of an infinite number of thin barriers
(Kronig-Penney model), each proportional to the Dirac delta function, placed at a
constant distance a from each other:

V (x) =
∞∑

n=−∞
Vδ(x − na) . (2.138)

It is clear that:
V (x + a) = V (x) , (2.139)

so that we are dealing with a periodic potential. Our analysis will be limited to the
case of barriers, i.e. V > 0.

Equation (2.139) expresses a symmetry property of the Schrödinger equation,
which is completely analogous to the symmetry under axis reflection discussed for
the square well and valid also in the case of the harmonic oscillator.With an argument
similar to that used in the square well case, it can be shown that for periodic poten-
tials, i.e. invariant under translations by a, if ψE (x) is a solution of the stationary
Schrödinger equation then ψE (x + a) is a solution too, corresponding to the same
energy, so that, by suitable linear combinations, the analysis can be limited to a par-
ticular class of functions which are not changed by the symmetry transformation but
for an overall multiplicative constant. In the case of reflections that constant must be
±1, since a double reflection must bring back to the original configuration. Instead,
in the case of translations x → x + a, solutions can be chosen so as to satisfy the
following relation:

ψE (x + a) = α ψE (x) ,

where α is in general a complex number. Clearly such functions, like plane waves,
are not normalizable, so that we have to make reference to the collective physical
interpretation, as in the case of the potential barrier. In this case probability densities
which do not vanish in the limit |x | → ∞ are acceptable, but those diverging in the
same limit must be discarded anyway. That constrains α to be a pure phase factor,
α = eiφ, so that

ψE (x + a) = eiφ ψE (x) . (2.140)

This is therefore another application of the symmetry principle enunciated in
Sect. 2.6.

The wave function ψE (x) must satisfy both (2.140) and the free Schrödinger
equation in each interval (n − 1)a < x < na:

− �
2

2m
∂2

xψE (x) = E ψE (x) ,
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which has the general solution

ψE (x) = ane
i
√
2m E x/� + bne

−i
√
2m E x/� .

Finally, at the position of each delta function, the wave function must be continuous
while its first derivativemust be discontinuous with a gap equal to (2mV/�

2)ψE (na).
Since, according to (2.140), the wave function is pseudo-periodic, these conditions
will be satisfied in every point x = na if they are satisfied in the origin.

The continuity (discontinuity) conditions in the origin can be written as

a0 + b0 = a1 + b1 ,

i

√
2m E

�
(a1 − b1 − a0 + b0) = 2mV

�2
(a0 + b0) , (2.141)

while (2.140), in the interval −a < x < 0, is equivalent to:

a1e
i
√
2m E(x+a)/� + b1e

−i
√
2m E(x+a)/� = eiφ

(
a0e

i
√
2m Ex/� + b0e

−i
√
2m Ex/�

)
.

(2.142)
Last equation implies:

a1 = e
i
(
φ−√

2m Ea/�
)

a0 , b1 = e
i
(
φ+√

2m Ea/�
)

b0 ,

which replaced in (2.141) leads to a system of two homogeneous linear equation
in two unknown quantities:

(
1 − e

i
(
φ−

√
2m E
�

a
)

− i

√
2m

E

V
�

)
a0 −

(
1 − e

i
(
φ+

√
2m E
�

a
)

+ i

√
2m

E

V
�

)
b0 = 0

(
1 − e

i
(
φ−

√
2m E
�

a
))

a0 +
(
1 − e

i
(
φ+

√
2m E
�

a
))

b0 = 0 . (2.143)

The system admits non-trivial solutions (a0, b0 �= 0) if and only if the determinant
of the coefficient matrix does vanish; that is equivalent to a second order equation
for eiφ:
(
1 − e

i
(
φ−

√
2m E
�

a
)

− i

√
2m

E

V
�

)(
1 − e

i
(
φ+

√
2m E
�

a
))

+
(
1 − e

i
(
φ+

√
2m E
�

a
)

+ i

√
2m

E

V
�

)(
1 − e

i
(
φ−

√
2m E
�

a
))

= 2e2iφ −
((

2 − i

√
2m

E

V
�

)
ei

√
2m E
�

a +
(
2 + i

√
2m

E

V
�

)
e−i

√
2m E
�

a

)
eiφ

+ 2 = 0 , (2.144)
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which can be rewritten in the form:

e2iφ −
(
2 cos

(√
2m E

�
a

)
+
√
2m

E

V
�
sin

(√
2m E

�
a

))
eiφ + 1

≡ e2iφ − 2Aeiφ + 1 = 0 . (2.145)

Equation (2.145) canbe solvedby a realφ if andonly if A2 < 1, as canbe immediately
verified by using the resolutive formula for second degree equations.

We have therefore an inequality, involving the energy E together with the ampli-
tude V and the period a of the potential, which is a necessary and sufficient condition
for the existence of physically acceptable solutions of the Schrödinger equation:

(
cos

(√
2m E

�
a

)
+
√

m

2E

V
�
sin

(√
2m E

�
a

))2

< 1 , (2.146)

hence

cos2
(√

2m E

�
a

)
+ m

2E

V2

�2
sin2

(√
2m E

�
a

)

+ 2

√
m

2E

V
�
sin

(√
2m E

�
a

)
cos

(√
2m E

�
a

)
< 1 (2.147)

and therefore

1 − cos2
(√

2m E

�
a

)
− m

2E

V2

�2
sin2

(√
2m E

�
a

)

− 2

√
m

2E

V
�
sin

(√
2m E

�
a

)
cos

(√
2m E

�
a

)

=
(
1 − m

2E

V2

�2

)
sin2

(√
2m E

�
a

)

− 2

√
m

2E

V
�
sin

(√
2m E

�
a

)
cos

(√
2m E

�
a

)
< 0 , (2.148)

leading finally to:

cot

(√
2m E

�
a

)
<

1

2

(√
2E

m

�

V −
√

m

2E

V
�

)
. (2.149)
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Fig. 2.5 The plot of
inequality (2.149)
identifying the first three
bands of allowed values of√
2m E a/� for the choice of

the Kronig–Penney
parameter
γ = �

2/(maV) = 1/2

Both sides of last inequality are plotted in Fig. 2.5 for a particular choice of the
parameter γ = �

2/(maV) = 1/2. The variable used in the figure is x = √
2m Ea/�,

so that the two plotted functions are f1 = cot x and f2 = (γx − 1/(γx))/2. The
intervals where the inequality (2.149) is satisfied are those enclosed between x1 and
π, x2 and 2π, x3 and 3π and so on. Indeed in these regions the uniformly increasing
function f2 is greater than the oscillating function f1. The result shows therefore that
the permitted energies correspond to a series of intervals (xn, nπ), which are called
bands, separated by a series of forbidden gaps.

As we shall discuss in the next chapter, electrons in a solid, which are compelled
by the Pauli exclusion principle to occupy each a different energy level, may fill
completely a certain number of bands, so that they can only absorb energies greater
than a given minimum quantity, corresponding to the gap with the next free band: in
such situation electrons behave as bound particles. Alternatively, if the electrons fill
partially a given band, they can absorb arbitrarily small energies, thus behaving as
free particles. In the first case the solid is an insulator, in the second it is a conductor.

Having determined the phase φ(E) from (2.145) and taking into account (2.140),
it can be seen that, by a simple transformation of the wave function:

ψE (x) ≡ ei φ(E) x/aψ̂E (x) ≡ e±i p(E) x/�ψ̂E (x) , (2.150)

equation (2.140) can be translated into a periodicity constraint:

ψ̂E (x + a) = ψ̂E (x) .

Therefore wave functions in a periodic potential can be written as in (2.150), i.e. like
plane waves, which are called Bloch waves, modulated by periodic functions ψ̂E (x).

It must be noticed that the momentum associated with Bloch waves, p(E) =
(�/a)φ(E), cannot take all possible real values, as in the case of free particles, but
is limited to the interval (−�π/a, �π/a), which is known as the first Brillouin zone.
This limitation can be seen as the mathematical reason underlying the presence of
bands.
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On the other hand, the relation which in a given band gives the electron energy as a
function of the Bloch momentum (dispersion relation) is very intricate from the ana-
lytical point of view. It is indeed the inverse function of p(E) = (�/a) arccos(A(E))

with A(E) defined by (2.145). For that reason we limit ourselves to some qualitative
remarks.

By noticing that in the lower ends of the bands, xn, n = 1, 2, . . . , the parameter
A in (2.145) is equal to

cos xn + sin xn

γ xn
= sin xn

2

(
γ xn + 1

γ xn

)
= (−1)n+1 , (2.151)

we have: eiφ|xn = (−1)n+1. Hence φ(xn) = 0 for odd n and φ(xn) = ±π for
even n. Instead in the upper ends, x = nπ, we have A = cos nπ = (−1)n hence
φ(nπ) = 0 for even n and φ(nπ) = ±π for odd n. Moreover, for a generic A between
−1 and 1, there are two solutions: A ± i

√
1 − A2 corresponding to opposite phases

(φ(E) = ± arctan (
√
1 − A2/A)) interpolating between 0 and ±π.

Therefore, based on Fig. 2.5, we come to the conclusion that in odd bands the
minimum energy corresponds to states with p = 0, while states at the border of the
Brillouin zone have the maximum possible energy. The opposite happens instead for
even bands. Finally we observe that the derivative d E /dp vanishes at the border of
the Brillouin zone, where A2 = 1 and A has a non-vanishing derivative, indeed we
have

d E

dp
= a

�

(
d(arccos A(E))

d E

)−1

= ±a

�

√
1 − A2

d A(E)/d E
. (2.152)

2.9 The Schrödinger Equation in a Central Potential

In the case of a particle moving in three dimensions under the influence of a central
force field, the symmetry properties of the problem play a dominant role.

Indeed, already at the classical level, the invariance of the Hamiltonian, H =
p2/(2M) + V (r), under rotations around the center, identified with the origin,
implies conservation of the angular momentum L = r ∧ p. Once L is specified,
the motion must be planar on a plane orthogonal to it. The absolute value of the
angular momentum L identifies the areal velocity L/(2M) = r2θ̇/2. It follows that
the kinetic energy on the plane, which is given by M/2[(ṙ)2 + r2(θ̇)2], is equal to
m(ṙ)2/2 + L2/(2Mr2) and hence the energy in a central potential is given by:

E = M(ṙ)2

2
+ L2

2Mr2
+ V (r) = p2r

2M
+ L2

2Mr2
+ V (r) . (2.153)

Thus, if the angular momentum is specified, the energy appears as a function of
the radius and of its time derivative and the equations of motions separate into an
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equation for the radial motion and another equation for the angular motion. One has
separation of variables.

In the framework of quantum mechanics this simple approach to the motion in a
central potential does not work, because of the uncertainty principle, which forbids
a complete determination of the angular momentum vector. This vector corresponds
to the vector valued operator −i�r ∧ ∇. Indeed, considering the relation shown in
Sect. 2.4 between uncertainty in the distribution of pairs of observables and lack of
commutativity of the corresponding operators, the angular momentum uncertainty
follows from the fact that the operators corresponding to its components do not
commute. For example, the x-component of the particle angular momentum around
the center is given by Lx = i�(z∂y − y∂z) and the y-component is L y = i�(x∂z −
z∂x ). These operators do not commute. Indeed

[Lx , L y] ≡ Lx L y − L y Lx = �
2(y∂x − x∂y) ≡ i�Lz . (2.154)

In much the same way we find

[L y, Lz] = i�Lx , [Lz, Lx ] = i�L y . (2.155)

We can still exploit the consequences of the rotation invariance in the analysis of
solutions of the stationary Schrödinger equation:

− �
2

2M
∇2ψE (r) + V (r)ψE (r) = EψE (r) . (2.156)

The standard method is based on Group Theory, but we do not assume our readers to
be Group Theory experts, hence we adopt a different approach. The only Group The-
ory result that we exploit, as we have already done a few times in the preceding part
of this text, is what we have called symmetry principle; if the Schrödinger equation
is left invariant by a coordinate transformation, we can always find a complete set of
solutions which do not change, but for a phase factor, under the transformation. This
set is complete when all square integrable, or locally square integrable, solutions of
physical interest can be written as linear combinations of elements of the set.

We start considering, among all possible rotations, those around one particular
axis, for instance the z axis. These rotations transform x → x ′ = x cosφ − y sin φ
and y → y′ = y cosφ + x sin φ, while z is left unchanged. An equivalent and
simpler way of representing these rotations, making use of complex combinations
of coordinates, is:

x ′± ≡ x ′ ± iy′ = e±iφx±, and z′ = z . (2.157)

We can represent the same rotations in spherical coordinates (r, θ,ϕ), defined by

x± = r sin θ exp(±iϕ), and z = r cos θ , (2.158)
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in which they are equivalent to the translations ϕ → ϕ′ = ϕ + φ. According to the
symmetry principle, we consider solutions of equation (2.156) transforming under
the above rotations as ψE −→ eiΦψE .

The phase Φ is necessarily a linear function of φ, as it appears by observing that
for two subsequent rotations around the same axis, with angles φ and φ′, we have
Φ(φ) + Φ(φ′) = Φ(φ + φ′). Then asking that for φ = 2π the wave function is left
unchanged, i.e. that Φ(2π) = 2πm with m any relative integer, we obtain that, in
spherical coordinates, we have a complete set of solutions of equation (2.156) of the
form:

ψE,m(r) ≡ ψE,m(r, θ,ϕ) = ψ̂E,m(r, θ)eimϕ . (2.159)

It is an easy exercise to verify that:

LzψE,m(r) = −i�(x∂y − y∂x )ψE,m(r) = −i�
∂

∂ϕ
ψE,m(r) = m�ψE,m(r) ,

(2.160)
which shows that the wave function satisfies Bohr’s quantization rule for Lz .

The operator i Lz , being proportional to the ϕ-derivative, appears as the generator
of rotations around the z-axis, in much the same way as the x-derivative generates
translations of functions of the x variable. For isotropy reasons, this property of
generating rotations extends to the other components of the angular momentum.

If operators, wave functions and numbers are related by equations analogous
to (2.160), the wave function is called eigenfunction of the operator, and the coeffi-
cient in the right-hand side eigenvalue. Bohr’s quantization rule is thus interpreted
as an equation for the eigenvalues of Lz .

Nowwemust see how theother components of the angularmomentumoperator act
on the solutionsψE,m(r).Wefirst note that any component of the angular momentum
operator commutes with both the Laplacian operator and the distance from the center
r . For example, the Leibniz rule gives:

∇2Lx = i�(∂2
x + ∂2

y + ∂2
z )(z∂y − y∂z)

= i�(z∂y − y∂z)(∂
2
x + ∂2

y + ∂2
z ) + 2i�(∂z∂y − ∂y∂z) = Lx∇2 . (2.161)

It is easy to verify that one gets analogous results replacing ∇2 with r2 and/or Lx

with any other component of the angular momentum. Therefore we have, e.g., for
the x component

Lx

[
− �

2

2M
∇2 + V (r)

]
ψE (r) =

[
− �

2

2M
∇2 + V (r)

]
LxψE (r) = E LxψE (r) .

(2.162)
It means that the action of any component of the angular momentum on a solution
of equation (2.157) gives either a solution or zero.
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This result extends to the square of the angular momentum corresponding to the
operator

L2 ≡ L2
x + L2

y + L2
z , (2.163)

because L2 commutes with both the Laplacian and V (r). If A and B are operators
commuting with C , then also Am and Bn commute with Ck and, e.g., A2 + B2

commutes with C . Here A and B correspond to the components of L, while C is
either the Laplacian, or V (r).

It also is an easy exercise to verify, taking into account Eqs. (2.154) and (2.155),
that L2 commutes with all the components of the angular momentum. Thus, using
equations analogous to (2.162), we can show that L2 transforms any solutionψE,m of
(2.157) into another solution, possibly proportional to the first one, with the same E
and m. If there is a single solution, with given E and m, it is obvious that L2ψE,m ∼
ψE,m and hence ψE,m is an eigenfunction of L2. But in general there are many such
solutions. Let us denote the mentioned solutions by ψE,m,i . We have:

L2ψE,m,i =
Nm∑

j=1

lE,m,i, jψE,m, j . (2.164)

Thismeans that the operator L2 acts as themultiplication by thematrix lE,m,i, j on the
wave function space spanned by the ψE,m,i ’s, which is the set of linear combinations
of the ψE,m,i ’s with fixed m.

Identifying eigenfunctions and eigenvalues of L2 is a crucial step in the analysis
of the solutions to equation (2.156). For this it is convenient to choose the complex
coordinates (2.157), introducing the operators:

L± ≡ Lx ± i L y = ±�(2z∂x∓ − x±∂z) , (2.165)

for which the commutation relations (2.155) are translated into5:

[Lz, L±] = ±�L±, [L+, L−] = 2�Lz . (2.166)

Thus we have:
Lz L±ψE,m,i = �(m ± 1)L±ψE,m,i , (2.167)

which means that either L±ψE,m,i vanishes, or it satisfies (2.160) with the quantum
number m increased/decreased by one.

Now, for a given value of E , m cannot increase indefinitely. Indeed, from
Eq. (2.153), we see that the energy of the particle is the sum of a purely radial part,
p2r /(2M)+ V (r), and of two positive terms: (L2

x + L2
y)/(2Mr2) and L2

z/(2Mr2) =
�
2m2/(2Mr2). Given a square integrable wave function which is a single particle

5In spherical coordinates one has L± = �i exp(±iϕ)[cot θ∂ϕ ∓ i∂θ].
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bound state solution of equation (2.156) with a given energy, the single above men-
tioned terms are affected by uncertainties. But we can compute their average values.

Since L+ does not act on the radial variable, it is clear that the average value
of the first radial term remains fixed when m increases.6 In contrast the average
values of (L2

x + L2
y)/(2Mr2) and L2

z/(2Mr2) change, the second one increasing
by (�2m/2M)〈1/r2〉. Here, given an operator X , 〈X〉 denotes its average value.
The average value of positive quantities are necessarily positive and 〈1/r2〉 does
not change under the action of L+ because it is a radial property. Therefore the
variations of 〈(L2

x + L2
y)/(2Mr2)〉 cannot compensate the indefinite increase of

�
2m2/(2M)〈1/r2〉. Thus this must stop at a certain value of m. We denote by lE

the maximum, integer value of m which depends on E . The corresponding wave
functions ψE,lE ,α satisfy L+ψE,lE ,α = 0. We have:

L2ψE,lE ,α = �
2lE (lE + 1)ψE,lE ,α . (2.168)

because, from the commutation rule in (2.154), we get:

L2 = L−L+ + L2
z + �Lz = L+L− + L2

z − �Lz . (2.169)

Also, writing ψE,lE ,α as a function of the variables x+, x−x+ and z, and using

Lz = �(x+∂x+ − x−∂x−) , (2.170)

we have, from LzψE,lE ,α = lEψE,lE ,α:

ψE,lE ,α = xlE+ gE,lE ,α(x−x+, z) (2.171)

and, from L+ψE,lE ,α = 0, we have:

ψE,lE ,α = xlE+ fE,lE ,α(r) . (2.172)

Therefore we have separation of variables because this wave function is equal to
the product of a purely angular factor, (sin θ exp(iϕ))lE and a purely radial one,
rlE fE,lE ,α(r).

Starting from ψE,lE ,α, we can build a sequence of solutions of equation (2.156),
that we denote by ψE,lE ,m,α, being understood the identification ψE,lE ,lE ,α ≡
ψE,lE ,α. These new wave functions are identified, up to a multiplicative constant,
by:

ψE,lE ,m,α ∼ LlE −m
− ψE,lE ,α , (2.173)

6This argument assumes wave function factorization into radial and angular factors. An alternative
and simpler argument is based on the assumption that

∑
m Nm is finite. This is easily justified in the

case of a finite range potential, since we know that the number of independent states with limited
energy in a finite volume is finite.
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This sequence must stop when m reaches −lE because, using the second identity
in (2.169) and L2ψE,lE ,m,α = �

2lE (lE + 1)ψE,lE ,m,α, we have:

L+L−ψE,lE ,m,α = �
2(lE (lE + 1) − m2 + m)ψE,lE ,m,α , (2.174)

which implies that L−ψE,lE ,−lE ,α = 0. Then from (2.165) we find that

ψE,lE ,−lE ,α ∼ xlE− fE,lE ,α(r) . (2.175)

So, for each α, we have found a multiplet of 2lE + 1 eigenfunctions of L2 which are
built starting from (2.172) and repeatedly acting on it by L−. All the eigenfunctions
of the multiplet have the same radial dependence. One might wonder if the alternate
action of L+ and L− might produce more solutions with the same m belonging to
the same multiplet but not proportional to each other. The negative answer follows
directly from Eq. (2.174) which shows that this alternate action changes the wave
function by a multiplicative constant. Hence the 2lE + 1 wave functions ψE,lE ,m,α

span, for each value of α, an independent linear space invariant under the action of
the angular momentum components.

The above analysis, which has begun from the solutions of equation (2.156) with
maximum m (m = lE ), can be repeated considering the remaining solutions of
equation (2.156) which are linearly independent of those belonging to the identified
multiplets. We start considering the independent solutions of the set ψE,lE −1,i . If
their number exceeds, by p, that of the already identified multiplets, we can select
p linear combinations of the ψE,lE −1,i ’s that, using the same notation introduced
above, we denote by ψE,lE −1,lE −1,β , which are annihilated by L+, that is, such that
L+ψE,lE −1,lE −1,β = 0. Indeed, if L+ψE,lE −1,lE −1,β does not vanish, it must be
linearly dependent on the L+ψE,lE ,lE −1,α’s, since these span the linear space of the
solutions with maximum m. That is, we must have:

L+

[
ψE,lE −1,lE −1,β −

∑

α

cαβψE,lE ,lE −1,α

]
= 0 . (2.176)

But the wave function in brackets does not vanish because ψE,lE −1,lE −1,β is chosen
linearly independent of the members of the already built multiplets, therefore

ψ̂E,lE −1,lE −1,β ≡ ψE,lE −1,lE −1,β −
∑

α

cαβψE,lE ,lE −1,α , (2.177)

is a solution with m = lE − 1 which is annihilated by L+. In this way we can finally
build the chosen set of p independent solutions annihilated by L+.

From these solutions, repeatedly acting with L−, we can build p new multiplets
of eigenfunctions of L2. Continuing this procedure we show that, among the N =∑

i Ni independent solutions of equation (2.156), we can select N independent linear
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combinations belonging tomultiplets of eigenfunctions of L2 and, of course Lz , with
eigenvalues �

2l(l + 1) (lE ≥ l ≥ 0) and �l ≥ �m ≥ −�l, respectively.
We have seen that the angular dependence of the wave functions is identified once

the quantum number l and m are given, while the radial dependence is identified by
the multiplet. In much the same way as in (2.172) and (2.175), the wave functions
are given as the product of radial functions, left invariant by the action of L±, by
homogeneous polynomials, called harmonic polynomials, thatwe denote byY l,m(r).

ψE,l,m,α(r) = Y l,m(r) fE,l,α(r) . (2.178)

We can also deduce the transformation properties of the wave functions given
in (2.178) under spatial reflection r → −r , usually called parity transformation,
using the fact that the Y l,m(r)’s are homogeneous polynomials of degree l. The
result is ψE,l,m,α(−r) = (−1)lψE,l,m,α(r). The harmonic polynomials, which are
built by repeatedly acting on xl± by L∓, are called harmonic since they satisfy7

∇2Y l,m(r) = 0, r · ∇Y l,m(r) = lY l,m(r) = 0 , (2.179)

the second equation being equivalent to homogeneity. Indeed both Eq. (2.179) hold
true for xl± and the homogeneous operators L± commute with the Laplacian. For
the time being we do not specify any normalization prescription for these harmonic
polynomials except that implied by the equation

Y l,−m = (−1)mY∗
l,m . (2.180)

In order to make the construction clear it is convenient to give a few simple examples
of harmonic polynomials:

Y 0,0(r) ∼ 1, Y 1,±(r) ∼ ∓x±, Y 1,0(r) ∼ z (2.181)

Y 2,±2(r) ∼ x2±, Y 2,±1(r) ∼ ∓zx±, Y 2,0(r) ∼ 2z2 − x+x− ,

where the normalization is left free, but the sign is fixed assuming positive sign of
Y l,0 on the positive z-axis and considering the sign induced by the action of L±
defined in (2.165).

It is now possible to consider that the basic purpose of the presented construction
was to insert into the Schrödinger equation in a central potential (2.156) themaximum
possible information about the angular momentum of the particle. This is equivalent
to choosing the solutions of the form in (2.178) and reducing (2.156) to an equation
for the radial wave function fE,l,α(r), which is deduced computing the action of the
Laplacian on a generic product Y l,m(r) f (r). We have:

7In complex coordinates the Laplacian operator is given by: 4∂x+∂x− + ∂2
z .
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∇2(Y l,m(r) f (r)) = f (r)∇2Y l,m(r) + Y l,m(r)∇2 f (r)

+ 2(∇Y l,m(r)) · ∇ f (r) = Y l,m(r)∇ · (r
f ′(r)

r
) + 2(r · ∇Y l,m(r))

f ′(r)

r

= Y l,m(r)
[
2(l + 1)

f ′(r)

r
+ f ′′(r)

]
, (2.182)

therefore the Schrödinger equation for fE,l,α(r) becomes:

− �
2

2M

(
f ′′
E,l,α(r) + 2(l + 1)

f ′
E,l,α(r)

r

)
+ V (r) fE,l,α(r) = E fE,l,α(r) . (2.183)

In spherical coordinates the harmonic polynomials appear as polynomials in cos θ
multiplied by rl sinm θ exp(±imϕ). In order to complete the separations of the r
dependence in the solutions of (2.156) we introduce the spherical harmonics:

Yl,m(θ,ϕ) = Y l,m(r)
rl

, (2.184)

now specifying the normalization conditions:

∫ 2π

0
dϕ

∫ 1

−1
d cos θ Y ∗

l,m(θ,ϕ)Yl ′,m′(θ,ϕ) = δl,l ′δm,m′ . (2.185)

This is an orthonormalization condition for the spherical harmonics, which is partic-
ularly convenient for normalizing the wave functions. For reader’s convenience, we
give the explicit form of spherical harmonics up to l = 2:

Y0,0 =
√

1

4π
; Y1,0 =

√
3

4π
cos θ; Y1,±1 = ∓

√
3

8π
sin θe±iϕ;

Y2,0 =
√

5

16π
(3 cos2 θ − 1); Y2,±1 = ∓

√
15

8π
sin θ cos θe±iϕ;

Y2,±2 =
√

15

32π
sin2 θe±2iϕ . (2.186)

The solutions of the Schrödinger equation are written in terms of the spherical har-
monics in the form:

ψE,l,m,α(r) = Yl,m(θ,ϕ)
χE,l,α(r)

r
, (2.187)

where, if the wave function is normalized, |χE,l,α(r)|2 is the probability density of
finding the particle at a distance r from the center. The equation for χE,l,α(r) is
obtained replacing in (2.183) fE,l,α(r) by r−(l+1)χE,l,α(r). The radial Schrödinger
equation becomes:
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− �
2

2M
χ′′

E,l,α(r)+ �
2l(l + 1)

2Mr2
χE,l,α(r)+ V (r)gχE,l,α(r) = E χE,l,α(r) , (2.188)

as expected from Eq. (2.153). Indeed this is the one-dimensional stationary
Schrödinger equation corresponding to the energy associated with the radial motion
given in (2.153).

Let us discuss this point in few more details. Consider the energy appearing
in (2.153) as an operator, whose action on the wave function specifies the right-
hand side of the stationary Schrödinger equation (2.156). The term proportional to
the Laplacian in (2.156), written in spherical coordinates, apparently corresponds
to the sum of the first two terms in (2.153). The first term, which is proportional
to the square of the radial momentum pr , corresponds to the first term in (2.188),
because the radial momentum, which is the variable conjugate to r , corresponds
to the operator −i�∂r . The second term is proportional to L2. Having written the
solutions to equation (2.156) as products of radial functions and of eigenfunctions
of the operator L2, whose eigenvalues are �

2l(l + 1) for non-negative integer l, it
is clear that the second term in (2.188) corresponds to the term proportional to L2

in (2.153).
This proves that we have obtained the quantum mechanical equivalent of the

classical separation of variables described at the beginning of this section. In the
following subsections we shall study the simplest solutions to the radial equation in
a few cases with simple potentials.

2.9.1 A Piecewise Constant Potential and the Free
Particle Case

The strategy for the solution to the Schrödinger equation in the case of a piecewise
constant potentialV (r) is essentially the same as in the one dimensional case,we have
only to pay special attention to the additional constraint that the wave function must
vanish in r = 0, otherwise the related three dimensional probability density would be
divergent in a positionwhere the potential is flat. In particular, in the S wave case (that
being the usual way of indicating the case l = 0) Eq. (2.188) coincides with the one
dimensional Schrödinger equation, therefore we can obtain its solutions as a linear
combination of the functions sin(

√
2M(E − V )r/�) and cos(

√
2M(E − V )r/�) for

E > V and exp(±√
2M(E − V )r/�) in the opposite case. In the case of a spherical

potential well:
V (r) = −V0Θ(R − r) , (2.189)

where V0 > 0 and Θ(x) is the step function (Θ(x) = 1 for x > 0 and Θ(x) =
0 for x < 0), the (S wave) radial equation coincides with the one-dimensional
Schrödinger equation discussed in Sect. 2.6 for the parity odd wave functions in a
square well with width L = 2R. Thus one can find the equation for the binding
energy in (2.106).
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For l > 0 Eq. (2.188) can be written in the form:

χ′′
E,l(r) +

[
σq2 − l(l + 1)

r2

]
χE,l(r) = 0 . (2.190)

with

q =
√
2M

�2
|E − V | and σ = E − V

|E − V | , (2.191)

this implies that sine, cosine and exponentials must be replaced by new special
functions (which are called spherical Bessel functions), which can be explicitly con-
structed using the recursive equation:

q χE,l+1(r) = l + 1

r
χE,l(r) − χ′

E,l(r) . (2.192)

This recursive equation is proved as follows. Assuming Eq. (2.192) and using (2.190)
we obtain

qχ′
E,l+1 = σq2χE,l − q(l + 1)

χE,l+1

r
. (2.193)

Using again Eqs. (2.192) and (2.193),

χ′′
E,l+1 = σqχ′

E,l − (l + 1)

r
[χ′

E,l+1 − χE,l+1

r
]

= −σq2χE,l+1 + l + 1

r
[σqχE,l − χ′

E,l+1] + (l + 1)
χE,l+1

r2

= −σq2χE,l+1 + (l + 2)(l + 1)

r2
χE,l+1 . (2.194)

This shows that, by (2.192), we can obtain, from a solution of equation (2.190),
another solution of the same equation with l increased by one.8 For the internal case,
σ = 1, we have in particular:

χE,0(r) = sin(qr), χE,1(r) = sin(qr)

qr
− cos(qr) . (2.195)

while analogous solutions (with real exponentials replacing trigonometric functions,
as usual) are found in the external region for E < 0, i.e. for bound states. The
asymptotic property:

χE,l(r) →
qr→∞

sin(qr − lπ

2
) , (2.196)

is a direct consequence of Eq. (2.192).

8The spherical Bessel functions, jl(qr) are identified with χE,l+1(r)/(qr) normalized according
to (2.192) and χE,0(qr) = sin(qr).
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If, for instance, we want to study the possible bound states in P wave (i.e. l = 1)
in the above potential well, setting the energy to −B and defining qi = √

2M B/�2

and qe = √
2M(V0 − B)/�2 we must continuously connect the internal solution

sin(qir)/qir − cos(qir), which vanishes in r = 0, with the external solution which
vanishes as r → ∞, i.e. a e−qe(r−R)(1/qer + 1). This leads to the system:

sin(qi R) − qi R cos(qi R)

qi
= a

1 + qe R

qe

sin(qi R)(1 − q2
i R2) − qi R cos(qi R)

qi
= a

1 + qe R + q2
e R2

qe
.

Therefore, setting y = √
2MV0R/�, x = qi R and hence qe R = √

y2 − x2, we have
the transcendental equation:

tan x = x
y2 − x2

y2 + x2
√

y2 − x2
.

Considering the bound state condition: 0 ≤ x ≤ y, the above equation requires
0 ≤ tan x/x ≤ 1 and tan y/y = 0. This implies the absence of l = 1 bound states
for y < π while we have seen, comparing with the one dimensional case, that the
first l = 0 bound state appears for y = π/2.

We explicitly notice that, for V = 0, solutions to equation (2.190) provide the
wave functions for the free particle problem. Let us discuss in particular the case
l = 0: from (2.186), (2.187) and (2.195) we deduce that solutions with zero angular
momentum and E > 0 are

ψE,l=0(r) ∝ sin kr

r
, (2.197)

where �k = √
2M E . If we insert time dependence explicitly, such a solution can be

rewritten in the form

ψE,l=0(r, t) ∝ e−i Et/� sin kr

r
∝ ei(pr−Et)/�

r
− e−i(pr+Et)/�

r
(2.198)

where p = k�. From that it is clear that the solution is the sum of two spherical
waves, the first propagating outwards, the second inwards. This can be confirmed
also by an explicit computation of the probability current density, which will show
that the two waves lead to the same probability flux across every spherical surface
centered around the origin, with a different sign for the inward and outward solution.

Analogous considerations hold for solutions with l > 0. In this way one finds
wave functions associated with particles with fixed energy and angular momentum,
which are alternative to the standard plane wave solutions, corresponding to fixed
energy and momentum. We will go back to free particle solutions when we discuss
the scattering problem.
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2.9.2 The Coulomb Potential

It is obviously of great interest to study bound states in a Coulomb potential, which
permits an analysis of the energy levels of the hydrogen atom. To this purpose,
let us consider the motion of a particle of mass m in a central potential V (r) =
−e2/(4πε0r), where ε0 is the vacuum dielectric constant and e is (minus) the charge
of the (electron) proton in MKS units; M is actually the reduced mass of the proton-
electron system, M = mem p/(me +m p), which is equal to the electron mass within
a good approximation. In this case it is convenient to start from Eq. (2.183), which
we rewrite as

f ′′
B,l(r) + 2(l + 1)

f ′
B,l(r)

r
+ 2Me2

4πε0�2r
fB,l(r) = 2M B

�2
fB,l(r) , (2.199)

where B ≡ −E is the binding energy. Before proceeding further, let us perform a
change of variables specifying the relevant parameters: we introduce Bohr’s radius
a0 = 4πε0�

2/(Me2) � 0.52 × 10−10 m and Rydberg’s energy constant ER ≡
h R ≡ Me4/(2�

2(4πε0)
2) � 13.6 eV, which are the typical length and energy scales

which can be constructed in terms of the physical constants involved in the problem.
Equation (2.199) can be rewritten in terms of the dimensionless radial variable ρ ≡
r/a0 and of the dimensionless binding energy B/ER ≡ λ2 (with λ ≥ 0), as follows:

f ′′
λ,l(ρ) + 2(l + 1)

f ′
λ,l(ρ)

ρ
+ 2

ρ
fλ,l(ρ) = λ2 fλ,l(ρ) . (2.200)

Let us first consider the asymptotic behavior of the solution as ρ → ∞: in this limit
the second and the third term on the left hand side can be neglected, so that the
solution of equation (2.200) is asymptotically also solution of f ′′

λ,l(ρ) = λ2 fλ,l(ρ),

i.e. fλ,l(ρ) ∼ e±λρ for ρ � 1. The asymptotically divergent behavior must obvi-
ously be rejected since we are looking for a solution corresponding to a normaliz-
able, single particle, bound state. We shall therefore write our solution in the form
fλ,l(ρ) = hλ,l(ρ)e−λρ, where hλ,l(ρ) should not diverge too strongly for ρ → ∞,
thus overcoming the damping exponential factor. The differential equation satisfied
by hλ,l(ρ) easily follows from (2.200):

h′′
λ,l +

(
2(l + 1)

ρ
− 2λ

)
h′

λ,l + 2

ρ
(1 − λ(l + 1)) hλ,l = 0 . (2.201)

Because the coefficients of this linear differential equation are analytic for ρ finite
and strictly positive, hλ,l(ρ) should also be an analytic function in this domain.
Therefore we can expand hλ,l(ρ) in power series of ρ, finding a recursion relation
for its coefficients. We shall then impose that the series stops at some finite order so
as to keep the asymptotic behavior of fλ,l(ρ) as ρ → ∞ unchanged.
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In order to understand what is the first term ρs of the series that we must take into
account, let us consider the behavior of Eq. (2.201) as ρ → 0. In this limit, setting
hλ,l ∼ ρs , it can be easily checked that (2.201) is satisfied at the leading order in ρ
only if s(s − 1) = −2s(l + 1), whose solutions are s = 0 and s = −2l − 1. Last
possibility must be rejected, otherwise the probability density related to our solution
would not be integrable around the origin. Hence we write:

hλ,l(ρ) = c0 + c1ρ + c2ρ
2 + · · · + chρh + · · · =

∞∑

h=0

chρh , (2.202)

with c0 �= 0. Inserting the last expression into (2.201), we obtain the following
recurrence relation for the coefficients ch :

ch+1 = 2
λ(h + l + 1) − 1

(h + 1)(h + 2(l + 1))
ch (2.203)

which, apart from an overall normalization constant fixing the starting coefficient c0,
completely determines our solution in terms of l and λ. However, if the recurrence
relation never stops, it becomes asymptotically (i.e. for large h):

ch+1 � 2λ

h
ch

which can be easily checked to be the same relation relating the coefficients in the
Taylor expansion of exp(2λρ). Therefore, if the series does not stop, the asymptotic
behavior of fλ,l(ρ) is corrupted, bringing in fact back the unwanted divergent behav-
ior fλ,l(ρ) ∼ eλρ. The series stops if and only if the coefficient on the right hand
side of (2.203) vanishes for some given value h = k ≥ 0, hence

λ(k + l + 1) − 1 = 0 ⇒ λ = 1

k + l + 1
. (2.204)

In this case hλ,l(ρ) is simply a polynomial of degree k in ρ, which is completely
determined (neglecting an overall normalization) as a function of l and k: these
polynomials belong to a well know class of special functions and are usually called
Laguerre’s associated polynomials. We have so found that, for a given value of l,
the admissible solutions with negative energy, i.e. the hydrogen bound states, can be
enumerated according to a non-negative integer k and the energy levels are quantized
according to (2.204).

If we replace k by a new, integer and strictly positive, quantum number n given
by:

n = k + l + 1 = λ−1 , (2.205)
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which is usually called the principal quantum number, then, according to (2.204)
and to the definition of λ, the energy levels of the hydrogen atom are given by

En = − ER

n2 = − Me4

8ε20h2n2
,

in perfect agreement with the Balmer–Rydberg series for line spectra and with the
qualitative result obtained in Sect. 2.2 using Bohr’s quantization rule.

It is important to note that, in the general case of a motion in a central field,
energy levels related to different values of the angular momentum l are expected to
be different, since they are related to the solutions of different equations of the form
given in (2.183). Stated otherwise, the only expected degeneracy is that related to the
rotational symmetry of the problem, leading to degenerate wave function multiplets
of dimension 2l + 1, as discussed above. However, in the hydrogen atom case, we
have found a quite different result: according to Eq. (2.205), for a fixed value of the
integer n > 0, there are n differentmultiplets, corresponding to l = 0, 1, . . . , (n−1),
having the same energy. The degeneracy is therefore

n−1∑

l=0

(2l + 1) = n2

instead of 2l +1. Unexpected additional degeneracies like this one are usually called
“accidental”, even if in this case the degeneracy is not so accidental. Indeed the
motion in a Coulomb (or gravitational) field has a larger symmetry than simply the
rotational one. We will not go into details, but just remind the reader of a particular
integral of motion which is only present, among all possible central potentials, in the
case of the Coulomb (gravitational) field: that is Lenz’s vector, which completely
fixes the orientation of classical orbits. Another central potential leading to a similar
“accidental” degeneracy is that corresponding to the three-dimensional isotropic
harmonic oscillator. Actually, the Coulomb potential and the harmonic oscillator are
joined in Classical Mechanics by Bertrand’s theorem, which states that they are the
only central potentials whose classical orbits are always closed.

Let us finish by giving the explicit form of the hydrogen wave functions in a few
cases. Writing them in a form similar to that given in (2.187), and in particular as

ψn,l,m(r, θ,φ) = Rn,l(r)Yl,m(θ,ϕ) ,

we have

R1,0(r) = 2(a0)
−3/2 exp(−r/a0) ,

R2,0(r) = 2(2a0)
−3/2

(
1 − r

2a0

)
exp(−r/2a0) ,

R2,1(r) = (2a0)
−3/2 r√

3a0
exp(−r/2a0) .
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2.9.3 The Isotropic Harmonic Oscillator

We go on with our introduction to the Schrödinger equation with central potentials
reconsidering the case of the isotropic harmonic oscillator, that we shall discuss in a
moment. We briefly recall the main results. The Schrödinger equation:

[
− �

2

2m
∇2 + k

2
r2
]

ψE = EψE , (2.206)

written in the form (2.134), appears separable in Cartesian coordinates and it
is possible to find solutions written as the product of one-dimensional solutions
ψnx ,ny ,nz (x, y, z) = ψnx (x)ψny (y)ψnz (z), and the corresponding energy is the sum
of one-dimensional energies,

Enx ,ny ,nz = �ω(nx + ny + nz + 3/2) = �ω(n + 3/2) ,

where n = nx + ny + nz and ω = √
k/m. In particular the ground state wave

function is ψ0(r) = (α2/π)3/4 exp(−α2r2/2), where α = √
mω/� is the inverse

of the typical length scale of the system introduced in (2.116). Using the operator
formalism we introduce three raising operators

A†
x = 1√

�ω
X− = 1√

2

(
αx − 1

α
∂x

)

A†
y = 1√

�ω
Y− = 1√

2

(
αy − 1

α
∂y

)

A†
z = 1√

�ω
Z− = 1√

2

(
αz − 1

α
∂z

)
, (2.207)

and we write the generic solution shown above in the form:

ψnx ,ny ,nz (x, y, z) = (A†
x )

nx (A†
y)

ny (A†
z )

nz

√
nx !ny !nz !

ψ0(r) , (2.208)

where the square root in the denominator is the normalization factor (see Eq. (2.133)).
As we have shown in Sect. 2.7, these solutions are degenerate, in the sense that there
are (n+1)(n+2)/2 solutions corresponding to the same energy En = �ω(n+3/2) if
n = nx + ny + nz , and form a complete set. They also have the same transformation
properties under reflection of all coordinate axes (parity transformation): indeed,
since the ground state is parity even and each raising operator is parity odd, it is
apparent that the solution corresponding to nx , ny, nz has parity (−1)nx +ny+nz =
(−1)n . However they have no well defined angular momentum property, their form
does not correspond to that shown in (2.187). Our purpose is to identify the solutions
with well defined angular momentum quantum numbers, that is l and m: they will
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form an alternative complete set, i.e. a different orthonormal basis for the linear space
of solutions corresponding to each energy level.

With this purpose it is useful to study the commutation rules of the angularmomen-
tum components with the raising operators and to take into account that the ground
state is rotation invariant, that is Liψ0(r) = 0, for i = ±, z. In order to simplify the
commutation rules we adapt our raising operators to the choice of complex coordi-
nates x±, z introducing:

A†
± = 1√

2

(
αx± − 2

α
∂x∓

)
= A†

x ± i A†
y . (2.209)

They satisfy the commutation rules:

[Lz, A†
z ] = 0, [Lz, A†

±] = ±�A†
±, [L±, A†

z ] = ∓�A†
±

[L±, A†
∓] = ±2�A†

z , [L±, A†
±] = 0, (2.210)

which can be easily verified to coincide with those between angular momentum
components and coordinates, after the substitution A†

z ↔ z and A†
± ↔ x±.

Due to the same correspondence and to the rotation invariance ofψ0, given a poly-
nomial P(x+, x−, z) in the coordinates and the wave function P(x+, x−, z)ψ0(r),
together with another wave function written in the operator formalism as P(A†

+, A†
−,

A†
z )ψ0(r), we can state that if

Li P(x+, x−, z)ψ0(r) = Qi (x+, x−, z)ψ0(r) , (2.211)

then
Li P(A†

+, A†
−, A†

z )ψ0(r) = Qi (A†
+, A†

−, A†
z )ψ0(r) . (2.212)

Notice that the A† operators commute among themselves, thus P(A†
+, A†

−, A†
z ) is a

well defined differential operator and P(A†
+, A†

−, A†
z )ψ0(r) is a well defined wave

function. The left-hand sides of the above equations are computed by repeatedly
commuting Li with the coordinates x+, x−, z, in the first equation, and with the
raising operators A†

+, A†
−, A†

z in the second one, until Li reaches and annihilates ψ0.
The strict correspondence of the commutation rules guarantees the validity of the
above equations.9

9This one-to-one correspondence between the action of the generators of rotations on the coordinates
and on the raising operators can be generalized to other linear, in fact unitary, transformations of the
coordinates, transforming homogeneous polynomials into homogeneous polynomials of the same
degree. These transformations act within degenerate multiplets of solutions of the Schrödinger
equation and clarify the origin of the additional degeneracy which is found for the central harmonic
potential.



136 2 Introduction to Quantum Physics

Hence in particular, considering the harmonic homogeneous polynomials, intro-
duced in (2.178), and recalling that:

L2Y l,m(x+, x−, z)ψ0(r) = �
2l(l + 1)Y l,m(x+, x−, z)ψ0(r) (2.213)

and that

LzY l,m(x+, x−, z)ψ0(r) = �mY l,m(x+, x−, z)ψ0(r)] , (2.214)

we have:

L2Y l,m(A†
+, A†

−, A†
z )ψ0(r) = �

2l(l + 1)Y l,m(A†
+, A†

−, A†
z )ψ0(r) , (2.215)

and
LzY l,m(A†

+, A†
−, A†

z )ψ0(r) = �mY l,m(A†
+, A†

−, A†
z )ψ0(r) . (2.216)

In this way we have identified a degenerate set of solutions of the Schrödinger
equation corresponding to the energy El = �ω(l + 3/2)E and with the angular
momentum given above. However this does not exhaust the solutions with the same
energy. Indeed for any positive integer k ≤ [l/2], considering that

L2Y l−2k,m(x+, x−, z)(r2)kψ0(r)

= �
2(l − 2k)(l − 2k + 1)Y l−2k,m(x+, x−, z)(r2)kψ0(r) (2.217)

and that

LzY l−2k,m(x+, x−, z)(r2)kψ0(r) = �mY l−2k,m(x+, x−, z)(r2)kψ0(r) (2.218)

we have

L2Y l−2k,m(A†
+, A†

−, A†
z )(A†

+ A†
− + (A†

z )
2)kψ0(r) (2.219)

= �
2(l − 2k)(l − 2k + 1)Y l−2k,m(A†

+, A†
−, A†

z )(A†
+ A†

− + (A†
z )

2)kψ0(r)

and

LzY l−2k,m(A†
+, A†

−, A†
z )(A†

+ A†
− + (A†

z )
2)kψ0(r)

= �mY l−2k,m(A†
+, A†

−, A†
z )(A†

+ A†
− + (A†

z )
2)kψ0(r) . (2.220)

Thereforewe have 2l − 4k + 1 further solutionswith the same energy El and angular
momentum l − 2k. Notice that we have not considered the problem of normalizing
the above wave functions. In this way, for any l, we have identified

(2l + 1) + (2l − 4 + 1) + · · · = (l + 1)(l + 2)/2
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independent solutions with energy El . These solutions form a complete degener-
ate set, i.e. a new basis, alternative to that described by Eq. (2.136), for the linear
space of solutions of energy El . Their angular momenta correspond to all possible
non-negative integers ranging from l down to zero (or one), but keeping the same
parity of l. This last property can be easily understood, recalling that all solutions
belonging to the same energy level of the isotropic harmonic oscillator have the same
transformation properties under parity (they are even or odd depending on the parity
of l, i.e. they have parity (−1)l ), and that, on the other hand, the solutions with fixed
angular momentum l̄ have parity (−1)l̄ .

2.9.4 The Scattering Solutions

In the previous examples we have considered the determination of bound state solu-
tions for some simple cases of central potentials. Now, to conclude, we consider a
scattering experiment: a beam of particles of given energy is launched towards a
fixed target. One is interested in determining the distribution of products after the
collision, with the assumption that far away from the target, both before and after the
collisions, a free particle approximation holds true. We limit ourselves to the case
of elastic scattering in which the final scattered particles have the same nature as the
beam ones and their energy loss is only due to the recoil of the scatterer. The exper-
iment is based on the measure of the angular distribution of particles scattered at a
certain angle with respect to the initial beam, which is assumed to be as monochro-
matic and parallel as possible. In principle, there should be a single scatterer which
should initially be at rest and should interact with a single beam particle. However
in practice the effect of a single scatterer, at the atomic level, would be too tiny to be
observable. Therefore, in most cases, one uses many scatterers which are contained,
e.g., in a piece of matter, a target, or else in a second beam crossing the first one.

A typical and renown example is Rutherford’s experiment in which an almost
parallel beam of alpha particles emitted by some radioactive material (Radium) and
selected by a suitable diaphragm, crosses a thin golden target.10 Since the alpha
particles are heavy, their interaction with the atomic electrons is negligible and, if
the target is thin enough, the scattered alpha particles have interacted with a single
atomic nucleus of gold.

The scattered particles are detected by observing the sparks they produce imping-
ing on a phosphorescent screen. The physical goal is to compare the intensity of
particles scattered at small angles with that at large angles. Nuclei with radii of the
same order of magnitude as the atomic radii should not scatter alpha particles at large
angles, while this should happen for much smaller nuclei, because the electric forces
generated by large nuclei are much smaller than those due to almost point-like ones.
Rutherford was able to show that the nuclear radii are smaller than 10−14 m, and

10As a matter of fact the experiment was suggested by Rutherford, but performed by Geiger and
Madsen.
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therefore he suggested his atomic model which has been discussed in the first pages
of this chapter.

In order to translate these qualitative considerations into quantitative ones, one
usually counts the number of scattered particles (sparks) detected per unit time in a
small solid angle around a given direction. This number should be proportional to the
number of particles carried by the initial beamper unit time, that is, that of the particles
crossing the beam section per unit time, and to the number of gold atoms which are
present in the beam-target intersection, this is proportional to the area of the beam
section. The coefficient of proportionality should thus have the dimensions of an area
divided by a solid angle; it is usually written in differential form as dσ/dΩ(E, θ)
and is called the differential cross section. dΩ is the infinitesimal solid angle, θ is
the polar angle taken with respect to the beam direction. The quantity σ, which is
obtained after integration of the previous quantity over dΩ , is an area called cross
section, because classically it coincides with the cross section of the scatterer as seen
by the beam. It is evident that θ is the only relevant angular variable here: we have
assumed isotropy of the scatterer and invariance of the beam under rotations around
the z axis.

Even if in many cases the mass of the scatterer Ms is much larger than that of
the beam particles, m p, and therefore practically the scatterer does not recoil, the
process can always be described in relative coordinates. Then the recoil effects are
taken into account replacing m p by the reduced mass m = Msm p/(Ms +m p). Once
this is done the above described elastic scattering process is represented assuming a
wave function ψk(r, θ) which, at large distances, tends to

ψk(r, θ) →
r→∞

eikr cos θ + f (cos θ)

r
eikr . (2.221)

We note that the collective interpretation of this wave function corresponds to a flux,
parallel to the z axis, of ingoing particles with flux density (the number of particles
per unit time crossing a unitary area orthogonal to the beam axis) Jz = �k/m, and
a radially scattered outgoing angular flux. The number of particles scattered per
unit time and unit solid angle is equal to Jr = | f (cos θ)|2�k/m. The ratio of these
two quantities which can be computed from Eq. (2.221) is just the differential cross
section:

dσ

dΩ
(cos θ) = | f (cos θ)|2 , (2.222)

and can be directlymeasured as described above. Therefore the physically interesting
question is how one can compute f (cos θ).

To start with, let us consider how a plane wave proceeding along the z axis,
exp(ikz) = exp(ikr cos θ), i.e. like the ingoing wave in (2.221), can be expanded in
a series of spherical harmonics multiplied by functions of r , i.e. in a series of free
particle solutions with fixed angular momentum. As we have seen, if the particle is
free, the radial functions are solutions of equation (2.190), i.e. they coincide with
spherical Bessel functions jl(kr) = χE,l(r)/(kr).We note that the above plane wave
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is left invariant by the rotations around the z axis, thus only the Yl,0’s should appear
among the spherical harmonics appearing in the expansion. Indeed we have:

exp(ikz) =
∞∑

l=0

i l
√
4π(2l + 1) jl(kr)Yl,0(cos θ) . (2.223)

The values of the coefficients in this expansion follow from the orthonormality of
the spherical harmonics, Eq. (2.185), and from the equation

2π
∫ 1

−1
dxeiyx Yl,0(x) →

y→∞
i l
√
4π(2l + 1)

sin(y − lπ
2 )

y
, (2.224)

which can be proved taking into account that the Yl,0(z)’s are polynomials in z with
parity (−1)l , that the following two equations hold:

Yl,0(1) =
√
2l + 1

4π
, (2.225)

∫ 1

−1
dyeixy xn →

y→∞
eiy − (−1)ne−iy

iy
= in 2

y
sin(y − nπ

2
) , (2.226)

and, finally, comparing (2.226) with the asymptotic behavior of the spherical Bessel
functions given in (2.196).

The physical interesting question is how the plane wave is deformed in the pres-
ence of a central potential V (r) which we assume vanishing at large r faster than
r−1. It is clear that, because of the presence of a non-trivial potential V (r), the
asymptotic behavior of the component with angular momentum l of the radial wave
functions does not coincide with the free one, that is, with the spherical Bessel func-
tion ∼sin(kr − lπ/2))/r . In contrast we have an asymptotic radial wave function
∼sin(kr − lπ/2 + δl))/r , where δl is called phase shift. Here we show how, given
the whole sequence δl , for l = 0, . . . ,∞, we can compute f (cos θ).

We note, first of all, that the asymptotic form of the plane wave in (2.223) is:

eikz →
kr→∞

∞∑

l=0

i l
√
4π(2l + 1)Yl,0(cos θ)

sin(kr − lπ
2 )

kr

=
∞∑

l=0

√
4π(2l + 1)

2ikr
Yl,0(cos θ)

[
eikr − (−1)l e−ikr

]
. (2.227)

Assuming for f (cos θ) the decomposition

f (cos θ) =
∞∑

l=0

√
4π(2l + 1) flYl,0(cos θ) , (2.228)
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we translate equation (2.221) into:

ψk(r, θ) →
r→∞

∞∑

l=0

√
4π(2l + 1)

2ikr
Yl,0(cos θ)

[
(1 + 2ik fl)e

ikr − (−1)l e−ikr
]

.

(2.229)
Here we must insert the above given information about the asymptotic behavior of
the radial wave functions related to the phase shifts. This is possible if, and only if,
the unitarity constraint

2ik fl = e2iδl − 1 , (2.230)

is fulfilled, and one has

ψk(r, θ) →
r→∞

∞∑

l=0

i l√4π(2l + 1)

kr
eiδl Yl,0(cos θ) sin(kr − lπ

2
+ δl) , (2.231)

and

f (cos θ) =
∞∑

l=0

√
4π(2l + 1)

k
eiδl sin δl Yl,0(cos θ) , (2.232)

from which one can compute the differential and the total cross section defined as

σ = 2π
∫ 1

−1
d cos θ| f (cos θ)|2 = 4π

k2

∞∑

l=0

(2l + 1) sin2 δl

= 4π
∞∑

l=0

2l + 1

k2 + k2 cot2 δl
. (2.233)

Taking into account (2.225) it is easy to verify that:

σ = 4π
Im f (1)

k
. (2.234)

This is a very general property of scattering, which relates the total cross section to
the differential cross section in the forward direction (cos θ = 1), which is usually
called the optical theorem.

Few examples of phase shift calculations are given in the problems (see in particu-
lar 2.41, 2.52 and 2.53), here we consider the example of the scattering by a rigid ball
of radius R, in which the radial wave function satisfies the free particle equation with
the vanishing condition at r = R. For l = 0 we have sin(k R − δ0) = 0 and hence
δ0 = k R. For l = 1 the free wave function is sin(k R−δ1)

k R − cos(k R − δ1) and hence
we have δ1 = k R − tan−1(k R), which for small energies vanishes as (k R)3. Going
further, it is possible to verify that for small energies the phase shifts δl ∼ (k R)2l+1.
This property holds true in general, if one identifies R with the (finite) range of the
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potential. The coefficient of k in the first term of the low energy expansion of δ0 is
called scattering length.

In the case at hand, for small energies, we have σ � 4πR2(1 + O((k R)2), that
is, four times the geometric section of the ball, which is equal to the classical cross
section. This proves the existence of diffractive contributions to the cross section. In
the general expression of the low energy cross section the scattering length replaces
R in the above formula.

For finite range potentials, at high energy, sin δl must vanish for all l since an infi-
nite number of l’s contribute to the cross section, which must approach the classical
value, thus remaining finite. Therefore lim →

k→∞
δl = nlπ with nl integer.
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Problems

2.1 A diatomic molecule can be simply described as two point-like objects of mass
m = 10−26 kg placed at a fixed distance d = 10−9 m. Describe what are the possible
values of the molecule energy according to Bohr’s quantization rule. Compute the
energy of the photons which are emitted when the system decays from the (n +1)-th
to the n-th energy level.

Answer: En+1 − En = (�2/2I )(n + 1)2 − (�2/2I )n2 = (2n + 1)�2/(md2) �
1.1 × 10−24(2n + 1) J. Notice that in Sommerfeld’s perfected theory, mentioned in
Sect. 2.2, the energy of a rotator is given by En = �

2n(n + 1)/2I , so that the factor
2n + 1 in the solution must be replaced by 2n + 2.

2.2 An artificial satellite of mass m = 1 kg rotates around the Earth on a circular
orbit of radius practically equal to that of the Earth itself, i.e. roughly 6370 km. If
the satellite orbits are quantized according to Bohr’s rule, what is the radius variation
when going from one quantized level to the next (i.e. from n to n + 1)?

Answer: If g indicates the gravitational acceleration at the Earth surface, the radius
of the n-th orbit is given by rn = n2

�
2/(m2R2g). Therefore, if rn = R, δrn ≡

rn+1 − rn � 2�/(m
√

Rg) � 2.6 × 10−38 m .



142 2 Introduction to Quantum Physics

2.3 An electron is accelerated through a potential difference ΔV = 108 V, what is
its wavelength according to de Broglie?

Answer: The energy gained by the electron is much greater than mc2, therefore
it is ultra-relativistic and its momentum is p � E/c. Hence λ � hc/eΔV �
12.4 × 10−15 m. The exact formula is instead λ = hc/

√
(eΔV + mc2)2 − m2c4.

2.4 An electron is constrained to bounce between two reflecting walls placed at a
distance d = 10−9 m from each other. Assuming that, as in the case of a stationary
electromagnetic wave confined between two parallel mirrors, the distance d be equal
to n half wavelengths, determine the possible values of the electron energy as a
function of n.

Answer: En = �
2π2n2/(2md2) � n2 6.03 × 10−20 J .

2.5 An electron of kinetic energy 1 eV is moving upwards under the action of its
weight. Can it reach an altitude of 1 km? If yes, what is the variation of its de Broglie
wavelength?

Answer: The maximum altitude reachable by the electron in a constant gravitational
field would be h = T/mg � 1.6 × 1010 m. After one kilometer the kinetic energy
changes by δT/T � 5.6 × 10−8, hence δλ/λ � 2.8 × 10−8. Since the starting
wavelength is λ = h/

√
2mT � 1.2× 10−9 m, the variation is δλ � 3.4× 10−17 m.

2.6 Ozone (O3) is a triatomic molecule made up of three atoms of mass m �
2.67× 10−26 kg placed at the vertices of an equilateral triangle with sides of length
l. The molecule can rotate around an axis P going through its center of mass and
orthogonal to the triangle plane, or around another axis L which passes through
the center of mass as well, but is orthogonal to the first axis. Making use of Bohr’s
quantization rule and setting l = 10−10 m, compare the possible rotational energies
in the two different cases of rotations around P or L .

Answer: The moments of inertia are IP = ml2 = 2.67 × 10−46 kgm2 and IL =
ml2/2 = 1.34 × 10−46 kgm2. The rotational energies are then EL ,n = 2EP,n =
�
2n2/2IL � n2 4.2 × 10−23 J.

2.7 A table salt crystal is irradiated with an X-ray beam of wavelength λ = 2.5 ×
10−10 m, the first diffraction peak (d sin θ = λ) is observed at an angle equal to
26.3◦. What is the interatomic distance of salt?

Answer: d = λ/ sin θ � 5.6 × 10−10 m.

2.8 In β decay a nucleus, with a radius of the order of R = 10−14 m, emits an
electron with a kinetic energy of the order of 1 MeV = 106 eV. Compare this value
with thatwhich according to the uncertainty principle is typical of an electron initially
localized inside the nucleus (thus having a momentum p ∼ �/R).

Answer: The order of magnitude of the momentum of the particle is p ∼ �/R ∼
10−20 N s, thus pc � 3×10−12 J, which is much larger that the electron rest energy
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mec2 � 8 × 10−14 J. Therefore the kinetic energy of the electron in the nucleus is
about pc = 3.15 × 10−12 J � 20 MeV.

2.9 An electron is placed in a constant electric field E = 1000 V/m directed along
the x axis and going out of a plane surface orthogonal to the same axis. The surface
also acts on the electron as a reflecting planewhere the electron potential energy V (x)

goes to infinity. The behavior ofV (x) is therefore as illustrated in the followingfigure.

�
�

�
�

�V(x)

x

Evaluate the order of magnitude of the minimal electron energy according to Heisen-
berg’s Uncertainty Principle.

Answer: The total energy is given by ε = p2/2m + V (x) = p2/2m + eEx , with
the constraint x > 0. From a classical point of view, the minimal energy would
be realized for a particle at rest (p = 0) in the minimum of the potential. The
uncertainty principle states instead that δ p δx ∼ �, where δx is the size of a region
around the potential minimumwhere the electron is localized. Therefore theminimal
total energy compatible with the uncertainty principle can be written as a function
of δx as E(δx) ≡ �

2/(2mδx2) + eEδx (δx > 0) and has a minimum

εmin ∼ 3

2

(
�
2e2E2

m

)1/3

∼ 0.6 × 10−4 eV .

2.10 An atom of mass M = 10−26 kg is attracted towards a fixed point by an elastic
force of constant k = 1 N/m; the atom is moving along a circular orbit in a plane
orthogonal to the x axis. Determine the energy levels of the system by making use
of Bohr’s quantization rule for the angular momentum computed with respect to the
fixed point.

Answer: Let ω be the angular velocity and r the orbital radius. The centripetal
force is equal to the elastic one, hence ω = √

k/M . The total energy is given by
E = (1/2)Mω2r2 + (1/2)kr2 = Mω2r2 = Lω, where L = Mωr2 is the angular
momentum. Since L = n�, we finally infer En = n�ω � n 1.05 × 10−21 J �
n 0.66 × 10−2 eV.

2.11 Compute the number of photons emitted in one second by a lamp of power
10 W, if the photon wavelength is 0.5 × 10−6 m.
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Answer: The energy of a single photon is E = hν and ν = c/λ = 6 × 1014 Hz,
hence E � 4 × 10−19 J. Therefore the number photons emitted in one second is
2.5 × 1019.

2.12 Aparticle ofmassm = 10−28 kg ismoving along the x axis under the influence
of a potential energy given by V (x) = v

√|x |, where v = 10−15 J m−1/2. Determine
what is the order of magnitude of the minimal particle energy according to the
uncertainty principle.

Answer: The total energy of the particle is given by

E = p2

2m
+ v

√|x | .

If the particle is localized in a region of size δx around the minimum of the potential
(x = 0), according to the uncertainty principle it has a momentum at least of the
order of δ p = �/δx . It is therefore necessary to minimize the quantity

E = �
2

2mδx2
+ v

√
δx

with respect to δx , finally finding that

Emin �
(

�
2v4

m

)1/5 (
21/5 + 2−9/5

)
� 0.092 eV.

It is important to notice that our result, apart from a numerical factor, could be
also predicted on the basis of simple dimensional remarks. Indeed, it can be easily
checked that (�2v4/m)1/5 is the only possible quantity having the dimensions of an
energy and constructed in terms of m, v and �, which are the only physical constants
involved in the problem. In the analogous classical problem � is missing, and v andm
are not enough to build a quantity with the dimensions of energy, hence the classical
problem lacks the typical energy scale appearing at the quantum level.

2.13 An electron beam with kinetic energy equal to 10 eV is split into two parallel
beams placed at different altitudes in the terrestrial gravitational field. If the altitude
gap is d = 10 cm and if the beams recombine after a path of length L , say for
which values of L the phases of the recombining beams are opposite (destructive
interference). Assume that the upper beam maintains its kinetic energy, that the total
energy is conserved for both beams and that the total phase difference accumulated
during the splitting and the recombination of the beams is negligible.

Answer: De Broglie’s wave describing the initial electron beam is proportional
to exp(i px/� − i Et/�), where p = √

2m Ek is the momentum corresponding to
a kinetic energy Ek and E = Ek + mgh is the total energy. The beam is split
into two beams, the first travels at the same altitude and is described by the same
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wave function, the second travels 10 cm lower and is described by a wave function

∝ exp(i p′x/� − i Et/�) where p′ =
√
2m E ′

k = √
2m(Ek + mgd) (obviously

the total energy E stays unchanged). The values of L for which the two beams
recombine with opposite phases are solutions of (p′ − p)L/� = (2n + 1)π where
n is an integer. The smallest value of L is L = π�/(p′ − p). Notice that mgd �
10−30 J � 10 eV � 1.6 × 10−18 J hence p′ − p � √

2m Ek(mgd/2Ek) and
L � 2π�Ek/(mgd

√
2m Ek) � 696 m. This experiment, which clearly demonstrates

the wavelike behavior of material particles, has been really performed using neutrons
in place of electrons: that has various advantages, among which that of leading to
smaller values of L because of the much heavier mass, as it is clear from the solution.
That makes the setting of the experimental apparatus simpler.

2.14 An electron is moving in the x − y plane under the influence of a magnetic
induction field parallel to the z-axis. What are the possible energy levels according
to Bohr’s quantization rule?

Answer: The electron is subject to the force ev∧ B where v is its velocity. Classically
the particle, being constrained in the x − y plane, would move on circular orbits with
constant angular velocity ω = eB/m, energy E = 1/2 mω2r2 and any radius r .
Bohr’s quantization instead limits the possible values of r by mωr2 = n�. Finally
onefinds E = 1/2 n�ω = n�eB/(2m). This is an approximation of the exact solution
for the quantum problem of an electron in a magnetic field (Landau’s levels).

2.15 The positron is a particle identical to the electron but carrying an opposite
electric charge. It forms a bound state with the electron, which is similar to the
hydrogen atom but with the positron in place of the proton: that is called positronium.
What are its energy levels according to Bohr’s rule?

Answer:The computation goes exactly along the same lines as for the proton–electron
system, but the reduced mass μ = m2/(m + m) = m/2 has to be used in place of
the electron mass. Energy levels are thus

En = − me4

16ε20h2n2
.

2.16 A particle of mass M = 10−29 kg is moving in two dimensions under the
influence of a central potential

V = σr ,

where σ = 105 N. Considering only circular orbits, what are the possible values of
the energy according to Bohr’s quantization rule?

Answer: Combining the equation for the centripetal force necessary to sustain the
circular motion, mω2r = σ, with the quantization of angular momentum, mωr2 =
n�, we obtain for the total energy, E = 1/2 mω2r2 + σr , the following quantized
values
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En = 3

2

(
�
2σ2

m

)1/3

n2/3 � 2 n2/3 GeV .

Notice that the only possible combination of the physical parameters available in
the problem with energy dimensions is (�2σ2/m)1/3. The potential proposed in this
problem is similar to that believed to act among quarks,which are the elementary con-
stituents of hadrons (a wide family of particles including protons, neutrons, mesons
…); σ is usually known as the string tension. Notice that the lowest energy coincides,
identifying σ = eE , with that obtained in Problem 2.9 using the uncertainty principle
for the one-dimensional problem.

2.17 The momentum probability distribution for a particle with wave function ψ(x)

is given by ∣∣∣∣
∫ ∞

−∞
dx

1√
h
e−i px/�ψ(x)

∣∣∣∣
2

≡ |ψ̃(p)|2 .

Compute the distribution for the following wave function ψ(x)= e−a|x |/2√a/2 (a
is real and positive) and verify the validity of the uncertainty principle in this case.

Answer: ψ̃(p) = (�a)3/2/(
√
4π(p2 + �

2a2/4)) hence

Δ2
x = a

2

∫ ∞

−∞
dx x2e−a|x | = 2

a2 ,

Δ2
p = (�a)3

4π

∫ ∞

−∞
dp

p2

(p2 + a2�2

4 )2
= a2

�
2

4
,

so that Δ2
xΔ

2
p = �

2/2 > �
2/4 .

2.18 Show that a wave packet described by a real wave function has always zero
average momentum. Compute the probability current for such packet.

Answer: From the relation

ψ̃(p) =
∫ ∞

−∞
dx

1√
h
e−i px/�ψ(x)

and ψ∗(x) = ψ(x) we infer

ψ̃∗(p) =
∫ ∞

−∞
dx

1√
h
ei px/�ψ(x) = ψ̃(−p)

hence |ψ̃(p)|2 = |ψ̃(−p)|2. The probability distribution function is even in momen-
tum space, so that the average momentum is zero. The probability current is zero as
well, in agreement with the average zero momentum, i.e. with the fact that there is
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not net matter transportation associated to this packet. Notice that the result does not
change if ψ(x) is multiplied by a constant complex factor eiφ.

2.19 The wave function of a free particle is

ψ(x) = 1√
2Ph

∫ P

−P
dq e

i qx
�

at time t = 0. What is the corresponding probability density ρ(x) of locating the
particle at a given point x?What is the probability distribution function inmomentum
space? Give an integral representation of the wave function at a generic time t ,
assuming that the particle mass is m.

Answer: The probability density is ρ(x) = |ψ(x)|2 = �/(πPx2) sin2 (Px/�)

while ψ(x, t) = (1/
√
2Ph)

∫ P
−P dqei

(
qx−q2t/2m

)
/�. The distribution in momentum

in instead given by |ψ̃(p)|2 = Θ(P2 − p2)/2P , where Θ is the step function,
Θ(y) = 0 for y < 0 and Θ(y) = 1 for y ≥ 0. Notice that for the given distribution
we have Δ2

x = ∞. The divergent variance is strictly related to the sharp, step-like
distribution in momentum space; indeed Δ2

x becomes finite as soon as the step is
smoothed.

2.20 An electron beam hits the potential step sketched in the figure, coming from
the right. In particular, the potential energy of the electrons is 0 for x < 0 and
−V = −300 eV for x > 0, while their kinetic energy in the original beam (thus for
x > 0) is Ek = 400 eV. What is the reflection coefficient?

. . . . . . . . . .
V(x)

x

Answer: The wave function can be written, leaving aside an overall normalization
coefficient which is not relevant for computing the reflection coefficient, as

ψ(x) = be−i k′x for x < 0 , ψ(x) = e−i kx + aei kx for x > 0

where k = √
2m Ek/� = √

2m(E + V)/� and k′ = √
2m(Ek − V)/� = √

2m E/�;
m is the electron mass and E = Ek − V is the total energy of the electrons. The
continuity conditions at the position of the step read

b = 1 + a , bk′ = (1 − a)k ,
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hence

b = 2

1 + k′/k
, a = 1 − k′/k

1 + k′/k
,

and

R = |a|2 =
(

k − k′

k + k′

)2

= 2E + V − 2
√

E(E + V)

2E + V + 2
√

E(E + V)
= 1

9
.

2.21 An electron beam hits the same potential step considered in Problem 2.20, this
time coming from the left with a kinetic energy E = 100 eV. What is the reflection
coefficient in this case?

Answer: In this case we write:

ψ(x) = ei k′x + be−i k′x for x < 0 , ψ(x) = aei kx for x > 0 ,

where again k = √
2m(E + V)/� and k′ = √

2m E/� with E = Ek being the total
energy. By solving the continuity conditions we find:

b = k′/k − 1

1 + k′/k
; R = |b|2 =

(
k′ − k

k + k′

)2

= 2E + V − 2
√

E(E + V)

2E + V + 2
√

E(E + V)
= 1

9
.

We would like to stress that the reflection coefficient coincides with that obtained in
Problem 2.20: electron beams hitting the potential step from the right or from the left
are reflected in exactly the same way, if their total energy E is the same, as it is in the
present case. In fact this is a general result which is valid for every kind of potential
barrier and derives directly from the invariance of the Schrödinger equation under
time reversal: the complex conjugate of a solution is also a solution. It may seem a
striking result, but it should not be so striking for those familiar with reflection of
electromagnetic signals in the presence of unmatching impedances.

Notice also that there is actually a difference between the two cases, consisting
in a different sign for the reflected wave. That is irrelevant for computing R but
significant for considering interference effects involving the incident and the reflected
waves. In the present case interference is destructive, hence the probability density is
suppressed close to the step, while in Problem 2.20 the opposite happens. To better
appreciate this fact consider the analogy with an oscillating rope made up of two
different ropes having different densities (which is a system in some sense similar to
ours), and try to imagine the different behaviors observed if you enforce oscillations
shaking the rope from the heavier (right-hand in our case) or from the lighter (left-
hand in our case) side. As an extreme and easier case, you could think of a single
rope with a free end (one of the densities goes to zero) or with a fixed end (one of
the densities goes to infinity): the shape of the rope at the considered endpoint is
cosine-like in the first case and sine-like in the second case, exactly as for the cases
of respectively the previous and the present problem in the limit V → ∞.
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2.22 An electron beam hits, coming from the right, a potential step similar to that
considered in Problem 2.20. However this time −V = −10 eV and the kinetic
energy of the incoming electrons is Ek = 9 eV. If the incident current is equal to
J = 10−3 A, compute how many electrons can be found, at a given time, along the
negative x axis, i.e. how many electrons penetrate the step barrier reaching positions
which would be classically forbidden.

Answer: The solution of the Schrödinger equation can be written as

ψ(x) = c ep′x/� for x < 0 , ψ(x) = a ei px/� + b e−i px/� for x > 0

where p = √
2m E and p′ = √

2m(V − E). Imposing continuity in x = 0 for both
ψ(x) and its derivative, we obtain c = 2a/(1 + i p′/p) and b = a(1 − i p′/p)/

(1 + i p′/p). It is evident that |b|2 = |a|2, hence the reflection coefficient is one.
Indeed the probability current J (x) = −i �/(2m)(ψ∗∂xψ −ψ∂xψ

∗) vanishes on the
left,wherewehave an evanescentwave function, henceno transmission.Nevertheless
the probability distribution is non-vanishing for x < 0 and, on the basis of the
collective interpretation, the total number of electrons on the left is given by

N =
∫ 0

−∞
|ψ(x)|2dx = |c|2�/(2p′) = 2|a|2�p2

p′(p2 + p′2)
.

The coefficient a can be computed by asking that the incident current Jel = eJ =
e|a|2 p/m ≡ 10−3 A. The final result is N � 1.2.

2.23 An electron is confined inside a cubic box with reflecting walls and an edge of
length L = 2 × 10−9 m. How many stationary states can be found with energy less
than 1 eV? Take into account the spin degree of freedom, which in practice doubles
the number of available levels.

Answer: Energy levels in a cubic box are Enx ,ny ,nz = π2
�
2(n2

x + n2
y + n2

z )/(2mL2),
where m = 0.911 × 10−30 kg and nx , ny, nz are positive integers. The constraint
E < 1 eV implies n2

x +n2
y +n2

z < 10.7, which is satisfied by 7 different combinations
((1,1,1), (2,1,1), (2,2,1) plus all possible different permutations). Taking spin into
account, the number of available levels is 14.

2.24 When a particle beam hits a potential barrier and is partially transmitted, a
forward going wave is present on the other side of the barrier which, besides having
a reduced amplitude with respect to the incident wave, has also acquired a phase
factor which can be inferred by the ratio of the transmitted wave coefficient to that
of the incident one. Assuming a thin barrier, describable as

V (x) = v δ(x) ,

and that the particles are electrons of energy E = 10 eV, compute the value of v for
which the phase difference is −π/4.
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Suppose now that we have two beams of equal amplitude and phase and that one
beam goes through the barrier while the other goes free. The two beams recombine
after paths of equal length. What is the ratio of the recombined beam intensity to that
one would have without the barrier?

Answer: On one side of the barrier the wave function is ei
√
2m Ex/�+a e−i

√
2m Ex/�,

while it is b ei
√
2m Ex/� on the other side. Continuity and discontinuity constraints

read 1+a = b andb−1+a = √
2m/Evb/�, fromwhichb = (1 + i

√
m/2Ev/�)−1

can be easily derived. Requiring that the phase of b be −π/4 is equivalent to√
m/2Ev/� = 1, hence v � 2.0 × 10−28 J m.
With this choice of v the recombined beam is [1+1/(1 + i )]ei

√
2m Ex/�. The ratio

of the intensity of the recombined beam to that one would have without the barrier
is |[1 + 1/(1 + i )]/2|2 = 5/8.

2.25 If a potential well in one dimension is so thin to be describable by a Dirac delta
function:

V (x) = −V Lδ(x)

where V is the depth and L the width of the well, then it is possible to compute the
bound state energies by recalling that for a potential energy of that kind the wave
function is continuous while its first derivative has the following discontinuity:

lim
ε→0

(∂xψ(x + ε) − ∂xψ(x − ε)) = −2m

�2
V Lψ(0) .

What are the possible energy levels?

Answer: The bound state wave function is

a e−√
2m Bx/� for x > 0 and a e

√
2m Bx/� for x < 0

where the continuity condition for the wave function has been already imposed.
B = |E | is the absolute value of the energy (which is negative for a bound state).
The discontinuity condition on the first derivative leads to an equation for B which
has only one solution, B = mV 2L2/(2�

2), thus indicating the existence of a single
bound state.

2.26 A particle of mass m moves in the following one-dimensional potential:

V (x) = v(αδ(x − L) + αδ(x + L) − 1

L
Θ(L2 − x2)) ,

where Θ is the step function, Θ(y) = 0 for y < 0 and Θ(y) = 1 for y > 0.
Constants are such that

2mvL

�2
=
(π

4

)2
.
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Find the conditions on α > 0 for the existence of bound states.

Answer: The potential is such that V (−x) = V (x): in this case the lowest energy
level, if any, corresponds to an even wave function. We can thus limit the discussion
to the region x > 0, where we have ψ(x) = cos kx for x < L and ψ(x) = ae−βx

for x > L , with the constraint 0 < k <
√
2mv/(�2L) = π/(4L), since β =√

2mv/(�2L) − k2 must be real in order to have a bound state, hence kL < π/4.
Continuity and discontinuity constraints, respectively on ψ(x) and ψ′(x) in x = L ,
give: tan kL = (β + 2mvα/�

2)/k. Setting y ≡ kL , we have

tan y =
√

π2

16 − y2 + π2

16α

y
.

The function on the left hand side grows from 0 to 1 in the interval 0 < y < π/4,
while the function on the right decreases from ∞ to απ/4 in the same interval.
Therefore an intersection (hence a bound state) exists only if α < 4/π.

2.27 An electron moves in a one-dimensional potential corresponding to a square
well of depth V = 0.1 eV and width L = 3×10−10 m. Show that in these conditions
there is only one bound state and compute its energy in the thin well approximation,
discussing also the validity of that limit.

Answer: There is one only bound state if the first odd state is absent. That is true
if y = √

2mV L/(2�) < π/2, which is verified in our case since, using m =
0.911 × 10−30 kg, one obtains y � 0.243 < π/2.

Setting B ≡ −E , where E is the negative energy of the bound state, B is obtained
as a solution of

tan

(
L
√
2m(V − B)

2�

)
=
√

B

V − B
.

The thin well limit corresponds to V → ∞ and L → 0 as the product V L is kept
constant. Neglecting B with respect to V we can write

tan

(√
2mV L2

2�

)
=
√

B

V
.

In the thin well limit V L2 → constant · L → 0, hence we can replace the tangent
by its argument, obtaining finally B = mV 2L2/(2�

2) � 0.59 × 10−2 eV, which
coincides with the result obtained in Problem 2.25. In this case the argument of the
tangent is y ∼ 0.24 and we have tan 0.24 � 0.245; therefore the exact result differs
from that obtained in the thin well approximation by roughly 4%.

2.28 An electron moves in one dimension and is subject to forces corresponding to
a potential energy:

V (x) = V[−δ(x) + δ(x − L)] .
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What are the conditions for the existence of a bound state and what is its energy if
L = 10−9 m and V = 2 × 10−29 J m?

Answer: A solution of the Schrödinger equation corresponding to a binding energy
B ≡ −E can be written as

ψ(x) = e
√
2m Bx/� for x < 0 ,

ψ(x) = ae
√
2m Bx/� + be−√

2m Bx/� for 0 < x < L ,

ψ(x) = ce−√
2m Bx/� for L < x .

Continuity and discontinuity constraints, respectively for the wave function and for
its derivative in x = 0 and x = L , give: a + b = 1, a − b − 1 = −√

2m/BV/�,

ae
√
8m BL/� + b = c, ae

√
8m BL/� − b + c = −c

√
2m/BV/�.

The four equations are compatible if e
√
8m BL/� = (1 − 2B�2

mV2 )−1, which has a
non-trivial solution B �= 0 for any L > 0. Setting y = √

2B/m�/V the compati-
bility condition reads e2mVLy/�2 = 1/(1 − y2). Using the values of L and V given
in the text one obtains e2mVL/�2 � 1, hence 2B�

2/(mV2) � 1 within a good
approximation, i.e. B � mV2/(2�

2), which coincides with the result obtained in the
presence of a single thin well. This approximation is indeed equivalent to the limit
of a large distance L (hence e2mVL/�2 � 1) between the two Dirac delta functions;
it can be easily verified that in the same limit one has b � 1 and a � 0, so that, in
practice, the state is localized around the attractive delta function in x = 0, which is
the binding part of the potential, and does not feel the presence of the other term in
the potential which is very far away.

As L is decreased, the binding energy lowers and the wave function amplitude,
hence the probability density, gets asymmetrically shifted on the left, until the binding
energy vanishes in the limit L → 0. In practice, the positive delta function in x = L
acts as a repulsive term which asymptotically extracts, as L → 0, the particle from
its thin well.

2.29 A particle of mass M = 10−26 kg moves along the x axis under the influence
of an elastic force of constant k = 10−6 N/m. The particle is in its ground state:
compute its wave function and the mean value of x2, given by

〈x2〉 =
∫∞
−∞ dxx2|ψ(x)|2
∫∞
−∞ dx |ψ(x)|2 .

Answer:

ψ(x) =
(

k M

π2�2

)1/8

e−√
k Mx2/2�; 〈x2〉 = 1

2

�√
k M

� 5 10−19m2 .
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2.30 Aparticle ofmass M = 10−25 kgmoves in a 3-dimensional isotropic harmonic
potential of elastic constant k = 10 N/m. How many states have energy less than
2 × 10−2 eV?

Answer: Enx .ny ,nz = �
√

k/M(3/2 + nx + ny + nz). Therefore Enx .ny ,nz < 2 ×
10−2 eV is equivalent to nx + ny + nz < 1.54, corresponding to 4 possible states,
(nx , ny, nz) = (0,0,0), (1,0,0), (0,1,0), (0,0,1).

2.31 A particle of mass M = 10−26 kg moves in one dimension under the influence
of an elastic force of constant k = 10−6 N/m and of a constant force F = 10−15 N
acting in the positive x direction. Compute the wave function of the ground state and
the corresponding mean value of the coordinate x , given by

〈x〉 =
∫∞
−∞ dxx |ψ(x)|2
∫∞
−∞ dx |ψ(x)|2 .

Answer: As in the analogous classical case, the problem can be brought back to
a simple harmonic oscillator with the same mass and elastic constant by a simple
change of variable, y = x − F/K , which is equivalent to shifting the equilibrium
position of the oscillator. Hence the energy levels are spaced as for the harmonic
oscillator and the wave function of the ground state is

ψ(x) =
(

k M

π2�2

)1/8

e−
√

k M
2�

(x−F/k)2 ,

while 〈x〉 = F/k = 10−9 m.

2.32 A particle of mass m = 10−30 kg and kinetic energy equal to 50 eV hits a
square potential well of width L = 2 × 10−10 m and depth V = 1 eV. What is the
reflection coefficient computed up to the first non-vanishing order in V

2E ?

Answer: Let us choose the square well endpoints in x = 0 and x = L and fix
the potential to zero outside the well. Let ψs , ψc and ψd be respectively the wave
functions for x < 0, 0 < x < L and x > L . If the particle comes from the left, then
ψs = ei

√
2m Ex/� + a e−i

√
2m Ex/�, ψc = b ei

√
2m(E+V )x/� + c e−i

√
2m(E+V )x/� and

ψd = d ei
√
2m Ex/� where a and c are necessarily of order V/2E while b and d are

equal to 1 minus corrections of the same order. Indeed, as V → 0 the solution must
tend to a single plane wave. By applying the continuity constraints we obtain:

1 + a = b + c ,

1 − a � b − c + V

2E
,
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be
i
√
2m(E+V )L

� +c e−i
√
2m(E+V )L/� � (b+ V

2E
)ei

√
2m(E+V )L�−c e−i

√
2m(E+V )L/� ,

which are solved by a � V
4E (e2i

√
2m(E+V )L/� − 1) and

R = V 2

4E2 sin2
(√

2m(E + V )L

�

)
� 0.96 × 10−4 .

2.33 A particle of mass m = 10−30 kg is confined inside a line segment of length
L = 10−9 m with reflecting endpoints, which is centered around the origin. In the
middle of the line segment a thin repulsive potential barrier, describable as V (x) =
Wδ(x), acts on the particle, with W = 2 × 10−28 J m. Compare the ground state of
the particle with what found in absence of the barrier.

Answer: Let us consider how the solutions of the Schrödinger equation in a line
segment are influenced by the presence of the barrier. Odd solutions, contrary to even
ones, do not change since they vanish right in the middle of the segment, so that the
particle never feels the presence of the barrier. In order to discuss even solutions, let
us notice that they can be written, shifting the origin in the left end of the segment, as
ψs ∼ sin (

√
2m Ex/�) for x < L/2 and ψd ∼ sin (

√
2m E(L − x)/�) for x > L/2.

Setting z ≡ √
2m E L/(2�) the discontinuity in the wave function derivative in the

middle of the segment gives tan z = −z2�
2/(mLW ) � −10−1 z. Hence we obtain,

for the ground state, E � 2�2

mL2 π
2(1 − 2 × 10−1) � 2.75 × 10−19 J, slightly below

the first excited level.
Notice that, increasing the intensity of the repulsive barrier W from 0 to ∞,

the ground level grows from π2
�
2/(2mL2) to 2π2

�
2/(mL2), i.e. it is degenerate

with the first excited level in the W → ∞ limit. There is no contradiction with the
expected non-degeneracy since, in that limit, the barrier acts as a perfectly reflecting
partition wall which separates the original line segment into two non-communicating
segments: the two degenerate lowest states (as well as all the other excited ones) can
thus be seen as two different superpositions (symmetric and antisymmetric) of the
ground states of each segment.

2.34 An electron beam corresponding to an electric current I = 10−12 A hits,
coming from the right, the potential step sketched in the figure. The potential energy
diverges for x < 0 while it is −V = −10 eV for 0 < x < L and 0 for x > L ,
with L = 10−11 m. The kinetic energy of the electrons is Ek = 0.01 eV for x > L .
Compute the electric charge density as a function of x .

..........
V(x)

xL
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Answer: There is complete reflection in x = 0, hence the current density is zero
along the whole axis and we can consider a real wave function. In particular we set
ψ(x) = a sin(

√
2m E(x−L)/�+φ) for x > L andψ(x) = b sin(

√
2m(E + V )x/�)

for 0 < x < L . Continuity conditions read b sin(
√
2m(E + V )L/�) = a sin φ �

b sin(
√
2mV L/�), b cos(

√
2m(E + V )L/�) = √

E/(E + V )a cosφ � √
E/V

a cosφ � b cos(
√
2mV L/�) (notice that

√
2mV L/� � 0.57 rad hence

cos(
√
2mV L/�) � 0.85). That fixes

√
E/V tan

(√
2mV L/�

)
� tan φ � φ and

b = a
√

E/V / cos(
√
2mV L/�), while the incident current fixes the value of a,

I = ea2√2E/m. Finally we can write, for the charge density,

eρ = I

√
m

2E
sin2

(√
2m E

�
(x − L) + φ

)

for x > L and

eρ ∼ I

√
m E

2V 2 sin2
(√

2m E

�
x

)

for 0 < x < L .

2.35 Referring to the potential energy given in Problem 2.34, determine the values
of V for which there is one single bound state.

Answer: It can be easily realized that any possible bound state of the potential well
considered in the problem will coincide with one of the odd bound states of the
square well having the same depth and extending from −L to L . The condition for
the existence of a single bound state is therefore π/2 <

√
2mV L/� < 3π/2 .

2.36 A ball of mass m = 0.05 kg moves at a speed of 3 m/s and without rolling
towards a smooth barrier of thickness D = 10 cm and height H = 1 m. Using the
formula for the tunnel effect, give a rough estimate about the probability of the ball
getting through the barrier.

Answer: The transmission coefficient is roughly

T ∼ exp

⎛

⎝−2D

�

√

2m(mgH − mv2

2
)

⎞

⎠ � 10−1.3× 1032 .

2.37 What is the quantum of energy for a simple pendulum of length l = 1 m
making small oscillations?

Answer: In the limit of small oscillations the pendulum can be described as a har-
monic oscillator of frequency ν = 2πω = 2π

√
g/ l, where g � 9.81 m/s is the

gravitational acceleration on the Earth surface. The energy quantum is therefore
hν = 3.1 × 10−34 J.
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2.38 Compute the mean value of x2 in the first excited state of a harmonic oscillator
of elastic constant k and mass m.

Answer: The wave function of the first excited state is ψ1 ∝ x e−x2
√

km/(4�2), hence

〈x2〉 =
∫∞
−∞ x4e−x2

√
km/�2

dx
∫∞
−∞ x2e−x2

√
km/�2

dx
= 3

2

√
�2

km
.

2.39 A particle of mass M moves in a line segment with reflecting endpoints placed
at distance L . If the particle is in the first excited state (n = 2), what is the mean
quadratic deviation of the particle position from its average value, i.e.

√〈x2〉 − 〈x〉2 ?
Answer: Setting the origin in the middle of the segment, the wave function isψ(x) =√
2/L sin(2πx/L) inside the segment and vanishes outside. Obviously 〈x〉 = 0 by

symmetry, while

〈x2〉 = 2

L

∫ L
2

− L
2

x2 sin2
(
2πx

L

)
dx = L2

(
1

12
− 1

8π2

)

whose square root gives the requested mean quadratic deviation.

2.40 Anelectron beamof energy E hits, coming from the left, the following potential
barrier: V (x) = Vδ(x) where V is tuned to �

√
2E/m. Compute the probability

density on both sides of the barrier.

Answer: The wave function can be set to ei kx + a e−i kx for x < 0 and to b ei kx for
x > 0, where k = √

2m E/�. Continuity and discontinuity constraints for ψ and ψ′
in x = 0 lead to

a = 1
i k�2

mV − 1
= 1

i − 1
, b =

ik�2

mV
i k�2

mV − 1
= 1

i + 1
.

The probability density is therefore ρ = 1/2 for x > 0, while for x > 0 it is
ρ = 3/2 − √

2 sin(2kx + π/4).

2.41 A particle moves in one dimension under the influence of the potential given
in Problem 2.34. Assuming that

√
2mV

L

�
= π

2
+ δ , with δ � 1 ,

show that, at the first non-vanishing order in δ, one has B � V δ2, where B = −E
and E is the energy of the bound state. Compute the ratio of the probability of the
particle being inside the well to that of being outside.
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Answer: The depth of the potential is slightly above the minimum for having at
least one bound state (see the solution of Problem 2.36), therefore we expect a small
binding energy. In particular the equation for the bound state energy, which can
be derived by imposing the continuity constraints, is cot

(√
2m(V − B)L/�

) =
−√

B/(V − B). The particular choice of parameters implies B � V , so that
cot
(√

2m(V − B)L/�
) � cot(π/2(1 − B/(2V )) + δ) � −δ + πB/(4V ) �

−√
B/V , hence B � V δ2. Therefore the wave function is well approximated by

k sin (πx/2L) inside the well and by ke−√
2m B(x−L)/� � ke−πδ(x−L)/2L outside,

where k is a normalization constant. The ratio of probabilities is πδ/2: the very small
binding energy is reflected in the large probability of finding the particle outside the
well.

2.42 A particle of mass m = 10−30 kg and kinetic energy E = 13.9 eV hits a square
potential barrier of width L = 10−10 m and height V = E . Compute the reflection
coefficient R.

Answer: Let us fix in x = 0 and in x = L the edges of the square potential barrier, and
suppose the particle comes from the left. The wave function isψ(x) = ei kx +ae−i kx

for x < 0 and ψ(x) = d ei kx for x > L , where k = √
2m E/� � 2 × 1010 m−1.

Instead for 0 ≤ x ≤ L the wave function satisfies the differential equation ψ′′ = 0,
which has the general integral ψ(x) = bx + c. The continuity conditions for ψ and
ψ′ in x = 0 and x = L read

1 + a = c; i k (1 − a) = b; bL + c = d ei kL ; b = i k d ei kL .

Dividing last two equations and substituting the first two we get

a = i kL

i kL − 2
; R = |a|2 = k2L2

4 + k2L2 � 1

2
.

It is interesting to verify that the same result can be obtained by taking carefully the
limit E → V in (2.80).

2.43 Aparticle whose wave function is, for asymptotically large negative times (that
is −t � m/(�k0Δ)), a Gaussian wave packet

ψ(x, t) = 1√
(2π)3/2Δ

∫
dkei (kx−�k2t/(2m))e−(k−k0)2/(2Δ)2

with k0/Δ � 1, interacts in the origin through the potential V (x) = Vδ(x) and its
wave function splits into reflected and transmitted components. Considering values
of the time for which the spreading of the packets can be neglected, that is |t | �
m/(�Δ2) (see Sect. 2.4), compute the transmitted and reflected components of the
wave packet.
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Answer: The Gaussian wave packet has been studied in detail in Sect. 2.4, it is
therefore straightforward to check that, for large negative times, the solution that we
are seeking is a wave packet centered in x = vt , with v = �k0/m, i.e. a packet
approaching the barrier from the left and hitting it at t � 0.

It has been shown in Sect. 2.5.2 (see also Problem 2.24) that the generic solution
of the time independent Schrödinger equation, obtained in the case of a single plane
wave eikx hitting the barrier from the left, is

ψk(x) = Θ(−x)[exp(ikx) − iκ/(k + iκ) exp(−i kx)] + Θ(x)k/(k + iκ) exp(i kx)

where Θ is the step function (Θ(x) = 0 for x < 0 and Θ(x) = 1 for x ≥ 0) and
κ = mV/�

2.
The present problem consists in finding a solution of the time dependent

Schrödinger equationwhich, for asymptotically large negative times and x < 0,must
be a given superposition of progressive plane waves corresponding to the incoming
wave packet. Given the linearity of the Schrödinger equation, the solution must be a
linear superposition of the generic solutions given above, with the same coefficients
of the incoming packet, i.e.

ψ(x, t) = 1√
(2π)3/2Δ

∫
dk ψk(x)e−i�k2t/(2m)e−(k−k0)2/(2Δ)2 .

This decomposes into two components for x < 0 and a single transmitted component
for x > 0.

The first, ingoing component on the negative semi-axis, which corresponds to
ψk(x) = exp(i kx), is a standard Gaussian packet which, as discussed above, crosses
the origin for t ∼ 0 and hence disappears for larger times. On the contrary, as we
shall show in a while, the second, reflected component describes a packet moving
backward, which crosses the origin for t ∼ 0, hence appears as a part of the solution
for x < 0 for positive times (i.e. after reflection of the original packet), when it
must be taken into account. In much the same way we shall compute the transmitted
component, which is a packet moving forward and which appears on the positive
semi-axis for positive times. Now we work out the details.

We represent the transmitted and reflected wave packets by

1√
(2π)3/2Δ

∫ ∞

−∞
dt exp(−FT/R(k, x, t))

FT (k, x, t) = (k − k0)
2/(2Δ)2 − i (kx − �k2t/(2m)) − ln(k/(k + iκ))

FR(k, x, t) = (k − k0)
2/(2Δ)2 + i (kx + �k2t/(2m)) − ln(−iκ/(k + iκ)) .
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Then we have the equations:

∂k FT (k, x, t) = (k − k0)/Δ
2 − i (x − �tk/m + κ/(k(k + iκ))) = 0

∂k FR(k, x, t) = (k − k0)/Δ
2 + i (x + �tk/m − i /(k + iκ)) = 0 .

The equation for FT has three solutions: k1 ∼ k0, k2 ∼ 0 and k3 ∼ −iκ up to
corrections of order Δ2. The first solution has a second derivative of order 1/Δ2,
to be compared with the second derivatives of the other two solutions, which are
of order 1/Δ4, hence it is the dominant solution, in the same sense discussed in
Sect. 2.4, thus we concentrate on it. Setting again v = �k0/m we have k1 = k0 +
iΔ2(x − vt + κ/(k0(k0 + iκ))) + O(Δ4) and

FT (k1, x, t) = FT (k0, x, t) − ∂2
k FT (k0, x, t)(k1 − k0)

2/2

= −i (k0x−�k20 t/(2m))−ln(k0/(k0+iκ))+[x−vt+κ/(k0(k0+iκ))]2Δ2/2)+O(Δ4) .

Therefore we have a wave packet centered in x = vt − κ/(k20 + κ2). An analogous
analysis on the reflected packet gives:

FR(k1, x, t) = FR(k0, x, t) − ∂2
k FR(k0, x, t)(k1 − k0)

2/2

= i (k0x+�k20 t/(2m))−ln(−iκ/(k0+iκ))+(x+vt−i /(k0+iκ))2Δ2/2)+O(Δ4) .

Now the packet is centered in x = −vt + κ/(k20 + κ2).

The result is almost as anticipated, apart from the fact that the appearance of the
transmitted and reflected wave packets is delayed (advanced) with respect to the
time the incoming packet hits the potential barrier (well). For large, positive times
the particle is in a superposition of reflected and transmitted state, the probability of
finding it in one of the two states after a measurement of its position (i.e. the integral
of the probability density over the corresponding packets) is given approximately by
the reflection or transmission coefficients computed for k ∼ k0.

2.44 A particle of mass m moves in one dimension under the influence of the poten-
tial

V (x) = V0Θ(x) − Vδ(x) .

If V = 3 × 10−29 J m and m = 10−30 kg, identify the values of V0 for which the
particle has bound states. Assuming the existence of a bound state whose binding
energy is B � V0, compute the ratio of the probabilities for the particle to be found
on the right and on the left-hand side of the origin.

Answer: The wave function of a bound state with energy −B would be
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ψB(x) = N [Θ(−x) exp(
√
2m Bx/�) + Θ(x) exp(−√2m(B + V0)x/�)]

where Θ is the step function, N is the normalization factor and the condition
√

B +√
B + V0 = √

2mV/� must be satisfied. Since
√

V0 ≤ √
B + √

B + V0 < ∞
the above condition has a solution provided

√
2mV/� ≥ √

V0, hence for V0 ≤
2mV2/�

2 � 1.62 × 10−19 J � 1 eV. The probabilities for the particle to be found
on the right and on the left of the origin are respectively N 2

�/(2
√
2m(B + V0)) and

N 2
�/(2

√
2m B), their ratio for small B is

√
B/V0 � √

2m/V0V/� − 1.

2.45 A particle of mass m is bound between two spherical perfectly reflecting
walls of radii R and R + Δ. The potential energy between the walls is V0 =
−�

2π2/(2mΔ2). If the total energy of the particle cannot exceed EM = 6�2/(2m R2)

compute, in theΔ → 0 limit in which the particle is bound on the sphere of radius R,
the maximum possible value of its superficial probability density on the intersection
point of the sphere with the positive z axis.

Answer: In the Δ → 0 limit, the radial Schrödinger equation tends to the
one-dimensional Schrödinger equation of a particle between two reflecting walls
with potential energy between the walls equal to V̄ = −�

2π2/(2mΔ2) + l(l +
1)�2/(2m R2). Therefore thepossible energyvalues are En,l = (n2−1)�2π2/(2mΔ2)

+ l(l + 1)�2/(2m R2). Only the energies E1,l = l(l + 1)�2/(2m R2) remain finite
as Δ → 0. In spherical coordinates, the corresponding wave functions are, in the
Δ → 0 limit, Ψl,m = √

2/(ΔR2) sin(π(r − R)/Δ)Yl,m(θ,φ).
The harmonic functions Yl,m with m �= 0 are proportional to powers of x±,

hence they vanish on the z axis, therefore and on account of the energy bound,
among the possible solutions, we only consider Ψl,0 for 0 ≤ l ≤ 2. Forgetting the
radial dependence which, in the Δ → 0 limit corresponds to a probability density
equal to δ(r − R), these are Ψ0,0 = 1/(R

√
4π), Ψ1,0 = √

3/4π cos θ/R and Ψ2,0 =√
5/16π (3 cos2 θ−1)/R. Thewave functionof the particlewith the above constraints

iswritten as the linear combination a0 Ψ0,0+a1 Ψ1,0+a2 Ψ2,0, with the normalization
condition |a0|2 + |a1|2 + |a2|2 = 1. On the positive z axis the wave function is
1/

√
4π[a0 + √

3a1 + √
5a2]/R2. It is fairly obvious that the maximum absolute

value is reached when a0 = a1 = 0, hence the maximum superficial probability
density of the particle is 5/(4πR2). The result can be generalized to the case in
which different values of the angular momentum can be reached, indeed it can be
proved that |Ψl,0(θ = 0)|2 = (2l + 1)/(4πR2).

2.46 A particle of mass m moves along the x axis under the influence of the double
well potential:

V (x) = −V[δ(x + L) + δ(x − L)] ,

with V > 0. Study the solutions of the stationary Schrödinger equation. Since the
potential is even under x reflection, the solutions are either even or odd. Show that
in the even case there is a single solution for any value of L , discuss the range of
values of the binding energy B and, in particular, how B depends on L for small L ,
i.e. when α(L) ≡ 2mVL/�

2 � 1. Compute the “force” between the two wells in
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this limit. In the odd solution case, compute the range of α(L) for which there are
bound solutions and compare the even with the odd binding energies.

Answer: Starting from the even case, we write the solution between the wells as
ψI (x) = cosh kx , with B = �

2k2/(2m), and the external solution as ψE (x) =
a exp(−k(|x | − L)). The continuity conditions on the wells give: a = cosh(kL)

and k(sinh(kL) + a) = α(L) cosh(kL)/L . Setting kL = y we get the tran-
scendental equation tanh y = α(L)/y − 1. This equation has a single solution
y(α(L)), corresponding to a single bound state, for any positive value of α(L).
In particular for small α(L) also y(α(L)) is small and the equation is approx-
imated by y − y3/3 = α(L)/y − 1 which, up to the second order in α(L),
has the positive y solution y(α(L)) = α(L) − α2(L). The corresponding bind-
ing energy is computed noticing that B = �

2y2/(2mL2), from which we have
B = 2mV2/�

2 − 8m2V3L/�
4 + O(α4(L)). This implies that there is an attrac-

tive force between the two wells which, in the small α(L) limit, is equal to
F = 8m2V3/�

4, furthermore B ≤ Bmax = 2mV2/�
2 ; notice that Bmax is the

binding energy for a single well −2Vδ(x), which is indeed the limit of V (x) as
L → 0. For large α(L) also y(α(L)) is large and the transcendental equation is
well approximated by 1 = α(L)/y − 1, which gives y(α(L)) = α(L)/2, so that
the binding energy reaches its minimum value Bmin = mV2/(2�

2), which coincides
with the binding energy of a single well.

In the odd case the solution between the wells becomes ψI (x) = sinh kx while
the external one does not change, therefore the transcendental equation becomes
tanh y = y/(α(L)− y). Here the right-hand side is concave downward and positive,
while the left-hand side is concave upward and positive for 0 < y < α(L), it has a
singularity in α(L) and it is negative beyond the singularity. Therefore the equation
has a solution for 0 < y < α if, and only if, the left-hand side is steeper in the origin
than the right-hand side, that is if α(L) > 1. For large values of α(L), y(α(L)) tends
to α(L)/2 from below; notice that in the even case the same limit is reached from
above.

In conclusion, for any value of the distance between the twowells, there is an even
solution, whose binding energy is larger than that of a single well; on the contrary
an odd solution exists only if L > �

2/(2mV), with a binding energy lower than that
of a single well. In the limit of large separation between the two wells, both the odd
and the even level approach the energy of a single well, one from above and the
other from below, i.e. we get asymptotically two degenerate levels. The presence of
two slightly splitted levels (the even ground state and the odd first excited state) is a
phenomenon common to other symmetric doublewell potentials; an example is given
by the Ammonia molecule (NH3), in which the Nitrogen atom has two symmetric
equilibrium positions on both sides of the plane formed by the three Hydrogen atoms.

2.47 A particle of mass m is constrained to move on a plane surface where it is
subject to an isotropic harmonic potential of angular frequency ω. Which are the
stationary states which are found, for the first excited level, by separation of variables
in Cartesian coordinates? Show that the probability current density for such states
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vanishes. Are there any stationary states belonging to the same level having a non-
zero current density? Find those having the maximum possible current density and
give a physical interpretation for them.

Answer: For the first excited level, E1 = 2�ω, the two following stationary states
are found in Cartesian coordinates (see Eqs. (2.136) and (2.133)):

ψ1,0 =
√
2α2x√

π
e−α2(x2+y2)/2; ψ0,1 =

√
2α2y√

π
e−α2(x2+y2)/2

where α = √
mω/�. In both cases the current density

J = − i �

2m

(
ψ∗∇ψ − ψ∇ψ∗) = �

m
Im
(
ψ∗∇ψ

)

vanishes, since the wave functions are real. However it is possible to find different
stationary states, corresponding to linear combinations of the two states above, having
a non-zero current. Indeed for themost general state, which up to an overall irrelevant
phase factor can be written as

ψ = a ψ1,0 +
√
1 − a2eiφψ0,1

where a ∈ [0, 1] is a real parameter, the probability current density is

J = 2�α4

mπ
e−α2(x2+y2) a

√
1 − a2 sin φ j

where ( jx , jy) = (−y, x). The current field is independent, up to an overall factor,
of the particular state chosen and describes a circular flow around the origin, hence
in general a state with a non-zero average angular momentum; moreover ∇ · J = 0,
as expected for a stationary state. The current vanishes for a = 0, 1 or φ = 0,π and
is maximum for a = 1/

√
2 and φ = ±π/2, corresponding to the states:

ψ± = 1√
2

(
ψ1,0 ± iψ0,1

) = α2

√
π
e−α2(x2+y2)/2(x ± i y) = α2

√
π
e−α2r2/2x±

where r2 = x2 + y2, which are easily recognized as the states having a well defined
angular momentum L = ±�.

2.48 Starting from the definition of the corresponding harmonic polynomials given
in (2.182) and computing the normalization constants, verify Eq. (2.186) for the first
spherical harmonics.

Answer: For l = 0: Y0,0 is a constant, after normalization over the solid angle one

finds Y0,0 =
√

1
4π . For l = 1: Y1,1 ∼ −x+. The corresponding normalization con-



Problems 163

stant for Y1,1 = −c1,1 sin θeiϕ is given by the equation: 1/|c1,1|2 = 2π
∫ 1
−1 dx(1 −

x2) = 8π/3. This, together with (2.180), fixes Y1,±1. The normalization constant for
Y1,0 = c1,0 cos θ is given by the equation: 1/|c1,0|2 = 2π

∫ 1
−1 dxx2 = 4π/3. The

sign is fixed by the condition that Yl,0(1) > 0. For l = 2: Y2,2 ∼ x2+. The corre-
sponding normalization constant for Y2,2 = c2,2 sin2 θe2iϕ is given by the equation:
1/|c2,2|2 = 2π

∫ 1
−1 dx(1− x2)2 = 32π/15. This, together with (2.180), fixes Y2,±2.

Y2,1 ∼ zx+. The corresponding normalization constant for Y2,1 = c2,1 cos θ sin θeiϕ

is given by the equation: 1/|c2,1|2 = 2π
∫ 1
−1 dxx2(1 − x2) = 8π/15. This, together

with (2.180), fixes Y2,±1. The normalization constant for Y2,0 = c2,0(3 cos2 θ−1) is
given by the equation: 1/|c2,0|2 = 2π

∫ 1
−1 dx(3x2 − 1)2 = 16π/5. The sign is fixed

by the condition that Yl,0(1) > 0.

2.49 A particle of mass m moves in three dimensions under the influence of the
central potential V (r) = −�

2α/(2m R) δ(r − R), with α positive. Compute the
values ofα forwhich the particle has a bound statewith non-zero angularmomentum.

Answer: For zero angular momentum (S-wave), the solution to the differential equa-
tion for the radial wave function χ(r) defined in (2.187), satisfying the regularity
conditions in the origin and at infinity, is equivalent to the odd solution for the one-
dimensional double well potential given in Problem 2.46 (setting L = R), hence
χ< ∝ sinh(kr) for r < R and χ> ∝ exp(k(R − r)) for r > R, the bound state
energy being E = −�

2k2/(2m) with k > 0. We know, from Problem 2.46, that such
solution exists only if α > 1.

We consider now the P-wave case (l = 1). The solution satisfying the correct
regularity conditions can be obtained from thatwritten in the S-wave case by applying
the recursive equation (2.192). It is, up to an overall normalization factor, χ< =
sinh(kr)/(kr) − cosh(kr) for r < R and χ> = a exp(k(R − r))[1/(kr) + 1] for
r > R. The continuity conditions at r = R, written in terms of k R = x , are
given by sinh x/x − cosh x = a(1 + x)/x and cosh x/x − sinh x(1 + x2)/x2 +
a(1 + 1/x + 1/x2) = α(sinh x/x2 − cosh x/x), from which we have tanh x =
x(1 + x − x2/α)/(1 + x + x3/α). We know that the graphs of both sides of this
equation cross atmost once for x > 0 sincewe have seen in the one-dimensional case,
e.g. in Sect. 2.6, that a thin potential well has at most a single bound state. It remains
to be verified if they cross. The graphs are tangent to each other in the origin and, for
x → ∞, the left-hand side tends to+1 and the right-hand side to−1, therefore if the
left-hand side is steeper in the origin the graphs do not cross, otherwise they cross
once and there is a bound state. Considering the Taylor expansions of both sides we
have tanh x � x − x3/3 and x(1 + x − x2/α)/(1 + x + x3/α) � x − x3/α . The
conclusion is that there is a bound state if α > 3. It should be clear that if no bound
state can be found for l = 1 (i.e. α < 3), none will be found for l > 1 as well,
because of the increased centrifugal potential.
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2.50 Compute the S-wave scattering length for a particlewithmass M in the potential
well given in Eq. (2.189).

Answer: Introducing the dimensionless parameters x = √
2M E R/� and y =√

2MV0R/�, one has, up to an over all normalization factor, the internal solu-
tion, for r < R, χ< = sin(

√
x2 + y2r/R) and, the external solution, for r > R,

χ> = a sin(xr/R + δ0). The continuity conditions at r = R give x tan
√

x2 + y2 =√
x2 + y2 tan(x + δ0), from which we get

x cot δ0 = 1 + x tan x tan
√

x2 + y2/
√

x2 + y2

tan
√

x2 + y2/
√

x2 + y2 − tan x/x
.

The scattering length is apparently equal to y/(tan y − y). It is positive if y < π/2,
that is in the absence of bound states.

2.51 A particle with mass m moves in three dimensions under the influence of the
central potential V (r) = −�

2α/(2m R)δ(r − R) with α positive. Compute which
are the values of α for which the particle has a bound state in S and P waves.

Answer: We note that the S-wave equation gives a bound state if α > 1 as we can
see comparing with the one dimensional case with a reflecting wall in the origin.
Then we consider the solution of the P-wave radial Schrödinger equation. Due to the
regularity conditions in the origin and at infinity, the radial wave function defined in
Eq. (2.195) is, up to an over all normalization factor,χ< = sinh(kr)/(kr)−cosh(kr)

for r < R and χ> = a exp(k(R − r))[1/(kr)+ 1] for r > R, the bound state energy
being −�

2k2/(2m) and k > 0. The continuity conditions at r = R, written in terms
of kr = x , are given by sinh x/x − cosh x = a(1+ x)/x and cosh x/x − sinh x(1+
x2)/x2 + a(1 + 1/x + 1/x2) = α(sinh x/x2 − cosh x/x) , from which we have
tanh x = x(1+ x − x2/α)/(1+ x + x3/α). The graphs of both sides of this equation
are tangent to each other in the origin and, for x → ∞, the left-hand side tends to
+1 and the right-hand side to −1, therefore if the left-hand side is steeper in the
origin the graphs do not cross, otherwise they cross once and there is a bound state.
Considering the Taylor expansions of both sides we have tanh x � x − x3/3 and
x(1 + x − x2/α)/(1 + x + x3/α) � x − x3/α. The conclusion is that there is a
bound state if α > 3.

2.52 A particle with mass m moves in three dimensions under the influence of the
central potential V (r) = −�

2α/(2m R)δ(r − R). Compute the S-wave phase shift
comparing the case of α positive with that of α negative.

Answer: Denoting the solutions as in Problem 2.51 one has, up to an over all
normalization factor, χ<(r) ∼ sin kr , χ>(r) ∼ a sin(kr + δ0). The (dis-)continuity
relations give, for x = k R, x cot δ0 = (2x2/α− x sin(2x))/2 sin2 x . The solution of
physical interest corresponds to δ0 vanishing with x , thus δ0 = αx/(1−α)+ O(x2).
Therefore in the present case the scattering length is equal to αR/(1 − α), which
is negative either with α > 1, or with α negative, otherwise the scattering length is
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positive. If the scattering length is positive the low energy phase shift increases with
the energy, otherwise it decreases. It is worth recalling here that the potential has a
bound state with l = 0 for α > 1. Thus we see that, when there is a bound state, the
scattering length is negative.

If the equation 2x/α = sin 2x has solutions, these correspond to energies for
which δ0 = π/2± nπ and hence sin2 δ0 reaches its maximum value. If 1/α = 1− ε
with ε and x small, from Eq. (2.233) we have that the S-wave contribution to the total
cross section is

σS � 4πR2

x2 + ε2
.

For 1 > α > 0 the phase shift starts increasing without reaching π and vanishes
at high energy. If α is negative the phase shift starts decreasing but for large enough
energy goes back to zero.

2.53 A particle with mass m moves in three dimensions under the influence of the
central potential V (r) = −�

2y2/(2m R2)Θ(R − r) + �
2α/(2m R)δ(r − R) with

y = π − ε, α = π/ε−1/2 and ε � 1. Compute the S-wave phase shift in the energy
range k R = O(ε).

Answer: Denoting the internal and external solutions as in Problems 2.51 and 2.52,
and introducing the variable x = k R we have, up to an over all normalization
factor,χ<(r) ∼ sin(

√
y2 + x2r/R),χ>(r) ∼ a sin(xr/R+δ0). The (dis-)continuity

relations give
√

y2 + x2 cot
√

y2 + x2 = x cot(x + δ0)−α. After short calculations
we get:

x cot δ0 =
√

y2 + x2 cot
√

y2 + x2 + α + x tan x

1 − tan x(
√

y2 + x2 cot
√

y2 + x2 + α)/x
,

and, with the given choice of the parameters,
√

y2 + x2 cot
√

y2 + x2 +α = (1 −
x2/ε2)/2 + O(ε2). Thus x cot δ0 � (1 − x2/ε2)/(1 + x2/ε2). The corresponding
S-wave cross section is

σ0(x) = 4πR2 (1 + x2/ε2)2

x2(1 + x2/ε2)2 + (1 − x2/ε2)2
.

For x = 0 we have σ0(0) � 4πR2 and the cross section has a sharp maximum for
x = ε, indeed σ(ε) = 4πR2/ε2. This is usually called a resonance. The phase shift
grows and crosses π/2, while the cross section reaches its maximum possible value,
λ2/π.

2.54 A particle with mass m moves in three dimensions under the influence of the
central potential V (r) = −�

2y2/(2m R2)Θ(R − r) + �
2α/(2m R)δ(r − R) with

y = π − ε, α = π/ε − 1/2 and ε � 1. Discuss the existence of bound states in S
wave.



166 2 Introduction to Quantum Physics

Answer: Denoting the internal and external solutions as in Problems 2.51 and 2.52,
and introducing the parameter x = √

2m B R/� we have, up to an over all nor-
malization factor, χ<(r) ∼ sin(

√
y2 − x2r/R), χ>(r) ∼ a exp(−xr/R). Then, the

(dis-)continuity relations give:
√

y2 − x2 cot
√

y2 − x2 = −x − α. It is not difficult
to verify that for large α and y < π the above equation has no solution. Once again
we find positive scattering length in the absence of bound states.



Chapter 3
Introduction to the Statistical Theory
of Matter

In Chap.2 we have discussed the existence and the order of magnitude of quantum
effects, showing in particular their importance for microscopic physics. We have
seen that quantum effects are relevant for electrons at energies of the order of the
electron-volt, while for the dynamics of atoms in crystals, which have masses three
or four order of magnitudes larger, significant effects appear at considerably lower
energies, corresponding to low temperatures. Hence, in order to study these effects, a
proper theoretical framework is needed for describing systems made up of particles
at thermal equilibrium and for deducing their thermodynamic properties from the
(quantum) nature of their states.

Boltzmann identified the thermal contact among systems as a series of shortly
lasting and random interactions with limited energy exchange. These interactions
can be considered as collisions among components of two different systems taking
place at the surface of the systems themselves. Collisions generate sudden transitions
among the possible states of motion for the parts involved. The sequence of collision
processes is therefore analogous to a series of dice casts by which subsequent states
of motion are chosen by drawing lots.

It is clear that in these conditions it is not sensible to study the time evolution of the
system, since that is nothing but a random succession of states of motion. Instead it
makes sense to study the distribution of states among those accessible to the system,
i.e. the number of times a particular state occurs in N different observations. In case
of completely random transitions among all the possible states, the above number is
independent of the particular state considered and equal to the number of observations
N divided by the total number of possible states. In place of the distribution of results
of subsequent observations we can think of the distribution of the probability that
the system be in a given state: under the same hypothesis of complete randomness,
the probability distribution is independent of the state and equal to the inverse of the
total number of accessible states.

However the problem is more complicated if we try to take energy conservation
into account. Although the energy exchanged in a typical microscopic collision is
very small, the global amount of energy (heat) transferred in a great number of
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interactions can be macroscopically relevant; on the other hand, the total energy of
all interacting macroscopic systems must be constant.

The american physicist J. Willard Gibbs proposed a method to evaluate the prob-
ability distribution for the various possible states in the case of thermal equilibrium.1

His method is based on the following points.
(1) Thermal equilibrium is independent of the nature of the heat reservoir, which

must be identified with a system having infinite thermal capacity (that is a possi-
ble enunciation of the so-called zero-th principle of thermodynamics). According to
Gibbs, the heat reservoir is a set of N systems, identical to the one under consid-
eration, which are placed in thermal contact. N is so great that each heat (energy)
exchange between the system and the reservoir, being distributed among all dif-
ferent constituent systems, does not alter their average energy content, hence their
thermodynamic state.

(2) Gibbs assumed transitions to be induced by completely random collisions.
Instead of following the result of a long series of random transitions among states,
thus extracting the probability distribution by averaging over time evolution his-
tories, Gibbs proposed to consider a large number of simultaneous draws and to
take the average over them. That is analogous to drawing a large number of dice
simultaneously instead of a single die for a large number of times: time averages are
substituted by ensemble averages. Since in Gibbs scheme the system–reservoir pair
(Macrosystem) can be identified with theN +1 identical systems in thermal contact
and in equilibrium, if at any time the distribution of the states occupied by the various
systems is measured, one has automatically an average over the ensemble and the
occupation probability for the possible states of a single system can be deduced. On
the other hand, computing the ensemble distribution does not require the knowledge
of the state of each single system, but instead that of the number of systems in each
possible state.

(3) The macrosystem is isolated and internal collisions induce random changes
of its state. However, all possible macrosystem states with the same total energy are
assumed to be equally probable. That clearly implies that the probability associated
to a given distribution of the N + 1 systems is directly proportional to the number
of states of the macrosystem realizing the given distribution: this number is usually
called multiplicity. If i is the index distinguishing all possible system states, any
distribution is fixed by a succession of integers {Ni }, where Ni is the number of
systems occupying state i . It is easy to verify that the multiplicityM is given by

M({Ni }) = N !∏
i Ni ! , (3.1)

1Notice that the states considered by Gibbs in the XIX century were small cells in the space of states
of motion (the phase space) of the system, while we shall consider quantum states corresponding
to independent solutions of the stationary Schrödinger equation for the system. This roughly cor-
responds to choosing the volume of Gibbs cells of the order of magnitude of hN , where N is the
number of degrees of freedom of the system.
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with the obvious constraint ∑

i

Ni = N . (3.2)

(4) The accessibility criterion for states is solely related to their energy which, due
to the limited energy exchange in collision processes, is reduced to the sum of the
energies of the constituent systems. Stated otherwise, if Ei is the energy of a single
constituent system when it is in state i , disregarding the interaction energy between
systems, the total energy of the macrosystem is identified with:

Etot =
∑

i

Ei Ni ≡ NU. (3.3)

Thus U can be identified with the average energy of the constituent systems: it
characterizes the thermodynamic state of the reservoir and must therefore be related
to its temperature in some way to be determined by computations.

(5) Gibbs identified the probability of the considered system being in state i with:

pi = N̄i

N , (3.4)

where the distribution {N̄i } is the one having maximum multiplicity among all pos-
sible distributions:

M({N̄i }) ≥ M({Ni }) ∀ {Ni },

i.e. that is realized by the largest number of states of the macrosystem. We call pi

the occupation probability of state i .
The identification made by Gibbs is justified by the fact that the multiplicity

function has only one sharp peak in correspondence of its maximum, whose width
(ΔM/M) vanishes in the limit of an ideal reservoir, i.e. as N → ∞. Later on we
shall discuss a very simple example, even if not very significant from the physical
point of view, corresponding to a system with only three possible states, so that the
multiplicity M, given the two constraints in (3.2) and (3.3), will be a function of a
single variable, thus allowing an easy computation of the width of the peak.

(6) The analysis of thermodynamic equilibrium described above can be extended
to the case in which also the number of particles in each system is variable: not
only energy transfer by collisions can take place at the surfaces of the systems, but
also exchange of particles of various species (atoms, molecules, electrons, ions and
so on). In this case the various possible states of the system are characterized not
only by their energy but also by the number of particles of each considered species.
We will indicate by n(s)

i the number of particles belonging to species s and present
in state i ; therefore, besides the energy Ei , there will be as many fixed quantities
as the number of possible species characterizing each possible state of the system.
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The distribution of states in the macrosystem, {Ni }, will then be subject to further
constraints, besides (3.2) and (3.3), related to the conservation of the total number
of particles for each species, namely

∑

i

n(s)
i Ni = n̄(s)N (3.5)

for each s. The kind of thermodynamic equilibrium described in this case is very
different from the previous one. While in the first case equilibrium corresponds to
the system and reservoir having the same temperature (T1 = T2), in the second case
also Gibbs potential g(s) will be equal, for each constrained single particle species
separately. In place of g(s) it is usual to consider the quantity known as chemical
potential, defined as μ(s) ≡ g(s)/NA, where NA = 6.02 × 1023 is Avogadro’s
number.

The distributions corresponding to the two different kinds of equilibrium are
named differently. For a purely thermal equilibrium we speak of Canonical Distrib-
ution, while when considering also particle number equilibrium we speak of Grand
Canonical Distribution. We will start by studying simple systems by means of the
Canonical Distribution and will then make use of the Grand Canonical Distribution
for the case of perfect quantum gases.

As the simplest possible systemswe shall consider in particular an isotropic three-
dimensional harmonic oscillator (Einstein’s crystal) and a particle confined in a box
with reflecting walls. Let us briefly recall the nature of the states for the two systems.

Einstein’s Crystal

In this model atoms do not exchange forces among themselves but in rare collisions,
whose nature is not well specified and whose only role is that of assuring thermal
equilibrium. Atoms are instead attracted by elastic forces towards fixed points cor-
responding to the vertices of a crystal lattice.

The attraction point for the generic atom is identified by the coordinates (mx a,

mya, mza), where mx , my, mz are relative integer numbers with |mi |a < L/2: L is
the linear size and a is the spacing of the crystal lattice, which is assumed to be cubic.
To summarize, each atom corresponds to a vector m of components mx , my, mz .

Hence Einstein’s crystal is equivalent to a large number of isotropic harmonic
oscillators and can be identified with the macrosystem itself. According to the analy-
sis of the harmonic oscillator made in previous chapter, the microscopic quan-
tum state of the crystal is characterized by three non-negative integer numbers
(nx,m, ny,m, nz,m) for every vertex (m). The corresponding energy level is given
by

Enx,m,ny,m,nz,m =
∑

m

� ω

(
nx,m + ny,m + nz,m + 3

2

)
. (3.6)

It is clear that several different states correspond to the same energy level: following
the same notation as in Chap.2, they are called degenerate.

http://dx.doi.org/10.1007/978-3-319-20630-1_2
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In our analysis of the harmonic oscillator we have seen that states described as
above correspond to solutions of the stationary Schrödinger equation, i.e. to wave
functions depending on time through the phase factor e−iEt/�. Therefore the state
of the macrosystem would not change in absence of further interactions among the
various oscillators, and the statistical analysis would make no sense. If we instead
admit the existence of rare random collisions among the oscillators leading to small
energy exchanges, then the state of the macrosystem evolves while its total energy
stays constant.

The Particle in a Box with Reflecting Walls

In this case the reservoir is made up of N different boxes, each containing one
particle. Energy is transferred from one box to another by an unspecified collisional
mechanism acting through the walls of the boxes. We have seen in previous chapter
that the quantum states of a particle in a box are described by three positive integer
numbers (kx , ky, kz),which are related to thewave number components of the particle
and correspond to an energy

Ek = �
2π2

2mL2 [k2x + k2y + k2z ]. (3.7)

3.1 Thermal Equilibrium by Gibbs’ Method

Following Gibbs’ description given above, let us consider a system whose states are
enumerated by an index i and have energy Ei . We are interested in the distribution
which maximizes the multiplicity M defined in (3.1) when the constraints in (3.2)
and (3.3) are taken into account. Since M is always positive, in place of it we can
maximize its logarithm

lnM({Ni }) = lnN ! −
∑

i

ln Ni !. (3.8)

IfN is very large, thus approaching the so-called Thermodynamic Limit correspond-
ing to an ideal reservoir, and if distributions corresponding to negligible multiplicity
are excluded, we can assume that all Ni ’s get large as well. In these conditions we
are allowed to replace factorials by Stirling formula:

ln N ! � N (ln N − 1) . (3.9)

If we set Ni ≡ N xi , then the logarithm of the multiplicity is approximately

lnM({Ni }) � −N
∑

i

xi (ln xi − 1), (3.10)
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and the constraints in (3.2) and (3.3) are rewritten as:

∑

i

xi = 1,

∑

i

Ei xi = U. (3.11)

In order to look for the maximum of expression (3.10) in the presence of the con-
straints (3.11), it is convenient to apply the method of Lagrange’s multipliers.

Let us remind that the stationary points of the function F(x1, . . . , xn) in the
presence of the constraints: G j (x1, . . . , xn) = 0, with j = 1, . . . , k and k < n, are
solutions of the following system of equations:

∂

∂xi

⎡

⎣F(x1, . . . , xn) +
k∑

j=1

λ j G j (x1, . . . , xn)

⎤

⎦ = 0, i = 1, . . . , n,

and of course of the constraints themselves. Therefore we have n + k equations in
n + k variables xi , i = 1, . . . , n, and λ j , j = 1, . . . , k. In the generic case, both the
unknown variables xi and the multipliers λ j will be determined univocally. In our
case the system reads:

∂

∂xi

⎡

⎣lnM − βN (
∑

j

E j x j − U ) + αN (
∑

j

x j − 1)

⎤

⎦

= −N ∂

∂xi

∑

j

[
x j (ln x j − 1) + βE j x j − αx j

]

= −N [ln xi + βEi − α] = 0 (3.12)

where −β and α are the Lagrange multipliers which can be computed by making
use of (3.11).

Taking into account (3.4) and the discussion given in the introduction to this
Chapter, we can identify the variables xi solving system (3.12) with the occupation
probabilities pi in the Canonical Distribution, thus obtaining

ln pi + 1 + βEi − α = 0, (3.13)

hence
pi = e−1−βEi +α ≡ k e−βEi , (3.14)

where β must necessarily be positive in order that the sums in (3.11) be convergent.
The constraints give:
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pi = e−βEi

∑
j e

−βE j
= − 1

β

d

d Ei
ln
∑

j

e−βE j ≡ − 1

β

d

d Ei
ln Z ,

U =
∑

i

Ei pi = − d

dβ
ln
∑

j

e−βE j ≡ − d

dβ
ln Z , (3.15)

where we have introduced the function

Z ≡
∑

j

e−βE j , (3.16)

which is known as the partition function.
The second of Eq. (3.15) expresses the relation between the Lagrange multiplier

β and the average energyU , hence implicitly between β and the equilibrium temper-
ature. It can be easily realized that in fact β is a universal function of the temperature,
which is independent of the particular system under consideration.

To show that, let us consider the case in which each component system S can
be actually described in terms of two independent systems s and s′, whose possible
states are indicated by the indices i and a corresponding to energies ei and εa . The
states of S are therefore described by the pair (a, i) corresponding to the energy:

Ea,i = εa + ei .

If we give the distribution in terms of the variables xa,i ≡ Na,i/N and we repeat
previous analysis, we end up with searching for the maximum of

lnM({Na,i }) � −N
∑

b, j

xb, j (ln xb, j − 1), (3.17)

constrained by:

∑

b, j

xb, j = 1,

∑

b, j

(εb + e j )xb, j = U. (3.18)

Following previous analysis we finally find:

pa,i = − 1

β

d

d Ea,i
ln Z ,

U = − d

dβ
ln Z , (3.19)
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but Z is now given by:

Z =
∑

b, j

e−β(εb+e j ) =
∑

b

∑

j

e−βεbe−βe j =
∑

b

e−βεb
∑

j

e−βe j = Zs Zs′ (3.20)

so that the occupation probability factorizes as follows:

pa,i = e−β(εa+ei )

Z
= e−βεa

Zs

e−βei

Zs′
= pa pi .

We have therefore learned that the two systems have independent distributions, but
corresponding to the same value of β: that is a direct consequence of having written a
single constraint on the total energy (leading to a single Lagrange multiplier β linked
to energy conservation), and on its turn this is an implicit way of stating that the
two systems are in contact with the same heat reservoir, i.e. that they have the same
temperature: hence we conclude that β is a universal function of the temperature,
β = β(T ). We shall explicitly exploit the fact that β(T ) is independent of the
system under consideration, by finding its exact form through the application of
Gibbs method to systems as simple as possible.

3.1.1 Einstein’s Crystal

Let us consider a little cubewith an edge of length L and, followingGibbsmethod, let
us put it in thermal contact with a great (infinite) number of similar little cubes, thus
building an infinite crystal corresponding to the macrosystem, which is therefore
imagined as divided into many little cubes. Actually, since by hypothesis single
atoms do not interact with each other but in very rare thermalizing collisions, we can
consider the little cube so small as to contain a single atom, which is then identified
with an isotropic harmonic oscillator: we shall obtain the occupation probability of
its microscopic states at equilibrium and evidently the properties of a larger cube can
be deduced by combining those of the single atoms independently.

We recall that the microscopic states of the oscillator are associated with a vector
n having integer non-negative components, the corresponding energy level being
given in (2.135). We can then easily compute the partition function of the single
oscillator:

Zo =
∞∑

nx =0

∞∑

ny=0

∞∑

nz=0

e−β�ω(nx +ny+nz+3/2) = e−3β�ω/2

[ ∞∑

n=0

(
e−β�ω

)n
]3

=
[

e−β�ω/2

1 − e−β�ω

]3
=
[

eβ�ω/2

eβ�ω − 1

]3
. (3.21)

http://dx.doi.org/10.1007/978-3-319-20630-1_2
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The average energy is then:

U = − ∂

∂β
ln Zo = −3

∂

∂β
ln

eβ�ω/2

eβ�ω − 1
= 3�ω

2

(
eβ�ω + 1

eβ�ω − 1

)
. (3.22)

Approaching the classical limit, in which � → 0, this result gives direct information
onβ. Indeed in the classical limitDulong–Petit’s lawmust hold, stating thatU = 3kT
where k is Boltzmann’s constant. Instead, since eβ�ω � 1 + β�ω as � → 0, our
formula tells us that in the classical limit we have U � 3/β, which is also the result
we would have obtained by directly applying Gibbs method to a classical harmonic
oscillator (see Problem 3.12). Therefore we must set

β = 1

kT
.

This result will be confirmed later by studying the statistical thermodynamics of
perfect gases. The specific heat, defined as

C = ∂U

∂T
,

can then be computed through (3.22):

C = ∂β

∂T

∂U

∂β
= − 1

kT 2

3

2
�
2ω2eβ�ω

[
1

eβ�ω − 1
− eβ�ω + 1
(
eβ�ω − 1

)2

]

= 3�2ω2

kT 2

e�ω/kT

(
e�ω/kT − 1

)2 . (3.23)

Setting x = kT/�ω, the behavior of the atomic specific heat is shown in Fig. 3.1. It
is clearly visible that when x ≥ 1 Dulong–Petit’s law is reproduced within a very
good approximation. The importance of Einstein’s model consists in having given
the first qualitative explanation of the violations of the Dulong–Petit law at low tem-
peratures, in agreement with experimental measurements showing atomic specific
heats systematically below 3k. Einstein was the first showing that the specific heat
vanishes at low temperatures, even if failing in predicting the exact behavior: that is
cubic in T in insulators and linear in conductors (if the superconducting transition is
not taken into account), while Einstein’s model predicts C vanishing like e−�ω/kT .
The different behaviour can be explained, in the insulator case, through the fact that
the hypothesis of single atoms being independent of each other, which is at the basis
of Einstein’s model, is far from being realistic. As a matter of fact, atoms move
under the influence of forces exerted by nearby atoms, so that the crystal lattice
itself is elastic and not rigid, as assumed in the model. A refinement to Einstein’s
model was proposed, a few years later, by P. Debye who, instead of considering
non-interacting harmonic oscillators, decomposed the motion of the whole crystal in
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Fig. 3.1 A plot of the atomic
specific heat in Einstein’s
model in k units as a function
of x = �ω/kT , showing the
vanishing of the specific heat
at low temperatures and its
asymptotic agreement with
Dulong–Petit’s value 3k

normal oscillation modes, corresponding to different frequencies ωn , ranging from
the fundamental frequency of the crystal (which depends on its macroscopic geom-
etry) to the highest possible frequency (which depends on its internal geometry): in
this way the various oscillation modes are excited sequentially as the temperature
grows, and an explicit computation shows that in fact the specific heat grows like
T 3. In the case of conductors, instead, the linear behavior is due to electrons in the
conducting band.

Notwithstanding the wrong quantitative prediction, Einstein’s model furnishes
the correct qualitative interpretation for the vanishing of the specific heat as T → 0.
Since typical thermal energy exchanges are of the order of kT and since the system
can only exchange quanta of energy equal to �ω, we infer that if kT 	 �ω then
quantum effects suppress the energy exchange between the system and the reservoir:
the system cannot absorb any energy as the temperature is increased starting from
zero, hence its specific heat vanishes. Notice also that quantum effects disappear as
kT 
 �ω, when the typical energy exchange is much larger then the energy level
spacing of the harmonic oscillator: energy quantization is not visible any more and
the system behaves as if it were a classical oscillator.

Therefore we learn whether quantum effects are important or not from the com-
parison between the quantum energy scale of the system and the thermal energy
scale, hence from the parameter �ω/kT .

3.1.2 The Particle in a Box with Reflecting Walls

In this case Gibbs reservoir is made up of N boxes of size L . The state of the
particle in the box is specified by a vector with positive integer components kx , ky, kz

corresponding to the energy given in (3.7). The partition function of the system is
therefore given by
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Z =
∞∑

kx =1

∞∑

ky=1

∞∑

kz=1

e−β �
2π2

2mL2
(k2x +k2y+k2z ) =

( ∞∑

k=1

e−β �
2π2

2mL2
k2
)3

. (3.24)

For large values of β, hence for small temperatures, we have:

Z �
(
e−β �

2π2

2mL2

)3

, (3.25)

because the first term in the series on the right hand side of (3.24) dominates over the
others. Instead for large temperatures, noticing that the quantity which is summed
up in (3.24) changes very slowly as a function of k, we can replace the sum by an
integral:

Z =
( ∞∑

k=1

e−β �
2π2

2mL2
k2
)3

�
(∫ ∞

0
dk e−β �

2π2

2mL2
k2
)3

=
(
2mL2

βπ2�2

) 3
2
(∫ ∞

0
dxe−x2

)3

=
(

m

2βπ

) 3
2 L3

�3
=
(

m

2βπ�2

) 3
2

V . (3.26)

We conclude that while at low temperatures (β �2π2

2mL2 
 1) the mean energy tends to

U → − d

dβ

(
−3β

�
2π2

2mL2

)
= 3

�
2π2

2mL2 , (3.27)

i.e. to the energy of the ground state of the system, at high temperatures (β �2π2

2mL2 	 1)
we have

U → − d

dβ

[
ln V + 3

2

(
lnm − ln β − ln(2π�

2)
)]

= 3

2β
= 3

2
kT . (3.28)

This confirms that β = 1
kT , since the system under consideration corresponds to a

perfect gas containing a single particle, whose mean energy in the classical limit is
precisely 3kT/2, if T is the absolute temperature.

3.2 The Pressure and the Equation of State

It is well known that the equation of state for a homogeneous and isotropic system
fixes a relation among the pressure, the volume and the temperature of the same
system when it is at thermal equilibrium. We shall discuss now how the pressure of
the system can be computed once the distribution over its states is known.
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The starting point for the computation of the pressure is a theorem which is valid
both in classical and quantum mechanics and is known as the adiabatic theorem.
In the quantum version the theorem makes reference to a system defined by para-
meters which change very slowly in time (where it is understood that a change in
the parameters may also change the energy levels of the system) and asserts that in
these conditions the system maintains its quantum numbers unchanged. What is still
unspecified in the enunciation above is what is the meaning of slow, i.e. with respect
to what time scale. We shall clarify that by an example.

Let us consider a particle of mass M moving in a one-dimensional segment of
length L with reflecting endpoints. Suppose the particle is in the n-th quantum state
corresponding to the energy En = �

2n2π2/(2M L2) (see Eq. (2.107)) and that we
slowly reduce the distance L , where slowly means that |δL|/L 	 1 in a time interval
of the order of �/ΔEn , where ΔEn is the energy difference between two successive
levels. In this case the adiabatic theorem applies and states that the particle keeps
staying in the n-th level as L is changed. That of course means that the energy of
the particle increases as we bring the two endpoints closer to each other, δEn =
(∂En/∂L)δL , and we can interpret this energy variation as the work that must be
done to move them. On the other hand, assuming the endpoints to be practically
massless, in order to move them slowly we must exactly balance the force exerted
on them by the presence of the particle inside, which is the analogous of the pressure
in the one-dimensional case. Therefore we obtain the following force:

F(n, L) = −d En(L)

d L
= �

2n2π2

M L3 . (3.29)

If we now consider the three-dimensional case of the particle in a box of volume
V = L3, for which, according to (2.111), we have:

En(V ) = �
2|n|2π2

2M L2 = �
2|n|2π2

2MV
2
3

, (3.30)

we can generalize (3.29) replacing the force by the pressure:

P(k, V ) = −d Ek(V )

dV
= − 1

3L2

d Ek

d L
= 2

3

Ek(V )

V
. (3.31)

Our choice to consider the pressure P instead of the force is dictated by our intention
of treating the system without making explicit reference to the specific orientation of
the cubic box. The force is equally exerted on all the walls of the box and is propor-
tional to the area of each box, the pressure being the coefficient of proportionality.

Having learned how to compute the pressure when the system is in one particular
quantum state, we notice that at thermal equilibrium, being the i-th state occupied
with the probability pi given in (3.15), the pressure can be computed by averaging
that obtained for the single state over the Canonical Distribution, thus obtaining:

http://dx.doi.org/10.1007/978-3-319-20630-1_2
http://dx.doi.org/10.1007/978-3-319-20630-1_2
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P = − 1

Z

∑

i

e−βEi (V ) ∂Ei

∂V
. (3.32)

In the case of a particle in a cubic box, using the result of (3.31), we can write:

P = 2

3V

∞∑

kx ,ky ,kz=0

e−βEk(V )

Z
Ek = 2U

3V
, (3.33)

which represents the equation of state of our system. In the high temperature limit,
taking into account (3.28), we easily obtain

P = kT

V
, (3.34)

which coincides with the equation of state of a classical perfect gas made up of a
single atom in a volume V .

Starting from the definition of the partition function Z in (3.16), we can translate
(3.32) into a formula of general validity:

P = 1

β

∂ ln Z

∂V
. (3.35)

3.3 A Three Level System

In order to further illustrate Gibbs method and in particular to verify what already
stated about the behavior of the multiplicity function in the limit of an ideal reservoir,
N → ∞ (i.e. that it has only one sharp peak in correspondence of its maximum
whosewidth vanishes in that limit), let us consider a very simple system characterized
by three energy levels E1 = 0, E2 = ε and E3 = 2ε, each corresponding to a single
microscopic state. Let U be the total energy of the macrosystem containingN copies
of the system; it is obvious that U ≤ 2N ε. The statistical distribution is fixed by
giving the number of copies in each microscopic state, i.e. by three non-negative
integer numbers N1, N2, N3 constrained by:

N1 + N2 + N3 = N , (3.36)

and by:
N2ε + 2N3ε = U . (3.37)

the multiplicity of the distribution is

M(Ni ) ≡ N !
N1!N2!N3! . (3.38)
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The simplicity of themodel lies in the fact that, due to the constraints, there is actually
only one free variable among N1, N2 and N3 on which the distribution is dependent.
In particular we choose N3 and parametrize it as

N3 = xN .

Solving the constraints given above we have:

N2 = U
ε

− 2xN ≡ (u − 2x)N ,

where the quantity u ≡ U/(εN ) has been introduced, which is proportional to the
mean energy of the copies U = uε, and:

N1 = (1 − u + x)N .

The fact that the occupation numbers Ni are non-negative integers implies that x must
be greater than the maximum between 0 and u − 1, and less than u/2. Notice also
that if u > 1 then N3 > N1. Wemust exclude this possibility since, as it is clear from
the expression of the Canonical Distribution in (3.15), at thermodynamic equilibrium
occupation numbers must decrease as the energy increases. There are however cases,
like for instance those encountered in laser physics, in which the distributions are
really reversed (i.e. the most populated levels are those having the highest energies),
but they correspond to situations which are not at thermal equilibrium.

In the thermodynamic limit, N → ∞, we can also say, neglecting distributions
with small multiplicities, that each occupation number Ni becomes very large, so
that we can rewrite factorials by using Stirling formula (3.9), and the expression
giving the multiplicity as:

M(x) � c
NN

(xN )xN ((u − 2x)N )(u−2x)N ((1 − u + x)N )(1−u+x)N

= c
(

x−x (u − 2x)−(u−2x)(1 − u + x)−(1−u+x)
)N

, (3.39)

where c is a constant, which will not enter our considerations.
The important point in our analysis is that the expression in brackets in (3.39) is

positive in the allowed range 0 ≤ x ≤ u/2 and has a single maximum, which is
strictly inside that range. To find its position we can therefore study, in place ofM,
its logarithm

lnM(x) � −N (x ln x + (u − 2x) ln(u − 2x) + (1 − u + x) ln(1 − u + x)) ,

whose derivative is

(lnM(x))′ = −N (ln x − 2 ln(u − 2x) + ln(1 − u + x)) ,
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and vanishes if
x(1 − u + x) = (u − 2x)2. (3.40)

Equation (3.40) shows that, in the most likely distribution, N2 is the geometric mean
of N1 and N3. Hence there is a number z < 1 such that N2 = zN1 and N3 =
z2N1. According to the Canonical Distribution, z = e−βε. Equation (3.40) has real
solutions:

x = 1 + 3u ±√(1 + 3u)2 − 12u2

6
.

The one contained in the allowed range 0 ≤ x ≤ u/2 is

xM = 1 + 3u −√(1 + 3u)2 − 12u2

6
.

We can compute the second derivative of the multiplicity in xM by using the relation:

M′(x) = −N (ln x − 2 ln(u − 2x) + ln(1 − u + x))M(x),

and, obviously, M′(xM ) = 0. Taking into account (3.40) we have then:

M′′(xM ) = −N
(

1

xM
+ 4

u − 2xM
+ 1

1 + xM − u

)
M(xM )

= −N 1 + 3u − 6xM

(u − 2xM )2
M(xM ). (3.41)

Replacing the value found for xM we arrive finally to:

M′′(xM )

M(xM )
= −N 9

√
(1 + 3u)2 − 12u2

(√
(1 + 3u)2 − 12u2 − 1

)2 ≤ −18N . (3.42)

This result, and in particular the fact thatM′′(xM ) is of the order of −NM(xM ) as
N → ∞, so that

M(xM ) − M(x)

M(xM )
∼ N (x − xM )2,

demonstrates that the multiplicity has a maximum whose width goes to zero as
1/

√N . That is also clearly illustrated in Fig. 3.2. Therefore, in the limit N → ∞,
the corresponding probability distribution tends to a Dirac delta function

P(x) ≡ M(x)
∫ u/2
0 dyM(y)

→ δ(x − xM ).
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Fig. 3.2 Two plots in
arbitrary units of the
multiplicity distribution
M(x) of the N -elements
Gibbs ensemble of the three
level model. The comparison
of the distribution for N = 1
(left) and N = 1000 (right)
shows the predicted fast
reduction of the fluctuations
for increasing N

This confirms that the probability is concentrated on a single distribution (a single x
in the present case), which coincides with the most probable one. Even if there are
exceptions to this law, for instance in some systems presenting a critical point (like
the liquid–vapor critical point), that does not regard the systems considered in this
text, so that the equilibrium distribution can be surely identified with the most likely
one.

In Fig. 3.2 the plots of the function given in (3.39) are shown for an arbitrary
choice of the vertical scale. We have set u = 1/2 and we show two different cases,
N = 1 (left) and N = 1000 (right).

Making always reference to the three-level system, we notice that the ratios of the
occupation numbers are given by

z = e−βε = xM

u − 2xM

=
√
1 + 6u − 3u2 + u − 1

4 − 2u
. (3.43)

The plot of z as a function of u is given in the below figure and shows that, in the
range (0, 1), we have 0 ≤ z ≤ 1. Hence β → ∞ as u → 0 and β → 0 as u → 1.
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3.4 The Grand Canonical Ensemble and the Perfect
Quantum Gas

We shall describe schematically the perfect gas as a system made up of a great
number of atoms, molecules or in general particles of the same species, which have
negligible interactions among themselves but are subject to external forces. We can
consider for instance a gas of particles elastically attracted towards a fixed point, or
instead a gas of free particles contained in a box with reflecting walls. We will show
detailed computations for the latter case, since it has several interesting applications,
but the reader is invited to think about the generalization of the results that will be
obtained to the case of different external forces.

The states of every particle in the box can be described as we have done for
the single particle in a box, see Sect. 3.1.2. However, classifying the states of many
identical particles raises a new problem of quantum nature, which is linked to the
quantum indistinguishability and to the corresponding statistical choice.

The uncertainty principle is in contrast with the idea of particle trajectory. If a
particle is located with a good precision at a given time, then its velocity is highly
uncertain and so will be its position at a later time. If two identical particle are located
very accurately at a given time t around points r1 and r2, their positions at later times
will be distributed in a quite random way; if we locate again the particles at time
t + Δt we could not be able to decide which of the two particles corresponds to the
one initially located in r1 and which to the other.

The fact that the particles cannot be distinguished implies that the probability
density for locating the particles in two given points, ρ(r1, r2), must necessarily be
symmetric under exchange of its arguments:

ρ(r1, r2) = ρ(r2, r1). (3.44)

Stated otherwise, indices 1 and 2 refer to the points where the two particles are
simultaneously located but in no way identify which particle is located where.

If we consider that also in the case of two (or more) particles the probability
density must be linked to the wave functions by the relation:

ρ(r1, r2) = |ψ(r1, r2)|2,

then, taking (3.44) into account, we have that:

ψ(r1, r2) = eiφ ψ(r2, r1),

where φ cannot depend on positions since that would change the energy of the
corresponding state. A double exchange implies that e2iφ = 1, so that eiφ = ±1.
Therefore we can state that, in general, the wave function of two identical particles
must satisfy the following symmetry relation



184 3 Introduction to the Statistical Theory of Matter

ψ(r1, r2) = ±ψ(r2, r1). (3.45)

Since identity among particles is equivalent to the invariance of Schrödinger equation
under coordinate exchange, we conclude that Eq. (3.45) is yet another application of
the symmetry principle introduced in Sect. 2.6.

Generalizing the same argument to the case of more than two particles, it can be
easily noticed that the sign appearing in (3.45) must be the same for all identical
particles of the same species. The plus sign applies to photons, to hydrogen and
helium atoms, to diatomic molecules made up of identical atoms and to many other
particles. There is also a large number of particles for which the minus sign must be
used, in particular electrons, protons and neutrons. In general, particles of the first
kind are called bosons, while particles of the second kind are named fermions.

As we have seen at the end of Sect. 2.3, particles may have an internal angular
momentum which is called spin, whose projection (�s) in a given direction, e.g., in
the momentum direction, can assume the values (S − m)� where m is an integer
such that 0 ≤ m ≤ 2S and S is either integer or half-integer. In the case of particles
with non-vanishing mass one has an independent state for each value of m. This
is not true for massless particles. Indeed, e.g., for a photon, the spin momentum
projection assumes only two possible values (±�), corresponding to the independent
polarizations of light. A general theorem (spin-statistics theorem) states that particles
carrying half-integer spin are fermions, while those for which S is an integer are
bosons.

Going back to the energy levels of a system made up of two particles in a box
with reflecting walls, they are given by

E = π2
�
2

2mL2

[
k2x,1 + k2y,1 + k2z,1 + k2x,2 + k2y,2 + k2z,2

]
. (3.46)

The corresponding states are identified by two vectors (wave vectors) k1 and k2 with
positive integer components and, if it applies, by two spin indices s1 and s2. Indeed,
as we have already said, the generic state of a particle carrying spin is described by a
wave function with complex components which can be indicated by ψ(r ,σ), where
σ identifies the single component; in this case |ψ(r,σ)|2 represents the probability
density of finding the particle around r and in the spin state σ.

Indicating byψk(r) thewave function of a single particle in a box given in (2.109),
the total wave function for two particles, which we assume to have well definite spin
components s1 and s2, should correspond to the product ψk1(r1)ψk2(r2)δs1,σ1δs2,σ2 ,
but (3.45) compels us to (anti-)symmetrize the wave function, which can then be
written as:

ψ(r1, r2,σ1,σ2) = N [ψk1(r1)ψk2(r2)δσ1,s1δσ2,s2

±ψk2(r1)ψk1(r2)δσ1,s2δσ2,s1 ]. (3.47)

http://dx.doi.org/10.1007/978-3-319-20630-1_2
http://dx.doi.org/10.1007/978-3-319-20630-1_2
http://dx.doi.org/10.1007/978-3-319-20630-1_2
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However that leads to a paradox in case the two wave vectors coincide, k1 = k2,
and the particles are fermions in the same spin state, s1 = s2. Indeed in this case the
minus sign has to be used in (3.47), leading to a vanishing result. The only possible
solution to this seeming paradox is Pauli’s Exclusion Principle, which forbids the
presence of two identical fermions having the same quantum numbers (wave vector
and spin in the present example).

The identification of the states of two particles which can be obtained by exchang-
ing both wave vectors and spin states suggests that a better way to describe them,
alternative to fixing the quantum numbers of the single particles, is that of indicating
which combinations (wave vector, spin state) appear in the total wave function, and in
case of bosons how many times do they appear: that corresponds to indicating which
single particle states (each identified by k and σ) are occupied and by how many
particles. In conclusion, the microscopic state of systems made up of many identical
particles (quantum gas) can be described in terms of the occupation numbers of the
quantum states accessible to a single particle: they can be non-negative integers in the
case of bosons, while only two possibilities, 0 or 1, are left for fermions. For instance,
the wave function in (3.47) can be described in terms of the following occupation
numbers:

nk,σ = δk,k1δσ,s1 + δk,k2δσ,s2 .

3.4.1 The Perfect Fermionic Gas

According towhat stated above,we shall consider a systemmade up of n identical and
non-interacting particles of spin S = 1/2, constrained in a cubic box with reflecting
walls and an edge of length L . Following Gibbs, the box is supposed to be in thermal
contact with N identical boxes.

The generic microscopic state of the gas, which is indicated with an index i in
Gibbs construction, is assigned once the occupation numbers {nk,s} are given (with
{nk,s} = 0 or 1) for every value of the wave vector k and of the spin projection
s = ±1/2, with the obvious constraint:

∑

k,s

nk,s = n. (3.48)

The corresponding energy is given by:

E{nk,s } =
∑

k,s

�
2π2

2mL2

(
k2x + k2y + k2z

)
nk,s ≡

∑

k,s

�
2π2

2mL2 k2nk,s . (3.49)

Notice that all occupation numbers nk,s refer to the particles present in the specified
single particle state: they must not be confused with the numbers describing the
distribution of the N copies of the system in Gibbs method. The partition function
of our gas is therefore:
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Z =
∑

{nk,s }:
∑

k,s nk,s=n

e−βE{nk,s } =
∑

{nk,s }:
∑

k,s nk,s=n

e−β
∑

k,s
�
2π2

2mL2
k2nk,s

=
∑

{nk,s }:
∑

k,s nk,s=n

∏

k,s

e−β �
2π2

2mL2
k2nk,s . (3.50)

The constraint in (3.48) makes the computation of the partition function really dif-
ficult. Indeed, without that constraint, last sum in (3.50) would factorize into the
product of the different sums over the occupation numbers of the single particle
states k, s.

This difficulty can be overcome by relaxing the constraint on the number of
particles in each system, keeping only that on the total number ntot of particles
in the macrosystem, similarly to what has been done for the energy. Hence the
number of particles in the gas, n, will be replaced by the average number n̄ ≡
ntot/N . Also in this case the artifice works well, since the probability of the various
possible distributions of the macrosystem is extremely peaked around themost likely
distribution, so that the number of particles in each system has negligible fluctuations
with respect to the average number n̄.

This artifice is equivalent to replacing the Canonical Distribution by the Grand
Canonical one. In practice, the reflecting walls of our systems are given a small
permeability, so that they can exchange not only energy but also particles. In the
general case, the Grand Canonical Distribution refers to systems made up of several
different particle species, however we shall consider the case of a single species in
our computations.

Going along the same lines of the construction given in Sect. 3.1, we notice that
the generic state of the system under consideration, identified by the index i , is now
characterized by its particle number ni as well as by its energy Ei . We are therefore
looking for the distribution having maximum multiplicity

M ({Ni }) = N !∏
i Ni ! ,

constrained by the total number of considered systems

∑

i

Ni = N , (3.51)

by the total energy of the macrosystem

∑

i

Ni Ei = UN (3.52)

and, as an additional feature of the Grand Canonical Distribution, by the total number
of particles of each species. In our case, since we are dealing with a single type of
particles, there is only one additional constraint:
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∑

i

ni Ni = n̄ N . (3.53)

If we apply the method of Lagrange’s multipliers we obtain, analogously to what has
been done for the Canonical Distribution, see (3.12),

ln pi = −1 + γ − β (Ei − μni ) , (3.54)

where we have introduced the new Lagrange multiplier βμ, associated with the
constraint in (3.53). We arrive finally, in analogy with the canonical case, to the
probability in the Grand Canonical Distribution:

pi = e−β(Ei −μni )

∑
j e

−β(E j −μn j)
≡ e−β(Ei −μni )

Ξ
, (3.55)

where the grand canonical partition function, Ξ , has been implicitly defined.
It can be easily shown that, in the same way as energy exchange (thermal equi-

librium) compels the Lagrange multiplier β to be the same for all systems in ther-
mal contact (that has been explicitly shown for the Canonical Distribution), particle
exchange forces all systems to have the same chemical potential μ for each particle
species separately. The chemical potential can be computed through the expression
for the average number of particles:

n̄ =
∑

i

ni pi =
∑

i

ni
e−β(Ei −μni )

Ξ
. (3.56)

Let us now go back to the case of the perfect fermionic gas. The Grand Canonical
partition function can be written as:

Ξ =
∑

{nk,s }
e
−β
(

E{nk,s }−μ
∑

k,s nk,s

)

=
∑

{nk,s }
e
−β
∑

k,s

(
�
2π2

2mL2
k2−μ

)
nk,s

=
∏

k,s

⎛

⎝
1∑

nk,s=0

e
−β
(

�
2π2

2mL2
k2−μ

)
nk,s

⎞

⎠ =
∏

k,s

(
1 + e

−β
(

�
2π2

2mL2
k2−μ

))
. (3.57)

Hence, based on (3.55), we can write the probability of the state defined by the
occupation numbers {nk,s} as

p
({nk,s}

) = e
−β
∑

k,s

(
�
2π2k2

2mL2
−μ
)

nk,s

Ξ
=
∏

k,s

⎛

⎝ e
−βnk,s

(
�
2π2k2

2mL2
−μ
)

1 + e
−β
(

�2π2k2

2mL2
−μ
)

⎞

⎠ , (3.58)
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which, as can be easily seen, factorizes into the product of the probabilities related
to the single particle states: p

({nk,s}
) =∏k,s p

(
nk,s

)
, where

p
(
nk,s

) = e
−βnk,s

(
�
2π2k2

2mL2
−μ
)

1 + e
−β
(

�2π2k2

2mL2
−μ
) . (3.59)

Using this result we can easily derive the average occupation number for the single
particle state, also known as Fermi–Dirac distribution:

n̄k,s =
1∑

nk,s=0

nk,s p
(
nk,s

) = e
−β
(

�
2π2k2

2mL2
−μ
)

1 + e
−β
(

�2π2k2

2mL2
−μ
) = 1

1 + e
β
(

�2π2k2

2mL2
−μ
) . (3.60)

This result can be easily generalized to the case of fermions which are subject to an
external force field, leading to single particle energy levels Eα identified by one or
more indices α. The average occupation number of the single particle state α is then
given by:

n̄α = 1

1 + eβ(Eα−μ)
(3.61)

and the chemical potential can be computed making use of (3.56), which according
to (3.61) and (3.60) can be written in the following form:

n̄ =
∑

α

1

1 + eβ(Eα−μ)
=
∑

k,s

1

1 + e
β
(

�2π2k2

2mL2
−μ
) , (3.62)

where the second equation is valid for free particles.
We have therefore achieved a great simplification in the description of our system

by adopting the Grand Canonical construction. This simplification can be easily
understood in the following terms. Having relaxed the constraint on the total number
of particles in each system, each single particle state can be effectively considered as
an independent sub-system making up, together with all other single particle states,
thewhole system. Each sub-system can be found, for the case of fermions, in only two
possible states, with occupation number 0 or 1: its GrandCanonical partition function
is therefore trivially given by 1 + exp(−β(Eα − μ)), with β and μ being the same
for all sub-systems because of thermal and chemical equilibrium. The probability
distribution, Eq. (3.59), and the Fermi–Dirac distribution easily follows.

In order to make use of previous formulae, it is convenient to arrange the single
particle states k, s according to their energy, thus replacing the sum over state indices
by a sum over state energies. With that aim, let us recall that the possible values of k,
hence the possible states, correspond to the vertices of a cubic lattice having spacing
of length 1. In the below figure we show the lattice for the two-dimensional case. It
is clear that, apart from small corrections due to the discontinuity in the distribution
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of vertices, the number of single particle states having energy less than a given value
E is given by

nE = 2

8

4π
(√

2m E L
π�

)3

3
=
(√

2mL
�

)3

3π2 E3/2, (3.63)

which is equal to the volume of the sphere of radius

k =
√
2m E L

π�

divided by the number of sectors (which is 8 in three dimensions), since k has only
positive components, andmultiplied by the number of spin states, e.g., 2 for electrons.

The approximation used above, which improves at fixed particle density n̄/L3 as
the volume L3 increases, consists in considering the single particle states as distrib-
uted as a function of their energy in a continuous, instead of discrete, way. On this
basis, we can compute the density of single particle states as a function of energy:

dnE

d E
=

√
2m3L3

π2�3

√
E . (3.64)

Hence we can deduce from (3.60) the distribution of particles as a function of their
energy:

dn̄(E)

d E
=

√
2m3L3

π2�3

√
E

1 + eβ(E−μ)
(3.65)

and replace (3.62) by the following equation:

n̄ =
∫ ∞

0

dn̄(E)

d E
d E =

∫ ∞

0
d E

√
2m3L3

π2�3

√
E

1 + eβ(E−μ)
. (3.66)
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Equation (3.65) has a simple interpretation in the limitT → 0, i.e. asβ → ∞. Indeed,
in that limit, the exponential in the denominator diverges for all single particle states
having energy greater than μ, hence the occupation number vanishes for those states.
The exponential instead vanishes for states having energy less that μ, for which
the occupation number is one. Therefore the chemical potential in the limit of low
temperatures, which is also called Fermi energy EF , can be computed through the
equation:

nEF =
(√

2mL
�

)3

3π2 E3/2
F = n̄. (3.67)

Solving for EF , we obtain:

EF = μ|T =0 = �
2

2m

(
3π2ρ

)2/3
, (3.68)

where ρ = n̄/L3 is the density of particles in the gas.
In order to discuss the opposite limit, in which T is very large (β → 0), let us set

z = e−βμ and rewrite (3.66) by changing the integration variable (x = βE):

n̄ =
√
2m3L3

π2�3β
3
2

∫ ∞

0
dx

√
x

1 + zex
=
√
2(mkT )3L3

π2�3

∫ ∞

0
dx

√
x

1 + zex
. (3.69)

We see from this equation that μ must tend to −∞ as T → ∞, i.e. z must diverge,
otherwise the right-hand side in (3.69) would diverge like T 3/2, which is a nonsense
since n̄ is fixed a priori.

Since at high temperatures z diverges, the exponential in the denominator of (3.60)
is much greater than 1, hence (3.65) can be replaced, within a good approximation,
by

dn̄(E)

d E
=
(√

2mL
�

)3

2π2z

√
Ee−βE ≡ AL3

√
Ee−βE . (3.70)

The constant A, hence μ, can be computed through

∫ ∞

0
AL3

√
Ee−βE d E = 2AL3

∫ ∞

0
x2e−βx2dx = −2AL3 d

dβ

∫ ∞

0
e−βx2dx

= −AL3 d

dβ

∫ ∞

−∞
e−βx2dx = −AL3 d

dβ

√
π

β
= AL3

2

√
π

β3 = n̄. (3.71)

We have therefore A = 2ρ
√

β3/π = eβμ
√
2m3/(π2

�
3), confirming that μ → −∞

as β → 0 (μ ∼ ln β/β).
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It is remarkable that in the limit under consideration, in which the distribution of
particles according to their energy is given by:

dn̄(E)

d E
= 2ρ

√
β3

π
L3

√
Ee−βE , (3.72)

Planck’s constant has disappeared from formulae. If consequently we adopt the
classical formula for the energy of the particles, E = mv2/2, we can find the velocity
distribution corresponding to (3.70):

dn̄(v)

dv
≡ dn̄(E)

d E

d E

dv
= ρ

√
2m3β3

π
L3v2e−βmv2/2. (3.73)

Replacing β by 1/kT , Eq. (3.73) reproduces the well known Maxwell distribution
for velocities, thus confirming the identification β = 1/kT made before.

The Fig. 3.3 reproduces the behavior predicted by (3.65) for three different values
of kT , and precisely for kT = 0, 0.25 and 12.5, measured in the arbitrary energy
scale given in the figure, according towhich EF = 10. The two curves corresponding
to lower temperatures show saturation for states with energy E < EF , in contrast
with the third curve which instead reproduces part of the Maxwell distribution and
corresponds to small occupation numbers.

Making use of (3.65) we can compute the mean energy U of the gas:

U =
∫ ∞

0
E

dn̄(E)

d E
d E =

√
2m3L3

π2�3

∫ ∞

0

√
E3

1 + eβ(E−μ)
d E, (3.74)

obtaining, in the low temperature limit,

U =
√
8m3L3

5π2�3
E5/2

F = (3n̄)5/3π4/3
�
2

10mL2 = (3n̄)5/3π4/3
�
2

10mV 2/3 , (3.75)

where V = L3 is the volume occupied by the gas. At high temperatures we have
instead:

U = 2ρ

√
β3

π
L3
∫ ∞

0
E3/2e−βE d E = 4ρ

√
β3

π
L3
∫ ∞

0
x4e−βx2dx

= 3

2
n̄

√
β3

π

√
π

β5
= 3

2β
n̄ ≡ 3

2
n̄kT . (3.76)

This result reproduces what predicted by the classical kinetic theory and in particular
the specific heat at constant volume for a gram atom of gas: CV = 3/2k NA ≡ 3/2R.
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In order to compute the specific heat in the low temperature case, we notice
first that, for large values of β, Eq. (3.66) leads, after some computations, to μ =
EF − O(β−2), hence μ = EF also at the first order in T . We can derive (3.74) with
respect to T , obtaining:

C = kβ2

√
2m3L3

π2�3

∫ ∞

0

√
E3(E − μ) eβ(E−μ)

(1 + eβ(E−μ))2
d E . (3.77)

For large values of β the exponential factor in the numerator makes the contributions
to the integral corresponding to E 	 μ negligible, while the exponential in the
denominator makes negligible contributions from E 
 μ. This permits to make a
Taylor expansion of the argument of the integral in (3.77). In particular, if we want
to evaluate contributions of order T , taking (3.67) into account we obtain:

C � kβ2 3n̄

8E
3
2
F

∫ ∞

−∞

√
E3(E − EF )

(
cosh β(E−EF )

2

)2 d E � kβ2 3n̄

8

∫ ∞

−∞
(E − EF )

(
cosh β(E−EF )

2

)2 d E

+ kβ2 9n̄

16EF

∫ ∞

−∞
(E − EF )2

(
cosh β(E−EF )

2

)2 d E = kn̄
9kT

2EF

∫ ∞

−∞

( x

cosh x

)2
dx

= kn̄
3π2kT

4EF
, (3.78)

showing that the specific heat has a linear dependence in T at low temperatures.
The linear growth of the specific heat with T for low temperatures can be easily

understood in terms of the distribution of particles at low T . In particular we can
make reference to (3.65) and to its graphical representation shown in Fig. 3.3: at low

Fig. 3.3 A plot of the Fermi–Dirac energy distribution in arbitrary units for a fermion gas with
EF = 10 for kT = 0, 0.25 and 12.5. Notice the for the first two values of kT the distribution
saturates the Pauli exclusion principle limit, while for kT = 12.5 it approaches the Maxwell–
Boltzmann distribution
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temperatures the particles occupy the lowest possible energy levels, thus saturating
the limit imposed by Pauli’s principle. In these conditionsmost of the particles cannot
exchange energy with the external environment, since energy exchanges of the order
of kT , which are typical at temperature T , would imply transitions of a particle to
a different energy level, which however is already completely occupied by other
particles. If we refer to the curve corresponding to kT = 0.25 in the figure, we see
that only particles having energies in a small interval of width kT around the Fermi
energy (EF = 10 in the figure), where the occupation number rapidly goes from 1
to 0, can make transitions from one energy level to another, thus exchanging energy
with the reservoir and giving a contribution to the specific heat, which is of the order
of k for each particle. We expect therefore a specific heat which scales by a factor of
the order of kT/EF with respect to that for the high temperature case: this roughly
reproduces the exact result given in (3.78).

Evidently we expect the results we have obtained to apply in particular to the
electrons in the conduction band of a metal. It could seem that a gas of electrons be
far from being non-interacting, since electrons exchange repulsive Coulomb interac-
tions; however Coulomb forces are largely screened by the other charges present in
the metallic lattice, and can therefore be neglected, at least qualitatively, at low ener-
gies.We recall that inmetals there is one free electron for each atom, therefore, taking
iron as an example,which has amass densityρm � 5× 103 kg/m3 and atomicweight
A � 50, the electronic density is: n̄/V = ρm(NA/A)103 ∼ 6 × 1028 particles/m3.
Making use of (3.68) we obtain: EF � (10−68/1.8 × 10−30)

(
3π26 1028

)2/3
J �

10−18 J � 6 eV. If we recall that at room temperature kT � 2.5 × 10−2 eV,
we see that the order of magnitude of the contribution of electrons to the specific
heat is 3 × 10−2R per gram atom, to be compared with 3R, which is the contri-
bution of atoms according to Dulong and Petit. Had we not taken quantum effects
into account, thus applying the equipartition principle, we would have predicted a
contribution 3/2R coming from electrons. That gives a further confirmation of the
relevance of quantum effects for electrons in matter.

Going back to the general case, we can obtain the equation of state for a fermi-
onic gas by using (3.35). From the expression for the energy Ei corresponding to a
particular state of the gas given in (3.49) we derive ∂Ei/∂V = −2Ei/3V , hence

PV = 2

3
U , (3.79)

which at high temperatures, where (3.76) is valid, reproduces the well known perfect
gas law. Notice that the equation of state in the form given in (3.79) is identical to that
obtained in (3.33) and indeed depends only on the dispersion relation (giving energy
in terms of momentum) assumed for the free particle states, i.e. the simple form and
the factor 2/3 are strictly related to having considered the particles as non-relativistic
(see Problem 3.26 for the case of ultrarelativistic particles).
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3.4.2 The Perfect Bosonic Gas

To complete our program, let us consider a gas of spinless atoms, hence of bosons;
in order to have a phenomenological reference, we shall think in particular of a
mono-atomic noble gas like helium. The system can be studied along the same
lines followed for the fermionic gas, describing its possible states by assigning the
occupation numbers of the single particle states, with the only difference that in this
case the wave function must be symmetric in its arguments (the coordinates of the
various identical particles), hence there is no limitation on the number of particles
occupying a given single particle state. The Grand Canonical partition function for
a bosonic gas in a box is therefore

Ξ =
∑

{nk}
e
−β
(

E{nk}−μ
∑

k nk

)

=
∑

{nk}
e
−β
∑

k

(
�
2π2

2mL2
k2−μ

)
nk

=
∏

k

⎛

⎝
∞∑

nk=0

e
−β
(

�
2π2

2mL2
k2−μ

)
nk

⎞

⎠

=
∏

k

1

1 − e
−β
(

�2π2

2mL2
k2−μ

) , (3.80)

from which the probability of the generic state of the gas follows:

p ({nk}) = e
−β
∑

k

(
�
2π2k2

2mL2
−μ
)

nk

Ξ

=
∏

k

(
e
−βnk

(
�
2π2k2

2mL2
−μ
) (

1 − e
−β
(

�
2π2k2

2mL2
−μ
)))

, (3.81)

which again can be written as the product of the occupation probabilities relative to
each single particle state:

p (nk) = e
−βnk

(
�
2π2k2

2mL2
−μ
) (

1 − e
−β
(

�
2π2k2

2mL2
−μ
))

. (3.82)

The average occupation number of the generic single particle state, k, is thus

n̄k =
∞∑

nk=0

nk p (nk) =
(
1 − e

−β
(

�
2π2k2

2mL2
−μ
)) ∞∑

n=0

n e
−βn

(
�
2π2k2
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= e
−β
(

�
2π2k2

2mL2
−μ
)

1 − e
−β
(

�2π2k2

2mL2
−μ
) = 1

e
β
(

�2π2k2

2mL2
−μ
)

− 1

, (3.83)
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which is known as the Bose–Einstein distribution. We deduce from last equation that
the chemical potential cannot be greater than the energy of the ground state of a
single particle, i.e.

μ ≤ 3
�
2π2

2mL2 ,

otherwise the average occupation number of that state would be negative. In the limit
of large volumes, the ground state of a particle in a box has vanishing energy, hence
μ must be negative.

The exact value of the chemical potential is fixed by the relation

n̄ =
∑

k

n̄k =
∑

k

1

e
β
(

�2π2k2

2mL2
−μ
)

− 1

. (3.84)

For the explicit computation of μ we can make use, as in the fermionic case, of the
distribution in energy, considering it approximately as a continuous function:

dn̄(E)

d E
=
√

m3

2

L3

π2�3

√
E

eβ(E−μ) − 1
. (3.85)

Notice that Eq. (3.85) differs from the analogous given in (3.65), which is valid in
the fermionic case, both for the sign in the denominator and for a global factor 1/2
which is due to the absence of the spin degree of freedom.

The continuum approximation for the distribution of the single particle states in
energy is quite rough for small energies, where only few levels are present. In the
fermionic case, however, that is not a problem, since, due to the Pauli exclusion
principle, only a few particles can occupy those levels (2 per level at most in the case
of electrons), so that the contribution coming from the low energy region is negligible.
The situation is quite different in the bosonic case. If the chemical potential is small,
the occupation number of the lowest energy levels can be very large, giving a great
contribution to the sum in (3.84). We exclude for the time being this possibility and
compute the chemical potential making use of the relation:

n̄ =
√

m3

2

L3

π2�3

∫ ∞

0
d E

√
E

eβ(E−μ) − 1
=
√

(mkT )3

2

L3

π2�3

∫ ∞

0
dx

√
x

zex − 1
(3.86)

where again we have set z = e−βμ ≥ 1. Defining the gas density, ρ ≡ n̄/L3,
Eq. (3.86) can be rewritten as:

∫ ∞

0
dx

√
x

zex − 1
= π2

�
3ρ

√
2

(mkT )3
. (3.87)
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On the other hand, recalling that z ≥ 1, we obtain the following inequality:

∫ ∞

0
dx

√
x

zex − 1
≤ 1

z

∫ ∞

0
dx

√
x

ex − 1
≤
∫ ∞

0
dx

√
x

ex − 1
� 2.315, (3.88)

which can be replaced in (3.87), giving an upper limit on the ratio ρ/T 3/2. That limit
can be interpreted as follows: for temperatures lower than a certain threshold, the
continuum approximation for the energy levels cannot account for the distribution of
all particles in the box, so thatwemust admit amacroscopic contribution coming from
the lowest energy states, in particular from the ground state. The limiting temperature
can be considered as a critical temperature, and the continuum approximation is valid
only if

T ≥ Tc � 4.38
�
2ρ2/3

m k
. (3.89)

As T approaches the critical temperature the chemical potential vanishes and the
occupation number of the ground state becomes comparable with n̄, hence of macro-
scopic nature. For temperatures lower than Tc the computation of the total number
of particles shown in (3.86) must be rewritten as:

n̄ = n̄ f +
√

m3

2

L3

π2�3

∫ ∞

0
d E

√
E

eβE − 1
, (3.90)

where n̄ f refers to the particles occupying the lowest energy states, while the inte-
gral over the continuum distribution, in which μ has been neglected, takes into
account particles occupying higher energy levels. Changing variables in the inte-
gral we obtain:

n̄ � n̄ f + 2.315

√
(mkT )3

2

L3

π2�3
, (3.91)

showing that, for T < Tc, n̄ f takes macroscopic values, of the order of magnitude
of Avogadro’s number NA.

This phenomenon is known asBose–Einstein condensation.Actually, for the usual
densities found in ordinary gases in normal conditions, i.e. ρ � 1025 particles/m3,
the critical temperature is of the order of 10−2 ◦K: for this combination of temperature
and density, interatomic forces are no more negligible even in the case of helium, so
that the perfect gas approximation does not apply. The situation can be completely
different at very low densities, indeed Bose–Einstein condensation has been recently
observed for temperatures of the order of 10−9 ◦K and densities of the order of
1015 particles/m3.

In the opposite situation, for temperatures much greater than Tc, the exponential
clearly dominates in the denominator of the continuum distribution since, analo-
gously to what happens for fermions at high temperatures, one can show that z 
 1.
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Hence the −1 term can be neglected, so that the distribution becomes that obtained
also in the fermionic case at high temperatures, i.e. the Maxwell distribution.

3.4.3 The Photonic Gas and the Black Body Radiation

We shall consider in brief the case of an electromagnetic field in a box with “almost”
completely reflecting walls: we have to give up ideal reflection in order to allow
for thermal exchanges with the reservoir. From the classical point of view, the field
amplitude can be decomposed in normal oscillation modes corresponding to well
defined values of the frequency and to electric and magnetic fields satisfying the well
known reflection conditions on the box surface. Themodes under consideration, apart
from the two possible polarizations of the electric field, are completely analogous to
the wave functions of a particle in a box shown in (2.109), that is:

sin
(π

L
kx x
)
sin
(π

L
ky y
)
sin
(π

L
kzz
)
cos
(π

L

√
k2x + k2y + k2z ct

)
(3.92)

where, as usual, the integers (kx , ky, kz) define the vector k. We have therefore the
following frequencies:

νk = c

2L
|k|. (3.93)

Taking into account the two possible polarizations, the number of modes having
frequency less than a given value ν is:

nν = π

3
|k|3 = 8πL3ν3

3c3
, (3.94)

from which the density of modes can be deduced:

dnν

dν
= 8πL3ν2

c3
. (3.95)

If the system is placed at thermal equilibrium at a temperature T and we assume
equipartition of energy, i.e. that an average energy kT corresponds to each oscillation
mode, we arrive to the result found by Rayleigh and Jeans for the energy distribution
of the black body2 radiation as a function of frequency (a quantity which can also be
easily measured in the case of an oven):

2A black body, extending a notion valid for the visible electromagnetic radiation, is defined as an
ideal body which is able to emit and absorb electromagnetic radiation of any frequency, so that all
oscillation modes interacting with (emitted by) a black body at thermal equilibrium at temperature
T can be considered as thermalized at the same temperature.

http://dx.doi.org/10.1007/978-3-319-20630-1_2
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dU (ν)

dν
= 8πkT

c3
L3ν2. (3.96)

This is clearly a paradoxical result, since, integrating over frequencies, we would
obtain an infinite internal energy, hence an infinite specific heat. In fact, accurate
experimental measurements performed at the end of the 19th century had shown
the existence of an exponential suppression of the high energy spectrum, which was
later interpreted by Planck based on the hypothesis of quantization of the energy
exchanges between atoms and radiation. This hypothesis was then better specified
by Einstein who assumed the existence of photons.

Starting from Einstein’s hypothesis, Eq. (3.95) can be interpreted as the density of
states for a gas of photons, i.e. bosons with energy E = hν. The density of photons
given in (3.64) becomes then:

dnE

d E
=
(

L

�c

)3 E2

π2 . (3.97)

For a gas of photons the collisions with the walls of the box, which thermalize the
system, correspond in practice to non-ideal reflection processes in which photons can
be absorbed or new photons can be emitted by the walls. Therefore, making always
reference to a macrosystem made up of a large number of similar boxes, there is
actually no constraint on the total number of particles, hence the chemical potential
must vanish.

The distribution law of the photons in energy is then given by:

dn(E)

d E
=
(

L

�c

)3 E2

π2

1

e
E

kT − 1
. (3.98)

From this law we can deduce the distribution in frequency:

dn(ν)

dν
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(
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�c

)3
(hν)2

π2

h

e
hν
kT − 1

= 8π

c3
L3 ν2

e
hν
kT − 1

(3.99)

and we can finally write the energy distribution of the radiation as a function of
frequency by multiplying both sides of (3.99) by the energy carried by each photon:

dU (ν)

dν
= 8πh

c3
L3 ν3

e
hν
kT − 1

. (3.100)

This distribution was proposed for the first time by Planck and was indeed named
after him.

It is evident that at small frequencies Planck distribution is practically equal to that
in (3.96). Instead at high frequencies energy quantization leads to an exponential cut
in the energy distribution which eliminates the paradox of an infinite internal energy
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and of an infinite specific heat. We notice that the phenomenon suppressing the high
energymodes in the computation of the specific heat is the same leading to a vanishing
specific heat for the harmonic oscillator when kT 	 hν (the system cannot absorb a
quantity of energy less than the minimal quantum hν) and indeed, as we have already
stressed at the end of Sect. 2.7, the radiation field in a box can be considered as an
infinite collection of independent harmonic oscillators of frequencies given by the
resonant frequencies of the box.

3.5 Gases in the Classical Limit

In the high-temperature limit, when kT becomes much greater than the typical spac-
ing among the energy levels of the system, those can be treated as a continuous
spectrum and, in the expression for the canonical partition function given in (3.16),
the sum becomes an integral. The measure of the integral corresponds to the density
of states. This density has been already considered, e.g., in (3.26) and in (3.64), for
ideal free particle gases, that is non-interacting gases, whose energy only depends
on momentum. It is apparent from the above mentioned formulae that, for an ideal
gas of free, point-like particles, the partition function in the classical limit is written
as a momentum integral of the Gibbs factor exp(−βE), where E is the total energy
of the system, with the measure

dμN ( p) =
(

V

h3

)N N∏

i=1

d3 pi . (3.101)

For an ideal gas of N identical particles, the states are still assigned by giving all
particles momenta pi , i = 1 . . . , N , but their density in the N -particle momentum
space must be divided by N !, because states which are related by permutations of
particle momenta must be identified. Thus we have the new measure

dμN ,I ( p) = 1

N !
(

V

h3

)N N∏

i=1

d3 pi . (3.102)

The question which still needs an answer is how the measure changes in the presence
of interaction potentials, i.e. if the energy also depends on the particle positions: in
this case one expects an integral over all variables needed to specify the state of the
system from a classical point of view, which involve the positions and the momenta
(or velocities) of all constituent particles, however we must still define the correct
integration measure. Let us start the discussion with a very simple example: the
one-dimensional quantum harmonic oscillator defined by the Hamiltonian

H = p2

2m
+ mω2x2

2
(3.103)

http://dx.doi.org/10.1007/978-3-319-20630-1_2
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whose energy levels are �ω(n + 1/2) with n non-negative integer, i.e. they are
equally spaced. Therefore, in the limit of high temperatures, kB T 
 �ω, the partition
function corresponds, apart from an irrelevant overall factor, to an integral over a
constant density of states

Z ∼
∫ ∞

0
dne−β�ωn = 1

�ω

∫ ∞

0
d Ee−βE = 1

β�ω
. (3.104)

Moreover, it is evident from (3.103) that classical trajectories H = E correspond to
ellipses in the x, p plane of semi-axes

√
2E/(mω2) and

√
2m E , which enclose an

area in the x, p plane which is equal to 2πE/ω. Therefore, from a classical point of
view, states which are equally spaced, by �ω, in energy correspond to trajectories
which enclose areas in the x, p plane which differ by a fixed amount 2π�ω/ω = h.
Hencewe canmake a one-to-one correspondence between physical states and volume
elements in x, p space of equal size h, i.e. the classical limit of the partition function
can be written as

Z = 1

h

∫ ∞

−∞
dx
∫ ∞

−∞
dp e−βH(x,p) (3.105)

which easily brings to the same result as in (3.104).
The x, p space is usually known as phase space and one can show that the result

found for the harmonic oscillator is of general nature. At a semi-classical level one
can show that, for a generic system described by 3N coordinates qi and 3N conjugate
momenta pi , the number of quantum energy levels corresponding to a given portion
of phase space Γ = ∫ ∏i dqi dpi is approximately equal to Γ/h3N . We deduce that
the correct classical measure for a gas of identical interacting point like particles is

dμN ( p, r) = 1

N !
N∏

i=1

d3 pi d3ri

h3 , (3.106)

as it also emerges from purely dimensional reasons, which suggest to replace the
volume V by the space integration measure d3r .

Actually, phase space emerged as the natural integration space for the founda-
tion of Statistical Mechanics since the early works from Boltzmann and Gibbs in
the second half of 19th century, when Quantum Mechanics was far from being dis-
covered; the reason can be explained by recalling a few fundamental properties of
Classical Mechanics. If the classical states of particles are identified by points in
the phase space, that is, by the conjugate variables Pα and Qβ , with α,β = 1, 2, 3,
the measure

∏N
i=1 d P1,i d P2,i d P3,i d Q1,i d Q2,i d Q3,i is invariant under canonical

transformations, that is, under redefinitions of the variables keeping unchanged the
Hamiltonian form of the dynamical equations. One can show that time evolution
itself, defined by the set of Hamilton equations, corresponds to a canonical trans-
formation: in this case the invariance of the phase space integration measure is also
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known as Liouville Theorem. Now, since the whole structure of Statistical Mechan-
ics is based on the principle that all possible microscopic states of the system have
equal probabilities a priori, one would like this assumption to be independent of
time evolution. By Liouville theorem, this is true only if equal numbers of states are
associated with equal portions of phase space: from that it follows that integration
over phase space is the correct thing to do. There is an unknown constant, of course,
corresponding to the phase space volume associated with a single microscopic state:
that remained undefined until Quantum Mechanics fixed it as in (3.106).

In conclusion, disregarding for simplicity the spin of particles, we have that in
the classical limit the Canonical partition function of N non-interacting identical
particles with mass m in both Fermi and Bose statistics corresponds to

Z0,class = 1

N !
∫ N∏

i=1

d3 pi d3ri

h3 e−β
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p2i
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�
(

V

h3N

∫
d3 p e−β p2

2m

)N

=
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3
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(

Φ0(T )V

N

)N

, (3.107)

where

Φ0(T ) =
(

(2πmkT )
1
2

h

)3

, (3.108)

and we have replaced N ! by its first Stirling approximation N N . This result, even if
written using different symbols, coincides with that given in (3.26).

In the case of interacting gases, if the interaction energy can be expressed by
means of a two-body potential, so that the potential energy of the gas is

V (r1, . . . r N ) =
N∑

i> j=1

v(|r i − r j |) , (3.109)

the partition function is
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For simplicity we shall assume v bounded from below and vanishing at large inter-
particle distances.

In general the calculation of the partition function fromEq. (3.110) is very difficult
because it contains an integral with respect to a huge number of variables. Technically
one exploits the fact that the function

f (r) ≡ e−βv(r) − 1, (3.111)

is fast vanishing for large r . In terms of f (r) we can write

Zclass �
(

(2πmkT )
3
2 V

h3N

)N [
1 + N 2

2V

∫
d3r f (r)

+ N 4

8V 2

(∫
d3r f (r)

)2
+ · · ·

]
. (3.112)

The brackets in the right-hand side contain a power expansion in N/V , where the dis-
regarded terms are increasingly complicated. The expansion is in terms of the particle
density ρ = N/V and is called virial expansion: for smaller densities interactions
become less important, so that the expansion converges faster.

If the two body potential v(r) is the sum of a hard core term3 and an attractive,
negative energy term whose average value is given by C , we can introduce a simple,
however rough, approximation of (3.110) setting

∫ N∏

i=1

d3ri e
−β
∑N

i> j=1 v(|r i −r j |) � (V − b)N e
C N2
2kT V , (3.113)

where b is the volume of the hard core of N −1 particles which is excluded from each
single particle integral, and C corresponds to the contribution of the attractive part
of the potential for each particle pair. We call this approximation the van der Waals
approximation because the corresponding equilibrium law, that we shall compute in
the next sections, is called the van der Waals equation. The approximate partition
function is

Zvdw �
(

(2πmkT )
3
2 (V − b)

h3N
e

C N
2kT V

)N

. (3.114)

In the following we shall discuss the consequences of Eq. (3.114) and the inter-
pretation of the results. However, before doing this, it is interesting to give a short
comparison of the van der Waals approximation to the partition function with its
virial expansion. For simplicity we assume the two body potential v(r) constant in
the interval rh < r < ra and vanishing for r larger than some ra . If this constant,

3If the particles were rigid balls of radius r the singular repulsive distance would correspond to the
radius rh = 2r .
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that we denote by va (because, if the potential is constant, its average value coincides
with the same constant) is much smaller than kT , We have

∫
d3r f (r) = −4π

3
(r3h − (e

va
kT − 1)(r3a − r3h )) ∼ C ′

kT
− 2b′

N
. (3.115)

Therefore, limiting the virial expansion to the first three terms, we get

Zclass ∼
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+ N 4

8V 2
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βkT
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+ O
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N 2/V
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]

.

In the van der Waals approximation, expanding the right-hand side of Eq. (3.114),
we have

Zvdw ∼
(
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3
2 V

h3N
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+ N 2

2V 2

(
C N

2kT
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+ O
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N 2/V

)3)
]

.

We see that, the first terms of the two expansions coincide if we identify C = C ′ and
b = b′. This shows how the virial expansion justifies van der Waals approximation.

A further subject which is worth discussing here is the partition function of a
mixture of ideal gases. Let us consider a mixture of gases in a given volume V ,
let Ni be the number of molecules of the i-th component. If the gases are ideal,
we can disregard mutual interactions among the molecules which, however, might
have internal degrees of freedom. Computing the partition function of an ideal gas
mixture, integration over each different molecule species is completely independent
of the others, and a factor 1/Ni ! must be used for each species separately, in order
to take into account the identity among particles belonging to the same component.
Therefore, for each species, we can make use of a generalized version of Eq. (3.107)
where also the internal energy levels are taken into account; indeed, as it is shown in
Problem 3.40, the partition function of an ideal polyatomic molecule is still given by
the last expression in (3.107), but with Φ0(T ) replaced by a different function of the
temperature Φi (T ) which depends on the nature and the internal degrees of freedom
of the component. Finally, it follows that the partition function of a mixture of ideal
gases is equal to

Zmix (T, V, Ni ) =
n∏

i=1

(
Φi (T )

V

Ni

)Ni

(3.118)

where n is the number of different components.
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3.6 Entropy and Thermodynamics

In the preceding sections we have shown by some explicit examples how the equi-
librium distribution of a given system can be found once its energy levels are known.
We have also computed the mean equilibrium energy by identifying the Lagrange
multiplier β with 1/kT . However, it should be clear that in general the complete
analysis of the thermodynamics properties of systems in equilibrium requires some
further steps and more information.

In the case of a single harmonic oscillator (which is directly related to Einstein’s
crystal in the limit of a rigid lattice) the thermodynamic analysis is quite simple.
Indeed the model describes a system which exchanges energy with the external
environment only through heat transfer. That means that the exchanged heat is a
function of the state of the system which does not differ, but for an additive constant,
from the mean energy (i.e. from the internal energy U (T )). However, also in this
simple case we can introduce the concept of entropy S, starting from the differential
equation d S = dU/T which, making use of (3.23), gives:

d S = C(T )

T
dT = 3�2ω2

kT 3

e�ω/kT

(
e�ω/kT − 1

)2 dT = −3k�
2ω2 eβ�ω

(
eβ�ω − 1

)2 βdβ

= d

[
3k

(
β�ω

eβ�ω − 1
− ln

(
1 − e−β�ω

))]
. (3.119)

If we choose S(0) = 0 as the initial condition for S(T ), we can easily write the
entropy of Einstein’s crystal:

S(T ) = 3�ω

T

1

e
�ω
kT − 1

− 3k ln
(
1 − e− �ω

kT

)
, (3.120)

showing in particular that at high temperatures S(T ) grows like 3k ln T .
Apart from this result, Eq. (3.120) is particularly interesting since it can be simply

interpreted in terms of statistical equilibrium distributions. Indeed, recalling that the
probability of the generic state of the system, which is identified with the vector n,
is given by:

pn = e−β�ω(nx +ny+nz)
(
1 − e−β�ω

)3
,

we can compute the following expression:

− k
∞∑

nx ,ny ,nz=0

pn ln pn = k
(
1 − e−β�ω

)3 ∑

nx ,ny ,nz=0

e−β�ω(nx +ny+nz)

[
β�ω

(
nx + ny + nz

)− 3 ln
(
1 − e−β�ω

)]
(3.121)
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= −3k ln
(
1 − e−β�ω

)((
1 − e−β�ω

) ∞∑

n=0

e−β�ωn

)3

+3kβ�ω
(
1 − e−β�ω

)3
( ∞∑

n=0

e−β�ωn

)2 ∞∑

m=0

me−β�ωm .

Finally, summing the geometric series by the identity
∑∞

n=0 xn = 1/(1 − x), holding
true if |x | < 1, we get

∞∑

n=1

nxn = x
d

dx

1

1 − x
= x

(1 − x)2
,

from which we easily find again the expression in (3.120).
One of the most important consequences suggested by this result is the proba-

bilistic interpretation of entropy, i.e. the general validity of the equation

S = −k
∑

α

pα ln pα, (3.122)

which is particularly interesting for its simplicity. Indeed, let us consider an isolated
system and assume that its accessible states are equally probable, so that pα is
constant and equal to the inverse of the number of states. Denoting that number by
Ω , it easily follows that S = k lnΩ , thus entropy measures the number of accessible
states. Morover, as one can easily verify by comparing it with (3.10), S coincides,
apart from a constant, with the quantity which has been maximized in order to find
the equilibrium distribution: that is in agreement with thermodynamics, according
to which entropy is maximum at thermal equilibrium.

In order to get further evidence about the generality of Eq. (3.122), let us consider
the general case in which the system can exchange work as well as heat with the
external environment. For instance, Einstein’s model could be made more realistic
by assuming that, in the relevant range of pressures, the frequencies of oscillators
depend on their density according to ω = α (N/V )γ , where typically γ ∼ 2. In
these conditions the crystal exchanges also work with the external environment and
the pressure can be easily computed by using (3.32):

P =
∞∑

nx ,ny ,nz=0

pn
γ

V
En = γ U

V
, (3.123)

thus giving the equation of state for the crystal.
Going back to entropy, let us compute, in the most general case of a systemwhose

equilibriumstate is determinedgiving its volumeand temperature, the heat exchanged
when the parameters β and V undergo infinitesimal variations. From (3.32) we get:
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dU + PdV = ∂U

∂β
dβ + ∂U

∂V
dV + 1

β

∂ ln Z

∂V
dV, (3.124)

therefore, making use of (3.15) we obtain the following infinitesimal heat transfer:

− ∂2 ln Z

∂β2 dβ − ∂2 ln Z

∂β∂V
dV + 1

β

∂ ln Z

∂V
dV . (3.125)

Last expression can be put into the definition of entropy, thus giving:

d S = kβ

[
−∂2 ln Z

∂β2 dβ − ∂2 ln Z

∂β∂V
dV + 1

β

∂ ln Z

∂V
dV

]

= k

[
∂

∂β

(
ln Z − β

∂ ln Z

∂β

)
dβ + ∂

∂V

(
ln Z − β

∂ ln Z

∂β

)
dV

]

= k d

(
ln Z − β

∂ ln Z

∂β

)
. (3.126)

On the other hand it can be easily verified, using again Eq. (3.15), that:

− k
∑

α

pα ln pα = k
∑

α

pα (βEα + ln Z)

= k (βU + ln Z) = k

(
ln Z − β

∂ ln Z

∂β

)
≡ S. (3.127)

Last equation confirms that the probabilistic interpretation of entropy has a general
validity. It implies that, in the quite general situation in which the ground state is
non degenerate, the entropy vanishes together with the absolute temperature. This
is called the theorem of Nernst and has important consequences in the analyses of
chemical equilibrium, as it is shown in Problem 3.45. We also have an expression of
the partition function in terms of thermodynamic potentials. Indeed, the relation S =
k (βU + ln Z) is equivalent to U = T S − ln Z/β, hence to ln Z = −β(U − T S).
Therefore we can conclude that the logarithm of the partition function equals minus
β times the free energy:

F = − ln Z

β
= U − T S . (3.128)

It is well known that the free energy (Helmholtz potential) is the thermodynamic
potential suitable for the analysis of the equilibrium at constant volume.

A last remark is in order. In our analysis we have considered only the Canonical
Ensemble. If we had considered instead the Grand Canonical distribution, that is
Eqs. (3.55) and (3.56) which also give
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U =
∑

a

Ea pa =
∑

a

Ea
e−β(Ea−μna)

Ξ
, (3.129)

we should have obtained

dU =
∑

a

(Eadpa + pad Ea) =
∑

a

(Eadpa + pa
∂Ea

∂V
dV )

= −kT
∑

a

(ln pa + lnΞ)dpa + μ
∑

a

nadpa + PdV

= −kT d
∑

a

pa ln pa + μd N + PdV, (3.130)

because in the state labeled by a the particle number na is also given and hence Ea

only depends on V . Here we have denoted by N the average number of particles.
Now, the probabilistic interpretation of entropy leads to the equation

T d S = dU + PdV − μd N , (3.131)

which, taking into account the properties of the thermodynamic potentials, to be
discussed in the next section, confirms that the Grand Canonical multiplier μ is the
chemical potential, that is the Gibbs potential divided by the particle number, in other
words:

G = Nμ. (3.132)

3.7 The Thermodynamic Potentials

Using Eq. (3.128) and the first principle of thermodynamics, written in differential
form, we introduce a set of thermodynamic functions called thermodynamic poten-
tials. Among these potentials we have the free energy defined by (3.128), the enthalpy

H = U + PV, (3.133)

and the free enthalpy (which is also called Gibbs potential or Gibbs free energy):

G = F + PV ≡ H − T S, (3.134)

where the pressure is given by Eq. (3.35) (P = kT ∂ ln Z(T, V )/(∂V )). If these
functions are continuously differentiable we have

dU = T d S − PdV (3.135)

d F = −SdT − PdV (3.136)
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d H = T d S + V d P (3.137)

dG = −SdT + V d P. (3.138)

Such equations involving differentials imply well definite relations among the varia-
tions of the various thermodynamic quantities that are obtained while keeping other
quantities fixed. For instance, from (3.136) we obtain

S = −∂F

∂T

∣∣∣∣
V

; P = −∂F

∂V

∣∣∣∣
T

; ∂S

∂V

∣∣∣∣
T

= ∂P

∂T

∣∣∣∣
V

(3.139)

where last equation, following from the theorem of symmetry for second partial
derivatives of differentiable functions, is one of the so-called Maxwell’s relations.
Moreover, while dU is the differential change in the total internal energy of the
system, d H is the differential heat exchange at constant pressure, while the differ-
ential work made by the system in a isothermal process is given by −d F . Actually,
the relations existing among the different thermodynamic potentials can be consid-
ered as a particular example of what is usually known, in mathematical language,
as Legendre transformation, which permits to switch from one independent set of
variables to the other. For instance, while F can be viewed as a function of T and
V , the Gibbs potential G = F + PV can be viewed as a new function in which,
since dG = d F + d(PV ) = −SdT − PdV + PdV + V d P = −SdT + V d P ,
the role of V and P as independent variables has been interchanged, so that either F
or G should be used depending on whether one considers a thermodynamic process
at constant volume or pressure. We will come back to the definition of Legendre
transformation when we discuss about phase transitions.

If we consider a system of N identical particles (molecules) both H and G are
proportional to N : the thermodynamic potentials and the entropy, at fixed temperature
and pressure grow with the volume and hence with the number of molecules, in
particular, comparing Eq. (3.131) with the definition of G in (3.134), we have

G(T, P) = Nμ(T, P) . (3.140)

We now consider the thermodynamic potentials in two important cases. First in the
case of a classical ideal monoatomic gas, whose atoms have spin zero. From (3.107)
we have

F(T, V ) = −NkT

[
ln

(
V

N

)
+ 3

2
ln

(
2πmkT

h2

)]

= −NkT

[
ln

(
V

N

)
+ lnΦ0(T )

]
, (3.141)

which is apparently a convex function of V . The corresponding entropy4 is

4If the atoms have D degenerate ground states (e.g., 2S + 1 for spin S) from (3.107) we have a
further additional contribution equal to ΔS = NkT ln D, that is a factor D multiplying Φ.
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S(T, V ) = k N

(
d(T lnΦ(T ))

dT
+ ln

V

N

)
, (3.142)

and the Gibbs potential is

G(T, P) = NkT [ln P − ln(kT Φ(T )) + 1]

≡ NkT

[
ln P + ln

(
h3

(2πm)
3
2

)
+ 1 − 5

2
ln(kT )

]
(3.143)

which is a concave function of P .
Secondly we consider the thermodynamic potentials for a mixture of ideal gases.

Considering first of all the entropy, we find just the sum of the contributions of each
molecular species, that is

Smix (T, V, Ni ) =
n∑

i=1

k Ni

(
d(T lnΦi (T ))

dT
+ ln

V

Ni

)
. (3.144)

For the free energy we get

Fmix (T, V, Ni ) = −
n∑

i=1

k Ni T

(
lnΦi (T ) + ln

V

Ni

)
, (3.145)

while the free enthalpy is

Gmix (T, V, Ni ) = −
n∑

i=1

k Ni T

(
lnΦi (T ) − 1 + ln

k
∑n

j=1 N j T

P Ni

)

= −
n∑

i=1

k Ni T (lnΦi (T ) − 1 + ln(kT ) − ln Pi ) , (3.146)

where Pi = P Ni/(
∑n

j=1 N j ) is the partial pressure of the species. This formula can
also be written as

Gmix (T, V, Ni ) =
n∑

i=1

Niμi (T, Pi ), (3.147)

introducing the chemical potential of each molecular species

μi (T, P) = kT (ln Pi − ln(kT Φi (T )) + 1) . (3.148)

There are many situations in which the physical parameters are not uniformly
distributed over the system, even in equilibrium. Typical is the case of amatter system
in the presence of time independent electromagnetic fields. In these situations the
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use of the potentials which have been introduced above, that we call total, is not
convenient. We should better make use of potential densities, i.e. potentials per unit
volume. These are intensive quantities, in contrast with the total potentials which are
extensive quantities. Other intensive parameters are given by the temperature, the
pressure, the particle density ρ (the number of particles per unit volume), while the
volume V and the total particle number N are extensive quantities. Studying potential
densities we shall only deal with intensive quantities, in particular the relevant state
variables will be the temperature, the pressure and the particle densities. We shall
denote the potential densities by small letters, hence in particular we shall denote by

u(T, ρ) ≡ U (T, V )

V
, f (T, ρ) ≡ F(T, V )

V
(3.149)

the internal energy density and the free energy density, respectively: notice that such
definitions are only valid in the case of a homogeneous system, while in the presence
of inhomogeneities the spatial averages must be taken locally. It is important to
note here that a change of the density might correspond to a change of volume or
else to a change of number of particles, or both. Therefore, in order to compute the
differential of the densities, we must insert into Eqs. (3.135)–(3.138) the differential
d N . For the Gibbs potential this follows directly from (3.140). The extension to the
other potentials follows from their definitions i.e. Eqs. (3.128) and (3.133). Therefore
we have

dG = −SdT + V d P + μd N

d F = −SdT − PdV + μd N

dU = T d S − PdV + μd N

d H = T d S + V d P + μd N , (3.150)

In contrast, considering the potential densities, we have in particular

du = T ds + μdρ , d f = −sdT + μdρ . (3.151)

Nowwe consider an interesting example concerning amaterial in amagnetic field.
Let the material be either diamagnetic of paramagnetic, with a linear response, and
isotropic. This implies the following linear relation among the magnetic induction5

B, the magnetic field H and the magnetization M:

B = μ0(1 + χ(T, ρ))H ≡ μ0(M + H), (3.152)

where χ is the susceptibility of the material and μ0 is the permeability of the vac-
uum. In the presence of magnetic fields the energy density of the system receives

5Weadopt here a convention formagnetic fields inmaterials according towhich H is calledmagnetic
field and B is called magnetic induction. An alternative convention is to keep calling B magnetic
field and to introduce H as an auxiliary field.
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a contribution corresponding to the work per unit volume w done by the external
field sources on the system. For a variation of the field B given by dt Ḃ, where
Ḃ = ∂ B/∂t , on account of the Maxwell equations

∇ ∧ E = −Ḃ , ∇ ∧ H + Ḋ = j , (3.153)

and disregarding Ḋ, which is infinitesimal, in the second equation, we have

dw = −dt E · j = −dt E · (∇ ∧ H) = dt H · Ḃ ≡ H · d B , (3.154)

where a surface term, proportional to ∇ · (E ∧ H), has been disregarded. In other
words, if we integrate dw over the whole volume containing the electromagnetic
fields, this term does not contribute and the total differential work is equal to the
space integral of H · d B. Therefore we conclude that, in the presence of magnetic
fields, Eq. (3.151) becomes

du(T, ρ, B) = T ds(T, ρ, B) + μ(T, ρ, B)dρ + H · d B

d f (T, ρ, B) = −s(T, ρ, B)dT + μ(T, ρ, B)dρ + H · d B . (3.155)

Very often, instead of the just presented potential densities for constant B, it is
convenient to introduce those for constant H that we denote by

ũ(T, ρ, H) = u(T, ρ, B) − H · B

≡ u(T, ρ,μ0(1 + χ(T, ρ))H) − μ0(1 + χ(T, ρ))|H|2
f̃ (T, ρ, H) = f (T, ρ, B) − H · B

≡ f (T, ρ,μ0(1 + χ(T, ρ))H) − μ0(1 + χ(T, ρ))|H|2 . (3.156)

An example of the use of the new potential densities follows from the expression of
the differential

d f̃ (T, ρ, H) = −s(T, ρ, H)dT + μ(T, ρ, H)dρ − B · d H

= −s(T, ρ, H)dT + μ(T, ρ, H)dρ − μ0(1 + χ(T, ρ)H · d H

(3.157)

from which we get the Maxwell relation

∂s(T, ρ, H)

∂ H
= μ0

∂χ(T, ρ)

∂T
H . (3.158)

Therefore at constant temperature and density we find

s(T, ρ, H) − s(T, ρ, 0) = μ0
∂χ(T, ρ)

∂T

|H|2
2

. (3.159)
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In Problem 3.46 we discuss how from this equation it follows the possibility of
cooling paramagnetic materials by adiabatic demagnetization.

3.7.1 Phase Transitions

We have seen that, in principle, the statistical calculation of the partition function
identifies the Helmholtz potential of a system, even if the equilibrium law deduced
from this potential using Eq. (3.35) might not identify the most stable equilibrium
state of the system. Discussing in particular the van der Waals example, we shall
see how this might happen in a particular situation. In general, we must take into
account that, in an equilibrium law at constant temperature, the pressure must be a
monotonic decreasing function of the volume, otherwise we would have an unstable
situation in which the pressure increases with the volume and, for large volumes,
the system behaves like an explosive substance, while for small volumes, if external
pressure keeps constant, the system tends to shrink to a point. As a matter of fact, in
stable systems the pressure decreases when the volume increases and diverges when
the volume tends to zero.6 Therefore we see that, if − ln Z(T, V ) is a continuously
derivable function of V , it is identified with βF(T, V ) only if it is convex, because its
volume derivative must be a non-decreasing function of the volume. However, cases
in which − ln Z is not a convex function may happen, tipically in the framework
of some approximation scheme: then we meet the problem of identifying the true
Helmholtz potential and the true equilibrium law of the system.

If F(T, V ), that for the moment we identify with −kT ln Z(T, V ), is a contin-
uously derivable convex function of V the equilibrium of the system at constant
pressure is identified by the minima of the Gibbs potential given in (3.134). As we
have already remarked, the relation linking F and G is a particular case of Legen-
dre transformation. A naïve definition of such a transformation is by saying that
G(T, P) = F(T, V ) + PV where P and V are related by P = −∂F/∂V : such
a definition is well given only if P is a bijective function of V , i.e. if F is con-
vex; moreover, in this case, one also verifies that G(T, P) is the value the function
F(T, V ) + PV takes at its stationary point, which is unique (and corresponds to a
minimum) by convexity of F . When F is non-convex and more solutions exist to
the equation P = −∂F/∂V , the situation is less trivial and the rigorous definition
of Legendre transformation (hence of Gibbs potential, in our case), is given by

InfV [F(T, V ) + PV ] , (3.160)

that is one must take the value of the absolute minimum (with respect to V ) of the
function F(T, V ) + PV , for T and P fixed.

6In the van der Waals case the pressure diverges before the system is shrunk to zero volume.



3.7 The Thermodynamic Potentials 213

Nowwe know that P identifies the slope of the tangent line to−F in the stationary
point of F(T, V )+ PV . Let us denote the volume at this point by Vs and the pressure
by Ps , then the equation of the tangent line to F(T, V ) is

y(x) = F(T, Vs) + (Vs − x)Ps . (3.161)

Considering the mentioned situations in which F(T, V ) is not a convex function of
V , we note that there might be n stationary points of F(T, V ) + PV corresponding
to the same temperature, T , to the pressure, Ps , and to various different volumes Vi,s ,
(i = 1, . . . , n). The equations of the i-th tangent line would be

yi (x) = F(T, Vi,s) + (Vi,s − x)Ps . (3.162)

According to Eq. (3.160), the Gibbs potential G(T, Ps) corresponds to the minimum
value of the yi (0)’s. Let it be y j (0).

With such a definition, the volume Vs corresponding to a given pressure Ps is
identified as follows. One considers the set of all straight lines of given slope −Ps in
the V, F(T, V ) plane; then, ordering those lines according to their intercept with the
y axis, there is one of them which first intersects the function F(T, V ). If F admits
thermal equilibrium, i.e. if ∂F/∂V is an increasing function at least in the low and
in large volume regime, then one easily realizes that such a first intercepting line
is tangent to F(T, V ): Vs is the contact point and the whole function F(T, V ) lies
above it. One also sees, by graphical construction, that as we increase the pressure
Ps → P ′

s > Ps , i.e. as we decrease the slope, the contact point Vs of the first tangent
line moves downwards, i.e. to V ′

s < Vs , otherwise F would intersect the tangent line
in Vs in some point, contrary to what stated above. On the other hand, since one can
prove7 that Vs = ∂G/∂P computed in Ps , we deduce that ∂G/∂P is a decreasing
function of P , i.e. that G(T, P) is a concave function of P .

Once G is computed we can introduce a new definition of the thermodynamic
potential F(T, V ), identifying it with the absolute maximum over P of G(T, P) −
PV , that is

F̃(T, V ) = supP [G(T, P) − PV ] . (3.163)

For the same reasons discussed above, that gives a convex function, which coincides
with F only if the original free energy is a convex function. In strictly mathematical
terms, it is −G which is the Legendre transform of F , while F̃ is the Legendre
transform of −G: then, we learn that the Legendre transform is an involution when
applied to convex functions.

7We have indeed

∂G(T, Ps)

∂Ps
= ∂

∂Ps
(F(T, Vs(Ps)) + Ps Vs(Ps)) = ∂F

∂Vs

∂Vs

∂Ps
+ Vs + Ps

∂Vs

∂Ps

= −Ps
∂Vs

∂Ps
+ Vs + Ps

∂Vs

∂Ps
= Vs .

.
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It is possible to understand the consequences of this new definition of F consid-
ering that, starting from (3.128), we can write

F(T, V ) =
∫ VM

V
P(T, x)dx + F(T, VM ). (3.164)

Suppose that the corresponding equilibrium law of the system has two coinciding
solutions

P(T, V1) = P(T, V2) , (3.165)

(this is possible if F(T, V ) is not a convex function of V ) according to Eq. (3.134)
we have different solutions for G, thus we have to choose the solution corresponding
to the minimum value of G. But the two choices might coincide, i.e. the two tangent
lines given in (3.162) might coincide. In this case in the interval [V1, V2] the true
potential F̃(T, V ) must be identified with the common tangent line at the extrema
of the interval. Let F̃ = G0 − P0V be its equation (P0 = P(T, V1) = P(T, V2)).
We have

G0 − P0V1 =
∫ VM

V1

P(T, x)dx + F(T, VM )

G0 − P0V2 =
∫ VM

V2

P(T, x)dx + F(T, VM ) , (3.166)

therefore we have

P0(V2 − V1) =
∫ V2

V1

P(T, x)dx , (3.167)

which means that in the P − V plane at constant T the horizontal line cutting the
curve P(T, V ) ≡ −kT ∂ ln Z(T, V )/∂V in the points V1 and V2 averages this curve
in the considered volume interval.

We understand this equation considering the meaning of P0. The two volumes
V1 and V2 corresponding to the same pressure and temperature (P0, T ) are border
points of two branches of F and of the equilibrium law. The choice of the most stable
branch requires a transition between the two branches at the pressure P0, which is
therefore identified with the transition pressure. Each branch identifies a phase of
the system and T and P0 identify an equilibrium point of the two phases. In the van
der Waals example the two phases are the gas and the liquid phases. The interval
[V1, V2] identifies the transition in the sense that, inside the interval, the system
appears as a mixture of the two phases, V1 and V2 being the volumes of the system in
the pure phases. Equation (3.167) allows the identification of the transition pressure
P0 directly from the equilibrium law, it is called the Maxwell rule. The value of the
Gibbs potential at the transition point is G0 for both phases. We conclude that a
loss of convexity in the curve with equation ln Z(T, V ) at constant T characterizes
a phase transition.
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The possibility of phase transitions clearly appears in the analysis of a real gas in
the van der Waals approximation (Eq. (3.114)) whose free energy is

−kT ln Zvdw(T, V ) � −NkT

[
ln

(
(V − b)

Nh3

)
+ 3

2
ln(2πmkT ) + C N

2K T V

]
.

The pressure is given by

P = NkT

V − b
− a

V 2 , (3.168)

where a = C N 2/2 and, of course, V > b.
Computing the derivative of the right-hand side of (3.168) we see that the pressure

is not a decreasing functionof thevolume for everyvalueof the temperature. It follows
that, for certain values of T and V , the pressure increases with the volume.

We see that for V � b the pressure is a decreasing function of V and the same is
true for V → ∞. Therefore we see that the instability problem is due to the second
term in the right-hand side of (3.168) and unstable points are localized at finite values
of the volume. For a deeper analysis of the effects of this termwe compute the volume
derivative of the pressure looking for stationary points. We have

∂P

∂V
= − NkT

(V − b)2
+ 2

a

V 3 , (3.169)

which vanishes in the solutions of the cubic equation

V 3 − 2a

NkT
(V − b)2 ≡ V 3 − α(V − b)2 = 0 . (3.170)

Bothα and b are positive, therefore Eq. (3.170) has no real solutions for V < 0, on the
contrary there is an odd number of real solutions for 0 ≤ V < b. Their number must
be either one or three, because the cubic equation has, at most, three real solutions.
For the same reason, for V > b there are either two real solutions or none. We are
interested in the case, i.e. in the ranges of temperature, for which there are two real
solutions for V > b. Indeed, from (3.168), we see that the pressure diverges if V
tends to b from above and vanishes for V → ∞, therefore, either P(T, V ) is a
monotonic decreasing function of V , −kT ln Zvdw(T, V ) = F(T, V ) is a convex
function of V and the solutions of the equation of state correspond to stable states,
or, for a suitable range of temperature, there is an interval, b < V1 < V < V2, of
instability. For continuity there must exist a temperature for which V1 = V2, i.e. the
pressure has a vanishing second derivative and F has a flex point. The corresponding
temperature, volume and pressure are called critical.

We perform a quantitative analysis of the solutions of Eq. (3.170) rescaling the
volume, i.e. setting V ≡ αv and b/α ≡ z and introducing the new variable x = v −
1/3. From the above definitions we see that z is independent of N and proportional
to kT . Now Eq. (3.170) assumes the simplified forms
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v3 = (v − z)2, x3 − (
1

3
− 2z)x − (

2

27
− 2

3
z + z2) = 0 . (3.171)

The last equation is called a depressed cubic equation because it has the form x3 +
px + q = 0. Following Cardano’s method we see that this equation has three real
solutions if and only if q2/4 + p3/(27) ≤ 0. In the case of (3.171) we see that
this is equivalent to z4/4 = z3/(27). We disregard z = 0, which corresponds to
vanishing T and for which our approximation does not make sense, and we remain
with z = 4/(27) for which q = −2/36. We have three real solutions. The first one
corresponds to x = −2/9 , that is v = 1/9 < z, i.e. V < b. This solution, which
is unphysical, is expected for any value of the temperature. The other two solutions
coincide, they correspond to x = 1/9, i.e. v = 4/9 > z. Therefore we have a critical
point which corresponds to the following temperature, volume and pressure

Tc = 8a

27Nkb
, Vc = 3b , Pc = a

27b2
. (3.172)

For temperatures above Tc the pressure increases monotonically when the volume
decreases from ∞ to b. For large volumes Eq. (3.168) is not substantially different
from the ideal gas law, in contrastwhen the volumeapproachesb the pressure diverges
and the system becomes incompressible like a liquid. Below Tc we find an unstable
regime which corresponds to−kT ln Zvdw(T, V ) loosing its convexity. In this situa-
tion we must replace the unstable branch of the free energy for fixed T by its double
tangent, i.e. the tangent in the points V1 and V2 according to (3.167).

In the figure above it is shown, in arbitrary units, how the free energy at constant
T = 0.4Tc is modified replacing the unstable branch (dashed line) by the mentioned
double tangent. The branches on the left-hand and on the right-hand side, which are
not modified, represent respectively the free energies of the liquid and of the gas
phases. The slope of the double tangent gives minus the transition pressure at the
chosen temperature. It is apparent that the solid line in the figure is convex. In a
plot of the Gibbs potential G(T, P) corresponding to the same temperature, the two
branches corresponding to the two phases join continuously, but with a discontinuous
derivative, at the pressure P0.

The study of phase transitions is a very important subject of advanced statistical
thermodynamics which is far above the level of the present text.
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Problems

3.1 We have to place four distinct objects into 3 boxes. Howmany possible different
distributions can we choose? What is the multiplicity M of each distribution? And
its probability p?

Answer: We can make 3 different choices for each object, therefore the total number
of possible choices is 34 = 81. The total number of possible distributions is instead
given by all the possible choices of non-negative integers n1, n2, n3 with n1 + n2 +
n3 = 4, i.e. (4 + 1)(4 + 2)/2 = 15. There are in particular 3 distributions like
(4, 0, 0), each with p = M/81 = 1/81; 6 like (3, 1, 0), with p = M/81 = 4/81; 3
like (2, 2, 0), with p = M/81 = 6/81; 3 like (2, 1, 1), with p = M/81 = 12/81.

3.2 The integer number k can take values in the range between 0 and 8 according to
the binomial distribution:

P(k) = 1

28

(
8

k

)
.

Compute the mean value of k and its mean quadratic deviation.

Answer: k̄ = 4; 〈(k − k̄)2〉 = 2.

3.3 Let us consider a system which can be found in 4 possible states, enumerated by
the index k = 0, 1, 2, 3 and with energy Ek = εk, where ε = 10−2 eV. The system
is at thermal equilibrium at room temperature T � 300 ◦K. What is the probability
for the system being in the highest energy state?

Answer: Z = ∑3
k=0 e

−βεk ; U = (1/Z)
∑3

k=0 εke−βεk � 1.035 10−2 eV;
Pk=3 = (1/Z)e−3βε � 0.127.

3.4 A diatomic molecule is made up of two particles of equal mass M = 10−27 kg
which are kept at a fixed distance L = 4 × 10−10 m. A set of N = 109 such
systems, which are not interacting among themselves, is in thermal equilibrium at a
temperature T = 1 ◦K. Estimate the number of systems which have a non-vanishing
angular momentum (computed with respect to their center of mass), i.e. the number
of rotating molecules, making use of the fact that the number of states with angular
momentum n� is equal to 2n + 1.
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Answer: If we quantize rotational energy according to Bohr, then the possible energy
levels are En = n2

�
2/(M L2) � 4.3 × 10−4n2 eV, each corresponding to 2n + 1

different states. These states are occupied according to the Canonical Distribution.
The partition function is Z = ∑∞

n=0(2n + 1)e−En/kT . If T = 1 ◦K, then kT �
0.862 × 10−4 eV, hence e−En/kT � e−5.04n2 � (6.47 × 10−3)n2 . Therefore the
two terms with n = 0, 1 give a very good approximation of the partition function,
Z � 1+ 1.94 × 10−2. The probability that a molecule has n = 0 is 1/Z , hence the
number of rotating molecules is NR = N (1−1/Z) � 1.9 × 107. If we instead make
use of Sommerfeld’s perfected theory, implying n2 → n(n + 1) in the expression
for En , we obtain Z � 1+ 1.25 × 10−4 and NR = N (1− 1/Z) � 1.25 × 105. In
the present situation, being quantum effects quite relevant, the use of Sommerfeld’s
correct formula for angular momentum quantization in place of simple Bohr’s rule
makes a great difference.

3.5 Consider again Problem 3.4 in case the molecules are in equilibrium at room
temperature, T � 300 ◦K. Compute also the average energy of each molecule.

Answer: In this case the partition function is, according to Sommerfeld’s theory:

Z =
∞∑

n=0

(2n + 1)e−αn(n+1),

with α � 0.0168. Since α 	 1, (2n + 1)e−αn2 is the product of a linear term times
a slowly varying function of n, hence the sum can be replaced by an integral

Z �
∫ ∞

0
dn(2n + 1)e−αn(n+1) = 1

α
� 60

hence the number of non-rotating molecules is NN R = N/Z � 1.67 × 107. From
Z � 1/α = kT M L2/�

2, we get U = −∂/∂β ln Z = kT , in agreement with
equipartition of energy.

3.6 A system in thermal equilibrium admits 4 possible states: the ground state,
having zero energy, plus three degenerate excited states of energy ε. Discuss the
dependence of its mean energy on the temperature T .

Answer:

U = 3ε e−ε/kT

1 + 3e−ε/kT
; lim

T →0
U (T ) = 0 ; lim

T →∞ U (T ) = 3

4
ε .

3.7 A simple pendulum of length l = 10 cm and mass m = 10 g is placed on
Earth’s surface in thermal equilibrium at room temperature, T = 300 ◦K. What is
the mean quadratic displacement of the pendulum from its equilibrium point?
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Answer: The potential energy of the pendulum is, for small displacements s << l,
mgs2/2l. From the energy equipartition theorem we infer mgs2/2l � kT/2, hence√〈s2〉 � √

kT l/mg = 2 × 10−10 m.

3.8 What is the length of a pendulum for which quantum effects are important at
room temperature?

Answer: �ω ∼ kT , so that l = g/ω2 ∼ �
2g/(kT )2 ∼ 6.5 × 10−28 m.

3.9 Amassless particle is constrained tomove along a segment of length L; therefore
its wave function vanishes at the ends of the segment. The system is in equilibrium
at a temperature T . Compute its mean energy as well as the specific heat at fixed L .
What is the force exerted by the particle on the ends of the segment?

Answer: Energy levels are given by En = ncπ�/L , hence Z = ∑∞
n=1 e

−βEn =
1/(eβcπ�/L − 1) from which the mean energy follows

U = −∂ ln Z

∂β
= cπ�

L

1

(1 − e−cπ�/LkT )
,

and the specific heat

CL = k(cπ�/LkT )2
e−cπ�/LkT

(1 − e−cπ�/LkT )2
,

which vanishes at low temperatures and approaches k at high temperatures; notice
that the equipartition principle does not hold in its usual form in this example, since
the energy is not quadratic in the momentum, hence we have k instead of k/2. The
equation of state can be obtainedmaking use of (3.29) and (3.35), giving for the force
F = (1/β)(∂ ln Z/∂L) = U/L . Hence at high temperatures we have F L = kT .

3.10 Consider a system made up of N distinguishable and non-interacting particles
which can be found each in two possible states of energy 0 and ε. The system is in
thermal equilibrium at a temperature T . Compute the mean energy and the specific
heat of the system.

Answer: The partition function for a single particle is Z1 = 1+ e−ε/kT . That for N
independent particles is Z N = Z N

1 . Therefore the average energy is

U = Nε

1 + eε/kT

and the specific heat is

C = Nk
( ε

kT

)2 eε/kT

(eε/kT + 1)2
.
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3.11 Asystemconsists of a particle ofmassm moving in a one-dimensional potential
which is harmonic for x > 0 (V = kx2/2) and infinite for x < 0. If the system is at
thermal equilibrium at a temperature T , compute its average energy and its specific
heat.

Answer: The wave function must vanish in the origin, hence the possible energy
levels are those of the harmonic oscillator having an odd wave function. In particular,
setting ω = √

k/m, we have En = (2n + 3/2)�ω, with n = 0, 1, . . .. The partition
function is

Z = e−3β�ω/2

1 − e−2β�ω
,

so that the average energy is

U = 3�ω

2
+ 2�ω

e2β�ω − 1

and the specific heat is

C = k(2β�ω)2
e2β�ω

(e2β�ω − 1)2
.

3.12 Compute the average energy of a classical three-dimensional isotropic har-
monic oscillator of mass m and oscillation frequency ν = 2πω in equilibrium at
temperature T .

Answer: The state of the classical system is assigned in terms of the momentum p
and the coordinate x of the oscillator, it is therefore represented by a point in phase
space corresponding to an energy E(p, x) = p2/2m + mω2x2/2. The canonical
partition function can therefore be written as an integral over phase space

Z =
∫

d3 p d3x

Δ
e−β p2/2me−βmω2x2/2

where Δ is an arbitrary effective volume in phase space needed to fix how we count
states (that is actually not arbitrary according to the quantum theory, which requires
Δ ∼ h3). A simple computation of Gaussian integrals gives Z = Δ−1(2π/ωβ)3,
hence U = −(∂/∂β) ln Z = 3kT , in agreement with equipartition of energy.

3.13 A particle of mass m moves in the x − y plane under the influence of an
anisotropic harmonic potential V (x, y) = m(ω2

x x2/2 + ω2
y y2/2), with ωy 	 ωx .

Therefore the energy levels coincide with those of a system made up of two distinct
particlesmoving in twodifferent one-dimensional harmonic potentials corresponding
respectively to ωx and ωy . The system is in thermal equilibrium at a temperature T .
Compute the specific heat and discuss its behaviour as a function of T .
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Answer: The partition function is the product of the partition functions of the two
distinct harmonic oscillators, hence the average energy and the specific heat will be
the sum of the respective quantities. In particular

C = (�ωx )
2

kT 2

eβ�ωx

(eβ�ωx −1)2
+ (�ωy)

2

kT 2

eβ�ωy

(eβ�ωy−1)2
.

We have three different regimes: C ∼ 0 if kT 	 �ωy , C ∼ k if �ωy 	 kT 	 �ωx

and finally C ∼ 2k if kT 
 �ωx .

3.14 Compute the mean quadratic velocity for a rarefied and ideal gas of particles
of mass M = 10−20 kg in equilibrium at room temperature.

Answer: According to Maxwell distribution, 〈v2〉 = 3kT/M � 1.2 m2/s2.

3.15 Taking into account that a generic molecule has two rotational degrees of
freedom, compute, using the theorem of equipartition of energy, the average square
angular momentum J̄ 2 of a molecule whose moment of inertia about the center of
mass is I = 10−39 kg m2, independently of the rotation axis, if the temperature is
T = 300 ◦K. Discuss the validity of the theorem of equipartition of energy in the
given conditions.

Answer: On account of the equipartition of energy, the average rotational kinetic
energy of the molecule is 2kT = 8.29 × 10−21 J = J̄ 2/2I , thus J̄ 2 = 1.66 ×
10−59 J s. The theorem of equipartition of energy is based on the assumption that the
energy, and hence the square angular momentum, be a continuous variable, while,
as a matter of fact (see e.g. Problem 2.1), it is quantized according to the formula
J 2 = n(n + 1)�2. Therefore the validity of the energy equipartition requires that
the difference between two neighboring values of J 2 be much smaller than J̄ 2, i.e.
(2n +1)/(n(n +1)) � 2/n 	 1. In the given conditions n � J/� � √

1.49 × 109,
therefore previous inequality is satisfied.

3.16 Consider a diatomic gas, whose molecules can be described schematically as
a pair of pointlike particles of mass M = 10−27 kg, which are kept at an equilibrium
distance d = 2 × 10−10 m by an elastic force of constant K = 11.25 N/m.
A quantity equal to 1.66g atoms of such gas is contained in volume V = 1 m3.
Discuss the qualitative behaviour of the specific heat of the system as a function of
temperature. Consider themolecules as non-interacting and as if eachwere contained
in a cubic box with reflecting walls of size L3 = V/N , where N is the total number
of molecules.

Answer: Three different energy scales must be considered. The effective volume
available for each molecule sets an energy scale E1 = �

2π2/(4M L2) � 1.7 ×
10−6 eV,which is equal to the ground state energy for a particle ofmass 2M in a cubic
box, corresponding to a temperature T1 = E1/k � 0.02 ◦K.Theminimum rotational
energy is instead, according to Sommerfeld, E2 = �

2/(Md2) � 3.5 × 10−3 eV,
corresponding to a temperature T2 = E2/k � 40 ◦K. Finally, the fundamental

http://dx.doi.org/10.1007/978-3-319-20630-1_2
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oscillation energy is E3 = �
√
2K/M � 0.098 eV, corresponding to a temperature

T3 = E2/k � 1140 ◦K. For T1 	 T 	 T2 the system can be described as a classical
perfect gas of pointlike particles, since rotational and vibrational modes are not yet
excited, hence the specific heat per molecule is C ∼ 3k/2. For T2 	 T 	 T3 the
system can be described as a classical perfect gas of rigid rotators, hence C ∼ 5k/2.
Finally, for T 
 T3 also the (one-dimensional) vibrational mode is excited and
C ∼ 7k/2. This roughly reproduces, from a qualitative point of view and with an
appropriate rescaling of parameters, the observed behavior of real diatomic gases.

3.17 Wehave a totalmass M = 10−6 kg of a dust of particles ofmassm = 10−17 kg.
The dust particles can move in the vertical x − z semi-plane defined by x > 0, and
above a line forming an angle α, with tanα = 10−3, with the positive x axis. The
dust is in thermal equilibrium in air at room temperature (T = 300 ◦K) and hence
the particles, which do not interact among themselves, have planar Brownian motion
above the mentioned line. What is the distribution of particles along the positive x
axis and which their average distance x̄ from the vertical z axis?

Answer: We start assuming that, in the mentioned conditions, quantum effects are
negligible and hence the particle distribution in the velocity and position plane is
given by the Maxwell-Boltzmann law: d4n/((d2v)dxdz) = N exp(−E/kT ) =
N exp(−(mv2/2+ mgz)/(kT )) where g is the gravitational acceleration and N is a
normalization factor. Then the x-distribution of particles is given by:

dn

dx
=
∫ ∞

−∞
dvx

∫ ∞

−∞
dvy

∫ ∞

x tanα
dz

d4n

d2vdxdz

= 2πkT N

m

∫ ∞

x tanα
dze−mgz/(kT ) = 2π(kT )2N

m2g
e−mgx tanα/(kT ).

We can compute N using
∫∞
0 (dn/dx)dx = 2π(kT )3N/(tanα m3g2) = M/m =

1011 and x̄ = kT/(mg tanα) � 4.22 × 10−2 m. Now we discuss the validity
of the classical approximation. The average inter-particle distance is of the order
of magnitude of mx̄/M ∼ 4 × 10−13 m, which should be much larger than the
average de Broglie wave length of the particles, which is of the order of magnitude
of h/

√
2mkT ∼ 2 × 10−15 m. We conclude that the classical approximation is

valid.

3.18 The possible stationary states of a system are distributed in energy as follows:

d n

d E
= αE3eE/E0

where E0 is some given energy scale. Compute the average energy and the spe-
cific heat of the system for temperatures T < E0/k, then discuss the possibility of
reaching thermal equilibrium at T = E0/k.

Answer: Let us set β0 = 1/E0. The density of states diverges exponentially with
energy and the partition function of the system is finite only if the temperature is
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low enough in order for the Boltzmann factor, which instead decreases exponentially
with energy, to be dominant at high energies. For T < E0/k (β > β0) we have:

Z =
∫ ∞

0
d EαE3e−(β−β0)E = 6α

(β − β0)4

from which the internal energy U and the specific heat C = dU/dT easily follow:

U = 4

β − β0
= 4kT E0

E0 − kT
; C = 4k E2

0

(E0 − kT )2
.

The specific heat diverges at T = E0/k: in general that may happen in the presence
of a phase transition, but in this specific case also the internal energy diverges as
T → E0/k, meaning that an infinite amount of energy must be spent in order to
bring the system at equilibrium at that temperature, i.e. it is not possible to reach
thermal equilibrium at that temperature.

3.19 Consider a system made up of two identical fermionic particles which can
occupy 4 different states. Enumerate all the possible choices for the occupation
numbers of the single particle states. Assuming that the 4 states have the following
energies: E1 = E2 = 0 and E3 = E4 = ε and that the system is in thermal
equilibrium at a temperature T , compute the mean occupation number of one of the
first two states as a function of temperature.

Answer: There are six different possible states for the whole system characterized
by the following occupation numbers (n1, n2, n3, n4) for the single particle states:
(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1). The corre-
sponding energies are 0, ε, ε, ε, ε, 2ε. The mean occupation number of the first single
particle state (i.e. 〈n1〉) is then given by averaging the value of n1 over the 6 possible
states weighted using the Canonical Distribution, i.e.

〈n1〉 = (1 + 2e−βε)

(1 + 4e−βε + e−2βε)
.

3.20 A system, characterized by 3 different single particle states, is filled with 4
identical bosons. Enumerate the possible states of the system specifying the corre-
sponding occupation numbers. Discuss also the case of 4 identical fermions.

Answer: The possible states can be enumerated by indicating all possible choices
for the occupation numbers n1, n2, n3 satisfying n1 + n2 + n3 = 4. That leads to 15
different states. In the case of fermions, since ni = 0, 1, the constraint on the total
number of particles cannot be satisfied and there is actually no possible state for this
system.

3.21 A system, characterized by two single particle states of energy E1 = 0 and
E2 = ε, is filled with 4 identical bosons. Enumerate all possible choices for the
occupation numbers. Assuming that the system is in thermal contact with a reservoir
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at temperature T and that e−βε = 1
2 , compute the probability of all particles being

in the ground state. Compare the answer with that for distinguishable particles.

Answer: Since the occupation numbers must satisfy N1 + N2 = 4, the possible
states are identified by the value of, for instance, N2, in the case of bosons (N2 =
0, 1, 2, 3, 4), and have energy εN2. In the case of distinguishable particles there are
instead 4!/(N2!(4 − N2)!) different states for each value of N2. The probability of
all the particles being in the ground state is 16/31 in the first case and (2/3)4 in the
second case: notice that this probability is highly enhanced in the case of bosons.

3.22 Consider a gas of electrons at zero temperature. What is the density at which
relativistic effects show up? Specify the answer by finding the density for which
electrons occupy states corresponding to velocities v = √

3 c/2.

Answer: At T = 0 electrons occupy all levels below the Fermi energy EF , or
equivalently below the corresponding Fermi momentum pF . To answer the question
we must impose that

pF = mev√
1 − v2/c2

= √
3 mec.

On the other hand, the number of states below the Fermi momentum, assuming the
gas is contained in a cubic box of size L , is

N = p3F L3

3�3π2 ,

hence ρ = p3F/(3π2
�
3) � 3.04 × 1036 particles/m3.

3.23 The density of states as a function of energy in the case of free electrons is
given in (3.64). However in a conduction band the distribution may have a different
dependence on energy. Let us consider for instance the simple case in which the
density is constant, dnE/d E = γ V , where γ = 8 × 1047 m−3 J−1, the energy varies
from zero to E0 = 1 eV and the electronic density is ρ ≡ n̄/V = 6 × 1028 m−3.
For T not much greater than room temperature it is possible to assume that the bands
above the conduction one are completely free, while those below are completely
occupied, hence the thermal properties can be studied solely on the basis of its
conduction band. Under these assumptions, compute how the chemical potential μ
depends on temperature.

Answer: The average total number of particles comes out to be N̄ = ∫ E0
0 n(ε)g(ε)dε .

The density of levels is g(ε) = dnE/d E = γ V and the average occupation number
is n(ε) = 1/(eβ(ε−μ) + 1). After computing the integral and solving for μ we obtain

μ = kT ln

(
eρ/(γkT ) − 1

1 − eρ/(γkT )e−E0/kT

)
.
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It can be verified that, since by assumption ρ/γ < E0, in the limit T → 0 μ is equal
to the Fermi energy EF = ρ/γ. Instead, in the opposite large temperature limit,
μ → −kT ln(1 − γE0/ρ), hence the distribution of electrons in energy would be
constant over the band and simply given by n(ε)g(ε) = ρV/E0, but of course in this
limit we cannot neglect the presence of other bands. Notice also that in this case,
due to the different distribution of levels in energy, we have μ → +∞, instead of
μ → −∞, as T → ∞.

3.24 The modern theory of cosmogenesis suggests that cosmic space contains about
108 neutrinos per cubic meter and for each species of these particles. Neutrinos can
be considered, in a first approximation, as massless fermions having a single spin
state instead of two, as for electrons; they belong to 6 different species. Assuming
that each species be independent of the others, compute the corresponding Fermi
energy.

Answer: Considering a gas of neutrinos placed in a cubic box of size L , the number
of single particle states with energy below the Fermi energy EF is given, for massless
particles, by NEF = (π/6)E3

F L3/(π�c)3. Putting that equal to the average number
of particles in the box, N̄ = ρL3, we have EF = �c (6π2ρ)1/3 � 3.38 × 10−4 eV.

3.25 Suppose now that neutrinos must be described as particles of mass mν �= 0.
Consider again Problem 3.24 and give the exact relativistic formula expressing the
Fermi energy in terms of the gas density ρ.

Answer: The formula expressing the total number of particles N = L3ρ in terms of
the Fermi momentum pF is:

NEF = (π/6)p3F L3/(π�)3,

hence

EF =
√

m2
νc4 + p2F c2 =

√
m2

νc4 + (6π2ρ)2/3(�c)2.

3.26 Compute the internal energy and the pressure at zero temperature for the system
described in Problem 3.24, i.e. for a gas of massless fermions with a single spin state
and a density ρ ≡ n̄V = 108 m−3.

Answer: The density of internal energy is

U/V = (81π2ρ4/32)
1
3 �c � 4.29 × 10−15 J/m3,

and the pressure
P = U/3V � 1.43 × 10−15 Pa.

Notice that last result is different from what obtained for electrons, Eq. (3.79): the
factor 1/3 in place of 2/3 is a direct consequence of the linear dependence of energy
on momentum taking place for massless or ultrarelativistic particles, in contrast with
the quadratic behavior which is valid for (massive) non-relativistic particles.
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3.27 103 bosons move in a harmonic potential corresponding to a frequency ν such
that hν = 1 eV. Considering that the mean occupation number of the m-th level of
the oscillator is given by the Bose–Einstein distribution: nm = (eβ(hmν−μ) − 1)−1,
compute the chemical potential assuming T = 300 ◦K·
Answer: The total number of particles, N = 1000, can be written as

N =
∑

m

nm = 1

e−βμ − 1
+ 1

K e−βμ − 1
+ 1

K 2e−βμ − 1
+ · · ·

where K = exp(hν/kT ) � e40. Since K is very large and exp(−βμ) > 1 (μ ≤ 0 for
bosons), it is clear that only the first term is appreciably different from zero. Hence

exp(−βμ) = 1 + 1

N

and finally μ � −2.5 × 10−5 eV.

3.28 Consider a system of n̄ 
 1 spin-less non-interacting bosons. Each boson has
two stationary states, the first state with null energy, the second one with energy ε.
If μ is the chemical potential of the system, exp(βμ) = f is its fugacity and one has
f ≤ 1. Compute z = f −1 as a function of the temperature T = 1/(βk) (in fact z is
a function of βε). In particular identify the range of values of z when T varies from
0 to ∞.

Answer: It is convenient to study ζ ≡ z exp(βε/2) instead of z. ζ must diverge in the
T → 0 limit since z ≥ 1. The condition that the sum of state occupation numbers
be equal to n̄ gives the equation:

ζ2 − 2 cosh(βε/2)(1 + 1/n̄)ζ + 2/n̄ + 1 = 0 ,

whose solutions are

ζ± = cosh(βε/2)(1 + 1/n̄) ±
√
cosh2(βε/2)(1 + 1/n̄)2 − 2/n̄ − 1.

Onemust choose ζ+ since ζ− vanishes in the T → 0 limit. Then one has in the T → 0
limit ζ → 2 cosh(βε/2)(1 + 1/n̄) → exp(βε/2)(1 + 1/n̄) and hence the average
occupation number of the zero energy state n̄0 = 1/(ζ exp(−βε/2)−1) → n̄. In the
T → ∞ limit one has ζ → 1 + 2/n̄ and hence n̄0 → 2/n̄. Therefore z ranges from
1 + 1/n̄ to 1 + 2/n̄ and the chemical potential ranges approximately from −kT/n̄,
for T small, to −2kT/n̄ for T large. There is no Bose condensation.

3.29 A system is made up of N identical bosonic particles of mass m moving in
a one-dimensional harmonic potential V (x) = mω2x2/2. What is the distribution
of occupation numbers corresponding to the ground state of the system? And that
corresponding to the first excited state? Determine the energy of both states.
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If �ω = 0.1 eV and if the system is in thermal equilibrium at room temperature,
T = 300 ◦K, what is the ratio R of the probability of the system being in the first
excited state to that of the system being in the ground state? How the last answer
changes in the case of distinguishable particles?

Answer: In the ground state all particles occupy the single particle state of lowest
energy�ω/2, hence E = N�ω/2,while in the first excited state one of the N particles
has energy 3�ω/2, hence E = (N + 2)�ω/2. The ground state has degeneracy 1 both
for identical and distinguishable particles. The first excited state has denegeracy 1 in
the case of bosons while the degeneracy is N in the other case, since it makes sense
to ask which of the N particles has energy 3�ω/2. Therefore R = e−�ω/kT � 0.021
for bosons and R � N 0.021 in the second case. For large N the probability of the
system being excited is much suppressed in the case of bosons with respect to the
case of distinguishable particles.

3.30 Consider again Problem 3.29 in the case of fermions having a single spin state
and for �ω = 1 eV and T � 1000 ◦K.

Answer: In the ground state of the system the first N levels of the harmonic oscillator
are occupied, hence its energy is E0 = ∑N−1

i=0 (n + 1/2)�ω = (N 2/2)�ω. The
minimum possible excitation of this state corresponds to moving the fermion of
highest energy up to the next free level, hence the energy of the first excited state is
E1 = E0 + �ω. The ratio R is equal to e−�ω/kT = 9.12 × 10−6.

3.31 A system is made up of N = 108 electrons which are free to move along a
conducting cable of length L = 1 cm, which can be roughly described as a one-
dimensional segment with reflecting endpoints. Compute the Fermi energy of the
system, taking also into account the spin degree of freedom.

Answer: EF = �
2N 2π2/(8mL2) = 1.5 × 10−18 J.

3.32 Let us consider a system made up of two non-interacting particles at thermal
equilibrium at temperature T . Both particles can be found in a set of single particle
energy levels εn , where n is a non-negative integer. Compute the partition function of
the system, expressing it in terms of the partition function Z1(T ) of a single particle
occupying the same energy levels, for the following three cases: distinguishable
particles, identical bosonic particles, identical fermionic particles.

Answer: If the particles are distinguishable, all states are enumerated by specifying
the energy level occupied by each particle, hence we can sum over the energy levels
of the two particles independently:

Z(T ) =
∑

n

∑

m

e−β(εn+εm ) =
(
∑

n

e−βεn

)2

= (Z1(T ))2.

Instead, in case of two bosons, states corresponding to a particle exchange must be
counted only once, hence we must treat separately states where the particles are in
the same level or not
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Z(T ) = 1

2

∑

n �=m

e−β(εn+εm ) +
∑

n

e−β(εn+εn)

= 1

2

∑

n,m

e−β(εn+εm ) − 1

2

∑

n

e−2βεn +
∑

n

e−2βεn = 1

2

(
(Z1(T ))2 + Z1(T/2)

)
.

If the particles are fermions, we must count only states where the particles are in
different energy levels

Z(T ) = 1

2

∑

n �=m

e−β(εn+εm )

= 1

2

∑

n,m

e−β(εn+εm ) − 1

2

∑

n

e−2βεn = 1

2

(
(Z1(T ))2 − Z1(T/2)

)
.

3.33 A particle of mass m = 9 × 10−31 is placed at thermal equilibrium, at tem-
perature T = 103 ◦K, in a potential which can be described as a distribution of
spherical wells. Each spherical well has a negligible radius, a single bound state of
energy E0 = −1 eV, and the density of spherical wells is ρ = 1024 m−1. Assuming
that the spectrum of unbound states is unchanged with respect to the free particle
case, determine the probability of finding the particle in a “ionized” (i.e., unbound)
state.

Answer: Let us discuss at first the case of a single spherical well at the center of a
cubic box of volume V = L3. The bound state of the well is not influenced by the
walls of the box if L 
 �/

√
2m|E0| � 1.55 × 10−10 m. At the given temperature

the particle is non-relativistic. The density of free energy levels in the cubic box is
dnE/d E = V

√
E(2m)3/2/(4π2

�
3). Taking into account also the bound state, the

partition function is

Z = e−βE0 + V
(2m)3/2

4π2�3

∫ ∞

0
d E

√
Ee−βE = e−βE0 + V

(2mkT )3/2

4π2�3

√
π

2
= e−βE0 + V

λ3
T

where λT ≡ √
2π�2/mkT is the de Broglie thermal wavelength of the particle,

i.e., its typical wavelength at thermal equilibrium. The probability for the particle
being in the bound state is Pb = e−βE0/(e−βE0 + V/λ3

T ) and it is apparent that, for
any given T , limV →∞ Pb = 0, i.e., the particle stays mostly in a “ionized” state if
the box is large enough. At very low temperatures that may seem strange, since it
may be extremely unlikely to provide enough energy to unbind the particle simply
by thermal fluctuations; however, once the particle is free, it escapes with an even
smaller probability of getting back to the well, if the box is large enough.

In the present case, however, there is a finite density of spherical wells: that is
equivalent to considering a single well in a box of volume V = 1/ρ. Therefore

Pb = (1 + e−β|E0|/(ρλ3
T )
)−1

, while the probability for being in an unbound state is
Pf ree = (1 + eβ|E0|ρλ3

T )−1 � e−β|E0|(ρλT )−3 = 2.75 × 10−2.
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3.34 A gas of monoatomic hydrogen is placed at thermal equilibrium at temperature
T = 2 × 103 ◦K. Assuming that the density is low enough to neglect atom-atom
interactions, estimate the rate of atoms which can be found in the first excited energy
level (principal quantum number n = 2).

Answer: According to Gibbs distribution and to the degeneracy of the energy levels
of the hydrogen atom, the ratio of the probabilities for a single atom to be in the level
with n = n2 or in that with n = n1 is

Pn2,n1 = n2
2

n2
1

exp

(
− E0

kT

(
1

n2
2

− 1

n2
1

))

where E0 is the energy of the ground state, E0 = −me4/(32π2ε20�
2) � −13.6 eV.

Since kT � 0.1724 eV, we get P2,1 � 0.8 × 10−24. Since in those conditions most
atoms will be found in the ground state with n = 1, this number can be taken as a
good estimate for the rate of atoms in the level with n = 2.

The above answer is correct in practice, but needs some further considerations.
Indeed, if we try to compute the exact hydrogen atom partition function we find a
divergent behaviour even when summing only over bound states: energy levels En

become denser and denser towards zero energy, where they have an equal Boltzmann
weight and become infinite in number: one would conclude that the probability of
finding an atom in the ground state is zero at every temperature. However, as n
increases, also the atom radius rn increases: in this situation the atom, which is
called a Rydberg atom, interacts strongly with the surrounding black body radiation.
Therefore the infinite number of highly excited states should not be taken into account
since these strongly interacting states have very short lifetimes. One should however
take into account ionized states, in which the electron is free to move far away
from the binding proton. Concerning the statistical weight of these states, we can
make reference to Problem (3.33): following a similar argument we realize that
ionized states become statistically relevant, with respect to the ground state, when
the density of atoms is of the order of e−β|E0|/λ3

T = e−β|E0| (mkT/(2π�
2)
)3/2 ∼

e−β|E0|1028 m−3 ∼ 10−6 m−3.

3.35 Consider a homogeneous gas of non-interacting, non-relativistic bosons, which
are constrained to move freely on a plane surface. Compute the relation linking the
density ρ, the temperature T and the chemical potential μ of the system. Does Bose-
Einstein condensation occur? Does the answer to the last question change if an
isotropic harmonic potential acts in the directions parallel to the surface?

Answer: An easy computation shows that the density of states for free particles in
two dimensions is independent of the energy and given by

dnE

d E
= m A

2π�2
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where m is the particle mass and A is the total area of the surface. According to
Bose-Einstein distribution, the total particle density is then given by:

ρ = N

A
= m

2π�2

∫ ∞

0
d E

1

e(E−μ)/(kT ) − 1
= − kT m

2π�2
ln
(
1 − eμ/(kT )

)
.

The chemical potential turns out to be negative, as expected. It is interesting to
consider the limit of low densities, in which the typical inter-particle distance is
much greater than the typical thermal de Broglie wavelength (ρ−1/2 
 h/

√
mkT )

and

μ � kT ln

(
2π�

2ρ

mkT

)
,

while in the opposite case of high densities one obtains

μ = −kT exp

(
−2π�

2ρ

mkT

)
.

At variance with the three-dimensional case, ρ diverges as μ → 0, meaning that
the system can account for an arbitrarily large number of particles, with no need
for a macroscopic number of particles in the ground state, therefore Bose-Einstein
condensation does not occur in two dimensions, due to the different density of states.

If the system is placed in a two-dimensional isotropic harmonic potential of angu-
lar frequency ω, the energy levels are En = �ω(n+1), with degeneracy n+1, so that
the total number of energy levels found below a given energy E is ∼ E2/(2�

2ω2)

and the density of states becomes dnE/d E � E/(�2ω2). The average number of
particles (the system is not homogeneous and we cannot define a density) is

N = 1

�2ω2

∫ ∞

0
d E

E

e(E−μ)/(kT ) − 1
= k2T 2

�2ω2

∫ ∞

−μ/(kT )

dx
x + μ/(kT )

ex − 1
.

In this case the integral in the last member stays finite even in the limit μ → 0,
meaning that condensation in the ground state is necessary to allow for an arbitrary

average number of particles N . The condensation temperature is Tc ∼
√

N�ω/k and
goes to zero, at fixed N , as ω → 0 (i.e., going back to the free case).

3.36 A system of massless particles at thermal equilibrium is characterized by the
known equation of state U/V − 3P = 0, linking the pressure P to the density of
internal energy U/V . For a homogeneous system of spinless, non-interacting and
distinguishable particles of density ρ, placed at thermal equilibrium at temperature
T , compute the lowest order violation to the above relation due to a non-zero particle
mass m.

Answer: For one particle in a cubic box of volume V = L3, energy levels are

written as E = √p2c2 + m2c4 =
√

m2c4 + (π2�2c2/L2)(n2
x + n2

y + n2
z ), with nx ,
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ny and nz positive integers. The number of energy levels below a given threshold
Ē = √ p̄2c2 + m2c4 is given by p̄3V/(3π2

�
3), from which one obtains the density

of states dnE/d E = V pE/(c2�2�3). The derivative of one energy level with respect
to the volume is ∂E/∂V = p2c2/(3V E).

The internal energy and the pressure are given, for a single particle, by

U =
∫∞

mc2 d E(dnE/d E)e−βE E
∫∞

mc2 d E(dnE/d E)e−βE
; P =

∫∞
mc2 d E(dnE/d E)e−βE (∂E/∂V )
∫∞

mc2 d E(dnE/d E)e−βE

so that

U − 3PV =
∫∞

mc2 d E(dnE/d E)e−βE (E − p2c2/E)
∫∞

mc2 d E(dnE/d E)e−βE
= m2c4

∫∞
mc2 d E(dnE/d E)e−βE/E

∫∞
mc2 d E(dnE/d E)e−βE

.

To keep the lowest order in m it is sufficient to evaluate the integrals in the last
expression in the limit m = 0. Finally, multiplying for the total number of particles
in the box, N = ρV , we get

U

V
− 3P = ρ m2c4

2kT
.

This is the first term of an expansion in terms of the parameter mc2/kT .

3.37 Consider a rarefied gas of particles of mass m in equilibrium at temperature T .
The probability distribution of particle velocities is given by the Gaussian Maxwell-
Boltzmann (MB) formula

p(v) d3v =
( m

2πkT

)3/2
e−mv2/(2kT )d3v.

Considering a pair of particles in the gas, labelled by 1 and 2, compute the distribution
of the relative velocities vR ≡ v1 − v2, and that of the velocity of their center of
mass vB ≡ (v1 + v2)/2.

Answer: The particles in the chosen pair behave as independent systems, hence the
probability density in the six-dimensional (v1, v2) space is just the product of the
two densities:

p(v1, v2)d
3v1d3v2 =

( m

2πkT

)3
e−m(v21+v22)/(2kT )d3v1d3v2 .

If we change variables passing from (v1, v2) to (vR, vB), the new probability density
is given by

p̃(vR, vB)d3vRd3vB = p(v1, v2)d
3v1d3v2

hence p̃(vR, vB) = J (vR, vB)p(v1, v2) where J is the Jacobian matrix, that is, the
absolute value of the determinant of the six-dimensional matrix whose elements are
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∂vi
a/∂v

j
S where a is either 1 or 2 and S is either R or B and i, j label the Cartesian

components. Furthermore p(v1, v2) must be considered a function of (vR, vB). It is
soon verified that J = 1 and that v21 + v22 = (1/2)v2R + 2v2B . Therefore we have

p̃(vR, vB)d3vRd3vB =
( μ

2πkT

)3/2
e−μv2R/(2kT )

(
M

2πkT

)3/2

e−Mv2B/(2kT )

where μ = m/2 is the reduced mass of the pair of particles and M = 2m is their
total mass.

Then we see that our result corresponds to the product of the MB distribution of a
single particle of mass μ and velocity vR and that of a single particle of mass M and
velocity vB . If we search for the vR distribution of the pair, wemust integrate over vB

andwe get the firstMBdistribution, corresponding to themassμ. If insteadwe search
for the vB distribution of the pair, we must integrate over vR and we get the second
MB distribution, corresponding to the mass M . It can be easily verified that the result
extends unchanged to the case in which the two particles have different masses m1
and m2, defining as usual M = m1 + m2, μ = m1m2/M , vB = (m1v1 + m2v2)/M ,
vR = v1 − v2.

3.38 We have a rarefied gas of electrons for which mc2 = 0.511 MeV, in thermal
equilibrium at kT = 5 × 103 eV. Since kT/mc2 	 1, the rarefied gas in non-
relativistic. Therefore the particlemomentum p distribution is given by theMaxwell-
Boltzmann formula

dP
d p

=
(

1

2πmkT

)3/2

e−p2/(2mkT ) .

The electron gas is mixed with a rarefied positron gas in thermal equilibrium at
the same temperature. Positrons are anti-particles of electrons, therefore a positron-
electron collision can produce an annihilation into two photons and hence the two gas
mixture is a photon source. We would like to compute the photon energy (frequency)
distribution.

Answer: If a non-relativistic positron annihilates with a non-relativistic elec-
tron and their relative momentum is p while the center of mass one is P , for-
getting relativistic corrections, we find that the energy of a produced photon is
E = (mc2 + p2/(2m))(1 + Pz/Mc) where we have chosen the z-axis parallel to
the momentum of the photon and the second factor is the transformation factor from
the center of mass to the laboratory frame, that is, it accounts for the non-relativistic
Doppler effect. As shown in the preceding problem, considering a generic electron-
positron pair, one has the center of mass P and relative momentum p distribution
d6P/(d Pd p) = 1/(2πmkT )3 exp(−p2/(mkT )) exp(−P2/(4mkT )). Changing
the Pz variable into E and integrating over Px and Py we get (the only non-trivial
element of the Jacobian matrix is ∂Pz/∂E):

d4P
d pd E

= 2m2c

(2m2c2 + p2)(πmkT )2
e−p2/(mkT ) exp

(
−4m3c2(E − mc2 − p2/(2m))2

(2m2c2 + p2)2kT

)
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which should be integrated over p. The Gaussian factor in p corresponds to a mean
square value p̄2 = 3mkT/2 and the standard deviation Δ2

p2
= 3(mkT )2/2. Since

in the above distribution, the Gaussian factor put apart, p2 appears only in the linear
combination mc2+ p2/(2m) and since mc2 = 0.511MeV 
 3kT/4 we can replace
the linear combinationwithmc2+3kT/4 getting the final photon energy distribution:

dP
d E

= 1√
πmc2kT (1 + 3kT/(4mc2))

exp

[
− (E − mc2 − 3kT/4)2

mc2kT (1 + 3kT/(4mc2))2

]
.

Notice that, however exponentially decaying, the distribution does not vanish for neg-
ative E values, this is due to the fact that for these values the non relativistic Doppler
formula does not apply. Thus negative E values should not be considered. Notice also
that, while the most probable E value is shifted by a factor 3kT/(4mc2) ∼ 10−2, the
width of the distribution is proportional to

√
mc2kT , allowing for fluctuations in E

of the order of
√

kT/mc2 ∼ 10%, i.e., much larger than the shift. The physical origin
of the shift is mostly in the fact that the annihilating pair has an average energy, in
the center of mass, which is larger than 2mc2, due to thermal motion, by an amount
∼ p2/m ∼ kT . The broad distribution of energy is instead mostly due to Doppler
effect, due to the transformation from the center of mass to the laboratory frame (see
also Problem 1.31), and the broadening is proportional to the typical center of mass
velocity, which is of the order of c

√
kT/mc2.

3.39 Compute the magnetic susceptibility of a salt whose magnetic ions (e.g., F3+
e )

have molecular number density ρ, magnetic moment 2μB J/� where J = �/2,
μB = e�μ0/(2m) is Bohr’s magneton and μ0 is the magnetic permeability of the
vacuum.

Answer: Themagnetic interaction energy of a single ion is V = −µ·H . If we choose
the z axis parallel to the magnetic field we get two interaction energy levels for each
ion, the corresponding energies being ±μB H . Therefore, if μB H/(kT ) 	 1, the
average total magnetic moment per unit volume of the salt is parallel to the magnetic
field, the salt being paramagnetic, and its absolute value is, according to Eq. (3.15)

M = ρμB
eμB H/(kT ) − e−μB H/(kT )

eμB H/(kT ) + e−μB H/(kT )
= ρμB tanh(μB H/kT ) � ρμ2

B H/(kT ) .

Therefore the magnetic susceptibility is χ(T, ρ) = ρμ2
B/(kT ).

3.40 Compute the thermodynamic potentials of a perfect gas whose molecules are
diatomic and rigid, that is, they are made of two spinless atoms with masses m1 and
m2 whose relative distance is fixed and equal to d, when the temperature T satisfies
the condition kT 
 �

2(m1 + m2)/(2d2m1m2) ≡ �
2/(2mr d2) ≡ �

2/(2I ).

Answer: From its very definition it turns out that the partition function of an ideal
gas whose molecules have a given spectrum of excited states is given by

http://dx.doi.org/10.1007/978-3-319-20630-1_1
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Zid =
(

(2πmkT )
3
2 V

h3N

∞∑

n=0

νne− En
kT

)N

≡
(

V

N
Φ(T )

)N

where νn is the degeneracy of the level with energy En and m = m1+m2. Indeed the
energy of a molecule with momentum p in the n-th excited state is p2/(2m) + En .
In the case of the rigid diatomic molecule one has νn = 2n + 1 and En = −B +
�
2n(n + 1)(m1 + m2)/(2d2m1m2) ≡ −B + �

2n(n + 1)/(2I ), where B > 0 is the
binding energy of the two atoms. It follows that the free energy is given by

F(T, V ) = −NkT

[
lnΦd(T ) + ln

V

N

]
.

Wemust computeΦd ,which,with the above condition for the temperature, is givenby

Φd(T ) = e
B

kT
(2πmkT )

3
2

h3

∞∑

n=0

(2n + 1)e− �
2n(n+1)
2I kT � e

B
kT

(2πmkT )
3
2

h3

∫ ∞

0
dx e− �

2x
2I kT

= e
B

kT
(2π)

7
2 m

3
2 2I (kT )

5
2

h5

Therefore the internal energy of the rigid diatomic gas is

U (T ) = kT 2N
d lnΦd(T )

dT
= 5

2
NkT + N B,

it only depends on the temperature, as it happens for any perfect gas, and the specific
heat is cv = 5

2 Nk . We also have for the free enthalpy

G(T, P) = −NkT

[
lnΦd(T ) + ln

kT

P
− 1

]
.

A final remark is here in order. In the case of two identical atoms, like, e.g., the
molecules H2, N2 and O2, one has that only even/odd values of n are allowed,
depending on the atomic statistics. As a consequence, the contribution Φd(T ) from
the angular momentum sum must be divided by two.

3.41 Compute the entropy of the van der Waals gas.

Answer: Using Eqs. (3.114) and (3.127), that we write as S = k(ln Z + T ∂T ln Z),
we have

S = k N

(
ln

(2πmkT )
3
2 (V − b)

h3N
+ C N

2V kT
+ 3

2
− C N

2V kT

)

= k N

(
ln

(2πmkT )
3
2 (V − b)

h3N
+ 3

2

)
.
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3.42 Compute the equation of a reversible adiabatic transformation for the van der
Waals gas.

Answer: Using the entropy computed in the former exercise and noticing that the
entropy is constant along a reversible adiabatic transformation we find that its equa-

tion is T
3
2 (V − b) = constant .

3.43 Two rigid vessels of volumes V1 and V2 contain respectively N1 and N2 mole-
cules of two different ideal gases at the same temperature T . The vessels are con-
nected by a tiny tube and a tap whose volumes can be disregarded. Opening the tap,
both gases freely diffuse through the tube, until equilibrium is reached, without any
temperature change, when the partial pressure of each gas in the two vessels equal-
ize. There has been no heat exchange with the outside, because the gases are ideal
and the molecules have kept their kinetic energy during the diffusion. The described
transformation is irreversible. The total entropy of the system must have increased
of a certain amount called mixture entropy. Compute it.

Answer: The initial entropy is given by the sum of the entropies of the two gases.
According to Eq. (3.142) it is given by

SI = k N1

(
d(T lnΦ1(T ))

dT
+ ln

V1
N1

)
+ k N2

(
d(T lnΦ2(T ))

dT
+ ln

V2
N2

)
.

The final state is a mixture of the two ideal gases at temperature T and volume V1 + V2, then,
according to (3.144), we have

SF = k N1

(
d(T lnΦ1(T ))

dT
+ ln

V1 + V2
N1

)
+ k N2

(
d(T lnΦ2(T ))

dT
+ ln

V1 + V2
N2

)

and hence the difference is

SF − SI = k N1 ln
V1 + V2

V1
+ k N2 ln

V1 + V2

V2
,

which, of course, is positive.

3.44 Gas and liquid of the same substance are in equilibrium at temperature T and
pressure P . The equilibrium condition is given by the identity between the specific
free enthalpies G (the molar free enthalpies) of the two phases, that is the identity
between the chemical potentials. Indeed, the free enthalpy of the whole system,
which is given by (N − Δ)μ1(T, P) + Δ μ2(T, P), must be stationary, that is
Δ independent. This implies μ1(T, P) = μ2(T, P). Translate this condition into
a differential equation for the equilibrium curve in the T − P plane (Clapeyron
equation).

Answer: Equation (3.134), translated in terms of the specific thermodynamic func-
tions, becomes μg/ l(T, P) = hg/ l(T, P) − T sg/ l(T, P) where the indices g/ l
distinguish the two phases. The equilibrium equation is
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hg(T, P) − hl(T, P) = T (sg(T, P) − sl(T, P)) .

In differential form, from Eqs. (3.135)–(3.138), we have

dμg(T, P) = −sg(T, P)dT + vg(T, P)d P = dμl(T, P) = −sl (T, P)dT + vl (T, P)d P

therefore

d P

dT
= sg(T, P) − sl(T, P)

vg(T, P) − vl(T, P)
= hg(T, P) − hl(T, P)

T (vg(T, P) − vl(T, P))
.

Now the difference of specific enthalpies coincides, by definition, with the specific
latent heat (λ ≡ hg(T, P) − hl(T, P)) thus we have the Clapeyron equation

d P

dT
= λ(T, P)

T (vg(T, P) − vl(T, P))
.

Whenever the specific volume of the gas phase is much larger than that of the liquid
and it can be approximated by vg � RT/P we have

d P

dT
= P

λ(T, P)

T 2R
.

3.45 Discuss the equilibrium condition for the chemical dissociation of a rigid
diatomic ideal gas into the monoatomic component gases. Consider a case analogous
to the chemical reaction O2 → 2O , where the atoms correspond to the nuclear iso-
tope with mass 16. Note that the result given in Problem 3.40 must be changed, since
both the constituent atoms and the O2 molecule have electronic spin one, this implies
a factor 2S + 1 = 3 multiplying ΦO2(T ) and ΦO(T ). Furthermore I = md2/2,
where m is the atomic mass, and since the constituent atoms are identical, ΦO2(T )

must be divided by two. The temperature T and the pressure P are assumed to be
high and, respectively, low enough to justify the use of the ideal gas formulae.

Answer: Consider the Eqs. (3.146) and (3.147). Let the initial conditions correspond
to N diatomic molecules, if Δ such molecules dissociate into pair of constituent
atoms we have a partial pressure Pd(Δ) = P(N − Δ)/(N + Δ) for the diatomic
component of the mixture, and Pa(Δ) = 2PΔ/(N + Δ) for the monoatomic ones,
therefore the Gibbs potential of the gas mixture resulting from the dissociation is

Gmix (T, P,Δ) = (N − Δ)μd(T, Pd) + 2Δμa(T, Pa).

The equilibrium condition is ∂Gmix (T, P,Δ)/∂Δ = 0. From Eqs. (3.135)–(3.138)
and (3.140) we have for a mixture of gases ∂μi/∂Pi = V/Ni , therefore we have the
equilibrium condition
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2μa(T, Pa) − μd(T, Pd) + V

(
∂Pd

∂Δ
+ ∂Pa

∂Δ

)
= 2μa(T, Pa) − μd(T, Pd) = 0.

If we introduce the stoichiometric coefficients νi = d Ni/dΔ we have
∑

i νiμi

(T, Pi ) = 0 and hence (Eq. (3.148))
∑

i νi (ln Pi − ln(kT Φi (T )) + 1) from which
we have

∏

i

Pνi
i =

(
kT

e

)∑
i νi ∏

i

Φ
νi
i (T ).

Taking into account the results of Problem 3.40 and Eq. (3.143) we have

Φa(T ) = 3

(
2πmkT

h2

) 3
2

, Φd(T ) = e
B

kT
3πd2

2

(
2πmkT

h2

) 5
2

,

and hence we finally get

P2
a

Pd
= e−1kT

Φ2
a (T )

Φd(T )
= (kT )

3
2

(
2πm

h2

) 1
2 6

πd2 e−( B
kT +1) ≡ K −1

p (T ),

where K p is called the (pressure) equilibrium constant of the dissociation reaction.

3.46 We have a sample of the paramagnetic salt considered in Problem 3.39 in the
magnetic field H at temperature Ti .We switch off themagnetic field with a reversible
adiabatic transformation. Compute the final temperature T f of the sample assuming
its entropy density for H = 0 equal to s(T, ρ, 0) = 3kρ ln(T/T0).
Answer: Using Eq. (3.159) and the magnetic susceptibility computed in Prob-
lem 3.39, we compute the initial entropy per unit volume of the salt in the magnetic
field H

s(Ti , ρ, H) = s(Ti , ρ, 0) + ∂χ(Ti , ρ)

∂T

|H|2
2

= 3kρ ln(Ti/T0) − ρμ2
B

kT 2
i

|H|2
2

.

At the end of the reversible adiabatic field switch off we have s(Ti , ρ, H) =
s(T f , ρ, 0), therefore we have

T f = Ti exp

(
−μ2

B |H|2
6(kTi )2

)
� Ti − μ2

B |H|2
6k2Ti

.

It is apparent that we find a reduction of the temperature of the sample.
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